30 CFR 90.220 - Status change reports.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH... Procedures § 90.201 Sampling; general and technical requirements. (a) An approved coal mine dust personal sampler unit (CMDPSU) shall be used to take samples of the concentration of respirable coal mine dust in...
Mechanical properties of reconstituted Australian black coal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jasinge, D.; Ranjith, P.G.; Choi, S.K.
2009-07-15
Coal is usually highly heterogeneous. Great variation in properties can exist among samples obtained even at close proximity within the same seam or within the same core sample. This makes it difficult to establish a correlation between uniaxial compressive strength (UCS) and point load index for coal. To overcome this problem, a method for making reconstituted samples for laboratory tests was developed. Samples were made by compacting particles of crushed coal mixed with cement and water. These samples were allowed to cure for four days. UCS and point load tests were performed to measure the geomechanical properties of the reconstitutedmore » coal. After four days curing, the average UCS was found to be approximately 4 MPa. This technical note outlines some experimental results and correlations that were developed to predict the mechanical properties of the reconstituted black coal samples. By reconstituting the samples from crushed coal, it is hoped that the samples will retain the important mechanical and physicochemical properties of coal, including the swelling, fluid transport, and gas sorption properties of coal. The aim is to be able to produce samples that are homogeneous with properties that are highly reproducible, and the reconstituted coal samples can be used for a number of research areas related to coal, including the long-term safe storage of CO{sub 2} in coal seams.« less
A CHARACTERIZATION AND EVALUATION OF COAL LIQUEFACTION PROCESS STREAMS
DOE Office of Scientific and Technical Information (OSTI.GOV)
G.A. Robbins; R.A. Winschel; S.D. Brandes
This is the first Annual Technical Report of activities under DOE Contract No. DE-AC22-94PC93054. Activities from the first three quarters of the fiscal 1998 year were reported previously as Quarterly Technical Progress Reports (DOE/PC93054-57, DOE/PC93054-61, and DOE/PC93054-66). Activities for the period July 1 through September 30, 1998, are reported here. This report describes CONSOL's characterization of process-derived samples obtained from HTI Run PB-08. These samples were derived from operations with Black Thunder Mine Wyoming subbituminous coal, simulated mixed waste plastics, and pyrolysis oils derived from waste plastics and waste tires. Comparison of characteristics among the PB-08 samples was made tomore » ascertain the effects of feed composition changes. A comparison also was made to samples from a previous test (Run PB-06) made in the same processing unit, with Black Thunder Mine coal, and in one run condition with co-fed mixed plastics.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Srivastava, V.J.
The purpose of this project is to investigate the possibilities of developing an integrated physical/chemical/microbial process for the pre-combustion removal of sulfur from coal. Microorganisms are capable of specifically cleaving carbon-sulfur bonds and removing substantial amounts of organic sulfur from coal; however, the removal of organic sulfur form coal by microorganisms is hampered by the fact that, as a solid substrate, it is difficult to bring microorganisms in contact with the entirety of a coal sample. This study will examine the suitability of physically/chemically treated coal samples for subsequent biodesulfurization. During the current quarter, chemical comminution and combined chemical treatment/explosivemore » comminution experiments have been performed to generate coal samples with increased surface area and porosity. Ammonia vapor was found to be the most effective chemical comminution agent and the optimum conditions for combined chemical treatment/explosive comminution have not yet been determined.« less
Singh, Lalit Mohan; Kumar, Mukesh; Sahoo, B K; Sapra, B K; Kumar, Rajesh
2016-10-01
Electricity generation in India is largely dependent on coal-based thermal power plants, and increasing demand of energy raised the coal consumption in the power plants. In recent years, study of natural radioactivity content and radon/thoron exhalation from combustion of coal and its by-products has given considerable attention as they have been recognised as one of the important technically enhanced naturally occurring radioactive materials. In the present study, radon, thoron exhalation rate and the radioactivity concentration of radionuclides in coal and fly ash samples collected from Kota Super Thermal Power Plant, Rajasthan, India have been measured and compared with data of natural soil samples. The results have been analysed and discussed. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
This volume describes emission results from sampling of flue gas from a firetube boiler burning a coal/oil/water (COW) mixture and COW with soda ash added (COW+SA) to control SO2 emissions. Measurements included: continuous monitoring of flue gas emissions; source assessment samp...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spackman, W.; Davis, A.; Walker, P. L.
1977-12-01
The Penn State/ERDA Coal Sample Bank was expanded to include 201 new coal samples. A total of 68 characterized coal samples and 115 selected printouts of coal data were supplied upon request to the coal research community. Selected chemical and petrographic properties were statistically analyzed for 119 coal channel samples chosen from the Penn State/ERDA Coal Data Base. Installation of the pressurized laminar flow isotherml reactor has begun. Experiments have continued on the combustion pot; the study of the reactivity of a Koppers Company coke is now complete. Studies show that weight changes associated with preoxidation can be precisely meausredmore » using a TGA apparatus. Water densities determined on 19 coals were lower when measured in the presence of a wetting agent. Study of the effect of reaction temperature on gasification of Saran carbon in air shows one percent platinum loading on Saran carbon increases gasification rates over the entire range of carbon burn-off. Study of the theoretical aspects of combustion of low volatile fuels was resumed. The computer model was expanded to include the effects of heat loss through the furnace walls and its effect on flame temperature profiles. Investigation of the combustion characteristics of coal-oil-water-air fuel mixtures was continued. Only through the use of non-equilibrium experiments can certain important combustion characteristics be studied, and computerized data acquisition is being developed to fully implement such methods.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peppas, N.A.; Hill-Lievense, M.E.; Hooker, D.T. II
1981-01-01
Seven coal samples ranging from a lignite with 69.95% carbon to an anthracite with 94.17% carbon on a dry mineral matter-free (dmmf) basis were extracted with pyridine at its reflux temperature for two weeks. The coal matrices obtained were subjected to two degradation techniques, the Sternberg reductive alkylation technique and the Miyake alkylation technique. Gel permeation chromatographic analysis of pyridine-extracted liquids of the alkylated coal showed average molecular weights smaller than those of the original coal extracts. Electron impact mass spectrometry was used to obtain the mass spectra of these alkylated coal samples. Based on investigation of the recurring patternmore » of the peaks of the mass spectra of these products it was concluded that a cluster size of 126 to 130 is characteristic of the crosslinked structure of the coal studied. In addition, several chemical compounds in the range of m/e 78-191 were identified.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doyle, F.M.
1993-12-31
The objective of this research is to develop a mechanistic understanding of the oxidation of coal and coal pyrite, and to correlate the intrinsic physical and chemical properties of these minerals, along with changes resulting from oxidation, with those surface properties that influence the behavior in physical cleaning processes. The results will provide fundamental insight into oxidation, in term of the bulk and surface chemistry, the microstructure, and the semiconductor properties of the pyrite. During the thirteenth quarter, wet oxidation tests were done on coal samples from the Pennsylvania State Coal Bank. As-received and oxidized coal samples were studied bymore » Diffuse Reflectance Infrared Fourier Transform (DRIFT) spectroscopy to detect functional groups that might be responsible for changing the hydrophobicity of coal samples. Coal samples from the Pennsylvania State Coal Bank were oxidized for 5 hours at room temperature using 10% H{sub 2}O{sub 2} at pH 1.0, 1.0 M HNO{sub 3} or 0.05 M Fe{sub 2}(SO{sub 4}){sub 3} at pH 1.0. Details of the experimental procedure used in the wet oxidation tests were provided in our September 30, 1993 report, along with results of ion-exchange analysis and film flotation tests on as-received and oxidized coal samples. Table II shows the weight percentage of carboxylic and phenolic group oxygen generated by oxidation with different treatments, as determined by ion-exchange. DRIFT spectroscopic analysis was done on as-received and oxidized samples to identify different functionalities directly, to supplement the information on carboxylic and phenolic groups obtained indirectly by ion-exchange methods. The procedure for DRIFT analysis was reported in our June 30, 1993 report.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robbins, G.A.; Brandes, S.D.; Winschel, R.A.
1995-05-01
The objectives of this project are to support the DOE direct coal liquefaction process development program and to improve the useful application of analytical chemistry to direct coal liquefaction process development. Independent analyses by well-established methods will be obtained of samples produced in direct coal liquefaction processes under evaluation by DOE. Additionally, analytical instruments and techniques which are currently underutilized for the purpose of examining coal-derived samples will be evaluated. The data obtained from this study will be used to help guide current process development and to develop an improved data base on coal and coal liquids properties. A samplemore » bank will be established and maintained for use in this project and will be available for use by other researchers. The reactivity of the non-distillable resids toward hydrocracking at liquefaction conditions (i.e., resid reactivity) will be examined. From the literature and data experimentally obtained, a mathematical kinetic model of resid conversion will be constructed. It is anticipated that such a model will provide insights useful for improving process performance and thus the economics of direct coal liquefaction. During this quarter, analyses were completed on 65 process samples from representative periods of HRI Run POC-2 in which coal, coal/plastics, and coal/rubber were the feedstocks. A sample of the oil phase of the oil/water separator from HRI Run POC-1 was analyzed to determine the types and concentrations of phenolic compounds. Chemical analyses and microautoclave tests were performed to monitor the oxidation and measure the reactivity of the standard coal (Old Ben Mine No. 1) which has been used for the last six years to determine solvent quality of process oils analyzed in this and previous DOE contracts.« less
Cooperative research in coal liquefaction. Technical progress report, May 1, 1993--April 30, 1994
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huffman, G.P.
Accomplishments for the past year are presented for the following tasks: coliquefaction of coal with waste materials; catalysts for coal liquefaction to clean transportation fuels; fundamental research in coal liquefaction; and in situ analytical techniques for coal liquefaction and coal liquefaction catalysts some of the highlights are: very promising results have been obtained from the liquefaction of plastics, rubber tires, paper and other wastes, and the coliquefaction of wastes with coal; a number of water soluble coal liquefaction catalysts, iron, cobalt, nickel and molybdenum, have been comparatively tested; mossbauer spectroscopy, XAFS spectroscopy, TEM and XPS have been used to characterizemore » a variety of catalysts and other samples from numerous consortium and DOE liquefaction projects and in situ ESR measurements of the free radical density have been conducted at temperatures from 100 to 600{degrees}C and H{sub 2} pressures up to 600 psi.« less
Coal desulfurization by a microwave process. Technical progress report, February 1981-May 1981
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zavitsanos, P.D.; Golden, J.A.; Bleiler, K.W.
1981-01-01
Desulfurization experiments were carried out using the 6KW, 2450 MHz Flow Reactor System. The program has been directed toward the combination of physical separation and microwave exposure with NaOH to increase sulfur removal. The following treatment sequence has been used with good results: (1) expose 1/4 to 1 in. raw coal to microwaves; (2) crush the treated coal and separate the sample into float/sink fractions; (3) add NaOH to the float fraction and re-expose the sample to microwaves; and (4) wash, add NaOH and expose to microwaves. This procedure has produced up to 89% sulfur removal and as low asmore » 0.31 numberS/10/sup 6/ Btu. Ash analyses on these samples showed as high as 40% reduction. The calorific value was increased in almost all samples. Data on sulfur, ash and calorific values are summarized.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1988-01-01
This quarter, samples of dry fly ash, wet bottom ash, and desulfurization gypsum slurry were provided from an Ohio Edison power plant. Chemical analysis mineralogical examination, and an anion analysis were performed on the samples. 2 figs., 1 tab. (CBS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1994-01-01
The purpose of this directory is to provide a listing of available U.S. coal and coal related resources to potential purchasers of those resources abroad. The directory lists business entities within the US which offer coal related resources, products and services for sale on the international market. Each listing is intended to describe the particular business niche or range of product and/or services offered by a particular company. The listing provides addresses, telephones, and telex/fax for key staff in each company committed to the facilitation of international trade. The content of each listing has been formulated especially for this directorymore » and reflects data current as of the date of this edition. The directory listings are divided into four primary classifications: coal resources; technology resources; support services; and financing and resource packaging. The first three of which are subdivided as follows: Coal Resources -- coal derivatives, coal exporters, and coal mining; Technology Resources -- advanced utilization, architects and engineers, boiler equipment, emissions control and waste disposal systems, facility construction, mining equipment, power generation systems, technical publications, and transport equipment; Support Services -- coal transport, facility operations, freight forwarders, sampling services and equipment, and technical consultants. Listings for the directory were solicited on the basis of this industry breakdown. Each of the four sections of this directory begins with a matrix illustrating which companies fall within the particular subclassifications specific to that main classification. A general alphabetical index of companies and an index by product/service classification are provided following the last section of the directory.« less
NASA Astrophysics Data System (ADS)
Phuong, Vu Hung
2018-03-01
This research applies Data Envelopment Analysis (DEA) approach to analyze Total Factor Productivity (TFP) and efficiency changes in Vietnam coal mining industry from 2007 to 2013. The TFP of Vietnam coal mining companies decreased due to slow technological progress and unimproved efficiency. The decadence of technical efficiency in many enterprises proved that the coal mining industry has a large potential to increase productivity through technical efficiency improvement. Enhancing human resource training, technology and research & development investment could help the industry to improve efficiency and productivity in Vietnam coal mining industry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Halambage Upul Deepthike; Robin Tecon; Gerry van Kooten
In the wake of the 1989 Exxon Valdez oil spill, spatially and temporally spill-correlated biological effects consistent with polycyclic aromatic hydrocarbon (PAH) exposure were observed. Some works have proposed that confounding sources from local source rocks, prominently coals, are the provenance of the PAHs. Representative coal deposits along the southeast Alaskan coast (Kulthieth Formation) were sampled and fully characterized chemically and geologically. The coals have variable but high total organic carbon content, technically classifying as coals and coaly shale, and highly varying PAH contents. Even for coals with high PAH content (4000 ppm total PAHs), a PAH-sensitive bacterial biosensor demonstratesmore » nondetectable bioavailability as quantified, based on naphthalene as a test calibrant. These results are consistent with studies indicating that materials such as coals strongly diminish the bioavailability of hydrophobic organic compounds and support previous work suggesting that hydrocarbons associated with the regional background in northern Gulf of Alaska marine sediments are not appreciably bioavailable. 44 refs., 4 figs., 2 tabs.« less
George A. Olah, Carbocation and Hydrocarbon Chemistry
. Final Technical Report. [HF:BF{sub 2}/H{sub 2}] , DOE Technical Report, 1980 Superacid Catalyzed Coal Conversion Chemistry. 1st and 2nd Quarterly Technical Progress Reports, September 1, 1983-March 30, 1984 , DOE Technical Report, 1984 Superacid Catalyzed Coal Conversion Chemistry. Final Technical Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Looney, J.H.; Im, C.J.
The following report presents the technical progress achieved during the first quarter. The completion of this contract entails engineering evaluation in conjunction with basic laboratory research to determine overall process improvements, associated cost savings and the effect of these savings on product price as they relate to the UCC Physical Beneficiation Process for coal-water slurry manufacture. The technical effort for this quarter has concentrated on two basic areas of concern as they relate to the above-mentioned process. First, an engineering evaluation was carried out to examine the critical areas of improvement in the existing UCC Research Corporation single-stage cleaning circuitmore » (coarse coal, heavy media washer). When the plant runs for low ash coal product, at the specific gravity near 1.30, it was found that substantial product contamination resulted from magnetite carry over in the clean coal product. The reduction of the magnetite contamination would entail the application of more spray water to the clean coal drain and rinse screen, and the refinement of the existing dilute media handling system, to accept the increased quality of rinse water. It was also determined that a basic mechanical overhaul is needed on the washbox to ensure dependable operation during the future production of low-ash coal. The various cost elements involved with this renovation were determined by UCC personnel in the operational division. The second area of investigation was concerned with the laboratory evaluation of three separate source coals obtained from United Coal Company (UCC) and nearby mines to determine probable cleanability when using each seam of coal as a feed in the existing beneficiation process. Washability analyses were performed on each sample utilizing a specific gravity range from 1.25 to 1.50. 4 figures, 3 tables.« less
Prospects for the development of coal-steam plants in Russia
NASA Astrophysics Data System (ADS)
Tumanovskii, A. G.
2017-06-01
Evaluation of the technical state of the modern coal-fired power plants and quality of coal consumed by Russian thermal power plants (TPP) is provided. Measures aimed at improving the economic and environmental performance of operating 150-800 MW coal power units are considered. Ways of efficient use of technical methods of NO x control and electrostatic precipitators' upgrade for improving the efficiency of ash trapping are summarized. Examples of turbine and boiler equipment efficiency upgrading through its deep modernization are presented. The necessity of the development and introduction of new technologies in the coal-fired power industry is shown. Basic technical requirements for a 660-800 MW power unit with the steam conditions of 28 MPa, 600/600°C are listed. Design solutions taking into account features of Russian coal combustion are considered. A field of application of circulating fluidized bed (CFB) boilers and their effectiveness are indicated. The results of development of a new generation coal-fired TPP, including a steam turbine with an increased efficiency of the compartments and disengaging clutch, an elevated steam conditions boiler, and a highly efficient NO x /SO2 and ash particles emission control system are provided. In this case, the resulting ash and slag are not to be sent to the ash dumps and are to be used to a maximum advantage. Technical solutions to improve the efficiency of coal gasification combined cycle plants (CCP) are considered. A trial plant based on a 16 MW gas turbine plant (GTP) and an air-blown gasifier is designed as a prototype of a high-power CCP. The necessity of a state-supported technical reequipment and development program of operating coal-fired power units, as well as putting into production of new generation coal-fired power plants, is noted.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
2005-11-08
This final technical report contains the abstracts and executive summaries of projects funded through the Illinois Clean Coal Institute solicitation entitled 'Request for proposals No. 04-1(ICCI/RFP04-1)'. Support of these projects is by the Office of Coal Development and Department of Commerce and Economic Opportunity. The projects fall into the following categories: advanced coal mining technologies; coal preparation and coal production business practice; management of coal combustion byproducts; commercialization and technology transfer. Final project extensions are also recorded.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harb, J.N.
This report describes work performed in the fifteenth quarter of a fundamental study to examine the effect of staged combustion on ash formation and deposition. Efforts this quarter included addition of a new cyclone for improved particle sampling and modification of the existing sampling probe. Particulate samples were collected under a variety of experimental conditions for both coals under investigation. Deposits formed from the Black Thunder coal were also collected. Particle size and composition from the Pittsburgh No. 8 ash samples support previously reported results. In addition, the authors ability to distinguish char/ash associations has been refined and applied tomore » a variety of ash samples from this coal. The results show a clear difference between the behavior of included and excluded pyrite, and provide insight into the extent of pyrite oxidation. Ash samples from the Black Thunder coal have also been collected and analyzed. Results indicate a significant difference in the particle size of {open_quotes}unclassifiable{close_quotes} particles for ash formed during staged combustion. A difference in composition also appears to be present and is currently under investigation. Finally, deposits were collected under staged conditions for the Black Thunder coal. Specifically, two deposits were formed under similar conditions and allowed to mature under either reducing or oxidizing conditions in natural gas. Differences between the samples due to curing were noted. In addition, both deposits showed skeletal ash structures which resulted from in-situ burnout of the char after deposition.« less
Analysis of Flue Gas Desulfurization (FGD) Processes for Potential Use on Army Coal-Fired Boilers
1980-09-01
TECHNICAL REPORT N-93 September 1980 ANALYSIS OF FLUE GAS DESULFURIZATION (FGD) PROCESSES FOR POTENTIAL USE ON ARMY COAL-FIRED BOILERS TECHNICAL LIBRARY...REFERENCE: Technical Report N-93, Analysis of Flue Gas Desulfurization (FGD) Ppooesses for Potential Use on Army Coal-Fired Boilers Please take a few...REPORT DOCUMENTATION PAGE 1. REPORT NUMBER CERL-TR-N-93 2. GOVT ACCESSION NO «. TITLE (end Subtitle) ANALYSIS OF FLUE GAS DESULFURIZATION (FGD
Technical devices of powered roof support for the top coal caving as automation objects
NASA Astrophysics Data System (ADS)
Nikitenko, M. S.; Kizilov, S. A.; Nikolaev, P. I.; Kuznetsov, I. S.
2018-05-01
In the paper technical devices for the top coal caving as automation objects in the composition of the longwall mining complex (LTCC) are considered. The proposed concept for automation of the top coal caving process allows caving efficiency to be ensured, coal dilution to be prevented, conveyor overloading to be prevented, the shearer service personnel to be unloaded, the influence of the “human factor” to be reduced.
Ellis, Margaret S.; Affolter, Ronald H.
2007-01-01
The Energy Resources Program of the U.S. Geological Survey promotes and supports coal research to improve the understanding of the coal endowment of the United States. This results in geologically based, non-biased energy information products for policy and decision makers, land and resource managers, other federal and state agencies, the domestic energy industry, foreign governments, nongovernmental groups, academia, and other scientists. A more integrated approach to our coal quality work involves what we call a 'cradle to grave' approach. These types of studies focus not on just one aspect of the coal but rather on how or where different quality parameters form and (or) occur and what happens to them through the mining, production, transport, utilization and waste disposal process. An extensive suite of coal quality analyses, mineralogical, petrology, and leaching investigations are determined on samples taken from the different phases of the coal utilization process. This report consists of a tutorial that was given on June 10, 2007 at the 32nd International Technical Conference on Coal Utilization & Fuel Systems, The Power of Coal, Clearwater Coal Conference in Clearwater, Florida, USA. This tutorial covers how these studies are conducted and the importance of providing improved, comprehensive, science-based data sets for policy and decision makers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cronauer, D.C.; Swanson, A.J.; Sajkowski, D.J.
Research under way in this project centers upon developing and evaluating catalysts and process improvements for coal liquefaction in the two-stage close-coupled catalytic process. As documented in the previous quarterly report (Task 3.1), there was little advantage for presoaking Black Thunder coal or Martin Lake lignite in a hydrogen-donor solvent, such as tetralin, at temperatures up to 600{degrees}F prior to liquefaction at higher temperatures. The amount of decarboxylation that occurred during the presoaking of Black Thunder coal or Martin Lake lignite in tetralin in the temperature range of 400 to 600{degrees}F was also relatively small. Further experimentation was undertaken inmore » a continuous flow unit with Black Thunder coal, where the primary goal was to determine the extent of decarboxylation and changes in the structure of the unconverted coal samples. The preliminary results indicated little conversion of the feed coal to THF solubles at 600{degrees}F, although the conversion did increase with increasing temperature up to 24% at 700{degrees}F. The level of decarboxylation was also low at the above reaction temperatures. Thus, presoaking in a coal-derived solvent or even tetralin does not seem to be an effective means to achieve decarboxylation. A suitable sample of Illinois No. 6 coal was received and tested for liquefaction. The batch liquefaction showed that this sample had good reactivity. The continuous liquefaction test was done in a two-stage unit with AMOCAT{trademark}-1C catalyst in both reactors. A significant amount of resid was produced throughout this three-week run. As the catalyst aged, the distillate production decreased and its product quality got worse. The feedstock liquefaction studies for the three feedstocks (Black Thunder subbituminous coal, Martin Lake lignite, and Illinois No. 6 coal) have been completed, and their results will be compared in a subsequent quarterly report.« less
ERIC Educational Resources Information Center
Crowell, Mayme R.
Described are results of a preliminary investigation of the status of energy education activities within two-year postsecondary educational institutions. The specific areas investigated were coal technology, petroleum technology, nuclear technology, solar energy, energy conservation, and energy generation and transmission. Information was gathered…
Exporting coal through technology and countertrade
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borissoff, E.
1985-08-01
Straightforward coal exporting on a simple price-and-delivery basis is becoming increasingly difficult for US suppliers. Technology and countertrade are two tools which could help coal suppliers' exports and, at the same time, satisfy the needs of their overseas customers. Neither would complicate the established process of coal exporting, but both would offer the prospect of increased sales and higher profits. Technical selling involves demonstrating to a customer that US steam coal is more competitive when burned in boiler designed specifically to burn that coal efficiently. To do this, the exporter must know the chemical characteristic of his coal and establishmore » a working relationship with his customers' purchasing agents and boiler chiefs. Technical selling to new users offers even more opportunities. Countertrade occurs when the customer pays for coal or a coal/boiler package with something other than US dollars.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1997-05-01
This report describes the technical progress made on the Advanced Coal Conversion Process (ACCP) Demonstration Project from July 1, 1995 through September 30, 1995. The ACCP Demonstration Project is a US Department of Energy (DOE) Clean Coal Technology Project. This project demonstrates an advanced, thermal, coal upgrading process, coupled with physical cleaning techniques, that is designed to upgrade high-moisture, low-rank coals to a high-quality, low-sulfur fuel, registered as the SynCoal process. The coal is processed through three stages (two heating stages followed by an inert cooling stage) of vibrating fluidized bed reactors that remove chemically bound water, carboxyl groups, andmore » volatile sulfur compounds. After thermal upgrading, the cola is put through a deep-bed stratifier cleaning process to separate the pyrite-rich ash from the coal.« less
Study on feasible technical potential of coal to electricity in china
NASA Astrophysics Data System (ADS)
Jia, Dexiang; Tan, Xiandong
2017-01-01
The control of bulk coal is one of the important work of air pollution control in China’s future. Existing research mainly focuses on the adaptability, economy, construction and renovation plan, and operation optimization of specific energy substitution utilization, and lacks the strategy research of long-term layout of energy substitution utilization in large area. This paper puts forward a technical potential prediction method of coal to electricity based on the thermal equivalent method, which is based on the characteristics of regional coal consumption, and combined with the trend of adaptability and economy of energy substitution utilization. Also, the paper calculates the comprehensive benefit of coal to electricity according to the varieties of energy consumption and pollutant emission level of unit energy consumption in China’s future. The research result shows that the development technical potential of coal to electricity in China is huge, about 1.8 trillion kWh, including distributed electric heating, heat pump and electric heating boiler, mainly located in North China, East China, and Northeast China. The implementation of coal to electricity has remarkable comprehensive benefits in energy conservation and emission reduction, and improvement of energy consumption safety level. Case study shows the rationality of the proposed method.
NASA Astrophysics Data System (ADS)
McNeese, L. E.
1981-01-01
Increased utilization of coal and other fossil fuel alternatives as sources of clean energy is reported. The following topics are discussed: coal conversion development, chemical research and development, materials technology, component development and process evaluation studies, technical support to major liquefaction projects, process analysis and engineering evaluations, fossil energy environmental analysis, flue gas desulfurization, solid waste disposal, coal preparation waste utilization, plant control development, atmospheric fluidized bed coal combustor for cogeneration, TVA FBC demonstration plant program technical support, PFBC systems analysis, fossil fuel applications assessments, performance assurance system support for fossil energy projects, international energy technology assessment, and general equilibrium models of liquid and gaseous fuel supplies.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Coal. 9239.5-3 Section 9239.5-3 Public... OF THE INTERIOR TECHNICAL SERVICES (9000) TRESPASS Kinds of Trespass § 9239.5-3 Coal. (a) Determination of payment in coal trespass. For coal trespass in a State where there is no State law governing...
Code of Federal Regulations, 2012 CFR
2012-10-01
... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Coal. 9239.5-3 Section 9239.5-3 Public... OF THE INTERIOR TECHNICAL SERVICES (9000) TRESPASS Kinds of Trespass § 9239.5-3 Coal. (a) Determination of payment in coal trespass. For coal trespass in a State where there is no State law governing...
Code of Federal Regulations, 2014 CFR
2014-10-01
... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Coal. 9239.5-3 Section 9239.5-3 Public... OF THE INTERIOR TECHNICAL SERVICES (9000) TRESPASS Kinds of Trespass § 9239.5-3 Coal. (a) Determination of payment in coal trespass. For coal trespass in a State where there is no State law governing...
Code of Federal Regulations, 2013 CFR
2013-10-01
... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Coal. 9239.5-3 Section 9239.5-3 Public... OF THE INTERIOR TECHNICAL SERVICES (9000) TRESPASS Kinds of Trespass § 9239.5-3 Coal. (a) Determination of payment in coal trespass. For coal trespass in a State where there is no State law governing...
NASA Technical Reports Server (NTRS)
Mistry, D. K.; Chen, T. N.
1977-01-01
A dry coal screw feeder for feeding coal into coal gasification reactors operating at pressures up to 1500 psig is described. Results on the feeder under several different modes of operation are presented. In addition, three piston feeder concepts and their technical and economical merits are discussed.
Evaluation of ERDA-sponsored coal feed system development
NASA Technical Reports Server (NTRS)
Phen, R. L.; Luckow, W. K.; Mattson, L.; Otth, D.; Tsou, P.
1977-01-01
Coal feeders were evaluated based upon criteria such as technical feasibility, performance (i.e. ability to meet process requirements), projected life cycle costs, and projected development cost. An initial set of feeders was selected based on the feeders' cost savings potential compared with baseline lockhopper systems. Additional feeders were considered for selection based on: (1) increasing the probability of successful feeder development; (2) application to specific processes; and (3) technical merit. A coal feeder development program is outlined.
Geboy, Nicholas J.; Engle, Mark A.; Hower, James C.
2013-01-01
Several standard methods require coal to be ashed prior to geochemical analysis. Researchers, however, are commonly interested in the compositional nature of the whole-coal, not its ash. Coal geochemical data for any given sample can, therefore, be reported in the ash basis on which it is analyzed or the whole-coal basis to which the ash basis data are back calculated. Basic univariate (mean, variance, distribution, etc.) and bivariate (correlation coefficients, etc.) measures of the same suite of samples can be very different depending which reporting basis the researcher uses. These differences are not real, but an artifact resulting from the compositional nature of most geochemical data. The technical term for this artifact is subcompositional incoherence. Since compositional data are forced to a constant sum, such as 100% or 1,000,000 ppm, they possess curvilinear properties which make the Euclidean principles on which most statistical tests rely inappropriate, leading to erroneous results. Applying the isometric logratio (ilr) transformation to compositional data allows them to be represented in Euclidean space and evaluated using traditional tests without fear of producing mathematically inconsistent results. When applied to coal geochemical data, the issues related to differences between the two reporting bases are resolved as demonstrated in this paper using major oxide and trace metal data from the Pennsylvanian-age Pond Creek coal of eastern Kentucky, USA. Following ilr transformation, univariate statistics, such as mean and variance, still differ between the ash basis and whole-coal basis, but in predictable and calculated manners. Further, the stability between two different components, a bivariate measure, is identical, regardless of the reporting basis. The application of ilr transformations addresses both the erroneous results of Euclidean-based measurements on compositional data as well as the inconsistencies observed on coal geochemical data reported on different bases.
NASA Astrophysics Data System (ADS)
Saha, Debasree; Chatterjee, Debashis; Chakravarty, Sanchita; Mazumder, Madhurina
2018-04-01
Coal samples of Samaleswari open cast coal block (S-OCB) are high ash (Aad, mean value 35.43%) and low sulphur content (St, on dry basis, mean value 0.91% < 1%) in quality. The stratigraphic variation of volatile matter and fixed carbon (dry ash-free) reflect a progress of coal metamorphism with depth that accordance to the coal rank variation from lignite to high volatile bituminous in the studied borehole. The younger coal seams have greater detrital minerals (quartz, illite, rutile) influence whereas older coal seams have greater authigenic mineral (kaolinite, dolomite, siderite, apatite) contribution that are possibly due to subsidence and sediment transportation. In S-OCB coal trace elements affinities in-between mineral and organic fraction are identified with statistical hierarchical cluster analysis. The work is further supported by the use of chemical fractionation experiment that reveals the multi mode of occurrence of several environmentally concern and interested trace elements (Sb, As, Be, Cd, Cr, Co, Cu, Pb, Mn, Ni, Zn). Among the analysed trace elements Co, Mn and Zn have major silicate association along with significant carbonate/oxide/monosulfide association. Whereas As, Cd, Cu, Pb and Ni have dominant pyritic association with notable silicate and carbonate/oxide/monosulfide association. The rest three elements (Sb, Be, Cr) have principally organic association with minor silicate and carbonate/oxide/monosulfide association. The stratigraphic variation of organo-mineral matrix content and detrital-authigenic mineral ratio are primarily related to coal rank. Geochemical character of coal also reflects a light towards proper utilisation of S-OCB coal from technical and environmental view point.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Curtis, C.W.; Gutterman, C.; Chander, S.
The overall objective of this project is to develop a new approach for the direct liquefaction of coal to produce an all-distillate product slate at a sizable cost reduction over current technology. The approach integrates coal selection, pretreatment, coal swelling with catalyst impregnation, liquefaction, product recovery with characterization, alternate bottoms processing, and carrying out a technical assessment including an economic evaluation. The primary coal of this program, Black Thunder subbituminous coal, can be effectively beneficiated to about 3.5 wt % ash using aqueous sulfurous acid pretreatment. This treated coal can be further beneficiated to about 2 wt % ash usingmore » commercially available procedures. All three coals used in this study (Black Thunder, Burning Star bituminous, and Martin Lake lignite) are effectively swelled by a number of solvents. The most effective solvents are those having hetero-functionality. laboratory- and bench-scale liquefaction experimentation is underway using swelled and catalyst impregnated coal samples. Higher coal conversions were observed for the SO{sub 2}-treated subbituminous coal than the raw coal, regardless of catalyst type. Conversions of swelled coal were highest when Molyvan L, molybdenum naphthenate, and nickel octoate, respectively, were added to the liquefaction solvent. The study of bottoms processing consists of combining the ASCOT process which consists of coupling solvent deasphalting with delayed coking to maximize the production of coal-derived liquids while rejecting solids within the coke drum. The asphalt production phase has been completed; representative product has been evaluated. The solvent system for the deasphalting process has been established. Two ASCOT tests produced overall liquid yields (63.3 wt % and 61.5 wt %) that exceeded the combined liquid yields from the vacuum tower and ROSE process.« less
Influence of high-energy impact on the physical and technical characteristics of coal fuels
NASA Astrophysics Data System (ADS)
Mal'tsev, L. I.; Belogurova, T. P.; Kravchenko, I. V.
2017-08-01
Currently, in the world's large-scale coal-fired power industry, the combustion of pulverized coal is the most widely spread technology of combusting the coals. In recent years, the micropulverization technology for preparation and combustion of the coal has been developed in this field. As applied to the small-scale power industry, the method of combusting the coal in the form of a coal-water slurry has been explored for years. Fine coal powders are produced and used in the pulverized-coal gasification. Therefore, the coal preparation methods that involve high-dispersion disintegration of coals attract the greatest interest. The article deals with the problems of high-energy impact on the coal during the preparation of pulverized-coal fuels and coal-water slurries, in particular, during the milling of the coal in ball drum mills and the subsequent regrinding in disintegrators or the cavitation treatment of the coal-water slurries. The investigations were conducted using samples of anthracite and lignite from Belovskii open-pit mine (Kuznetsk Basin). It is shown that both the disintegration and the cavitation treatment are efficient methods for controlling the fuel characteristics. Both methods allow increasing the degree of dispersion of the coal. The content of the small-sized particles reground by cavitation considerably exceeds the similar figure obtained using the disintegrator. The specific surface area of the coal is increased by both cavitation and disintegration with the cavitation treatment producing a considerably greater effect. Being subjected to the cavitation treatment, most coal particles assume the form of a split characterized by the thermodynamically nonequilibrium state. Under external action, in particular, of temperature, the morphological structure of such pulverized materials changes faster and, consequently, the combustion of the treated coal should occur more efficiently. The obtained results are explained from the physical point of view.
Evaluating the feasibility of underground coal gasification in Thailand
DOE Office of Scientific and Technical Information (OSTI.GOV)
Young, B.C.; Harju, J.A.; Schmit, C.R.
Underground coal gasification (UCG) is a clean coal technology that converts in situ coal into a low- to medium-grade product gas without the added expense of mining and reclamation. Potential candidates for UCG are those coal resources that are not economically recoverable or that are otherwise unacceptable for conventional coal utilization processes. The Energy and Environmental Research Center (EERC), through the sponsorship of the US Trade and Development Agency and in collaboration with the Electricity Generating Authority of Thailand (EGAT), is undertaking a feasibility study for the application of UCG in the Krabi coal mining area, 620 miles south ofmore » Bangkok in Thailand. The EERC`s objective for this project is to determine the technical, environmental, and economic feasibility of demonstrating and commercializing UCG at a selected site in the Krabi coal mining area. This paper addresses the preliminary developments and ongoing strategy for evaluating the selected UCG site. The technical, environmental, and economic factors for successful UCG operation are discussed, as well as the strategic issues pertaining to future energy expansion in southern Thailand.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
2005-07-01
Papers discussed the coal policy of China, Russia, Indonesia and Vietnam; clean coal technology (small-scale coal power plants, carbon capture and sequestration, new coking process SCOPE21, coal gasification (HyPr-RING), CO{sub 2} reduction technology, Supercritical coal-fired units and CFB boilers, EAGLE project, coal liquefaction), the coal consumer's view of clean fossil energy policy, and natural gas policy and technology. Some of the papers only consist of the presentation overheads/viewgraphs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peterson, Richard; Heinrichs, Michael; Argumedo, Darwin
Objectives: Through this grant, Battelle proposes to address Area of Interest (AOI) 1 to develop a bench-scale technology to economically separate, extract, and concentrate mixed REEs from coal ash. U.S. coal and coal byproducts provide the opportunity for a domestic source of REEs. The DOE’s National Energy Technology Laboratory (NETL) has characterized various coal and coal byproducts samples and has found varying concentrations of REE ranging up to 1,000 parts per million by weight. The primary project objective is to validate the economic viability of recovering REEs from the coal byproduct coal ash using Battelle’s patented closed-loop Acid Digestion Processmore » (ADP). This will be accomplished by selecting coal sources with the potential to provide REE concentrations above 300 parts per million by weight, collecting characterization data for coal ash samples generated via three different methods, and performing a Techno-Economic Analysis (TEA) for the proposed process. The regional availability of REE-laden coal ash, the regional market for rare earth concentrates, and the system capital and operating costs for rare earth recovery using the ADP technology will be accounted for in the TEA. Limited laboratory testing will be conducted to generate the parameters needed for the design of a bench scale system for REE recovery. The ultimate project outcome will be the design for an optimized, closed loop process to economically recovery REEs such that the process may be demonstrated at the bench scale in a Phase 2 project. Project Description: The project will encompass evaluation of the ADP technology for the economic recovery of REEs from coal and coal ash. The ADP was originally designed and demonstrated for the U.S. Army to facilitate demilitarization of cast-cured munitions via acid digestion in a closed-loop process. Proof of concept testing has been conducted on a sample of Ohio-based Middle Kittanning coal and has demonstrated the feasibility of recovering REEs using the ADP technology. In AOI 1, Ohio coal sources with the potential to provide a consistent source of rare earth element concentrations above 300 parts per million will be identified. Coal sample inventories from West Virginia and Pennsylvania will also be assessed for purposes of comparison. Three methods of preparing the coal ash will be evaluated for their potential to enhance the technical feasibility and economics of REE recovery. Three sources of coal ash are targeted for evaluation of the economics of REE recovery in this project: (1) coal ash from power generation stations, to include fly ash and/or bottom ash, (2) ash generated in a lower temperature ashing process, and (3) ash residual from Battelle’s coal liquefaction process. Making use of residual ash from coal liquefaction processes directly leverages work currently being conducted by Battelle for DOE NETL in response to DE-FOA-0000981 entitled “Greenhouse Gas Emissions Reductions Research and Development Leading to Cost-Competitive Coal-to-Liquids Based Jet Fuel Production.” Using the sample characterization results and regional information regarding REE concentration, availability and cost, a TEA will be developed. The previously generated laboratory testing results for leaching and REE recovery via the ADP will be used to perform the TEA, along with common engineering assumptions for scale up of equipment and labor costs. Finally, upon validation of the economic feasibility of the process by the TEA, limited laboratory testing will be performed to support the design of a bench scale system. In a future project phase, it is envisioned that the bench scale system will be constructed and operated to prove the process on a continuous basis.« less
Political and technical issues of coal fire extinction in the Kyoto framework
NASA Astrophysics Data System (ADS)
Meyer, U.; Chen-Brauchler, D.; Rüter, H.; Fischer, C.; Bing, K.
2009-04-01
It is a highly desirable effort to extinguish as much coal fires as possible in short time to prevent large losses of energy resources and to minimise CO2 and other exhaust gas releases from such sources. Unfortunately, extinguishing coal fires needs massive financial investments, skilled man power, suited technology and a long time. Even mid to small scale coal fires need several months of extinguishing measures and of monitoring time after extinction resulting in expenditures of a minimum of several hundred thousand Euros. Large companies might be willing to spend money for coal fire extinction measures but smaller holdings or regional governments might not have the monetary resources for it. Since there is no law in China that demands coal fire extinction, measures under the Kyoto framework may be applied to sell CO2 certificates for prevented emissions from extinguished coal fires and thus used as a financial stimulus for coal fire extinction activities. The set-up for methodologies and project designs is especially complex for coal fire extinction measures and thus for necessary exploration, evaluation and monitoring using geophysical and remote sensing methods. A brief overview of most important formal and technical aspects is given to outline the conditions for a potentially successful CDM application on coal fires based on geophysical observations and numerical modelling.
ArcView Coal Evaluation User's Guide
Watson, William
2007-01-01
Purpose: The objective of the ArcView Coal Evaluation (ACE) is to estimate the amount and location of coal available to be mined by various coal mining technologies, based on the geologic coverages developed in the National Coal Resource Assessment (NCRA) which are the starting coverages used in the Geographic Information Systems (GIS) evaluation of coal resources. The ACE Users Guide provides many examples of how to apply technical limits based upon mining technology. The methods, which are iterative for any given mining technology, should transfer directly by mining technology to other coal beds.
Performance and economics of advanced energy conversion systems for coal and coal-derived fuels
NASA Technical Reports Server (NTRS)
Corman, J. C.; Fox, G. R.
1978-01-01
The desire to establish an efficient Energy Conversion System to utilize the fossil fuel of the future - coal - has produced many candidate systems. A comparative technical/economic evaluation was performed on the seven most attractive advanced energy conversion systems. The evaluation maintains a cycle-to-cycle consistency in both performance and economic projections. The technical information base can be employed to make program decisions regarding the most attractive concept. A reference steam power plant was analyzed to the same detail and, under the same ground rules, was used as a comparison base. The power plants were all designed to utilize coal or coal-derived fuels and were targeted to meet an environmental standard. The systems evaluated were two advanced steam systems, a potassium topping cycle, a closed cycle helium system, two open cycle gas turbine combined cycles, and an open cycle MHD system.
Reactivity of coal in direct hydrogenation processes: Technical progress report, March-May 1987
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baldwin, R.M.; Miller, R.L.
Research during the past quarter centered on continuation of two facets related to the study of coal reactivity in direct hydrogenation liquefaction processes. Five coals from the Argonne Premium coal collection were liquefied at three temperature levels in order to gather data for kinetic analysis purposes. Conversion of these coals to THF-, toluene-, and hexane-solubles was determined at temperatures of 425, 400, and 375 C, and nominal reaction times of 3, 5, 10, 15, and 40 minutes in the microautoclave batch reaction system. Preliminary mathematical modeling of the data using simple irreversible rate expressions and more complex formulations based onmore » a statistical distribution of activation energies was initiated in order to investigate the feasibility of utilizing activation energy as an additional reactivity screening factor. Use of complex models such as the Anthony-Howard formulation for purposes of activation energy determination from liquefaction data at one temperature level was further examined. Five of the 21 coals from the Penn State Premium coal sample bank were liquefied at the standard reactivity screening conditions, and the rate and extent of conversion to THF-, and toluene-, and hexane-solubles quantified. These data were added to the existing data base containing similar information for the prior coal suites from the Exxon and Argonne collections, and preliminary correlational efforts for reactivity vs. coal properties were initiated. Prior conclusions regarding the effect of rank on the rate and extent of conversion were qualitatively verified from the data collected. 1 ref., 13 figs., 2 tabs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1983-04-01
The document is one of six technical handbooks prepared by EPA to help government officials granting permits to build synfuels facilities, synfuels process developers, and other interested parties. They provide technical data on waste streams from synfuels facilities and technologies capable of controlling them. Process technologies covered in the manuals include coal gasification, coal liquefaction by direct and idirect processing, and the extraction of oil from shale. The manuals offer no regulatory guidance, allowing the industry flexibility in deciding how best to comply with environmental regulations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hedman, P.O.; Smoot, L.D.; Smith, P.J.
1987-10-15
The general purpose of this research program was to develop a basic understanding of the physical and chemical processes in entrained coal gasification and to use the results to improve and evaluate an entrained gasification computer model. The first task included the collection and analysis of in-situ gasifier data at elevated pressures with three coal types (North Dakota lignite, Wyoming subbituminous and Illinois bituminous), the design, construction, and testing of new coal/oxygen/steam injectors with a fourth coal type (Utah bituminous), the collection of supporting turbulent fluid dynamic (LDV) data from cold-flow studies, and the investigation of the feasibility of usingmore » laser-based (CARS) daignostic instruments to make measurements in coal flames. The second task included improvements to the two-dimensional gasifier submodels, tabulation and evaluation of new coal devolatilization and char oxidation data for predictions, fundamental studies of turbulent particle dispersion, the development of improved numerical methods, and validation of the comprehensive model through comparison of predictions with experimental results. The third task was to transfer technical advances to industry and to METC through technical seminars, production of a detailed data book, code placement, and publication of results. Research results for these three tasks are summarized briefly here and presented in detail in the body of the report and in supporting references. 202 refs., 73 figs., 23 tabs.« less
16 CFR 1406.1 - Scope, purpose, and effective date.
Code of Federal Regulations, 2012 CFR
2012-01-01
... REGULATIONS COAL AND WOOD BURNING APPLIANCES-NOTIFICATION OF PERFORMANCE AND TECHNICAL DATA § 1406.1 Scope... coal and wood burning appliances, as defined in § 1406.3(a), to provide consumers with a specified... information provided with coal and wood burning appliances. This rule does not replace any voluntary standards...
16 CFR 1406.1 - Scope, purpose, and effective date.
Code of Federal Regulations, 2014 CFR
2014-01-01
... REGULATIONS COAL AND WOOD BURNING APPLIANCES-NOTIFICATION OF PERFORMANCE AND TECHNICAL DATA § 1406.1 Scope... coal and wood burning appliances, as defined in § 1406.3(a), to provide consumers with a specified... information provided with coal and wood burning appliances. This rule does not replace any voluntary standards...
16 CFR 1406.1 - Scope, purpose, and effective date.
Code of Federal Regulations, 2011 CFR
2011-01-01
... REGULATIONS COAL AND WOOD BURNING APPLIANCES-NOTIFICATION OF PERFORMANCE AND TECHNICAL DATA § 1406.1 Scope... coal and wood burning appliances, as defined in § 1406.3(a), to provide consumers with a specified... information provided with coal and wood burning appliances. This rule does not replace any voluntary standards...
16 CFR 1406.1 - Scope, purpose, and effective date.
Code of Federal Regulations, 2010 CFR
2010-01-01
... REGULATIONS COAL AND WOOD BURNING APPLIANCES-NOTIFICATION OF PERFORMANCE AND TECHNICAL DATA § 1406.1 Scope... coal and wood burning appliances, as defined in § 1406.3(a), to provide consumers with a specified... information provided with coal and wood burning appliances. This rule does not replace any voluntary standards...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Osseo-Asare, K.; Boakye, E.; Vittal, M.
1995-04-01
This report described the synthesis of Molybdenum Sulfides in microemulsions by acidification of ammonium tetrathiomolybdate. Molybdenum Sulfides have been shown to be potential coal liquefaction catalysts. The importance of particle size, temperature effects, and coal surface chemistry to impregnation are discussed.
Formation and retention of methane in coal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hucka, V.J.; Bodily, D.M.; Huang, H.
1992-05-15
The formation and retention of methane in coalbeds was studied for ten Utah coal samples, one Colorado coal sample and eight coal samples from the Argonne Premium Coal Sample Bank.Methane gas content of the Utah and Colorado coals varied from zero to 9 cm{sup 3}/g. The Utah coals were all high volatile bituminous coals. The Colorado coal was a gassy medium volatile bituminous coal. The Argonne coals cover a range or rank from lignite to low volatile bituminous coal and were used to determine the effect of rank in laboratory studies. The methane content of six selected Utah coal seamsmore » and the Colorado coal seam was measured in situ using a special sample collection device and a bubble desorbometer. Coal samples were collected at each measurement site for laboratory analysis. The cleat and joint system was evaluated for the coal and surrounding rocks and geological conditions were noted. Permeability measurements were performed on selected samples and all samples were analyzed for proximate and ultimate analysis, petrographic analysis, {sup 13}C NMR dipolar-dephasing spectroscopy, and density analysis. The observed methane adsorption behavior was correlated with the chemical structure and physical properties of the coals.« less
Formation and retention of methane in coal. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hucka, V.J.; Bodily, D.M.; Huang, H.
1992-05-15
The formation and retention of methane in coalbeds was studied for ten Utah coal samples, one Colorado coal sample and eight coal samples from the Argonne Premium Coal Sample Bank.Methane gas content of the Utah and Colorado coals varied from zero to 9 cm{sup 3}/g. The Utah coals were all high volatile bituminous coals. The Colorado coal was a gassy medium volatile bituminous coal. The Argonne coals cover a range or rank from lignite to low volatile bituminous coal and were used to determine the effect of rank in laboratory studies. The methane content of six selected Utah coal seamsmore » and the Colorado coal seam was measured in situ using a special sample collection device and a bubble desorbometer. Coal samples were collected at each measurement site for laboratory analysis. The cleat and joint system was evaluated for the coal and surrounding rocks and geological conditions were noted. Permeability measurements were performed on selected samples and all samples were analyzed for proximate and ultimate analysis, petrographic analysis, {sup 13}C NMR dipolar-dephasing spectroscopy, and density analysis. The observed methane adsorption behavior was correlated with the chemical structure and physical properties of the coals.« less
Particle behavior and char burnout mechanisms under pressurized combustion conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bauer, C.M.; Spliethoff, H.; Hein, K.R.G.
Combined cycle systems with coal-fired gas turbines promise highest cycle efficiencies for this fuel. Pressurized pulverized coal combustion, in particular, yields high cycle efficiencies due to the high flue gas temperatures possible. The main problem, however, is to ensure a flue gas clean enough to meet the high gas turbine standards with a dirty fuel like coal. On the one hand, a profound knowledge of the basic chemical and physical processes during fuel conversion under elevated pressures is required whereas on the other hand suitable hot gas cleaning systems need to be developed. The objective of this work was tomore » provide experimental data to enable a detailed description of pressurized coal combustion processes. A series of experiments were performed with two German hvb coals, Ensdorf and Goettelborn, and one German brown coal, Garzweiler, using a semi-technical scale pressurized entrained flow reactor. The parameters varied in the experiments were pressure, gas temperature and bulk gas oxygen concentration. A two-color pyrometer was used for in-situ determination of particle surface temperatures and particle sizes. Flue gas composition was measured and solid residue samples taken and subsequently analyzed. The char burnout reaction rates were determinated varying the parameters pressure, gas temperature and initial oxygen concentration. Variation of residence time was achieved by taking the samples at different points along the reaction zone. The most influential parameters on char burnout reaction rates were found to be oxygen partial pressure and fuel volatile content. With increasing pressure the burn-out reactions are accelerated and are mostly controlled by product desorption and pore diffusion being the limiting processes. The char burnout process is enhanced by a higher fuel volatile content.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cronauer, D.C.; Swanson, A.J.; Sajkowski, D.J.
Research under way in this project centers upon developing and evaluating catalysts and process improvements for coal liquefaction in the two-stage close-coupled catalytic process. Further experimentation was undertaken in a continuous flow unit with Black Thunder coal, where the primary goal was to determine the extent of decarboxylation and changes in the structure of the unconverted coal samples. The preliminary results indicated little conversion of the feed coal to THF solubles at 600{degrees}F, although the conversion did increase with increasing temperature up to 24% at 700{degrees}F. The level of decarboxylation was also low at the above reaction temperatures. Thus, presoakingmore » in a coal-derived solvent or even tetralin does not seem to be an effective means to achieve decarboxylation. Feedstock liquefaction studies were done with Martin Lake lignite in a two-stage continuous flow unit. Conversion to THF solubles was 82-87%. The Martin Lake lignite product was very light and no resid was produced. Sulfur levels in the product were low, although nitrogen levels were relatively high, requiring further processing by hydrotreating. An air-oxidized sample of Martin Lake lignite produced high oxygen containing resid at the expense of distillate, which clearly indicates that air oxidation of lignite is detrimental. The spent catalyst from the first stage was severely deactivated and generally, the spent catalysts from both stages were in worse condition than those from a previous run with Black Thunder coal. The completed testing results of Sandia`s NiMo/hydrous titanate oxide (NiMo/HTO) preparations are reported.« less
Database for content of mercury in Polish brown coal
NASA Astrophysics Data System (ADS)
Jastrząb, Krzysztof
2018-01-01
Poland is rated among the countries with largest level of mercury emission in Europe. According to information provided by the National Centre for Balancing and Management of Emissions (KOBiZE) more than 10.5 tons of mercury and its compounds were emitted into the atmosphere in 2015 from the area of Poland. Within the scope of the BazaHg project lasting from 2014 to 2015 and co-financed from the National Centre of Research and Development (NCBiR) a database was set up with specification of mercury content in Polish hard steam coal, coking coal and brown coal (lignite) grades. With regard to domestic brown coal the database comprises information on coal grades from Brown Coal Mines of `Bełchatów', `Adamów', `Turów' and `Sieniawa'. Currently the database contains 130 records with parameters of brown coal, where each record stands for technical analysis (content of moisture, ash and volatile particles), elemental analysis (CHNS), content of chlorine and mercury as well as net calorific value and combustion heat. Content of mercury in samples of brown coal grades under test ranged from 44 to 985 μg of Hg/kg with the average level of 345 μg of Hg/kg. The established database makes up a reliable and trustworthy source of information about content of mercury in Polish fossils. The foregoing details completed with information about consumption of coal by individual electric power stations and multiplied by appropriate emission coefficients may serve as the background to establish loads of mercury emitted into atmosphere from individual stations and by the entire sector of power engineering in total. It will also enable Polish central organizations and individual business entities to implement reasonable policy with respect of mercury emission into atmosphere.
From in situ coal to the final coal product: A case study of the Danville Coal Member (Indiana)
Mastalerz, Maria; Padgett, P.L.
1999-01-01
A surface coal mine operation and preparation plant in southwestern Indiana was sampled to examine variations in coal quality and coal petrography parameters for the Danville Coal Member of the Dugger Formation (Pennsylvanian-Desmoinesian, Westphalian D). Representative samples from in situ coal, preparation plant feeds, and a final coal product were collected in order to compare coal quality, coal petrography, trace element concentrations, and ash chemistry of the coal to those of the product. Coal quality parameters of the in situ samples and various feeds, coarse refuse, and final product were variable. The quality of the final coal product was best predicted by the coal quality of the clean coal feed (from the middle portions of the seam). Some trace element contents, especially lead and arsenic, varied between the coal feeds and the product. Lead contents increased in the feeds and product compared to the channel sample of the raw coal, possibly due to contamination in the handling process.A surface coal mine operation and preparation plant in southwestern Indiana was sampled to examine variations in coal quality and coal petrography parameters for the Danville Coal Member of the Dugger Formation (Pennsylvanian-Desmoinesian, Westphalian D). Representative samples from in situ coal, preparation plant feeds, and a final coal product were collected in order to compare coal quality, coal petrography, trace element concentrations, and ash chemistry of the coal to those of the product. Coal quality parameters of the in situ samples and various feeds, coarse refuse, and final product were variable. The quality of the final coal product was best predicted by the coal quality of the clean coal feed (from the middle portions of the seam). Some trace element contents, especially lead and arsenic, varied between the coal feeds and the product. Lead contents increased in the feeds and product compared to the channel sample of the raw coal, possibly due to contamination in the handling process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeRosier, R.; Waterland, L.R.
1986-02-01
The report describes results from field testing a watertube industrial boiler firing a coal/water slurry (CWS) containing about 60% coal. Emission measurements included continuous monitoring of flue-gas emissions; source assessment sampling system (SASS) sampling of the flue-gas, with subsequent analysis of samples to obtain total flue-gas organics in two boiling point ranges, compound category information within these ranges, specific quantitation of the semivolatile organic priority pollutants, and flue-gas concentrations of 73 trace elements: EPA Methods 5/8 sampling for particulate, SO/sub 2/, and SO/sub 3/ emissions; and grab sampling of fuel and ash for inorganic composition. NOx, SO/sub 2/, CO, andmore » TUHC emissions were in the 230-310, 880-960, 170-200, and 1-3 ppm ranges (corrected to 3% 02), respectively, over the two tests performed. Particulate levels at the boiler outlet (upstream of the unit's baghouse) were 7.3 g/dscm in the comprehensive test. Coarse particulate (>3 micrometers) predominated. Total organic emissions were almost 50 mg/dscm, with about 70% of the organic matter in the nonvolatile (>300 C) boiling point range. The bottom ash organic content was 8 mg/g, 80% of which was in the nonvolatile range. Of the PAHs, only naphthalene was detected in the flue gas particulate, with emission levels of 8.6 micrograms/dscm. Several PAHs were found in the bottom ash.« less
NASA Astrophysics Data System (ADS)
Ilse, Jürgen
2010-05-01
Coal is the energy source with the largest geological availability worldwide. Of all non-renewable energies coal and lignite accounting for 55 % of the reserves and some 76 % of the resources represent the largest potential. Reserves are those geological quantities of a mineral which can currently be mined under technically and economically viable conditions. Resources are those quantities which are either proven but currently not economically recoverable or quantities which can still be expected or explored on the basis of geological findings. The global availability of energy source does not only depend on geological and economic factors. The technical availability, e.g. mining and preparation capacities, the sufficient availability of land and sea-borne transportation as well as transloading capacities and also a political availability are required likewise. The latter may be disturbed by domestic-policy disputes like strikes or unrest or by foreign-policy disputes like embargos, trade conflicts or even tensions and wars in the producing regions. In the energy-economic discussion the reach of fossil primary energies plays a central role with the most important questions being: when will which energy source be exhausted, which impact will future developments have on the energy price, what does the situation of the other energies look like and which alternatives are there? The reach of coal can only be estimated because of the large deposits on the one hand and the uncertain future coal use and demand on the other. The stronger growth of population and the economic catching-up process in the developing and threshold countries will result in a shift of the production and demand centres in the global economy. However, also in case of further increases the geological potential will be sufficient to reliably cover the global coal demand for the next 100 years. The conventional mining of seams at great depths or of thin seams reaches its technical and economic limits. However, these otherwise unprofitable coal deposits can be mined economically by means of underground coal gasification, during which coal is converted into a gaseous product in the deposit. The synthesis gas can be used for electricity generation, as chemical base material or for the production of petrol. This increases the usability of coal resources tremendously. At present the CCS technologies (carbon capture and storage) are a much discussed alternative to other CO2 abatement techniques like efficiency impovements. The capture and subsequent storage of CO2 in the deposits created by the actual underground gasification process seem to be technically feasible.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rozelle, P.
1996-01-01
This report describes the progress made during this reporting period of a two year project to demonstrate that the air pollution from a traveling-grate stoker being used to heat water at a central heating plant in Krakow, Poland can be reduced significantly by (1) substituting the unwashed, unsized coal currently being used with a mechanically cleaned, double-sized stoker fuel and by (2) optimizing the operating parameters of the stoker. It is anticipated that these improvements will prove to be cost-effective and hence will be adopted by the other central heating plants in Krakow and ideally, throughout Eastern European cities wheremore » coal continues to be the primary source of fuel. EFH Coal Company has formed a partnership with two Polish institutions -- MPEC, a central heating company in Krakow, and Naftokrak-Naftobudowa, preparation plant designers and fabricators-for the execution of this effort. Five potential candidate sources have been located and contracts for coal deliveries should be executed early next quarter. TInitial delays in formalizing the EFH/Polish Partners agreement delayed finalizing the coal supply contracts and hence, precluded collecting the Polish coal samples for characterization and combustion performance studies. Work on this Task will be initialed next quarter after the raw coal supply contracts are executed. A conceptual design for a plant to wash 25mm x 0 raw coal fines at a need rate of 300 mtph was completed. This plant will receive raw coals ranging in ash content from 20 to 30 percent and produce a compliance coal containing about 1 percent ash, 0.8 percent sulfur and 27, 840 KJ/kg (12,000 Btu/lb). A heavy-media cyclone will be used to wash the 20mm x 1mm stoker coal. Discussions with financial institutions regarding the cost of producing a quality stoker coal in Poland and A for identifying sources of private capital to help cost share the project continued.« less
Quarterly technical progress report, April-June 1982
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1984-04-01
Progress reports are presented for the following tasks: (1) preparation of low-rank coals; application of liquefaction processes to low-rank coals; (2) slagging fixed-bed gasification; (3) atmospheric fluidized-bed combustion of low-rank coal; (4) ash fouling and combustion modification for low-rank coal; (5) combined flue gas cleanup/simultaneous SO/sub x/-NO/sub x/ control; (6) particulate control and hydrocarbons and trace element emissions from low-rank coals; (7) waste characterization and disposal; and (9) exploratory research.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, B.G.; Bartley, D.A.; Hatcher, P.
1996-10-15
This program is being conducted as a cooperative agreement between the Consortium for Coal Water Mixture Technology and the U.S. Department of Energy. Activities this reporting period are summarized by phase. Phase I is nearly completed. During this reporting period, coal beneficiation/preparation studies, engineering designs and economics for retrofitting the Crane, Indiana boiler to fire coal-based fuels, and a 1,000-hour demonstration of dry, micronized coal were completed. In addition, a demonstration-scale micronized-coal water mixture (MCWM) preparation circuit was constructed and a 1,000-hour demonstration firing MCWM began. Work in Phase II focused on emissions reductions, coal beneficiation/preparation studies, and economic analysesmore » of coal use. Emissions reductions investigations involved literature surveys of NO{sub x}, SO{sub 2}, trace metals, volatile organic compounds, and fine particulate matter capture. In addition, vendors and engineering firms were contacted to identify the appropriate emissions technologies for the installation of commercial NO{sub x} and SO{sub 2} removal systems on the demonstration boiler. Information from the literature surveys and engineering firms will be used to identify, design, and install a control system(s). Work continued on the refinement and optimization of coal grinding and MCWM preparation procedures, and on the development of advanced processes for beneficiating high ash, high sulfur coals. Work also continued on determining the basic cost estimation of boiler retrofits, and evaluating environmental, regulatory, and regional economic impacts. In addition, the feasibility of technology adoption, and the public`s perception of the benefits and costs of coal usage was studied. A coal market analysis was completed. Work in Phase III focused on coal preparation studies, emissions reductions and economic analyses of coal use.« less
Toxic Hazards Research Unit Annual Technical Report: 1974
1974-07-01
Deuterium Fluoride 130 iv TABLE OF CONTENTS (CONT’D) Section Page Use of Ion Selective Electrodes in Inhalation Toxicology 135 Analysis of Coal Tar...Chamber Atmospheres 144 Tissue Coal Tar Analysis 145 Fractionation of Crude Coal Tar 146 Blood Cyanide (CN - ) Analysis 155 Engineering Programs 162...flask temperature 134 21 System for analysis of chamber contaminant concentration by specific ion electrode 137 22 Simplified scheme of coal tar
Energy conversion alternatives study
NASA Technical Reports Server (NTRS)
Shure, L. T.
1979-01-01
Comparison of coal based energy systems is given. Study identifies and compares various advanced energy conversion systems using coal or coal derived fuels for baselaoad electric power generation. Energy Conversion Alternatives Study (ECAS) reports provede government, industry, and general public with technically consistent basis for comparison of system's options of interest for fossilfired electric-utility application.
16 CFR § 1406.1 - Scope, purpose, and effective date.
Code of Federal Regulations, 2013 CFR
2013-01-01
... ACT REGULATIONS COAL AND WOOD BURNING APPLIANCES-NOTIFICATION OF PERFORMANCE AND TECHNICAL DATA § 1406... importers, of coal and wood burning appliances, as defined in § 1406.3(a), to provide consumers with a... associated with inadequate information provided with coal and wood burning appliances. This rule does not...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shrivastava, V.K.
1992-01-01
The new impending environmental law in Poland provides for strict environmental guidelines for coal preparation, washing, mine desalination, and application of commercially viable and economical clean coal technologies for utilization of coal. The government of Poland requested the U.S. Trade and Development Program (TDP) carry out a Definitional Mission to Poland to define the requirements of the Polish authorities and to prepare specific recommendations for follow on actions by TDP. The technical assistance package proposed to be funded by TDP includes two specific activities. These are (i) an orientation visit to review selected clean coal technology projects in the U.S.,more » and (ii) preparation of a compendium of the main coal sector requirements in Poland and the types of technologies needed. The Definitional Mission has prepared a Scope of Work which recommends that TDP allocate a fund to finance the cost of the above technical assistance activities. It is further recommended that TDP enlist the assistance of a non-profit trade organization to provide this assistance to the Polish government.« less
NASA Astrophysics Data System (ADS)
Candra, Ade; Pasasa, Linus A.; Simatupang, Parhimpunan
2015-09-01
The main purpose of this paper is looking at the relationship between the factors of technical, financial and legal with enterprise value in mergers and acquisitions of coal companies in Kalimantan, Indonesia over the last 10 years. Data obtained from secondary data sources in the company works and from published data on the internet. The data thus obtained are as many as 46 secondary data with parameters resources, reserves, stripping ratio, calorific value, distance from pit to port, and distance from ports to vessels, production per annum, the cost from pit to port, from port to vessel costs, royalties, coal price and permit status. The data was analysis using structural equation modeling (SEM) to determine the factors that most significant influence enterprise value of coal company in Kalimantan. The result shows that a technical matter is the factor that most affects the value of enterprise in coal merger and acquisition company. Financial aspect is the second factor that affects the enterprise value.
The Method of Validity Evaluation of Hard Coal Excavation in Residual Seam Parts
NASA Astrophysics Data System (ADS)
Wodarski, Krzysztof; Bijańska, Jolanta; Gumiński, Adam
2017-12-01
The excavation of residual seam parts should be justified by positive assessment of the purposefulness, technical feasibility and economic effectiveness. The results of the profitability evaluation are crucial in a decision making process. The excavation of residual seam parts, even if it is possible from a technical point of view, should not be implemented if it is economically inefficient or when accompanied by a very high risk of non-recovery of invested capital resources. The article presents the evaluation method of possibilities of excavating hard coal from residual seam parts, and the example of its use in one of collieries in the Upper Silesian Coal Basin. Working in line with the developed method, allows to indicate the variant of residual seam part exploitation, which is feasible to implement from a technical point of view, and which is characterized by the highest economic effectiveness and lowest risk.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rozelle, P.
1996-01-01
This report describes the progress made during the first Quarter of a two year project to demonstrate that the air pollution from a traveling grate stoker being used to heat water at a central heating plant in Krakow Poland can be reduced significantly by replacing the unwashed, unsized coal now being used with a mechanically cleaned, double sized stoker fuel and by optimizing the operating parameters of the stoker. It is anticipated that these improvements will prove to be cost effective and hence be adopted in the other central heating plants in Krakow and indeed throughout Eastern European cities wheremore » coal is the primary source of heating fuel. EFH Coal Company has formed a partnership with two Polish institutions -- MPEC a central heating company in Krakow and Naftokrak-Naftobudowa, preparation plant designers and fabricators, for this effort. An evaluation of the washability characteristics of five samples of two coals (Piast and Janina) showed that {open_quotes}compliance-quality{close_quotes} stoker coals could be produced which contained less than 640 g of SO{sub 2}/KJ (1.5 lbs SO{sub 2}/MMBtu) at acceptable plant yields by washing in heavy media cyclones. A search for long-term sources of raw coal to feed the proposed new 300 tph stoker coal preparation plant was initiated. As the quantity of stoker coal that will be produced (300 tph) at the new plant will exceed the demand by MPEC, a search for other and additional potential markets was begun. Because the final cost of the stoker coal will be influenced by such factors as the plant`s proximity to both the raw coal supply and the customers, the availability and cost of utilities, and the availability of suitable refuse disposal areas, these concerns were the topic of discussions at the many meetings that were held between EFH Coal and the Polish Partners.« less
Kolak, J.J.; Burruss, R.C.
