Science.gov

Sample records for coal surface modification

  1. Gaseous phase coal surface modification

    SciTech Connect

    Okoh, J.M.; Pinion, J.; Thiensatit, S.

    1992-05-07

    In this report, we present an improved, feasible and potentially cost effective method of cleaning and beneficiating ultrafine coal. Increased mechanization of mining methods and the need towards depyritization, and demineralization have led to an increase in the quantity of coal fines generated in recent times. For example, the amount of {minus}100 mesh coal occurring in coal preparation plant feeds now typically varies from 5 to 25% of the total feed. Environmental constraints coupled with the greatly increased cost of coal have made it increasingly important to recover more of these fines. Our method chemically modifies the surface of such coals by a series of gaseous phase treatments employing Friedel-Crafts reactions. By using olefins (ethene, propene and butene) and hydrogen chloride catalyst at elevated temperature, the surface hydrophobicity of coal is enhanced. This increased hydrophobicity is manifest in surface phenomena which reflect conditions at the solid/liquid interphase (zeta potential) and those which reflect conditions at the solid/liquid/gas interphases (contact angle, wettability and floatability).

  2. Gaseous phase surface modification of coal

    SciTech Connect

    Pinion, J.; Okoh, J.M.

    1990-01-01

    The enhancement of the surface hydrophobicity of coal is essential in coal cleaning processes such as froth flotation or selective agglomeration. Friedel-Crafts reaction results in the formation of alkyl groups on the coal surface. Using various chemical reagents (alkenes, alcohols and catalyst) the surface hydrophobicity of the coal was enhanced. Comparative surface studies using treated and untreated coal showed as increase in the contact angle of untreated coal form 41{degrees} originally to 74{degrees} after treatment. The effects of the chemical treatment on the coal surface was subsequently confirmed in flotation tests. Using Illinois {number sign}6 coal, floatability was increased from 28.91% to 72.15% in 18 seconds, while the work of adhesion was decreased from 91.80 to 71.97 Joule/m{sup 2}. Enhanced hydrophobicity is correlated with the degree of coal surface alkylation. 7 figs.

  3. Gaseous phase coal surface modification. Final technical report

    SciTech Connect

    Okoh, J.M.; Pinion, J.; Thiensatit, S.

    1992-05-07

    In this report, we present an improved, feasible and potentially cost effective method of cleaning and beneficiating ultrafine coal. Increased mechanization of mining methods and the need towards depyritization, and demineralization have led to an increase in the quantity of coal fines generated in recent times. For example, the amount of {minus}100 mesh coal occurring in coal preparation plant feeds now typically varies from 5 to 25% of the total feed. Environmental constraints coupled with the greatly increased cost of coal have made it increasingly important to recover more of these fines. Our method chemically modifies the surface of such coals by a series of gaseous phase treatments employing Friedel-Crafts reactions. By using olefins (ethene, propene and butene) and hydrogen chloride catalyst at elevated temperature, the surface hydrophobicity of coal is enhanced. This increased hydrophobicity is manifest in surface phenomena which reflect conditions at the solid/liquid interphase (zeta potential) and those which reflect conditions at the solid/liquid/gas interphases (contact angle, wettability and floatability).

  4. Novel Surface Modification Method for Ultrasupercritical Coal-Fired Boilers

    SciTech Connect

    Xiao, T. Danny

    2013-05-22

    US Department of Energy seeks an innovative coating technology for energy production to reduce the emission of SOx, NOx, and CO2 toxic gaseous species. To realize this need, Inframat Corporation (IMC) proposed an SPS thermal spray coating technique to produce ultrafine/nanocoatings that can be deposited onto the surfaces of high temperature boiler tubes, so that higher temperatures of boiler operation becomes possible, leading to significantly reduced emission of toxic gaseous species. It should be noted that the original PI was Dr. Xinqing Ma, who after 1.5 year conducting this project left Inframat in December, 2008. Thus, the PI was transferred to Dr. Danny Xiao, who originally co-authored the proposal with Dr. Ma, in order to carry the project into a completion. Phase II Objectives: The proposed technology has the following attributes, including: (1). Dispersion of a nanoparticle or alloyed particle in a solvent to form a uniform slurry feedstock; (2). Feeding of the slurry feedstock into a thermal spray flame, followed by deposition of the slurry feedstock onto substrates to form tenacious nanocoatings; (3). High coating performance: including high bonding strength, and high temperature service life in the temperature range of 760oC/1400oF. Following the above premises, our past Phase I project has demonstrated the feasibility in small scale coatings on boiler substrates. The objective of this Phase II project was to focus on scale-up the already demonstrated Phase I work for the fabrication of SPS coatings that can satisfy DOE's emission reduction goals for energy production operations. Specifically, they are: (1). Solving engineering problems to scale-up the SPS-HVOF delivery system to a prototype production sub-delivery system; (2). Produce ultrafine/nanocoatings using the scale-up prototype system; (3). Demonstrate the coated components using the scale-up device having superior properties. Proposed Phase II Tasks: In the original Phase II proposal, we have

  5. Coal surface control for advanced physical fine coal cleaning technologies

    SciTech Connect

    Morsi, B.I.; Chiang, S.H.; Sharkey, A.; Blachere, J.; Klinzing, G.; Araujo, G.; Cheng, Y.S.; Gray, R.; Streeter, R.; Bi, H.; Campbell, P.; Chiarlli, P.; Ciocco, M.; Hittle, L.; Kim, S.; Kim, Y.; Perez, L.; Venkatadri, R.

    1992-01-01

    This final report presents the research work carried out on the Coal Surface Control for Advanced Physical Fine Coal Cleaning Technologies project, sponsored by the US Department of Energy, Pittsburgh Energy Technology Center (DOE/PETC). The project was to support the engineering development of the selective agglomeration technology in order to reduce the sulfur content of US coals for controlling SO[sub 2] emissions (i.e., acid rain precursors). The overall effort was a part of the DOE/PETCs Acid Rain Control Initiative (ARCI). The overall objective of the project is to develop techniques for coal surface control prior to the advanced physical fine coal cleaning process of selective agglomeration in order to achieve 85% pyrite sulfur rejection at an energy recovery greater than 85% based on run-of-mine coal. The surface control is meant to encompass surface modification during grinding and laboratory beneficiation testing. The project includes the following tasks: Project planning; methods for analysis of samples; development of standard beneficiation test; grinding studies; modification of particle surface; and exploratory R D and support. The coal samples used in this project include three base coals, Upper Freeport - Indiana County, PA, Pittsburgh NO. 8 - Belmont County, OH, and Illinois No. 6 - Randolph County, IL, and three additional coals, Upper Freeport - Grant County- WV, Kentucky No. 9 Hopkins County, KY, and Wyodak - Campbell County, WY. A total of 149 drums of coal were received.

  6. Surface modification for corrosion resistance

    SciTech Connect

    Natesan, K.

    1993-06-01

    The raw gas environments that arise from coal gasification have chemical compositions that are low in pO{sub 2} and moderate-to-high in pS{sub 2}. Metallic materials for service in such an environment undergo predominantly sulfidation attack at temperatures of 400 to 700{degree}C. Modification of alloy compositions in bulk can alter the scaling processes and lead to improvements in corrosion resistance, but the benefits can only be attained at temperatures much higher than the service temperatures of the components. Modification of surfaces of structural components by several of the coating techniques examined in this study showed substantial benefit in corrosion resistance when tested in simulated coal gasification environments. The paper presents several examples of surface modification and their corrosion performance.

  7. Surface modification of solids

    SciTech Connect

    Appleton, B.R.

    1984-05-01

    The use of ion beam and pulsed laser processing is reviewed for the near-surface modification of a wide range of materials. The techniques of ion implantation doping, ion beam and laser mixing, and pulsed-laser annealing are stressed with particular emphasis on the nonequilibrium aspects of these processing techniques and on new materials properties which can result. Examples are presented illustrating the utility of these techniques for fundamental materials research as well as practical surface modifications.

  8. Coal surface control for advanced fine coal flotation

    SciTech Connect

    Fuerstenau, D.W.; Sastry, K.V.S.; Hanson, J.S.; Harris, G.; Sotillo, F.; Diao, J. ); Somasundaran, P.; Harris, C.C.; Vasudevan, T.; Liu, D.; Li, C. ); Hu, Weibai; Zou, Y.; Chen, W. ); Choudhry, V.; Sehgal, R.; Ghosh, A. )

    1990-08-15

    The primary objective of this research project is to develop advanced flotation methods for coal cleaning in order to achieve near total pyritic-sulfur removal at 90% Btu recovery, using coal samples procured from six major US coal seams. Concomitantly, the ash content of these coals is to be reduced to 6% or less. Work this quarter concentrated on the following: washability studies, which included particle size distribution of the washability samples, and chemical analysis of washability test samples; characterization studies of induction time measurements, correlation between yield, combustible-material recovery (CMR), and heating-value recovery (HVR), and QA/QC for standard flotation tests and coal analyses; surface modification and control including testing of surface-modifying reagents, restoration of hydrophobicity to lab-oxidized coals, pH effects on coal flotation, and depression of pyritic sulfur in which pyrite depression with calcium cyanide and pyrite depression with xanthated reagents was investigated; flotation optimization and circuitry included staged reagent addition, cleaning and scavenging, and scavenging and middling recycling. Weathering studies are also discussed. 19 figs., 28 tabs.

  9. Surface modifications of nitinol.

    PubMed

    Haider, Waseem; Munroe, N; Tek, V; Pulletikurthi, C; Gill, P K S; Pandya, S

    2009-01-01

    Nitinol (an acronym for the Nickel-Titanium Naval Ordnance Laboratory) has been extensively explored as an implant material for the medical industry. The potential problem with Nitinol implant devices is the release of Ni in the human body, which has stimulated a great deal of research on surface modifications and the application of coatings. This paper presents a comprehensive review of various treatments to modify the surface of Nitinol in an effort to inhibit Ni release and to render improved biocompatibility. We discuss the important in-service properties of Nitinol, such as biocompatibility, corrosion resistance, stability, uniformity, and the nature of passivating oxides produced by passivation, electropolishing, magnetoelectropolishing, ion beam implantation, sterilization, and artificial coatings.

  10. Surface modification of bioceramics

    NASA Astrophysics Data System (ADS)

    Monkawa, Akira

    Hydroxyapatite [Ca10(PO4)6(OH)2, HAp] is a major inorganic component of bone and teeth tissues and has the excellent biocompatibility and high osteoconductivity. The interactions between HAp and protein or cell have been studied. The HAp related bioceramics such as bone substitute, coating substance of metal implants, inorganic-polymer composites, and cell culture. We described two methods; (1) surface modification of HAp using organosilane; (2) fabrication of HAp ultra-thin layer on gold surface for protein adsorption analyzed with QCM-D technique. The interfacial interaction between collagen and HAp in a nano-region was controlled by depositing the organosilane of n-octadecyltrimethoxysilane (ODS: -CH3) or aminopropyltriethoxysilane (APTS: -NH2) with a chemical vapor deposition method. The morphologies of collagen adsorbed on the surfaces of HAp and HAp deposited with APTS were similar, however that of the surface with ODS was apparently different, due to the hydrophobic interaction between the organic head group of -CH3 and residual groups of collagen. We present a method for coating gold quartz crystal microbalance with dissipation (QCM-D) sensor with ultra-thin layer of hydroxyapatite nanocrystals evenly covering and tightly bound to the surface. The hydroxyapatite sensor operated in liquid with high stability and sensitivity. The in-situ adsorption mechanism and conformational change of fibrinogen on gold, titanium and hydroxyapatite surfaces were investigated by QCM-D technique and Fourier-transform infrared spectroscopy. The study indicates that the hydroxyapatite sensor is applicable for qualitative and conformational analysis of protein adsorption.

  11. Surface Modification of Intraocular Lenses.

    PubMed

    Huang, Qi; Cheng, George Pak-Man; Chiu, Kin; Wang, Gui-Qin

    2016-01-20

    This paper aimed to review the current literature on the surface modification of intraocular lenses (IOLs). All articles about surface modification of IOLs published up to 2015 were identified through a literature search on both PubMed and ScienceDirect. The articles on the surface modification of IOLs were included, but those on design modification and surface coating were excluded. Technology of surface modification included plasma, ion beam, layer-by-layer self-assembly, ultraviolet radiation, and ozone. The main molecules introduced into IOLs surface were poly (ethylene glycol), polyhedral oligomeric silsesquioxane, 2-methacryloyloxyethyl phosphorylcholine, TiO 2 , heparin, F-heparin, titanium, titanium nitride, vinyl pyrrolidone, and inhibitors of cytokines. The surface modification either resulted in a more hydrophobic lens, a more hydrophilic lens, or a lens with a hydrophilic anterior and hydrophobic posterior surface. Advances in research regarding surface modification of IOLs had led to a better biocompatibility in both in vitro and animal experiments. The surface modification is an efficient, convenient, economic and promising method to improve the biocompatibility of IOLs.

  12. Surface Modification of Intraocular Lenses

    PubMed Central

    Huang, Qi; Cheng, George Pak-Man; Chiu, Kin; Wang, Gui-Qin

    2016-01-01

    Objective: This paper aimed to review the current literature on the surface modification of intraocular lenses (IOLs). Data Sources: All articles about surface modification of IOLs published up to 2015 were identified through a literature search on both PubMed and ScienceDirect. Study Selection: The articles on the surface modification of IOLs were included, but those on design modification and surface coating were excluded. Results: Technology of surface modification included plasma, ion beam, layer-by-layer self-assembly, ultraviolet radiation, and ozone. The main molecules introduced into IOLs surface were poly (ethylene glycol), polyhedral oligomeric silsesquioxane, 2-methacryloyloxyethyl phosphorylcholine, TiO2, heparin, F-heparin, titanium, titanium nitride, vinyl pyrrolidone, and inhibitors of cytokines. The surface modification either resulted in a more hydrophobic lens, a more hydrophilic lens, or a lens with a hydrophilic anterior and hydrophobic posterior surface. Advances in research regarding surface modification of IOLs had led to a better biocompatibility in both in vitro and animal experiments. Conclusion: The surface modification is an efficient, convenient, economic and promising method to improve the biocompatibility of IOLs. PMID:26830993

  13. Surface modification in microchip electrophoresis.

    PubMed

    Belder, Detlev; Ludwig, Martin

    2003-11-01

    Different approaches and techniques for surface modification of microfluidic devices applied for microchip electrophoresis are reviewed. The main focus is on the improved electrophoretic separation by reducing analyte-wall interactions and manipulation of electroosmosis. Approaches and methods for permanent and dynamic surface modification of microfluidic devices, manufactured from glass, quartz and also different polymeric substrates, are described.

  14. Enhancement of surface properties for coal beneficiation

    SciTech Connect

    Chander, S.; Aplan, F.F.

    1992-01-30

    This report will focus on means of pyrite removal from coal using surface-based coal cleaning technologies. The major subjects being addressed in this study are the natural and modulated surface properties of coal and pyrite and how they may best be utilized to facilitate their separation using advanced surface-based coal cleaning technology. Emphasis is based on modified flotation and oil agglomerative processes and the basic principles involved. The four areas being addressed are: (1) Collectorless flotation of pyrite; (2) Modulation of pyrite and coal hydrophobicity; (3) Emulsion processes and principles; (4) Evaluation of coal hydrophobicity.

  15. Plasma surface modification of polymers

    NASA Technical Reports Server (NTRS)

    Hirotsu, T.

    1980-01-01

    Thin plasma polymerization films are discussed from the viewpoint of simplicity in production stages. The application of selective, absorbent films and films used in selective permeability was tested. The types of surface modification of polymers discussed are: (1) plasma etching, (2) surface coating by plasma polymerized thin films, and (3) plasma activation surface graft polymerization.

  16. Surface modification to waveguides

    DOEpatents

    Timberlake, J.R.; Ruzic, D.N.; Moore, R.L.; Cohen, S.A.; Manos, D.M.

    1982-06-16

    A method is described for treating the interior surfaces of a waveguide to improve power transmission comprising the steps of mechanically polishing to remove surface protrusions; electropolishing to remove embedded particles; ultrasonically cleaning to remove any residue; coating the interior waveguide surfaces with an alkyd resin solution or electrophoretically depositing carbon lamp black suspended in an alkyd resin solution to form a 1..mu.. to 5..mu.. thick film; vacuum pyrolyzing the film to form a uniform adherent carbon coating.

  17. Surface modification to waveguides

    DOEpatents

    Timberlake, John R.; Ruzic, David N.; Moore, Richard L.; Cohen, Samuel A.; Manos, Dennis M.

    1983-01-01

    A method of treating the interior surfaces of a waveguide to improve power transmission comprising the steps of mechanically polishing to remove surface protrusions; electropolishing to remove embedded particles; ultrasonically cleaning to remove any residue; coating the interior waveguide surfaces with an alkyd resin solution or electrophoretically depositing carbon lamp black suspended in an alkyd resin solution to form a 1.mu. to 5.mu. thick film; vacuum pyrolyzing the film to form a uniform adherent carbon coating.

  18. Surface modification by molecular ions

    SciTech Connect

    Hanley, L.; Schultz, D. G.; Ada, E. T.

    1999-06-10

    There are several advantages in using molecular ions for surface modification. The modification can be confined to the uppermost layer of the surface, the molecular character of the ion can be imparted to the surface, and sputter yields are often higher. These effects are demonstrated by the use of mass selected ion beams incident on well characterized surfaces. Energy transfer is examined by detecting the masses and energies of ions scattered off surfaces and performing molecular dynamics simulations. Surface modification is followed by chemical analysis with x-ray photoelectron spectroscopy and surface mass spectrometry. TRIDYN monte carlo simulations are used to support some of the modification experiments. Energy transfer is examined for Si(CD{sub 3}){sub 3}{sup +} scattered off clean and hexanethiolate covered Au(111). Adsorbate desorption cross sections and substrate damage depths for NH{sub 3}/CO/Ni(111) are compared for 10-1000 eV isobaric atomic and polyatomic ions, Xe{sup +} and SF{sub 5}{sup +}. The surface chemical modification of polystyrene thin films by 10-100 eV SF{sub 5}{sup +} and C{sub 3}F{sub 5}{sup +} ions is also examined.

  19. Ion beam surface modification

    NASA Technical Reports Server (NTRS)

    Dwight, D. W.

    1982-01-01

    The essential details of a study on the practical applications and mechanisms of polymer sputtering via Argon ion impact are summarized. The potential to modify the properties of polymer surfaces to improve their adherence, durability, biocompatibility, or other desirable properties by ion beam sputtering was emphasized. Ion beam milling can be of benefit as an analytical tool to obtain composition versus depth information. Ion impact from a directed ion gun source specifically etches polymer structures according to their morphologies, therefore this technique may be useful to study unknown or new morphological features. Factors addressed were related to: (1) the texture that arises on a polymer target after ion impact; (2) the chemistry of the top surface after ion impact; (3) the chemistry of sputtered films of polymeric material deposited on substrates placed adjacent to targets during ion impact; and (4) practical properties of textured polymer targets, specifically the wettability and adhesive bonding properties.

  20. Atmospheric Plasma for Surface Modification

    DTIC Science & Technology

    2011-02-01

    Plasma for Surface Modification 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f...barrier coatings, dry low friction surfaces • Deposition Polymerized hydrocarbon coatings, chemical barriers, scratch resistant coatings, glass-like... surfaces , diamond like films • Oxidation/reduction Organic and inorganic functionalities • Activation. Hydroxyl, carboxylic, carbonyl, amine, vinyl

  1. Surface electrochemical control for fine coal and pyrite separation

    SciTech Connect

    Hu, Weibai; Zhu, Ximeng; Bodily, D.M.; Wadsworth, M.E.

    1990-01-01

    Ongoing work includes the characterization of coal pyrites, the floatability evaluation typical US coal samples, the flotation behavior of coal pyrites, the electrochemical measurement of the surface properties of coal pyrites, and the characterization of species produced at pyrite surfaces.

  2. Coal surface control for advanced physical fine coal cleaning technologies. Final report, September 19, 1988--August 31, 1992

    SciTech Connect

    Morsi, B.I.; Chiang, S.H.; Sharkey, A.; Blachere, J.; Klinzing, G.; Araujo, G.; Cheng, Y.S.; Gray, R.; Streeter, R.; Bi, H.; Campbell, P.; Chiarlli, P.; Ciocco, M.; Hittle, L.; Kim, S.; Kim, Y.; Perez, L.; Venkatadri, R.

    1992-12-31

    This final report presents the research work carried out on the Coal Surface Control for Advanced Physical Fine Coal Cleaning Technologies project, sponsored by the US Department of Energy, Pittsburgh Energy Technology Center (DOE/PETC). The project was to support the engineering development of the selective agglomeration technology in order to reduce the sulfur content of US coals for controlling SO{sub 2} emissions (i.e., acid rain precursors). The overall effort was a part of the DOE/PETCs Acid Rain Control Initiative (ARCI). The overall objective of the project is to develop techniques for coal surface control prior to the advanced physical fine coal cleaning process of selective agglomeration in order to achieve 85% pyrite sulfur rejection at an energy recovery greater than 85% based on run-of-mine coal. The surface control is meant to encompass surface modification during grinding and laboratory beneficiation testing. The project includes the following tasks: Project planning; methods for analysis of samples; development of standard beneficiation test; grinding studies; modification of particle surface; and exploratory R&D and support. The coal samples used in this project include three base coals, Upper Freeport - Indiana County, PA, Pittsburgh NO. 8 - Belmont County, OH, and Illinois No. 6 - Randolph County, IL, and three additional coals, Upper Freeport - Grant County- WV, Kentucky No. 9 Hopkins County, KY, and Wyodak - Campbell County, WY. A total of 149 drums of coal were received.

  3. Coal surface control for advanced fine coal flotation

    SciTech Connect

    Fuerstenau, D.W.; Sastry, K.V.S.; Hanson, J.S.; Diao, J.; De, A.; Sotillo, F.; Harris, G. ); Somasundaran, P.; Harris, C.C.; Vasudevan, T.; Liu, D.; Li, C. ); Hu, W.; Zou, Y.; Chen, W. ); Choudhry, V.; Sehgal, R.; Ghosh, A. (Praxis Engineers, Inc., Milpitas, CA (United Stat

    1991-05-15

    The primary objective in the scope of this research project is to develop advanced flotation methods for coal cleaning in order to achieve near total pyritic-sulfur removal at 90% Btu recovery, using coal samples procured from three major US coal seams. Concomitantly, the ash content of these coals is to be reduced to 6% or less. Investigation of mechanisms for the control of coal and pyrite surfaces prior to fine coal flotation is the main aspect of the project objectives. Research topics covered during this quarter include the characterization of the base coals, various flotation studies on optimization and pyrite rejection, and a detailed flotation kinetic study. The effect of hexanol, butanol, dodecane, and polyethylene glycol on flotation is described. A second major objective is to investigate factors involved in the progressive weathering and oxidation of coal that had been exposed to varying weathered degrees, namely, open, covered and in an argon-inerted'' atmosphere, over a period of twelve months. After regular intervals if weathering, samples of the three base coals (Illinois No. 6, Pittsburgh No. 8 and Upper Freeport PA) were collected and shipped to both the University of Pittsburgh and the University of California at Berkeley for characterization studies of the weathered material. 35 figs., 17 tabs.

  4. Surface electrochemical control for fine coal and pyrite separation

    SciTech Connect

    Hu, Weibai; Huang, Qinping; Li, Jun; Zhu, Ximeng; Bodily, D.M.; Liang, Jun; Zhong, Tingke; Wadsworth, M.E.

    1991-01-01

    The ongoing work includes the characterization of coal pyrites, the floatability evaluation of three typical US coal samples, the flotation behavior of coal pyrites, the electrochemical measurement of the surface properties of coal pyrites, and the characterization of species produced at pyrite surfaces. This report contains three sections, Transpassive Oxidation of Pyrite,'' Flotation and Electrochemical Pretreatment,'' and Flotation Kinetics of Coal and Coal Pyrite.''

  5. Surface properties of coal and their role in coal beneficiation

    SciTech Connect

    Fuerstenau, D. W.

    1989-10-01

    The main objective of this research has been to identify and characterize the properties of coal that determine its wetting characteristics and its behavior in surface-based coal cleaning processes. During the last quarter, we studied the effect of pH and ionic strength on the induction time and the zeta potential of as-received Cambria No. 78 and New Zealand coals. Included also was an investigation of the effect of particle size on the observed induction time of the two coals in sodium nitrate solutions. The effect of oxidation on the zeta potential of Cambria No. 78 and New Zealand coals in 0.002 M NaNO{sub 3} solution was also investigated.

  6. Coal surface control for advanced fine coal flotation

    SciTech Connect

    Fuerstenau, D.W.; Sastry, K.V.S.; Hanson, J.S.; Diao, J.; De, A.; Sotillo, F.; Harris, G. ); Somasundaran, P.; Harris, C.C.; Vasudevan, T.; Liu, D.; Li, C. ); Hu, Weibai; Zou, Y.; Chen, W. ); Choudhry, V.; Sehgal, R.; Ghosh, A. (Praxis Engineers, Inc., Milpitas, CA (United

    1991-07-30

    The primary objective in the scope of this research project is to develop advanced flotation methods for coal cleaning in order to achieve near total pyritic-sulfur removal at 90% Btu recovery, using coal samples procured from three major US coal seams. Concomitantly, the ash content of these coals is to be reduced to 6% or less. Investigation of mechanisms for the control of coal and pyrite surfaces prior to fine coal flotation is the main aspect of the project objectives. The results of this research are to be made available to ICF Kaiser Engineers who are currently working on the Engineering Development of Advanced Flotation under a separate contract with DOE under the Acid Rain Control Initiative program. A second major objective is to investigate factors involved in the progressive weathering and oxidation of coal that had been exposed to varying degrees of weathering, namely, open to the atmosphere, covered and in an argon-inerted'' atmosphere, over a period of twelve months. After regular intervals of weathering, samples of the three base coals (Illinois No. 6, Pittsburgh No. 8 and Upper Freeport PA) were collected and shipped to both the University of Pittsburgh and the University of California at Berkeley for characterization studies of the weathered material. 29 figs., 29 tabs.

  7. Coal surface control for advanced fine coal flotation

    SciTech Connect

    Fuerstenau, D.W.; Hanson, J.S.; Diao, J.; Harris, G.H.; De, A.; Sotillo, F. ); Somasundaran, P.; Harris, C.C.; Vasudevan, T.; Liu, D.; Li, C. ); Hu, W.; Zou, Y.; Chen, W. ); Choudhry, V.; Shea, S.; Ghosh, A.; Sehgal, R. )

    1992-03-01

    The initial goal of the research project was to develop methods of coal surface control in advanced froth flotation to achieve 90% pyritic sulfur rejection, while operating at Btu recoveries above 90% based on run-of-mine quality coal. Moreover, the technology is to concomitantly reduce the ash content significantly (to six percent or less) to provide a high-quality fuel to the boiler (ash removal also increases Btu content, which in turn decreases a coal's emission potential in terms of lbs SO{sub 2}/million Btu). (VC)

  8. Energy conservation potential of surface modification technologies

    SciTech Connect

    Le, H.K.; Horne, D.M.; Silberglitt, R.S.

    1985-09-01

    This report assesses the energy conservation impact of surface modification technologies on the metalworking industries. The energy conservation impact of surface modification technologies on the metalworking industries is assessed by estimating their friction and wear tribological sinks and the subsequent reduction in these sinks when surface modified tools are used. Ion implantation, coatings, and laser and electron beam surface modifications are considered.

  9. Surface Modification for Microreactor Fabrication

    PubMed Central

    Pijanowska, Dorota G.; Remiszewska, Elżbieta; Pederzolli, Cecilia; Lunelli, Lorenzo; Vendano, Michele; Canteri, Roberto; Dudziński, Konrad; Kruk, Jerzy; Torbicz, Wladyslaw

    2006-01-01

    In this paper, methods of surface modification of different supports, i.e. glass and polymeric beads for enzyme immobilisation are described. The developed method of enzyme immobilisation is based on Schiff's base formation between the amino groups on the enzyme surface and the aldehyde groups on the chemically modified surface of the supports. The surface of silicon modified by APTS and GOPS with immobilised enzyme was characterised by atomic force microscopy (AFM), time-of-flight secondary ion mass spectroscopy (ToF-SIMS) and infrared spectroscopy (FTIR). The supports with immobilised enzyme (urease) were also tested in combination with microreactors fabricated in silicon and Perspex, operating in a flow-through system. For microreactors filled with urease immobilised on glass beads (Sigma) and on polymeric beads (PAN), a very high and stable signal (pH change) was obtained. The developed method of urease immobilisation can be stated to be very effective.

  10. Paper surface modification by lasers

    NASA Astrophysics Data System (ADS)

    Zekou, E.; Kotsifaki, D. G.; Serafetinides, A. A.

    2010-10-01

    Lasers can provide a precious tool to conservation process due to their accuracy and the controlled energy they deliver, especially to fragile organic material such as paper. The current study concerns laser modification such as paper cleaning, initially of test papers artificially soiled and then of an original book of the early 20th Century. The test objects were A4 copier paper, newspaper, and paper Whatman No.1056. During the experiments, ink of a pen, pencil and ink from a stamp was mechanically employed on each paper surface. Laser cleaning was applied using a Q-switched Nd:YAG operating at 532 nm and CO2 laser at 10.6 μm for various fluences. The experimental results were presented by using optical microscopy. Eventually, laser cleaning of ink was performed to a book of 1934, by choosing the best conditions and parameters from cleaning the test samples, like Nd:YAG laser operating at 532 nm.

  11. Surface electrochemical control for fine coal and pyrite separation

    SciTech Connect

    Hu, Weibai; Huang, Qinping; Li, Jun; Riley, A.; Turcotte, S.B.; Benner, R.E.; Zhu, Ximeng; Bodily, D.M.; Liang, Jun; Zhong, Tinghe; Wadsworth, M.E.

    1991-01-01

    The ongoing work includes the characterization of coal pyrites, the floatability evaluation of three typical US coal samples, the flotation behavior of coal pyrites, the electrochemical measurement of the surface properties of coal pyrites, and the characterization of species produced at pyrite surfaces. This report covers a Raman spectroscopy of species produced electrochemically on pyrite surfaces.

  12. Oxidation of coal and coal pyrite mechanisms and influence on surface characteristics. [Coal pyrite electrodes

    SciTech Connect

    Doyle, F.M.

    1992-01-01

    The objective of this research is to develop a mechanistic understanding of the oxidation of coal and coal pyrite, and to correlate the intrinsic physical and chemical properties of these minerals, along with changes resulting from oxidation, with those surface properties that influence the behavior in physical cleaning processes. The results will provide fundamental insight into oxidation, in terms of the bulk and surface chemistry, the microstructure, and the semiconductor properties of the pyrite. During the eighth quarter, wet chemical and dry oxidation tests were done on Upper Freeport coal from the Troutville [number sign]2 Mine, Clearfield County, Pennsylvania. In addition electrochemical experiments were done on electrodes prepared from Upper Freeport coal pyrite and Pittsburgh coal pyrite samples provided by the US Bureau of Mines, Pittsburgh Research Center, Pennsylvania.

  13. Moving coal to the surface

    SciTech Connect

    Brezovec, D.

    1982-12-01

    Points out that with pneumatic and hydraulic haulage still largely in the experimental stage and with rail haulage in decline, belt conveyors remain the backbone of underground coal mine transportation. A recent survey revealed that 85% to 90% of all underground coal mines use conveyor belts for panel and main line transportation. Discusses the design and operation of stageloaders, which vary from 50 to about 120 ft. long. Discloses that mine operators are moving from wound rotor motors to squirrel cage motors used in conjunction with soft start packages on their drive units. In order to reduce downtime on longwall faces caused by large lumps of coal, most modern longwall faces are equipped with side discharge systems.

  14. Oxidation of coal and coal pyrite mechanisms and influence on surface characteristics

    SciTech Connect

    Doyle, F.M.

    1992-01-01

    During the ninth quarter, electrochemical experiments were done on electrodes prepared from Upper Freeport coal pyrite and Pittsburgh coal pyrite samples provided by the US Bureau of Mines, Pittsburgh Research Center, Pennsylvania. Scanning electron microscopy and energy dispersive X-ray analysis were done to characterize the morphology and composition of the surface of as-received coal, oxidized coal and coal pyrite. In addition, electrokinetic tests were done on Upper Freeport coal pyrite.

  15. Surface electrochemical control for the fine coal and pyrite separation

    SciTech Connect

    Hu, Weibai; Huang, Qinping; Zhu, Ximeng; Li, Jun; Bodily, D.M.; Liang, Jun; Zhong, Tingke; Wadsworth, M.E.

    1992-01-01

    Ongoing work includes the characterization of coal pyrites, the floatability evaluation of typical US coal samples, the flotation behavior of coal pyrites, the electrochemical measurement of the surface properties of coal pyrites, and the characterization of species produced at pyrite surfaces.

  16. Surface electrochemical control for fine coal and pyrite separation

    SciTech Connect

    Chen, Wanxiong; Hu, Weibai; Wann, Jyi-Perng; Zhu, Ximeng; Bodily, D.M.; Wadsworth, M.E.

    1990-01-01

    Ongoing work includes the characterization of coal pyrites, the floatability evaluation of typical US coal samples, the flotation behavior of coal pyrites, the electrochemical measurement of the surface properties of coal pyrites, and the characterization of species produced at pyrite surfaces.

  17. Surface electrochemical control for the fine coal and pyrite separation

    SciTech Connect

    Chen, Wanxiong; Hu, Weibai; Wann, Jyi-Perng; Zhu, Ximeng; Wadsworth, M.E.

    1989-01-01

    Ongoing work includes the characterization of coal pyrites, the floatability evaluation of typical US coal samples, the flotation behavior of coal pyrites, the electrochemical measurement of the surface properties of coal pyrites, and the characterization of species produced at pyrite surfaces.

  18. Sustainable environmental nanotechnology using nanoparticle surface modification.

    EPA Science Inventory

    Reactive nanomaterials used for environmental remediation require surface modification to make them mobile in the subsurface. Nanomaterials released into the environment inadvertently without an engineered surface coating will acquire one (e.g. adsorption of natural organic matt...

  19. Sustainable environmental nanotechnology using nanoparticle surface modification.

    EPA Science Inventory

    Reactive nanomaterials used for environmental remediation require surface modification to make them mobile in the subsurface. Nanomaterials released into the environment inadvertently without an engineered surface coating will acquire one (e.g. adsorption of natural organic matt...

  20. Surface modification to prevent oxide scale spallation

    DOEpatents

    Stephens, Elizabeth V; Sun, Xin; Liu, Wenning; Stevenson, Jeffry W; Surdoval, Wayne; Khaleel, Mohammad A

    2013-07-16

    A surface modification to prevent oxide scale spallation is disclosed. The surface modification includes a ferritic stainless steel substrate having a modified surface. A cross-section of the modified surface exhibits a periodic morphology. The periodic morphology does not exceed a critical buckling length, which is equivalent to the length of a wave attribute observed in the cross section periodic morphology. The modified surface can be created using at least one of the following processes: shot peening, surface blasting and surface grinding. A coating can be applied to the modified surface.

  1. Modification of polystyrene surface in aqueous solutions.

    PubMed

    Mielczarski, J A; Jeyachandran, Y L; Mielczarski, E; Rai, B

    2011-10-15

    Herein, we report our analysis of the surface modification of polystyrene (PS) when treated under ambient conditions with a common biological buffer such as phosphate buffered saline (PBS) or aqueous solutions of the ionic constituents of PBS. Attenuated total reflection Fourier transform infrared spectroscopy was used for the analysis because the resultant spectra are very sensitive to minor changes in the chemical and structural properties of PS films. In addition, ultraviolet-visible spectroscopy was applied to characterize the surface modifications of PS. Treatment with PBS resulted in the most significant chemical and structural surface modifications of the PS films, as compared with each of the solutions of the constituents of PBS, which were tested separately. A multistep mechanism for the wet modification of PS is discussed. We postulate that the observed surface modifications are the result of photo-oxidation/reduction, swelling, and conformational changes and re-arrangement of the polymer chain. The resultant surface modifications could be similar to those produced by commonly used dry processes such as plasma treatments and electron, ion or ultraviolet irradiation. We found that the modifications that occurred in PBS were more stable than those initiated by dry processes. The formation of active groups on the surface of PS can be controlled by adsorption of bovine serum albumin or thermal annealing of PS before PBS treatment. This approach provides a simple and efficient method for the surface modification of PS for biomedical applications. Copyright © 2011. Published by Elsevier Inc.

  2. Coal surface structure and thermodynamics. Final report

    SciTech Connect

    Larsen, J.W.; Wernett, P.C.; Glass, A.S.; Quay, D.; Roberts, J.

    1994-05-01

    Coals surfaces were studied using static surface adsorption measurements, low angle x-ray scattering (LAXS), inverse gas chromatography (IGC) and a new {sup 13}C NMR relaxation technique. A comparison of surface areas determined by hydrocarbon gas adsorption and LAXS led to the twin conclusions that the hydrocarbons had to diffuse through the solid to reach isolated pores and that the coal pores do not form interconnected networks, but are largely isolated. This conclusion was confirmed when IGC data for small hydrocarbons showed no discontinuities in their size dependence as usually observed with porous solids. IGC is capable of providing adsorption thermodynamics of gases on coal surfaces. The interactions of non-polar molecules and coal surfaces are directly proportioned to the gas molecular polarizability. For bases, the adsorption enthalpy is equal to the polarizability interaction plus the heat of hydrogen bond formation with phenol. Amphoteric molecules have more complex interactions. Mineral matter can have highly specific effects on surface interactions, but with most of the molecules studied is not an important factor.

  3. Oxidation of coal and coal pyrite mechanisms and influence on surface characteristics

    SciTech Connect

    Doyle, F.M.

    1993-04-01

    During the tenth quarter, electrochemical experiments were done on electrodes prepared from Upper Freeport coal pyrite, and Pittsburgh coal pyrite samples provided by the US Bureau of Mines, Pittsburgh Research Center, Pennsylvania. Electrokinetic tests were done on Upper Freeport and Pittsburgh coal pyrite. In addition, surface area measurements were done on Upper Freeport and Upper Clarion coals.

  4. Surface magnetic enhancement for coal cleaning

    SciTech Connect

    Hwang, J.Y.

    1992-01-01

    The program consisted of a fundamental study to define the chemistry for the interactions between magnetic reagent and mineral and coal particles, a laboratory study to determine the applicability of this technology on coal cleaning, and a parameter study to evaluate the technical and economical feasibility of this technology for desulfurization and de-ashing under various processing schemes. Surface magnetic enhancement using magnetic reagent is a new technology developed at the Institute. This technology can be applied to separate pyrite and other minerals particles from coal with a magnetic separation after adsorbing magnetic reagent on the surface of pyrite and other minerals particles. Particles which have absorbed magnetic reagent are rendered magnetic. The adsorption can be controlled to yield selectivity. Thus, the separation of traditionally nonmagnetic materials with a magnetic separator can be achieved. Experiments have been performed to demonstrate the theoretical fundamentals and the applications of the technology. Adsorbability, adsorption mechanisms, and adsorption selectivity are included in the fundamental study. The effects of particle size, magnetic reagent dosage, solid contents, magnetic matrix, applied magnetic field strengths, retention times, and feed loading capacities are included in the application studies. Three coals, including Illinois No. 6, Lower Kittanning and Pocahontas seams, have been investigated. More than 90% pyritic sulfur and ash reductions have been achieved. Technical and economic feasibilities of this technology have been demonstrated in this study. Both are competitive to that of the froth flotation approach for coal cleaning.

  5. Surface modification agents for lithium batteries

    DOEpatents

    Chen, Zonghai; Amine, Khalil; Belharouak, Ilias

    2015-06-23

    A method includes modifying a surface of an electrode active material including providing a solution or a suspension of a surface modification agent; providing the electrode active material; preparing a slurry of the solution or suspension of the surface modification agent, the electrode active material, a polymeric binder, and a conductive filler; casting the slurry in a metallic current collector; and drying the cast slurry.

  6. Chemical modification of semiconductor surfaces

    NASA Technical Reports Server (NTRS)

    Finklea, H. O.

    1981-01-01

    Results of research on the chemical modification of TiO2 powders in the gas phase and the examination of the modified powders by infrared absorption spectroscopy are comprehensively summarized. The range of information obtainable by IR spectroscopy of chemically modified semiconductors, and a definition of the optimum reaction conditions for synthesizing a monolayer of methylsilanes using vapor phase reaction conditions were considered.

  7. Improvement of coal water slurry property through coal physicochemical modifications by microwave irradiation and thermal heat

    SciTech Connect

    Jun Cheng; Junhu Zhou; Yanchang Li; Jianzhong Liu; Kefa Cen

    2008-07-15

    To improve the coal water slurry (CWS) property made from Chinese Shenhua coal with high inherent moisture and oxygen contents, microwave irradiation and thermal heat were employed to modify the coal physicochemical property. Microwave irradiation reduces the inherent moisture and reforms the oxygenic function groups, while it decreases the total specific surface area. Thermal heat markedly decreases the inherent moisture, volatile, and oxygen contents, while it dramatically increases the total specific surface area. Therefore, microwave irradiation gives a higher CWS concentration and a better rheological behavior than thermal heat, while it remarkably reduces the operation time and energy consumption. The maximum CWS concentration given by microwave irradiation at 420 W for 60 s is 62.14%, which is not only higher than that of 60.41% given by thermal heat at 450{sup o}C for 0.5 h but also higher than the initial 58.23%. Meanwhile, the minimum shear stress given by microwave irradiation is 36.4 Pa at the shear rate of 100 s{sup -1}, which is not only lower than that of 42.4 Pa given by thermal heat but also lower than the initial 79.8 Pa. The minimum unit energy consumption of 0.115 kWh/(kg of coal) and electricity cost of 4.6 U.S. $/(ton of coal) for CWS concentration promotion by 1% are obtained at 420 W for 20 s in the microwave oven. The unit energy consumptions for CWS concentration promotion and inherent moisture removal by thermal heat are, respectively, 214 and 22.5 times higher than those by microwave irradiation, while the energy use efficiencies are on the converse. 27 refs., 11 figs., 2 tabs.

  8. Surface chemical modification of nanocrystals

    DOEpatents

    Helms, Brett Anthony; Milliron, Delia Jane; Rosen, Evelyn Louise; Buonsanti, Raffaella; Llordes, Anna

    2017-03-14

    Nanocrystals comprising organic ligands at surfaces of the plurality of nanocrystals are provided. The organic ligands are removed from the surfaces of the nanocrystals using a solution comprising a trialkyloxonium salt in a polar aprotic solvent. The removal of the organic ligands causes the nanocrystals to become naked nanocrystals with cationic surfaces.

  9. Surface Modification of Water Purification Membranes.

    PubMed

    Miller, Daniel J; Dreyer, Daniel R; Bielawski, Christopher W; Paul, Donald R; Freeman, Benny D

    2017-04-18

    Polymeric membranes are an energy-efficient means of purifying water, but they suffer from fouling during filtration. Modification of the membrane surface is one route to mitigating membrane fouling, as it helps to maintain high levels of water productivity. Here, a series of common techniques for modification of the membrane surface are reviewed, including surface coating, grafting, and various treatment techniques such as chemical treatment, UV irradiation, and plasma treatment. Historical background on membrane development and surface modification is also provided. Finally, polydopamine, an emerging material that can be easily deposited onto a wide variety of substrates, is discussed within the context of membrane modification. A brief summary of the chemistry of polydopamine, particularly as it may pertain to membrane development, is also described.

  10. Enhancement of surface properties for coal beneficiation. Final report

    SciTech Connect

    Chander, S.; Aplan, F.F.

    1992-01-30

    This report will focus on means of pyrite removal from coal using surface-based coal cleaning technologies. The major subjects being addressed in this study are the natural and modulated surface properties of coal and pyrite and how they may best be utilized to facilitate their separation using advanced surface-based coal cleaning technology. Emphasis is based on modified flotation and oil agglomerative processes and the basic principles involved. The four areas being addressed are: (1) Collectorless flotation of pyrite; (2) Modulation of pyrite and coal hydrophobicity; (3) Emulsion processes and principles; (4) Evaluation of coal hydrophobicity.

