Sample records for coal technology projects

  1. Illinois Clean Coal Institute 2005 annual report. Final technical report for the period September 1st, 2004, through August 31, 2005 on projects funded by the Illinois Department of Commerce and Economic Opportunity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    2005-11-08

    This final technical report contains the abstracts and executive summaries of projects funded through the Illinois Clean Coal Institute solicitation entitled 'Request for proposals No. 04-1(ICCI/RFP04-1)'. Support of these projects is by the Office of Coal Development and Department of Commerce and Economic Opportunity. The projects fall into the following categories: advanced coal mining technologies; coal preparation and coal production business practice; management of coal combustion byproducts; commercialization and technology transfer. Final project extensions are also recorded.

  2. Coal cleaning: An underutilized solution?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Godfrey, R.L.

    1995-12-31

    Custom Coals Corporation is based in Pittsburgh, Pennsylvania. It is involved in the construction and operation of advanced coal cleaning facilities. The company has initially chosen to focus on Pennsylvania`s vast reserves of coal, because these coal provide a superior feedstock for the Technology. In a $76 million project co-sponsored by the U.S. Department of Energy, Custom Coals is constructing its first coal cleaning facility. The DOE chose to participate with the company in the project pursuant to a competition it sponsored under Round IV of Its Clean Cod Technology program. Thirty-one companies submitted 33 projects seeking approximately $2.3 billionmore » of funding against the $600 million available. The company`s project was one of nine proposals accepted and was the only pre-combustion cleaning technology awarded. The project includes both the construction of a 500 ton per hour coal cleaning facility utilizing the company`s proprietary technologies and a series of power plant test bums on a variety of U.S. coals during a 12-month demonstration program. Three U.S. coal seams - Sewickley, Lower Freeport and Illinois No. 5 - will supply the initial feedstock for the demonstration project. These seams represent a broad range of raw cod qualifies. The processed coals will then be distributed to a number of generating stations for combustion. The 300 megawatt Martins Creek Plant of Pennsylvania Power & Light Co., near Allentown, Pennsylvania, will burn Carefree Coal, the 60 megawatt Whitewater Valley Power Station of Richmond Power and Light (in Indiana) and the Ashtabula, Ohio unit of Centerior Energy will burn Self-Scrubbing Coal. Following these demonstrations, the plant will begin full-scale commercial operation, providing two million tons of Pennsylvania compliance coals to electric power utilities.« less

  3. Clean Coal Technology Demonstration Program: Program Update 1998

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Assistant Secretary for Fossil Energy

    1999-03-01

    Annual report on the Clean Coal Technology Demonstration Program (CCT Program). The report address the role of the CCT Program, implementation, funding and costs, accomplishments, project descriptions, legislative history, program history, environmental aspects, and project contacts. The project descriptions describe the technology and provides a brief summary of the demonstration results.

  4. Wabash River coal gasification repowering project -- first year operation experience

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Troxclair, E.J.; Stultz, J.

    1997-12-31

    The Wabash River Coal Gasification Repowering Project (WRCGRP), a joint venture between Destec Energy, Inc. and PSI Energy, Inc., began commercial operation in November of 1995. The Project, selected by the United States Department of Energy (DOE) under the Clean Coal Program (Round IV) represents the largest operating coal gasification combined cycle plant in the world. This Demonstration Project has allowed PSI Energy to repower a 1950`s vintage steam turbine and install a new syngas fired combustion turbine to provide 262 MW (net) of electricity in a clean, efficient manner in a commercial utility setting while utilizing locally mined highmore » sulfur Indiana bituminous coal. In doing so, the Project is also demonstrating some novel technology while advancing the commercialization of integrated coal gasification combined cycle technology. This paper discusses the first year operation experience of the Wabash Project, focusing on the progress towards achievement of the demonstration objectives.« less

  5. Fossil energy program

    NASA Astrophysics Data System (ADS)

    McNeese, L. E.

    1981-12-01

    The progress made during the period from July 1 through September 30 for the Oak Ridge National Laboratory research and development projects in support of the increased utilization of coal and other fossil fuels as sources of clean energy is reported. The following topics are discussed: coal conversion development, chemical research and development, materials technology, fossil energy materials program, liquefaction projects, component development, process analysis, environmental control technology, atmospheric fluidized bed combustion, underground coal gasification, coal preparation and waste utilization.

  6. Meeting today's challenges to supply tomorrow's energy. Clean fossil energy technical and policy seminar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    2005-07-01

    Papers discussed the coal policy of China, Russia, Indonesia and Vietnam; clean coal technology (small-scale coal power plants, carbon capture and sequestration, new coking process SCOPE21, coal gasification (HyPr-RING), CO{sub 2} reduction technology, Supercritical coal-fired units and CFB boilers, EAGLE project, coal liquefaction), the coal consumer's view of clean fossil energy policy, and natural gas policy and technology. Some of the papers only consist of the presentation overheads/viewgraphs.

  7. The directory of US coal and technology export resources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1990-10-01

    The purpose of The Directory remains focused on offering a consolidated resource to potential buyers of US coal, coal technology, and expertise. This is consistent with the US policy on coal and coal technology trade, which continues to emphasize export market strategy implementation. Within this context, DOE will continue to support the teaming'' approach to marketing; i.e., vertically integrated large project teams to include multiple industry sectors, such as coal producers, engineering and construction firms, equipment manufacturers, financing and service organizations.

  8. 40 CFR 60.14 - Modification.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... physical change, or change in the method of operation, at an existing electric utility steam generating... projects that are awarded funding from the Department of Energy as permanent clean coal technology... installation, operation, cessation, or removal of a temporary clean coal technology demonstration project is...

  9. 5. annual clean coal technology conference: powering the next millennium. Vol.1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-07-01

    The Fifth Annual Clean Coal Technology Conference focuses on presenting strategies and approaches that will enable clean coal technologies to resolve the competing, interrelated demands for power, economic viability, and environmental constraints associated with the use of coal in the post-2000 era. The program addresses the dynamic changes that will result from utility competition and industry restructuring, and to the evolution of markets abroad. Current projections for electricity highlight the preferential role that electric power will have in accomplishing the long-range goals of most nations. Increased demands can be met by utilizing coal in technologies that achieve environmental goals whilemore » keeping the cost- per-unit of energy competitive. Results from projects in the DOE Clean Coal technology Demonstration Program confirm that technology is the pathway to achieving these goals. The industry/government partnership, cemented over the past 10 years, is focused on moving the clean coal technologies into the domestic and international marketplaces. The Fifth Annual Clean Coal Technology Conference provides a forum to discuss these benchmark issues and the essential role and need for these technologies in the post-2000 era. This volume contains papers presented at the plenary session and panel sessions on; international markets for clean coal technologies (CCTs); role of CCTs in the evolving domestic electricity market; environmental issues affecting CCT deployment; and CCT deployment from today into the next millennium. In addition papers presented at the closing plenary session on powering the next millennium--CCT answers the challenge are included. Selected papers have been processed for inclusion in the Energy Science and Technology database.« less

  10. Coal Combustion Science quarterly progress report, April--June 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hardesty, D.R.; Hurt, R.H.; Baxter, L.L.

    1992-09-01

    The objective of this work is to support the Office of Fossil Energy in executing research on coal combustion science. This project consists of basic research on coal combustion that supports both the Pittsburgh Energy Technology Center (PETC) Direct Utilization Advanced Research and Technology Development Program, and the International Energy Agency (IEA) Coal Combustion Science Project. Specific tasks include: The characterization of the physical and chemical processes that constitute the early devolatilization phase of coal combustion: Characterization of the combustion behavior of selected coals under conditions relevant to industria pulverized coal-fired furnaces; and to establish a quantitative understanding of themore » mechanisms and rates of transformation, fragmentation, and deposition of mineral matter in coal combustion environments as a function of coal type, particle size and temperature, the initial forms and distributions of mineral species in the unreacted coal, and the local gas temperature and composition.« less

  11. Impacts of the Minamata convention on mercury emissions and global deposition from coal-fired power generation in Asia.

    PubMed

    Giang, Amanda; Stokes, Leah C; Streets, David G; Corbitt, Elizabeth S; Selin, Noelle E

    2015-05-05

    We explore implications of the United Nations Minamata Convention on Mercury for emissions from Asian coal-fired power generation, and resulting changes to deposition worldwide by 2050. We use engineering analysis, document analysis, and interviews to construct plausible technology scenarios consistent with the Convention. We translate these scenarios into emissions projections for 2050, and use the GEOS-Chem model to calculate global mercury deposition. Where technology requirements in the Convention are flexibly defined, under a global energy and development scenario that relies heavily on coal, we project ∼90 and 150 Mg·y(-1) of avoided power sector emissions for China and India, respectively, in 2050, compared to a scenario in which only current technologies are used. Benefits of this avoided emissions growth are primarily captured regionally, with projected changes in annual average gross deposition over China and India ∼2 and 13 μg·m(-2) lower, respectively, than the current technology case. Stricter, but technologically feasible, mercury control requirements in both countries could lead to a combined additional 170 Mg·y(-1) avoided emissions. Assuming only current technologies but a global transition away from coal avoids 6% and 36% more emissions than this strict technology scenario under heavy coal use for China and India, respectively.

  12. 40 CFR 60.2 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... additions” as defined in IRS Publication 534, as would be done for tax purposes. Clean coal technology... Coal Technology’, up to a total amount of $2,500,000,000 for commercial demonstrations of clean coal technology, or similar projects funded through appropriations for the Environmental Protection Agency...

  13. Coal Combustion Science quarterly progress report, April--June 1992. Task 1, Coal devolatilization: Task 2, Coal char combustion; Task 3, Fate of mineral matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hardesty, D.R.; Hurt, R.H.; Baxter, L.L.

    1992-09-01

    The objective of this work is to support the Office of Fossil Energy in executing research on coal combustion science. This project consists of basic research on coal combustion that supports both the Pittsburgh Energy Technology Center (PETC) Direct Utilization Advanced Research and Technology Development Program, and the International Energy Agency (IEA) Coal Combustion Science Project. Specific tasks include: The characterization of the physical and chemical processes that constitute the early devolatilization phase of coal combustion: Characterization of the combustion behavior of selected coals under conditions relevant to industria pulverized coal-fired furnaces; and to establish a quantitative understanding of themore » mechanisms and rates of transformation, fragmentation, and deposition of mineral matter in coal combustion environments as a function of coal type, particle size and temperature, the initial forms and distributions of mineral species in the unreacted coal, and the local gas temperature and composition.« less

  14. Proceedings: Fourteenth annual EPRI conference on fuel science

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1990-05-01

    EPRI's Fourteenth Annual Contractors' Conference on Fuel Science was held on May 18--19, 1989 in Palo Alto, CA. The conference featured results of work on coal science, coal liquefaction, methanol production, and coal oil coprocessing and coal upgrading. The following topics were discussed: recent development in coal liquefaction at the Wilsonville Clean Coal Research Center; British coal's liquid solvent extraction (LSE) process; feedstock reactivity in coal/oil co-processing; utility applications for coal-oil coprocessed fuels; effect of coal rank and quality on two-stage liquefaction; organic sulfur compounds in coals; the perchloroethylene refining process of high-sulfur coals; extraction of sulfur coals; extraction ofmore » sulfur from coal; agglomeration of bituminous and subbituminous coals; solubilization of coals by cell-free extracts derived from polyporus versicolor; remediation technologies and services; preliminary results from proof-of-concept testing of heavy liquid cyclone cleaning technology; clean-up of soil contaminated with tarry/oily organics; midwest ore processing company's coal benefication technology: recent prep plant, scale and laboratory activities; combustion characterization of coal-oil agglomerate fuels; status report on the liquid phase methanol project; biomimetic catalysis; hydroxylation of C{sub 2} {minus} C{sub 3} and cycloc{sub 6} hydrocarbons with Fe cluster catalysts as models for methane monooxygenase enzyme; methanol production scenarios; and modeling studies of the BNL low temperature methanol catalyst. Individual projects are processed separately for the data bases.« less

  15. Fossil Energy Program

    NASA Astrophysics Data System (ADS)

    McNeese, L. E.

    1981-01-01

    Increased utilization of coal and other fossil fuel alternatives as sources of clean energy is reported. The following topics are discussed: coal conversion development, chemical research and development, materials technology, component development and process evaluation studies, technical support to major liquefaction projects, process analysis and engineering evaluations, fossil energy environmental analysis, flue gas desulfurization, solid waste disposal, coal preparation waste utilization, plant control development, atmospheric fluidized bed coal combustor for cogeneration, TVA FBC demonstration plant program technical support, PFBC systems analysis, fossil fuel applications assessments, performance assurance system support for fossil energy projects, international energy technology assessment, and general equilibrium models of liquid and gaseous fuel supplies.

  16. Long-Term Demonstration of Hydrogen Production from Coal at Elevated Temperatures Year 6 - Activity 1.12 - Development of a National Center for Hydrogen Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stanislowski, Joshua; Tolbert, Scott; Curran, Tyler

    2012-04-30

    The Energy & Environmental Research Center (EERC) has continued the work of the National Center for Hydrogen Technology® (NCHT®) Program Year 6 Task 1.12 project to expose hydrogen separation membranes to coal-derived syngas. In this follow-on project, the EERC has exposed two membranes to coal-derived syngas produced in the pilot-scale transport reactor development unit (TRDU). Western Research Institute (WRI), with funding from the State of Wyoming Clean Coal Technology Program and the North Dakota Industrial Commission, contracted with the EERC to conduct testing of WRI’s coal-upgrading/gasification technology for subbituminous and lignite coals in the EERC’s TRDU. This gasifier fires nominallymore » 200–500 lb/hour of fuel and is the pilot-scale version of the full-scale gasifier currently being constructed in Kemper County, Mississippi. A slipstream of the syngas was used to demonstrate warm-gas cleanup and hydrogen separation using membrane technology. Two membranes were exposed to coal-derived syngas, and the impact of coal-derived impurities was evaluated. This report summarizes the performance of WRI’s patent-pending coalupgrading/ gasification technology in the EERC’s TRDU and presents the results of the warm-gas cleanup and hydrogen separation tests. Overall, the WRI coal-upgrading/gasification technology was shown to produce a syngas significantly lower in CO2 content and significantly higher in CO content than syngas produced from the raw fuels. Warm-gas cleanup technologies were shown to be capable of reducing sulfur in the syngas to 1 ppm. Each of the membranes tested was able to produce at least 2 lb/day of hydrogen from coal-derived syngas.« less

  17. Impacts of the Minamata Conventionon on Mercury Emissions and Global Deposition from Coal-Fired Power Generation in Asia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giang, Amanda; Stokes, Leah C.; Streets, David G.

    We explore implications of the United Nations Minamata Convention on Mercury for emissions from Asian coal-fired power generation, and resulting changes to deposition worldwide by 2050. We use engineering analysis, document analysis, and interviews to construct plausible technology scenarios consistent with the Convention. We translate these scenarios into emissions projections for 2050, and use the GEOS-Chem model to calculate global mercury deposition. Where technology requirements in the Convention are flexibly defined, under a global energy and development scenario that relies heavily on coal, we project similar to 90 and 150 Mg.y(-1) of avoided power sector emissions for China and India,more » respectively, in 2050, compared to a scenario in which only current technologies are used. Benefits of this avoided emissions growth are primarily captured regionally, with projected changes in annual average gross deposition over China and India similar to 2 and 13 mu g.m(-2) lower, respectively, than the current technology case. Stricter, but technologically feasible, mercury control requirements in both countries could lead to a combined additional 170 Mg.y(-1) avoided emissions. Assuming only current technologies but a global transition away from coal avoids 6% and 36% more emissions than this strict technology scenario under heavy coal use for China and India, respectively.« less

  18. Low-rank coal study: national needs for resource development. Volume 3. Technology evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1980-11-01

    Technologies applicable to the development and use of low-rank coals are analyzed in order to identify specific needs for research, development, and demonstration (RD and D). Major sections of the report address the following technologies: extraction; transportation; preparation, handling and storage; conventional combustion and environmental control technology; gasification; liquefaction; and pyrolysis. Each of these sections contains an introduction and summary of the key issues with regard to subbituminous coal and lignite; description of all relevant technology, both existing and under development; a description of related environmental control technology; an evaluation of the effects of low-rank coal properties on the technology;more » and summaries of current commercial status of the technology and/or current RD and D projects relevant to low-rank coals.« less

  19. Coal conversion processes and analysis methodologies for synthetic fuels production. [technology assessment and economic analysis of reactor design for coal gasification

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Information to identify viable coal gasification and utilization technologies is presented. Analysis capabilities required to support design and implementation of coal based synthetic fuels complexes are identified. The potential market in the Southeast United States for coal based synthetic fuels is investigated. A requirements analysis to identify the types of modeling and analysis capabilities required to conduct and monitor coal gasification project designs is discussed. Models and methodologies to satisfy these requirements are identified and evaluated, and recommendations are developed. Requirements for development of technology and data needed to improve gasification feasibility and economies are examined.

  20. Definitional-mission report: Clean-coal-technology assistance project in Poland (final report). Export trade information

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shrivastava, V.K.

    1992-01-01

    The new impending environmental law in Poland provides for strict environmental guidelines for coal preparation, washing, mine desalination, and application of commercially viable and economical clean coal technologies for utilization of coal. The government of Poland requested the U.S. Trade and Development Program (TDP) carry out a Definitional Mission to Poland to define the requirements of the Polish authorities and to prepare specific recommendations for follow on actions by TDP. The technical assistance package proposed to be funded by TDP includes two specific activities. These are (i) an orientation visit to review selected clean coal technology projects in the U.S.,more » and (ii) preparation of a compendium of the main coal sector requirements in Poland and the types of technologies needed. The Definitional Mission has prepared a Scope of Work which recommends that TDP allocate a fund to finance the cost of the above technical assistance activities. It is further recommended that TDP enlist the assistance of a non-profit trade organization to provide this assistance to the Polish government.« less

  1. Fossil energy waste management. Technology status report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bossart, S.J.; Newman, D.A.

    1995-02-01

    This report describes the current status and recent accomplishments of the Fossil Energy Waste Management (FE WM) projects sponsored by the Morgantown Energy Technology Center (METC) of the US Department of Energy (DOE). The primary goal of the Waste Management Program is to identify and develop optimal strategies to manage solid by-products from advanced coal technologies for the purpose of ensuring the competitiveness of advanced coal technologies as a future energy source. The projects in the Fossil Energy Waste Management Program are divided into three types of activities: Waste Characterization, Disposal Technologies, and Utilization Technologies. This technology status report includesmore » a discussion on barriers to increased use of coal by-products. Also, the major technical and nontechnical challenges currently being addressed by the FE WM program are discussed. A bibliography of 96 citations and a list of project contacts is included if the reader is interested in obtaining additional information about the FE WM program.« less

  2. Advanced coal conversion process demonstration. Technical progress report for the period July 1, 1995--September 30, 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-05-01

    This report describes the technical progress made on the Advanced Coal Conversion Process (ACCP) Demonstration Project from July 1, 1995 through September 30, 1995. The ACCP Demonstration Project is a US Department of Energy (DOE) Clean Coal Technology Project. This project demonstrates an advanced, thermal, coal upgrading process, coupled with physical cleaning techniques, that is designed to upgrade high-moisture, low-rank coals to a high-quality, low-sulfur fuel, registered as the SynCoal process. The coal is processed through three stages (two heating stages followed by an inert cooling stage) of vibrating fluidized bed reactors that remove chemically bound water, carboxyl groups, andmore » volatile sulfur compounds. After thermal upgrading, the cola is put through a deep-bed stratifier cleaning process to separate the pyrite-rich ash from the coal.« less

  3. Recovery of Rare Earth Elements from Coal and Coal Byproducts via a Closed Loop Leaching Process: Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peterson, Richard; Heinrichs, Michael; Argumedo, Darwin

    Objectives: Through this grant, Battelle proposes to address Area of Interest (AOI) 1 to develop a bench-scale technology to economically separate, extract, and concentrate mixed REEs from coal ash. U.S. coal and coal byproducts provide the opportunity for a domestic source of REEs. The DOE’s National Energy Technology Laboratory (NETL) has characterized various coal and coal byproducts samples and has found varying concentrations of REE ranging up to 1,000 parts per million by weight. The primary project objective is to validate the economic viability of recovering REEs from the coal byproduct coal ash using Battelle’s patented closed-loop Acid Digestion Processmore » (ADP). This will be accomplished by selecting coal sources with the potential to provide REE concentrations above 300 parts per million by weight, collecting characterization data for coal ash samples generated via three different methods, and performing a Techno-Economic Analysis (TEA) for the proposed process. The regional availability of REE-laden coal ash, the regional market for rare earth concentrates, and the system capital and operating costs for rare earth recovery using the ADP technology will be accounted for in the TEA. Limited laboratory testing will be conducted to generate the parameters needed for the design of a bench scale system for REE recovery. The ultimate project outcome will be the design for an optimized, closed loop process to economically recovery REEs such that the process may be demonstrated at the bench scale in a Phase 2 project. Project Description: The project will encompass evaluation of the ADP technology for the economic recovery of REEs from coal and coal ash. The ADP was originally designed and demonstrated for the U.S. Army to facilitate demilitarization of cast-cured munitions via acid digestion in a closed-loop process. Proof of concept testing has been conducted on a sample of Ohio-based Middle Kittanning coal and has demonstrated the feasibility of recovering REEs using the ADP technology. In AOI 1, Ohio coal sources with the potential to provide a consistent source of rare earth element concentrations above 300 parts per million will be identified. Coal sample inventories from West Virginia and Pennsylvania will also be assessed for purposes of comparison. Three methods of preparing the coal ash will be evaluated for their potential to enhance the technical feasibility and economics of REE recovery. Three sources of coal ash are targeted for evaluation of the economics of REE recovery in this project: (1) coal ash from power generation stations, to include fly ash and/or bottom ash, (2) ash generated in a lower temperature ashing process, and (3) ash residual from Battelle’s coal liquefaction process. Making use of residual ash from coal liquefaction processes directly leverages work currently being conducted by Battelle for DOE NETL in response to DE-FOA-0000981 entitled “Greenhouse Gas Emissions Reductions Research and Development Leading to Cost-Competitive Coal-to-Liquids Based Jet Fuel Production.” Using the sample characterization results and regional information regarding REE concentration, availability and cost, a TEA will be developed. The previously generated laboratory testing results for leaching and REE recovery via the ADP will be used to perform the TEA, along with common engineering assumptions for scale up of equipment and labor costs. Finally, upon validation of the economic feasibility of the process by the TEA, limited laboratory testing will be performed to support the design of a bench scale system. In a future project phase, it is envisioned that the bench scale system will be constructed and operated to prove the process on a continuous basis.« less

  4. LIFAC Demonstration at Richmond Power and Light Whitewater Valley Unit No. 2 Volume II: Project Performance and Economics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    The C1ean Coal Technology (CCT) Program has been recognized in the National Energy Strategy as a major initiative whereby coal will be able to reach its full potential as a source of energy for the nation and the international marketplace. Attainment of this goal depends upon the development of highly efficient, environmentally sound, competitive coal utilization technologies responsive to diverse energy markets and varied consumer needs. The CCT Program is an effort jointly funded by government and industry whereby the most promising of the advanced coal-based technologies are being moved into the marketplace through demonstration. The CCT Program is beingmore » implemented through a total of five competitive solicitations. LIFAC North America, a joint venture partnership of ICF Kaiser Engineers, Inc., and Tampella Power Corporation, is currently demonstrating the LIFAC flue gas desulfurization technology developed by Tampella Power. This technology provides sulfur dioxide emission control for power plants, especially existing facilities with tight space limitations. Sulfur dioxide emissions are expected to be reduced by up to 85% by using limestone as a sorbent. The LIFAC technology is being demonstrated at Whitewater Valley Unit No. 2, a 60-MW coal-fired power plant owned and operated by Richmond Power and Light (RP&L) and located in Richmond, Indiana. The Whitewater plant consumes high-sulfur coals, with sulfur contents ranging from 2.0-2.9 $ZO. The project, co-funded by LIFAC North America and DOE, is being conducted with the participation of Richmond Power and Light, the State of Indiana, the Electric Power Research Institute (EPRI), and the Black Beauty Coal Company. The project has a total cost of $21.4 million and a duration of 48 months from the preliminary design phase through the testing program.« less

  5. Coal reburning for cyclone boiler NO{sub x} control demonstration. Quarterly report No. 6, July--September, 1991

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-12-31

    It is the objective of the Coal Reburning for Cyclone Boiler NO{sub x} Control Project to fully establish that the cola reburning clean coal technology offers cost-effective alternatives to cyclone operating electric utilities for overall oxides of nitrogen control. The project will evaluate the applicability of the reburning technology for reducing NO{sub x} emissions in full scale cyclone-fired boilers which use coal as a primary fuel. The performance goals while burning coal are: (1) Greater than 50 percent reduction in NO{sub x} emissions, as referenced to the uncontrolled (baseline) conditions at full load. (2) No serious impact on cyclone combustormore » operation, boiler efficiency or boiler fireside performance (corrosion and deposition), or boiler ash removal system performance.« less

  6. Coal reburning for cyclone boiler NO sub x control demonstration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-01-01

    It is the objective of the Coal Reburning for Cyclone Boiler NO{sub x} Control Project to fully establish that the cola reburning clean coal technology offers cost-effective alternatives to cyclone operating electric utilities for overall oxides of nitrogen control. The project will evaluate the applicability of the reburning technology for reducing NO{sub x} emissions in full scale cyclone-fired boilers which use coal as a primary fuel. The performance goals while burning coal are: (1) Greater than 50 percent reduction in NO{sub x} emissions, as referenced to the uncontrolled (baseline) conditions at full load. (2) No serious impact on cyclone combustormore » operation, boiler efficiency or boiler fireside performance (corrosion and deposition), or boiler ash removal system performance.« less

  7. Advanced technology applications for second and third general coal gasification systems

    NASA Technical Reports Server (NTRS)

    Bradford, R.; Hyde, J. D.; Mead, C. W.

    1980-01-01

    The historical background of coal conversion is reviewed and the programmatic status (operational, construction, design, proposed) of coal gasification processes is tabulated for both commercial and demonstration projects as well as for large and small pilot plants. Both second and third generation processes typically operate at higher temperatures and pressures than first generation methods. Much of the equipment that has been tested has failed. The most difficult problems are in process control. The mechanics of three-phase flow are not fully understood. Companies participating in coal conversion projects are ordering duplicates of failure prone units. No real solutions to any of the significant problems in technology development have been developed in recent years.

  8. Clean coal initiatives in Indiana

    USGS Publications Warehouse

    Bowen, B.H.; Irwin, M.W.; Sparrow, F.T.; Mastalerz, Maria; Yu, Z.; Kramer, R.A.

    2007-01-01

    Purpose - Indiana is listed among the top ten coal states in the USA and annually mines about 35 million short tons (million tons) of coal from the vast reserves of the US Midwest Illinois Coal Basin. The implementation and commercialization of clean coal technologies is important to the economy of the state and has a significant role in the state's energy plan for increasing the use of the state's natural resources. Coal is a substantial Indiana energy resource and also has stable and relatively low costs, compared with the increasing costs of other major fuels. This indigenous energy source enables the promotion of energy independence. The purpose of this paper is to outline the significance of clean coal projects for achieving this objective. Design/methodology/approach - The paper outlines the clean coal initiatives being taken in Indiana and the research carried out at the Indiana Center for Coal Technology Research. Findings - Clean coal power generation and coal for transportation fuels (coal-to-liquids - CTL) are two major topics being investigated in Indiana. Coking coal, data compilation of the bituminous coal qualities within the Indiana coal beds, reducing dependence on coal imports, and provision of an emissions free environment are important topics to state legislators. Originality/value - Lessons learnt from these projects will be of value to other states and countries.

  9. The Mesaba Energy Project: Clean Coal Power Initiative, Round 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stone, Richard; Gray, Gordon; Evans, Robert

    2014-07-31

    The Mesaba Energy Project is a nominal 600 MW integrated gasification combine cycle power project located in Northeastern Minnesota. It was selected to receive financial assistance pursuant to code of federal regulations (?CFR?) 10 CFR 600 through a competitive solicitation under Round 2 of the Department of Energy?s Clean Coal Power Initiative, which had two stated goals: (1) to demonstrate advanced coal-based technologies that can be commercialized at electric utility scale, and (2) to accelerate the likelihood of deploying demonstrated technologies for widespread commercial use in the electric power sector. The Project was selected in 2004 to receive a totalmore » of $36 million. The DOE portion that was equally cost shared in Budget Period 1 amounted to about $22.5 million. Budget Period 1 activities focused on the Project Definition Phase and included: project development, preliminary engineering, environmental permitting, regulatory approvals and financing to reach financial close and start of construction. The Project is based on ConocoPhillips? E-Gas? Technology and is designed to be fuel flexible with the ability to process sub-bituminous coal, a blend of sub-bituminous coal and petroleum coke and Illinois # 6 bituminous coal. Major objectives include the establishment of a reference plant design for Integrated Gasification Combined Cycle (?IGCC?) technology featuring advanced full slurry quench, multiple train gasification, integration of the air separation unit, and the demonstration of 90% operational availability and improved thermal efficiency relative to previous demonstration projects. In addition, the Project would demonstrate substantial environmental benefits, as compared with conventional technology, through dramatically lower emissions of sulfur dioxide, nitrogen oxides, volatile organic compounds, carbon monoxide, particulate matter and mercury. Major milestones achieved in support of fulfilling the above goals include obtaining Site, High Voltage Transmission Line Route, and Natural Gas Pipeline Route Permits for a Large Electric Power Generating Plant to be located in Taconite, Minnesota. In addition, major pre-construction permit applications have been filed requesting authorization for the Project to i) appropriate water sufficient to accommodate its worst case needs, ii) operate a major stationary source in compliance with regulations established to protect public health and welfare, and iii) physically alter the geographical setting to accommodate its construction. As of the current date, the Water Appropriation Permits have been obtained.« less

  10. Clean coal technology: an environmental perspective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Princiotta, F.T.

    1988-08-01

    Although this paper focuses on past (since 1920) and current coal use and pollutant emissions in the U.S., it also discusses where the U.S. may be going in terms of pollutant emissions over the next several decades. Conclusions of this look at coal use include the fact that increasing coal use is vital to the economic wellbeing of the U.S. With proper application of controls, coal use can be increased as projected without unacceptable levels of sulfur and nitrogen oxides, particulate, and nitrous oxide. However, the forecast is bleaker for carbon dioxide and its projected impact on global warming. Barringmore » a technology breakthrough of major proportions (e.g., successful commercialization of nuclear fusion or solar electric generation), the best that can be envisioned is to moderate carbon dioxide emissions from the combustion of coal and other fuels through conservation.« less

  11. Application study of Bio-FGD based on environmental safety during the coal combustion

    NASA Astrophysics Data System (ADS)

    Zhang, Pin

    2018-05-01

    Coal combustion produces a large amount of acidic gas, which is the main cause of acid rain and other natural disasters. Flue Gas Desulfurization (FGD) is a necessary requirement for clean coal combustion. Compared with the traditional chemical desulfurization technology, biological desulfurization has the advantages of low operating cost, without secondary pollution, low carbon emission and the additional economic benefits. The process and structure of BioDeSOx which as one of Bio-FGD technology is introduced. The major factors that influent BioDeSOx Bio- FGD system is the pH, oxidation reduction potential (-300 MV to -400MV), electrical conductivity, the adding amount of nutrient and temperature (30°C-40°C). Taking the Bio- FGD project of Yixing xielian thermal power plant as an example, the BioDeSOx technology was applied in this project. The environmental and economic benefits of the project were greater than the traditional desulfurization technology. With the continuous improvement of environmental safety standards, Bio- FGD technology will have broad application prospects.