2006-01-01
Coal samples of different rank (lignite to anthracite) were extracted in the laboratory with supercritical CO2 (40 ??C; 10 MPa) to evaluate the potential for mobilizing non-methane hydrocarbons during CO2 storage (sequestration) or enhanced coal bed methane recovery from deep (???1-km depth) coal beds. The total measured alkane concentrations mobilized from the coal samples ranged from 3.0 to 64 g tonne-1 of dry coal. The highest alkane concentration was measured in the lignite sample extract; the lowest was measured in the anthracite sample extract. Substantial concentrations of polycyclic aromatic hydrocarbons (PAHs) were also mobilized from these samples: 3.1 - 91 g tonne-1 of dry coal. The greatest amounts of PAHs were mobilized from the high-volatile bituminous coal samples. The distributions of aliphatic and aromatic hydrocarbons mobilized from the coal samples also varied with rank. In general, these variations mimicked the chemical changes that occur with increasing degrees of coalification and thermal maturation. For example, the amount of PAHs mobilized from coal samples paralleled the general trend of bitumen formation with increasing coal rank. The coal samples yielded hydrocarbons during consecutive extractions with supercritical CO2, although the amount of hydrocarbons mobilized declined with each successive extraction. These results demonstrate that the potential for supercritical CO2 to mobilize non-methane hydrocarbons from coal beds, and the effect of coal rank on this process, are important to consider when evaluating deep coal beds for CO2 storage.
Characterization of Malaysian coals for carbon dioxide sequestration
NASA Astrophysics Data System (ADS)
Abunowara, M.; Bustam, M. A.; Sufian, S.; Eldemerdash, U.
2016-06-01
Coal samples from Mukah-Balingian and Merit-Pila coal mines were characterized with ultimate, approximate, petrographic analysis, FT-IR spectra patterns, FESEM images and BET measurements to obtain information on the chemical composition and chemical structure in the samples. Two coal samples were obtained from Merit-Pila coal mine namely sample1 (S1) and sample2 (S2). The other two coal samples were obtained from Mukah-Balingian coal mine namely sample3 (S3) and sample4 (S4), Sarawak, Malaysia. The results of ultimate analysis show that coal S1 has the highest carbon percentage by 54.47%, the highest hydrogen percentage by 10.56% and the lowest sulfur percentage by 0.19% and the coal S4 has the highest moisture content by 31.5%. The coal S1 has the highest fixed carbon percentage by 42.6%. The coal S4 has BET surface area by 2.39 m2/g and Langmuir surface area by 3.0684 m2/g respectively. Fourier-Transform Infrared (FT-IR) spectroscopy analysis of all coal samples shows a presence of oxygen containing functional groups which considered are as active sites on coal surface. The oxygen functional groups are mainly carboxyl (-COOH), hydroxyl (-OH), alkyl (-CH, -CH2, -CH3), aliphatic (C-O-C stretching associated with -OH), amino (-NH stretching vibrations), (-NH stretching vibrations), aromatic (C=C), vinylic (C=C) and clay minerals. In all FE-SEM images of coal samples matrix, it can be seen that there are luminous and as non luminous features which refer to the existence of various minerals types distributed in the coal organic matrix. The bright luminosity is due to the presence of sodium, potassium or aluminium. According to petrographic analysis, all coal sample samples are range in vitrinite reflectance from 0.38% to 56% (VRr) are sub-bituminous coals.
Microgas dispersion for fine-coal cleaning. Technical progress report, March 1, 1981-August 31, 1981
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoon, R.H.; Halsey, G.S.; Sebba, F.
1981-01-01
The results of the flotation tests conducted demonstrate that the use of fine colloidal gas aphrons (CGA) bubbles is beneficial for fine coal flotation. As demonstrated with the ultrafine coal sample, the froth products of CGA flotation are almost twice as clean as those of the conventional flotation tests at 70% yield. The kerosene consumption was considerably higher, however, both in conventional and in CGA flotation. Attempts were made to coat the CGA bubbles with a film of kerosene and use them for flotation, hoping that this would reduce the oil consumption. However, no positive results have yet been obtainedmore » with this process. Another problem associated with CGA flotation is that the ash content of the froth products is relatively high when using a stable CGA, such as that prepared with Dowfroth M150. On the other hand, when using an unstable CGA, as is the case with MIBC, low ash clean coal products can be obtained, but at the expense of the yield. Two approaches are being investigated to correct this problem. A considerable amount of effort has been made to determine the surface charge of the CGA.« less
The Release of Trace Elements in the Process of Coal Coking
Konieczyński, Jan; Zajusz-Zubek, Elwira; Jabłońska, Magdalena
2012-01-01
In order to assess the penetration of individual trace elements into the air through their release in the coal coking process, it is necessary to determine the loss of these elements by comparing their contents in the charge coal and in coke obtained. The present research covered four coke oven batteries differing in age, technology, and technical equipment. By using mercury analyzer MA-2 and the method of ICP MS As, Be, Cd, Co, Hg, Mn, Ni, Se, Sr, Tl, V, and Zn were determined in samples of charge coal and yielded coke. Basing on the analyses results, the release coefficients of selected elements were determined. Their values ranged from 0.5 to 94%. High volatility of cadmium, mercury, and thallium was confirmed. The tests have shown that although the results refer to the selected case studies, it may be concluded that the air purity is affected by controlled emission occurring when coke oven batteries are fired by crude coke oven gas. Fugitive emission of the trace elements investigated, occurring due to coke oven leaks and openings, is small and, is not a real threat to the environment except mercury. PMID:22666104
Synthesis and analysis of jet fuels from shale oil and coal syncrudes
NASA Technical Reports Server (NTRS)
Antoine, A. C.; Gallagher, J. P.
1976-01-01
The technical problems involved in converting a significant portion of a barrel of either a shale oil or coal syncrude into a suitable aviation turbine fuel were studied. TOSCO shale oil, H-Coal and COED coal syncrudes were the starting materials. They were processed by distillation and hydrocracking to produce two levels of yield (20 and 40 weight percent) of material having a distillation range of approximately 422 to 561 K (300 F to 550 F). The full distillation range 311 to 616 K (100 F to 650 F) materials were hydrotreated to meet two sets of specifications (20 and 40 volume percent aromatics, 13.5 and 12.75 weight percent H, 0.2 and 0.5 weight percent S, and 0.1 and 0.2 weight percent N). The hydrotreated materials were distilled to meet given end point and volatility requirements. The syntheses were carried out in laboratory and pilot plant equipment scaled to produce thirty-two 0.0757 cu m (2-gal)samples of jet fuel of varying defined specifications. Detailed analyses for physical and chemical properties were made on the crude starting materials and on the products.
Influences Determining European Coal Seam Gas Deliverability
NASA Astrophysics Data System (ADS)
Clark, G.
2009-04-01
Technically the coal basins of Europe have generated significant Gas In Place figures that has historically generated investor's interest in the development of this potential coal seam gas (CSG) resource. In the early 1980's, a wave of international, principally American, companies arrived, established themselves, drilled and then left with a poor record of success and disappointed investors. Recently a second wave of investment started after 2002, with the smaller companies leading the charge but have the lesson been learned from the past failures? To select a CSG investment project the common European approach has been to: 1. Find an old mining region; 2. Look to see if it had a coal mine methane gas problem; 3. Look for the non-mined coal seams; and 4. Peg the land. This method is perhaps the reason why the history of CSG exploration in Europe is such a disappointment as generally the coal mining regions of Europe do not have commercial CSG reservoir attributes. As a result, investors and governments have lost confidence that CSG will be a commercial success in Europe. New European specific principles for the determination of commercial CSG prospects have had to be delineated that allow for the selection of coal basins that have a strong technical case for deliverability. This will result in the return of investor confidence.
USE OF COAL DRYING TO REDUCE WATER CONSUMED IN PULVERIZED COAL POWER PLANTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edward Levy; Nenad Sarunac; Harun Bilirgen
2005-04-01
This is the ninth Quarterly Report for this project. The background and technical justification for the project are described, including potential benefits of reducing fuel moisture using power plant waste heat, prior to firing the coal in a pulverized coal boiler. During this last Quarter, comparative analyses were performed for lignite and PRB coals to determine how unit performance varies with coal product moisture. Results are given showing how the coal product moisture level and coal rank affect parameters such as boiler efficiency, station service power needed for fans and pulverizers and net unit heat rate. Results are also givenmore » for the effects of coal drying on cooling tower makeup water and comparisons are made between makeup water savings for various times of the year.« less
Estimation of Coal Reserves for UCG in the Upper Silesian Coal Basin, Poland
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bialecka, Barbara
One of the prospective methods of coal utilization, especially in case of coal resources which are not mineable by means of conventional methods, is underground coal gasification (UCG). This technology allows recovery of coal energy 'in situ' and thus avoid the health and safety risks related to people which are inseparable from traditional coal extraction techniques.In Poland most mining areas are characterized by numerous coal beds where extraction was ceased on account of technical and economic reasons or safety issues. This article presents estimates of Polish hard coal resources, broken down into individual mines, that can constitute the basis ofmore » raw materials for the gasification process. Five mines, representing more than 4 thousand tons, appear to be UCG candidates.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giovanni, D.V.; Carr, R.C.; Landham, E.C.
Two products of coal quality research at the Electric Power Research Institute TM (EPRI) are available for field evaluation: Coal Quality Impact Model (CQIM and Fireside Testing Guidelines (FIG). The CQIM is a computer program that may be tailored to simulate the performance characteristics of a coal-fired power plant. The FIG is a technical report that guides utilities in conducting field tests to gather performance data and quantify the technical and economic impacts of different coals. Moreover, the results from field tests may be utilized to validate and assess the applicability of the CQIM. Field tests were conducted at Mississippimore » Power Company`s Watson Unit 4 to evaluate the coal quality impacts of coal switching on boiler performance and emissions. Watson Unit 4 is a 255 MW (gross), opposed-wall, pulverized-coal-fired boiler manufactured by Riley Stoker Corporation and rated at 1,779,000 lb/hr steam flow at 1000{degrees}F superheat steam temperature and 2,500 psig. The unit is equipped with a cold-side electrostatic precipitator for particulate matter control. Comprehensive tests were conducted on all major equipment components, including the pulverizers, fans, combustion equipment, boiler heat transfer surfaces, air preheater, and electrostatic precipitator, for two coals. The CQIN4 was configured to predict the performance of the unit when burning each coal. The work was sponsored by EPRI, and Mississippi Power Company (MPC) was the host utility company. This report summarizes results from the field test program, including potential heat rate improvements that were identified, and the differences in unit operations and performance for the two coals. The results from the CQIM validation effort are also presented.« less
Pipeline transportation of upgraded Yugoslavian lignite fuels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ljubicic, B.; Anderson, C.; Bukurov, Z.
1993-12-31
Hydraulic transport and handling procedures for coal are not widely used, but when practiced, they result in a technically and economically successful operation. Potentially the most attractive way to utilize lignitic coals for power generation would be to combine hydraulic mining techniques with aqueous ash removal, hydrothermal processing, solids concentration, and coal-water fuel (CWF) combustion. Technical and economic assessment of this operation is being implemented within the Yugoslavian-American Scientific Technical Cooperation Agreement. The Energy and Environmental Research Center (EERC), Grand Forks, North Dakota, with support from the U.S. Department of Energy, has entered into a jointly sponsored research project withmore » Electric Power of Serbia (EPS), Belgrade, Yugoslavia, to investigate the application of the nonevaporative hydrothermal drying procedure, commonly called hot-water drying (HWD), developed at the EERC, to the lignite from the Kovin deposit. Advances in hydrothermal treatment of low-rank coals (LRCs) at the EERC have enabled cheaper, more reactive LRCs to be used in coal-water fuels (CWFs). HWD is a high-temperature, nonevaporative drying technique carried out at high pressure in water that permanently alters the structure of LRC. It solves the stability problems by producing a safe, easily transported, liquid fuel that can be handled and used like oil. For continued or increased success, it is necessary to evaluate carefully all aspects of slurry technology that permit further optimization. This paper discusses some aspects of low-rank coal hydraulic transport combined with hydrothermal treatment as an alternative energy solution toward less oil dependence in Yugoslavia.« less
The Safety Attitudes of Senior Managers in the Chinese Coal Industry
Zhang, Jiangshi; Chen, Na; Fu, Gui; Yan, Mingwei; Kim, Young-Chan
2016-01-01
Introduction: Senior managers’ attitudes towards safety are very important regarding the safety practices in an organization. The study is to describe the current situation of senior managers′ attitudes towards safety in the Chinese coal industry. Method: We evaluated the changing trends as well as the reasons for these changes in the Chinese coal industry in 2009 and in 2014 with 168 senior manager samples from large Chinese state-owned coal enterprises. Evaluations of 15 safety concepts were performed by means of a questionnaire. Results and Conclusions: Results indicate that, in 2014, three concepts were at a very high level (mean > 4.5), and six were at a relatively high level (4.5 > mean > 4.0). Analyses of changing trends revealed that nine concepts improved significantly, while four greatly declined in 2014 compared to those in 2009. The data reported here suggest that the reasons for the significant improvement with respect to the nine concepts include the improvement in social and legal environments, the improvement of the culture of social safety, workers′ safety demands being met, and scientific and technical advances in the coal industry. The decline of the four concepts seemed to be caused by a poor awareness of managers in the coal industry that safety creates economic benefits, insufficient information on safety, inadequate attention to the development of a safety culture and safety management methods, and safety organizations and workers′ unions not playing their role effectively. Practical Applications: We therefore recommend strengthening the evidence that safety creates economic benefits, providing incentives for employees to encourage their participation in safety management, and paying more attention to the prevention of accidents in coal mines via safety organizations and unions. These results can provide guidelines for workers, industrialists, and government regarding occupational safety in the whole coal industry. PMID:27869654
The Safety Attitudes of Senior Managers in the Chinese Coal Industry.
Zhang, Jiangshi; Chen, Na; Fu, Gui; Yan, Mingwei; Kim, Young-Chan
2016-11-17
Introduction: Senior managers' attitudes towards safety are very important regarding the safety practices in an organization. The study is to describe the current situation of senior managers' attitudes towards safety in the Chinese coal industry. Method : We evaluated the changing trends as well as the reasons for these changes in the Chinese coal industry in 2009 and in 2014 with 168 senior manager samples from large Chinese state-owned coal enterprises. Evaluations of 15 safety concepts were performed by means of a questionnaire. Results and Conclusions : Results indicate that, in 2014, three concepts were at a very high level (mean > 4.5), and six were at a relatively high level (4.5 > mean > 4.0). Analyses of changing trends revealed that nine concepts improved significantly, while four greatly declined in 2014 compared to those in 2009. The data reported here suggest that the reasons for the significant improvement with respect to the nine concepts include the improvement in social and legal environments, the improvement of the culture of social safety, workers' safety demands being met, and scientific and technical advances in the coal industry. The decline of the four concepts seemed to be caused by a poor awareness of managers in the coal industry that safety creates economic benefits, insufficient information on safety, inadequate attention to the development of a safety culture and safety management methods, and safety organizations and workers' unions not playing their role effectively. Practical Applications : We therefore recommend strengthening the evidence that safety creates economic benefits, providing incentives for employees to encourage their participation in safety management, and paying more attention to the prevention of accidents in coal mines via safety organizations and unions. These results can provide guidelines for workers, industrialists, and government regarding occupational safety in the whole coal industry.
16 CFR 1406.5 - Performance and technical data to be furnished to the Commission.
Code of Federal Regulations, 2014 CFR
2014-01-01
... CONSUMER PRODUCT SAFETY ACT REGULATIONS COAL AND WOOD BURNING APPLIANCES-NOTIFICATION OF PERFORMANCE AND..., including importers, of coal and wood burning appliances as defined in § 1406.3(a) shall provide to the...
16 CFR 1406.5 - Performance and technical data to be furnished to the Commission.
Code of Federal Regulations, 2012 CFR
2012-01-01
... CONSUMER PRODUCT SAFETY ACT REGULATIONS COAL AND WOOD BURNING APPLIANCES-NOTIFICATION OF PERFORMANCE AND..., including importers, of coal and wood burning appliances as defined in § 1406.3(a) shall provide to the...
16 CFR § 1406.5 - Performance and technical data to be furnished to the Commission.
Code of Federal Regulations, 2013 CFR
2013-01-01
... COMMISSION CONSUMER PRODUCT SAFETY ACT REGULATIONS COAL AND WOOD BURNING APPLIANCES-NOTIFICATION OF.... Manufacturers, including importers, of coal and wood burning appliances as defined in § 1406.3(a) shall provide...
16 CFR 1406.5 - Performance and technical data to be furnished to the Commission.
Code of Federal Regulations, 2011 CFR
2011-01-01
... CONSUMER PRODUCT SAFETY ACT REGULATIONS COAL AND WOOD BURNING APPLIANCES-NOTIFICATION OF PERFORMANCE AND..., including importers, of coal and wood burning appliances as defined in § 1406.3(a) shall provide to the...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Young, B.C.; Schmit, C.R.
The report, conducted by Energy and Environmental Research Center, was funded by the US Trade and Development Agency. The objective of this report was to determine the technical, environmental and economic feasibility of developing, demonstrating, and commercializing underground coal gasification (UCG) at the Krabi coal mine site in Southern Thailand. This is Volume 1, the Progress Report for the period December 1, 1995, through December 31, 1995.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spackman, W.; Davis, A.; Walker, P. L.
1979-05-01
Certain important aspects of the chemical and physical composition of American lignite coals are being characterized. Differential scanning calorimetry and thermogravimetric analysis were used to study the interaction between oxygen and seventeen coal chars (40 x 100 mesh) at 100/sup 0/C. The same techniques were used to investigate briefly the interaction between air and a highly caking coal at selected isothermal temperatures in the range 100 to 275/sup 0/C.
Evaluation of Rare Earth Element Extraction from North Dakota Coal-Related Feed Stocks
NASA Astrophysics Data System (ADS)
Laudal, Daniel A.
The rare earth elements consist of the lanthanide series of elements with atomic numbers from 57-71 and also include yttrium and scandium. Due to their unique properties, rare earth elements are crucial materials in an incredible array of consumer goods, energy system components and military defense applications. However, the global production and entire value chain for rare earth elements is dominated by China, with the U.S. currently 100% import reliant for these critical materials. Traditional mineral ores including previously mined deposits in the U.S., however, have several challenges. Chief among these is that the content of the most critical and valuable of the rare earths are deficient, making mining uneconomical. Further, the supply of these most critical rare earths is nearly 100% produced in China from a single resource that is only projected to last another 10 to 20 years. The U.S. currently considers the rare earths market an issue of national security. It is imperative that alternative domestic sources of rare earths be identified and methods developed to produce them. Recently, coal and coal byproducts have been identified as one of these promising alternative resources. This dissertation details a study on evaluation of the technical and economic feasibility of rare earth element recovery from North Dakota lignite coal and lignite-related feedstocks. There were four major goals of this study: i) identify lignite or lignite-related feedstocks with total rare earth element content above 300 parts per million, a threshold dictated by the agency who funded this research as the minimum for economic viability, ii) determine the geochemistry of the feedstocks and understand the forms and modes of occurrence of the rare earth elements, information necessary to inform the development of extraction and concentration methods, iii) identify processing methods to concentrate the rare earth elements from the feedstocks to a target of two weight percent, a value that would be sufficient to leverage existing separation and refining methods developed for the traditional mineral ore industry, and iv) develop a process that is economically viable and environmentally benign. To achieve these overall goals, and to prove or disprove the research hypotheses, the research scope was broken down into three main efforts: i) sampling and characterization of potential feedstocks, ii) laboratory-scale development and testing of rare earth element extraction and concentration methods, and iii) process design and technical and economic feasibility evaluation. In total, 174 unique samples were collected, and several locations were identified that exceeded the 300 ppm total rare earth elements target. The results showed that on a whole sample basis, the rare earths are most concentrated in the clay-rich sediments associated with the coal seams, but on an ash basis in certain locations within certain coal seams the content is significantly higher, an unexpected finding given prior research. At Falkirk Mine near Underwood, North Dakota three coal seams were found to have elevated levels of rare earths, ranging from about 300 to 600 ppm on an ash basis. Additionally, exceptionally high rare earths content was found in samples collected from an outcropping of the Harmon-Hansen coal zone in southwestern North Dakota that contained 2300 ppm on an ash basis. The results dictated that extraction and concentration methods be developed for these rare earth element-rich coals, instead of the mineral-rich sediments. This effort also found that at a commercial-scale, due to non-uniformity of the rare earths content stratigraphically in the coal seams, selective mining practices will be needed to target specific locations within the seams. The bulk mining and blending practices as Falkirk Mine result in a relatively low total rare earths content in the feed coal entering the Coal Creek Power Station adjacent to the mine. Characterization of the coal samples identified that the predominant modes of rare earths occurrence in the lignite coals are associations with the organic matter, primarily as coordination complexes and a lesser amount as ion-exchangeable cations on oxygen functional groups. Overall it appears that about 80-95% of rare earths content in North Dakota lignite is organically associated, and not present in mineral forms, which due to the weak organic bonding, presented a unique opportunity for extraction. The process developed for extraction of rare earths was applied to the raw lignite coals instead of fly ash or other byproducts being investigated extensively in the literature. Rather, the process uses a dilute acid leaching process to strip the organically associated rare earths from the lignite with very high efficiency of about 70-90% at equilibrium contact times. Although the extraction kinetics are quite fast given commercial leaching operations, there is some tradeoff between extraction efficiency and contact time. (Abstract shortened by ProQuest.).
Kolak, Jon; Hackley, Paul C.; Ruppert, Leslie F.; Warwick, Peter D.; Burruss, Robert
2015-01-01
To investigate the potential for mobilizing organic compounds from coal beds during geologic carbon dioxide (CO2) storage (sequestration), a series of solvent extractions using dichloromethane (DCM) and using supercritical CO2 (40 °C and 10 MPa) were conducted on a set of coal samples collected from Louisiana and Ohio. The coal samples studied range in rank from lignite A to high volatile A bituminous, and were characterized using proximate, ultimate, organic petrography, and sorption isotherm analyses. Sorption isotherm analyses of gaseous CO2 and methane show a general increase in gas storage capacity with coal rank, consistent with findings from previous studies. In the solvent extractions, both dry, ground coal samples and moist, intact core plug samples were used to evaluate effects of variations in particle size and moisture content. Samples were spiked with perdeuterated surrogate compounds prior to extraction, and extracts were analyzed via gas chromatography–mass spectrometry. The DCM extracts generally contained the highest concentrations of organic compounds, indicating the existence of additional hydrocarbons within the coal matrix that were not mobilized during supercritical CO2 extractions. Concentrations of aliphatic and aromatic compounds measured in supercritical CO2 extracts of core plug samples generally are lower than concentrations in corresponding extracts of dry, ground coal samples, due to differences in particle size and moisture content. Changes in the amount of extracted compounds and in surrogate recovery measured during consecutive supercritical CO2extractions of core plug samples appear to reflect the transition from a water-wet to a CO2-wet system. Changes in coal core plug mass during supercritical CO2 extraction range from 3.4% to 14%, indicating that a substantial portion of coal moisture is retained in the low-rank coal samples. Moisture retention within core plug samples, especially in low-rank coals, appears to inhibit accessibility of supercritical CO2 to coal matrix porosity, limiting the extent to which hydrocarbons are mobilized. Conversely, the enhanced recovery of some surrogates from core plugs relative to dry, ground coal samples might indicate that, once mobilized, supercritical CO2 is capable of transporting these constituents through coal beds. These results underscore the need for using intact coal samples, and for better characterization of forms of water in coal, to understand fate and transport of organic compounds during supercritical CO2 injection into coal beds.
Direct firing of coal for power production
NASA Technical Reports Server (NTRS)
Papay, L. T.
1978-01-01
The use of new technology and advanced emission control hardware to reduce emissions from the direct combustion of coal to produce electricity in California is considered. The technical feasibilty of a demonstration project on an existing 81-MW boiler is demonstrated.
NASA Astrophysics Data System (ADS)
Wang, Yang; Zhu, Yanming; Liu, Yu; Chen, Shangbin
2018-04-01
Shale gas and coalbed methane (CBM) are both considered unconventional natural gas and are becoming increasingly important energy resources. In coal-bearing strata, coal and shale are vertically adjacent as coal and shale are continuously deposited. Research on the reservoir characteristics of coal-shale sedimentary sequences is important for CBM and coal-bearing shale gas exploration. In this study, a total of 71 samples were collected, including coal samples (total organic carbon (TOC) content >40%), carbonaceous shale samples (TOC content: 6%-10%), and shale samples (TOC content <6%). Combining techniques of field emission scanning electron microscopy (FE-SEM), x-ray diffraction, high-pressure mercury intrusion porosimetry, and methane adsorption, experiments were employed to characterize unconventional gas reservoirs in coal-bearing strata. The results indicate that in the coal-shale sedimentary sequence, the proportion of shale is the highest at 74% and that of carbonaceous shale and coal are 14% and 12%, respectively. The porosity of all measured samples demonstrates a good positive relationship with TOC content. Clay and quartz also have a great effect on the porosity of shale samples. According to the FE-SEM image technique, nanoscale pores in the organic matter of coal samples are much more developed compared with shale samples. For shales with low TOC, inorganic minerals provide more pores than organic matter. In addition, TOC content has a positive relationship with methane adsorption capacity, and the adsorption capacity of coal samples is more sensitive than the shale samples to temperature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crawford, D.L.
In order to convert lignite coals into liquid fuels, gases or chemical feedstock, the macromolecular structure of the coal must be broken down into low molecular weight fractions prior to further modification. Our research focused on this aspect of coal bioprocessing. We isolated, characterized and studied the lignite coal-depolymerizing organisms Streptomyces viridosporus T7A, Pseudomonas sp. DLC-62, unidentified bacterial strain DLC-BB2 and Gram-positive Bacillus megaterium strain DLC-21. In this research we showed that these bacteria are able to solubilize and depolymerize lignite coals using a combination of biological mechanisms including the excretion of coal solublizing basic chemical metabolites and extracellular coalmore » depolymerizing enzymes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hodgson, H. E.
The 1977 Symposium on the Geology of Rocky Mountain Coal was held May 9 and 10 on the campus of the Colorado School of Mines in Golden, Colorado. The 1977 Symposium was sponsored by the Colorado Geological Survey and the US Geological Survey. The 1977 Symposium consisted of four technical sessions: Depositional Models for Coal Exploration in the Rocky Mountain Cretaceous; Stratigraphy and Depositional Environments of Rocky Mountain Tertiary Coal Deposits; Depositional Models for Coal Exploration in non-Rocky Mountain Regions; and Application of Geology to Coal Mining and Coal Mine Planning. Several papers discuss geophysical survey and well logging techniquesmore » applied to the exploration of coal deposits and for mine planning. Fouteen papers have been entered individually into EDB and ERA. (LTN)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kolb, C.E.; Yousefian, V.; Wormhoudt, J.
1978-01-30
Research has included theoretical modeling of important plasma chemical effects such as: conductivity reductions due to condensed slag/electron interactions; conductivity and generator efficiency reductions due to the formation of slag-related negative ion species; and the loss of alkali seed due to chemical combination with condensed slag. A summary of the major conclusions in each of these areas is presented. A major output of the modeling effort has been the development of an MHD plasma chemistry core flow model. This model has been formulated into a computer program designated the PACKAGE code (Plasma Analysis, Chemical Kinetics, And Generator Efficiency). The PACKAGEmore » code is designed to calculate the effect of coal rank, ash percentage, ash composition, air preheat temperatures, equivalence ratio, and various generator channel parameters on the overall efficiency of open-cycle, coal-fired MHD generators. A complete description of the PACKAGE code and a preliminary version of the PACKAGE user's manual are included. A laboratory measurements program involving direct, mass spectrometric sampling of the positive and negative ions formed in a one atmosphere coal combustion plasma was also completed during the contract's initial phase. The relative ion concentrations formed in a plasma due to the methane augmented combustion of pulverized Montana Rosebud coal with potassium carbonate seed and preheated air are summarized. Positive ions measured include K/sup +/, KO/sup +/, Na/sup +/, Rb/sup +/, Cs/sup +/, and CsO/sup +/, while negative ions identified include PO/sub 3//sup -/, PO/sub 2//sup -/, BO/sub 2//sup -/, OH/sup -/, SH/sup -/, and probably HCrO/sub 3/, HMoO/sub 4//sup -/, and HWO/sub 3//sup -/. Comparison of the measurements with PACKAGE code predictions are presented. Preliminary design considerations for a mass spectrometric sampling probe capable of characterizing coal combustion plasmas from full scale combustors and flow trains are presented and discussed.« less
Report on drilling activities in the Thar Desert, Sindh Province, Pakistan
Thomas, Roger E.; Fassett, James E.; Warwick, Peter D.; Wardlaw, Bruce R.; Shah, Abas A.; Khan, Shafique Ahmed; Tagar, Mohammad A.; Memon, Abdul R.; Lashari, Ghulam S.; Khan, Zameer M.; Khan, Muhammad D.; Chandio, Altaf H.; Anwar, Mohammad; Nizamani, Mohammad A.; Ahmad, Mujeeb; Ur-Raman, Mehtab-
1994-01-01
Coal test drilling in the Thar Desert of southeast Pakistan was conducted as part of the Coal Exploration and Assessment Program (COALREAP) involving the United States Agency for International Development (USAID), the Geological Survey of Pakistan (GSP), and the U.S. Geological Survey. Drilling was performed in the Thar Desert, or Great Indian Desert, approximately 175 km northeast of Karachi. Twenty five exploration holes were drilled between January 1992 and May 1994. Drill core was described by geologists of the Pakistan Geological Survey and coal samples were analyzed in both the United States and Pakistan. U.S. Geological Survey geologists offered technical assistance, trained GSP personnel, and managed the drilling program according to an agreement with USAID under the Energy Planning and Development Project.Drilling was performed by the Geological Survey of Pakistan. During drilling, the first 50 m was rotary drilled and cuttings collected every 2 m for examination. Average depth for all coal beds is 214 m with a total average thickness of 10 m of coal per drill hole. Core was described, boxed, and stored at the Geological Survey of Pakistan core library at Sonda, near Hyderabad. Approximately 6,412 m of Paleocene to Eocene rock was drilled of which 3,990 m was cored and 1,113 m was rotary drilled.There was 1,309 m of core loss. Geophysical logging of each drill hole permitted detailed thicknesses of coal to be determined. Analysis of the coal indicated a rank of lignite B with an as-received heating value over 5,000 Btu.This report presents data collected at the drill sites and should be used inconjunction with the published interpretive report (Fassett and Durrani, 1994) and the USGS Open-File Report 94-167, which contains analysis of the coal samples. Tables provide quick reference to numeric data and results. Detailed index maps and specific data, for each drill hole are included. This report covers drill holes TP-5 to TP-31. Drill holes TP-16, 17, 21, 26, 27, and 29 were planned but not drilled due to time restraints and (or) a determination that those drill sites were not needed to effectively delineate the coal deposit. The basic data for drill holes TP-1 through TP-4 are included in SanFilipo and others, 1994 however, some data for these drill holes are included for consistency.
Kolak, Jonathan J.; Burruss, Robert A.
2005-01-01
Coal samples of different rank were extracted in the laboratory with supercritical CO2 to evaluate the potential for mobilizing hydrocarbons during CO2 sequestration or enhanced coal bed methane recovery from deep coal beds. The concentrations of aliphatic hydrocarbons mobilized from the subbituminous C, high-volatile C bituminous, and anthracite coal samples were 41.2, 43.1, and 3.11 ?g g-1 dry coal, respectively. Substantial, but lower, concentrations of polycyclic aromatic hydrocarbons (PAHs) were mobilized from these samples: 2.19, 10.1, and 1.44 ?g g-1 dry coal, respectively. The hydrocarbon distributions within the aliphatic and aromatic fractions obtained from each coal sample also varied with coal rank and reflected changes to the coal matrix associated with increasing degree of coalification. Bitumen present within the coal matrix may affect hydrocarbon partitioning between coal and supercritical CO2. The coal samples continued to yield hydrocarbons during consecutive extractions with supercritical CO2. The amount of hydrocarbons mobilized declined with each successive extraction, and the relative proportion of higher molecular weight hydrocarbons increased during successive extractions. These results demonstrate that the potential for mobilizing hydrocarbons from coal beds, and the effect of coal rank on this process, are important to consider when evaluating coal beds for CO2 storage.
An Organic Geochemical Assessment of CO2-Coal Interactions During Sequestration
Kolak, Jonathan J.; Burruss, Robert A.
2003-01-01
Three well-characterized coal samples of varying rank were extracted with supercritical CO2 to determine the amount of polycyclic aromatic hydrocarbons (PAHs) that could be mobilized during simulated CO2 injection/sequestration in deep coal beds. The supercritical CO2 extractions were conducted at 40?C and 100 bars, roughly corresponding to a depth of 1 km. The greatest amount of PAHs was extracted from the high-volatile C bituminous coal sample. Extracts from the subbituminous C and anthracite coal samples contained lower concentrations of these compounds. The effectiveness of supercritical CO2 in liberating PAHs from the coal sample was evaluated in a comparison with a parallel series of Soxhlet extractions using 100% dichloromethane. More PAHs were extracted from the lower rank coal samples with dichloromethane than with supercritical CO2. The results from this investigation indicate that, regardless of coal rank, CO2 injection into deep coal beds may mobilize PAHs from the coal matrix. However, more PAHs could be mobilized during CO2 sequestration in a high-volatile C bituminous coal bed than in either of the other two coal ranks studied.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jordan, J.; Talbott, J.
1984-01-01
Task 1. Methods development for the speciation of the polysulfides. Work on this task has been completed in December 1983 and reported accordingly in DOE/PC/40783-T13. Task 2. Methods development for the speciation of dithionite and polythionates. Work on Task 2 has been completed in June 1984 and has been reported accordingly in DOE/PC/40783-T15. Task 3. Total accounting of the sulfur balance in representative samples of synfuel process streams. A systematic and critical comparison of results, obtained in the analysis of sulfur moieties in representative samples of coal conversion process streams, revealed the following general trends. (a) In specimens of highmore » pH (9-10) and low redox potential (-0.3 to -0.4 volt versus NHE) sulfidic and polysulfidic sulfur moieties predominate. (b) In process streams of lower pH and more positive redox potential, higher oxidation states of sulfur (notably sulfate) account for most of the total sulfur present. (c) Oxidative wastewater treatment procedures by the PETC stripping process convert lower oxidation states of sulfur into thiosulfate and sulfate. In this context, remarkable similarities were observed between liquefaction and gasification process streams. However, the thiocyanate present in samples from the Grand Forks gasifier were impervious to the PETC stripping process. (d) Total sulfur contaminant levels in coal conversion process stream wastewater samples are primarily determined by the abundance of sulfur in the coal used as starting material than by the nature of the conversion process (liquefaction or gasification). 13 references.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cicek, T.
2008-07-01
This study dealt with the upgrading of two different type of Turkish coal by a dry cleaning method using a modified air table. The industrial size air table used in this study is a device for removing stones from agricultural products. This study investigates the technical and economical feasibility of the dry cleaning method which has never been applied before on coals in Turkey. The application of a dry cleaning method on Turkish coals designated for power generation without generating environmental pollution and ensuring a stable coal quality are the main objectives of this study. The size fractions of 5-8,more » 3-5, and 1-3 mm of the investigated coals were used in the upgrading experiments. Satisfactory results were achieved with coal from the Soma region, whereas the upgrading results of Hsamlar coal were objectionable for the coarser size fractions. However, acceptable results were obtained for the size fraction 1-3 mm of Hsamlar coal.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1978-06-01
An analysis is presented of the future energy situation in the U.S. with emphasis on the natural gas industry. The analysis results are presented in chapters on historical research efforts, industry criteria for commercialization of coal bed gas, technology for recovering methane from coal beds, identification of problems, legal concerns, and environmental considerations. (JRD)
Energy Security in the United States
2012-05-01
gas facility. Biomass can also be burned with coal (at volumes of up to 10 percent without affecting performance) to generate electricity.26 In...2008, coal-burning facilities substituted biomass for coal to generate 1.3 percent of electricity. 26. See David Ortiz and others, Near-Term...Opportunities for Integrat- ing Biomass into the U.S. Electricity Supply (Santa Monica, Calif.: RAND, 2011), www.rand.org/pubs/technical_reports/ TR984.html
Evaluation on determination of iodine in coal by energy dispersive X-ray fluorescence
Wang, B.; Jackson, J.C.; Palmer, C.; Zheng, B.; Finkelman, R.B.
2005-01-01
A quick and inexpensive method of relative high iodine determination from coal samples was evaluated. Energy dispersive X-ray fluorescence (EDXRF) provided a detection limit of about 14 ppm (3 times of standard deviations of the blank sample), without any complex sample preparation. An analytical relative standard deviation of 16% was readily attainable for coal samples. Under optimum conditions, coal samples with iodine concentrations higher than 5 ppm can be determined using this EDXRF method. For the time being, due to the general iodine concentrations of coal samples lower than 5 ppm, except for some high iodine content coal, this method can not effectively been used for iodine determination. More work needed to meet the requirement of determination of iodine from coal samples for this method. Copyright ?? 2005 by The Geochemical Society of Japan.
Conceptual design study of a coal gasification combined-cycle powerplant for industrial cogeneration
NASA Astrophysics Data System (ADS)
Bloomfield, H. S.; Nelson, S. G.; Straight, H. F.; Subramaniam, T. K.; Winklepleck, R. G.
1981-03-01
A conceptual design study was conducted to assess technical feasibility, environmental characteristics, and economics of coal gasification. The feasibility of a coal gasification combined cycle cogeneration powerplant was examined in response to energy needs and to national policy aimed at decreasing dependence on oil and natural gas. The powerplant provides the steam heating and baseload electrical requirements while serving as a prototype for industrial cogeneration and a modular building block for utility applications. The following topics are discussed: (1) screening of candidate gasification, sulfur removal and power conversion components; (2) definition of a reference system; (3) quantification of plant emissions and waste streams; (4) estimates of capital and operating costs; and (5) a procurement and construction schedule. It is concluded that the proposed powerplant is technically feasible and environmentally superior.
Conceptual design study of a coal gasification combined-cycle powerplant for industrial cogeneration
NASA Technical Reports Server (NTRS)
Bloomfield, H. S.; Nelson, S. G.; Straight, H. F.; Subramaniam, T. K.; Winklepleck, R. G.
1981-01-01
A conceptual design study was conducted to assess technical feasibility, environmental characteristics, and economics of coal gasification. The feasibility of a coal gasification combined cycle cogeneration powerplant was examined in response to energy needs and to national policy aimed at decreasing dependence on oil and natural gas. The powerplant provides the steam heating and baseload electrical requirements while serving as a prototype for industrial cogeneration and a modular building block for utility applications. The following topics are discussed: (1) screening of candidate gasification, sulfur removal and power conversion components; (2) definition of a reference system; (3) quantification of plant emissions and waste streams; (4) estimates of capital and operating costs; and (5) a procurement and construction schedule. It is concluded that the proposed powerplant is technically feasible and environmentally superior.
Variability of Mercury Content in Coal Matter From Coal Seams of The Upper Silesia Coal Basin
NASA Astrophysics Data System (ADS)
Wierzchowski, Krzysztof; Chećko, Jarosław; Pyka, Ireneusz
2017-12-01
The process of identifying and documenting the quality parameters of coal, as well as the conditions of coal deposition in the seam, is multi-stage and extremely expensive. The taking and analyzing of seam samples is the method of assessment of the quality and quantity parameters of coals in deep mines. Depending on the method of sampling, it offers quite precise assessment of the quality parameters of potential commercial coals. The main kind of seam samples under consideration are so-called "documentary seam samples", which exclude dirt bands and other seam contaminants. Mercury content in coal matter from the currently accessible and exploited coal seams of the Upper Silesian Coal Basin (USCB) was assessed. It was noted that the mercury content in coal seams decreases with the age of the seam and, to a lesser extent, seam deposition depth. Maps of the variation of mercury content in selected lithostratigraphic units (layers) of the Upper Silesian Coal Basin have been created.
Direct liquefaction Proof-of-Concept facility. Final technical progress report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Comolli, A.G.; Lee, L.K.; Pradhan, V.R.
1995-08-01
This report presents the results of work which included extensive modifications to HRI`s existing 3 ton per day Process Development Unit (PDU) and completion of the first PDU run. The 58-day Run 1 demonstrated scale-up of the Catalytic Two-Stage Liquefaction (CTSL Process) on Illinois No. 6 coal to produce distillate liquid products at a rate of up to 5 barrels per to of moisture-ash-free coal. The Kerr McGee Rose-SR unit from Wilsonville was redesigned and installed next to the US Filter installation to allow a comparison of the two solids removal systems. Also included was a new enclosed reactor tower,more » upgraded computer controls and a data acquisition system, an alternate power supply, a newly refurbished reactor, an in-line hydrotreater, interstage sampling system, coal handling unit, a new ebullating pump, load cells and improved controls and remodeled preheaters. Distillate liquid yields of 5 barrels/ton of moisture ash free coal were achieved. Coal slurry recycle rates were reduced from the 2--2.5 to 1 ratio demonstrated at Wilsonville to as low as 0.9 to 1. Coal feed rates were increased during the test by 50% while maintaining process performance at a marginally higher reactor severity. Sulfur in the coal was reduced from 4 wt% to ca. 0.02 wt% sulfur in the clean distillate fuel product. More than 3,500 gallons of distillate fuels were collected for evaluation and upgrading studies. The ROSE-SR Process was operated for the first time with a pentane solvent in a steady-state model. The energy rejection of the ash concentrate was consistently below prior data, being as low as 12%, allowing improved liquid yields and recovery.« less
NASA Astrophysics Data System (ADS)
Hu, Guozhong; Yang, Nan; Xu, Guang; Xu, Jialin
2018-03-01
The gas drainage rate of low-permeability coal seam is generally less than satisfactory. This leads to the gas disaster of coal mine, and largely restricts the extraction of coalbed methane (CBM), and increases the emission of greenhouse gases in the mining area. Consequently, enhancing the gas drainage rate is an urgent challenge. To solve this problem, a new approach of using microwave irradiation (MWR) as a non-contact physical field excitation method to enhance gas drainage has been attempted. In order to evaluate the feasibility of this method, the methane adsorption, diffusion and penetrability of coal subjected to MWR were experimentally investigated. The variation of methane adsorbed amount, methane diffusion speed and absorption loop for the coal sample before and after MWR were obtained. The findings show that the MWR can change the adsorption property and reduce the methane adsorption capacity of coal. Moreover, the methane diffusion characteristic curves for both the irradiated coal samples and theoriginal coal samples present the same trend. The irradiated coal samples have better methane diffusion ability than the original ones. As the adsorbed methane decreases, the methane diffusion speed increases or remain the same for the sample subjected to MWR. Furthermore, compared to the original coal samples, the area of the absorption loop for irradiated samples increases, especially for the micro-pore and medium-pore stage. This leads to the increase of open pores in the coal, thus improving the gas penetrability of coal. This study provides supports for positive MWR effects on changing the methane adsorption and improving the methane diffusion and the gas penetrability properties of coal samples.
Environmental monitoring handbook for coal conversion facilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salk, M.S.; DeCicco, S.G.
1978-05-01
The primary objectives of the Department of Energy's (DOE) coal conversion program are to demonstrate the environmental acceptability, technical feasibility, and economic viability of various technologies for gaseous, liquid, and solid fuels from coal. The Environmental Monitoring Handbook for Coal Conversion Facilities will help accomplish the objective of environmental acceptability by guiding the planning and execution of socioeconomic and environmental monitoring programs for demonstration facilities. These programs will provide information adequate to (1) predict, insofar as is possible, the potential impacts of construction and operation of a coal conversion plant, (2) verify the occurrence of these or any other impactsmore » during construction and operation, (3) determine the adequacy of mitigating measures to protect the environment, (4) develop effluent source terms for process discharges, and (5) determine the effectiveness of pollution control equipment. Although useful in a variety of areas, the handbook is intended primarily for contractors who, as industrial partners with DOE, are building coal conversion plants. For the contractor it is a practical guide on (1) the methodology for developing site- and process-specific environmental monitoring programs, (2) state-of-the-art sampling and analytical techniques, and (3) impact analyses.To correspond to the phases of project activity, the subject matter is divided into four stages of monitoring: (1) a reconnaissance or synoptic survey, (2) preconstruction or baseline, (3) construction, and (4) operation, including process monitoring (prepared by Radian Corp., McLean, Va.). For each stage of monitoring, guidelines are given on socioeconomics, aquatic and terrestrial ecology, air quality and meteorology, surface and groundwater quality, geohydrology and soil survey, and surface water hydrology.« less
COAL PREPARATION PLANT COMPUTER MODEL: VOLUME I. USER DOCUMENTATION
The two-volume report describes a steady state modeling system that simulates the performance of coal preparation plants. The system was developed originally under the technical leadership of the U.S. Bureau of Mines and the sponsorship of the EPA. The modified form described in ...
Improving Competitiveness of U.S. Coal Dialogue
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kokkinos, Angelos
The Improving Competitiveness of U.S. Coal Dialogue held in September 2017 explored a broad range of technical developments that have the potential to improve U.S. coal competitiveness in domestic and overseas markets. The workshop is one in a series of events hosted by DOE to gather expert input on challenges and opportunities for reviving the coal economy. This event brought together coal industry experts to review developments in a broad range of technical areas such as conventional physical (e.g. dense-medium) technologies, and dry coal treatments; thermal, chemical, and bio-oxidation coal upgrading technologies; coal blending; and applications for ultrafine coal andmore » waste streams. The workshop was organized to focus on three main discussion topics: Challenges and Opportunities for Improving U.S. Coal Competitiveness in Overseas Markets, Mineral Processing, and Technologies to Expand the Market Reach of Coal Products. In each session, invited experts delivered presentations to help frame the subsequent group discussion. Throughout the discussions, participants described many possible areas of research and development (R&D) in which DOE involvement could help to produce significant outcomes. In addition, participants discussed a number of open questions—those that the industry has raised or investigated but not yet resolved. In discussing the three topics, the participants suggested potential areas of research and issues for further investigation. As summarized in Table ES-1, these crosscutting suggestions centered on combustion technologies, coal quality, coal processing, environmental issues, and other issues. The discussions at this workshop will serve as an input that DOE considers in developing initiatives that can be pursued by government and industry. This workshop generated strategies that described core research concepts, identified implementation steps, estimated benefits, clarified roles of government and industry, and outlined next steps. While more work is needed, each of these initiatives, included in the sections that follow, details new ideas to increase efficiency and reduce carbon emissions. DOE will integrate the results of this workshop with ongoing research work at the National Laboratories as well as other relevant data sources. This combined information will be used to develop a comprehensive strategy for capitalizing on the opportunity for U.S. coal and mineral competitiveness.« less
Microfine coal firing results from a retrofit gas/oil-designed industrial boiler
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patel, R.; Borio, R.W.; Liljedahl, G.
1995-12-31
The development of a High Efficiency Advanced Coal Combustor (HEACC) has been in progress since 1987 and the ABB Power Plant Laboratories. The initial work on this concept produced an advanced coal firing system that was capable of firing both water-based and dry pulverized coal in an industrial boiler environment. Economics may one day dictate that it makes sense to replace oil or natural gas with coal in boilers that were originally designed to burn these fuels. The objective of the current program is to demonstrate the technical and economic feasibility of retrofitting a gas/oil designed boiler to burn micronizedmore » coal. In support of this overall objective, the following specific areas were targeted: A coal handling/preparation system that can meet the technical requirements for retrofitting microfine coal on a boiler designed for burning oil or natural gas; Maintaining boiler thermal performance in accordance with specifications when burning oil or natural gas; Maintaining NOx emissions at or below 0.6 lb/MBtu; Achieving combustion efficiencies of 98% or higher; and Calculating economic payback periods as a function of key variables. The overall program has consisted of five major tasks: (1) A review of current state-of-the-art coal firing system components; (2) Design and experimental testing of a prototype HEACC burner; (3) Installation and testing of a HEACC system in a commercial retrofit application; (4) Economic evaluation of the HEACC concept for retrofit applications; and (5) Long term demonstration under commercial user demand conditions. This paper will summarize the latest key experimental results (Task 3) and the economic evaluation (Task 4) of the HEACC concept for retrofit applications. 28 figs., 6 tabs.« less
Guevara, Edgar H.; Breton, Caroline; Hackley, Paul C.
2007-01-01
Vitrinite reflectance measurements were made to determine the rank of selected subsurface coal and coaly shale samples from Young County, north-central Texas, for the National Coal Resources Database System State Cooperative Program conducted by the Bureau of Economic Geology at The University of Texas at Austin. This research is the continuation of a pilot study that began in adjacent Archer County, and forms part of a larger investigation of the coalbed methane resource potential of Pennsylvanian coals in north-central Texas. A total of 57 samples of coal and coaly shale fragments were hand-picked from drill cuttings from depths of about 2,000 ft in five wells, and Ro determinations were made on an initial 10-sample subset. Electric-log correlation of the sampled wells indicates that the collected samples represent coal and coaly shale layers in the Strawn (Pennsylvanian), Canyon (Pennsylvanian), and Cisco (Pennsylvanian-Permian) Groups. Coal rank in the initial sample subset ranges from lignite (Ro=0.39), in a sample from the Cisco Group at a depth of 310 to 320 ft, to high volatile bituminous A coal (Ro=0.91) in a sample from the lower part of the Canyon Group at a depth of 2,030 to 2,040 ft.
Bioassay for estimating the biogenic methane-generating potential of coal samples
Jones, Elizabeth J.P.; Voytek, Mary A.; Warwick, Peter D.; Corum, Margo D.; Cohn, Alexander G.; Bunnell, Joseph E.; Clark, Arthur C.; Orem, William H.
2008-01-01
Generation of secondary biogenic methane in coal beds is likely controlled by a combination of factors such as the bioavailability of coal carbon, the presence of a microbial community to convert coal carbon to methane, and an environment supporting microbial growth and methanogenesis. A set of treatments and controls was developed to bioassay the bioavailability of coal for conversion to methane under defined laboratory conditions. Treatments included adding a well-characterized consortium of bacteria and methanogens (enriched from modern wetland sediments) and providing conditions to support endemic microbial activity. The contribution of desorbed methane in the bioassays was determined in treatments with bromoethane sulfonic acid, an inhibitor of microbial methanogenesis. The bioassay compared 16 subbituminous coal samples collected from beds in Texas (TX), Wyoming (WY), and Alaska (AK), and two bituminous coal samples from Pennsylvania (PA). New biogenic methane was observed in several samples of subbituminous coal with the microbial consortium added, but endemic activity was less commonly observed. The highest methane generation [80 µmol methane/g coal (56 scf/ton or 1.75 cm3/g)] was from a south TX coal sample that was collected from a non-gas-producing well. Subbituminous coals from the Powder River Basin, WY and North Slope Borough, AK contained more sorbed (original) methane than the TX coal sample and generated 0–23 µmol/g (up to 16 scf/ton or 0.5 cm3/g) new biogenic methane in the bioassay. Standard indicators of thermal maturity such as burial depth, nitrogen content, and calorific value did not explain differences in biogenic methane among subbituminous coal samples. No original methane was observed in two bituminous samples from PA, nor was any new methane generated in bioassays of these samples. The bioassay offers a new tool for assessing the potential of coal for biogenic methane generation, and provides a platform for studying the mechanisms involved in this economically important activity.
Review of non-traditional coal mining countries. Part I
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pettigrew, J.
1976-03-01
The coal reserves and coal production of countries in Africa and Central and South America are reviewed. About 0.5 percent of world hard coal output originates from Central and South America, but production of lignite and brown coals is negligible. Colombia, Mexico and Brazil are the largest producers, while significant amounts of coal are won in Chile. At present Argentina, Peru and Venezuela have very small coal industries. Excluding the Republic of South Africa, the African continent has only about 0.25 percent of world coal reserves. Lignite and brown coal resources are negligible. Despite the relatively small amount of coalmore » resources there is nevertheless a degree of underexploitation. Of those African countries that have reserves, most are capable of modest increases in production given the right financial and technical assistance. Africa produces about 3.0 percent of total world coal production, and all but 0.2 percent comes from South Africa. Over half of the remainder is mined in Rhodesia.« less
The upper pennsylvanian pittsburgh coal bed: Resources and mine models
Watson, W.D.; Ruppert, L.F.; Tewalt, S.J.; Bragg, L.J.
2001-01-01
The U.S. Geological Survey recently completed a digital coal resource assessment model of the Upper Pennsylvanian Pittsburgh coal bed, which indicates that after subtracting minedout coal, 16 billion short tons (14 billion tonnes) remain of the original 34 billion short tons (31 billion tonnes) of coal. When technical, environmental, and social restrictions are applied to the remaining Pittsburgh coal model, only 12 billion short tons (11 billion tonnes) are available for mining. Our assessment models estimate that up to 0.61 billion short tons (0.55 billion tonnes), 2.7 billion short tons (2.4 billion tonnes), and 8.5 billion short tons (7.7 billion tonnes) could be available for surface mining, continuous mining, and longwall mining, respectively. This analysis is an example of a second-generation regional coal availability study designed to model recoverability characteristics for all the major coal beds in the United States. ?? 2001 International Association for Mathematical Geology.
NASA Astrophysics Data System (ADS)
Imhausen, K. H.
1982-08-01
The IG hydrogenation process used commercially in Germany up to 1945, was improved. Pilot plants in Germany are presently under construction or in the start-up phase. A technical concept for the conversion of Australian bituminous coals and/or Australian brown coals into automotive fuels, using coal hydrogenation, gasification and Fisher-Tropsch synthesis was developed. Development of technology, consumption figures and of expenditure/investment for a complete plant, producing about 3 million tons of automotive fuels per year, was also attempted. The results show that standard automotive fuels are produced from bituminous coal, using a combination of high pressure coal hydrogenation and of Fisher-Tropsch synthesis, and from brown coal, using high pressure coal hydrogenation only. Under the assumption that crude oil prices increase 3% more rapidly than yearly inflation, and the raw material cost are staying at a low level, commercial plants are planned.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Conkle, H.N.; Raghavan, J.K.; Smit, F.J.
1991-11-21
The objective of this study is to develop technology that permits the practical and economic preparation, storage, handling, and transportation of coal pellets, which can be reslurried into Coal water fuels (CWF) suitable for firing in small- and medium-size commercial and industrial boilers, furnaces, and engines. The project includes preparing coal pellets and capsules from wet filter cake that can be economically stored, handled, transported, and reslurried into a CWF that can be suitably atomized and fired at the user site. The wet cakes studied were prepared from ultra-fine (95% -325 mesh) coal beneficiated by advanced froth-flotation techniques. The coalsmore » studied included two eastern bituminous coals, one from Virginia (Elkhorn) and one from Illinois (Illinois No. 6) and one western bituminous coal from Utah (Sky Line coal).« less
Mössbauer spectroscopic investigation of iron species in coal
Smith, Gerard V.; Liu, Juei-Ho; Saporoschenko, Mykola
1978-01-01
A series of Herrin No. 6 coal and three coal-derived samples have been examined by Mo??ssbauer spectroscopy. It is established that Mo??ssbauer spectroscopy can be used to identify multiple iron species in a whole coal or an autoclaved char sample without the need to concentrate the minerals to enhance resolution. Our results indicate that there may be an association between the pyrite in raw coal and the coal matrix. This association appears to be broken down when the coal is heated to temperatures as low as 175 ??C. It is also apparent that the iron sulphide present in the whole coal is converted to pyrite at these low temperatures. For our samples, the total quantity of iron species in different coal lithotypes is about the same, but they differ in their distributions. The fusain has the least amount of Fe2+ species when compared to the vitrain or whole-coal sample used. At least two types of nonstoichiometric pyrrhotite are produced in the heat-treated samples. One of these pyrrhotites is unstable and contains dissolved sulphur which is apparently liberated as the temperature is increased. ?? 1978.
A FIELD TEST USING COAL:DRDF BLENDS IN SPREADER STOKER-FIRED BOILERS
This program was conducted to characterize and demonstrate the technical, economic, and environmental feasibility of combustion densified forms of refuse derived fuel (dRDF) blended with coal in spreader stoker-fired boilers. A total of 258.5 Mg (285 tons) of pelletized 1/2-inch-...
EMISSIONS FROM RESIDENTIAL AND SMALL COMMERCIAL STOKER-COAL-FIRED BOILERS UNDER SMOKELESS OPERATION
The report gives results of a technical assessment of the advisability of increased use of stoker coal for residential and small commercial space heaters. The assessment was based on: (1) an experimental laboratory study (major emphasis) to evaluate emissions from a 20-hp (200 kw...
Results of a European interlaboratory comparison on CO2 sorption on activated carbon and coals
NASA Astrophysics Data System (ADS)
Gensterblum, Yves; Busch, Andreas; Krooss, Bernhard; de Weireld, Guy; Billemont, Pierre; van Hemert, Patrick; Wolf, Karl-Heinz
2013-04-01
For the assessment of CO2 storage in coal seams or enhanced coalbed methane production (ECBM), the sorption properties of natural coals are important parameters. Since more and more laboratories worldwide are concerned with measurements of gas sorption on coal it is indispensable to establish quality standards for such experiments. The first two interlaboratory studies on CO2 sorption on coal (Goodman et al. 2004, 2007) revealed a poor agreement of sorption isotherms among the participating laboratories, particularly in the high-pressure range. During the MOVECBM (http://www.movecbm.eu/) project funded by the European Commission (6th framework), an interlaboratory comparison of CO2 sorption on selected coals and activated carbon was initiated. Measurements were performed on dry samples at 45° C using the manometric and the gravimetric method. up to a final pressure of 15 MPa. The first set of high-pressure sorption measurements was performed on a Filtrasorb 400 activated carbon sample in order to minimise heterogeneity effects and to optimize the experimental procedures for the individual (manometric or gravimetric) methods (Gensterblum et al. 2009). Since comparability for the activated carbon was excellent, the measurements were continued using natural coals of various rank (anthracite, bituminous coal and lignite) to study the influence of heterogeneities and varying starting conditions on the CO2 sorption properties (Gensterblum et al. 2010). Compared to the poor reproducibility observed in previous interlaboratory studies (Goodman et al., 2004, 2007) this European study showed excellent agreement (<5 % deviation) among the participating laboratories with good repeatability. The sorption data and technical information on the different experimental setups have been used to investigate errors and potential pitfalls in the assessment of high-pressure CO2 sorption isotherms. References Gensterblum Y., P. van Hemert, P. Billemont, A. Busch, B.M. Krooss, G. de Weireld, D. Prinz , K.-H.A.A. Wolf, "European inter-laboratory comparison of high pressure CO2 sorption isotherms. II: natural coals" IJCG, 2010, 84, 115-124 Gensterblum Y., P. van Hemert, P. Billemont, A. Busch, D. Charriére, D. Li, B.M. Krooss, G. de Weireld, D. Prinz , K.-H.A.A. Wolf, "European inter-laboratory comparison of high pressure CO2 sorption isotherms. I: Activated carbon" Carbon 47 ( 2009 ) 2958 -2969 Goodman, A.L., Busch, A., Duffy, G., Fitzgerald, J.E., Gasem, K.A.M., Gensterblum, Y., Krooss, B.M., Levy, J., Ozdemir, E., Pan, Z., Robinson, Jr., R.L., Schroeder, K., Sudibandriyo, M., White, C. (2004). An Inter-laboratory Comparison of CO2 Isotherms Measured on Argonne Premium Coal Samples. Energy and Fuels 18, 1175-1182. Goodman, A.L., Busch, A., Day, S., Duffy, G.J., Fitzgerald, J.E., Gasem, K.A.M., Gensterblum, Y., Hartman, C., Krooss, B.M., Pan, Z., Pratt, T., Robinson, Jr., R.L., Romanov, V., Sakurovs, R., Schroeder, K., Sudibandriyo, M., White, C.M. (2007) "Inter-laboratory Comparison II: CO2 Isotherms Measured on Moisture-Equilibrated Argonne Premium Coals at 55oC and 15 MPa", International Journal of Coal Geology 72, 153-164.
The World Coal Quality Inventory: South America
Karlsen, Alex W.; Tewalt, Susan J.; Bragg, Linda J.; Finkelman, Robert B.
2006-01-01
Executive Summary-Introduction: The concepts of a global environment and economy are strongly and irrevocably linked to global energy issues. Worldwide coal production and international coal trade are projected to increase during the next several decades in an international energy mix that is still strongly dependent on fossil fuels. Therefore, worldwide coal use will play an increasingly visible role in global environmental, economic, and energy forums. Policy makers require information on coal, including coal quality data, to make informed decisions regarding domestic coal resource allocation, import needs and export opportunities, foreign policy objectives, technology transfer policies, foreign investment prospects, environmental and health assessments, and byproduct use and disposal issues. The development of a worldwide, reliable, coal quality database would help ensure the most economically and environmentally efficient global use of coal. The U.S. Geological Survey (USGS), in cooperation with many agencies and scientists from the world's coal producing countries, originally undertook a project to obtain representative samples of coal from most of the world's producing coal provinces during a limited period of time (roughly 1998-2005), which is called the World Coal Quality Inventory (WoCQI). The multitude of producing coal mines, coal occurrences, or limited accessibility to sites in some countries can preclude collecting more than a single sample from a mine. In some areas, a single sample may represent an entire coal mining region or basin. Despite these limitations in sampling and uneven distribution of sample collection, the analytical results can still provide a general overview of world coal quality. The USGS intends to present the WoCQI data in reports and, when possible, in Geographic Information System (GIS) products that cover important coal bearing and producing regions.
75 FR 17511 - Coal Mine Dust Sampling Devices
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-06
... Part III Department of Labor Mine Safety and Health Adminisration 30 CFR Parts 18, 74, and 75 Coal Mine Dust Sampling Devices; High-Voltage Continuous Mining Machine Standard for Underground Coal Mines...-AB61 Coal Mine Dust Sampling Devices AGENCY: Mine Safety and Health Administration, Labor. ACTION...
Hatch, Joseph R.; Bullock, John H.; Finkelman, Robert B.
2006-01-01
In 1999, the USGS initiated the National Coal Quality Inventory (NaCQI) project to address a need for quality information on coals that will be mined during the next 20-30 years. At the time this project was initiated, the publicly available USGS coal quality data was based on samples primarily collected and analyzed between 1973 and 1985. The primary objective of NaCQI was to create a database containing comprehensive, accurate and accessible chemical information on the quality of mined and prepared United States coals and their combustion byproducts. This objective was to be accomplished through maintaining the existing publicly available coal quality database, expanding the database through the acquisition of new samples from priority areas, and analysis of the samples using updated coal analytical chemistry procedures. Priorities for sampling include those areas where future sources of compliance coal are federally owned. This project was a cooperative effort between the U.S. Geological Survey (USGS), State geological surveys, universities, coal burning utilities, and the coal mining industry. Funding support came from the Electric Power Research Institute (EPRI) and the U.S. Department of Energy (DOE).
USE OF COAL DRYING TO REDUCE WATER CONSUMED IN PULVERIZED COAL POWER PLANTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edward Levy; Harun Bilirgen; Ursla Levy
2006-01-01
This is the twelfth Quarterly Report for this project. The background and technical justification for the project are described, including potential benefits of reducing fuel moisture using power plant waste heat, prior to firing the coal in a pulverized coal boiler. During this last Quarter, the development of analyses to determine the costs and financial benefits of coal drying was continued. The details of the model and key assumptions being used in the economic evaluation are described in this report and results are shown for a drying system utilizing a combination of waste heat from the condenser and thermal energymore » extracted from boiler flue gas.« less
Business Industry Technical Assistance Center, Hazard Community College.
ERIC Educational Resources Information Center
Marrow, Alvin J.
The Business Industry and Technical Assistance Center (BITAC) was established in 1986 at Hazard Community College, in Kentucky, to serve as an information and technical assistance center for small business. As the local area began to face layoffs in the coal mining industry, however, the center extended its services in four principal areas:…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ward, B.
We continued our tests for biosolubilization activity on lignite, subbituminous, and bituminous coals, using both surface solubilization and agar diffusion assays for selected lignite-solubilizing strains challenged with untreated and treated coals shown in earlier tests to be resistant to biosolubilization. These latter were subjected to treatments with heat or pressurized oxygen atmosphere, or to combinations of the same. We have observed biosolubilization of some weathered high-rank coals by some of the fungal isolates tested. 1 tab.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Curtis, C.W.; Chander, S.; Gutterman, C.
Liquefaction experiments were undertaken using subbituminous Black Thunder mine coal to observe the effects of aqueous SO{sub 2} coal beneficiation and the introduction of various coal swelling solvents and catalyst precursors. Aqueous SO{sub 2} beneficiation of Black Thunder coal removed alkali metals and alkaline earth metals, increased the sulfur content and increased the catalytic liquefaction conversion to THF solubles compared to untreated Black Thunder coal. The liquefaction solvent had varying effects on coal conversion, depending upon the type of solvent added. The hydrogen donor solvent, dihydroanthracene, was most effective, while a coal-derived Wilsonville solvent promoted more coal conversion than didmore » relatively inert 1-methylnaphthalene. Swelling of coal with hydrogen bonding solvents tetrahydrofuran (THF), isopropanol, and methanol, prior to reaction resulted in increased noncatalytic conversion of both untreated and SO{sub 2} treated Black Thunder coals, while dimethylsulfoxide (DMSO), which was absorbed more into the coal than any other swelling solvent, was detrimental to coal conversion. Swelling of SO{sub 2} treated coal before liquefaction resulted in the highest coal conversions; however, the untreated coal showed the most improvements in catalytic reactions when swelled in either THF, isopropanol, or methanol prior to liquefaction. The aprotic solvent DMSO was detrimental to coal conversion.« less
Cytotoxicity and genotoxicity induced by coal and coal fly ash particles samples in V79 cells.
León-Mejía, Grethel; Silva, Luis F O; Civeira, Matheus S; Oliveira, Marcos L S; Machado, Miriana; Villela, Izabel Vianna; Hartmann, Andreas; Premoli, Suziane; Corrêa, Dione Silva; Da Silva, Juliana; Henriques, João Antônio Pêgas
2016-12-01
Exposure to coal and coal ashes can cause harmful effects in in vitro and in vivo systems, mainly by the induction of oxidative damage. The aim of this work was to assess cytotoxic and genotoxic effects using the V79 cell line treated with coal and coal fly ash particles derived from a coal power plant located in Santa Catarina, Brazil. Two coal samples (COAL11 and COAL16) and two coal fly ash samples (CFA11 and CFA16) were included in this study. COAL16 was co-firing with a mixture of fuel oil and diesel oil. The comet assay data showed that exposure of V79 cells to coal and coal fly ash particles induced primary DNA lesions. Application of lesion-specific endonucleases (FPG and ENDO III) demonstrated increased DNA effects indicating the presence of high amounts of oxidative DNA lesions. The cytokinesis-block micronucleus cytome assay analysis showed that exposure of V79 cells to high concentrations of coal and coal fly ash particles induced cytotoxic effects (apoptosis and necrosis) and chromosomal instability (nucleoplasmic bridges, nuclear buds, and micronucleus (MN) formation). These results may be associated with compounds contained in the surface of the particles as hazardous elements, ultrafine/nanoparticles, and polycyclic aromatic hydrocarbons (PAHs) which were detected in the samples. Graphical abstract ᅟ.