  11. Surface and interface modification science and technology.

    SciTech Connect

    Park, J.-H.

    1999-07-19

    Surface modification of solids is of scientific and technological interest due to its significant benefits in a wide variety of applications. Various coatings applications such as corrosion protection and electrical insulators and conductors are required for proper engineering design based on geometrical relationships between interfaces and on thermodynamic/kinetic considerations for the development of surface modifications. This paper will explore three basic examples: the proton conductor BaCeO{sub 3}, high-temperature protective coatings, and epitaxial relationships between interfaces.

  12. 77 FR 50165 - Escape and Evacuation Plans for Surface Coal Mines, Surface Facilities and Surface Work Areas of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-20

    ... Safety and Health Administration Escape and Evacuation Plans for Surface Coal Mines, Surface Facilities and Surface Work Areas of Underground Coal Mines AGENCY: Mine Safety and Health Administration, Labor... surface coal mines, surface facilities and surface work areas of underground coal mines. MSHA is...

  13. Chemical modification of surface properties

    SciTech Connect

    Koel, B.E.; Windham, R.G.

    1987-01-01

    Chemically tailoring materials to have new and unique surface properties has enormous potential in a wide variety of applications for interfacial phenomena in materials science and catalysis. Recent work from our laboratory on model systems designed to explain how changes in geometric and electronic structure of metal surfaces affect surface chemistry are discussed. Specifically, the influence of potassium and bismuth coadsorption with small molecules on a Pt(111) single crystal surface will be described. We will also discuss the chemical reactivity of palladium metal monolayers and thin films which have been recently reported to have dramatically altered geometric and electronic structure. 31 refs., 3 figs.

  14. Microscale surface modifications for heat transfer enhancement.

    PubMed

    Bostanci, Huseyin; Singh, Virendra; Kizito, John P; Rini, Daniel P; Seal, Sudipta; Chow, Louis C

    2013-10-09

    In this experimental study, two surface modification techniques were investigated for their effect on heat transfer enhancement. One of the methods employed the particle (grit) blasting to create microscale indentations, while the other used plasma spray coating to create microscale protrusions on Al 6061 (aluminum alloy 6061) samples. The test surfaces were characterized using scanning electron microscopy (SEM) and confocal scanning laser microscopy. Because of the surface modifications, the actual surface area was increased up to 2.8× compared to the projected base area, and the arithmetic mean roughness value (Ra) was determined to vary from 0.3 μm for the reference smooth surface to 19.5 μm for the modified surfaces. Selected samples with modified surfaces along with the reference smooth surface were then evaluated for their heat transfer performance in spray cooling tests. The cooling system had vapor-atomizing nozzles and used anhydrous ammonia as the coolant in order to achieve heat fluxes up to 500 W/cm(2) representing a thermal management setting for high power systems. Experimental results showed that the microscale surface modifications enhanced heat transfer coefficients up to 76% at 500 W/cm(2) compared to the smooth surface and demonstrated the benefits of these practical surface modification techniques to enhance two-phase heat transfer process.

  15. Surface electrochemical control for fine coal and pyrite separation

    SciTech Connect

    Hu, Weibai; Huang, Qinping; Riley, A.; Zhu, Ximeng; Bodily, D.M.; Liang, Jun; Zhong, Tinghe; Wadsworth, M.E.

    1991-01-01

    This technical progress report, prepared in accordance with the reporting requirements of DOE Project No. DE-AC22-89PC89758, covers the work performed from April 1, 1991 to June 30, 1991. The ongoing work includes the characterization of coal pyrites, the floatability evaluation of three typical US coal samples, the flotation behavior of coal pyrites, the electrochemical measurement of the surface properties of coal pyrites, and the characterization of species produced at pyrite surfaces. 6 refs., 20 figs.

  16. Surface modified coals for enhanced catalyst dispersion and liquefaction

    SciTech Connect

    Dr. Yaw D. Yeboah

    1998-10-29

    The aim of the study is to enhance catalyst loading and dispersion in coal for improved liquefaction by preadsorption of surfactants and catalysts on to the coal. During this reporting period, zeta potential measurements were conducted to assess the surface charge on the raw, pretreated and catalyzed coal samples. The surface area, transmission spectroscopy and luminescence intensity of the raw coal and pretreated coal samples were also determined to assess the quality of the coal surface. Across a broad range of pH values, the raw coal had an overall negative charge. Coal treated with anionic surfactant SDS maintained an overall net negative surface negative charge. The interaction between the coal and cationic surfactant DDAB caused the opposite effect resulting in a more positive coal surface charge. Although one would have expected little or no effect of the neutral surfactant Triton X-100, there appears to be some difference in the results of the raw coal and the coal treated with Triton X-100. The authors believe that the Triton not only binds to the nonpolar sites but also has a strong affinity for the polar sites through electrostatic bonding and interaction between the hydrophobic tails. The addition of molybdenum to coal pretreated with DDAB caused a reduction in the positive charge of the coal surface probably due to possible ionic interaction between the coal surface, the surfactant and the catalyst. The adsorption isotherm of the coal was characteristic of isotherms for porous samples and the surface area of the coal increased from 30 m{sup 2}/g to 77 m{sup 2}/g when washed with deionized water. This suggests coal washing may be one method of increasing the surface area for surfactant adsorption. Although the transmission measurements provided valuable information about the coal it resulted in little information on the amount of adsorbed Triton. However, the maximum solid-liquid ratio for optimum surfactant loading of Triton X-100 was determined via

  17. Oxidation of coal and coal pyrite mechanisms and influence on surface characteristics

    SciTech Connect

    Doyle, F.M.

    1992-06-30

    during the seventh quarter, electrokinetic, humic acid extraction and film flotation tests were done on oxidized samples of Upper Freeport coal from the Troutville {number sign} 2 Mine, Clearfield County, Pennsylvania. Scanning electron microscopy and energy dispersive X-ray analysis was done to characterize the morphology and composition of the surface of as-received coal, oxidized coal, oxidized coal after extraction of humic acids and humic acid extracted from oxidized coal. In addition, electrochemical studies were done on electrodes prepared from coal pyrite samples.

  18. Selective Surface Modification on Lubricant Retention

    NASA Astrophysics Data System (ADS)

    Jiang, Yu; Suvanto, Mika; Pakkanen, Tapani A.

    2016-11-01

    While surface patterns are effective in improving tribological properties, nevertheless they alter the surface wettability, which will in turn affect the surface-lubricant interactions. When there is a shortage of lubricant on a patterned surface, the lubricant stored inside the cavities will be extracted to compensate the surface lubricant dissipation. Additionally, the lubricant retention effect provided by the cavities is competing with the release of the lubricant. With weak surface-lubricant interaction, the retention is limited. Therefore, the lubrication will have a sudden failure, giving a dramatic transition to abrasive wear. To improve the performance of polar lubricants on hydrophobic polymer surfaces, both topographical and selective surface modifications were incorporated on injection molded polypropylene surfaces. Distinctive lubrication improvement was observed when the surface structure density for the lubricant storage was high, and the release of the lubricant was controlled by the interaction with the selectively modified surfaces.

  19. Improving surface coal refuse disposal site inspections

    SciTech Connect

    Meister, R.A.; Hoffman, R.L.

    1980-06-01

    The study on improving surface coal refuse disposal site inspections included surface inspections of 15 refuse disposal sites. Monthly aerial photos were taken of the sites and computer methods were used to determine elevation changes. Photogrammetric techniques that were used are described in detail. A comparison of the results of each of these inspection techniques is included. A detailed evaluation of the photogrammetric techniques was made and conclusions were drawn concerning the advantages and disadvantages of using aerial photography and photogrammetry as part of the inspection procedure. Operators' opinions of the aerial photography methods are included.

  20. Nanofibrillated Cellulose Surface Modification: A Review

    PubMed Central

    Missoum, Karim; Belgacem, Mohamed Naceur; Bras, Julien

    2013-01-01

    Interest in nanofibrillated cellulose (NFC) has increased notably over recent decades. This bio-based nanomaterial has been used essentially in bionanocomposites or in paper thanks to its high mechanical reinforcement ability or barrier property respectively. Its nano-scale dimensions and its capacity to form a strong entangled nanoporous network have encouraged the emergence of new high-value applications. It is worth noting that chemical surface modification of this material can be a key factor to achieve a better compatibility with matrices. In order to increase the compatibility in different matrices or to add new functions, surface chemical modification of NFC appears to be the prior choice to conserve its intrinsic nanofibre properties. In this review, the authors have proposed for the first time an overview of all chemical grafting strategies used to date on nanofibrillated cellulose with focus on surface modification such as physical adsorption, molecular grafting or polymer grafting. PMID:28809240

  1. Functionalized polymers by chemical surface modification

    NASA Astrophysics Data System (ADS)

    Moloney, Mark G.

    2008-09-01

    Surface-modified polymers are of substantial importance in many diverse aspects of modern technology, and whilst there are a number of existing physical and chemical methods for surface modification of polymers, the frequent requirement for significant infrastructure, harsh reaction conditions and limitation to specific polymer types led us to consider alternative chemical methods. A desirable alternative would be that amenable to a large range of polymers, permitting direct chemical modification under mild conditions and using inexpensive reagents. We report here that functionalized diarylcarbenes are excellent reactive intermediates suitable for direct surface modification of a range of organic and inorganic materials, and we have illustrated that this can be used for the introduction of visible and fluorescent chromophores, biocidal and biocompatible function.

  2. Surface Modification of Nanocellulose Substrates

    NASA Astrophysics Data System (ADS)

    Zoppe, Justin Orazio

    Cellulose fibers constitute an important renewable raw material that is utilized in many commercial applications in non-food, paper, textiles and composite materials. Chemical functionalization is an important approach for improving the properties of cellulose based materials. Different approaches are used to graft polymeric chains onto cellulose substrates, which can be classified by two principal routes, namely 'grafting onto' or 'grafting from' methods. Never-dried cellulose nanocrystals (CNCs) or nanowhiskers produced from sulfuric acid hydrolysis of ramie fibers were used as substrates for surface chemical functionalization with various macromolecules. In addition, the use of cellulose nanocrystals to reinforce poly(epsilon-caprolactone) (PCL) nanofibers was studied. Chemical grafting with low molecular weight polycaprolactone diol onto cellulose nanocrystals was carried out in an attempt to improve the interfacial adhesion with the fiber matrix. Significant improvements in the mechanical properties of the nanofibers after reinforcement with unmodified cellulose nanocrystals were confirmed. Fiber webs from PCL reinforced with 2.5% unmodified CNCs showed ca. 1.5-fold increase in Young's modulus and ultimate strength compared to PCL webs. The CNCs were also grafted with poly(N-isopropylacrylamide) (poly(NiPAAm)) brushes via surface-initiated single-electron transfer living radical polymerization (SI-SETLRP) under various conditions at room temperature. The grafting process depended on the initiator and/or monomer concentrations used. No observable damage occurred to the CNCs after grafting, as determined by X-ray diffraction. Size exclusion chromatography analyses of polymer chains cleaved from the cellulose nanocrystals indicated that a higher degree of polymerization was achieved by increasing initiator or monomer loading, most likely caused by local heterogeneities yielding higher rates of polymerization. In addition, the colloidal stability and thermo

  3. EDITORIAL: Novel applications of surface modification

    NASA Astrophysics Data System (ADS)

    Truman, C. E.

    2008-09-01

    This cluster issue of Journal of Physics D: Applied Physics arises from the Novel Applications of Surface Modification Conference (NASM 2007) held at Southampton University during 18-20 September 2007. It contains a collection of six papers based on both invited and contributed presentations at the conference. The NASM 2007 conference was organized by the Applied Physics and Technology Division of the Institute of Physics, and was co-sponsored by the Institute of Materials, Minerals and Mining, the Institution of Mechanical Engineers and the British Vacuum Council. The modification of the surface of a material allows the production of far superior products in terms of reduced wear, increased corrosion resistance, better biocompatibility, improved optical properties and altered electrical/electronic properties. Clearly, as surface modification methods improve, there are many more possible applications of such surface tailoring methods. The NASM 2007 Conference was planned so that scientists, engineers and manufacturers in different fields could come together to appraise the present applications of surface modification, establish where opportunities lie, identify the most significant challenges and address how problems should be tackled. The six papers contained within the cluster illustrate the diversity and breadth of the conference. The papers describe state-of-the-art research on a wide cross-section of topics, all unified by the overall theme of novel applications of surface modification. Specifically, papers are presented which consider nanoimprint lithography, statistical distributions of the coefficient of friction, the sliding drop method for optimizing surface energies for patterning in a roll-to-roll process, shakedown of residual stresses in titanium alloys, functionalized polymers and the determination of the electrochemically active surface area of Pt/C PEM fuel cell electrodes. The papers are authored by both academics and industrialists, further

  4. Surface modification of PLGA microspheres.

    PubMed

    Müller, M; Vörös, J; Csúcs, G; Walter, E; Danuser, G; Merkle, H P; Spencer, N D; Textor, M

    2003-07-01

    Microspheres made of poly(lactic-co-glycolic acid) (PLGA) are biocompatible and biodegradable, rendering them a promising tool in the context of drug delivery. However, nonspecific adsorption of plasma proteins on PLGA micro- and nanospheres is a main limitation of drug targeting. Poly(L-lysine)-g-poly(ethylene glycol) (PLL-g-PEG), physisorbed on flat metal oxide surfaces, has previously been shown to suppress protein adsorption drastically. The goal of our work was to characterize the efficiency of the protein repellent character of PLL-g-PEG on PLGA microspheres and to show the feasibility of introducing functional groups on the PLGA microspheres via functionalized PLL-g-PEG. To quantify the adsorbed amount of protein, a semiquantitative method that uses confocal laser scanning microscopy (CLSM) was applied. The first part of the experiment confirms the feasibility of introducing specific functional groups on PLL-g-PEG-coated PLGA microspheres. In the second part of the experiment, PLL-g-PEG-coated PLGA microspheres show a drastic decrease of adsorbed proteins by two orders of magnitude in comparison to uncoated PLGA microspheres. Low protein-binding, functionalizable microspheres provide a fundamental basis for the design of drug delivery and biosensor systems. Copyright 2003 Wiley Periodicals, Inc.

  5. Surface property modification of silicon

    NASA Technical Reports Server (NTRS)

    Danyluk, S.

    1984-01-01

    The main emphasis of this work has been to determine the wear rate of silicon in fluid environments and the parameters that influence wear. Three tests were carried out on single crystal Czochralski silicon wafers: circular and linear multiple-scratch tests in fluids by a pyramidal diamond simulated fixed-particle abrasion; microhardness and three-point bend tests were used to determine the hardness and fracture toughness of abraded silicon and the extent of damage induced by abrasion. The wear rate of (100) and (111) n and p-type single crystal Cz silicon abraded by a pyramidal diamond in ethanol, methanol, acetone and de-ionized water was determined by measuring the cross-sectional areas of grooves of the circular and linear multiple-scratch tests. The wear rate depends on the loads on the diamond and is highest for ethanol and lowest for de-ionized water. The surface morphology of the grooves showed lateral and median cracks as well as a plastically deformed region. The hardness and fracture toughness are critical parameters that influence the wear rate. Microhardness tests were conducted to determine the hardness as influenced by fluids. Median cracks and the damage zone surrounding the indentations were also related to the fluid properties.

  6. Surface modification using TEMPO and its derivatives.

    PubMed

    Megiel, Elżbieta

    2017-09-20

    This article provides an overview of the methods for surface modification based on the use of stable radicals: 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) and its derivatives. Two approaches are discussed. The first relies on the immobilization of TEMPO moieties on the surface of various materials including silicon wafers, silica particles, organic polymers as well as diverse nanomaterials. Applications of such materials with spin labeled surface/interface, in (electro)catalysis, synthesis of novel hybrid nanostructures and nanocomposites as well as in designing of organic magnets and novel energy storage devices are also included in the discussion. The second approach utilizes TEMPO and its derivatives for the grafting of polymer chains and polymer brushes formation on flat and nanostructure surfaces via Nitroxide Mediated Radical Polymerization (NMRP). The influence of such polymer modification on surface/interface physicochemical properties is also presented. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Surface properties of coal and their role in fine coal processing

    SciTech Connect

    Diao Jianli.

    1990-01-01

    Emphasis has been given to the surface oxidation of coal and its role in wetting behavior and the flotation response of coal. A correlation was observed among the interfacial properties of as received Cambria {number sign}78 and New Zealand coals. At their isoelectric points (IEP), both coals exhibit a minimum in the induction time for bubble-particle contact and a maximum in their flotation rate constant, which indicates that the coal surface exhibits maximum hydrophobicity at its IEP. Increasing the salt (sodium nitrate) concentration results in a decrease in the zeta potential and the induction time and an increase in the flotation rate constant of the coals tested. The distribution can be determined by the film flotation technique using aqueous methanol solutions of various compostions to regulate the liquid surface tension. A method has been developed to estimate the contact angles of paticles and the distribution of hydrophobic and hydrophilic sites on coal particles from film flotation data. This new approach has been verified by comparing the calculated mean contact angles from film flotation results with the measured values on the flat surface for a number of pure materials and coal samples. Oxidation has a deleterious effect on the behavior of coal particles in fine coal processing. When coals are oxidized, the water retention capacity of the filter cake increases and the flotation recovery of the coals decreases. The results show that the hydrophilic oxygen functional groups produced on the coal surface during oxidation increase the interaction of water molecules with coal, thereby increasing the water retention capacity and decreasing flotation recovery.

  8. Inorganic Surface Modification of Nonwoven Polymeric Substrates

    NASA Astrophysics Data System (ADS)

    Halbur, Jonathan Chandler

    In this study, atomic layer deposition (ALD), a vapor phase inorganic thin film deposition technique, is used to modify the surface of a range of industrially relevant polymers to enhance surface properties or impart additional functionalities. Several unique demonstrations of polymer surface modification are presented including uniform nanomaterial photodeposition to the surface of nonowoven fabrics and the first application of photocatalytic thin film coated nonwovens for advanced filtration of heavy metals from solution. Recent advances in polymer synthesis and processing technologies have resulted in the production of novel polymer systems with unique chemistries and sub-micron scale dimensions. As a result, advanced fiber systems have received much attention for potential use in a wide range of industrially and medically important applications such as advanced and selective filtration, catalysis, flexible electronics, and tissue engineering. However, tailoring the surface properties of the polymer is still needed in order to realize the full range of advanced applications, which can be difficult given the high complexity and non-uniformity of nonwoven polymeric structures. Uniform and controllable inorganic surface modification of nonwovens allows the introduction or modification of many crucial polymer properties with a wide range of application methods.

  9. Further studies of the effects of oxidation on the surface properties of coal and coal pyrite

    SciTech Connect

    Herrera, Miguel Nicolas

    1994-01-01

    The objective of this research was to investigate the oxidation behavior of coal and coal pyrite and to correlate the changes in the surface properties induced by oxidation, along with the intrinsic physical and chemical properties of these organic and inorganic materials, with the behavior in physical coal cleaning processes. This provide more fundamental knowledge for understanding the way in which different factors interact in a medium as heterogeneous as coal. Fourteen coal samples of different ranks ranging from high to medium sulfur content were studied by dry oxidation tests at different temperatures and humidities, and by wet oxidation tests using different oxidizing agents. The concentration of surface oxygen functional groups was determined by ion-exchange methods. The changes in the coal composition with oxidation were analyzed by spectroscopic techniques. The wettability of as-received and oxidized coal and coal pyrite samples was assessed by film flotation tests. The electrokinetic behavior of different coals and coal pyrite samples was studied by electrokinetic tests using electrophoresis. Possible oxidation mechanisms have been proposed to explain the changes on the coal surface induced by different oxidation treatments.

  10. Air-lift hydrohoist: An innovative underground-to-surface coal handling system

    SciTech Connect

    Lutzens, W.W.

    1995-10-01

    The U.S. Bureau of Mines (USBM) initiated research to improve the safety and efficiency of transporting coal from underground coal mines using a balanced air-lift hydrohoist (AHL). The ALH includes a U-tube pipeline that can be installed in a mine using an existing shaft or two surface-drilled holes connecting the mine level to the surface. Bench- and pilot-scale models were constructed and tested to evaluate the feasibility of hydraulically hoisting a coal-water slurry in a riser pipe by injecting compressed air microbubbles. A prototype injector was developed and tested that continuously compacts 5-cm minus, run-of-mine coal in a screw feeder and injects a thick coal slurry into the ALH. Initial production rates of 40 metric tph through a 20-cm-diam riser pipeline were achieved with a 50-m- high pilot-scale model, with potential to increase the model productivity to 100 tph through modification of the coal injector. Results indicate the ALH is a safe, feasible, and cost-effective alternative to conventional coal haulage methods, with many applications in the mining and construction industries for hoisting materials other than coal. The USBM is currently seeking mines or underground construction projects that are interested in a commercial-scale test of this alternative material hoisting system.

  11. Excimer laser surface modification: Process and properties

    SciTech Connect

    Jervis, T.R.; Nastasi, M.; Hirvonen, J.P.

    1992-12-01

    Surface modification can improve materials for structural, tribological, and corrosion applications. Excimer laser light has been shown to provide a rapid means of modifying surfaces through heat treating, surface zone refining, and mixing. Laser pulses at modest power levels can easily melt the surfaces of many materials. Mixing within the molten layer or with the gas ambient may occur, if thermodynamically allowed, followed by rapid solidification. The high temperatures allow the system to overcome kinetic barriers found in some ion mixing experiments. Alternatively, surface zone refinement may result from repeated melting-solidification cycles. Ultraviolet laser light couples energy efficiently to the surface of metallic and ceramic materials. The nature of the modification that follows depends on the properties of the surface and substrate materials. Alloying from both gas and predeposited layer sources has been observed in metals, semiconductors, and ceramics as has surface enrichment of Cr by zone refinement of stainless steel. Rapid solidification after melting often results in the formation of nonequilibrium phases, including amorphous materials. Improved surface properties, including tribology and corrosion resistance, are observed in these materials.

  12. Surface Modifications in Adhesion and Wetting

    NASA Astrophysics Data System (ADS)

    Longley, Jonathan

    Advances in surface modification are changing the world. Changing surface properties of bulk materials with nanometer scale coatings enables inventions ranging from the familiar non-stick frying pan to advanced composite aircraft. Nanometer or monolayer coatings used to modify a surface affect the macro-scale properties of a system; for example, composite adhesive joints between the fuselage and internal frame of Boeing's 787 Dreamliner play a vital role in the structural stability of the aircraft. This dissertation focuses on a collection of surface modification techniques that are used in the areas of adhesion and wetting. Adhesive joints are rapidly replacing the familiar bolt and rivet assemblies used by the aerospace and automotive industries. This transition is fueled by the incorporation of composite materials into aircraft and high performance road vehicles. Adhesive joints have several advantages over the traditional rivet, including, significant weight reduction and efficient stress transfer between bonded materials. As fuel costs continue to rise, the weight reduction is accelerating this transition. Traditional surface pretreatments designed to improve the adhesion of polymeric materials to metallic surfaces are extremely toxic. Replacement adhesive technologies must be compatible with the environment without sacrificing adhesive performance. Silane-coupling agents have emerged as ideal surface modifications for improving composite joint strength. As these coatings are generally applied as very thin layers (<50 nm), it is challenging to characterize their material properties for correlation to adhesive performance. We circumvent this problem by estimating the elastic modulus of the silane-based coatings using the buckling instability formed between two materials of a large elastic mismatch. The elastic modulus is found to effectively predict the joint strength of an epoxy/aluminum joint that has been reinforced with silane coupling agents. This buckling

  13. Characterization of mineral and coal surfaces by adsorption of dyes

    SciTech Connect

    Slomka, B.J.; Dawson, M.R.; Buttermore, W.H.

    1988-01-01

    A dynamic method is described for dye adsorption measurements to characterize mineral and coal surfaces for the evaluation of coal cleaning processes. Samples of increasing mineral content were prepared by density separation of a narrowly sized (300 to 425 /mu/m) wet-sieved coal. The rates and extents of the adsorption of ionic dyes on Illinois No. 6 coal were observed to be highly dependent on mineral content and particle size of ground coal samples. A linear correlation was observed between the adsorbed quantity of dye and the total mineral content of coal samples. Dry-sieved coals were found to be coated by fine material of high mineral ash content which adsorbed greater than 20 times more methylene blue per gram than wet-sieved particles. In preliminary experiments with methylene blue dye, clay was found to adsorb significantly more dye than quartz, pyrite, calcite or low-ash specific gravity fractions of coal.

  14. Encoal mild coal gasification project: Final design modifications report

    SciTech Connect

    1997-07-01

    The design, construction and operation Phases of the Encoal Mild Coal Gasification Project have been completed. The plant, designed to process 1,000 ton/day of subbituminous Power River Basin (PRB) low-sulfur coal feed and to produce two environmentally friendly products, a solid fuel and a liquid fuel, has been operational for nearly five years. The solid product, Process Derived Fuel (PDF), is a stable, low-sulfur, high-Btu fuel similar in composition and handling properties to bituminous coal. The liquid product, Coal Derived Liquid (CDL), is a heavy, low-sulfur, liquid fuel similar in properties to heavy industrial fuel oil. Opportunities for upgrading the CDL to higher value chemicals and fuels have been identified. Significant quantities of both PDF and CDL have been delivered and successfully burned in utility and industrial boilers. A summary of the Project is given.

  15. Effective surface areas of coals measured by dye adsorption

    SciTech Connect

    Spitzer, D.P.

    1988-01-01

    The primary interest has been to examine adsorption behavior especially at short contact times, ten minutes to an hour, to determine whether such measurements might give useful data on effective surface areas - i.e., the surface that would be accessible to reagents within times comparable to those typical of most coal processing. Accordingly, most of the emphasis is on the effect of time on adsorption, rather than on traditional adsorption isotherms. Although most literature on cationic dye adsorption (mostly on carbons) uses methylene blue, it happened that the authors originally used safranin O instead because this dye was reported to be useful in distinguishing oxidized coals from fresh coals. Many of their experiments were repeated using methylene blue (in water), with very similar results. It was noted early that swelling of coals in water was common, especially for more oxidized or lower rank coals, and adsorption experiments were also done in another solvent, namely methanol. This produced quite striking differences for some coals. Coal surfaces that are readily accessible to adsorption by safranin are found to correlate well with N/sub 2/ surface areas, with adsorption of 1.0 mg safranin per gram of coal corresponding to essentially a surface area of 1.0 m/sup 2//g. Highly oxidized coals were found to swell considerably in water, with correspondingly increased adsorption. Areas of such coals can be estimated by adsorption of safranin from methanol solutions.

  16. Advanced spectroscopic analysis of coal surfaces during beneficiation

    SciTech Connect

    McClelland, J.F.; Oh, J.S.

    1989-10-01

    Preliminary FTIR spectra are reported on coals undergoing flotation where enhanced recovery was achieved by ultrasonic or chemical treatments. The spectra of sonicated coals indicate that ultrasonic treatment (10 kHz Swen Sonic) reduces the surface oxidation of heavily oxidized coal. Spectra of chemically treated coal indicate that a higher mineral concentration is present on or near the surface of float coal suggesting that a slime might be present. Spectra are reported for coal-, mineral-, and crystal-derived pyrite which show a strong absorbance band at 420 cm{sup {minus}1}. Spectra of eight Argonne Premium Coal Library specimens have been examined in the 420 cm{sup {minus}1} spectral region and are found to have numerous overlapping bands. 4 figs.

  17. Thermodynamics and surface structure of coals

    SciTech Connect

    Glass, A.S.; Larsen, J.W.; Quay, D.M.; Roberts, J.E.; Wernett, P.C.

    1991-01-01

    Our work this month has been determining the effect of added surface dysprosium(III) ions on the NMR spectra of coal. We have also been examining the effect of this relaxation agent on our model system, an aryl sulfonate silica gel. To the best of our knowledge, NMR has not previously been. applied to surface studies of coal. It is a powerful technique because line positions and intensities are indicative of geometry, bonding hybridization and population of distinct functionalities as well as local environment effects. The NMR spectrum can be influenced by many factors including dipolar through-space coupling between an unpaired electron spin and the spin of the carbon atom. The unpaired electron can act as a relaxation sink, significantly shortening the spin-lattice relaxation time (T{sub 1}) of the coupled carbon-13 atom. This shortening of the T{sub 1} can broaden the signal to the point where it disappears into the baseline noise. The effective range of interaction is proportional to the inverse sixth power of the separation of the two spins (r{sup {minus}6}). In this system, the effective range is a relatively short distance on the order of 1 nanometer.

  18. Surface modification: advantages, techniques, and applications

    SciTech Connect

    Natesan, K.

    2000-03-01

    Adequate performance of materials at elevated temperatures is a potential problem in many systems within the chemical, petroleum, process, and power-generating industries. Degradation of materials occurs because of interaction between the structural material and the exposure environment. These interactions are generally undesired chemical reactions that can lead to accelerated wastage and alter the functional requirements and/or structural integrity of the materials. Therefore, material selection for high-temperature applications must be based not only on a material strength properties but also on resistance to the complex environments prevalent in the anticipated exposure environment. As plants become larger, the satisfactory performance and reliability of components play a greater role in plant availability and economics. However, system designers are becoming increasingly concerned with finding the least expensive material that will satisfactorily perform the design function for the desired service life. This present paper addresses the benefits of surface modification and identified several criteria for selection and application of modified surfaces in the power sector. A brief review is presented on potential methods for modification of surfaces, with the emphasis on coatings. In the final section of the paper, several examples address the requirements of different energy systems and surface modification avenues that have been applied to resolve the issues.

  19. Chemical characterization of the surface sites of coal

    SciTech Connect

    Fowkes, F.M.; Lloyd, T.B.; Cole, D.A.

    1990-08-01

    We propose to do experimental studies in four related areas concerning the acid-base properties of coal surfaces; (1) develop high precision flow microcalorimetric methods for determining the concentrations and strengths of the acidic and basic surface sites of coal powders; (2) develop photo-acoustic FTIR and solid-state NMR spectral shift techniques for determination of the concentrations and strengths of acidic and basic surface sites of coal powders; (3) determine the concentrations and strengths of the acidic and basic surface sites of some of the well-characterized coal samples from Argonne National Labs, comparing the coal samples before and after demineralization treatments with HCl and HF; (4) study the effects of surface acidity and basicity on the coal/water interface, with emphasis on the role of interfacial acid-base interactions in the adsorption of ions, surfactants and coal/water slurry stabilizers. A practical application of the new measurements of the acidity and basicity of surface sites will be to exploit acid-base contributions to preferential wettability for optimizing separation of coal pyrites from the organic components. Work this quarter concentrated on flow microcalorimetry for assessing acidity/basicity of coal powders. 8 refs., 9 figs., 1 tab.

  20. Surface modification of magnetic nanoparticles in biomedicine

    NASA Astrophysics Data System (ADS)

    Chu, Xin; Yu, Jing; Hou, Yang-Long

    2015-01-01

    Progress in surface modification of magnetic nanoparticles (MNPs) is summarized with regard to organic molecules, macromolecules and inorganic materials. Many researchers are now devoted to synthesizing new types of multi-functional MNPs, which show great application potential in both diagnosis and treatment of disease. By employing an ever-greater variety of surface modification techniques, MNPs can satisfy more and more of the demands of medical practice in areas like magnetic resonance imaging (MRI), fluorescent marking, cell targeting, and drug delivery. Project supported by the National Natural Science Foundation of China (Grant Nos. 51125001 and 51172005), the Natural Science Foundation of Beijing,China (Grant No. 2122022), the Science Fund for Creative Research Groups of the National Natural Science Foundation of China (Grant No. 81421004), and the Doctoral Program of the Education Ministry of China (Grant No. 20120001110078).

  1. SURFACE-MODIFIED COALS FOR ENHANCED CATALYST DISPERSION AND LIQUEFACTION

    SciTech Connect

    Dr. Yaw D. Yeboah

    1999-09-01

    This is the final report of the Department of Energy Sponsored project DE-FGF22-95PC95229 entitled, surface modified coals for enhanced catalyst dispersion and liquefaction. The aims of the study were to enhance catalyst loading and dispersion in coal for improved liquefaction by preadsorption of surfactants and catalysts on the coal and to train and educate minority scientists in catalysts and separation science. Illinois No. 6 Coal (DEC-24) was selected for the study. The surfactants investigated included dodecyl dimethyl ethyl ammonium bromide (DDAB), a cationic surfactant, sodium dodecyl sulfate, an anionic surfactant, and Triton x-100, a neutral surfactant. Ammonium molybdate tetrahydrate was used as the molybdenum catalyst precursor. Zeta potential, BET, FTIR, AFM, UV-Vis and luminescence intensity measurements were undertaken to assess the surface properties and the liquefaction activities of the coal. The parent coal had a net negative surface charge over the pH range 2-12. However, in the presence of DDAB the negativity of the surface charge decreased. At higher concentrations of DDAB, a positive surface charge resulted. In contrast to the effect of DDAB, the zeta potential of the coal became more negative than the parent coal in the presence of SDS. Adsorption of Triton reduced the net negative charge density of the coal samples. The measured surface area of the coal surface was about 30 m{sup 2}/g compared to 77m{sup 2}/g after being washed with deionized water. Addition of the surfactants decreased the surface area of the samples. Adsorption of the molybdenum catalyst increased the surface area of the coal sample. The adsorption of molybdenum on the coal was significantly promoted by preadsorption of DDAB and SDS. Molybdenum adsorption showed that, over a wide range of concentrations and pH values, the DDAB treated coal adsorbed a higher amount of molybdenum than the samples treated with SDS. The infrared spectroscopy (FTIR) and the atomic force

  2. Nanoindentation for surface modification of nanofilms

    NASA Astrophysics Data System (ADS)

    Luchenko, A. I.; Melnichenko, M. M.

    2015-08-01

    In the work it is shown practical use of a scanning tunneling microscope for indentation in the continuous micro- and nano-range. A maximum load of 2.64 cN (and 0.4 cN minimum) was applied on a piezo-scanner to achieve the indentation. The relaxation changes of modified surface by contact method was investigated. It is shown that within a few hours of modification there is clear evidence of inevitable loss of information about the morphology of initially modified area. The possibility of modifying the sample surface by tunneling current was shown. This may enable preparation of the surface for subsequent applications in which it is necessary to reduce the average irregularities of the surface. Nano-objects on the surface of the experimental samples were created by using the developed method.

  3. Oxidation of coal and coal pyrite mechanisms and influence on surface characteristics. Final report

    SciTech Connect

    Doyle, F.M.

    1996-01-26

    Coal oxidation has been studies extensively in previous work. However, there is still no general agreement concerning the mechanisms of oxidation. Moreover, the oxidation behavior of coal and mineral matter have generally been regarded as separate processed. There is appreciable evidence that organic and inorganic oxidation process are actually coupled, consequently the changes in their surface properties induced by oxidation are difficult to predict. This makes the effectively of coal cleaning processes highly sensitive to the extent of weathering and oxidation that the coal has experienced. The objective of this research was to investigate the oxidation behavior of coal and coal pyrite, and to correlate the intrinsic physical and chemical properties of these minerals, along with changes resulting from oxidation, with these surface properties that would influence the behavior in physical cleaning processes.

  4. Surface modified coals for enhanced catalyst and liquefaction

    SciTech Connect

    Abotsi, G.

    1997-12-31

    The aim of this work is to enhance catalyst loading and dispersion in coal for improved liquefaction by preadsorption of surfactants onto coal. Adsorption of the neutral surfactant Triton X-100 onto the coal (Illinois No. 6) followed by zeta potential measurements showed that the surfactant reduced the negative charge density on the coal surface. As was shown in the earlier reports, dodecyl dimethyl ethyl ammonium bromide (DDAB) rendered the surface positive whereas sodium dodecyl sulfate (SDS) increased the negative charge density on the coal. These findings are consistent with the fact that DDAB is cationic and SDS is anionic. Atomic force analysis of the raw coal and its samples treated with DDAB and SDS showed that the surface of the raw coal had large areas of roughness. However, adsorption of DDAB and molybdenum onto the coal resulted in the creation of a smooth surface with few isolated spots. This indicates that the surface of the coal is well covered by DDAB and may enhance the dispersion of the molybdenum catalyst. In contrast, examination of the SDS assisted molybdenum sample showed rod-like structures on the surface. Liquefaction studies showed that a total coal conversion of 96 wt.% was achieved when the coal was treated with Triton X-100 followed by molybdenum loading, compared with 89 wt% for the non-surfactant assisted molybdenum addition. The conversion of the raw, untreated coal in the absence of Triton and catalyst was 72 wt%. Thus, Triton X-100 appears to enhance the liquefaction activity of molybdenum. Liquefaction studies on DDAB and SDS samples will be conducted in subsequent experiments.

  5. Polymer surface modification by plasmas and photons

    NASA Astrophysics Data System (ADS)

    Chan, C.-M.; Ko, T.-M.; Hiraoka, H.

    1996-05-01

    Polymers have been applied successfully in fields such as adhesion, biomaterials, protective coatings, friction and wear, composites, microelectronic devices, and thin-film technology. In general, special surface properties with regard to chemical composition, hydrophilicity, roughness, crystallinity, conductivity, lubricity, and cross-linking density are required for the success of these applications. Polymers very often do not possess the surface properties needed for these applications. However, they have excellent bulk physical and chemical properties, are inexpensive, and are easy to process. For these reasons, surface modification techniques which can transform these inexpensive materials into highly valuable finished products have become an important part of the plastics and many other industries. In recent years, many advances have been made in developing surface treatments to alter the chemical and physical properties of polymer surfaces without affecting bulk properties. Common surface modification techniques include treatments by flame, corona, plasmas, photons, electron beams, ion beams, X-rays, and γ-rays. Plasma treatment is probably the most versatile surface treatment technique. Different types of gases such as argon, oxygen, nitrogen, fluorine, carbon dioxide, and water can produce the unique surface properties required by various applications. For example, oxygen-plasma treatment can increase the surface energy of polymers, whereas fluorine-plasma treatment can decrease the surface energy and improve the chemical inertness. Cross-linking at a polymer surface can be introduced by an inert-gas plasma. Modification by plasma treatment is usually confined to the top several hundred ångströms and does not affect the bulk properties. The main disadvantage of this technique is that it requires a vacuum system, which increases the cost of operation. Thin polymer films with unique chemical and physical properties are produced by plasma polymerization

  6. Oxidation of coal and coal pyrite mechanisms and influence on surface characteristics. Progress report

    SciTech Connect

    Doyle, F.M.

    1995-02-28

    The objective of this research is to develop a mechanistic understanding of the oxidation of coal and coal pyrite, and to correlate the intrinsic physical and chemical properties of these minerals, along with changes resulting from oxidation, with those surface properties that influence the behavior in physical cleaning processes. Work during the eighteenth quarter has focused on severe oxidation of coal by thermal and chemical treatment, and on investigating the partition of metal ions between such strongly oxidized coal samples and aqueous solutions. This partitioning behavior is being followed to obtain further information on the chemistry of the coal surfaces after different oxidation treatments, for example, whether partition occurs by an ion-exchange mechanism, or whether the surface is capable of changing the oxidation state of metallic species, with concurrent surface or bulk precipitation.

  7. Oxidation of coal and coal pyrite mechanisms and influence on surface characteristics. Technical progress report, December 31, 1992

    SciTech Connect

    Doyle, F.M.

    1992-12-31

    During the ninth quarter, electrochemical experiments were done on electrodes prepared from Upper Freeport coal pyrite and Pittsburgh coal pyrite samples provided by the US Bureau of Mines, Pittsburgh Research Center, Pennsylvania. Scanning electron microscopy and energy dispersive X-ray analysis were done to characterize the morphology and composition of the surface of as-received coal, oxidized coal and coal pyrite. In addition, electrokinetic tests were done on Upper Freeport coal pyrite.

  8. Combined surface modification of commercial aluminum

    NASA Astrophysics Data System (ADS)

    Ivanov, Yu; Lopatin, I.; Akhmadeev, Yu; Petrikova, E.; Teresov, A.; Shugurov, V.; Tolkachev, O.; Koval, N.

    2017-01-01

    The paper analyzes research data on the structure and properties of surface layers of commercially pure A7-grade aluminum subjected to treatment that combines deposition of a thin metal film, intense pulsed electron beam irradiation, and nitriding in low-pressure arc plasma. The analysis shows that the combined method of surface modification provides the formation of a multilayer structure with submicro- and nano-sized phases in the material through a depth of up to 40 μm, allowing a manifold increase in its surface microhardness and wear resistance (up to 4 and 9 times, respectively) compared to the material core. The main factors responsible for the high surface strength are the saturation of the aluminum lattice with nitrogen atoms and the formation of nano-sized particles of aluminum nitride and iron aluminides.

  9. Surface layer modification of ion bombarded HDPE

    NASA Astrophysics Data System (ADS)

    Bielinski, D.; Lipinski, P.; Slusarski, L.; Grams, J.; Paryjczak, T.; Jagielski, J.; Turos, A.; Madi, N. K.

    2004-08-01

    Press-moulded, high density polyethylene (HDPE) samples were subjected to ion bombardment and effects of the modification studied. He + ions of energy 100 keV or Ar + ions of energy 130 keV were applied in the range of dose 1-30 × 10 15/cm 2 or 1-100 × 10 14/cm 2, respectively. This paper has been focused on structural changes of the surface layer. The consequences of the modification were studied with TOF-SIMS and FTIR-IRS techniques. The results point on two mechanisms taking place simultaneously: ionization of polymer macromolecules and chain scission--resulting in creation of macroradicals. Both of them produce oxidation and lead to significant release of hydrogen. The former diminishes for the highest ion doses, however, creation of molecular oxygen cannot be excluded. The latter in the case of Ar + ion bombardment is reflected by prevailing degradation of the surface layer of HDPE. Contrary to the effect of heavy ions, He + ion bombardment was found to produce significant increase of the material hardness, which was explained by crosslinking of polyethylene. A mechanism of polyacetylene formation, proceeding finally to cross-polymerization of the polymer was proposed. Apart from structural changes, the modification revealed additionally a possibility to improve the wettability of the polymer.

  10. Chemical characterization of the surface sites of coal

    SciTech Connect

    Fowkes, F.M.; Riddle, F.L. Jr.; Cole, D.A.

    1990-08-01

    We propose to do experimental studies in four related areas concerning the acid-base properties of coal surfaces; (1) develop high precision flow microcalorimetric methods for determining the concentrations and strengths of the acidic and basic surface sites of coal powders; (2) develop photo-acoustic FTIR and solid-state NMR spectral shift techniques for determination of the concentrations and strengths of acidic and basic surface sites of coal powders; (3) determine the concentrations and strengths of the acidic and basic surface sites of some of the well-characterized coal samples from Argonne National Labs, comparing the coal samples before and after demineralization treatments with HCl and HF; (4) study the effects of surface acidity and basicity on the coal/water interface, with emphasis on the role of interfacial acid-base interactions in the adsorption of ions, surfactants and coal/water slurry stabilizers. One of the major goals of this research effort is to identify and characterize acidic and basic molecules which have NMR active nuclei such that through measurements of NMR chemical shifts one can deduce the surface acidity or basicity of solids such as coals. This quarter, triphenylsilanol was investigated as an NMR chemical shift probe molecule. 2 figs., 1 tab.

  11. Determining the research needs of the surface coal mining industry

    SciTech Connect

    Zell, L.M.

    1982-12-01

    This paper reveals avenues open to the coal industry to help gain technology and research information needed to meet the requirements of the Surface Mining Control and Reclamation Act of 1977. It discusses projects of the Department of Energy's (DOE) Office of Coal Mining and the Mining and Reclamation Council of America (MARC) to help meet the environmental needs as well as the coal industry needs.