  12. Clean Coal Technology Demonstration Program: Project fact sheets 2000, status as of June 30, 2000

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    2000-09-01

    The Clean Coal Technology Demonstration Program (CCT Program), a model of government and industry cooperation, responds to the Department of Energy's (DOE) mission to foster a secure and reliable energy system that is environmentally and economically sustainable. The CCT Program represents an investment of over $5.2 billion in advanced coal-based technology, with industry and state governments providing an unprecedented 66 percent of the funding. With 26 of the 38 active projects having completed operations, the CCT Program has yielded clean coal technologies (CCTs) that are capable of meeting existing and emerging environmental regulations and competing in a deregulated electric powermore » marketplace. The CCT Program is providing a portfolio of technologies that will assure that U.S. recoverable coal reserves of 274 billion tons can continue to supply the nation's energy needs economically and in an environmentally sound manner. As the nation embarks on a new millennium, many of the clean coal technologies have realized commercial application. Industry stands ready to respond to the energy and environmental demands of the 21st century, both domestically and internationally, For existing power plants, there are cost-effective environmental control devices to control sulfur dioxide (S02), nitrogen oxides (NO,), and particulate matter (PM). Also ready is a new generation of technologies that can produce electricity and other commodities, such as steam and synthetic gas, and provide efficiencies and environmental performance responsive to global climate change concerns. The CCT Program took a pollution prevention approach as well, demonstrating technologies that remove pollutants or their precursors from coal-based fuels before combustion. Finally, new technologies were introduced into the major coal-based industries, such as steel production, to enhance environmental performance. Thanks in part to the CCT Program, coal--abundant, secure, and economical--can continue in its role as a key component in the U.S. and world energy markets. The CCT Program also has global importance in providing clean, efficient coal-based technology to a burgeoning energy market in developing countries largely dependent on coal. Based on 1997 data, world energy consumption is expected to increase 60 percent by 2020, with almost half of the energy increment occurring in developing Asia (including China and India). By 2020, energy consumption in developing Asia is projected to surpass consumption in North America. The energy form contributing most to the growth is electricity, as developing Asia establishes its energy infrastructure. Coal, the predominant indigenous fuel, in that region will be the fuel of choice in electricity production. The CCTs offer a means to mitigate potential environmental problems associated with unprecedented energy growth, and to enhance the U.S. economy through foreign equipment sales and engineering services.« less

  13. The Healy clean coal project: An overview

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olson, J.B.; McCrohan, D.V.

    1997-12-31

    The Healy Clean Coal Project, selected by the US Department of Energy under Round III of the Clean Coal Technology Program is currently in construction. The project is owned and financed by the Alaska Industrial Development and Export Authority (AIDEA), and is cofunded by the US Department of Energy. Construction is scheduled to be completed in August of 1997, with startup activity concluding in December of 1997. Demonstration, testing and reporting of the results will take place in 1998, followed by commercial operation of the facility. The emission levels of NOx, SO{sub 2} and particulates from this 50 megawatt plantmore » are expected to be significantly lower than current standards. The project status, its participants, a description of the technology to be demonstrated, and the operational and performance goals of this project are presented.« less

  14. Gas-turbine critical research and advanced technology support project

    NASA Technical Reports Server (NTRS)

    Clark, J. S.; Lowell, C. E.; Niedzwiecki, R. W.; Nainiger, J. J.

    1979-01-01

    The technical progress made during the first 15 months of a planned 40-month project to provide a critical-technology data base for utility gas-turbine systems capable of burning coal-derived fuels is summarized. Tasks were included in the following areas: (1) combustion, to study the combustion of coal-derived fuels and conversion of fuel-bound nitrogen to NOx; (2) materials, to understand and prevent hot corrosion; and (3) system studies, to integrate and guide the other technologies. Significant progress was made.

  15. The NOXSO clean coal project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Black, J.B.; Woods, M.C.; Friedrich, J.J.

    1997-12-31

    The NOXSO Clean Coal Project will consist of designing, constructing, and operating a commercial-scale flue-gas cleanup system utilizing the NOXSO Process. The process is a waste-free, dry, post-combustion flue-gas treatment technology which uses a regenerable sorbent to simultaneously adsorb sulfur dioxide (SO{sub 2}) and nitrogen oxides (NO{sub x}) from flue gas from coal-fired boilers. The NOXSO plant will be constructed at Alcoa Generating Corporation`s (AGC) Warrick Power Plant near Evansville, Indiana and will treat all the flue gas from the 150-MW Unit 2 boiler. The NOXSO plant is being designed to remove 98% of the SO{sub 2} and 75% ofmore » the NO{sub x} when the boiler is fired with 3.4 weight percent sulfur, southern-Indiana coal. The NOXSO plant by-product will be elemental sulfur. The elemental sulfur will be shipped to Olin Corporation`s Charleston, Tennessee facility for additional processing. As part of the project, a liquid SO{sub 2} plant has been constructed at this facility to convert the sulfur into liquid SO{sub 2}. The project utilizes a unique burn-in-oxygen process in which the elemental sulfur is oxidized to SO{sub 2} in a stream of compressed oxygen. The SO{sub 2} vapor will then be cooled and condensed. The burn-in-oxygen process is simpler and more environmentally friendly than conventional technologies. The liquid SO{sub 2} plant produces 99.99% pure SO{sub 2} for use at Olin`s facilities. The $82.8 million project is co-funded by the US Department of Energy (DOE) under Round III of the Clean Coal Technology program. The DOE manages the project through the Pittsburgh Energy Technology Center (PETC).« less

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, M.L.

    This paper very briefly summarizes progress in the demonstration of a small (up to 6 MWe), environmentally acceptable electric generating system fueled by indigenous fuels and waste materials to serve power distribution systems typical of Alaskan Native communities. Two detailed appendices supplement the report. The project is focused on two primary technologies: (1) atmospheric fluidized bed combustion (AFBC), and (2) coalbed methane and coal-fired diesel technologies. Two sites have been selected as possible locations for an AFBC demonstration, and bid proposals are under review. The transfer of a coal-fired diesel clean coal demonstration project from Maryland to Fairbanks, Alaska wasmore » approved, and the environmental assessment has been initiated. Federal support for a fuel cell using coalbed methane is also being pursued. The appendices included in the report provide: (1) the status of the conceptual design study for a 600-kWe coal-fired cogeneration plant in McGrath, Alaska; and (2) a global market assessment of coalbed methane, fluidized-bed combustion, and coal-fired diesel technologies in remote applications.« less

  17. Demonstration of SCR technology for the control of NOx emissions from high-sulfur coal-fired utility boilers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hinton, W.S.; Maxwell, J.D.; Healy, E.C.

    1997-12-31

    This paper describes the completed Innovative Clean Coal Technology project which demonstrated SCR technology for reduction of flue gas NO{sub x} emissions from a utility boiler burning US high-sulfur coal. The project was sponsored by the US Department of Energy, managed and co-funded by Southern Company Services, Inc. on behalf of the Southern Company, and also co-funded by the Electric Power Research Institute and Ontario Hydro. The project was located at Gulf Power Company`s Plant Crist Unit 5 (a 75 MW tangentially-fired boiler burning US coals that had a sulfur content ranging from 2.5--2.9%), near Pensacola, Florida. The test programmore » was conducted for approximately two years to evaluate catalyst deactivation and other SCR operational effects. The SCR test facility had nine reactors: three 2.5 MW (5,000 scfm), and operated on low-dust flue gas. The reactors operated in parallel with commercially available SCR catalysts obtained from suppliers throughout the world. Long-term performance testing began in July 1993 and was completed in July 1995. A brief test facility description and the results of the project are presented in this paper.« less

  18. Environmental monitoring for the DOE coolside and LIMB demonstration extension projects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, T.; Contos, L.; Adams, L.

    1992-03-01

    The purpose of this document is to present environmental monitoring data collected during the US Department of Energy Limestone Injection Multistage Burner (DOE LIMB) Demonstration Project Extension at the Ohio Edison Edgewater Generating Station in Lorain, Ohio. The DOE project is an extension of the US Environmental Protection Agency's (EPA's) original LIMB Demonstration. The program is operated nuclear DOE's Clean Coal Technology Program of emerging clean coal technologies'' under the categories of in boiler control of oxides of sulfur and nitrogen'' as well as post-combustion clean-up.'' The objective of the LIMB program is to demonstrate the sulfur dioxide (SO{sub 2})more » and nitrogen oxide (NO{sub x}) emission reduction capabilities of the LIMB system. The LIMB system is a retrofit technology to be used for existing coal-fired boilers equipped with electrostatic precipitators (ESPs).« less

  19. Environmental monitoring for the DOE coolside and LIMB demonstration extension projects. Final report, May--August 1991

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, T.; Contos, L.; Adams, L.

    1992-03-01

    The purpose of this document is to present environmental monitoring data collected during the US Department of Energy Limestone Injection Multistage Burner (DOE LIMB) Demonstration Project Extension at the Ohio Edison Edgewater Generating Station in Lorain, Ohio. The DOE project is an extension of the US Environmental Protection Agency`s (EPA`s) original LIMB Demonstration. The program is operated nuclear DOE`s Clean Coal Technology Program of ``emerging clean coal technologies`` under the categories of ``in boiler control of oxides of sulfur and nitrogen`` as well as ``post-combustion clean-up.`` The objective of the LIMB program is to demonstrate the sulfur dioxide (SO{sub 2})more » and nitrogen oxide (NO{sub x}) emission reduction capabilities of the LIMB system. The LIMB system is a retrofit technology to be used for existing coal-fired boilers equipped with electrostatic precipitators (ESPs).« less

  20. Fossil Energy Program Annual Progress Report for the Period April 1, 2000 through March 31, 2001

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Judkins, RR

    This report covers progress made at Oak Ridge National Laboratory (ORNL) on research and development projects that contribute to the advancement of fossil energy technologies. Projects on the ORNL Fossil Energy Program are supported by the U.S. Department of Energy (DOE) Office of Fossil Energy, the DOE National Energy Technology Laboratory (NETL), the DOE Fossil Energy Clean Coal Technology (CCT) Program, the DOE National Petroleum Technology Office, and the DOE Fossil Energy Office of Strategic Petroleum Reserve (SPR). The ORNL Fossil Energy Program research and development activities cover the areas of coal, clean coal technology, gas, petroleum, and support tomore » the SPR. An important part of the Fossil Energy Program is technical management of all activities on the DOE Fossil Energy Advanced Research (AR) Materials Program. The AR Materials Program involves research at other DOE and government laboratories, at universities, and at industrial organizations.« less

  1. Laboratory Scale Coal And Biomass To Drop-In Fuels (CBDF) Production And Assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lux, Kenneth; Imam, Tahmina; Chevanan, Nehru

    This Final Technical Report describes the work and accomplishments of the project entitled, “Laboratory Scale Coal and Biomass to Drop-In Fuels (CBDF) Production and Assessment.” The main objective of the project was to fabricate and test a lab-scale liquid-fuel production system using coal containing different percentages of biomass such as corn stover and switchgrass at a rate of 2 liters per day. The system utilizes the patented Altex fuel-production technology, which incorporates advanced catalysts developed by Pennsylvania State University. The system was designed, fabricated, tested, and assessed for economic and environmental feasibility relative to competing technologies.

  2. Using coal inside California for electric power

    NASA Technical Reports Server (NTRS)

    Moore, J. B.

    1978-01-01

    In a detailed analysis performed at Southern California Edison on a wide variety of technologies, the direct combustion of coal and medium BTU gas from coal were ranked just below nuclear power for future nonpetroleum based electric power generation. As a result, engineering studies were performed for demonstration projects for the direct combustion of coal and medium BTU gas from coal. Graphs are presented for power demand, and power cost. Direct coal combustion and coal gasification processes are presented.

  3. Capturing the emerging market for climate-friendly technologies: opportunities for Ohio

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    2006-11-15

    This paper briefly describes the factors driving the growing demand for climate-friendly technologies, some of the key existing companies, organizations, and resources in Ohio, and the potential for Ohio to become a leading supplier of climate solutions. These solutions include a new generation of lower-emitting coal technologies, components for wind turbines, and the feedstocks and facilities to produce biofuels. Several public-private partnerships and initiatives have been established in Ohio. These efforts have encouraged the development of numerous federal- and state-funded projects and attracted major private investments in two increasingly strategic sectors of the Ohio economy: clean-coal technology and alternative energymore » technology, with a focus on fuel cells. Several major clean-coal projects have been recently initiated in Ohio. In April 2006, the Public Utilities Commission of Ohio approved American Electric Power's (AEP) plan to build a 600 MW clean-coal plant along the Ohio River in Meigs County. The plant will use Integrated Gasification Combined Cycle (IGCC) technology which makes it easier to capture carbon dioxide for sequestration. Three other potential coal gasification facilities are being considered in Ohio: a combination IGCC and synthetic natural gas plant in Allen County by Global Energy/Lima Energy; a coal-to-fuels facility in Lawrence County by Baard Energy, and a coal-to-fuels facility in Scioto County by CME North American Merchant Energy. The paper concludes with recommendations for how Ohio can capitalize on these emerging opportunities. These recommendations include focusing and coordinating state funding of climate technology programs, promoting the development of climate-related industry clusters, and exploring export opportunities to states and countries with existing carbon constraints.« less

  4. Adapting sustainable low-carbon techologies to reduce carbon dioxide emissions from coal-fired power plants in China

    NASA Astrophysics Data System (ADS)

    Kuo, Peter Shyr-Jye

    1997-09-01

    The scientific community is deeply concerned about the effect of greenhouse-gases (GHGs) on global climate change. A major climate shift can result in tragic destruction to our world. Carbon dioxide (COsb2) emissions from coal-fired power plants are major anthropogenic sources that contribute to potential global warming. The People's Republic of China, with its rapidly growing economy and heavy dependence on coal-fired power plants for electricity, faces increasingly serious environmental challenges. This research project seeks to develop viable methodologies for reducing the potential global warming effects and serious air pollution arising from excessive coal burning. China serves as a case study for this research project. Major resolution strategies are developed through intensive literature reviews to identify sustainable technologies that can minimize adverse environmental impacts while meeting China's economic needs. The research thereby contributes technological knowledge to the field of Applied Sciences. The research also integrates modern power generation technologies with China's current and future energy requirements. With these objectives in mind, this project examines how China's environmental issues are related to China's power generation methods. This study then makes strategic recommendations that emphasize low-carbon technologies as sustainable energy generating options to be implemented in China. These low-carbon technologies consist of three options: (1) using cleaner fuels converted from China's plentiful domestic coal resources; (2) applying high-efficiency gas turbine systems for power generation; and (3) integrating coal gasification processes with energy saving combined cycle gas turbine systems. Each method can perform independently, but a combined strategy can achieve the greatest COsb2 reductions. To minimize economic impacts caused by technological changes, this study also addresses additional alternatives that can be implemented in parallel with the proposed technologies. Principal options include promoting wind, solar and biogas as alternative energies; encouraging reforestation; using economic incentives to change energy policies; and gradually replacing obsolete facilities with new power plants. This study finds that the limited capacity and associated costs of alternative energies are the main factors that prevent competition with coal-based energy in China today.

  5. Advanced technology applications for second and third generation coal gasification systems. Appendix

    NASA Technical Reports Server (NTRS)

    Bradford, R.; Hyde, J. D.; Mead, C. W.

    1980-01-01

    Sixteen coal conversion processes are described and their projected goals listed. Tables show the reactants used, products derived, typical operating data, and properties of the feed coal. A history of the development of each process is included along with a drawing of the chemical reactor used.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerald Hill; Kenneth Nemeth; Gary Garrett

    The Southern States Energy Board's (SSEB) 'Regional Effort to Deploy Clean Coal Technologies' program began on June 1, 2003, and was completed on January 31, 2009. The project proved beneficial in providing state decision-makers with information that assisted them in removing barriers or implementing incentives to deploy clean coal technologies. This was accomplished through two specific tasks: (1) domestic energy security and diversity; and (2) the energy-water interface. Milestones accomplished during the project period are: (1) Presentations to Annual Meetings of SSEB Members, Associate Member Meetings, and the Gasification Technologies Council. (2) Energy: Water reports - (A) Regional Efforts tomore » Deploy Clean Coal Technologies: Impacts and Implications for Water Supply and Quality. June 2004. (B) Energy-Water Interface Challenges: Coal Bed Methane and Mine Pool Water Characterization in the Southern States Region. 2004. (C) Freshwater Availability and Constraints on Thermoelectric Power Generation in the Southeast U.S. June 2008. (3) Blackwater Interactive Tabletop Exercise - Decatur, Georgia April 2007. (4) Blackwater Report: Blackwater: Energy and Water Interdependency Issues: Best Practices and Lessons Learned. August 2007. (5) Blackwater Report: BLACKWATER: Energy Water Interdependency Issues REPORT SUMMARY. April 2008.« less

  7. Report of activities of the advanced coal extraction systems definition project, 1979 - 1980

    NASA Technical Reports Server (NTRS)

    Lavin, M. L.; Isenberg, L.

    1981-01-01

    During this period effort was devoted to: formulation of system performance goals in the areas of production cost, miner safety, miner health, environmental impact, and coal conservation, survey and in depth assessment of promising technology, and characterization of potential resource targets. Primary system performance goals are to achieve a return on incremental investment of 150% of the value required for a low risk capital improvement project and to reduce deaths and disability injuries per million man-hour by 50%. Although these performance goals were developed to be immediately applicable to the Central Appalachian coal resources, they were also designed to be readily adaptable to other coals by appending a geological description of the new resource. The work done on technology assessment was concerned with the performance of the slurry haulage system.

  8. Chemical Looping Gasification for Hydrogen Enhanced Syngas Production with In-Situ CO 2 Capture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kathe, Mandar; Xu, Dikai; Hsieh, Tien-Lin

    2014-12-31

    This document is the final report for the project titled “Chemical Looping Gasification for Hydrogen Enhanced Syngas Production with In-Situ CO 2 Capture” under award number FE0012136 for the performance period 10/01/2013 to 12/31/2014.This project investigates the novel Ohio State chemical looping gasification technology for high efficiency, cost efficiency coal gasification for IGCC and methanol production application. The project developed an optimized oxygen carrier composition, demonstrated the feasibility of the concept and completed cold-flow model studies. WorleyParsons completed a techno-economic analysis which showed that for a coal only feed with carbon capture, the OSU CLG technology reduced the methanol requiredmore » selling price by 21%, lowered the capital costs by 28%, increased coal consumption efficiency by 14%. Further, using the Ohio State Chemical Looping Gasification technology resulted in a methanol required selling price which was lower than the reference non-capture case.« less

  9. 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NOx) emissions from coal-fired boilers. Public design report (preliminary and final)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-07-01

    This Public Design Report presents the design criteria of a DOE Innovative Clean Coal Technology (ICCT) project demonstrating advanced wall-fired combustion techniques for the reduction of NO{sub x} emissions from coal-fired boilers. The project is being conducted at Georgia Power Company`s Plant Hammond Unit 4 (500 MW) near Rome, Georgia. The technologies being demonstrated at this site include Foster Wheeler Energy Corporation`s advanced overfire air system and Controlled Flow/Split Flame low NO{sub x} burner. This report provides documentation on the design criteria used in the performance of this project as it pertains to the scope involved with the low NO{submore » x} burners, advanced overfire systems, and digital control system.« less

  10. How can environmental regulations promote clean coal technology adoption in APEC developing economies?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    2007-11-15

    The study examines both existing and emerging regulatory frameworks in order to determine which type of regulations that would be most effective at promoting clean coal technology adoption in development Asia Pacific Economic Co-operation (APEC) economies and would be practical to implement. regulations targeting air emissions; regulations targeting water use; and regulations concerning coal combustion by-products. When considering the potential effect of existing and new environmental regulations on the adoption of clean coal the analysis of technologies was organised into three categories: environmental control technologies; high efficiency coal combustion technologies; and carbon dioxide capture and storage (CCS). To target themore » recommendations towards APEC economies that would benefit the most from this analysis, the study focused on developing and transition APEC economies that are expected to rely on coal for a large part of their future generating capacity. These economies include China, Indonesia, the Philippines, the Russian Federation, Thailand, and Vietnam. ACARP provided funding to this study, under Project C15078. 10 figs., 14 tabs., 10 apps.« less

  11. An overview of the geological controls in underground coal gasification

    NASA Astrophysics Data System (ADS)

    Mohanty, Debadutta

    2017-07-01

    Coal’s reign will extend well into this millennium as the global demand for coal is expected to increase on average by 2-1% per year through 2019. Enhanced utilization of the domestic coal resource through clean coal technologies is necessary to meet the energy needs while achieving reduced emissions. Underground coal gasification (UCG) is one of such potential technologies. Geology of the area plays decisive role throughout the life of a UCG project and imperative for every phase of the project cycle starting from planning, site selection, design to cessation of operations and restoration of the site. Impermeable over/underlying strata with low porosity and less deformation are most suitable for UCG processes as they act as seal between the coal seam and the surrounding aquifers while limiting the degree of subsidence. Inrush of excess water into the gasification chamber reduces the efficacy of the process and may even quench the reactions in progress. Presence of fresh water aquifer in the vicinity of target coal seam should be abandoned in order to avoid groundwater contamination. UCG is not a proven technology that is still evolving and there are risks that need to be monitored and managed. Effective shutdown programme should intend at minimising the post-burn contaminant generation by flushing out potential organic and inorganic contaminants from the underground strata and treating contaminants, and to restore ground water quality to near baseline conditions.

  12. Scale-up of mild gasification to be a process development unit mildgas 24 ton/day PDU design report. Final report, November 1991--July 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    From November 1991 to April 1996, Kerr McGee Coal Corporation (K-M Coal) led a project to develop the Institute of Gas Technology (IGT) Mild Gasification (MILDGAS) process for near-term commercialization. The specific objectives of the program were to: design, construct, and operate a 24-tons/day adiabatic process development unit (PDU) to obtain process performance data suitable for further design scale-up; obtain large batches of coal-derived co-products for industrial evaluation; prepare a detailed design of a demonstration unit; and develop technical and economic plans for commercialization of the MILDGAS process. The project team for the PDU development program consisted of: K-M Coal,more » IGT, Bechtel Corporation, Southern Illinois University at Carbondale (SIUC), General Motors (GM), Pellet Technology Corporation (PTC), LTV Steel, Armco Steel, Reilly Industries, and Auto Research.« less

  13. Demonstration of Selective Catalytic Reduction (SCR) technology for the control of nitrogen oxide (NO sub x ) emissions from high-sulfur coal-fired boilers: Innovative Clean Coal Technology (ICCT)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-05-01

    The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from US, Japanese and European catalyst suppliers on a high-sulfur US coal-fired boiler. SCR is a post-combustion nitrogen oxide (NO{sub x}) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the amonia reacts with NO{sub x} to convert it to nitrogen and water vapor. Although SCR is widely practiced in Japanmore » and Europe, there are numerous technical uncertainties associated with applying SCR to US coals. These uncertainties include: (1) potential catalyst deactivation due to poisoning by trace metal species present in US coals that are not present in other fuels. (2) performance of the technology and effects on the balance-of-plant equipment in the presence of high amounts of SO, and SO{sub 3}. (3) performance of a wide variety of SCR catalyst compositions, geometries and methods of manufacture under typical high-sulfur coal-fired utility operating conditions. These uncertainties will be explored by constructing a series of small-scale SCR reactors and simultaneously exposing different SCR catalysts to flue gas derived from the combustion of high sulfur US coal. The demonstration will be performed at Gulf Power Company's Plant Crist Unit No. 5 (75 MW capacity) near Pensacola, Florida. The project will be funded by the US Department of Energy (DOE), Southern Company Services, Inc. (SCS on behalf of the entire Southern electric system), and the Electric Power Research Institute.« less

  14. Self-Scrubbing Coal -- an integrated approach to clean air

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harrison, K.E.

    1997-12-31

    Carefree Coal is coal cleaned in a proprietary dense-media cyclone circuit, using ultrafine magnetite slurries, to remove noncombustible material, including up to 90% of the pyritic sulfur. Deep cleaning alone, however, cannot produce a compliance fuel from coals with high organic sulfur contents. In these cases, Self-Scrubbing Coal will be produced. Self-Scrubbing Coal is produced in the same manner as Carefree Coal except that the finest fraction of product from the cleaning circuit is mixed with limestone-based additives and briquetted. The reduced ash content of the deeply-cleaned coal will permit the addition of relatively large amounts of sorbent without exceedingmore » boiler ash specifications or overloading electrostatic precipitators. This additive reacts with sulfur dioxide (SO{sub 2}) during combustion of the coal to remove most of the remaining sulfur. Overall, sulfur reductions in the range of 80--90% are achieved. After nearly 5 years of research and development of a proprietary coal cleaning technology coupled with pilot-scale validation studies of this technology and pilot-scale combustion testing of Self-Scrubbing Coal, Custom Coals Corporation organized a team of experts to prepare a proposal in response to DOE`s Round IV Program Opportunity Notice for its Clean Coal Technology Program under Public Law 101-121 and Public Law 101-512. The main objective of the demonstration project is the production of a coal fuel that will result in up to 90% reduction in sulfur emissions from coal-fired boilers at a cost competitive advantage over other technologies designed to accomplish the same sulfur emissions and over naturally occurring low sulfur coals.« less

  15. An international partnership approach to clean energy technology innovation: Carbon capture and storage

    NASA Astrophysics Data System (ADS)

    Yang, Xiaoliang

    Is a global research partnership effective in developing, deploying, and diffusing clean energy technologies? Drawing on and extending innovation system studies, this doctoral dissertation elaborates an analytical model for a global technology learning system; examines the rationales, mechanisms, and effectiveness of the United States-- China Clean Energy Research Center Advanced Coal Technology Consortium (CERC-ACTC); and analyzes government's role in developing and implementing carbon capture and storage technologies in the United States (U.S.) and China. Studies have shown that successful technology innovation leads to economic prosperity and national competence, and prove that technology innovation does not happen in isolation but rather within interactive systems among stakeholders. However, the innovation process itself remains unclear, particularly with regard to interactive learning among and between major institutional actors, including technology developers, regulators, and financial organizations. This study seeks to advance scholarship on the interactive learning from the angle of global interactive learning. This dissertation research project seeks, as well, to inform policy-makers of how to strengthen international collaboration in clean energy technology development. The U.S.--China CERC-ACTC announced by Presidents Obama and Hu in 2009, provided a unique opportunity to close this scholarly gap. ACTC aimed to "advance the coal technology needed to safely, effectively, and efficiently utilize coal resources including the ability to capture, store, and utilize the emissions from coal use in both nations " through the joint research and development by U.S. and Chinese scientists and engineers. This dissertation project included one-year field research in the two countries, with in-depth interviews of key stakeholders, a survey of Consortium participants, analysis of available data, and site visits to collaborative research projects from 2013-2014. This research project collected new data and developed models of collaborative, international technology innovation that can be used in the analysis of policy options for clean energy technology development. The findings show that this bilateral initiative is facilitating the technology learning to some degree, becoming a major component of the U.S.-China climate change collaboration; however, policy makers and collaborative practitioners must overcome political, administrative, cultural, and other challenges in their own national contexts before achieving more concrete outcomes.

  16. Pollution reduction technologies being applied to small coal-fired boiler systems in Poland

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Markussen, J.M.; Gyorke, D.F.

    1997-12-31

    To help in alleviating air pollution problems in Poland, various US environmental technologies are being installed in the city of Krakow to reduce emissions from short-stack coal- and coke-fired boilers. Introduction of low-cost, effective US pollution abatement and energy efficiency technologies is being completed through the US-Polish Krakow Clean Fossil Fuels and Energy Efficiency Program. Seven US firms are currently participating in the program; five projects are well under way and two are in the design phase. The technologies being applied in Krakow include modern district heating equipment and controls, coal preparation techniques, micronized coal combustion, automatic combustion controls, andmore » high-efficiency particulate control equipment. These technologies will be discussed along with pollutant reduction results obtained to date. Applications of these technologies are providing some efficient and economical answers to Krakow`s severe air pollution problems. Certainly, these technologies could be equally effective in many industrial cities throughout the world with similar air pollution concerns.« less

  17. Plans moving to tap Rocky Mountain and Eastern US coal for innovative projects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1980-02-18

    Energy Transition Corp. is conducting a study for W.R. Grace and Co. to determine the feasibility of using coal-derived methanol and liquefied carbon dioxide to transport coal in a proposed $500 million coal slurry pipeline from northwestern Colorado to an as-yet unchosen destination. If, as expected, the study shows that the three products can be separated upon delivery, and if suitable synthetic fuels legislation is passed, Grace would decide whether to proceed with the project, which would use technology developed by Koppers Co., Inc., to produce 5000 tons/day of fuel-grade methanol. Permitting and construction would probably take at least fivemore » years. With funding by the US Department of Energy for the initial stages, the Ashland Synthetic Fuels Inc./Airco Energy Co., Inc., Breckenridge Project will plan an H-Coal process plant that will convert 18,000 tons/day of coal to about 50,000 bbl/day of liquid hydrocarbons. The site will be Addison in Breckenridge County, Ky., and the project will probably use high-sulfur Illinois basin coal. The design and construction of the $1.5 billion commercial plant would require about 6.5 yr.« less

  18. Gas turbine critical research and advanced technology (CRT) support project

    NASA Technical Reports Server (NTRS)

    Furman, E. R.; Anderson, D. N.; Gedwill, M. A.; Lowell, C. E.; Schultz, D. F.

    1982-01-01

    The technical progress to provide a critical technology base for utility gas turbine systems capable of burning coal-derived fuels is summarized. Project tasks include the following: (1) combustion - to investigate the combustion of coal-derived fuels and the conversion of fuel-bound nitrogen to NOx; (2) materials - to understand and prevent the hot corrosion of turbine hot section materials; and (3) system studies - to integrate and guide the technological efforts. Technical accomplishments include: an extension of flame tube combustion testing of propane - Toluene Fuel Mixtures to vary H2 content from 9 to 18 percent by weight and the comparison of results with that predicted from a NASA Lewis General Chemical Kinetics Computer Code; the design and fabrication of combustor sector test section to test current and advanced combustor concepts; Testing of Catalytic combustors with residual and coal-derived liquid fuels; testing of high strength super alloys to evaluate their resistance to potential fuel impurities using doped clean fuels and coal-derived liquids; and the testing and evaluation of thermal barrier coatings and bond coatings on conventional turbine materials.

  19. The commercial feasibility of underground coal gasification in southern Thailand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Solc, J.; Young, B.C.; Harju, J.A.

    Underground Coal Gasification (UCG) is a clean coal technology with the commercial potential to provide low- or medium-Btu gas for the generation of electric power. While the abundance of economic coal and natural gas reserves in the United States of America (USA) has delayed the commercial development of this technology in the USA, potential for commercial development of UCG-fueled electric power generation currently exists in many other nations. Thailand has been experiencing sustained economic growth throughout the past decade. The use of UCG to provide electric power to meet the growing power demand appears to have commercial potential. A projectmore » to determine the commercial feasibility of UCG-fueled electric power generation at a site in southern Thailand is in progress. The objective of the project is to determine the commercial feasibility of using UCG for power generation in the Krabi coal mining area located approximately 1,000 kilometers south of Bangkok, Thailand. The project team has developed a detailed methodology to determine the technical feasibility, environmental acceptability, and commercial economic potential of UCG at a selected site. In the methodology, hydrogeologic conditions of the coal seam and surrounding strata are determined first. These results and information describing the local economic conditions are then used to assess the commercial potential of the UCG application. The methodology for evaluating the Krabi UCG site and current project status are discussed in this paper.« less

  20. Market assessment of PFBC ash use

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bland, A. E.; Brown, T. H., Western Research Institute

    1998-01-01

    Pressurized fluidized bed combustion (PFBC) of coal is undergoing demonstration in the United States, as well as throughout the world. American Electric Power`s (AEP`s) bubbling PFBC 70 MWe Tidd demonstration program in Ohio and pilot-scale development at Foster Wheeler Energia Oy 10 MWth circulating PFBC at Karhula, Finland, have demonstrated the advantages of PFBC technology. Further technology development in the US is planned with the deployment of the technology at the MacIntosh Clean Coal project in Lakeland, Florida. Development of uses for solid wastes from PFBC coal-fired power systems is being actively pursued as part of the demonstration of PFBCmore » technologies. Ashes collected from Foster Wheeler Energia Oy pilot circulating PFBC tests in Karhula, Finland, operating on (1) low sulfur subbituminous and (2) high sulfur bituminous coal; and ash from the AEP`s high-sulfur bituminous coal-fired bubbling PFBC in Brilliant, Ohio, were evaluated in laboratory and pilot-scale ash use testing at Western Research Institute (WRI).« less

  1. Direct firing of coal for power production

    NASA Technical Reports Server (NTRS)

    Papay, L. T.