Senior, C.L.; Zeng, T.; Che, J.; Ames, M.R.; Sarofim, A.F.; Olmez, I.; Huggins, Frank E.; Shah, N.; Huffman, G.P.; Kolker, A.; Mroczkowski, S.; Palmer, C.; Finkelman, R.
2000-01-01
Trace elements in coal have diverse modes of occurrence that will greatly influence their behavior in many coal utilization processes. Mode of occurrence is important in determining the partitioning during coal cleaning by conventional processes, the susceptibility to oxidation upon exposure to air, as well as the changes in physical properties upon heating. In this study, three complementary methods were used to determine the concentrations and chemical states of trace elements in pulverized samples of four US coals: Pittsburgh, Illinois No. 6, Elkhorn and Hazard, and Wyodak coals. Neutron Activation Analysis (NAA) was used to measure the absolute concentration of elements in the parent coals and in the size- and density-fractionated samples. Chemical leaching and X-ray absorption fine structure (XAFS) spectroscopy were used to provide information on the form of occurrence of an element in the parent coals. The composition differences between size-segregated coal samples of different density mainly reflect the large density difference between minerals, especially pyrite, and the organic portion of the coal. The heavy density fractions are therefore enriched in pyrite and the elements associated with pyrite, as also shown by the leaching and XAFS methods. Nearly all the As is associated with pyrite in the three bituminous coals studied. The sub-bituminous coal has a very low content of pyrite and arsenic; in this coal arsenic appears to be primarily organically associated. Selenium is mainly associated with pyrite in the bituminous coal samples. In two bituminous coal samples, zinc is mostly in the form of ZnS or associated with pyrite, whereas it appears to be associated with other minerals in the other two coals. Zinc is also the only trace element studied that is significantly more concentrated in the smaller (45 to 63 ??m) coal particles.
Crack identification and evolution law in the vibration failure process of loaded coal
NASA Astrophysics Data System (ADS)
Li, Chengwu; Ai, Dihao; Sun, Xiaoyuan; Xie, Beijing
2017-08-01
To study the characteristics of coal cracks produced in the vibration failure process, we set up a static load and static and dynamic combination load failure test simulation system, prepared with different particle size, formation pressure, and firmness coefficient coal samples. Through static load damage testing of coal samples and then dynamic load (vibration exciter) and static (jack) combination destructive testing, the crack images of coal samples under the load condition were obtained. Combined with digital image processing technology, an algorithm of crack identification with high precision and in real-time is proposed. With the crack features of the coal samples under different load conditions as the research object, we analyzed the distribution of cracks on the surface of the coal samples and the factors influencing crack evolution using the proposed algorithm and a high-resolution industrial camera. Experimental results showed that the major portion of the crack after excitation is located in the rear of the coal sample where the vibration exciter cannot act. Under the same disturbance conditions, crack size and particle size exhibit a positive correlation, while crack size and formation pressure exhibit a negative correlation. Soft coal is more likely to lead to crack evolution than hard coal, and more easily causes instability failure. The experimental results and crack identification algorithm provide a solid basis for the prevention and control of instability and failure of coal and rock mass, and they are helpful in improving the monitoring method of coal and rock dynamic disasters.
Carbon monoxide detection of chemisorbed oxygen in coal and other carbonaceous materials
Hinckley, C.C.; Wiltowski, T.; Wiltowska, T.; Ellison, D.W.; Shiley, R.H.; Wu, L.
1990-01-01
The oxidation of carbon monoxide by mildly oxidized and devolatilized coal samples was studied thermogravimetrically. The oxidation was attributed to oxygen chemisorbed on inorganic components of the coals. The reaction of CO with pyrite producing carbonyl sulphide, OCS, accompanied the oxidation. A mechanism for CO oxidation is proposed in which active oxygen chemisorbed on the inorganic components of the coal directly oxidized CO to CO2, and facilitates the chemisorption of CO on the coal as carbonate. A factor, ?? = ( 11 14) [1 - ( Wn Wc)], was derived where Wn is the sample weight loss not attributed to OCS formation, and Wc is the estimated weight of evolved CO2. This quantity is proportional to the fraction of CO2 produced by the direct oxidation of CO, and was used to compare the coal samples studied. Samples of an Illinois No. 5 coal yielded average ?? values of 0.7 and those of an Illinois No. 6 coal yielded values of 0.6, indicating that in these cases, the majority of CO2 produced came from the direct oxidation of CO. The results obtained for the coal samples are compared with a selection of carbonaceous samples for which the proposed mechanism does not apply. ?? 1990.
Support Services for Ceramic Fiber-Ceramic Matrix Composites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hurley, JP
2001-08-16
To increase national energy self-sufficiency for the near future, power systems will be required to fire low-grade fuels more efficiently than is currently possible. The typical coal-fired steam cycle used at present is limited to a maximum steam temperature of 540 C and a conversion efficiency of 35%. Higher working-fluid temperatures are required to boost efficiency, exposing subsystems to very damaging conditions. Issues of special concern to materials developers are corrosion and warping of hot-gas particulate filters and corrosion and erosion of high-temperature heat exchangers. The University of North Dakota Energy and Environmental Research Center (EERC) is working with themore » National Energy Technology Laboratory in conjunction with NCC Engineering, Inc., to provide technical assistance and coal by-products to the Fossil Energy Materials Advanced Research and Technology Development Materials Program investigating materials failure in fossil energy systems. The main activities of the EERC are to assemble coal slag and hot-gas filter ash samples for use by materials researchers, to assist in providing opportunities for realistic tests of advanced materials in pilot-scale fossil energy systems, and to provide analytical support in determining corrosion mechanisms of the exposed materials. In this final report for the project year of September 2000 through August 2001, the facilities at the EERC that can be used by researchers for realistic testing of materials are described. Researchers can include sample coupons in each of these facilities at no cost since they are being operated under separate funding. In addition, two pilot-scale coal combustion tests are described in which material sample coupons were included from researchers involved in the development of fossil energy materials. The results of scanning electron microscopy (SEM) energy dispersive x-ray analyses of the corrosion products and interactions between the surface scales of the coupons and the products of coal combustion found on the coupons exposed during those tests are reported. Finally, a relative comparison of ceramic and alloy material performance based on the SEM results is presented.« less
The use of ethanol to remove sulfur from coal. Final report, September 1991--December 1992; Revision
DOE Office of Scientific and Technical Information (OSTI.GOV)
Savage, R.L.; Lazarov, L.K.; Prudich, M.E.
1994-03-10
The initial technical goal in the project was to develop a chemical method for the cost effective removal of both inorganic and organic sulfur from Ohio coals. Verifying and using a process of reacting ethanol vapors with coal under conditions disclosed in U.S. Patent 4,888,029, the immediate technical objectives were to convert a small scale laborative batch process to a larger scale continuous process which can serve as the basis for commercial development of the technology. This involved getting as much information as possible from small scale batch autoclave or fluid bed laboratory reactors for use in pilot plant studies.more » The laboratory data included material balances on the coal and sulfur, temperature and pressure ranges for the reaction, minimum reaction times at different conditions, the effectiveness of different activators such as oxygen and nitric oxide, the amount and nature of by-products such as sulfur dioxide, hydrogen sulfide and acetaldehyde, the effect of coal particle size on the speed and completeness of the reaction, and the effectiveness of the reaction on different Ohio coals. Because the laboratory experiments using the method disclosed in U.S. 4,888,029 were not successful, the objective for the project was changed to develop a new laboratory process to use ethanol to remove sulfur from coal. Using copper as a catalyst and as an H{sub 2}S scavenger, a new laboratory procedure to use ethanol to remove sulfur from coal has been developed at Ohio University and a patent application covering this process was filed in March, 1993. The process is based on the use of copper as a catalyst for the dehydrogenation of ethanol to produce nascent hydrogen to remove sulfur from the coal and the use of copper as a scavenger to capture the hydrogen sulfide formed from the sulfur removed from coal.« less
Biogenic origin of coalbed gas in the northern Gulf of Mexico Coastal Plain, U.S.A
Warwick, Peter D.; Breland, F. Clayton; Hackley, Paul C.
2008-01-01
New coal-gas exploration and production in northern Louisiana and south-central Mississippi, Gulf of Mexico Basin, is focused on the Wilcox Group (Paleocene–Eocene), where the depth to targeted subbituminous C to high volatile C bituminous coal beds ranges from 300 to 1680 m, and individual coal beds have a maximum thickness of about 6 m. Total gas content (generally excluding residual gas) of the coal beds ranges from less than 0.37 cm3/g (as-analyzed or raw basis; 1.2 cm3/g, dry, ash free basis, daf) at depths less than 400 m, to greater than 7.3 cm3/g (as-analyzed basis; 8.76 cm3/g, daf) in deeper (> 1,500 m) parts of the basin. About 20 Wilcox coal-gas wells in northern Louisiana produce from 200 to 6485 m3 of gas/day and cumulative gas production from these wells is approximately 25 million m3 (as of December, 2006). U.S. Geological Survey assessment of undiscovered, technically recoverable gas resources in the Gulf of Mexico Coastal Plain, including northern and south-central Mississippi, indicates that coal beds of the Wilcox Group contain an estimated mean total 109.3 million m3 (3.86 trillion ft3) of producible natural gas.To determine the origin of the Wilcox Group coal gases in northern Louisiana, samples of gas, water, and oil were collected from Wilcox coal and sandstone reservoirs and from under- and overlying Late Cretaceous and Eocene carbonate and sandstone reservoirs. Isotopic data from Wilcox coal-gas samples have an average δ13CCH4 value of − 62.6‰ VPDB (relative to Vienna Peedee Belemnite) and an average δDCH4 value of − 199.9‰ VSMOW (relative to Vienna Standard Mean Ocean Water). Values of δ13CCO2 range from − 25.4 to 3.42‰ VPDB. Produced Wilcox saline water collected from oil, conventional gas, and coalbed gas wells have δDH2O values that range from − 27.3 to − 18.0‰ VSMOW. These data suggest that the coal gases primarily are generated in saline formation water by bacterial reduction of CO2. Shallow (< 150 m) Wilcox coal beds containing freshwater have little or no biogenic gas.Molecular and isotopic analyses of gas samples collected from conventional gas and oil wells suggests that both biogenic and thermogenic gases are present in and adjacent to the Wilcox intervals that contain biogenic coal gases. Oil, probably sourced from thermally mature, down-structural-dip parts of the Wilcox Group, is produced from sandstones within the coal-bearing interval. Gas chromatograms of C10+ saturated hydrocarbons from Wilcox oils show a depletion of n-alkanes probably resulting from biodegradation of the oil. Isotopic composition of the gases associated with the oils is of mixed themogenic and biogenic origin (average δ13CCH4 = − 44.4‰ VPDB, and average δDCH4 = − 182.4‰ VSMOW).
Code of Federal Regulations, 2010 CFR
2010-01-01
... CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY ACT REGULATIONS COAL AND WOOD BURNING APPLIANCES... notice to prospective purchasers and purchasers. Manufacturers, including importers, of coal and wood...: Creosote Formation and Need for Removal When wood is burned slowly, it produces tar and other vapors, which...
Code of Federal Regulations, 2011 CFR
2011-01-01
... CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY ACT REGULATIONS COAL AND WOOD BURNING APPLIANCES... notice to prospective purchasers and purchasers. Manufacturers, including importers, of coal and wood...: Creosote Formation and Need for Removal When wood is burned slowly, it produces tar and other vapors, which...
Gas turbine critical research and advanced technology (CRT) support project
NASA Technical Reports Server (NTRS)
Furman, E. R.; Anderson, D. N.; Gedwill, M. A.; Lowell, C. E.; Schultz, D. F.
1982-01-01
The technical progress to provide a critical technology base for utility gas turbine systems capable of burning coal-derived fuels is summarized. Project tasks include the following: (1) combustion - to investigate the combustion of coal-derived fuels and the conversion of fuel-bound nitrogen to NOx; (2) materials - to understand and prevent the hot corrosion of turbine hot section materials; and (3) system studies - to integrate and guide the technological efforts. Technical accomplishments include: an extension of flame tube combustion testing of propane - Toluene Fuel Mixtures to vary H2 content from 9 to 18 percent by weight and the comparison of results with that predicted from a NASA Lewis General Chemical Kinetics Computer Code; the design and fabrication of combustor sector test section to test current and advanced combustor concepts; Testing of Catalytic combustors with residual and coal-derived liquid fuels; testing of high strength super alloys to evaluate their resistance to potential fuel impurities using doped clean fuels and coal-derived liquids; and the testing and evaluation of thermal barrier coatings and bond coatings on conventional turbine materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kevin C. Galbreath; Donald L. Toman; Christopher J. Zygarlicke
Petroleum coke, a byproduct of the petroleum-refining process, is an attractive primary or supplemental fuel for power production primarily because of a progressive and predictable increase in the production volumes of petroleum coke (1, 2). Petroleum coke is most commonly blended with coal in proportions suitable to meet sulfur emission compliance. Petroleum coke is generally less reactive than coal; therefore, the cofiring of petroleum coke with coal typically improves ignition, flame stability, and carbon loss relative to the combustion of petroleum coke alone. Although petroleum coke is a desirable fuel for producing relatively inexpensive electrical power, concerns about the effectsmore » of petroleum coke blending on combustion and pollution control processes exist in the coal-fired utility industry (3). The Energy & Environmental Research Center (EERC) completed a 2-year technical assessment of petroleum coke as a supplemental fuel. A survey questionnaire was sent to seven electric utility companies that are currently cofiring coal and petroleum coke in an effort to solicit specific suggestions on research needs and fuel selections. An example of the letter and survey questionnaire is presented in Appendix A. Interest was expressed by most utilities in evaluating the effects of petroleum coke blending on grindability, combustion reactivity, fouling, slagging, and fly ash emissions control. Unexpectedly, concern over corrosion was not expressed by the utilities contacted. Although all seven utilities responded to the question, only two utilities, Northern States Power Company (NSP) and Ameren, sent fuels to the EERC for evaluation. Both utilities sent subbituminous coals from the Power River Basin and petroleum shot coke samples. Petroleum shot coke is produced unintentionally during operational upsets in the petroleum refining process. This report evaluates the effects of petroleum shot coke blending on grindability, fuel reactivity, fouling/slagging, and electrostatic precipitator (ESP) fly ash collection efficiency.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mendis, M.S.; Rosenberg, J.I.; Medville, D.M.
1980-03-01
This report presents a summary of the analytical approach taken and the conclusions reached in an assessment of the supply and demand for manpower in the coal mining industry through the year 2000. A hybrid system dynamics/econometric model of the coal mining industry was developed which incorporates relationships between technological change, labor productivity, production costs, wages, graduation rates, and other key variables in estimating imbalances between labor supply and demand. Study results indicate that while the supply of production workers is expected to be sufficient under most future demand scenarios, periodic shortages of experienced workers, especially in the Northern Greatmore » Plains can be expected. Other study findings are that the supply of mining engineers will be sufficient under all but the highest coal demand scenario, a shortage of faculty will affect the supply of mining engineers in the near-term and the employment of mining technicians is expected to exhibit the largest increase in any labor category studied. In this volume the nature of the coal mining manpower problem is discussed, a detailed description of that analysis conducted and the sources of data used is provided, and the findings of the study are presented.« less
30 CFR 870.18 - General rules for calculating excess moisture.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Collection of Coal Samples from Core; and, D1412-93, Standard Test Method for Equilibrium Moisture of Coal at... shipment or use. (5) Core sample means a cylindrical sample of coal that represents the thickness of a coal seam penetrated by drilling according to ASTM standard D5192-91. (6) Correction factor means the...
30 CFR 870.18 - General rules for calculating excess moisture.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Collection of Coal Samples from Core; and, D1412-93, Standard Test Method for Equilibrium Moisture of Coal at... shipment or use. (5) Core sample means a cylindrical sample of coal that represents the thickness of a coal seam penetrated by drilling according to ASTM standard D5192-91. (6) Correction factor means the...
30 CFR 870.18 - General rules for calculating excess moisture.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Collection of Coal Samples from Core; and, D1412-93, Standard Test Method for Equilibrium Moisture of Coal at... shipment or use. (5) Core sample means a cylindrical sample of coal that represents the thickness of a coal seam penetrated by drilling according to ASTM standard D5192-91. (6) Correction factor means the...
30 CFR 870.18 - General rules for calculating excess moisture.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Collection of Coal Samples from Core; and, D1412-93, Standard Test Method for Equilibrium Moisture of Coal at... shipment or use. (5) Core sample means a cylindrical sample of coal that represents the thickness of a coal seam penetrated by drilling according to ASTM standard D5192-91. (6) Correction factor means the...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1982-01-01
Under the with-project scenario, WyCoalGas is projected to make a difference in the long-range future of Converse County. Because of the size of the proposed construction and operations work forces, the projected changes in employment, income, labor force, and population will alter Converse County's economic role in the region. Specifically, as growth occurs, Converse County will begin to satisfy a larger portion of its own higher-ordered demands, those that are currently being satisfied by the economy of Casper. Business-serving and household-serving activities, currently absent, will find the larger income and population base forecast to occur with the WyCoalGas project desirable.more » Converse County's economy will begin to mature, moving away from strict dependence on extractive industries to a more sophisticated structure that could eventually appeal to national, and certainly, regional markets. The technical demand of the WyCoalGas plant will mean a significant influx of varying occupations and skills. The creation of basic manufacturing, advanced trade and service sectors, and concomitant finance and transportation firms will make Converse County more economically autonomous. The county will also begin to serve market center functions for the smaller counties of eastern Wyoming that currently rely on Casper, Cheyenne or other distant market centers. The projected conditions expected to exist in the absence of the WyCoalGas project, the socioeconomic conditions that would accompany the project, and the differences between the two scenarios are considered. The analysis is keyed to the linkages between Converse County and Natrona County.« less
NASA Astrophysics Data System (ADS)
Kus, Jolanta; Meyer, Uwe; Ma, Jianwei; Chen-Brauchler, Dai
2010-05-01
At the coalfield of Wuda (Inner Mongolia, PR China) extensive underground coal fires cause widespread thermal and oxidative effects in coal seams. Within phase B of the Coal Fire Research Project of the Sino-German Initiative, methods for innovative fire-extinguishing technologies were investigated in multifaceted research approaches. Extensive investigations of oxidative and thermally affected coal seams in coal fire zone 18 were conducted in 2008 prior to application of new fire-extinguishing methods. We present results from the outcrop of coal seam No. 4 in the fire zone 18. The coal of seam No. 4 is of Early Permian age and belongs stratigraphically to the Shanxi Formation. The unaffected coal displays a high volatile bituminous A rank with a background value of random vitrinite reflectance ranging from 0.90 to 0.96 % Rr. Coal channel samples were coallected at actively extracted coal faces along multiple profiles with surface temperatures ranging from about 50° to 600°C. Microscopic examinations revealed a variety of products of coal exposure to the fire. Within coal samples, a marked rise in vitrinite reflectance from background values to 5.55% Rr (6.00 % Rmax) is encountered. In addition, a number of coal samples showed suppressed vitrinite reflectances ranging between 0.82 to 0.88% Rr. Further, seemingly heat unaffected coal samples display intensive development of oxidations rims at coal grain edges and cracks as well as shrinkage cracks and formation of iron oxides/hydroxides. Instead, thermally affected coal samples with higher coalification grade are further characterised by development of macropores (devolatilisation pores) in vitrinitic streaks, transformation of liptinite to meta-liptinite and micrinite as well as by natural coke particles of mostly porous nature and fine to coarse grained anisotropic mosaic. Coal petrographic investigations confirmed a hypothesis that both, oxidations as well as low temperature carbonisation govern the thermal regime in the coal fire zone 18. The occurrence of various thermal alteration products indicates temperatures in the range of 500-700°C.
Free radical reaction characteristics of coal low-temperature oxidation and its inhibition method.
Li, Zenghua; Kong, Biao; Wei, Aizhu; Yang, Yongliang; Zhou, Yinbo; Zhang, Lanzhun
2016-12-01
Study on the mechanism of coal spontaneous combustion is significant for controlling fire disasters due to coal spontaneous combustion. The free radical reactions can explain the chemical process of coal at low-temperature oxidation. Electron spin resonance (ESR) spectroscopy was used to measure the change rules of the different sorts and different granularity of coal directly; ESR spectroscopy chart of free radicals following the changes of temperatures was compared by the coal samples applying air and blowing nitrogen, original coal samples, dry coal samples, and demineralized coal samples. The fragmentation process was the key factor of producing and initiating free radical reactions. Oxygen, moisture, and mineral accelerated the free radical reactions. Combination of the free radical reaction mechanism, the mechanical fragmentation leaded to the elevated CO concentration, fracturing of coal pillar was more prone to spontaneous combustion, and spontaneous combustion in goaf accounted for a large proportion of the fire in the mine were explained. The method of added diphenylamine can inhibit the self-oxidation of coal effectively, the action mechanism of diphenylamine was analyzed by free radical chain reaction, and this research can offer new method for the development of new flame retardant.
Final Scientific/Technical Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liang, Yanna
To increase our understanding of coal biogasification and move this technology closer toward field scale demonstration, we have thoroughly investigated coal bioconversion both ex situ and in situ. Specifically, we have screened a total of 12 parameters and identified those that exert statistically positive influence on coal biogasification. Based on these evaluations, a recipe for a nutrient solution was developed. With the addition of this nutrient solution, methane yield from Illinois coal was enhanced dramatically. In addition, we have demonstrated that coal bioconversion can be sustained over a long period of time as long as suitable conditions were maintained. Furthermore,more » biogasification of coal was tested under pressure simulating in situ conditions. Surprisingly, pressure was found to have no negative effects on microbial activities. Thus, the same recipe developed for ex situ may be used in situ as well.« less
Advanced direct coal liquefaction concepts. Quarterly report, July 1--September 30, 1994
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berger, D.J.; Parker, R.J.; Simpson, P.L.
All the reports required for completion of the contract were submitted this quarter. A proposal for further work in Phase 2 was also submitted. The technical and economic assessment of the process was completed. The results show that for the base case scenario (25% equity, 15% after tax DCF-ROE) coal derived synthetic crude oil can be produced at just below US $30 per barrel. The study was based on the production of 75,000 BPD of C{sub 4+} synthetic crude oil from Black Thunder coal for subsequent processing in a conventional petroleum refinery from Black Thunder (Wyoming) subbituminous coal.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumpaty, S.K.; Subramanian, K.; Nokku, V.P.
1996-12-31
During this quarter (July-August 1996), the experiments for nitric oxide reburning with a combination of methane and ammonia were conducted successfully. This marked the completion of gaseous phase experiments. Preparations are underway for the reburning studies with coal. A coal feeder was designed to suit our reactor facility which is being built by MK Fabrication. The coal feeder should be operational in the coming quarter. Presented here are the experimental results of NO reburning with methane/ammonia. The results are consistent with the computational work submitted in previous reports.
Hackley, Paul C.; Kolak, Jonathan J.
2008-01-01
This report presents vitrinite reflectance and detailed organic composition data for nine high volatile bituminous coal samples. These samples were selected to provide a single, internally consistent set of reflectance and composition analyses to facilitate the study of linkages among coal composition, bitumen generation during thermal maturation, and geochemical characteristics of generated hydrocarbons. Understanding these linkages is important for addressing several issues, including: the role of coal as a source rock within a petroleum system, the potential for conversion of coal resources to liquid hydrocarbon fuels, and the interactions between coal and carbon dioxide during enhanced coalbed methane recovery and(or) carbon dioxide sequestration in coal beds.
Effect of Water Invasion on Outburst Predictive Index of Low Rank Coals in Dalong Mine
Jiang, Jingyu; Cheng, Yuanping; Mou, Junhui; Jin, Kan; Cui, Jie
2015-01-01
To improve the coal permeability and outburst prevention, coal seam water injection and a series of outburst prevention measures were tested in outburst coal mines. These methods have become important technologies used for coal and gas outburst prevention and control by increasing the external moisture of coal or decreasing the stress of coal seam and changing the coal pore structure and gas desorption speed. In addition, techniques have had a significant impact on the gas extraction and outburst prevention indicators of coal seams. Globally, low rank coals reservoirs account for nearly half of hidden coal reserves and the most obvious feature of low rank coal is the high natural moisture content. Moisture will restrain the gas desorption and will affect the gas extraction and accuracy of the outburst prediction of coals. To study the influence of injected water on methane desorption dynamic characteristics and the outburst predictive index of coal, coal samples were collected from the Dalong Mine. The methane adsorption/desorption test was conducted on coal samples under conditions of different injected water contents. Selective analysis assessed the variations of the gas desorption quantities and the outburst prediction index (coal cutting desorption index). Adsorption tests indicated that the Langmuir volume of the Dalong coal sample is ~40.26 m3/t, indicating a strong gas adsorption ability. With the increase of injected water content, the gas desorption amount of the coal samples decreased under the same pressure and temperature. Higher moisture content lowered the accumulation desorption quantity after 120 minutes. The gas desorption volumes and moisture content conformed to a logarithmic relationship. After moisture correction, we obtained the long-flame coal outburst prediction (cutting desorption) index critical value. This value can provide a theoretical basis for outburst prediction and prevention of low rank coal mines and similar occurrence conditions of coal seams. PMID:26161959
The report, the fifth of five volumes, focuses on disposal of coal ash and FGD wastes which (together) comprise FGC wastes. The report assesses the various options for the disposal of FGC wastes with emphasis on disposal on land. A number of technical, economic, and regulatory fa...
Cogeneration technology alternatives study. Volume 6: Computer data
NASA Technical Reports Server (NTRS)
1980-01-01
The potential technical capabilities of energy conversion systems in the 1985 - 2000 time period were defined with emphasis on systems using coal, coal-derived fuels or alternate fuels. Industrial process data developed for the large energy consuming industries serve as a framework for the cogeneration applications. Ground rules for the study were established and other necessary equipment (balance-of-plant) was defined. This combination of technical information, energy conversion system data ground rules, industrial process information and balance-of-plant characteristics was analyzed to evaluate energy consumption, capital and operating costs and emissions. Data in the form of computer printouts developed for 3000 energy conversion system-industrial process combinations are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
The Mulled Coal process was developed as a means of overcoming the adverse handling characteristics of wet fine coal without thermal drying. The process involves the addition of a low cost, harmless reagent to wet fine coal using off-the-shelf mixing equipment. Based on laboratory- and bench-scale testing, Mulled coal can be stored, shipped, and burned without causing any of the plugging, pasting, carryback and freezing problems normally associated with wet coal. On the other hand, Mulled Coal does not cause the fugitive and airborne dust problems normally associated with thermally dried coal. The objectives of this project are to demonstratemore » that: the Mulled Coal process, which has been proved to work on a wide range of wet fine coals at bench scale, will work equally well on a continuous basis, producing consistent quality, and at a convincing rate of production in a commercial coal preparation plant; the wet product from a fine coal cleaning circuit can be converted to a solid fuel form for ease of handling and cost savings in storage and rail car transportation; and a wet fine coal product thus converted to a solid fuel form, can be stored, shipped, and burned with conventional fuel handling, transportation, and combustion systems.« less
Mercury in US coal: Observations using the COALQUAL and ICR data
Quick, J.C.; Brill, T.C.; Tabet, D.E.
2003-01-01
The COALQUAL data set lists the mercury content of samples collected from the in-ground US coal resource, whereas the ICR data set lists the mercury content of samples collected from coal shipments delivered to US electric utilities. After selection and adjustment of records, the COALQUAL data average 0.17 ??g Hg/g dry coal or 5.8 kg Hg/PJ, whereas the ICR data average 0.10 ??g Hg/g dry coal or 3.5 kg Hg/PJ. Because sample frequency does not correspond to the inground or produced tonnage, these values are not accurate estimates of the mercury content of either in-ground or delivered US coal. Commercial US coal contains less mercury than previously estimated, and its mercury content has declined during the 1990s. Selective mining and more extensive coal washing may accelerate the current trend towards lower mercury content in coal burned at US electric utilities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeRosier, R.
1984-09-01
This volume describes emission results from sampling of flue-gas from a firetube boiler burning a coal/oil/water (COW) mixture and COW with soda ash added (COW+SA) to control SO/sub 2/ emissions. Measurements included: continuous monitoring of flue-gas emissions; source assessment sampling system (SASS) sampling of the flue gas with subsequent laboratory analysis of the samples to give total flue gas organics in two boiling point ranges, specific quantitation of the semivolatile organic priority pollutant species, and flue gas concentrations of 73 trace elements; Method 5 sampling for total particulate; and controlled condensation system sampling for SO/sub 2/ and SO/sub 3/ emissions.more » Flue-gas SO/sub 2/ emissions decreased almost 99% with soda ash addition from 1,089 to 13.6 ppm (3% O2). NOx emissions decreased slightly from 477 to 427 ppm, while CO emissions increased significantly from an average of 25 to 426 ppm (all at 3% O2). Particulate loading at the boiler outlet almost doubled (from 1,970 to 3,715 pg/dscm) with the additive. The size distribution of particulate also shifted to a much smaller mean diameter. Total organic emissions increased from 6.7 to 13.1 mg/dscm; most of the increase were nonvolatile (C16+) organics. Of the semivolatile organic priority pollutant species, only fluoranthene and phenanthrene were detected with the COW fuel, and phenanthrene with the COW+SA fuel.« less
30 CFR 71.208 - Bimonthly sampling; designated work positions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Bimonthly sampling; designated work positions... COAL MINE SAFETY AND HEALTH MANDATORY HEALTH STANDARDS-SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Sampling Procedures § 71.208 Bimonthly sampling; designated work positions. (a) Each...
Warwick, Peter D.; Shakoor, T.; Javed, Shahid; Mashhadi, S.T.A.; Hussain, H.; Anwar, M.; Ghaznavi, M.I.
1990-01-01
Sixty coal and carbonaceous shale samples collected from the Paleocene Patala Formation in the Salt Range coal field, Punjab Province, Pakistan, were analyzed to examine the relationships between coal bed chemical and physical characteristics and depositional environments. Results of proximate and ultimate analyses, reported on an as received basis, indicate that coal beds have an average ash yield of 24.23 percent, average sulfur content of 5.32 percent, average pyritic sulfur content of 4.07 percent, and average calorific value of 8943 Btu (4972 kcal/kg). Thirty five coal samples, analyzed on a whole coal, dry basis for selected trace elements and oxides, have anomalously high average concentrations of Ti, at O.3& percent; Zr, at 382 ppm; and Se, at 11.4 ppm, compared to world wide averages for these elements in coal.Some positive correlation coefficients, significant at a 0.01 level, are those between total sulfur and As, pyritic sulfur and As, total sulfur and sample location, organic sulfur and Se, calorific value (Btu) and sample location, and coal bed thickness and Se. Calorific values -for the samples, calculated on a moist, mineral matter free basis, indicate that the apparent rank of the coal is high volatile C bituminous.Variations observed in the chemical and physical characteristics of the coal beds may be related to depositional environments. Total ash yields and concentrations of Se and organic sulfur increase toward more landward depositional environments and may be related to an increase of fluvial influence on peat deposition. Variations in pyritic sulfur concentrations may be related to post-peat pyrite filled burrows commonly observed in the upper part of the coal bed. The thickest coal beds that have the lowest ash content, and highest calorific values, formed from peats deposited in back barrier, tidal flat environments of the central and western parts of the coal field. The reasons for correlations between Se and coal bed thickness and Se and ash content are not clear and may be a product of averaging.
Warwick, Peter D.; Breland, F. Clayton; Hackley, Paul C.; Dulong, Frank T.; Nichols, Douglas J.; Karlsen, Alexander W.; Bustin, R. Marc; Barker, Charles E.; Willett, Jason C.; Trippi, Michael H.
2006-01-01
In 2001, and 2002, the U.S. Geological Survey (USGS) and the Louisiana Geological Survey (LGS), through a Cooperative Research and Development Agreement (CRADA) with Devon SFS Operating, Inc. (Devon), participated in an exploratory drilling and coring program for coal-bed methane in north-central Louisiana. The USGS and LGS collected 25 coal core and cuttings samples from two coal-bed methane test wells that were drilled in west-central Caldwell Parish, Louisiana. The purpose of this report is to provide the results of the analytical program conducted on the USGS/LGS samples. The data generated from this project are summarized in various topical sections that include: 1. molecular and isotopic data from coal gas samples; 2. results of low-temperature ashing and X-ray analysis; 3. palynological data; 4. down-hole temperature data; 5. detailed core descriptions and selected core photographs; 6. coal physical and chemical analytical data; 7. coal gas desorption results; 8. methane and carbon dioxide coal sorption data; 9. coal petrographic results; and 10. geophysical logs.
Mugford, Christopher; Boylstein, Randy; Gibbs, Jenna L
2017-01-01
In 1974, the National Institute for Occupational Safety and Health recommended a ban on the use of silica sand abrasives containing >1% silica due to the risk of silicosis. This gave rise to substitutes including coal slag. An Occupational Safety and Health Administration investigation in 2010 uncovered a case cluster of suspected pneumoconiosis in four former workers at a coal slag processing facility in Illinois, possibly attributable to occupational exposure to coal slag dust. This article presents the results from a National Institute for Occupational Safety and Health industrial hygiene survey at the same coal slag processing facility and a second facility. The industrial hygiene survey consisted of the collection of: a) bulk samples of unprocessed coal slag, finished granule product, and settled dust for metals and silica; b) full-shift area air samples for dust, metals, and crystalline silica; and c) full-shift personal air samples for dust, metals, and crystalline silica. Bulk samples consisted mainly of iron, manganese, titanium, and vanadium. Some samples had detectable levels of arsenic, beryllium, cadmium, and cobalt. Unprocessed coal slags from Illinois and Kentucky contained 0.43–0.48% (4,300–4,800 mg/kg) silica. Full-shift area air samples identified elevated total dust levels in the screen (2–38 mg/m3) and bag house (21 mg/m3) areas. Full-shift area air samples identified beryllium, chromium, cobalt, copper, iron, nickel, manganese, and vanadium. Overall, personal air samples for total and respirable dust (0.1–6.6 mg/m3 total; and 0.1–0.4 mg/m3 respirable) were lower than area air samples. All full-shift personal air samples for metals and silica were below published occupational exposure limits. All bulk samples of finished product granules contained less than 1% silica, supporting the claim coal slag may present less risk for silicosis than silica sand. We note that the results presented here are solely from two coal slag processing facilities, and more in-depth air monitoring is needed to better characterize occupational exposure to coal slag dust, metals, and silica at similar facilities. PMID:27808662
Mugford, Christopher; Boylstein, Randy; Gibbs, Jenna L
2017-05-01
In 1974, the National Institute for Occupational Safety and Health recommended a ban on the use of silica sand abrasives containing >1% silica due to the risk of silicosis. This gave rise to substitutes including coal slag. An Occupational Safety and Health Administration investigation in 2010 uncovered a case cluster of suspected pneumoconiosis in four former workers at a coal slag processing facility in Illinois, possibly attributable to occupational exposure to coal slag dust. This article presents the results from a National Institute for Occupational Safety and Health industrial hygiene survey at the same coal slag processing facility and a second facility. The industrial hygiene survey consisted of the collection of: (a) bulk samples of unprocessed coal slag, finished granule product, and settled dust for metals and silica; (b) full-shift area air samples for dust, metals, and crystalline silica; and (c) full-shift personal air samples for dust, metals, and crystalline silica. Bulk samples consisted mainly of iron, manganese, titanium, and vanadium. Some samples had detectable levels of arsenic, beryllium, cadmium, and cobalt. Unprocessed coal slags from Illinois and Kentucky contained 0.43-0.48% (4,300-4,800 mg/kg) silica. Full-shift area air samples identified elevated total dust levels in the screen (2-38 mg/m 3 ) and bag house (21 mg/m 3 ) areas. Full-shift area air samples identified beryllium, chromium, cobalt, copper, iron, nickel, manganese, and vanadium. Overall, personal air samples for total and respirable dust (0.1-6.6 mg/m 3 total; and 0.1-0.4 mg/m 3 respirable) were lower than area air samples. All full-shift personal air samples for metals and silica were below published occupational exposure limits. All bulk samples of finished product granules contained less than 1% silica, supporting the claim coal slag may present less risk for silicosis than silica sand. We note that the results presented here are solely from two coal slag processing facilities, and more in-depth air monitoring is needed to better characterize occupational exposure to coal slag dust, metals, and silica at similar facilities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
This purpose of this report is to summarize the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year 1990. The ACL has four technical groups -- Chemical Analysis, Instrumental Analysis, Organic Analysis, and Environmental Analysis. The Chemical Analysis Group uses wet-chemical and instrumental methods for elemental, compositional, and isotopic analyses of solid, liquid, and gaseous samples and provides specialized analytical services. The Instrumental Analysis Group uses nuclear counting techniques in radiochemical analyses over a wide range of sample types from low-level environmental samples to samples of high radioactivity. The Organic Analysis Group uses amore » number of complementary techniques to separate and to quantitatively and qualitatively analyze complex organic mixtures and compounds at the trace level, including synthetic fuels, toxic substances, fossil-fuel residues and emissions, pollutants, biologically active compounds, pesticides, and drugs. The Environmental Analysis Group performs analyses of inorganic environmental and hazardous waste and coal samples.« less
Lanthanide, yttrium, and zirconium anomalies in the Fire Clay coal bed, Eastern Kentucky
Hower, J.C.; Ruppert, L.F.; Eble, C.F.
1999-01-01
The Fire Clay coal bed in the Central Appalachian basin region contains a laterally-persistent tonstein that is found in the coal throughout most of its areal extent. The tonstein contains an array of minerals, including sanidine, ??-quartz, anatase and euhedral zircon, thhat constitutes strong evidence for a volcanic origin of the parting. For this study, five samples of the tonstein and four sets of coal samples underlying the tonstein were collected from five sites in eastern Kentucky. Inductively coupled plasma-mass spectroscopy (ICP-MS) analysis of the tonstein and underlying coal collected from four sites in eastern Kentucky show that although Zr concentrations are high in the tonstein (570-1820 ppm on a coal-ash basis (cab)), they are highest in the coal directly underlying the tonstein (2870-4540 ppm (cab)). A similar enrichment pattern is observed in the concentration of Y plus the sum of the rare earth elements (Y + ??REE): total Y + ??REE concentrations in the five tonstein samples range from 511 to 565 ppm (cab). However, Y + ??REE contents are highest in the coals directly underlying the tonsteins: values range from 1965 to 4198 ppm (cab). Scanning electron microscopy of samples from coal which directly underlies two of the tonstein samples show that REE-rich phosphate, tentatively identified as monazite, commonly infills cracks in clays and cells in clarain and vitrain. Zircon is rare and commonly subhedral. On the basis of coal chemistry and grain morphology, we suggest that volcanic components in the tonstein were leached by ground water. The leachate, rich in Y and REE precipitated as authigenic mineral phases in the underlying coal.The Fire Clay coal bed in the Central Appalachian basin region contains a laterally-persistent tonstein that is found in the coal throughout most of its areal extent. The tonstein contains an array of minerals, including sanidine, ??-quartz, anatase and euhedral zircon, that constitutes strong evidence for a volcanic origin of the parting. For this study, five samples of the tonstein and four sets of coal samples underlying the tonstein were collected from five sites in eastern Kentucky. Inductively coupled plasma-mass spectroscopy (ICP-MS) analysis of the tonstein and underlying coal collected from four sites in eastern Kentucky show that although Zr concentrations are high in the tonstein (570-1820 ppm on a coal-ash basis (cab)), they are highest in the coal directly underlying the tonstein (2870-4540 ppm (cab)). A similar enrichment pattern is observed in the concentration of Y plus the sum of the rare earth elements (Y+???REE): total Y+???REE concentrations in the five tonstein samples range from 511 to 565 ppm (cab). However, Y+???REE contents are highest in the coals directly underlying the tonsteins: values range from 1965 to 4198 ppm (cab). Scanning electron microscopy of samples from coal which directly underlies two of the tonstein samples show that REE-rich phosphate, tentatively identified as monazite, commonly infills cracks in clays and cells in clarain and vitrain. Zircon is rare and commonly subhedral. On the basis of coal chemistry and grain morphology, we suggest that volcanic components in the tonstein were leached by ground water. The leachate, rich in Y and REE precipitated as authigenic mineral phases in the underlying coal.
Chlorine in coal and its relationship with boiler corrosion. Technical report, 1 March--31 May 1994
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chou, M.I.M.; Lytle, J.M.; Ruch, R.R.
1994-09-01
Limited literature and use history data have suggested that some high-chlorine Illinois coals do not cause boiler corrosion while extensive data developed by the British correlate corrosion with chlorine content and other parameters related to the coal and boiler. The differences in corrosivity in coals may be due to the coal properties, to blending of coals, or to the boiler parameters in which they were burned. The goals of this study focus on coal properties. In this quarter, both destructive temperature-programmed Thermogravimetry with Fourier transform infrared (TGA-FTIR) and non-destructive X-ray absorption near-edge structure (XANES) techniques were used to examine themore » forms and the evolution characteristics of chlorine in coals. The TGA-FTIR results indicate that under oxidation condition, both British and Illinois coals release hydrogen chloride gas. Illinois coals release the gas at high temperature with maximum evolution temperature ranged between 210 and 280 C. The XANES results indicate that chlorine in coal exists in ionic forms including a solid salt form. The solid NaCl salt form, however, is observed only in some of the British coals and none of the Illinois coals. These results combined with TGA-FTIR results suggest that the chlorine ions in Illinois coals are different from the chlorine ions in British coals.« less
Hackley, Paul C.; Hook, Robert W.; Warwick, Peter D.
2005-01-01
The reflectance of huminite in 19 cuttings samples was determined in support of ongoing investigations into the coal bed methane potential of subsurface Paleocene and Upper Cretaceous coals of South Texas. Coal cuttings were obtained from the Core Research Center of the Bureau of Economic Geology, The University of Texas at Austin. Geophysical logs, mud-gas logs, driller's logs, completion cards, and scout tickets were used to select potentially coal-bearing sample suites and to identify specific sample depths. Reflectance measurements indicate coals of subbituminous rank are present in a wider area in South Texas than previously recognized.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elliott, G.R.B.; Vanderborgh, N.E.
Experimental and theoretical analyses show that uncontrolled water invasion during underground coal conversion (UCC) is harmful at all stages of UCC. By contrast, if water invasion is prevented, coal porosity can be created for further processing, pyrolysis can yield uniform hydrocarbon products, gasification can produce a uniform product, coal is fully consumed (not bypassed) during combustion, and environmental problems are minimized. In all cases the experimental results are supportive of the theory of underground coal processing presented. We see no insurmountable technical problems existing for a staged underground coal conversion process, but we emphasize that all concepts in underground coalmore » processing depend critically upon control of water influx. It is important that techniques for measuring and controlling water flow be developed if this technology is to make a contribution to the Nation's energy supply.« less
Management of local economic and ecological system of coal processing company
NASA Astrophysics Data System (ADS)
Kiseleva, T. V.; Mikhailov, V. G.; Karasev, V. A.
2016-10-01
The management issues of local ecological and economic system of coal processing company - coal processing plant - are considered in the article. The objectives of the research are the identification and the analysis of local ecological and economic system (coal processing company) performance and the proposals for improving the mechanism to support the management decision aimed at improving its environmental safety. The data on the structure of run-of-mine coal processing products are shown. The analysis of main ecological and economic indicators of coal processing enterprises, characterizing the state of its environmental safety, is done. The main result of the study is the development of proposals to improve the efficiency of local enterprise ecological and economic system management, including technical, technological and business measures. The results of the study can be recommended to industrial enterprises to improve their ecological and economic efficiency.
Trends and anomalies in gas evolution from coal samples
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vorres, K.S.
1993-09-01
As part of the stability studies on these sealed samples a number of the samples were given to the Analytical Chemistry Laboratory at ANL for periodic gas analysis. 1. Higher rank coals evolve methane, and lower rank coals evolve carbon dioxide with some evolution of both gases for the intermediate ranks. 2. The evolution proceeds over times of years for pulverized coals in sealed ampules. 3. Gas concentrations are higher above -20 mesh samples than above -100 mesh material. 4. Carbon monoxide is not evolved.
Chou, I.-Ming; Lake, M.A.; Griffin, R.A.
1988-01-01
A Pyroprobe flash pyrolysis-gas chromatograph equipped with a flame photometric detector was used to study volatile sulfur compounds produced during the thermal decomposition of Illinois coal, coal macerals and coal-derived pyrite. Maximum evolution of volatile organic sulfur compounds from all coal samples occurred at a temperature of approximately 700??C. At this temperature, the evolution of thiophene, its alkyl isomers, and short-chain dialkyl sulfide compounds relative to the evolution of benzothiophene and dibenzothiophene compounds was greater from coal high in organic sulfur than from coal low in organic sulfur. The variation in the evolution of sulfur compounds observed for three separate coal macerals (exinite, vitrinite, and inertinite) was similar to that observed for whole coal samples. However, the variation trend for the macerals was much more pronounced. Decomposition of coal-derived pyrite with the evolution of elemental sulfur was detected at a temperature greater than 700??C. The results of this study indicated that the gas chromotographic profile of the volatile sulfur compounds produced during flash pyrolysis of coals and coal macerals varied as a function of the amount of organic sulfur that occurred in the samples. Characterization of these volatile sulfur compounds provides a better understanding of the behavior of sulfur in coal during the thermolysis process, which could be incorporated in the design for coal cleaning using flash pyrolysis techniques. ?? 1988.
Pre-feasibility study for construction of a commercial coal hydrogenation plant
NASA Astrophysics Data System (ADS)
Hahn, W.; Wilhelm, H.; Kleinhueckelkotten, H.; Schmedeshagen, B.
1982-11-01
The technical problems, a suitable site and the unsatisfactory economics hinder the realization of a commercial coal liquefaction plant in Germany were identified. It is found that a plant for hydrogenation of coal and heavy oil according to the updated bergius-Pier process can be built. The improvement of acceptable reactor loading and increase of product yield was considered. The infrastructure aspects of a site for the plant which covers 300 hectars as well as eventually existing atmospheric pollution conditions in the environment are also considered.
Hower, J.C.; Robertson, J.D.; Wong, A.S.; Eble, C.F.; Ruppert, L.F.
1997-01-01
The Middle Pennsylvanian Breathitt Formation (Westphalian B) Pond Creek and Fire Clay coal beds are the 2 largest producing coal beds in eastern Kentucky. Single channel samples from 22 localities in the Pond Creek coal bed were obtained from active coal mines in Pike and Martin Countries, Kentucky, and a total of 18 Fire Clay coal bed channel samples were collected from localities in the central portion of the coal field. The overall objective of this study was to investigate the concentration and distribution of potentially hazardous elements in the Fire Clay and Pond Creek coal beds, with particular emphasis on As and Pb, 2 elements that are included in the 1990 Clean Air Act Amendments as potential air toxics. The 2 coals are discussed individually as the depositional histories are distinct, the Fire Clay coal bed having more sites where relatively high-S lithologies are encountered. In an effort to characterize these coals, 40 whole channel samples, excluding 1-cm partings, were analyzed for major, minor and trace elements by X-ray fluorescence and proton-induced X-ray emission spectroscopy. Previously analyzed samples were added to provide additional geographic coverage and lithotype samples from one site were analyzed in order to provide detail of vertical elemental trends. The As and Pb levels in the Fire Clay coal bed tend to be higher than in the Pond Creek coal bed. One whole channel sample of the Fire Clay coal bed contains 1156 ppm As (ash basis), with a single lithotype containing 4000 ppm As (ash basis). Most of the As and Pb appears to be associated with pyrite, which potentially can be removed in beneficiation (particularly coarser pyrite). Disseminated finer pyrite may not be completely removable by cleaning. In the examination of pyrite conducted in this study, it does not appear that significant concentration of As or Pb occurs in the finer pyrite forms. The biggest potential problem of As- or Pb-enriched pyrite is, therefore, one of refuse disposal.
Ferromagnetic and superparamagnetic contamination in pulverized coal
Senftle, F.E.; Thorpe, A.N.; Alexander, C.C.; Finkelman, R.B.
1982-01-01
Although no significant major-element contamination is introduced by grinding coal in a steel pulverizer, abraded steel particles can conceivably affect the magnetic properties of pulverized coal. Magnetic and scanning-electron-microscope analyses of pulverized coal and coal fragments from the Herrin No. 6 seam in Illinois showed ferromagnetic and superparamagnetic contamination from the grinder. Significant changes in the magnetic properties of the coal were noted, indicating a total steel contamination of approximately 0.02 wt%. When coal samples were vibrated in the magnetic field of the vibrating-sample magnetometer, the superparamagnetic steel particles moved through the pulverized coal, and participated in the formation of multidomain clusters that in turn substantially affected the magnetization of the coal. ?? 1982.
Research on solvent-refined coal. Quarterly technical progress report, April 1, 1981-June 30, 1981
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1981-10-01
This report describes progress on the Research on Solvent Refined Coal project by The Pittsburg and Midway Coal Mining Co.'s Merriam Laboratory during the second quarter of 1981. Alexander Mine coal was evaluated as a feedstock for major liquefaction facilities and had a yield structure similar to other reactive Pittsburgh seam coals at standard SRC II conditions. Two lots of coal from the Ireland Mine (Pittsburgh seam) were found to be of nearly the same composition and produced essentially the same yields. Two experiments in which coal-derived nonvolatile organic matter was processed without fresh coal feed indicate constant rates ofmore » conversion of SRC to oil and gas. Insoluble organic matter (IOM) remained unconverted. The naphtha and middle distillate products from the deep conversion contained less sulfur but more nitrogen than those from conventional SRC II processing. Encouraging results were obtained when a very small amount of iron oxide dispersed on alumina was added to Kaiparowits coal which cannot be processed at normal SRC II conditions without added catalyst. Subbituminous coals from the McKinley and Edna Mines were processed successfully with added pyrite but would not run when the added catalyst was removed.« less
Economic assessment of coal-burning locomotives: Topical report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1986-02-01
The General Electric Company embarked upon a study to evaluate various alternatives for the design and manufacture a coal fired locomotive considering various prime movers, but retaining the electric drive transmission. The initial study was supported by the Burlington-Northern and Norfolk-Southern railroads, and included the following alternatives: coal fired diesel locomotive; direct fired gas turbine locomotives; direct fired gas turbine locomotive with steam injection; raw coal gasifier gas turbine locomotive; and raw coal fluid bed steam turbine locomotive. All alternatives use the electric drive transmission and were selected for final evaluation. The first three would use a coal water slurrymore » as a fuel, which must be produced by new processing plants. Therefore, use of a slurry would require a significant plant capital investment. The last two would use classified run-of-the-mine (ROM) coal with much less capital expenditure. Coal fueling stations would be required but are significantly lower in capital cost than a coal slurry plant. For any coal fired locomotive to be commercially viable, it must pass the following criteria: be technically feasible and environmentally acceptable; meet railroads' financial expectations; and offer an attractive return to the locomotive manufacturer. These three criteria are reviewed in the report.« less
78 FR 25308 - Proposed Collection; Comment Request; Coal Mine Dust Sampling Devices
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-30
...; Coal Mine Dust Sampling Devices AGENCY: Mine Safety and Health Administration, Labor. ACTION: 60-Day.... Background Continuous Personal Dust Monitors (CPDMs) determine the concentration of respirable dust in coal mines. CPDMs must be designed and constructed for coal miners to wear and operate without impeding their...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Plemons, R.E.; Hopwood, W.H. Jr.; Hamilton, J.H.
For a number of years the Oak Ridge Y-12 Plant Laboratory has been analyzing coal predominately for the utilities department of the Y-12 Plant. All laboratory procedures, except a Leco sulfur method which used the Leco Instruction Manual as a reference, were written based on the ASTM coal analyses. Sulfur is analyzed at the present time by two methods, gravimetric and Leco. The laboratory has two major endeavors for monitoring the quality of its coal analyses. (1) A control program by the Plant Statistical Quality Control Department. Quality Control submits one sample for every nine samples submitted by the utilitiesmore » departments and the laboratory analyzes a control sample along with the utilities samples. (2) An exchange program with the DOE Coal Analysis Laboratory in Bruceton, Pennsylvania. The Y-12 Laboratory submits to the DOE Coal Laboratory, on even numbered months, a sample that Y-12 has analyzed. The DOE Coal Laboratory submits, on odd numbered months, one of their analyzed samples to the Y-12 Plant Laboratory to be analyzed. The results of these control and exchange programs are monitored not only by laboratory personnel, but also by Statistical Quality Control personnel who provide statistical evaluations. After analysis and reporting of results, all utilities samples are retained by the laboratory until the coal contracts have been settled. The utilities departments have responsibility for the initiation and preparation of the coal samples. The samples normally received by the laboratory have been ground to 4-mesh, reduced to 0.5-gallon quantities, and sealed in air-tight containers. Sample identification numbers and a Request for Analysis are generated by the utilities departments.« less
Barone, T L; Patts, J R; Janisko, S J; Colinet, J F; Patts, L D; Beck, T W; Mischler, S E
2016-01-01
Airborne coal dust mass measurements in underground bituminous coal mines can be challenged by the presence of airborne limestone dust, which is an incombustible dust applied to prevent the propagation of dust explosions. To accurately measure the coal portion of this mixed airborne dust, the National Institute for Occupational Safety and Health (NIOSH) developed a sampling and analysis protocol that used a stainless steel cassette adapted with an isokinetic inlet and the low temperature ashing (LTA) analytical method. The Mine Safety and Health Administration (MSHA) routinely utilizes this LTA method to quantify the incombustible content of bulk dust samples collected from the roof, floor, and ribs of mining entries. The use of the stainless steel cassette with isokinetic inlet allowed NIOSH to adopt the LTA method for the analysis of airborne dust samples. Mixtures of known coal and limestone dust masses were prepared in the laboratory, loaded into the stainless steel cassettes, and analyzed to assess the accuracy of this method. Coal dust mass measurements differed from predicted values by an average of 0.5%, 0.2%, and 0.1% for samples containing 20%, 91%, and 95% limestone dust, respectively. The ability of this method to accurately quantify the laboratory samples confirmed the validity of this method and allowed NIOSH to successfully measure the coal fraction of airborne dust samples collected in an underground coal mine.
Barone, T. L.; Patts, J. R.; Janisko, S. J.; Colinet, J. F.; Patts, L. D.; Beck, T. W.; Mischler, S. E.
2016-01-01
Airborne coal dust mass measurements in underground bituminous coal mines can be challenged by the presence of airborne limestone dust, which is an incombustible dust applied to prevent the propagation of dust explosions. To accurately measure the coal portion of this mixed airborne dust, the National Institute for Occupational Safety and Health (NIOSH) developed a sampling and analysis protocol that used a stainless steel cassette adapted with an isokinetic inlet and the low temperature ashing (LTA) analytical method. The Mine Safety and Health Administration (MSHA) routinely utilizes this LTA method to quantify the incombustible content of bulk dust samples collected from the roof, floor, and ribs of mining entries. The use of the stainless steel cassette with isokinetic inlet allowed NIOSH to adopt the LTA method for the analysis of airborne dust samples. Mixtures of known coal and limestone dust masses were prepared in the laboratory, loaded into the stainless steel cassettes, and analyzed to assess the accuracy of this method. Coal dust mass measurements differed from predicted values by an average of 0.5%, 0.2%, and 0.1% for samples containing 20%, 91%, and 95% limestone dust, respectively. The ability of this method to accurately quantify the laboratory samples confirmed the validity of this method and allowed NIOSH to successfully measure the coal fraction of airborne dust samples collected in an underground coal mine. PMID:26618374
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The goal of the U.S. Department of Energy Underground Coal Conversion (UCC) program is to develop the technology to produce clean fuels from coal deposits unsuitable for commercial exploitation by conventional mining techniques. The highest priority is to develop and demonstrate, in conjunction with industry, a commercially feasible process for underground gasification of low-rank coal in the 1985--1987 time period. The program will also attempt to develop cost-effective technologies to utilize steeply dipping seams and bituminous coal by UCC. Results of the program to date indicate that, while UCC is technically feasible, it still contains some process unknowns, environmental risks,more » and economic risks that require R and D. In order to contribute to the national energy goals, a strong DOE program which incorporates maximum industry involvement is planned. Major projects are described in some detail. Finally, a strong program of supporting activities will address specific problems identified in the field testing and will seek to advance UCC technology. In summary, the program's strategy is to remove the high-risk elements of UCC by resolving those technical, environmental, and economic uncertainties that remain, and to enable industry to assume responsibility for commercialization of the process.« less
Wufuer, Rehemanjiang; Song, Wenjuan; Zhang, Daoyong; Pan, Xiangliang; Gadd, Geoffrey Michael
2018-09-01
Recent reports have drawn attention to the uranium contamination arising from coal mining activities in the Yili region of Xinjiang, China due to the mixed distribution of uranium and coal mines, and some of the coal mines being associated with a high uranium content. In this study, we have collected water samples, solid samples such as soil, mud, coal, and coal ash, and hair and urine samples from local populations in order to evaluate the uranium level in this environment and its implications for humans in this high uranium coal mining area. Our results showed that uranium concentrations were 8.71-10.91 μg L -1 in underground water, whereas lower levels of uranium occurred in river water. Among the solid samples, coal ash contained fairly high concentrations of uranium (33.1 μg g -1 ) due to enrichment from coal burning. In addition, uranium levels in the other solid samples were around 2.8 μg g -1 (the Earth's average background value). Uranium concentrations in hair and urine samples were 22.2-634.5 ng g -1 (mean: 156.2 ng g -1 ) and 8.44-761.6 ng L -1 (mean: 202.6 ng L -1 ), respectively, which are significantly higher than reference values reported for unexposed subjects in other areas. Therefore, these results indicate that people living in this coal mining area have been subjected to uranium exposure for long periods of time. Copyright © 2018. Published by Elsevier Ltd.
Characteristics of coking coal burnout
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakamura, M.; Bailey, J.G.
An attempt was made to clarify the characteristics of coking coal burnout by the morphological analysis of char and fly ash samples. Laboratory-scale combustion testing, simulating an ignition process, was carried out for three kinds of coal (two coking coals and one non-coking coal for reference), and sampled chars were analyzed for size, shape and type by image analysis. The full combustion process was examined in industrial-scale combustion testing for the same kinds of coal. Char sampled at the burner outlet and fly ash at the furnace exit were also analyzed. The difference between the char type, swelling properties, agglomeration,more » anisotropy and carbon burnout were compared at laboratory scale and at industrial scale. As a result, it was found that coking coals produced chars with relatively thicker walls, which mainly impeded char burnout, especially for low volatile coals.« less
Finkelman, R.B.; Bostick, N.H.; Dulong, F.T.; Senftle, F.E.; Thorpe, A.N.
1998-01-01
Although the effects of igneous dikes on the organic matter in coal have been observed at many localities there is virtually no information on the effects of the intrusions of the inorganic constituents in the coal. Such a study may help to elucidate the behavior of trace elements during in situ gasification of coal and may provide insights into the resources potential for coal and coke affected by the intrusion. To determine the effects of an igneous intrusion on the inorganic chemistry of a coal we used a series of 11 samples of coal and natural coke that had been collected at intervals from 3 to 106 cm from a dike that intruded the bituminous Dutch Creek coal in Pitkin, CO. The samples were chemically analyzed for 66 elements. SEM-EDX and X-ray diffraction analysis were performed on selected samples. Volatile elements such as F, Cl, Hg, and Se are not depleted in the samples (coke and coal) nearest the dike that were exposed to the highest temperatures. Their presence in these samples is likely due to secondary enrichment following volatilization of the elements inherent in the coal. Equilibration with ground water may account for the uniform distribution of Na, B, and Cl. High concentrations of Ca, Mg, Fe, Mn, Sr, and CO2 in the coke region are attributed to the reaction of CO and CO2 generated during the coking of the coal with fluids from the intrusion, resulting in the precipitation of carbonates. Similarly, precipitation of sulfide minerals in the coke zone may account for the relatively high concentrations of Ag, Hg, Cu, Zn, and Fe. Most elements are concentrated at the juncture of the fluidized coke and the thermally metamorphosed coal. Many of the elements enriched in this region (for example, Ga, Ge, Mo, Rb, U, La, Ce, Al, K, and Si) may have been adsorbed on either the clays or the organic matter or on both.Although the effects of igneous dikes on the organic matter in coal have been observed at many localities there is virtually no information on the effects of the intrusions on the inorganic constituents in the coal. Such a study may help to elucidate the behavior of trace elements during in situ gasification of coal and may provide insights into the resource potential of coal and coke affected by the intrusion. To determine the effects of an igneous intrusion on the inorganic chemistry of a coal we used a series of 11 samples of coal and natural coke that had been collected at intervals from 3 to 106 cm from a dike that intruded the bituminous Dutch Creek coal in Pitkin, CO. The samples were chemically analyzed for 66 elements. SEM-EDX and X-ray diffraction analysis were performed on selected samples. Volatile elements such as F, Cl, Hg, and Se are not depleted in the samples (coke and coal) nearest the dike that were exposed to the highest temperatures. Their presence in these samples is likely due to secondary enrichment following volatilization of the elements inherent in the coal. Equilibration with ground water may account for the uniform distribution of Na, B, and Cl. High concentrations of Ca, Mg, Fe, Mn, Sr, and CO2 in the coke region are attributed to the reaction of CO and CO2 generated during the coking of the coal with fluids from the intrusion, resulting in the precipitation of carbonates. Similarly, precipitation of sulfide minerals in the coke zone may account for the relatively high concentrations of Ag, Hg, Cu, Zn, and Fe. Most elements are concentrated at the juncture of the fluidized coke and the thermally metamorphosed coal. Many of the elements enriched in this region (for example, Ga, Ge, Mo, Rb, U, La, Ce, Al, K, and Si) may have been adsorbed on either the clays or the organic matter or on both.
Stricker, Gary D.; Flores, Romeo M.; Trippi, Michael H.; Ellis, Margaret S.; Olson, Carol M.; Sullivan, Jonah E.; Takahashi, Kenneth I.
2007-01-01
The U.S. Geological Survey (USGS), in cooperation with the Wyoming Reservoir Management Group (RMG) of the Bureau of Land Management (BLM) and nineteen independent coalbed methane (CBM) gas operators in the Powder River and Green River Basins in Wyoming and the Williston Basin in North Dakota, collected 963 coal samples from 37 core holes (fig. 1; table 1) between 1999 and 2005. The drilling and coring program was in response to the rapid development of CBM, particularly in the Powder River Basin (PRB), and the needs of the RMG BLM for new and more reliable data for CBM resource estimates and reservoir characterization. The USGS and BLM entered into agreements with the gas operators to drill and core Fort Union coal beds, thus supplying core samples for the USGS to analyze and provide the RMG with rapid, real-time results of total gas desorbed, coal quality, and high pressure methane adsorption isotherm data (Stricker and others, 2006). The USGS determined the ultimate composition of all coal core samples; for selected samples analyses also included proximate analysis, calorific value, equilibrium moisture, apparent specific gravity, and forms of sulfur. Analytical procedures followed those of the American Society of Testing Materials (ASTM; 1998). In addition, samples from three wells (129 samples) were analyzed for major, minor, and trace element contents. Ultimate and proximate compositions, calorific value, and forms of sulfur are fundamental parameters in evaluating the economic value of a coal. Determining trace element concentrations, along with total sulfur and ash yield, is also essential to assess the environmental effects of coal use, as is the suitability of the coal for cleaning, gasification, liquefaction, and other treatments. Determination of coal quality in the deeper part (depths greater than 1,000 to 1,200 ft) of the PRB (Rohrbacher and others, 2006; Luppens and others, 2006) is especially important, because these coals are targeted for future mining and development. This report contains summary tables, histograms, and isopleth maps of coal analyses. Details of the compositional internal variability of the coal beds are based on the continuous vertical sampling of coal sequences, including beds in the deeper part of the PRB. Such sampling allows for close comparisons of the compositions of different parts of coal beds as well as within the same coal beds at different core hole locations within short distances of each other.
30 CFR 71.209 - Respirable dust samples; transmission by operator.
Code of Federal Regulations, 2012 CFR
2012-07-01
... operator. 71.209 Section 71.209 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY HEALTH STANDARDS-SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Sampling Procedures § 71.209 Respirable dust samples; transmission by...
30 CFR 71.209 - Respirable dust samples; transmission by operator.
Code of Federal Regulations, 2013 CFR
2013-07-01
... operator. 71.209 Section 71.209 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY HEALTH STANDARDS-SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Sampling Procedures § 71.209 Respirable dust samples; transmission by...
30 CFR 71.209 - Respirable dust samples; transmission by operator.
Code of Federal Regulations, 2014 CFR
2014-07-01
... operator. 71.209 Section 71.209 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY HEALTH STANDARDS-SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Sampling Procedures § 71.209 Respirable dust samples; transmission by...
Spatial Variation of Selenium in Appalachian Coal Seams
NASA Astrophysics Data System (ADS)
Le, L.; Tyner, J. S.; Perfect, E.; Yoder, D. C.
2013-12-01
The potential environmental impacts from coal extraction have led to many investigations of the geochemistry of coal. Previous studies have shown that selenium (Se) is an environmental contaminant due to its mutagenic effects on sensitive macro-organisms as a result of bioaccumulation in affected waters. Some regulatory authorities have responded by requiring the sampling of coal seams and adjacent rock for Se prior to authorizing a given coal mining permit. In at least one case, a single continuous rock core was sampled for Se to determine the threshold of Se across a 2.2 square kilometer proposed surface coal mine. To examine the adequacy of such an approach, we investigated the spatial variability and correlation of a West Virginia Geological and Economic Survey (WVGES) dataset of Se concentrations from coal seams collected within Appalachia (1088 samples). We conducted semi-variogram and Kriging cross-validation analyses on six coal seams from the dataset. Our findings suggest no significant spatial correlation of Se within a given coal seam.
Trace elemental analysis of bituminuos coals using the Heidelberg proton microprobe
Chen, J.R.; Kneis, H.; Martin, B.; Nobiling, R.; Traxel, K.; Chao, E.C.T.; Minkin, J.A.
1981-01-01
Trace elements in coal can occur as components of either the organic constituents (macerals) or the inorganic constituents (minerals). Studies of the concentrations and distribution of the trace elements are vital to understanding the geochemical millieu in which the coal was formed and in evaluating the attempts to recover rare but technologically valuable metals. In addition, information on the trace element concentrations is important in predicting the environmental impact of burning particular coals, as many countries move toward greater utilization of coal reserves for energy production. Traditionally, the optical and the electron microscopes and more recently the electron microprobe have been used in studying the components of coal. The proton-induced X-ray emission (PIXE) microprobe offers a new complementary approach with an order of magnitude or more better minimum detection limit. We present the first measurements with a PIXE microprobe of the trace element concentrations of bituminous coal samples. Elemental analyses of the coal macerals-vitrinite, exinite, and inertinite-are discussed for three coal samples from the Eastern U.S.A., three samples from the Western U.S.A., and one sample from the Peoples Republic of China. ?? 1981.
Mössbauer study of the inorganic sulfur removal from coals
NASA Astrophysics Data System (ADS)
Reyes Caballero, F.; Martínez Ovalle, S. A.