  12. Coal surface control for advanced fine coal flotation. Final report, October 1, 1988--March 31, 1992

    SciTech Connect

    Fuerstenau, D.W.; Hanson, J.S.; Diao, J.; Harris, G.H.; De, A.; Sotillo, F.; Somasundaran, P.; Harris, C.C.; Vasudevan, T.; Liu, D.; Li, C.; Hu, W.; Zou, Y.; Chen, W.; Choudhry, V.; Shea, S.; Ghosh, A.; Sehgal, R.

    1992-03-01

    The initial goal of the research project was to develop methods of coal surface control in advanced froth flotation to achieve 90% pyritic sulfur rejection, while operating at Btu recoveries above 90% based on run-of-mine quality coal. Moreover, the technology is to concomitantly reduce the ash content significantly (to six percent or less) to provide a high-quality fuel to the boiler (ash removal also increases Btu content, which in turn decreases a coal`s emission potential in terms of lbs SO{sub 2}/million Btu). (VC)

  13. Chemical characterization of the surface sites of coal

    SciTech Connect

    Fowkes, F.M.; Kardos, K.; Riddle, F.L. Jr.; Cole, D.A.

    1990-08-01

    We propose to do experimental studies in four related areas concerning the acid-base properties of coal surfaces: (1) develop high precision flow microcalorimetric methods for determining the concentrations and strengths of the acidic and basic surface sites of coal powders: (2) develop photo-acoustic FTIR and solid-state NMR spectral shift techniques for determination of the concentrations and strengths of acidic and basic surface sites of coal powders; (3) determine the concentrations and strengths of the acidic and basic surface sites of some of the well-characterized coal samples from Argonne National Labs., comparing the coal samples before and after demineralization treatments with HCl and HF; (4) study the effects of surface acidity and basicity on the coal/water interface, with emphasis on the role of interfacial acid-base interactions in the adsorption of ions, surfactants and coal/water slurry stabilizers. From measured heats of interaction, a reasonable estimate can be made of the most prevalent functional groups in coal. This quarter, heats of adsorption of phenols and pyridines were investigated. 2 tabs. (CBS)

  14. Surface modification of polypropylene based particle foams

    NASA Astrophysics Data System (ADS)

    Schreier, P.; Trassl, C.; Altstädt, V.

    2014-05-01

    This paper deals with the modification of the surface properties of expanded polypropylene (EPP). EPP is a semi-hard to soft elastic thermoplastic foam. The characteristic surface of EPP shows process-related steam nozzle imprints and gussets. Therefore EPP does not satisfy the quality requirements for visible automotive applications. In order to meet these demands, plastic surfaces are usually enhanced with functional or decorative coatings, e.g. textiles, plastic films or paint. The coating of plastics with low surface energies such as PP often leads to adhesion problems by reason of the missing polar and functional groups. This paper gives an evaluation of activation and pre-treatment methods of EPP, with the aim to identify the most suitable pre-treatment method. For this purpose five typical surface treatment methods - flame treatment, corona, fluorination, atmospheric and low-pressure plasma - were performed on EPP samples. As a comparison criterion the maximum increase in the adhesion force between a polyurethane-based coating and the modified EPP substrate was selected. Moreover the influence of the selected pre-treatment method on the increase in the total surface energy and its polar component was investigated by the drop shape analysis method. The results showed that the contact angle measurement is a suitable method to determine the polar and disperse fractions of the surface tension of EPP. Furthermore, all performed methods increased the adhesion of EPP.

  15. Electric Field Induced Surface Modification of Au

    SciTech Connect

    Erchak, A.A.; Franklin, G.F.; Houston, J.E.; Mayer, T.M.; Michalske, T.A.

    1999-02-15

    We discuss the role of localized high electric fields in the modification of Au surfaces with a W probe using the Interfacial Force Microscope. Upon bringing a probe close to a Au surface, we measure both the interfacial force and the field emission current as a function of separation with a constant potential of 100 V between tip and sample. The current initially increases exponentially as the separation decreases. However, at a distance of less than {approximately} 500{angstrom} the current rises sharply as the surface begins to distort and rapidly close the gap. Retraction of the tip before contact is made reveals the formation of a mound on the surface. We propose a simple model, in which the localized high electric field under the tip assists the production of mobile Au adatoms by detachment from surface steps, and a radial field gradient causes a net flux of atoms toward the tip by surface diffusion. These processes give rise to an unstable surface deformation which, if left unchecked, results in a destructive mechanical contact. We discuss our findings with respect to earlier work using voltage pulses in the STM as a means of nanofabrication.

  16. Nanomaterial modifications on conductivity of coal conveyer belt

    SciTech Connect

    Zhang, J.C.; Zhang, Y.G.; Wang, T.T.; Yang, L.F.; Liu, S.M.; Yang, D.H.; Zhang, M.; Gao, X.

    2008-08-15

    By analyzing the macro electrical properties and the microscopic structure from SEM of nanomaterials modified mine transmission belt samples. The influences of the filling process of inorganic nano particle-filled rubber and PVC polymer on the physical properties of coal transmission belt is reviewed, as well as PTC and NTC effect on the stability of the physical properties and stability of materials. Influence of nano-materials and polymer materials for rubber and temperature changes in the plastic filled refining process. Crosslinker and major filler changes in the amount and filled plastic chain time on the conductivity of coal conveyer belt is studied. Influence of cure temperature. Cure time on the mechanical performance is studied. The microscopic mechanism of macro conductivity change of conveyer belt is discussed.

  17. Oxidation of coal and coal pyrite mechanisms and influence on surface characteristics. Technical progress report, March 31, 1993

    SciTech Connect

    Doyle, F.M.

    1993-04-01

    During the tenth quarter, electrochemical experiments were done on electrodes prepared from Upper Freeport coal pyrite, and Pittsburgh coal pyrite samples provided by the US Bureau of Mines, Pittsburgh Research Center, Pennsylvania. Electrokinetic tests were done on Upper Freeport and Pittsburgh coal pyrite. In addition, surface area measurements were done on Upper Freeport and Upper Clarion coals.

  18. 30 CFR 75.1709 - Accumulations of methane and coal dust on surface coal-handling facilities.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Accumulations of methane and coal dust on surface coal-handling facilities. 75.1709 Section 75.1709 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL...

  19. 30 CFR 75.1709 - Accumulations of methane and coal dust on surface coal-handling facilities.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Accumulations of methane and coal dust on surface coal-handling facilities. 75.1709 Section 75.1709 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL...

  20. 30 CFR 75.1709 - Accumulations of methane and coal dust on surface coal-handling facilities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Accumulations of methane and coal dust on surface coal-handling facilities. 75.1709 Section 75.1709 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL...

  1. 30 CFR 75.1709 - Accumulations of methane and coal dust on surface coal-handling facilities.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Accumulations of methane and coal dust on surface coal-handling facilities. 75.1709 Section 75.1709 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL...

  2. 30 CFR 75.1709 - Accumulations of methane and coal dust on surface coal-handling facilities.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Accumulations of methane and coal dust on surface coal-handling facilities. 75.1709 Section 75.1709 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL...

  3. Oxidation of coal and coal pyrite mechanisms and influence on surface characteristics. Technical progress report

    SciTech Connect

    Doyle, F.M.

    1995-05-31

    The objective of this research is to develop a mechanistic understanding of the oxidation of coal and coal pyrite, and to correlate the intrinsic physical and chemical properties of these minerals, along with changes resulting from oxidation, with those surface properties that influence the behavior in physical cleaning processes. Work during the nineteenth quarter has concluded studies of the surface functional groups produced on coal by severe thermal and chemical oxidation, and on investigating the partition of metal ions between such strongly oxidized coal samples and aqueous solutions. This partitioning behavior was being followed to obtain further information on the chemistry of the coal surfaces after different oxidation treatments. Adsorption isotherms for the uptake of Cd{sup 2+} on coal oxidized by different methods were obtained, and these and the Cu{sup 2+} adsorption isotherms reported in the last report have been scrutinized, and interpreted more exhaustively. The apparent discrepancies noted in the last report for the analysis of surface functional groups have been investigated further. The adsorption behavior has been related to the surface chemistry of Upper Freeport coal oxidized by different methods.

  4. Ion beam and laser induced surface modifications

    NASA Astrophysics Data System (ADS)

    Appleton, B. R.

    1984-01-01

    The capabilities of energetic ion beam and laser processing of surfaces are reviewed. Ion implantation doping, ion beam mixing, and laser and electron beam processing techniques are capable of producing new and often unique surface properties. The inherent control of these techniques has led to significant advances in our ability to tailor the properties of solids for a wide range of technological applications. Equally important, these techniques have allowed tests of fundamental materials interactions under conditions not heretofore achievable and have resulted in increased understanding of a broad range of materials phenomena. These include new metastable phase formation, rapid nucleation and crystal growth kinetics, amorphous metals and metaglasses, supersaturated solid solutions and substitutional alloys, interface interactions, solute trapping, laser-assisted chemical modifications, and a host of other.

  5. Effects of Surface Chemistry on the Porous Structure of Coal

    SciTech Connect

    Radovic, Ljubisa R; Hatcher, Patrick G

    1997-05-01

    In this report, 129 Xe nuclear magnetic resonance spectroscopy of xenon gas adsorbed in coal is used to describe some poorly understood features of coal microporous structure, particularly in establishing that a connected network exists, the type of connectivity, and its changes with the rank of coal. Micropore size scale and distribution are also considered. Two methods are developed which are new and versatile tools for the investigation of porous structure. Both utilize xenon gas that is in motion, while undergoing diffusion or exchange in coal, to describe the connectivity of the micropore structure of coal. Time tracking of the adsorption process by NMR, selective saturation, and saturation transfer techniques were used to obtain new information on the coal rank dependence of porous structure. In addition, an existing 129 Xe chemical shift-pore diameter model was used to calculate micropore diameters for coals, as well as for a microporous carbon, before and after pore-size alteration. In the initial study performed, straightforward 129 Xe NMR spectra at equilibrium xenon adsorption at a series of pressures were acquired for a rank-varied set of six coals. Acquisition of the NMR signal as an echo was tested and found to improve spectral quality. The spectra were used to calculate micropore diameters for the six coals. These range from 5.6 to 7.5 and exhibit a minimum value for the intermediate coal rank. The smallest pores occur in coals of about 82-85% carbon; at both lower and higher coal ranks, the average micropore size tends to be larger. The changes in the spectra with coal rank and surface area were explored. Signal linewidths were found to decrease with increasing coal rank and were interpreted in terms of increasing chemical or physical homogeneity of the coal as rank increases. The packing density of powdered coal was found to alter the spectral appearance in a high volatile bituminous coal, which is preliminary evidence that exchange affects the

  6. Electronic Surface Structures of Coal and Mineral Particles

    SciTech Connect

    M.K. Mazumder; D.A. Lindquist; K.B. Tennal; Steve Trigwell; Steve Farmer; Albert Nutsukpul; Alex Biris

    2001-04-01

    Surface science studies related to tribocharging and charge separation studies were performed on electrostatic beneficiation of coal. In contrast to other cleaning methods, electrostatic beneficiation is a dry cleaning process requiring no water or subsequent drying. Despite these advantages, there is still uncertainty in implementing large scale commercial electrostatic beneficiation of coal. The electronic surface states of coal macerals and minerals are difficult to describe due to their chemical complexity and variability [1]. The efficiency in separation of mineral particles from organic macerals depends upon these surface states. Therefore, to further understand and determine a reason for the bipolar charging observed in coal separation, surface analysis studies using Ultra-violet Photoelectron Spectroscopy (UPS) and X-ray Photoelectron Spectroscopy (XPS) were performed on coal samples and several materials that are used or considered for use in tribocharging. Electrostatic charging is a surface phenomenon, so the electronic surface states of the particles, which are influenced by the environmental conditions, determine both polarity and magnitude of tribocharging. UPS was used to measure the work function of the materials as typically used in ambient air. XPS was used to determine the surface chemistry in the form of contamination and degree of oxidation under the same environmental conditions. Mineral bearing coals are those amenable to electrostatic beneficiation. Three types of coal, Illinois No. 6, Pittsburgh No. 8, and Kentucky No. 9 were investigated in this study. Pulverized coal powder was tribocharged against copper. Pyritic and other ashes forming minerals in coal powders should charge with a negative polarity from triboelectrification, and organic macerals should acquire positive charge, according to the relative differences in the surface work functions between the material being charged and the charging medium. Different types of minerals

  7. Femtosecond laser-induced surface wettability modification of polystyrene surface

    NASA Astrophysics Data System (ADS)

    Wang, Bing; Wang, XinCai; Zheng, HongYu; Lam, YeeCheong

    2016-12-01

    In this paper, we demonstrated a simple method to create either a hydrophilic or hydrophobic surface. With femtosecond laser irradiation at different laser parameters, the water contact angle (WCA) on polystyrene's surface can be modified to either 12.7° or 156.2° from its original WCA of 88.2°. With properly spaced micro-pits created, the surface became hydrophilic probably due to the spread of the water droplets into the micro-pits. While with properly spaced micro-grooves created, the surface became rough and more hydrophobic. We investigated the effect of laser parameters on WCAs and analyzed the laser-treated surface roughness, profiles and chemical bonds by surface profilometer, scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS). For the laser-treated surface with low roughness, the polar (such as C—O, C=O, and O—C=O bonds) and non-polar (such as C—C or C—H bonds) groups were found to be responsible for the wettability changes. While for a rough surface, the surface roughness or the surface topography structure played a more significant role in the changes of the surface WCA. The mechanisms involved in the laser surface wettability modification process were discussed.

  8. Control of pyrite surface chemistry in physical coal cleaning

    SciTech Connect

    Luttrell, G.H.; Yoon, R.H.; Lagno, M.L.

    1991-01-01

    The removal of pyrite from coal by flotation or any other surface- based separation process is often hampered by the apparent hydrophobicity of the mineral. Microflotation tests and induction time measurements conducted under different conditions showed that the hydrophobicity of coal pyrite is due to superficial oxidation of the mineral surface. X-ray photoelectron spectroscopy (XPS) analysis of the oxidized pyrite samples suggests that the sulfur-rich surfaces formed during oxidation may be responsible for the hydrophobicity of both coal pyrite and mineral pyrite. Based on these findings, an oxidation mechanism is proposed in which metal polysulfides and iron oxides-hydroxides are produced. The floatability of both coal pyrite and mineral pyrite can be correlated with the atomic ration between these hydrophobic and hydrophilic species that are formed on the surface. 14 refs., 7 figs., 1 tab.

  9. Surface modification to improve fireside corrosion resistance of Fe-Cr ferritic steels

    DOEpatents

    Park, Jong-Hee; Natesan, Krishnamurti; Rink, David L.

    2010-03-16

    An article of manufacture and a method for providing an Fe--Cr ferritic steel article of manufacture having a surface layer modification for corrosion resistance. Fe--Cr ferritic steels can be modified to enhance their corrosion resistance to liquid coal ash and other chemical environments, which have chlorides or sulfates containing active species. The steel is modified to form an aluminide/silicide passivating layer to reduce such corrosion.

  10. Surface treatment and modification of metals to add biofunction.

    PubMed

    Hanawa, Takao

    2017-09-26

    To add biocompatibility or biofunction to metal surface, an intelligent interface between metals and tissues must be acquired. Tremendous surface modification techniques are currently studied to create the intelligent interface. In particular, bone formation or bone bonding is major purpose of the surface modifications. Time transient of surface modification techniques are summarized and the importance of roughened or porous surface to combine materials with bone tissue is demonstrated. As an example of surface modification, electrodeposition of poly(ethylene glycol) to inhibit biofilm formation is introduced. A dual-functional surface is formed on titanium by micro arc oxidation. In addition, the effect of topography on the elongation and differentiation of human mesenchymal stem cells was confirmed on the hybrid micrometer-level and nanometer-level grooves of titanium surface. Metal surface is possibly biofunctionalized by various surface modification techniques.

  11. Surface Modified Coals for Enhanced Catalyst Dispersion and Liquefaction

    SciTech Connect

    Yaw D. Yeboah

    1998-12-04

    The aim of this study is to enhance catalyst loading and dispersion in coal for improved liquefaction by preadsorption of surfactants and catalysts on to the coal. During this reporting period, the effects of dodecyl dimethyl ethyl ammonium bromide (DDAB) (a cationic surfactant), sodium dodecyl sulfate (SDS) (an anionic surfactant), Triton X-100 (a neutral surfactant), and ferrous sulfate (as a catalyst precursor) on the coal surface charge at various pH values were determined. The results of the zeta potential measurements suggest that ferrous sulfate as catalyst precursor creates a distinctly different condition on the coal surface compared to that of molybdenum as reported in the previous progress reports. The effects of the adsorption of the surfactants also varied distinctly with the type of surfactant. With the adsorption of DDAB, the cationic surfactant, the surface charge was more positive. The opposite effect was observed for the SDS, the anionic surfactant. The coals treated with Triton X-100, the neutral surfactant, also showed an overall negative surface charge density. The adsorption of the catalyst precursor (ferrous sulfate) resulted in a net negative charge on the coal surface.

  12. Surface electrochemical control for fine coal and pyrite separation. Technical progress report, April 1, 1990--June 30, 1990

    SciTech Connect

    Hu, Weibai; Zhu, Ximeng; Bodily, D.M.; Wadsworth, M.E.

    1990-12-31

    Ongoing work includes the characterization of coal pyrites, the floatability evaluation typical US coal samples, the flotation behavior of coal pyrites, the electrochemical measurement of the surface properties of coal pyrites, and the characterization of species produced at pyrite surfaces.

  13. Liquid chromatographic analysis of coal surface properties. Quarterly progress report, September--December 1991

    SciTech Connect

    Kwon, K.C.

    1991-12-31

    The main objectives of this proposed research are to refine further the inverse liquid chromatography technique for the study of surface properties of raw coals, treated coals and coal minerals in water, to evaluate relatively surface properties of raw coals, treated coals and coal minerals by inverse liquid chromatography, and to evaluate floatability of various treated coals in conjunction with surface properties of coals. Alcohols such as methanol, ethanol, isopropanol, isobutanol, tert-butanol, heptanol, 1-hexadecanol, 2-methyl-pentanol, 4-methyl-2-penthanol (methylisobutyl carbinol), n-octanol, s-octanol, and cyclohexanol as probe compounds are utilized to evaluate hydrophilicity of coals and coal minerals. N-alkanes such as hexane, heptane and octane, and stearic acid are employed as probe compounds to evaluate hydrophobicity of coals and coal minerals. Aromatic compounds such as benzene and toluene as probe compounds are used to examine aromaticity of coal surface. Aromatic acids such as o-cresol, m-cresol, p-cresol, phenol and B-naphthol are used to detect aromatic acidic sites of coal surface. Hydrophilicity, hydrophobicity and aromaticity of surfaces for either raw coals or treated coals in water are relatively determined by evaluating both equilibrium physical/chemical adsorption and dynamic adsorption of probe compounds on various raw coals and treated coals to compare affinities of coals for water.

  14. Surface modifications of Nitinol for biomedical applications.

    PubMed

    Sun, F; Sask, K N; Brash, J L; Zhitomirsky, I

    2008-11-15

    Cathodic electrophoretic deposition (EPD) has been utilized for the fabrication of composite films for the surface modification of NiTi shape memory alloys (Nitinol). In the proposed method, chitosan (CH) was used as a matrix for the incorporation of other functional materials, such as heparin, hydroxyapatite and bioglass. Chitosan-heparin films were deposited from solutions of non-stoichiometric chitosan-heparin complexes. It was found that the addition of anionic heparin to the solutions of cationic chitosan resulted in a significant increase in the cathodic deposition rate. The thickness of the films prepared by this method varied in the range of 0.1-3 microm. The ability of the chitosan-heparin films to bind antithrombin, as measured by binding of (125)I-radiolabeled antithrombin, was much greater than that of pure chitosan films. Composite chitosan-hydroxyapatite films, with thickness of 1-30 microm, were obtained as monolayers or laminates, containing chitosan-hydroxyapatite layers, separated by layers of pure chitosan. The hydroxyapatite nanoparticles showed preferred orientation in the chitosan matrix with the c-axis parallel to the substrate surface. The films showed corrosion protection of the Nitinol substrates in Ringer's physiological solutions. The feasibility of the fabrication of composite films containing hydroxyapatite and bioglass in the chitosan matrix has been demonstrated. The method offers the advantages of room temperature processing. The deposition mechanisms and possible applications of the films are discussed.

  15. Surface modification using ionic liquid ion beams

    NASA Astrophysics Data System (ADS)

    Takaoka, Gikan H.; Hamaguchi, Takuya; Takeuchi, Mitsuaki; Ryuto, Hiromichi

    2014-12-01

    We developed an ionic liquid (IL) ion source using 1-butyl-3-methylimidazolium hexafluorophosphate (BMIM-PF6) and produced IL ion beams by applying a high electric field between the tip and the extractor. Time-of-flight measurements showed that small cluster and fragment ions were contained in the positive and negative ion beams. The positive and negative cluster ions were deposited on Si(1 0 0) substrates. X-ray photoelectron spectroscopy measurements showed that the composition of the deposited layers was similar to that of an IL solvent. This suggests that a cation (A+) or an anion (B-) was attached to an IL cluster (AB)n, resulting in the formation of positive cluster ions (AB)nA+ or negative cluster ions (AB)nB-, respectively. The surfaces of the IL layers deposited on Si(1 0 0) substrates were flat at an atomic level for positive and negative cluster ion irradiation. Moreover, the contact angles of the deposited layers were similar to that of the IL solvent. Thus, surface modification of Si(1 0 0) substrates was successfully demonstrated with BMIM-PF6 cluster ion beams.

  16. 30 CFR 785.11 - Anthracite surface coal mining and reclamation operations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Anthracite surface coal mining and reclamation..., DEPARTMENT OF THE INTERIOR SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL EXPLORATION... Anthracite surface coal mining and reclamation operations. (a) This section applies to any person...

  17. 30 CFR 785.12 - Special bituminous surface coal mining and reclamation operations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Special bituminous surface coal mining and... ENFORCEMENT, DEPARTMENT OF THE INTERIOR SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL....12 Special bituminous surface coal mining and reclamation operations. (a) This section applies to...

  18. 30 CFR 77.1713 - Daily inspection of surface coal mine; certified person; reports of inspection.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Daily inspection of surface coal mine... ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Miscellaneous § 77.1713 Daily inspection of...

  19. 30 CFR 785.12 - Special bituminous surface coal mining and reclamation operations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Special bituminous surface coal mining and... ENFORCEMENT, DEPARTMENT OF THE INTERIOR SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL....12 Special bituminous surface coal mining and reclamation operations. (a) This section applies to...

  20. 30 CFR 785.11 - Anthracite surface coal mining and reclamation operations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Anthracite surface coal mining and reclamation..., DEPARTMENT OF THE INTERIOR SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL EXPLORATION... Anthracite surface coal mining and reclamation operations. (a) This section applies to any person...

  1. 30 CFR 785.11 - Anthracite surface coal mining and reclamation operations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Anthracite surface coal mining and reclamation..., DEPARTMENT OF THE INTERIOR SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL EXPLORATION... Anthracite surface coal mining and reclamation operations. (a) This section applies to any person...

  2. Control of pyrite surface chemistry in physical coal cleaning

    SciTech Connect

    Luttrell, G.H.; Yoon, R.H.; Zachwieja, J.; Lagno, M.

    1992-06-24

    To better understand the surface chemical properties of coal and mineral pyrite, studies on the effect of flotation surfactants (frother and kerosene) on the degree of hydrophobicity have been conducted. The presence of either frother or kerosene enhanced the flotability of coal and mineral pyrite with a corresponding decrease in induction time over the pH range examined. Scanning electron microscopy (SEM) results indicate a correlation exists between the sample surface morphology and crystal structure and the observed hydrophobicity. As a result of the data obtained from the surface characterization studies, controlled surface oxidation was investigated as a possible pyrite rejection scheme in microbubble column flotation.

  3. ELECTRONIC SURFACE STRUCTURES OF COAL AND MINERAL PARTICLES

    SciTech Connect

    M.K.Mazumder; D.A. Linduist; K.B. Tennal

    2001-04-01

    Surface science studies related to tribocharging and charge separation studies were performed on electrostatic beneficiation of coal. In contrast to other cleaning methods, electrostatic beneficiation is a dry cleaning process requiring no water or subsequent drying. Despite these advantages, there is still uncertainty in implementing large-scale commercial electrostatic beneficiation of coal. The electronic surface states of coal macerals and minerals are difficult to describe due to their chemical complexity and variability. The efficiency in separation of mineral particles from organic macerals depends upon these surface states. Therefore, to further understand and determine a reason for the bipolar charging observed in coal separation, surface analysis studies using Ultra-violet Photoelectron Spectroscopy (UPS) and X-ray Photoelectron Spectroscopy (XPS) were performed on coal samples and several materials that are used or considered for use in tribocharging. Electrostatic charging is a surface phenomenon, so the electronic surface states of the particles, which are influenced by the environmental conditions, determine both polarity and magnitude of tribocharging. UPS was used to measure the work function of the materials as typically used in ambient air. XPS was used to determine the surface chemistry in the form of contamination and degree of oxidation under the same environmental conditions.

  4. Advanced spectroscopic analysis of coal surfaces during beneficiation

    SciTech Connect

    McClelland, J.F.; Oh, J.S.

    1989-01-01

    Development work advanced on two new FTIR spectroscopic approaches for measuring coal surface oxidation and on-line infrared spectra of coal. The former FTIR/UV approach used UV induced oxidation to gauge the level of carbonyl forming species present in coal. The latter approach is called Transient Infrared Emission Spectroscopy (TIRES) and uses pulsed surface heating of coal to obtain an emission spectrum which is not distorted by excessive self absorption. In FTIR/UV work oven-oxidized coals were analyzed after 1, 3, and 6 days of exposure to oxygen at 100{degree}C. Spectra of the oven and U induced carbonyl formation overlapped but had somewhat different band shapes indicative of some differences in the two oxidation processes. A TIRES apparatus was constructed using an argon ion laser, rotating sample stage, and FTIR spectrometer. A spectrum was measured of Illinois {number sign}6 coal moving at a velocity of 60 ft/min. which compared favorably with photoacoustic spectrum of the same coal. 4 figs.

  5. Control of pyrite surface chemistry in physical coal cleaning

    SciTech Connect

    Luttrell, G.H.; Yoon, R.H.; Zachwieja, J.B.; Lagno, M.L.

    1992-06-24

    Correlation of the hydrophobicity measurements of coal and mineral pyrite with changes in the surface composition of the samples as determined by x-ray photoelectron spectroscopy (XPS) reveals that similar surface oxidation products are found on both mineral and coal pyrite samples. The surface oxidation layer of these samples is comprised of different amounts of hydrophilic species (iron hydroxy-oxides and/or iron oxides) and hydrophobic species (polysulfide or elemental sulfur). The resulting hydrophobicity of these samples may be attributed to the ratio of hydrophilic (surface oxides) to hydrophobic (sulfur-containing) species in the surface oxidation layer. Also, coal pyrite samples were found to exhibit a greater degree of superficial oxidation and a less hydrophobic character as compared to the mineral pyrite samples.

  6. Surface modification of polyester biomaterials for tissue engineering.

    PubMed

    Jiao, Yan-Peng; Cui, Fu-Zhai

    2007-12-01

    Surfaces play an important role in a biological system for most biological reactions occurring at surfaces and interfaces. The development of biomaterials for tissue engineering is to create perfect surfaces which can provoke specific cellular responses and direct new tissue regeneration. The improvement in biocompatibility of biomaterials for tissue engineering by directed surface modification is an important contribution to biomaterials development. Among many biomaterials used for tissue engineering, polyesters have been well documented for their excellent biodegradability, biocompatibility and nontoxicity. However, poor hydrophilicity and the lack of natural recognition sites on the surface of polyesters have greatly limited their further application in the tissue engineering field. Therefore, how to introduce functional groups or molecules to polyester surfaces, which ideally adjust cell/tissue biological functions, becomes more and more important. In this review, recent advances in polyester surface modification and their applications are reviewed. The development of new technologies or methods used to modify polyester surfaces for developing their biocompatibility is introduced. The results of polyester surface modifications by surface morphological modification, surface chemical group/charge modification, surface biomacromolecule modification and so on are reported in detail. Modified surface properties of polyesters directly related to in vitro/vivo biological performances are presented as well, such as protein adsorption, cell attachment and growth and tissue response. Lastly, the prospect of polyester surface modification is discussed, especially the current conception of biomimetic and molecular recognition.

  7. Oxidation of coal and coal pyrite mechanisms and influence on surface characteristics. Technical progress report, [March--May 1992

    SciTech Connect

    Doyle, F.M.

    1992-06-30

    during the seventh quarter, electrokinetic, humic acid extraction and film flotation tests were done on oxidized samples of Upper Freeport coal from the Troutville {number_sign} 2 Mine, Clearfield County, Pennsylvania. Scanning electron microscopy and energy dispersive X-ray analysis was done to characterize the morphology and composition of the surface of as-received coal, oxidized coal, oxidized coal after extraction of humic acids and humic acid extracted from oxidized coal. In addition, electrochemical studies were done on electrodes prepared from coal pyrite samples.

  8. Organic light emitting diode with surface modification layer

    DOEpatents

    Basil, John D.; Bhandari, Abhinav; Buhay, Harry; Arbab, Mehran; Marietti, Gary J.

    2017-09-12

    An organic light emitting diode (10) includes a substrate (12) having a first surface (14) and a second surface (16), a first electrode (32), and a second electrode (38). An emissive layer (36) is located between the first electrode (32) and the second electrode (38). The organic light emitting diode (10) further includes a surface modification layer (18). The surface modification layer (18) includes a non-planar surface (30, 52).

  9. Oxidation of coal and coal pyrite mechanisms and influence on surface characteristics. Technical progress report, [June--August 1993

    SciTech Connect

    Doyle, F.M.

    1993-09-30

    The objective of this research is to develop a mechanistic understanding of the oxidation of coal and coal pyrite, and to correlate the intrinsic physical and chemical properties of these minerals, along with changes resulting from oxidation, with those surface properties that influence the behavior in physical cleaning processes. The results will provide fundamental insight into oxidation, in term of the bulk and surface chemistry, the microstructure, and the semiconductor properties of the pyrite. During the twelfth quarter, wet and dry oxidation tests were done at room temperature on coal samples from the Pennsylvania State Coal Bank. Previous results had indicated that oxidation at high temperatures induced changes in surface properties through loss of volatiles. As-received and oxidized coal samples were studied by ion exchange methods to determine the carboxylate and phenolic group concentrations. Film flotation tests were done to characterize the floatability of as-received and oxidized coals. Surface area measurements were done on as-received coals.

  10. Oxidation of coal and coal pyrite mechanisms and influence on surface characteristics. [Quarterly] technical progress report, April--June 1993

    SciTech Connect

    Doyle, F.M.

    1993-06-30

    The objective of this research is to develop a mechanistic understanding of the oxidation of coal and coal pyrite, and to correlate the intrinsic physical and chemical properties of these minerals, along with changes resulting from oxidation, with those surface properties that influence the behavior in physical cleaning processes. The results will provide fundamental insight into oxidation, in terms of the bulk and surface chemistry, the microstructure, and the semiconductor properties of the pyrite. During the eleventh quarter, dry thermal oxidation tests were done on coal samples from the Pennsylvania State Coal Bank. As-received and oxidized coal samples were studied by ion-exchange methods to determine the carboxylate and phenolic group concentrations. Film flotation tests were done to characterize the flotability of as-received and oxidized coals. In addition, electrokinetic tests were done on different coals, to obtain information pertinent to the selection of flotation reagents. DRIFT analysis was done to characterize the structure of coals.

  11. Control of pyrite surface chemistry in physical coal cleaning

    SciTech Connect

    Luttrell, G.H.; Yoon, R.H.; Zachwieja, J.; Lagno, M.

    1990-01-17

    To better understand the flotation behavior of coal pyrite, studies have been initiated to characterize the floatability of coal pyrite and mineral pyrite. The hydrophobicity of coal material pyrite was examined over a range of pH and oxidation times. The results indicate that surface oxidation plays an important role in coal and mineral pyrite hydrophobicity. The hydrophobicity of mineral pyrite decreases with increasing oxidation time (20 min. to 5 hr.) and increasing pH (pH 4.6 to 9.2), with maximum depression occurring at pH 9.2. However, coal pyrite exhibited low floatability, even at the lowest oxidation time, over the entire pH range. X-ray photoelectron spectroscopy (XPS) results suggest the growth of an oxidized iron layer as being responsible for the deterioration in floatability, while a sulfur-containing species present on the sample surfaces may promote floatability. Preliminary studies of the effect of frother indicate an enhancement in the floatability of both coal and mineral pyrite over the entire pH range.

  12. Reduction of Glass Surface Reflectance by Ion Beam Surface Modification

    SciTech Connect

    Mark Spitzer

    2011-03-11

    This is the final report for DOE contract DE-EE0000590. The purpose of this work was to determine the feasibility of the reduction of the reflection from the front of solar photovoltaic modules. Reflection accounts for a power loss of approximately 4%. A solar module having an area of one square meter with an energy conversion efficiency of 18% generates approximately 180 watts. If reflection loss can be eliminated, the power output can be increased to 187 watts. Since conventional thin-film anti-reflection coatings do not have sufficient environmental stability, we investigated the feasibility of ion beam modification of the glass surface to obtain reduction of reflectance. Our findings are generally applicable to all solar modules that use glass encapsulation, as well as commercial float glass used in windows and other applications. Ion implantation of argon, fluorine, and xenon into commercial low-iron soda lime float glass, standard float glass, and borosilicate glass was studied by implantation, annealing, and measurement of reflectance. The three ions all affected reflectance. The most significant change was obtained by argon implantation into both low-iron and standard soda-lime glass. In this way samples were formed with reflectance lower than can be obtained with a single-layer coatings of magnesium fluoride. Integrated reflectance was reduced from 4% to 1% in low-iron soda lime glass typical of the glass used in solar modules. The reduction of reflectance of borosilicate glass was not as large; however borosilicate glass is not typically used in flat plate solar modules. Unlike conventional semiconductor ion implantation doping, glass reflectance reduction was found to be tolerant to large variations in implant dose, meaning that the process does not require high dopant uniformity. Additionally, glass implantation does not require mass analysis. Simple, high current ion implantation equipment can be developed for this process; however, before the process

  13. Surface electrochemical control for fine coal and pyrite separation. Technical progress report, October 1, 1991--December 31, 1991

    SciTech Connect

    Hu, Weibai; Huang, Qinping; Li, Jun; Zhu, Ximeng; Bodily, D.M.; Liang, Jun; Zhong, Tingke; Wadsworth, M.E.

    1991-12-31

    The ongoing work includes the characterization of coal pyrites, the floatability evaluation of three typical US coal samples, the flotation behavior of coal pyrites, the electrochemical measurement of the surface properties of coal pyrites, and the characterization of species produced at pyrite surfaces. This report contains three sections, ``Transpassive Oxidation of Pyrite,`` ``Flotation and Electrochemical Pretreatment,`` and ``Flotation Kinetics of Coal and Coal Pyrite.``

  14. Surface coal mining influences on macroinvertebrate assemblages in streams of the Canadian Rocky Mountains.

    PubMed

    Kuchapski, Kathryn A; Rasmussen, Joseph B

    2015-09-01

    To determine the region-specific impacts of surface coal mines on macroinvertebrate community health, chemical and physical stream characteristics and macroinvertebrate family and community metrics were measured in surface coal mine-affected and reference streams in the Canadian Rocky Mountains. Water chemistry was significantly altered in mine-affected streams, which had elevated conductivity, alkalinity, and selenium and ion concentrations compared with reference conditions. Multivariate redundancy analysis (RDA) indicated alterations in macroinvertebrate communities downstream of mine sites. In RDA ordination, Ephemeroptera family densities, family richness, Ephemeroptera, Plecoptera, Trichoptera (EPT) richness, and % Ephemeroptera declined, whereas densities of Capniidae stoneflies increased along environmental gradients defined by variables associated with mine influence including waterborne Se concentration, alkalinity, substrate embeddedness, and interstitial material size. Shifts in macroinvertebrate assemblages may have been the result of multiple region-specific stressors related to mining influences including selenium toxicity, ionic toxicity, or stream substrate modifications. © 2015 SETAC.

  15. Characterization of the surface properties of Illinois Basin coals. Technical report, December 1, 1991--February 29, 1992

    SciTech Connect

    Demir, I.; Harvey, R.D.; Lizzio, A.A.

    1992-08-01

    Understanding the surface properties of coal is important for predicting the physical-chemical behavior of coal during coal cleaning combustion and conversion. Data on surface properties help coal scientists and engineers in the design of effective coal desulfurization processes, and thereby aid in the marketability of Illinois Basin coals. The main objective of this project is to characterize the surface properties (surface area, porosity, pore size distribution, surface charge, and surface chemical structure) of eight coals in the Illinois Basin Coal Sample Program (IBCSP), and explore statistical relationships between surface properties and other coal characteristics.

  16. 30 CFR 921.762 - Criteria for designating areas as unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... for surface coal mining operations. 921.762 Section 921.762 Mineral Resources OFFICE OF SURFACE MINING... mining operations. Part 762 of this chapter, Criteria for Designating Areas Unsuitable for Surface Coal Mining Operations, shall apply to surface coal mine operations....

  17. 30 CFR 933.762 - Criteria for designating areas as unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... for surface coal mining operations. 933.762 Section 933.762 Mineral Resources OFFICE OF SURFACE MINING... mining operations. Part 762 of this chapter, Criteria for Designation Areas Unsuitable for Surface Coal Mining Operations, shall apply to surface coal mining and reclamation operations....

  18. 30 CFR 941.762 - Criteria for designating areas as unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... for surface coal mining operations. 941.762 Section 941.762 Mineral Resources OFFICE OF SURFACE MINING... mining operations. Part 762 of this chapter, Criteria for Designating Areas Unsuitable for Surface Coal Mining Operations, shall apply to surface coal mine operations....

  19. 30 CFR 933.762 - Criteria for designating areas as unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... for surface coal mining operations. 933.762 Section 933.762 Mineral Resources OFFICE OF SURFACE MINING... mining operations. Part 762 of this chapter, Criteria for Designation Areas Unsuitable for Surface Coal Mining Operations, shall apply to surface coal mining and reclamation operations....

  20. 30 CFR 933.762 - Criteria for designating areas as unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... for surface coal mining operations. 933.762 Section 933.762 Mineral Resources OFFICE OF SURFACE MINING... mining operations. Part 762 of this chapter, Criteria for Designation Areas Unsuitable for Surface Coal Mining Operations, shall apply to surface coal mining and reclamation operations....

  1. 30 CFR 903.762 - Criteria for designating areas as unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... for surface coal mining operations. 903.762 Section 903.762 Mineral Resources OFFICE OF SURFACE MINING... WITHIN EACH STATE ARIZONA § 903.762 Criteria for designating areas as unsuitable for surface coal mining operations. Part 762 of this chapter, Criteria for Designating Areas Unsuitable for Surface Coal...

  2. 30 CFR 937.762 - Criteria for designating areas as unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... for surface coal mining operations. 937.762 Section 937.762 Mineral Resources OFFICE OF SURFACE MINING... WITHIN EACH STATE OREGON § 937.762 Criteria for designating areas as unsuitable for surface coal mining operations. Part 762 of this chapter, Criteria for Designating Areas Unsuitable for Surface Coal...

  3. 30 CFR 941.762 - Criteria for designating areas as unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... for surface coal mining operations. 941.762 Section 941.762 Mineral Resources OFFICE OF SURFACE MINING... mining operations. Part 762 of this chapter, Criteria for Designating Areas Unsuitable for Surface Coal Mining Operations, shall apply to surface coal mine operations....

  4. 30 CFR 922.762 - Criteria for designating areas as unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... for surface coal mining operations. 922.762 Section 922.762 Mineral Resources OFFICE OF SURFACE MINING... WITHIN EACH STATE MICHIGAN § 922.762 Criteria for designating areas as unsuitable for surface coal mining operations. Part 762 of this chapter, Criteria for Designating Areas Unsuitable for Surface Coal...

  5. 30 CFR 939.762 - Criteria for designating areas as unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... for surface coal mining operations. 939.762 Section 939.762 Mineral Resources OFFICE OF SURFACE MINING... mining operations. Part 762 of this chapter, Criteria for Designating Areas Unsuitable for Surface Coal Mining Operations, shall apply to surface coal mining and reclamation operations....

  6. 30 CFR 922.762 - Criteria for designating areas as unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... for surface coal mining operations. 922.762 Section 922.762 Mineral Resources OFFICE OF SURFACE MINING... WITHIN EACH STATE MICHIGAN § 922.762 Criteria for designating areas as unsuitable for surface coal mining operations. Part 762 of this chapter, Criteria for Designating Areas Unsuitable for Surface Coal...

  7. 30 CFR 905.762 - Criteria for designating areas as unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... for surface coal mining operations. 905.762 Section 905.762 Mineral Resources OFFICE OF SURFACE MINING... mining operations. Part 762 of this chapter, Criteria for Designating Areas Unsuitable for Surface Coal Mining Operations, shall apply to surface coal mining operations....

  8. 30 CFR 921.762 - Criteria for designating areas as unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... for surface coal mining operations. 921.762 Section 921.762 Mineral Resources OFFICE OF SURFACE MINING... mining operations. Part 762 of this chapter, Criteria for Designating Areas Unsuitable for Surface Coal Mining Operations, shall apply to surface coal mine operations....

  9. 30 CFR 912.762 - Criteria for designating areas as unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... for surface coal mining operations. 912.762 Section 912.762 Mineral Resources OFFICE OF SURFACE MINING... WITHIN EACH STATE IDAHO § 912.762 Criteria for designating areas as unsuitable for surface coal mining operations. Part 762 of this chapter, Criteria for Designating Areas Unsuitable for Surface Coal...

  10. 30 CFR 942.762 - Criteria for designating areas as unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... for surface coal mining operations. 942.762 Section 942.762 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS... Coal Mining Operations, shall apply to surface coal mining and reclamation operations. (b) In...

  11. 30 CFR 942.762 - Criteria for designating areas as unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... for surface coal mining operations. 942.762 Section 942.762 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS... Coal Mining Operations, shall apply to surface coal mining and reclamation operations. (b) In...

  12. 30 CFR 937.762 - Criteria for designating areas as unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... for surface coal mining operations. 937.762 Section 937.762 Mineral Resources OFFICE OF SURFACE MINING... WITHIN EACH STATE OREGON § 937.762 Criteria for designating areas as unsuitable for surface coal mining operations. Part 762 of this chapter, Criteria for Designating Areas Unsuitable for Surface Coal...

  13. 30 CFR 942.764 - Process for designating areas unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... surface coal mining operations. 942.764 Section 942.764 Mineral Resources OFFICE OF SURFACE MINING... WITHIN EACH STATE TENNESSEE § 942.764 Process for designating areas unsuitable for surface coal mining... Mining Operations, shall apply to surface coal mining and reclamation operations. (b) The Secretary...

  14. 30 CFR 922.762 - Criteria for designating areas as unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... for surface coal mining operations. 922.762 Section 922.762 Mineral Resources OFFICE OF SURFACE MINING... WITHIN EACH STATE MICHIGAN § 922.762 Criteria for designating areas as unsuitable for surface coal mining operations. Part 762 of this chapter, Criteria for Designating Areas Unsuitable for Surface Coal...

  15. 30 CFR 762.15 - Exploration on land designated as unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... for surface coal mining operations. 762.15 Section 762.15 Mineral Resources OFFICE OF SURFACE MINING... AREAS AS UNSUITABLE FOR SURFACE COAL MINING OPERATIONS § 762.15 Exploration on land designated as unsuitable for surface coal mining operations. Designation of any area as unsuitable for all or certain...

  16. 30 CFR 942.764 - Process for designating areas unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... surface coal mining operations. 942.764 Section 942.764 Mineral Resources OFFICE OF SURFACE MINING... WITHIN EACH STATE TENNESSEE § 942.764 Process for designating areas unsuitable for surface coal mining... Mining Operations, shall apply to surface coal mining and reclamation operations. (b) The Secretary...