    1978-01-01

    The use of new technology and advanced emission control hardware to reduce emissions from the direct combustion of coal to produce electricity in California is considered. The technical feasibilty of a demonstration project on an existing 81-MW boiler is demonstrated.

  2. Scoping Studies to Evaluate the Benefits of an Advanced Dry Feed System on the Use of Low-Rank Coal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rader, Jeff; Aguilar, Kelly; Aldred, Derek

    2012-03-30

    The purpose of this project was to evaluate the ability of advanced low rank coal gasification technology to cause a significant reduction in the COE for IGCC power plants with 90% carbon capture and sequestration compared with the COE for similarly configured IGCC plants using conventional low rank coal gasification technology. GE’s advanced low rank coal gasification technology uses the Posimetric Feed System, a new dry coal feed system based on GE’s proprietary Posimetric Feeder. In order to demonstrate the performance and economic benefits of the Posimetric Feeder in lowering the cost of low rank coal-fired IGCC power with carbonmore » capture, two case studies were completed. In the Base Case, the gasifier was fed a dilute slurry of Montana Rosebud PRB coal using GE’s conventional slurry feed system. In the Advanced Technology Case, the slurry feed system was replaced with the Posimetric Feed system. The process configurations of both cases were kept the same, to the extent possible, in order to highlight the benefit of substituting the Posimetric Feed System for the slurry feed system.« less

  3. World market: A survey of opportunities for advanced coal-fired systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holt, N.A.H.

    1995-06-01

    Although there is a wide range of forecasts for the future of World energy demand and consumption over the next 25 years, all forecasts show marked increases being required for all forms of fossil fuels even when optimistic projections are made for the future adoption of Nuclear and Renewable energy. It is also generally expected that coal usage will in this period experience its greatest growth (a doubling) in the Asia-Pacific region dominated demographically by China and India. In this paper, energy projections and the extent and nature of the coal reserves available worldwide are examined. While most coal technologiesmore » can handle a variety of feedstocks, there are often economic factors that will determine the preferred selection. The matching of technology to coal type and other factors is examined with particular reference to the Asia Pacific region. Oil usage is similarly forecast to experience a comparable growth in this region. Over 70% of the World`s oil reserves are heavy oils and refinery crudes are increasing in gravity and sulfur content. The clean coal technologies of gasification and fluid bed combustion can also use low value petroleum residuals as feedstocks. There is therefore a nearer term market opportunity to incorporate such technologies into cogeneration and coproduction schemes adjacent to refineries resulting in extremely efficient use of these resources.« less

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mudd, M.J.

    The successful Clean Coal Technology projects which are being discussed in this conference are all a testament to the positive advancements that can be made with environmentally superior technologies when the government and industry cooperate in the context of a properly funded and a well thought-out program. Many of the technologies developed in the Clean Coal Technology Program have taken a competitive position in the marketplace, and many others are on the verge of being competitive in the marketplace. Based on the success of the Clean Coal Technology Program, one would expect that they would be ready for full deploymentmore » in the marketplace with the approach of the next millennium. This is not happening. There are several hurdles that impede their deployment. Some of those hurdles, such as the higher first-of-a-kind cost and technology risk factors that accompany not-yet mature technologies, have existed since the initiation of the Clean Coal Technology Program. However, several new hurdles are impeding the market penetration of Clean Coal Technologies. Those hurdles include the radically different marketplace due to the restructuring of the electric utility industry, a soft market, the difficulty in financing new power plants, low natural gas prices, and lower-cost and higher-efficiency natural gas combined cycle technology.« less

  5. Coal resources available for development; a methodology and pilot study

    USGS Publications Warehouse

    Eggleston, Jane R.; Carter, M. Devereux; Cobb, James C.

    1990-01-01

    Coal accounts for a major portion of our Nation's energy supply in projections for the future. A demonstrated reserve base of more than 475 billion short tons, as the Department of Energy currently estimates, indicates that, on the basis of today's rate of consumption, the United States has enough coal to meet projected energy needs for almost 200 years. However, the traditional procedures used for estimating the demonstrated reserve base do not account for many environmental and technological restrictions placed on coal mining. A new methodology has been developed to determine the quantity of coal that might actually be available for mining under current and foreseeable conditions. This methodology is unique in its approach, because it applies restrictions to the coal resource before it is mined. Previous methodologies incorporated restrictions into the recovery factor (a percentage), which was then globally applied to the reserve (minable coal) tonnage to derive a recoverable coal tonnage. None of the previous methodologies define the restrictions and their area and amount of impact specifically. Because these restrictions and their impacts are defined in this new methodology, it is possible to achieve more accurate and specific assessments of available resources. This methodology has been tested in a cooperative project between the U.S. Geological Survey and the Kentucky Geological Survey on the Matewan 7.5-minute quadrangle in eastern Kentucky. Pertinent geologic, mining, land-use, and technological data were collected, assimilated, and plotted. The National Coal Resources Data System was used as the repository for data, and its geographic information system software was applied to these data to eliminate restricted coal and quantify that which is available for mining. This methodology does not consider recovery factors or the economic factors that would be considered by a company before mining. Results of the pilot study indicate that, of the estimated original 986.5 million short tons of coal resources in Kentucky's Matewan quadrangle, 13 percent has been mined, 2 percent is restricted by land-use considerations, and 23 percent is restricted by technological considerations. This leaves an estimated 62 percent of the original resource, or approximately 612 million short tons available for mining. However, only 44 percent of this available coal (266 million short tons) will meet current Environmental Protection Agency new-source performance standards for sulfur emissions from electric generating plants in the United States. In addition, coal tonnage lost during mining and cleaning would further reduce the amount of coal actually arriving at the market.

  6. US coal use: the environmental challenge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Princiotta, F.T.

    1988-08-01

    Although this paper focuses on past (since 1920) and current coal use and pollutant emissions in the U.S., it also discusses where the U.S. may be going in terms of pollutant emissions over the next several decades. Conclusions of the look at coal use include the fact that increasing coal use is vital to the economic wellbeing of the US. With proper application of controls, coal use can be increased as projected without unacceptable levels of sulfur and nitrogen oxides, particulate, and nitrous oxide. However, the forecast is bleaker for carbon dioxide and its projected impact on global warming. Barringmore » a technology breakthrough of major proportions (e.g., successful commercialization of nuclear fusion or solar electric generation), the best that can be envisioned is to moderate carbon dioxide emissions from the combustion of coal and other fuels through conservation.« less

  7. The Clean Air Act Amendments of 1990: Hazardous Air Pollutant Requirements and the DOE Clean Coal Technology Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moskowitz, P.D.; DePhillips, M.; Fthenakis, V.M.

    1991-12-31

    The purpose of the US Department of Energy -- Office of Fossil Energy (DOE FE) Clean Coal Technology Program (CCTP) is to provide the US energy marketplace with advanced, efficient, and environmentally sound coal-based technologies. The design, construction, and operation of Clean Coal Technology Demonstration Projects (CCTDP) will generate data needed to make informed, confident decisions on the commercial readiness of these technologies. These data also will provide information needed to ensure a proactive response by DOE and its industrial partners to the establishment of new regulations or a reactive response to existing regulations promulgated by the US Environmental Protectionmore » Agency (EPA). The objectives of this paper are to: (1) Present a preliminary examination of the potential implications of the Clean Air Act Amendments (CAAA) -- Title 3 Hazardous Air Pollutant requirements to the commercialization of CCTDP; and (2) help define options available to DOE and its industrial partners to respond to this newly enacted Legislation.« less

  8. The Clean Air Act Amendments of 1990: Hazardous Air Pollutant Requirements and the DOE Clean Coal Technology Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moskowitz, P.D.; DePhillips, M.; Fthenakis, V.M.

    1991-01-01

    The purpose of the US Department of Energy -- Office of Fossil Energy (DOE FE) Clean Coal Technology Program (CCTP) is to provide the US energy marketplace with advanced, efficient, and environmentally sound coal-based technologies. The design, construction, and operation of Clean Coal Technology Demonstration Projects (CCTDP) will generate data needed to make informed, confident decisions on the commercial readiness of these technologies. These data also will provide information needed to ensure a proactive response by DOE and its industrial partners to the establishment of new regulations or a reactive response to existing regulations promulgated by the US Environmental Protectionmore » Agency (EPA). The objectives of this paper are to: (1) Present a preliminary examination of the potential implications of the Clean Air Act Amendments (CAAA) -- Title 3 Hazardous Air Pollutant requirements to the commercialization of CCTDP; and (2) help define options available to DOE and its industrial partners to respond to this newly enacted Legislation.« less

  9. CoalFleet RD&D augmentation plan for integrated gasification combined cycle (IGCC) power plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    2007-01-15

    To help accelerate the development, demonstration, and market introduction of integrated gasification combined cycle (IGCC) and other clean coal technologies, EPRI formed the CoalFleet for Tomorrow initiative, which facilitates collaborative research by more than 50 organizations from around the world representing power generators, equipment suppliers and engineering design and construction firms, the U.S. Department of Energy, and others. This group advised EPRI as it evaluated more than 120 coal-gasification-related research projects worldwide to identify gaps or critical-path activities where additional resources and expertise could hasten the market introduction of IGCC advances. The resulting 'IGCC RD&D Augmentation Plan' describes such opportunitiesmore » and how they could be addressed, for both IGCC plants to be built in the near term (by 2012-15) and over the longer term (2015-25), when demand for new electric generating capacity is expected to soar. For the near term, EPRI recommends 19 projects that could reduce the levelized cost-of-electricity for IGCC to the level of today's conventional pulverized-coal power plants with supercritical steam conditions and state-of-the-art environmental controls. For the long term, EPRI's recommended projects could reduce the levelized cost of an IGCC plant capturing 90% of the CO{sub 2} produced from the carbon in coal (for safe storage away from the atmosphere) to the level of today's IGCC plants without CO{sub 2} capture. EPRI's CoalFleet for Tomorrow program is also preparing a companion RD&D augmentation plan for advanced-combustion-based (i.e., non-gasification) clean coal technologies (Report 1013221). 7 refs., 30 figs., 29 tabs., 4 apps.« less

  10. Task 1.13 -- Data collection and database development for clean coal technology by-product characteristics and management practices. Semi-annual report, July 1--December 31, 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pflughoeft-Hassett, D.F.

    1997-08-01

    Information from DOE projects and commercial endeavors in fluidized-bed combustion and coal gasification is the focus of this task by the Energy and Environmental Research Center. The primary goal of this task is to provide an easily accessible compilation of characterization information on CCT (Clean Coal Technology) by-products to government agencies and industry to facilitate sound regulatory and management decisions. Supporting objectives are (1) to fully utilize information from previous DOE projects, (2) to coordinate with industry and other research groups, (3) to focus on by-products from pressurized fluidized-bed combustion (PFBC) and gasification, and (4) to provide information relevant tomore » the EPA evaluation criteria for the Phase 2 decision.« less

  11. Create a Consortium and Develop Premium Carbon Products from Coal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frank Rusinko; John Andresen; Jennifer E. Hill

    2006-01-01

    The objective of these projects was to investigate alternative technologies for non-fuel uses of coal. Special emphasis was placed on developing premium carbon products from coal-derived feedstocks. A total of 14 projects, which are the 2003 Research Projects, are reported herein. These projects were categorized into three overall objectives. They are: (1) To explore new applications for the use of anthracite in order to improve its marketability; (2) To effectively minimize environmental damage caused by mercury emissions, CO{sub 2} emissions, and coal impounds; and (3) To continue to increase our understanding of coal properties and establish coal usage in non-fuelmore » industries. Research was completed in laboratories throughout the United States. Most research was performed on a bench-scale level with the intent of scaling up if preliminary tests proved successful. These projects resulted in many potential applications for coal-derived feedstocks. These include: (1) Use of anthracite as a sorbent to capture CO{sub 2} emissions; (2) Use of anthracite-based carbon as a catalyst; (3) Use of processed anthracite in carbon electrodes and carbon black; (4) Use of raw coal refuse for producing activated carbon; (5) Reusable PACs to recycle captured mercury; (6) Use of combustion and gasification chars to capture mercury from coal-fired power plants; (7) Development of a synthetic coal tar enamel; (8) Use of alternative binder pitches in aluminum anodes; (9) Use of Solvent Extracted Carbon Ore (SECO) to fuel a carbon fuel cell; (10) Production of a low cost coal-derived turbostratic carbon powder for structural applications; (11) Production of high-value carbon fibers and foams via the co-processing of a low-cost coal extract pitch with well-dispersed carbon nanotubes; (12) Use of carbon from fly ash as metallurgical carbon; (13) Production of bulk carbon fiber for concrete reinforcement; and (14) Characterizing coal solvent extraction processes. Although some of the projects funded did not meet their original goals, the overall objectives of the CPCPC were completed as many new applications for coal-derived feedstocks have been researched. Future research in many of these areas is necessary before implementation into industry.« less

  12. Demonstration of Selective Catalytic Reduction (SCR) technology for the control of nitrogen oxide (NO{sub x}) emissions from high-sulfur coal-fired boilers: Innovative Clean Coal Technology (ICCT). Quarterly report No. 7, January--March 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-05-01

    The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from US, Japanese and European catalyst suppliers on a high-sulfur US coal-fired boiler. SCR is a post-combustion nitrogen oxide (NO{sub x}) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the amonia reacts with NO{sub x} to convert it to nitrogen and water vapor. Although SCR is widely practiced in Japanmore » and Europe, there are numerous technical uncertainties associated with applying SCR to US coals. These uncertainties include: (1) potential catalyst deactivation due to poisoning by trace metal species present in US coals that are not present in other fuels. (2) performance of the technology and effects on the balance-of-plant equipment in the presence of high amounts of SO, and SO{sub 3}. (3) performance of a wide variety of SCR catalyst compositions, geometries and methods of manufacture under typical high-sulfur coal-fired utility operating conditions. These uncertainties will be explored by constructing a series of small-scale SCR reactors and simultaneously exposing different SCR catalysts to flue gas derived from the combustion of high sulfur US coal. The demonstration will be performed at Gulf Power Company`s Plant Crist Unit No. 5 (75 MW capacity) near Pensacola, Florida. The project will be funded by the US Department of Energy (DOE), Southern Company Services, Inc. (SCS on behalf of the entire Southern electric system), and the Electric Power Research Institute.« less

  13. Global Development of Commercial Underground Coal Gasification

    NASA Astrophysics Data System (ADS)

    Blinderman, M. S.

    2017-07-01

    Global development of Underground Coal Gasification (UCG) is considered here in light of latest trends of energy markets and environmental regulations in the countries that have been traditional proponents of UCG. The latest period of UCG development triggered by initial success of the Chinchilla UCG project (1997-2006) has been characterized by preponderance of privately and share-market funded developments. The deceleration of UCG commercialization has been in part caused by recent significant decrease of world oil, gas and coal prices. Another substantial factor was lack of necessary regulations governing extraction and conversion of coal by UCG method in the jurisdictions where the UCG projects were proposed and developed. Along with these objective causes there seem to have been more subjective and technical reasons for a slowdown or cancelation of several significant UCG projects, including low efficiency, poor environmental performance, and inability to demonstrate technology at a sufficient scale and/or at a competitive cost. Latest proposals for UCG projects are briefly reviewed.

  14. 76 FR 10369 - Proposed Data Collections Submitted for Public Comment and Recommendations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-24

    ... technology. Written comments should be received within 60 days of this notice. Proposed Project Coal Workers... and work histories, and participating physicians report radiographic findings. The Centers for Disease... history and spirometry tests have been recommended by NIOSH for both surface and underground coal miners...

  15. W.A. Parish Post-Combustion CO{sub 2} Capture and Sequestration Project Phase 1 Definition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Armpriester, Anthony; Smith, Roger; Scheriffius, Jeff

    2014-02-01

    For a secure and sustainable energy future, the United States (U.S.) must reduce its dependence on imported oil and reduce its emissions of carbon dioxide (CO{sub 2}) and other greenhouse gases (GHGs). To meet these strategic challenges, the U.S. wiU have to create fundamentally new technologies with performance levels far beyond what is now possible. Developing advanced post-combustion clean coal technologies for capturing CO{sub 2} from existing coal-fired power plants can play a major role in the country's transition to a sustainable energy future, especially when coupled with CO{sub 2}-enhanced oil recovery (CO{sub 2}-EOR). Pursuant to these goals, NRG Energy,more » Inc. (NRG) submitted an application and entered into a cost-shared collaboration with the U.S. Department of Energy (DOE) under Round 3 of the Clean Coal Power Initiative (CCPI) to advance low-emission coal technologies. The objective of the NRG W A Parish Post-Combustion CO{sub 2} Capture and Sequestration Demonstration Project is to establish the technical feasibility and economic viability of post-combustion CO{sub 2} capture using flue gas from an existing pulverized coal-fired boiler integrated with geologic sequestration via an enhanced oil recovery (EOR) process. To achieve these objectives, the project will be executed in three phases. Each phase represents a distinct aspect of the project execution. The project phases are: • Phase I. Project Definition/Front-End Engineering Design (FEED) • Phase ll. Detailed Engineering, Procurement & Construction • Phase III. Demonstration and Monitoring The purpose of Phase I is to develop the project in sufficient detail to facilitate the decision-making process in progressing to the next stage of project delivery. Phase n. This report provides a complete summary of the FEED study effort, including pertinent project background information, the scope of facilities covered, decisions, challenges, and considerations made regarding configuration and performance of the facility, along with the conceptual design and estimate results. The findings of this report should be considered conceptual in nature and are conditioned on the statements contained herein. The cost of preparing this report (including the FEED study described herein) was funded in part by a $167-million grant provided by the U.S. DOE.« less

  16. CFB: technology of the future?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blankship, S.

    2008-02-15

    Fuel flexibility and a smaller carbon footprint are behind renewed interest in circulating fluidized bed (CFB) technology. The article explains the technology of CFB and discusses development of CFB units since the late 1990s. China is seeing an explosion in the number of utility-size CFBs. Alstom, Foster Wheeler, Babcock and Wilson and Alex Kvaener are today's major CFB boiler manufacturers. Alstom is testing and developing oxy-firing and post-combustion carbon capture strategies on CFB boilers. One CFB asset is its ability to burn a variety of fuels including waste coal, high sulfur coal and even discarded tires. The article mentions successfulmore » CFB projects at the Seward Station using waste coal and at the Gilbert 3 plant in the USA. Lamar is converting its Light and Power Plant from natural gas to burn coal in a 38.5 MW CFB boiler. 1 tab., 3 photos.« less

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hutzler, M.J.

    Over the next 20 years, the combination of slow growth in the demand for electricity, even slower growth in the need for new capacity, especially baseload capacity, and the competitiveness of new gas-fired technologies limits the market for new coal technologies in the US. In the later years of the 1997 Annual Energy Outlook projections, post-2005, when a significant amount of new capacity is needed to replace retiring plants and meet growing demand, some new coal-fired plants are expected to be built, but new gas-fired plants are expected to remain the most economical choice for most needs. The largest marketmore » for clean coal technologies in the United States may be in retrofitting or repowering existing plants to meet stricter environmental standards, especially over the next 10 years. Key uncertainties include the rate of growth in the demand for electricity and the level of competing fuel prices, particularly natural gas. Higher than expected growth in the demand for electricity and/or relatively higher natural gas prices would increase the market for new coal technologies.« less

  18. The Clean Coal Technology Program 100 MWe demonstration of gas suspension absorption for flue gas desulfurization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsu, F.E.; Hedenhag, J.G.; Marchant, S.K.

    1997-12-31

    AirPol Inc., with the cooperation of the Tennessee Valley Authority (TVA) under a Cooperative Agreement with the United States Department of Energy, installed and tested a 10 MWe Gas Suspension Absorption (GSA) Demonstration system at TVA`s Shawnee Fossil Plant near Paducah, Kentucky. This low-cost retrofit project demonstrated that the GSA system can remove more than 90% of the sulfur dioxide from high-sulfur coal-fired flue gas, while achieving a relatively high utilization of reagent lime. This paper presents a detailed technical description of the Clean Coal Technology demonstration project. Test results and data analysis from the preliminary testing, factorial tests, airmore » toxics texts, 28-day continuous demonstration run of GSA/electrostatic precipitator (ESP), and 14-day continuous demonstration run of GSA/pulse jet baghouse (PJBH) are also discussed within this paper.« less

  19. Mercury Emissions Capture Efficiency with Activated Carbon ...

    EPA Pesticide Factsheets

    This EPA-led project, conducted in collaboration with UNEP, the Swedish Environmental Institute and various Russian Institutes, that demonstrates that the mercury emission control efficiencies of activated carbon injection technologies applied at a Russian power plant burning Russian coals are similar to those found at U.S. plants burning US coals. (The US funding was from funds provided to the EPA by the Department of State pursuant to the Bio-Chemical Redirect Program which engages former Russian (and other former Soviet) weapons scientists in research projects with US collaborators.) Among other things, this report will aid the major task, of developing guidance on best available mercury control technology/best environmental practices (BAT/BEP) for coal-fired power plants, a major source a global anthropogenic emissions. (The new Minamata Convention requires BAT/BEP for new power plants and other major emission sources within five years of treaty ratification.)

  20. Near-Zero Emissions Oxy-Combustion Flue Gas Purification Task 2: SOx/Nox/Hg Removal for High Sulfur Coal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nick Degenstein; Minish Shah; Doughlas Louie

    2012-05-01

    The goal of this project is to develop a near-zero emissions flue gas purification technology for existing PC (pulverized coal) power plants that are retrofitted with oxy-combustion technology. The objective of Task 2 of this project was to evaluate an alternative method of SOx, NOx and Hg removal from flue gas produced by burning high sulfur coal in oxy-combustion power plants. The goal of the program was not only to investigate a new method of flue gas purification but also to produce useful acid byproduct streams as an alternative to using a traditional FGD and SCR for flue gas processing.more » During the project two main constraints were identified that limit the ability of the process to achieve project goals. 1) Due to boiler island corrosion issues >60% of the sulfur must be removed in the boiler island with the use of an FGD. 2) A suitable method could not be found to remove NOx from the concentrated sulfuric acid product, which limits sale-ability of the acid, as well as the NOx removal efficiency of the process. Given the complexity and safety issues inherent in the cycle it is concluded that the acid product would not be directly saleable and, in this case, other flue gas purification schemes are better suited for SOx/NOx/Hg control when burning high sulfur coal, e.g. this project's Task 3 process or a traditional FGD and SCR.« less

  1. Mechanised spraying device a novel technology for spraying fire protective coating material in the benches of opencast coal mines for preventing spontaneous combustion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    R.V.K. Singh; V.K. Singh

    2004-10-15

    Spontaneous combustion in coal mines plays a vital role in occurrences of fire. Fire in coal, particularly in opencast mines, not only causes irreparable loss of national wealth but damages the surface structure and pollutes the environment. The problem of spontaneous combustion/fire in opencast coal benches is acute. Presently over 75% of the total production of coal in Indian mines is being carried out by opencast mining. Accordingly a mechanised spraying device has been developed for spraying the fire protective coating material for preventing spontaneous combustion in coal benches of opencast mines jointly by Central Mining Research Institute, Dhanbad andmore » M/s Signum Fire Protection (India) Pvt. Ltd., Nagpur under Science & Technology (S&T) project funded by Ministry of Coal, Govt. of India. The objective of this paper is to describe in detail about the mechanised spraying device and its application for spraying fire protective coating material in the benches of opencast coal mines for preventing spontaneous combustion/fire.« less

  2. Coal upgrading program for Usti nad Labem, Czech Republic: Task 8.3. Topical report, October 1994--August 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, B.C.; Musich, M.A.

    1995-10-01

    Coal has been a major energy source in the Czech Republic given its large coal reserves, especially brown coal and lignite (almost 4000 million metric tons) and smaller reserves of hard, mainly bituminous, coal (over 800 million tons). Political changes since 1989 have led to the reassessment of the role of coal in the future economy as increasing environmental regulations affect the use of the high-sulfur and high-ash brown coal and lignite as well as the high-ash hard coal. Already, the production of brown coal has declined from 87 million metric tons per year in 1989 to 67 million metricmore » tons in 1993 and is projected to decrease further to 50 million metric tons per year of brown coal by the year 2000. As a means of effectively utilizing its indigenous coal resources, the Czech Republic is upgrading various technologies, and these are available at different stages of development, demonstration, and commercialization. The purpose of this review is to provide a database of information on applicable technologies that reduce the impact of gaseous (SO{sub 2}, NO{sub x}, volatile organic compounds) and particulate emissions from the combustion of coal in district and residential heating systems.« less

  3. Innovative Clean Coal Technology (ICCT). Demonstration of Selective Catalytic Reduction (SCR) technology for the control of nitrogen oxide (NO{sub x}) emissions from high-sulfur coal-fired boilers: Volume 1. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-10-01

    The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from U.S., Japanese and European catalyst suppliers on a high-sulfur U.S. coal-fired boiler. SCR is a post-combustion nitrogen oxide (NO.) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NO. to convert it to nitrogen and water vapor. Although SCR is widely practiced in Japan and Europemore » on gas-, oil-, and low-sulfur coal- fired boilers, there are several technical uncertainties associated with applying SCR to U.S. coals. These uncertainties include: 1) potential catalyst deactivation due to poisoning by trace metal species present in U.S. coals that are not present in other fuels. 2) performance of the technology and effects on the balance-of- plant equipment in the presence of high amounts of SO{sub 2} and SO{sub 3}. 3) performance of a wide variety of SCR catalyst compositions, geometries and methods of manufacturer under typical high-sulfur coal-fired utility operating conditions. These uncertainties were explored by operating nine small-scale SCR reactors and simultaneously exposing different SCR catalysts to flue gas derived from the combustion of high sulfur U.S. coal. In addition, the test facility operating experience provided a basis for an economic study investigating the implementation of SCR technology.« less

  4. Advanced Acid Gas Separation Technology for the Utilization of Low Rank Coals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kloosterman, Jeff

    2012-12-31

    Air Products has developed a potentially ground-breaking technology – Sour Pressure Swing Adsorption (PSA) – to replace the solvent-based acid gas removal (AGR) systems currently employed to separate sulfur containing species, along with CO{sub 2} and other impurities, from gasifier syngas streams. The Sour PSA technology is based on adsorption processes that utilize pressure swing or temperature swing regeneration methods. Sour PSA technology has already been shown with higher rank coals to provide a significant reduction in the cost of CO{sub 2} capture for power generation, which should translate to a reduction in cost of electricity (COE), compared to baselinemore » CO{sub 2} capture plant design. The objective of this project is to test the performance and capability of the adsorbents in handling tar and other impurities using a gaseous mixture generated from the gasification of lower rank, lignite coal. The results of this testing are used to generate a high-level pilot process design, and to prepare a techno-economic assessment evaluating the applicability of the technology to plants utilizing these coals.« less

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Torrens, I.M.; Stenzel, W.C.

    Independent power producers will build a substantial fraction of expected new coal-fired power generation in developing countries over the coming decades. To reduce perceived risk and obtain financing for their projects, they are currently building and plan to continue to build subcritical coal-fired plants with generating efficiency below 40%. Up-to-date engineering assessment leads to the conclusion that supercritical generating technology, capable of efficiencies of up to 45%, can produce electricity at a lower total cost than conventional plants. If such plants were built in Asia over the coming decades, the savings in carbon dioxide emissions over their lifetime would bemore » measured in billions of tons. IPPs perceive supercritical technology as riskier and higher cost than conventional technology. The truth needs to be confirmed by discussions with additional experienced power engineering companies. Better communication among the interested parties could help to overcome the IPP perception issue. Governments working together with industry might be able to identify creative financing arrangements which can encourage the use of more efficient pulverized clean coal technologies, while awaiting the commercialization of advanced clean coal technologies like gasification combined cycle and pressurized fluidized bed combustion.« less

  6. Economic analysis of atmospheric mercury emission control for coal-fired power plants in China.

    PubMed

    Ancora, Maria Pia; Zhang, Lei; Wang, Shuxiao; Schreifels, Jeremy; Hao, Jiming

    2015-07-01

    Coal combustion and mercury pollution are closely linked, and this relationship is particularly relevant in China, the world's largest coal consumer. This paper begins with a summary of recent China-specific studies on mercury removal by air pollution control technologies and then provides an economic analysis of mercury abatement from these emission control technologies at coal-fired power plants in China. This includes a cost-effectiveness analysis at the enterprise and sector level in China using 2010 as a baseline and projecting out to 2020 and 2030. Of the control technologies evaluated, the most cost-effective is a fabric filter installed upstream of the wet flue gas desulfurization system (FF+WFGD). Halogen injection (HI) is also a cost-effective mercury-specific control strategy, although it has not yet reached commercial maturity. The sector-level analysis shows that 193 tons of mercury was removed in 2010 in China's coal-fired power sector, with annualized mercury emission control costs of 2.7 billion Chinese Yuan. Under a projected 2030 Emission Control (EC) scenario with stringent mercury limits compared to Business As Usual (BAU) scenario, the increase of selective catalytic reduction systems (SCR) and the use of HI could contribute to 39 tons of mercury removal at a cost of 3.8 billion CNY. The economic analysis presented in this paper offers insights on air pollution control technologies and practices for enhancing atmospheric mercury control that can aid decision-making in policy design and private-sector investments. Copyright © 2015. Published by Elsevier B.V.

  7. CONTROL TECHNOLOGIES: PILOT- & FULL-SCALE TESTS

    EPA Science Inventory

    Two different project are to be supported in FY03. The first project is being conducted by the North Dakota Energy and Environmental Research Center (ND-EERC). This project consists of tests on coal-fired utility boilers to determine the effects of SCR catalysts and ammonia in...

  8. Solar augmentation for process heat with central receiver technology

    NASA Astrophysics Data System (ADS)

    Kotzé, Johannes P.; du Toit, Philip; Bode, Sebastian J.; Larmuth, James N.; Landman, Willem A.; Gauché, Paul

    2016-05-01

    Coal fired boilers are currently one of the most widespread ways to deliver process heat to industry. John Thompson Boilers (JTB) offer industrial steam supply solutions for industry and utility scale applications in Southern Africa. Transport cost add significant cost to the coal price in locations far from the coal fields in Mpumalanga, Gauteng and Limpopo. The Helio100 project developed a low cost, self-learning, wireless heliostat technology that requires no ground preparation. This is attractive as an augmentation alternative, as it can easily be installed on any open land that a client may have available. This paper explores the techno economic feasibility of solar augmentation for JTB coal fired steam boilers by comparing the fuel savings of a generic 2MW heliostat field at various locations throughout South Africa.