2014-01-01
Mössbauer Spectroscopy (MS) was applied to study the occurrence and behavior of the iron-sulfur-containing minerals in coal and coal fractions obtained by different separation methods: hydrocyclonic, flotation and chemical removal process. Samples of one high sulfur coal from Guachinte mine (Valle, Colombia) and three low sulfur coals from the El Salitre zone (Paipa-Boyacá, Colombia) were analyzed. MS evidenced only the presence of pyrite in Esmeralda and Las Casitas coals, while it identified pyrite and siderite on Cerezo coal. MS and SEM- EDX confirm the inorganic sulfur removal on Guachinte coal submitted to hydrocyclonic removal process. MS of the precipitated coal fraction from Las Casitas mine obtained by flotation in water showed the presence of ferrous sulfate because of coal-weathering process. Treatment with hot diluted HNO3 equal to 27 acid on raw coal sample from Las Casitas mine showed that almost all of the pyrite in raw coal was removed.
Research on solvent-refined coal. Quarterly technical progress report, July 1-September 30, 1981
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1982-07-01
This report describes progress on the Research on Solvent Refined Coal project by The Pittsburg and Midway Coal Mining Company's Merriam Laboratory during the third quarter of 1981. A four-part experiment was conducted with subbituminous Edna coal, pyrite and/or bituminous Ireland coal at 457/sup 0/C and 1800 psig or 450/sup 0/C and 2250 psig. The purpose was to determine the conditions appropriate for processing a 50/50 by weight blend of these coals. A total of four runs (11 experiments) discussed this quarter were directed toward the study of disposable catalysts. Subbituminous coals from the Edna and Belle Ayr Mines weremore » processed in the SRC II mode. Additives investigated were pyrite, ferric oxide, molybdenum doped ferric oxide and iron dispersed on silica-alumina. The level and type of sulfur added in conjunction with ferric oxide catalysts was also explored as well as addition of sulfur by itself. Two solvent hydrogenation runs and five SRC I runs were directed toward a preliminary investigation of short residence time processing of western (Belle Ayr) coals.« less
Hydrogen Maps | Geospatial Data Science | NREL
Hydrogen Maps Hydrogen Maps This collection of U.S. hydrogen maps provides examples of how : Milestone Report, NREL Technical Report (2006) Hydrogen Potential from Renewable Energy Resources This study Technical Report (2007) Hydrogen Potential from Coal, Natural Gas, Nuclear, and Hydro Resources This study
Swanson, Vernon Emanuel; Huffman, Claude
1976-01-01
This report is intended to meet the many requests for information on current U.S. Geological Survey procedures in handling coal samples. In general, the exact type and number of samples of coal and associated rock to be collected are left to the best judgment of the geologist. Samples should be of unweathered coal or rock and representative of the bed or beds sampled; it is recommended that two channel samples, separated by 10 to 100 yards (10 to 100 metres) and weighing 4 to 5 pounds ( 1.8 to 2.3 kilograms) each, be collected of each 5 feet ( 1.5 metres) of vertical section. Care must be taken to avoid any sample contamination, and to record the exact locality, thickness, and stratigraphic information for each sample. Analytical methods are described for the determination of major, minor, and trace elements in coal. Hg, As, Sb, F, Se, U, and Th are determined in the raw coal, and the following 34 elements are determined after ashing the coal: Si, Al, Ca, Mg, Na, K, Fe (total), Cl, Ti, Mn, P, S (total), Cd, Li, Cu, Zn, Pb, B, Ba, Be, Co, Cr, Ga, La, Mo, Nb, Ni, Sc, Sr, Ti, V, Y, Yb, and Zr. The methods used to determine these elements include atomic absorption spectroscopy, X-ray fluorescence spectroscopy, optical emission spectroscopy, spectrophotometry, selective-ion electrode, and neutron activation analysis. A split of representative coal samples is submitted to the U.S. Bureau of Mines for proximate, ultimate, forms of sulfur, and Btu determinations.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-29
... for OMB Review; Comment Request; Coal Mine Dust Sampling Devices ACTION: Notice. SUMMARY: The... information collection request (ICR) titled, ``Coal Mine Dust Sampling Devices,'' to the Office of Management...) determine the concentration of respirable dust in coal mines. CPDMs must be designed and constructed for...
Thermal behaviour and microanalysis of coal subbituminus
NASA Astrophysics Data System (ADS)
Heriyanti; Prendika, W.; Ashyar, R.; Sutrisno
2018-04-01
Differential scanning calorimetry (DSC) and X-ray powder diffraction (XRD) is used to study the thermal behaviour of sub-bituminous coal. The DSC experiment was performed in air atmosphere up to 125 °C at a heating rate of 25 °C min1. The DSC curve showed that the distinct transitional stages in the coal samples studied. Thermal heating temperature intervals, peak and dissociation energy of the coal samples were also determined. The XRD analysis was used to evaluate the diffraction pattern and crystal structure of the compounds in the coal sample at various temperatures (25-350 °C). The XRD analysis of various temperatures obtained compounds from the coal sample, dominated by quartz (SiO2) and corundum (Al2O3). The increase in temperature of the thermal treatment showed a better crystal formation.
Crowley, S.S.; Ruppert, L.F.; Belkin, H.E.; Stanton, R.W.; Moore, T.A.
1993-01-01
The inorganic geochemistry and mineralogy of three cores from the Anderson-Dietz 1 coal bed, a 15.2-m-thick subbituminous coal bed in the Tongue River Member (Paleocene) of the Fort Union Formation, were examined (1) to determine if the cores could be correlated by geochemical composition alone over a total distance of 2 km and (2) to identify the major factors that influenced the geochemistry of the coal bed. Chemical data (46 elements on a coal-ash basis) for 81 coal samples and 4 carbonaceous rock samples, with most samples representing a 0.6-m-thick (2-ft) interval of core, were grouped into compositional clusters by means of cluster analysis. Seven major clusters were produced; two of these clusters can be used to correlate the coal bed throughout the study area. Data from scanning electron and optical microscope analyses indicate that several factors influenced the geochemistry of the Anderson-Dietz 1 coal bed. The majority of mineral grains in the coal bed are interpreted to be detrital (water borne); evidence includes the presence of rounded to subrounded quartz grains having two-phase, aqueous fluid inclusions characteristic of hydrothermal or low-to-moderate grade metamorphic quartz. These quartz grains are found throughout the coal bed but are most abundant in samples from the midpart of the bed, which was influenced by detrital input associated with the deposition of the clastic rocks that form the split between the Anderson and Dietz 1 coal beds 900 m to the east of the study area. In addition to the detrital minerals mentioned above, volcanic ash that was fluvially transported to the sites of peat deposition or possibly deposited as air-fall volcanic ash also affected the geochemistry of the coal bed. For example, crandallite(?), a mineral reported to form as an alteration product of volcanic ash, is found in seven samples from the coal bed. The presence of quartz grains containing silicate-melt inclusions in eight samples from the coal bed.provides further support for a volcanic ash component. Other factors that probably affected the geochemistry of the coal bed include (1) detrital input associated with the deposition of the roof rocks of the coal bed, (2) peat-forming processes and plant material, and (3) epigenetic ground-water flow. ?? 1993.
Technology and development requirements for advanced coal conversion systems
NASA Technical Reports Server (NTRS)
1981-01-01
A compendium of coal conversion process descriptions is presented. The SRS and MC data bases were utilized to provide information paticularly in the areas of existing process designs and process evaluations. Additional information requirements were established and arrangements were made to visit process developers, pilot plants, and process development units to obtain information that was not otherwise available. Plant designs, process descriptions and operating conditions, and performance characteristics were analyzed and requirements for further development identified and evaluated to determine the impact of these requirements on the process commercialization potential from the standpoint of economics and technical feasibility. A preliminary methodology was established for the comparative technical and economic assessment of advanced processes.
NASA Astrophysics Data System (ADS)
Ryabov, G. A.; Folomeev, O. M.; Litun, D. S.; Sankin, D. A.; Dmitryukova, I. G.
2009-01-01
The present state and development of circulating fluidized bed (CFB) technology around the world are briefly reviewed. Questions of increasing the capacity of single boiler units and raising the parameters of steam are discussed. CFB boilers for 225- and 330-MW power units are described and their parameters are estimated as applied to the conditions of firing different Russian fuels. Indicators characterizing CFB boilers and pulverized-coal boilers are given. Capital outlays and operational costs for new coal-fired units are compared, and the results from this comparison are used to show the field of the most promising use of the CFB technology during technical refitting of Russian thermal power stations.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-28
... for OMB Review; Comment Request; Respirable Coal Mine Dust Sampling ACTION: Notice. SUMMARY: The... information collection request (ICR) titled, ``Respirable Coal Mine Dust Sampling,'' to the Office of... operator to protect miners from exposure to excessive dust levels. The respirable coal mine dust sampling...
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
The first part covers standards for gaseous fuels. The standard part covers standards on coal and coke including the classification of coals, determination of major elements in coal ash and trace elements in coal, metallurgical properties of coal and coke, methods of analysis of coal and coke, petrographic analysis of coal and coke, physical characteristics of coal, quality assurance and sampling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
The first part covers standards for gaseous fuels. The second part covers standards on coal and coke including the classification of coals, determination of major elements in coal ash and trace elements in coal, metallurgical properties of coal and coke, methods of analysis of coal and coke, petrogrpahic analysis of coal and coke, physical characteristics of coal, quality assurance and sampling.
Kolker, A.; Panov, B.S.; Panov, Y.B.; Landa, E.R.; Conko, K.M.; Korchemagin, V.A.; Shendrik, T.; McCord, J.D.
2009-01-01
Mercury-rich coals in the Donets Basin (Donbas region) of Ukraine were sampled in active underground mines to assess the levels of potentially harmful elements and the potential for dispersion of metals through use of this coal. For 29 samples representing c11 to m3 Carboniferous coals, mercury contents range from 0.02 to 3.5 ppm (whole-coal dry basis). Mercury is well correlated with pyritic sulfur (0.01 to 3.2 wt.%), with an r2 of 0.614 (one outlier excluded). Sulfides in these samples show enrichment of minor constituents in late-stage pyrite formed as a result of interaction of coal with hydrothermal fluids. Mine water sampled at depth and at surface collection points does not show enrichment of trace metals at harmful levels, indicating pyrite stability at subsurface conditions. Four samples of coal exposed in the defunct open-cast Nikitovka mercury mines in Gorlovka have extreme mercury contents of 12.8 to 25.5 ppm. This coal was formerly produced as a byproduct of extracting sandstone-hosted cinnabar ore. Access to these workings is unrestricted and small amounts of extreme mercury-rich coal are collected for domestic use, posing a limited human health hazard. More widespread hazards are posed by the abandoned Nikitovka mercury processing plant, the extensive mercury mine tailings, and mercury enrichment of soils extending into residential areas of Gorlovka.
Han, Lin Wei; Fu, Xiao; Yan, Yan; Wang, Chen Xing; Wu, Gang
2017-05-18
In order to determine the cumulative eco-environmental effect of coal-electricity integration, we selected 29 eco-environmental factors including different development and construction activities of coal-electricity integration, soil, water, atmospheric conditions, biology, landscape, and ecology. Literature survey, expert questionnaire and interview were conducted to analyze the interactive relationships between different factors. The structure and correlations between the eco-environmental factors influenced by coal-electricity integration activities were analyzed using interpretive structural modeling (ISM) and the cumulative eco-environment effect of development and construction activities was determined. A research and evaluation framework for the cumulative eco-environmental effect was introduced in addition to specific evaluation and management needs. The results of this study would provide a theoretical and technical basis for planning and management of coal-electricity integration development activities.
Mobil process converts methanol to high-quality synthetic gasoline
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wood, A.
1978-12-11
If production of gasoline from coal becomes commercially attractive in the United States, a process under development at the Mobil Research and Development Corp. may compete with better known coal liquefaction processes. Mobil process converts methanol to high-octane, unleaded gasoline; methanol can be produced commercially from coal. If gasoline is the desired product, the Mobil process offers strong technical and cost advantages over H-coal, Exxon donor solvent, solvent-refined coal, and Fischer--Tropsch processes. The cost analysis, contained in a report to the Dept. of Energy, concludes that the Mobil process produces more-expensive liquid products than any other liquefaction process except Fischer--Tropsch.more » But Mobil's process produces ready-to-use gasoline, while the others produce oils which require further expensive refining to yield gasoline. Disadvantages and advantages are discussed.« less
Composition and trace element content of coal in Taiwan
Tsai, L.-Y.; Chen, C.-F.; Finkelman, R.B.
2005-01-01
To investigate the trace element contents of local coal, four coal samples were collected from operating mines in NW Taiwan. Detailed petrographic and chemical characterization analyses were then conducted. Analytical results indicate that (1) the samples were high volatile bituminous coal in rank with ash content ranging from 4.2 to 14.4% and with moisture content ranging from 2.7 to 4.6%; (2) the macerals were mostly composed of vitrinite with vitrinite reflectance less than 0.8%; (3) the sample of Wukeng mine has the highest Fe2O3 (29.5%), TI (54.8 ppm), Zn (140 ppm), and As (697 ppm) contents in ash and Hg (2.3 ppm) in the coal. If used properly, these coals should not present health hazards.
[Influence of mineral matter on sulfur conversion in coal during combustion].
Wei, Li-hong; Jiang, Xiu-min; Li, Ai-min
2006-09-01
Three species micro-pulverized coals(Hegang, Tiefa, Zhungeer coal) were studied, the mineral matters (MgO, CaO, Al2O3 and Fe3O4) were respectively added to the coals. The combustion of samples were studied to investigate the effect of mineral matter on transformation of sulfur during combustion by the combined of DTG and GC-MS, the flowmeter 50 mL/min, heating rate 20 degrees C/ min, oxygen volume percentage 20% . The SO2 release curve of primitive micro-pulverized coal appear three peaks during the combustion, but the demineralized sample appear two peaks. The species of coal has effect on temperature of the maximum release rate of SOz, the release rate of SO2 of Hegang coal is even in three temperature ranges, Tiefa coal appear maximum value about 500 degrees C and Zhungeer coal about 200 degrees C which probably due to the different amount of all kinds of sulfur in primitive coal sample. The mineral matter (MgO, CaO, Al2O3 and Fe3O4) have sulfur retention and catalyzing effect on SO2 the combustion of coal. The amount and species of mineral matter and species of coal determine the sulfur retention effect.
NASA Astrophysics Data System (ADS)
Tańczuk, Mariusz; Radziewicz, Wojciech; Olszewski, Eligiusz; Skorek, Janusz
2017-10-01
District heating technologies should be efficient, effective and environmentally friendly. The majority of the communal heating systems in Poland produce district hot water in coal-fired boilers. A large number of them are considerably worn out, low-efficient in the summer time and will not comply with forthcoming regulations. One of the possible solution for such plants is repowering with new CHP systems or new boilers fuelled with fuels alternative to coal. Optimisation analysis of the target configuration of municipal heat generating plant is analysed in the paper. The work concerns repowering the existing conventional heat generating plant according to eight different scenarios of the plant configuration meeting technical and environmental requirements forecasted for the year of 2035. The maximum demand for heat of the system supplied by the plant is 185 MW. Taking into account different technical configurations on one side, and different energy and fuel prices on the other side, the comparative cost-benefits analysis of the assumed scenarios has been made. The basic economical index NPV (net present value) has been derived for each analysed scenario and the results have been compared and discussed. It was also claimed that the scenario with CHP based on ICE engines is optimal.
Environmentally critical elements in channel and cleaned samples of Illinois coals
Demir, I.; Ruch, R.R.; Damberger, H.H.; Harvey, R.D.; Steele, J.D.; Ho, K.K.
1998-01-01
Sixteen trace and minor elements that occur in coal are listed among 189 substances identified as 'hazardous air pollutants' (HAPs) in the US Clean Air Act Amendments of 1990. We investigated the occurrence and cleanability of the 16 HAPs in Illinois coals, as a contribution to the discussion about the potential effect of pending environmental regulations on the future use of these coals in power generation. The average ash content of the samples of conventionally cleaned as-shipped coals is about 20% lower than that of standard channel samples. Conventional cleaning reduces the average concentrations of As, Cd, Co, Hg, Mn, Ni, Pb, Sb and Th in the as-shipped coals by more than 20% relative to channel samples. Thus, basing assessments of health risks from emissions of HAPs during coal combustion on channel samples without appropriate adjustment would overestimate the risk. Additional cleaning by froth-flotation reduces the ash content of finely-ground as-shipped coals by as much as 76% at an 80% combustibles recovery. Although the average froth-flotation cleanability for the majority of HAPs is less than that for ash, the cleanabilities in some individual cases approaches, or even exceeds, the cleanability for ash, depending on the modes of occurrences of the elements. ?? 1997 Elsevier Science Ltd.
DiMichele, W.A.; Phillips, T.L.; Nelson, W. John
2002-01-01
Coal balls were collected from four coal beds in the southeastern part of the Illinois Basin. Collections were made from the Springfield, Herrin, and Baker coals in western Kentucky, and from the Danville Coal in southwestern Indiana. These four coal beds are among the principal mineable coals of the Illinois Basin and belong to the Carbondale and Shelburn Formations of late Middle Pennsylvanian age. Vegetational composition was analyzed quantitatively. Coal-ball samples from the Springfield, Herrin, and Baker are dominated by the lycopsid tree Lepidophloios, with lesser numbers of Psaronius tree ferns, medullosan pteridosperms, and the lycopsid trees Synchysidendron and Diaphorodendron. This vegetation is similar to that found in the Springfield and Herrin coals elsewhere in the Illinois Basin, as reported in previous studies. The Danville coal sample, which is considerably smaller than the others, is dominated by Psaronius with the lycopsids Sigillaria and Synchysidendron as subdominants. Coal balls from the Springfield coal were collected in zones directly from the coal bed and their zone-by-zone composition indicates three to four distinct plant assemblages. The other coals were analyzed as whole-seam random samples, averaging the landscape composition of the parent mire environments. This analysis indicates that these coals, separated from each other by marine and terrestrial-clastic deposits, have essentially the same floristic composition and, thus, appear to represent a common species pool that persisted throughout the late Middle Pennsylvanian, despite changes in baselevel and climate attendant the glacial interglacial cyclicity of the Pennsylvanian ice age. Patterns of species abundance and diversity are much the same for the Springfield, Herrin, and Baker, although each coal, both in the local area sampled, and regionally, has its own paleobotanical peculiarities. Despite minor differences, these coals indicate a high degree of recurrence of assemblage and landscape organization. The Danville departs dramatically from the dominance-diversity composition of the older coals, presaging patterns of tree-fern and Sigillaria dominance of Late Pennsylvanian coals of the eastern United States, but, nonetheless, built on a species pool shared with the older coals. ?? 2002 Elsevier Science B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pugmire, R.J.; Solum, M.S.
This study was designed to apply {sup 13}C-nuclear magnetic resonance (NMR) spectrometry to the analysis of direct coal liquefaction process-stream materials. {sup 13}C-NMR was shown to have a high potential for application to direct coal liquefaction-derived samples in Phase II of this program. In this Phase III project, {sup 13}C-NMR was applied to a set of samples derived from the HRI Inc. bench-scale liquefaction Run CC-15. The samples include the feed coal, net products and intermediate streams from three operating periods of the run. High-resolution {sup 13}C-NMR data were obtained for the liquid samples and solid-state CP/MAS {sup 13}C-NMR datamore » were obtained for the coal and filter-cake samples. The {sup 1}C-NMR technique is used to derive a set of twelve carbon structural parameters for each sample (CONSOL Table A). Average molecular structural descriptors can then be derived from these parameters (CONSOL Table B).« less
Study of Natural Radioactivity in Coal Samples of Baganuur Coal Mine, Mongolia
NASA Astrophysics Data System (ADS)
Altangerel, M.; Norov, N.; Altangerel, D.
2009-03-01
Coal and soil samples from Baganuur Coal Mine (BCM) of Mongolia have been investigated. The activities of 226Ra, 232Th and 40K have been measured by gamma-ray spectrometry using shielded HPGe detector. Contents of natural radionuclide elements (U, Th and K) have been determined. Also the activities and contents of radionuclide of ashes were determined which generated in Thermal Power Plant ♯3 of Ulaanbaatar from coal supplied from BCM.
Saikia, Jyotilima; Narzary, Bardwi; Roy, Sonali; Bordoloi, Manobjyoti; Saikia, Prasenjit; Saikia, Binoy K
2016-12-01
Studies on coal-derived nanoparticles as well as nano-minerals are important in the context of the human health and the environment. The coal combustion-generated aerosols also affect human health and environmental quality aspects in any coal-fired station. In this study, the feed coals and their combustion-generated aerosols from coal-fired boilers of two tea industry facilities were investigated for the presence of nanoparticles/nano minerals, fullerene aggregates, and potentially hazardous elements (PHEs). The samples were characterized by using X-ray diffraction (XRD), Time-of-flight secondary ion mass spectroscopy (TOF-SIMS), High resolution-transmission electron microscopy/energy dispersive spectroscopy (HR-TEM/EDS) and Ultra Violet-visible spectroscopy (UV-Vis) to know their extent of environmental risks to the human health when present in coals and aerosols. The feed coals contain mainly clay minerals, whilst glass fragments, spinel, quartz, and other minerals occur in lesser quantities. The PM samples contain potentially hazardous elements (PHEs) like As, Pb, Cd and Hg. Enrichment factor of the trace elements in particulate matters (PMs) was calculated to determine their sources. The aerosol samples were also found to contain nanomaterials and ultrafine particles. The fullerene aggregates along with potentially hazardous elements were also detected in the aerosol samples. The cytotoxicity studies on the coal combustion-generated PM samples show their potential risk to the human health. This detailed investigation on the inter-relationship between the feed coals and their aerosol chemistry will be useful for understanding the extent of environmental hazards and related human health risk. Copyright © 2016 Elsevier Ltd. All rights reserved.
Jet fuels from synthetic crudes
NASA Technical Reports Server (NTRS)
Antoine, A. C.; Gallagher, J. P.
1977-01-01
An investigation was conducted to determine the technical problems in the conversion of a significant portion of a barrel of either a shale oil or a coal synthetic crude oil into a suitable aviation turbine fuel. Three syncrudes were used, one from shale and two from coal, chosen as representative of typical crudes from future commercial production. The material was used to produce jet fuels of varying specifications by distillation, hydrotreating, and hydrocracking. Attention is given to process requirements, hydrotreating process conditions, the methods used to analyze the final products, the conditions for shale oil processing, and the coal liquid processing conditions. The results of the investigation show that jet fuels of defined specifications can be made from oil shale and coal syncrudes using readily available commercial processes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mishra, N.C.
1996-10-01
Neurospora has the capability to solubilize coal and the protein fraction accounting for this ability has been isolated. During this period the cola solubilizing activity (CSA) was fractionated and partially sequenced. The activity has been determined to be a tyrosinase and/or a phenol oxidase. The amino acid sequence of the protein was used to prepare oligonucleotides to identify the clone carrying Neurospora CSA. It is intended to clone the Neurospora gene into yeast, since yeast cannot solubilize coal, to further characterize the CSA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Landis, E.R.; Rohrbacher, T.J.; Gluskoter, H.
1999-07-01
As part of the activities conducted under the U.S. Hungarian Science and Technology Fund, a total of 39 samples from five coal mines in Hungary were selected for standard coal analyses and major, minor and trace elements analysis. The mine areas sampled were selected to provide a spectrum of coal quality information for comparison with other coal areas in central Europe and worldwide. All of the areas are of major importance in the energy budget of Hungary. The five sample sites contain coal in rocks of Jurassic, Cretaceous, Eocene, Miocene, and Pliocene age. The coals, from four underground and onemore » surface mine, range in rank from high volatile bituminous to lignite B. Most of the coal produced from the mines sampled is used to generate electricity. Some of the power plants that utilize the coals also provide heat for domestic and process usage. The standard coal analysis program is based on tests performed in accordance with standards of the American Society for Testing and Materials (ASTM). Proximate and ultimate analyses were supplemented by determinations of the heating value, equilibrium moisture, forms of sulfur, free-swelling index, ash fusion temperatures (both reducing and oxidizing), apparent specific gravity and Hardgrove Grindability index. The major, minor and trace element analyses were performed in accordance with standardized procedures of the U.S. Geological Survey. The analytical results will be available in the International Coal Quality Data Base of the USGS. The results of the program provide data for comparison with test data from Europe and information of value to potential investors or cooperators in the coal industry of Hungary and Central Europe.« less
CO2 sequestration potential of Charqueadas coal field in Brazil
DOE Office of Scientific and Technical Information (OSTI.GOV)
Romanov, V; Santarosa, C; Crandall, D
2013-02-01
Although coal is not the primary source of energy in Brazil there is growing interest to evaluate the potential of coal from the south of the country for various activities. The I2B coal seamin the Charqueadas coal field has been considered a target for enhanced coal bed methane production and CO2 sequestration. A detailed experimental study of the samples from this seam was conducted at the NETL with assistance from the Pontif?cia Universidade Cat?lica Do Rio Grande Do Sul. Such properties as sorption capacity, internal structure of the samples, porosity and permeability were of primary interest in this characterization study.more » The samples used were low rank coals (high volatile bituminous and sub-bituminous) obtained from the I2B seam. It was observed that the temperature effect on adsorption capacity correlates negatively with as-received water and mineral content. Langmuir CO2 adsorption capacity of the coal samples ranged 0.61?2.09 mmol/g. The upper I2B seam appears to be overall more heterogeneous and less permeable than the lower I2B seam. The lower seam coal appears to have a large amount of micro-fractures that do not close even at 11 MPa of confining pressure.« less
Palmer, C.A.; Lyons, P.C.
1990-01-01
Twelve hand-picked vitrinite concentrates and companion whole-coal samples were analyzed for trace and minor elements by instrumental neutron activation analysis (INAA) and direct-current-arc spectrographic techniques (DCAS). The vitrinite concentrates contained 94 to nearly 100 vol.% vitrinite compared to 71-95 vol.% in the companion whole coals. The ash contents of the vitrinite concentrates were 2 to more than 190 times less than the ash contents of the companion whole coals. Organic and inorganic affinities were determined by comparing the elemental concentrations in the vitrinite concentrates to the concentrations in the companion whole coals. The ratios of these concentrations for 33 selected elements are shown in Figure 1. Ratios greater than 1 indicate organic affinity, and ratios less than 1 indicate inorganic affinity. Br and W generally showed organic affinity in all samples in this study. In the nine samples from the eastern United States (Fig. 1A-C) less than one-fourth of the trace elements show organic affinity compared to nearly one-half for the three English and Australian samples (Fig. 1D). The elements that generally show organic affinity in the non-U.S.A. samples studied include As, Cs, Hf, and Ni, which have generally inorganic affinities in the U.S.A. samples, and Cr, Sb, Se, and U, which have mixed (both organic and inorganic) affinities, in the U.S.A. coals studied, has an inorganic affinity in the English coals studied. B shows organic affinity in the samples from the Illinois basin (Fig. 1C). For the samples studied, Ba shows organic affinity in the Appalachian basin bituminous coals (Fig. 1B), inorganic affinity in the Illinois basin coals, and overall mixed affinities. In all the samples studied, Cu, Mn, Na, Sr, Ta, V, and Zn show mixed affinities, and A1, Co, Eu, Fe, Ga, K, La, Mg, Sc, Si, Th, Ti, and Ub have generally inorganic affinity. ?? 1990.
Grindability and combustion behavior of coal and torrefied biomass blends.
Gil, M V; García, R; Pevida, C; Rubiera, F
2015-09-01
Biomass samples (pine, black poplar and chestnut woodchips) were torrefied to improve their grindability before being combusted in blends with coal. Torrefaction temperatures between 240 and 300 °C and residence times between 11 and 43 min were studied. The grindability of the torrefied biomass, evaluated from the particle size distribution of the ground sample, significantly improved compared to raw biomass. Higher temperatures increased the proportion of smaller-sized particles after grinding. Torrefied chestnut woodchips (280 °C, 22 min) showed the best grinding properties. This sample was blended with coal (5-55 wt.% biomass). The addition of torrefied biomass to coal up to 15 wt.% did not significantly increase the proportion of large-sized particles after grinding. No relevant differences in the burnout value were detected between the coal and coal/torrefied biomass blends due to the high reactivity of the coal. NO and SO2 emissions decreased as the percentage of torrefied biomass in the blend with coal increased. Copyright © 2015 Elsevier Ltd. All rights reserved.
Development of the chemical and electrochemical coal cleaning process
NASA Astrophysics Data System (ADS)
Basilio, C. I.; Yoon, Roe-Hoan
The continuous testing of the Chemical and Electrochemical Coal Cleaning (CECC) was completed successfully using Middle Wyodak and Elkhorn No. 3 coal samples. The CECC unit was run under the optimum conditions established for these coal samples. For the Middle Wyodak coal, the ash content was reduced from 6.96 percent to as low 1.61 percent, corresponding to an ash rejection (by weight) of about 83 percent. The ash and sulfur contents of the Elkhorn No. 3 coal were reduced to as low as 1.8 percent and 0.9 percent. The average ash and sulfur rejections were calculated to be around 84 percent and 47 percent. The CECC continuous unit was used to treat -325 mesh Elkhorn No. 3 coal samples and gave ash and sulfur rejection values of as high as 77 percent and 66 percent. In these test, the clean -325 mesh coal particles were separated from the liberated mineral matter through microbubble column flotation, instead of wet-screening.
ASTM clustering for improving coal analysis by near-infrared spectroscopy.
Andrés, J M; Bona, M T
2006-11-15
Multivariate analysis techniques have been applied to near-infrared (NIR) spectra coals to investigate the relationship between nine coal properties (moisture (%), ash (%), volatile matter (%), fixed carbon (%), heating value (kcal/kg), carbon (%), hydrogen (%), nitrogen (%) and sulphur (%)) and the corresponding predictor variables. In this work, a whole set of coal samples was grouped into six more homogeneous clusters following the ASTM reference method for classification prior to the application of calibration methods to each coal set. The results obtained showed a considerable improvement of the error determination compared with the calibration for the whole sample set. For some groups, the established calibrations approached the quality required by the ASTM/ISO norms for laboratory analysis. To predict property values for a new coal sample it is necessary the assignation of that sample to its respective group. Thus, the discrimination and classification ability of coal samples by Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS) in the NIR range was also studied by applying Soft Independent Modelling of Class Analogy (SIMCA) and Linear Discriminant Analysis (LDA) techniques. Modelling of the groups by SIMCA led to overlapping models that cannot discriminate for unique classification. On the other hand, the application of Linear Discriminant Analysis improved the classification of the samples but not enough to be satisfactory for every group considered.
30 CFR 7.84 - Technical requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Underground Coal Mines § 7.84 Technical requirements. (a) Fuel injection adjustment. The fuel injection system of the engine shall be constructed so that the quantity of fuel injected can be controlled at a... design. (b) Maximum fuel-air ratio. At the maximum fuel-air ratio determined by § 7.87 of this part, the...
30 CFR 7.84 - Technical requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Underground Coal Mines § 7.84 Technical requirements. (a) Fuel injection adjustment. The fuel injection system of the engine shall be constructed so that the quantity of fuel injected can be controlled at a... design. (b) Maximum fuel-air ratio. At the maximum fuel-air ratio determined by § 7.87 of this part, the...
30 CFR 7.84 - Technical requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Underground Coal Mines § 7.84 Technical requirements. (a) Fuel injection adjustment. The fuel injection system of the engine shall be constructed so that the quantity of fuel injected can be controlled at a... design. (b) Maximum fuel-air ratio. At the maximum fuel-air ratio determined by § 7.87 of this part, the...
30 CFR 7.84 - Technical requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Underground Coal Mines § 7.84 Technical requirements. (a) Fuel injection adjustment. The fuel injection system of the engine shall be constructed so that the quantity of fuel injected can be controlled at a... design. (b) Maximum fuel-air ratio. At the maximum fuel-air ratio determined by § 7.87 of this part, the...
30 CFR 7.84 - Technical requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Underground Coal Mines § 7.84 Technical requirements. (a) Fuel injection adjustment. The fuel injection system of the engine shall be constructed so that the quantity of fuel injected can be controlled at a... design. (b) Maximum fuel-air ratio. At the maximum fuel-air ratio determined by § 7.87 of this part, the...
NASA Astrophysics Data System (ADS)
Jia, Bing; Wei, Jian-Ping; Wen, Zhi-Hui; Wang, Yun-Gang; Jia, Lin-Xing
2017-11-01
In order to study the response characteristics of infrasound in coal samples under the uniaxial loading process, coal samples were collected from GengCun mine. Coal rock stress loading device, acoustic emission tested system and infrasound tested system were used to test the infrasonic signal and acoustic emission signal under uniaxial loading process. The tested results were analyzed by the methods of wavelet filter, threshold denoise, time-frequency analysis and so on. The results showed that in the loading process, the change of the infrasonic wave displayed the characteristics of stage, and it could be divided into three stages: initial stage with a certain amount infrasound events, middle stage with few infrasound events, and late stage gradual decrease. It had a good consistency with changing characteristics of acoustic emission. At the same time, the frequency of infrasound was very low. It can propagate over a very long distance with little attenuation, and the characteristics of the infrasound before the destruction of the coal samples were obvious. A method of using the infrasound characteristics to predict the destruction of coal samples was proposed. This is of great significance to guide the prediction of geological hazards in coal mines.
Publications - GMC 278 | Alaska Division of Geological & Geophysical
DGGS GMC 278 Publication Details Title: High pressure methane adsorption analyses for coal samples of the Matanuska Valley coal-bed methane AK 94-CBM-1 hole as follows: Seam #1, Seam #6, Seam #9, and Seam , High pressure methane adsorption analyses for coal samples of the Matanuska Valley coal-bed methane AK
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rich, S.R.
1987-02-01
The report gives results of preliminary performance evaluations and economic analyses of the Advanced Energy Dynamics (AED) electrostatic dry coal-cleaning process. Grab samples of coal-feed-product coals were obtained from 25 operating physical coal-cleaning (PCC) plants. These samples were analyzed for ash, sulfur, and energy content and splits of the original samples of feed run-of-mine coal were provided for bench-scale testing in an electrostatic separation apparatus. The process showed superior sulfur-removal performance at equivalent cost and energy-recovery levels. The ash-removal capability of the process was not evaluated completely: overall, ash-removal results indicated that the process did not perform as well asmore » the PCC plants.« less
Distribution of potentially hazardous trace elements in coals from Shanxi province, China
Zhang, J.Y.; Zheng, C.G.; Ren, D.Y.; Chou, C.-L.; Liu, J.; Zeng, R.-S.; Wang, Z.P.; Zhao, F.H.; Ge, Y.T.
2004-01-01
Shanxi province, located in the center of China, is the biggest coal base of China. There are five coal-forming periods in Shanxi province: Late Carboniferous (Taiyuan Formation), Early Permian (Shanxi Formation), Middle Jurassic (Datong Formation), Tertiary (Taxigou Formation), and Quaternary. Hundred and ten coal samples and a peat sample from Shanxi province were collected and the contents of 20 potentially hazardous trace elements (PHTEs) (As, B, Ba, Cd, Cl, Co, Cr, Cu, F, Hg, Mn, Mo, Ni, Pb, Sb, Se, Th, U, V and Zn) in these samples were determined by instrumental neutron activation analysis, atomic absorption spectrometry, cold-vapor atomic absorption spectrometry, ion chromatography spectrometry, and wet chemical analysis. The result shows that the brown coals are enriched in As, Ba, Cd, Cr, Cu, F and Zn compared with the bituminous coals and anthracite, whereas the bituminous coals are enriched in B, Cl, Hg, and the anthracite is enriched in Cl, Hg, U and V. A comparison with world averages and crustal abundances (Clarke values) shows that the Quaternary peat is highly enriched in As and Mo, Tertiary brown coals are highly enriched in Cd, Middle Jurassic coals, Early Permian coals and Late Carboniferous coals are enriched in Hg. According to the coal ranks, the bituminous coals are highly enriched in Hg, whereas Cd, F and Th show low enrichments, and the anthracite is also highly enriched in Hg and low enrichment in Th. The concentrations of Cd, F, Hg and Th in Shanxi coals are more than world arithmetic means of concentrations for the corresponding elements. Comparing with the United States coals, Shanxi coals show higher concentrations of Cd, Hg, Pb, Se and Th. Most of Shanxi coals contain lower concentrations of PHTEs. ?? 2004 Elsevier Ltd. All rights reserved.
Belkin, H.E.; Tewalt, S.J.; Hower, J.C.; Stucker, J.D.; O'Keefe, J.M.K.
2009-01-01
Indonesia has become the world's largest exporter of thermal coal and is a major supplier to the Asian coal market, particularly as the People's Republic of China is now (2007) and perhaps may remain a net importer of coal. Indonesia has had a long history of coal production, mainly in Sumatra and Kalimantan, but only in the last two decades have government and commercial forces resulted in a remarkable coal boom. A recent assessment of Indonesian coal-bed methane (CBM) potential has motivated active CBM exploration. Most of the coal is Paleogene and Neogene, low to moderate rank and has low ash yield and sulfur (generally < 10 and < 1??wt.%, respectively). Active tectonic and igneous activity has resulted in significant rank increase in some coal basins. Eight coal samples are described that represent the major export and/or resource potential of Sumatra, Kalimantan, Sulawesi, and Papua. Detailed geochemistry, including proximate and ultimate analysis, sulfur forms, and major, minor, and trace element determinations are presented. Organic petrology and vitrinite reflectance data reflect various precursor flora assemblages and rank variations, including sample composites from active igneous and tectonic areas. A comparison of Hazardous Air Pollutants (HAPs) elements abundance with world and US averages show that the Indonesian coals have low combustion pollution potential.
DOE R&D Accomplishments Database
Olah, G. A.
1986-01-01
This research project involved the study of a raw comparatively mild coal conversion process. The goal of the project was to study model systems to understand the basic chemistry involved and to provide a possible effective pretreatment of coal which significantly improves liquefaction-depolymerization under mild conditions. The conversion process operates at relatively low temperatures (170 degrees C) and pressures and uses an easily recyclable, stable superacid catalysts (HF-BF{sub 3}). It consequently offers an attractive alternative to currently available processes. From the present studies it appears that the modification of coal structure by electrophilic alkylation and subsequent reaction of alkylated coal with HF-BF{sub 3}-H{sub 2} system under mild conditions considerably improves the extractability of coal in pyridine and cyclohexane. On the other hand, nitration of coal and its subsequent reaction with HF-BF{sub 3}H{sub 2} decreases the pyridine and cyclohexane extractability. Study of model compounds under conditions identical with the superacidic HF/BF{sub 3}/H{sub 2} system provided significant information about the basic chemistry of the involved cleavage-hydrogenation reactions.
Combustion and leaching behavior of elements in the argonne premium coal samples
Finkelman, R.B.; Palmer, C.A.; Krasnow, M.R.; Aruscavage, P. J.; Sellers, G.A.; Dulong, F.T.
1990-01-01
Eight Argonne Premium Coal samples and two other coal samples were used to observe the effects of combustion and leaching on 30 elements. The results were used to infer the modes of occurrence of these elements. Instrumental neutron activation analysis indicates that the effects of combustion and leaching on many elements varied markedly among the samples. As much as 90% of the selenium and bromine is volatilized from the bituminous coal samples, but substantially less is volatilized from the low-rank coals. We interpret the combustion and leaching behavior of these elements to indicate that they are associated with the organic fraction. Sodium, although nonvolatile, is ion-exchangeable in most samples, particularly in the low-rank coal samples where it is likely to be associated with the organic constituents. Potassium is primarily in an ion-exchangeable form in the Wypdak coal but is in HF-soluble phases (probably silicates) in most other samples. Cesium is in an unidentified HNO3-soluble phase in most samples. Virtually all the strontium and barium in the low-rank coal samples is removed by NH4OAc followed by HCl, indicating that these elements probably occur in both organic and inorganic phases. Most tungsten and tantalum are in insoluble phases, perhaps as oxides or in organic association. Hafnium is generally insoluble, but as much as 65% is HF soluble, perhaps due to the presence of very fine grained or metamict zircon. We interpret the leaching behavior of uranium to indicate its occurrence in chelates and its association with silicates and with zircon. Most of the rare-earth elements (REE) and thorium appear to be associated with phosphates. Differences in textural relationships may account for some of the differences in leaching behavior of the REE among samples. Zinc occurs predominantly in sphalerite. Either the remaining elements occur in several different modes of occurrence (scandium, iron), or the leaching data are equivocal (arsenic, antimony, chromium, cobalt, and nickel). The results of these combustion and leaching experiments indicate that some previously held assumptions concerning modes of occurrence of elements in coal should be reconsidered.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumpaty, S.K.; Subramanian, K.; Darboe, A.
1997-12-31
Several experiments were conducted during this quarter to study the NO{sub x} reduction effectiveness of lignite coal, activated carbon and catalytic sites such as calcium sulfide and calcium carbide. While some of the coals/chemicals could be fed easily, some needed the mixing with silica gel to result in a uniform flow through the feeder. Several trial runs were performed to ensure proper feeding of the material before conducting the actual experiment to record NO{sub x} reduction. The experimental approach has been the same as presented in the past two quarterly reports with the coal reburning experiments. Partial reduction is achievedmore » through methane addition for SR2=0.95 conditions and then coal or the catalyst is introduced to see if there is further reduction. Presented below are the results of the experiments conducted during this quarter.« less
Effect of ground control mesh on dust sampling and explosion mitigation.
Alexander, D W; Chasko, L L
2015-07-01
Researchers from the National Institute for Occupational Safety and Health's Office of Mine Safety and Health Research conducted an assessment of the effects that ground control mesh might have on rock and float coal dust distribution in a coal mine. The increased use of mesh to control roof and rib spall introduces additional elevated surfaces on which rock or coal dust can collect. It is possible to increase the potential for dust explosion propagation if any float coal dust is not adequately inerted. In addition, the mesh may interfere with the collection of representative dust samples when using the pan-and-brush sampling method developed by the U.S. Bureau of Mines and used by the Mine Safety and Health Administration for band sampling. This study estimates the additional coal or rock dust that could accumulate on mesh and develops a means to collect representative dust samples from meshed entries.
Effect of ground control mesh on dust sampling and explosion mitigation
Alexander, D.W.; Chasko, L.L.
2017-01-01
Researchers from the National Institute for Occupational Safety and Health’s Office of Mine Safety and Health Research conducted an assessment of the effects that ground control mesh might have on rock and float coal dust distribution in a coal mine. The increased use of mesh to control roof and rib spall introduces additional elevated surfaces on which rock or coal dust can collect. It is possible to increase the potential for dust explosion propagation if any float coal dust is not adequately inerted. In addition, the mesh may interfere with the collection of representative dust samples when using the pan-and-brush sampling method developed by the U.S. Bureau of Mines and used by the Mine Safety and Health Administration for band sampling. This study estimates the additional coal or rock dust that could accumulate on mesh and develops a means to collect representative dust samples from meshed entries. PMID:28936000
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
This report presents the results of Run 260 performed at the Advanced Coal Liquefaction R&D Facility in Wilsonville. The run was started on July 17, 1990 and continued until November 14, 1990, operating in the Close-Coupled Integrated Two-Stage Liquefaction mode processing Black Thunder mine subbituminous coal (Wyodak-Anderson seam from Wyoming Powder River Basin). Both thermal/catalytic and catalytic/thermal tests were performed to determine the methods for reducing solids buildup in a subbituminous coal operation, and to improve product yields. A new, smaller interstage separator was tested to reduce solids buildup by increasing the slurry space velocity in the separator. In ordermore » to obtain improved coal and resid conversions (compared to Run 258) full-volume thermal reactor and 3/4-volume catalytic reactor were used. Shell 324 catalyst, 1/16 in. cylindrical extrudate, at a replacement rate of 3 lb/ton of MF coal was used in the catalytic stage. Iron oxide was used as slurry catalyst at a rate of 2 wt % MF coal throughout the run. (TNPS was the sulfiding agent.)« less
Advanced direct coal liquefaction concepts. Quarterly report, January 1, 1994--March 31, 1994
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berger, D.J.; Parker, R.J.; Simpson, P.L.
A detailed evaluation of the bench unit data on Black Thunder feedstocks was completed. The results show that in a once-through operation using counterflow, reactor technology coal conversions in excess of 90% could be obtained, giving distillable oil yields in the range 60--65 wt % on MAF coal. The remaining non-distillable oil fraction which represents 20--25 wt % on MAF coal is a source of additional distillable oil in further processing, for example, bottoms recycle operation. C{sub 1}-C{sub 3} gas yields were generally in the order of 6--8 wt %. In autoclave studies, Illinois No. 6 coal was found tomore » be much less reactive than Black Thunder coal, and did not respond well to solubilization with carbon monoxide/steam. Process severity was, therefore, increased for bench unit operations on Illinois No. 6 coal, and work has concentrated on the use of hydrogen rather than carbon monoxide for solubilization. Preliminary coking studies on the resid from bench unit runs on Black Thunder coal were also carried out. Distillable liquid yields of 55--60 wt % were obtained. The technical and economic study to be carried out by Kilborn Engineering Company has been initiated.« less
Simulation Experiment and Acoustic Emission Study on Coal and Gas Outburst
NASA Astrophysics Data System (ADS)
Li, Hui; Feng, Zengchao; Zhao, Dong; Duan, Dong
2017-08-01
A coal and gas outburst is an extreme hazard in underground mining. The present paper conducts a laboratory simulation of a coal and gas outburst combined with acoustic emission analysis. The experiment uses a three-dimensional stress loading system and a PCI-2 acoustic emission monitoring system. Furthermore, the development of a coal and gas outburst is numerically studied. The results demonstrate that the deformation and failure of a coal sample containing methane under three-dimensional stress involves four stages: initial compression, elastic deformation, plastic deformation and failure. The development of internal microscale fractures within a coal sample containing methane is reflected by the distribution of acoustic emission events. We observed that the deformation and failure zone for a coal sample under three-dimensional stress has an ellipsoid shape. Primary acoustic emission events are generated at the weak structural surface that compresses with ease due to the external ellipsoid-shaped stress. The number of events gradually increases until an outburst occurs. A mathematical model of the internal gas pressure and bulk stress is established through an analysis of the internal gas pressure and bulk stress of a coal sample, and it is useful for reproducing experimental results. The occurrence of a coal and gas outburst depends not only on the in situ stress, gas pressure and physical and mechanical characteristics of the coal mass but also on the free weak surface of the outburst outlet of the coal mass. It is more difficult for an outburst to occur from a stronger free surface.
Standard method of test for grindability of coal by the Hardgrove-machine method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1975-01-01
A procedure is described for sampling coal, grinding in a Hardgrove grinding machine, and passing through standard sieves to determine the degree of pulverization of coals. The grindability index of the coal tested is calculated from a calibration chart prepared by plotting weight of material passing a No. 200 sieve versus the Hardgrove Grindability Index for the standard reference samples. The Hardgrove machine is shown schematically. The method for preparing and determining grindability indexes of standard reference samples is given in the appendix. (BLM)
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-19
...The Mine Safety and Health Administration (MSHA) proposes to lower miners' exposure to respirable coal mine dust by revising the Agency's existing standards on miners' occupational exposure to respirable coal mine dust. The major provisions of the proposal would lower the existing exposure limit; provide for full-shift sampling; redefine the term ``normal production shift; '' and add reexamination and decertification requirements for persons certified to sample, and maintain and calibrate sampling devices. In addition, the proposed rule would provide for single shift compliance sampling under the mine operator and MSHA's inspector sampling programs, and would establish sampling requirements for use of the Continuous Personal Dust Monitor (CPDM) and expanded requirements for medical surveillance. The proposed rule would significantly improve health protections for this Nation's coal miners by reducing their occupational exposure to respirable coal mine dust and lowering the risk that they will suffer material impairment of health or functional capacity over their working lives.
Occupational safety and health implications of increased coal utilization.
Bridbord, K; Costello, J; Gamble, J; Groce, D; Hutchison, M; Jones, W; Merchant, J; Ortmeyer, C; Reger, R; Wagner, W L
1979-01-01
An area of major concern in considering increased coal production and utilization is the health and safety of increased numbers of workers who mine, process, or utilize coal. Hazards related to mining activities in the past have been especially serious, resulting in many mine related accidental deaths, disabling injuries, and disability and death from chronic lung disease. Underground coal mines are clearly less safe than surface mines. Over one-third of currently employed underground miners experience chronic lung disease. Other stresses include noise and extremes of heat and cold. Newly emphasized technologies of the use of diesel powered mining equipment and the use of longwall mining techniques may be associated with serious health effects. Workers at coal-fired power plants are also potentially at risk of occupational diseases. Occupational safety and health aspects of coal mining are understood well enough today to justify implementing necessary and technically feasible and available control measures to minimize potential problems associated with increased coal production and use in the future. Increased emphasis on safety and health training for inexperienced coal miners expected to enter the work force is clearly needed. The recently enacted Federal Mine Safety and Health Act of 1977 will provide impetus for increased control over hazards in coal mining. PMID:540621
Damage evolution analysis of coal samples under cyclic loading based on single-link cluster method
NASA Astrophysics Data System (ADS)
Zhang, Zhibo; Wang, Enyuan; Li, Nan; Li, Xuelong; Wang, Xiaoran; Li, Zhonghui
2018-05-01
In this paper, the acoustic emission (AE) response of coal samples under cyclic loading is measured. The results show that there is good positive relation between AE parameters and stress. The AE signal of coal samples under cyclic loading exhibits an obvious Kaiser Effect. The single-link cluster (SLC) method is applied to analyze the spatial evolution characteristics of AE events and the damage evolution process of coal samples. It is found that a subset scale of the SLC structure becomes smaller and smaller when the number of cyclic loading increases, and there is a negative linear relationship between the subset scale and the degree of damage. The spatial correlation length ξ of an SLC structure is calculated. The results show that ξ fluctuates around a certain value from the second cyclic loading process to the fifth cyclic loading process, but spatial correlation length ξ clearly increases in the sixth loading process. Based on the criterion of microcrack density, the coal sample failure process is the transformation from small-scale damage to large-scale damage, which is the reason for changes in the spatial correlation length. Through a systematic analysis, the SLC method is an effective method to research the damage evolution process of coal samples under cyclic loading, and will provide important reference values for studying coal bursts.
Michael, G.E.; Anders, D.E.; Law, B.E.
1993-01-01
Geochemical analyses of coal samples from the Upper Cretaceous Fruitland Formation in the San Juan Basin of New Mexico and Colorado were used to determine thermal maturity, type of kerogen, and hydrocarbon generation potential. Mean random vitrinite reflectance (%Rm) of the Fruitland coal ranges from 0.42 to 1.54%. Rock-Eval pyrolysis data and saturated to aromatic hydrocarbon ratio indicate that the onset of thermal hydrocarbon generation begins at about 0.60% Rm and peak generation occurs at about 0.85% Rm. Several samples have hydrogen index values between 200 and 400, indicating some potential for liquid hydrocarbon generation and a mixed Type III and II kerogen. Pentacyclic and tricyclic terpanes, steranes, aromatic steroids and methylphenanthrene maturity parameters were observed through the complete range of thermal maturity in the Fruitland coals. Aromatic pentacyclic terpanes, similar to those found in brown coals of Australia, were observed in low maturity samples, but not found above 0.80% Rm. N-alkane depleted coal samples, which occur at a thermal maturity of approx. 0.90% Rm, paralleling peak hydrocarbon generation, are fairly widespread throughout the basin. Depletion of n-alkanes in these samples may be due to gas solution stripping and migration fromthe coal seams coincident with the development of pressure induced fracturing due to hydrocarbon generation; however, biodegradation may also effect these samples. ?? 1993.
Prediction of coal grindability from exploration data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gomez, M.; Hazen, K.
1970-08-01
A general prediction model for the Hardgrove grindability index was constructed from 735 coal samples using the proximate analysis, heating value, and sulfur content. The coals used to develop the general model ranged in volatile matter from 12.8 to 49.2 percent, dry basis, and had grindability indexes ranging from 35 to 121. A restricted model applicable to bituminous coals having grindabilities in the 40 to 110 range was developed from the proximate analysis and the petrographic composition of the coal. The prediction of coal grindability within a single seam was also investigated. The results reported support the belief that mechanicalmore » properties of the coal are related to both chemical and petrographic factors of the coal. The mechanical properties coal may be forecast in advance of mining, because the variables used as input to the prediction models can be measured from drill core samples collected during exploration.« less
Assessment of advanced coal gasification processes
NASA Technical Reports Server (NTRS)
Mccarthy, J.; Ferrall, J.; Charng, T.; Houseman, J.
1981-01-01
A technical assessment of the following advanced coal gasification processes is presented: high throughput gasification (HTG) process; single stage high mass flux (HMF) processes; (CS/R) hydrogasification process; and the catalytic coal gasification (CCG) process. Each process is evaluated for its potential to produce synthetic natural gas from a bituminous coal. Key similarities, differences, strengths, weaknesses, and potential improvements to each process are identified. The HTG and the HMF gasifiers share similarities with respect to: short residence time (SRT), high throughput rate, slagging, and syngas as the initial raw product gas. The CS/R hydrogasifier is also SRT, but is nonslagging and produces a raw gas high in methane content. The CCG gasifier is a long residence time, catalytic, fluidbed reactor producing all of the raw product methane in the gasifier.
Open-Cycle Gas Turbine/Steam Turbine Combined Cycles with synthetic fuels from coal
NASA Technical Reports Server (NTRS)
Shah, R. P.; Corman, J. C.
1977-01-01
The Open-Cycle Gas Turbine/Steam Turbine Combined Cycle can be an effective energy conversion system for converting coal to electricity. The intermediate step in this energy conversion process is to convert the coal into a fuel acceptable to a gas turbine. This can be accomplished by producing a synthetic gas or liquid, and by removing, in the fuel conversion step, the elements in the fuel that would be harmful to the environment if combusted. In this paper, two open-cycle gas turbine combined systems are evaluated: one employing an integrated low-Btu gasifier, and one utilizing a semi-clean liquid fuel. A consistent technical/economic information base is developed for these two systems, and is compared with a reference steam plant burning coal directly in a conventional furnace.
Geologic coal assessment: The interface with economics
Attanasi, E.D.
2001-01-01
Geologic resource assessments describe the location, general characteristics, and estimated volumes of resources, whether in situ or technically recoverable. Such compilations are only an initial step in economic resource evaluation. This paper identifies, by examples from the Illinois and Appalachian basins, the salient features of a geologic assessment that assure its usefulness to downstream economic analysis. Assessments should be in sufficient detail to allocate resources to production units (mines or wells). Coal assessments should include the spatial distribution of coal bed characteristics and the ability to allocate parts of the resource to specific mining technologies. For coal bed gas assessment, the production well recoveries and well deliverability characteristics must be preserved and the risk structure should be specified so dryholes and noncommercial well costs are recovered by commercially successful wells. ?? 2001 International Association for Mathematical Geology.
Code of Federal Regulations, 2013 CFR
2013-01-01
... CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY ACT REGULATIONS COAL AND WOOD BURNING APPLIANCES... burning appliances as defined in § 1406.3 shall give notification of performance and technical data... follows: Creosote Formation and Need for Removal When wood is burned slowly, it produces tar and other...
Code of Federal Regulations, 2014 CFR
2014-01-01
... CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY ACT REGULATIONS COAL AND WOOD BURNING APPLIANCES... burning appliances as defined in § 1406.3 shall give notification of performance and technical data...: Creosote Formation and Need for Removal When wood is burned slowly, it produces tar and other vapors, which...
Code of Federal Regulations, 2012 CFR
2012-01-01
... CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY ACT REGULATIONS COAL AND WOOD BURNING APPLIANCES... burning appliances as defined in § 1406.3 shall give notification of performance and technical data...: Creosote Formation and Need for Removal When wood is burned slowly, it produces tar and other vapors, which...
Characteristics of process oils from HTI coal/plastics co-liquefaction runs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robbins, G.A.; Brandes, S.D.; Winschel, R.A.
1995-12-31
The objective of this project is to provide timely analytical support to DOE`s liquefaction development effort. Specific objectives of the work reported here are presented. During a few operating periods of Run POC-2, HTI co-liquefied mixed plastics with coal, and tire rubber with coal. Although steady-state operation was not achieved during these brief tests periods, the results indicated that a liquefaction plant could operate with these waste materials as feedstocks. CONSOL analyzed 65 process stream samples from coal-only and coal/waste portions of the run. Some results obtained from characterization of samples from Run POC-2 coal/plastics operation are presented.
Fu, Zhe; Zhang, Shihong; Li, Xiangpeng; Shao, Jingai; Wang, Ke; Chen, Hanping
2015-04-01
To investigate the application prospect of MSW oxy-enriched incineration technology in China, the technical and economical analyses of a municipal solid waste (MSW) grate furnace with oxy-fuel incineration technology in comparison to co-incineration with coal are performed. The rated capacity of the grate furnace is 350 tonnes MSW per day. When raw MSW is burned, the amount of pure oxygen injected should be about 14.5 wt.% under 25% O2 oxy-fuel combustion conditions with the mode of oxygen supply determined by the actual situation. According to the isothermal combustion temperature (Ta), the combustion effect of 25% O2 oxy-enriched incineration (α = 1.43) is identical with that of MSW co-incineration with 20% mass ratio of coal (α = 1.91). However, the former is better than the latter in terms of plant cost, flue gas loss, and environmental impact. Despite the lower costs of MSW co-incineration with mass ratio of 5% and 10% coal (α = 1.91), 25% O2 oxy-enriched incineration (α = 1.43) is far more advantageous in combustion and pollutant control. Conventional combustion flue gas loss (q2) for co-incineration with 0% coal, 20% coal, 10% coal, 5% coal are around 17%, 13%, 14% and 15%, respectively, while that under the condition of 25% O2 oxy-enriched combustion is approximately 12% (α = 1.43). Clearly, q2 of oxy-enriched incineration is less than other methods under the same combustion conditions. High moisture content presents challenges for MSW incineration, therefore it is necessary to dry MSW prior to incineration, and making oxy-enriched incineration technology achieves higher combustion temperature and lower flue gas loss. In conclusion, based on technical and economical analysis, MSW oxy-enriched incineration retains obvious advantages and demonstrates great future prospects for MSW incineration in China. Copyright © 2015 Elsevier Ltd. All rights reserved.
National Coal Quality Inventory (NACQI)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robert Finkelman
2005-09-30
The U.S. Geological Survey (USGS) conducted the National Coal Quality Inventory (NaCQI) between 1999 and 2005 to address a need for quality information on coals that will be mined during the next 20-30 years. Collaboration between the USGS, State geological surveys, universities, coal burning utilities, and the coal mining industry plus funding support from the Electric Power Research Institute (EPRI) and the U.S. Department of Energy (DOE) permitted collection and submittal of coal samples for analysis. The chemical data (proximate and ultimate analyses; major, minor and trace element concentrations) for 729 samples of raw or prepared coal, coal associated shale,more » and coal combustion products (fly ash, hopper ash, bottom ash and gypsum) from nine coal producing States are included. In addition, the project identified a new coal reference analytical standard, to be designated CWE-1 (West Elk Mine, Gunnison County, Colorado) that is a high-volatile-B or high-volatile-A bituminous coal with low contents of ash yield and sulfur, and very low, but detectable contents of chlorine, mercury and other trace elements.« less
Environmental Impacts Of Zirab Coal Washing Plant, Mazandaran, Iran
NASA Astrophysics Data System (ADS)
Moore, F.; Esmaeili, A.
2009-04-01
Extraction and beneficiation operations associated with coal mining increase the rate of chemical reaction of waste material to air and water media. Zirab coal washing plant is located on the bank of the Cherat stream in Mazandaran province, Iran. coal Mined from central Alborz coalfield mines is not suitable for use in Iranian Steel Corporation. Hence, coal ash content is reduced by physical and chemical processes in this plant. These processes leave a large quantity of liquid and solid wastes that accumulate in waste dump and tailing dam. sediment and water samples taken from Sheshrudbar and Cherat streams and also from Talar river show high concentration of Cd, Mo and As in water samples of coal washing plant and the associated drainage. Eh-pH diagrams revealed the chemical species of elements in water. The enrichment factor and geoaccumulation index show that Cd, Hg, Mo and V are enriched in bottom sediments of the coal washing plant and decrease with increasing distance from the plant. Sequential extraction analysis Results of three sediment samples of Cherat stream show that silicate bound is the major phase in samples taken before and after the plant, but adjacent to the plant, organic bound is dominant. The high concentration of Cd and Mo in the water soluble phase, is noticeable and may result in high mobility and bioavailability of these elements. Mann-Whitney and Wilcoxon tests on six samples, before and after the coal washing plant support the obtained results. Keywords: Zirab; coal washing plant; Sequential extraction analysis; Mann-whitney; Wilcoxon; Enrichment factor; Geoaccumulation index.
A geostatistical approach to predicting sulfur content in the Pittsburgh coal bed
Watson, W.D.; Ruppert, L.F.; Bragg, L.J.; Tewalt, S.J.
2001-01-01
The US Geological Survey (USGS) is completing a national assessment of coal resources in the five top coal-producing regions in the US. Point-located data provide measurements on coal thickness and sulfur content. The sample data and their geologic interpretation represent the most regionally complete and up-to-date assessment of what is known about top-producing US coal beds. The sample data are analyzed using a combination of geologic and Geographic Information System (GIS) models to estimate tonnages and qualities of the coal beds. Traditionally, GIS practitioners use contouring to represent geographical patterns of "similar" data values. The tonnage and grade of coal resources are then assessed by using the contour lines as references for interpolation. An assessment taken to this point is only indicative of resource quantity and quality. Data users may benefit from a statistical approach that would allow them to better understand the uncertainty and limitations of the sample data. To develop a quantitative approach, geostatistics were applied to the data on coal sulfur content from samples taken in the Pittsburgh coal bed (located in the eastern US, in the southwestern part of the state of Pennsylvania, and in adjoining areas in the states of Ohio and West Virginia). Geostatistical methods that account for regional and local trends were applied to blocks 2.7 mi (4.3 km) on a side. The data and geostatistics support conclusions concerning the average sulfur content and its degree of reliability at regional- and economic-block scale over the large, contiguous part of the Pittsburgh outcrop, but not to a mine scale. To validate the method, a comparison was made with the sulfur contents in sample data taken from 53 coal mines located in the study area. The comparison showed a high degree of similarity between the sulfur content in the mine samples and the sulfur content represented by the geostatistically derived contours. Published by Elsevier Science B.V.
Laboratory Scale Coal And Biomass To Drop-In Fuels (CBDF) Production And Assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lux, Kenneth; Imam, Tahmina; Chevanan, Nehru
This Final Technical Report describes the work and accomplishments of the project entitled, “Laboratory Scale Coal and Biomass to Drop-In Fuels (CBDF) Production and Assessment.” The main objective of the project was to fabricate and test a lab-scale liquid-fuel production system using coal containing different percentages of biomass such as corn stover and switchgrass at a rate of 2 liters per day. The system utilizes the patented Altex fuel-production technology, which incorporates advanced catalysts developed by Pennsylvania State University. The system was designed, fabricated, tested, and assessed for economic and environmental feasibility relative to competing technologies.
Li, Kangkang; Yu, Hai; Feron, Paul; Tade, Moses; Wardhaugh, Leigh
2015-08-18
Using a rate-based model, we assessed the technical feasibility and energy performance of an advanced aqueous-ammonia-based postcombustion capture process integrated with a coal-fired power station. The capture process consists of three identical process trains in parallel, each containing a CO2 capture unit, an NH3 recycling unit, a water separation unit, and a CO2 compressor. A sensitivity study of important parameters, such as NH3 concentration, lean CO2 loading, and stripper pressure, was performed to minimize the energy consumption involved in the CO2 capture process. Process modifications of the rich-split process and the interheating process were investigated to further reduce the solvent regeneration energy. The integrated capture system was then evaluated in terms of the mass balance and the energy consumption of each unit. The results show that our advanced ammonia process is technically feasible and energy-competitive, with a low net power-plant efficiency penalty of 7.7%.
Boiler MACT Technical Assistance (Fact Sheet)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2012-03-01
Fact sheet describing the changes to Environmental Protection Act process standards. The DOE will offer technical assistance to ensure that major sources burning coal and oil have information on cost-effective, clean energy strategies for compliance, and to promote cleaner, more efficient boiler burning to cut harmful pollution and reduce operational costs. The U.S. Environmental Protection Agency (EPA) is expected to finalize the reconsideration process for its Clean Air Act pollution standards National Emissions Standards for Hazardous Air Pollutants for Major Sources: Industrial, Commercial, and Institutional Boilers and Process Heaters (known as Boiler Maximum Achievable Control Technology (MACT)), in Spring 2012.more » This rule applies to large and small boilers in a wide range of industrial facilities and institutions. The U.S. Department of Energy (DOE) will offer technical assistance to ensure that major sources burning coal or oil have information on cost-effective clean energy strategies for compliance, including combined heat and power, and to promote cleaner, more efficient boilers to cut harmful pollution and reduce operational costs.« less
Coal mine subsidence: proceedings from a citizen's conference
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mavrolas, P.; Schechtman, M.
A lay summary of coal-mine subsidence presents non-technical information for people in Illinois' subsidence-prone areas, and describes state and national assistance programs. The report explains mining methods and the effects of subsidence on buildings and farmland. It tells what to do in the event of an emergency and how to buy a home in a questionable area. The five appendices include directories to state and federal agencies. 14 figures, 1 table. (DCK)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Lili; Schobert, Harold H.; Song, Chunshan
1998-01-01
The main objectives of this project were to study the effects of low-temperature pretreatments on coal structure and their impacts on subsequent liquefaction. The effects of pretreatment temperatures, catalyst type, coal rank, and influence of solvent were examined. Specific objectives were to identify the basic changes in coal structure induced by catalytic and thermal pretreatments, and to determine the reactivity of the catalytically and thermally treated coals for liquefaction. In the original project management plan it was indicated that six coals would be used for the study. These were to include two each of bituminous, subbituminous, and lignite rank. Formore » convenience in executing the experimental work, two parallel efforts were conducted. The first involved the two lignites and one subbituminous coal; and the second, the two bituminous coals and the remaining subbituminous coal. This Volume presents the results of the first portion of the work, studies on two lignites and one subbituminous coal. The remaining work accomplished under this project will be described and discussed in Volume 2 of this report. The objective of this portion of the project was to determine and compare the effects of solvents, catalysts and reaction conditions on coal liquefaction. Specifically, the improvements of reaction conversion, product distribution, as well as the structural changes in the coals and coal-derived products were examined. This study targeted at promoting hydrogenation of the coal-derived radicals, generated during thermal cleavage of chemical bonds, by using a good hydrogen donor-solvent and an effective catalyst. Attempts were also made in efforts to match the formation and hydrogenation of the free radicals and thus to prevent retrogressive reaction.« less
NASA Astrophysics Data System (ADS)
Ritchie, W. J.; Dowlatabadi, H.