  17. 30 CFR 762.13 - Land exempt from designation as unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... surface coal mining operations. 762.13 Section 762.13 Mineral Resources OFFICE OF SURFACE MINING... AREAS AS UNSUITABLE FOR SURFACE COAL MINING OPERATIONS § 762.13 Land exempt from designation as unsuitable for surface coal mining operations. The requirements of this part do not apply to— (a) Lands...

  18. 30 CFR 910.762 - Criteria for designating areas as unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... for surface coal mining operations. 910.762 Section 910.762 Mineral Resources OFFICE OF SURFACE MINING... WITHIN EACH STATE GEORGIA § 910.762 Criteria for designating areas as unsuitable for surface coal mining operations. Part 762 of this chapter, Criteria for Designating Areas Unsuitable for Surface Coal...

  19. 30 CFR 939.762 - Criteria for designating areas as unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... for surface coal mining operations. 939.762 Section 939.762 Mineral Resources OFFICE OF SURFACE MINING... mining operations. Part 762 of this chapter, Criteria for Designating Areas Unsuitable for Surface Coal Mining Operations, shall apply to surface coal mining and reclamation operations....

  20. 30 CFR 942.764 - Process for designating areas unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... surface coal mining operations. 942.764 Section 942.764 Mineral Resources OFFICE OF SURFACE MINING... WITHIN EACH STATE TENNESSEE § 942.764 Process for designating areas unsuitable for surface coal mining... Mining Operations, shall apply to surface coal mining and reclamation operations. (b) The Secretary...

  1. 30 CFR 941.762 - Criteria for designating areas as unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... for surface coal mining operations. 941.762 Section 941.762 Mineral Resources OFFICE OF SURFACE MINING... mining operations. Part 762 of this chapter, Criteria for Designating Areas Unsuitable for Surface Coal Mining Operations, shall apply to surface coal mine operations....

  2. 30 CFR 912.762 - Criteria for designating areas as unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... for surface coal mining operations. 912.762 Section 912.762 Mineral Resources OFFICE OF SURFACE MINING... WITHIN EACH STATE IDAHO § 912.762 Criteria for designating areas as unsuitable for surface coal mining operations. Part 762 of this chapter, Criteria for Designating Areas Unsuitable for Surface Coal...

  3. 30 CFR 910.762 - Criteria for designating areas as unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... for surface coal mining operations. 910.762 Section 910.762 Mineral Resources OFFICE OF SURFACE MINING... WITHIN EACH STATE GEORGIA § 910.762 Criteria for designating areas as unsuitable for surface coal mining operations. Part 762 of this chapter, Criteria for Designating Areas Unsuitable for Surface Coal...

  4. 30 CFR 947.762 - Criteria for designating areas as unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... for surface coal mining operations. 947.762 Section 947.762 Mineral Resources OFFICE OF SURFACE MINING... mining operations. Part 762 of this chapter, Criteria for Designating Areas Unsuitable for Surface Coal Mining Operations, shall apply to surface coal mining and reclamation operations....

  5. 30 CFR 762.15 - Exploration on land designated as unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... for surface coal mining operations. 762.15 Section 762.15 Mineral Resources OFFICE OF SURFACE MINING... AREAS AS UNSUITABLE FOR SURFACE COAL MINING OPERATIONS § 762.15 Exploration on land designated as unsuitable for surface coal mining operations. Designation of any area as unsuitable for all or certain...

  6. 30 CFR 922.762 - Criteria for designating areas as unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... for surface coal mining operations. 922.762 Section 922.762 Mineral Resources OFFICE OF SURFACE MINING... WITHIN EACH STATE MICHIGAN § 922.762 Criteria for designating areas as unsuitable for surface coal mining operations. Part 762 of this chapter, Criteria for Designating Areas Unsuitable for Surface Coal...

  7. 30 CFR 933.762 - Criteria for designating areas as unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... for surface coal mining operations. 933.762 Section 933.762 Mineral Resources OFFICE OF SURFACE MINING... mining operations. Part 762 of this chapter, Criteria for Designation Areas Unsuitable for Surface Coal Mining Operations, shall apply to surface coal mining and reclamation operations....

  8. 30 CFR 933.762 - Criteria for designating areas as unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... for surface coal mining operations. 933.762 Section 933.762 Mineral Resources OFFICE OF SURFACE MINING... mining operations. Part 762 of this chapter, Criteria for Designation Areas Unsuitable for Surface Coal Mining Operations, shall apply to surface coal mining and reclamation operations....

  9. 30 CFR 905.762 - Criteria for designating areas as unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... for surface coal mining operations. 905.762 Section 905.762 Mineral Resources OFFICE OF SURFACE MINING... mining operations. Part 762 of this chapter, Criteria for Designating Areas Unsuitable for Surface Coal Mining Operations, shall apply to surface coal mining operations....

  10. 30 CFR 905.762 - Criteria for designating areas as unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... for surface coal mining operations. 905.762 Section 905.762 Mineral Resources OFFICE OF SURFACE MINING... mining operations. Part 762 of this chapter, Criteria for Designating Areas Unsuitable for Surface Coal Mining Operations, shall apply to surface coal mining operations....

  11. 30 CFR 912.762 - Criteria for designating areas as unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... for surface coal mining operations. 912.762 Section 912.762 Mineral Resources OFFICE OF SURFACE MINING... WITHIN EACH STATE IDAHO § 912.762 Criteria for designating areas as unsuitable for surface coal mining operations. Part 762 of this chapter, Criteria for Designating Areas Unsuitable for Surface Coal...

  12. 30 CFR 762.13 - Land exempt from designation as unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... surface coal mining operations. 762.13 Section 762.13 Mineral Resources OFFICE OF SURFACE MINING... AREAS AS UNSUITABLE FOR SURFACE COAL MINING OPERATIONS § 762.13 Land exempt from designation as unsuitable for surface coal mining operations. The requirements of this part do not apply to— (a) Lands...

  13. 30 CFR 947.762 - Criteria for designating areas as unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... for surface coal mining operations. 947.762 Section 947.762 Mineral Resources OFFICE OF SURFACE MINING... mining operations. Part 762 of this chapter, Criteria for Designating Areas Unsuitable for Surface Coal Mining Operations, shall apply to surface coal mining and reclamation operations....

  14. 30 CFR 939.762 - Criteria for designating areas as unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... for surface coal mining operations. 939.762 Section 939.762 Mineral Resources OFFICE OF SURFACE MINING... mining operations. Part 762 of this chapter, Criteria for Designating Areas Unsuitable for Surface Coal Mining Operations, shall apply to surface coal mining and reclamation operations....

  15. 30 CFR 921.762 - Criteria for designating areas as unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... for surface coal mining operations. 921.762 Section 921.762 Mineral Resources OFFICE OF SURFACE MINING... mining operations. Part 762 of this chapter, Criteria for Designating Areas Unsuitable for Surface Coal Mining Operations, shall apply to surface coal mine operations....

  16. 30 CFR 942.762 - Criteria for designating areas as unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... for surface coal mining operations. 942.762 Section 942.762 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS... Coal Mining Operations, shall apply to surface coal mining and reclamation operations. (b) In...

  17. 30 CFR 942.764 - Process for designating areas unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... surface coal mining operations. 942.764 Section 942.764 Mineral Resources OFFICE OF SURFACE MINING... WITHIN EACH STATE TENNESSEE § 942.764 Process for designating areas unsuitable for surface coal mining... Mining Operations, shall apply to surface coal mining and reclamation operations. (b) The Secretary...

  18. 30 CFR 910.762 - Criteria for designating areas as unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... for surface coal mining operations. 910.762 Section 910.762 Mineral Resources OFFICE OF SURFACE MINING... WITHIN EACH STATE GEORGIA § 910.762 Criteria for designating areas as unsuitable for surface coal mining operations. Part 762 of this chapter, Criteria for Designating Areas Unsuitable for Surface Coal...

  19. 30 CFR 903.762 - Criteria for designating areas as unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... for surface coal mining operations. 903.762 Section 903.762 Mineral Resources OFFICE OF SURFACE MINING... WITHIN EACH STATE ARIZONA § 903.762 Criteria for designating areas as unsuitable for surface coal mining operations. Part 762 of this chapter, Criteria for Designating Areas Unsuitable for Surface Coal...

  20. 30 CFR 939.762 - Criteria for designating areas as unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... for surface coal mining operations. 939.762 Section 939.762 Mineral Resources OFFICE OF SURFACE MINING... mining operations. Part 762 of this chapter, Criteria for Designating Areas Unsuitable for Surface Coal Mining Operations, shall apply to surface coal mining and reclamation operations....

  1. 30 CFR 903.762 - Criteria for designating areas as unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... for surface coal mining operations. 903.762 Section 903.762 Mineral Resources OFFICE OF SURFACE MINING... WITHIN EACH STATE ARIZONA § 903.762 Criteria for designating areas as unsuitable for surface coal mining operations. Part 762 of this chapter, Criteria for Designating Areas Unsuitable for Surface Coal...

  2. 30 CFR 922.762 - Criteria for designating areas as unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... for surface coal mining operations. 922.762 Section 922.762 Mineral Resources OFFICE OF SURFACE MINING... WITHIN EACH STATE MICHIGAN § 922.762 Criteria for designating areas as unsuitable for surface coal mining operations. Part 762 of this chapter, Criteria for Designating Areas Unsuitable for Surface Coal...

  3. 30 CFR 947.762 - Criteria for designating areas as unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... for surface coal mining operations. 947.762 Section 947.762 Mineral Resources OFFICE OF SURFACE MINING... mining operations. Part 762 of this chapter, Criteria for Designating Areas Unsuitable for Surface Coal Mining Operations, shall apply to surface coal mining and reclamation operations....

  4. 30 CFR 762.13 - Land exempt from designation as unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... surface coal mining operations. 762.13 Section 762.13 Mineral Resources OFFICE OF SURFACE MINING... AREAS AS UNSUITABLE FOR SURFACE COAL MINING OPERATIONS § 762.13 Land exempt from designation as unsuitable for surface coal mining operations. The requirements of this part do not apply to— (a) Lands...

  5. 30 CFR 942.762 - Criteria for designating areas as unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... for surface coal mining operations. 942.762 Section 942.762 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS... Coal Mining Operations, shall apply to surface coal mining and reclamation operations. (b) In...

  6. 30 CFR 942.762 - Criteria for designating areas as unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... for surface coal mining operations. 942.762 Section 942.762 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS... Coal Mining Operations, shall apply to surface coal mining and reclamation operations. (b) In...

  7. 30 CFR 937.762 - Criteria for designating areas as unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... for surface coal mining operations. 937.762 Section 937.762 Mineral Resources OFFICE OF SURFACE MINING... WITHIN EACH STATE OREGON § 937.762 Criteria for designating areas as unsuitable for surface coal mining operations. Part 762 of this chapter, Criteria for Designating Areas Unsuitable for Surface Coal...

  8. 30 CFR 947.762 - Criteria for designating areas as unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... for surface coal mining operations. 947.762 Section 947.762 Mineral Resources OFFICE OF SURFACE MINING... mining operations. Part 762 of this chapter, Criteria for Designating Areas Unsuitable for Surface Coal Mining Operations, shall apply to surface coal mining and reclamation operations....

  9. 30 CFR 762.15 - Exploration on land designated as unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... for surface coal mining operations. 762.15 Section 762.15 Mineral Resources OFFICE OF SURFACE MINING... AREAS AS UNSUITABLE FOR SURFACE COAL MINING OPERATIONS § 762.15 Exploration on land designated as unsuitable for surface coal mining operations. Designation of any area as unsuitable for all or certain...

  10. 30 CFR 941.762 - Criteria for designating areas as unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... for surface coal mining operations. 941.762 Section 941.762 Mineral Resources OFFICE OF SURFACE MINING... mining operations. Part 762 of this chapter, Criteria for Designating Areas Unsuitable for Surface Coal Mining Operations, shall apply to surface coal mine operations....

  11. 30 CFR 762.15 - Exploration on land designated as unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... for surface coal mining operations. 762.15 Section 762.15 Mineral Resources OFFICE OF SURFACE MINING... AREAS AS UNSUITABLE FOR SURFACE COAL MINING OPERATIONS § 762.15 Exploration on land designated as unsuitable for surface coal mining operations. Designation of any area as unsuitable for all or certain...

  12. 30 CFR 910.762 - Criteria for designating areas as unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... for surface coal mining operations. 910.762 Section 910.762 Mineral Resources OFFICE OF SURFACE MINING... WITHIN EACH STATE GEORGIA § 910.762 Criteria for designating areas as unsuitable for surface coal mining operations. Part 762 of this chapter, Criteria for Designating Areas Unsuitable for Surface Coal...

  13. 30 CFR 762.13 - Land exempt from designation as unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... surface coal mining operations. 762.13 Section 762.13 Mineral Resources OFFICE OF SURFACE MINING... AREAS AS UNSUITABLE FOR SURFACE COAL MINING OPERATIONS § 762.13 Land exempt from designation as unsuitable for surface coal mining operations. The requirements of this part do not apply to— (a) Lands...

  14. 30 CFR 942.764 - Process for designating areas unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... surface coal mining operations. 942.764 Section 942.764 Mineral Resources OFFICE OF SURFACE MINING... WITHIN EACH STATE TENNESSEE § 942.764 Process for designating areas unsuitable for surface coal mining... Mining Operations, shall apply to surface coal mining and reclamation operations. (b) The Secretary...

  15. 30 CFR 912.762 - Criteria for designating areas as unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... for surface coal mining operations. 912.762 Section 912.762 Mineral Resources OFFICE OF SURFACE MINING... WITHIN EACH STATE IDAHO § 912.762 Criteria for designating areas as unsuitable for surface coal mining operations. Part 762 of this chapter, Criteria for Designating Areas Unsuitable for Surface Coal...

  16. 30 CFR 921.762 - Criteria for designating areas as unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... for surface coal mining operations. 921.762 Section 921.762 Mineral Resources OFFICE OF SURFACE MINING... mining operations. Part 762 of this chapter, Criteria for Designating Areas Unsuitable for Surface Coal Mining Operations, shall apply to surface coal mine operations....

  17. 30 CFR 937.762 - Criteria for designating areas as unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... for surface coal mining operations. 937.762 Section 937.762 Mineral Resources OFFICE OF SURFACE MINING... WITHIN EACH STATE OREGON § 937.762 Criteria for designating areas as unsuitable for surface coal mining operations. Part 762 of this chapter, Criteria for Designating Areas Unsuitable for Surface Coal...

  18. 30 CFR 939.762 - Criteria for designating areas as unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... for surface coal mining operations. 939.762 Section 939.762 Mineral Resources OFFICE OF SURFACE MINING... mining operations. Part 762 of this chapter, Criteria for Designating Areas Unsuitable for Surface Coal Mining Operations, shall apply to surface coal mining and reclamation operations....

  19. 30 CFR 941.762 - Criteria for designating areas as unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... for surface coal mining operations. 941.762 Section 941.762 Mineral Resources OFFICE OF SURFACE MINING... mining operations. Part 762 of this chapter, Criteria for Designating Areas Unsuitable for Surface Coal Mining Operations, shall apply to surface coal mine operations....

  20. 30 CFR 903.762 - Criteria for designating areas as unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... for surface coal mining operations. 903.762 Section 903.762 Mineral Resources OFFICE OF SURFACE MINING... WITHIN EACH STATE ARIZONA § 903.762 Criteria for designating areas as unsuitable for surface coal mining operations. Part 762 of this chapter, Criteria for Designating Areas Unsuitable for Surface Coal...

  1. 30 CFR 762.13 - Land exempt from designation as unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... surface coal mining operations. 762.13 Section 762.13 Mineral Resources OFFICE OF SURFACE MINING... AREAS AS UNSUITABLE FOR SURFACE COAL MINING OPERATIONS § 762.13 Land exempt from designation as unsuitable for surface coal mining operations. The requirements of this part do not apply to— (a) Lands...

  2. 30 CFR 762.15 - Exploration on land designated as unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... for surface coal mining operations. 762.15 Section 762.15 Mineral Resources OFFICE OF SURFACE MINING... AREAS AS UNSUITABLE FOR SURFACE COAL MINING OPERATIONS § 762.15 Exploration on land designated as unsuitable for surface coal mining operations. Designation of any area as unsuitable for all or certain...

  3. 30 CFR 921.762 - Criteria for designating areas as unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... for surface coal mining operations. 921.762 Section 921.762 Mineral Resources OFFICE OF SURFACE MINING... mining operations. Part 762 of this chapter, Criteria for Designating Areas Unsuitable for Surface Coal Mining Operations, shall apply to surface coal mine operations....

  4. 30 CFR 937.762 - Criteria for designating areas as unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... for surface coal mining operations. 937.762 Section 937.762 Mineral Resources OFFICE OF SURFACE MINING... WITHIN EACH STATE OREGON § 937.762 Criteria for designating areas as unsuitable for surface coal mining operations. Part 762 of this chapter, Criteria for Designating Areas Unsuitable for Surface Coal...

  5. 30 CFR 912.762 - Criteria for designating areas as unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... for surface coal mining operations. 912.762 Section 912.762 Mineral Resources OFFICE OF SURFACE MINING... WITHIN EACH STATE IDAHO § 912.762 Criteria for designating areas as unsuitable for surface coal mining operations. Part 762 of this chapter, Criteria for Designating Areas Unsuitable for Surface Coal...

  6. 30 CFR 905.762 - Criteria for designating areas as unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... for surface coal mining operations. 905.762 Section 905.762 Mineral Resources OFFICE OF SURFACE MINING... mining operations. Part 762 of this chapter, Criteria for Designating Areas Unsuitable for Surface Coal Mining Operations, shall apply to surface coal mining operations....

  7. 30 CFR 903.762 - Criteria for designating areas as unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... for surface coal mining operations. 903.762 Section 903.762 Mineral Resources OFFICE OF SURFACE MINING... WITHIN EACH STATE ARIZONA § 903.762 Criteria for designating areas as unsuitable for surface coal mining operations. Part 762 of this chapter, Criteria for Designating Areas Unsuitable for Surface Coal...

  8. 30 CFR 905.762 - Criteria for designating areas as unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... for surface coal mining operations. 905.762 Section 905.762 Mineral Resources OFFICE OF SURFACE MINING... mining operations. Part 762 of this chapter, Criteria for Designating Areas Unsuitable for Surface Coal Mining Operations, shall apply to surface coal mining operations....

  9. 30 CFR 947.762 - Criteria for designating areas as unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... for surface coal mining operations. 947.762 Section 947.762 Mineral Resources OFFICE OF SURFACE MINING... mining operations. Part 762 of this chapter, Criteria for Designating Areas Unsuitable for Surface Coal Mining Operations, shall apply to surface coal mining and reclamation operations....

  10. 30 CFR 910.762 - Criteria for designating areas as unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... for surface coal mining operations. 910.762 Section 910.762 Mineral Resources OFFICE OF SURFACE MINING... WITHIN EACH STATE GEORGIA § 910.762 Criteria for designating areas as unsuitable for surface coal mining operations. Part 762 of this chapter, Criteria for Designating Areas Unsuitable for Surface Coal...

  11. Surface Properties of Photo-Oxidized Bituminous Coals: Final report

    SciTech Connect

    1998-09-01

    Natural weathering has a detrimental effect on the hydrophobic nature of coal, which in turn can influence clean-coal recovery during flotation. Few techniques are available that can establish the quality of coal surfaces and that have a short analysis time to provide input for process control. Luminescence emissions which can be quantified with an optical microscope and photometer system, are measurably influenced by degree of weathering as well as by mild storage deterioration. In addition, it has been shown that when vitrinite is irradiated with a relatively high intensity flux of violet- or ultraviolet- light in the presence of air, photo-oxidation of the surface occurs. The combination of measuring the change in luminescence emission intensity with degree of surface oxidation provided the impetus for the current investigation. The principal aim of this research was to determine whether clear correlations could be established among surface oxygen functionality, hydrophobicity induced by photo-oxidation, and measurements of luminescence intensity and alteration. If successful, the project would result in quantitative luminescence techniques based on optical microscopy that would provide a measure of the changes in surface properties as a function of oxidation and relate them to coal cleanability. Two analytical techniques were designed to achieve these goals. Polished surfaces of vitrain bands or a narrow size fraction of powdered vitrain concentrates were photo-oxidized using violet or ultraviolet light fluxes and then changes in surface properties and chemistry were measured using a variety of near-surface analytical techniques. Results from this investigation demonstrate that quantitative luminescence intensity measurements can be performed on fracture surfaces of bituminous rank coals (vitrains) and that the data obtained do reveal significant variations depending upon the level of surface oxidation. Photo-oxidation induced by violet or ultraviolet light

  12. Surface magnetic enhancement for coal cleaning. Final report

    SciTech Connect

    Hwang, J.Y.

    1992-10-01

    The program consisted of a fundamental study to define the chemistry for the interactions between magnetic reagent and mineral and coal particles, a laboratory study to determine the applicability of this technology on coal cleaning, and a parameter study to evaluate the technical and economical feasibility of this technology for desulfurization and de-ashing under various processing schemes. Surface magnetic enhancement using magnetic reagent is a new technology developed at the Institute. This technology can be applied to separate pyrite and other minerals particles from coal with a magnetic separation after adsorbing magnetic reagent on the surface of pyrite and other minerals particles. Particles which have absorbed magnetic reagent are rendered magnetic. The adsorption can be controlled to yield selectivity. Thus, the separation of traditionally nonmagnetic materials with a magnetic separator can be achieved. Experiments have been performed to demonstrate the theoretical fundamentals and the applications of the technology. Adsorbability, adsorption mechanisms, and adsorption selectivity are included in the fundamental study. The effects of particle size, magnetic reagent dosage, solid contents, magnetic matrix, applied magnetic field strengths, retention times, and feed loading capacities are included in the application studies. Three coals, including Illinois No. 6, Lower Kittanning and Pocahontas seams, have been investigated. More than 90% pyritic sulfur and ash reductions have been achieved. Technical and economic feasibilities of this technology have been demonstrated in this study. Both are competitive to that of the froth flotation approach for coal cleaning.

  13. Surface Modification of PDMS and Plastics with Zwitterionic Polymers.

    PubMed

    Tanaka, Mutsuo; Kurosawa, Shigeru

    2017-07-01

    Surface modification of PDMS, polycarbonate, and acrylic resin was examined using various methacryl polymers bearing sulfobetaine, phosphoryl choline, and oligoethylene glycol units. We have found that zwitterionic polymers are adsorbed on the PDMS surface treated with plasma. The surface of PDMS is stable to keep high hydrophilicity after a month of the modification. On the other hand, one of sulfobetaine polymers showed distinguished adsorption behavior in the case of polycarbonate surface treated with plasma. Suppression effect for nonspecific adsorption of BSA was evaluated using polycarbonate and acrylic resin modified with the polymers. The modified surfaces showed suppression effect for nonspecific adsorption of BSA compared with the surface only treated with plasma.

  14. Impact of surface coal mining on soil hydraulic properties

    Treesearch

    X. Liu; J. Q. Wu; P. W. Conrad; S. Dun; C. S. Todd; R. L. McNearny; William Elliot; H. Rhee; P. Clark

    2016-01-01

    Soil erosion is strongly related to soil hydraulic properties. Understanding how surface coal mining affects these properties is therefore important in developing effective management practices to control erosion during reclamation. To determine the impact of mining activities on soil hydraulic properties, soils from undisturbed areas, areas of roughly graded mine...

  15. 30 CFR 785.11 - Anthracite surface coal mining and reclamation operations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Anthracite surface coal mining and reclamation operations. 785.11 Section 785.11 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL...

  16. 30 CFR 785.11 - Anthracite surface coal mining and reclamation operations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Anthracite surface coal mining and reclamation operations. 785.11 Section 785.11 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL...

  17. 30 CFR 785.12 - Special bituminous surface coal mining and reclamation operations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... reclamation operations. 785.12 Section 785.12 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL....12 Special bituminous surface coal mining and reclamation operations. (a) This section applies to any...

  18. 30 CFR 785.12 - Special bituminous surface coal mining and reclamation operations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... reclamation operations. 785.12 Section 785.12 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL....12 Special bituminous surface coal mining and reclamation operations. (a) This section applies to any...

  19. 30 CFR 939.800 - General requirements for bonding of surface coal mining and reclamation operations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... coal mining and reclamation operations. 939.800 Section 939.800 Mineral Resources OFFICE OF SURFACE... OPERATIONS WITHIN EACH STATE RHODE ISLAND § 939.800 General requirements for bonding of surface coal mining... Mining and Reclamation Operations Under Regulatory Programs, shall apply to all surface coal mining...

  20. 30 CFR 921.800 - General requirements for bonding of surface coal mining and reclamation operations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... coal mining and reclamation operations. 921.800 Section 921.800 Mineral Resources OFFICE OF SURFACE... OPERATIONS WITHIN EACH STATE MASSACHUSETTS § 921.800 General requirements for bonding of surface coal mining... Mining and Reclamation Operations Under Regulatory Programs, shall apply to all surface coal mining...

  1. 30 CFR 922.800 - General requirements for bonding of surface coal mining and reclamation operations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... coal mining and reclamation operations. 922.800 Section 922.800 Mineral Resources OFFICE OF SURFACE... OPERATIONS WITHIN EACH STATE MICHIGAN § 922.800 General requirements for bonding of surface coal mining and reclamation operations. Part 800 of this chapter, General Requirements for Bonding of Surface Coal Mining...

  2. 30 CFR 933.764 - Process for designating areas unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... surface coal mining operations. 933.764 Section 933.764 Mineral Resources OFFICE OF SURFACE MINING... Coal Mining Operations, pertaining to petitioning, initial processing, hearing requirements, decisions... surface coal mining and reclamation operations beginning one year after the effective date of this program....

  3. 30 CFR 937.800 - General requirements for bonding of surface coal mining and reclamation operations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... coal mining and reclamation operations. 937.800 Section 937.800 Mineral Resources OFFICE OF SURFACE... OPERATIONS WITHIN EACH STATE OREGON § 937.800 General requirements for bonding of surface coal mining and reclamation operations. Part 800 of this chapter, General Requirements for Bonding of Surface Coal Mining...

  4. 30 CFR 910.800 - General requirements for bonding of surface coal mining and reclamation operations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... coal mining and reclamation operations. 910.800 Section 910.800 Mineral Resources OFFICE OF SURFACE... OPERATIONS WITHIN EACH STATE GEORGIA § 910.800 General requirements for bonding of surface coal mining and reclamation operations. Part 800 of this chapter, General Requirements for Bonding of Surface Coal Mining...

  5. 30 CFR 933.764 - Process for designating areas unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... surface coal mining operations. 933.764 Section 933.764 Mineral Resources OFFICE OF SURFACE MINING... Coal Mining Operations, pertaining to petitioning, initial processing, hearing requirements, decisions... surface coal mining and reclamation operations beginning one year after the effective date of this program....

  6. 30 CFR 937.800 - General requirements for bonding of surface coal mining and reclamation operations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... coal mining and reclamation operations. 937.800 Section 937.800 Mineral Resources OFFICE OF SURFACE... OPERATIONS WITHIN EACH STATE OREGON § 937.800 General requirements for bonding of surface coal mining and reclamation operations. Part 800 of this chapter, General Requirements for Bonding of Surface Coal Mining...

  7. 30 CFR 761.11 - Areas where surface coal mining operations are prohibited or limited.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Areas where surface coal mining operations are....11 Areas where surface coal mining operations are prohibited or limited. You may not conduct surface coal mining operations on the following lands unless you either have valid existing rights,...

  8. 30 CFR 912.800 - General requirements for bonding of surface coal mining and reclamation operations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... coal mining and reclamation operations. 912.800 Section 912.800 Mineral Resources OFFICE OF SURFACE... OPERATIONS WITHIN EACH STATE IDAHO § 912.800 General requirements for bonding of surface coal mining and reclamation operations. Part 800 of this chapter, General Requirements for Bonding of Surface Coal Mining...

  9. 30 CFR 937.800 - General requirements for bonding of surface coal mining and reclamation operations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... coal mining and reclamation operations. 937.800 Section 937.800 Mineral Resources OFFICE OF SURFACE... OPERATIONS WITHIN EACH STATE OREGON § 937.800 General requirements for bonding of surface coal mining and reclamation operations. Part 800 of this chapter, General Requirements for Bonding of Surface Coal Mining...

  10. 30 CFR 912.800 - General requirements for bonding of surface coal mining and reclamation operations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... coal mining and reclamation operations. 912.800 Section 912.800 Mineral Resources OFFICE OF SURFACE... OPERATIONS WITHIN EACH STATE IDAHO § 912.800 General requirements for bonding of surface coal mining and reclamation operations. Part 800 of this chapter, General Requirements for Bonding of Surface Coal Mining...

  11. 30 CFR 933.800 - General requirements for bonding of surface coal mining and reclamation operations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... coal mining and reclamation operations. 933.800 Section 933.800 Mineral Resources OFFICE OF SURFACE... OPERATIONS WITHIN EACH STATE NORTH CAROLINA § 933.800 General requirements for bonding of surface coal mining... Mining and Reclamation Operations Under Regulatory Programs, shall apply to all surface coal mining...

  12. 30 CFR 933.764 - Process for designating areas unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... surface coal mining operations. 933.764 Section 933.764 Mineral Resources OFFICE OF SURFACE MINING... Coal Mining Operations, pertaining to petitioning, initial processing, hearing requirements, decisions... surface coal mining and reclamation operations beginning one year after the effective date of this program....

  13. 30 CFR 939.800 - General requirements for bonding of surface coal mining and reclamation operations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... coal mining and reclamation operations. 939.800 Section 939.800 Mineral Resources OFFICE OF SURFACE... OPERATIONS WITHIN EACH STATE RHODE ISLAND § 939.800 General requirements for bonding of surface coal mining... Mining and Reclamation Operations Under Regulatory Programs, shall apply to all surface coal mining...

  14. 30 CFR 912.800 - General requirements for bonding of surface coal mining and reclamation operations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... coal mining and reclamation operations. 912.800 Section 912.800 Mineral Resources OFFICE OF SURFACE... OPERATIONS WITHIN EACH STATE IDAHO § 912.800 General requirements for bonding of surface coal mining and reclamation operations. Part 800 of this chapter, General Requirements for Bonding of Surface Coal Mining...

  15. 30 CFR 933.800 - General requirements for bonding of surface coal mining and reclamation operations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... coal mining and reclamation operations. 933.800 Section 933.800 Mineral Resources OFFICE OF SURFACE... OPERATIONS WITHIN EACH STATE NORTH CAROLINA § 933.800 General requirements for bonding of surface coal mining... Mining and Reclamation Operations Under Regulatory Programs, shall apply to all surface coal mining...

  16. 30 CFR 910.800 - General requirements for bonding of surface coal mining and reclamation operations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... coal mining and reclamation operations. 910.800 Section 910.800 Mineral Resources OFFICE OF SURFACE... OPERATIONS WITHIN EACH STATE GEORGIA § 910.800 General requirements for bonding of surface coal mining and reclamation operations. Part 800 of this chapter, General Requirements for Bonding of Surface Coal Mining...

  17. 30 CFR 941.800 - General requirements for bonding of surface coal mining and reclamation operations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... coal mining and reclamation operations. 941.800 Section 941.800 Mineral Resources OFFICE OF SURFACE... OPERATIONS WITHIN EACH STATE SOUTH DAKOTA § 941.800 General requirements for bonding of surface coal mining... Mining and Reclamation Operations Under Regulatory Programs, shall apply to all surface coal mining...

  18. 30 CFR 921.800 - General requirements for bonding of surface coal mining and reclamation operations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... coal mining and reclamation operations. 921.800 Section 921.800 Mineral Resources OFFICE OF SURFACE... OPERATIONS WITHIN EACH STATE MASSACHUSETTS § 921.800 General requirements for bonding of surface coal mining... Mining and Reclamation Operations Under Regulatory Programs, shall apply to all surface coal mining...

  19. 30 CFR 941.800 - General requirements for bonding of surface coal mining and reclamation operations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... coal mining and reclamation operations. 941.800 Section 941.800 Mineral Resources OFFICE OF SURFACE... OPERATIONS WITHIN EACH STATE SOUTH DAKOTA § 941.800 General requirements for bonding of surface coal mining... Mining and Reclamation Operations Under Regulatory Programs, shall apply to all surface coal mining...

  20. 30 CFR 910.800 - General requirements for bonding of surface coal mining and reclamation operations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... coal mining and reclamation operations. 910.800 Section 910.800 Mineral Resources OFFICE OF SURFACE... OPERATIONS WITHIN EACH STATE GEORGIA § 910.800 General requirements for bonding of surface coal mining and reclamation operations. Part 800 of this chapter, General Requirements for Bonding of Surface Coal Mining...

  1. 30 CFR 922.800 - General requirements for bonding of surface coal mining and reclamation operations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... coal mining and reclamation operations. 922.800 Section 922.800 Mineral Resources OFFICE OF SURFACE... OPERATIONS WITHIN EACH STATE MICHIGAN § 922.800 General requirements for bonding of surface coal mining and reclamation operations. Part 800 of this chapter, General Requirements for Bonding of Surface Coal Mining...

  2. 30 CFR 947.800 - Requirements for bonding of surface coal mining and reclamation operations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Requirements for bonding of surface coal mining... WITHIN EACH STATE WASHINGTON § 947.800 Requirements for bonding of surface coal mining and reclamation operations. Part 800 of this chapter, Requirements for Bonding of Surface Coal Mining and...

  3. 30 CFR 939.800 - General requirements for bonding of surface coal mining and reclamation operations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... coal mining and reclamation operations. 939.800 Section 939.800 Mineral Resources OFFICE OF SURFACE... OPERATIONS WITHIN EACH STATE RHODE ISLAND § 939.800 General requirements for bonding of surface coal mining... Mining and Reclamation Operations Under Regulatory Programs, shall apply to all surface coal mining...

  4. 30 CFR 941.800 - General requirements for bonding of surface coal mining and reclamation operations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... coal mining and reclamation operations. 941.800 Section 941.800 Mineral Resources OFFICE OF SURFACE... OPERATIONS WITHIN EACH STATE SOUTH DAKOTA § 941.800 General requirements for bonding of surface coal mining... Mining and Reclamation Operations Under Regulatory Programs, shall apply to all surface coal mining...

  5. 30 CFR 933.800 - General requirements for bonding of surface coal mining and reclamation operations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... coal mining and reclamation operations. 933.800 Section 933.800 Mineral Resources OFFICE OF SURFACE... OPERATIONS WITHIN EACH STATE NORTH CAROLINA § 933.800 General requirements for bonding of surface coal mining... Mining and Reclamation Operations Under Regulatory Programs, shall apply to all surface coal mining...

  6. 30 CFR 933.764 - Process for designating areas unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... surface coal mining operations. 933.764 Section 933.764 Mineral Resources OFFICE OF SURFACE MINING... Coal Mining Operations, pertaining to petitioning, initial processing, hearing requirements, decisions... surface coal mining and reclamation operations beginning one year after the effective date of this program....

  7. 30 CFR 922.800 - General requirements for bonding of surface coal mining and reclamation operations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... coal mining and reclamation operations. 922.800 Section 922.800 Mineral Resources OFFICE OF SURFACE... OPERATIONS WITHIN EACH STATE MICHIGAN § 922.800 General requirements for bonding of surface coal mining and reclamation operations. Part 800 of this chapter, General Requirements for Bonding of Surface Coal Mining...

  8. 30 CFR 921.800 - General requirements for bonding of surface coal mining and reclamation operations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... coal mining and reclamation operations. 921.800 Section 921.800 Mineral Resources OFFICE OF SURFACE... OPERATIONS WITHIN EACH STATE MASSACHUSETTS § 921.800 General requirements for bonding of surface coal mining... Mining and Reclamation Operations Under Regulatory Programs, shall apply to all surface coal mining...

  9. 30 CFR 933.764 - Process for designating areas unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... surface coal mining operations. 933.764 Section 933.764 Mineral Resources OFFICE OF SURFACE MINING... Coal Mining Operations, pertaining to petitioning, initial processing, hearing requirements, decisions... surface coal mining and reclamation operations beginning one year after the effective date of this program....

  10. 30 CFR 947.800 - Requirements for bonding of surface coal mining and reclamation operations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Requirements for bonding of surface coal mining... WITHIN EACH STATE WASHINGTON § 947.800 Requirements for bonding of surface coal mining and reclamation operations. Part 800 of this chapter, Requirements for Bonding of Surface Coal Mining and...

  11. 30 CFR 761.11 - Areas where surface coal mining operations are prohibited or limited.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Areas where surface coal mining operations are....11 Areas where surface coal mining operations are prohibited or limited. You may not conduct surface coal mining operations on the following lands unless you either have valid existing rights,...

  12. 30 CFR 761.11 - Areas where surface coal mining operations are prohibited or limited.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Areas where surface coal mining operations are....11 Areas where surface coal mining operations are prohibited or limited. You may not conduct surface coal mining operations on the following lands unless you either have valid existing rights,...

  13. Polymeric membranes: surface modification for minimizing (bio)colloidal fouling.

    PubMed

    Kochkodan, Victor; Johnson, Daniel J; Hilal, Nidal

    2014-04-01

    This paper presents an overview on recent developments in surface modification of polymer membranes for reduction of their fouling with biocolloids and organic colloids in pressure driven membrane processes. First, colloidal interactions such as London-van der Waals, electrical, hydration, hydrophobic, steric forces and membrane surface properties such as hydrophilicity, charge and surface roughness, which affect membrane fouling, have been discussed and the main goals of the membrane surface modification for fouling reduction have been outlined. Thereafter the recent studies on reduction of (bio)colloidal of polymer membranes using ultraviolet/redox initiated surface grafting, physical coating/adsorption of a protective layer on the membrane surface, chemical reactions or surface modification of polymer membranes with nanoparticles as well as using of advanced atomic force microscopy to characterize (bio)colloidal fouling have been critically summarized. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Fractal analysis of the hierarchic structure of fossil coal surface

    SciTech Connect

    Alekseev, A.D.; Vasilenko, T.A.; Kirillov, A.K.

    2008-05-15

    The fractal analysis is described as method of studying images of surface of fossil coal, one of the natural sorbent, with the aim of determining its structural surface heterogeneity. The deformation effect as a reduction in the dimensions of heterogeneity boundaries is considered. It is shown that the theory of nonequilibrium dynamic systems permits to assess a formation level of heterogeneities involved into a sorbent composition by means of the Hurst factor.

  15. Oxidation of coal and coal pyrite mechanisms and influence on surface characteristics. Technical progress report, [September--December 1991

    SciTech Connect

    Doyle, F.M.

    1992-01-28

    The objective of this research is to develop a mechanistic understanding of the oxidation of coal and coal pyrite, and to correlate the intrinsic physical and chemical properties of these minerals, along with changes resulting from oxidation, with those surface properties that influence the behavior in physical coal cleaning processes. The results will provide fundamental insight into oxidation, in terms of the bulk and surface chemistry, the microstructure, and the semiconductor properties of the pyrite. During the fifth quarter, wet chemical and dry oxidation tests were done on Upper Freeport coal from the Troutville {number_sign}2 Mine, Clearfield County, Pennsylvania.

  16. Surface modification of high temperature iron alloys

    DOEpatents

    Park, Jong-Hee

    1995-01-01

    A method and article of manufacture of a coated iron based alloy. The method includes providing an iron based alloy substrate, depositing a silicon containing layer on the alloy surface while maintaining the alloy at a temperature of about 700.degree. C.-1200.degree. C. to diffuse silicon into the alloy surface and exposing the alloy surface to an ammonia atmosphere to form a silicon/oxygen/nitrogen containing protective layer on the iron based alloy.

  17. Surface modification of high temperature iron alloys

    DOEpatents

    Park, J.H.

    1995-06-06

    A method and article of manufacture of a coated iron based alloy are disclosed. The method includes providing an iron based alloy substrate, depositing a silicon containing layer on the alloy surface while maintaining the alloy at a temperature of about 700--1200 C to diffuse silicon into the alloy surface and exposing the alloy surface to an ammonia atmosphere to form a silicon/oxygen/nitrogen containing protective layer on the iron based alloy. 13 figs.

  18. Surface chemical modification of waxy maize starch nanocrystals.

    PubMed

    Angellier, Hélène; Molina-Boisseau, Sonia; Belgacem, Mohamed Naceur; Dufresne, Alain

    2005-03-15

    The surface of waxy maize starch nanocrystals obtained from sulfuric acid hydrolysis of native waxy maize starch granules was chemically modified using two different reagents, namely, alkenyl succinic anhydride and phenyl isocyanate. The occurrence of chemical modification was evaluated by FTIR and X-ray photoelectron spectroscopies. Contact angle measurements from which the surface energy of the materials under investigation was deduced showed that chemical modification led to more hydrophobic particles. Chemical modification altered the morphology of particles, as shown by observation by transmission electron microscopy, but not their crystallinity (X-ray diffraction analysis).

  19. Calorimetric study of surface and interfacial properties of fine coal

    SciTech Connect

    Melkus, T.G.A.

    1986-01-01

    In order to study the surface/interfacial properties of fine coal, heat flux calorimeter was used to make heat of immersion (..delta..H/sub imm/) measurements. These heats have been shown to be a valuable means of investigating the chemistry and surface properties of solids as they interact with adsorbate molecules. In addition, heats of immersion can be used to characterize a solid in terms of hydrophobicity/hydrophilicity and estimate its relative wetting tendency. The first phase of experiments that were performed served as a basis for comparison of coal components/characteristics immersed in deionized, distilled water. The results of these experiments were found to correlate well with reported flotation trends. In the second phase of experiments, the solids that were previously investigated were immersed in various wetting media. The solids were characterized in terms of hydrophobicity/hydrophilicity and their relative wetting tendency was also established. Heat of immersion measurements using surfactant solutions demonstrated that preferential adsorption of the surfactant molecule occurs on the coal surface, thereby altering its surface properties. This was supported by laboratory vacuum filtration tests. Using flotation agents as the wetting medium, the heat of immersion was found to vary with kerosene concentration, pH, kaolin addition and oxidation of the solid surface. The results of these ..delta..H/sub imm/ measurements were found to correlate very well with results obtained by independent flotation experiments performed under the same conditions.

  20. Spectroelectrochemical analysis of HOPG surface controlled modification

    NASA Astrophysics Data System (ADS)

    Franceschini, Esteban A.; Lacconi, Gabriela I.

    2017-04-01

    In situ Raman spectroscopy is used to characterize the changes induced by electrochemical oxidation and silver electrodeposition at the step-edge and terrace sites of highly-oriented pyrolytic graphite (HOPG) surfaces. Ag crystallites are observed to become preferentially deposited onto previously oxidized step edges, thereby leading to an enhancement of the Raman active modes of the HOPG surface. Ex situ Raman spectra recorded after HOPG oxidation exhibit clear differences for both terrace and step-edge areas of the surface. An increase of D and D´ band intensity and two well-defined D-band contributions, D1 (at 1324 cm-1) and D2 (at 1344 cm-1), are the main features observed after oxidation. This effect can be correlated with the presence of step-edge sites on the surface, and are found to be strongly dependent on the pH of the solution used in the surface electrochemical oxidation experiments.

  1. Surface modifications with Lissajous trajectories using atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Cai, Wei; Yao, Nan

    2015-09-01

    In this paper, we report a method for atomic force microscopy surface modifications with single-tone and multiple-resolution Lissajous trajectories. The tip mechanical scratching experiments with two series of Lissajous trajectories were carried out on monolayer films. The scratching processes with two scan methods have been illustrated. As an application, the tip-based triboelectrification phenomenon on the silicon dioxide surface with Lissajous trajectories was investigated. The triboelectric charges generated within the tip rubbed area on the surface were characterized in-situ by scanning Kelvin force microscopy. This method would provide a promising and cost-effective approach for surface modifications and nanofabrication.

  2. Oxidation of coal and coal pyrite mechanisms and influence on surface characteristics. Technical progress report, June 1995--August 1995

    SciTech Connect

    Doyle, F.M.