  9. US fossil fuel technologies for developing countries: Costa Rica country packet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Costa Rica presents long-term opportunities for US participation in the power generation sector. A growing industrial base, high economic growth, and an increasing living standard will continue to require more reliable electric generation. Although the country has depended upon hydropower to meet much of its energy needs, coal could become a more reliable form of energy in the near term, based on estimated indigenous resources and proximity to food quality imports. Thus, trade opportunities exist for the United States, in the electric power sector, for the US advanced fossil fuel technologies and related services. This report describes the Costa Ricanmore » energy situation; examines the financial, economic, and trade issues; and discusses project opportunities in Costa Rica. Costa Rica appears to have a positive climate for trade and investment activities, stimulated by the Caribbean Basin Initiative. Although the economy has recently slowed, the economic outlook appears healthy. Application for membership in the General Agreement on Tariffs and Trade is pending. Due to an unexpectedly large growth in electricity demand, the Costa Rican utility Instituto Costarricense de Electricidad is evaluating the need for construction of a coal-fired power plant in the size range of 60 to 125 MW, with an in-service data of the mid-1990s. A decision is expected by the end of 1988 concerning the required size, source of coal, and timing of this coal-fired plant. Based on conditions in Costa Rica, US advanced fossil-fuel technologies were chosen for continued study in conjunction with the identified potential project opportunities. These technologies are the atmospheric fluidized bed combustor and coal-water mixtures. They could play a major role in meeting the utility expansion and/or industrial conversion opportunities summarized in Table I.1. The value of such projects could approximate US $160 million.« less

  10. INTEGRATED GASIFICATION COMBINED CYCLE PROJECT 2 MW FUEL CELL DEMONSTRATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    FuelCell Energy

    2005-05-16

    With about 50% of power generation in the United States derived from coal and projections indicating that coal will continue to be the primary fuel for power generation in the next two decades, the Department of Energy (DOE) Clean Coal Technology Demonstration Program (CCTDP) has been conducted since 1985 to develop innovative, environmentally friendly processes for the world energy market place. The 2 MW Fuel Cell Demonstration was part of the Kentucky Pioneer Energy (KPE) Integrated Gasification Combined Cycle (IGCC) project selected by DOE under Round Five of the Clean Coal Technology Demonstration Program. The participant in the CCTDP Vmore » Project was Kentucky Pioneer Energy for the IGCC plant. FuelCell Energy, Inc. (FCE), under subcontract to KPE, was responsible for the design, construction and operation of the 2 MW fuel cell power plant. Duke Fluor Daniel provided engineering design and procurement support for the balance-of-plant skids. Colt Engineering Corporation provided engineering design, fabrication and procurement of the syngas processing skids. Jacobs Applied Technology provided the fabrication of the fuel cell module vessels. Wabash River Energy Ltd (WREL) provided the test site. The 2 MW fuel cell power plant utilizes FuelCell Energy's Direct Fuel Cell (DFC) technology, which is based on the internally reforming carbonate fuel cell. This plant is capable of operating on coal-derived syngas as well as natural gas. Prior testing (1992) of a subscale 20 kW carbonate fuel cell stack at the Louisiana Gasification Technology Inc. (LGTI) site using the Dow/Destec gasification plant indicated that operation on coal derived gas provided normal performance and stable operation. Duke Fluor Daniel and FuelCell Energy developed a commercial plant design for the 2 MW fuel cell. The plant was designed to be modular, factory assembled and truck shippable to the site. Five balance-of-plant skids incorporating fuel processing, anode gas oxidation, heat recovery, water treatment/instrument air, and power conditioning/controls were built and shipped to the site. The two fuel cell modules, each rated at 1 MW on natural gas, were fabricated by FuelCell Energy in its Torrington, CT manufacturing facility. The fuel cell modules were conditioned and tested at FuelCell Energy in Danbury and shipped to the site. Installation of the power plant and connection to all required utilities and syngas was completed. Pre-operation checkout of the entire power plant was conducted and the plant was ready to operate in July 2004. However, fuel gas (natural gas or syngas) was not available at the WREL site due to technical difficulties with the gasifier and other issues. The fuel cell power plant was therefore not operated, and subsequently removed by October of 2005. The WREL fuel cell site was restored to the satisfaction of WREL. FuelCell Energy continues to market carbonate fuel cells for natural gas and digester gas applications. A fuel cell/turbine hybrid is being developed and tested that provides higher efficiency with potential to reach the DOE goal of 60% HHV on coal gas. A system study was conducted for a 40 MW direct fuel cell/turbine hybrid (DFC/T) with potential for future coal gas applications. In addition, FCE is developing Solid Oxide Fuel Cell (SOFC) power plants with Versa Power Systems (VPS) as part of the Solid State Energy Conversion Alliance (SECA) program and has an on-going program for co-production of hydrogen. Future development in these technologies can lead to future coal gas fuel cell applications.« less

  11. Technical and economic assessments commercial success for IGCC technology in China

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiong, T.

    1998-07-01

    The experiences gained from several Integrated Gasification Combined Cycle (IGCC) demonstration plants operating in the US and Europe facilitate commercial success of this advanced coal-based power generation technology. However, commercialization of coal-based IGCC technology in the West, particularly in the US, is restricted due to the low price of natural gas. On the contrary, in China--the largest coal producer and consumer in the world--a lack of natural gas supply, strong demand for air pollution control and relatively low costs of manufacturing and construction provide tremendous opportunities for IGCC applications. The first Chinese IGCC demonstration project was initiated in 1994, andmore » other potential IGCC projects are in planning. IGCC applications in re-powering, fuel switching and multi-generation also show a great market potential in China. However, questions for IGCC development in China remain; where are realistic opportunities for IGCC projects and how can these opportunities be converted into commercial success? The answers to these questions should focus on the Chinese market needs and emphasize economic benefits, not just clean, or power. High price of imported equipment, high financing costs, and the technical risk of first-of-a-kind installation barricade IGCC development in China. This paper presents preliminary technical and economic assessments for four typical IGCC applications in the Chinese marketplace: central power station, fuel switching, re-powering, and multi-generation. The major factors affecting project economics--such as plant cost, financing, prices of fuel and electricity and operating capacity factor--are analyzed. The results indicate that well-proven technology for versatile applications, preferred financing, reduction of the plant cost, environmental superiority and appropriate project structure are the key for commercial success of IGCC in China.« less

  12. Formulation of low solids coal water slurry from advanced coal cleaning waste fines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Battista, J.J.; Morrison, J.L.; Lambert, A.

    1997-07-01

    GPU Genco, the New York State Electric and Gas Corporation (NYSEG), Penn State University and the Homer City Coal Processing Corporation are conducting characterization and formulation tests to determine the suitability of using minus 325 mesh coal waste fines as a low solids coal water slurry (CWS) co-firing fuel. The fine coal is contained in a centrifuge effluent stream at the recently modified Homer City Coal Preparation Plant. Recovering, thickening and then co-firing this material with pulverized coal is one means of alleviating a disposal problem and increasing the Btu recovery for the adjacent power plant. The project team ismore » currently proceeding with the design of a pilot scale system to formulate the effluent into a satisfactory co-firing fuel on a continuous basis for combustion testing at Seward Station. The ultimate goal is to burn the fuel at the pulverized coal units at the Homer City Generating Station. This paper presents the success to date of the slurry characterization and pilot scale design work. In addition, the paper will update GPU Genco`s current status for the low solids coal water slurry co-firing technology and will outline the company`s future plans for the technology.« less

  13. DEMONSTRATION PROJECT FOR THE ABATEMENT OF NITROGEN OXIDES EMISSIONS USING REBURN TECHNOLOGY FOR COGENERATION PLANTS IN TAIWAN

    EPA Science Inventory

    The report summarizes the key technical results of a joint demonstration project between the U.S. Environmental Protection Agency and the Taiwan Environmental Protection Administration. The project demonstrated that coal reburning can be used to reduce nitrogen oxides (NOX) emiss...

  14. Applications of micellar enzymology to clean coal technology. [Laccase from Polyporus versicolor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walsh, C.T.

    1990-07-24

    This project is designed to develop methods for pre-combustion coal remediation by implementing recent advances in enzyme biochemistry. The novel approach of this study is incorporation of hydrophilic oxidative enzymes in reverse micelles in an organic solvent. Enzymes from commercial sources or microbial extracts are being investigated for their capacity to remove organic sulfur from coal by oxidation of the sulfur groups, splitting of C-S bonds and loss of sulfur as sulfuric acid. Dibenzothiophen (DBT) and ethylphenylsulfide (EPS) are serving as models of organic sulfur-containing components of coal in initial studies.

  15. Pelletizing/reslurrying as a means of distributing and firing clean coal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conkle, H.N.; Raghavan, J.K.; Smit, F.J.

    1991-11-21

    The objective of this study is to develop technology that permits the practical and economic preparation, storage, handling, and transportation of coal pellets, which can be reslurried into Coal water fuels (CWF) suitable for firing in small- and medium-size commercial and industrial boilers, furnaces, and engines. The project includes preparing coal pellets and capsules from wet filter cake that can be economically stored, handled, transported, and reslurried into a CWF that can be suitably atomized and fired at the user site. The wet cakes studied were prepared from ultra-fine (95% -325 mesh) coal beneficiated by advanced froth-flotation techniques. The coalsmore » studied included two eastern bituminous coals, one from Virginia (Elkhorn) and one from Illinois (Illinois No. 6) and one western bituminous coal from Utah (Sky Line coal).« less

  16. Research and development to prepare and characterize robust coal/biomass mixtures for direct co-feeding into gasification systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Felix, Larry; Farthing, William; Hoekman, S. Kent

    This project was initiated on October 1, 2010 and utilizes equipment and research supported by the Department of Energy, National Energy Technology Laboratory, under Award Number DE- FE0005349. It is also based upon previous work supported by the Department of Energy, National Energy Technology Laboratory, under Award Numbers DOE-DE-FG36-01GOl1082, DE-FG36-02G012011 or DE-EE0000272. The overall goal of the work performed was to demonstrate and assess the economic viability of fast hydrothermal carbonization (HTC) for transforming lignocellulosic biomass into a densified, friable fuel to gasify like coal that can be easily blended with ground coal and coal fines and then be formedmore » into robust, weather-resistant pellets and briquettes.« less

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marrocco, M.

    The Ohio Power Company`s Tidd Pressurized Fluidized Bed Combined Cycle (PFBC) program continues to be the only operating PFBC demonstration program in the nation. The 70 MWe Tidd Demonstration Plant is a Round 1 Clean Coal Technology Project constructed to demonstrate the viability of PFBC combined cycle technology. The plant is now in Rs fourth year of operation. The technology has clearly demonstrated Rs ability to achieve sulfur capture of greater than 95%. The calcium to sulfur molar ratios have been demonstrated to exceed original projections. Unit availability has steadily increased and has been demonstrated to be competitive with othermore » technologies. The operating experience of the first forty-four months of testing has moved the PFBC process from a {open_quotes}promising technology{close_quotes} to available, proven option for efficient, environmentally acceptable base load generation. Funding for the $210 million program is provided by Ohio Power Company, The U.S. Department of Energy, The Ohio Coal Development Office, and the PFBC process vendors - Asea Brown Boveri Carbon (ABBC) and Babcock and Wilcox (B&W).« less

  18. Alaska Regional Energy Resources Planning Project. Phase 2: coal, hydroelectric and energy alternatives. Volume I. Beluga Coal District Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rutledge, G.; Lane, D.; Edblom, G.

    This volume deals with the problems and procedures inherent in the development of the Beluga Coal District. Socio-economic implications of the development and management alternatives are discussed. A review of permits and approvals necessary for the initial development of Beluga Coal Field is presented. Major land tenure issues in the Beluga Coal District as well as existing transportation routes and proposed routes and sites are discussed. The various coal technologies which might be employed at Beluga are described. Transportation options and associated costs of transporting coal from the mine site area to a connecting point with a major, longer distancemore » transportation made and of transporting coal both within and outside (exportation) the state are discussed. Some environmental issues involved in the development of the Beluga Coal Field are presented. (DMC)« less

  19. Treatment of metal-laden hazardous wastes with advanced clean coal technology by-products. Quarterly report, December 30, 1996--March 30, 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-12-31

    The objective of this project is to utilize coal ashes to process hazardous materials such as industrial waste water treatment residues, contaminated soils, and air pollution control dusts from the metal industry and municipal waste incineration. This report describes the activities of the project team during the reporting period. The principal work has focused upon continuing evaluation of aged samples from Phase 1, planning supportive laboratory studies for Phase 2, completing scholarly work, reestablishing MAX Environmental Technologies, Inc., as the subcontractor for the field work of Phase 2, proposing two presentations for later in 1997, and making and responding tomore » several outside contacts.« less

  20. METC Clean Coal Technology status -- 1995 update

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carpenter, L.K.

    1995-06-01

    The Department of Energy (DOE) Clean Coal Technology (CCT) Program is assisting the private sector by funding demonstration programs to validate that CCT technologies are a low-risk, environmentally attractive, cost-competitive option for utility and industrial users. Since 1987, DOE has awarded 45 CCT projects worth a total value of $7 billion (including more than $2.3 billion of DOE funding). Within the CCT Program, the Morgantown Energy Technology Center (METC) is responsible for 17 advanced power generation systems and major industrial applications. METC is an active partner in advancement of these technologies via direct CCT funding and via close cooperation andmore » coordination of internal and external research and development activities. By their nature, METC projects are typically 6-10 years in duration and, in some cases, very complex in nature. However, as a result of strong commercial partnerships, progress in the development and commercialization of major utility and industrial projects has, and will continue to occur. It is believed that advanced power generation systems and industrial applications are on the brink of commercial deployment. A status of METC CCT activities will be presented. Two projects have completed their operational phase, operations are underway at one project (two others are in the latter stages of construction/shakedown), four projects are in construction, six restructured. Also, present a snapshot of development activities that are an integral part of the advancement of these CCT initiatives will be presented.« less

  1. The World Coal Quality Inventory: South America

    USGS Publications Warehouse

    Karlsen, Alex W.; Tewalt, Susan J.; Bragg, Linda J.; Finkelman, Robert B.

    2006-01-01

    Executive Summary-Introduction: The concepts of a global environment and economy are strongly and irrevocably linked to global energy issues. Worldwide coal production and international coal trade are projected to increase during the next several decades in an international energy mix that is still strongly dependent on fossil fuels. Therefore, worldwide coal use will play an increasingly visible role in global environmental, economic, and energy forums. Policy makers require information on coal, including coal quality data, to make informed decisions regarding domestic coal resource allocation, import needs and export opportunities, foreign policy objectives, technology transfer policies, foreign investment prospects, environmental and health assessments, and byproduct use and disposal issues. The development of a worldwide, reliable, coal quality database would help ensure the most economically and environmentally efficient global use of coal. The U.S. Geological Survey (USGS), in cooperation with many agencies and scientists from the world's coal producing countries, originally undertook a project to obtain representative samples of coal from most of the world's producing coal provinces during a limited period of time (roughly 1998-2005), which is called the World Coal Quality Inventory (WoCQI). The multitude of producing coal mines, coal occurrences, or limited accessibility to sites in some countries can preclude collecting more than a single sample from a mine. In some areas, a single sample may represent an entire coal mining region or basin. Despite these limitations in sampling and uneven distribution of sample collection, the analytical results can still provide a general overview of world coal quality. The USGS intends to present the WoCQI data in reports and, when possible, in Geographic Information System (GIS) products that cover important coal bearing and producing regions.

  2. An Industrial-Based Consortium to Develop Premium Carbon Products from Coal Final Report - Part 5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Bruce; Shea, Winton

    2010-12-31

    Since 1998, The Pennsylvania State University successfully managed the Consortium for Premium Carbon Products from Coal (CPCPC), which was a vehicle for industry-driven research on the promotion, development, and transfer of innovative technologies on premium carbon products from coal to the U.S. industry. The CPCPC was an initiative led by Penn State, its cocharter member West Virginia University (WVU), and the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL), who also provided the base funding for the program, with Penn State responsible for consortium management. CPCPC began in 1998 under DOE Cooperative Agreement No. DE-FC26-98FT40350. This agreement ended November 2004 but the CPCPC activity continued under cooperative agreement No. DE-FC26-03NT41874, which started October 1, 2003 and ended December 31, 2010. The objective of the second agreement was to continue the successful operation of the CPCPC. The CPCPC enjoyed tremendous success with its organizational structure, which included Penn State and WVU as charter members, numerous industrial affiliate members, and strategic university affiliate members together with NETL, forming a vibrant and creative team for innovative research in the area of transforming coal to carbon products. The key aspect of CPCPC was its industry-led council that selected proposals submitted by CPCPC members to ensure CPCPC target areas had strong industrial support. CPCPC had 58 member companies and universities engaged over the 7-year period of this contract. Members were from 17 states and five countries outside of the U.S. During this period, the CPCPC Executive Council selected 46 projects for funding. DOE/CPCPC providedmore » $3.9 million in funding or an average of $564,000 per year. The total project costs were $5.45 million with $$1.5 million, or {approx}28% of the total, provided by the members as cost share. Total average project size was $$118,000 with $85,900 provided by DOE/CPCPC. In addition to the research, technology transfer/outreach was a large component of CPCPC's activities. Efficient technology transfer was critical for the deployment of new technologies into the field. CPCPC organized and hosted technology transfer meetings, tours, and tutorials, attended outreach conferences and workshops to represent CPCPC and attract new members, prepared and distributed reports and publications, and developed and maintained a Web site. The second contract ended December 31, 2010, and it is apparent that CPCPC positively impacted the carbon industry and coal research. Statistics and information were compiled to provide a comprehensive account of the impact the consortium had and the beneficial outcomes of many of the individual projects. Project fact sheet, success stories, and other project information were prepared. Two topical reports, a Synthesis report and a Web report, were prepared detailing this information.« less

  3. An Industrial-Based Consortium to Develop Premium Carbon Products from Coal Final Report - Part 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Bruce; Shea, Winton

    Since 1998, The Pennsylvania State University successfully managed the Consortium for Premium Carbon Products from Coal (CPCPC), which was a vehicle for industry-driven research on the promotion, development, and transfer of innovative technologies on premium carbon products from coal to the U.S. industry. The CPCPC was an initiative led by Penn State, its cocharter member West Virginia University (WVU), and the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL), who also provided the base funding for the program, with Penn State responsible for consortium management. CPCPC began in 1998 under DOE Cooperative Agreement No. DE-FC26-98FT40350. This agreement ended November 2004 but the CPCPC activity continued under cooperative agreement No. DE-FC26-03NT41874, which started October 1, 2003 and ended December 31, 2010. The objective of the second agreement was to continue the successful operation of the CPCPC. The CPCPC enjoyed tremendous success with its organizational structure, which included Penn State and WVU as charter members, numerous industrial affiliate members, and strategic university affiliate members together with NETL, forming a vibrant and creative team for innovative research in the area of transforming coal to carbon products. The key aspect of CPCPC was its industry-led council that selected proposals submitted by CPCPC members to ensure CPCPC target areas had strong industrial support. CPCPC had 58 member companies and universities engaged over the 7-year period of this contract. Members were from 17 states and five countries outside of the U.S. During this period, the CPCPC Executive Council selected 46 projects for funding. DOE/CPCPC providedmore » $3.9 million in funding or an average of $564,000 per year. The total project costs were $5.45 million with $$1.5 million, or {approx}28% of the total, provided by the members as cost share. Total average project size was $$118,000 with $85,900 provided by DOE/CPCPC. In addition to the research, technology transfer/outreach was a large component of CPCPC's activities. Efficient technology transfer was critical for the deployment of new technologies into the field. CPCPC organized and hosted technology transfer meetings, tours, and tutorials, attended outreach conferences and workshops to represent CPCPC and attract new members, prepared and distributed reports and publications, and developed and maintained a Web site. The second contract ended December 31, 2010, and it is apparent that CPCPC positively impacted the carbon industry and coal research. Statistics and information were compiled to provide a comprehensive account of the impact the consortium had and the beneficial outcomes of many of the individual projects. Project fact sheet, success stories, and other project information were prepared. Two topical reports, a Synthesis report and a Web report, were prepared detailing this information.« less

  4. An Industrial-Based Consortium to Develop Premium Carbon Products from Coal Final Report - Part 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Bruce; Winton, Shea

    2010-12-31

    Since 1998, The Pennsylvania State University successfully managed the Consortium for Premium Carbon Products from Coal (CPCPC), which was a vehicle for industry-driven research on the promotion, development, and transfer of innovative technologies on premium carbon products from coal to the U.S. industry. The CPCPC was an initiative led by Penn State, its cocharter member West Virginia University (WVU), and the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL), who also provided the base funding for the program, with Penn State responsible for consortium management. CPCPC began in 1998 under DOE Cooperative Agreement No. DE-FC26-98FT40350. This agreement endedmore » November 2004 but the CPCPC activity continued under cooperative agreement No. DE-FC26-03NT41874, which started October 1, 2003 and ended December 31, 2010. The objective of the second agreement was to continue the successful operation of the CPCPC. The CPCPC enjoyed tremendous success with its organizational structure, which included Penn State and WVU as charter members, numerous industrial affiliate members, and strategic university affiliate members together with NETL, forming a vibrant and creative team for innovative research in the area of transforming coal to carbon products. The key aspect of CPCPC was its industry-led council that selected proposals submitted by CPCPC members to ensure CPCPC target areas had strong industrial support. CPCPC had 58 member companies and universities engaged over the 7-year period of this contract. Members were from 17 states and five countries outside of the U.S. During this period, the CPCPC Executive Council selected 46 projects for funding. DOE/CPCPC provided $3.9 million in funding or an average of $564,000 per year. The total project costs were $5.45 million with $1.5 million, or ~28% of the total, provided by the members as cost share. Total average project size was $118,000 with $85,900 provided by DOE/CPCPC. In addition to the research, technology transfer/outreach was a large component of CPCPC's activities. Efficient technology transfer was critical for the deployment of new technologies into the field. CPCPC organized and hosted technology transfer meetings, tours, and tutorials, attended outreach conferences and workshops to represent CPCPC and attract new members, prepared and distributed reports and publications, and developed and maintained a Web site. The second contract ended December 31, 2010, and it is apparent that CPCPC positively impacted the carbon industry and coal research. Statistics and information were compiled to provide a comprehensive account of the impact the consortium had and the beneficial outcomes of many of the individual projects. Project fact sheet, success stories, and other project information were prepared. Two topical reports, a Synthesis report and a Web report, were prepared detailing this information.« less

  5. An Industrial-Based Consortium to Develop Premium Carbon Products from Coal Final Report - Part 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Bruce; Shea, Winton

    2010-12-31

    Since 1998, The Pennsylvania State University successfully managed the Consortium for Premium Carbon Products from Coal (CPCPC), which was a vehicle for industry-driven research on the promotion, development, and transfer of innovative technologies on premium carbon products from coal to the U.S. industry. The CPCPC was an initiative led by Penn State, its cocharter member West Virginia University (WVU), and the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL), who also provided the base funding for the program, with Penn State responsible for consortium management. CPCPC began in 1998 under DOE Cooperative Agreement No. DE-FC26-98FT40350. This agreement endedmore » November 2004 but the CPCPC activity continued under cooperative agreement No. DE-FC26-03NT41874, which started October 1, 2003 and ended December 31, 2010. The objective of the second agreement was to continue the successful operation of the CPCPC. The CPCPC enjoyed tremendous success with its organizational structure, which included Penn State and WVU as charter members, numerous industrial affiliate members, and strategic university affiliate members together with NETL, forming a vibrant and creative team for innovative research in the area of transforming coal to carbon products. The key aspect of CPCPC was its industry-led council that selected proposals submitted by CPCPC members to ensure CPCPC target areas had strong industrial support. CPCPC had 58 member companies and universities engaged over the 7-year period of this contract. Members were from 17 states and five countries outside of the U.S. During this period, the CPCPC Executive Council selected 46 projects for funding. DOE/CPCPC provided $3.9 million in funding or an average of $564,000 per year. The total project costs were $5.45 million with $1.5 million, or ~28% of the total, provided by the members as cost share. Total average project size was $118,000 with $85,900 provided by DOE/CPCPC. In addition to the research, technology transfer/outreach was a large component of CPCPC's activities. Efficient technology transfer was critical for the deployment of new technologies into the field. CPCPC organized and hosted technology transfer meetings, tours, and tutorials, attended outreach conferences and workshops to represent CPCPC and attract new members, prepared and distributed reports and publications, and developed and maintained a Web site. The second contract ended December 31, 2010, and it is apparent that CPCPC positively impacted the carbon industry and coal research. Statistics and information were compiled to provide a comprehensive account of the impact the consortium had and the beneficial outcomes of many of the individual projects. Project fact sheet, success stories, and other project information were prepared. Two topical reports, a Synthesis report and a Web report, were prepared detailing this information.« less

  6. An Industrial-Based Consortium to Develop Premium Carbon Products from Coal Final Report - Part 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Bruce; Winton, Shea

    2010-12-31

    Since 1998, The Pennsylvania State University successfully managed the Consortium for Premium Carbon Products from Coal (CPCPC), which was a vehicle for industry-driven research on the promotion, development, and transfer of innovative technologies on premium carbon products from coal to the U.S. industry. The CPCPC was an initiative led by Penn State, its cocharter member West Virginia University (WVU), and the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL), who also provided the base funding for the program, with Penn State responsible for consortium management. CPCPC began in 1998 under DOE Cooperative Agreement No. DE-FC26-98FT40350. This agreement endedmore » November 2004 but the CPCPC activity continued under cooperative agreement No. DE-FC26-03NT41874, which started October 1, 2003 and ended December 31, 2010. The objective of the second agreement was to continue the successful operation of the CPCPC. The CPCPC enjoyed tremendous success with its organizational structure, which included Penn State and WVU as charter members, numerous industrial affiliate members, and strategic university affiliate members together with NETL, forming a vibrant and creative team for innovative research in the area of transforming coal to carbon products. The key aspect of CPCPC was its industry-led council that selected proposals submitted by CPCPC members to ensure CPCPC target areas had strong industrial support. CPCPC had 58 member companies and universities engaged over the 7-year period of this contract. Members were from 17 states and five countries outside of the U.S. During this period, the CPCPC Executive Council selected 46 projects for funding. DOE/CPCPC provided $3.9 million in funding or an average of $564,000 per year. The total project costs were $5.45 million with $1.5 million, or ~28% of the total, provided by the members as cost share. Total average project size was $118,000 with $85,900 provided by DOE/CPCPC. In addition to the research, technology transfer/outreach was a large component of CPCPC's activities. Efficient technology transfer was critical for the deployment of new technologies into the field. CPCPC organized and hosted technology transfer meetings, tours, and tutorials, attended outreach conferences and workshops to represent CPCPC and attract new members, prepared and distributed reports and publications, and developed and maintained a Web site. The second contract ended December 31, 2010, and it is apparent that CPCPC positively impacted the carbon industry and coal research. Statistics and information were compiled to provide a comprehensive account of the impact the consortium had and the beneficial outcomes of many of the individual projects. Project fact sheet, success stories, and other project information were prepared. Two topical reports, a Synthesis report and a Web report, were prepared detailing this information.« less

  7. Pelletizing/reslurrying as a means of distributing and firing clean coal. Final quarterly technical progress report No. 5, July 1, 1991--September 30, 1991

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conkle, H.N.; Raghavan, J.K.; Smit, F.J.

    1991-11-21

    The objective of this study is to develop technology that permits the practical and economic preparation, storage, handling, and transportation of coal pellets, which can be reslurried into Coal water fuels (CWF) suitable for firing in small- and medium-size commercial and industrial boilers, furnaces, and engines. The project includes preparing coal pellets and capsules from wet filter cake that can be economically stored, handled, transported, and reslurried into a CWF that can be suitably atomized and fired at the user site. The wet cakes studied were prepared from ultra-fine (95% -325 mesh) coal beneficiated by advanced froth-flotation techniques. The coalsmore » studied included two eastern bituminous coals, one from Virginia (Elkhorn) and one from Illinois (Illinois No. 6) and one western bituminous coal from Utah (Sky Line coal).« less

  8. Coal supply and cost under technological and environmental uncertainty

    NASA Astrophysics Data System (ADS)

    Chan, Melissa

    This thesis estimates available coal resources, recoverability, mining costs, environmental impacts, and environmental control costs for the United States under technological and environmental uncertainty. It argues for a comprehensive, well-planned research program that will resolve resource uncertainty, and innovate new technologies to improve recovery and environmental performance. A stochastic process and cost (constant 2005) model for longwall, continuous, and surface mines based on current technology and mining practice data was constructed. It estimates production and cost ranges within 5-11 percent of 2006 prices and production rates. The model was applied to the National Coal Resource Assessment. Assuming the cheapest mining method is chosen to extract coal, 250-320 billion tons are recoverable. Two-thirds to all coal resource can be mined at a cost less than 4/mmBTU. If U.S. coal demand substantially increases, as projected by alternate Energy Information Administration (EIA), resources might not last more than 100 years. By scheduling cost to meet EIA projected demand, estimated cost uncertainty increases over time. It costs less than 15/ton to mine in the first 10 years of a 100 year time period, 10-30/ton in the following 50 years, and 15-$90/ton thereafter. Environmental impacts assessed are subsidence from underground mines, surface mine pit area, erosion, acid mine drainage, air pollutant and methane emissions. The analysis reveals that environmental impacts are significant and increasing as coal demand increases. Control technologies recommended to reduce these impacts are backfilling underground mines, surface pit reclamation, substitution of robotic underground mining systems for surface pit mining, soil replacement for erosion, placing barriers between exposed coal and the elements to avoid acid formation, and coalbed methane development to avoid methane emissions during mining. The costs to apply these technologies to meet more stringent environmental regulation scenarios are estimated. The results show that the cost of meeting these regulatory scenarios could increase mining costs two to six times the business as usual cost, which could significantly affect the cost of coal-powered electricity generation. This thesis provides a first estimate of resource availability, mining cost, and environmental impact assessment and cost analysis. Available resource is not completely reported, so the available estimate is lower than actual resource. Mining costs are optimized, so provide a low estimate of potential costs. Environmental impact estimates are on the high end of potential impact that may be incurred because it is assumed that impact is unavoidable. Control costs vary. Estimated cost to control subsidence and surface mine pit impacts are suitable estimates of the cost to reduce land impacts. Erosion control and robotic mining system costs are lower, and methane and acid mine drainage control costs are higher, than they may be in the case that these impacts must be reduced.

  9. Comprehensive assessment of toxic emissions from coal-fired power plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, T D; Schmidt, C E; Radziwon, A S

    1991-01-01

    The Pittsburgh Energy Technology Center (PETC) of the US Department of Energy (DOE) has two current investigations, initiated before passage of the Clean Air Act Amendment (CAAA), that will determine the air toxic emissions from coal-fired electric utilities. DOE has contracted with Battelle Memorial Institute and Radian corporation to conduct studies focusing on the potential air toxics, both organic and inorganic, associated with different size fractions of fine particulate matter emitted from power plant stacks. Table 2 indicates the selected analytes to be investigated during these studies. PETC is also developing guidance on the monitoring of Hazardous Air Pollutants (HAPS)more » to be incorporated in the Environmental Monitoring plans for the demonstration projects in its Clean Coal Technology Program.« less

  10. CO2 Capture and Storage in Coal Gasification Projects

    NASA Astrophysics Data System (ADS)

    Rao, Anand B.; Phadke, Pranav C.

    2017-07-01

    In response to the global climate change problem, the world community today is in search for an effective means of carbon mitigation. India is a major developing economy and the economic growth is driven by ever-increasing consumption of energy. Coal is the only fossil fuel that is available in abundance in India and contributes to the major share of the total primary energy supply (TPES) in the country. Owing to the large unmet demand for affordable energy, primarily driven by the need for infrastructure development and increasing incomes and aspirations of people, as well as the energy security concerns, India is expected to have continued dependence on coal. Coal is not only the backbone of the electric power generation, but many major industries like cement, iron and steel, bricks, fertilizers also consume large quantities of coal. India has very low carbon emissions (˜ 1.5 tCO2 per capita) as compared to the world average (4.7 tCO2 per capita) and the developed world (11.2 tCO2 per capita). Although the aggregate emissions of the country are increasing with the rising population and fossil energy use, India has a very little contribution to the historical GHG accumulation in the atmosphere linked to the climate change problem. However, a large fraction of the Indian society is vulnerable to the impacts of climate change - due to its geographical location, large dependence on monsoon-based agriculture and limited technical, financial and institutional capacity. Today, India holds a large potential to offer cost-effective carbon mitigation to tackle the climate change problem. Carbon Capture and Storage (CCS) is the process of extraction of Carbon Dioxide (CO2) from industrial and energy related sources, transport to storage locations and long-term isolation from the atmosphere. It is a technology that has been developed in recent times and is considered as a bridging technology as we move towards carbon-neutral energy sources in response to the growing concerns about climate change problem. Carbon Capture and Storage (CCS) is being considered as a promising carbon mitigation technology, especially for large point sources such as coal power plants. Gasification of coal helps in better utilization of this resource offering multiple advantages such as pollution prevention, product flexibility (syngas and hydrogen) and higher efficiency (combined cycle). It also enables the capture of CO2 prior to the combustion, from the fuel gas mixture, at relatively lesser cost as compared to the post-combustion CO2 capture. CCS in gasification projects is considered as a promising technology for cost-effective carbon mitigation. Although many projects (power and non-power) have been announced internationally, very few large-scale projects have actually come up. This paper looks at the various aspects of CCS applications in gasification projects, including the technical feasibility and economic viability and discusses an Indian perspective. Impacts of including CCS in gasification projects (e.g. IGCC plants) have been assessed using a simulation tool. Integrated Environmental Control Model (IECM) - a modelling framework to simulate power plants - has been used to estimate the implications of adding CCS units in IGCC plants, on their performance and costs.