2016-12-01
Twenty years ago, global coal assessments indicated reserve-to-production (R-P) ratios of more than 300 years. Consequently, most studies of energy futures established coal as a virtually unlimited backstop to meet the world's projected energy needs. Coal was modeled to offset oil and gas production declines and provide a source of energy which renewables and lower carbon supply strategies needed to outcompete. Over the past two decades, increasingly consistent methodologies have been applied globally to assess recoverable coal. Coal production has also witnessed significant mechanization to meet higher demand. Each of these has led to a significant reduction in estimates of economically recoverable coal reserves despite a doubling of market prices over this period. The current reserve to production ratio for coal is now around 100 years. It is time to reconsider coal as the inexhaustible energy backstop The energy models which develop long-term estimates of renewable energy needs and projections of greenhouse gas (GHG) emissions still adopt the characteristics of vintage coal assessments. By convention, baseline GHG emissions used by the IPCC and others, project combustion of most known coal reserves before the year 2100. When vintage assessments are used, this involves extraction of all currently known coal reserves plus twice again from resources invalidated as recoverable for geologic, environmental, social, legal, technical or economic reasons. We provide evidence for rejecting these projections of unbounded growth in coal consumption. Legacy pathways of implausibly high coal use upwardly bias long-term scenarios for total cumulative GHG emissions and subsequent research on climate change. This bias has precluded consideration of much more ambitious climate mitigation targets without significant socio-economic dislocation and unnecessarily diminishes possible future contributions from renewables.
NASA Astrophysics Data System (ADS)
Tong, Yindong; Eichhorst, Terry; Olson, Michael R.; Rutter, Andrew P.; Shafer, Martin M.; Wang, Xuejun; Schauer, James J.
2014-03-01
In this study, we examined the heterogeneous reduction of Hg(II) on the coal fly ash samples and synthetic aerosols under different light conditions in a controlled laboratory reactor. Three types of coal fly ashes were studied: a high carbon fly ash from a stoker boiler, a low carbon/low sulfate fly ash from a pulverized coal combustor burning low sulfur coal, and a high sulfate fly ash from a pulverized coal combustor burning high sulfur coal. The rate of Hg(II) reduction on the three diverse fly ash samples was found to be relatively fast with an average half-life of 1.6 h under clear sky atmospheric conditions (under the irradiance of 1000 W/m2). The reduction rate in the low sulfate/low carbon fly ash was approximately 1.5 times faster than with the other coal fly ash samples. Synthetic aerosols made of carbon black and levoglucosan produced Hg(II) reduction rates similar to coal fly ashes. However, aerosols composed of adipic acid resulted in reduction rates that were 3-5 times faster. The sensitivity of adipic acid reduction to light source wavelength was found to be greater than for the coal fly ash and other synthetic aerosols. Aerosols made from the water extracts of coal fly ash samples produced reduction rates equal to or slightly higher than with the native fly ash suggesting that the soluble components of fly ash play a significant role in the reduction mechanism. The measured reduction rates are likely important in the chemical processing of mercury in power plant plumes and potentially in the atmosphere and should be considered for incorporation in atmospheric transport models that are used to understand the fate of atmospheric mercury.
Coal Fires in the United States: A Case Study in Government Inattention
NASA Astrophysics Data System (ADS)
McCurdy, K. M.
2006-12-01
Coal fires occur in all coal producing nations. Like most other environmental problems fires are not confined by political boundaries. Important economic coal seams in the United States are found across the Inter-montaine west, the Midwest, and Appalachia. The age of these deposits differs, as does the grade and sulfur content of the coal, the mining techniques utilized for exploitation of this resource, and the markets in which the coal is traded. Coal fires are ordinary occurrences under extraordinary conditions. Every coal bed exposed in an underground or surface mine has the potential to ignite. These fires are spread thinly over the political geography and over time, so that constituencies rarely coalesce to petition government to address the coal fire problem. Coal fires produce serious problems with long term consequences for society. They threaten mine safety, consume a non-renewable resource, and produce toxic gases with serious health effects for local populations. Additionally, as coal production in the developing world intensifies, these problems worsen. The lack of government attention to coal fires is due to the confluence of at least four independent political factors: 1) The separated powers, federated system in which decisions in the United States are made; 2) Low levels of political energy available in Congress to be expended on coal fires, measured by the magnitude of legislative majorities and seniority; 3) The mid-twentieth century model of scientific and technical information moving indirectly to legislators through the bureaucratic agencies; 4) The chronic and diffuse nature of fires across space and time.
Oxidation of pyrite in coal to magnetite
Thorpe, A.N.; Senftle, F.E.; Alexander, C.C.; Dulong, F.T.
1984-01-01
When bituminous coal is heated in an inert atmosphere (He) containing small amounts of oxygen at 393-455 ??C, pyrite (FeS2) in coal is partially converted to magnetite (Fe304). The maximum amount of Fe304 formed during the time of heating corresponds to 5-20% of the total pyrite present, depending on the coal sample. The magnetite forms as an outer crust on the pyrite grains. The fact that the magnetic properties of the pyrite grains are substantially increased by the magnetite crust suggests that pyrite can be separated from coal by use of a low magnetic field. In a laboratory test, 75% removal is obtained by means of a 500 Oe magnet on three samples, and 60% on a fourth sample. ?? 1984.
Newman, J.; Price, L.C.; Johnston, J.H.
1997-01-01
The results of traditional methods of coal characterisation (proximate, specific energy, and ultimate analyses) for 28 Eocene coal samples from the West Coast of New Zealand correspond well with biomarker ratios and Rock-Eval analyses. Isorank variations in vitrinite fluorescence and reflectance recorded for these samples are closely related to their volatile-matter content, and therefore indicate that the original vitrinite chemistry is a key controlling factor. By contrast, the mineral-matter content and the proportion of coal macerals present appear to have had only a minor influence on the coal samples' properties. Our analyses indicate that a number of triterpane biomarker ratios show peak maturities by high volatile bituminous A rank; apparent maturities are then reversed and decline at the higher medium volatile bituminous rank. The Rock-Eval S1 +S2 yield also maximizes by high volatile bituminous A rank, and then declines; however, this decline is retarded in samples with the most hydrogen-rich (perhydrous) vitrinites. These Rock-Eval and biomarker trends, as well as trends in traditional coal analyses, are used to define the rank at which expulsion of gas and oil occurs from the majority of the coals. This expulsion commences at high volatile A bituminous rank, and persists up to the threshold of medium volatile bituminous rank (c. 1.1% Ro ran. or 1.2% Ro max in this sample set), where marked hydrocarbon expulsion from perhydrous vitrinites begins to take place.
U.S. Geological Survey coal quality (COALQUAL) database; version 2.0
Bragg, L.J.; Oman, J.K.; Tewalt, S.J.; Oman, C.L.; Rega, N.H.; Washington, P.M.; Finkelman, R.B.
1997-01-01
The USGS Coal Quality database is an interactive, computerized component of the NCRDS. It contains comprehensive analyses of more than 13,000 samples of coal and associated rocks from every major coal-bearing basin and coal bed in the U.S. The data in the coal quality database represent analyses of the coal as it exists in the ground. The data commonly are presented on an as-received whole-coal basis.
NASA Astrophysics Data System (ADS)
Song, Xiaoyan; Li, Xuelong; Li, Zhonghui; Zhang, Zhibo; Cheng, Fuqi; Chen, Peng; Liu, Yongjie
2018-01-01
Coal rock would produce electromagnetic radiation (EMR) in the loading process, but study on the influence factors influence on the coal rock EMR characteristics in the mesoscopic level is not insufficient. In the paper, the EMR characteristics of coal and rock samples under uniaxial loading are studied. Several typical microcosmic mechanisms affecting the characteristics of EMR are discussed, such as strength, composition and microstructure of the samples. Results show that the macroscopic structure of the outburst coal is soft, the corresponding EMR signal increases slowly with the loading increase and the EMR peak is smaller. The rockburst coal has a strong brittleness, the EMR signal increases quickly and EMR peak appears while the coal breaks is larger than the outburst coal. The EMR characteristics of rock samples are similar to the rockburst coal, but the EMR peak is the largest. When the coal rock microstructure is complete, the coal rock block is larger and the brittleness is stronger, then the corresponding strength would be larger. And the free charge generated by thermal excitation, field emission and intergranular chemical bond breakage would also be more. In the meantime, the crack propagation rate becomes greater, therefore the EMR is more stronger. The piezoelectric effect is mainly caused by the linear elastic stage of the specimen deformation and rupture, which contributes less to the EMR signals. This study is of great theoretical and practical value for assessing the mechanical state of coal rock through EMR technology, and accurately monitoring and predicting the coal rock dynamic disasters.
Collection, chemical analysis, and evaluation of coal samples in 1975
Swanson, Vernon Emanuel; Medlin, J.H.; Hatch, J.R.; Coleman, S.L.; Wood, G.H.; Woodruff, S.D.; Hildebrand, R.T.
1976-01-01
During 1975, the U.S. Geological Survey, in cooperation with other Federal and State agencies, university groups, and private companies, continued its program to augment and refine information on the composition of coal in the United States. This report includes all analytical data on 799 channel samples of coal beds from major operating mines and core holes in 28 States, collected mainly by State Geological Surveys under a cooperative program funded largely by the U.S. Energy Research and Development Administration. For each sample, the U.S. Geological Survey has quantitatively determined the amounts of 24 major, minor, and trace elements (including AI, As, Cd, Cu, F, Hg, Mn, Na, Pb, Se, U, and Zn), and has semiquantitatively determined the concentrations of 15 to 20 additional trace elements (including B, Be, Cr, Ge, Mo, Ni, and V). In addition, the U.S. Bureau of Mines has provided proximate and ultimate analyses, and Btu and forms-of-sulfur determinations on 488 of the samples. Statistical summaries of the data are given for all coal samples in the United States, for coal divided by rank (53 anthracite, 509 bituminous coal, 183 subbituminous coal, and 54 lignite samples), and the arithmetic means, ranges, and geometric means and deviations are given for the coal in each of seven different major coal areas in the United States. For example, the average coal in the United States contains 11.3 percent ash, 10.0 percent moisture, 2.0 percent sulfur, and has 11,180 Btu per pound; of the 10 major oxides determined on the 525?C ash, the average SiO2 content is 38 percent, Al2O3 20 percent, and Na2O 0.67 percent; the average Cd content is 7.3 ppm, Pb 114 ppm, and Zn 151 ppm (range 1 ppm to 6.0 percent). As determined on the raw coal, the average Hg content is 0.18 ppm (range <0.01 to 63.0 ppm), the Se content 4.1 ppm (range <0.1 to 150 ppm), and the U content 1.8 ppm (range <0.2 to 42.9 ppm).
Low Cost High-H 2 Syngas Production for Power and Liquid Fuels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, S. James
2015-07-31
This report summarizes the technical progress made of the research project entitled “Low Cost High-H2 Syngas Production for Power and Liquid Fuels,” under DOE Contract No. DE-FE-0011958. The period of performance was October 1, 2013 through July 30, 2015. The overall objectives of this project was to determine the technical and economic feasibility of a systems approach for producing high hydrogen syngas from coal with the potential to reduce significantly the cost of producing power, chemical-grade hydrogen or liquid fuels, with carbon capture to reduce the environmental impact of gasification. The project encompasses several areas of study and the resultsmore » are summarized here. (1) Experimental work to determine the technical feasibility of a novel hybrid polymer/metal H2-membrane to recover pure H2 from a coal-derived syngas was done. This task was not successful. Membranes were synthesized and show impermeability of any gases at required conditions. The cause of this impermeability was most likely due to the densification of the porous polymer membrane support made from polybenzimidazole (PBI) at test temperatures above 250 °C. (2) Bench-scale experimental work was performed to extend GTI's current database on the University of California Sulfur Recovery Process-High Pressure (UCSRP-HP) and recently renamed Sulfur Removal and Recovery (SR2) process for syngas cleanup including removal of sulfur and other trace contaminants, such as, chlorides and ammonia. The SR2 process tests show >90% H2S conversion with outlet H2S concentrations less than 4 ppmv, and 80-90% ammonia and chloride removal with high mass transfer rates. (3) Techno-economic analyses (TEA) were done for the production of electric power, chemical-grade hydrogen and diesel fuels, from a mixture of coal- plus natural gas-derived syngas using the Aerojet Rocketdyne (AR) Advanced Compact coal gasifier and a natural gas partial oxidation reactor (POX) with SR2 technology. Due to the unsuccessful experimental results with the hybrid polymer/metal H2 membrane, a conventional CO2 capture (single-stage Selexol) and hydrogen purification (PSA) technologies were used in the appropriate cases. In all cases, the integrated system of Advanced Compact coal gasifier, non-catalytic natural gas partial oxidation, and SR2 multicontaminant removal with state-of-the-art auxiliary system provided a 5-25% cost advantage over the base line plants using GEE coal gasifier with conventional Selexol/Claus sulfur removal and recovery. These plants also produce 18-30% less CO2 than with the conventional coal gasification plants.« less
Durrani, N.A.; Warwick, Peter D.
1991-01-01
Field work drilling, and other related studies carried out from 1985 to 1988 to assess the quantity and quality of the coal resources of southern Sindh. Sixty-eight holes drilled in the Lakhra/Jherruck, Thatta, and Indus East coal fields indicate that presently known and mined coal fields in southern Sindh are not isolated coal occurrences. Rather, much of southern Sindh, including the Thar Desert, is underlain by strata that contain coal beds.More than 400 core and mine samples were collected for proximate and ultimate analysis and determination of major, minor and trace elements; also, lithologie logs were prepared from description of rock cuttings and core. Original coal resources of 1,080 million tones have been estimated for 7 out of 9 coal zones in parts of the Lakhra area, where coal-bed thicknesses range from a few centimeters to 5 m. In the Sonda/Jherruk area, 3,700 million tones of coal have been identified, the thickest coal bed intercepted being 6.3 meters. The apparent rank of the coal in these fields ranges from lignite A to sub-bituminous C. Averaged analytical results on an as received basis indicate the coal beds contain 28.4 % moisture, 18,3 % ash, 4.7 % sulfur, 25,2 % fixed carbon, 27.9 % volatile matter, and 33.1% oxygen. Average calorific value for Lakhra coal samples is about 3,660 Kcal/kg, whereas that of Sonda/Jherruk samples is about 3,870 Kcal/kg. Geophysical logs were obtained for the drill holes, and cores and rock cuttings are available from the GSP for further study and reference.The second phase of the project began in 1987 with surface exploration in the Salt Range coal field of Punjab Province, the Sor Range and Khost-Sharig-Harnai coal fields of Baluchistan, and the Makarwal and Cherat coal fields of NWFP. These are briefly discussed here.
Chemical analyses in the World Coal Quality Inventory
Tewalt, Susan J.; Belkin, Harvey E.; SanFilipo, John R.; Merrill, Matthew D.; Palmer, Curtis A.; Warwick, Peter D.; Karlsen, Alexander W.; Finkelman, Robert B.; Park, Andy J.
2010-01-01
The main objective of the World Coal Quality Inventory (WoCQI) was to collect and analyze a global set of samples of mined coal during a time period from about 1995 to 2006 (Finkelman and Lovern, 2001). Coal samples were collected by foreign collaborators and submitted to country specialists in the U.S. Geological Survey (USGS) Energy Program. However, samples from certain countries, such as Afghanistan, India, and Kyrgyzstan, were collected collaboratively in the field with USGS personnel. Samples were subsequently analyzed at two laboratories: the USGS Inorganic Geochemistry Laboratory located in Denver, CO and a commercial laboratory (Geochemical Testing, Inc.) located in Somerset, PA. Thus the dataset, which is in Excel (2003) format and includes 1,580 samples from 57 countries, does not have the inter-laboratory variability that is present in many compilations. Major-, minor-, and trace-element analyses from the USGS laboratory, calculated to a consistent analytical basis (dry, whole-coal) and presented with available sample identification information, are sorted alphabetically by country name. About 70 percent of the samples also have data from the commercial laboratory, which are presented on an as-received analytical basis. The USGS initiated a laboratory review of quality assurance in 2008, covering quality control and methodology used in inorganic chemical analyses of coal, coal power plant ash, water, and sediment samples. This quality control review found that data generated by the USGS Inorganic Geochemistry Laboratory from 1996 through 2006 were characterized by quality practices that did not meet USGS requirements commonly in use at the time. The most serious shortcomings were (1) the adjustment of raw sample data to standards when the instrument values for those standards exceeded acceptable limits or (2) the insufficient use of multiple standards to provide adequate quality assurance. In general, adjustment of raw data to account for instrument 'drift' is an acceptable practice within strictly defined limits. During the denoted period, USGS required that the maximum adjustment of instrument values, guided by calibration standards, was not allowed to exceed 10 percent. However, in some cases, the Inorganic Geochemistry Laboratory released data that were adjusted by more than 10 percent and (or) were not constrained by an adequate number of control standards. Original instrument values no longer exist for about 80 percent of the analyses during this period; therefore, the acceptability of drift corrections for most of the samples analyzed cannot be determined. For these reasons, the WoCQI data from the USGS Inorganic Geochemistry Laboratory should be used with care. For more information, individuals may contact laboratory management at EnergyLabs@usgs.gov with specific questions about particular datasets or analytical attributes. Standard USGS sampling methods were provided and recommended to collaborators, but the analyzed samples may or may not be representative of their locale; for some samples, only limited information is available concerning sample provenance. Single samples cannot represent spatial or temporal variability within a coal area. Geochemical datasets of U.S. coals can be found in the COALQUAL database (Bragg and others, 1997) and the National Coal Quality Inventory (Hatch and others, 2006), as only non-U.S. sample data are presented in the WoCQI. Although the WoCQI does not contain worldwide coverage of coal deposits, it is truly a unique and valuable compilation. The information in the WoCQI should prove useful for identifying possible areas for future global coal research.
Liu, Chao-Li; Hackley, Keith C.; Coleman, D.D.; Kruse, C.W.
1987-01-01
A method using stable isotope ratio analysis to monitor the reactivity of sulfur forms in coal during thermal and chemical desulfurization processes has been developed at the Illinois State Geological Survey. The method is based upon the fact that a significant difference exists in some coals between the 34S/32S ratios of the pyritic and organic sulfur. A screening method for determining the suitability of coal samples for use in isotope ratio analysis is described. Making these special coals available from coal sample programs would assist research groups in sorting out the complex sulfur chemistry which accompanies thermal and chemical processing of high sulfur coals. ?? 1987.
Carbon isotopic fractionation of CH4 and CO2 during canister desorption of coal
Strapoc, D.; Schimmelmann, A.; Mastalerz, Maria
2006-01-01
Canister desorption of coal gas from freshly sampled coal is commonly used for exploratory assessment of the coalbed methane (CBM) potential of a basin or prospect, as well as for the sampling of gas for isotopic determination of the gas origin. Compositional and ??13C isotopic time-series of desorbing CBM and carbon dioxide (CO2) over 3-4 months demonstrate considerable compositional and isotopic shifts over time. Non-stationary chemical and isotopic characteristics are due to differences in diffusivity and adsorbance behavior of gas molecules and must be taken into account when attempting to reproducibly sample coal gases. Off-line gas processing on a vacuum line and on-line GC/MS analyses were performed on coal gas samples from the Springfield and Seelyville Coal Members of the Pennsylvanian age that were cored in the SE Illinois Basin in SW Indiana, USA. The coals cover a narrow range of maturity from 0.54% to 0.64% vitrinite reflectance. Methane initially desorbed faster than CO2, resulting in a 50% increase of the CO 2 content in bulk desorbing gas on the 50th day relative to the first day of desorption. After 50 days of desorption, about 90% of all coal gas was desorbed. Over the same time period, ??13C values of incrementally sampled coal gas increased by 2??? and 9???, for CH 4 and CO2, respectively, testifying to the greater retention of 13CH4 and 13CO2 relative to 12CH4 and 12CO2. An isotopic mass balance of the individual, sequentially desorbed and sampled gas amounts yielded weighted mean ??13CCH4 and ??13CCO2 values for characterizing the cumulatively desorbed gas. The overall mean ??13C values were equivalent to ??13C values of gases that desorbed at a time when half of the potentially available gas had been desorbed from coal, corresponding in this study to a time between day 5 and day 12 of canister desorption at 15-18??C. The total expected gas volume and the ???50% midpoint can thus be approximated for a desorbing coal gas sample, based on a dynamic prediction after the first five days of canister desorption. ?? 2005 Elsevier Ltd. All rights reserved.
Radlinski, A.P.; Mastalerz, Maria; Hinde, A.L.; Hainbuchner, M.; Rauch, H.; Baron, M.; Lin, J.S.; Fan, L.; Thiyagarajan, P.
2004-01-01
This paper discusses the applicability of small angle X-ray scattering (SAXS) and small angle neutron scattering (SANS) techniques for determining the porosity, pore size distribution and internal specific surface area in coals. The method is noninvasive, fast, inexpensive and does not require complex sample preparation. It uses coal grains of about 0.8 mm size mounted in standard pellets as used for petrographic studies. Assuming spherical pore geometry, the scattering data are converted into the pore size distribution in the size range 1 nm (10 A??) to 20 ??m (200,000 A??) in diameter, accounting for both open and closed pores. FTIR as well as SAXS and SANS data for seven samples of oriented whole coals and corresponding pellets with vitrinite reflectance (Ro) values in the range 0.55% to 5.15% are presented and analyzed. Our results demonstrate that pellets adequately represent the average microstructure of coal samples. The scattering data have been used to calculate the maximum surface area available for methane adsorption. Total porosity as percentage of sample volume is calculated and compared with worldwide trends. By demonstrating the applicability of SAXS and SANS techniques to determine the porosity, pore size distribution and surface area in coals, we provide a new and efficient tool, which can be used for any type of coal sample, from a thin slice to a representative sample of a thick seam. ?? 2004 Elsevier B.V. All rights reserved.
Application of Paste Backfill in Underground Coal Fires
NASA Astrophysics Data System (ADS)
Masniyom, M.; Drebenstedt, C.
2009-04-01
Coal fires are known from different coalfields worldwide. China, India, USA, Australia, Indonesia and South Africa are the main countries affected by coal fires. The fires is thermally intensive and cause numerous sinkholes, large-scale subsidence, air pollution, global warming, loss of mining productivity and increasing safety risk. The Wuda Inner Mongolia coalfield has been selected as a possible test area for paste backfill. The traditional methods, executed by fire fighting teams, by covering the coalfire areas with soil, blasting burning coal outcrops and injecting water in the subsurface fire pockets are continuously improved and extended. Initiatives to introduce modern techniques, such as backfill placement at fracture and borehole, to cool down the burning coal and cut off the air supply. This study is to investigate backfill materials and techniques suited for underground coal fires. Laboratory tests were carried out on physical, chemical and mechanical properties of different backfill materials and mixtures thereof. Special attention was paid to materials generated as by-products and other cheaply available materials e.g. fly ash from power plants. There is a good chance that one of the different material mixtures investigated can be used as a technically and economically viable backfill for underground coal fires.
Code of Federal Regulations, 2013 CFR
2013-01-01
... primary energy source. In assessing whether the unit is technically capable of using a mixture of petroleum or natural gas and coal or another alternate fuel as a primary energy source, for purposes of this... technically capable of using the mixture as a primary energy source under § 504.6(c), this certification...
Code of Federal Regulations, 2014 CFR
2014-01-01
... primary energy source. In assessing whether the unit is technically capable of using a mixture of petroleum or natural gas and coal or another alternate fuel as a primary energy source, for purposes of this... technically capable of using the mixture as a primary energy source under § 504.6(c), this certification...
Code of Federal Regulations, 2012 CFR
2012-01-01
... primary energy source. In assessing whether the unit is technically capable of using a mixture of petroleum or natural gas and coal or another alternate fuel as a primary energy source, for purposes of this... technically capable of using the mixture as a primary energy source under § 504.6(c), this certification...
NASA Astrophysics Data System (ADS)
Majewska, Zofia; Ziętek, Jerzy
2007-09-01
Simultaneous measurements of acoustic emission (AE) and expansion/contraction of coal samples subjected to gas sorption-desorption processes were conducted on high-and medium-rank coal. The aim of this study was to examine the influence of the coal rank and type of sorbate on measured AE and strain characteristics. The experimental equipment employed in this study consisted of a pressure vessel and associated pressurisation and monitoring units. The arrangement of pressure-vacuum valves permitted the coal sample to be pressurised and depressurised. Carbon-dioxide and methane were used as sorbats. Acoustic emission and strains were recorded continuously for a period of 50 hours during sorption and for at least 12 hours during the desorption process. Tests were conducted on cylindrical coal samples at 298 K. The experimental data were presented as plots of AE basic parameters versus time and in strain diagrams. These studies lead to the following conclusions: 1. There are significant differences in AE and strain characteristics for the two systems (coal-CO2 and coal-CH4); 2. There is a direct influence of rank and type of coal on its behaviour during the sorption-desorption of gas. An attempt has been made to interpret the results obtained on the grounds of the copolymer model of coal structure. More research is needed into this topic in order to get a quantitative description of the observed facts.
Stanton, Ronald W.; Warwick, Peter D.; Swanson, Sharon M.
2005-01-01
Tar yields from low-temperature carbonization correlate with the amount of crypto-eugelinite in samples selected to represent petrographically distinct coal facies of the Wyodak-Anderson coal zone. Tar yields from Fischer Assay range from <1 to 11 wt.% on a dry basis and correspond (r = 0.72) to crypto-eugelinite contents of the coal that range from 15 to 60 vol.%. Core and highwall samples were obtained from active surface mines in the Gillette field, Powder River Basin, Wyoming. Because the rank of the samples is essentially the same, differences in low-temperature carbonization yields are interpreted from compositional differences, particularly the crypto-eugelinite content. In the Wyodak-Anderson coal zone, crypto-eugelinite probably was derived from degraded humic matter which absorbed decomposition products from algae, fungi, bacteria, and liptinitic plant parts (materials possibly high in hydrogen). Previous modeling of the distribution of crypto-eugelinite in the discontinuous Wyodak-Anderson coal zone indicated that tar yields should be greater from coal composing the upper part and interior areas than from coal composing the lower parts and margins of the individual coal bodies. It is possible that hydrocarbon yields from natural coalification processes would be similar to yields obtained from laboratory pyrolysis. If so, the amount of crypto-eugelinite may also be an important characteristic when evaluating coal as source rock for migrated hydrocarbons.
Palynomorphs of Permian Gondwana coal from borehole GDH-38, Barapukuria Coal Basin, Bangladesh
Akhtar, A.; Kosanke, R.M.
2000-01-01
Thirty-two core samples of Permian Gondwana coal from three coal beds of borehole GDH-38, Barapukuria Coal Basin, Dinajpur, the north-northwestern part of Bangladesh, have been collected for palynological analysis. All samples except one yielded palynomorphs and some samples contain well-preserved and abundant palynomorphs of the gymnospermal and cryptogamic groups that are considered to be useful for future correlation studies. The lower coal bed (331.6-372.5 m) can easily be differentiated from the upper two coal beds by the presence of Alisporites, Cordaitina, Corisaccites, Hamiapollenites, Leuckisporites, Nuskoisporites, Tumoripollenites, Vestgisporites and Vittatina. It is difficult to palynologically differentiate the middle (198.1-208 m) and upper (162.3-172.9 m) coal beds as they contain a very limited number of specimens by which they can be identified. The middle bed is distinguished by the presence of Microbaculispora and Weylandites and the upper bed by the presence of a single taxon Acanthotriletes. Some of the vesiculate or saccate taxa extracted from these coal beds are typical of those occurring in Permian strata of Gondwana in India, South Africa, South America, Russia, Australia and Antarctica. They are thought to be derived from Glossopteris flora, which is characterised by an abundance of Pteridospermic plants of the gymnosperm group. ?? 2000 Elsevier Science Limited. All rights reserved.
30 CFR 14.20 - Flame resistance.
Code of Federal Regulations, 2010 CFR
2010-07-01
... MINING PRODUCTS REQUIREMENTS FOR THE APPROVAL OF FLAME-RESISTANT CONVEYOR BELTS Technical Requirements § 14.20 Flame resistance. Conveyor belts for use in underground coal mines must be flame-resistant and...
Concentration and distribution of sixty-one elements in coals from DPR Korea
Hu, Jiawen; Zheng, B.; Finkelman, R.B.; Wang, B.; Wang, M.; Li, S.; Wu, D.
2006-01-01
Fifty coal samples (28 anthracite and 22 lignites) were collected from both main and small coal mines in DPR Korea prioritized by resource distribution and coal production. The concentrations of 61 elements in 50 coal samples were determined by several multielement and element-specific techniques, including inductively coupled plasma atomic emission spectrometry (ICP-AES), and inductively coupled plasma mass spectrometry (ICP-MS), ion chromatogram (IC), cold-vapor atomic absorption spectrometry (CV-AAS), and hydride generation atomic absorption spectrometry (HGAAS). The ranges, arithmetic means and geometric means of concentrations of these elements are presented. A comparison with crustal abundances (Clarke values) shows that some potentially hazardous elements in the coals of DPR Korea are highly enriched Li, B, S, Cl, Zn, As, Se, Cd, Sn, Sb, W, Te, Hg, Ag, Pb, and La, Ce, Dy, Tm, Ge, Mo, Cs, Tl, Bi, Th and U are moderately enriched. A comparison of ranges and means of elemental concentrations in DPR Korea, Chinese, and world coals shows the ranges of most elements in DPR Korea coals are very close to the ranges of world coals. Arithmetic means of most elements in DPR Korea coals are close to that of American coals. Most elements arithmetic means are higher in Jurassic and Paleogene coals than coals of other ages. In DPR Korea coals, only seven elements in early Permian coals are higher than other periods: Li, Zn, Se, Cd, Hg, Pb, and Bi. Only five elements B, As, Sr, Mo, W in Neogene coals have arithmetic means higher than others. SiO2 and Al2O 3 in ashes are more than 70% except six samples. The correlation between ash yields and major elements from high to low is in the order of Si>Al>Ti>K>Mg>Fe>Na>Ca>P>S. Most elements have high positive correlation with ash (r>0.5) and show high inorganic affinity. ?? 2005 Elsevier Ltd. All rights reserved.
Cofiring biomass with coal: Opportunities for Malaysia
NASA Astrophysics Data System (ADS)
Rahman, A. A.; Shamsuddin, A. H.
2013-06-01
Malaysia generated 108,175 GWh of electricity in 2010 where 39.51 % was sourced from coal. Coal power generation is also planned to overtake natural gas as the main fuel for electricity generation within the next two decades. Malaysia also has a vast biomass resource that is currently under-utilised for electricity generation. This paper studies the option of cofiring biomass in existing Malaysian coal power plants to increase the nation's renewable energy mix as well as to reduce its power sector carbon dioxide emission. Benefits of cofiring to the nation were discussed and agricultural residues from palm oil and paddy was identified as a potential source of biomass for cofiring. It was also found that there is a willingness for cofiring by stakeholders but barriers existed in the form of technical issues and lack of clear direction and mechanism.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fiveland, W.A.; Oberjohn, W.J.; Cornelius, D.K.
1985-12-01
This report summarizes the work conducted during a 30-month contract with the United States Department of Energy (DOE) Pittsburgh Energy Technology Center (PETC). The general objective is to develop and verify a computer code capable of modeling the major aspects of pulverized coal combustion. Achieving this objective will lead to design methods applicable to industrial and utility furnaces. The combustion model (COMO) is based mainly on an existing Babcock and Wilcox (B and W) computer program. The model consists of a number of relatively independent modules that represent the major processes involved in pulverized coal combustion: flow, heterogeneous and homogeneousmore » chemical reaction, and heat transfer. As models are improved or as new ones are developed, this modular structure allows portions of the COMO model to be updated with minimal impact on the remainder of the program. The report consists of two volumes. This volume (Volume 1) contains a technical summary of the COMO model, results of predictions for gas phase combustion, pulverized coal combustion, and a detailed description of the COMO model. Volume 2 is the Users Guide for COMO and contains detailed instructions for preparing the input data and a description of the program output. Several example cases have been included to aid the user in usage of the computer program for pulverized coal applications. 66 refs., 41 figs., 21 tabs.« less
Greb, S.F.; Eble, C.F.; Williams, D.A.; Nelson, W.J.
2001-01-01
The Western Kentucky No. 4 coal is a high-volatile B to high-volatile C bituminous coal that has been heavily mined along the southern margin of the Western Kentucky Coal Field. The seam has a reputation for rolling floor elevation. Elongate trends of floor depressions are referred to as "dips" and "rolls" by miners. Some are relatively narrow and straight to slightly curvilinear in plan view, with generally symmetric to slightly asymmetric cross-sections. Others are broader and asymmetric in section, with sharp dips on one limb and gradual, ramp-like dips on the other. Some limbs change laterally from gradual dip, to sharp dip, to offset of the coal. Lateral changes in the rate of floor elevation dip are often associated with changes in coal thickness, and in underground mines, changes in floor elevation are sometimes associated with roof falls and haulage problems. In order to test if coal thickness changes within floor depressions were associated with changes in palynology, petrography and coal quality, the coal was sampled at a surface mine across a broad. ramp-like depression that showed down-dip coal thickening. Increment samples of coal from a thick (150 cm), down-ramp and thinner (127 cm), up-ramp position at one surface mine correlate well between sample sites (a distance of 60 m) except for a single increment. The anomalous increment (31 cm) in the lower-middle part of the thick coal bed contained 20% more Lycospora orbicula spores. The rolling floor elevations noted in the study mines are inferred to have been formed as a result of pre-peat paleotopographic depressions, syn-depositional faulting, fault-controlled pre-peat paleotopography, and from compaction beneath post-depositional channels and slumps. Although the association of thick coal with linear trends and inferred faults has been used in other basins to infer syn-depositional faulting, changes in palynology within increment samples of the seam along a structural ramp in this study provide subtle evidence of faulting within a specific increment of the coal itself. The sudden increase in L. orbicula (produced by Paralycopodites) in a single increment of a down-ramp sample of the Western Kentucky No. 4 coal records the reestablishment of a rheotrophic mire following a sudden change in edaphic conditions. Paralycopodites was a colonizing lycopod, which in this case became locally abundant after the peat was well established along a fault with obvious growth during peat accumulation. Because many coal-mire plants were susceptible to sudden edaphic changes as might accompany faulting or flooding, changes in palynology would be expected in coals affected by syn-depositional faulting. ?? 2001 Elsevier Science B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Hahn, Florian; Brüggemann, Nina; Bracke, Rolf; Alber, Michael
2017-04-01
The goal of this R&D project is to create a technically and economically feasible conceptual model for a High Temperature - Mine Thermal Energy Storage (HT-MTES) for the energetic reuse of a mine on the example of the Prosper-Haniel coal mine in Bottrop, Germany. This project is funded by the "Initiative Energy Storage" program of the German Federal Ministries BMWi, BMU and BMBF. At the end of 2018, the last operative coal mine in North Rhine-Westphalia, Germany (Prosper-Haniel), is going to be closed down, plugged and abandoned. Large amounts of subsurface infrastructures, resembled mainly by open parts of former galleries and mining faces are going to be flooded, after the mine is closed down and therefore have the potential to become an enormous geothermal reservoir for a seasonal heat storage. During the summer non-used (waste) heat from solar thermal power plants, garbage incineration, combined heat and power plants (CHP) or industrial production processes can be stored within dedicated drifts of the mine. During the winter season, this surplus heat can be extracted and directly utilized in commercial and/or residential areas. For the evaluation of such a HT-MTES within a former coal mine, the corresponding geomechanical parameters of the Upper Carboniferous under thermal stress needs to be evaluated. Therefore the main rock types of the Upper Carboniferous (claystone, siltstone and sandstone) are subject to a geomechanical characterization before and after thermal cyclic loadings of temperatures up to 200 °C. The samples have been collected directly from the coal mine Prosper-Haniel within a depth range of 1000 - 1200 m. Unconfined compressive and tensile strengths, as well as triaxial tests were performed at room temperature. Furthermore, a range of petrophysical properties like density, thin-section analysis and P-wave velocities were determined. First results show an indication that the overall strength properties of the samples are not effected by thermal cyclic loadings with temperatures of up to 200 °C. However, a reduction in the Young's modulus was observed in all samples, after thermal cyclic loads were induced. This effect is mainly correlated to a relaxation of the grain bonds and a pore space expansion. Currently, the experimental focus was set on the evaluation of the collected siltstone samples. Therefore further experiments are needed to undermine these results also for the claystone and sandstone samples.
Yang, Y.; Mahler, B.J.; Van Metre, P.C.; Ligouis, B.; Werth, C.J.
2010-01-01
Measurements of black carbon (BC) using either chemical or thermal oxidation methods are generally thought to indicate the amount of char and/or soot present in a sample. In urban environments, however, asphalt and coal-tar particles worn from pavement are ubiquitous and, because of their pyrogenic origin, could contribute to measurements of BC. Here we explored the effect of the presence of asphalt and coal-tar particles on the quantification of BC in a range of urban environmental sample types, and evaluated biases in the different methods used for quantifying BC. Samples evaluated were pavement dust, residential and commercial area soils, lake sediments from a small urban watershed, and reference materials of asphalt and coal tar. Total BC was quantified using chemical treatment through acid dichromate (Cr2O7) oxidation and chemo-thermal oxidation at 375??C (CTO-375). BC species, including soot and char/charcoal, asphalt, and coal tar, were quantified with organic petrographic analysis. Comparison of results by the two oxidation methods and organic petrography indicates that both coal tar and asphalt contribute to BC quantified by Cr2O7 oxidation, and that coal tar contributes to BC quantified by CTO-375. These results are supported by treatment of asphalt and coal-tar reference samples with Cr2O7 oxidation and CTO-375. The reference asphalt is resistant to Cr2O7 oxidation but not to CTO-375, and the reference coal tar is resistant to both Cr2O7 oxidation and CTO-375. These results indicate that coal tar and/or asphalt can contribute to BC measurements in samples from urban areas using Cr2O7 oxidation or CTO-375, and caution is advised when interpreting BC measurements made with these methods. ?? 2010 Elsevier Ltd.
Boulyga, Sergei F; Heilmann, Jens; Prohaska, Thomas; Heumann, Klaus G
2007-10-01
A method for the direct multi-element determination of Cl, S, Hg, Pb, Cd, U, Br, Cr, Cu, Fe, and Zn in powdered coal samples has been developed by applying inductively coupled plasma isotope dilution mass spectrometry (ICP-IDMS) with laser-assisted introduction into the plasma. A sector-field ICP-MS with a mass resolution of 4,000 and a high-ablation rate laser ablation system provided significantly better sensitivity, detection limits, and accuracy compared to a conventional laser ablation system coupled with a quadrupole ICP-MS. The sensitivity ranges from about 590 cps for (35)Cl+ to more than 6 x 10(5) cps for (238)U+ for 1 microg of trace element per gram of coal sample. Detection limits vary from 450 ng g(-1) for chlorine and 18 ng g(-1) for sulfur to 9.5 pg g(-1) for mercury and 0.3 pg g(-1) for uranium. Analyses of minor and trace elements in four certified reference materials (BCR-180 Gas Coal, BCR-331 Steam Coal, SRM 1632c Trace Elements in Coal, SRM 1635 Trace Elements in Coal) yielded good agreement of usually not more than 5% deviation from the certified values and precisions of less than 10% relative standard deviation for most elements. Higher relative standard deviations were found for particular elements such as Hg and Cd caused by inhomogeneities due to associations of these elements within micro-inclusions in coal which was demonstrated for Hg in SRM 1635, SRM 1632c, and another standard reference material (SRM 2682b, Sulfur and Mercury in Coal). The developed LA-ICP-IDMS method with its simple sample pretreatment opens the possibility for accurate, fast, and highly sensitive determinations of environmentally critical contaminants in coal as well as of trace impurities in similar sample materials like graphite powder and activated charcoal on a routine basis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steedman, W.G.; Longanbach, J.R.; Muralidhara, H.S.
Standard reaction conditions of 427 C, 5 minutes reaction time, 2:1 solvent/coal ratio and 1000 psig (r.t.) hydrogen overpressure result in good, but not maximum, conversions to THF soluble with both Illinois No. 6 and Wyodak (upper seam) coals. The cumulative effects of the pretreatment steps were also examined using feedstocks which were dried in a vacuum oven at room temperature under nitrogen before liquefaction to remove the effects of moisture. Chloride removal followed by drying had a positive effect on liquefaction. Oil agglomeration followed by drying also improved liquefaction reactivity significantly. Solvent drying also resulted in a small increasemore » in liquefaction reactivity. The overall reactivity of coal treated in sequence with each pretreatment step was slightly less than that of the dry ground coal. Liquefaction under a high partial pressure of hydrogen sulfide in hydrogen also results in a significant increase in conversion to THF solubles. 1 reference, 12 figures, 7 tables.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Epler, J.L.; Fry, R.J.M.; Larimer, F.W.
1981-11-01
A multi-divisional effort aimed at the integrated assessment of the health and environmental effects of various coal conversion and shale oil technologies is being carried out. The feasibility of using health effects bioassays to predict the potential biohazard of various H-Coal derived test materials is examined in a coupled chemical and biological approach. The primary focus of the research is the use of preliminary chemical characterizations and preparation for bioassay, followed by testing in short-term assays in order to rapidly ascertain the potential biohazard. Mammalian toxicological assays parallel the testing. Raw and hydrotreated product liquids from process development units ofmore » H-Coal and the pilot plant solvent refined coal process were examined for acute toxicity monitored as population growth impairment of Tetrahymena exposed to aqueous extracts and for mutagenic activity monitored as revertants of Salmonella exposed to metabolically activated chemical class fractions. Medium to high severity hydrotreatment appears to be an effective means of reducing biological activity, presumably by reducing the aromaticity and heteroatom content. Five basic mammalian, acute toxicity tests have been conducted with selected H-coal samples and shale oil derivatives. The data show that H-Coal samples are moderately toxic whereas the toxicity of shale oil derived products is slight and comparable to samples obtained from naturally occurring petroleums. No overt skin or eye toxicity was found. The present data reveal that coal-derived distillates generated by the H-coal process are highly carcinogenic to mouse skin. An extreme form of neurotoxicity associated with dermal exposure to one of the lighter, minimally carcinogenic, materials was noted. (DMC)« less
30 CFR 74.5 - Tests of coal mine dust personal sampler units.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Tests of coal mine dust personal sampler units. 74.5 Section 74.5 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH COAL MINE DUST SAMPLING DEVICES Approval Requirements for Coal Mine Dust...
30 CFR 74.5 - Tests of coal mine dust personal sampler units.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Tests of coal mine dust personal sampler units. 74.5 Section 74.5 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH COAL MINE DUST SAMPLING DEVICES Approval Requirements for Coal Mine Dust...
30 CFR 74.5 - Tests of coal mine dust personal sampler units.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Tests of coal mine dust personal sampler units. 74.5 Section 74.5 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH COAL MINE DUST SAMPLING DEVICES Approval Requirements for Coal Mine Dust...
30 CFR 74.5 - Tests of coal mine dust personal sampler units.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Tests of coal mine dust personal sampler units. 74.5 Section 74.5 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH COAL MINE DUST SAMPLING DEVICES Approval Requirements for Coal Mine Dust...
Organic petrology and coalbed gas content, Wilcox Group (Paleocene-Eocene), northern Louisiana
Hackley, Paul C.; Warwick, Peter D.; Breland, F. Clayton
2007-01-01
Wilcox Group (Paleocene–Eocene) coal and carbonaceous shale samples collected from four coalbed methane test wells in northern Louisiana were characterized through an integrated analytical program. Organic petrographic analyses, gas desorption and adsorption isotherm measurements, and proximate–ultimate analyses were conducted to provide insight into conditions of peat deposition and the relationships between coal composition, rank, and coalbed gas storage characteristics. The results of petrographic analyses indicate that woody precursor materials were more abundant in stratigraphically higher coal zones in one of the CBM wells, consistent with progradation of a deltaic depositional system (Holly Springs delta complex) into the Gulf of Mexico during the Paleocene–Eocene. Comparison of petrographic analyses with gas desorption measurements suggests that there is not a direct relationship between coal type (sensu maceral composition) and coalbed gas storage. Moisture, as a function of coal rank (lignite–subbituminous A), exhibits an inverse relationship with measured gas content. This result may be due to higher moisture content competing for adsorption space with coalbed gas in shallower, lower rank samples. Shallower (< 600 m) coal samples consistently are undersaturated with respect to CH4 adsorption isotherms; deeper (> 600 m) coal samples containing less moisture range from under- to oversaturated with respect to their CH4adsorption capacity.
NASA Astrophysics Data System (ADS)
Tauanov, Z.; Abylgazina, L.; Spitas, C.; Itskos, G.; Inglezakis, V.
2017-09-01
Coal fly ash (CFA) is a waste by-product of coal combustion. Kazakhstan has vast coal deposits and is major consumer of coal and hence produces huge amounts of CFA annually. The government aims to recycle and effectively utilize this waste by-product. Thus, a detailed study of the physical and chemical properties of material is required as the data available in literature is either outdated or not applicable for recently produced CFA samples. The full mineralogical, microstructural and thermal characterization of three types of coal fly ash (CFA) produced in two large Kazakhstani power plants is reported in this work. The properties of CFAs were compared between samples as well as with published values.
Characterization of feed coal and coal combustion products from power plants in Indiana and Kentucky
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brownfield, M.E.; Affolter, R.H.; Cathcart, J.D.
1999-07-01
The US Geological Survey, Kentucky Geological Survey, and the University of Kentucky Center for Applied Energy Research are collaborating with Indiana and Kentucky utilities to determine the physical and chemical properties of feed coal and coal combustion products (CCP) from three coal-fired power plants. These three plants are designated as Units K1, K2, and I1 and burn high-, moderate-, and low-sulfur coals, respectively. Over 200 samples of feed coal and CCP were analyzed by various chemical and mineralogical methods to determine mode of occurrence and distribution of trace elements in the CCP. Generally, feed coals from all 3 Units containmore » mostly well-crystallized kaolinite and quartz. Comparatively, Unit K1 feed coals have higher amounts of carbonates, pyrite and sphalerite. Unit K2 feed coals contain higher kaolinite and illite/muscovite when compared to Unit K1 coals. Unit I1 feed coals contain beta-form quartz and alumino-phosphates with minor amounts of calcite, micas, anatase, and zircon when compared to K1 and K2 feed coals. Mineralogy of feed coals indicate that the coal sources for Units K1 and K2 are highly variable, with Unit K1 displaying the greatest mineralogic variability; Unit I1 feed coal however, displayed little mineralogic variation supporting a single source. Similarly, element contents of Units K1 and K2 feed coals show more variability than those of Unit I1. Fly ash samples from Units K1 and K2 consist mostly of glass, mullite, quartz, and spines group minerals. Minor amounts of illite/muscovite, sulfates, hematite, and corundum are also present. Spinel group minerals identified include magnetite, franklinite, magnesioferrite, trevorite, jacobisite, and zincochromite. Scanning Electron Microscope analysis reveals that most of the spinel minerals are dendritic intergrowths within aluminum silicate glass. Unit I1 fly ash samples contain glass, quartz, perovskite, lime, gehlenite, and apatite with minor amounts of periclase, anhydrite, carbonates, pyroxenes, and spinels. The abundant Ca mineral phases in the Unit I1 fly ashes are attributed to the presence of carbonate, clay and phosphate minerals in the coal.« less
30 CFR 90.206 - Approved sampling devices; equivalent concentrations.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Approved sampling devices; equivalent... LABOR COAL MINE SAFETY AND HEALTH MANDATORY HEALTH STANDARDS-COAL MINERS WHO HAVE EVIDENCE OF THE DEVELOPMENT OF PNEUMOCONIOSIS Sampling Procedures § 90.206 Approved sampling devices; equivalent...
Coal gasifier cogeneration powerplant project
NASA Technical Reports Server (NTRS)
Shure, L. I.; Bloomfield, H. S.
1980-01-01
Industrial cogeneration and utility pr systems were analyzed and a conceptual design study was conducted to evaluate the economic feasibility of a coal gasifier power plant for NASA Lewis Research Center. Site location, plant size, and electric power demand were considered in criteria developed for screening and selecting candidates that could use a wide variety of coals, including that from Ohio. A fluidized bed gasifier concept was chosen as the baseline design and key components of the powerplant were technically assessed. No barriers to environmental acceptability are foreseen. If funded, the powerplant will not only meet the needs of the research center, but will reduce the commercial risk for utilities and industries by fully verifying and demonstrating the technology, thus accelerating commercialization.
Graphene quantum dots, graphene oxide, carbon quantum dots and graphite nanocrystals in coals
NASA Astrophysics Data System (ADS)
Dong, Yongqiang; Lin, Jianpeng; Chen, Yingmei; Fu, Fengfu; Chi, Yuwu; Chen, Guonan
2014-06-01
Six coal samples of different ranks have been used to prepare single-layer graphene quantum dots (S-GQDs). After chemical oxidation and a series of centrifugation separation, every coal could be treated into two fractions, namely, CoalA and CoalB. According to the characterization results of TEM, AFM, XRD, Raman and FTIR, CoalA was revealed to be mainly composed of S-GQDs, which have an average height of about 0.5 nm and an average plane dimension of about 10 nm. The obtained S-GQDs showed excitation-dependent fluorescence and excellent electrochemiluminescence. CoalB was found to be some other carbon-based nanomaterials (CNMs), including agglomerated GQDs, graphene oxide, carbon quantum dots and agglomerated carbon nanocrystals. Generally, low-ranked coals might be more suitable for the preparation of S-GQDs. The production yield of S-GQDs from the six investigated coals decreased from 56.30% to 14.66% when the coal rank increased gradually. In contrast, high-ranked coals had high production yield of CoalB and might be more suitable for preparing other CNMs that were contained in CoalB, although those CNMs were difficult to separate from each other in our experiment.Six coal samples of different ranks have been used to prepare single-layer graphene quantum dots (S-GQDs). After chemical oxidation and a series of centrifugation separation, every coal could be treated into two fractions, namely, CoalA and CoalB. According to the characterization results of TEM, AFM, XRD, Raman and FTIR, CoalA was revealed to be mainly composed of S-GQDs, which have an average height of about 0.5 nm and an average plane dimension of about 10 nm. The obtained S-GQDs showed excitation-dependent fluorescence and excellent electrochemiluminescence. CoalB was found to be some other carbon-based nanomaterials (CNMs), including agglomerated GQDs, graphene oxide, carbon quantum dots and agglomerated carbon nanocrystals. Generally, low-ranked coals might be more suitable for the preparation of S-GQDs. The production yield of S-GQDs from the six investigated coals decreased from 56.30% to 14.66% when the coal rank increased gradually. In contrast, high-ranked coals had high production yield of CoalB and might be more suitable for preparing other CNMs that were contained in CoalB, although those CNMs were difficult to separate from each other in our experiment. Electronic supplementary information (ESI) available: Elemental analysis results of coal samples, FTIR spectra of CoalA and CoalB, ECL responses of CoalA/S2O82-. See DOI: 10.1039/c4nr01482k
Quality of selected coal seams from Indiana: Implications for carbonization
Walker, R.; Mastalerz, Maria; Padgett, P.
2001-01-01
The chemical properties of two high-volatile bituminous coals, the Danville Coal Member of the Dugger Formation and the Lower Block Coal Member of the Brazil Formation from southern Indiana, were compared to understand the differences in their coking behavior. It was determined that of the two, the Lower Block has better characteristics for coking. Observed factors that contribute to the differences in the coking behavior of the coals include carbon content, organic sulfur content, and oxygen/carbon (O/C) ratios. The Lower Block coal has greater carbon content than the Danville coal, leading to a lower O/C ratio, which is more favorable for coking. Organic sulfur content is higher in the Lower Block coal, and a strong correlation was found between organic sulfur and plasticity. The majority of the data for both seams plot in the Type III zone on a van Krevelen diagram, and several samples from the Lower Block coal plot into the Type II zone, suggesting a perhydrous character for those samples. This divergence in properties between the Lower Block and Danville coals may account for the superior coking behavior of the Lower Block coal. ?? 2001 Elsevier Science B.V. All rights reserved.
Quality of Selected Hungarian Coals
Landis, E.R.; Rohrbacher, T.J.; Gluskoter, H.J.; Fodor, B.; Gombar, G.
2007-01-01
As part of a program conducted jointly by the U.S. Geological Survey and the Hungarian Geological Survey under the auspices of the United States-Hungarian Science and Technology Fund, a total of 39 samples from five coal mines in Hungary were selected for analysis. The mine areas sampled represent most of the coal mined recently in Hungary. Almost all the coal is used to generate electricity. Coals from the five mines (four underground, one surface) reflect differences in age, depositional setting, organic and inorganic components of the original sediments, and deformational history. Classified according to the ranking system of the American Society for Testing and Materials, the coals range in rank from lignite B (Pliocene[?] coals) to high volatile A bituminous (Jurassic coals). With respect to grade classification, based on seam-weighted averages of moisture, ash, and sulfur contents: (1) all contain high moisture (more than 10 percent), (2) all except the Eocene coals are high (more than 15 percent) in ash yield, and (3) two (Jurassic and Eocene coals) are high in sulfur (more than 3 percent) and three (Cretaceous, Miocene, and Pliocene coals) have medium sulfur contents (1 to 3 percent). Average heat values range from 4,000 to 8,650 British thermal units per pound.
Comparison of high-pressure CO 2 sorption isotherms on Eastern and Western US coals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Romanov, V; Hur, T -B; Fazio, J
2013-10-01
Accurate estimation of carbon dioxide (CO 2) sorption capacity of coal is important for planning the CO 2 sequestration efforts. In this work, we investigated sorption and swelling behavior of several Eastern and Western US coal samples from the Central Appalachian Basin and from San Juan Basin. The CO 2 sorption isotherms have been completed at 55°C for as received and dried samples. The role of mineral components in coal, the coal swelling, the effects of temperature and moisture, and the error propagation have been analyzed. Changes in void volume due to dewatering and other factors such as temporary cagingmore » of carbon dioxide molecules in coal matrix were identified among the main factors affecting accuracy of the carbon dioxide sorption isotherms. The (helium) void volume in the sample cells was measured before and after the sorption isotherm experiments and was used to build the volume-corrected data plots.« less
NASA Astrophysics Data System (ADS)
Stanton, R. W.; Burruss, R. C.; Flores, R. M.; Warwick, P. D.
2001-05-01
Subsurface environments for geologic storage of CO2 from combustion of fossil fuel include saline formations, depleted oil and gas reservoirs, and unmineable coalbeds. Of these environments, storage in petroleum reservoirs and coal beds offers a potential economic benefit of enhanced recovery of energy resources. Meaningful assessment of the volume and geographic distribution of storage sites requires quantitative estimates of geologic factors that control storage capacity. The factors that control the storage capacity of unmineable coalbeds are poorly understood. In preparation for a USGS assessment of CO2 storage capacity we have begun new measurements of CO2 and CH4 adsorption isotherms of low-rank coal samples from 4 basins. Initial results for 13 samples of low-rank coal beds from the Powder River Basin (9 subbituminous coals), Greater Green River Basin (1 subbituminous coal), Williston Basin (2 lignites) and the Gulf Coast (1 lignite) indicate that their adsorption capacity is up to 10 times higher than it is for CH4. These values contrast with published measurements of the CO2 adsorption capacity of bituminous coals from the Fruitland Formation, San Juan basin, and Gates Formation, British Columbia, that indicate about twice as much carbon dioxide as methane can be adsorbed on coals. Because CH4 adsorption isotherms are commonly measured on coals, CO2 adsorption capacity can be estimated if thecorrect relationship between the gases is known. However, use a factor to predict CO2 adsorption that is twice that of CH4 adsorption, which is common in the published literature, grossly underestimates the storage capacity of widely distributed, thick low-rank coal beds. Complete petrographic and chemical characterization of these low-rank coal samples is in progress. Significant variations in adsorption measurements among samples are depicted depending on the reporting basis used. Properties were measured on an "as received" (moist) basis but can be converted to a dry basis, ash-free basis (moist), or dry ash-free basis to emphasize the property having the greatest effect on the adsorption isotherm. Initial results show that moisture content has a strong effect on CO2 adsorption. Our current sample base covers a limited range of coal rank and composition. Full characterization of the storage capacity of coalbeds in the US will require additional samples that cover a broader range of coal compositions, ranks, and depositional environments. Even at this preliminary stage, we can use results from the recent USGS assessment of the Powder River Basin (Wyoming and Montana) to examine the impact of these new measurements on estimates of storage capacity. At depths greater than 500 feet, the Wyodak-Anderson coal zone contains 360 billion metric tons of coal. Using the new measurements of CO2 storage capacity, this coal zone could, theoretically, sequester about 290 trillion cubic feet (TCF) of CO2. This estimate contrasts sharply with an estimated capacity of 70 TCF based on the published values for bituminous coals.
Richaud, R; Lazaro, M J; Lachas, H; Miller, B B; Herod, A A; Dugwell, D R; Kandiyoti, R
2000-01-01
1-Methyl-2-pyrrolidinone (NMP) was used to extract samples of wood (forest residue) and coal; the extracts were analysed by inductively coupled plasma mass spectrometry (ICP-MS) using two different sample preparation methods, in order to identify trace elements associated with the organic part of the samples. A sample of fly ash was similarly extracted and analysed in order to assess the behaviour of the mineral matter contained within the wood and coal samples. 32% of the biomass was extracted at the higher temperature and 12% at room temperature while only 12% of the coal was extracted at the higher temperature and 3% at room temperature. Less than 2% of the ash dissolved at the higher temperature. Size exclusion chromatograms of the extracts indicated the presence of significant amounts of large molecular mass materials (>1000 mu) in the biomass and coal extracts but not in the ash extract. Trace element analyses were carried out using ICP-MS on the acid digests prepared by 'wet ashing' and microwave extraction. Sixteen elements (As, Ba, Be, Cd, Co, Cr, Cu, Ga, Mn, Mo, Ni, Pb, Sb, Se, V and Zn) were quantified, in the samples before extraction, in the extracts and in the residues. Concentrations of trace elements in the original biomass sample were lower than in the coal sample while the concentrations in the ash sample were the highest. The major trace elements in the NMP extracts were Ba, Cu, Mn and Zn from the forest residue; Ba, Cu, Mn, Pb and Zn from the coal; Cu and Zn from the ash. These elements are believed to be associated with the organic extracts from the forest residue and coal, and also from the ash. Be and Sb were not quantified in the extracts because they were present at too low concentrations; up to 40% of Mn was extracted from the biomass sample at 202 degrees C, while Se was totally extracted from the ash sample. For the forest residue, approximately 7% (at room temperature) and 45% (at 202 degrees C) of the total trace elements studied were in the extract; for the coal, approximately 8% (at room temperature) and 23% (at 202 degrees C) were in the extract. For the ash, only 1.4% of the trace elements were extracted at 202 degrees C, comprising 25% of Cd but less than 1% of Pb. Copyright 2000 John Wiley & Sons, Ltd.
Karacan, C Özgen; Olea, Ricardo A
2018-03-01
Chemical properties of coal largely determine coal handling, processing, beneficiation methods, and design of coal-fired power plants. Furthermore, these properties impact coal strength, coal blending during mining, as well as coal's gas content, which is important for mining safety. In order for these processes and quantitative predictions to be successful, safer, and economically feasible, it is important to determine and map chemical properties of coals accurately in order to infer these properties prior to mining. Ultimate analysis quantifies principal chemical elements in coal. These elements are C, H, N, S, O, and, depending on the basis, ash, and/or moisture. The basis for the data is determined by the condition of the sample at the time of analysis, with an "as-received" basis being the closest to sampling conditions and thus to the in-situ conditions of the coal. The parts determined or calculated as the result of ultimate analyses are compositions, reported in weight percent, and pose the challenges of statistical analyses of compositional data. The treatment of parts using proper compositional methods may be even more important in mapping them, as most mapping methods carry uncertainty due to partial sampling as well. In this work, we map the ultimate analyses parts of the Springfield coal from an Indiana section of the Illinois basin, USA, using sequential Gaussian simulation of isometric log-ratio transformed compositions. We compare the results with those of direct simulations of compositional parts. We also compare the implications of these approaches in calculating other properties using correlations to identify the differences and consequences. Although the study here is for coal, the methods described in the paper are applicable to any situation involving compositional data and its mapping.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cada, G.F.
H-coal is a process for the direct liquefaction of coal to produce synthetic fuels. Its development has progressed from bench-scale testing through operation of a 2.7 Mg/d (3 ton/d) Process Development Unit. A large-scale H-Coal pilot plant is presently operating at Catlettsburg, Kentucky, and there are plans for the construction of a commercial H-Coal liquefaction facility by the end of the decade. Two of the environmental concerns of the developing direct coal liquefaction industry are accidental spills of synthetic oils and treatment/storage of solid wastes. As a means of obtaining preliminary information on the severity of these potential impacts wellmore » in advance of commercialization, samples of product oils and solid wastes were obtained from the H-Coal Process Development Unit (PDU). These samples were subjected to a battery of rapid screening tests, including chemical characterization and bioassays with a variety of aquatic and terrestrial organisms. Water-soluble fraction (WSFs) of H-Coal PDU oils had considerably higher concentrations of phenols and anilines and were commonly one to two orders of magnitude more toxic to aquatic organisms than WSFs of analogous petroleum crude oil. Whole H-Coal PDU oils were also more toxic to the cricket than petroleum-based oils, and some H-Coal samples showed evidence of teratogenicity. Leachates from H-Coal PDU solid wastes, on the other hand, had relatively low concentrations of selected elements and had essentially no acute toxicity to a variety of aquatic and terrestrial species. These studies indicate that environmental effects of product oil spills from a commercial H-Coal liquefaction plant are likely to be more severe than those of conventional petroleum spills. Product upgrading or special transportation and storage techniques may be needed to ensure environmentally sound commercialization of the H-Coal process.« less
Gas-turbine critical research and advanced technology support project
NASA Technical Reports Server (NTRS)
Clark, J. S.; Lowell, C. E.; Niedzwiecki, R. W.; Nainiger, J. J.
1979-01-01
The technical progress made during the first 15 months of a planned 40-month project to provide a critical-technology data base for utility gas-turbine systems capable of burning coal-derived fuels is summarized. Tasks were included in the following areas: (1) combustion, to study the combustion of coal-derived fuels and conversion of fuel-bound nitrogen to NOx; (2) materials, to understand and prevent hot corrosion; and (3) system studies, to integrate and guide the other technologies. Significant progress was made.
NASA Astrophysics Data System (ADS)
1980-08-01
The technologies selected for the detailed characterization were: solar technology; terrestrial photovoltaic (200 MWe); coal technologies; conventional high sulfur coal combustion with advanced fine gas desulfurization (1250 MWe), and open cycle gas turbine combined cycle plant with low Btu gasifier (1250 MWe); and nuclear technologies: conventional light water reactor (1250 MWe), liquid metal fast breeder reactor (1250 MWe), and magnetic fusion reactor (1320 MWe). A brief technical summary of each power plant design is given.
SRC-I demonstration plant analytical laboratory methods manual. Final technical report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klusaritz, M.L.; Tewari, K.C.; Tiedge, W.F.
1983-03-01
This manual is a compilation of analytical procedures required for operation of a Solvent-Refined Coal (SRC-I) demonstration or commercial plant. Each method reproduced in full includes a detailed procedure, a list of equipment and reagents, safety precautions, and, where possible, a precision statement. Procedures for the laboratory's environmental and industrial hygiene modules are not included. Required American Society for Testing and Materials (ASTM) methods are cited, and ICRC's suggested modifications to these methods for handling coal-derived products are provided.
Trace and major element pollution originating from coal ash suspension and transport processes.
Popovic, A; Djordjevic, D; Polic, P
2001-04-01
Coal ash obtained by coal combustion in the "Nikola Tesla A" power plant in Obrenovac, near Belgrade, Yugoslavia, is mixed with water of the Sava river and transported to the dump. In order to assess pollution caused by leaching of some minor and major elements during ash transport through the pipeline, two sets of samples (six samples each) were subjected to a modified sequential extraction. The first set consisted of coal ash samples taken immediately after combustion, while the second set was obtained by extraction with river water, imitating the processes that occur in the pipeline. Samples were extracted consecutively with distilled water and a 1 M solution of KCl, pH 7, and the differences in extractability were compared in order to predict potential pollution. Considering concentrations of seven trace elements as well as five major elements in extracts from a total of 12 samples, it can be concluded that lead and cadmium do not present an environmental threat during and immediately after ash transport to the dump. Portions of zinc, nickel and chromium are released during the ash transport, and arsenic and manganese are released continuously. Copper and iron do not present an environmental threat due to element leaching during and immediately after the coal ash suspension and transport. On the contrary, these elements, as well as chromium, become concentrated during coal ash transport. Adsorbed portions of calcium, magnesium and potassium are also leached during coal ash transport.
Coalbed methane resource potential and current prospects in Pennsylvania
Markowski, A.K.
1998-01-01
Coalbed methane gas content analyses from exploratory coal cores and existing data indicate that gas content generally increases with increasing depth and rank. The coal beds studied are from the Main Bituminous field of Pennsylvania (which currently contains 24 coalbed methane pools) and the Northern and Southern Anthracite coal fields. They range from the Middle Pennsylvanian Allegheny Group to the Late Pennsylvanian-Early Permian Dunkard Group. Previous US Bureau of Mines studies revealed gas contents from 0.4 to 13.8 cm3/g at depths of 99 to 432 m for the bituminous coal beds of the Allegheny Group. More recent core data from the Allegheny Group yielded gas contents from 2.2 to 8.9 cm3/g at depths from 167 to 387 m. In the Anthracite region of eastern Pennsylvania, the little data that are available show that gas content is anomalously high or low. Gas yields from test holes in eastern Pennsylvania are low with or without artificial stimulation mainly due to the lack of a good cleat system. Overall estimates of coalbed methane resources indicate there may be 1.7 Tm3 (61 Tcf) of gas-in-place contained in the Northern Appalachian coal basin. The amount of technically recoverable coalbed methane resources is projected by the US Geological Survey National Oil and Gas Resource Assessment Team [US Geological Survey National Oil and Gas Resource Assessment Team, 1996. 1995 National assessment of United States oil and gas resources-results, methodology, and supporting data, US Geological Survey Digital Data Series DDS-30, CD-ROM, Denver, CO, 80 pp.] and Lyons [Lyons, P.C., 1997. Central-northern Appalachian coalbed methane flow grows. Oil and Gas Journal 95 (27) 76-79] at 0.3 Tm3 (11.48 Tcf). This includes portions of Pennsylvania, Ohio, West Virginia, and a small part of Maryland. Consequently, a mapping investigation was conducted to evaluate the regional geology of the bituminous coal-bearing intervals in southwestern Pennsylvania and its influence on coalbed methane potential. Phase I of this study involved the entire Pennsylvanian coal-bearing interval of southwestern Pennsylvania. Phase II focused on a stratigraphic delineation and evaluation of Allegheny Group coal beds and associated sandstones. Several prospective coal beds and associated facies relationships with channel-fill sandstones were determined. Possible non-coal scenarios for coalbed methane include erosional contacts between coal beds and overlying channel-fill sandstones and areas of stacked channel-fill sandstones. Repetitive sequences of coal accumulation are stacked, commonly with shale interburden, and are also potential coalbed methane targets. Additional Pennsylvania Geological Survey drilling/coalbed methane sampling occurred in Armstrong, Beaver, Cambria, Greene, Lawrence, Somerset, and Washington Counties. Raw coalbed methane desorption data tables/graphical displays of gas contents versus depth, thickness, and time, and average composition and heating values from coal beds of the Allegheny Group to the Dunkard Group are available at the Pennsylvania Geological Survey. Further information on cross-sections, isopleth maps, isopach maps, raw drillhole data, and ownership issues can also be obtained from the same source.A mapping of the regional geology of the bituminous coal-bearing intervals in southwestern Pennsylvania reveal several prospective coal beds and associated facies relationships with channel-fill sandstones. Possible non-coal scenarios for coalbed methane include erosional contacts between coalbeds and overlying channel-fill sandstones and areas of stacked channel-fill sandstones. Repetitive sequences of coal accumulation are stacked, commonly with shale interburden. and are also potential coalbed methane targets.