    1996-03-01

    The objective of this research is to develop a mechanistic understanding of the oxidation of coal and coal pyrite, and to correlate the intrinsic physical and chemical properties of these minerals, along with changes resulting from oxidation, with those surface properties that influence the behavior in physical cleaning processes. The action of coal and pyrite as reducing agents and as waste processing sorptive material for wastes outside the industry are also discussed.

  3. Surface Modifications by Field Induced Diffusion

    PubMed Central

    Olsen, Martin; Hummelgård, Magnus; Olin, Håkan

    2012-01-01

    By applying a voltage pulse to a scanning tunneling microscope tip the surface under the tip will be modified. We have in this paper taken a closer look at the model of electric field induced surface diffusion of adatoms including the van der Waals force as a contribution in formations of a mound on a surface. The dipole moment of an adatom is the sum of the surface induced dipole moment (which is constant) and the dipole moment due to electric field polarisation which depends on the strength and polarity of the electric field. The electric field is analytically modelled by a point charge over an infinite conducting flat surface. From this we calculate the force that cause adatoms to migrate. The calculated force is small for voltage used, typical 1 pN, but due to thermal vibration adatoms are hopping on the surface and even a small net force can be significant in the drift of adatoms. In this way we obtain a novel formula for a polarity dependent threshold voltage for mound formation on the surface for positive tip. Knowing the voltage of the pulse we then can calculate the radius of the formed mound. A threshold electric field for mound formation of about 2 V/nm is calculated. In addition, we found that van der Waals force is of importance for shorter distances and its contribution to the radial force on the adatoms has to be considered for distances smaller than 1.5 nm for commonly used voltages. PMID:22253894

  4. Surface modification of tribological components in transportation

    SciTech Connect

    Fenske, G.R.

    1992-11-01

    This paper reviews a number of programs funded through the Engineered Tribological Interfaces (ETI) Task area of the Tribology Program that utilize energetic beams of atoms to enhance the mechanical and microstructural properties of near-surface regions to improve the tribological performance of critical components. The processes used in these programs include techniques based on chemical vapor deposition, physical vapor deposition, and ion implantation. A common feature of these techniques is their ability to produce dense and adherent modified surfaces without need for subsequent grinding/polishing treatments. Another feature of these techniques is their ability to introduce a wide range of elements into near-surface regions.

  5. Overview of surface-water quality in Ohio's coal regions

    USGS Publications Warehouse

    Westover, Susan; Eberle, Michael

    1987-01-01

    This report is designed to provide the nontechnical audience with some of the results of an 'Assessment of Water Quality in Streams Draining Coal-Producing Areas in Ohio,' by Christine L. Pfaff and others (published by the U.S. Geological Survey in 1981). The purpose of the assessment was to document the occurrence of certain chemical constituents in streams in Ohio's coal region and determine to what extent the presence of these constituents was related to mining. Ohio's most productive coal seams are associated with the Allegheny and Monongahela Formation of Pennsylvanian age. These coals were mined by underground methods very early in Ohio's history. Underground mining continues in the state today; however, surface mining now produces significantly more coal. Acid mine drainage from unreclaimed surface and underground mines has affected surface-water quality in Ohio for many years, and recently has led to establishment of reclamation programs by State and Federal agencies. In their assessment of Ohio's coal region, Pfaff and others sampled 150 sites in small watersheds underlain by the Allegheny and the Monogahela Formations. Each site represented only one of four land-use types (active-mine, unmined, abandoned-mine, or reclaimed). Statistical analysis of data from the unmined, abandoned-mine, and reclaimed sites showed that there were significant differences in pH, specific conductance, alkalinity, and concentrations of sulfate and aluminum among abandoned-mine and unmined sites. Reclaimed sites had average pH values and aluminum concentrations similar to those unmined sites. Average specific conductance and sulfate concentrations were about the same for reclaimed abandoned-mine sites, but were significantly lower at unmined sites; specific conductance and sulfate concentration, in fact, proved to be reliable indicators of basins that had been disturbed by mining. Alkalinity was significantly different for all three land uses, the highest values being found at

  6. Practical applications of plasma surface modification

    SciTech Connect

    Smith, M.D.

    1993-12-01

    Radio frequency activated gas plasma is an environmentally conscious manufacturing process which provides surface treatments for improved product quality. Plasma processing offers significant potential for reducing the use of solvents and other wet processing chemicals now used in surface treatments such as cleaning, activation for bonding, and moisture removal. Plasma treatments are generally accomplished without creating hazardous waste streams to dispose of. Plasma process development and application is ongoing at Allied Signal Inc., Kansas City Division.

  7. 30 CFR 933.761 - Areas designated unsuitable for surface coal mining by Act of Congress.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... WITHIN EACH STATE NORTH CAROLINA § 933.761 Areas designated unsuitable for surface coal mining by Act of Congress. Part 761 of this chapter, Areas Designated Unsuitable for Coal Mining by Act of Congress, with the exception of §§ 761.11(c) and 761.12(f)(1), shall apply to surface coal mining and...

  8. 30 CFR 933.761 - Areas designated unsuitable for surface coal mining by Act of Congress.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... WITHIN EACH STATE NORTH CAROLINA § 933.761 Areas designated unsuitable for surface coal mining by Act of Congress. Part 761 of this chapter, Areas Designated Unsuitable for Coal Mining by Act of Congress, with the exception of §§ 761.11(c) and 761.12(f)(1), shall apply to surface coal mining and...

  9. 30 CFR 933.761 - Areas designated unsuitable for surface coal mining by Act of Congress.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... WITHIN EACH STATE NORTH CAROLINA § 933.761 Areas designated unsuitable for surface coal mining by Act of Congress. Part 761 of this chapter, Areas Designated Unsuitable for Coal Mining by Act of Congress, with the exception of §§ 761.11(c) and 761.12(f)(1), shall apply to surface coal mining and...

  10. 30 CFR 933.761 - Areas designated unsuitable for surface coal mining by Act of Congress.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... WITHIN EACH STATE NORTH CAROLINA § 933.761 Areas designated unsuitable for surface coal mining by Act of Congress. Part 761 of this chapter, Areas Designated Unsuitable for Coal Mining by Act of Congress, with the exception of §§ 761.11(c) and 761.12(f)(1), shall apply to surface coal mining and...

  11. 30 CFR 933.761 - Areas designated unsuitable for surface coal mining by Act of Congress.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... WITHIN EACH STATE NORTH CAROLINA § 933.761 Areas designated unsuitable for surface coal mining by Act of Congress. Part 761 of this chapter, Areas Designated Unsuitable for Coal Mining by Act of Congress, with the exception of §§ 761.11(c) and 761.12(f)(1), shall apply to surface coal mining and...

  12. 43 CFR 20.402 - Interests in underground or surface coal mining operations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 1 2012-10-01 2011-10-01 true Interests in underground or surface coal... Certain Employees of the Department § 20.402 Interests in underground or surface coal mining operations... coal mining operations means ownership or part ownership by an employee of lands, stocks,...

  13. 77 FR 26046 - Proposed Extension of Existing Information Collection; Ground Control for Surface Coal Mines and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-02

    ...-0026] Proposed Extension of Existing Information Collection; Ground Control for Surface Coal Mines and Surface Work Areas of Underground Coal Mines AGENCY: Mine Safety and Health Administration, Labor. ACTION....C. 813(a)) (the Mine Act)) requires that frequent inspections and investigations in coal or...

  14. 43 CFR 20.402 - Interests in underground or surface coal mining operations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 1 2011-10-01 2011-10-01 false Interests in underground or surface coal... Certain Employees of the Department § 20.402 Interests in underground or surface coal mining operations... coal mining operations means ownership or part ownership by an employee of lands, stocks,...

  15. The structural and surface properties of natural and modified coal gangue.

    PubMed

    Jabłońska, Beata; Kityk, Andriy V; Busch, Mark; Huber, Patrick

    2017-04-01

    A novel application of coal gangue as inexpensive adsorbents is considered in this study. The structural and surface properties of natural and modified gangue were studied via nitrogen adsorption. Four types of samples were studied: natural, modified with H2NO3 and H2O2 and calcined at 250 °C and 600 °C. The specific surface area and porosity of the samples were determined using various methods. The raw material is mainly mesoporous with relatively small specific surface area. The chemical modification enlarged the total pore volume and the specific surface area. The calcination at 250 °C enlarged slightly the pore volume and lowered the specific surface area, but did not cause significant changes in the structural properties. The calcination at 600 °C resulted in a significant increase in pore volume and a decrease in specific surface area. These results suggest that the coal gangue studied here could be used as inexpensive adsorbent in industrial wastewater pretreatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. ELECTROSTATIC SURFACE STRUCTURES OF COAL AND MINERAL PARTICLES

    SciTech Connect

    1998-12-01

    It is the purpose of this research to study electrostatic charging mechanisms related to electrostatic beneficiation of coal with the goal of improving models of separation and the design of electrostatic separators. Areas addressed in this technical progress report are (a) electrostatic beneficiation of Pittsburgh #8 coal powders as a function of grind size and processing atmosphere; (b) the use of fluorescent micro-spheres to probe the charge distribution on the surfaces of coal particles; (c) the use of electrostatic beneficiation to recover unburned carbon from flyash; (d) the development of research instruments for investigation of charging properties of coal. Pittsburgh #8 powders were beneficiated as a function of grind size and under three atmosphere conditions: fresh ground in air , after 24 hours of air exposure, or under N2 atmosphere. The feed and processed powders were analyzed by a variety of methods including moisture, ash, total sulfur, and pyritic sulfur content. Mass distribution and cumulative charge of the processed powders were also measured. Fresh ground coal performed the best in electrostatic beneficiation. Results are compared with those of similar studies conducted on Pittsburgh #8 powders last year (April 1, 1997 to September 30, 1997). Polystyrene latex spheres were charged and deposited onto coal particles that had been passed through the electrostatic separator and collected onto insulating filters. The observations suggest bipolar charging of individual particles and patches of charge on the particles which may be associated with particular maceral types or with mineral inclusions. A preliminary investigation was performed on eletrostatic separation of unburned carbon particles from flyash. Approximately 25% of the flyash acquired positive charge in the copper tribocharger. This compares with 75% of fresh ground coal. The negatively charged material had a slightly reduced ash content suggesting some enrichment of carbonaceous material

  17. 30 CFR 947.764 - Process for designating areas unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... WITHIN EACH STATE WASHINGTON § 947.764 Process for designating areas unsuitable for surface coal mining... coal mining and reclamation operations. (b) The Secretary shall notify the Washington Department of...

  18. 30 CFR 947.764 - Process for designating areas unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... WITHIN EACH STATE WASHINGTON § 947.764 Process for designating areas unsuitable for surface coal mining... coal mining and reclamation operations. (b) The Secretary shall notify the Washington Department of...

  19. 30 CFR 947.764 - Process for designating areas unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... WITHIN EACH STATE WASHINGTON § 947.764 Process for designating areas unsuitable for surface coal mining... coal mining and reclamation operations. (b) The Secretary shall notify the Washington Department of...

  20. Plasma technologies application for building materials surface modification

    NASA Astrophysics Data System (ADS)

    Luchkin, A. G.; Hakki, A.; Rahimov, N. F.; Sadikov, K. G.; Luchkin, G. S.

    2017-01-01

    Low-temperature plasma modification of LiYF4 crystal surface in Helium atmosphere caused microhardness decreasing and increasing of roughness of crystal surface. The change of microhardness and morphology is a possible result of Fluorine outgoing from material structure due to heating of surface and plasma chemical reactions and ingoing of Oxygen. As a result of exchange and diffusion processes crystal surface structure become more crumbly, its morphology and mechanical properties change.

  1. ELECTROSTATIC SURFACE STRUCTURES OF COAL AND MINERAL PARTICLES

    SciTech Connect

    1998-04-01

    This is the third semi-annual, technical progress report for this project. The following items are covered in the report: (1) Progress on the development of an instrument to perform ultraviolet photoelectron spectroscopy, UPS, on surfaces in air. (2) Further development plans for the video particle image analyzer. (3) Calculations on the effect of space charge on the electric field inside a separator. (4) Outreach education involving two Arkansas high school students in the project. (5) Additional data on the effects of processing atmosphere on beneficiation. Included in the last section is a description of planned experiments using charged, fluorescent, polystyrene micro-particles to map the charge distribution on the larger coal particles and on polished coal surfaces.

  2. Control of pyrite surface chemistry in physical coal cleaning

    SciTech Connect

    Luttrell, G.H.; Yoon, R.H.; Ou, Z.S.

    1992-06-24

    The successful separation of pyrite from coal by flotation is dependent to a large extent upon the selectivity of the process, and the use of a pyrite depressant is one of the most important and cost-effective techniques for achieving this. This report evaluates the effects of three factors on the floatability of pyrite. These are (1) the superficial oxidation of pyrite, (2) the contamination of pyrite surfaces by carbonaceous matter, and (3) pulp redox potentials. XPS (x-ray photoelectron spectroscopy) and IR spectrometry have been used to identify surface reaction products. Microflotation, laboratory-scale conventional flotation and microbubble column flotation were used to quantify the effects of these factors. It was found that low (reducing) pulp potentials are effective depressants of pyrite (more so for fresh, unoxidized samples than for oxidized samples), whilst at the same time do not materially affect coal flotation.

  3. Nanoscale Surface Modification of Layered Materials

    NASA Astrophysics Data System (ADS)

    O'Shea, Aaron

    2011-11-01

    A scanning electron microscope can magnify a sample many times greater than a standard microscope, down to nanoscale dimensions. It can also be used to form patterns on the surfaces of certain materials, a technique used to create microchips. We have developed a technique that simplifies and expedites this process using an unmodified scanning electron microscope. Using this technique, we are able to alter the surface chemistry in a controlled pattern on a special class of materials called transition metal dichalcogenides. These materials have many useful applications: industrial lubricants; high strength nanocomposites; advanced solar cells; and next generation electronics. Altering the surface chemistry of these materials at the nanoscale results in unusual quantum behavior, which is useful in nanotechnology.

  4. Surface modification by subsurface pressure induced diffusion

    NASA Astrophysics Data System (ADS)

    Zimmermann, Claus G.

    2012-01-01

    Polycrystalline Ag, covered with a nm thin siloxane layer, was irradiated with ultraviolet light in vacuum at 500 K. Ag particles of different aspect ratios, 50-1000 nm in size, formed on the surface, including a small fraction of nanorods. Pressurized water vapor bubbles are created in the subsurface region by hydrogen radicals photo-chemically released by the siloxane layer. They provide the driving force for a diffusive material flux along grain boundaries to the surface. This mechanism was modeled and found to agree with the experimental timescale: approximately 300 h are required for a 1000 nm particle to form.

  5. Surface modification by subsurface pressure induced diffusion

    SciTech Connect

    Zimmermann, Claus G.

    2012-01-23

    Polycrystalline Ag, covered with a nm thin siloxane layer, was irradiated with ultraviolet light in vacuum at 500 K. Ag particles of different aspect ratios, 50-1000 nm in size, formed on the surface, including a small fraction of nanorods. Pressurized water vapor bubbles are created in the subsurface region by hydrogen radicals photo-chemically released by the siloxane layer. They provide the driving force for a diffusive material flux along grain boundaries to the surface. This mechanism was modeled and found to agree with the experimental timescale: approximately 300 h are required for a 1000 nm particle to form.

  6. Magellan - Initial analysis of Venus surface modification

    NASA Astrophysics Data System (ADS)

    Arvidson, R. E.; Baker, V. R.; Elachi, C.; Saunders, R. S.; Wood, J. A.

    1991-04-01

    Images of the Venus surface provided by the Magellan mission make it possible to see the fine-scale features diagnostic of weathering, erosion, and deposition. These include ejecta deposits extending up to 1000 km to the west of several impact craters, windblown deposits, features containing both obstacles and a source of particulate material, and evidence for degradation by atmosphere-surface interactions and mass movements. Initial Magellan observations pertaining to the nature, rate, and history of surficial processes are analyzed. Emphasis is placed on radar imaging, but results from radiometry and altimetry observations are also discussed.

  7. Status of surface modification techniques for artificial hip implants

    PubMed Central

    Ghosh, Subir; Abanteriba, Sylvester

    2016-01-01

    Abstract Surface modification techniques have been developed significantly in the last couple of decades for enhanced tribological performance of artificial hip implants. Surface modification techniques improve biological, chemical and mechanical properties of implant surfaces. Some of the most effective techniques, namely surface texturing, surface coating, and surface grafting, are applied to reduce the friction and wear of artificial implants. This article reviews the status of the developments of surface modification techniques and their effects on commonly used artificial joint implants. This study focused only on artificial hip joint prostheses research of the last 10 years. A total of 27 articles were critically reviewed and categorized according to surface modification technique. The literature reveals that modified surfaces exhibit reduced friction and enhanced wear resistance of the contact surfaces. However, the wear rates are still noticeable in case of surface texturing and surface coating. The associated vortex flow aids to release entrapped wear debris and thus increase the wear particles generation in case of textured surfaces. The earlier delamination of coating materials due to poor adhesion and graphitization transformation has limited the use of coating techniques. Moreover, the produced wear debris has adverse effects on biological fluid. Conversely, the surface grafting technique provides phospholipid like layer that exhibited lower friction and almost zero wear rates even after a longer period of friction and wear test. The findings suggest that further investigations are required to identify the role of surface grafting on film formation and heat resistance ability under physiological hip joint conditions for improved performance and longevity of hip implants. PMID:28228866

  8. Status of surface modification techniques for artificial hip implants.

    PubMed

    Ghosh, Subir; Abanteriba, Sylvester

    2016-01-01

    Surface modification techniques have been developed significantly in the last couple of decades for enhanced tribological performance of artificial hip implants. Surface modification techniques improve biological, chemical and mechanical properties of implant surfaces. Some of the most effective techniques, namely surface texturing, surface coating, and surface grafting, are applied to reduce the friction and wear of artificial implants. This article reviews the status of the developments of surface modification techniques and their effects on commonly used artificial joint implants. This study focused only on artificial hip joint prostheses research of the last 10 years. A total of 27 articles were critically reviewed and categorized according to surface modification technique. The literature reveals that modified surfaces exhibit reduced friction and enhanced wear resistance of the contact surfaces. However, the wear rates are still noticeable in case of surface texturing and surface coating. The associated vortex flow aids to release entrapped wear debris and thus increase the wear particles generation in case of textured surfaces. The earlier delamination of coating materials due to poor adhesion and graphitization transformation has limited the use of coating techniques. Moreover, the produced wear debris has adverse effects on biological fluid. Conversely, the surface grafting technique provides phospholipid like layer that exhibited lower friction and almost zero wear rates even after a longer period of friction and wear test. The findings suggest that further investigations are required to identify the role of surface grafting on film formation and heat resistance ability under physiological hip joint conditions for improved performance and longevity of hip implants.

  9. Surface modification and characterization Collaborative Research Center at ORNL

    SciTech Connect

    Not Available

    1986-01-01

    The Surface Modification and Characterization Collaborative Research Center (SMAC/CRC) is a unique facility for the alteration and characterization of the near-surface properties of materials. The SMAC/CRC facility is equipped with particle accelerators and high-powered lasers which can be used to improve the physical, electrical, and/or chemical properties of solids and to create unique new materials not possible to obtain with conventional ''equilibrium'' processing techniques. Surface modification is achieved using such techniques as ion implantation doping, ion beam mixing, laser mixing, ion deposition, and laser annealing.

  10. A general strategy for the ultrafast surface modification of metals

    NASA Astrophysics Data System (ADS)

    Shen, Mingli; Zhu, Shenglong; Wang, Fuhui

    2016-12-01

    Surface modification is an essential step in engineering materials that can withstand the increasingly aggressive environments encountered in various modern energy-conversion systems and chemical processing industries. However, most traditional technologies exhibit disadvantages such as slow diffusion kinetics, processing difficulties or compatibility issues. Here, we present a general strategy for the ultrafast surface modification of metals inspired by electromigration, using aluminizing austenitic stainless steel as an example. Our strategy facilitates the rapid formation of a favourable ductile surface layer composed of FeCrAl or β-FeAl within only 10 min compared with several hours in conventional processes. This result indicates that electromigration can be used to achieve the ultrafast surface modification of metals and can overcome the limitations of traditional technologies. This strategy could be used to aluminize ultra-supercritical steam tubing to withstand aggressive oxidizing environments.

  11. Plasma assisted surface coating/modification processes - An emerging technology

    NASA Technical Reports Server (NTRS)

    Spalvins, T.

    1987-01-01

    A broad understanding of the numerous ion or plasma assisted surface coating/modification processes is sought. An awareness of the principles of these processes is needed before discussing in detail the ion nitriding technology. On the basis of surface modifications arising from ion or plasma energizing and interactions, it can be broadly classified as deposition of distinct overlay coatings (sputtering-dc, radio frequency, magnetron, reactive; ion plating-diode, triode) and surface property modification without forming a discrete coating (ion implantation, ion beam mixing, laser beam irradiation, ion nitriding, ion carburizing, plasma oxidation. These techniques offer a great flexibility and are capable in tailoring desirable chemical and structural surface properties independent of the bulk properties.

  12. Plasma assisted surface coating/modification processes: An emerging technology

    NASA Astrophysics Data System (ADS)

    Spalvins, T.

    A broad understanding of the numerous ion or plasma assisted surface coating/modification processes is sought. An awareness of the principles of these processes is needed before discussing in detail the ion nitriding technology. On the basis of surface modifications arising from ion or plasma energizing and interactions, it can be broadly classified as deposition of distinct overlay coatings (sputtering-dc, radio frequency, magnetron, reactive; ion plating-diode, triode) and surface property modification without forming a discrete coating (ion implantation, ion beam mixing, laser beam irradiation, ion nitriding, ion carburizing, plasma oxidation). These techniques offer a great flexibility and are capable in tailoring desirable chemical and structural surface properties independent of the bulk properties.

  13. Plasma assisted surface coating/modification processes - An emerging technology

    NASA Astrophysics Data System (ADS)

    Spalvins, T.

    A broad understanding of the numerous ion or plasma assisted surface coating/modification processes is sought. An awareness of the principles of these processes is needed before discussing in detail the ion nitriding technology. On the basis of surface modifications arising from ion or plasma energizing and interactions, it can be broadly classified as deposition of distinct overlay coatings (sputtering-dc, radio frequency, magnetron, reactive; ion plating-diode, triode) and surface property modification without forming a discrete coating (ion implantation, ion beam mixing, laser beam irradiation, ion nitriding, ion carburizing, plasma oxidation. These techniques offer a great flexibility and are capable in tailoring desirable chemical and structural surface properties independent of the bulk properties.

  14. A general strategy for the ultrafast surface modification of metals

    PubMed Central

    Shen, Mingli; Zhu, Shenglong; Wang, Fuhui

    2016-01-01

    Surface modification is an essential step in engineering materials that can withstand the increasingly aggressive environments encountered in various modern energy-conversion systems and chemical processing industries. However, most traditional technologies exhibit disadvantages such as slow diffusion kinetics, processing difficulties or compatibility issues. Here, we present a general strategy for the ultrafast surface modification of metals inspired by electromigration, using aluminizing austenitic stainless steel as an example. Our strategy facilitates the rapid formation of a favourable ductile surface layer composed of FeCrAl or β-FeAl within only 10 min compared with several hours in conventional processes. This result indicates that electromigration can be used to achieve the ultrafast surface modification of metals and can overcome the limitations of traditional technologies. This strategy could be used to aluminize ultra-supercritical steam tubing to withstand aggressive oxidizing environments. PMID:27924909

  15. A general strategy for the ultrafast surface modification of metals.

    PubMed

    Shen, Mingli; Zhu, Shenglong; Wang, Fuhui

    2016-12-07

    Surface modification is an essential step in engineering materials that can withstand the increasingly aggressive environments encountered in various modern energy-conversion systems and chemical processing industries. However, most traditional technologies exhibit disadvantages such as slow diffusion kinetics, processing difficulties or compatibility issues. Here, we present a general strategy for the ultrafast surface modification of metals inspired by electromigration, using aluminizing austenitic stainless steel as an example. Our strategy facilitates the rapid formation of a favourable ductile surface layer composed of FeCrAl or β-FeAl within only 10 min compared with several hours in conventional processes. This result indicates that electromigration can be used to achieve the ultrafast surface modification of metals and can overcome the limitations of traditional technologies. This strategy could be used to aluminize ultra-supercritical steam tubing to withstand aggressive oxidizing environments.

  16. Plasma assisted surface coating/modification processes - An emerging technology

    NASA Technical Reports Server (NTRS)

    Spalvins, T.

    1987-01-01

    A broad understanding of the numerous ion or plasma assisted surface coating/modification processes is sought. An awareness of the principles of these processes is needed before discussing in detail the ion nitriding technology. On the basis of surface modifications arising from ion or plasma energizing and interactions, it can be broadly classified as deposition of distinct overlay coatings (sputtering-dc, radio frequency, magnetron, reactive; ion plating-diode, triode) and surface property modification without forming a discrete coating (ion implantation, ion beam mixing, laser beam irradiation, ion nitriding, ion carburizing, plasma oxidation. These techniques offer a great flexibility and are capable in tailoring desirable chemical and structural surface properties independent of the bulk properties.

  17. Plasma assisted surface coating/modification processes: An emerging technology

    NASA Technical Reports Server (NTRS)

    Spalvins, T.

    1986-01-01

    A broad understanding of the numerous ion or plasma assisted surface coating/modification processes is sought. An awareness of the principles of these processes is needed before discussing in detail the ion nitriding technology. On the basis of surface modifications arising from ion or plasma energizing and interactions, it can be broadly classified as deposition of distinct overlay coatings (sputtering-dc, radio frequency, magnetron, reactive; ion plating-diode, triode) and surface property modification without forming a discrete coating (ion implantation, ion beam mixing, laser beam irradiation, ion nitriding, ion carburizing, plasma oxidation). These techniques offer a great flexibility and are capable in tailoring desirable chemical and structural surface properties independent of the bulk properties.

  18. Pyrite surface characterization and control for advanced fine coal desulfurization technologies

    SciTech Connect

    Wang, X.H.; Leonard, J.W.; Parekh, B.K.; Raichur, A.M.; Jiang, C.L.

    1992-01-01

    The objective of the project is to conduct extensive fundamental studies on the surface reactivity and surface hydrophobicity of coal-pyrites using various surface characterization techniques and to understand how the alteration of the coal-pyrite surface affects the efficiency of pyrite rejection in coal flotation. During this reporting period, the influence of the impurity content, particularly coal/carbon content, on the electrochemical oxidation of pyrite surfaces was investigated. The studies demonstrate that the coal/carbon content in coal-pyrite has a determining effect on the surface reactivity of pyrite. The oxidation behavior of high carbon-content coal-pyrite is completely different from that of purer coal-pyrite and ore-pyrite. The effects of flotation gases on the flotation behavior of coal and the surface hydrophobicity of various coal-pyrite were investigated. It was found from the lab-scale column flotation studies that among the various gases studied (air, oxygen, argon, nitrogen and carbon dioxide), carbon dioxide produced the best results with a combustible recovery of 90% and ash-content of less than 9 percent. Finally, the surface energetic studies revealed that the surfaces of pyrites and coals produced by wet grinding is more heterogenous than that prepared by dry grinding.

  19. Surface modification of nanosheet oxide photocatalysts

    NASA Astrophysics Data System (ADS)

    Blair, Victoria L.; Nichols, Eric J.; Liu, Jian; Misture, Scott T.

    2013-03-01

    A range of Aurivillius oxides of the form Bi2An-1BnO3n+3 were evaluated for photodegradation of methylene blue dye. Variants included 2-, 3-, and 4-layered materials with B = Ti, Nb, or Ta and A = alkaline earths, alkali and rare earths. All phases were tested as their parent oxides and after acid-exchange to form stacked protonated nanosheets. Several high-activity catalysts were identified and improvements in the photodegradation rates were achieved both by milling to increase surface area and separately by acid protonation followed by dehydration. Both processes yielded marked improvements in the photodegradation rates, some with more than 3 times improvement. The improvement is attributed to improved adsorption after the surface reconstruction that occurs with acid treatment and dehydration.

  20. Surface Modification by Physical Vapour Deposition,

    DTIC Science & Technology

    1983-07-13

    effect of the rare-earth metals is to form a stable oxide at the surface, or to form stable perovskites such as CaTiO3 or EuTiO3 , and thus prevent...Bunshah, "High Rate Deposition Of Hafnium By Activated Reactive Evaporation", Thin Solid Films, 63, 327, (1979). 5 B.E. Jacobson, R. Nimuagadda, R.F

  1. Carbon Surface Modification for Enhanced Corrosion Resistance

    DTIC Science & Technology

    2008-01-01

    LTCSS-treated 316L SS, representing a sig- nificant increase in surface hardness over the substrate material (Vickers 300 HV). To give some perspective...behavior of particular interest to the Navy. Comparison of crevice corrosion resistance for untreated 316L SS and LTCSS- treated 316L is presented in...Fig. 2. Crevice corrosion damage on an untreated 316L coupon following one week of crevice exposure is shown in the center of the figure. LTCSS

  2. Surface modification: how nanoparticles assemble to molecular imaging probes

    NASA Astrophysics Data System (ADS)

    Tan, Huilong; Yu, Lun; Gao, Feng; Liao, Weihua; Wang, Wei; Zeng, Wenbin

    2013-12-01

    Nanomaterials have attracted widespread attention due to their unique chemical and physical properties, such as size-dependent optical, magnetic, or catalytic properties, thus have the great potential application, especially in the fields of new materials and devices. The emergence of nanoparticle-based probe has led to important innovations in molecular imaging field. Several types of nanoparticles have been employed for molecular imaging application, including Au/Ag nanoparticles, upconversion nanoparticles (UCNPs), quantum dots, dye-doped nanoparticles, magnetic nanoparticles (MNPs), etc. The preparation of nanoparticle-based probe for molecular imaging routinely includes three steps: synthesis, surface modification, and bioconjugation, among which surface modification plays an important role for the whole procedure. Surface modification usually possesses the safety, biocompatibility, stability, hydrophilicity, and terminal functional groups for further conjugation. This review aims to outline the surface modification of how nanoparticles assemble to probes, focusing on the developments of two widely used nanoparticles, UCNPs and MNPs. Recent advances of different types of linkers, a core component for surface modification, are summarized. It shows the intimate relationship between chemistry and nanoscience. Finally, perspectives and challenges of nanoparticle-based probe in the field of molecular imaging are expected.

  3. Modification of Aerodynamic Surfaces Using Plasma

    DTIC Science & Technology

    2005-07-01

    slading discharge (Task 3) ……………………………………………………………………..…………...35 § 2.1. Development of discharge physical model. General properties of sliding discharge...be called for solution of plasma aerodynamic problems. A sliding discharge possess a number of unique properties (simplicity of realization...investigation of sub-layer material effect on the discharge properties . 6. Test experiments on sliding discharge’s forming at a curvilinear surface

  4. Surface modification of activated carbon for enhanced adsorption of perfluoroalkyl acids from aqueous solutions.

    PubMed

    Zhi, Yue; Liu, Jinxia

    2016-02-01

    The objective of the research was to examine the effect of increasing carbon surface basicity on uptake of perfluorooctane sulfonic (PFOS) and carboxylic acids (PFOA) by activated carbon. Granular activated carbons made from coal, coconut shell, wood, and phenolic-polymer-based activated carbon fibers were modified through high-temperature and ammonia gas treatments to facilitate systematical evaluation of the impact of basicity of different origins. Comparison of adsorption isotherms and adsorption distribution coefficients showed that the ammonia gas treatment was more effective than the high-temperature treatment in enhancing surface basicity. The resultant higher point of zero charges and total basicity (measured by total HCl uptake) correlated with improved adsorption affinity for PFOS and PFOA. The effectiveness of surface modification to enhance adsorption varied with carbon raw material. Wood-based carbons and activated carbon fibers showed enhancement by one to three orders of magnitudes while other materials could experience reduction in adsorption towards either PFOS or PFOA.

  5. 77 FR 76516 - Notice of Availability of the Record of Decision for the Federal Coal Lease Modifications COC...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-28

    ...-1362 and COC-67232 for the West Elk Mine Near Somerset, CO AGENCY: Bureau of Land Management, Interior... West Elk Mine lease modifications underlying National Forest System (NFS) lands included in the Federal... Ark Land Companies existing Federal coal lease COC-67232 by adding 800 acres at the West Elk Mine....

  6. The Modification of Ferroelectric Surfaces for Catalysis

    NASA Astrophysics Data System (ADS)

    Herdiech, Matthew William

    Ferroelectrics are a class of materials in which a net dipole can be associated with each repeat unit, resulting in a potentially large electric field through the material. The ability to reversibly switch the polarization direction by applying an external electric field distinguishes ferroelectrics from polar orientations of ordinary materials. Recent studies exploring the reactivity of ferroelectric surfaces toward polar molecules have shown that the heats of adsorption for these molecules are polarization dependent, but the surfaces tend to be unreactive. Despite the inertness of ferroelectric surfaces, their use as supports for catalytically active materials could yield novel reactivity. As even metal oxides that are generally considered inert can influence the catalytic properties of supported layers, a ferroelectric support may offer the opportunity to modulate catalytic activity since charge compensation of the polar surfaces might include chemical and electronic reconstructions of the active layer. In this thesis, the fabrication of active layers with polarization dependent properties was investigated by coating ferroelectric substrates with catalytically active oxides that are likely to grow in a layer-by-layer manner. Two systems in particular were explored: chromium oxide on ferroelectric lithium niobate (Cr2O3/LiNbO3), and ruthenium oxide on ferroelectric lead zirconate titanate (RuO2/Pb(Zr0.2Ti0.8)O 3). The chromium oxide and ruthenium oxide films were characterized with X-ray photoelectron spectroscopy (XPS), low energy electron diffraction (LEED), and reflection high energy electron diffraction (RHEED). Additionally, the chromium oxide films were characterized with X-ray diffraction (XRD) and X-ray reflectivity (XRR) measurements, and the ruthenium oxide films were characterized with ion scattering spectroscopy (ISS) measurements. The reactivity of the films was investigated using temperature programmed desorption (TPD) measurements. In particular

  7. Oxidation of coal and coal pyrite mechanisms and influence on surface characteristics. Technical progress report, May 31, 1995

    SciTech Connect

    Doyle, F.M.

    1995-12-31

    The objective of this research is to develop a mechanistic understanding of the oxidation of coal and coal pyrite, and to correlate the intrinsic physical and chemical properties of these minerals, along with changes resulting from oxidation, with those surface properties that influence the behavior in physical cleaning processes. Work during the nineteenth quarter has concluded studies of the surface functional groups produced on coal by severe thermal and chemical oxidation, and on investigating the partition of metal ions between such strongly oxidized coal samples and aqueous solutions. This partitioning behavior was being followed to obtain further information on the chemistry of the coal surfaces after different oxidation treatments. Adsorption isotherms for the uptake of Cd{sup 2+} on coal oxidized by different methods were obtained, and these and the Cu{sup 2+} adsorption isotherms reported in the last report have been scrutinized, and interpreted more exhaustively. The apparent discrepancies noted in the last report for the analysis of surface functional groups have been investigated further. The adsorption behavior has been related to the surface chemistry of Upper Freeport coal oxidized by different methods.

  8. Oxidation of coal and coal pyrite mechanisms and influence on surface characteristics. Technical progress report, September 30, 1992

    SciTech Connect

    Doyle, F.M.

    1992-12-31

    The objective of this research is to develop a mechanistic understanding of the oxidation of coal and coal pyrite, and to correlate the intrinsic physical and chemical properties of these minerals, along with changes resulting from oxidation, with those surface properties that influence the behavior in physical cleaning processes. The results will provide fundamental insight into oxidation, in terms of the bulk and surface chemistry, the microstructure, and the semiconductor properties of the pyrite. During the eighth quarter, wet chemical and dry oxidation tests were done on Upper Freeport coal from the Troutville {number_sign}2 Mine, Clearfield County, Pennsylvania. In addition electrochemical experiments were done on electrodes prepared from Upper Freeport coal pyrite and Pittsburgh coal pyrite samples provided by the US Bureau of Mines, Pittsburgh Research Center, Pennsylvania.

  9. Quantitative characterization of physical processes during nanometer surface modification

    NASA Astrophysics Data System (ADS)

    McBride, S. E.; Wetsel, G. C., Jr.

    1990-12-01

    A scanning tunneling microscope developed for microscopy, spectroscopy, and lithography has been used for modification of metallic surfaces exposed to the atmosphere. We report here the first quantitative characterization of a submicrometer area of a metallic sample before and after pulsing the tip-sample voltage using both tunneling spectroscopy determination of the apparent mean barrier potential (φ) and imaging of the area in constant tunneling current mode. The before and after images show that the form of the created features ranges from craters to mounds. The current wave form recorded during a surface modification is indicative of the form of the feature. Diminution of the contamination layer often associated with surfaces exposed to the atmosphere is inferred from the values of φ before and after modification. Analysis of the results indicates that the observed features were caused by high electric fields and not by high temperatures.

  10. Recent advances in liposome surface modification for oral drug delivery.

    PubMed

    Nguyen, Thanh Xuan; Huang, Lin; Gauthier, Mario; Yang, Guang; Wang, Qun

    2016-05-01

    Oral delivery via the gastrointestinal (GI) tract is the dominant route for drug administration. Orally delivered liposomal carriers can enhance drug solubility and protect the encapsulated theraputic agents from the extreme conditions found in the GI tract. Liposomes, with their fluid lipid bilayer membrane and their nanoscale size, can significantly improve oral absorption. Unfortunately, the clinical applications of conventional liposomes have been hindered due to their poor stability and availability under the harsh conditions typically presented in the GI tract. To overcome this problem, the surface modification of liposomes has been investigated. Although liposome surface modification has been extensively studied for oral drug delivery, no review exists so far that adequately covers this topic. The purpose of this paper is to summarize and critically analyze emerging trends in liposome surface modification for oral drug delivery.

  11. Surface modification of implants in long bone.

    PubMed

    Förster, Yvonne; Rentsch, Claudia; Schneiders, Wolfgang; Bernhardt, Ricardo; Simon, Jan C; Worch, Hartmut; Rammelt, Stefan

    2012-01-01

    Coatings of orthopedic implants are investigated to improve the osteoinductive and osteoconductive properties of the implant surfaces and thus to enhance periimplant bone formation. By applying coatings that mimic the extracellular matrix a favorable environment for osteoblasts, osteoclasts and their progenitor cells is provided to promote early and strong fixation of implants. It is known that the early bone ongrowth increases primary implant fixation and reduces the risk of implant failure. This review presents an overview of coating titanium and hydroxyapatite implants with components of the extracellular matrix like collagen type I, chondroitin sulfate and RGD peptide in different small and large animal models. The influence of these components on cells, the inflammation process, new bone formation and bone/implant contact is summarized.

  12. Enhanced cover methods for surface coal refuse reclamation

    SciTech Connect

    Gentile, L.F.; Cargill, K.W.; McGarvie, S.D.

    1997-12-31

    Controlling acid rock drainage (ARD) can be a major component of surface mining reclamation. An enhanced reclamation cover system is being constructed to control infiltration of rain water and generation of ARD from coal-refuse disposal areas at a closed mine in southern Illinois. Development of the mine reclamation plan required consideration of ARD generation in coal refuse disposal areas located adjacent to an alluvial aquifer used for public water supply. An integrated site characterization was performed at the mine to provide information to develop and support the enhanced reclamation plan. The enhanced cover system is similar to covers required for municipal solid waste landfills by the Resource Conversation and Recovery Act (RCRA), Subtitle D regulations. The system comprises a graded and compacted gob layer, overlain by a compacted clay liner, and a protective soil cover. The results of infiltration modeling and analyses showed that the standard reclamation cover is effective in reducing infiltration by about 18 percent compared to an unreclaimed coal-refuse surface. The modeling results showed that the inhanced cover system should reduce infiltration by about 84 percent. The geochemical modeling results showed that the reduction in infiltration would help minimize ARD generation and contribute to an earlier reclamation of the mine site.

  13. Cumulative hydrologic impact assessment of coal surface mining in north Georgia - surface water

    SciTech Connect

    Poe, M.L.; Betson, R.P.

    1983-10-01

    Flow and water-quality data for surface water in the north Georgia coal region is presented in this report. The data were collected by TVA and the USGS; the TVA data were collected in July 1981 and the USGS data were collected primarily from 1979 through 1981, with some dating back to 1976. An analysis of the potential for surface-water quantity and quality problems due to future surface mining of coal is also presented. Several areas exhibiting this potential are listed, with the potential for erosion being the most widespread and the potential for acid drainage being localized but more difficult to prevent. 43 references, 6 figures, 14 tables.

  14. 30 CFR 800.17 - Bonding requirements for underground coal mines and long-term coal-related surface facilities and...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Bonding requirements for underground coal mines and long-term coal-related surface facilities and structures. 800.17 Section 800.17 Mineral Resources... REQUIREMENTS FOR SURFACE COAL MINING AND RECLAMATION OPERATIONS BOND AND INSURANCE REQUIREMENTS FOR SURFACE...

  15. Surface modification of titanium and titanium alloys by ion implantation.

    PubMed

    Rautray, Tapash R; Narayanan, R; Kwon, Tae-Yub; Kim, Kyo-Han

    2010-05-01

    Titanium and titanium alloys are widely used in biomedical devices and components, especially as hard tissue replacements as well as in cardiac and cardiovascular applications, because of their desirable properties, such as relatively low modulus, good fatigue strength, formability, machinability, corrosion resistance, and biocompatibility. However, titanium and its alloys cannot meet all of the clinical requirements. Therefore, to improve the biological, chemical, and mechanical properties, surface modification is often performed. In view of this, the current review casts new light on surface modification of titanium and titanium alloys by ion beam implantation.

  16. Antibacterial Drug Releasing Materials by Post-Polymerization Surface Modification

    NASA Astrophysics Data System (ADS)

    Chng, Shuyun; Moloney, Mark G.; Wu, Linda Y. L.

    Functional materials are available by the post-polymerization surface modification of diverse polymers in a three-step process mediated, firstly, by carbene insertion chemistry, secondly, by diazonium coupling, and thirdly by modification with a remotely tethered spiropyran unit, and these materials may be used for the reversible binding and release of Penicillin V. Surface loading densities of up to 0.19mmol/g polymer are achievable, leading to materials with higher loading densities and release behavior relative to unmodified controls, and observable antibacterial biocidal activity.

  17. 30 CFR 905.764 - Process for designating areas unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... surface coal mining operations. 905.764 Section 905.764 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE CALIFORNIA § 905.764 Process for designating areas unsuitable for surface coal...

  18. 30 CFR 910.764 - Process for designating areas unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... surface coal mining operations. 910.764 Section 910.764 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE GEORGIA § 910.764 Process for designating areas unsuitable for surface coal...

  19. 30 CFR 912.764 - Process for designating areas unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... surface coal mining operations. 912.764 Section 912.764 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE IDAHO § 912.764 Process for designating areas unsuitable for surface coal...

  20. 30 CFR 903.764 - Process for designating areas unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... surface coal mining operations. 903.764 Section 903.764 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE ARIZONA § 903.764 Process for designating areas unsuitable for surface coal...

  1. 30 CFR 922.764 - Process for designating areas unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... surface coal mining operations. 922.764 Section 922.764 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE MICHIGAN § 922.764 Process for designating areas unsuitable for surface coal mining...

  2. 30 CFR 910.764 - Process for designating areas unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... surface coal mining operations. 910.764 Section 910.764 Mineral Resources OFFICE OF SURFACE MINING... WITHIN EACH STATE GEORGIA § 910.764 Process for designating areas unsuitable for surface coal mining operations. Part 764 of this chapter, State Processes for Designating Areas Unsuitable for Surface...

  3. 30 CFR 903.764 - Process for designating areas unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... surface coal mining operations. 903.764 Section 903.764 Mineral Resources OFFICE OF SURFACE MINING... WITHIN EACH STATE ARIZONA § 903.764 Process for designating areas unsuitable for surface coal mining operations. Part 764 of this chapter, State Processes for Designating Areas Unsuitable for Surface...