  11. Pinon Pine power project nears start-up

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tatar, G.A.; Gonzalez, M.; Mathur, G.K.

    1997-12-31

    The IGCC facility being built by Sierra Pacific Power Company (SPPCo) at their Tracy Station in Nevada is one of three IGCC facilities being cost-shared by the US Department of Energy (DOE) under their Clean Coal Technology Program. The specific technology to be demonstrated in SPPCo`s Round Four Project, known as the Pinon Pine IGCC Project, includes the KRW air blown pressurized fluidized bed gasification process with hot gas cleanup coupled with a combined cycle facility based on a new GE 6FA gas turbine. Construction of the 100 MW IGCC facility began in February 1995 and the first firing ofmore » the gas turbine occurred as scheduled on August 15, 1996 with natural gas. Mechanical completion of the gasifier and other outstanding work is due in January 1997. Following the startup of the plant, the project will enter a 42 month operating and testing period during which low sulfur western and high sulfur eastern or midwestern coals will be processed.« less

  12. Critical research and advanced technology (CRT) support project

    NASA Technical Reports Server (NTRS)

    Furman, E. R.; Anderson, D. N.; Hodge, P. E.; Lowell, C. E.; Nainiger, J. J.; Schultz, D. F.

    1983-01-01

    A critical technology base for utility and industrial gas turbines by planning the use of coal-derived fuels was studied. Development tasks were included in the following areas: (1) Combustion - investigate the combustion of coal-derived fuels and methods to minimize the conversion of fuel-bound nitrogen to NOx; (2) materials - understand and minimize hot corrosion; (3) system studies - integrate and focus the technological efforts. A literature survey of coal-derived fuels was completed and a NOx emissions model was developed. Flametube tests of a two-stage (rich-lean) combustor defined optimum equivalence ratios for minimizing NOx emissions. Sector combustor tests demonstrated variable air control to optimize equivalence ratios over a wide load range and steam cooling of the primary zone liner. The catalytic combustion of coal-derived fuels was demonstrated. The combustion of coal-derived gases is very promising. A hot-corrosion life prediction model was formulated and verified with laboratory testing of doped fuels. Fuel additives to control sulfur corrosion were studied. The intermittent application of barium proved effective. Advanced thermal barrier coatings were developed and tested. Coating failure modes were identified and new material formulations and fabrication parameters were specified. System studies in support of the thermal barrier coating development were accomplished.

  13. PTBA Coal Briquette Development Project: A status report, March 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Purba, A.C.; Supriyanto, H.; Djamal, T.S.

    1995-12-31

    Indonesia has a vast coal reserved amounted around 36 Billion Tons (As May 1993), of which more than 98% located in two big islands: Sumatera & Kalimantan. Indonesian Energy Policy, set up in 1976 were shifting the National Energy Mix to encourage the use of other alternative energy for fulfilling the domestic energy demand. Coal, as it was available in enormous reserve become the most suitable alternative fuel. Indonesian coal mining industry was then gaining a big momentum for its resurrection since it was for long had been overlooked. As the result of reconstruction of old mines, expanding the currentmore » mines and the opening of new mines by foreign investor (Contractors) in Kalimantan, since 1986, ten years after the set up of New National Energy Policy or 45 years after peak production level in the past, 2 million tons of coal production was regained. Afterward the coal production of Indonesian coal mine industry are increasing in an exponential rate of growth. With more than 29 million tons of coal produced in 1994, Indonesia will continue to play greater role in the world coal export market in the future. It is projected that by the year of 1998, Indonesia will rank the 3rd as the world coal exporter next to Australia and South African with around 14% of world market share. In this paper, author would only like to report the current status of Indonesian Coal Briquette Industry of which PT Tambang Batubara Bukit Asam (Persero), PTBA, the state owned coal mining company was being appointed to pioneer the establishment of the first coal briquette industry in Indonesia. Process Technology that being compared here in this paper were based on the technical compliance to specification set by government and the techno-economic evaluation. Due to limitations and constrains, all aspects concerning the project will only be discussed in an overview.« less

  14. Evaluating impacts of air pollution in China on public health: Implications for future air pollution and energy policies

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoping; Mauzerall, Denise L.

    Our objective is to establish the link between energy consumption and technologies, air pollution concentrations, and resulting impacts on public health in eastern China. We use Zaozhuang, a city in eastern China heavily dependent on coal, as a case study to quantify the impacts that air pollution in eastern China had on public health in 2000 and the benefits in improved air quality and health that could be obtained by 2020, relative to business-as-usual (BAU), through the implementation of best available emission control technology (BACT) and advanced coal gasification technologies (ACGT). We use an integrated assessment approach, utilizing state-of-the-science air quality and meteorological models, engineering, epidemiology, and economics, to achieve this objective. We find that total health damages due to year 2000 anthropogenic emissions from Zaozhuang, using the "willingness-to-pay" metric, was equivalent to 10% of Zaozhuang's GDP. If all health damages resulting from coal use were internalized in the market price of coal, the year 2000 price would have more than tripled. With no new air pollution controls implemented between 2000 and 2020 but with projected increases in energy use, we estimate health damages from air pollution exposure to be equivalent to 16% of Zaozhuang's projected 2020 GDP. BACT and ACGT (with only 24% penetration in Zaozhuang and providing 2% of energy needs in three surrounding municipalities) could reduce the potential health damage of air pollution in 2020 to 13% and 8% of projected GDP, respectively. Benefits to public health, of substantial monetary value, can be achieved through the use of BACT; health benefits from the use of ACGT could be even larger. Despite significant uncertainty associated with each element of the integrated assessment approach, we demonstrate that substantial benefits to public health could be achieved in this region of eastern China through the use of additional pollution controls and particularly from the use of advanced coal gasification technology. Without such controls, the impacts of air pollution on public health, presently considerable, will increase substantially by 2020.

  15. Energy shortcuts take time

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jenkins, N.

    The author summarizes findings presented at the August 1986 international conference on underground gasification of coal (UGC), held in West Germany. Six sessions of 47 papers included two papers in each devoted to technology and one each to economics, laboratory experiments, modeling, and environment plus miscellaneous poster display sessions covering 14 research projects. These contributions came for the US (16), West Germany (12), Belgium (10), France (3), Netherlands (3), and New Zealand, Poland and the EEC. Mr Jenkins points out that UGC technology is a complete mixture of coal mining, coal combustion as well as gasification, cleanup, and ground watermore » pollution; well drilling and precise geology are two other essential skills. Further, like other technologies that have been waiting in the wings for years, e.g., wind power and wave power, UCG is very exacting of engineering skill and direct answers and not susceptible to an energy-economic shortcut.« less

  16. Advanced Hybrid Particulate Collector Project Management Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, S.J.

    As the consumption of energy increases, its impact on ambient air quality has become a significant concern. Recent studies indicate that fine particles from coal combustion cause health problems as well as atmospheric visibility impairment. These problems are further compounded by the concentration of hazardous trace elements such as mercury, cadmium, selenium, and arsenic in fine particles. Therefore, a current need exists to develop superior, but economical, methods to control emissions of fine particles. Since most of the toxic metals present in coal will be in particulate form, a high level of fine- particle collection appears to be the bestmore » method of overall air toxics control. However, over 50% of mercury and a portion of selenium emissions are in vapor form and cannot be collected in particulate control devices. Therefore, this project will focus on developing technology not only to provide ultrahigh collection efficiency of particulate air toxic emissions, but also to capture vapor- phase trace metals such as mercury and selenium. Currently, the primary state-of-the-art technologies for particulate control are fabric filters (baghouses) and electrostatic precipitators (ESPs). However, they both have limitations that prevent them from achieving ultrahigh collection of fine particulate matter and vapor-phase trace metals. The objective of this project is to develop a highly reliable advanced hybrid particulate collector (AHPC) that can provide > 99.99 % particulate collection efficiency for all particle sizes between 0.01 and 50 14m, is applicable for use with all U.S. coals, and is cost-0443competitive with existing technologies. Phase I of the project is organized into three tasks: Task I - Project Management, Reporting, and Subcontract Consulting Task 2 - Modeling, Design, and Construction of 200-acfm AHPC Model Task 3 - Experimental Testing and Subcontract Consulting« less

  17. 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide emissions from coal-fired boilers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sorge, J.N.; Larrimore, C.L.; Slatsky, M.D.

    1997-12-31

    This paper discusses the technical progress of a US Department of Energy Innovative Clean Coal Technology project demonstrating advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NOx) emissions from coal-fired boilers. The primary objectives of the demonstration is to determine the long-term NOx reduction performance of advanced overfire air (AOFA), low NOx burners (LNB), and advanced digital control optimization methodologies applied in a stepwise fashion to a 500 MW boiler. The focus of this paper is to report (1) on the installation of three on-line carbon-in-ash monitors and (2) the design and results to date from the advancedmore » digital control/optimization phase of the project.« less

  18. JV Task 98 - Controlling Mercury Emissions for Utilities Firing Lignites from North America

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steven Benson

    2007-06-15

    This project compiled and summarized the findings and conclusions of research, development, and demonstration projects on controlling mercury from lignite coals. A significant amount of work has been conducted since 1994 on mercury in lignite, mercury measurement in flue gases, sorbent, sorbent enhancement additives, oxidation agent development, and full-scale demonstration of mercury control technologies. This report is focused on providing the lignite industry with an understanding of mercury issues associated with the combustion of lignite, as well as providing vital information on the methods to control mercury emissions in coal-fired power plants.

  19. Advanced gasifier and water gas shift technologies for low cost coal conversion to high hydrogen syngas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kramer, Andrew Kramer

    The Gas Technology Institute (GTI) and team members RTI International (RTI), Coanda Research and Development, and Nexant, are developing and maturing a portfolio of technologies to meet the United States Department of Energy (DOE) goals for lowering the cost of producing high hydrogen syngas from coal for use in carbon capture power and coal-to-liquids/chemicals. This project matured an advanced pilot-scale gasifier, with scalable and commercially traceable components, to readiness for use in a first-of-a-kind commercially-relevant demonstration plant on the scale of 500-1,000 tons per day (TPD). This was accomplished through cold flow simulation of the gasifier quench zone transition regionmore » at Coanda and through an extensive hotfire gasifier test program on highly reactive coal and high ash/high ash fusion temperature coals at GTI. RTI matured an advanced water gas shift process and catalyst to readiness for testing at pilot plant scale through catalyst development and testing, and development of a preliminary design basis for a pilot scale reactor demonstrating the catalyst. A techno-economic analysis was performed by Nexant to assess the potential benefits of the gasifier and catalyst technologies in the context of power production and methanol production. This analysis showed an 18%reduction in cost of power and a 19%reduction in cost of methanol relative to DOE reference baseline cases.« less

  20. The Methane to Markets Coal Mine Methane Subcommittee meeting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    2008-07-01

    The presentations (overheads/viewgraphs) include: a report from the Administrative Support Group; strategy updates from Australia, India, Italy, Mexico, Nigeria, Poland and the USA; coal mine methane update and IEA's strategy and activities; the power of VAM - technology application update; the emissions trading market; the voluntary emissions reduction market - creating profitable CMM projects in the USA; an Italian perspective towards a zero emission strategies; and the wrap-up and summary.

  1. DOE studies on coal-to-liquids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    2007-07-01

    The US DOE National Energy Technology Laboratory has issued reports that examine the feasibility of coal-to-liquids (CTL) facilities, both general and site specific, which are available at www.netl.gov/energy-analyses/ref-shelf.html. The US Department of Defence has been investigating use of Fischer-Tropsch fuels. Congress is considering various CTL proposals while the private sector is building pilot plants and performing feasibility studies for proposed plants. The article includes a table listing 14 coal-to-liquids plants under consideration. The private sector has formed the coal-to-liquids coalition (www.futurecoalfuels.org). The article mentions other CTL projects in South Africa, China, Indonesia, the Philippines and New Zealand. 1 tab.

  2. Application of the Exergy UCG technology in international UCG projects

    NASA Astrophysics Data System (ADS)

    Blinderman, M. S.

    2017-07-01

    Underground Coal Gasification is a subject of continuing global interest in the energy sector. While the international scenario in UCG is promising, it is deeply desirable that advances in this area are seen in India as well. This is particularly so with the Paris Climate Agreement bringing in more stringent challenges for clean energy development. India has many potential coal basins which may be suitable for UCG deployment. India is in dire need of indigenous source of gaseous and liquid hydrocarbons that could compete with imported products. It is also the country with exceptionally large and diverse coal and lignite resources, large part of which could not be mined due to geological complexity and prohibitive cost. Thus, there is a rationale that the εUCG™ technology plays a decisive role in realizing the potential of Indian coal resources for the benefit of Indian industry and population. This article has been adapted by Dr. Ajay K. Singh from a lecture delivered at the “Workshop on Challenges and Opportunities of Underground Coal Gasification”, Vigyan Bhawan, New Delhi on 14 February 2017.

  3. Large Pilot Scale Testing of Linde/BASF Post-Combustion CO 2 Capture Technology at the Abbott Coal-Fired Power Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Brien, Kevin C.

    The work summarized in this report is the first step towards a project that will re-train and create jobs for personnel in the coal industry and continue regional economic development to benefit regions impacted by previous downturns. The larger project is aimed at capturing ~300 tons/day (272 metric tonnes/day) CO 2 at a 90% capture rate from existing coal- fired boilers at the Abbott Power Plant on the campus of University of Illinois (UI). It will employ the Linde-BASF novel amine-based advanced CO 2 capture technology, which has already shown the potential to be cost-effective, energy efficient and compact atmore » the 0.5-1.5 MWe pilot scales. The overall objective of the project is to design and install a scaled-up system of nominal 15 MWe size, integrate it with the Abbott Power Plant flue gas, steam and other utility systems, and demonstrate the viability of continuous operation under realistic conditions with high efficiency and capacity. The project will also begin to build a workforce that understands how to operate and maintain the capture plants by including students from regional community colleges and universities in the operation and evaluation of the capture system. This project will also lay the groundwork for follow-on projects that pilot utilization of the captured CO 2 from coal-fired power plants. The net impact will be to demonstrate a replicable means to (1) use a standardized procedure to evaluate power plants for their ability to be retrofitted with a pilot capture unit; (2) design and construct reliable capture systems based on the Linde-BASF technology; (3) operate and maintain these systems; (4) implement training programs with local community colleges and universities to establish a workforce to operate and maintain the systems; and (5) prepare to evaluate at the large pilot scale level various methods to utilize the resulting captured CO 2. Towards the larger project goal, the UI-led team, together with Linde, has completed a preliminary design for the carbon capture pilot plant with basic engineering and cost estimates, established permitting needs, identified approaches to address Environmental, Health, and Safety concerns related to pilot plant installation and operation, developed approaches for long-term use of the captured carbon, and established strategies for workforce development and job creation that will re-train coal operators to operate carbon capture plants. This report describes Phase I accomplishments and demonstrates that the project team is well-prepared for full implementation of Phase 2, to design, build, and operate the carbon capture pilot plant.« less

  4. Conversion of Coal Mine Gas to LNG

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    This project evolved from a 1995, DOE-NETL competitive solicitation for practical CMM capture and utilization concepts. Appalachian Pacific was one of three companies selected to proceed with the construction and operation of a cost-shared demonstration plant. In the course of trying to proceed with this demonstration plant, AP examined several liquefaction technologies, discussed obtaining rights to coal mine methane with a number of coal companies, explored marketing potential with a wide variety of customers in many sections of the United States, studied in great detail the impact of a carbon credit exchange, and developed a suite of analytical tools withmore » which to evaluate possible project options. In the end, the newness of the product, reluctance on the part of the coal companies to venture away from time tested practices, difficulty with obtaining financing, the failure of a carbon credit market to develop and the emergence of shale derived gas production prevented a demonstration plant from being built.« less

  5. Commercial-scale demonstration of the Liquid Phase Methanol process. Technical progress report number 8, April 1--June 30, 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-12-31

    The project involves the construction of an 80,000 gallon per day (260 tons per day (TPD)) methanol unit utilizing coal-derived synthesis gas from Eastman`s integrated coal gasification facility. The new equipment consists of synthesis gas feed preparation and compression facilities, the liquid phase reactor and auxiliaries, product distillation facilities, and utilities. The technology to be demonstrated is the product of a cooperative development effort by Air Products and DOE in a program that started in 1981. Developed to enhance electric power generation using integrated gasification combined cycle (IGCC) technology, the LPMEOH{trademark} process is ideally suited for directly processing gases producedmore » by modern-day coal gasifiers. Originally tested at a small (10 TPD), DOE-owned experimental unit in LaPorte, Texas, the technology provides several improvements essential for the economic coproduction of methanol and electricity directly from gasified coal. This liquid phase process suspends fine catalyst particles in an inert liquid, forming a slurry. The slurry dissipates the heat of the chemical reaction away from the catalyst surface, protecting the catalyst and allowing the methanol synthesis reaction to proceed at higher rates. At the Eastman complex, the technology is being integrated with existing coal-gasifiers. A carefully developed test plan will allow operations at Eastman to simulate electricity demand load-following in coal-based IGCC facilities. The operations will also demonstrate the enhanced stability and heat dissipation of the conversion process, its reliable on/off operation, and its ability to produce methanol as a clean liquid fuel without additional upgrading.« less

  6. EERC pilot-scale CFBC evaluation facility Project CFB test results. Topical report, Task 7.30

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mann, M.D.; Hajicek, D.R.; Henderson, A.K.

    Project CFB was initiated at the University of North Dakota Energy and Environmental Research Center (EERC) in May 1988. Specific goals of the project were to (1) construct a circulating fluidized-bed combustor (CFBC) facility representative of the major boiler vendors` designs with the capability of producing scalable data, (2) develop a database for use in making future evaluations of CFBC technology, and (3) provide a facility for evaluating fuels, free of vendor bias for use in the - energy industry. Five coals were test-burned in the 1-MWth unit: North Dakota and Asian lignites, a Wyoming subbituminous, and Colorado and Pennsylvaniamore » bituminous coats. A total of 54 steady-state test periods were conducted, with the key test parameters being the average combustor temperature, excess air, superficial gas velocity, calcium-to-sulfur molar ratio, and the primary air-to-secondary air split. The capture for a coal fired in a CFBC is primarily dependent upon the total alkali-to-sulfur ratio. The required alkali-to ratio for 90% sulfur retention ranged from 1.4 to 4.9, depending upon coal type. While an alkali-to-ratio of 4.9 was required to meet 90% sulfur retention for the Salt Creek coal versus 1.4 for the Asian lignite, the total amount of sorbent addition required is much less for the Salt Creek coal, 4.2 pound sorbent per million Btu coal input, versus 62 pound/million Btu for the Asian lignite. The bituminous coals tested show optimal capture at combustor temperatures of approximately 1550{degree}F, with low-rank coals having optimal sulfur capture approximately 100{degree}F lower.« less

  7. EERC pilot-scale CFBC evaluation facility Project CFB test results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mann, M.D.; Hajicek, D.R.; Henderson, A.K.

    Project CFB was initiated at the University of North Dakota Energy and Environmental Research Center (EERC) in May 1988. Specific goals of the project were to (1) construct a circulating fluidized-bed combustor (CFBC) facility representative of the major boiler vendors' designs with the capability of producing scalable data, (2) develop a database for use in making future evaluations of CFBC technology, and (3) provide a facility for evaluating fuels, free of vendor bias for use in the - energy industry. Five coals were test-burned in the 1-MWth unit: North Dakota and Asian lignites, a Wyoming subbituminous, and Colorado and Pennsylvaniamore » bituminous coats. A total of 54 steady-state test periods were conducted, with the key test parameters being the average combustor temperature, excess air, superficial gas velocity, calcium-to-sulfur molar ratio, and the primary air-to-secondary air split. The capture for a coal fired in a CFBC is primarily dependent upon the total alkali-to-sulfur ratio. The required alkali-to ratio for 90% sulfur retention ranged from 1.4 to 4.9, depending upon coal type. While an alkali-to-ratio of 4.9 was required to meet 90% sulfur retention for the Salt Creek coal versus 1.4 for the Asian lignite, the total amount of sorbent addition required is much less for the Salt Creek coal, 4.2 pound sorbent per million Btu coal input, versus 62 pound/million Btu for the Asian lignite. The bituminous coals tested show optimal capture at combustor temperatures of approximately 1550[degree]F, with low-rank coals having optimal sulfur capture approximately 100[degree]F lower.« less

  8. Development of Affordable, Low-Carbon Hydrogen Supplies at an Industrial Scale

    ERIC Educational Resources Information Center

    Roddy, Dermot J.

    2008-01-01

    An existing industrial hydrogen generation and distribution infrastructure is described, and a number of large-scale investment projects are outlined. All of these projects have the potential to generate significant volumes of low-cost, low-carbon hydrogen. The technologies concerned range from gasification of coal with carbon capture and storage…

  9. Early opportunities of CO₂ geological storage deployment in coal chemical industry in China

    DOE PAGES

    Wei, Ning; Li, Xiaochun; Liu, Shengnan; ...

    2014-12-31

    Carbon dioxide capture and geological storage (CCS) is regarded as a promising option for climate change mitigation; however, the high capture cost is the major barrier to large-scale deployment of CCS technologies. High-purity CO₂ emission sources can reduce or even avoid the capture requirements and costs. Among these high-purity CO₂ sources, certain coal chemical industry processes are very important, especially in China. In this paper, the basic characteristics of coal chemical industries in China is investigated and analyzed. As of 2013 there were more than 100 coal chemical plants in operation. These emission sources together emit 430 million tons CO₂more » per year, of which about 30% are emit high-purity and pure CO₂ (CO₂ concentration >80% and >98.5% respectively). Four typical source-sink pairs are chosen for techno-economic evaluation, including site screening and selection, source-sink matching, concept design, and economic evaluation. The technical-economic evaluation shows that the levelized cost of a CO₂ capture and aquifer storage project in the coal chemistry industry ranges from 14 USD/t to 17 USD/t CO₂. When a 15USD/t CO₂ tax and 20USD/t for CO₂ sold to EOR are considered, the levelized cost of CCS project are negative, which suggests a benefit from some of these CCS projects. This might provide China early opportunities to deploy and scale-up CCS projects in the near future.« less

  10. Baseload coal investment decisions under uncertain carbon legislation.

    PubMed

    Bergerson, Joule A; Lave, Lester B

    2007-05-15

    More than 50% of electricity in the U.S. is generated by coal. The U.S. has large coal resources, the cheapest fuel in most areas. Coal fired power plants are likely to continue to provide much of U.S. electricity. However, the type of power plant that should be built is unclear. Technology can reduce pollutant discharges and capture and sequester the CO2 from coal-fired generation. The U.S. Energy Policy Act of 2005 provides incentives for large scale commercial deployment of Integrated Coal Gasification Combined Cycle (IGCC) systems (e.g., loan guarantees and project tax credits). This analysis examines whether a new coal plant should be Pulverized Coal (PC) or IGCC. Do stricter emissions standards (PM, SO2, NOx, Hg) justify the higher costs of IGCC over PC? How does potential future carbon legislation affect the decision to add carbon capture and storage (CCS) technology? Finally, can the impact of uncertain carbon legislation be minimized? We find that SO2, NOx, PM, and Hg emission standards would have to be far more stringent than twice current standards to justify the increased costs of the IGCC system. A C02 tax less than $29/ton would lead companies to continuing to choose PC, paying the tax for emitted CO2. The earlier a decision-maker believes the carbon tax will be imposed and the higher the tax, the more likely companies will choose IGCC w/CCS. Having government announce the date and level of a carbon tax would promote more sensible decisions, but government would have to use a tax or subsidy to induce companies to choose the technology that is best for society.

  11. Distributed Fiber Optic Sensor for On-Line Monitoring of Coal Gasifier Refractory Health

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Anbo; Yu, Zhihao

    This report summarizes technical progress on the program “Distributed Fiber Optic Sensor for On-Line Monitoring of Coal Gasifier Refractory Health,” funded by the National Energy Technology Laboratory of the U.S. Department of Energy, and performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. The scope of work entails analyses of traveling grating generation technologies in an optical fiber, as well as the interrogation of the gratings to infer a distributed temperature along the fiber, for the purpose of developing a real-time refractory health condition monitoring technology for coal gasifiers. Duringmore » the project period, which is from 2011-2015, three different sensing principles were studied, including four-wave mixing (FWM), coherent optical time-domain reflectometer (C-OTDR) and Brillouin optical time-domain analysis (BOTDA). By comparing the three methods, the BOTDA was selected for further development into a complete bench-top sensing system for the proposed high-temperature sensing application. Based on the input from Eastman Chemical, the industrial collaborator on this project, a cylindrical furnace was designed and constructed to simulate typical gasifier refractory temperature conditions in the laboratory, and verify the sensor’s capability to fully monitor refractory conditions on the back-side at temperatures up to 1000°C. In the later stages of the project, the sensing system was tested in the simulated environment for its sensing performance and high-temperature survivability. Through theoretical analyses and experimental research on the different factors affecting the sensor performance, a sensor field deployment strategy was proposed for possible future sensor field implementations.« less

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The goal of the U.S. Department of Energy Underground Coal Conversion (UCC) program is to develop the technology to produce clean fuels from coal deposits unsuitable for commercial exploitation by conventional mining techniques. The highest priority is to develop and demonstrate, in conjunction with industry, a commercially feasible process for underground gasification of low-rank coal in the 1985--1987 time period. The program will also attempt to develop cost-effective technologies to utilize steeply dipping seams and bituminous coal by UCC. Results of the program to date indicate that, while UCC is technically feasible, it still contains some process unknowns, environmental risks,more » and economic risks that require R and D. In order to contribute to the national energy goals, a strong DOE program which incorporates maximum industry involvement is planned. Major projects are described in some detail. Finally, a strong program of supporting activities will address specific problems identified in the field testing and will seek to advance UCC technology. In summary, the program's strategy is to remove the high-risk elements of UCC by resolving those technical, environmental, and economic uncertainties that remain, and to enable industry to assume responsibility for commercialization of the process.« less

  13. The Application for a Prediction of the Coal Spontaneous Ignition - Predisam

    NASA Astrophysics Data System (ADS)

    Moni, Vlastimil; Klouda, Petr; Blata, Jan; Helebrant, František

    2017-06-01

    The article follows the research of the project number TA01020351 called "The research of possibilities when predicting steam origin and consequent spontaneous ignition of brown coal fuels" which was researched with the support of the Technological Agency in the Czech Republic in 2011-2014 in the connection with a realized technical research. Therefore, it gives a summary information about the evaluation of the risk degree for the origin of spontaneous ignitions of the brown coal. The presented way of evaluation is based on a numeric expression of a value for MHU criteria - the point load of particular indicators is added together with other results gained from this research project. Then, more information is taken from companies running the dumps of brown coal products - both for suppliers (mining companies) and big consumers (power engineering). The complex knowledge about prediction of the origin of the spontaneous ignition enables to make an early response to eliminate a threat of mining fire in open pit mines or on the dumps of coal products. Consequently, it reduces the risk of fire and breakdowns of transportation means DPD, heavy machines and preparation plants. The working injuries are reduced as well - burns by coal in fire or inhalation of gas products from imperfect combustion.

  14. Kivihiilivoimalan Sivutuotteiden Maarakennuskaeytoen Elinkaariarviointi

    DOT National Transportation Integrated Search

    1998-01-01

    The goal of this project was to assess the environmental impact of using fly ash and flue gas desulphurization (FGD) residues (produced by pulverized coal-fired power plants which employ semi dry scrubbing technology) in earthworks. The use of fly as...

  15. Clean-Coal Technology By-Products Used in a Highway Embankment Stabilization Demonstration Project

    DTIC Science & Technology

    1994-01-01

    the conventional coal combustion process (Tismach, 1993). -- 0.. 3 The flue gas desulfurization (FGD) material used in this study was produced at...suitable material for stabilizing this slide. 000 Figure 1.3: SR 83 Cross-Section. i0l 11 1.4 Scope and Limitations The disposal of flue gas ...Sciences, Washington, DC. 19. Taha, R., "Environmental and Engineering Properties of Flue Gas Desulfuimzation Gypsum," Preprint. 72nd Annual Meetin

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The US Department of Energy is funding an underground coal gasification (UCG) project in steeply dipping coal beds (SDB), at North Knobs, about 8 miles west of Rawlins, Carbon County, Wyoming. The project is being conducted to determine the technical, economic and environmental viability of such a technology. The development of SDB is an interesting target for UCG since such beds contain coals not normally mineable economically by ordinary techniques. Although the underground gasification of SDB has not been attempted in the US, Soviet experience and theoretical work indicate that the gasification of SDB in place offers all the advantagesmore » of underground gasification of horizontal coal seams plus some unique characteristics. The steep angle of dip helps to channel the produced gases up dip to offtake holes and permits the ash and rubble to fall away from the reaction zone helping to mitigate the blocking of the reaction zone in swelling coals. The intersection of SDB with the surface makes the seam accessible for drilling and other preparation. The tests at the North Knobs site will consist of three tests, lasting 20, 80 and 80 days, respectively. A total of 9590 tons of coal is expected to be gasified, with surface facilities utilizing 15 acres of the total section of land. The environmental effects of the experiment are expected to be very small. The key environmental impact is potential groundwater contamination by reaction products from coal gasification. There is good evidence that the surrounding coal effectively blocks the migration of these contaminants.« less

  17. Underground Coal-Fires in Xinjiang, China: A Continued Effort in Applying Geophysics to Solve a Local Problem and to Mitigate a Global Hazard

    NASA Astrophysics Data System (ADS)

    Wuttke, M. W.; Halisch, M.; Tanner, D. C.; Cai, Z. Y.; Zeng, Q.; Wang, C.

    2012-04-01

    Spontaneous uncontrolled coal seam fires are a well known phenomenon that causes severe environmental problems and severe impact on natural coal reserves. Coal fires are a worldwide phenomenon, but in particular in Xinjiang, that covers 17.3 % of Chinas area and hosts approx 42 % of its coal resources. In Xinjiang since more than 50 years a rigorous strategy for fire fighting on local and regional scale is persued. The Xinjiang Coalfield Fire Fighting Bureau (FFB) has developed technologies and methods to deal with any known fire. Many fires have been extinguished already, but the problem is still there if not even growing. This problem is not only a problem for China due to the loss of valuable energy resources, but it is also a worldwide threat because of the generation of substantial amounts of greenhouse gases. Through the FFB, China is struggling to overcome this, but the activities could be much enhanced by the continuation of the already successful conjoint operations. The last ten years have seen two successful cooperative projects between China and Germany on the field of coal-fire fighting, namely the German Technical Cooperation Project on Coal Fire in Xinjiang and the Sino-German Coal Fire Research Initiative funded by the corresponding ministeries of both countries. A persistent task in the fire fighting is the identification and supervision of areas with higher risks for the ignition of coal fires, the exploration of already ignited fire zones to extinguish the fires and the monitoring of extinguished fires to detect as early as possible process that may foster re-ignition. This can be achieved by modeling both the structures and the processes that are involved. This has also been a promising part of the past cooperation projects, yet to be transformed into a standard application of fire fighting procedures. In this contribution we describe the plans for a new conjoint project between China and Germany where on the basis of field investigations and laboratory measurements realistic dynamical models of fire-zones are constructed to increase the understanding of particular coal-fires, to interpret the surface signatures of the coal-fire in terms of location and propagation and to estimate the output of hazardous exhaust products to evaluate the economic benefit of fire extinction.

  18. Mining and Reclamation Cooperative Education Program. Progress Report.

    ERIC Educational Resources Information Center

    Barnett, Carl D.

    The exemplary project was the cooperative effort of two schools in the western Kentucky coal fields to field test a program in mining and reclamation technology. Covering the first year of the project, the report describes the problem and scope of the study, the objectives pursued, the methodology, and the results obtained. The goal of the project…

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bartke, T.C.