JV Task 120 - Coal Ash Resources Research Consortium Research
DOE Office of Scientific and Technical Information (OSTI.GOV)
Debra Pflughoeft-Hassett; Loreal Heebink; David Hassett
2009-03-28
The Coal Ash Resources Research Consortium{reg_sign} (CARRC{reg_sign}, pronounced 'cars') is the core coal combustion product (CCP) research group at the Energy & Environmental Research Center (EERC). CARRC focuses on performing fundamental and applied scientific and engineering research emphasizing the environmentally safe, economical use of CCPs. CARRC member organizations, which include utilities and marketers, are key to developing industry-driven research in the area of CCP utilization and ensuring its successful application. The U.S. Department of Energy is a partner in CARRC through the EERC Jointly Sponsored Research Program, which provides matching funds for industrial member contributions and facilitates an increased levelmore » of effort in CARRC. CARRC tasks were designed to provide information on CCP performance, including environmental performance, engineering performance, favorable economics, and improved life cycle of products and projects. CARRC technical research tasks are developed based on member input and prioritization. CARRC special projects are developed with members and nonmembers to provide similar information and to support activities, including the assembly and interpretation of data, support for standards development and technology transfer, and facilitating product development and testing. CARRC activities from 2007 to 2009 included a range of research tasks, with primary work performed in laboratory tasks developed to answer specific questions or evaluate important fundamental properties of CCPs. The tasks were included in four categories: (1) Environmental Evaluations of CCPs; (2) Evaluation of Impacts on CCPs from Emission Controls; (3) Construction and Product-Related Activities; and (4) Technology Transfer and Maintenance Tasks. All tasks are designed to work toward achieving the CARRC overall goal and supporting objectives. The various tasks are coordinated in order to provide broad and useful technical data for CARRC members. Special projects provide an opportunity for non-CARRC members to sponsor specific research or technology transfer consistent with CARRC goals. This report covers CARRC activities from January 2007 through March 2009. These activities have been reported in CARRC Annual Reports and in member meetings over the past 2 years. CARRC continues to work with industry and various government agencies with its research, development, demonstration, and promotional activities nearing completion at the time of submission of this report. CARRC expects to continue its service to the coal ash industry in 2009 and beyond to work toward the common goal of advancing coal ash utilization by solving CCP-related technical issues and promoting the environmentally safe, technically sound, and economically viable management of these complex and changing materials.« less
Proceedings of the conference on alternative energy sources for Texas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rothman, I.N.
1981-01-01
Four primary areas of study for alternative energy sources for Texas are considered. These are: energy demand supply and economics; prospects for energy resources (oil, lignite, coal, nuclear, goethermal and solar) and conservation; financial and technical constraints; and future planning. The following papers are presented: US energy outlook to 1990; energy supply and demand projections; comparative economics of solar energy in the generation of big power; gas present and future prospects; prospects for enhanced recovery of oil in Texas; the outlook for coal in USA; implementation of nuclear power in Texas; future outlook - geopressured-geothermal energy for Texas; future prospectsmore » for conservation and solar energy; financing and money supply constraints; technical constraints to energy supply increase; planning for the future - the crisis that drones on. Two papers have been abstracted separately.« less
Photothermal method for in situ microanalysis of the chemical composition of coal samples
Amer, Nabil M.
1986-01-01
Successive minute regions (13) along a scan path on a coal sample (11) are individually analyzed, at a series of different depths if desired, to determine chemical composition including the locations, sizes and distributions of different maceral inclusions (12). A sequence of infrared light pulses (17) of progressively changing wavelengths is directed into each minute region (13) and a probe light beam (22) is directed along the sample surface (21) adjacent the region (13). Infrared wavelengths at which strong absorption occurs in the region (13) are identified by detecting the resulting deflections (.phi.) of the probe beam (22) caused by thermally induced index of refraction changes in the air or other medium (19) adjacent the region (13). The detected peak absorption wavelengths are correlated with known characteristic peak absorption wavelengths of specific coal constituents to identify the composition of each such minute region (13) of the sample (11). The method enables rapid, convenient and non-destructive analyses of coal specimens to facilitate mining, processing and utilization of coals.
Photothermal method for in situ microanalysis of the chemical composition of coal samples
Amer, N.M.
1983-10-25
Successive minute regions along a scan path on a coal sample are individually analyzed, at a series of different depths if desired, to determine chemical composition including the locations, sizes and distributions of different maceral inclusions. A sequence of infrared light pulses of progressively changing wavelengths is directed into each minute region and a probe light beam is directed along the sample surface adjacent the region. Infrared wavelengths at which strong absorption occurs in the region are identified by detecting the resulting deflections of the probe beam caused by thermally induced index of refraction changes in the air or other medium adjacent the region. The detected peak absorption wavelengths are correlated with known characteristic peak absorption wavelengths of specific coal constituents to identify the composition of each such minute region of the sample. The method enables rapid, convenient and non-destructive analyses of coal specimens to facilitate mining, processing and utilization of coals. 2 figures.
Co-pyrolysis characteristic of biomass and bituminous coal.
Li, Shuaidan; Chen, Xueli; Liu, Aibin; Wang, Li; Yu, Guangsuo
2015-03-01
Co-pyrolysis characteristics of biomass and bituminous coal have been studied in this work. The temperature was up to 900°C with the heating rates of 10, 15, 20, 25 and 30°C/min. Rice straw, saw dust, microcrystalline cellulose, lignin and Shenfu bituminous coal were chosen as samples. Six different biomass ratios were used. The individual thermal behavior of each sample was obtained. The experimental weight fractions of the blended samples and the calculated values were compared. The results show that the weight fractions of the blended samples behave differently with calculated ones during the co-pyrolysis process. With the increasing biomass ratio, relative deviations between experimental weight fractions and calculated ones are larger. H/C molar ratio, heat transfer properties of biomass would affect to the interaction between biomass and coal. The maximum degradation rates are slower than the calculated ones. The activation energy distributions also changed by adding some biomass into coal. Copyright © 2014 Elsevier Ltd. All rights reserved.
Sequential solvent extraction for forms of antimony in five selected coals
Qi, C.; Liu, Gaisheng; Kong, Y.; Chou, C.-L.; Wang, R.
2008-01-01
Abundance of antimony in bulk samples has been determined in five selected coals, three coals from Huaibei Coalfield, Anhui, China, and two from the Illinois Basin in the United States. The Sb abundance in these samples is in the range of 0.11-0.43 ??g/g. The forms of Sb in coals were studied by sequential solvent extraction. The six forms of Sb are water soluble, ion changeable, organic matter bound, carbonate bound, silicate bound, and sulfide bound. Results of sequential extraction show that silicate-bound Sb is the most abundant form in these coals. Silicate- plus sulfide-bound Sb accounts for more than half of the total Sb in all coals. Bituminous coals are higher in organic matterbound Sb than anthracite and natural coke, indicating that the Sb in the organic matter may be incorporated into silicate and sulfide minerals during metamorphism. ?? 2008 by The University of Chicago. All rights reserved.
30 CFR 90.205 - Approved sampling devices; operation; air flowrate.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Approved sampling devices; operation; air... LABOR COAL MINE SAFETY AND HEALTH MANDATORY HEALTH STANDARDS-COAL MINERS WHO HAVE EVIDENCE OF THE DEVELOPMENT OF PNEUMOCONIOSIS Sampling Procedures § 90.205 Approved sampling devices; operation; air flowrate...
Morrow, William S.
2007-01-01
The Metropolitan Water Reclamation District of Greater Chicago has applied biosolids, followed by revegetation, to reclaim three coal-refuse areas. Most of the reclamation at the three sites was done from 1989 through 1992, and included the application of lime, clay, and various loads of biosolids up to 1,000 dry tons per acre. Water samples collected from 12 monitoring wells installed in the vicinity of the three reclaimed coal-refuse areas were analyzed to better understand the hydrogeology and water-quality effects. Ground water probably flows along preferential paths in the disturbed coal-refuse areas, and is impeded by undisturbed glacial till. Most of the samples contained elevated concentrations of sulfate, iron, and manganese, constituents associated with ground water in coal-mined areas. Concentrations of aluminum, cadmium, nickel, or zinc were somewhat elevated in samples from four wells, and greatest in water samples with pH less than 5. The smaller nutrient concentrations indicate that the applied biosolids are not identifiably affecting nutrients or metal concentrations in shallow ground water near the refuse piles. The coal refuse likely is the primary influence on the chemical characterization of ground-water in the area.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cavallaro, J.A.; Deurbrouck, A.W.; Killmeyer, R.P.
1991-02-01
This report presents the washability and comprehensive characterization results of 184 raw coal channel samples, including anthracite, bituminous and lignite coals, collected from the Central Region of the United States. This is the second of a three volume report on the coals of the United States. All the data are presented in six appendices. Statistical techniques and definitions are presented in Appendix A, and a glossary of terms is presented in Appendix B. The complete washability data and an in-depth characterization of each sample are presented alphabetically by state in Appendix C. In Appendix D, a statistical evaluation is givenmore » for the composited washability data, selected chemical and physical properties and washability data interpolated at various levels of Btu recovery. This presentation is shown by state, section, and region where four or more samples were collected. Appendix E presents coalbed codes and names for the Central Region coals. Graphical summations are presented by state, section and region showing the effects of crushing on impurity reductions, and the distribution of raw and clean coal samples meeting various levels of SO{sub 2} emissions. 35 figs., 5 tabs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cronauer, D.C.; Swanson, A.J.; Sajkowski, D.J.
Research under way in this project centers upon developing and evaluating catalysts and process improvements for coal liquefaction in the two-stage close-coupled catalytic process. As documented in the previous quarterly report there was little advantage for presoaking Black Thunder coal or Martin Lake lignite in a hydrogen-donor solvent, such as tetralin, at temperatures up to 600{degrees}F prior to liquefaction at higher temperatures. The amount of decarboxylation that occurred during the presoaking of Black Thunder coal or Martin Lake lignite in tetralin in the temperature range of 400 to 600{degrees}F was also relatively small. As indicated by both CO{sub 2} releasemore » and the change in oxygen-containing coal functionality, the level of decarboxylation in coal-derived solvent seems to correlate with the depth of coal dissolution. The feedstock liquefaction studies for the three feedstocks (Black Thunder subbituminous coal, Martin Lake lignite, and Illinois No. 6 coal) have been completed, and their results were compared in this report. Both Black Thunder coal and Martin Lake lignite gave lighter products than Illinois No. 6 coal at similar process conditions. Severe catalyst deactivation in the first stage was also observed with the Martin Lake lignite run. The first stage catalyst testing program was started. After a successful reference run with Illinois No. 6 coal, a high temperature run with AMOCAT{trademark} 1C was completed. In addition, a run was made with Illinois No. 6 coal using an oil-soluble catalyst, Molyvan L, in the first stage and AMOCAT{trademark} 1C in the second stage, where preliminary run results look promising.« less
A Method of Effective Quarry Water Purifying Using Artificial Filtering Arrays
NASA Astrophysics Data System (ADS)
Tyulenev, M.; Garina, E.; Khoreshok, A.; Litvin, O.; Litvin, Y.; Maliukhina, E.
2017-01-01
The development of open pit mining in the large coal basins of Russia and other countries increases their negative impact on the environment. Along with the damage of land and air pollution by dust and combustion gases of blasting, coal pits have a significant negative impact on water resources. Polluted quarry water worsens the ecological situation on a much larger area than covered by air pollution and land damage. This significantly worsens the conditions of people living in cities and towns located near the coal pits, and complicates the subsequent restoration of the environment, irreversibly destroying the nature. Therefore, the research of quarry wastewater purifying is becoming an important mater for scholars of technical colleges and universities in the regions with developing open-pit mining. This paper describes the method of determining the basic parameters of the artificial filtering arrays formed on coal pits of Kuzbass (Western Siberia, Russia), and gives recommendations on its application.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
From November 1991 to April 1996, Kerr McGee Coal Corporation (K-M Coal) led a project to develop the Institute of Gas Technology (IGT) Mild Gasification (MILDGAS) process for near-term commercialization. The specific objectives of the program were to: design, construct, and operate a 24-tons/day adiabatic process development unit (PDU) to obtain process performance data suitable for further design scale-up; obtain large batches of coal-derived co-products for industrial evaluation; prepare a detailed design of a demonstration unit; and develop technical and economic plans for commercialization of the MILDGAS process. The project team for the PDU development program consisted of: K-M Coal,more » IGT, Bechtel Corporation, Southern Illinois University at Carbondale (SIUC), General Motors (GM), Pellet Technology Corporation (PTC), LTV Steel, Armco Steel, Reilly Industries, and Auto Research.« less
New Technical Solution for Vertical Shaft Equipping Using Steel Headframe of Multifunction Purpose
NASA Astrophysics Data System (ADS)
Kassikhina, Elena; Pershin, Vladimir; Glazkov, Yurij
2017-11-01
The article reviews a novel approach to the design of steel angle headframe for vertical shafts of coal and ore mines on the basis of rational design solutions. Practice of construction of coal and ore mines provides application of various designs for steel angle headframes which are divided into separate large assembly blocks and constructive elements during assembling operations. Design of these blocks and elements, their weight and dimensions effect the chose of the method of assembling on which economic and technological indicators, as well as duration of down-time, depend on during performance of construction operations in shaft. The technical solution on equipment provision for mine vertical shaft using headframe of multifunctional purpose will allow changing the management construction of vertical shaft. The constructive design of the headgear allows application of the effective method of assembly and thus to provide improvement of the technical and economic indexes, and high calendar time rate of the shaft construction due to reduction of duration of works on equipment provision for the shaft and to refurbishment of the shaft in order to carry out horizontal mining.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Folkedahl, Bruce
Much attention has been focused on renewable energy use in large-scale utilities and very small scale distributed energy systems. However, there is little information available regarding renewable energy options for midscale municipal utilities. The Willmar Municipal Utilities Corn Cob-Coal Co-Combustion Project was initiated to investigate opportunities available for small to midscale municipal utilities to "go green". The overall goal of the Project was to understand the current renewable energy research and energy efficiency projects that are or have been implemented at both larger and smaller scale and determine the applicability to midscale municipal utilities. More specific objectives for Task 2.0more » of this project were to determine the technical feasibility of co-combusting com cobs with coal in the existing WMU boiler, and to identify any regulatory issues that might need to be addressed if WMU were to obtain a significant portion of its heat from such co-combustion. This report addresses the issues as laid out in the study proposal. The study investigated the feasibility of and demonstrated the technical effectiveness of co-combusting corn cobs with coal in the Willmar Municipal Utilities stoker boiler steam generation power plant. The results of the WMU Co-Combustion Project will serve as a model for other midscale utilities who wish to use corn cobs to generate renewable electrical energy. As a result of the Co-Combustion Project, the WMU plans to upgrade their stoker boiler to accept whole corn cobs as well as other types of biomass, while still allowing the fuel delivery system to use 100% coal as needed. Benefits of co-combustion will include: energy security, reduced Hg and CO 2 air emissions, improved ash chemistry, potential future carbon credit sales, an immediate positive effect on the local economy, and positive attention focused on the WMU and the City of Willmar. The first step in the study was to complete a feasibility analysis. The feasibility analysis anticipated only positive results from the combustion of corn cobs with coal in the WMU power plant boiler, and therefore recommended that the project proceed. The study proceeded with a review of the existing WMU Power Plant configuration; cob fuel analyses; an application for an Air Quality Permit from the Minnesota Pollution Control Agency to conduct the co-combustion test burns; identification of and a site visit to a similar facility in Iowa; an evaluation of cob grinding machines; and agreements with a corn grower, a cob harvester, and the City of Willmar to procure, harvest, and store cobs. The WMU power plant staff constructed a temporary cob feed system whereby the cobs could be injected into the #3 Boiler firebox, at rates up to 40% of the boiler total heat input. Test burns were conducted, during which air emissions were monitored and fuel and ash samples analyzed. The results of the test burns indicated that the monitored flue gas quality improved slightly during the test burns. The WMU was able to determine that modifications to the #3 Boiler fuel feed system to accept com cobs on a permanent basis would be technically feasible and would enable the WMU to generate electricity from renewable fuels on a dispatchable basis.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cavallaro, J.A.; Deurbrouck, A.W.; Killmeyer, R.P.
1991-06-01
This report presents the washability and comprehensive characterization results of 247 raw coal channel samples, including anthracite, bituminous and lignite coals, collected from the Western Region of the United States. Although the Western Region includes Alaska, coal data from this state will often be cited apart from the Western Region data from the lower United States. This is the third of a three volume report on the coals of the United States. All the data are presented in six appendices. Statistical techniques and definitions are presented in Appendix A, and a glossary of terms is presented in Appendix B. Themore » complete washability data and an in-depth characterization of each sample are presented alphabetically by state in Appendix C. In Appendix D, a statistical evaluation is given for the composited washability data, selected chemical and physical properties, and washability data interpolated at various levels of Btu recovery. This presentation is shown by state, section, and region where four or more samples were collected. Appendix E presents coalbed codes and names for the Western Region coals. Graphical summations are presented by state, rank, and region showing the effects of crushing on impurity reductions, and the distribution of raw and clean coal samples meeting various levels of SO{sub 2} emissions. 35 figs., 3 tabs.« less
Arsenic in coal of the Thar coalfield, Pakistan, and its behavior during combustion.
Ali, Jamshed; Kazi, Tasneem G; Baig, Jameel A; Afridi, Hassan I; Arain, Mariam S; Brahman, Kapil D; Naeemullah; Panhwar, Abdul H
2015-06-01
The aim of the current study is to evaluate the occurrence of arsenic in coal collected from Thar coalfield, Pakistan, and its behavior during the combustion. Fractionation of arsenic (As) in coal samples was carried out by Community Bureau of Reference sequential extraction scheme (BCR-SES) and single-step-based BCR method (BCR-SS). These methods are validated using the certified reference material of sediment BCR 701 and standard addition method. The stepwise fractions of As in laboratory-made ash (LMA) have been also investigated. The extractable As content associated with different phases in coal and LMA samples were analyzed by electrothermal atomic absorption spectrophotometer. The extraction efficiency of As by BCR-SS was slightly higher than BCR-SES, while the difference was not significant (p < 0.05). The BCR-SS method is a time-saving method because it can reduce the extraction time from 51 to 22 h. The As contents in LMA revealed that during combustion of the coal, >85 % of As may be released into atmosphere. The relative mobility of As in the coal samples was found in increasing order as follows: oxidizable fraction < reducible fraction < acid soluble fraction. The total and extractable As obtained by BCR-SES and BCR-SS were higher in coal samples of block III as compared to block V (p > 0.05).
Trace elements by instrumental neutron activation analysis for pollution monitoring
NASA Technical Reports Server (NTRS)
Sheibley, D. W.
1975-01-01
Methods and technology were developed to analyze 1000 samples/yr of coal and other pollution-related samples. The complete trace element analysis of 20-24 samples/wk averaged 3-3.5 man-hours/sample. The computerized data reduction scheme could identify and report data on as many as 56 elements. In addition to coal, samples of fly ash, bottom ash, crude oil, fuel oil, residual oil, gasoline, jet fuel, kerosene, filtered air particulates, ore, stack scrubber water, clam tissue, crab shells, river sediment and water, and corn were analyzed. Precision of the method was plus or minus 25% based on all elements reported in coal and other sample matrices. Overall accuracy was estimated at 50%.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Looney, J.H.; Im, C.J.
Under the sponsorship of DOE/METC, UCC Research completed a program in 1984 concerned with the development, testing, and manufacture of an ultra-clean coal-water mixture fuel using the UCC two-stage physical beneficiation and coal-water mixture preparation process. Several gallons of ultra-clean coal-water slurry produced at the UCC Research pilot facility was supplied to DOE/METC for combustion testing. The finalization of this project resulted in the presentation of a conceptual design and economic analysis of an ultra-clean coal-water mixture processing facility sufficient in size to continuously supply fuel to a 100 MW turbine power generation system. Upon completion of the above program,more » it became evident that substantial technological and economic improvement could be realized through further laboratory and engineering investigation of the UCC two-stage physical beneficiation process. Therefore, as an extension to the previous work, the purpose of the present program was to define the relationship between the controlling technical parameters as related to coal-water slurry quality and product price, and to determine the areas of improvement in the existing flow-scheme, associated cost savings, and the overall effect of these savings on final coal-water slurry price. Contents of this report include: (1) introduction; (2) process refinement (improvement of coal beneficiation process, different source coals and related cleanability, dispersants and other additives); (3) coal beneficiation and cost parametrics summary; (4) revised conceptual design and economic analysis; (5) operating and capital cost reduction; (6) conclusion; and (7) appendices. 24 figs., 12 tabs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cronauer, D.C.; Swanson, A.J.; Sajkowski, D.J.
Research under way in this project centers upon developing and evaluating catalysts and process improvements for coal liquefaction in the two-stage, close-coupled catalytic process. As discussed in the previous quarterly report, the feedstock liquefaction studies for the three feedstocks (Black Thunder subbituminous coal, Martin Lake lignite, and Illinois No. 6 coal) were completed. Both Black Thunder coal and Martin Lake lignite gave lighter products than Illinois No. 6 coal at similar process conditions. Severe catalyst deactivation in the first stage was also observed with the Martin Lake lignite run. The first stage catalyst testing program was started (Task 3.2.1). Aftermore » a successful reference run with Illinois No. 6 coal, a high-temperature run with AMOCAT{trademark} 1C was completed, where the results showed that the first stage temperature should be no higher than 820{degrees}F. In addition, several runs were made both with Illinois No. 6 and Black Thunder coals using oil-soluble catalysts, Molyvan L, and molybdenum octoate in one or both stages. Overall, the results look very promising and show that dispersed molybdenum catalysts are good alternatives for Stage 1 or both 1 and 2, especially for Illinois No. 6 coal. In the case of Black Thunder coal, the conversion and yields were good, although the product quality was poorer, however, the use of slurry catalysts is still recommended.« less
Vassallo, A.M.; Wilson, M.A.; Collin, P.J.; Oades, J.M.; Waters, A.G.; Malcolm, R.L.
1987-01-01
An examination of coals, coal tars, a fulvic acid, and soil fractions by solid-state 13C NMR spectrometry has demonstrated widely differing behavior regarding quantitative representation in the spectrum. Spin counting experiments on coal tars and the fulvic acid show that almost all the sample carbon is observed in both solution and solid-state NMR spectra. Similar experiments on two coals (a lignite and a bituminous coal) show that most (70-97%) of the carbon is observed; however, when the lignite is ion exchanged with 3% (w/w) Fe3+, the fraction of carbon observed drops to below 10%. In additional experiments signal intensity from soil samples is enhanced by a simple dithionite treatment. This is illustrated by 13C, 27Al, and 29Si solid-state NMR experiments on soil fractions. ?? 1987 American Chemical Society.
NASA Astrophysics Data System (ADS)
Manoj, B.; Kunjomana, A. G.
2015-02-01
The results of the structural investigation of three Indian coals showed that, the structural parameters like fa & Lc increased where as interlayer spacing d002 decreased with increase in carbon content, aromaticity and coal rank. These structural parameters change just opposite with increase in volatile matter content. Considering the 'turbostratic' structure for coals, the minimum separation between aromatic lamellae was found to vary between 3.34 to 3.61 A° for these coals. As the aromaticity increased, the interlayer spacing decreased an indication of more graphitization of the sample. Volatile matter and carbon content had a strong influence on the aromaticity, interlayer spacing and stacking height on the sample. The average number of carbon atoms per aromatic lamellae and number of layers in the lamellae was found to be 16-21 and 7-8 for all the samples.
Analysis of eight argonne premium coal samples by X-ray fluorescence spectrometry
Evans, J.R.; Sellers, G.A.; Johnson, R.G.; Vivit, D.V.; Kent, J.
1990-01-01
X-ray fluorescence spectrometric methods were used in the analysis of eight Argonne Premium Coal Samples. Trace elements (Cr, Ni, Cu, Zn, Rb, Sr, Y, Zr, Nb, Ba, La, and Ce) in coal ash were determined by energy-dispersive X-ray fluorescence spectrometry; major elements (Na, Mg, Al, Si, P, S, K, Ca, Ti, Mn, and Fe) in coal ash and trace elements (Cl and P) in whole coal were determined by wavelength-dispersive X-ray fluorescence spectrometry. The results of this study will be used in a geochemical database compiled for these materials from various analytical techniques. The experimental XRF methods and procedures used to determine these major and trace elements are described.
The World Coal Quality Inventory: A status report
Tewalt, S.J.; Willett, J.C.; Finkelman, R.B.
2005-01-01
National and international policy makers and industry require accurate information on coal, including coal quality data, to make informed decisions regarding international import needs and export opportunities, foreign policy, technology transfer policies, foreign investment prospects, environmental and health assessments, and byproduct use and disposal issues. Unfortunately, the information needed is generally proprietary and does not exist in the public domain. The U.S. Geological Survey (USGS), in conjunction with partners in about 60 countries, is developing a digital compilation of worldwide coal quality. The World Coal Quality Inventory (WoCQI) will contain coal quality information for samples obtained from major coal beds in countries having significant coal production, as well as from many countries producing smaller volumes of coal, with an emphasis on coals currently being burned. The information that will be incorporated includes, but is not limited to, proximate and ultimate analyses; sulfur-form data; major, minor, and trace element analysis; and semi-quantitative analyses of minerals, modes of occurrence, and petrography. The coal quality information will eventually be linked to a Geographic Information System (GIS) that shows the coal basins and sample locations along with geologic, land use, transportation, industrial, and cultural information. The WoCQI will be accessible on the USGS web page and new data added periodically. This multi-national collaboration is developing global coal quality data that contain a broad array of technologic, economic, and environmental parameters, which should help to ensure the efficient and environmentally compatible use of global coal resources in the 21st century.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Annette Rohr
2006-03-01
TERESA (Toxicological Evaluation of Realistic Emissions of Source Aerosols) involves exposing laboratory rats to realistic coal-fired power plant and mobile source emissions to help determine the relative toxicity of these PM sources. There are three coal-fired power plants in the TERESA program; this report describes the results of fieldwork conducted at the first plant, located in the Upper Midwest. The project was technically challenging by virtue of its novel design and requirement for the development of new techniques. By examining aged, atmospherically transformed aerosol derived from power plant stack emissions, we were able to evaluate the toxicity of PM derivedmore » from coal combustion in a manner that more accurately reflects the exposure of concern than existing methodologies. TERESA also involves assessment of actual plant emissions in a field setting--an important strength since it reduces the question of representativeness of emissions. A sampling system was developed and assembled to draw emissions from the stack; stack sampling conducted according to standard EPA protocol suggested that the sampled emissions are representative of those exiting the stack into the atmosphere. Two mobile laboratories were then outfitted for the study: (1) a chemical laboratory in which the atmospheric aging was conducted and which housed the bulk of the analytical equipment; and (2) a toxicological laboratory, which contained animal caging and the exposure apparatus. Animal exposures were carried out from May-November 2004 to a number of simulated atmospheric scenarios. Toxicological endpoints included (1) pulmonary function and breathing pattern; (2) bronchoalveolar lavage fluid cytological and biochemical analyses; (3) blood cytological analyses; (4) in vivo oxidative stress in heart and lung tissue; and (5) heart and lung histopathology. Results indicated no differences between exposed and control animals in any of the endpoints examined. Exposure concentrations for the scenarios utilizing secondary particles (oxidized emissions) ranged from 70-256 {micro}g/m{sup 3}, and some of the atmospheres contained high acidity levels (up to 49 {micro}g/m{sup 3} equivalent of sulfuric acid). However, caution must be used in generalizing these results to other power plants utilizing different coal types and with different plant configurations, as the emissions may vary based on these factors.« less
Geologic Assessment of Coal in the Colorado Plateau: Arizona, Colorado, New Mexico, and Utah
Kirschbaum, Mark A.; Roberts, Lauara N.R.; Biewick, Laura
2000-01-01
This CD-ROM set contains a geologic assessment of coal deposits of the Colorado Plateau region and new resource estimates for selected assessment units within the Colorado Plateau. Original resource estimates (in-place resources before production) for the 12 priority assessment units of the Colorado Plateau exceed one half trillion short tons of coal in beds greater than 1 ft thick and under less than 6,000 ft of overburden. The coal is high quality and low sulfur, and a portion of these resources will provide future energy production for the Nation. Disc 1, in Portable Document Format, contains results of the assessment in summary and (or) technical reports for 12 priority coal assessment units in the Colorado Plateau and also contains an ArcView Data Publisher project, which is an interactive geographic information system of digital data collected during the assessment. Disc 2 contains stratigraphic data bases for seven of the priority coal assessment areas within the Colorado Plateau region and an ArcView project identical to the ArcView Data Publisher project on disc 1 except that it retains some of the functionality that is disabled in the ArcView Data Publisher program.
Enthalpy measurement of coal-derived liquids. Technical progress report, November 1982-January 1983
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kidnay, A.J.; Yesavage, V.F.
The objective of this research is to measure the enthalpy for representative coal-derived liquids and model compounds over the pressure and temperature regions most likely to be encountered in both liquefaction and processing systems, and to prepare from the data an enthalpy correlation suitable for process design calculations. The correlational effort this past quarter on the enthalpy of coal-derived syncrudes and model compounds has emphasized the experimental determination of a correlating factor for association in coal liquids. As in previous work, the degree of association is to be related to cryoscopic molecular weight determinations on the coal liquids. To thismore » end, work on and an evaluationof a cryoscopic molecular weight apparatus was completed this quarter. Molecular weights of coal liquids determined by the standard Beckman freezing point depression apparatus were consistently low (5 to 10%). After modifications of the apparatus, it was tested with the following compounds: hexane, dodecane, m-xylene and naphthalene. Benzene was the solvent used. However, the molecular weight measurements were again consistently lower than the true values, and in many cases the experimental error was greater than that of the Beckman apparatus.« less
Coal gasification systems engineering and analysis. Appendix B: Medium B+U gas design
NASA Technical Reports Server (NTRS)
1980-01-01
A four module, 20,000 TPD, based on KT coal gasification technology was designed. The plant processes Kentucky No. 9 coal with provisions for up to five percent North Alabama coal. Medium BTU gas with heat content of 305 BTU/SCF and not more than 200 ppm sulfur is the primary plant product. Sulfur is recovered for scale as prilled sulfur. Ash disposal is on site. The plant is designed for zero water discharge. Trade studies provided the basis for not using boiler produced steam to drive prime movers. Thus process derived steam in excess of process requirements in superheated for power use in prime movers. Electricity from the TVA grid is used to supply the balance of the plant prime mover power requirements. A study of the effect of mine mouth coal cleaning showed that coal cleaning is not an economically preferred route. The design procedure involved defining available processes to meet the requirements of each system, technical/economic trade studies to select the preferred processes, and engineering design and flow sheet development for each module. Cost studies assumed a staggered construction schedule for the four modules beginning spring 1981 and a 90% on stream factor.
DOE R&D Accomplishments Database
Olah, G. A.
1984-01-01
In our laboratories we have previously developed a mild coal conversion process. This involves the use of a superacid system consisting of HF and BF{sub 3} in presence of hydrogen and/or a hydrogen donor solvent. In order to understand the chemistry involved in the process of depolymerization of coal by the HF:BF{sub 3}:H{sub 2} system we are carrying out a systematic study of a number of coal model compounds. The model compounds selected for present study have two benzene rings connected with various bridging units such as alkylidene, ether, sulfide etc. From studies so far carried out it appears that high pyridine extractibilities achieved by treating coal at temperature below 100 degrees C results from the cleavage of bridges such as present in bibenzyl, diphenyl methane, dibenzyl ether, dibenzyl sulfide etc. On the other hand the increased cyclohexane extractibility and distillability observed at relatively higher temperatures and hydrogen pressures reflects the hydrogenation and cleavage of the aromatic backbone in coal structure similar to what is seen in the conversion of model compounds such as biphenyl, diphenyl ether, diphenyl sulfide, anthracene, etc.
The source rock potential of the Karroo coals of the south western Rift Basin of Tanzania
NASA Astrophysics Data System (ADS)
Mpanju, F.; Ntomola, S.; Kagya, M.
For many years geoscientists believed that coals (Type III Kerogen) generate gas only. The geochemical study of Durand and Parrante ( Petrolum Geochemistry and Exploration of Europe, pp. 255-265, 1983) revealed that coals have reasonable potential for oil generation. On this basis forty outcrop samples of Lower and Upper Permian age, i.e. coals and carbonaceous shales, were collected from the south western Rift Basin of Tanzania. The aim of the study was to determine the richness, type, maturity and hydrocarbon potential of the above samples. These samples were subjected to both geochemical and petrological analyses. Geochemical analyses included solvent extraction, TOC, GC, GC-MS and pyrolysis. The petrological analysis included vitrinite reflectance, spore fluorescence and maceral content. The geochemical analyses showed all samples to be rich in organic matter of Types II and III and samples from Songwe Kiwira, Namwele, Mbamba Bay, Njuga and Mhukuru coalfields were in an early mature-mature stage of hydrocarbon generation. Whereas samples from Ketewaka and Ngaka coalfields showed a GC-trace of early generated waxy oil. All samples contained organic matter derived from terrestrial material which was deposited under oxic environment. The Hydrogen Index of most coals and carbonaceous shales was greater than 200 indicating that they can generate oil or light oil. Petrological observations showed all samples to be in the range of 0.47-0.67% Ro and some of them were rich in both liptinite and vitrinite macerals. From both geochemical and petrological observations it was concluded that the Lower and Upper Permian coals and carbonaceous shales under study are probably capable of generating oil. The oil generated has the same characteristics as that generated by Cretaceous and Tertiary coals discovered from other parts of the world, i.e. Adjuna and Kutei Basins in Indonesia and the Gippsland Basin in Australia (Kirkland et al., AAPG Bull.71, 577, 1987).
Kalaw, Martin Ernesto; Culaba, Alvin; Hinode, Hirofumi; Kurniawan, Winarto; Gallardo, Susan; Promentilla, Michael Angelo
2016-07-15
Geopolymers are inorganic polymers formed from the alkaline activation of amorphous alumino-silicate materials resulting in a three-dimensional polymeric network. As a class of materials, it is seen to have the potential of replacing ordinary Portland cement (OPC), which for more than a hundred years has been the binder of choice for structural and building applications. Geopolymers have emerged as a sustainable option vis-à-vis OPC for three reasons: (1) their technical properties are comparable if not better; (2) they can be produced from industrial wastes; and (3) within reasonable constraints, their production requires less energy and emits significantly less CO₂. In the Philippines, the use of coal ash, as the alumina- and silica- rich geopolymer precursor, is being considered as one of the options for sustainable management of coal ash generation from coal-fired power plants. However, most geopolymer mixes (and the prevalent blended OPC) use only coal fly ash. The coal bottom ash, having very few applications, remains relegated to dumpsites. Rice hull ash, from biomass-fired plants, is another silica-rich geopolymer precursor material from another significantly produced waste in the country with only minimal utilization. In this study, geopolymer samples were formed from the mixture of coal ash, using both coal fly ash (CFA) and coal bottom ash (CBA), and rice hull ash (RHA). The raw materials used for the geopolymerization process were characterized using X-ray fluorescence spectroscopy (XRF) for elemental and X-ray diffraction (XRD) for mineralogical composition. The raw materials' thermal stability and loss on ignition (LOI) were determined using thermogravimetric analysis (TGA) and reactivity via dissolution tests and inductively-coupled plasma mass spectrometry (ICP) analysis. The mechanical, thermal and microstructural properties of the geopolymers formed were analyzed using compression tests, Fourier transform infra-red spectroscopy (FTIR), scanning electron microscopy (SEM) and thermogravimetric analysis (TGA). Using a Scheffé-based mixture design, targeting applications with low thermal conductivity, light weight and moderate strength and allowing for a maximum of five percent by mass of rice hull ash in consideration of the waste utilization of all three components, it has been determined that an 85-10-5 by weight ratio of CFA-CBA-RHA activated with 80-20 by mass ratio of 12 M NaOH and sodium silicate (55% H₂O, modulus = 3) produced geopolymers with a compressive strength of 18.5 MPa, a volumetric weight of 1660 kg/m³ and a thermal conductivity of 0.457 W/m-°C at 28-day curing when pre-cured at 80 °C for 24 h. For this study, the estimates of embodied energy and CO₂ were all below 1.7 MJ/kg and 0.12 kg CO₂/kg, respectively.
The particle size distributions, morphologies, and chemical composition distributions of 14 coal fly ash (CFA) samples produced by the combustion of four western U.S. coals (two subbituminous, one lignite, and one bituminous) and three eastern U.S. coals (all bituminous) have bee...
Ruppert, Leslie F.; Fedorko, Nick; Warwick, Peter D.; Grady, William C.; Britton, James Q.; Schuller, William A.; Crangle, Robert D.; Ruppert, Leslie F.; Ryder, Robert T.
2014-01-01
High-pressure carbon-dioxide adsorption isotherms were measured on composite coal samples of the Upper Kittanning coal bed and the Middle Kittanning and Clarion coal zones. Assuming that the reservoir pressure in the Mylan Park coals is equivalent to the normal hydrostatic pressure, the estimated maximum carbon-dioxide adsorption pressures range from a low of about 300 pounds per square inch (lb/in2 ) in coals from the Clarion coal zone to 500 lb/in2 for coals from the Upper Kittanning coal bed. The estimated maximum methane adsorption isotherms show that the coals from the Upper Kittanning coal bed and the Middle Kittanning coal zone are undersaturated in methane, but coals from the Clarion coal zone are close to saturation.
Rouse, William A.; Houseknecht, David W.
2012-01-01
The Cook Inlet-Susitna region of south-central Alaska contains large quantities of gas-bearing coal of Tertiary age. The U.S. Geological Survey in 2011 completed an assessment of undiscovered, technically recoverable coal-bed gas resources underlying the Cook Inlet-Susitna region based on the total petroleum system (TPS) concept. The Cook Inlet Coal-Bed Gas TPS covers about 9,600,000 acres and comprises the Cook Inlet basin, Matanuska Valley, and Susitna lowland. The TPS contains one assessment unit (AU) that was evaluated for coal-bed gas resources between 1,000 and 6,000 feet in depth over an area of about 8,500,000 acres. Coal beds, which serve as both the source and reservoir for natural gas in the AU, were deposited during Paleocene-Pliocene time in mires associated with a large trunk-tributary fluvial system. Thickness of individual coal beds ranges from a few inches to more than 50 feet, with cumulative coal thickness of more than 800 feet in the western part of the basin. Coal rank ranges from lignite to subbituminous, with vitrinite reflectance values less than 0.6 percent throughout much of the AU. The AU is considered hypothetical because only a few wells in the Matanuska Valley have tested the coal-bed reservoirs, so the use of analog coal-bed gas production data was necessary for this assessment. In order to estimate reserves that might be added in the next 30 years, coal beds of the Upper Fort Union Formation in the Powder River Basin of Wyoming and Montana were selected as the production analog for Tertiary coal beds in the Cook Inlet-Susitna region. Upper Fort Union coal beds have similar rank (lignite to subbituminous), range of thickness, and coal-quality characteristics as coal beds of the Tertiary Kenai Group. By use of this analog, the mean total estimate of undiscovered coal-bed gas in the Tertiary Coal-Bed Gas AU is 4.674 trillion cubic feet (TCF) of gas.
Utilization of waste of coal-mining enterprise in production of building materials
NASA Astrophysics Data System (ADS)
Chugunov, A. D.; Filatova, E. G.; Yakovleva, A. A.
2018-03-01
Wastes of coal producers often include substances allowing treating such wastes as valuable feeds for metallurgy, chemical and construction processes. This study concerned elemental and phase composition of samples obtained by calcination of bottom sediments of the coal producer spoil bank. The research has shown that the samples contain significant amounts of carbon, iron, silicon, aluminum and other valuable components.
Thermal energy storage for power generation applications
NASA Astrophysics Data System (ADS)
Drost, M. K.; Antoniak, Zen I.; Brown, D. R.
1990-03-01
Studies strongly indicate that the United States will face widespread electrical power constraints in the 1990s. In many cases, the demand for increased power will occur during peak and intermediate demand periods. While natural gas is currently plentiful and economically attractive for meeting peak and intermediate loads, the development of a coal-fired peaking option would give utilities insurance against unexpected supply shortages or cost increases. This paper discusses a conceptual evaluation of using thermal energy storage (TES) to improve the economics of coal-fired peak and intermediate load power generation. The use of TES can substantially improve the economic attractiveness of meeting peak and intermediate loads with coal-fired power generation. In this case, conventional pulverized coal combustion equipment is continuously operated to heat molten nitrate salt, which is then stored. During peak demand periods, hot salt is withdrawn from storage and used to generate steam for a Rankine steam power cycle. This allows the coal-fired salt heater to be approximately one-third the size of a coal-fired boiler in a conventional cycling plant. The general impact is to decouple the generation of thermal energy from its conversion to electricity. The present study compares a conventional cycling pulverized coal-fired power plant to a pulverized coal-fired plant using nitrate salt TES. The study demonstrates that a coal-fired salt heater is technically feasible and should be less expensive than a similar coal-fired boiler. The results show the use of nitrate salt TES reduced the levelized cost of power by between 5 and 24 percent, depending on the operating schedule.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cronauer, D.C.; Swanson, A.J.; Sajkowski, D.J.
1992-12-31
Research in this project centered upon developing and evaluating catalysts and process improvements for coal liquefaction in the two-stage, close-coupled catalytic process. The major results are summarized here and they are described in more detail under each Task. In tasks for coal pretreatment and beneficiation, it was shown for coal handling that drying of both lignite or subbituminous coals using warm air, vacuum oven or exposing to air for long time was detrimental to subsequent liquefaction. Both laboratory and bench-scale beneficiations indicated that in order to achieve increased liquefaction yield for Illinois No. 6 bituminous coal, size separation with inmore » sink-float technique should be used. For subbituminous coal, the best beneficiation was aqueous SO{sub 2} treatment, which reduced mineral matter. In the case of lignite, the fines should be rejected prior to aqueous SO{sub 2} treatment and sink-float gravity separation. In liquefying coals with supported catalysts in both first and second stages, coal conversion was highest (93%) with Illinois No. 6 coal, which also had the highest total liquid yield of 80%, however, the product contained unacceptably high level of resid (30%). Both low rank coals gave lower conversion (85--87%) and liquid yields (57--59%), but lighter products (no resid). The analysis of spent first stage catalysts indicated significant sodium and calcium deposits causing severe deactivation. The second stage catalysts were in better condition showing high surface areas and low coke and metal deposits. The use of dispersed catalyst in the first stage would combat the severe deactivation.« less
40 CFR 98.284 - Monitoring and QA/QC requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
..., Hydrogen, and Nitrogen in Laboratory Samples of Coal (incorporated by reference, see § 98.7). (d) For... Instrumental Determination of Carbon, Hydrogen, and Nitrogen in Laboratory Samples of Coal (incorporated by...
40 CFR 98.284 - Monitoring and QA/QC requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
..., Hydrogen, and Nitrogen in Laboratory Samples of Coal (incorporated by reference, see § 98.7). (d) For... Instrumental Determination of Carbon, Hydrogen, and Nitrogen in Laboratory Samples of Coal (incorporated by...
40 CFR 98.284 - Monitoring and QA/QC requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
..., Hydrogen, and Nitrogen in Laboratory Samples of Coal (incorporated by reference, see § 98.7). (d) For... Instrumental Determination of Carbon, Hydrogen, and Nitrogen in Laboratory Samples of Coal (incorporated by...
40 CFR 98.284 - Monitoring and QA/QC requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
..., Hydrogen, and Nitrogen in Laboratory Samples of Coal (incorporated by reference, see § 98.7). (d) For... Instrumental Determination of Carbon, Hydrogen, and Nitrogen in Laboratory Samples of Coal (incorporated by...
Preface for small-molecule activation: Carbon-containing fuels
Fujita, Etsuko; Goldman, Alan S.
2015-06-01
For millennia, human transportation was fueled largely through the consumption of biomass (by humans or domestic animals) and to a lesser extent by wind. The 19th century saw a major shift to coal-fueled transportation, with trains and ships powered by steam engines. A second major shift in the fueling of transportation occurred in the 20th century, this time to petroleum. Thus, this transition was not driven by the cost or ease of obtaining energy from oil wells vs. coal mines – indeed, the cost of petroleum has always been higher than coal on a per-unit-energy basis – but rather bymore » the tremendous technical advantages of powering engines with liquids, specifically liquid hydrocarbons.« less
NASA Astrophysics Data System (ADS)
Jamróz, Dariusz; Niedoba, Tomasz; Surowiak, Agnieszka; Tumidajski, Tadeusz
2016-09-01
Methods serving to visualise multidimensional data through the transformation of multidimensional space into two-dimensional space, enable to present the multidimensional data on the computer screen. Thanks to this, qualitative analysis of this data can be performed in the most natural way for humans, through the sense of sight. An example of such a method of multidimensional data visualisation is PCA (principal component analysis) method. This method was used in this work to present and analyse a set of seven-dimensional data (selected seven properties) describing coal samples obtained from Janina and Wieczorek coal mines. Coal from these mines was previously subjected to separation by means of a laboratory ring jig, consisting of ten rings. With 5 layers of both types of coal (with 2 rings each) were obtained in this way. It was decided to check if the method of multidimensional data visualisation enables to divide the space of such divided samples into areas with different suitability for the fluidised gasification process. To that end, the card of technological suitability of coal was used (Sobolewski et al., 2012; 2013), in which key, relevant and additional parameters, having effect on the gasification process, were described. As a result of analyses, it was stated that effective determination of coal samples suitability for the on-surface gasification process in a fluidised reactor is possible. The PCA method enables the visualisation of the optimal subspace containing the set requirements concerning the properties of coals intended for this process.
Lauer, Nancy; Vengosh, Avner; Dai, Shifeng
2017-11-21
Most coals in China have uranium concentrations up to 3 ppm, yet several coal deposits are known to be enriched in uranium. Naturally occurring radioactive materials (NORM) in these U-rich coals and associated coal combustion residues (CCRs) have not been well characterized. Here we measure NORM (Th, U, 228 Ra, 226 Ra, and 210 Pb) in coals from eight U-rich coal deposits in China and the associated CCRs from one of these deposits. We compared NORM in these U-rich coals and associated CCRs to CCRs collected from the Beijing area and natural loess sediments from northeastern China. We found elevated U concentrations (up to 476 ppm) that correspond to low 232 Th/ 238 U and 228 Ra/ 226 Ra activity ratios (≪1) in the coal samples. 226 Ra and 228 Ra activities correlate with 238 U and 232 Th activities, respectively, and 226 Ra activities correlate well with 210 Pb activities across all coal samples. We used measured NORM activities and ash yields in coals to model the activities of CCRs from all U-rich coals analyzed in this study. The activities of measured and modeled CCRs derived from U-rich coals exceed the standards for radiation in building materials, particularly for CCRs originating from coals with U > 10 ppm. Since beneficial use of high-U Chinese CCRs in building materials is not a suitable option, careful consideration needs to be taken to limit potential air and water contamination upon disposal of U- and Ra-rich CCRs.
NASA Astrophysics Data System (ADS)
Li, Qiong; Chen, Jie; He, Jian-Jun
2017-12-01
In this study, we experimentally established the relationship between physical properties, vitrinite reflectance, and microstructure of coal, Taiyuan Formation, Qinshui Basin, China using representative coal samples collected from three different mines via the rock mechanics testing system (MTS). We analyzed the organic macerals, vitrinite reflectance, and microstructure of 11 coal samples using petrography and scanning electron microscopy (SEM). The experimental results suggest that (1) the elastic parameters can be described by linear equations, (2) both P-and S-wave velocities display anisotropy, (3) the anisotropy negatively correlates with vitrinite reflectance, and (4) the acoustic velocities and Young's modulus are negatively correlated with the volume of micropores. The derived empirical equations can be used in the forward modeling and seismic inversion of physical properties of coal for improving the coal-bed methane (CBM) reservoir characterization.
NASA Astrophysics Data System (ADS)
Eissa, N. A.; Sheta, N. H.; Ahmed, M. A.
1992-04-01
Coal has been recently discovered in Maghara mine at Northern Sinai, Egypt. Coal samples have been collected from different depths and were measured by XRD, XRF, and MS, in order to characterize this type of coal. It has been found that the iron bearing minerals are mainly pyrite and different sulphates depending on the depth of the sample. The second part contains the application of desulphurization techniques to Egyptian coal which are: floatation (one step and two steps) chemical [(HCl+HNO3), and Fe2(SO4)3] and bacterial methods (Chromatium and Chlorobium species). The efficiency of each technique was calculated. A comparative discussion is given of each desulphurization method, from which the bacterial method has proved to be the most efficient one.
Quality of selected coals of Hungary
DOE Office of Scientific and Technical Information (OSTI.GOV)
Landis, E.R.; Rohrbacher, T.J.; Gluskoter, H.J.
2000-07-01
As part of the activities conducted under the US-Hungarian Science and Technology Fund, a total of 39 samples from five coal mines in five geologically-distinct coal areas in Hungary were selected for proximate and ultimate analyses. In addition, the heat value, forms of sulfur, free-swelling index, equilibrium moisture, Hardgrove grindability index, four-point ash fusion temperatures (both oxidizing and reducing), and apparent specific gravity were determined for each sample. Standard procedures established by the American Society for Testing and Materials (ASTM, 1999) were used. The analytical results will be available in the International Coal Quality Data Base of the USGS. Resultsmore » of the program provide data for comparison with coal quality test data from Europe and information of value to potential investors or cooperators in the coal industry of Hungary and Central Europe.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hur, Tae-Bong; Fazio, James; Romanov, Vyacheslav
Due to increasing atmospheric CO2 concentrations causing the global energy and environmental crises, geological sequestration of carbon dioxide is now being actively considered as an attractive option to mitigate greenhouse gas emissions. One of the important strategies is to use deep unminable coal seams, for those generally contain significant quantities of coal bed methane that can be recovered by CO2 injection through enhanced coal bed natural gas production, as a method to safely store CO2. It has been well known that the adsorbing CO2 molecules introduce structural deformation, such as distortion, shrinkage, or swelling, of the adsorbent of coal organicmore » matrix. The accurate investigations of CO2 sorption capacity as well as of adsorption behavior need to be performed under the conditions that coals deform. The U.S. Department of Energy-National Energy Technology Laboratory and Regional University Alliance are conducting carbon dioxide sorption isotherm experiments by using manometric analysis method for estimation of CO2 sorption capacity of various coal samples and are constructing a gravimetric apparatus which has a visual window cell. The gravimetric apparatus improves the accuracy of carbon dioxide sorption capacity and provides feasibility for the observation of structural deformation of coal sample while carbon dioxide molecules interact with coal organic matrix. The CO2 sorption isotherm measurements have been conducted for moist and dried samples of the Central Appalachian Basin (Russell County, VA) coal seam, received from the SECARB partnership, at the temperature of 55 C.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karmis, Michael; Luttrell, Gerald; Ripepi, Nino
The research activities presented in this report are intended to address the most critical technical challenges pertaining to coal-biomass briquette feedstocks. Several detailed investigations were conducted using a variety of coal and biomass feedstocks on the topics of (1) coal-biomass briquette production and characterization, (2) gasification of coal-biomass mixtures and briquettes, (3) combustion of coal-biomass mixtures and briquettes, and (4) conceptual engineering design and economic feasibility of briquette production. The briquette production studies indicate that strong and durable co-firing feedstocks can be produced by co-briquetting coal and biomass resources commonly available in the United States. It is demonstrated that binderlessmore » coal-biomass briquettes produced at optimized conditions exhibit very high strength and durability, which indicates that such briquettes would remain competent in the presence of forces encountered in handling, storage and transportation. The gasification studies conducted demonstrate that coal-biomass mixtures and briquettes are exceptional gasification feedstocks, particularly with regard to the synergistic effects realized during devolatilization of the blended materials. The mixture combustion studies indicate that coal-biomass mixtures are exceptional combustion feedstocks, while the briquette combustion study indicates that the use of blended briquettes reduces NO x, CO 2, and CO emissions, and requires the least amount of changes in the operating conditions of an existing coal-fired power plant. Similar results were obtained for the physical durability of the pilot-scale briquettes compared to the bench-scale tests. Finally, the conceptual engineering and feasibility analysis study for a commercial-scale briquetting production facility provides preliminary flowsheet and cost simulations to evaluate the various feedstocks, equipment selection and operating parameters.« less
Coalbed methane resources of the Appalachian Basin, eastern USA
Milici, Robert C.; Hatch, Joseph R.; Pawlewicz, Mark J.
2010-01-01
In 2002, the U.S. Geological Survey (USGS) assessed the technically recoverable, undiscovered coalbed-gas resources in the Appalachian basin and Black Warrior basin Assessment Provinces as about 15.5 trillion cubic feet. Although these resources are almost equally divided between the two areas, most of the production occurs within relatively small areas within these Provinces, where local geological and geochemical attributes have resulted in the generation and retention of large amounts of methane within the coal beds and have enhanced the producibility of the gas from the coal. In the Appalachian basin, coalbed methane (CBM) tests are commonly commercial where the cumulative coal thickness completed in wells is greater than three meters (10 ft), the depth of burial of the coal beds is greater than 100 m (350 ft), and the coal is in the thermogenic gas window. In addition to the ubiquitous cleating within the coal beds, commercial production may be enhanced by secondary fracture porosity related to supplemental fracture systems within the coal beds. In order to release the methane from microporus coal matrix, most wells are dewatered prior to commercial production of gas. Two Total Petroleum Systems (TPS) were defined by the USGS during the assessment: the Pottsville Coal-bed gas TPS in Alabama, and the Carboniferous Coal-bed Gas TPS in Pennsylvania, Ohio, West Virginia, eastern Kentucky, Virginia, Tennessee, and Alabama. These were divided into seven assessment units, of which three had sufficient data to be assessed. Production rates are higher in most horizontal wells drilled into relatively thick coal beds, than in vertical wells; recovery per unit area is greater, and potential adverse environmental impact is decreased.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maya, R.S.
1986-01-01
This study assesses the feasibility of a coal based light liquids program as a way to localize forces that determine the flow of oil into the Zimbabwean economy. Methods in End-use Energy Analysis and Econometrics in which the utilization of petroleum energy is related to economic and industrial activity are used to gain insight into the structure and behavior of petroleum utilization in that country and to forecast future requirements of this resource. The feasibility of coal liquefaction as a substitute for imported oil is assessed by the use of engineering economics in which the technical economics of competing oilmore » supply technologies are analyzed and the best option is selected. Coal conversion technologies are numerous but all except the Fischer-Trosch indirect coal liquefaction technology are deficient in reliability as commercial ventures. The Fischer-Tropsch process by coincidence better matches Zimbabwe's product configuration than the less commercially advanced technologies. Using present value analysis to compare the coal liquefaction and the import option indicates that it is better to continue importing oil than to resort to a coal base for a portion of the oil supplies. An extended analysis taking special consideration of the risk and uncertainty factors characteristic of Zimbabwe's oil supply system indicates that the coal option is better than the import option. The relative infancy of the coal liquefaction industry and the possibility that activities responsible for the risk and uncertainty in the oil supply system will be removed in the future, however, make the adoption of the coal option an unusually risky undertaking.« less
Current status and prospect: Coal water mixture technology in Indonesia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sastrawinata, T.; Suwono, A.
1996-12-31
This paper covers the status of Coal Water Mixture (CWM) technology in Indonesia and also the prospect for implementing this technology. Advantageous use of a pipeline for coal transportation is geographically inconvenient. Characteristics of CWM for Indonesian coal and combustion characteristics of CWM for Indonesian coal are reviewed. The coal reserve estimated in Indonesia is about 36 billions tons with ratio of lignite and higher rank is 60:40. The main problems faced in the coal utilization in Indonesia is the transportation from the mines to the users. Remote, limited infrastructure and the geographic conditions are factors which contribute to themore » problems. The CWM made of Indonesian low rank coal from various origins has been prepared for further study. The CWM of various coal concentration up to 66% with good handling and storage stability was obtained. Rheological measurements of the obtained CWM shows that for high coal concentration (greater than about 40%), in addition to the yield stress, the solution also behaves as the power law model of fluid. Energy Technology Laboratory has just started to investigate the combustion characteristics of CWM. CWM in Indonesia has not been utilized commercially in the industrial boiler, so that needs to be studied comprehensively. The technical aspects in this is stressed on the combustion characteristics in the boiler furnace. LSDE has a state of the art coal combustion facility that includes a chemical analytic laboratory and a boiler simulator equipped with complete data acquisition. The experiments will have several numerical criteria to characterize CWS combustion process, i.e., Maximum Furnace Exit Temperature, firing rate, pressure drop in the test section, deposit strength and deposit weight, swirl flow number.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kolker,A.; Huggins, F.
2007-01-01
Naturally occurring pyrite commonly contains minor substituted metals and metalloids (As, Se, Hg, Cu, Ni, etc.) that can be released to the environment as a result of its weathering. Arsenic, often the most abundant minor constituent in pyrite, is a sensitive monitor of progressive pyrite oxidation in coal. To test the effect of pyrite composition and environmental parameters on the rate and extent of pyrite oxidation in coal, splits of five bituminous coal samples having differing amounts of pyrite and extents of As substitution in the pyrite, were exposed to a range of simulated weathering conditions over a period ofmore » 17 months. Samples investigated include a Springfield coal from Indiana (whole coal pyritic S = 2.13 wt.%; As in pyrite = detection limit (d.l.) to 0.06 wt.%), two Pittsburgh coal samples from West Virginia (pyritic S = 1.32-1.58 wt.%; As in pyrite = d.l. to 0.34 wt.%), and two samples from the Warrior Basin, Alabama (pyritic S = 0.26-0.27 wt.%; As in pyrite = d.l. to 2.72 wt.%). Samples were collected from active mine faces, and expected differences in the concentration of As in pyrite were confirmed by electron microprobe analysis. Experimental weathering conditions in test chambers were maintained as follows: (1) dry Ar atmosphere; (2) dry O{sub 2} atmosphere; (3) room atmosphere (relative humidity {approx}20-60%); and (4) room atmosphere with samples wetted periodically with double-distilled water. Sample splits were removed after one month, nine months, and 17 months to monitor the extent of As and Fe oxidation using As X-ray absorption near-edge structure (XANES) spectroscopy and {sup 57}Fe Mossbauer spectroscopy, respectively. Arsenic XANES spectroscopy shows progressive oxidation of pyritic As to arsenate, with wetted samples showing the most rapid oxidation. {sup 57}Fe Mossbauer spectroscopy also shows a much greater proportion of Fe{sup 3+} forms (jarosite, Fe{sup 3+} sulfate, FeOOH) for samples stored under wet conditions, but much less difference among samples stored under dry conditions in different atmospheres. The air-wet experiments show evidence of pyrite re-precipitation from soluble ferric sulfates, with As retention in the jarosite phase. Extents of As and Fe oxidation were similar for samples having differing As substitution in pyrite, suggesting that environmental conditions outweigh the composition and amount of pyrite as factors influencing the oxidation rate of Fe sulfides in coal.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Annette Rohr
2004-12-02
This report documents progress made on the subject project during the period of March 1, 2004 through August 31, 2004. The TERESA Study is designed to investigate the role played by specific emissions sources and components in the induction of adverse health effects by examining the relative toxicity of coal combustion and mobile source (gasoline and/or diesel engine) emissions and their oxidative products. The study involves on-site sampling, dilution, and aging of coal combustion emissions at three coal-fired power plants, as well as mobile source emissions, followed by animal exposures incorporating a number of toxicological endpoints. The DOE-EPRI Cooperative Agreementmore » (henceforth referred to as ''the Agreement'') for which this technical progress report has been prepared covers the analysis and interpretation of the field data collected at the first power plant (henceforth referred to as Plant 0, and located in the Upper Midwest), followed by the performance and analysis of similar field experiments at two additional coal-fired power plants (Plants 1 and 2) utilizing different coal types and with different plant configurations. Significant progress was made on the Project during this reporting period, with field work being initiated at Plant 0. Initial testing of the stack sampling system and reaction apparatus revealed that primary particle concentrations were lower than expected in the emissions entering the mobile chemical laboratory. Initial animal exposures to primary emissions were carried out (Scenario 1) to ensure successful implementation of all study methodologies and toxicological assessments. Results indicated no significant toxicological effects in response to primary emissions exposures. Exposures were then carried out to diluted, oxidized, neutralized emissions with the addition of secondary organic aerosol (Scenario 5), both during the day and also at night when primary particle concentrations in the sampled stack emissions tended to be slightly higher. Exposure concentrations were about 249 {micro}g/m{sup 3} PM, of which 87 {micro}g/m{sup 3} was sulfate and approximately 110 {micro}g/m{sup 3} was secondary organic material ({approx}44%). Results indicated subtle differences in breathing pattern between exposed and control (sham) animals, but no differences in other endpoints (in vivo chemiluminescence, blood cytology, bronchoalveolar lavage fluid analysis). It was suspected that primary particle losses may have been occurring in the venturi aspirator/orifice sampler; therefore, the stack sampling system was redesigned. The modified system resulted in no substantial increase in particle concentration in the emissions, leading us to conclude that the electrostatic precipitator at the power plant has high efficiency, and that the sampled emissions are representative of those exiting the stack into the atmosphere. This is important, since the objective of the Project is to carry out exposures to realistic coal combustion-derived secondary PM arising from power plants. During the next reporting period, we will document and describe the remainder of the fieldwork at Plant 0, which we expect to be complete by mid-November 2004. This report will include detailed Phase I toxicological findings for all scenarios run, and Phase II toxicological findings for one selected scenario. Depending upon the outcome of the ongoing fieldwork at Plant 0 (i.e. the biological effects observed), not all the proposed scenarios may be evaluated. The next report is also expected to include preliminary field data for Plant 1, located in the Southeast.« less
Mercury pollution in vegetables, grains and soils from areas surrounding coal-fired power plants
NASA Astrophysics Data System (ADS)
Li, Rui; Wu, Han; Ding, Jing; Fu, Weimin; Gan, Lijun; Li, Yi
2017-05-01
Mercury contamination in food can pose serious health risks to consumers and coal-fired power plants have been identified as the major source of mercury emissions. To assess the current state of mercury pollution in food crops grown near coal-fired power plants, we measured the total mercury concentration in vegetables and grain crops collected from farms located near two coal-fired power plants. We found that 79% of vegetable samples and 67% of grain samples exceeded the PTWI's food safety standards. The mercury concentrations of soil samples were negatively correlated with distances from the studied coal-fired power plants, and the mercury contents in lettuce, amaranth, water spinach, cowpea and rice samples were correlated with the mercury contents in soil samples, respectively. Also, the mercury concentrations in vegetable leaves were much higher than those in roots and the mercury content of vegetable leaves decreased significantly after water rinses. Our calculation suggests that probable weekly intake of mercury for local residents, assuming all of their vegetables and grains are from their own farmland, may exceed the toxicologically tolerable values allowed, and therefore long-term consumptions of these contaminated vegetables and grains may pose serious health risks.
Mercury pollution in vegetables, grains and soils from areas surrounding coal-fired power plants
Li, Rui; Wu, Han; Ding, Jing; Fu, Weimin; Gan, Lijun; Li, Yi
2017-01-01
Mercury contamination in food can pose serious health risks to consumers and coal-fired power plants have been identified as the major source of mercury emissions. To assess the current state of mercury pollution in food crops grown near coal-fired power plants, we measured the total mercury concentration in vegetables and grain crops collected from farms located near two coal-fired power plants. We found that 79% of vegetable samples and 67% of grain samples exceeded the PTWI’s food safety standards. The mercury concentrations of soil samples were negatively correlated with distances from the studied coal-fired power plants, and the mercury contents in lettuce, amaranth, water spinach, cowpea and rice samples were correlated with the mercury contents in soil samples, respectively. Also, the mercury concentrations in vegetable leaves were much higher than those in roots and the mercury content of vegetable leaves decreased significantly after water rinses. Our calculation suggests that probable weekly intake of mercury for local residents, assuming all of their vegetables and grains are from their own farmland, may exceed the toxicologically tolerable values allowed, and therefore long-term consumptions of these contaminated vegetables and grains may pose serious health risks. PMID:28484233
Yaofa, Jiang; Elswick, E.R.; Mastalerz, Maria
2008-01-01
Sulfur occurs in multiple mineral forms in coals, and its fate in coal combustion is still not well understood. The sulfur isotopic composition of coal from two coal mines in Indiana and fly ash from two power plants that use these coals were studied using geological and geochemical methods. The two coal beds are Middle Pennsylvanian in age; one seam is the low-sulfur ( 5%) Springfield Coal Member of the Petersburg Formation. Both seams have ash contents of approximately 11%. Fly-ash samples were collected at various points in the ash-collection system in the two plants. The results show notable difference in ??34S for sulfur species within and between the low-sulfur and high-sulfur coal. The ??34S values for all sulfur species are exclusively positive in the low-sulfur Danville coal, whereas the ??34S values for sulfate, pyritic, and organic sulfur are both positive and negative in the high-sulfur Springfield coal. Each coal exhibits a distinct pattern of stratigraphic variation in sulfur isotopic composition. Overall, the ??34S for sulfur species values increase up the section in the low-sulfur Danville coal, whereas they show a decrease up the vertical section in the high-sulfur Springfield coal. Based on the evolution of ??34S for sulfur species, it is suggested that there was influence of seawater on peat swamp, with two marine incursions occurring during peat accumulation of the high-sulfur Springfield coal. Therefore, bacterial sulfate reduction played a key role in converting sulfate into hydrogen sulfide, sulfide minerals, and elemental sulfur. The differences in ??34S between sulfate sulfur and pyritic sulfur is very small between individual benches of both coals, implying that some oxidation occurred during deposition or postdeposition. The ??34S values for fly ash from the high-sulfur Springfield coal (averaging 9.7???) are greatly enriched in 34S relative to those in the parent coal (averaging 2.2???). This indicates a fractionation of sulfur isotopes during high-sulfur coal combustion. By contrast, the ??34S values for fly-ash samples from the low-sulfur Danville coal average 10.2???, only slightly enriched in 34S relative to those from the parent coal (average 7.5???). The ??34S values for bulk S determined directly from the fly-ash samples show close correspondence with the ??34S values for SO4- 2 leached from the fly ash in the low-sulfur coal, suggesting that the transition from pyrite to sulfate occurred via high-temperature oxidation during coal combustion. ?? 2007 Elsevier B.V. All rights reserved.
Fang, Ting; Liu, Guijian; Zhou, Chuncai; Yuan, Zijiao; Lam, Paul Kwan Sing
2014-08-01
Coal mining area is highly subject to lead (Pb) pollution from coal mining activities. Several decades of coal mining and processing practices in dozens of coal mines in the Huainan Coal Mining Area (HCMA) have led to the accumulation of massive amounts of coal gangue, which piled in dumps. In order to investigate the impacts of coal gangue dumps on Pb level in the supergene media of the HCMA, a systematic sampling campaign comprising coal gangue, soil, wheat, and earthworm samples was conducted. The average Pb content in the coal mining area soil is 24 mg/kg, which is slightly higher than the associated coal gangues (23 mg/kg) and markedly higher than reference region soil (12.6 mg/kg). Soil in the HCMA present a slight to moderate Pb contamination, which might be related to the weathering and leaching of coal gangue dumps. Lateral distribution of Pb in HCMA soil differed among individual coal mines. The soil profile distribution of Pb depends on both natural and anthropogenic contributions. Average Pb content is higher in roots than in stems, leaves, and wheat husks, while the Pb level in seeds exceeded the maximum Pb allowance for foods (Maximum Levels of Contaminants in Foods of China, GB 2762-2012). Earthworms in the selected area are significantly enriched in Pb, suggesting higher bio-available Pb level in soil in the HCMA.