  4. 30 CFR 905.764 - Process for designating areas unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... surface coal mining operations. 905.764 Section 905.764 Mineral Resources OFFICE OF SURFACE MINING... WITHIN EACH STATE CALIFORNIA § 905.764 Process for designating areas unsuitable for surface coal mining operations. Part 764 of this chapter, State Processes for Designating Areas Unsuitable for Surface...

  5. 30 CFR 912.764 - Process for designating areas unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... surface coal mining operations. 912.764 Section 912.764 Mineral Resources OFFICE OF SURFACE MINING... WITHIN EACH STATE IDAHO § 912.764 Process for designating areas unsuitable for surface coal mining operations. Part 764 of this chapter, State Processes for Designating Areas Unsuitable for Surface...

  6. Pyrite surface characterization and control for advanced fine coal desulfurization technologies

    SciTech Connect

    Wang, Xiang-Huai; Leonard, J.W.; Parekh, B.K.; Jiang, Chengliang; Raichur, A.M.

    1992-07-14

    The objective of this project is to conduct extensive studies on the surface reactivity and surface hydrophobicity of coal-pyrites using various surface characterization techniques and to correlate the alteration of the coal-pyrite surface with the efficiency of pyrite rejection in coal flotation. The flotation characteristics of coal-pyrites under various conditions was studied and compared with ore-pyrite and coal to determine the causes of pyrite rejection difficulties in coal flotation. Both the native and induced floatabilities of pyrites were investigated. It was found that both coal- and ore-pyrites, ff prepared by dry-grinding, show little or no floatability in the absence of any chemical reagents. After ultrasonic pretreatment, ore-pyrite floats effectively in the acidic to neutral pH range. Kentucky No. 9 coal-pyrite (KYPY) shows significant flotation in the pH range 7--10. With ethyl xanthate as collector, ore-pyrite floats well up to pH = 10; while coal-pyrite reveals no flotation above pH = 6. For the first time, the effect of coal collector on the floatability of coal-pyrite has been studied. It was shown that in the presence of fuel oil--a widely used collector for promoting coal flotation, coal-pyrite, particularly for the fine sizes, shows good flotation below pH = 11, whereas ore-pyrite has no or little floatability. These studies demonstrate that one of the main causes of the coal-pyrite flotation in coal separation is the oil-induced floatability due to adsorption/attachment of oil droplets on the coal-pyrite surfaces, the native'' or self-induced'' floatability of pyrite is no as profound as the oil-induced flotation.

  7. Surface electrochemical control for fine coal and pyrite separation. Technical progress report, July 1, 1991--September 30, 1991

    SciTech Connect

    Hu, Weibai; Huang, Qinping; Li, Jun; Riley, A.; Turcotte, S.B.; Benner, R.E.; Zhu, Ximeng; Bodily, D.M.; Liang, Jun; Zhong, Tinghe; Wadsworth, M.E.

    1991-12-31

    The ongoing work includes the characterization of coal pyrites, the floatability evaluation of three typical US coal samples, the flotation behavior of coal pyrites, the electrochemical measurement of the surface properties of coal pyrites, and the characterization of species produced at pyrite surfaces. This report covers a Raman spectroscopy of species produced electrochemically on pyrite surfaces.

  8. Polydopamine-Assisted Surface Modification for Bone Biosubstitutes

    PubMed Central

    Zhou, Xin

    2016-01-01

    Polydopamine (PDA) prepared in the form of a layer of polymerized dopamine (DA) in a weak alkaline solution has been used as a versatile biomimetic surface modifier as well as a broadly used immobilizing macromolecule. This review mainly discusses the progress of biomaterial surface modification inspired by the participation of PDA in bone tissue engineering. A comparison between PDA-assisted coating techniques and traditional surface modification applied to bone tissue engineering is first presented. Secondly, the chemical composition and the underlying formation mechanism of PDA coating layer as a unique surface modifier are interpreted and discussed. Furthermore, several typical examples are provided to evidence the importance of PDA-assisted coating techniques in the construction of bone biosubstitutes and the improvement of material biocompatibility. Nowadays, the application of PDA as a superior surface modifier in multifunctional biomaterials is drawing tremendous interests in bone tissue scaffolds to promote the osteointegration for bone regeneration. PMID:27595097

  9. Development of a method for characterizing changes in coal and mineral surfaces resulting from beneficiation processes

    SciTech Connect

    Slomka, B.J.; Seward, K.J.; Dawson, M.R.; Buttermore, W.H.

    1989-01-01

    A novel method was developed for characterizing changes in coal and mineral surfaces resulting from sonication and other cleaning processes. This method employs a unique flow-cell to permit the dynamic measurement of dye adsorption on coal and mineral particle surfaces. The rates and extents of adsorption of ionic dyes on Illinois No. 6 coal were found to be dependent on mineral content and particle size of ground coal samples. A significant correlation was observed between the adsorbed quantity of dye and the total mineral content of coal. In preliminary experiments with methylene blue dye, clay was found to absorb significantly more of the dye than quartz, pyrite, calcite, or clean coal'' surfaces. By using dyes of differing adsorption selectivity, it is demonstrated that sonication reduces the apparent mineral content on the surface of coal. 9 refs., 7 fig., 3 tabs.

  10. Impact of Dental Implant Surface Modifications on Osseointegration

    PubMed Central

    Smeets, Ralf; Stadlinger, Bernd; Schwarz, Frank; Beck-Broichsitter, Benedicta; Jung, Ole; Precht, Clarissa; Kloss, Frank; Gröbe, Alexander; Heiland, Max

    2016-01-01

    Objective. The aim of this paper is to review different surface modifications of dental implants and their effect on osseointegration. Common marketed as well as experimental surface modifications are discussed. Discussion. The major challenge for contemporary dental implantologists is to provide oral rehabilitation to patients with healthy bone conditions asking for rapid loading protocols or to patients with quantitatively or qualitatively compromised bone. These charging conditions require advances in implant surface design. The elucidation of bone healing physiology has driven investigators to engineer implant surfaces that closely mimic natural bone characteristics. This paper provides a comprehensive overview of surface modifications that beneficially alter the topography, hydrophilicity, and outer coating of dental implants in order to enhance osseointegration in healthy as well as in compromised bone. In the first part, this paper discusses dental implants that have been successfully used for a number of years focusing on sandblasting, acid-etching, and hydrophilic surface textures. Hereafter, new techniques like Discrete Crystalline Deposition, laser ablation, and surface coatings with proteins, drugs, or growth factors are presented. Conclusion. Major advancements have been made in developing novel surfaces of dental implants. These innovations set the stage for rehabilitating patients with high success and predictable survival rates even in challenging conditions. PMID:27478833

  11. 43 CFR 20.402 - Interests in underground or surface coal mining operations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Certain Employees of the Department § 20.402 Interests in underground or surface coal mining operations... coal mining operations means ownership or part ownership by an employee of lands, stocks, bonds... employee may benefit from his or her holding in or salary from coal mining operation. Direct...

  12. 43 CFR 20.402 - Interests in underground or surface coal mining operations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Certain Employees of the Department § 20.402 Interests in underground or surface coal mining operations... coal mining operations means ownership or part ownership by an employee of lands, stocks, bonds... employee may benefit from his or her holding in or salary from coal mining operation. Direct...

  13. Surface modification of magnesium hydroxide using vinyltriethoxysilane by dry process

    NASA Astrophysics Data System (ADS)

    Lan, Shengjie; Li, Lijuan; Xu, Defang; Zhu, Donghai; Liu, Zhiqi; Nie, Feng

    2016-09-01

    In order to improve the compatibility between magnesium hydroxide (MH) and polymer matrix, the surface of MH was modified using vinyltriethoxysilane (VTES) by dry process and the interfacial interaction between MH and VTES was also studied. Zeta potential measurements implied that the MH particles had better dispersion and less aggregation after modification. Sedimentation tests showed that the surface of MH was transformed from hydrophilic to hydrophobic, and the dispersibility and the compatibility of MH particles significantly improved in the organic phase. Scanning electronic microscopy (SEM), Transmission electron microscopy (TEM) and X-ray powder diffraction (XRD) analyses showed that a thin layer had formed on the surface of the modified MH, but did not alter the material's crystalline phase. Fourier transform infrared (FT-IR) spectra, X-ray photoelectron spectra (XPS) and Thermogravimetric analysis (TGA) showed that the VTES molecules bound strongly to the surface of MH after modification. Chemical bonds (Sisbnd Osbnd Mg) formed by the reaction between Si-OC2H5 and hydroxyl group of MH, also there have physical adsorption effect in the interface simultaneously. A modification mechanism of VTES on the MH surface by dry process was proposed, which different from the modification mechanism by wet process.

  14. Pneumoconiosis and advanced occupational lung disease among surface coal miners--16 states, 2010-2011.

    PubMed

    2012-06-15

    Coal workers' pneumoconiosis (CWP) is a chronic occupational lung disease caused by long-term inhalation of dust, which triggers inflammation of the alveoli, eventually resulting in irreversible lung damage. CWP ranges in severity from simple to advanced; the most severe form is progressive massive fibrosis (PMF). Advanced CWP is debilitating and often fatal. To prevent CWP, the Coal Mine Health and Safety Act of 1969 established the current federal exposure limit for respirable dust in underground and surface coal mines. The Act also established a surveillance system for assessing prevalence of pneumoconiosis among underground coal miners, but this surveillance does not extend to surface coal miners. With enforcement of the exposure limit, the prevalence of CWP among underground coal miners declined from 11.2% during 1970-1974 to 2.0% during 1995-1999, before increasing unexpectedly in the last decade, particularly in Central Appalachia. Exposure to respirable dust is thought to be less in surface than underground coal miners. Although they comprise 48% of the coal mining workforce, surface coal miners have not been studied since 2002. To assess the prevalence, severity, and geographic distribution of pneumoconiosis among current surface coal miners, CDC obtained chest radiographs of 2,328 miners during 2010-2011 through the Coal Workers' Health Surveillance Program of the National Institute for Occupational Safety and Health (NIOSH). Forty-six (2.0%) of 2,257 miners with >1 year of surface mining experience had CWP, including 37 who had never worked underground. Twelve (0.5%) had PMF, including nine who had never worked underground. A high proportion of the radiographs suggested silicosis, a disease caused by inhalation of crystalline silica. Surface coal mine operators should monitor worker exposures closely to ensure that both respirable dust and silica are below recommended levels to prevent CWP. Clinicians should be aware of the risk for advanced

  15. Heterogeneous polymer modification: Polyolefin maleation in supercritical carbon dioxide and amorphous fluoropolymer surface modification

    NASA Astrophysics Data System (ADS)

    Hayes, Heather J.

    1999-11-01

    Three distinct heterogeneous polymer modification reactions are explored in this work. The first is a bulk reaction commonly conducted on polyolefins---the free radical addition of maleic anhydride. This reaction was run using supercritical carbon dioxide (SC CO2) as the solvent. The second was the chemical surface modification of an amorphous fluorocopolymer of tetrafluoroethylene and a perfluorodioxole monomer (Teflon AF). Several reactions were explored to reduce the surface of the fluorocopolymer for the enhancement of wettability. The last modification was also on Teflon AF and involved the physical modification of the surface through the transport polymerization of xylylene in order to synthesize a novel bilayer membrane. The bulk maleation of poly-4-methyl-1-pentene (PMP) was the focus of the first project. SC CO2 was utilized as both solvent and swelling agent to promote this heterogeneous reaction and led to successful grafting of anhydride groups on both PMP and linear low density polyethylene. Varying the reaction conditions and reagent concentrations allowed optimization of the reaction. The grafted anhydride units were found to exist as single maleic and succinic grafts, and the PMP became crosslinked upon maleation. The surface of a fluoropolymer can be difficult to alter. An examination of three reactions was made to determine the reactivity of Teflon AF: sodium naphthalenide treatment (Na-Nap), aluminum metal modification through deposition and dissolution, and mercury/ammonia photosensitization. The fluorocopolymer with the lower perfluorodioxole percentage was found to be more reactive towards modification with the Na-Nap treatment. The other modification reactions appeared to be nearly equally reactive toward both fluorocopolymers. The functionality of the Na-Nap-treated surface was examined in detail with the use of several derivatization reactions. In the final project, an asymmetric gas separation membrane was synthesized using Teflon AF as

  16. Surface modification of polymeric materials by cold atmospheric plasma jet

    NASA Astrophysics Data System (ADS)

    Kostov, K. G.; Nishime, T. M. C.; Castro, A. H. R.; Toth, A.; Hein, L. R. O.

    2014-09-01

    In this work we report the surface modification of different engineering polymers, such as, polyethylene terephthalate (PET), polyethylene (PE) and polypropylene (PP) by an atmospheric pressure plasma jet (APPJ). It was operated with Ar gas using 10 kV, 37 kHz, sine wave as an excitation source. The aim of this study is to determine the optimal treatment conditions and also to compare the polymer surface modification induced by plasma jet with the one obtained by another atmospheric pressure plasma source - the dielectric barrier discharge (DBD). The samples were exposed to the plasma jet effluent using a scanning procedure, which allowed achieving a uniform surface modification. The wettability assessments of all polymers reveal that the treatment leads to reduction of more than 40° in the water contact angle (WCA). Changes in surface composition and chemical bonding were analyzed by x-ray photoelectron spectroscopy (XPS) and Fourier-Transformed Infrared spectroscopy (FTIR) that both detected incorporation of oxygen-related functional groups. Surface morphology of polymer samples was investigated by Atomic Force Microscopy (AFM) and an increase of polymer roughness after the APPJ treatment was found. The plasma-treated polymers exhibited hydrophobic recovery expressed in reduction of the O-content of the surface upon rinsing with water. This process was caused by the dissolution of low molecular weight oxidized materials (LMWOMs) formed on the surface as a result of the plasma exposure.

  17. Control of pyrite surface chemistry in physical coal cleaning

    SciTech Connect

    Yoon, R.H.; Richardson, P.R.

    1992-06-24

    One of the most difficult separations in minerals processing involves the differential flotation of pyrite and coal. Under practical flotation conditions, they are both hydrophobic and no cost-effective method has been developed to efficiently reject the pyrite. The problem arises from inherent floatability of coal and pyrite. Coal is naturally hydrophobic and remains so under practical flotation. Although pyrite is believed to be naturally hydrophilic under practical flotation conditions it undergoes a relatively rapid incipient oxidation reaction that causes self-induced'' flotation. The oxidation product responsible for self-induced'' flotation is believed to be a metal polysulfide, excess sulfur in the lattice, or in some cases elemental sulfur. It is believed that if incipient oxidation of pyrite could be prevented, good pyrite rejection could be obtained. In order to gain a better understanding of how pyrite oxidizes, a new method of preparing fresh, unoxidized pyrite surfaces and a new method of studying pyrite oxidation have been developed this reporting period.

  18. Superhydrophobic surfaces fabricated by surface modification of alumina particles

    NASA Astrophysics Data System (ADS)

    Richard, Edna; Aruna, S. T.; Basu, Bharathibai J.

    2012-10-01

    The fabrication of superhydrophobic surfaces has attracted intense interest because of their widespread potential applications in various industrial fields. Recently, some attempts have been carried out to prepare superhydrophobic surfaces using metal oxide nanoparticles. In the present work, superhydrophobic surfaces were fabricated with low surface energy material on alumina particles with different sizes. It was found that particle size of alumina is an important factor in achieving stable superhydrophobic surface. It was possible to obtain alumina surface with water contact angle (WCA) of 156° and a sliding angle of <2°. Superhydrophobicity of the modified alumina is attributed to the combined effect of the micro-nanostructure and low surface energy of fatty acid on the surface. The surface morphology of the alumina powder and coatings was determined by FESEM. The stability of the coatings was assessed by conducting water immersion test. Effect of heat treatment on WCA of the coating was also studied. The transition of alumina from hydrophilic to superhydrophobic state was explained using Wenzel and Cassie models. The method is shown to have potential application for creating superhydrophobic surface on cotton fabrics.

  19. Ceramic surface modifications induced by pulsed laser treatment

    NASA Astrophysics Data System (ADS)

    Cappelli, E.; Orlando, S.; Sciti, D.; Montozzi, M.; Pandolfi, L.

    2000-02-01

    Technical polycrystalline sintered Al 2O 3 (90%) substrates have been irradiated, in a vacuum chamber, at grazing incident angles (˜30°), with pulsed ArF ( λ=193 nm, hν=6.4 eV) excimer laser, at different fluences and numbers of pulses, to modify the structure and morphology of the surface. Vacuum, inert gas and oxygen atmospheres, at different substrate temperatures, ˜25°C and ˜700°C, have been used to study surface chemistry and morphology modifications induced by laser energy. Surface chemistry has been analysed by XPS spectroscopy. Morphological modifications have been studied by SEM/EDS microscopy. Changes in surface roughness have been quantified by a standard profilometer.

  20. Printing-assisted surface modifications of patterned ultrafiltration membranes

    SciTech Connect

    Wardrip, Nathaniel C.; Dsouza, Melissa; Urgun-Demirtas, Meltem; Snyder, Seth W.; Gilbert, Jack A.; Arnusch, Christopher J.

    2016-10-17

    Understanding and restricting microbial surface attachment will enhance wastewater treatment with membranes. We report a maskless lithographic patterning technique for the generation of patterned polymer coatings on ultrafiltration membranes. Polyethylene glycol, zwitterionic, or negatively charged hydrophilic polymer compositions in parallel- or perpendicular-striped patterns with respect to feed flow were evaluated using wastewater. Membrane fouling was dependent on the orientation and chemical composition of the coatings. Modifications reduced alpha diversity in the attached microbial community (Shannon indices decreased from 2.63 to 1.89) which nevertheless increased with filtration time. Sphingomonas species, which condition membrane surfaces and facilitate cellular adhesion, were depleted in all modified membranes. Microbial community structure was significantly different between control, different patterns, and different chemistries. Lastly, this study broadens the tools for surface modification of membranes with polymer coatings and for understanding and optimization of antifouling surfaces.

  1. Printing-assisted surface modifications of patterned ultrafiltration membranes

    DOE PAGES

    Wardrip, Nathaniel C.; Dsouza, Melissa; Urgun-Demirtas, Meltem; ...

    2016-10-17

    Understanding and restricting microbial surface attachment will enhance wastewater treatment with membranes. We report a maskless lithographic patterning technique for the generation of patterned polymer coatings on ultrafiltration membranes. Polyethylene glycol, zwitterionic, or negatively charged hydrophilic polymer compositions in parallel- or perpendicular-striped patterns with respect to feed flow were evaluated using wastewater. Membrane fouling was dependent on the orientation and chemical composition of the coatings. Modifications reduced alpha diversity in the attached microbial community (Shannon indices decreased from 2.63 to 1.89) which nevertheless increased with filtration time. Sphingomonas species, which condition membrane surfaces and facilitate cellular adhesion, were depleted inmore » all modified membranes. Microbial community structure was significantly different between control, different patterns, and different chemistries. Lastly, this study broadens the tools for surface modification of membranes with polymer coatings and for understanding and optimization of antifouling surfaces.« less

  2. Advancing Sustainable Catalysis with Magnetite Surface Modification and Synthetic Applications

    EPA Science Inventory

    This article surveys the recent developments in the synthesis, surface modification, and synthetic applications of magnetitenanoparticles. The emergence of iron(II,III) oxide (triiron tetraoxide or magnetite; Fe3O4, or FeO•Fe2O3) nanoparticles as a sustainable support in heteroge...

  3. Advancing Sustainable Catalysis with Magnetite Surface Modification and Synthetic Applications

    EPA Science Inventory

    This article surveys the recent developments in the synthesis, surface modification, and synthetic applications of magnetitenanoparticles. The emergence of iron(II,III) oxide (triiron tetraoxide or magnetite; Fe3O4, or FeO•Fe2O3) nanoparticles as a sustainable support in heteroge...

  4. Norepinephrine: material-independent, multifunctional surface modification reagent.

    PubMed

    Kang, Sung Min; Rho, Junsung; Choi, Insung S; Messersmith, Phillip B; Lee, Haeshin

    2009-09-23

    A facile approach for material-independent surface modification using norepinephrine was investigated. pH-induced oxidative polymerization of norepinephrine forms adherent films on vastly different types of material surfaces of noble metals, metal oxides, semiconductors, ceramics, shape-memory alloys, and synthetic polymers. Secondary biochemical functionalizations such as immobilization of proteins and growth of biodegradable polyester on the poly(norepinephrine) films were demonstrated.

  5. ELECTROSTATIC SURFACE STRUCTURES OF COAL AND MINERAL PARTICLES

    SciTech Connect

    M.K. Mazumder; D.A. Lindquist; K.B. Tennal

    1999-04-01

    We have developed a video image analyzer for measuring the size and charge of airborne particles. Particles are illuminated by laser light and subjected to a sinusoidal electric field while images of the trajectories of the particles are captured using a video camera and a frame grabber. Analysis of the particle tracks allows the size and charge of the particles to be determined. The instrument can be used to measure size and charge spectra of charged coal and mineral particles in real time. Appendix I shows size and charge distributions of coal and flyash particles measured with the image analyzer. A second instrument, an Ultraviolet Photoelectron Spectrometer (UPS) for measuring effective work functions of insulator and semiconductor surfaces in air is under development. Work function data for individual macerals and minerals in a coal matrix will be related to triboelectric charging properties. In this instrumental method, originally developed by Kirhata, the surface of a test sample is bombarded by monochromatic ultraviolet light of known wavelength. At atmospheric pressure, the photo-ejected electrons attach to air molecules forming negative ions. The ions are attracted by an applied electric field into a detector where they are accelerated to sufficient energy that they cause momentary dielectric breakdown or discharge in the air inside the detector. The rate at which these discharges occur is proportional to the rate at which photoelectrons are generated at the sample surface. From a plot of the discharge rate as a function of photon energy the minimum energy needed to remove an electron can be determined. The mechanical components of our instrument have been completed. A number of electronic circuit difficulties remain to be solved. The counting circuits are able to produce a count rate proportional to the ion concentration generated using a corona gun. However, when the high voltage accelerating potential is applied the circuit oscillates preventing proper

  6. Effect of coal mine dust and clay extracts on the biological activity of the quartz surface.

    PubMed

    Stone, V; Jones, R; Rollo, K; Duffin, R; Donaldson, K; Brown, D M

    2004-04-01

    Modification of the quartz surface by aluminium salts and metallic iron have been shown to reduce the biological activity of quartz. This study aimed to investigate the ability of water soluble extracts of coal mine dust (CMD), low aluminium clays (hectorite and montmorillonite) and high aluminium clays (attapulgite and kaolin) to inhibit the reactivity of the quartz surface. DQ12 induced significant haemolysis of sheep erythrocytes in vitro and inflammation in vivo as indicated by increases in the total cell numbers, neutrophil cell numbers, MIP-2 protein and albumin content of bronchoalveolar lavage (BAL) fluid. Treatment of DQ12 with CMD extract prevented both haemolysis and inflammation. Extracts of the high aluminium clays (kaolin and attapulgite) prevented inhibition of DQ12 induced haemolysis, and the kaolin extract inhibited quartz driven inflammation. DQ12 induced haemolysis by coal mine dust and kaolin extract could be prevented by pre-treatment of the extracts with a cation chellator. Extracts of the low aluminium clays (montmorillonite and hectorite) did not prevent DQ12 induced haemolysis, although the hectorite extract did prevent inflammation. These results suggest that CMD, and clays both low and rich in aluminium, all contain soluble components (possibly cations) capable of masking the reactivity of the quartz surface.

  7. Potential effects of surface coal mining on the hydrology of the Bloomfield coal tract, Dawson County, eastern Montana

    USGS Publications Warehouse

    Cannon, M.R.

    1983-01-01

    The Bloomfield coal tract in Dawson County, Montana, contains about 420 million tons of recoverable coal reserves within the Pust coal bed. About 136 million tons of coal within the tract is Federally owned, of which 98 million tons has been identified for potential lease sale. A hydrologic study has been conducted in the potential lease area to describe existing hydrologic systems and to assess potential impacts of surface coal mining on local water resources. Shallow ground-water resources in the tract are limited to sandstone and coal aquifers in the Tongue River Member of the Fort Union Formation (Paleocene age). These shallow aquifers have small values of hydraulic conductivity; yields to wells generally range from 1 to 10 gallons per minute. Water from shallow sandstone and coal aquifers is used primarily for livestock watering and domestic supply. Chemical analyses indicate that water from most shallow aquifers is dominated by calcium and magnesium cations and sulfate and bicarbonate anions. Surface-water resources in the tract consist primarily of small reservoirs used for livestock watering. All streams in the tract are ephemeral, making them unreliable as a source of livestock water. Mining of the Pust coal bed would cause certain impacts on local water resources. About 15 stock and domestic wells and 13 small stock reservoirs would be destroyed by mining. Shallow coal and sandstone aquifers would be permanently removed from parts of the tract. Leaching of soluble salts from mine spoils may cause a long-term degradation of the quality of water in shallow aquifers in or near the coal tract. Impacts on the local water resources could be mitigated by development of alternative ground-water supplies from deeper aquifers in the Fort Union and in the Upper Cretaceous Hell Creek and Fox Hills Formations. Reservoirs destroyed by mining could be reconstructed during mine reclamation. (USGS)

  8. Thermal surface characteristics of coal fires 1 results of in-situ measurements

    NASA Astrophysics Data System (ADS)

    Zhang, Jianzhong; Kuenzer, Claudia

    2007-12-01

    Natural underground coal fires are fires in coal seams occurring subsurface. The fires are ignited through a process named spontaneous combustion, which occurs based on a natural reaction but is usually triggered through human interaction. Coal mining activities expose coal to the air. This leads to the exothermal oxidation of the carbon in the coal with the air's oxygen to CO 2 and - under certain circumstances - to spontaneous combustion. Coal fires occur in many countries world wide - however, currently the Chinese coal mining industry faces the biggest problems with coal fires. Coal fires destroy the valuable resource coal and furthermore lead to many environmental degradation phenomena such as the deterioration of surrounding vegetation, land subsidence and the emission of toxic gasses (CO, N 2O). They additionally contribute to the emission of green house relevant gasses such as CO 2 and CH 4 to the atmosphere. In this paper we present thermal characteristics of coal fires as measured in-situ during a field campaign to the Wuda coal fire area in south-central Inner Mongolia, China. Thermal characteristics include temperature anomaly measurements at the surface, spatial surface temperature profiles of fire areas and unaffected background areas, diurnal temperature profiles, and temperature measurements inside of coal fire induced cracks in the overlying bedrock. For all the measurements the effects of uneven solar heating through influences of slope and aspect are considered. Our findings show that coal fires result in strong or subtle thermal surface anomalies. Especially the latter can easily be influenced by heating of the surrounding background material through solar influences. Temperature variation of background rocks with different albedo, slope, aspect or vegetation cover can substantially influence the detectability of thermal anomalies. In the worst case coal fire related thermal anomalies can be completely masked by solar patterns during the daytime

  9. Surface movement above an underground coal longwall mine after closure

    NASA Astrophysics Data System (ADS)

    Vervoort, André

    2016-09-01

    The surface movement in an area of about 22 km2 above the underground coal mine of Houthalen was analyzed based on Interferometry with Synthetic Aperture Radar (InSAR) measurements. After its closure in 1992, a residual subsidence was observed over a period of several years, followed by an uplift of the surface above and around the past longwall panels, whereby the rate of movement was, in absolute terms, of the same order for the two types of movements. The processes behind these movements are different. The process of subsidence is caused by the caving of the roof above the mined-out area and is mainly a mechanical stress-deformation process, including time-dependent aspects. However, the process of uplift is most probably caused by the swelling of the clay minerals in the argillaceous rocks in the coal strata after the flooding of the underground workings. Hence, the areas in which there is the greatest risk of damage to the surface infrastructure are not the same for the hazards linked to subsidence and uplift. For example, the zone in which the maximum uplift occurs clearly is at a different location from that of the zone with the maximum residual subsidence. There is no clear sign that the amount of mining underneath affects the residual subsidence, and there is no indication that the process of uplift is linked directly to the mining characteristics. It is more likely that uplift as the result of flooding is initiated at, or close to, the vertical shafts.

  10. 30 CFR 785.12 - Special bituminous surface coal mining and reclamation operations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Special bituminous surface coal mining and reclamation operations. 785.12 Section 785.12 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND...

  11. 30 CFR 905.761 - Areas designated unsuitable for surface coal mining by act of Congress.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... WITHIN EACH STATE CALIFORNIA § 905.761 Areas designated unsuitable for surface coal mining by act of Congress. Part 761 of this chapter, Areas Designated by Act of Congress, shall apply to surface coal mining... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Areas designated unsuitable for surface...

  12. 30 CFR 937.761 - Areas designated unsuitable for surface coal mining by Act of Congress.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... WITHIN EACH STATE OREGON § 937.761 Areas designated unsuitable for surface coal mining by Act of Congress. Part 761 of this chapter, Areas Designated by Act of Congress, shall apply to surface coal mining and... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Areas designated unsuitable for surface...

  13. 30 CFR 941.761 - Areas designated unsuitable for surface coal mining by act of Congress.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... WITHIN EACH STATE SOUTH DAKOTA § 941.761 Areas designated unsuitable for surface coal mining by act of Congress. Part 761 of this chapter, Areas Designated by Act of Congress, shall apply to surface coal mining... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Areas designated unsuitable for surface...

  14. 30 CFR 921.764 - Process for designating areas unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... surface coal mining operations. 921.764 Section 921.764 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS... Coal Mining Operations, pertaining to petitioning, initial processing, hearing requirements,...

  15. 30 CFR 921.761 - Areas designated unsuitable for surface coal mining by Act of Congress.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... WITHIN EACH STATE MASSACHUSETTS § 921.761 Areas designated unsuitable for surface coal mining by Act of Congress. Part 761 of this chapter, Areas Designated by Act of Congress, shall apply to surface coal mining... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Areas designated unsuitable for surface...

  16. 30 CFR 921.761 - Areas designated unsuitable for surface coal mining by Act of Congress.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... WITHIN EACH STATE MASSACHUSETTS § 921.761 Areas designated unsuitable for surface coal mining by Act of Congress. Part 761 of this chapter, Areas Designated by Act of Congress, shall apply to surface coal mining... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Areas designated unsuitable for surface...

  17. 30 CFR 912.761 - Areas designated unsuitable for surface coal mining by act of Congress.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... WITHIN EACH STATE IDAHO § 912.761 Areas designated unsuitable for surface coal mining by act of Congress. Part 761 of this chapter, Areas Designated by Act of Congress, shall apply to surface coal mining and... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Areas designated unsuitable for surface...

  18. 30 CFR 921.761 - Areas designated unsuitable for surface coal mining by Act of Congress.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... WITHIN EACH STATE MASSACHUSETTS § 921.761 Areas designated unsuitable for surface coal mining by Act of Congress. Part 761 of this chapter, Areas Designated by Act of Congress, shall apply to surface coal mining... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Areas designated unsuitable for surface...

  19. 30 CFR 903.761 - Areas designated unsuitable for surface coal mining by act of Congress.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... WITHIN EACH STATE ARIZONA § 903.761 Areas designated unsuitable for surface coal mining by act of Congress. Part 761 of this chapter, Areas Designated by Act of Congress, applies to surface coal mining... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Areas designated unsuitable for surface...

  20. 30 CFR 947.761 - Areas designated unsuitable for surface coal mining by act of Congress.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... WITHIN EACH STATE WASHINGTON § 947.761 Areas designated unsuitable for surface coal mining by act of Congress. Part 761 of this chapter, Areas Designated by Act of Congress, shall apply to surface coal mining... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Areas designated unsuitable for surface...

  1. 30 CFR 921.761 - Areas designated unsuitable for surface coal mining by Act of Congress.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... WITHIN EACH STATE MASSACHUSETTS § 921.761 Areas designated unsuitable for surface coal mining by Act of Congress. Part 761 of this chapter, Areas Designated by Act of Congress, shall apply to surface coal mining... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Areas designated unsuitable for surface...

  2. 30 CFR 947.761 - Areas designated unsuitable for surface coal mining by act of Congress.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... WITHIN EACH STATE WASHINGTON § 947.761 Areas designated unsuitable for surface coal mining by act of Congress. Part 761 of this chapter, Areas Designated by Act of Congress, shall apply to surface coal mining... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Areas designated unsuitable for surface...

  3. 30 CFR 942.761 - Areas designated unsuitable for surface coal mining by act of Congress.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... WITHIN EACH STATE TENNESSEE § 942.761 Areas designated unsuitable for surface coal mining by act of Congress. Part 761 of this chapter, Areas Designated by Act of Congress, shall apply to surface coal mining... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Areas designated unsuitable for surface...

  4. 30 CFR 941.761 - Areas designated unsuitable for surface coal mining by act of Congress.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... WITHIN EACH STATE SOUTH DAKOTA § 941.761 Areas designated unsuitable for surface coal mining by act of Congress. Part 761 of this chapter, Areas Designated by Act of Congress, shall apply to surface coal mining... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Areas designated unsuitable for surface...

  5. 30 CFR 910.761 - Areas designated unsuitable for surface coal mining by Act of Congress.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... WITHIN EACH STATE GEORGIA § 910.761 Areas designated unsuitable for surface coal mining by Act of Congress. Part 761 of this chapter, Areas Designated by Act of Congress, shall apply to surface coal mining... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Areas designated unsuitable for surface...

  6. 30 CFR 942.761 - Areas designated unsuitable for surface coal mining by act of Congress.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... WITHIN EACH STATE TENNESSEE § 942.761 Areas designated unsuitable for surface coal mining by act of Congress. Part 761 of this chapter, Areas Designated by Act of Congress, shall apply to surface coal mining... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Areas designated unsuitable for surface...

  7. 30 CFR 903.761 - Areas designated unsuitable for surface coal mining by act of Congress.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... WITHIN EACH STATE ARIZONA § 903.761 Areas designated unsuitable for surface coal mining by act of Congress. Part 761 of this chapter, Areas Designated by Act of Congress, applies to surface coal mining... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Areas designated unsuitable for surface...

  8. 30 CFR 922.761 - Areas designated unsuitable for surface coal mining by act of Congress.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... WITHIN EACH STATE MICHIGAN § 922.761 Areas designated unsuitable for surface coal mining by act of Congress. Part 761 of this chapter, Areas Designated by Act of Congress, shall apply to surface coal mining... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Areas designated unsuitable for surface...

  9. 30 CFR 910.761 - Areas designated unsuitable for surface coal mining by Act of Congress.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... WITHIN EACH STATE GEORGIA § 910.761 Areas designated unsuitable for surface coal mining by Act of Congress. Part 761 of this chapter, Areas Designated by Act of Congress, shall apply to surface coal mining... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Areas designated unsuitable for surface...

  10. 30 CFR 905.761 - Areas designated unsuitable for surface coal mining by act of Congress.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... WITHIN EACH STATE CALIFORNIA § 905.761 Areas designated unsuitable for surface coal mining by act of Congress. Part 761 of this chapter, Areas Designated by Act of Congress, shall apply to surface coal mining... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Areas designated unsuitable for surface...

  11. 30 CFR 937.761 - Areas designated unsuitable for surface coal mining by Act of Congress.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... WITHIN EACH STATE OREGON § 937.761 Areas designated unsuitable for surface coal mining by Act of Congress. Part 761 of this chapter, Areas Designated by Act of Congress, shall apply to surface coal mining and... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Areas designated unsuitable for surface...

  12. 30 CFR 912.761 - Areas designated unsuitable for surface coal mining by act of Congress.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... WITHIN EACH STATE IDAHO § 912.761 Areas designated unsuitable for surface coal mining by act of Congress. Part 761 of this chapter, Areas Designated by Act of Congress, shall apply to surface coal mining and... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Areas designated unsuitable for surface...

  13. 30 CFR 942.761 - Areas designated unsuitable for surface coal mining by act of Congress.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... WITHIN EACH STATE TENNESSEE § 942.761 Areas designated unsuitable for surface coal mining by act of Congress. Part 761 of this chapter, Areas Designated by Act of Congress, shall apply to surface coal mining... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Areas designated unsuitable for surface...

  14. 30 CFR 947.761 - Areas designated unsuitable for surface coal mining by act of Congress.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... WITHIN EACH STATE WASHINGTON § 947.761 Areas designated unsuitable for surface coal mining by act of Congress. Part 761 of this chapter, Areas Designated by Act of Congress, shall apply to surface coal mining... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Areas designated unsuitable for surface...

  15. 30 CFR 921.761 - Areas designated unsuitable for surface coal mining by Act of Congress.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... WITHIN EACH STATE MASSACHUSETTS § 921.761 Areas designated unsuitable for surface coal mining by Act of Congress. Part 761 of this chapter, Areas Designated by Act of Congress, shall apply to surface coal mining... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Areas designated unsuitable for surface...

  16. 30 CFR 939.761 - Areas designated unsuitable for surface coal mining by Act of Congress.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... WITHIN EACH STATE RHODE ISLAND § 939.761 Areas designated unsuitable for surface coal mining by Act of Congress. Part 761 of this chapter, Areas Designated by Act of Congress, shall apply to surface coal mining... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Areas designated unsuitable for surface...

  17. 30 CFR 921.764 - Process for designating areas unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... surface coal mining operations. 921.764 Section 921.764 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS... Coal Mining Operations, pertaining to petitioning, initial processing, hearing requirements,...

  18. 30 CFR 903.761 - Areas designated unsuitable for surface coal mining by act of Congress.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... WITHIN EACH STATE ARIZONA § 903.761 Areas designated unsuitable for surface coal mining by act of Congress. Part 761 of this chapter, Areas Designated by Act of Congress, applies to surface coal mining... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Areas designated unsuitable for surface...

  19. 30 CFR 942.761 - Areas designated unsuitable for surface coal mining by act of Congress.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... WITHIN EACH STATE TENNESSEE § 942.761 Areas designated unsuitable for surface coal mining by act of Congress. Part 761 of this chapter, Areas Designated by Act of Congress, shall apply to surface coal mining... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Areas designated unsuitable for surface...

  20. 30 CFR 922.761 - Areas designated unsuitable for surface coal mining by act of Congress.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... WITHIN EACH STATE MICHIGAN § 922.761 Areas designated unsuitable for surface coal mining by act of Congress. Part 761 of this chapter, Areas Designated by Act of Congress, shall apply to surface coal mining... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Areas designated unsuitable for surface...

  1. 30 CFR 941.761 - Areas designated unsuitable for surface coal mining by act of Congress.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... WITHIN EACH STATE SOUTH DAKOTA § 941.761 Areas designated unsuitable for surface coal mining by act of Congress. Part 761 of this chapter, Areas Designated by Act of Congress, shall apply to surface coal mining... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Areas designated unsuitable for surface...

  2. 30 CFR 912.761 - Areas designated unsuitable for surface coal mining by act of Congress.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... WITHIN EACH STATE IDAHO § 912.761 Areas designated unsuitable for surface coal mining by act of Congress. Part 761 of this chapter, Areas Designated by Act of Congress, shall apply to surface coal mining and... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Areas designated unsuitable for surface...

  3. 30 CFR 939.761 - Areas designated unsuitable for surface coal mining by Act of Congress.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... WITHIN EACH STATE RHODE ISLAND § 939.761 Areas designated unsuitable for surface coal mining by Act of Congress. Part 761 of this chapter, Areas Designated by Act of Congress, shall apply to surface coal mining... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Areas designated unsuitable for surface...

  4. 30 CFR 905.761 - Areas designated unsuitable for surface coal mining by act of Congress.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... WITHIN EACH STATE CALIFORNIA § 905.761 Areas designated unsuitable for surface coal mining by act of Congress. Part 761 of this chapter, Areas Designated by Act of Congress, shall apply to surface coal mining... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Areas designated unsuitable for surface...

  5. 30 CFR 922.761 - Areas designated unsuitable for surface coal mining by act of Congress.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... WITHIN EACH STATE MICHIGAN § 922.761 Areas designated unsuitable for surface coal mining by act of Congress. Part 761 of this chapter, Areas Designated by Act of Congress, shall apply to surface coal mining... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Areas designated unsuitable for surface...

  6. 30 CFR 939.761 - Areas designated unsuitable for surface coal mining by Act of Congress.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... WITHIN EACH STATE RHODE ISLAND § 939.761 Areas designated unsuitable for surface coal mining by Act of Congress. Part 761 of this chapter, Areas Designated by Act of Congress, shall apply to surface coal mining... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Areas designated unsuitable for surface...

  7. 30 CFR 941.761 - Areas designated unsuitable for surface coal mining by act of Congress.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... WITHIN EACH STATE SOUTH DAKOTA § 941.761 Areas designated unsuitable for surface coal mining by act of Congress. Part 761 of this chapter, Areas Designated by Act of Congress, shall apply to surface coal mining... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Areas designated unsuitable for surface...

  8. 30 CFR 912.761 - Areas designated unsuitable for surface coal mining by act of Congress.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... WITHIN EACH STATE IDAHO § 912.761 Areas designated unsuitable for surface coal mining by act of Congress. Part 761 of this chapter, Areas Designated by Act of Congress, shall apply to surface coal mining and... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Areas designated unsuitable for surface...

  9. 30 CFR 941.761 - Areas designated unsuitable for surface coal mining by act of Congress.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... WITHIN EACH STATE SOUTH DAKOTA § 941.761 Areas designated unsuitable for surface coal mining by act of Congress. Part 761 of this chapter, Areas Designated by Act of Congress, shall apply to surface coal mining... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Areas designated unsuitable for surface...

  10. 30 CFR 937.761 - Areas designated unsuitable for surface coal mining by Act of Congress.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... WITHIN EACH STATE OREGON § 937.761 Areas designated unsuitable for surface coal mining by Act of Congress. Part 761 of this chapter, Areas Designated by Act of Congress, shall apply to surface coal mining and... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Areas designated unsuitable for surface...

  11. 30 CFR 942.761 - Areas designated unsuitable for surface coal mining by act of Congress.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... WITHIN EACH STATE TENNESSEE § 942.761 Areas designated unsuitable for surface coal mining by act of Congress. Part 761 of this chapter, Areas Designated by Act of Congress, shall apply to surface coal mining... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Areas designated unsuitable for surface...

  12. 30 CFR 939.761 - Areas designated unsuitable for surface coal mining by Act of Congress.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... WITHIN EACH STATE RHODE ISLAND § 939.761 Areas designated unsuitable for surface coal mining by Act of Congress. Part 761 of this chapter, Areas Designated by Act of Congress, shall apply to surface coal mining... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Areas designated unsuitable for surface...

  13. 30 CFR 937.761 - Areas designated unsuitable for surface coal mining by Act of Congress.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... WITHIN EACH STATE OREGON § 937.761 Areas designated unsuitable for surface coal mining by Act of Congress. Part 761 of this chapter, Areas Designated by Act of Congress, shall apply to surface coal mining and... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Areas designated unsuitable for surface...

  14. 30 CFR 910.761 - Areas designated unsuitable for surface coal mining by Act of Congress.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... WITHIN EACH STATE GEORGIA § 910.761 Areas designated unsuitable for surface coal mining by Act of Congress. Part 761 of this chapter, Areas Designated by Act of Congress, shall apply to surface coal mining... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Areas designated unsuitable for surface...

  15. 30 CFR 910.761 - Areas designated unsuitable for surface coal mining by Act of Congress.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... WITHIN EACH STATE GEORGIA § 910.761 Areas designated unsuitable for surface coal mining by Act of Congress. Part 761 of this chapter, Areas Designated by Act of Congress, shall apply to surface coal mining... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Areas designated unsuitable for surface...

  16. 30 CFR 910.761 - Areas designated unsuitable for surface coal mining by Act of Congress.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... WITHIN EACH STATE GEORGIA § 910.761 Areas designated unsuitable for surface coal mining by Act of Congress. Part 761 of this chapter, Areas Designated by Act of Congress, shall apply to surface coal mining... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Areas designated unsuitable for surface...

  17. 30 CFR 937.761 - Areas designated unsuitable for surface coal mining by Act of Congress.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... WITHIN EACH STATE OREGON § 937.761 Areas designated unsuitable for surface coal mining by Act of Congress. Part 761 of this chapter, Areas Designated by Act of Congress, shall apply to surface coal mining and... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Areas designated unsuitable for surface...