    Under the US Department of Energy's Underground-Coal-Conversion program, four field tests were completed in 1979 and preparations were begun in 1980 for two additional field tests to be operated in 1981. The Laramie Energy Technology Center (LETC) and Sandia National Laboratories (SNL) completed Hanna IV, an air gasification test in Wyoming subbituminous coal. The Morgantown Energy Technology Center (METC) completed Pricetown 1, an air gasification test in West Virginia bituminous coal. Lawrence Livermore National Laboratory (LLNL) completed Hoe Creek 3, a steam-oxygen gasification test in Wyoming subbituminous coal. Gulf Research and Development Co. completed Steeply Dipping Beds (SDB) Test 1,more » primarily an air gasification test in Wyoming subbituminous coal and the first SDB test in the US. In 1980, Gulf R and D Co. began preparation of SDB Test 2, scheduled for operation in the fall of 1981. The DOE project teams at LETC, METC, LLNL, and SNL, in association with the Washington Irrigation and Development Co. (WIDCo), Washington Water Power (WWP), and the State of Washington, are preparing a field test site in the Centralia-Chehalis coal district of Washington. A series of large coal block tests will be completed prior to the field test, scheduled for operation in 1982 or 1983. This field test will utilize a directionally drilled link and steam-oxygen gasification system. This paper summarizes the results of the four recently completed field tests and the plans for additional tests.« less

  20. Evaluating the feasibility of underground coal gasification in Thailand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, B.C.; Harju, J.A.; Schmit, C.R.

    Underground coal gasification (UCG) is a clean coal technology that converts in situ coal into a low- to medium-grade product gas without the added expense of mining and reclamation. Potential candidates for UCG are those coal resources that are not economically recoverable or that are otherwise unacceptable for conventional coal utilization processes. The Energy and Environmental Research Center (EERC), through the sponsorship of the US Trade and Development Agency and in collaboration with the Electricity Generating Authority of Thailand (EGAT), is undertaking a feasibility study for the application of UCG in the Krabi coal mining area, 620 miles south ofmore » Bangkok in Thailand. The EERC`s objective for this project is to determine the technical, environmental, and economic feasibility of demonstrating and commercializing UCG at a selected site in the Krabi coal mining area. This paper addresses the preliminary developments and ongoing strategy for evaluating the selected UCG site. The technical, environmental, and economic factors for successful UCG operation are discussed, as well as the strategic issues pertaining to future energy expansion in southern Thailand.« less

  1. Coal Integrated Gasification Fuel Cell System Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chellappa Balan; Debashis Dey; Sukru-Alper Eker

    2004-01-31

    This study analyzes the performance and economics of power generation systems based on Solid Oxide Fuel Cell (SOFC) technology and fueled by gasified coal. System concepts that integrate a coal gasifier with a SOFC, a gas turbine, and a steam turbine were developed and analyzed for plant sizes in excess of 200 MW. Two alternative integration configurations were selected with projected system efficiency of over 53% on a HHV basis, or about 10 percentage points higher than that of the state-of-the-art Integrated Gasification Combined Cycle (IGCC) systems. The initial cost of both selected configurations was found to be comparable withmore » the IGCC system costs at approximately $1700/kW. An absorption-based CO2 isolation scheme was developed, and its penalty on the system performance and cost was estimated to be less approximately 2.7% and $370/kW. Technology gaps and required engineering development efforts were identified and evaluated.« less

  2. Early opportunities of CO2 geological storage deployment in coal chemical industry in China

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, Ning; Li, Xiaochun; Liu, Shengnan

    2014-11-12

    Abstract: Carbon dioxide capture and geological storage (CCS) is regarded as a promising option for climate change mitigation; however, the high capture cost is the major barrier to large-scale deployment of CCS technologies. High-purity CO2 emission sources can reduce or even avoid the capture requirements and costs. Among these high-purity CO2 sources, certain coal chemical industry processes are very important, especially in China. In this paper, the basic characteristics of coal chemical industries in China is investigated and analyzed. As of 2013 there were more than 100 coal chemical plants in operation or in late planning stages. These emission sourcesmore » together emit 430 million tons CO2 per year, of which about 30% are emit high-purity and pure CO2 (CO2 concentration >80% and >99% respectively).Four typical source-sink pairs are studied by a techno-economic evaluation, including site screening and selection, source-sink matching, concept design, and experienced economic evaluation. The technical-economic evaluation shows that the levelized cost of a CO2 capture and aquifer storage project in the coal chemistry industry ranges from 14 USD/t to 17 USD/t CO2. When a 15USD/t CO2 tax and 15USD/t for CO2 sold to EOR are considered, the levelized cost of CCS project are negative, which suggests a net economic benefit from some of these CCS projects. This might provide China early opportunities to deploy and scale-up CCS projects in the near future.« less

  3. Enhancing Carbon Reactivity in Mercury Control in Lignite-Fired Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chad Wocken; Michael Holmes; John Pavlish

    2008-06-30

    This project was awarded through the U.S. Department of Energy (DOE) National Energy Technology Laboratory Program Solicitation DE-PS26-03NT41718-01. The Energy & Environmental Research Center (EERC) led a consortium-based effort to resolve mercury (Hg) control issues facing the lignite industry. The EERC team-the Electric Power Research Institute (EPRI); the URS Corporation; the Babcock & Wilcox Company; ADA-ES; Apogee; Basin Electric Power Cooperative; Otter Tail Power Company; Great River Energy; Texas Utilities; Montana-Dakota Utilities Co.; Minnkota Power Cooperative, Inc.; BNI Coal Ltd.; Dakota Westmoreland Corporation; the North American Coal Corporation; SaskPower; and the North Dakota Industrial Commission-demonstrated technologies that substantially enhanced themore » effectiveness of carbon sorbents to remove Hg from western fuel combustion gases and achieve a high level ({ge} 55% Hg removal) of cost-effective control. The results of this effort are applicable to virtually all utilities burning lignite and subbituminous coals in the United States and Canada. The enhancement processes were previously proven in pilot-scale and limited full-scale tests. Additional optimization testing continues on these enhancements. These four units included three lignite-fired units: Leland Olds Station Unit 1 (LOS1) and Stanton Station Unit 10 (SS10) near Stanton and Antelope Valley Station Unit 1 (AVS1) near Beulah and a subbituminous Powder River Basin (PRB)-fired unit: Stanton Station Unit 1 (SS1). This project was one of three conducted by the consortium under the DOE mercury program to systematically test Hg control technologies available for utilities burning lignite. The overall objective of the three projects was to field-test and verify options that may be applied cost-effectively by the lignite industry to reduce Hg emissions. The EERC, URS, and other team members tested sorbent injection technologies for plants equipped with electrostatic precipitators (ESPs) and spray dryer absorbers combined with fabric filters (SDAs-FFs). The work focused on technology commercialization by involving industry and emphasizing the communication of results to vendors and utilities throughout the project.« less

  4. Fluid placement of fixated scrubber sludge to reduce surface subsidence and to abate acid mine drainage in abandoned underground coal mines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meiers, R.J.; Golden, D.; Gray, R.

    1995-12-31

    Indianapolis Power and Light Company (IPL) began researching the use of fluid placement techniques of the fixated scrubber sludge (FSS) to reduce surface subsidence from underground coal mines to develop an economic alternative to low strength concrete grout. Abandoned underground coal mines surround property adjacent to IPL`s coal combustion by-product (CCBP) landfill at the Petersburg Generating Station. Landfill expansion into these areas is in question because of the high potential for sinkhole subsidence to develop. Sinkholes manifesting at the surface would put the integrity of a liner or runoff pond containment structure for a CCBP disposal facility at risk. Themore » fluid placement techniques of the FSS as a subsidence abatement technology was demonstrated during an eight week period in September, October, and November 1994 at the Petersburg Generating Station. The success of this technology will be determined by the percentage of the mine void filled, strength of the FSS placed, and the overall effects on the hydrogeologic environment. The complete report for this project will be finalized in early 1996.« less

  5. NOx Control for Utility Boiler OTR Compliance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamid Farzan

    Under sponsorship of the Department of Energy's National Energy Technology Laboratory (NETL), the Babcock and Wilcox Company (B and W), and Fuel Tech teamed together to investigate an integrated solution for NO{sub x} control. The system is comprised of B and W's DRB-4Z{trademark} ultra low-NO{sub x} pulverized coal (PC) burner technology and Fuel Tech's NOxOUT{reg_sign}, a urea-based selective non-catalytic reduction (SNCR) technology. Development of the low-NO{sub x} burner technology has been a focus in B and W's combustion program. The DRB-4Z{trademark} burner is B and W's newest low-NO{sub x} burner capable of achieving very low NO{sub x}. The burner ismore » designed to reduce NO{sub x} by controlled mixing of the fuel and air. Based on data from several 500 to 600 MWe boilers firing PRB coal, NOx emissions levels of 0.15 to 0.20 lb/ 106 Btu have been achieved from the DRB-4Z{trademark} burners in combination with overfire air ports. Although NOx emissions from the DRB-4Z{trademark} burner are nearing the Ozone Transport Rule (OTR) level of 0.15 lb NO{sub x}/106 Btu, the utility boiler owners can still benefit from the addition of an SNCR and/or SCR system in order to comply with the stringent NO{sub x} emission levels facing them. Large-scale testing is planned in B and W's 100-million Btu/hr Clean Environment Development Facility (CEDF) that simulates the conditions of large coal-fired utility boilers. The objective of the project is to achieve a NO{sub x} level below 0.15 lb/106 Btu (with ammonia slip of less than 5 ppm) in the CEDF using PRB coal and B and W's DRB-4Z{trademark} low-NO{sub x} pulverized coal (PC) burner in combination with dual zone overfire air ports and Fuel Tech's NO{sub x}OUT{reg_sign}. During this period B and W prepared and submitted the project management plan and hazardous substance plan to DOE. The negotiation of a subcontract for Fuel Tech has been started.« less

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tonnemacher, G.C.; Killen, D.C.; Weinstein, R.E.

    This paper reports on the results of an US Department of Energy (DOE) conceptual design evaluation. This is for an early commercial repowering application of advanced circulating pressurized fluidized bed combustion combined cycle technology (APFBC). Here, APFBC would repower an existing generation station, the Carolina Power and Light Company's (CP and L) L.V. Sutton steam station. Repowering concepts are presented for APFBC repowering of Unit 2 (226 MWe) and both Units 1 and 2 in combination (340 MWe total). This evaluation found that it is more economical to repower the existing coal-fired generation unit with APFBC than to build newmore » pulverized coal capacity of equivalent output. The paper provides a review of the DOE study and summarizes the design and costs associated with the APFBC concept. A DOE-sponsored Clean Coal Technology (CCT) demonstration program will pioneer the first commercial APFBC demonstration in year 2001. That 170 MWe APFBC CCT demonstration will use all new equipment, and become the City of Lakeland's C.D. McIntosh, JR. steam plant Unit 4. This all-coal technology is under development by DOE and equipment manufacturers. This paper's concept evaluation is for a larger implementation than the Lakeland McIntosh CCT project. The repowering of L.V. Sutton Unit 2 is projected to boost the energy efficiency of the existing unit from its present 32.0% HHV level to an APFBC-repowered energy efficiency of 42.2% HHV (44.1% LHV). A large frame Westinghouse W501F combustion turbine is modified for APFBC use. This produces a 225+ MWe class APFBC. At this size, APFBC has a wide application for repowering many existing units in America. The paper focuses on the design issues, shows how the APFBC power block integrates with the existing site, and gives a brief summary of the resulting system performance and costs.« less

  7. McIntosh Unit 4 PCFB demonstration project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dodd, A.M.; Dryden, R.J.; Morehead, H.T.

    1997-12-31

    The City of Lakeland, Foster Wheeler Corporation and Westinghouse Electric Corporation have embarked on a utility scale demonstration of Pressurized Circulating Fluidized Bed (PCFB) technology at Lakeland`s McIntosh Power Station in Lakeland, Florida. The US Department of Energy will be providing approximately $195 million of funding for the project through two Cooperative Agreements under the auspices of the Clean Coal Technology Program. The project will involve the commercial demonstration of Foster Wheeler Pyroflow PCFB technology integrated with Westinghouse`s Hot Gas Filter (HGF) and power generation technologies. The total project duration will be approximately eight years and will be structured intomore » three separate phases; two years of design and permitting, followed by an initial period of two years of fabrication and construction and concluding with a four year demonstration (commercial operation) period. It is expected that the project will show that Foster Wheeler`s Pyroflow PCFB technology coupled with Westinghouse`s HGF and power generation technologies represents a cost effective, high efficiency, low emissions means of adding greenfield generation capacity and that this same technology is also well suited for repowering applications.« less

  8. Report of the Interagency Task Force on Carbon Capture and Storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2010-08-01

    Carbon capture and storage (CCS) refers to a set of technologies that can greatly reduce carbon dioxide (CO{sub 2}) emissions from new and existing coal- and gas-fired power plants, industrial processes, and other stationary sources of CO{sub 2}. In its application to electricity generation, CCS could play an important role in achieving national and global greenhouse gas (GHG) reduction goals. However, widespread cost-effective deployment of CCS will occur only if the technology is commercially available and a supportive national policy framework is in place. In keeping with that objective, on February 3, 2010, President Obama established an Interagency Task Forcemore » on Carbon Capture and Storage composed of 14 Executive Departments and Federal Agencies. The Task Force, co-chaired by the Department of Energy (DOE) and the Environmental Protection Agency (EPA), was charged with proposing a plan to overcome the barriers to the widespread, cost-effective deployment of CCS within ten years, with a goal of bringing five to ten commercial demonstration projects online by 2016. Composed of more than 100 Federal employees, the Task Force examined challenges facing early CCS projects as well as factors that could inhibit widespread commercial deployment of CCS. In developing the findings and recommendations outlined in this report, the Task Force relied on published literature and individual input from more than 100 experts and stakeholders, as well as public comments submitted to the Task Force. The Task Force also held a large public meeting and several targeted stakeholder briefings. While CCS can be applied to a variety of stationary sources of CO{sub 2}, its application to coal-fired power plant emissions offers the greatest potential for GHG reductions. Coal has served as an important domestic source of reliable, affordable energy for decades, and the coal industry has provided stable and quality high-paying jobs for American workers. At the same time, coal-fired power plants are the largest contributor to U.S. greenhouse gas (GHG) emissions, and coal combustion accounts for 40 percent of global carbon dioxide (CO{sub 2}) emissions from the consumption of energy. EPA and Energy Information Administration (EIA) assessments of recent climate and energy legislative proposals show that, if available on a cost-effective basis, CCS can over time play a large role in reducing the overall cost of meeting domestic emissions reduction targets. By playing a leadership role in efforts to develop and deploy CCS technologies to reduce GHG emissions, the United States can preserve the option of using an affordable, abundant, and domestic energy resource, help improve national security, help to maximize production from existing oil fields through enhanced oil recovery (EOR), and assist in the creation of new technologies for export. While there are no insurmountable technological, legal, institutional, regulatory or other barriers that prevent CCS from playing a role in reducing GHG emissions, early CCS projects face economic challenges related to climate policy uncertainty, first-of-a-kind technology risks, and the current high cost of CCS relative to other technologies. Administration analyses of proposed climate change legislation suggest that CCS technologies will not be widely deployed in the next two decades absent financial incentives that supplement projected carbon prices. In addition to the challenges associated with cost, these projects will need to meet regulatory requirements that are currently under development. Long-standing regulatory programs are being adapted to meet the circumstances of CCS, but limited experience and institutional capacity at the Federal and State level may hinder implementation of CCS-specific requirements. Key legal issues, such as long-term liability and property rights, also need resolution. A climate policy designed to reduce our Nation's GHG emissions is the most important step for commercial deployment of low-carbon technologies such as CCS, because it will create a stable, long-term framework for private investments. A concerted effort to properly address financial, economic, technological, legal, institutional, and social barriers will enable CCS to be a viable climate change mitigation option that can over time play an important role in reducing the overall cost of meeting domestic and global emissions reduction targets. Federal and State agencies can use existing authorities and programs to begin addressing these barriers while ensuring appropriate safeguards are in place to protect the environment and public health and safety.« less

  9. Design verification and cold-flow modeling test report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-07-01

    This report presents a compilation of the following three test reports prepared by TRW for Alaska Industrial Development and Export Authority (AIDEA) as part of the Healy Clean Coal Project, Phase 1 Design of the TRW Combustor and Auxiliary Systems, which is co-sponsored by the Department of Energy under the Clean Coal Technology 3 Program: (1) Design Verification Test Report, dated April 1993, (2) Combustor Cold Flow Model Report, dated August 28, 1992, (3) Coal Feed System Cold Flow Model Report, October 28, 1992. In this compilation, these three reports are included in one volume consisting of three parts, andmore » TRW proprietary information has been excluded.« less

  10. Coal gasifier cogeneration powerplant project

    NASA Technical Reports Server (NTRS)

    Shure, L. I.; Bloomfield, H. S.

    1980-01-01

    Industrial cogeneration and utility pr systems were analyzed and a conceptual design study was conducted to evaluate the economic feasibility of a coal gasifier power plant for NASA Lewis Research Center. Site location, plant size, and electric power demand were considered in criteria developed for screening and selecting candidates that could use a wide variety of coals, including that from Ohio. A fluidized bed gasifier concept was chosen as the baseline design and key components of the powerplant were technically assessed. No barriers to environmental acceptability are foreseen. If funded, the powerplant will not only meet the needs of the research center, but will reduce the commercial risk for utilities and industries by fully verifying and demonstrating the technology, thus accelerating commercialization.

  11. Implementation of Paste Backfill Mining Technology in Chinese Coal Mines

    PubMed Central

    Chang, Qingliang; Zhou, Huaqiang; Bai, Jianbiao

    2014-01-01

    Implementation of clean mining technology at coal mines is crucial to protect the environment and maintain balance among energy resources, consumption, and ecology. After reviewing present coal clean mining technology, we introduce the technology principles and technological process of paste backfill mining in coal mines and discuss the components and features of backfill materials, the constitution of the backfill system, and the backfill process. Specific implementation of this technology and its application are analyzed for paste backfill mining in Daizhuang Coal Mine; a practical implementation shows that paste backfill mining can improve the safety and excavation rate of coal mining, which can effectively resolve surface subsidence problems caused by underground mining activities, by utilizing solid waste such as coal gangues as a resource. Therefore, paste backfill mining is an effective clean coal mining technology, which has widespread application. PMID:25258737

  12. Implementation of paste backfill mining technology in Chinese coal mines.

    PubMed

    Chang, Qingliang; Chen, Jianhang; Zhou, Huaqiang; Bai, Jianbiao

    2014-01-01

    Implementation of clean mining technology at coal mines is crucial to protect the environment and maintain balance among energy resources, consumption, and ecology. After reviewing present coal clean mining technology, we introduce the technology principles and technological process of paste backfill mining in coal mines and discuss the components and features of backfill materials, the constitution of the backfill system, and the backfill process. Specific implementation of this technology and its application are analyzed for paste backfill mining in Daizhuang Coal Mine; a practical implementation shows that paste backfill mining can improve the safety and excavation rate of coal mining, which can effectively resolve surface subsidence problems caused by underground mining activities, by utilizing solid waste such as coal gangues as a resource. Therefore, paste backfill mining is an effective clean coal mining technology, which has widespread application.

  13. LIFAC demonstration at Richmond Power and Light Whitewater Valley Unit No. 2. Final report, Volume 1 - public design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This report discusses the demonstration of LIFAC sorbent injection technology at Richmond Power and Light`s (RP&L) Whitewater Valley Unit No. 2 under the auspices of the U.S. Department of Energy`s (DOE) Clean Coal Technology Program. LIFAC is a sorbent injection technology capable of removing 75 to 85 percent of a power plant`s SO{sub 2} emissions using limestone at calcium to sulfur molar ratios of between 2 and 2.5. The site of the demonstration is a coal-fired electric utility power plant located in Richmond, Indiana. The project is being conducted by LIFAC North American (LIFAC NA), a joint venture partnership ofmore » Tampella Power Corporation and ICF Kaiser Engineers, in cooperation with DOE, RP&L, and several other organizations including the Electric Power Research Institute (EPRI), the State of Indiana, and Black Beauty Coal Company. The purpose of Final Report Volume 1: Public Design is to consolidate, for public use, all design and cost information regarding the LIFAC Desulfurization Facility at the completion of construction and startup.« less

  14. Bench-scale Development of an Advanced Solid Sorbent-based CO 2 Capture Process for Coal-fired Power Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, Thomas; Kataria, Atish; Soukri, Mustapha

    It is increasingly clear that CO 2 capture and sequestration (CCS) must play a critical role in curbing worldwide CO 2 emissions to the atmosphere. Development of these technologies to cost-effectively remove CO 2 from coal-fired power plants is very important to mitigating the impact these power plants have within the world’s power generation portfolio. Currently, conventional CO 2 capture technologies, such as aqueous-monoethanolamine based solvent systems, are prohibitively expensive and if implemented could result in a 75 to 100% increase in the cost of electricity for consumers worldwide. Solid sorbent CO 2 capture processes – such as RTI’s Advancedmore » Solid Sorbent CO 2, Capture Process – are promising alternatives to conventional, liquid solvents. Supported amine sorbents – of the nature RTI has developed – are particularly attractive due to their high CO 2 loadings, low heat capacities, reduced corrosivity/volatility and the potential to reduce the regeneration energy needed to carry out CO 2 capture. Previous work in this area has failed to adequately address various technology challenges such as sorbent stability and regenerability, sorbent scale-up, improved physical strength and attrition-resistance, proper heat management and temperature control, proper solids handling and circulation control, as well as the proper coupling of process engineering advancements that are tailored for a promising sorbent technology. The remaining challenges for these sorbent processes have provided the framework for the project team’s research and development and target for advancing the technology beyond lab- and bench-scale testing. Under a cooperative agreement with the US Department of Energy, and part of NETL’s CO 2 Capture Program, RTI has led an effort to address and mitigate the challenges associated with solid sorbent CO 2 capture. The overall objective of this project was to mitigate the technical and economic risks associated with the scale-up of solid sorbent-based CO 2 capture processes, enabling subsequent larger pilot demonstrations and ultimately commercial deployment. An integrated development approach has been a key focus of this project in which process development, sorbent development, and economic analyses have informed each of the other development processes. Development efforts have focused on improving the performance stability of sorbent candidates, refining process engineering and design, and evaluating the viability of the technology through detailed economic analyses. Sorbent advancements have led to a next generation, commercially-viable CO 2 capture sorbent exhibiting performance stability in various gas environments and a physically strong fluidizable form. The team has reduced sorbent production costs and optimized the production process and scale-up of PEI-impregnated, fluidizable sorbents. Refinement of the process engineering and design, as well as the construction and operation of a bench-scale research unit has demonstrated promising CO 2 capture performance under simulated coal-fired flue gas conditions. Parametric testing has shown how CO 2 capture performance is impacted by changing process variables, such as Adsorber temperature, Regenerator temperature, superficial flue gas velocity, solids circulation rate, CO 2 partial pressure in the Regenerator, and many others. Long-term testing has generated data for the project team to set the process conditions needed to operate a solids-based system for optimal performance, with continuous 90% CO 2 capture, and no operational interruptions. Data collected from all phases of testing has been used to develop a detailed techno-economic assessment of RTI’s technology. These detailed analyses show that RTI’s technology has significant economic advantages over current amine scrubbing and potential to achieve the DOE’s Carbon Capture Program’s goal of >90% CO 2 capture rate at a cost of < $40/T-CO 2 captured by 2025. Through this integrated technology development approach, the project team has advanced RTI’s CO 2 capture technology to TRL-4 (nearly TRL-5, with the missing variable being testing on actual, coal-fired flue gas), according to the DOE/FE definitions for Technology Readiness Levels. At a broader level, this project has advanced the whole of the solid sorbent CO 2 capture field, with advancements in process engineering and design, technical risk mitigation, sorbent scale-up optimization, and an understanding of the commercial viability and applicability of solid sorbent CO 2 capture technologies for the U.S. existing fleet of coal-fired power plants.« less

  15. Underground Coal Gasification - Experience of ONGC

    NASA Astrophysics Data System (ADS)

    Jain, P. K.

    2017-07-01

    Underground Coal Gasification (UCG) is expected to be game changer for nation like ours that requires large amounts of energy but have few natural resources other than coal. ONGC, being an integrated energy company and due to synergy between E & P operations and UCG, envisaged opportunities in UCG business. Its first campaign on UCG started in 1980s. With its initiative, a National Committee for UCG was constituted with representatives from Ministry of Petroleum, Dept. of Coal, CSIR, CMPDIL, State of Gujarat and ONGC for experimenting a pilot. It was decided in mid-1986 to carry out a UCG pilot in Sobhasan area of Mehsana district which was to be funded by OIDB. Two information wells were drilled to generate geological, geophysical, geo-hydrological data and core/coal samples. 3-D seismic survey data of Mehsana area was processed and interpreted and geological model was prepared. Basic designing of pilot project, drilling and completion, strategy of process wells and designing of surface facilities were carried out. The project could not be pursued further due to escalation in cost and contractual difficulty with design consultant. ONGC second UCG campaign commenced with signing of an agreement of collaboration (AOC) with Skochinsky Institute of Mining (SIM), Russia on 25th November 2004 for Underground Coal Gasification (UCG). In parallel, MOUs were signed with major coal and power companies, namely, Gujarat Industries Power Company Ltd (GIPCL), Gujarat Mineral Development Corporation Ltd (GMDC), Coal India Ltd (CIL), Singareni Colliery Company Ltd (SCCL) and NLC India Ltd. Under the AOC, suitability study was carried out for different sites belonging to MOU companies. Only Vastan mine block, Nani Naroli, Surat, Gujarat was found to be suitable for UCG. Therefore, subsequent stages of detailed characterization & pilot layout, detailed engineering design were taken up for Vastan site. After enormous efforts for quite long since 2006, in the absence of UCG policy with Ministry of Coal (MoC), MoC finally allotted in-principle Vastan Lignite block to GIPCL in Aug. 2015. The project was to be carried out through a joint venture between ONGC and GIPCL. Unfortunately, efforts lacking sincerity were made by GIPCL for JV. MOC also did not bother adequately to monitor development of JV between ONGC and GIPCL. And finally, GIPCL citing the company to be small sized and it being without any experience on UCG, withdrew from the project in Dec. 2016. Now the block allocation process for the Vastan will have to be initiated afresh by MOC. The future of ONGC yet another UCG campaign seems to have once again hanged in balance. In view of the association with UCG for the decade and based on the feedback from the world-wide status of the technology, the author tries to make important suggestions in the paper for expeditious and efficient implementation of UCG technology in the country.

  16. Political and technical issues of coal fire extinction in the Kyoto framework

    NASA Astrophysics Data System (ADS)

    Meyer, U.; Chen-Brauchler, D.; Rüter, H.; Fischer, C.; Bing, K.

    2009-04-01

    It is a highly desirable effort to extinguish as much coal fires as possible in short time to prevent large losses of energy resources and to minimise CO2 and other exhaust gas releases from such sources. Unfortunately, extinguishing coal fires needs massive financial investments, skilled man power, suited technology and a long time. Even mid to small scale coal fires need several months of extinguishing measures and of monitoring time after extinction resulting in expenditures of a minimum of several hundred thousand Euros. Large companies might be willing to spend money for coal fire extinction measures but smaller holdings or regional governments might not have the monetary resources for it. Since there is no law in China that demands coal fire extinction, measures under the Kyoto framework may be applied to sell CO2 certificates for prevented emissions from extinguished coal fires and thus used as a financial stimulus for coal fire extinction activities. The set-up for methodologies and project designs is especially complex for coal fire extinction measures and thus for necessary exploration, evaluation and monitoring using geophysical and remote sensing methods. A brief overview of most important formal and technical aspects is given to outline the conditions for a potentially successful CDM application on coal fires based on geophysical observations and numerical modelling.

  17. Application studies of RFID technology in the process of coal logistics transport

    NASA Astrophysics Data System (ADS)

    Qiao, Bingqin; Chang, Xiaoming; Hao, Meiyan; Kong, Dejin

    2012-04-01

    For quality control problems in coal transport, RFID technology has been proposed to be applied to coal transportation process. The whole process RFID traceability system from coal production to consumption has been designed and coal supply chain logistics tracking system integration platform has been built, to form the coal supply chain traceability and transport tracking system and providing more and more transparent tracking and monitoring of coal quality information for consumers of coal. Currently direct transport and combined transport are the main forms of coal transportation in China. The means of transport are cars, trains and ships. In the booming networking environment of RFID technology, the RFID technology will be applied to coal logistics and provide opportunity for the coal transportation tracking in the process transportation.

  18. Optimized Solvent for Energy-Efficient, Environmentally-Friendly Capture of CO{sub 2} at Coal-Fired Power Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farthing, G. A.; Rimpf, L. M.

    The overall goal of this project, as originally proposed, was to optimize the formulation of a novel solvent as a critical enabler for the cost-effective, energy-efficient, environmentally-friendly capture of CO{sub 2} at coal-fired utility plants. Aqueous blends of concentrated piperazine (PZ) with other compounds had been shown to exhibit high rates of CO{sub 2} absorption, low regeneration energy, and other desirable performance characteristics during an earlier 5-year development program conducted by B&W. The specific objective of this project was to identify PZ-based solvent formulations that globally optimize the performance of coal-fired power plants equipped with CO{sub 2} scrubbing systems. Whilemore » previous solvent development studies have tended to focus on energy consumption and absorber size, important issues to be sure, the current work seeks to explore, understand, and optimize solvent formulation across the full gamut of issues related to commercial application of the technology: capital and operating costs, operability, reliability, environmental, health and safety (EH&S), etc. Work on the project was intended to be performed under four budget periods. The objective of the work in the first budget period has been to identify several candidate formulations of a concentrated PZ-based solvent for detailed characterization and evaluation. Work in the second budget period would generate reliable and comprehensive property and performance data for the identified formulations. Work in the third budget period would quantify the expected performance of the selected formulations in a commercial CO{sub 2} scrubbing process. Finally, work in the fourth budget period would provide a final technology feasibility study and a preliminary technology EH&S assessment. Due to other business priorities, however, B&W has requested that this project be terminated at the end of the first budget period. This document therefore serves as the final report for this project. It is the first volume of the two-volume final report and summarizes Budget Period 1 accomplishments under Tasks 1-5 of the project, including the selection of four solvent formulations for further study.« less

  19. Integrated mild gasification processing at the Homer City Electric Power Generating Station site. Final report, July 1989--June 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Battista, J.J.; Zawadzki, E.A.

    1993-07-01

    A new process for the production of commercial grade coke, char, and carbon products has been evaluated by Penelec/NYSEG. The process, developed by Coal Technology Corporation, CTC, utilizes a unique screw reactor to produce a devolatilized char from a wide variety of coals for the production of commercial grade coke for use in blast furnaces, foundries, and other processes requiring high quality coke. This process is called the CTC Mild Gasification Process (MGP). The process economics are significantly enhanced by integrating the new technology into an existing power generating complex. Cost savings are realized by the coke producer, the cokemore » user, and the electric utility company. Site specific economic studies involving the Homer City Generating Station site in Western Pennsylvania, confirmed that an integrated MGP at the Homer City site, using coal fines produced at the Homer City Coal Preparation Plant, would reduce capital and operating costs significantly and would enable the HC Owners to eliminate thermal dryers, obtain low cost fuel in the form of combustible gases and liquids, and obtain lower cost replacement coal on the spot market. A previous report, identified as the Interim Report on the Project, details the technical and economic studies.« less

  20. Coal gasification systems engineering and analysis. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Feasibility analyses and systems engineering studies for a 20,000 tons per day medium Btu (MBG) coal gasification plant to be built by TVA in Northern Alabama were conducted. Major objectives were as follows: (1) provide design and cost data to support the selection of a gasifier technology and other major plant design parameters, (2) provide design and cost data to support alternate product evaluation, (3) prepare a technology development plan to address areas of high technical risk, and (4) develop schedules, PERT charts, and a work breakdown structure to aid in preliminary project planning. Volume one contains a summary of gasification system characterizations. Five gasification technologies were selected for evaluation: Koppers-Totzek, Texaco, Lurgi Dry Ash, Slagging Lurgi, and Babcock and Wilcox. A summary of the trade studies and cost sensitivity analysis is included.