Hossain, Md Nazir; Paul, Shitangsu Kumar; Hasan, Md Muyeed
2015-04-01
The study was carried out to analyse the environmental impacts of coal mine and coal-based thermal power plant to the surrounding environment of Barapukuria, Dinajpur. The analyses of coal, water, soil and fly ash were carried out using standard sample testing methods. This study found that coal mining industry and coal-based thermal power plant have brought some environmental and socio-economic challenges to the adjacent areas such as soil, water and air pollution, subsidence of agricultural land and livelihood insecurity of inhabitants. The pH values, heavy metal, organic carbon and exchangeable cations of coal water treated in the farmland soil suggest that coal mining deteriorated the surrounding water and soil quality. The SO4(2-) concentration in water samples was beyond the range of World Health Organisation standard. Some physico-chemical properties such as pH, conductivity, moisture content, bulk density, unburned carbon content, specific gravity, water holding capacity, liquid and plastic limit were investigated on coal fly ash of Barapukuria thermal power plant. Air quality data provided by the Barapukuria Coal Mining Company Limited were contradictory with the result of interview with the miners and local inhabitants. However, coal potentially contributes to the development of economy of Bangladesh but coal mining deteriorates the environment by polluting air, water and soil. In general, this study includes comprehensive baseline data for decision makers to evaluate the feasibility of coal power industry at Barapukuria and the coalmine itself.
Publications - GMC 31 | Alaska Division of Geological & Geophysical Surveys
DGGS GMC 31 Publication Details Title: Vitrinite reflectance data on 34 Alaskan coal samples Authors . Bibliographic Reference Unknown, [n.d.], Vitrinite reflectance data on 34 Alaskan coal samples: Alaska Division
Publications - GMC 331 | Alaska Division of Geological & Geophysical
DGGS GMC 331 Publication Details Title: Coal vitrinite analysis of Copper Valley well samples as , Terry, 2006, Coal vitrinite analysis of Copper Valley well samples as follows: UNOCAL Tazlina #1
Concentrated Brine Treatment using New Energy in Coal Mine Evaporation Ponds
NASA Astrophysics Data System (ADS)
Li, Ting; Li, Jingfeng
2017-12-01
Recently, more and more coal mine water is being advanced treated and reused in China. The concentrated brine that results from advanced treatment methods can only be evaporated in an evaporation pond. Because of limited treatment capabilities and winter freezing, evaporation ponds often overflow, causing environment contamination. In this paper, based on analysis of brine water quality and economic-technical feasibility, we present a suitable treatment method for brine in evaporation ponds as electrodialysis using solar energy. In addition, we propose a new system to treat brine in coal mine evaporation ponds, which is powered by solar and wind. The operating efficiency of this treatment system proposed in this paper can meet the concentrated brine treatment demands in most coal mines in western mining areas of China and it places the photovoltaic power generation plates on the surface of the evaporation pond on a fixed floating island, which reduces any risk associated with land acquisition. This system can enhance brine treatment efficiency, requires a reduced evaporation pond area, increases the utilization of coal mine water, and minimizes the risk of environment contamination.
The effects of pore structure on the behavior of water in lignite coal and activated carbon.
Nwaka, Daniel; Tahmasebi, Arash; Tian, Lu; Yu, Jianglong
2016-09-01
The effects of physical structure (pore structure) on behavior of water in lignite coal and activated carbon (AC) samples were investigated by using Differential Scanning Calorimetry (DSC) and low-temperature X-ray diffraction (XRD) techniques. AC samples with different pore structures were prepared at 800°C in steam and the results were compared with that of parent lignite coal. The DSC results confirmed the presence of two types of freezable water that freeze at -8°C (free water) and -42°C (freezable bound water). A shift in peak position of free water (FW) towards lower temperature was observed in AC samples compared to the lignite coal with decreasing water loading. The amount of free water (FW) increased with increasing gasification conversion. The amounts of free and freezable bound water (FBW) in AC samples were calculated and correlated to pore volume and average pore size. The amount of FW in AC samples is well correlated to the pore volume and average pore size of the samples, while an opposite trend was observed for FBW. The low-temperature XRD analysis confirmed the existence of non-freezable water (NFW) in coal and AC with the boundary between the freezable and non-freezable water (NFW) determined. Copyright © 2016 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1983-03-01
This report covers the H-Coal Pilot Plant facility located in Catlettsburg, Kentucky. The authorization for this project was under DOE contract No. DE-AC05-78ET11052, formally ET-78-C-01-3224. Badger Plants, Inc. carried out the construction management of this facility. The estimated total cost is $147,265,013. A brief process/technical description of the Pilot Plant covers subjects such as objectives, capacity, expected life, etc. A brief technical description of each processing unit, including its purpose in the overall operations of the plant is given. A general description of the organizational history of the project is given. Current overall organization and a description of the responsibilitiesmore » of each participant are included. Badger Plant's organization at manager level is shown.« less
Optimization of carbon mitigation paths in the power sector of Shenzhen, China
NASA Astrophysics Data System (ADS)
Li, Xin; Hu, Guangxiao; Duan, Ying; Ji, Junping
2017-08-01
This paper studied the carbon mitigation paths of the power sector in Shenzhen, China from a supply-side perspective. We investigated the carbon mitigation potentials and investments of seventeen mitigation technologies in the power sector, and employed a linear programming method to optimize the mitigation paths. The results show that: 1) The total carbon mitigation potential is 5.95 MtCO2 in 2020 in which the adjustment of power supply structure, technical improvements of existing coal- and gas-fired power plant account for 87.5%,6.5% and 6.0%, respectively. 2) In the optimal path, the avoided carbon dioxide to meet the local government’s mitigation goal in power sector is 1.26 MtCO2.The adjustment of power supply structure and technical improvement of the coal-fired power plants are the driving factors of carbon mitigation, with contributions to total carbon mitigation are 72.6% and 27.4%, respectively.
Causes of Coal Mine Accidents in the World and Turkey.
Küçük, Filiz Çağla Uyanusta; Ilgaz, Aslıhan
2015-04-01
Occupational accidents and occupational diseases are common in the mining sector in Turkey and throughout the world. The most common causes of accidents in coal mining are firedamp and dust explosions, landslips, mine fires, and technical failures related to transport and mechanization. An analysis of occupational accidents in the consideration of social and economic factors will let understand the real causes behind these accidents, which are said to happen inevitably due to technical deficiencies or failures. Irregular working conditions, based on profit maximization and cost minimization, are related to strategic operational preferences and public policies. Proving that accidents in mines, where occupational health and safety measures are not implemented and inspections are not done properly or at all, are caused by the fact that production is imposed to be carried out in the fastest, cheapest, and most profitable way will allow us to take steps to prevent further mine accidents.
Causes of Coal Mine Accidents in the World and Turkey
Küçük, Filiz Çağla Uyanusta; Ilgaz, Aslıhan
2015-01-01
Occupational accidents and occupational diseases are common in the mining sector in Turkey and throughout the world. The most common causes of accidents in coal mining are firedamp and dust explosions, landslips, mine fires, and technical failures related to transport and mechanization. An analysis of occupational accidents in the consideration of social and economic factors will let understand the real causes behind these accidents, which are said to happen inevitably due to technical deficiencies or failures. Irregular working conditions, based on profit maximization and cost minimization, are related to strategic operational preferences and public policies. Proving that accidents in mines, where occupational health and safety measures are not implemented and inspections are not done properly or at all, are caused by the fact that production is imposed to be carried out in the fastest, cheapest, and most profitable way will allow us to take steps to prevent further mine accidents. PMID:29404108
NASA Astrophysics Data System (ADS)
Noor, N. A. W. Mohd; Hassan, H.; Hashim, M. F.; Hasini, H.; Munisamy, K. M.
2017-04-01
This paper presents an investigation on the effects of primary airflow to coal fineness in coal-fired boilers. In coal fired power plant, coal is pulverized in a pulverizer, and it is then transferred to boiler for combustion. Coal need to be ground to its desired size to obtain maximum combustion efficiency. Coarse coal particle size may lead to many performance problems such as formation of clinker. In this study, the effects of primary airflow to coal particles size and coal flow distribution were investigated by using isokinetic coal sampling and computational fluid dynamic (CFD) modelling. Four different primary airflows were tested and the effects to resulting coal fineness were recorded. Results show that the optimum coal fineness distribution is obtained at design primary airflow. Any reduction or increase of air flow rate results in undesirable coal fineness distribution.
Microwave digestion for the quantification of inorganic elements in coal and coal ash using ICP-OES.
Low, Fiona; Zhang, Lian
2012-11-15
In this paper, microwave digestion conditions have been optimised to achieve complete recoveries for the ash-forming inorganic elements in coal and coal combustion fly ash, during the analysis by inductively coupled plasma optical emission spectroscopy (ICP-OES). The elements analysed include six major (Al, Ca, Fe, K, Mg and Na) and twelve trace (As, Ba, Be, Co, Cr, Cu, Li, Mn, Ni, Pb, Sr and V). Seven reference samples have been tested, including two standard coal references, SRM1632c and SARM19, their corresponding high-temperature ashes (HTAs), and three coal fly ash references, SRM1633c, SRM2690 and BCR38. The recoveries of individual elements in these samples have been examined intensively, as a function of the amount of hydrofluoric acid (HF, 0-2.0 ml), microwave power (900 W vs. 1200 W) and sample mass (0.05 g vs. 0.1 g). As have been confirmed, the recoveries of these individual elements varied significantly with the microwave digestion condition, elemental type and sample property. For the coal references and their HTAs, the use of HF can be ruled out for most of the elements, except K associated with feldspar, Pb and V. In particular, the recovery of Pb in coal is highly sample-specific and thus unpredictable. The majority of elements in fly ash references require the use of 0.1-0.2 ml HF for a complete recovery. Al in fly ash is the only exceptional element which gave incomplete recoveries throughout, suggesting the use of a complementary technique for its quantification. As has proven to be the only element inconsequential of sample type and digestion conditions, achieving complete recoveries for all cases. On the power parameter, using a higher power such as 1200 W is critical, which has proved to be an ultimatum for the recovery of certain elements, especially in fly ash. Halving sample mass from 0.1 g to 0.05 g was also found to be insignificant. Copyright © 2012 Elsevier B.V. All rights reserved.
Effects of coal storage in air on physical and chemical properties of coal and on gas adsorption
Mastalerz, Maria; Solano-Acosta, W.; Schimmelmann, A.; Drobniak, A.
2009-01-01
This paper investigates changes in the high-volatile bituminous Lower Block Coal Member from Indiana owing to moisture availability and oxidation in air at ambient pressure and temperature over storage time. Specifically, it investigates changes in chemistry, in surface area, and pore structure, as well as changes in methane and carbon dioxide adsorption capacities. Our results document that the methane adsorption capacity increased by 40%, whereas CO2 adsorption capacity increased by 18% during a 13-month time period. These changes in adsorption are accompanied by changes in chemistry and surface area of the coal. The observed changes in adsorption capacity indicate that special care must be taken when collecting samples and preserving coals until adsorption characteristics are measured in the laboratory. High-pressure isotherms from partially dried coal samples would likely cause overestimation of gas adsorption capacities, lead to a miscalculation of coal-bed methane prospects, and provide deceptively optimistic prognoses for recovery of coal-bed methane or capture of anthropogenic CO2. ?? 2009 Elsevier B.V. All rights reserved.
Mafu, Lihle D; Neomagus, Hein W J P; Everson, Raymond C; Okolo, Gregory N; Strydom, Christien A; Bunt, John R
2018-06-01
The carbon dioxide gasification characteristics of three biomass char samples and bituminous coal char were investigated in a thermogravimetric analyser in the temperature range of 850-950 °C. Char SB exhibited higher reactivities (R i , R s , R f ) than chars SW and HW. Coal char gasification reactivities were observed to be lower than those of the three biomass chars. Correlations between the char reactivities and char characteristics were highlighted. The addition of 10% biomass had no significant impact on the coal char gasification reactivity. However, 20 and 30% biomass additions resulted in increased coal char gasification rate. During co-gasification, chars HW and SW caused increased coal char gasification reactivity at lower conversions, while char SB resulted in increased gasification rates throughout the entire conversion range. Experimental data from biomass char gasification and biomass-coal char co-gasification were well described by the MRPM, while coal char gasification was better described by the RPM. Copyright © 2018 Elsevier Ltd. All rights reserved.
Sulfur determination in coal using molecular absorption in graphite filter vaporizer.
Jim, Gibson; Katskov, Dmitri; Tittarelli, Paolo
2011-02-15
The vaporization of sulfur containing samples in graphite vaporizers for atomic absorption spectrometry is accompanied by modification of sulfur by carbon and, respectively, appearance at high temperature of structured molecular absorption in 200-210 nm wavelength range. It has been proposed to employ the spectrum for direct determination of sulfur in coal; soundness of the suggestion is evaluated by analysis of coal slurry using low resolution CCD spectrometer with continuum light source coupled to platform or filter furnace vaporizers. For coal in platform furnace losses of the analyte at low temperature and strong spectral background from the coal matrix hinder the determination. Both negative effects are significantly reduced in filter furnace, in which sample vapor efficiently interacts with carbon when transferred through the heated graphite filter. The method is verified by analysis of coals with sulfur content within 0.13-1.5% (m/m) range. The use of coal certified reference material for sulfur analyte addition to coal slurry permitted determination with random error 5-12%. Absolute and relative detection limits for sulfur in coal are 0.16 μg and 0.02 mass%, respectively. Copyright © 2010 Elsevier B.V. All rights reserved.
Natural radioactivity in lignite samples from open pit mines "Kolubara", Serbia--risk assessment.
Ðurašević, M; Kandić, A; Stefanović, P; Vukanac, I; Sešlak, B; Milošević, Z; Marković, T
2014-05-01
Coal as fossil fuel mainly contains naturally occurring radionuclides from the uranium and thorium series and (40)K. Use of coal, primarily in industry, as a result has dispersion of radioactive material from coal in and through air and water. The aim of this study was to determine the activity concentrations of natural radionuclides in coal samples from open pit mines "Kolubara" and to evaluate its effect on population health. The results showed that all measured and calculated values were below the limits recommended in international legislation. © 2013 Published by Elsevier Ltd.
Geographic information system (GIS) representation of coal-bearing areas in India and Bangladesh
Trippi, Michael H.; Tewalt, Susan J.
2011-01-01
Geographic information system (GIS) information may facilitate energy studies, which in turn provide input for energy policy decisions. Prior to this study, no GIS file representing the occurrence of coal-bearing units in India or Bangladesh was known to exist. This Open-File Report contains downloadable shapefiles representing the coalfields of India and Bangladesh and a limited number of chemical and petrographic analyses of India and Bangladesh coal samples. Also included are maps of India and Bangladesh showing the locations of the coalfields and coal samples in the shapefiles, figures summarizing the stratigraphic units in the coalfields of India and Bangladesh, and a brief report summarizing the stratigraphy and geographic locations of coal-bearing deposits in India and Bangladesh.
Quintero, K.; Martinez, M.; Hackley, P.; Marquez, G.; Garban, G.; Esteves, I.; Escobar, M.
2011-01-01
The aim of this work was to carry out a geochemical study of channel samples collected from six coal beds in the Marcelina Formation (Zulia State, western Venezuela) and to determine experimentally the gas content of the coals from the Paso Diablo mine. Organic geochemical analyses by gas chromatography-mass spectrometry and isotopic analyses on-line in coalbed gas samples were performed. The results suggest that the Guasare coals were deposited in a continental environment under highly dysoxic and low salinity conditions. The non-detection of 18??(H)-oleanane does not preclude that the organic facies that gave rise to the coals were dominated by angiosperms. In addition, the presence of the sesquiterpenoid cadalene may indicate the subordinate contribution of gymnosperms (conifers) in the Paleocene Guasare mire. The average coalbed gas content obtained was 0.6 cm3/g. ??13C and D values indicate that thermogenic gas is prevalent in the studied coals. Copyright ?? Taylor & Francis Group, LLC.
NASA Astrophysics Data System (ADS)
Zhai, Xiaowei; Wu, Shibo; Deng, Jun; Yang, Yifan; Jiang, Hua; Wang, Kai
2017-01-01
When the underground coal mine gob area has been sealed due to the coal spontaneous combustion, under the low oxygen and potentially high temperature environment, the CO concentration could drop sharply and disappear quickly. But it could rise rapidly after re-opening. These indicate that the disappearance is the only index for coal burnt out. In order to find a way how let CO disappear, experiments have been conducted using the newly developed experiment setup for three samples, raw, watered and bacteria-free coal sample. The CO and CO2 concentration have been monitored and analyzed. The results show the bacteria in the coal do consume CO and increase the chance of CO transfer to CO2. These results reveal how let CO disappear in a sealed zone from a new aspect. And the accuracy was improved when used gas index to determine combustion status for coal spontaneous combustion.
Sound-burst Generator for Measuring Coal Properties
NASA Technical Reports Server (NTRS)
Hadden, W. J. J.; Mills, J. M.; Pierce, A. D.
1982-01-01
Acoustical properties of coal can be measured accurately and with relative ease with aid of digital two-channel sine-wave sound generator. Generator is expected to provide information for development of acoustic devices for measuring thickness of coal in longwall mining. In echo-cancellation measurements, sound bursts are sent to coal sample from opposite directions. Transmitted and reflected amplitudes and phases are measured by transducers to determine coal properties.
Peng, Shoujian; Fang, Zhiming; Shen, Jian; Xu, Jiang; Wang, Geoff
2017-10-30
The cleat compressibility of coal is a key parameter that is extensively used in modeling the coal reservoir permeability for Coal Bed Methane (CBM) recovery. Cleat compressibility is often determined from the permeability measurement made at different confining pressures but with a constant pore pressure. Hence, this parameter ignores the sorption strain effects on the cleat compressibility. By using the transient pulse decay (TPD) technique, this study presents the results from a laboratory characterization program using coal core drilled from different bedding directions to estimate gas permeability and coal cleat compressibility under different pore pressures while maintaining effective stress constant. Cleat compressibility was determined from permeability and sorption strain measurements that are made at different pore pressures under an effective stress constant. Results show that the cleat compressibility of coal increases slightly with the increase of pore pressure. Moreover, the cleat compressibility of Sample P (representing the face cleats in coal) is larger than that of Sample C (representing the butt cleats in coal). This result suggests that cleat compressibility should not be regarded as constant in the modeling of the CBM recovery. Furthermore, the compressibility of face cleats is considerably sensitive to the sorption-induced swelling/shrinkage and offers significant effects on the coal permeability.
Wu, D.; Lei, J.; Zheng, B.; Tang, X.; Wang, M.; Hu, Jiawen; Li, S.; Wang, B.; Finkelman, R.B.
2011-01-01
Three hundred and six coal samples were taken from main coal mines of twenty-six provinces, autonomous regions, and municipalities in China, according to the resource distribution and coal-forming periods as well as the coal ranks and coal yields. Nitrogen was determined by using the Kjeldahl method at U. S. Geological Survey (USGS), which exhibit a normal frequency distribution. The nitrogen contents of over 90% Chinese coal vary from 0.52% to 1.41% and the average nitrogen content is recommended to be 0.98%. Nitrogen in coal exists primarily in organic form. There is a slight positive relationship between nitrogen content and coal ranking. ?? 2011 Science Press, Institute of Geochemistry, CAS and Springer Berlin Heidelberg.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vukasinovic-Pesic, V.; Rajakovic, L.J.
2009-07-01
The chemical compositions and trace element contents (Zn, Cu, Co, Cr, Ni, Pb, Cd, As, B, Hg, Sr, Se, Be, Ba, Mn, Th, V, U) in coal and coal ash samples from Tamnava-Zapadno Polje coal field in Serbia were studied. The coal from this field belongs to lignite. This high volatility coal has high moisture and low S contents, moderate ash yield, and high calorific value. The coal ash is abundant in alumosilicates. Many trace elements such as Ni > Cd > Cr > B > As > Cu > Co > Pb > V > Zn > Mn inmore » the coal and Ni > Cr > As > B > Cu > Co = Pb > V > Zn > Mn in the coal ash are enriched in comparison with Clarke concentrations.« less
Geogenic organic contaminants in the low-rank coal-bearing Carrizo-Wilcox aquifer of East Texas, USA
NASA Astrophysics Data System (ADS)
Chakraborty, Jayeeta; Varonka, Matthew; Orem, William; Finkelman, Robert B.; Manton, William
2017-06-01
The organic composition of groundwater along the Carrizo-Wilcox aquifer in East Texas (USA), sampled from rural wells in May and September 2015, was examined as part of a larger study of the potential health and environmental effects of organic compounds derived from low-rank coals. The quality of water from the low-rank coal-bearing Carrizo-Wilcox aquifer is a potential environmental concern and no detailed studies of the organic compounds in this aquifer have been published. Organic compounds identified in the water samples included: aliphatics and their fatty acid derivatives, phenols, biphenyls, N-, O-, and S-containing heterocyclic compounds, polycyclic aromatic hydrocarbons (PAHs), aromatic amines, and phthalates. Many of the identified organic compounds (aliphatics, phenols, heterocyclic compounds, PAHs) are geogenic and originated from groundwater leaching of young and unmetamorphosed low-rank coals. Estimated concentrations of individual compounds ranged from about 3.9 to 0.01 μg/L. In many rural areas in East Texas, coal strata provide aquifers for drinking water wells. Organic compounds observed in groundwater are likely to be present in drinking water supplied from wells that penetrate the coal. Some of the organic compounds identified in the water samples are potentially toxic to humans, but at the estimated levels in these samples, the compounds are unlikely to cause acute health problems. The human health effects of low-level chronic exposure to coal-derived organic compounds in drinking water in East Texas are currently unknown, and continuing studies will evaluate possible toxicity.
PTBA Coal Briquette Development Project: A status report, March 1995
DOE Office of Scientific and Technical Information (OSTI.GOV)
Purba, A.C.; Supriyanto, H.; Djamal, T.S.
1995-12-31
Indonesia has a vast coal reserved amounted around 36 Billion Tons (As May 1993), of which more than 98% located in two big islands: Sumatera & Kalimantan. Indonesian Energy Policy, set up in 1976 were shifting the National Energy Mix to encourage the use of other alternative energy for fulfilling the domestic energy demand. Coal, as it was available in enormous reserve become the most suitable alternative fuel. Indonesian coal mining industry was then gaining a big momentum for its resurrection since it was for long had been overlooked. As the result of reconstruction of old mines, expanding the currentmore » mines and the opening of new mines by foreign investor (Contractors) in Kalimantan, since 1986, ten years after the set up of New National Energy Policy or 45 years after peak production level in the past, 2 million tons of coal production was regained. Afterward the coal production of Indonesian coal mine industry are increasing in an exponential rate of growth. With more than 29 million tons of coal produced in 1994, Indonesia will continue to play greater role in the world coal export market in the future. It is projected that by the year of 1998, Indonesia will rank the 3rd as the world coal exporter next to Australia and South African with around 14% of world market share. In this paper, author would only like to report the current status of Indonesian Coal Briquette Industry of which PT Tambang Batubara Bukit Asam (Persero), PTBA, the state owned coal mining company was being appointed to pioneer the establishment of the first coal briquette industry in Indonesia. Process Technology that being compared here in this paper were based on the technical compliance to specification set by government and the techno-economic evaluation. Due to limitations and constrains, all aspects concerning the project will only be discussed in an overview.« less
DOE R&D Accomplishments Database
Olah, G.
1980-01-01
We were interested in applying superacid catalyzed cleavage-depolymerization and ionic hydrogenation low temperature conversion of coal to liquid hydrocarbon, as well as obtaining information about the reactions involved and the structure of intermediates of the coal liquefaction process. In order to show the feasibility of our proposed research we have carried out preliminary investigation in these areas. Preceding our work there was no practical application of a superacid system to coal liquefaction. We carried out an extensive study of the potential of the HF:BF{sub 3}/H{sub 2} system for coal hydroliquefaction. Under varying conditions of reactant ratio, reaction time and temperature, we were able to obtain over 95% pyridine extractible product by treating coal in HF:BF{sub 3}:H{sub 2} system at approx. 100 degrees C for 4 hours. The coal to acid ratio was 1:5 and FB{sub 3} at 900 psi and H{sub 2} at 500 psi were used. These are extremely encouraging results in that the conditions used are drastically milder than those used in any known process, such as Exxon donor solvent and related processes. The cyclohexane extractibility of the treated coal was as high as 27% and the yield of liquid distillate at 400 degrees C/5 x 10{sup -3}/sup torr/ was approx. 30%. The infrared spectrum of product coal, extracts and distillates were distinctly different from the starting coal and show a significant increase in the amount of saturates. The {sup 1}H NMR spectrum of cyclohexane extract of the treated coal shows essentially all aliphatic photons. The spectra of other treated coal extracts show increased amounts and types of aliphatic protons as well as significant amounts of protons bound to unsaturated sites. This again indicates that the HF-BF{sub 3} system is depolymerizing the coal to small fragments which are soluble in non-polar solvents.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gates, B. C.; Olson, H. H.; Schuit, G. C.A.
1983-08-22
A new method of structural analysis is applied to a group of hydroliquefied coal samples. The method uses elemental analysis and NMR data to estimate the concentrations of functional groups in the samples. The samples include oil and asphaltene fractions obtained in a series of hydroliquefaction experiments, and a set of 9 fractions separated from a coal-derived oil. The structural characterization of these samples demonstrates that estimates of functional group concentrations can be used to provide detailed structural profiles of complex mixtures and to obtain limited information about reaction pathways. 11 references, 1 figure, 7 tables.
Coal gasification systems engineering and analysis. Appendix F: Critical technology items/issues
NASA Technical Reports Server (NTRS)
1980-01-01
Critical technology items and issues are defined in which there is a need for developmental research in order to assure technical and economic success for the state of the art of coal gasification in the United States. Technology development needs for the main processing units and the supporting units are discussed. While development needs are shown for a large number of systems, the most critical areas are associated with the gasifier itself and those systems which either feed the gasifier or directly receive products form the gasifier.
Geochemistry of rare earth elements in Permian coals from the Huaibei Coalfield, China
Zheng, Lingyun; Liu, Gaisheng; Chou, C.-L.; Qi, C.; Zhang, Y.
2007-01-01
The rare earth elements (REEs) in coals are important because of: (a) REE patterns can be an indicator of the nature of source rocks of the mineral matter as well as sedimentary environments; (b) REEs abundance in coal may have industrial-significance. In this study, a total of thirty-four samples of Permian coal, partings, roof, and floor were collected from the Huaibei Coalfield, Anhui Province, China. Abundances of rare earth elements (REEs) and other elements in the samples were determined by inductively coupled-plasma mass spectrometry (ICP-MS) and inductively coupled-plasma atomic emission spectrometry (ICP-AES). The results show that the REEs are enriched in coals in the Huaibei Coalfield as compared with Chinese and U.S. coals and the world coal average. Coals in the Lower Shihezi Formation (No. 7, 5, and 4 Coals) and Upper Shihezi Formation (No. 3) have higher REE abundances than the coals in Shanxi Formation (No. 10). Magmatic intrusion resulted in high enrichment of REEs concentrations in No. 5 and 7 Coals. The REE abundances are positively correlated with the ash content. The mineral matter in these coals is mainly made up of clay minerals and carbonates. The REEs are positively correlated with lithophile elements including Si, Al, Ti, Fe, and Na, which are mainly distributed in clay minerals, indicating that REEs are contained mainly in clay minerals. The REE abundances in coals normalized by the ash are higher than that in partings. REEs abundances of coals cannot be accounted for by the REE content in the mineral matter, and some REEs associated with organic matter in coals. ?? 2007 Elsevier Ltd. All rights reserved.
Bostick, N.H.; Daws, T.A.
1994-01-01
Basic research on coal and oil shale led to automated pyrolysis analysis of petroleum source rocks; most widely used is the Rock-Eval equipment. In order to interpret Rock-Eval analyses in relation to traditional coal data, we analyzed 142 commercial coals with diverse rank, age, maceral and sulfur contents, for most regions of the United States. We compared the Rock-Eval data with traditional industrial coal data, including volatile matter, calorific value, hydrogen and oxygen content, free swelling index, and vitrinite reflectance. We found: (1) there is a close relationship between Tmax and vitrinite reflectance in the ranges 420-590??C Tmax and 0.4-3%Romax of most coals. (2) A close relationship between Tmax and volatile matter (%VM) extends through the entire sample range, including low-rank samples with 35-70% VM, a range where %VM is not considered to be a useful rank parameter. (3) TOC of medium- and high-rank coals is seriously under-measured by Rock-Eval; TOC of low-rank coals (less than 0.8%Romax) is close to "dry basis" carbon from ultimate analysis. (4) The direct relationships between oxygen index (OI) and %O and between hydrogen index (HI) and %H are clear, though only broadly defined. However, there is virtually no band of concentrated data points on the HI versus OI pseudo-Van Krevelen diagram comparable to the "development line" on the H/C versus O/C diagram. (5) There are systematic relationships between Rock-Eval and industrial coal parameters such as calorific value and FSI, but much standardization would be needed before Rock-Eval could find a place in the coal industry. Tests with blends of coal and quartz sand and with various loads of coal alone showed that the amount of organic matter in the Rock-Eval load greatly influences results. Total load in the crucible, if largely inert, plays a small role, however. Increasing absolute or relative coal content causes under-evaluation of Rock-Eval TOC and over-rating of hydrogen. Blends of several coals yielded hydrogen and oxygen indexes related proportionally to the properties of the individual coals, but Tmax is not raised by addition of high-rank coal until over 40% is added. ?? 1994.
Mineralogy of ash of some American coals: variations with temperature and source
Mitchell, R.S.; Gluskoter, H.J.
1976-01-01
Ten samples of mineral-matter residue were obtained by the radio-frequency low-temperature ashing of subbituminous and bituminous coals. The low-temperature ash samples were then heated progressively from 400 ??C to 1400 ??C at 100 ??C intervals. Mineral phases present at each temperature interval were determined by X-ray diffraction analyses. The minerals originally present in the coals (quartz, kaolinite, illite, pyrite, calcite, gypsum, dolomite, and sphalerite) were all altered to higher temperature phases. Several of these phases, including kaolinite, metakaolinite, mullite, anhydrite, and anorthite, were found only in limited temperature ranges. Therefore the temperature of formation of the ashes in which they occur may be determined. Mineralogical differences were observed between coal samples from the Rocky Mountain Province, the Illinois Basin, and the Appalachians; and as a result of these mineralogical differences, different high-temperature phases resulted as the samples were heated. However, regional generalizations cannot be made until a greater number of samples have been studied. ?? 1976.
NASA Astrophysics Data System (ADS)
Adamczyk, Zdzisław; Komorek, Joanna; Lewandowska, Małgorzata
2014-03-01
Subject of the research were coal samples from the seams of Orzesze and Ruda beds from "Pniówek" coal mine. All samples represent methabituminous coal B, which present high vitrinite content (V mmf > 60%). Optical character of vitrinite from all analyzed coal samples is biaxial negative and it is characterized by low differentiation of bireflectance. The experiments have shown that the coal rank of investigated samples is generally decreasing with increasing both depth of coal seams and the distance between sampling point and the Carboniferous roof. It may suggests inversion of coalification. Specific types of macerals, typical for thermally metamorphosed coals have been found for all analysed coal samples. It was found, presence of such components like: fluorescing bituminous substance (FBS) filling of cellular spaces in semifusinite, fusinite, and funginite; pseudomorphs after megaspores exhibiting strong bireflectance, and anisotropic semifusinite. Petrographic components with a structure similar to structure of coke and pyrolytic carbon were observed rarely. Presence of colotelinite grains which are visible darker, impregnated with bituminous substance and exhibiting weak fluorescence may be related with influence of temperature on coal. Carbonates occur as filling of cellular spaces in semifusinite, in examined coal samples and there are the effect of thermal alteration of coal. Przedmiotem badań były próbki węgla z pokładów warstw orzeskich i rudzkich KWK Pniówek. Badane próbki reprezentują węgiel średniouwęglony typu B (metabitumiczny), wysokowitrynitowy. Stwierdzono, że witrynit z badanych próbek ma dwuosiowy ujemny charakter optyczny i wykazuje małe zróżnicowanie w wartościach dwójodbicia. Przeprowadzone badania wykazały, że stopień uwęglenia badanych próbek generalnie maleje wraz ze wzrostem głębokości występowania pokładów węgla oraz ze wzrostem odległości miejsca opróbowania od stropu karbonu co może wskazywać na inwersję uwęglenia. We wszystkich analizowanych próbkach węgla stwierdzono występowanie specyficznych odmian macerałów typowych dla węgli zmetamorfizowanych termicznie. W próbkach stwierdzono obecność takich składników jak: fluoryzująca substancja bitumiczna (FBS) wypełniająca przestrzenie komórkowe w semifuzynicie, fuzynicie i funginicie; pseudomorfozy po makrosporach wykazujące silne dwójodbicie oraz anizotropowy semifuzynit. Rzadziej obserwowano składniki petrograficzne o strukturze wykazującej podobieństwo do struktury koksu i węgiel pirolityczny. Z oddziaływaniem temperatury na badany węgiel można wiązać także obecność w analizowanych próbkach wyraźnie ciemniejszych, przesyconych substancją bitumiczną, wykazujących słabą fluorescencję ziaren kolotelinitu. Przejawem przemian termicznych obserwowanych w badanych próbkach węgla może być także obecność węglanów najczęściej wypełniających przestrzenie komórkowe w semifuzynicie.
Chen, J.; Liu, Gaisheng; Jiang, M.; Chou, C.-L.; Li, H.; Wu, B.; Zheng, Lingyun; Jiang, D.
2011-01-01
To study the geochemical characteristics of 11 environmentally sensitive trace elements in the coals of the Permian Period from the Huainan coalfield, Anhui province, China, borehole samples of 336 coals, two partings, and four roof and floor mudstones were collected from mineable coal seams. Major elements and selected trace elements were determined by inductively coupled plasma optical emission spectrometry (ICP-OES), inductively coupled plasma mass spectrometry (ICP-MS), and hydride generation atomic absorption spectrometry (HAAS). The depositional environment, abundances, distribution, and modes of occurrence of trace elements were investigated. Results show that clay and carbonate minerals are the principal inorganic constituents in the coals. A lower deltaic plain, where fluvial channel systems developed successively, was the likely depositional environment of the Permian coals in the Huainan coalfield. All major elements have wider variation ranges than those of Chinese coals except for Mg and Fe. The contents of Cr, Co, Ni, and Se are higher than their averages for Chinese coals and world coals. Vertical variations of trace elements in different formations are not significant except for B and Ba. Certain roof and partings are distinctly higher in trace elements than underlying coal bench samples. The modes of occurrence of trace elements vary in different coal seams as a result of different coal-forming environments. Vanadium, Cr, and Th are associated with aluminosilicate minerals, Ba with carbonate minerals, and Cu, Zn, As, Se, and Pb mainly with sulfide minerals. ?? 2011 Elsevier B.V.
Ruppert, L.F.; Hower, J.C.; Eble, C.F.
2005-01-01
Arsenic concentrations determined on 11 lithotype samples from the Middle Pennsylvanian Breathitt Group Fire Clay coal bed, Leslie County, KY, range from 1 to 418 ppm (whole coal basis). The 11 lithotype samples, which vary in thickness from 4 to 18 cm, were sampled from a continuous 1.38 m channel sample, and were selected based on megascopic appearance (vitrain-rich versus attrital-rich). A lithotype that contains 418 ppm As is located near the top of the coal bed and is composed of 10.5 cm of bright clarain bands containing fusain that, within short distances, grade laterally into Fe sulfide bands. To determine the mode of occurrence of As in this lithotype, the coal was examined with scanning electron microscopy and analyzed by energy dispersive X-ray fluorescence. Massive, framboidal, cell filling, cell-wall replacement, and radiating forms of Fe sulfide were observed in the high As lithotype; many of the radiating Fe sulfide forms, and one of the cell-wall replacements contained As. Examination of the grains with optical light microscopy shows that the majority of radiating morphologies are pyrite, the remainder are marcasite. Selected Fe sulfide grains were also analyzed by electron microprobe microscopy. Arsenic concentrations within individual grains range from 0.0 wt.% to approximately 3.5 wt.%. On the basis of morphology, these Fe sulfides are presumed to be of syngenetic origin and would probably be removed from the coal during physical coal cleaning, thus eliminating a potential source of As from the coal combustion process. However, because the grains are radiating and have high surface area, dissolution and release of As could occur if the pyrite is oxidized in refuse ponds.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The US Department of Energy is funding an underground coal gasification (UCG) project in steeply dipping coal beds (SDB), at North Knobs, about 8 miles west of Rawlins, Carbon County, Wyoming. The project is being conducted to determine the technical, economic and environmental viability of such a technology. The development of SDB is an interesting target for UCG since such beds contain coals not normally mineable economically by ordinary techniques. Although the underground gasification of SDB has not been attempted in the US, Soviet experience and theoretical work indicate that the gasification of SDB in place offers all the advantagesmore » of underground gasification of horizontal coal seams plus some unique characteristics. The steep angle of dip helps to channel the produced gases up dip to offtake holes and permits the ash and rubble to fall away from the reaction zone helping to mitigate the blocking of the reaction zone in swelling coals. The intersection of SDB with the surface makes the seam accessible for drilling and other preparation. The tests at the North Knobs site will consist of three tests, lasting 20, 80 and 80 days, respectively. A total of 9590 tons of coal is expected to be gasified, with surface facilities utilizing 15 acres of the total section of land. The environmental effects of the experiment are expected to be very small. The key environmental impact is potential groundwater contamination by reaction products from coal gasification. There is good evidence that the surrounding coal effectively blocks the migration of these contaminants.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gardner, D.; Guerrier, J.; Martinez, M.
1994-01-04
In situ and near real-time measurements of coal seam thickness have been identified by industry as a highly desirable component of robotic mining systems. With it, a continuous mining machine can be guided close to the varying boundary of the seam while the cutting operation is underway. This provides the mining operation the ability to leave behind the high-sulfur, high-particulate coal which is concentrated near the seam boundary. The result is near total recovery of high quality coal resources, an increase in mining efficiency, and opportunities for improved safety through reduction in personnel in the most hazardous coal cutting areas.more » In situ, real-time coal seam measurements using the Special Technologies Laboratory (STL) ground penetrating radar (GPR) technology were shown feasible by a demonstration in a Utah coal mine on April 21, 1994. This report describes the October 18, 1994 in situ GPR measurements of coal seam thickness at the US Bureau of Mines (USBM) robotic mining testing laboratory. In this report, an overview of the measurements at the USBM Laboratory is given. It is followed by a description of the technical aspects of the STL frequency modulated-continuous wave (FM-CW) GPR system. Section 4 provides a detailed description of the USBM Laboratory measurements and the conditions under which they were taken. Section 5 offers conclusions and possibilities for future communications.« less
Assessment of hydrocarbon source rock potential of Polish bituminous coals and carbonaceous shales
Kotarba, M.J.; Clayton, J.L.; Rice, D.D.; Wagner, M.
2002-01-01
We analyzed 40 coal samples and 45 carbonaceous shale samples of varying thermal maturity (vitrinite reflectance 0.59% to 4.28%) from the Upper Carboniferous coal-bearing strata of the Upper Silesian, Lower Silesian, and Lublin basins, Poland, to evaluate their potential for generation and expulsion of gaseous and liquid hydrocarbons. We evaluated source rock potential based on Rock-Eval pyrolysis yield, elemental composition (atomic H/C and O/C), and solvent extraction yields of bitumen. An attempt was made to relate maceral composition to these source rock parameters and to composition of the organic matter and likely biological precursors. A few carbonaceous shale samples contain sufficient generation potential (pyrolysis assay and elemental composition) to be considered potential source rocks, although the extractable hydrocarbon and bitumen yields are lower than those reported in previous studies for effective Type III source rocks. Most samples analysed contain insufficient capacity for generation of hydrocarbons to reach thresholds required for expulsion (primary migration) to occur. In view of these findings, it is improbable that any of the coals or carbonaceous shales at the sites sampled in our study would be capable of expelling commercial amounts of oil. Inasmuch as a few samples contained sufficient generation capacity to be considered potential source rocks, it is possible that some locations or stratigraphic zones within the coals and shales could have favourable potential, but could not be clearly delimited with the number of samples analysed in our study. Because of their high heteroatomic content and high amount of asphaltenes, the bitumens contained in the coals are less capable of generating hydrocarbons even under optimal thermal conditions than their counterpart bitumens in the shales which have a lower heteroatomic content. Published by Elsevier Science B.V.
Demir, I.; Harvey, R.D.; Hackley, Keith C.
1993-01-01
Two samples of the Herrin (Illinois No. 6) Coal and one sample of the Colchester (Illinois No. 2) Coal from the Illinois Basin were studied to evaluate the spatial distribution of organic sulfur within macerals occurring next to pyrite grains, both in the raw coal and their chars. The chars were produced by pyrolysing the coal at 250-550??C in a nitrogen atmosphere. Representative splits of the coals and their chars were mounted in epoxy and polished for optical microscopy and scanning electron microscopy-energy dispersive x-ray spectroscopy (SEM-EDX). Determinations of organic sulfur concentrations were made at 996 locations within macerals, mostly vitrinite, around 115 grains of pyrite and at 50 locations around 5 pores in chars. The pyrite considered here is restricted to the disseminated type within macerals. On the average, the organic sulfur content increased near pyrite grains after the coals were charred at 550??C, indicating that some of the pyritic sulfur released during charring was retained within the organic matrix rather than being emitted to the atmosphere. One of the coal samples and its chars were isotopically characterized by chemically separating the pyritic and organic sulfur fractions, followed by analyzing the isotopes of the sulfur forms with a Nuclide 6-60 ratio mass spectrometer. The sulfur isotope (??34S) data confirmed the movement of pyritic sulfur into the macerals after charring to 550??C. About 18% of the organic sulfur that remained in the 550??C char had originally been pyritic sulfur in the untreated coal. ?? 1993.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ugur Cevik; Nevzat Damla; Bahadir Koz
A radiological characterization of soil samples around the Afsin-Elbistan coal-fired thermal power plant in the Mediterranean region of Turkey was carried out. Moreover, activity concentrations and chemical analyses of coal samples used in this power plant and fly ash and slag samples originating from coal combustion were measured. For this purpose, coal, fly ash, slag, and soil samples were collected from this region. The analysis shows that the samples include relevant natural radionuclides such as {sup 226}Ra, {sup 232}Th and {sup 40}K. The mean activity concentrations of {sup 226}Ra, {sup 232}Th, and {sup 40}K were 167, 44, and 404 Bq.kg{supmore » -1}, respectively. Obtained values shows that the average radium equivalent activity, air-absorbed dose rate, annual effective dose, and external hazard index for all samples are 258 Bq.kg{sup -1}, 121 nGy.h{sup -1}, 148 {mu}Sv.y{sup -1}, and 0.7, respectively. The environmental effect of natural radionuclides caused by coal-fired power plants was considered to be negligible because the Ra{sub eq} values of the measured samples are generally lower than the limit value of 370 Bq.kg{sup -1}, equivalent to a gamma dose of 1.5 mSv.y{sup -1}. A comparison of the concentrations obtained in this work with other parts of the world indicates that the radioactivity content of the samples is not significantly different. 20 refs., 1 fig., 5 tabs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
This project is one of eight projects selected under the assessment program in the Support of Eastern Democracy (SEED) Act of 0989 by the federal government to reduce low-level emission sources in the Krakow area of Poland. The objective of this Cooperative Agreement is to demonstrate that the quality of stack gas emissions can be improved through the substitution of run-of-mine coal by washed coal. To this end, EFH Coal Company will design, build, and operate a 300-mtph (330 stph) preparation plant and produce a low ash, double-screened washed coal for burning in a traveling-grate stoker in one of themore » many water heating plants in the city of Krakow. By burning this prepared coal under proper combustion condition, combustion efficiency will be increased, stoker maintenance will be lowered and the amount of carbon monoxide, sulfur dioxide and particulates in the stack gases will be reduced significantly. Contracts to: provide the raw-coal feed to the plant; dispose of plant wastes; burn the clean coal in a demonstration water heating plant in Krakow; and to market any surplus production are in place. An international irrevocable purchase order has been let for the procurement of a customized modular 300 mtph (330 stph) dense medium cyclone preparation plant to wash the 20 mm ({approx} 3/4 in.) by 5 mm. ({approx} 1/4 in.) size fraction of raw coal produced by the Katowice Coal Holding Company. This plant will be fabricated and shipped from the United States to Poland as soon as the final land-us and construction permits are granted.« less
TEM study of PM2.5 emitted from coal and tire combustion in a thermal power station.
Gieré, Reto; Blackford, Mark; Smith, Katherine
2006-10-15
The research presented here was conducted within the scope of an experiment investigating technical feasibility and environmental impacts of tire combustion in a coal-fired power station. Previous work has shown that combustion of a coal+tire blend rather than pure coal increased bulk emissions of various elements (e.g., Zn, As, Sb, Pb). The aim of this study is to characterize the chemical and structural properties of emitted single particles with dimensions <2.5 microm (PM2.5). This transmission electron microscope (TEM)-based study revealed that, in addition to phases typical of coal fly ash (e.g., aluminum-silicate glass, mullite), the emitted PM2.5 contains amorphous selenium particles and three types of crystalline metal sulfates never reported before from stack emissions. Anglesite, PbSO4, is ubiquitous in the PM2.5 derived from both fuels and contains nearly all Pb present in the PM. Gunningite, ZnSO4-H2O, is the main host for Zn and only occurs in the PM derived from the coal+tire blend, whereas yavapaiite, KFe3+(SO4)2, is present only when pure coal was combusted. We conclude that these metal sulfates precipitated from the flue gas, may be globally abundant aerosols, and have, through hydration or dissolution, a major environmental and health impact.
Bibliography of the Gulf of Mexico coastal plain coal geology
Hook, Robert W.; Warwick, Peter D.; Karlsen, Alexander W.; Tewalt, Susan J.; Warwick, Peter D.; Karlsen, Alexander K.; Merrill, Matthew D.; Tewalt, Susan J.
2011-01-01
Unlike scientific literature pertaining to most other coal-bearing regions in the conterminous United States, this bibliography on the coal geology of the Gulf Coastal Plain is dominated by work from the late 20th century. Although coals of this region were mined commercially in the late 1800s and early 1900s, they were eclipsed by the production and use of oil and gas in the middle 1920s and were not mined again as a significant fuel source until the 1970s. As a result, the literature consists mainly of a relatively small number of pre-1920 contributions in state and federal reports, followed by a plethora of technical papers, symposia proceedings, field guides, theses, dissertations, and abstracts over the past 40 years.The purpose of this chapter is to record the present work used by U.S. Geological Survey personnel preparing the Gulf Coast Coal Resource Assessment and to furnish an introduction to the larger body of sedimentary, stratigraphic, paleontologic, geochemical, hydrologic, and mining literature that exists in the region. This bibliography is an update of an earlier compilation (Tewalt et al., 1990). Despite its length, it is not exhaustive. Nor is it restricted to papers that focus solely upon coals because an understanding of these coals is rooted in the general geologic literature of the Gulf Coastal Plain.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sorge, J.N.; Larrimore, C.L.; Slatsky, M.D.
1997-12-31
This paper discusses the technical progress of a US Department of Energy Innovative Clean Coal Technology project demonstrating advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NOx) emissions from coal-fired boilers. The primary objectives of the demonstration is to determine the long-term NOx reduction performance of advanced overfire air (AOFA), low NOx burners (LNB), and advanced digital control optimization methodologies applied in a stepwise fashion to a 500 MW boiler. The focus of this paper is to report (1) on the installation of three on-line carbon-in-ash monitors and (2) the design and results to date from the advancedmore » digital control/optimization phase of the project.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vorres, K S
The overall accomplishments of the HYGAS program to date are that it has demonstrated the key process concepts and integrated unit operations of coal gasification. It has also demonstrated several methods of hydrogen generation, including catalytic steam reforming of natural gas, electrothermal gasification, and also steam-oxygen gasification. A total of 37 tests with lignite, including a total of 5500 tons of lignite processed, demonstrated the technical feasibility of a gasification process using lignite. A total of 17 tests with bituminous coal involved a total of 3100 tons. Some specific objectives of the HYGAS program for fiscal 1977 include tests tomore » be conducted with subbituminous coal. Data will be collected for use in the design of an effluent treatment and water reuse cycles in a commercial plant. New methanation catalysts will be tested. Materials testing will continue.« less
Trippi, Michael H.; Belkin, Harvey E.
2015-09-10
Geographic information system (GIS) information may facilitate energy studies, which in turn provide input for energy policy decisions. The U.S. Geological Survey (USGS) has compiled GIS data representing coal mines, deposits (including those with and without coal mines), occurrences, areas, basins, and provinces of Mongolia as of 2009. These data are now available for download, and may be used in a GIS for a variety of energy resource and environmental studies of Mongolia. Chemical data for 37 coal samples from a previous USGS study of Mongolia (Tewalt and others, 2010) are included in a downloadable GIS point shapefile and shown on the map of Mongolia. A brief report summarizes the methodology used for creation of the shapefiles and the chemical analyses run on the samples.
Study on coal char ignition by radiant heat flux.
NASA Astrophysics Data System (ADS)
Korotkikh, A. G.; Slyusarskiy, K. V.
2017-11-01
The study on coal char ignition by CO2-continuous laser was carried out. The coal char samples of T-grade bituminous coal and 2B-grade lignite were studied via CO2-laser ignition setup. Ignition delay times were determined at ambient condition in heat flux density range 90-200 W/cm2. The average ignition delay time value for lignite samples were 2 times lower while this difference is larger in high heat flux region and lower in low heat flux region. The kinetic constants for overall oxidation reaction were determined using analytic solution of simplified one-dimensional heat transfer equation with radiant heat transfer boundary condition. The activation energy for lignite char was found to be less than it is for bituminous coal char by approximately 20 %.
Warwick, Peter D.; Ruppert, Leslie F.
2016-01-01
The concentration of carbon dioxide (CO2) in the atmosphere has dramatically increased from the start of the industrial revolution in the mid-1700s to present levels exceeding 400 ppm. Carbon dioxide derived from fossil fuel combustion is a greenhouse gas and a major contributor to on-going climate change. Carbon and oxygen stable isotope geochemistry is a useful tool to help model and predict the contributions of anthropogenic sources of CO2 in the global carbon cycle. Surprisingly few studies have addressed the carbon and oxygen isotopic composition of CO2 derived from coal combustion. The goal of this study is to document the relationships between the carbon and oxygen isotope signatures of coal and signatures of the CO2 produced from laboratory coal combustion in atmospheric conditions.Six coal samples were selected that represent various geologic ages (Carboniferous to Tertiary) and coal ranks (lignite to bituminous). Duplicate splits of the six coal samples were ignited and partially combusted in the laboratory at atmospheric conditions. The resulting coal-combustion gases were collected and the molecular composition of the collected gases and isotopic analyses of δ13C of CO2, δ13C of CH4, and δ18O of CO2 were analysed by a commercial laboratory. Splits (~ 1 g) of the un-combusted dried ground coal samples were analyzed for δ13C and δ18O by the U.S. Geological Survey Reston Stable Isotope Laboratory.The major findings of this preliminary work indicate that the isotopic signatures of δ13C (relative to the Vienna Pee Dee Belemnite scale, VPDB) of CO2 resulting from coal combustion are similar to the δ13CVPDB signature of the bulk coal (− 28.46 to − 23.86 ‰) and are not similar to atmospheric δ13CVPDB of CO2 (~ − 8 ‰, see http://www.esrl.noaa.gov/gmd/outreach/isotopes/c13tellsus.html). The δ18O values of bulk coal are strongly correlated to the coal dry ash yields and appear to have little or no influence on the δ18O values of CO2 resulting from coal combustion in open atmospheric conditions. There is a wide range of δ13C values of coal reported in the literature and the δ13C values from this study generally follow reported ranges for higher plants over geologic time. The values of δ18O (relative to Vienna Standard Mean Ocean Water) of CO2 derived from atmospheric combustion of coal and other high-carbon fuels (peat and coal) range from + 19.03 to + 27.03‰ and are similar to atmospheric oxygen δ18OVSMOW values which average + 23.8‰. Further work is needed on a broader set of samples to better define the relationships between coal composition and combustion-derived gases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
van Maanen, J.M.; Borm, P.J.; Knaapen, A
1999-12-15
The authors measured iron release, acellular generation of hydroxyl radicals, and oxidative DNA damage and cytotoxicity in rat lung epithelial (RLE) cells by different coal fly ashes (CFA) that contain both quartz and iron. Seven samples of CFA with different particle size and quartz content (up to 14.1%) were tested along with silica (alpha-quartz), ground coal, and coal mine dust (respirable) as positive control particles, and fine TiO{sub 2} (anatase) as a negative control. Five test samples were pulverized fuel ashes (PFA), two samples were coal gasification (SCG) ashes (quartz content {lt} 0.1%), and one sample was a ground coal.more » No marked differences between SCG and PFA fly ashes were observed, and toxicity did not correlate with physicochemical characteristics or effect parameters. Stable surface radicals were only detected in the reference particles silica and coal mine dust, but not in CFA. On the other hand, hydroxyl radical generation by all fly ashes was observed in the presence of hydrogen peroxide. Also a relationship between acellular hydroxyl radical generation and oxidative DNA damage in RLE cells by CFA was observed. The respirable ashes (MAT023, 38, and 41) showed an extensive level of hydroxyl radical generation in comparison to nonrespirable fly ashes and respirable references. This was related to the iron mobilization from these particles. Themechanisms by which CFA and the positive references (silica, coal mine dust) affect rat lung epithelial cells seem to be different, and the data suggest that quartz in CFA does not act the same as quartz in silica or coal mine dust. However, the results indicate an important role for size and iron release in generation and subsequent effects of reactive oxygen species caused by CFA.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moore, T.A.
1990-01-01
A study undertaken on an Eocene age coal bed in southeast Kalimantan, Indonesia determined that there was a relationship between megascopically determined coal types and kinds and sizes of organic components. The study also concluded that the most efficient way to characterize the seam was from collection of two 3 cm blocks from each layer or bench defined by megascopic character and that a maximum of 125 point counts was needed on each block. Microscopic examination of uncrushed block samples showed the coal to be composed of plant parts and tissues set in a matrix of both fine-grained and amorphousmore » material. The particulate matrix is composed of cell wall and liptinite fragments, resins, spores, algae, and fungal material. The amorphous matrix consists of unstructured (at 400x) huminite and liptinite. Size measurements showed that each particulate component possessed its own size distribution which approached normality when transformed to a log{sub 2} or phi scale. Degradation of the plant material during peat accumulation probably controlled grain size in the coal types. This notion is further supported by the increased concentration of decay resistant resin and cell fillings in the nonbanded and dull coal types. In the sampling design experiment, two blocks from each layer and two layers from each coal type were collected. On each block, 2 to 4 traverses totaling 500 point counts per block were performed to test the minimum number of points needed to characterize a block. A hierarchical analysis of variance showed that most of the petrographic variation occurred between coal types. The results from these analyses also indicated that, within a coal type, sampling should concentrate on the layer level and that only 250 point counts, split between two blocks, were needed to characterize a layer.« less
Caballero-Gallardo, Karina; Olivero-Verbel, Jesus
2016-03-01
Coal dust is the most important air pollutant in coal mining in regards to producing deleterious health effects. It permeates the surrounding environment threatening public health. The aim of this study was to evaluate the toxic effects associated with exposure to sand contaminated with coal dust particles below 38 μm in diameter, obtained from a mineral sample collected in the largest coal mine in South America, La Loma, Cesar, Colombia. Sterilized sand was spiked with coal dust to obtain concentrations ranging from zero to 4% coal dust. To model natural exposure, mice were housed for eight weeks in boxes containing this mixture as bedding after which, they were euthanized and blood and tissue samples were collected. Real time PCR analysis revealed an increase in Cyp1A1 mRNA for living on sand with coal dust concentrations greater than 2% compared to mice living on sand without coal dust. Unexpectedly, for mice on coal dust-polluted sand, Sod1, Scd1 and Nqo1 hepatic mRNA were downregulated. The Comet assay in peripheral blood cells and the micronucleus test in blood smears, showed a significant potential genotoxic effect only at the highest coal dust concentration. Histopathological analysis revealed vascular congestion and peribronchial inflammation in the lungs. A dose-response relationship for the presence of hepatic steatosis, vacuolization and nuclei enlargements was observed in the exposed animals. The data suggest living on a soil polluted with coal dust induces molecular, cellular and histopathological changes in mice. Accordingly, the proposed model can be used to identify deleterious effects of exposure to coal dust deposited in soils that may pose health risks for surrounding wildlife populations. Copyright © 2016 Elsevier Inc. All rights reserved.
León-Mejía, Grethel; Machado, Mariana Nascimento; Okuro, Renata Tiemi; Silva, Luis F O; Telles, Claudia; Dias, Johnny; Niekraszewicz, Liana; Da Silva, Juliana; Henriques, João Antônio Pêgas; Zin, Walter Araujo
2018-06-01
Continuous exposure to coal mining particles can cause a variety of lung diseases. We aimed to evaluate the outcomes of exposure to detailed characterized coal and coal fly ash (CFA) particles on DNA, lung and extrapulmonary tissues. Coal samples (COAL11 and COAL16) and CFA samples (CFA11 and CFA16) were included in this study. Intending to enhance the combustion process COAL16 was co-fired with a mixture of fuel oil and diesel oil, producing CFA16. Male BALB/c mice were intratracheally instilled with coal and CFA particles. Measurements were done 24h later. Results showed significant rigidity and obstruction of the central airways only for animals acutely exposed to coal particles. The COAL16 group also showed obstruction of the peripheral airways. Mononuclear cells were recruited in all treatment groups and expression of cytokines, particularly TNF-α and IL-1β, was observed. Only animals exposed to COAL16 showed a significant expression of IL-6 and recruitment of polymorphonuclear cells. DNA damage was demonstrated by Comet assay for all groups. Cr, Fe and Ni were detected in liver, spleen and brain, showing the efficient translocation of metals from the bloodstream to extrapulmonary organs. These effects were associated with particle composition (oxides, hydroxides, phosphates, sulfides, sulphates, silciates, organic-metalic compounds, and polycyclic aromatic hidrocarbons) rather than their size. This work provides state of knowledge on the effects of acute exposure to coal and CFA particles on respiratory mechanics, DNA damage, translocation of metals to other organs and related inflammatory processes. Copyright © 2018 Elsevier B.V. All rights reserved.
Recommended procedures and methodology of coal description
Chao, E.C.; Minkin, J.A.; Thompson, C.L.
1983-01-01
This document is the result of a workshop on coal description held for the Branch of Coal Resources of the U.S. Geological Survey in March 1982. It has been prepared to aid and encourage the field-oriented coal scientist to participate directly in petrographic coal-description activities. The objectives and past and current practices of coal description vary widely. These are briefly reviewed and illustrated with examples. Sampling approaches and techniques for collecting columnar samples of fresh coal are also discussed. The recommended procedures and methodology emphasize the fact that obtaining a good megascopic description of a coal bed is much better done in the laboratory with a binocular microscope and under good lighting conditions after the samples have been cut and quickly prepared. For better observation and cross-checking using a petrographic microscope for identification purposes, an in-place polishing procedure (requiring less than 2 min) is routinely used. Methods for using both the petrographic microscope and an automated image analysis system are also included for geologists who have access to such instruments. To describe the material characteristics of a coal bed in terms of microlithotypes or lithotypes, a new nomenclature of (V), (E), (1), (M). (S). (X1). (X2) and so on is used. The microscopic description of the modal composition of a megascopically observed lithologic type is expressed in terms of (VEIM); subscripts are used to denote the volume percentage of each constituent present. To describe a coal-bed profile, semiquantitative data (without microscopic study) and quantitative data (with microscopic study) are presented in ready-to-understand form. The average total composition of any thickness interval or of the entire coal bed can be plotted on a triangular diagram having V, E, and I+ M +S as the apices. The modal composition of any mixed lithologies such as (X1), (X2), and so on can also be plotted on such a triangular ternary diagram. Such diagrams can be used either for tracing compositional variations throughout a single coal-bed profile or for comparing variations between different coal beds.
Concentrations of platinum group elements in 122 U.S. coal samples
Oman, C.L.; Finkelman, R.B.; Tewalt, S.J.
1997-01-01
Analysis of more than 13,000 coal samples by semi-quantitative optical emission spectroscopy (OES) indicates that concentrations of the platinum group elements (iridium, palladium, platinum, osmium, rhodium, and ruthenium) are less than 1 ppm in the ash, the limit of detection for this method of analysis. In order to accurately determine the concentration of the platinum group elements (PGE) in coal, additional data were obtained by inductively coupled plasma mass spectroscopy, an analytical method having part-per-billion (ppb) detection limits for these elements. These data indicate that the PGE in coal occur in concentrations on the order of 1 ppb or less.
Stipe, Christopher B.; Miller, Arthur L.; Brown, Jonathan; Guevara, Edward; Cauda, Emanuele
2015-01-01
Airborne silica dust (quartz) is common in coal mines and represents a respiratory hazard that can lead to silicosis, a potentially fatal lung disease. With an eye toward developing a portable monitoring device for rapid analysis of silica dust, laser-induced breakdown spectroscopy (LIBS) was used to quantify quartz in coal dust samples collected on filter media. Pure silica (Min-U-Sil™ 5), Georgia kaolin, and Pittsburgh-4 and Illinois-6 coal dusts were deposited separately and at multiple mass loadings onto 37-mm polyvinylchloride (PVC) filters. LIBS-generated silicon emission was monitored at 288.16 nm, and non-silica contributions to that signal from kaolinite were removed by simultaneously detecting aluminum. Measurements of the four samples were used to calculate limits of detection (LOD) for silicon and aluminum of approximately 0.08 µg/cm2 and 0.05 µg/cm2, respectively (corresponding to 0.16 µg/cm2 and 0.20 µg/cm2 for silica and kaolinite, respectively). Relative errors of prediction are around 10%. Results demonstrate that LIBS can dependably quantify silica on filter samples of coal dust and confirm that accurate quantification can be achieved for very lightly loaded samples, which supports the potential application of LIBS for rapid, in-field monitoring. PMID:23146184
Stipe, Christopher B; Miller, Arthur L; Brown, Jonathan; Guevara, Edward; Cauda, Emanuele
2012-11-01
Airborne silica dust (quartz) is common in coal mines and represents a respiratory hazard that can lead to silicosis, a potentially fatal lung disease. With an eye toward developing a portable monitoring device for rapid analysis of silica dust, laser-induced breakdown spectroscopy (LIBS) was used to quantify quartz in coal dust samples collected on filter media. Pure silica (Min-U-Sil™ 5), Georgia kaolin, and Pittsburgh-4 and Illinois-6 coal dusts were deposited separately and at multiple mass loadings onto 37-mm polyvinylchloride (PVC) filters. LIBS-generated silicon emission was monitored at 288.16 nm, and non-silica contributions to that signal from kaolinite were removed by simultaneously detecting aluminum. Measurements of the four samples were used to calculate limits of detection (LOD) for silicon and aluminum of approximately 0.08 μg/cm(2) and 0.05 μg/cm(2), respectively (corresponding to 0.16 μg/cm(2) and 0.20 μg/cm(2) for silica and kaolinite, respectively). Relative errors of prediction are around 10%. Results demonstrate that LIBS can dependably quantify silica on filter samples of coal dust and confirm that accurate quantification can be achieved for very lightly loaded samples, which supports the potential application of LIBS for rapid, in-field monitoring.
Petrology, mineralogy and geochemistry of mined coals, western Venezuela
Hackley, Paul C.; Warwick, Peter D.; González, Eligio
2005-01-01
Upper Paleocene to middle Miocene coal samples collected from active mines in the western Venezuelan States of Táchira, Mérida and Zulia have been characterized through an integrated geochemical, mineralogical and petrographic investigation. Proximate, ultimate, calorific and forms of sulfur values, major and trace element, vitrinite reflectance, maceral concentrations and mineral matter content have been determined for 16 channel samples from 14 mines. Ash yield generally is low, ranging from < 1 to 17 wt.% (mean = 5 wt.%) on a dry basis (db). Total sulfur content is low to moderate, ranging from 1 to 6 wt.%, db (average = 1.7 wt.%). Calorific value ranges from 25.21 to 37.21 MJ/kg (10,840–16,000 Btu/lb) on a moist, mineral-matter-free basis (average = 33.25 MJ/kg, 14,300 Btu/lb), placing most of the coal samples in the apparent rank classification of high-volatile bituminous. Most of the coal samples exhibit favorable characteristics on the various indices developed to predict combustion and coking behavior and concentrations of possible environmentally sensitive elements (As, Be, Cd, Cr, Co, Hg, Mn, Ni, Pb, Sb, Se, Th and U) generally are similar to the concentrations of these elements in most coals of the world, with one or two exceptions. Concentrations of the liptinite maceral group range from < 1% to 70 vol.%. Five samples contain > 20 vol.% liptinite, dominated by the macerals bituminite and sporinite. Collotelinite dominates the vitrinite group; telinite was observed in quantities of ≤ 1 vol.% despite efforts to better quantify this maceral by etching the sample pellets in potassium permanganate and also by exposure in an oxygen plasma chamber. Inertinite group macerals typically represent < 10 vol.% of the coal samples and the highest concentrations of inertinite macerals are found in distantly spaced (> 400 km) upper Paleocene coal samples from opposite sides of Lago de Maracaibo, possibly indicating tectonic controls on subsidence related to construction of the Andean orogen. Values of maximum reflectance of vitrinite in oil (Ro max) range between 0.42% and 0.85% and generally are consistent with the high-volatile bituminous rank classification obtained through ASTM methods. X-ray diffraction analyses of low-temperature ash residues indicate that kaolinite, quartz, illite and pyrite dominate the inorganic fraction of most samples; plagioclase, potassium feldspar, calcite, siderite, ankerite, marcasite, rutile, anatase and apatite are present in minor or trace concentrations. Semiquantitative values of volume percent pyrite content show a strong correlation with pyritic sulfur and some sulfide-hosted trace element concentrations (As and Hg). This work provides a modern quality dataset for the western Venezuela coal deposits currently being exploited and will serve as the foundation for an ongoing coal quality research program in Venezuela.
MEASUREMENT OF MERCURY IN CHINESE UTILITY COAL
The paper gives results of analyzing representative samples of 20 Chinese utility coals for mercury content, and proximate, ultimate, and heating values. The data for these bituminous coals, obtained from China with the cooperation of the Chinese University of Mining Technology,...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buckingham, P.A.; Cobb, D.D.; Leavitt, A.A.
1981-08-01
This report presents the results of a technical and economic evaluation of producing methanol from bituminous coal using Texaco coal gasification and ICI methanol synthesis. The scope of work included the development of an overall configuration for a large plant comprising coal preparation, air separation, coal gasification, shift conversion, COS hydrolysis, acid gas removal, methanol synthesis, methanol refining, and all required utility systems and off-site facilities. Design data were received from both Texaco and ICI while a design and cost estimate were received from Lotepro covering the Rectisol acid gas removal unit. The plant processes 14,448 tons per day (drymore » basis) of Illinois No. 6 bituminous coal and produces 10,927 tons per day of fuel-grade methanol. An overall thermal efficiency of 57.86 percent was calculated on an HHV basis and 52.64 percent based on LHV. Total plant investment at an Illinois plant site was estimated to be $1159 million dollars in terms of 1979 investment. Using EPRI's economic premises, the first-year product costs were calculated to $4.74 per million Btu (HHV) which is equivalent to $30.3 cents per gallon and $5.37 per million Btu (LHV).« less
Parametric analysis of closed cycle magnetohydrodynamic (MHD) power plants
NASA Technical Reports Server (NTRS)
Owens, W.; Berg, R.; Murthy, R.; Patten, J.