  18. 30 CFR 905.761 - Areas designated unsuitable for surface coal mining by act of Congress.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... WITHIN EACH STATE CALIFORNIA § 905.761 Areas designated unsuitable for surface coal mining by act of Congress. Part 761 of this chapter, Areas Designated by Act of Congress, shall apply to surface coal mining... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Areas designated unsuitable for surface...

  19. 30 CFR 947.761 - Areas designated unsuitable for surface coal mining by act of Congress.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... WITHIN EACH STATE WASHINGTON § 947.761 Areas designated unsuitable for surface coal mining by act of Congress. Part 761 of this chapter, Areas Designated by Act of Congress, shall apply to surface coal mining... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Areas designated unsuitable for surface...

  20. 30 CFR 903.761 - Areas designated unsuitable for surface coal mining by act of Congress.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... WITHIN EACH STATE ARIZONA § 903.761 Areas designated unsuitable for surface coal mining by act of Congress. Part 761 of this chapter, Areas Designated by Act of Congress, applies to surface coal mining... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Areas designated unsuitable for surface...

  1. 30 CFR 912.761 - Areas designated unsuitable for surface coal mining by act of Congress.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... WITHIN EACH STATE IDAHO § 912.761 Areas designated unsuitable for surface coal mining by act of Congress. Part 761 of this chapter, Areas Designated by Act of Congress, shall apply to surface coal mining and... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Areas designated unsuitable for surface...

  2. 30 CFR 903.761 - Areas designated unsuitable for surface coal mining by act of Congress.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... WITHIN EACH STATE ARIZONA § 903.761 Areas designated unsuitable for surface coal mining by act of Congress. Part 761 of this chapter, Areas Designated by Act of Congress, applies to surface coal mining... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Areas designated unsuitable for surface...

  3. 30 CFR 922.761 - Areas designated unsuitable for surface coal mining by act of Congress.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... WITHIN EACH STATE MICHIGAN § 922.761 Areas designated unsuitable for surface coal mining by act of Congress. Part 761 of this chapter, Areas Designated by Act of Congress, shall apply to surface coal mining... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Areas designated unsuitable for surface...

  4. 30 CFR 947.761 - Areas designated unsuitable for surface coal mining by act of Congress.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... WITHIN EACH STATE WASHINGTON § 947.761 Areas designated unsuitable for surface coal mining by act of Congress. Part 761 of this chapter, Areas Designated by Act of Congress, shall apply to surface coal mining... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Areas designated unsuitable for surface...

  5. 30 CFR 922.761 - Areas designated unsuitable for surface coal mining by act of Congress.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... WITHIN EACH STATE MICHIGAN § 922.761 Areas designated unsuitable for surface coal mining by act of Congress. Part 761 of this chapter, Areas Designated by Act of Congress, shall apply to surface coal mining... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Areas designated unsuitable for surface...

  6. 30 CFR 905.761 - Areas designated unsuitable for surface coal mining by act of Congress.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... WITHIN EACH STATE CALIFORNIA § 905.761 Areas designated unsuitable for surface coal mining by act of Congress. Part 761 of this chapter, Areas Designated by Act of Congress, shall apply to surface coal mining... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Areas designated unsuitable for surface...

  7. 30 CFR 939.761 - Areas designated unsuitable for surface coal mining by Act of Congress.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... WITHIN EACH STATE RHODE ISLAND § 939.761 Areas designated unsuitable for surface coal mining by Act of Congress. Part 761 of this chapter, Areas Designated by Act of Congress, shall apply to surface coal mining... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Areas designated unsuitable for surface...

  8. 30 CFR 912.800 - General requirements for bonding of surface coal mining and reclamation operations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false General requirements for bonding of surface... OPERATIONS WITHIN EACH STATE IDAHO § 912.800 General requirements for bonding of surface coal mining and reclamation operations. Part 800 of this chapter, General Requirements for Bonding of Surface Coal Mining...

  9. 30 CFR 922.800 - General requirements for bonding of surface coal mining and reclamation operations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false General requirements for bonding of surface... OPERATIONS WITHIN EACH STATE MICHIGAN § 922.800 General requirements for bonding of surface coal mining and reclamation operations. Part 800 of this chapter, General Requirements for Bonding of Surface Coal Mining...

  10. 30 CFR 937.800 - General requirements for bonding of surface coal mining and reclamation operations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false General requirements for bonding of surface... OPERATIONS WITHIN EACH STATE OREGON § 937.800 General requirements for bonding of surface coal mining and reclamation operations. Part 800 of this chapter, General Requirements for Bonding of Surface Coal Mining...

  11. 30 CFR 922.800 - General requirements for bonding of surface coal mining and reclamation operations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false General requirements for bonding of surface... OPERATIONS WITHIN EACH STATE MICHIGAN § 922.800 General requirements for bonding of surface coal mining and reclamation operations. Part 800 of this chapter, General Requirements for Bonding of Surface Coal Mining...

  12. 30 CFR 910.800 - General requirements for bonding of surface coal mining and reclamation operations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false General requirements for bonding of surface... OPERATIONS WITHIN EACH STATE GEORGIA § 910.800 General requirements for bonding of surface coal mining and reclamation operations. Part 800 of this chapter, General Requirements for Bonding of Surface Coal Mining...

  13. 30 CFR 937.800 - General requirements for bonding of surface coal mining and reclamation operations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false General requirements for bonding of surface... OPERATIONS WITHIN EACH STATE OREGON § 937.800 General requirements for bonding of surface coal mining and reclamation operations. Part 800 of this chapter, General Requirements for Bonding of Surface Coal Mining...

  14. 30 CFR 912.800 - General requirements for bonding of surface coal mining and reclamation operations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false General requirements for bonding of surface... OPERATIONS WITHIN EACH STATE IDAHO § 912.800 General requirements for bonding of surface coal mining and reclamation operations. Part 800 of this chapter, General Requirements for Bonding of Surface Coal Mining...

  15. 30 CFR 910.800 - General requirements for bonding of surface coal mining and reclamation operations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false General requirements for bonding of surface... OPERATIONS WITHIN EACH STATE GEORGIA § 910.800 General requirements for bonding of surface coal mining and reclamation operations. Part 800 of this chapter, General Requirements for Bonding of Surface Coal Mining...

  16. 30 CFR 800.17 - Bonding requirements for underground coal mines and long-term coal-related surface facilities and...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Bonding requirements for underground coal mines and long-term coal-related surface facilities and structures. 800.17 Section 800.17 Mineral Resources... REQUIREMENTS FOR SURFACE COAL MINING AND RECLAMATION OPERATIONS BOND AND INSURANCE REQUIREMENTS FOR...

  17. 30 CFR 800.17 - Bonding requirements for underground coal mines and long-term coal-related surface facilities and...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Bonding requirements for underground coal mines and long-term coal-related surface facilities and structures. 800.17 Section 800.17 Mineral Resources... REQUIREMENTS FOR SURFACE COAL MINING AND RECLAMATION OPERATIONS BOND AND INSURANCE REQUIREMENTS FOR...

  18. 30 CFR 800.17 - Bonding requirements for underground coal mines and long-term coal-related surface facilities and...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Bonding requirements for underground coal mines and long-term coal-related surface facilities and structures. 800.17 Section 800.17 Mineral Resources... REQUIREMENTS FOR SURFACE COAL MINING AND RECLAMATION OPERATIONS BOND AND INSURANCE REQUIREMENTS FOR...

  19. Surface modification for interaction study with bacteria and preosteoblast cells

    NASA Astrophysics Data System (ADS)

    Song, Qing

    Surface modification plays a pivotal role in bioengineering. Polymer coatings can provide biocompatibility and biofunctionalities to biomaterials through surface modification. In this dissertation, initiated chemical vapor deposition (iCVD) was utilized to coat two-dimensional (2D) and three-dimensional (3D) substrates with differently charged polyelectrolytes in order to generate antimicrobial and osteocompatible biomaterials. ICVD is a modified CVD technique that enables surface modification in an all-dry condition without substrate damage and solvent contamination. The free-radical polymerization allows the vinyl polymers to conformally coat on various micro- and nano-structured substrates and maintains the delicate structure of the functional groups. The vapor deposition of polycations provided antimicrobial activity to planar and porous substrates through destroying the negatively charged bacterial membrane and brought about high contact-killing efficiency (99.99%) against Gram-positive Bacillus subtilis and Gram-negative Escherichia coli. Additionally, the polyampholytes synthesized by iCVD exhibited excellent antifouling performance against the adhesion of Gram-positive Listeria innocua and Gram-negative E. coli in phosphate buffered saline (PBS). Their antifouling activities were attributed to the electrostatic interaction and hydration layers that served as physical and energetic barriers to prevent bacterial adhesion. The contact-killing and antifouling polymers synthesized by iCVD can be applied to surface modification of food processing equipment and medical devices with the aim of reducing foodborne diseases and medical infections. Moreover, the charged polyelectrolyte modified 2D polystyrene surfaces displayed good osteocompatibility and enhanced osteogenesis of preosteoblast cells than the un-modified polystyrene surface. In order to promote osteoinduction of hydroxyapatite (HA) scaffolds, bioinspired polymer-controlled mineralization was conducted

  20. Improved LWR Cladding Performance by EPD Surface Modification Technique

    SciTech Connect

    Corradini, Michael; Sridharan, Kumar

    2012-11-26

    This project will utilize the electro-phoretic deposition technique (EPD) in conjunction with nanofluids to deposit oxide coatings on prototypic zirconium alloy cladding surfaces. After demonstrating that this surface modification is reproducible and robust, the team will subject the modified surface to boiling and corrosion tests to characterize the improved nucleate boiling behavior and superior corrosion performance. The scope of work consists of the following three tasks: The first task will employ the EPD surface modification technique to coat the surface of a prototypic set of zirconium alloy cladding tube materials (e.g. Zircaloy and advanced alloys such as M5) with a micron-thick layer of zirconium oxide nanoparticles. The team will characterize the modified surface for uniformity using optical microscopy and scanning-electron microscopy, and for robustness using standard hardness measurements. After zirconium alloy cladding samples have been prepared and characterized using the EPD technique, the team will begin a set of boiling experiments to measure the heat transfer coefficient and critical heat flux (CHF) limit for each prepared sample and its control sample. This work will provide a relative comparison of the heat transfer performance for each alloy and the surface modification technique employed. As the boiling heat transfer experiments begin, the team will also begin corrosion tests for these zirconium alloy samples using a water corrosion test loop that can mimic light water reactor (LWR) operational environments. They will perform extended corrosion tests on the surface-modified zirconium alloy samples and control samples to examine the robustness of the modified surface, as well as the effect on surface oxidation

  1. Modification of Surface Energy via Direct Laser Ablative Surface Patterning

    NASA Technical Reports Server (NTRS)

    Wohl, Christopher J., Jr. (Inventor); Belcher, Marcus A. (Inventor); Connell, John W. (Inventor); Hopkins, John W. (Inventor)

    2015-01-01

    Surface energy of a substrate is changed without the need for any template, mask, or additional coating medium applied to the substrate. At least one beam of energy directly ablates a substrate surface to form a predefined topographical pattern at the surface. Each beam of energy has a width of approximately 25 micrometers and an energy of approximately 1-500 microJoules. Features in the topographical pattern have a width of approximately 1-500 micrometers and a height of approximately 1.4-100 micrometers.

  2. Surface electrochemical control for fine coal and pyrite separation. Technical progress report, January 1, 1990--March 31, 1990

    SciTech Connect

    Chen, Wanxiong; Hu, Weibai; Wann, Jyi-Perng; Zhu, Ximeng; Bodily, D.M.; Wadsworth, M.E.

    1990-12-31

    Ongoing work includes the characterization of coal pyrites, the floatability evaluation of typical US coal samples, the flotation behavior of coal pyrites, the electrochemical measurement of the surface properties of coal pyrites, and the characterization of species produced at pyrite surfaces.

  3. Surface electrochemical control for the fine coal and pyrite separation. Technical progress report, July 21, 1989--September 30, 1989

    SciTech Connect

    Chen, Wanxiong; Hu, Weibai; Wann, Jyi-Perng; Zhu, Ximeng; Wadsworth, M.E.

    1989-12-31

    Ongoing work includes the characterization of coal pyrites, the floatability evaluation of typical US coal samples, the flotation behavior of coal pyrites, the electrochemical measurement of the surface properties of coal pyrites, and the characterization of species produced at pyrite surfaces.

  4. Surface electrochemical control for the fine coal and pyrite separation. Technical progress report, October 1, 1989--December 31, 1989

    SciTech Connect

    Chen, Wanxiong; Hu, Weibai; Wann, Jyi-Perng; Zhu, Ximeng; Wadsworth, M.E.; Bodily, D.M.

    1989-12-31

    Ongoing work includes the characterization of coal pyrites, the floatability evaluation of typical US coal samples, the flotation behavior of coal pyrites, the electrochemical measurement of the surface properties of coal pyrites, and the characterization of species produced at pyrite surfaces.

  5. Surface electrochemical control for the fine coal and pyrite separation. Technical progress report, January 1, 1992--March 31, 1992

    SciTech Connect

    Hu, Weibai; Huang, Qinping; Zhu, Ximeng; Li, Jun; Bodily, D.M.; Liang, Jun; Zhong, Tingke; Wadsworth, M.E.

    1992-07-01

    Ongoing work includes the characterization of coal pyrites, the floatability evaluation of typical US coal samples, the flotation behavior of coal pyrites, the electrochemical measurement of the surface properties of coal pyrites, and the characterization of species produced at pyrite surfaces.

  6. Surface modification using low energy ground state ion beams

    NASA Technical Reports Server (NTRS)

    Chutjian, Ara (Inventor); Hecht, Michael H. (Inventor); Orient, Otto J. (Inventor)

    1990-01-01

    A method of effecting modifications at the surfaces of materials using low energy ion beams of known quantum state, purity, flux, and energy is presented. The ion beam is obtained by bombarding ion-generating molecules with electrons which are also at low energy. The electrons used to bombard the ion generating molecules are separated from the ions thus obtained and the ion beam is directed at the material surface to be modified. Depending on the type of ion generating molecules used, different ions can be obtained for different types of surface modifications such as oxidation and diamond film formation. One area of application is in the manufacture of semiconductor devices from semiconductor wafers.

  7. Effect of surface modification on semiconductor nanocrystal fluorescence lifetime.

    PubMed

    Ruedas-Rama, Maria J; Orte, Angel; Hall, Elizabeth A H; Alvarez-Pez, Jose M; Talavera, Eva M

    2011-04-04

    Semiconductor nanocrystals, namely, quantum dots (QDs), present a set of unique photoluminescence properties, which has led to increased interest in using them as advantageous alternatives to conventional organic dyes. Many applications of QDs involve surface modification to enhance the solubility or biocompatibility of the QDs. One of the least exploited properties of QDs is the very long photoluminescence lifetime that usually has complex kinetics owing to the effect of quantum confinement. Herein, we describe the effect of different surface modifications on the photoluminescence decay kinetics of QDs. The different surface modifications were carefully chosen to provide lipophilic or water-soluble QDs with either positive or negative surface net charges. We also survey the effect on the QD lifetime of several ligands that interact with the QD surface, such as organic chromophores or fluorescent proteins. The results obtained demonstrate that time-resolved fluorescence is a useful tool for QD-based sensing to set the basis for the development of time-resolved-based nanosensors.

  8. Ultralow energy ion beam surface modification of low density polyethylene.

    PubMed

    Shenton, Martyn J; Bradley, James W; van den Berg, Jaap A; Armour, David G; Stevens, Gary C

    2005-12-01

    Ultralow energy Ar+ and O+ ion beam irradiation of low density polyethylene has been carried out under controlled dose and monoenergetic conditions. XPS of Ar+-treated surfaces exposed to ambient atmosphere show that the bombardment of 50 eV Ar+ ions at a total dose of 10(16) cm(-2) gives rise to very reactive surfaces with oxygen incorporation at about 50% of the species present in the upper surface layer. Using pure O+ beam irradiation, comparatively low O incorporation is achieved without exposure to atmosphere (approximately 13% O in the upper surface). However, if the surface is activated by Ar+ pretreatment, then large oxygen contents can be achieved under subsequent O+ irradiation (up to 48% O). The results show that for very low energy (20 eV) oxygen ions there is a dose threshold of about 5 x 10(15) cm(-2) before surface oxygen incorporation is observed. It appears that, for both Ar+ and O+ ions in this regime, the degree of surface modification is only very weakly dependent on the ion energy. The results suggest that in the nonequilibrium plasma treatment of polymers, where the ion flux is typically 10(18) m(-2) s(-1), low energy ions (<50 eV) may be responsible for surface chemical modification.

  9. Surface Modification of Polymer Substrates for Biomedical Applications.

    PubMed

    Neděla, Oldřich; Slepička, Petr; Švorčík, Václav

    2017-09-21

    While polymers are widely utilized materials in the biomedical industry, they are rarely used in an unmodified state. Some kind of a surface treatment is often necessary to achieve properties suitable for specific applications. There are multiple methods of surface treatment, each with their own pros and cons, such as plasma and laser treatment, UV lamp modification, etching, grafting, metallization, ion sputtering and others. An appropriate treatment can change the physico-chemical properties of the surface of a polymer in a way that makes it attractive for a variety of biological compounds, or, on the contrary, makes the polymer exhibit antibacterial or cytotoxic properties, thus making the polymer usable in a variety of biomedical applications. This review examines four popular methods of polymer surface modification: laser treatment, ion implantation, plasma treatment and nanoparticle grafting. Surface treatment-induced changes of the physico-chemical properties, morphology, chemical composition and biocompatibility of a variety of polymer substrates are studied. Relevant biological methods are used to determine the influence of various surface treatments and grafting processes on the biocompatibility of the new surfaces-mammalian cell adhesion and proliferation is studied as well as other potential applications of the surface-treated polymer substrates in the biomedical industry.

  10. Pyrite surface characterization and control for advanced fine coal desulfurization technologies

    SciTech Connect

    Wang, Xiang-Huai.

    1991-01-01

    The objective of this project is to conduct extensive studies on the surfaces reactivity of pyrite by using electrochemical, surface analysis, potentiometric and calorimetric titration, and surface hydrophobicity characterization techniques and to correlate the alteration of the coal-pyrite surface with the efficiency of the pyrite rejection in coal flotation. The product as well as their structure, the mechanism and the kinetics of the oxidation of coal-pyrite surfaces and their interaction with various chemical reagents will be systematically studied and compared with that of mineral-pyrite and synthetic pyrite to determine the correlation between the surface reactivity of pyrite and the bulk chemical properties of pyrite and impurities. The surface chemical studies and the studies of floatability of coal-pyrite and the effect of various parameters such as grinding media and environment, aging under different atmospheres, etc., are directed at identifying the cause and possible solutions of the pyrite rejection problems in coal cleaning.

  11. Pyrite surface characterization and control for advanced fine coal desulfurization technologies

    SciTech Connect

    Wang, Xiang-Huai; Leonard, J.W.; Parekh, B.K.; Raichur, A.M.; Jiang, Chengliang.

    1991-01-01

    The objective of this project is to conduct extensive studies on the surface reactivity of pyrite by using electrochemical, surface analysis, potentiometric and calorimetric titration, and surface hydrophobicity characterization techniques and to correlate the alteration of the coal-pyrite surface with the efficiency of pyrite rejection in coal flotation. The products as well as their structure, the mechanisms and the kinetics of the oxidation of coal-pyrite surfaces and their interaction with various chemical reagents will be systematically studied and compared with that of mineral-pyrite and synthetic pyrite to determine the correlation between the surface reactivity of pyrite and the bulk chemical properties of pyrite and impurities. The surface chemical studies and the studies of floatability of coal-pyrite and the effect of various parameters such as grinding media and environment, aging under different atmospheres, etc. on thereof will lead to identifying the causes and possible solutions of the pyrite rejection problems in coal cleaning.

  12. Pyrite surface characterization and control for advanced fine coal desulfurization technologies

    SciTech Connect

    Wang, Xiang-Huai.

    1991-01-01

    The objective of this project is to conduct extensive studies on the surface reactivity of pyrite by using electrochemical, surface analysis, potentiometric and calorimetric titration, and surface hydrophobicity characterization techniques and to correlate the alteration of the coal-pyrite surface with the efficiency of pyrite rejection in coal flotation. The products as well as their structure, the mechanisms and the kinetics of the oxidation of coal-pyrite surfaces and their interaction with various chemical reagents will be systematically studied and compared with that of mineral-pyrite and synthetic pyrite to determine the correlation between the surface reactivity of pyrite and the bulk chemical properties of pyrite and impurities. The surface chemical studies and the studies of floatability of coal-pyrite and the effect of various parameters such as grinding media and environment, aging under different atmospheres, etc. on thereof, are directed at identifying the causes and possible solutions of the pyrite rejection problems in coal cleaning.

  13. Geomorphology and surface hydrology applied to landscape reclamation in the strippable coal belts of northwestern New Mexico. Final report

    SciTech Connect

    Wells, S.G.

    1982-06-01

    The long-term success of reclamation of surface coal mines in the strippable coal belts of northwestern New Mexico is dependent upon the relative stability of undisturbed and restored landscapes. Areas of rapid modification, or relative instability, include headwaters of high-relief watersheds and areas of active base-level lowering. Stable landscapes are characterized by high infiltration rates, low sediment yields, low relief, and relatively dense vegetation. Landscape-classification schemes incorporating modern geomorphic processes and relative landscape ages serve as guides for reclaiming landscapes to stable forms. Evaluating the success of post-mining reclamation procedures requires that both internal (within reclaimed areas) and external (outside reclaimed areas) geomorphic variables be considered. Internal geomorphic variables include hillslope gradients and areal configurations, infiltration rates, degree of drainage integration, and surface roughness. External geomorphic variables include base-level changes, gully head-cutting rates, valley-fill geometry, and the ratio of bedrock to valley fill. Engineering designs are significant to internal variables; whereas, the geomorphic history of a watershed influences the external variables. Research at the McKinley Coal Mine in northwestern New Mexico suggests that external variables may pose the greatest threat to reclaimed landscapes. This report contains base-line information for preparing environmental documents, for designing optimum reclamation procedures and realistic goals, and for evaluating post-mining effects on the reclaimed landscape. Additionally, this report contains an annotated bibliography on surface coal-mining reclamation.

  14. Plasma technologies application for building materials surface modification

    NASA Astrophysics Data System (ADS)

    Volokitin, G. G.; Skripnikova, N. K.; Volokitin, O. G.; Shehovtzov, V. V.; Luchkin, A. G.; Kashapov, N. F.

    2016-01-01

    Low temperature arc plasma was used to process building surface materials, such as silicate brick, sand lime brick, concrete and wood. It was shown that building surface materials modification with low temperature plasma positively affects frost resistance, water permeability and chemical resistance with high adhesion strength. Short time plasma processing is rather economical than traditional processing thermic methods. Plasma processing makes wood surface uniquely waterproof and gives high operational properties, dimensional and geometrical stability. It also increases compression resistance and decreases inner tensions level in material.

  15. Evaluation of technology modifications required to apply clean coal technologies in Russian utilities. Final report

    SciTech Connect

    1995-12-01

    The report describes the following: overview of the Russian power industry; electric power equipment of Russia; power industry development forecast for Russia; clean coal technology demonstration program of the US Department of Energy; reduction of coal TPS (thermal power station) environmental impacts in Russia; and base options of advanced coal thermal power plants. Terms of the application of clean coal technology at Russian TPS are discussed in the Conclusions.

  16. Surface modification of biphasic calcium phosphate bioceramic powders

    NASA Astrophysics Data System (ADS)

    Yang, W. Z.; Zhou, D. L.; Yin, G. F.; Li, G. D.

    2008-11-01

    Biphasic calcium phosphate (BCP)/poly L-lactide (PLLA) biocomposite is proven to be a promising bone graft material or scaffold for bone tissue engineering. To improve the interfacial compatibility of BCP bioceramic with biopolymer-PLLA, BCP powders were surface-modified in different condition to graft polymer groups onto the surface of the BCP powders. L-lactide and L-lactic acid (LA) oligomer were used to modify the BCP surface with stannous octanoate (Sn(Oct) 2) and stannous chloride (SnCl 2) as catalyst, respectively. Results show that the surface modification effect is obvious and the amount of grafted organic group is above 6.5 wt.%. Sn(Oct) 2 and SnCl 2 are the optimal catalysts for the surface grafting reaction of L-lactide and L-LA oligomer, respectively. The surface grafting slightly increase the particle size of BCP powders and reduce the tendency for their agglomeration.

  17. Surface Modification of Nitinol by Chemical and Electrochemical Etching

    NASA Astrophysics Data System (ADS)

    Yang, Zhendi; Wei, Xiaojin; Cao, Peng; Gao, Wei

    2013-07-01

    In this paper, Nitinol, an equiatomic binary alloy of nickel and titanium, was surface modified for its potential biomedical applications by chemical and electrochemical etching. The main objective of the surface modification is to reduce the nickel content on the surface of Nitinol and simultaneously to a rough surface microstructure. As a result, better biocompatibility and better cell attachment would be achieved. The effect of the etching parameters was investigated, using scanning electron microscopy (SEM) equipped with energy dispersive X-ray spectrometry (EDX) and X-ray photoelectron spectrometry (XPS). The corrosion property of modified Nitinol surfaces was investigated by electrochemical work station. After etching, the Ni content in the surface layer has been reduced and the oxidation of Ti has been enhanced.

  18. Coal.

    ERIC Educational Resources Information Center

    Brant, Russell A.; Glass, Gary B.

    1983-01-01

    Principle work of 23 state geological surveys is summarized. Work includes mapping/estimating coal resources, centralizing data in National Coal Resources Data System through cooperative programs, exploration drilling, and others. Comments on U.S. Geological Survey activities, coal-related conferences/meetings, and industry research activities are…

  19. Coal.

    ERIC Educational Resources Information Center

    Brant, Russell A.; Glass, Gary B.

    1983-01-01

    Principle work of 23 state geological surveys is summarized. Work includes mapping/estimating coal resources, centralizing data in National Coal Resources Data System through cooperative programs, exploration drilling, and others. Comments on U.S. Geological Survey activities, coal-related conferences/meetings, and industry research activities are…

  20. Potential effects of surface coal mining on the hydrology of the Little Bear Creek area, Moorhead coal field, southeastern Montana

    USGS Publications Warehouse

    McClymonds, N.E.

    1986-01-01

    The Little Bear Creek area of the Moorhead Coal Field, 27 miles south of Ashland, Montana, contains large reserves of Federally owned coal that have been identified for potential lease sale. A hydrologic study was conducted in the area to describe existing hydrologic system and to assess potential effects of surface mining on local water resources. Hydrologic data collected from private wells, observation wells, test holes and springs indicate that the aquifers are coal and sandstone beds in the upper part of the Tongue River Member, Fort Union Formation (Paleocene age), and sand and gravel layers of valley alluvium (Pleistocene and Holocene age). Surface water is available from ephemeral flow along stretches of the main streams, and from stock ponds throughout the area. Mining the Anderson and Dietz coal beds would destroy one stock well and several stock ponds, would possibly interfere with the flow of one spring, and would lower the potentiometric surface within the coal and sandstone aquifers. The alluvial aquifer beneath Little Bear Creek and Davidson Draw would be removed at the mine site, as would sandstone and coal aquifers above the mine floor. Although mining would alter existing hydrologic systems, alternative water supplies are available. Planned structuring of the spoils and reconstruction of the alluvial aquifers could minimize downstream water-quality degradation. (USGS)

  1. Flotation and flocculation chemistry of coal and oxidized coals

    SciTech Connect

    Somasundaran, P.

    1990-01-01

    The objective of this research project is to understand the fundamentals involved in the flotation and flocculation of coal and oxidized coals and elucidate mechanisms by which surface interactions between coal and various reagents enhance coal beneficiation. An understanding of the nature of the heterogeneity of coal surfaces arising from the intrinsic distribution of chemical moieties is fundamental to the elucidation of mechanism of coal surface modification and its role in interfacial processes such as flotation, flocculation and agglomeration. A new approach for determining the distribution in surface properties of coal particles was developed in this study and various techniques capable of providing such information were identified. Distributions in surface energy, contact angle and wettability were obtained using novel techniques such as centrifugal immersion and film flotation. Changes in these distributions upon oxidation and surface modifications were monitored and discussed. An approach to the modelling of coal surface site distributions based on thermodynamic information obtained from gas adsorption and immersion calorimetry is proposed. Polyacrylamide and dodecane was used to alter the coal surface. Methanol adsorption was also studied. 62 figs.

  2. Surface modification of carbon fuels for direct carbon fuel cells

    NASA Astrophysics Data System (ADS)

    Li, Xiang; Zhu, Zhonghua; Chen, Jiuling; De Marco, Roland; Dicks, Andrew; Bradley, John; Lu, Gaoqing

    The direct carbon fuel cell (DCFC) is a promising power-generation device that has much higher efficiency (80%) and less emissions than conventional coal-fired power plants. Two commercial carbons (activated carbon and carbon black) pre-treated with HNO 3, HCl or air plasma are tested in a DCFC. The correlation between the surface properties and electrochemical performance of the carbon fuels is explored. The HNO 3-treated carbon fuels have the highest electrochemical reactivity in the DCFC due to the largest degree of surface oxygen functional groups. The overall effect on changing the electrochemical reactivity of carbon fuels is in the order HNO 3 > air plasma ≈ HCl. Product gas analysis indicates that complete oxidation of carbon to CO 2 can be achieved at 600-700 °C.

  3. Coal dust contiguity-induced changes in the concentration of TNF- and NF- B p65 on the ocular surface

    SciTech Connect

    Sun, Z.Y.; Hong, J.; Liu, Z.Y.; Jin, X.D.; Gu, C.H.

    2009-07-01

    To observe the influence of coal dust on ocular surface of coal miners and rabbits with coal dust contiguity on expression TNF- and NF- Bp65 and dry eye occurrence. Expression TNF- and NF- Bp65 in ocular surface were determined. Results showed tear production, BUT and lysozyme decreased for coal miners and rabbits with coal dust contiguity. Coal dust exposure was linked to development of xerophthalmia, and induced a higher expression of NF- B p65 and TNF- perhaps as a mechanism to resist coal dust ocular surface injury.

  4. Laser surface and subsurface modification of sapphire using femtosecond pulses

    NASA Astrophysics Data System (ADS)

    Eberle, G.; Schmidt, M.; Pude, F.; Wegener, K.

    2016-08-01

    Two methods to process sapphire using femtosecond laser pulses are demonstrated, namely ablation (surface), and in-volume laser modification followed by wet etching (subsurface). Firstly, the single and multipulse ablation threshold is determined and compared with previous literature results. A unique application of ablation is demonstrated by modifying the entrance aperture of water jet orifices. Laser ablation exhibits advantages in terms of geometric flexibility and resolution, however, defects in the form of edge outbreaks and poor surface quality are evident. Secondly, the role of material transformation, polarisation state and formation of multi-focus structures after in-volume laser modification is investigated in order to explain their influence during the wet etching process. Laser scanning and electron microscopy as well as electron backscatter diffraction measurements supported by ion beam polishing are used to better understand quality and laser-material interactions of the two demonstrated methods of processing.

  5. Surface electrochemical control for fine coal and pyrite separation. Final report

    SciTech Connect

    Wadsworth, M.E.; Bodily, D.M.; Hu, Weibai; Chen, Wanxiong; Huang, Qinping; Liang, Jun; Riley, A.M.; Li, Jun; Wann, Jyi-Perng; Zhong, Tingke; Zhu, Ximeng

    1993-01-20

    Laboratory flotation tests were carried out on three coals and on coal pyrite. Floatability measurements included natural floatability, flotation with a xanthate collector and salt flotation. The ranking of the floatability of the three coals were: Upper Freeport > Pittsburgh > Illinois. The floatability of mineral pyrite and coal pyrite increased markedly with xanthate concentration, but decreased with increased pH. In general, coal pyrite was more difficult to float than mineral pyrite. This was attributed to the presence of surface carbonaceous and mineral matter, since floatability of coal pyrite improved by acid pretreatment. Flotation tests demonstrated that the floatability of coal and mineral pyrite was greatly enhanced by the presence of an electrolyte. Flotation was also enhanced by the addition of modifiers such as CuSO{sub 4}, Na{sub 2}S, CO{sub 2} and EDTA. Lime additions markedly reduced the floatability of coal pyrite. Enhanced floatability of coal pyrite resulted when the pyrite was anodically oxidized in a specially constructed electrochemical flotation cell Pretreatment in potential ranges previously observed for polysulfide and sulfur film formation resulted in the enhanced floatability. While interesting trends and influences, both chemical and electrochemical, markedly improved the floatability of coal, there is little hope for reverse flotation as an effective technology for coal/coal-pyrite separations. The effects of poor liberation and entrainment appear overriding.

  6. Groundwater flow evaluation through backfilling materials of a surface coal mining site of Northeast Mexico

    NASA Astrophysics Data System (ADS)

    Gutierrez-Ojeda, C.; Martínez-Morales, M.; Ortíz-Flores, G.

    2013-05-01

    Surface coal mining at the Allende-Piedras Negras aquifer system requires the complete dewatering and removal of the aquifer. The aquifer contains several geologic layers of variable hydraulic conductivity. Backfilling material is composed of a mixture of permeable and impermeable layers and it was initially considered as impermeable. Exploratory drillings, pumping tests and a geophysical survey were performed in the backfilling materials and the surrounding unaltered materials in order to evaluate the natural groundwater flow modification due to the mining activities. Results of geophysical survey evidenced a saturated water table within the back filling material which was verified by exploratory drilling. Pumping tests showed that unaltered materials have a mean hydraulic conductivity of 34.5 m/day while the backfilling of 5.3 m/day. Although the mining activities reduce the hydraulic conductivity by almost an order of magnitude, it was corroborated the existence of a groundwater flow through the backfilling materials.

  7. Role of water in polymer surface modification using organosilanes

    NASA Astrophysics Data System (ADS)

    Thallapalle, Pradeep Kumar; Zhang Newby, Bi-Min

    2002-03-01

    In general, polymers exhibit excellent bulk properties but may not possess specific surface properties for successful applications in biomaterials and nanotechnology. Surface modification of polymers with the self-assembled monolayers (SAMs) of organosilanes - ‘Silanization’ - is an attractive approach to alter surface properties without altering the polymer’s desired bulk properties. However, a pretreatment such as exposure to UV/O or plasma is normally required to generate active surface groups prior to silanization. These pretreatments cause undesirable surface changes such as severe surface roughening and excessive surface damage. Recent studies in silanization suggest that the presence of water or OH groups on the surface is essential to form SAMs. In this study we investigated the importance of surface water layer and OH groups in the formation of SAMs for a variety of polymers. The pre and post-modified polymers were examined using fourier transform infrared spectrometry, scanning probe microscopy and contact angle measurements. The results show that organosilanes can be grafted to a polymer surface as long as a water layer can be physisorbed to the surface or the polymer itself contains OH groups. However the monolayers formed are less organized compared to those formed on silicon wafers due to the amorphous nature of the polymers.

  8. Modification of W surfaces by exposure to hollow cathode plasmas

    NASA Astrophysics Data System (ADS)

    Stancu, C.; Stokker-Cheregi, F.; Moldovan, A.; Dinescu, M.; Grisolia, C.; Dinescu, G.

    2017-10-01

    In this work, we assess the surface modifications induced on W samples following exposure to He and He/H2 radiofrequency plasmas in hollow cathode discharge configuration. Our study addresses issues that relate to the use of W in next-generation fusion reactors and, therefore, the investigation of W surface degradation following exposure and heating by plasmas to temperatures above 1000 °C is of practical importance. For these experiments, we used commercially available tungsten samples having areas of 30 × 15 mm and 0.1 mm thickness. The hollow cathode plasma was produced using a radiofrequency (RF) generator (13.56 MHz) between parallel plate electrodes. The W samples were mounted as one of the electrodes. The He and He/H2 plasma discharges had a combined effect of heating and bombardment of the W surfaces. The surface modifications were studied for discharge powers between 200 and 300 W, which resulted in the heating of the samples to temperatures between 950 and 1230 °C, respectively. The samples were weighed prior and after plasma exposure, and loss of mass was measured following plasma exposure times up to 90 min. The analysis of changes in surface morphology was carried out by optical microscopy, scanning electron microscopy and atomic force microscopy. Additionally, optical emission spectra of the respective plasmas were recorded from the region localized inside the hollow cathode gap. We discuss the influence of experimental parameters on the changes in surface morphology.

  9. Surface Topographical Modification of Coronary Stent: A Review

    NASA Astrophysics Data System (ADS)

    Tan, C. H.; Muhamad, N.; Abdullah, M. M. A. B.

    2017-06-01

    Driven by the urge of mediating the inflammatory response from coronary stent implant to improve patency rates of the current coronary stent, concern has been focusing on reducing the risk of in-stent restenosis and thrombosis for long-term safety. Surface modification approach has been found to carry great potential due to the surface is the vital parts that act as a buffer layer between the biomaterial and the organic material like blood and vessel tissues. Nevertheless, manipulating cell response in situ using physical patterning is very complex as the exact mechanism were yet elucidated. Thus, the aim of this review is to summarise the recent efforts on modifying the surface topography of coronary stent at the micro- and nanometer scale with the purpose of inducing rapid in situ endothelialization to regenerate a healthy endothelium layer on biomaterial surface. In particular, a discussion on the surface patterns that have been investigated on cell selective behaviour together with the methods used to generate them are presented. Furthermore, the probable future work involving the surface modification of coronary stent were indicated.

  10. Surface chemical modification of fullerene by mechanochemical treatment

    NASA Astrophysics Data System (ADS)

    Todorović Marković, B.; Jokanović, V.; Jovanović, S.; Kleut, D.; Dramićanin, M.; Marković, Z.

    2009-06-01

    In this study different encapsulating agents have been used for chemical modification of fullerenes. Fullerenes have reacted with tetrahydrofuran, sodium dodecyl sulfate, sodium dodecylbenzene sulfonate and ethylene vinyl acetate-ethylene vinyl versatate at room temperature under mechanical milling. The obtained powder has been dispersed in water by ultrasonication. The fullerene based colloids have been characterized by UV-vis, FTIR, Raman spectroscopy and atomic force microscopy. FTIR and Raman analysis have shown the presence of C 60 after surface functionalization.

  11. Adsorption and Chemical Modification of Phenols on a Silver Surface.

    PubMed

    Sánchez-Cortés; García-Ramos

    2000-11-01

    The adsorption of phenols of different natures on silver colloidal particles is studied here by surface-enhanced Raman spectroscopy (SERS). The studied compounds can be classified in three groups: (a) cinnamic acic derivatives: caffeic and isoferulic acids; (b) catechol; and (c) the phenols derived from benzoic acid: m- and p-hydroxybenzoic acids and salicylic, vanillic, and gallic acids. The interest of these compounds lies in the fact that they are naturally occurring molecules with significant importance in relation to plant metabolism, soil chemistry, and vegetal food stability. In addition, many of these compounds have antioxidant properties derived from their high affinity toward atmospheric oxygen. They exhibit high reactivity that may be enhanced in the presence of a metal surface such as those employed for SERS spectroscopy. From the SERS results it can be deduced that a clear chemical change of caffeic and gallic acid and catechol occurred. The chemical modification consists mainly of polymerization connected to existence in the molecule of o-diphenol moieties. In the case of m-hydroxybenzoic acid the chemical change may occur at low pH at which a reorientation of the molecule on the surface takes place, while in the o-hydroxybenzoic acid the only chemical change seems to be the internal H bond breakdown induced by the complexation with the metal. Finally, isoferulic and p-hydroxybenzoic acids do not show any chemical modification upon adsorption on the metal, which takes place through the carboxylate group adopting the molecule a standing up orientation. The case of vanillic acid is not so clear, although possible chemical modification is also possible for this adsorbate. From the results found in this work it can be inferred that the factors influencing possible chemical modification are the chemical structure of the adsorbate and its orientation and interaction with the surface. Copyright 2000 Academic Press.

  12. Wettability patterning of hydroxyapatite nanobioceramics induced by surface potential modification

    SciTech Connect

    Aronov, D.; Rosenman, G.; Karlov, A.; Shashkin, A.

    2006-04-17

    Hydroxyapatite is known as a substrate for effective adhesion of various biological cells and bacteria as well implantable biomimetic material replacing defective bone tissues. It is found that low energy electron irradiation induces its strong surface potential variation and gives rise to pronounced wettability modification. The found electron-modulation method of the hydroxyapatite wettability enables both wettability switching and its microscopic patterning, which may be used for fabrication of spatially arrayed hydroxyapatite for biological cells immobilization, gene transfer, etc.

  13. 30 CFR 912.764 - Process for designating areas unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Process for designating areas unsuitable for... WITHIN EACH STATE IDAHO § 912.764 Process for designating areas unsuitable for surface coal mining operations. Part 764 of this chapter, State Processes for Designating Areas Unsuitable for Surface Coal...

  14. 30 CFR 910.764 - Process for designating areas unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Process for designating areas unsuitable for... WITHIN EACH STATE GEORGIA § 910.764 Process for designating areas unsuitable for surface coal mining operations. Part 764 of this chapter, State Processes for Designating Areas Unsuitable for Surface Coal...

  15. 30 CFR 912.764 - Process for designating areas unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Process for designating areas unsuitable for... WITHIN EACH STATE IDAHO § 912.764 Process for designating areas unsuitable for surface coal mining operations. Part 764 of this chapter, State Processes for Designating Areas Unsuitable for Surface Coal...

  16. 30 CFR 922.764 - Process for designating areas unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Process for designating areas unsuitable for... WITHIN EACH STATE MICHIGAN § 922.764 Process for designating areas unsuitable for surface coal mining operations. Part 764 of this chapter, State Processes for Designating Areas Unsuitable for Surface Coal...

  17. 30 CFR 939.764 - Process for designating areas unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Process for designating areas unsuitable for... WITHIN EACH STATE RHODE ISLAND § 939.764 Process for designating areas unsuitable for surface coal mining operations. Part 764 of this chapter, State Processes for Designating Areas Unsuitable for Surface Coal...

  18. 30 CFR 922.764 - Process for designating areas unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Process for designating areas unsuitable for... WITHIN EACH STATE MICHIGAN § 922.764 Process for designating areas unsuitable for surface coal mining operations. Part 764 of this chapter, State Processes for Designating Areas Unsuitable for Surface Coal...

  19. 30 CFR 939.764 - Process for designating areas unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Process for designating areas unsuitable for... WITHIN EACH STATE RHODE ISLAND § 939.764 Process for designating areas unsuitable for surface coal mining operations. Part 764 of this chapter, State Processes for Designating Areas Unsuitable for Surface Coal...

  20. 30 CFR 910.764 - Process for designating areas unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Process for designating areas unsuitable for... WITHIN EACH STATE GEORGIA § 910.764 Process for designating areas unsuitable for surface coal mining operations. Part 764 of this chapter, State Processes for Designating Areas Unsuitable for Surface Coal...

  1. Surface Modification of the Conducting Polymer, Polypyrrole, via Affinity Peptide**

    PubMed Central

    Nickels, Jonathan D.; Schmidt, Christine E.