  1. ArcView Coal Evaluation User's Guide

    USGS Publications Warehouse

    Watson, William

    2007-01-01

    Purpose: The objective of the ArcView Coal Evaluation (ACE) is to estimate the amount and location of coal available to be mined by various coal mining technologies, based on the geologic coverages developed in the National Coal Resource Assessment (NCRA) which are the starting coverages used in the Geographic Information Systems (GIS) evaluation of coal resources. The ACE Users Guide provides many examples of how to apply technical limits based upon mining technology. The methods, which are iterative for any given mining technology, should transfer directly by mining technology to other coal beds.

  2. The Development of Environmentally Friendly Technologies of Using Coals and Products of Their Enrichment in the Form of Coal Water Slurries

    NASA Astrophysics Data System (ADS)

    Murko, Vasily; Hamalainen, Veniamin

    2017-11-01

    The article presents the current state of the technology for production and combustion of fuel coal water slurries in Russia and foreign countries. Experimental and industrial facilities show the technological and economic efficiency of using this technology for disposal of wastes resulting after coal processing and enrichment. The feasibility studies of use of the technology at large Kuzbass thermal power stations are presented. The possibility of solving a serious environmental problem of reducing storage of the most toxic waste of coal enrichment in the location areas of coal washing plants and coal mining enterprises is demonstrated.

  3. Coal ash by-product reutilization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muncy, J.; Miller, B.

    1997-09-01

    Potomac Electric Power Company (PEPCO) has as part of its vision and value statement that, ``We are responsible stewards of environmental and corporate resources.`` With this moral imperative in mind, a project team was charged with initiating the Coal Pile Liner Project--installing a membrane liner under the existing coal storage pile at the Morgantown Generating Station. The existing coal yard facilities were constructed prior to the current environmental regulations, and it became necessary to upgrade the storage facilities to be environmentally friendly. The project team had two objectives in this project: (1) prevent coal pile leachate from entering the groundwatermore » system; (2) test the viability of using coal ash by-products as an aggregate substitute for concrete applications. Both objectives were met, and two additional benefits were achieved as well: (1) the use of coal ash by-products as a coal liner produced significant cost savings to the project directly; (2) the use of coal ash by-products reduced plant operation and maintenance expenses.« less

  4. Development of an Acoustic Sensor for On-Line Gas Temperature Measurement in Gasifiers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peter Ariessohn; Hans Hornung

    2006-01-15

    This project was awarded under U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) Program Solicitation DE-PS26-02NT41422 and specifically addresses Technical Topical Area 2-Gasification Technologies. The project team includes Enertechnix, Inc. as the main contractor and ConocoPhillips Company as a technical partner, who also provides access to the SG Solutions Gasification Facility (formerly Wabash River Energy Limited), host for the field-testing portion of the research. Since 1989 the U.S. Department of Energy has supported development of advanced coal gasification technology. The Wabash River and TECO IGCC demonstration projects supported by the DOE have demonstrated the ability of these plantsmore » to achieve high levels of energy efficiency and extremely low emissions of hazardous pollutants. However, a continuing challenge for this technology is the tradeoff between high carbon conversion which requires operation with high internal gas temperatures, and limited refractory life which is exacerbated by those high operating temperatures. Attempts to control internal gas temperature so as to operate these gasifiers at the optimum temperature have been hampered by the lack of a reliable technology for measuring internal gas temperatures. Thermocouples have serious survival problems and provide useful temperature information for only a few days or weeks after startup before burning out. For this reason, the Department of Energy has funded several research projects to develop more robust and reliable temperature measurement approaches for use in coal gasifiers. Enertechnix has developed a line of acoustic gas temperature sensors for use in coal-fired electric utility boilers, kraft recovery boilers, cement kilns and petrochemical process heaters. Acoustic pyrometry provides several significant advantages for gas temperature measurement in hostile process environments. First, it is non-intrusive so survival of the measurement components is not a serious problem. Second, it provides a line-of-sight average temperature rather than a point measurement, so the measured temperature is more representative of the process conditions than those provided by thermocouples. Unlike radiation pyrometers, the measured temperature is a linear average over the full path rather than a complicated function of gas temperature and the exponential Beer's law. For this reason, acoustic pyrometry is well suited to tomography allowing detailed temperature maps to be created through the use of multiple path measurements in a plane. Therefore, acoustic pyrometry is an attractive choice for measuring gas temperature inside a coal gasifier. The objective of this project is to adapt acoustic pyrometer technology to make it suitable for measuring gas temperature inside a coal gasifier, to develop a prototype sensor based on this technology, and to demonstrate its performance through testing on a commercial gasifier. The project is organized in three phases, each of approximately one year duration. The first phase consists of researching a variety of sound generation and coupling approaches suitable for use with a high pressure process, evaluation of the impact of gas composition variability on the acoustic temperature measurement approach, evaluation of the impact of suspended particles on sound attenuation, evaluation of slagging issues and development of concepts to deal with this issue, development and testing of key prototype components to allow selection of the best approaches, and development of a conceptual design for a field prototype sensor that can be tested on an operating gasifier. The second phase consists of designing and fabricating a series of prototype sensors, testing them in the lab and at a gasifier facility, and developing a conceptual design for an engineering prototype sensor. The third phase consists of designing and fabricating the engineering prototype, testing it in the lab and in a commercial gasifier, and conducting extended field trials to demonstrate sensor performance and investigate the ability to improve gasifier performance through the use of the sensor.« less

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Byrer, C.W.; Layne, A.W.; Guthrie, H.D.

    The U.S. Department of Energy (DOE), at its Morgantown Energy Technology Center, has been involved in natural gas research since the 1970`s. DOE has assessed the potential of gas in coals throughout the U.S. and promoted research and development for recovery and use of methane found in minable and unminable coalbeds. DOE efforts have focused on the use of coal mine methane for regional economic gas self-sufficiency, energy parks, self-help initiatives, and small-power generation. This paper focuses on DOE`s past and present efforts to more effectively and efficiently recover and use this valuable domestic energy source. The Climate Change Actionmore » Plan (CCAP) (1) lists a series of 50 voluntary initiatives designed to reduce greenhouse gas emissions, such as methane from mining operations, to their 1990 levels. Action No. 36 of the CCAP expands the DOE research, development, and demonstration (RD&D) efforts to broaden the range of cost-effective technologies and practices for recovering methane associated with coal mining operations. The major thrust of Action No. 36 is to reduce methane emissions associated with coal mining operations from target year 2000 levels by 1.5 MMT of carbon equivalent. Crosscutting activities in the DOE Natural Gas Program supply the utilization sectors will address RD&D to reduce methane emissions released from various mining operations, focusing on recovery and end use technology systems to effectively drain, capture, and utilize the emitted gas. Pilot projects with industry partners will develop and test the most effective methods and technology systems for economic recovery and utilization of coal mine gas emissions in regions where industry considers efforts to be presently non-economic. These existing RD&D programs focus on near-term gas recovery and gathering systems, gas upgrading, and power generation.« less

  6. COMMERCIALIZATION OF AN ATMOSPHERIC IRON-BASED CDCL PROCESS FOR POWER PRODUCTION. PHASE I: TECHNOECONOMIC ANALYSIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vargas, Luis

    Coal Direct Chemical Looping (CDCL) is an advanced oxy-combustion technology that has potential to enable substantial reductions in the cost and energy penalty associated with carbon dioxide (CO2) capture from coal-fired power plants. Through collaborative efforts, the Babcock & Wilcox Power Generation Group (B&W) and The Ohio State University (OSU) developed a conceptual design for a 550 MWe (net) supercritical CDCL power plant with greater than 90% CO2 capture and compression. Process simulations were completed to enable an initial assessment of its technical performance. A cost estimate was developed following DOE’s guidelines as outlined in NETL’s report “Quality Guidelines formore » Energy System Studies: Cost Estimation Methodology for NETL Assessments of Power Plant Performance”, (2011/1455). The cost of electricity for the CDCL plant without CO2 Transportation and Storage cost resulted in $ $102.67 per MWh, which corresponds to a 26.8 % increase in cost of electricity (COE) when compared to an air-fired pulverized-coal supercritical power plant. The cost of electricity is strongly depending on the total plant cost and cost of the oxygen carrier particles. The CDCL process could capture further potential savings by increasing the performance of the particles and reducing the plant size. During the techno-economic analysis, the team identified technology and engineering gaps that need to be closed to bring the technology to commercialization. The technology gaps were focused in five critical areas: (i) moving bed reducer reactor, (ii) fluidized bed combustor, (iii) particle riser, (iv) oxygen-carrier particle properties, and (v) process operation. The key technology gaps are related to particle performance, particle manufacturing cost, and the operation of the reducer reactor. These technology gaps are to be addressed during Phase II of project. The project team is proposing additional lab testing to be completed on the particle and a 3MWth pilot facility be built to evaluate the reducer reactor performance among other aspects of the technology. A Phase II proposal was prepared and submitted to DOE. The project team proposed a three year program in Phase II. Year 1 includes lab testing and particle development work aimed at improving the chemical and mechanical properties of the oxygen carrier particle. In parallel, B&W will design the 3MWt pilot plant. Any improvements to the particle performance discovered in year 1 that would impact the design of the pilot will be incorporated into the final design. Year 2 will focus on procurement of materials and equipment, and construction of the pilot plant. Year 3 will include, commissioning, start-up, and testing in the pilot. Phase I work was successfully completed and a design and operating philosophy for a 550 MWe commercial scale coal-direct chemical looping power plant was developed. Based on the results of the techno-economic evaluation, B&W projects that the CDCL process can achieve 96.5% CO2 capture with a« less

  7. Mercury Emissions Capture Efficiency with Activated Carbon Injection at a Russian Coal-Fired Thermal Power Plant

    EPA Science Inventory

    This EPA-led project, conducted in collaboration with UNEP, the Swedish Environmental Institute and various Russian Institutes, that demonstrates that the mercury emission control efficiencies of activated carbon injection technologies applied at a Russian power plant burning Rus...

  8. ECKG Kladno project: First IPP in the Czech Republic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rode, J.R.; Tichy, O.J.

    1999-07-01

    The Energy Center Kladno project is the first independent power producer (IPP) project to be financed in the Czech Republic, one of Europe's most rapidly evolving markets. The total financing is $401 million and is structured in three currencies; Czech crowns, German marks, and US dollars. This paper will focus on: Enhanced technology to meet energy demands; Execution to meet the ambitious; and Overall project status. The coal and gas fired plant will produce a total of 343 MW to provide electricity and heat to the town of Kladno, west of Prague. The new plant will be located within themore » existing ECK facility and the project encompasses demolition, upgrading, and rebuilding. The base load will be from two coal-fired 135 MW circulating fluidized bed (CFB) boilers and peaking capacity from the gas-fired combustion (66 MW) turbine. The CFB's will fire a range of low sulfur brown coal supplied from the local mining company Ceskomoravske Doly (CMD). The new CFB's were designed to meet the overall steam demands specified by ECKG. The CFB's design features include in-furnace heat transfer surface and a split backpass that utilizes a biasing damper to allow for control of both the superheat and reheat steam temperatures. The various CFB auxiliary systems will be discussed in the paper as well as the flue gas particulate collection equipment.« less

  9. The use of ethanol to remove sulfur from coal. Final report, September 1991--December 1992; Revision

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Savage, R.L.; Lazarov, L.K.; Prudich, M.E.

    1994-03-10

    The initial technical goal in the project was to develop a chemical method for the cost effective removal of both inorganic and organic sulfur from Ohio coals. Verifying and using a process of reacting ethanol vapors with coal under conditions disclosed in U.S. Patent 4,888,029, the immediate technical objectives were to convert a small scale laborative batch process to a larger scale continuous process which can serve as the basis for commercial development of the technology. This involved getting as much information as possible from small scale batch autoclave or fluid bed laboratory reactors for use in pilot plant studies.more » The laboratory data included material balances on the coal and sulfur, temperature and pressure ranges for the reaction, minimum reaction times at different conditions, the effectiveness of different activators such as oxygen and nitric oxide, the amount and nature of by-products such as sulfur dioxide, hydrogen sulfide and acetaldehyde, the effect of coal particle size on the speed and completeness of the reaction, and the effectiveness of the reaction on different Ohio coals. Because the laboratory experiments using the method disclosed in U.S. 4,888,029 were not successful, the objective for the project was changed to develop a new laboratory process to use ethanol to remove sulfur from coal. Using copper as a catalyst and as an H{sub 2}S scavenger, a new laboratory procedure to use ethanol to remove sulfur from coal has been developed at Ohio University and a patent application covering this process was filed in March, 1993. The process is based on the use of copper as a catalyst for the dehydrogenation of ethanol to produce nascent hydrogen to remove sulfur from the coal and the use of copper as a scavenger to capture the hydrogen sulfide formed from the sulfur removed from coal.« less

  10. Empirical Models of Zones Protecting Against Coal Dust Explosion

    NASA Astrophysics Data System (ADS)

    Prostański, Dariusz

    2017-09-01

    The paper presents predicted use of research' results to specify relations between volume of dust deposition and changes of its concentration in air. These were used to shape zones protecting against coal dust explosion. Methodology of research was presented, including methods of measurement of dust concentration as well as deposition. Measurements were taken in the Brzeszcze Mine within framework of MEZAP, co-financed by The National Centre for Research and Development (NCBR) and performed by the Institute of Mining Technology KOMAG, the Central Mining Institute (GIG) and the Coal Company PLC. The project enables performing of research related to measurements of volume of dust deposition as well as its concentration in air in protective zones in a number of mine workings in the Brzeszcze Mine. Developed model may be supportive tool in form of system located directly in protective zones or as operator tool warning about increasing hazard of coal dust explosion.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferriter, J.P.

    The paper begins by describing the role of the International Energy Agency, the importance of coal, what the IEA is doing in the area of clean coal technology, and the role of the IEA Coal Industry Advisory Board. The paper then discusses which coal technologies will be chosen, what the problem areas are, and what can be done to accelerate the take-up of clean coal technologies.

  12. Development of Self-Powered Wireless-Ready High Temperature Electrochemical Sensors for In-Situ Corrosion Monitoring for Boiler Tubes in Next Generation Coal-based Power Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Xingbo

    The key innovation of this project is the synergy of the high temperature sensor technology based on the science of electrochemical measurement and state-of-the-art wireless communication technology. A novel self-powered wireless high temperature electrochemical sensor system has been developed for coal-fired boilers used for power generation. An initial prototype of the in-situ sensor demonstrated the capability of the wireless communication system in the laboratory and in a pilot plant (Industrial USC Boiler Setting) environment to acquire electrochemical potential and current signals during the corrosion process. Uniform and localized under-coal ash deposit corrosion behavior of Inconel 740 superalloy has been studiedmore » at different simulated coal ash hot corrosion environments using the developed sensor. Two typical potential noise patterns were found to correlate with the oxidation and sulfidation stages in the hot coal ash corrosion process. Two characteristic current noise patterns indicate the extent of the corrosion. There was a good correlation between the responses of electrochemical test data and the results from corroded surface analysis. Wireless electrochemical potential and current noise signals from a simulated coal ash hot corrosion process were concurrently transmitted and recorded. The results from the performance evaluation of the sensor confirm a high accuracy in the thermodynamic and kinetic response represented by the electrochemical noise and impedance test data.« less

  13. The NASA Hydrogen Energy Systems Technology study - A summary

    NASA Technical Reports Server (NTRS)

    Laumann, E. A.

    1976-01-01

    This study is concerned with: hydrogen use, alternatives and comparisons, hydrogen production, factors affecting application, and technology requirements. Two scenarios for future use are explained. One is called the reference hydrogen use scenario and assumes continued historic uses of hydrogen along with additional use for coal gasification and liquefaction, consistent with the Ford technical fix baseline (1974) projection. The expanded scenario relies on the nuclear electric economy (1973) energy projection and assumes the addition of limited new uses such as experimental hydrogen-fueled aircraft, some mixing with natural gas, and energy storage by utilities. Current uses and supply of hydrogen are described, and the technological requirements for developing new methods of hydrogen production are discussed.

  14. Sensitivity of Solar Fossil Hybrid Electricity Technology Penetration to Price and Efficiency Projections

    EPA Science Inventory

    With many aging coal and nuclear plants nearing retirement age, new electricity production capacity will need to be built over the next several decades. There are many methods of generating electricity, each with different benefits and drawbacks. While solar and wind generation a...

  15. Advanced steam power plant concepts with optimized life-cycle costs: A new approach for maximum customer benefit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seiter, C.

    1998-07-01

    The use of coal power generation applications is currently enjoying a renaissance. New highly efficient and cost-effective plant concepts together with environmental protection technologies are the main factors in this development. In addition, coal is available on the world market at attractive prices and in many places it is more readily available than gas. At the economical leading edge, standard power plant concepts have been developed to meet the requirements of emerging power markets. These concepts incorporate the high technological state-of-the-art and are designed to achieve lowest life-cycle costs. Low capital cost, fuel costs and operating costs in combination withmore » shortest lead times are the main assets that make these plants attractive especially for IPPs and Developers. Other aspects of these comprehensive concepts include turnkey construction and the willingness to participate in BOO/BOT projects. One of the various examples of such a concept, the 2 x 610-MW Paiton Private Power Project Phase II in Indonesia, is described in this paper. At the technological leading edge, Siemens has always made a major contribution and was pacemaker for new developments in steam power plant technology. Modern coal-fired steam power plants use computer-optimized process and plant design as well as advanced materials, and achieve efficiencies exceeding 45%. One excellent example of this high technology is the world's largest lignite-fired steam power plant Schwarze Pumpe in Germany, which is equipped with two 800 MW Siemens steam turbine generators with supercritical steam parameters. The world's largest 50-Hz single-shaft turbine generator with supercritical steam parameters rated at 1025 MW for the Niederaussem lignite-fired steam power plant in Germany is a further example of the sophisticated Siemens steam turbine technology and sets a new benchmark in this field.« less

  16. Applications of micellar enzymology to clean coal technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walsh, C.T.

    1990-10-26

    This project is designed to develop methods for pre-combustion coal remediation by implementing recent advances in enzyme biochemistry. The novel approach of this study is incorporation of hydrophilic oxidative enzymes in reverse micelles in an organic solvent. Enzymes from commercial sources or microbial extracts are being investigated for their capacity to remove organic sulfur from coal by oxidation of the sulfur groups, splitting of C-S bonds and loss of sulfur as sulfuric acid Dibenzothiophene (DBT) and ethlyphenylsulfide (EPS) are serving as models of organic sulfur-containing components of coal in initial studies. A goal of this project is to define amore » reverse micelle system that optimizes the catalytic activity of enzymes toward desulfurization of model compounds and ultimately coal samples. Among the variables which will be examined are the surfactant, the solvent, the water:surfactant ration and the pH and ionic strength of the aqueous phase. Studies were carried out with HRP, Type I RZ=1.2 and Type VI RZ=3.2 and laccase from Polyporus versicolor. Substrates for HRP assays included hydrogen peroxide, DBT, DBT sulfoxide, and DBT sulfone. Buffers included sodium phosphate. For formation of reverse micelle solutions the surfactant AOT, di(2-ethyl-hexyl)sodium sulphosuccinate, was obtained from Sigma Chemical Co. Isooctant was used as organic solvent. 12 refs., 5 figs., 3 tabs.« less

  17. US Department of Energy`s high-temperature and high-pressure particulate cleanup for advanced coal-based power systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dennis, R.A.

    1997-05-01

    The availability of reliable, low-cost electricity is a cornerstone for the United States` ability to compete in the world market. The Department of Energy (DOE) projects the total consumption of electricity in the US to rise from 2.7 trillion kilowatt-hours in 1990 to 3.5 trillion in 2010. Although energy sources are diversifying, fossil fuel still produces 90 percent of the nation`s energy. Coal is our most abundant fossil fuel resource and the source of 56 percent of our electricity. It has been the fuel of choice because of its availability and low cost. A new generation of high-efficiency power systemsmore » has made it possible to continue the use of coal while still protecting the environment. Such power systems greatly reduce the pollutants associated with cola-fired plants built before the 1970s. To realize this high efficiency and superior environmental performance, advanced coal-based power systems will require gas stream cleanup under high-temperature and high-pressure (HTHP) process conditions. Presented in this paper are the HTHP particulate capture requirements for the Integrated Gasification Combined Cycle (IGCC) and Pressurized Fluidized-Bed Combustion (PFBC) power systems, the HTHP particulate cleanup systems being implemented in the PFBC and IGCC Clean Coal Technology (CCT) Projects, and the currently available particulate capture performance results.« less

  18. Dustfall design of open coal yard in the power plant-a case study on the closed reconstruction project of coal storage yard in shengli power plant

    NASA Astrophysics Data System (ADS)

    Wang, Kunpeng; Ji, Weidong; Zhang, Feifei; Yu, Wei; Zheng, Runqing

    2018-02-01

    This thesis, based on the closed reconstruction project of the coal storage yard of Shengli Power Plant which is affiliated to Sinopec Shengli Petroleum Administration, first makes an analysis on the significance of current dustfall reconstruction of open coal yard, then summarizes the methods widely adopted in the dustfall of large-scale open coal storage yard of current thermal power plant as well as their advantages and disadvantages, and finally focuses on this project, aiming at providing some reference and assistance to the future closed reconstruction project of open coal storage yard in thermal power plant.

  19. Low Cost High-H 2 Syngas Production for Power and Liquid Fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, S. James

    2015-07-31

    This report summarizes the technical progress made of the research project entitled “Low Cost High-H2 Syngas Production for Power and Liquid Fuels,” under DOE Contract No. DE-FE-0011958. The period of performance was October 1, 2013 through July 30, 2015. The overall objectives of this project was to determine the technical and economic feasibility of a systems approach for producing high hydrogen syngas from coal with the potential to reduce significantly the cost of producing power, chemical-grade hydrogen or liquid fuels, with carbon capture to reduce the environmental impact of gasification. The project encompasses several areas of study and the resultsmore » are summarized here. (1) Experimental work to determine the technical feasibility of a novel hybrid polymer/metal H2-membrane to recover pure H2 from a coal-derived syngas was done. This task was not successful. Membranes were synthesized and show impermeability of any gases at required conditions. The cause of this impermeability was most likely due to the densification of the porous polymer membrane support made from polybenzimidazole (PBI) at test temperatures above 250 °C. (2) Bench-scale experimental work was performed to extend GTI's current database on the University of California Sulfur Recovery Process-High Pressure (UCSRP-HP) and recently renamed Sulfur Removal and Recovery (SR2) process for syngas cleanup including removal of sulfur and other trace contaminants, such as, chlorides and ammonia. The SR2 process tests show >90% H2S conversion with outlet H2S concentrations less than 4 ppmv, and 80-90% ammonia and chloride removal with high mass transfer rates. (3) Techno-economic analyses (TEA) were done for the production of electric power, chemical-grade hydrogen and diesel fuels, from a mixture of coal- plus natural gas-derived syngas using the Aerojet Rocketdyne (AR) Advanced Compact coal gasifier and a natural gas partial oxidation reactor (POX) with SR2 technology. Due to the unsuccessful experimental results with the hybrid polymer/metal H2 membrane, a conventional CO2 capture (single-stage Selexol) and hydrogen purification (PSA) technologies were used in the appropriate cases. In all cases, the integrated system of Advanced Compact coal gasifier, non-catalytic natural gas partial oxidation, and SR2 multicontaminant removal with state-of-the-art auxiliary system provided a 5-25% cost advantage over the base line plants using GEE coal gasifier with conventional Selexol/Claus sulfur removal and recovery. These plants also produce 18-30% less CO2 than with the conventional coal gasification plants.« less

  20. Environmental monitoring for the DOE coolside and LIMB demonstration extension projects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, T.; Contos, L.; Adams, L.

    1992-02-01

    The purpose of this document is to present environmental monitoring data collected during the US DOE Limestone Injection Multistage Burner (LIMB) Demonstration Project Extension. The objective of the LIMB program is to demonstrate the sulfur dioxide (SO{sub 2}) and nitrogen oxide (NO{sub x}) emission reduction capabilities of the LIMB system. The LIMB system is a retrofit technology to be used for existing coal-fired boilers equipped with electrostatic precipitators. (VC)

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The goal of the US Department of Energy (DOE) Underground Coal Conversion (UCC) program is to develop the technology to produce clean fuels from coal deposits that are unsuitable for commercial exploitation by conventional mining techniques. The highest priority is to develop and demonstrate, in conjunction with industry, a commercially feasible process for underground gasification of low-rank coal in the 1985 to 1987 time period. The DOE program has stimulated industry interest and activity in developing UCC technology. Several major energy corporations and utilities have invested private funds in UCC research and development (R and D) projects. Results of themore » program to date indicate that, while UCC is technically feasible, it still contains some process unknowns, environmental risks, and economic risks that require R and D. In order to contribute to the national energy goals, a strong DOE program that incorporates maximum industry involvement is planned. The program's strategy is to remove the high-risk elements of UCC by resolving technical, environmental, and economic uncertainties. This will enable industry to assume responsibility for commercialization of the technology. Thus, the elements of the program have been designed to: provide detailed design and operational data that industry can scale-up with confidence; provide accurate and complete cost estimates that can be scaled-up and will allow comparison with alternative processes; provide detailed environmental impact and control data to allow industry to implement projects that will meet applicable standards; verify the reliability of continuous operation of UCC processes; and show that UCC processes have the flexibility to meet a variety of commercial needs.« less

  2. Leading trends in environmental regulation that affect energy development. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steele, R V; Attaway, L D; Christerson, J A

    1980-01-01

    Major environmental issues that are likely to affect the implementation of energy technologies between now and the year 2000 are identified and assessed. The energy technologies specifically addressed are: oil recovery and processing; gas recovery and processing; coal liquefaction; coal gasification (surface); in situ coal gasification; direct coal combustion; advanced power systems; magnetohydrodynamics; surface oil shale retorting; true and modified in situ oil shale retorting; geothermal energy; biomass energy conversion; and nuclear power (fission). Environmental analyses of these technologies included, in addition to the main processing steps, the complete fuel cycle from resource extraction to end use. A comprehensive surveymore » of the environmental community (including environmental groups, researchers, and regulatory agencies) was carried out in parallel with an analysis of the technologies to identify important future environmental issues. Each of the final 20 issues selected by the project staff has the following common attributes: consensus of the environmental community that the issue is important; it is a likely candidate for future regulatory action; it deals with a major environmental aspect of energy development. The analyses of the 20 major issues address their environmental problem areas, current regulatory status, and the impact of future regulations. These analyses are followed by a quantitative assessment of the impact on energy costs and nationwide pollutant emissions of possible future regulations. This is accomplished by employing the Strategic Environmental Assessment System (SEAS) for a subset of the 20 major issues. The report concludes with a more general discussion of the impact of environmental regulatory action on energy development.« less

  3. Coal resources, reserves and peak coal production in the United States

    USGS Publications Warehouse

    Milici, Robert C.; Flores, Romeo M.; Stricker, Gary D.

    2013-01-01

    In spite of its large endowment of coal resources, recent studies have indicated that United States coal production is destined to reach a maximum and begin an irreversible decline sometime during the middle of the current century. However, studies and assessments illustrating coal reserve data essential for making accurate forecasts of United States coal production have not been compiled on a national basis. As a result, there is a great deal of uncertainty in the accuracy of the production forecasts. A very large percentage of the coal mined in the United States comes from a few large-scale mines (mega-mines) in the Powder River Basin of Wyoming and Montana. Reported reserves at these mines do not account for future potential reserves or for future development of technology that may make coal classified currently as resources into reserves in the future. In order to maintain United States coal production at or near current levels for an extended period of time, existing mines will eventually have to increase their recoverable reserves and/or new large-scale mines will have to be opened elsewhere. Accordingly, in order to facilitate energy planning for the United States, this paper suggests that probabilistic assessments of the remaining coal reserves in the country would improve long range forecasts of coal production. As it is in United States coal assessment projects currently being conducted, a major priority of probabilistic assessments would be to identify the numbers and sizes of remaining large blocks of coal capable of supporting large-scale mining operations for extended periods of time and to conduct economic evaluations of those resources.

  4. W.A. Parish Post Combustion CO 2 Capture and Sequestration Project Final Public Design Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Armpriester, Anthony

    The Petra Nova Project is a commercial scale post-combustion carbon dioxide capture project that is being developed by a joint venture between NRG Energy (NRG) and JX Nippon Oil and Gas Exploration (JX). The project is designed to separate and capture carbon dioxide from an existing coal-fired unit's flue gas slipstream at NRG's W.A. Parish Generation Station located southwest of Houston, Texas. The captured carbon dioxide will be transported by pipeline and injected into the West Ranch oil field to boost oil production. The project, which is partially funded by financial assistance from the U.S. Department of Energy will usemore » Mitsubishi Heavy Industries of America, Inc.'s Kansai Mitsubishi Carbon Dioxide Recovery (KM-CDR(R)) advanced amine-based carbon dioxide absorption technology to treat and capture at least 90% of the carbon dioxide from a 240 megawatt equivalent flue gas slipstream off of Unit 8 at W.A. Parish. The project will capture approximately 5,000 tons of carbon dioxide per day or 1.5 million tons per year that Unit 8 would otherwise emit, representing the largest commercial scale deployment of post-combustion carbon dioxide capture at a coal power plant to date. The joint venture issued full notice to proceed in July 2014 and when complete, the project is expected to be the world's largest post-combustion carbon dioxide capture facility on an existing coal plant. The detailed engineering is sufficiently complete to prepare and issue the Final Public Design Report.« less

  5. Development of clean coal and clean soil technologies using advanced agglomeration technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ignasiak, B.; Pawlak, W.; Szymocha, K.

    1990-04-01

    The specific objectives of the bituminous coal program were to explore and evaluate the application of advanced agglomeration technology for: (1)desulphurization of bituminous coals to sulphur content acceptable within the current EPA SO{sub 2} emission guidelines; (2) deashing of bituminous coals to ash content of less than 10 percent; and (3)increasing the calorific value of bituminous coals to above 13,000 Btu/lb. (VC)

  6. 76 FR 336 - Intent To Prepare a Supplemental Environmental Impact Statement (SEIS) for PacRim Coal's Proposed...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-04

    ... Environmental Impact Statement (SEIS) for PacRim Coal's Proposed Chuitna Coal Project AGENCY: U.S. Army Corps of... Chuitna Coal Project. It is anticipated that the Environmental Protection Agency (EPA), the Native Village... the Alaska Surface Coal Mining Control and Reclamation Act (ASCMCRA) permit, which governs all aspects...

  7. Temporal trends and spatial variation characteristics of primary air pollutants emissions from coal-fired industrial boilers in Beijing, China.

    PubMed

    Xue, Yifeng; Tian, Hezhong; Yan, Jing; Zhou, Zhen; Wang, Junling; Nie, Lei; Pan, Tao; Zhou, Junrui; Hua, Shenbing; Wang, Yong; Wu, Xiaoqing

    2016-06-01

    Coal-fired combustion is recognized as a significant anthropogenic source of atmospheric compounds in Beijing, causing heavy air pollution events and associated deterioration in visibility. Obtaining an accurate understanding of the temporal trends and spatial variation characteristics of emissions from coal-fired industrial combustion is essential for predicting air quality changes and evaluating the effectiveness of current control measures. In this study, an integrated emission inventory of primary air pollutants emitted from coal-fired industrial boilers in Beijing is developed for the period of 2007-2013 using a technology-based approach. Future emission trends are projected through 2030 based on current energy-related and emission control policies. Our analysis shows that there is a general downward trend in primary air pollutants emissions because of the implementation of stricter local emission standards and the promotion by the Beijing municipal government of converting from coal-fired industrial boilers to gas-fired boilers. However, the ratio of coal consumed by industrial boilers to total coal consumption has been increasing, raising concerns about the further improvement of air quality in Beijing. Our estimates indicate that the total emissions of PM10, PM2.5, SO2, NOx, CO and VOCs from coal-fired industrial boilers in Beijing in 2013 are approximately 19,242 t, 13,345 t, 26,615 t, 22,965 t, 63,779 t and 1406 t, respectively. Under the current environmental policies and relevant energy savings and emission control plans, it may be possible to reduce NOx and other air pollutant emissions by 94% and 90% by 2030, respectively, if advanced flue gas purification technologies are implemented and coal is replaced with natural gas in the majority of existing boilers. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Tree planting experiences in the eastern interior coal province

    Treesearch

    Charles Medvick

    1980-01-01

    Fruit trees were planted successfully in 1918 and organized afforestation began in 1928. Professional foresters had a hand in some of the very earliest planting projects. Formal reclamation research played an important role in applying science to early reclamation technology; however, considerable work has preceded the scientists. Some success has been experienced with...