1981-01-01
A parametric analysis of closed cycle MHD power plants was performed which studied the technical feasibility, associated capital cost, and cost of electricity for the direct combustion of coal or coal derived fuel. Three reference plants, differing primarily in the method of coal conversion utilized, were defined. Reference Plant 1 used direct coal fired combustion while Reference Plants 2 and 3 employed on site integrated gasifiers. Reference Plant 2 used a pressurized gasifier while Reference Plant 3 used a ""state of the art' atmospheric gasifier. Thirty plant configurations were considered by using parametric variations from the Reference Plants. Parametric variations include the type of coal (Montana Rosebud or Illinois No. 6), clean up systems (hot or cold gas clean up), on or two stage atmospheric or pressurized direct fired coal combustors, and six different gasifier systems. Plant sizes ranged from 100 to 1000 MWe. Overall plant performance was calculated using two methodologies. In one task, the channel performance was assumed and the MHD topping cycle efficiencies were based on the assumed values. A second task involved rigorous calculations of channel performance (enthalpy extraction, isentropic efficiency and generator output) that verified the original (task one) assumptions. Closed cycle MHD capital costs were estimated for the task one plants; task two cost estimates were made for the channel and magnet only.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peters, W.R.; Campbell, T.M.; Sturdivant, V.R.
1980-09-26
Shallow underground voids resulting from early coal mining and other resource recovery activities over the past several decades are now being recognized as a significant cause of ground subsidence problems in developing urban areas. Uncertain knowledge of abandoned coal mines also imposes potential hazards in coal excavation operations since water inundation or the release of methane gas is a principal hazard when mine excavation operations break into an abandoned mine. US Army requirements for an effective method for detecting and mapping subversive abandoned tunnels have resulted in a surface-operated automatic earth resistivity survey system with a digital computer data processingmore » system. Field tests aimed at demonstrating the system performance resulted in successful detection of tunnels having depth-to-diameter ratios up to 15 to 1. Under the sponsorship of the Bureau of Mines, a similar system was designed and constructed for use in the detection of coal mine workings. This report discusses the hardware and software aspects of the system and the application of the high-resolution earth resistivity method to the survey and mapping of abandoned coal mine workings. In the field tests reported, the targets of interest were both air- and water-filled workings.« less
The Application for a Prediction of the Coal Spontaneous Ignition - Predisam
NASA Astrophysics Data System (ADS)
Moni, Vlastimil; Klouda, Petr; Blata, Jan; Helebrant, František
2017-06-01
The article follows the research of the project number TA01020351 called "The research of possibilities when predicting steam origin and consequent spontaneous ignition of brown coal fuels" which was researched with the support of the Technological Agency in the Czech Republic in 2011-2014 in the connection with a realized technical research. Therefore, it gives a summary information about the evaluation of the risk degree for the origin of spontaneous ignitions of the brown coal. The presented way of evaluation is based on a numeric expression of a value for MHU criteria - the point load of particular indicators is added together with other results gained from this research project. Then, more information is taken from companies running the dumps of brown coal products - both for suppliers (mining companies) and big consumers (power engineering). The complex knowledge about prediction of the origin of the spontaneous ignition enables to make an early response to eliminate a threat of mining fire in open pit mines or on the dumps of coal products. Consequently, it reduces the risk of fire and breakdowns of transportation means DPD, heavy machines and preparation plants. The working injuries are reduced as well - burns by coal in fire or inhalation of gas products from imperfect combustion.
Rationale for continuing R&D in direct coal conversion to produce high quality transportation fuels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Srivastava, R.D.; McIlvried, H.G.; Gray, D.
1995-12-31
For the foreseeable future, liquid hydrocarbon fuels will play a significant role in the transportation sector of both the United States and the world. Factors favoring these fuels include convenience, high energy density, and the vast existing infrastructure for their production and use. At present the U.S. consumes about 26% of the world supply of petroleum, but this situation is expected to change because of declining domestic production and increasing competition for imports from countries with developing economies. A scenario and time frame are developed in which declining world resources will generate a shortfall in petroleum supply that can bemore » allieviated in part by utilizing the abundant domestic coal resource base. One option is direct coal conversion to liquid transportation fuels. Continued R&D in coal conversion technology will results in improved technical readiness that can significantly reduce costs so that synfuels can compete economically in a time frame to address the shortfall.« less
Global Development of Commercial Underground Coal Gasification
NASA Astrophysics Data System (ADS)
Blinderman, M. S.
2017-07-01
Global development of Underground Coal Gasification (UCG) is considered here in light of latest trends of energy markets and environmental regulations in the countries that have been traditional proponents of UCG. The latest period of UCG development triggered by initial success of the Chinchilla UCG project (1997-2006) has been characterized by preponderance of privately and share-market funded developments. The deceleration of UCG commercialization has been in part caused by recent significant decrease of world oil, gas and coal prices. Another substantial factor was lack of necessary regulations governing extraction and conversion of coal by UCG method in the jurisdictions where the UCG projects were proposed and developed. Along with these objective causes there seem to have been more subjective and technical reasons for a slowdown or cancelation of several significant UCG projects, including low efficiency, poor environmental performance, and inability to demonstrate technology at a sufficient scale and/or at a competitive cost. Latest proposals for UCG projects are briefly reviewed.
Producing fired bricks using coal slag from a gasification plant in indiana
Chen, L.-M.; Chou, I.-Ming; Chou, S.-F.J.; Stucki, J.W.
2009-01-01
Integrated gasification combined cycle (IGCC) is a promising power generation technology which increases the efficiency of coal-to-power conversion and enhances carbon dioxide concentration in exhaust emissions for better greenhouse gas capture. Two major byproducts from IGCC plants are bottom slag and sulfur. The sulfur can be processed into commercially viable products, but high value applications need to be developed for the slag material in order to improve economics of the process. The purpose of this study was to evaluate the technical feasibility of incorporating coal slag generated by the Wabash River IGCC plant in Indiana as a raw material for the production of fired bricks. Full-size bricks containing up to 20 wt% of the coal slag were successfully produced at a bench-scale facility. These bricks have color and texture similar to those of regular fired bricks and their water absorption properties met the ASTM specifications for a severe weathering grade. Other engineering properties tests, including compressive strength tests, are in progress.
Chen, Wen Hao; Yang, Sam Y. S.; Xiao, Ti Qiao; Mayo, Sherry C.; Wang, Yu Dan; Wang, Hai Peng
2014-01-01
Quantifying three-dimensional spatial distributions of pores and material compositions in samples is a key materials characterization challenge, particularly in samples where compositions are distributed across a range of length scales, and where such compositions have similar X-ray absorption properties, such as in coal. Consequently, obtaining detailed information within sub-regions of a multi-length-scale sample by conventional approaches may not provide the resolution and level of detail one might desire. Herein, an approach for quantitative high-definition determination of material compositions from X-ray local computed tomography combined with a data-constrained modelling method is proposed. The approach is capable of dramatically improving the spatial resolution and enabling finer details within a region of interest of a sample larger than the field of view to be revealed than by using conventional techniques. A coal sample containing distributions of porosity and several mineral compositions is employed to demonstrate the approach. The optimal experimental parameters are pre-analyzed. The quantitative results demonstrated that the approach can reveal significantly finer details of compositional distributions in the sample region of interest. The elevated spatial resolution is crucial for coal-bed methane reservoir evaluation and understanding the transformation of the minerals during coal processing. The method is generic and can be applied for three-dimensional compositional characterization of other materials. PMID:24763649
NASA Astrophysics Data System (ADS)
Li, Qing; Li, Xinghua; Jiang, Jingkun; Duan, Lei; Ge, Su; Zhang, Qi; Deng, Jianguo; Wang, Shuxiao; Hao, Jiming
2016-01-01
Direct household use of unprocessed raw coals for cooking and heating without any air pollution control device has caused serious indoor and outdoor environment problems by emitting particulate matter (PM) and gaseous pollutants. This study examined household emission reduction by switching from unprocessed bituminous and anthracite coals to processed semi-coke briquettes. Two typical stoves were used to test emission characteristics when burning 20 raw coal samples commonly used in residential heating activities and 15 semi-coke briquette samples which were made from bituminous coals by industrial carbonization treatment. The carbonization treatment removes volatile compounds from raw coals which are the major precursors for PM formation and carbon emission. The average emission factors of primary PM2.5, elemental carbon, organic carbon, and carbon monoxide for the tested semi-coke briquettes are much lower than those of the tested raw coals. Based on the current coal consumption data in China, switching to semi-coke briquettes can reduce average emission factors of these species by about 92%, 98%, 91%, and 34%, respectively. Additionally, semi-coke briquette has relatively lower price and higher burnout ratio. The replacement of raw coals with semi-coke briquettes is a feasible path to reduce pollution emissions from household activities.
Li, Qing; Li, Xinghua; Jiang, Jingkun; Duan, Lei; Ge, Su; Zhang, Qi; Deng, Jianguo; Wang, Shuxiao; Hao, Jiming
2016-01-01
Direct household use of unprocessed raw coals for cooking and heating without any air pollution control device has caused serious indoor and outdoor environment problems by emitting particulate matter (PM) and gaseous pollutants. This study examined household emission reduction by switching from unprocessed bituminous and anthracite coals to processed semi-coke briquettes. Two typical stoves were used to test emission characteristics when burning 20 raw coal samples commonly used in residential heating activities and 15 semi-coke briquette samples which were made from bituminous coals by industrial carbonization treatment. The carbonization treatment removes volatile compounds from raw coals which are the major precursors for PM formation and carbon emission. The average emission factors of primary PM2.5, elemental carbon, organic carbon, and carbon monoxide for the tested semi-coke briquettes are much lower than those of the tested raw coals. Based on the current coal consumption data in China, switching to semi-coke briquettes can reduce average emission factors of these species by about 92%, 98%, 91%, and 34%, respectively. Additionally, semi-coke briquette has relatively lower price and higher burnout ratio. The replacement of raw coals with semi-coke briquettes is a feasible path to reduce pollution emissions from household activities. PMID:26782059
Macromolecular structure of coals. 6. Mass spectroscopic analysis of coal-derived liquids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hooker, D.T.; Lucht, L.M.; Peppas, N.A.
1986-02-01
The macromolecular structure of coal networks was analyzed by depolymerizing coal samples using the Sternberg reductive alkylation and the Miyake alkylation techniques. Electron impact mass spectra showed peaks of greater abundance of 125-132, 252-260, 383-391, and 511-520 m/z ratios. Based on analysis of the patterns of the spectra, the cluster size of the cross-linked structure of bituminous coals was determined as 126-130. Various chemical species were identified.
78 FR 37973 - Change of Address for Region 7; Technical Correction
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-25
... recordkeeping requirements, Sulfur oxides, Volatile organic compounds. 40 CFR Part 59 Environmental protection... requirements, Volatile organic compounds. 40 CFR Part 60 Environmental protection, Administrative practice and..., Cement industry, Chemicals, Coal, Copper, Dry cleaners, Electric power plants, Fertilizers, Fluoride...
Waterberg coal characteristics and SO2 minimum emissions standards in South African power plants.
Makgato, Stanford S; Chirwa, Evans M Nkhalambayausi
2017-10-01
Key characteristics of coal samples from the supply stock to the newly commissioned South African National Power Utility's (Eskom's) Medupi Power Station - which receives its supply coal from the Waterberg coalfield in Lephalale (Limpopo Province, South Africa) - were evaluated. Conventional coal characterisation such as proximate and ultimate analysis as well as determination of sulphur forms in coal samples were carried out following the ASTM and ISO standards. Coal was classified as medium sulphur coal when the sulphur content was detected in the range 1.15-1.49 wt.% with pyritic sulphur (≥0.51 wt.%) and organic sulphur (≥0.49 wt.%) accounted for the bulk of the total sulphur in coal. Maceral analyses of coal showed that vitrinite was the dominant maceral (up to 51.8 vol.%), whereas inertinite, liptinite, reactive semifusinite and visible minerals occurred in proportions of 22.6 vol.%, 2.9 vol.%, 5.3 vol.% and 17.5 vol.%, respectively. Theoretical calculations were developed and used to predict the resultant SO 2 emissions from the combustion of the Waterberg coal in a typical power plant. The sulphur content requirements to comply with the minimum emissions standards of 3500 mg/Nm 3 and 500 mg/Nm 3 were found to be ≤1.37 wt.% and ≤0.20 wt.%, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.
Lyons, P.C.; Whelan, J.F.; Dulong, F.T.
1989-01-01
The amount, kind, distribution, and genesis of pyrite in the Lower Bakerstown coal bed in a 150 ?? 15 m area of the Bettinger mine, Castleman coal field, Maryland, were studied by various analytical techniques. The mined coal, which had a nonmarine roof rock, contained 1.4-2.8 wt.% total sulfur, generally much lower than the high-sulfur coal (> 3.0 wt.% total S) to the north, which is associated with marine roof rocks. Small-scale systematic and nonsystematic variations in total sulfur and pyrite distribution were found in the mined area. In the column sample, most of the pyrite was found in the upper 9 cm of the 69-cm-thick mined coal and occurred mainly as a pyrite lens containing cell fillings in seed-fern tissue (coal ball). As-bearing pyrite was detected by laser microprobe techniques in the cell walls of this tissue but not elsewhere in the column sample. This may indicate that the As was derived from decomposition of organic matter in the cell walls. The sulfur isotopic composition and distribution of pyrite in the coal are consistent with introduction of marine sulfate shortly after peat deposition, followed by bacterial reduction and pyrite precipitation. Epigenetic cleat pyrite in the coal is isotopically heavy, implying that later aqueous sulfate was 34S-enriched. ?? 1989.
Fungal degradation of coal as a pretreatment for methane production
Haider, Rizwan; Ghauri, Muhammad A.; SanFilipo, John R.; Jones, Elizabeth J.; Orem, William H.; Tatu, Calin A.; Akhtar, Kalsoom; Akhtar, Nasrin
2013-01-01
Coal conversion technologies can help in taking advantage of huge low rank coal reserves by converting those into alternative fuels like methane. In this regard, fungal degradation of coal can serve as a pretreatment step in order to make coal a suitable substrate for biological beneficiation. A fungal isolate MW1, identified as Penicillium chrysogenum on the basis of fungal ITS sequences, was isolated from a core sample of coal, taken from a well drilled by the US. Geological Survey in Montana, USA. The low rank coal samples, from major coal fields of Pakistan, were treated with MW1 for 7 days in the presence of 0.1% ammonium sulfate as nitrogen source and 0.1% glucose as a supplemental carbon source. Liquid extracts were analyzed through Excitation–Emission Matrix Spectroscopy (EEMS) to obtain qualitative estimates of solubilized coal; these analyses indicated the release of complex organic functionalities. In addition, GC–MS analysis of these extracts confirmed the presence of single ring aromatics, polyaromatic hydrocarbons (PAHs), aromatic nitrogen compounds and aliphatics. Subsequently, the released organics were subjected to a bioassay for the generation of methane which conferred the potential application of fungal degradation as pretreatment. Additionally, fungal-mediated degradation was also prospected for extracting some other chemical entities like humic acids from brown coals with high huminite content especially from Thar, the largest lignite reserve of Pakistan.
Trippi, Michael H.; Belkin, Harvey E.; Dai, Shifeng; Tewalt, Susan J.; Chou, Chiu-Jung; Trippi, Michael H.; Belkin, Harvey E.; Dai, Shifeng; Tewalt, Susan J.; Chou, Chiu-Jung
2015-01-01
Geographic information system (GIS) information may facilitate energy studies, which in turn provide input for energy policy decisions. The U.S. Geological Survey (USGS) has compiled geographic information system (GIS) data representing the known coal mine locations and coal-mining areas of China as of 2001. These data are now available for download, and may be used in a GIS for a variety of energy resource and environmental studies of China. Province-scale maps were also created to display the point locations of coal mines and the coal-mining areas. In addition, coal-field outlines from a previously published map by Dai and others (2012) were also digitized and are available for download as a separate GIS data file, and shown in a nation-scale map of China. Chemical data for 332 coal samples from a previous USGS study of China and Taiwan (Tewalt and others, 2010) are included in a downloadable GIS point shapefile, and shown on a nation-scale map of China. A brief report summarizes the methodology used for creation of the shapefiles and the chemical analyses run on the samples.
Contents and occurrence of cadmium in the coals from Guizhou province, China.
Song, Dangyu; Wang, Mingshi; Zhang, Junying; Zheng, Chuguang
2008-10-01
Eleven raw coal samples were collected from Liuzhi, Suicheng, Zunyi, Xingren, Xingyi, and Anlong districts in Guizhou Province, Southwest China. The content of cadmium (Cd) in coal was determined using inductively coupled plasma mass-spectrometry (ICP-MS). Cd contents ranged from 0.146 to 2.74 ppm (whole coal basis), with an average of 1.09 ppm. In comparison with the arithmetic means of Cd in Chinese coal (0.25 ppm), this is much higher. In order to find its occurrence in coal, float-sink analysis and a coal flotation test by progressive release were conducted on two raw coal samples. The content of the Cd and ash yield of the flotation products were determined. The organic matter was removed by low-temperature ashing (LTA). X-ray diffraction (XRD) was used to differentiate the main, minor, and trace minerals in the LTA from different flotation subproducts. Quartz, kaolinite, pyrite, and calcite were found to dominate the mineral matters, with a proportion of anatase, muscovite, and illite. Then quantitative analysis of minerals in LTA was conducted using material analysis using diffraction (MAUD) based on the Rietveld refinement method. Results show that Cd has a strong association with kaolinite.
Geogenic organic contaminants in the low-rank coal-bearing Carrizo-Wilcox aquifer of East Texas, USA
Chakraborty, Jayeeta; Varonka, Matthew S.; Orem, William H.; Finkelman, Robert B.; Manton, William
2017-01-01
The organic composition of groundwater along the Carrizo-Wilcox aquifer in East Texas (USA), sampled from rural wells in May and September 2015, was examined as part of a larger study of the potential health and environmental effects of organic compounds derived from low-rank coals. The quality of water from the low-rank coal-bearing Carrizo-Wilcox aquifer is a potential environmental concern and no detailed studies of the organic compounds in this aquifer have been published. Organic compounds identified in the water samples included: aliphatics and their fatty acid derivatives, phenols, biphenyls, N-, O-, and S-containing heterocyclic compounds, polycyclic aromatic hydrocarbons (PAHs), aromatic amines, and phthalates. Many of the identified organic compounds (aliphatics, phenols, heterocyclic compounds, PAHs) are geogenic and originated from groundwater leaching of young and unmetamorphosed low-rank coals. Estimated concentrations of individual compounds ranged from about 3.9 to 0.01 μg/L. In many rural areas in East Texas, coal strata provide aquifers for drinking water wells. Organic compounds observed in groundwater are likely to be present in drinking water supplied from wells that penetrate the coal. Some of the organic compounds identified in the water samples are potentially toxic to humans, but at the estimated levels in these samples, the compounds are unlikely to cause acute health problems. The human health effects of low-level chronic exposure to coal-derived organic compounds in drinking water in East Texas are currently unknown, and continuing studies will evaluate possible toxicity.
Evaluation of the SKC DPM cassette for monitoring diesel particulate matter in coal mines.
Noll, James D; Birch, Eileen
2004-12-01
In a previous study, the efficacy of commercial and prototype impactors for sampling diesel particulate matter (DPM) in coal mines was investigated. Laboratory and field samples were collected on quartz-fiber filters and analyzed for organic and elemental carbon. Coal dust contributed a minimal amount of elemental carbon when commercial cascade impactors and prototype impactors, designed by the University of Minnesota (UMN) and the US Bureau of Mines (BOM), were used to collect submicrometer dust fractions. Other impactors were not as effective at excluding coal dust. The impactors evaluated in that study were either not commercially available or were multi-stage, expensive, and difficult to use for personal measurements. A commercial version of the BOM impactor, called the DPM Cassette, was recently introduced by SKC. Tests were conducted to evaluate the performance of the DPM Cassette for measuring diesel-source elemental carbon in the presence of coal dust. Bituminous coals from three mines in two different coal provinces were examined. The dust particle diameters were small and the coal dust contained a high percentage of carbon, thereby giving a worst-case condition for non-anthracite coal mines. Results for the DPM Cassette were essentially identical to those obtained by the BOM impactors in a previous study. At a respirable coal dust concentration of 5.46 mg m(-3), which is 3.8 times the regulatory limit, the DPM Cassette collected only 34 microg m(-3) of coal-source elemental carbon.
Hackley, Paul C.; Warwick, Peter D.; Hook, Robert W.; Alimi, Hossein; Mastalerz, Maria; Swanson, Sharon M.
2012-01-01
Coal samples from a coalbed methane exploration well in northern Zavala County, Maverick Basin, Texas, were characterized through an integrated analytical program. The well was drilled in February, 2006 and shut in after coal core desorption indicated negligible gas content. Cuttings samples from two levels in the Eocene Claiborne Group were evaluated by way of petrographic techniques and Rock–Eval pyrolysis. Core samples from the Paleocene–Eocene Indio Formation (Wilcox Group) were characterized via proximate–ultimate analysis in addition to petrography and pyrolysis. Two Indio Formation coal samples were selected for detailed evaluation via gas chromatography, and Fourier transform infrared (FTIR) and 13C CPMAS NMR spectroscopy. Samples are subbituminous rank as determined from multiple thermal maturity parameters. Elevated rank (relative to similar age coal beds elsewhere in the Gulf Coast Basin) in the study area is interpreted to be a result of stratigraphic and/or structural thickening related to Laramide compression and construction of the Sierra Madre Oriental to the southwest. Vitrinite reflectance data, along with extant data, suggest the presence of an erosional unconformity or change in regional heat flow between the Cretaceous and Tertiary sections and erosion of up to >5 km over the Cretaceous. The presence of liptinite-rich coals in the Claiborne at the well site may indicate moderately persistent or recurring coal-forming paleoenvironments, interpreted as perennially submerged peat in shallow ephemeral lakes with herbaceous and/or flotant vegetation. However, significant continuity of individual Eocene coal beds in the subsurface is not suggested. Indio Formation coal samples contain abundant telovitrinite interpreted to be preserved from arborescent, above-ground woody vegetation that developed during the middle portion of mire development in forested swamps. Other petrographic criteria suggest enhanced biological, chemical and physical degradation at the beginning and end of Indio mire development. Fluorescence spectra of sporinite and resinite are consistent and distinctly different from each other, attributed to the presence of a greater proportion of complex asphaltene and polar molecules in resinite. Gas chromatography of resinite-rich coal shows sesquiterpenoid and diterpenoid peaks in the C14–17 range, which are not present in resinite-poor coal. Quantities of extracts suggest bitumen concentration below the threshold for effective source rocks [30–50 mg hydrocarbon/g total organic carbon (HC/g TOC)]. Saturate/aromatic and pristane/phytane (Pr/Ph) ratios are different from values for nearby Tertiary-reservoired crude oil, suggesting that the Indio coals are too immature to source liquid hydrocarbons in the area. However, moderately high HI values (200–400 mg HC/g rock) may suggest some potential for naphthenic–paraffinic oil generation where buried more deeply down stratigraphic/structural dip. Extractable phenols and C20+ alkanes are suggested as possible intermediates for acetate fermentation in microbial methanogenesis which may, however, be limited by poor nutrient supply related to low rainfall and meteoric recharge rate or high local sulfate concentration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zauderer, B.; Fleming, E.S.
1991-08-30
This work contains to the final report of the demonstration of an advanced cyclone coal combustor. Titles include: Chronological Description of the Clean Coal Project Tests,'' Statistical Analysis of Operating Data for the Coal Tech Combustor,'' Photographic History of the Project,'' Results of Slag Analysis by PA DER Module 1 Procedure,'' Properties of the Coals Limestone Used in the Test Effort,'' Results of the Solid Waste Sampling Performed on the Coal Tech Combustor by an Independent Contractor During the February 1990 Tests.'' (VC)
Wang, Haipeng; Yang, Yushuang; Yang, Jianli; Nie, Yihang; Jia, Jing; Wang, Yudan
2015-01-01
Multiscale nondestructive characterization of coal microscopic physical structure can provide important information for coal conversion and coal-bed methane extraction. In this study, the physical structure of a coal sample was investigated by synchrotron-based multiple-energy X-ray CT at three beam energies and two different spatial resolutions. A data-constrained modeling (DCM) approach was used to quantitatively characterize the multiscale compositional distributions at the two resolutions. The volume fractions of each voxel for four different composition groups were obtained at the two resolutions. Between the two resolutions, the difference for DCM computed volume fractions of coal matrix and pores is less than 0.3%, and the difference for mineral composition groups is less than 0.17%. This demonstrates that the DCM approach can account for compositions beyond the X-ray CT imaging resolution with adequate accuracy. By using DCM, it is possible to characterize a relatively large coal sample at a relatively low spatial resolution with minimal loss of the effect due to subpixel fine length scale structures.
78 FR 27442 - Coal Mine Dust Sampling Devices; Correction
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-10
... DEPARTMENT OF LABOR Mine Safety and Health Administration Coal Mine Dust Sampling Devices; Correction AGENCY: Mine Safety and Health Administration, Labor. ACTION: Notice; correction. SUMMARY: On April 30, 2013, Mine Safety and Health Administration (MSHA) published a notice in the Federal Register...
REDUCTION OF COAL-BASED METAL EMISSIONS BY FURNACE SORBENT INJECTION
The ability of sorbent injection technology to reduce the potential for trace metal emissions from coal combustion was researched. Pilot scale tests of high-temperature furnace sorbent injection were accompanied by stack sampling for coal-based, metallic air toxics. Tested sorben...
NASA Astrophysics Data System (ADS)
Osipova, N. A.; Tarasova, N. P.; Osipov, K. Yu.; Maximova, D. I.
2015-11-01
This study concerns the human health risk due to exposure of Co, Cu, As, Mn contained in soils of the Southern Kuzbass, where the coal industry is developed. Soil samples of 200 were taken in Mezhdurechensk - city with intensive coal mining and processing industries. The content of heavy metals in samples were determined using the electron spectroscopy. Several samples were also investigated by methods of the instrumental neutron activation analysis (INAA) and the inductively coupled plasma mass spectrometry (ICP-MS). With regard to the effects of heavy metals on the adult population health the total Hazard Index (HI) for ingestion and inhalation routes was 0.87×10-1 and 7.8×10-1 respectively. According to the contribution of Co, Cu, As, Mn to the total HI the elements form the decreasing series Mn (0,42-0,50)> Co (0.18-0.20)> Cu (0,13-0,19 )> As (0,05-0,09). These chemical elements are present in the organic and inorganic forms in coals and coal wastes. Ranking the city territory has shown that administrative districts have different HI values (8.4 10-1 - 8.8 10-1). When analyzing the human health risks of coal mining and coal-processing enterprises the impact of heavy metals as components of coals and combustion products should be taken into account.
Kalaw, Martin Ernesto; Culaba, Alvin; Hinode, Hirofumi; Kurniawan, Winarto; Gallardo, Susan; Promentilla, Michael Angelo
2016-01-01
Geopolymers are inorganic polymers formed from the alkaline activation of amorphous alumino-silicate materials resulting in a three-dimensional polymeric network. As a class of materials, it is seen to have the potential of replacing ordinary Portland cement (OPC), which for more than a hundred years has been the binder of choice for structural and building applications. Geopolymers have emerged as a sustainable option vis-à-vis OPC for three reasons: (1) their technical properties are comparable if not better; (2) they can be produced from industrial wastes; and (3) within reasonable constraints, their production requires less energy and emits significantly less CO2. In the Philippines, the use of coal ash, as the alumina- and silica- rich geopolymer precursor, is being considered as one of the options for sustainable management of coal ash generation from coal-fired power plants. However, most geopolymer mixes (and the prevalent blended OPC) use only coal fly ash. The coal bottom ash, having very few applications, remains relegated to dumpsites. Rice hull ash, from biomass-fired plants, is another silica-rich geopolymer precursor material from another significantly produced waste in the country with only minimal utilization. In this study, geopolymer samples were formed from the mixture of coal ash, using both coal fly ash (CFA) and coal bottom ash (CBA), and rice hull ash (RHA). The raw materials used for the geopolymerization process were characterized using X-ray fluorescence spectroscopy (XRF) for elemental and X-ray diffraction (XRD) for mineralogical composition. The raw materials’ thermal stability and loss on ignition (LOI) were determined using thermogravimetric analysis (TGA) and reactivity via dissolution tests and inductively-coupled plasma mass spectrometry (ICP) analysis. The mechanical, thermal and microstructural properties of the geopolymers formed were analyzed using compression tests, Fourier transform infra-red spectroscopy (FTIR), scanning electron microscopy (SEM) and thermogravimetric analysis (TGA). Using a Scheffé-based mixture design, targeting applications with low thermal conductivity, light weight and moderate strength and allowing for a maximum of five percent by mass of rice hull ash in consideration of the waste utilization of all three components, it has been determined that an 85-10-5 by weight ratio of CFA-CBA-RHA activated with 80-20 by mass ratio of 12 M NaOH and sodium silicate (55% H2O, modulus = 3) produced geopolymers with a compressive strength of 18.5 MPa, a volumetric weight of 1660 kg/m3 and a thermal conductivity of 0.457 W/m-°C at 28-day curing when pre-cured at 80 °C for 24 h. For this study, the estimates of embodied energy and CO2 were all below 1.7 MJ/kg and 0.12 kg CO2/kg, respectively. PMID:28773702
NASA Astrophysics Data System (ADS)
1990-10-01
The current magnetohydrodynamic MHD program being implemented is a result of a consensus established in public meetings held by the Department of Energy in 1984. The public meetings were followed by the formulation of a June 1984 Coal-Fired MHD Preliminary Transition and Program Plan. This plan focused on demonstrating the proof-of-concept (POC) of coal-fired MHD electric power plants by the early 1990s. MHD test data indicate that while there are no fundamental technical barriers impeding the development of MHD power plants, technical risk remains. To reduce the technical risk three key subsystems (topping cycle, bottoming cycle, and seed regeneration) are being assembled and tested separately. The program does not require fabrication of a complete superconducting magnet, but rather the development and testing of superconductor cables. The topping cycle system test objectives can be achieved using a conventional iron core magnet system already in place at a DOE facility. Systems engineering-derived requirements and analytical modeling to support scale-up and component design guide the program. In response to environmental, economic, engineering, and utility acceptance requirements, design choices and operating modes are tested and refined to provide technical specifications for meeting commercial criteria. These engineering activities are supported by comprehensive and continuing systems analyses to establish realistic technical requirements and cost data. Essential elements of the current program are to: develop technical and environmental data for the integrated MHD topping cycle and bottoming cycle systems through POC testing (1000 and 4000 hours, respectively); design, construct, and operate a POC seed regeneration system capable of processing spent seed materials from the MHD bottoming cycle; prepare conceptual designs for a site specific MHD retrofit plant; and continue supporting research necessary for system testing.
Hower, J.C.; Calder, J.H.; Eble, C.F.; Scott, A.C.; Robertson, J.D.; Blanchard, L.J.
2000-01-01
Five coals of Westphalian A (early Middle Pennsylvanian) age were sampled from the Joggins Formation section exposed along Chignecto Bay at Joggins, Nova Scotia. Coal beds along the bay were mined beginning in the early 17th century, yet there have been few detailed published investigation of the coal beds of this classic section. The lowermost coal, the Upper Coal 28 (Upper Fundy), is a high-vitrinite coal with a spore assemblage dominated by arboreous lycopsid spores with tree ferns subdominant. The upper portions of the coal bed have the highest ratio of well-preserved to poorly-preserved telinite of any of the coals investigated. Coal 19 ('clam coal') has 88% total vitrinite but, unlike the Fundy coal bed, the telinite has a poor preservation ratio and half the total vitrinite population comprises gelocollinite and vitrodetrinite. The latter coal bed is directly overlain by a basin-wide limestone bed. The Lower Kimberly coal shows good preservation of vitrinite with relatively abundant telinite among the total vitrinite. The Middle Kimberly coal, which underlies the tetrapod-bearing lycopsid trees found by Lyell and Dawson in 1852, exhibits an upward decrease in arboreous lycopod spores and an upward increase in the tree fern spore Punctatisporites minutus. Telinite preservation increases upwards in the Middle Kimberly but overall is well below the preservation ratio of the Upper Fundy coal bed. The coals all have high sulfur contents, yielding up to 13.7% total sulfur for the lower lithotype of the Upper Fundy coal bed. The Kimberly coals are not only high in total and pyritic sulfur, but also have high concentrations of chalcophile elements. Zinc, ranging up to 15,000 ppm (ash basis), is present as sphalerite in fusain lumens. Arsenic and lead each exceed 6000 ppm (ash basis) in separate lithotypes of the Kimberly coals. Together these data are consistent with elevated pH in planar mires. The source of the elemental enrichment in this presumed continental section is enigmatic. (C) 2000 Elsevier Science B.V. All rights reserved.Five coals of Westphalian A (early Middle Pennsylvanian) age were sampled from the Joggins Formation section exposed along Chigneto Bay at Joggins, Nova Scotia. All the coals were found to have high sulfur contents. Overall, the data obtained are consistent with elevated pH in planar mires.
The Leaching of Aluminium In Spanish Clays, Coal Mining Wastes and Coal Fly Ashes by Sulphuric Acid.
NASA Astrophysics Data System (ADS)
Fernández, A. M.; Ibáñez, J. L.; Llavona, M. A.; Zapico, R.
The acid leaching of aluminium from several non traditional ores, bayerite, kaolinite, different clays, coal mining wastes and coal fly ashes, and the kinetic of their dissolution are described. The effects of time, temperature, acid concentration, sample calcination, particle size were examined. The leaching of aluminium is dependent on acid concentration and strongly on temperature. Generally, the time to reach a fixed percentage of dissolution decreases with increasing acid concentration in the range 6% to 40% acid by weight. On clays and coal mining wastes a good relation between Al removal and ratio kaolinite/illite was also observed at all temperatures and acid concentration tested. Coal fly ashes are particles that were heated at very high temperatures in the power station and Al compounds were transformed into mullite and so Al recovery was minor. Several rate equations describing the kinetics of the leach reaction were discussed and Kinetic parameters and activation energy values of samples are presented.
Diverse Bacteria with Lignin Degrading Potentials Isolated from Two Ranks of Coal
Wang, Lu; Nie, Yong; Tang, Yue-Qin; Song, Xin-Min; Cao, Kun; Sun, Li-Zhu; Wang, Zhi-Jian; Wu, Xiao-Lei
2016-01-01
Taking natural coal as a “seed bank” of bacterial strains able to degrade lignin that is with molecular structure similar to coal components, we isolated 393 and 483 bacterial strains from a meager lean coal sample from Hancheng coalbed and a brown coal sample from Bayannaoer coalbed, respectively, by using different media. Statistical analysis showed that isolates were significantly more site-specific than medium-specific. Of the 876 strains belonging to 27 genera in Actinobacteria, Firmicutes, and Proteobacteria, 612 were positive for lignin degradation function, including 218 strains belonging to 35 species in Hancheng and 394 strains belonging to 19 species in Zhongqi. Among them, the dominant lignin-degrading strains were Thauera (Hancheng), Arthrobacter (Zhongqi) and Rhizobium (both). The genes encoding the laccases- or laccase-like multicopper oxidases, key enzymes in lignin production and degradation, were detected in three genera including Massila for the first time, which was in high expression by real time PCR (qRT-PCR) detection, confirming coal as a good seed bank. PMID:27667989
Applications of acoustics in the measurement of coal slab thickness
NASA Technical Reports Server (NTRS)
Hadden, W. J., Jr.; Mills, J. M.; Pierce, A. D.
1980-01-01
The determination of the possibility of employing acoustic waves at ultrasonic frequencies for measurements of thicknesses of slabs of coal backed by shale is investigated. Fundamental information concerning the acoustical properties of coal, and the relationship between these properties and the structural and compositional parameters used to characterize coal samples was also sought. The testing device, which utilizes two matched transducers, is described.
77 FR 1065 - Agency Information Collection Activities OMB Responses
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-09
....02; Mandatory Reporting of Greenhouse Gases: Magnesium Production, Underground Coal Mines, Industrial Wastewater Treatment, and Industrial Waste Landfills (Technical Correction); 40 CFR part 98, subparts T, FF...; Mandatory Reporting of Greenhouse Gases: Additional Sources of Fluorinated Greenhouse Gases, subparts I, L...
Code of Federal Regulations, 2014 CFR
2014-01-01
... BURNING APPLIANCES-NOTIFICATION OF PERFORMANCE AND TECHNICAL DATA § 1406.3 Definitions. For the purposes of this rule: (a) Coal and wood burning appliances means fireplace stoves, room heater/fireplace... chimney flue. (e) Cookstoves and ranges are chimney connected solid fuel burning appliances that are used...
Code of Federal Regulations, 2012 CFR
2012-01-01
... BURNING APPLIANCES-NOTIFICATION OF PERFORMANCE AND TECHNICAL DATA § 1406.3 Definitions. For the purposes of this rule: (a) Coal and wood burning appliances means fireplace stoves, room heater/fireplace... chimney flue. (e) Cookstoves and ranges are chimney connected solid fuel burning appliances that are used...
Photothermal method of determining calorific properties of coal
Amer, N.M.
1983-05-16
Predetermined amounts of heat are generated within a coal sample by directing pump light pulses of predetermined energy content into a small surface region of the sample. A beam of probe light is directed along the sample surface and deflection of the probe beam from thermally induced changes of index of refraction in the fluid medium adjacent the heated region are detected. Deflection amplitude and the phase lag of the deflection, relative to the initiating pump light pulse, are indicative of the calorific value and the porosity of the sample. The method provides rapid, accurate and nondestructive analysis of the heat producing capabilities of coal samples. In the preferred form, sequences of pump light pulses of increasing durations are directed into the sample at each of a series of minute regions situated along a raster scan path enabling detailed analysis of variations of thermal properties at different areas of the sample and at different depths.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-10-01
The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from U.S., Japanese and European catalyst suppliers on a high-sulfur U.S. coal-fired boiler. SCR is a post-combustion nitrogen oxide (NO.) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NO. to convert it to nitrogen and water vapor. Although SCR is widely practiced in Japan and Europemore » on gas-, oil-, and low-sulfur coal- fired boilers, there are several technical uncertainties associated with applying SCR to U.S. coals. These uncertainties include: 1) potential catalyst deactivation due to poisoning by trace metal species present in U.S. coals that are not present in other fuels. 2) performance of the technology and effects on the balance-of- plant equipment in the presence of high amounts of SO{sub 2} and SO{sub 3}. 3) performance of a wide variety of SCR catalyst compositions, geometries and methods of manufacturer under typical high-sulfur coal-fired utility operating conditions. These uncertainties were explored by operating nine small-scale SCR reactors and simultaneously exposing different SCR catalysts to flue gas derived from the combustion of high sulfur U.S. coal. In addition, the test facility operating experience provided a basis for an economic study investigating the implementation of SCR technology.« less
Advanced thermally stable jet fuels: Technical progress report, October 1994--December 1994
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schobert, H.H.; Eser, S.; Song, C.
There are five tasks within this project on thermally stable coal-based jet fuels. Progress on each of the tasks is described. Task 1, Investigation of the quantitative degradation chemistry of fuels, has 5 subtasks which are described: Literature review on thermal stability of jet fuels; Pyrolytic and catalytic reactions of potential endothermic fuels: cis- and trans-decalin; Use of site specific {sup 13}C-labeling to examine the thermal stressing of 1-phenylhexane: A case study for the determination of reaction kinetics in complex fuel mixtures versus model compound studies; Estimation of critical temperatures of jet fuels; and Surface effects on deposit formation inmore » a flow reactor system. Under Task 2, Investigation of incipient deposition, the subtask reported is Uncertainty analysis on growth and deposition of particles during heating of coal-derived aviation gas turbine fuels; under Task 3, Characterization of solid gums, sediments, and carbonaceous deposits, is subtask, Studies of surface chemistry of PX-21 activated carbon during thermal degradation of jet A-1 fuel and n-dodecane; under Task 4, Coal-based fuel stabilization studies, is subtask, Exploratory screening and development potential of jet fuel thermal stabilizers over 400 C; and under Task 5, Exploratory studies on the direct conversion of coal to high quality jet fuels, are 4 subtasks: Novel approaches to low-severity coal liquefaction and coal/resid co-processing using water and dispersed catalysts; Shape-selective naphthalene hydrogenation for production of thermally stable jet fuels; Design of a batch mode and a continuous mode three-phase reactor system for the liquefaction of coal and upgrading of coal liquids; and Exploratory studies on coal liquids upgrading using mesopores molecular sieve catalysts. 136 refs., 69 figs., 24 tabs.« less
Palmer, C.A.
1990-01-01
Twenty-nine elements have been determined in triplicate splits of the eight Argonne National Laboratory Premium Coal Samples by instrumental neutron activtaion analysis. Data for control samples NBS 1633 (fly ash) and NBS 1632b are also reported. The factors that could lead to errors in analysis for these samples, such as spectral overlaps, low sensitivity, and interfering nuclear reactions, are discussed.
Geochemistry of vanadium (V) in Chinese coals.
Liu, Yuan; Liu, Guijian; Qu, Qinyuan; Qi, Cuicui; Sun, Ruoyu; Liu, Houqi
2017-10-01
Vanadium in coals may have potential environmental and economic impacts. However, comprehensive knowledge of the geochemistry of V in coals is lacking. In this study, abundances, distribution and modes of occurrence of V are reviewed by compiling >2900 reported Chinese coal samples. With coal reserves in individual provinces as the weighting factors, V in Chinese coals is estimated to have an average abundance of 35.81 μg/g. Large variation of V concentration is observed in Chinese coals of different regions, coal-forming periods, and maturation ranks. According to the concentration coefficient of V in coals from individual provinces, three regions are divided across Chinese coal deposits. Vanadium in Chinese coals is probably influenced by sediment source and sedimentary environment, supplemented by late-stage hydrothermal fluids. Specifically, hydrothermal fluids have relatively more significant effect on the enrichment of V in local coal seams. Vanadium in coals is commonly associated with aluminosilicate minerals and organic matter, and the modes of V occurrence in coal depend on coal-forming environment and coal rank. The Chinese V emission inventory during coal combustion is estimated to be 4906 mt in 2014, accounting for 50.55 % of global emission. Vanadium emissions by electric power plants are the largest contributor.
Khan, M. Rashid
1990-01-01
A high-pressure microdilatometer is provided for measuring the sintering and fusion properties of various coal ashes under the influence of elevated pressures and temperatures in various atmospheres. Electrical resistivity measurements across a sample of coal ash provide a measurement of the onset of the sintering and fusion of the ash particulates while the contraction of the sample during sintering is measured with a linear variable displacement transducer for detecting the initiation of sintering. These measurements of sintering in coal ash at different pressures provide a mechanism by which deleterious problems due to the sintering and fusion of ash in various combustion systems can be minimized or obviated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rozelle, P.
1996-01-01
This report describes the progress made during the second Quarter of a two year project to demonstrate that the air pollution, from a traveling grate stoker being used to heat water at a central heating plant in Krakow Poland, can be reduced significantly by replacing the unwashed, unsized coal now being used with a mechanically cleaned, double sized stoker fuel and by optimizing the operating parameters of the stoker. It is anticipated that these improvements will prove to be cost effective and hence be adopted in the other central heating plants in Krakow and indeed throughout Eastern European cities wheremore » coal is the primary source of heating fuel. EFH Coal Company has formed a partnership with two Polish institutions -- MPEC a central heating company in Krakow and Naftokrak-Naftobudowa, preparation plant designers and fabricators for this effort. The washability data from a 20mm x 0.5mm size fraction of raw coal from the Staszic Mine were evaluated. The data show that the ash content of this coal can be reduced from 24.4 percent to 6.24 percent by washing in a heavy media cyclone at 1.825 sp.gr.; the actual yield of clean coal would be 76.1 percent. The quest for long-term sources of raw coal to feed the proposed 300 tph stoker coal preparation plant continued throughout the reporting period. Meetings were held with Polish coal preparation equipment suppliers to obtain price and delivery quotations for long lead-time process equipment. Preliminary cost evaluations were the topic of several meetings with financial institutions regarding the cost of producing a quality stoker coal in Poland and for identifying sources of private capital to help cost share the project. The search for markets for surplus production from the new plant continued.« less
Conceptual design of closed Brayton cycle for coal-fired power generation
NASA Technical Reports Server (NTRS)
Shah, R. P.; Corman, J. C.
1977-01-01
The objectives to be realized in developing a closed cycle gas turbine are (1) to exploit high temperature gas turbine technology while maintaining a working fluid which is free from combustion gas contamination, (2) to achieve compact turbo-equipment designs through pressurization of the working fluid, and (3) to obtain relatively simple cycle configurations. The technical/economic performance of a specific closed cycle gas turbine system was evaluated through the development of a conceptual plant and system design. This energy conversion system is designed for electric utility service and to utilize coal directly in an environmentally acceptable manner.
Technical and economic assessments commercial success for IGCC technology in China
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiong, T.
1998-07-01
The experiences gained from several Integrated Gasification Combined Cycle (IGCC) demonstration plants operating in the US and Europe facilitate commercial success of this advanced coal-based power generation technology. However, commercialization of coal-based IGCC technology in the West, particularly in the US, is restricted due to the low price of natural gas. On the contrary, in China--the largest coal producer and consumer in the world--a lack of natural gas supply, strong demand for air pollution control and relatively low costs of manufacturing and construction provide tremendous opportunities for IGCC applications. The first Chinese IGCC demonstration project was initiated in 1994, andmore » other potential IGCC projects are in planning. IGCC applications in re-powering, fuel switching and multi-generation also show a great market potential in China. However, questions for IGCC development in China remain; where are realistic opportunities for IGCC projects and how can these opportunities be converted into commercial success? The answers to these questions should focus on the Chinese market needs and emphasize economic benefits, not just clean, or power. High price of imported equipment, high financing costs, and the technical risk of first-of-a-kind installation barricade IGCC development in China. This paper presents preliminary technical and economic assessments for four typical IGCC applications in the Chinese marketplace: central power station, fuel switching, re-powering, and multi-generation. The major factors affecting project economics--such as plant cost, financing, prices of fuel and electricity and operating capacity factor--are analyzed. The results indicate that well-proven technology for versatile applications, preferred financing, reduction of the plant cost, environmental superiority and appropriate project structure are the key for commercial success of IGCC in China.« less
Raman spectral characteristics of magmatic-contact metamorphic coals from Huainan Coalfield, China
NASA Astrophysics Data System (ADS)
Chen, Shancheng; Wu, Dun; Liu, Guijian; Sun, Ruoyu
2017-01-01
Normal burial metamorphism of coal superimposed by magmatic-contact metamorphism makes the characteristics of the Raman spectrum of coal changed. Nine coal samples were chosen at a coal transect perpendicular to the intrusive dike, at the No. 3 coal seam, Zhuji Coal Mine, Huainan Coalfield, China, with different distances from dike-coal boundary (DCB). Geochemical (proximate and ultimate) analysis and mean random vitrinite reflectance (R0, %) indicate that there is a significant relationship between the values of volatile matter and R0 in metamorphosed coals. Raman spectra show that the graphite band (G band) becomes the major band but the disordered band (D band) disappears progressively, with the increase of metamorphic temperature in coals, showing that the structural organization in high-rank contact-metamorphosed coals is close to that of well-crystallized graphite. Evident relationships are observed between the calculated Raman spectral parameters and the peak metamorphic temperature, suggesting some spectral parameters have the potentials to be used as geothermometers for contact-metamorphic coals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ward, B.
1985-01-01
Following a month-long start-up period during which the principal investigator traveled to several sites of lignite outcrops to collect samples, efforts were begun to isolate new strains of coal-bioconverting fungal strains. Out of about thirty different organisms isolated from weathered samples of three different types of lignite, three isolates exhibited biosolubilization of the one lignite tested to date. These organisms have not yet been identified but they appear to be new strains of lignite-degrading fungi. We have observed that degree of biosolubilization varies among apparently similar samples of the same lignite. Weathered lignite is more readily solubilized than is previouslymore » unexposed lignite, but even tests on weathered coal have not been consistently repeatable. We have begun experiments designed to identify one or more factors of weathering which render coal more readily attacked by fungi. We hope to establish methods whereby consistently repeatable assays can be performed on bioconversion of coals. 2 refs., 1 fig., 1 tab.« less
77 FR 62253 - Agency Information Collection Activities: Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-12
... digital geologic information related to coal, coalbed gas, shale gas and other energy resources and... assessments concerning coal and coal bed gas occurrences. Requesting external cooperation is the best way for... organic-rich shale, and obtain other information (including geophysical or seismic data, sample collection...
ASSESSING SPECIATION AND RELEASE OF HEAVY METALS FROM COAL COMBUSTION PRODUCTS
In this study, the speciation of heavy metals such as arsenic, selenium, lead, zinc and mercury in coal combustion products (CCPs) was evaluated using sequential extraction procedures. Coal fly ash, bottom ash and flue gas desulphurization (FGD) sludge samples were used in the ex...
From in-situ coal to fly ash: A study of coal mines and power plants from Indiana
Mastalerz, Maria; Hower, J.C.; Drobniak, A.; Mardon, S.M.; Lis, G.
2004-01-01
This paper presents data on the properties of coal and fly ash from two coal mines and two power plants that burn single-source coal from two mines in Indiana. One mine is in the low-sulfur (5%) Springfield Coal Member of the Petersburg Formation (Pennsylvanian). Both seams have comparable ash contents (???11%). Coals sampled at the mines (both raw and washed fractions) were analyzed for proximate/ultimate/sulfur forms/heating value, major oxides, trace elements and petrographic composition. The properties of fly ash from these coals reflect the properties of the feed coal, as well as local combustion and post-combustion conditions. Sulfur and spinel content, and As, Pb and Zn concentrations of the fly ash are the parameters that most closely reflect the properties of the source coal. ?? 2004 Elsevier B.V. All rights reserved.
30 CFR 90.203 - Certified person; maintenance and calibration.
Code of Federal Regulations, 2010 CFR
2010-07-01
... COAL MINE SAFETY AND HEALTH MANDATORY HEALTH STANDARDS-COAL MINERS WHO HAVE EVIDENCE OF THE DEVELOPMENT OF PNEUMOCONIOSIS Sampling Procedures § 90.203 Certified person; maintenance and calibration. (a) Approved sampling devices shall be maintained and calibrated by a certified person. (b) To be certified, a...
30 CFR 70.209 - Respirable dust samples; transmission by operator.
Code of Federal Regulations, 2014 CFR
2014-07-01
... operator. 70.209 Section 70.209 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY HEALTH STANDARDS-UNDERGROUND COAL MINES Sampling Procedures... Laboratory, Pittsburgh Safety and Health Technology Center, Cochran Mill Road, Building 38, P.O. Box 18179...
30 CFR 70.209 - Respirable dust samples; transmission by operator.
Code of Federal Regulations, 2013 CFR
2013-07-01
... operator. 70.209 Section 70.209 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY HEALTH STANDARDS-UNDERGROUND COAL MINES Sampling Procedures... Laboratory, Pittsburgh Safety and Health Technology Center, Cochran Mill Road, Building 38, P.O. Box 18179...
30 CFR 70.209 - Respirable dust samples; transmission by operator.
Code of Federal Regulations, 2012 CFR
2012-07-01
... operator. 70.209 Section 70.209 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY HEALTH STANDARDS-UNDERGROUND COAL MINES Sampling Procedures... Laboratory, Pittsburgh Safety and Health Technology Center, Cochran Mill Road, Building 38, P.O. Box 18179...
30 CFR 70.220 - Status change reports.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY HEALTH STANDARDS-UNDERGROUND COAL MINES Sampling Procedures § 70.220 Status change reports. (a) If there is a change in operational status that affects the respirable dust sampling requirements of this...
Geospatial data for coal beds in the Powder River Basin, Wyoming and Montana
Kinney, Scott A.; Scott, David C.; Osmonson, Lee M.; Luppens, James A.
2015-01-01
The purpose of this report is to provide geospatial data for various layers and themes in a Geographic Information System (GIS) format for the Powder River Basin, Wyoming and Montana. In 2015, as part of the U.S. Coal Resources and Reserves Assessment Project, the U.S. Geological Survey (USGS) completed an assessment of coal resources and reserves within the Powder River Basin, Wyoming and Montana. This report is supplemental to USGS Professional Paper 1809 and contains GIS data that can be used to view digital layers or themes, including the Tertiary limit of the Powder River Basin boundary, locations of drill holes, clinker, mined coal, land use and technical restrictions, geology, mineral estate ownership, coal thickness, depth to the top of the coal bed (overburden), and coal reliability categories. Larger scale maps may be viewed using the GIS data provided in this report supplemental to the page-size maps provided in USGS Professional Paper 1809. Additionally, these GIS data can be exported to other digital applications as needed by the user. The database used for this report contains a total of 29,928 drill holes, of which 21,393 are in the public domain. The public domain database is linked to the geodatabase in this report so that the user can access the drill-hole data through GIS applications. Results of this report are available at the USGS Energy Resources Program Web site,http://energy.usgs.gov/RegionalStudies/PowderRiverBasin.aspx.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fields, Matthew
Currently, coal bed methane (CBM) wells have a limited lifetime since the rate of methane removal via the installed wells is much faster than the in situ methane production rates. Along with water issues created by large amounts of CBM production water, the short life span of CBM wells is a huge deterrent to the environmental and economic feasibility of CBM production. The process of biogenic methanogenesis can be enhanced via the stimulation of the associated microbial communities that can convert the organic fractions of coal to methane. This process is termed Microbially-Enhanced Coal Bed Methane (MECBM). However, the ratesmore » of methane production are still limited and long incubation times are necessary. We hypothesized that the elucidation of chemical and biological parameters that limited MECBM together with thermodynamic considerations would inform strategies to optimize the process under flow conditions. We incorporated microbiological, physicochemical, and engineering processes to develop a more sustainable CBM production scheme with native coal and native microorganisms. The proposed combination of microbial ecology and physiology as well as optimized engineering principles minimized key constraints that impact microbial coal conversion to methane under environmentally relevant conditions. The combined approach for bench-scale tests resulted in more effective and less environmentally burdensome coal-dependent methane production with the potential for H 2O and CO 2 management.« less
Characteristic Study of Some Different Kinds of Coal Particles Combustion with Online TG-MS-FTIR
NASA Astrophysics Data System (ADS)
Pan, Guanfu
2018-01-01
Four kinds of pulverized coal samples from China and Indonesia were studied by thermogravimetry coupled with mass spectrometry and fourier transform infrared spectroscopy (TG-MS-FTIR). The thermal behaviors and gaseous emissions of these coals were analyzed in this work. The results indicate that the relative lower values of H/C ratios, which normally represent the degree of aromatization and ring condensation in coal samples, could lead to the relative more intense thermal reaction. The time-evolved profiles of some typical gas products (i.e., CO, SO2, CH4, NO, NO2, NH3 and etc.) were provided by TG-MS-FTIR, and their variations are different. For all the samples, the releases of SO2 and COS can be found at lower temperature than those of NO and CO. As the temperature increases, the possible conversion of NO2 and NH3 to NO is deduced in this work.
Maceral distributions in Illinois coals and their paleoenvironmental implications
Harvey, R.D.; Dillon, J.W.
1985-01-01
For purposes of assessing the maceral distribution of Illinois (U.S.A.) coals analyses were assembled for 326 face channel and drill core samples from 24 coal members of the Pennsylvanian System. The inertinite content of coals from the Missourian and Virgilian Series averages 16.1% (mineral free), compared to 9.4% for older coals from the Desmoinesian and older Series. This indicates there was generally a higher state of oxidation in the peat that formed the younger coals. This state probably resulted from greater exposure of these peats to weathering as the climate became drier and the water table lower than was the case for the older coals, although oxidation during allochthonous deposition of inertinite components is a genetic factor that needs further study to confirm the importance of the climate. Regional variation of the vitrinite-inertinite ratio (V-I), on a mineral- and micrinite-free basis, was observed in the Springfield (No. 5) and Herrin (No. 6) Coal Members to be related to the geographical position of paleochannel (river) deposits known to have been contemporaneous with the peats that formed these two coal strata. The V-I ratio is highest (generally 12-27) in samples from areas adjacent to the channels, and lower (5-11) some 10-20 km away. We interpret the V-I ratio to be an inverse index of the degree of oxidation to which the original peat was exposed. High V-I ratio coal located near the channels probably formed under more anoxic conditions than did the lower V-I ratio coal some distance away from the channels. The low V-I ratio coal probably formed in areas of the peat swamp where the watertable was generally lower than the channel areas. ?? 1986.
Structural degradation of Thar lignite using MW1 fungal isolate: optimization studies
Haider, Rizwan; Ghauri, Muhammad A.; Jones, Elizabeth J.; Orem, William H.; SanFilipo, John R.
2015-01-01
Biological degradation of low-rank coals, particularly degradation mediated by fungi, can play an important role in helping us to utilize neglected lignite resources for both fuel and non-fuel applications. Fungal degradation of low-rank coals has already been investigated for the extraction of soil-conditioning agents and the substrates, which could be subjected to subsequent processing for the generation of alternative fuel options, like methane. However, to achieve an efficient degradation process, the fungal isolates must originate from an appropriate coal environment and the degradation process must be optimized. With this in mind, a representative sample from the Thar coalfield (the largest lignite resource of Pakistan) was treated with a fungal strain, MW1, which was previously isolated from a drilled core coal sample. The treatment caused the liberation of organic fractions from the structural matrix of coal. Fungal degradation was optimized, and it showed significant release of organics, with 0.1% glucose concentration and 1% coal loading ratio after an incubation time of 7 days. Analytical investigations revealed the release of complex organic moieties, pertaining to polyaromatic hydrocarbons, and it also helped in predicting structural units present within structure of coal. Such isolates, with enhanced degradation capabilities, can definitely help in exploiting the chemical-feedstock-status of coal.
Potential Energy Sources Pose Mining Problem
ERIC Educational Resources Information Center
Chemical and Engineering News, 1974
1974-01-01
Summarizes the discussions of a Division of Industrial and Engineering Chemistry symposium on solids handling for synthetic fuels production. Included is a description of technical difficulties with the use of coal seams and deposits of oil shale and oil sand as potential sources of fuel. (CC)
FABRIC FILTER MODEL FORMAT CHANGE; VOLUME 1. DETAILED TECHNICAL REPORT
The report describes an improved mathematical model for use by control personnel to determine the adequacy of existing or proposed filter systems designed to minimize coal fly ash emissions. Several time-saving steps have been introduced to facilitate model application by Agency ...
16 CFR § 1406.3 - Definitions.
Code of Federal Regulations, 2013 CFR
2013-01-01
... BURNING APPLIANCES-NOTIFICATION OF PERFORMANCE AND TECHNICAL DATA § 1406.3 Definitions. For the purposes of this rule: (a) Coal and wood burning appliances means fireplace stoves, room heater/fireplace... chimney flue. (e) Cookstoves and ranges are chimney connected solid fuel burning appliances that are used...
Mice housed on coal dust-contaminated sand: A model to evaluate the impacts of coal mining on health
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caballero-Gallardo, Karina, E-mail: kcaballerog@unicartagena.edu.co; Olivero-Verbel, Jesus, E-mail: joliverov@unicartagena.edu.co
Coal dust is the most important air pollutant in coal mining in regards to producing deleterious health effects. It permeates the surrounding environment threatening public health. The aim of this study was to evaluate the toxic effects associated with exposure to sand contaminated with coal dust particles below 38 μm in diameter, obtained from a mineral sample collected in the largest coal mine in South America, La Loma, Cesar, Colombia. Sterilized sand was spiked with coal dust to obtain concentrations ranging from zero to 4% coal dust. To model natural exposure, mice were housed for eight weeks in boxes containingmore » this mixture as bedding after which, they were euthanized and blood and tissue samples were collected. Real time PCR analysis revealed an increase in Cyp1A1 mRNA for living on sand with coal dust concentrations greater than 2% compared to mice living on sand without coal dust. Unexpectedly, for mice on coal dust-polluted sand, Sod1, Scd1 and Nqo1 hepatic mRNA were downregulated. The Comet assay in peripheral blood cells and the micronucleus test in blood smears, showed a significant potential genotoxic effect only at the highest coal dust concentration. Histopathological analysis revealed vascular congestion and peribronchial inflammation in the lungs. A dose–response relationship for the presence of hepatic steatosis, vacuolization and nuclei enlargements was observed in the exposed animals. The data suggest living on a soil polluted with coal dust induces molecular, cellular and histopathological changes in mice. Accordingly, the proposed model can be used to identify deleterious effects of exposure to coal dust deposited in soils that may pose health risks for surrounding wildlife populations. - Highlights: • Mice were exposed to coal dust-contaminated sand. • mRNA Markers for PAH exposure, lipid metabolism and oxidative stress increased. • ALT activity in plasma increased at the highest exposure to coal dust. • Liver tissues of exposed mice showed steatosis and inflammation. • Coal dust exposure produced changes in several blood components.« less
NASA Astrophysics Data System (ADS)
Fryanov, V. N.; Pavlova, L. D.; Temlyantsev, M. V.
2017-09-01
Methodological approaches to theoretical substantiation of the structure and parameters of robotic coal mines are outlined. The results of mathematical and numerical modeling revealed the features of manifestation of geomechanical and gas dynamic processes in the conditions of robotic mines. Technological solutions for the design and manufacture of technical means for robotic mine are adopted using the method of economic and mathematical modeling and in accordance with the current regulatory documents. For a comparative performance evaluation of technological schemes of traditional and robotic mines, methods of cognitive modeling and matrix search for subsystem elements in the synthesis of a complex geotechnological system are applied. It is substantiated that the process of technical re-equipment of a traditional mine with a phased transition to a robotic mine will reduce unit costs by almost 1.5 times with a significant social effect due to a reduction in the number of personnel engaged in hazardous work.
LOW NOx EMISSIONS IN A FUEL FLEXIBLE GAS TURBINE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raymond Drnevich; James Meagher; Vasilis Papavassiliou
2004-08-01
In alignment with Vision 21 goals, a study is presented here on the technical and economic potential for developing a gas turbine combustor that is capable of generating less that 2 ppm NOx emissions, firing on either coal synthesis gas or natural gas, and being implemented on new and existing systems. The proposed solution involves controlling the quantity of H2 contained in the fuel. The presence of H2 leads to increased flame stability such that the combustor can be operated at lower temperatures and produce less thermal NOx. Coal gas composition would be modified using a water gas shift converter,more » and natural gas units would implement a catalytic partial oxidation (CPOX) reactor to convert part of the natural gas feed to a syngas before fed back into the combustor. While both systems demonstrated technical merit, the economics involved in implementing such a system are marginal at best. Therefore, Praxair has decided not to pursue the technology any further at this time.« less
30 CFR 71.220 - Status change reports.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY HEALTH STANDARDS-SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Sampling... status of the mine or designated work position to the MSHA District Office or to any other MSHA office...
Standard test method for grindability of coal by the hardgrove-machine method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1975-01-01
This method is used to determine the relative grindability or ease of pulverization of coals in comparison with coals chosen as standards. A prepared sample receives a definite amount of grinding energy in a miniature pulverizer, and the change in size consist is determined by sieving.
30 CFR 71.220 - Status change reports.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY HEALTH STANDARDS-SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Sampling Procedures § 71.220 Status change reports. (a) If there is a change in operational status that affects the...
Minkin, J.A.; Finkelman, R.B.; Thompson, C.L.; Chao, E.C.T.; Ruppert, L.F.; Blank, H.; Cecil, C.B.
1984-01-01
Optical and scanning electron microscope as well as electron and proton microprobe techniques have been used in a detailed investigation of the modes of occurrence of arsenic and selenium in pyrite in Upper Freeport coal from the Homer City area, Indiana County, Pennsylvania. Polished blocks were prepared from columnar samples of the coal bed to represent particular zones continuously from top to bottom. Initial selection of zones to be studied was based on chemical analysis of bench-channel samples. Microprobe data indicate that the highest concentrations of arsenic (as great as 1. 5 wt. %) are apparently in solid solution in pyrite within a limited stratigraphic interval of the coal bed. Smaller amounts of arsenic and selenium (concentrations up to approximately 0. 1 and 0. 2 wt. % respectively) were detected at isolated points within pyrite grains in various strata of the coal bed.
Hackley, P.C.; Guevara, E.H.; Hentz, T.F.; Hook, R.W.
2009-01-01
Thermal maturity was determined for about 120 core, cuttings, and outcrop samples to investigate the potential for coalbed gas resources in Pennsylvanian strata of north-central Texas. Shallow (< 600??m; 2000??ft) coal and carbonaceous shale cuttings samples from the Middle-Upper Pennsylvanian Strawn, Canyon, and Cisco Groups in Archer and Young Counties on the Eastern Shelf of the Midland basin (northwest and downdip from the outcrop) yielded mean random vitrinite reflectance (Ro) values between about 0.4 and 0.8%. This range of Ro values indicates rank from subbituminous C to high volatile A bituminous in the shallow subsurface, which may be sufficient for early thermogenic gas generation. Near-surface (< 100??m; 300??ft) core and outcrop samples of coal from areas of historical underground coal mining in the region yielded similar Ro values of 0.5 to 0.8%. Carbonaceous shale core samples of Lower Pennsylvanian strata (lower Atoka Group) from two deeper wells (samples from ~ 1650??m; 5400??ft) in Jack and western Wise Counties in the western part of the Fort Worth basin yielded higher Ro values of about 1.0%. Pyrolysis and petrographic data for the lower Atoka samples indicate mixed Type II/Type III organic matter, suggesting generated hydrocarbons may be both gas- and oil-prone. In all other samples, organic material is dominated by Type III organic matter (vitrinite), indicating that generated hydrocarbons should be gas-prone. Individual coal beds are thin at outcrop (< 1??m; 3.3??ft), laterally discontinuous, and moderately high in ash yield and sulfur content. A possible analog for coalbed gas potential in the Pennsylvanian section of north-central Texas occurs on the northeast Oklahoma shelf and in the Cherokee basin of southeastern Kansas, where contemporaneous gas-producing coal beds are similar in thickness, quality, and rank.
Deonarine, Amrika; Kolker, Allan; Doughten, Michael W.
2015-01-01
In this fact sheet, the form, distribution, and behavior of trace elements of environmental interest in samples of coal fly ash were investigated in response to concerns about element mobility in the event of an ash spill. The study includes laboratory-based leaching experiments to examine the behavior of trace elements, such as arsenic (As) and chromium (Cr), in response to key environmental factors including redox conditions (degree of oxygenation), which are known to vary with depth within coal ash impoundments and in natural ecosystems. The experiments show that As dissolves from samples of coal fly ash into simulated freshwater under both oxic (highly oxygenated) and anoxic (poorly oxygenated) conditions, whereas dissolved Cr concentrations are very redox dependent. This U.S. Geological Survey research helps define the distribution of elements such as As in coal ash and shows that element mobility can vary considerably under different conditions expected in the environment.
The aquatic macroinvertebrates of Rosebud Creek, Montana, were sampled between February 1976 and March 1977 to provide data on their abundance, distribution, and diversity. The sampling program was initiated during the first year of operation of the coal-fired power plants locate...