    2012-01-01

    A novel strategy for affinity-based surface modification of the conducting polymer, polypyrrole, (PPy), has been developed. A 12-amino acid peptide (THRTSTLDYFVI, hereafter denoted T59) was previously identified via the phage display technique. This peptide non-covalently binds to the chlorine-doped conducting polymer polypyrrole (PPyCl). Studies have previously shown that conductive polymers have promising application in neural electrodes, sensors, and for improving regeneration and healing of peripheral nerves and other tissues. Thus, the strong and specific attachment of bio-active molecules to the surface of PPy using the T59 affinity peptide is an exciting new approach to enhance the bioactivity of electrically active materials for various biomedical applications. We demonstrate this by using T59 as a tether to modify PPyCl with the laminin fragment IKVAV to enhance cell interactions, as well as with the so-called stealth molecule poly(ethylene glycol; PEG) to decrease cell interactions. Using these two modification strategies, we were able to control cell attachment and neurite extension on the PPy surface, which is critical for different applications (i.e., the goal for tissue regeneration is to enhance cell interactions, whereas the goal for electrode and sensor applications is to reduce glial cell interactions and thus decrease scarring). Significantly, the conductivity of the PPyCl surface was unaffected by this surface modification technique, which is not the case with other methods that have been explored to surface modify conducting polymers. Finally, using subcutaneous implants, we confirmed that the PPyCl treated with the T59 peptide did not react in vivo differently than untreated PPyCl. PMID:23129217

  2. Surface modification of the conducting polymer, polypyrrole, via affinity peptide.

    PubMed

    Nickels, Jonathan D; Schmidt, Christine E

    2013-05-01

    A novel strategy for affinity-based surface modification of the conducting polymer, polypyrrole, (PPy), has been developed. A 12-amino acid peptide (THRTSTLDYFVI, hereafter denoted T59) was previously identified via the phage display technique. This peptide noncovalently binds to the chlorine-doped conducting polymer polypyrrole (PPyCl). Studies have previously shown that conductive polymers have promising application in neural electrodes, sensors, and for improving regeneration and healing of peripheral nerves and other tissues. Thus, the strong and specific attachment of bioactive molecules to the surface of PPy using the T59 affinity peptide is an exciting new approach to enhance the bioactivity of electrically active materials for various biomedical applications. We demonstrate this by using T59 as a tether to modify PPyCl with the laminin fragment IKVAV to enhance cell interactions, as well as with the so-called stealth molecule poly(ethylene glycol; PEG) to decrease cell interactions. Using these two modification strategies, we were able to control cell attachment and neurite extension on the PPy surface, which is critical for different applications (i.e., the goal for tissue regeneration is to enhance cell interactions, whereas the goal for electrode and sensor applications is to reduce glial cell interactions and thus decrease scarring). Significantly, the conductivity of the PPyCl surface was unaffected by this surface modification technique, which is not the case with other methods that have been explored to surface modify conducting polymers. Finally, using subcutaneous implants, we confirmed that the PPyCl treated with the T59 peptide did not react in vivo differently than untreated PPyCl. Copyright © 2012 Wiley Periodicals, Inc.

  3. Surface Modification of ICF Target Capsules by Pulsed Laser Ablation

    SciTech Connect

    Carlson, Lane C.; Johnson, Michael A.; Bunn, Thomas L.

    2016-06-30

    Topographical modifications of spherical surfaces are imprinted on National Ignition Facility (NIF) target capsules by extending the capabilities of a recently developed full surface (4π) laser ablation and mapping apparatus. The laser ablation method combines the precision, energy density and long reach of a focused laser beam to pre-impose sinusoidal modulations on the outside surface of High Density Carbon (HDC) capsules and the inside surface of Glow Discharge Polymer (GDP) capsules. Sinusoidal modulations described in this paper have sub-micron to 10’s of microns vertical scale and wavelengths as small as 30 μm and as large as 200 μm. The modulated patterns are created by rastering a focused laser fired at discrete capsule surface locations for a specified number of pulses. The computer program developed to create these raster patterns uses inputs such as laser beam intensity profile, the material removal function, the starting surface figure and the desired surface figure. The patterns are optimized to minimize surface roughness. Lastly, in this paper, simulated surfaces are compared with actual ablated surfaces measured using confocal microscopy.

  4. Surface Modification of ICF Target Capsules by Pulsed Laser Ablation

    SciTech Connect

    Carlson, Lane C.; Johnson, Michael A.; Bunn, Thomas L.

    2016-06-30

    Topographical modifications of spherical surfaces are imprinted on National Ignition Facility (NIF) target capsules by extending the capabilities of a recently developed full surface (4π) laser ablation and mapping apparatus. The laser ablation method combines the precision, energy density and long reach of a focused laser beam to pre-impose sinusoidal modulations on the outside surface of High Density Carbon (HDC) capsules and the inside surface of Glow Discharge Polymer (GDP) capsules. Sinusoidal modulations described in this paper have sub-micron to 10’s of microns vertical scale and wavelengths as small as 30 μm and as large as 200 μm. The modulated patterns are created by rastering a focused laser fired at discrete capsule surface locations for a specified number of pulses. The computer program developed to create these raster patterns uses inputs such as laser beam intensity profile, the material removal function, the starting surface figure and the desired surface figure. The patterns are optimized to minimize surface roughness. Lastly, in this paper, simulated surfaces are compared with actual ablated surfaces measured using confocal microscopy.

  5. Surface Modification of ICF Target Capsules by Pulsed Laser Ablation

    DOE PAGES

    Carlson, Lane C.; Johnson, Michael A.; Bunn, Thomas L.

    2016-06-30

    Topographical modifications of spherical surfaces are imprinted on National Ignition Facility (NIF) target capsules by extending the capabilities of a recently developed full surface (4π) laser ablation and mapping apparatus. The laser ablation method combines the precision, energy density and long reach of a focused laser beam to pre-impose sinusoidal modulations on the outside surface of High Density Carbon (HDC) capsules and the inside surface of Glow Discharge Polymer (GDP) capsules. Sinusoidal modulations described in this paper have sub-micron to 10’s of microns vertical scale and wavelengths as small as 30 μm and as large as 200 μm. The modulatedmore » patterns are created by rastering a focused laser fired at discrete capsule surface locations for a specified number of pulses. The computer program developed to create these raster patterns uses inputs such as laser beam intensity profile, the material removal function, the starting surface figure and the desired surface figure. The patterns are optimized to minimize surface roughness. Lastly, in this paper, simulated surfaces are compared with actual ablated surfaces measured using confocal microscopy.« less

  6. Surface Modification of Textured Dielectrics and Their Wetting Behavior

    NASA Astrophysics Data System (ADS)

    Kumar, Vijay; Dhillon, Ajaypal Singh; Sharma, Niti Nipun

    2017-02-01

    Controlling the wettability on dielectric materials is a classical topic in surface engineering. Surface texturing and deposition of self-assembled monolayers (SAMs) are major approaches to achieve lower or higher water contact angle ( θ c) and thereby making surface less or more wettable (more hydrophobic). Dielectric surfaces wetting has been engineered by surface modification and has been shown to achieve θ c to a maximum of 120° ± 5°. Further improvement in θ c to an extent greater than 150° ± 5° is desired to render the surface superhydrophobic. We report in this work an achievement of θ c > 150° ± 5° by combining the plasma-treated surface and octadecyltrichlorosilane (OTS) SAMs deposition on dielectrics, and this had been shown on dielectric ranging from low- k to high- k values. The improvement in wetting behavior and quality of dielectric surface with monolayer on plasma-treated surfaces are (is) investigated and characterized using atomic-force microscope (AFM), scanning electron microscope (SEM), contact angle goniometer, and Raman spectroscopy and x-ray photoelectron spectroscopy (XPS) and are compared with untreated dielectric surface with OTS monolayers.

  7. Surface Modification of Textured Dielectrics and Their Wetting Behavior

    NASA Astrophysics Data System (ADS)

    Kumar, Vijay; Dhillon, Ajaypal Singh; Sharma, Niti Nipun

    2017-01-01

    Controlling the wettability on dielectric materials is a classical topic in surface engineering. Surface texturing and deposition of self-assembled monolayers (SAMs) are major approaches to achieve lower or higher water contact angle (θ c) and thereby making surface less or more wettable (more hydrophobic). Dielectric surfaces wetting has been engineered by surface modification and has been shown to achieve θ c to a maximum of 120° ± 5°. Further improvement in θ c to an extent greater than 150° ± 5° is desired to render the surface superhydrophobic. We report in this work an achievement of θ c > 150° ± 5° by combining the plasma-treated surface and octadecyltrichlorosilane (OTS) SAMs deposition on dielectrics, and this had been shown on dielectric ranging from low-k to high-k values. The improvement in wetting behavior and quality of dielectric surface with monolayer on plasma-treated surfaces are (is) investigated and characterized using atomic-force microscope (AFM), scanning electron microscope (SEM), contact angle goniometer, and Raman spectroscopy and x-ray photoelectron spectroscopy (XPS) and are compared with untreated dielectric surface with OTS monolayers.

  8. Ultrahydrophobic surface modification of polymeric fibers and inorganic substrates

    NASA Astrophysics Data System (ADS)

    Ramaratnam, Karthik

    The wettability of a solid surface is a very important property, and is governed by both the chemical composition and the geometrical microstructure of the surface. Wettability and repellency are important properties of solid surfaces from both fundamental and practical aspects. The wettability of the solid surface is a characteristic property of materials and strongly depends on both the surface energy and the surface roughness. These properties may be approached by mimicking hydrophobic structures created by nature on lotus leaf surface. The lotus effect is based on surface roughness caused by different microstructures together with the hydrophobic properties of the epicuticular wax. The present study investigates the basic principles involved in the fabrication of lotus-like materials on both fibrous and inorganic substrates utilizing the two essential requirements, surface roughness and hydrophobicity. The surface roughness was created either by a porous or a bumpy profile while the hydrophobicity was achieved by grafting a non-fluorinated hydrophobic polymer. For the porous profiles, polymer blend systems showing phase separation were utilized whereas the bumpy profiles were achieved using nanoparticles such as calcium carbonate, silver, or silica particles. In the last part of the research, functionalization of silica nanoparticles was investigated and the development of a universal modification step to obtain the ultrahydrophobic property is reported. In this approach, the adsorption of the polymer and the nanoparticles to fibers has been optimized and the self-cleaning effect of these fabrics modified with silica nanoparticles has also been demonstrated.

  9. Mechanical durability of superhydrophobic surfaces: The role of surface modification technologies

    NASA Astrophysics Data System (ADS)

    Zhi, Jing-Hui; Zhang, Li-Zhi; Yan, Yuying; Zhu, Jie

    2017-01-01

    Various surface modification technologies have been used to develop superhydrophobic surface, however their durability has been recognized as the major obstacle for the real applications. Here a quantitative investigation was conducted to evaluate the effects of different surface modification methods on the surfaces' mechanical durability. The superhydrophobic surfaces were prepared by the combination of two surface roughing methods (etching and sandblasting) with chemical modifications with four low surface energy materials: silica sol (SS), octadecanoic acid (OA), heptadecafluoro-1,1,2,2-tetrahydrodecyltrichlorosilane (HDFS) and hexadecyltriethoxysilane (HTS). XPS was used to analyze the elements composition and AFM was used to measure the roughness of the surfaces. The durability of these surfaces was tested by a sandpaper abrasion experiment. The collective results showed that the low surface energy materials had significant effects on the surface roughness, which would then play an important role in the durability of these rough surfaces. The SS modified rough surfaces possessed higher roughness and better durability than the surfaces modified by other three low surface energy materials. SS modified rough surfaces could bear 60 cycles of abrasion with 10 g weights on 1500 CW sandpaper.

  10. Recent Progress in Surface Modification of Polyvinyl Chloride

    PubMed Central

    Asadinezhad, Ahmad; Lehocký, Márian; Sáha, Petr; Mozetič, Miran

    2012-01-01

    Surface modification of polymers has become a vibrant field of research on account of a myriad of rationales which stimulated numerous efforts. The current paper serves as a condensed survey of the advances made through different approaches adopted for tuning the surface properties of polyvinyl chloride as a homopolymer extensively used on a large scale. Though it does not address all challenges involved, this paper communicates and highlights, through concise discussion, the findings of the efforts undertaken in recent decades. It is ultimately concluded with a perspective of the huge capacities and promising future directions.

  11. Surface modified coals for enhanced catalyst dispersion and liquefaction. Semiannual progress report, September 1, 1995--February 29, 1996

    SciTech Connect

    Abotsi, G.M.K.

    1996-10-01

    The aim of this work is to enhance catalyst loading and dispersion in coal for improved liquefaction by preadsorption of surfactants onto coal. The application of surfactants to coal beneficiation and coal-water slurry preparation is well known. However, the effects of surfactants on catalyst loading and dispersion prior to coal liquefaction have not been investigated. The current work is focused on the influence of the cationic surfactant dodecyl dimethyl ethyl ammonium bromide (DDAB) and sodium dodecyl sulfate (SDS, anionic) on the surface properties of a bituminous coal and its molybdenum uptake from solution. The results show that DDAB created positively charged sites on the coal and increased molybdenum loading compared to the original coal. In contrast, SDS rendered the coal surface negative and reduced molybdenum uptake. The results show that efficient loading of molybdenum catalyst onto coal can be achieved by pretreatment of the coal with dodecyl dimethyl ethyl ammonium bromide.

  12. Hemocompatible surface of electrospun nanofibrous scaffolds by ATRP modification.

    PubMed

    Yuan, Wenjie; Feng, Yakai; Wang, Heyun; Yang, Dazhi; An, Bo; Zhang, Wencheng; Khan, Musammir; Guo, Jintang

    2013-10-01

    The electrospun scaffolds are potential application in vascular tissue engineering since they can mimic the nano-sized dimension of natural extracellular matrix (ECM). We prepared a fibrous scaffold from polycarbonateurethane (PCU) by electrospinning technology. In order to improve the hydrophilicity and hemocompatibility of the fibrous scaffold, poly(ethylene glycol) methacrylate (PEGMA) was grafted onto the fiber surface by surface-initiated atom transfer radical polymerization (SI-ATRP) method. Although SI-ATRP has been developed and used for surface modification for many years, there are only few studies about the modification of electrospun fiber by this method. The modified fibrous scaffolds were characterized by SEM, Fourier transform infrared (FTIR), and X-ray photoelectron spectroscopy (XPS). The scaffold morphology showed no significant difference when PEGMA was grafted onto the scaffold surface. Based on the water contact angle measurement, the surface hydrophilicity of the scaffold surface was improved significantly after grafting hydrophilic PEGMA (P=0.0012). The modified surface showed effective resistance for platelet adhesion compared with the unmodified surface. Activated partial thromboplastin time (APTT) of the PCU-g-PEGMA scaffold was much longer than that of the unmodified PCU scaffold. The cyto-compatibility of electrospun nanofibrous scaffolds was tested by human umbilical vein endothelial cells (HUVECs). The images of 7-day cultured cells on the scaffold surface were observed by SEM. The modified scaffolds showed high tendency to induce cell adhesion. Moreover, the cells reached out pseudopodia along the fibrous direction and formed a continuous monolayer. Hemolysis test showed that the grafted chains of PEGMA reduced blood coagulation. These results indicated that the modified electrospun nanofibrous scaffolds were potential application as artificial blood vessels. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Work function modifications of graphite surface via oxygen plasma treatment

    NASA Astrophysics Data System (ADS)

    Duch, J.; Kubisiak, P.; Adolfsson, K. H.; Hakkarainen, M.; Golda-Cepa, M.; Kotarba, A.

    2017-10-01

    The surface modification of graphite by oxygen plasma was investigated experimentally (X-ray diffraction, nanoparticle tracking analysis, laser desorption ionization mass spectrometry, thermogravimetry, water contact angle) and by molecular modelling (Density Functional Theory). Generation of surface functional groups (mainly sbnd OHsurf) leads to substantial changes in electrodonor properties and wettability gauged by work function and water contact angle, respectively. The invoked modifications were analyzed in terms of Helmholtz model taking into account the theoretically determined surface dipole moment of graphite-OHsurf system (μ = 2.71 D) and experimentally measured work function increase (from 0.75 to 1.02 eV) to determine the sbnd OH surface coverage (from 0.70 to 1.03 × 1014 groups cm-2). Since the plasma treatment was confined to the surface, the high thermal stability of the graphite material was preserved as revealed by the thermogravimetric analysis. The obtained results provide a suitable quantitative background for tuning the key operating parameters of carbon electrodes: electronic properties, interaction with water and thermal stability.

  14. SURFACE MODIFICATION OF ZIRCALOY-4 SUBSTRATES WITH NICKEL ZIRCONIUM INTERMETALLICS

    SciTech Connect

    Luscher, Walter G.; Gilbert, Edgar R.; Pitman, Stan G.; Love, Edward F.

    2013-02-01

    Surfaces of Zircaloy-4 (Zr-4) substrates were modified with nickel-zirconium (NiZr) intermetallics to tailor oxidation performance for specialized applications. Surface modification was achieved by electroplating Zr-4 substrates with nickel (Ni) and then performing thermal treatments to fully react the Ni plating with the substrates, which resulted in a coating of NiZr intermetallics on the substrate surfaces. Both plating thickness and thermal treatment were evaluated to determine the effects of these fabrication parameters on oxidation performance and to identify an optimal surface modification process. Isothermal oxidation tests were performed on surface-modified materials at 290°, 330°, and 370°C under a constant partial pressure of oxidant (i.e., 1 kPa D2O in dry Ar at 101 kPa) for 64 days. Test results revealed an enhanced, transient oxidation rate that decreased asymptotically toward the rate of the Zr-4 substrate. Oxidation kinetics were analyzed from isothermal weight gain data, which were correlated with microstructure, hydrogen pickup, strength, and hardness.

  15. Land and natural resource information and some potential environmental effects of surface mining of coal in the Gillette area, Wyoming

    USGS Publications Warehouse

    Keefer, William Richard; Hadley, R.F.

    1976-01-01

    Campbell County, along the east margin of the Powder River Basin in northeastern Wyoming, contains more coal than any other county in the United States. The principal deposit is the Wyodak-Anderson coal bed. The bed is 50-100 feet (15-30 meters) thick over large areas, lies less than 200 feet (60 meters) deep in a north-south trending strip nearly 100 miles (161 kilometers) long and 2-3 miles (3-5 kilometers) wide, and contains an estimated 15 billion tons (13.6 billion metric tons) of sub-bituminous, low-sulfur coal that is presently considered to be accessible to surface mining. Extensive mining of this deposit has the potential for causing a variety of environmental impacts and has been a matter of much public concern and debate in recent years. An integrated program of geologic, hydrologic, geochemical, and related studies by the U.S. Geological Survey in central Campbell County provides basic information about the land and its resources, including (1) characteristics of the landscape, (2) properties of rocks and surface materials, (3) depth and thickness of coal, (4) streamflow, (5) depth to ground water, (6) quality of ground water, (7) sediment yield, (8) concentrations of trace elements in soils, rocks, coal, vegetation, and water, and (9) current land use. The data are used to analyze and predict some of the potential environmental effects of surface mining, such as the extent of land disturbance, nature and degree of landscape modification, and disruption of surface-water and ground-water systems. Advance knowledge and understanding of these and other problems are useful in the planning and regulation of future leasing, mining, reclamation, and related activities.

  16. Characterization of the surface properties of Illinois basin coals. Technical report, March 1, 1992--May 31, 1992

    SciTech Connect

    Demir, I.; Harvey, R.D.; Lizzio, A.A.

    1992-10-01

    The main objective of this project is to characterize the surface properties (surface area, pore size distribution, surface charge, and surface chemical structure) of eight coals in the Illinois Basin Coal Sample Program (IBCSP), and explore statistical relationships between surface properties and other coal characteristics. We completed analyses of -100 and -400 mesh, unoxidized IBCSP coals for surface area and pore volume distribution. Two thirds or more of the measured surface area of the samples are derived from the micropores (3.5-20 {Angstrom}). The mesopore surface areas of IBC-101, IBC-102, and IBC-107 coals are higher than the other coals, and the mesopore surface area of the IBC-103 coal is the smallest among all the coals tested. The pore volume in pores less than about 1800 {Angstrom} in diameter varies about five-fold among the samples. The differences between the samples suggest that these coals may show different physical-chemical behavior during various processes involving preparation and utilization of coal. Statistical analyses of the measured and other available coal properties indicate that the micropore surface area correlates positively with carbon content and vitrinite reflectance and negatively with volatile matter. and hydrogen content of the coal. The mesopore surface area correlates negatively with carbon content but positively with oxygen and hydrogen contents of the coal. The statistical correlations can be used to predict one parameter from another one.

  17. Controlling modulus and morphology of hydrogel tubes through surface modification.

    PubMed

    Enescu, Cristina; Shoichet, Molly S

    2004-01-01

    Crosslinked, porous poly(2-hydroxyethyl methacrylate-co-methyl methacrylate) (PHEMA-MMA) tubes were prepared in cylindrical glass molds using a new centrifugal casting process developed in our group. The resulting hydrogel tubes have a bi-phasic wall structure, with a spongy inner layer and a gel-like outer layer, the latter of which provides mechanical strength to the tube. While many factors influence wall morphology and, thus, mechanical properties, we focused on the effect of the surface properties of the glass mold in which tubes are synthesized. Specifically, we investigated the impact of a diverse set of silane modifications of the glass mold on tube morphology, elastic modulus and mold release. We treated activated glass surfaces with one of three alkoxysilanes having either ethoxy, amine or fluorocarbon end-groups. Silane-modified glass surfaces were found to be more hydrophobic than the unmodified glass mold, with the most hydrophobic surface being that of the fluorocarbon-terminated silane. The presence of the silane layer on the mold was confirmed by X-ray photoelectron spectroscopy and the stability of this modification was confirmed by examining the surface chemistry of the hydrogel tubes. The biphasic hydrogel tube wall structure was observed for all tubes, yet those tubes synthesized in unmodified molds had a cracked outer morphology, whereas those synthesized in silane-modified molds had a smooth outer morphology. This influenced the mechanical properties of the tubes where tubes synthesized in silane-modified molds had a significantly greater elastic modulus than those tubes synthesized in unmodified molds. Release from the molds was easiest with ethoxy- and amine-functionalized silane mold modifications.

  18. Modification of polymeric substrates using surface-grafted nanoscaffolds

    NASA Astrophysics Data System (ADS)

    Thompson, Kimberlee Fay

    Surface grafting and modification of poly(acrylic acid) (PAA) were performed on nylon 6,6 carpet fibers to achieve permanent stain and soil resistance. PAA was grafted to nylon and modified with 1H, 1H-pentadecafluorooctyl amine (PDFOA) using an amidation agent, 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride (DMTMM). The first goal was to optimize acrylamide modification of PAA in solution. Aqueous reactions with taurine, hydroxyethyl amine, and butyl amine progressed ˜100%, while PDFOA reactions in MeOH progressed ˜80%. Reaction products precipitated at 77% butyl or 52% PDFOA acrylamide contents. The second goal was to optimize the PAA grafting process. First, PAA was adsorbed onto nylon 6,6 films. Next, DMTMM initiated grafting of adsorbed PAA. PAA surface coverage was ˜78%, determined by contact angle analysis of the top 0.1--1 nm and x-ray photoelectron spectroscopy (XPS) analysis of the top 3--10 nm. The third goal was to modify PAA grafted nylon films with butyl amine and PDFOA. Randomly methylated beta-cyclodextrin (RAMEB) solubilized PDFOA in water. Contact angle detected ˜100% surface reaction for each amine, while XPS detected ˜77% butyl amine (H2O) and ˜50% for PDFOA (MeOH or H2O pH = 7) reactions. In H2O pH = 12, the PDFOA reaction progressed ˜89%, perhaps due to greater efficiency, access and solubility. The fourth goal was to perform surface depth profiling via angle-resolved XPS analysis (ARXPS). The PAA surface coverage from contact angle and XPS was confirmed. Further, adsorbed PAA was thicker than grafted PAA, supporting the theory that PAA adsorption occurs in thick layers onto nylon followed by DMTMM-activated spreading and grafting of thinner PAA layers across the surface. The PDFOA reaction in McOH produced a highly fluorinated but thin exterior and an unreacted PAA interior. The PDFOA reaction in H 2O pH = 12 produced a completely fluorinated exterior and highly fluorinated interior. Thus surface modification levels

  19. Nanostructure modification to carbon nanowall surface employing hydrogen peroxide solution

    NASA Astrophysics Data System (ADS)

    Shimoeda, Hironao; Kondo, Hiroki; Ishikawa, Kenji; Hiramatsu, Mineo; Sekine, Makoto; Hori, Masaru

    2014-04-01

    Carbon nanowalls (CNWs), which are three-dimensional carbon nanomaterials consisting of stacks of graphene sheets vertically standing on substrates, possess a mazelike architecture containing high-density graphene edges and large-area plane surfaces. A selective morphological modification technique for the surfaces of CNWs after their growth has been developed employing hydrogen peroxide (H2O2) solution. It was found that oxidative radicals in H2O2 solution formed characteristic nanometer-scale asperities on the CNW surface without etching from the top edges. Photoelectron spectra indicate that hydroxyl adsorption and subsequent reactions at the edge and plane of graphene contribute to the selective morphological change on the CNW surface.

  20. Potential effects of surface coal mining on the hydrology of the Cook Creek area, Ashland coal field, southeastern Montana

    USGS Publications Warehouse

    Cannon, M.R.

    1982-01-01

    The Cook Creek area of the Ashland coal field contains large reserves of Federally owned coal that have been identified for potential lease sale. A hydrologic study has been conducted in the potential lease area to describe existing hydrologic systems and to assess potential impacts of surface coal mining on local water resources. Hydrogeologic data collected from wells, springs, and drill holes indicate that shallow aquifers exist within the Tongue River Member of the Fort Union Formation (Paleocene age) and within valley alluvium (Pleistocene and Holocene age). Shallow aquifers within the Tonge River Member include coal beds, clinker, and lenses of sandstone and siltstone. The Knobloch coal bed, a principal shallow aquifer used for livestock watering in the area, averages about 55 feet in thickness and is completely saturated throughout most of its extent. Coarse alluvial deposits are the most productive aquifers and are a major source of stock water in the Cook Creek basin. Surface-water resources are limited to the upstream reach part of Cook Creek, which flows intermittently. The downstream reach part of Cook Creek, plus all other small drainages that originate in the study area, are ephemeral. Mining of the Knoblock and Sawyer coal beds would remove two alluvial springs, one bedrock spring, and two wells, which are all used for watering of livestock. The potentiometric surface within the Knobloch coal aquifer and the alluvial aquifer in the downstream part of the Cook Creek basin would be lowered during mining. Lowered water levels in these aquifers might substantially affect water levels in five wells outside the mine boundary. After mining, the alluvial aquifer downgradient from the mine area might show a long-term degradation in water quality as a result of leaching of soluble salts from overburden materials used to backfill mine pits. Although mining would alter the existing hydrologic systems and remove several springs and shallow wells, alternative

  1. Potential effects of surface coal mining on the hydrology of the Greenleaf-Miller area, Ashland coal field, southeastern Montana

    USGS Publications Warehouse

    Levings, G.W.

    1982-01-01

    The Greenleaf-Miller area of the Ashland coal field contains reserves of Federal coal that have been identified for potential lease sale. A hydrologic study was conducted in the potential lease area in 1981 to describe the existing hydrologic system and to assess potential impacts of surface coal mining on local water resources. The hydrologic data collected from wells, test holes, and springs were used to identify aquifers in the alluvium (Pleistocene and Holocene age) and the Tongue River member of the Fort Union Formation (Paleocene age). Coal, clinker, and sandstone beds comprise the aquifers in the Tongue River Member. Most streams are ephemeral and flow only as a result of precipitation. The only perennial surface-water flow in the study area is along short reaches downstream from springs. A mine plan for the area is not available; thus, the location of mine cuts, direction and rate of the mine expansion, and duration of mining are unknown. The mining of the Sawyer and Knoblock coal beds in the Tonge River Member would effect ground-water flow in the area. Declines in the potentiometric surface would be caused by dewatering where the mine pits intersect the water table. Wells and springs would be removed in the mine area; however, deeper aquifers are available as replacement sources of water. The chemical quality of the ground water would change after moving through the spoils. The change would be an increase in the concentration of dissolved solids. (USGS)

  2. Enhancing surface free energy and hydrophilicity through chemical modification of microstructured titanium implant surfaces.

    PubMed

    Rupp, F; Scheideler, L; Olshanska, N; de Wild, M; Wieland, M; Geis-Gerstorfer, J

    2006-02-01

    Roughness-induced hydrophobicity, well-known from natural plant surfaces and intensively studied toward superhydrophobic surfaces, has currently been identified on microstructured titanium implant surfaces. Studies indicate that microstructuring by sandblasting and acid etching (SLA) enhances the osteogenic properties of titanium. The undesired initial hydrophobicity, however, presumably decelerates primary interactions with the aqueous biosystem. To improve the initial wettability and to retain SLA microstructure, a novel surface modification was tested. This modification differs from SLA by its preparation after acid etching, which was done under protective gas conditions following liquid instead of dry storage. We hypothesized that this modification should have increased wettability due to the prevention of contaminations that occurs during air contact. The main outcome of dynamic wettability measurements was that the novel modification shows increased surface free energy (SFE) and increased hydrophilicity with initial water contact angles of 0 degrees compared to 139.9 degrees for SLA. This hydrophilization was kept even after any drying. Reduced hydrocarbon contaminations were identified to play a possible role in altered surface thermodynamics. Such surfaces aim to retain the hydrophilicity and natural high surface energy of the Ti dioxide surface until surgical implants' insertion and are compared in this in vitro study with structural surface variants of titanium to compare roughness and chemically induced wettability.

  3. PREFACE Surface Modifications and Functionalization of Materials for Biomedical Applications

    NASA Astrophysics Data System (ADS)

    Endrino, Jose Luis; Puértolas, Jose A.; Albella, Jose M.

    2010-11-01

    Conference photograph This special issue contains selected papers which were presented as invited and contributed communications at the workshop entitled 'Surface modification and functionalization of materials for biomedical applications' (BIO-COAT 2010) which was held on 24 June 2010 in Zaragoza (Spain). The surface of a material plays a major role in its interaction with the biological medium. Processes related to the mechanical stability of articular devices in contact, osseointegration, thrombogenicity, corrosion and leaching, or the inflammatory response of rejection of a material, are clearly conditioned by the surface properties. Therefore, the modification or functionalization of surfaces can have an important impact on these issues. New techniques for functionalization by thin film deposition or surface treatments help to improve superficial properties, while understanding the interaction of the surface-biological medium is critical for their application in new devices. Jointly organized by the Spanish Materials Research Society, BIO-COAT 2010 provided an open forum to discuss the progress and latest developments in thin film processing and the engineering of biomaterials. Invited lectures were particularly aimed at providing overviews on scientific topics and were given by recognized world-class scientists. Two of them have contributed with a proceedings article to this selected collection (articles 012001 and 012008). The contributed communications were focused on particular cutting-edge aspects of thin film science and functionalization technologies for biomaterials, showing the major scientific push of Spanish research groups in the field. The 2010 BIO-COAT conference was organized along four main topics: (1) functionalization and texture on surfaces, (2) tribology and corrosion, (3) the surface modification of biomaterials, and (4) surface-biological environment interactions. The papers published in this volume were accepted for publication after

  4. Silane surface modification for improved bioadhesion of esophageal stents

    PubMed Central

    Karakoy, Mert; Gultepe, Evin; Pandey, Shivendra; Khashab, Mouen A.; Gracias, David H.

    2014-01-01

    Stent migration occurs in 10-40% of patients who undergo placement of esophageal stents, with higher migration rates seen in those treated for benign esophageal disorders. This remains a major drawback of esophageal stent therapy. In this paper, we propose a new surface modification method to increase the adhesion between self-expandable metallic stents (SEMS) and tissue while preserving their removability. Taking advantage of the well-known affinity between epoxide and amine terminated silane coupling agents with amine and carboxyl groups that are abundant in proteins and related molecules in the human body; we modified the surfaces of silicone coated esophageal SEMS with these adhesive self-assembled monolayers (SAMs). We utilized vapor phase silanization to modify the surfaces of different substrates including PDMS strips and SEMS, and measured the force required to slide these substrates on a tissue piece. Our results suggest that surface modification of esophageal SEMS via covalent attachment of protein-binding coupling agents improves adhesion to tissue and could offer a solution to reduce SEMS migration while preserving their removability. PMID:25663731

  5. Surface modification by alkali and heat treatments in titanium alloys.

    PubMed

    Lee, Baek-Hee; Do Kim, Young; Shin, Ji Hoon; Hwan Lee, Kyu

    2002-09-05

    Pure titanium and titanium alloys are normally used for orthopedic and dental prostheses. Nevertheless, their chemical, biological, and mechanical properties still can be improved by the development of new preparation technologies. This has been the limiting factor for these metals to show low affinity to living bone. The purpose of this study is to improve the bone-bonding ability between titanium alloys and living bone through a chemically activated process and a thermally activated one. Two kinds of titanium alloys, a newly designed Ti-In-Nb-Ta alloy and a commercially available Ti-6Al-4V ELI alloy, were used in this study. In this study, surface modification of the titanium alloys by alkali and heat treatments (AHT), alkali treated in 5.0M NaOH solution, and heat treated in vacuum furnace at 600 degrees C, is reported. After AHT, the effects of the AHT on the bone integration property were evaluated in vitro. Surface morphologies of AHT were observed by optical microscopy (OM) and scanning electron microscopy (SEM). Chemical compositional surface changes were investigated by X-ray diffractometry (XRD), energy dispersive spectroscopy (EDS), and auger electron spectroscopy (AES). Titanium alloys with surface modification by AHT showed improved bioactive behavior, and the Ti-In-Nb-Ta alloy had better bioactivity than the Ti-6Al-4V ELI alloy in vitro.

  6. Silane surface modification for improved bioadhesion of esophageal stents

    NASA Astrophysics Data System (ADS)

    Karakoy, Mert; Gultepe, Evin; Pandey, Shivendra; Khashab, Mouen A.; Gracias, David H.

    2014-08-01

    Stent migration occurs in 10-40% of patients who undergo placement of esophageal stents, with higher migration rates seen in those treated for benign esophageal disorders. This remains a major drawback of esophageal stent therapy. In this paper, we propose a new surface modification method to increase the adhesion between self-expandable metallic stents (SEMS) and tissue while preserving their removability. Taking advantage of the well-known affinity between epoxide and amine terminated silane coupling agents with amine and carboxyl groups that are abundant in proteins and related molecules in the human body; we modified the surfaces of silicone coated esophageal SEMS with these adhesive self-assembled monolayers (SAMs). We utilized vapor phase silanization to modify the surfaces of different substrates including PDMS strips and SEMS, and measured the force required to slide these substrates on a tissue piece. Our results suggest that surface modification of esophageal SEMS via covalent attachment of protein-binding coupling agents improves adhesion to tissue and could offer a solution to reduce SEMS migration while preserving their removability.

  7. Temperature dependent surface modification of silica spheres with methacrylate

    NASA Astrophysics Data System (ADS)

    Kang, Kwang-Sun; Kim, Byoung-Ju; Jo, Dong-Hyun; Lim, Sae-Han; Park, Jin-Young; Kim, Do-gyun

    2014-09-01

    Surface modification of silica spheres with 3-(Trimethoxysilyl)propylmethacrylate (TMSPM) has been performed at ambient condition. However, the FTIR spectra and field emission scanning electron microscope (FESEM) images show no evidence of the surface modification. The reaction temperatures were varied from 60 to 80 °C with various reaction periods. Small absorption shoulder of the C=O stretching vibration was at 1700 cm-1, and slightly increased with the increase of the reaction time at 60 °C. The clear absorption peak appeared at 1698 cm-1 for the spheres reacted for 80 min at 70 °C and shifted toward 1720 cm-1 with the increase the reaction time. Strong absorption peak showed at 1698 cm-1 and shifted toward 1725 cm-1 with the increase of the reaction time at 80 °C. The spheres were dispersed to methanol and added photoinitiator (Irgacure-184). The solution was poured to a patterned glass substrate and exposed to the 254 nm UV-light during a self-assembly process. A large area and crack-free silica sphere film was formed. To increase the mechanical stability, a cellulose acetate solution was spin-coated to the film. The film was lift-off from the glass substrate to analyze the surface nanostructures. The surface nanostructures were maintained, and the film is stable enough to use as a mold to duplicate the nanopattern and flexible.

  8. Modification of Silicon Oxide Surfaces with Thermally Annealed Polystyrene Films

    NASA Astrophysics Data System (ADS)

    Kalan, Steven; Cavicchi, Kevin; Karim, Alamgir

    2011-03-01

    The modification of silicon with a native oxide surface has been accomplished by annealing thin films of anionically polymerized polystyrene spun-coat from solution at elevated temperature followed by dissolving the film in solvent to leave a thin layer of adsorbed polymer that persisted even after prolonged desorbing in solvent even at elevated temperature. It was found by water contact angle analysis of the samples after washing with organic solvent that annealing is a key step to adsorption of a thin layer of polystyrene on the film surface. X-ray reflectivity analysis also demonstrated that the thickness of the adsorbed layer is proportional to the molecular weight of the polymer. However, the contact angle showed a non-monotonic dependence on molecular weight. The further modification of these surfaces by ultraviolet/ozone treatment will be discussed. This is a novel surface treatment method as it performed with a polystyrene polymer without any additional chemical functionality through straight-forward vacuum annealing and washing with organic solvent.

  9. Chemical modification of the cocoa shell surface using diazonium salts.

    PubMed

    Fioresi, Flavia; Vieillard, Julien; Bargougui, Radhouane; Bouazizi, Nabil; Fotsing, Patrick Nkuigue; Woumfo, Emmanuel Djoufac; Brun, Nicolas; Mofaddel, Nadine; Le Derf, Franck

    2017-05-15

    The outer portion of the cocoa bean, also known as cocoa husk or cocoa shell (CS), is an agrowaste material from the cocoa industry. Even though raw CS is used as food additive, garden mulch, and soil conditioner or even burnt for fuel, this biomass material has hardly ever been investigated for further modification. This article proposes a strategy of chemical modification of cocoa shell to add value to this natural material. The study investigates the grafting of aryl diazonium salt on cocoa shell. Different diazonium salts were grafted on the shell surface and characterized by infrared spectroscopy and scanning electronic microscopy imaging. Strategies were developed to demonstrate the spontaneous grafting of aryl diazonium salt on cocoa shell and to elucidate that lignin is mainly involved in immobilizing the phenyl layer. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. 75 FR 18500 - Guidance on Improving EPA Review of Appalachian Surface Coal Mining Operations under the Clean...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-12

    ... AGENCY Guidance on Improving EPA Review of Appalachian Surface Coal Mining Operations under the Clean..., titled Improving EPA Review of Appalachian Surface Coal Mining Operations under the Clean Water Act... environmental review of Appalachian surface coal mining operations under the Clean Water Act,...

  11. 30 CFR 761.14 - Procedures for relocating or closing a public road or waiving the prohibition on surface coal...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... road or waiving the prohibition on surface coal mining operations within the buffer zone of a public... Procedures for relocating or closing a public road or waiving the prohibition on surface coal mining...) Conduct surface coal mining operations within 100 feet, measured horizontally, of the outside...

  12. 30 CFR 761.15 - Procedures for waiving the prohibition on surface coal mining operations within the buffer zone...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... surface coal mining operations within the buffer zone of an occupied dwelling. 761.15 Section 761.15... surface coal mining operations within the buffer zone of an occupied dwelling. (a) This section does not... provided in § 761.11(e)(2). (b) If you propose to conduct surface coal mining operations within 300...

  13. 30 CFR 761.15 - Procedures for waiving the prohibition on surface coal mining operations within the buffer zone...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... surface coal mining operations within the buffer zone of an occupied dwelling. 761.15 Section 761.15... surface coal mining operations within the buffer zone of an occupied dwelling. (a) This section does not... provided in § 761.11(e)(2). (b) If you propose to conduct surface coal mining operations within 300...

  14. 30 CFR 761.14 - Procedures for relocating or closing a public road or waiving the prohibition on surface coal...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... road or waiving the prohibition on surface coal mining operations within the buffer zone of a public... Procedures for relocating or closing a public road or waiving the prohibition on surface coal mining...) Conduct surface coal mining operations within 100 feet, measured horizontally, of the outside...

  15. 30 CFR 761.14 - Procedures for relocating or closing a public road or waiving the prohibition on surface coal...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... road or waiving the prohibition on surface coal mining operations within the buffer zone of a public... Procedures for relocating or closing a public road or waiving the prohibition on surface coal mining...) Conduct surface coal mining operations within 100 feet, measured horizontally, of the outside...

  16. 30 CFR 761.15 - Procedures for waiving the prohibition on surface coal mining operations within the buffer zone...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... surface coal mining operations within the buffer zone of an occupied dwelling. 761.15 Section 761.15... surface coal mining operations within the buffer zone of an occupied dwelling. (a) This section does not... provided in § 761.11(e)(2). (b) If you propose to conduct surface coal mining operations within 300...

  17. Oxidation of coal and coal pyrite mechanisms and influence on surface characteristics. Technical progress report, December 1, 1993--May 31, 1994

    SciTech Connect

    Doyle, F.M.

    1994-08-01

    The objective of this research is to develop a mechanistic understanding of the oxidation of coal and coal pyrite, and to correlate the intrinsic physical and chemical properties of these minerals, along with changes resulting from oxidation, with those surface properties that influence the behavior in physical cleaning processes. The results will provide fundamental insight into oxidation, in term of the bulk and surface chemistry, the microstructure, and the semiconductor properties of the pyrite. During the fourteenth and fifteenth quarters, flotation tests were done on Upper Freeport coal from the Troutvill {number_sign}2 Mine, Clearfield County, Pennsylvania and on coal samples from the Pennsylvania State Coal Bank. The influence of electrode potential on the surface properties of coal pyrite was tested using contact angle measurements on polarized Pittsburgh coal pyrite electrode.

  18. Oxidation of coal and coal pyrite mechanisms and influence on surface characteristics. Quarterly technical progress report, December 1, 1993--May 31, 1994

    SciTech Connect

    Doyle, F.M.

    1996-01-01

    The objective of this research is to develop a mechanistic understanding of the oxidation of coal and coal pyrite, and to correlate the intrinsic physical and chemical properties of these minerals, along with changes resulting from oxidation, with those surface properties that influence the behavior in physical cleaning processes. The results will provide fundamental insight into oxidation, in term of the bulk and surface chemistry, the microstructure, and the semiconductor properties of the pyrite. During the fourteenth and fifteenth quarters, flotation tests were done on Upper Freeport coal from the Troutville No. 2 Mine, Clearfield County, Pennsylvania and on coal samples from the Pennsylvania State Coal Bank. The influence of electrode potential on the surface properties of coal pyrite was tested using contact angle measurements on polarized Pittsburgh coal pyrite electrode.

  19. Computer simulation of surface modification with ion beams

    NASA Astrophysics Data System (ADS)

    Insepov, Z.; Hassanein, A.; Swenson, D.; Terasawa, M.

    2005-12-01

    Interactions of energetic ions with various solid targets including silicon and a few metal surfaces were studied by computer simulation and verified by experiment. Surface sputtering and modification for collisions of Arn (n ∼ 100) cluster ions, with kinetic energies of 12-54 eV/atom, and slow highly charged ions (HCI), with potential energies of 80-3500 eV, have been simulated. Various energy transfer mechanisms of the ion energy into the solid target, such as shock wave generation, hollow atom formation, Coulomb explosion, charge screening and neutralization were studied. Atomistic molecular dynamics (MD), as well as a phenomenological surface dynamics methods were employed and the results of the simulations were compared with the experimental data.

  20. [Surface grafting modification and stabilization of Kevlar fiber].

    PubMed

    Zheng, Yu-ying; Fu, Ming-lian; Wang, Can-yao; Wang, Liang-en

    2005-11-01

    Chemical disposal was used to bring the activity group onto the surface of Kevlar fiber for the purpose of surface grafting modification. The interfacial constitution of the grafting of toluene-2,4-diisocyanate (TDI) onto Kevlar fiber was determined by Fourier transform infrared spectroscopy. In the mean time, hexyl-lactam stabilization and poly-glycol (400, PEG) stabilization on the grafted product were also studied. The effects of different nTDI:nPEG ratios on the production's interfacial constitution was analysed. It is concluded that the stabilization took place on the surface. The intensity of the bands relented at about 3300 cm(-1) and was reinforced at about 1700-1720 cm(-1) when the ratio of nTDI:nPEG = 1:3, but when the ratio is 1:1 and 1:2, the bands at about 3 300 and 1700-1720 cm(-1) are almost the same.