  9. PULSE COMBUSTOR DESIGN QUALIFICATION TEST AND CLEAN COAL FEEDSTOCK TEST - VOLUME I AND VOLUME II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Unknown

    For this Cooperative Agreement, the pulse heater module is the technology envelope for an indirectly heated steam reformer. The field of use of the steam reformer pursuant to this Cooperative Agreement with DOE is for the processing of sub-bituminous coals and lignite. The main focus is the mild gasification of such coals for the generation of both fuel gas and char--for the steel industry is the main focus. An alternate market application for the substitution of metallurgical coke is also presented. This project was devoted to qualification of a 253-tube pulse heater module. This module was designed, fabricated, installed, instrumentedmore » and tested in a fluidized bed test facility. Several test campaigns were conducted. This larger heater is a 3.5 times scale-up of the previous pulse heaters that had 72 tubes each. The smaller heater has been part of previous pilot field testing of the steam reformer at New Bern, North Carolina. The project also included collection and reduction of mild gasification process data from operation of the process development unit (PDU). The operation of the PDU was aimed at conditions required to produce char (and gas) for the Northshore Steel Operations. Northshore Steel supplied the coal for the process unit tests.« less

  10. JV Task 120 - Coal Ash Resources Research Consortium Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Debra Pflughoeft-Hassett; Loreal Heebink; David Hassett

    2009-03-28

    The Coal Ash Resources Research Consortium{reg_sign} (CARRC{reg_sign}, pronounced 'cars') is the core coal combustion product (CCP) research group at the Energy & Environmental Research Center (EERC). CARRC focuses on performing fundamental and applied scientific and engineering research emphasizing the environmentally safe, economical use of CCPs. CARRC member organizations, which include utilities and marketers, are key to developing industry-driven research in the area of CCP utilization and ensuring its successful application. The U.S. Department of Energy is a partner in CARRC through the EERC Jointly Sponsored Research Program, which provides matching funds for industrial member contributions and facilitates an increased levelmore » of effort in CARRC. CARRC tasks were designed to provide information on CCP performance, including environmental performance, engineering performance, favorable economics, and improved life cycle of products and projects. CARRC technical research tasks are developed based on member input and prioritization. CARRC special projects are developed with members and nonmembers to provide similar information and to support activities, including the assembly and interpretation of data, support for standards development and technology transfer, and facilitating product development and testing. CARRC activities from 2007 to 2009 included a range of research tasks, with primary work performed in laboratory tasks developed to answer specific questions or evaluate important fundamental properties of CCPs. The tasks were included in four categories: (1) Environmental Evaluations of CCPs; (2) Evaluation of Impacts on CCPs from Emission Controls; (3) Construction and Product-Related Activities; and (4) Technology Transfer and Maintenance Tasks. All tasks are designed to work toward achieving the CARRC overall goal and supporting objectives. The various tasks are coordinated in order to provide broad and useful technical data for CARRC members. Special projects provide an opportunity for non-CARRC members to sponsor specific research or technology transfer consistent with CARRC goals. This report covers CARRC activities from January 2007 through March 2009. These activities have been reported in CARRC Annual Reports and in member meetings over the past 2 years. CARRC continues to work with industry and various government agencies with its research, development, demonstration, and promotional activities nearing completion at the time of submission of this report. CARRC expects to continue its service to the coal ash industry in 2009 and beyond to work toward the common goal of advancing coal ash utilization by solving CCP-related technical issues and promoting the environmentally safe, technically sound, and economically viable management of these complex and changing materials.« less

  11. Modeling new coal projects: supercritical or subcritical?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carrino, A.J.; Jones, R.B.

    Decisions made on new build coal-fired plants are driven by several factors - emissions, fuel logistics and electric transmission access all provide constraints. The crucial economic decision whether to build supercritical or subcritical units often depends on assumptions concerning the reliability/availability of each technology, the cost of on-fuel operations including maintenance, the generation efficiencies and the potential for emissions credits at some future value. Modeling the influence of these key factors requires analysis and documentation to assure the assets actually meet the projected financial performance. This article addresses some of the issue related to the trade-offs that have the potentialmore » to be driven by the supercritical/subcritical decision. Solomon Associates has been collecting cost, generation and reliability data on coal-fired power generation assets for approximately 10 years using a strict methodology and taxonomy to categorize and compare actual plant operations data. This database provides validated information not only on performance, but also on alternative performance scenarios, which can provide useful insights in the pro forma financial analysis and models of new plants. 1 ref., 1 fig., 3 tabs.« less

  12. Commercial-scale demonstration of the Liquid Phase Methanol (LPMEOH{trademark}) process. Technical progress report number 9, July 1--September 30, 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The Liquid Phase Methanol (LPMEOH{trademark}) Demonstration Project at Kingsport, Tennessee, is a $213.7 million cooperative agreement between the US Department of Energy (DOE) and Air Products Liquid Phase Conversion Company, L.P. (the Partnership). The LPMEOH{trademark} Process Demonstration Unit is being built at a site located at the Eastman Chemical Company (Eastman) complex in Kingsport. The project involves the construction of an 80,000 gallons per day (260 tons per day (TPD)) methanol unit utilizing coal-derived synthesis gas from Eastman`s integrated coal gasification facility. The new equipment consists of synthesis gas feed preparation and compression facilities, the liquid phase reactor and auxiliaries,more » product distillation facilities, and utilities. This liquid phase process suspends fine catalyst particles in an inert liquid, forming a slurry. The slurry dissipates the heat of the chemical reaction away from the catalyst surface, protecting the catalyst and allowing the methanol synthesis reaction to proceed at higher rates. At the Eastman complex, the technology is being integrated with existing coal-gasifiers.« less

  13. Final Report of the Advanced Coal Technology Work Group

    EPA Pesticide Factsheets

    The Advanced Coal Technology workgroup reported to the Clean Air Act Advisory Committee. This page includes the final report of the Advanced Coal Technology Work Group to the Clean Air Act Advisory Committee.

  14. Advanced liquefaction using coal swelling and catalyst dispersion techniques. Quarterly progress report, July--September 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Curtis, C.W.; Gutterman, C.; Chander, S.

    The overall objective of this project is to develop a new approach for the direct liquefaction of coal to produce an all-distillate product slate at a sizable cost reduction over current technology. The approach integrates coal selection, pretreatment, coal swelling with catalyst impregnation, liquefaction, product recovery with characterization, alternate bottoms processing, and carrying out a technical assessment including an economic evaluation. The primary coal of this program, Black Thunder subbituminous coal, can be effectively beneficiated to about 3.5 wt % ash using aqueous sulfurous acid pretreatment. This treated coal can be further beneficiated to about 2 wt % ash usingmore » commercially available procedures. All three coals used in this study (Black Thunder, Burning Star bituminous, and Martin Lake lignite) are effectively swelled by a number of solvents. The most effective solvents are those having hetero-functionality. laboratory- and bench-scale liquefaction experimentation is underway using swelled and catalyst impregnated coal samples. Higher coal conversions were observed for the SO{sub 2}-treated subbituminous coal than the raw coal, regardless of catalyst type. Conversions of swelled coal were highest when Molyvan L, molybdenum naphthenate, and nickel octoate, respectively, were added to the liquefaction solvent. The study of bottoms processing consists of combining the ASCOT process which consists of coupling solvent deasphalting with delayed coking to maximize the production of coal-derived liquids while rejecting solids within the coke drum. The asphalt production phase has been completed; representative product has been evaluated. The solvent system for the deasphalting process has been established. Two ASCOT tests produced overall liquid yields (63.3 wt % and 61.5 wt %) that exceeded the combined liquid yields from the vacuum tower and ROSE process.« less

  15. Economic and environmental evaluations of extractable coal resources conducted by the U. S. Geological Survey

    USGS Publications Warehouse

    Ellis, M.S.; Rohrbacher, T.J.; Carter, M.D.; Molnia, C.L.; Osmonson, L.M.; Scott, D.C.

    2001-01-01

    The Economic and Environmental Evaluations of Extractable Coal Resources (E4CR) project integrates economic analyses of extractable coal resources with environmental and coal quality considerations in order to better understand the contribution that coal resources can make to help meet the Nation’s future energy needs. The project utilizes coal resource information derived from the recent National Coal Resource Assessment (NCRA), National Oil and Gas Assessment (NOGA), and Coal Availability and Recoverability Studies (CARS) conducted by the U.S. Geological Survey and other State and Federal cooperating agencies. The E4CR evaluations are designed to augment economic models created by the U.S. Geological Survey CARS and NCRA projects and by the Department of Energy/Energy Information Administration (DOE/EIA). E4CR evaluations are conducted on potentially minable coal beds within selected coalfields in the United States. Emphasis is placed on coalfields containing Federally owned coal and within or adjacent to Federal lands, as shown in U.S. Geological Survey Fact Sheets 012-98, 145-99, and 011-00 (U.S. Geological Survey, 1998, 1999, 2000). Other considerations for the selection of study areas include coal quality, potential environmental impact of coal production activities and coal utilization, the potential for coalbed methane development from the coal, and projected potential for future mining. Completion dates for the E4CR studies loosely follow the schedule for analogous NOGA studies to allow for a comparison of different energy resources in similar geographic areas.

  16. Hydrogen in the U.S. energy picture

    NASA Technical Reports Server (NTRS)

    Kelley, J. H.; Manvi, R.

    1979-01-01

    A study of hydrogen in the U.S. program performed by the Hydrogen Energy Systems Technology (HEST) investigation is reported. Historic production and use of hydrogen, hydrogen use projections, hydrogen supply, economics of hydrogen production and supply, and future research and development needs are discussed. The study found current U.S. hydrogen utilization to be dominated by chemical and petroleum industries, and to represent 3% of total energy consumption. Hydrogen uses are projected to grow by a factor of 5 to 20 during the remainder of this century, and new applications in synthetic fuel from coal manufacture and directly as energy storage or fuel are expected to develop. The study concluded that development of new methods of supplying hydrogen replacing natural gas and petroleum feedstocks with alternate sources such as coal and heavy oils, and electrolysis techniques is imperative.

  17. Pacific Northwest Laboratory annual report for 1983 to the DOE Office of Energy Research. Part 1. Biomedical sciences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drucker, H.

    1983-02-01

    Biomedical and health effects research conducted at PNL in 1982 on the evaluation of risk to man from existing and/or developing energy-related technologies are described. Most of the studies described in this report relate to activities for three major energy technologies: nuclear fuel cycle; fossil fuel cycle (oil, gas, and coal process technologies, mining, and utilization; synfuel development), and fudion (biomagnetic effects). The report is organized under these technologies. In addition, research reports are included on the application of nuclear energy to biomedical problems. Individual projects are indexed separately.

  18. State-of-the-art study of resource characterization and planning for underground coal mining. Final technical report as of June 30, 1980

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walton, D.; Ingham, W.; Kauffman, P.

    With the rapid developments taking place in coal mining technology and due to high investment costs, optimization of the structure of underground coal mines is crucial to the success of the mining project. The structure of a mine, once it is developed, cannot be readily changed and has a decisive influence on the productivity, safety, economics, and production capacity of the mine. The Department of Energy desires to ensure that the resource characterization and planning activity for underground coal mining will focus on those areas that offer the most promise of being advanced. Thus, this project was undertaken by Managementmore » Engineers Incorporated to determine the status in all aspects of the resource characterization and planning activities for underground coal mining as presently performed in the industry. The study team conducted a comprehensive computerized literature search and reviewed the results. From this a selection of the particularly relevant sources were annotated and a reference list was prepared, catalogued by resource characterization and mine planning activity. From this data, and discussions with industry representatives, academia, and research groups, private and federal, an assessment and evaluation was made of the state-of-the-art of each element in the resource characterization and mine planning process. The results of this analysis lead to the identifcation of areas requiring research and, specifically, those areas where DOE research efforts may be focused.« less

  19. A Course in Coal Science and Technology.

    ERIC Educational Resources Information Center

    Wheelock, T. D.

    1978-01-01

    This course introduces graduate students and advanced undergraduates to coal science and technology. Topics include: (1) the nature and occurrence of coal, (2) its chemical and physical characteristics, (3) methods of cleaning and preparing coal, and (4) processes for converting coal into clean solid, liquid, and gaseous fuels, as well as coke.…

  20. Bench-scale demonstration of hot-gas desulfurization technology. Quarterly report, April 1 - June 30, 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-12-31

    The US Department of Energy (DOE) Morgantown Energy Technology Center (METC) is sponsoring research in advanced methods for controlling contaminants in hot coal gasifier gas (coal gas) streams of integrated gasification combined-cycle (IGCC) power systems. The programs focus on hot-gas particulate removal and desulfurization technologies that match or nearly match the temperatures and pressures of the gasifier, cleanup system, and power generator. The work seeks to eliminate the need for expensive heat recovery equipment, reduce efficiency losses due to quenching, and minimize wastewater treatment costs. The goal of this project is to continue further development of the zinc titanate desulfurizationmore » and direct sulfur recovery process (DSRP) technologies by (1) scaling up the zinc titanate reactor system; (2) developing an integrated skid-mounted zinc titanate desulfurization-DSRP reactor system; (3) testing the integrated system over an extended period with real coal-as from an operating gasifier to quantify the degradative effect, if any, of the trace contaminants present in cola gas; (4) developing an engineering database suitable for system scaleup; and (5) designing, fabricating and commissioning a larger DSRP reactor system capable of operating on a six-fold greater volume of gas than the DSRP reactor used in the bench-scale field test. The work performed during the April 1 through June 30, 1996 period is described.« less

  1. Coal burning issues. [Book - monograph

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Green, A.E.S.

    1980-01-01

    The results of the scoping phase of an interdisciplinary assessment of the impact of the increased use of coal are reported in this monograph. Subject areas include: coal availability and coal mining; an energetics analysis of coal quality; coal transportation; coal burning technology; synthetic fuels from coal; technological innovations; water resources; atmospheric pollution; air pollution dispersion modeling; atmospheric modifications; solid waste and trace element impacts; agriculture; health effects of air pollution resulting from coal combustion; quantitative public policy assessments; financing capacity growth and coal conversions in the electric utility industry; coal and the states - a public choice perspective; andmore » federal regulatory and legal aspects.« less

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolfmeyer, J.C.; Jowers, C.; Weinstein, R.E.

    As the power industry moves toward increased competition, low operating costs become increasingly important for continued profitability. This paper provides an overview of the plant concept evaluation of using an emerging coal-fired technology for repowering one of Duke Energy steam generating stations. The paper describes the results of a US Department of Energy (DOE) conceptual design evaluation of an early commercial repowering application of advanced circulating pressurized fluidized bed combustion combined cycle technology (APFBC). The paper provides a review of the DOE study and summarizes the preliminary results. It shows the prospects for APFBC repowering, and discusses how this mightmore » be an attractive option for a wide range of existing power plants, when added baseload coal-fired generation is needed. This paper presents an APFBC concept under development by DOE and equipment manufacturers. This all-coal technology has projected energy efficiency in the 42 to 46% HHV (43 to 48% LHV) range and environmental emissions superior to New Source Performance Standards (NSPS). A DOE-sponsored Clean Coal Technology (CCT) demonstration program will pioneer the first commercial APFBC demonstration in year 2001. That 170 MWe APFBC CCT demonstration will use all new equipment, and become the City of Lakeland's C.D. McIntosh, Jr. steam plant Unit 4. This paper's concept evaluation is for a larger implementation. A Westinghouse W501F combustion turbine modified for APFBC operation is considered for use to produce a 300+MWe class APFBC combined cycle. At this size, APFBC has a wide application for repowering many existing units in America, Here, APFBC would repower an existing generation station, the Duke Energy Company's Dan River steam station. Repowering concepts are presented for APFBC repowering of Unit 3. The existing coal-fired Unit 3 has an output of about 150 MWe. When repowered with APFBC, this unit is boosted to about 280 MWe output, with high-energy efficiency.« less

  3. The chemical enhancement of the triboelectric separation of coal from pyrite and ash: A novel approach for electrostatic separation of mineral matter from coal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gustafson, R.M.; DiMare, S.; Sabatini, J.

    1992-02-01

    Arthur D. Little, Inc., under contract to the US DOE Pittsburgh Energy Technology Center, has developed a triboelectric separation device for coal beneficiation, that employs an entrained-flow, rotating-cylinder concept. The described apparatus has been used to test the efficacy of chemical pretreatment and in-situ treatment of coal on separation efficiency. Coal particle entrainment is achieved with gaseous carbon dioxide and particle collection is accomplished by an electrostatic plate separator. The triboelectric separation device incorporates instrumentation for the direct measurement of charge in the dilute-phase particle stream. Some of the pretreatment materials investigated under this project to modify the surface chargingmore » characteristics of the coal included oleic acid, sodium oleate, quinoline and dicyclohexylamine. Ammonia and sulfur dioxide at a concentration up to 1000 ppM was used for in-situ treatment of the coal, with carbon dioxide as the carrier/inerting gas. Nitrogen was used earlier in the test program as the carrier/inerting gas for the coal, but a severe arcing problem was encountered in the electrostatic collector with nitrogen as the carrier gas. This problem did not occur when carbon dioxide was used. The report covers the chemical treatment employed, and summarizes and interprets the results achieved. In addition, an economic analysis of a full scale system based on this concept is presented.« less

  4. Investigation on the activation of coal gangue by a new compound method.

    PubMed

    Li, Chao; Wan, Jianhua; Sun, Henghu; Li, Longtu

    2010-07-15

    In order to comprehensively utilize coal gangue as the main raw material in cementitious materials, improving its cementitious activity is a question of fundamental importance. In this paper, we present a new compound mechanical-hydro-thermal activation (CMHTA) technology to investigate the activation effect of coal gangue, and the traditional mechanical-thermal activation (TMTA) technology was used as reference. The purpose of this study is to give a detailed comparison between these two methods with regard to the mineral composition, crystal structure and microstructure, by XRD, IR, MAS NMR, XPS and mechanical property analysis. The prepared coal gangue based blended cement, containing 52% of activated coal gangue C (by CMHTA technology), has a better mechanical property than activated coal gangue T (by TMTA technology) and raw coal gangue. The results show that both of the TMTA and CMHTA technologies can improve the cementitious activity of raw gangue greatly. Moreover, compared with TMTA, the mineral phases such as feldspar and muscovite in raw coal gangue were partially decomposed, and the crystallinity of quartz decreased, due to the effect of adding CaO and hydro-thermal process of CMHTA technology. 2010 Elsevier B.V. All rights reserved.

  5. Chemical analyses of coal, coal-associated rocks and coal combustion products collected for the National Coal Quality Inventory

    USGS Publications Warehouse

    Hatch, Joseph R.; Bullock, John H.; Finkelman, Robert B.

    2006-01-01

    In 1999, the USGS initiated the National Coal Quality Inventory (NaCQI) project to address a need for quality information on coals that will be mined during the next 20-30 years. At the time this project was initiated, the publicly available USGS coal quality data was based on samples primarily collected and analyzed between 1973 and 1985. The primary objective of NaCQI was to create a database containing comprehensive, accurate and accessible chemical information on the quality of mined and prepared United States coals and their combustion byproducts. This objective was to be accomplished through maintaining the existing publicly available coal quality database, expanding the database through the acquisition of new samples from priority areas, and analysis of the samples using updated coal analytical chemistry procedures. Priorities for sampling include those areas where future sources of compliance coal are federally owned. This project was a cooperative effort between the U.S. Geological Survey (USGS), State geological surveys, universities, coal burning utilities, and the coal mining industry. Funding support came from the Electric Power Research Institute (EPRI) and the U.S. Department of Energy (DOE).

  6. Carbon Capture and Water Emissions Treatment System (CCWESTRS) at Fossil-Fueled Electric Generating Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    P. Alan Mays; Bert R. Bock; Gregory A. Brodie

    The Tennessee Valley Authority (TVA), the Electric Power Research Institute (EPRI), and the Department of Energy-National Energy Technologies Laboratory (DOE-NETL) are evaluating and demonstrating integration of terrestrial carbon sequestration techniques at a coal-fired electric power plant through the use of Flue Gas Desulfurization (FGD) system gypsum as a soil amendment and mulch, and coal fly ash pond process water for periodic irrigation. From January to March 2002, the Project Team initiated the construction of a 40 ha Carbon Capture and Water Emissions Treatment System (CCWESTRS) near TVA's Paradise Fossil Plant on marginally reclaimed surface coal mine lands in Kentucky. Themore » CCWESTRS is growing commercial grade trees and cover crops and is expected to sequester 1.5-2.0 MT/ha carbon per year over a 20-year period. The concept could be used to meet a portion of the timber industry's needs while simultaneously sequestering carbon in lands which would otherwise remain non-productive. The CCWESTRS includes a constructed wetland to enhance the ability to sequester carbon and to remove any nutrients and metals present in the coal fly ash process water runoff. The CCWESTRS project is a cooperative effort between TVA, EPRI, and DOE-NETL, with a total budget of $1,574,000. The proposed demonstration project began in October 2000 and has continued through December 2005. Additional funding is being sought in order to extend the project. The primary goal of the project is to determine if integrating power plant processes with carbon sequestration techniques will enhance carbon sequestration cost-effectively. This goal is consistent with DOE objectives to provide economically competitive and environmentally safe options to offset projected growth in U.S. baseline emissions of greenhouse gases after 2010, achieve the long-term goal of $10/ton of avoided net costs for carbon sequestration, and provide half of the required reductions in global greenhouse gases by 2025. Other potential benefits of the demonstration include developing a passive technology for water treatment for trace metal and nutrient release reductions, using power plant by-products to improve coal mine land reclamation and carbon sequestration, developing wildlife habitat and green-space around production facilities, generating Total Maximum Daily Load (TMDL) credits for the use of process water, and producing wood products for use by the lumber and pulp and paper industry. Project activities conducted during the five year project period include: Assessing tree cultivation and other techniques used to sequester carbon; Project site assessment; Greenhouse studies to determine optimum plant species and by-product application; Designing, constructing, operating, monitoring, and evaluating the CCWESTRS system; and Reporting (ongoing). The ability of the system to sequester carbon will be the primary measure of effectiveness, measured by accessing survival and growth response of plants within the CCWESTRS. In addition, costs associated with design, construction, and monitoring will be evaluated and compared to projected benefits of other carbon sequestration technologies. The test plan involves the application of three levels each of two types of power plant by-products--three levels of FGD gypsum mulch, and three levels of ash pond irrigation water. This design produces nine treatment levels which are being tested with two species of hardwood trees (sweet gum and sycamore). The project is examining the effectiveness of applications of 0, 8-cm, and 15-cm thick gypsum mulch layers and 0, 13 cm, and 25 cm of coal fly ash water for irrigation. Each treatment combination is being replicated three times, resulting in a total of 54 treatment plots (3 FGD gypsum levels X 3 irrigation water levels x 2 tree species x 3 replicates). Survival and growth response of plant species in terms of sequestering carbon in plant material and soil will be the primary measure of effectiveness of each treatment. Additionally, the ability of the site soils and unsaturated zone subsurface materials will be evaluated for their effectiveness at treating the irrigation water for various pollutants.« less

  7. Characterization of airborne float coal dust emitted during continuous mining, longwall mining and belt transport.

    PubMed

    Shahan, M R; Seaman, C E; Beck, T W; Colinet, J F; Mischler, S E

    2017-09-01

    Float coal dust is produced by various mining methods, carried by ventilating air and deposited on the floor, roof and ribs of mine airways. If deposited, float dust is re-entrained during a methane explosion. Without sufficient inert rock dust quantities, this float coal dust can propagate an explosion throughout mining entries. Consequently, controlling float coal dust is of critical interest to mining operations. Rock dusting, which is the adding of inert material to airway surfaces, is the main control technique currently used by the coal mining industry to reduce the float coal dust explosion hazard. To assist the industry in reducing this hazard, the Pittsburgh Mining Research Division of the U.S. National Institute for Occupational Safety and Health initiated a project to investigate methods and technologies to reduce float coal dust in underground coal mines through prevention, capture and suppression prior to deposition. Field characterization studies were performed to determine quantitatively the sources, types and amounts of dust produced during various coal mining processes. The operations chosen for study were a continuous miner section, a longwall section and a coal-handling facility. For each of these operations, the primary dust sources were confirmed to be the continuous mining machine, longwall shearer and conveyor belt transfer points, respectively. Respirable and total airborne float dust samples were collected and analyzed for each operation, and the ratio of total airborne float coal dust to respirable dust was calculated. During the continuous mining process, the ratio of total airborne float coal dust to respirable dust ranged from 10.3 to 13.8. The ratios measured on the longwall face were between 18.5 and 21.5. The total airborne float coal dust to respirable dust ratio observed during belt transport ranged between 7.5 and 21.8.

  8. Greenridge Multi-Pollutant Control Project Preliminary Public Design Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Connell, Daniel P

    2009-01-12

    The Greenidge Multi-Pollutant Control Project is being conducted as part of the U.S. Department of Energy's Power Plant Improvement Initiative to demonstrate an innovative combination of air pollution control technologies that can cost-effectively reduce emissions of SO{sub 2}, NO{sub x}, Hg, acid gases (SO{sub 3}, HCl, and HF), and particulate matter from smaller coal-fired electrical generating units (EGUs). The multi-pollutant control system includes a hybrid selective non-catalytic reduction (SNCR)/in-duct selective catalytic reduction (SCR) system to reduce NOx emissions by {ge}60%, followed by a Turbosorp{reg_sign} circulating fluidized bed dry scrubber system to reduce emissions of SO{sub 2}, SO{sub 3}, HCl, andmore » HF by {ge}95%. Mercury removal of {ge}90% is also targeted via the co-benefits afforded by the in-duct SCR, dry scrubber, and baghouse and by injection of activated carbon upstream of the scrubber, as required. The technology is particularly well suited, because of its relatively low capital and maintenance costs and small space requirements, to meet the needs of coal-fired units with capacities of 50-300 MWe. There are about 440 such units in the United States that currently are not equipped with SCR, flue gas desulfurization (FGD), or mercury control systems. These smaller units are a valuable part of the nation's energy infrastructure, constituting about 60 GW of installed capacity. However, with the onset of the Clean Air Interstate Rule, Clean Air Mercury Rule, and various state environmental actions requiring deep reductions in emissions of SO{sub 2}, NO{sub x}, and mercury, the continued operation of these units increasingly depends upon the ability to identify viable air pollution control retrofit options for them. The large capital costs and sizable space requirements associated with conventional technologies such as SCR and wet FGD make these technologies unattractive for many smaller units. The Greenidge Project aims to confirm the commercial readiness of an emissions control system that is specifically designed to meet the environmental compliance requirements of these smaller coal-fired EGUs. The multi-pollutant control system is being installed and tested on the AES Greenidge Unit 4 (Boiler 6) by a team including CONSOL Energy Inc. as prime contractor, AES Greenidge LLC as host site owner, and Babcock Power Environmental Inc. as engineering, procurement, and construction contractor. All funding for the project is being provided by the U.S. Department of Energy, through its National Energy Technology Laboratory, and by AES Greenidge. AES Greenidge Unit 4 is a 107 MW{sub e} (net), 1950s vintage, tangentially-fired, reheat unit that is representative of many of the 440 smaller coal-fired units identified above. Following design and construction, the multi-pollutant control system will be demonstrated over an approximately 20-month period while the unit fires 2-4% sulfur eastern U.S. bituminous coal and co-fires up to 10% biomass. This Preliminary Public Design Report is the first in a series of two reports describing the design of the multi-pollutant control facility that is being demonstrated at AES Greenidge. Its purpose is to consolidate for public use all available nonproprietary design information on the Greenidge Multi-Pollutant Control Project. As such, the report includes a discussion of the process concept, design objectives, design considerations, and uncertainties associated with the multi-pollutant control system and also summarizes the design of major process components and balance of plant considerations for the AES Greenidge Unit 4 installation. The Final Public Design Report, the second report in the series, will update this Preliminary Public Design Report to reflect the final, as-built design of the facility and to incorporate data on capital costs and projected operating costs.« less

  9. Evaluation of AFBC co-firing of coal and hospital wastes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-02-01

    The purpose of this program is to expand the use of coal by utilizing CFB (circulating fluidized bed) technology to provide an environmentally safe method for disposing of waste materials. Hospitals are currently experiencing a waste management crisis. In many instances, they are no longer permitted to burn pathological and infectious wastes in incinerators. Older hospital incinerators are not capable of maintaining the stable temperatures and residence times necessary in order to completely destroy toxic substances before release into the atmosphere. In addition, the number of available landfills which can safely handle these substances is decreasing each year. The purposemore » of this project is to conduct necessary research investigating whether the combustion of the hospital wastes in a coal-fired circulating fluidized bed boiler will effectively destroy dioxins and other hazardous substances before release into the atmosphere. If this is proven feasible, in light of the quantity of hospital wastes generated each year, it would create a new market for coal -- possibly 50 million tons/year.« less

  10. Use of saline water in energy development. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Israelsen, C.E.; Adams, V.D.; Batty, J.C.

    1980-06-01

    Information was assembled relative to future energy-related projects in the upper basin, and estimates were made of their anticipated water needs. Using computer models, various options were tested for using saline water for coal-fired power plant cooling. Both cooling towers and brine evaporation ponds were included. Information is presented of several proven water treatment technologies, and comparisons are made of their cost effectiveness when placed in various combinations in the power plant makeup and blowdown water systems. A relative value scale was developed which compares graphically the relative values of waters of different salinities based on three different water treatmentmore » options and predetermined upper limits of cooling tower circulating salinities. Coal from several different mines was slurried in waters of different salinities. Samples were analyzed in the laboratory to determine which constituents had been leached from or absorbed by the coal, and what possible deleterious effects this might have on the burning properties of the coal, or on the water for culinary use or irrigation.« less

  11. Gasification Product Improvement Facility (GPIF). Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-09-01

    The gasifier selected for development under this contract is an innovative and patented hybrid technology which combines the best features of both fixed-bed and fluidized-bed types. PyGas{trademark}, meaning Pyrolysis Gasification, is well suited for integration into advanced power cycles such as IGCC. It is also well matched to hot gas clean-up technologies currently in development. Unlike other gasification technologies, PyGas can be designed into both large and small scale systems. It is expected that partial repowering with PyGas could be done at a cost of electricity of only 2.78 cents/kWh, more economical than natural gas repowering. It is extremely unfortunatemore » that Government funding for such a noble cause is becoming reduced to the point where current contracts must be canceled. The Gasification Product Improvement Facility (GPIF) project was initiated to provide a test facility to support early commercialization of advanced fixed-bed coal gasification technology at a cost approaching $1,000 per kilowatt for electric power generation applications. The project was to include an innovative, advanced, air-blown, pressurized, fixed-bed, dry-bottom gasifier and a follow-on hot metal oxide gas desulfurization sub-system. To help defray the cost of testing materials, the facility was to be located at a nearby utility coal fired generating site. The patented PyGas{trademark} technology was selected via a competitive bidding process as the candidate which best fit overall DOE objectives. The paper describes the accomplishments to date.« less

  12. Impacts of the Minamata Convention for Mercury Emissions from Coal-fired Power Generation in Asia

    NASA Astrophysics Data System (ADS)

    Giang, A.; Stokes, L. C.; Streets, D. G.; Corbitt, E. S.; Selin, N. E.

    2014-12-01

    We explore the potential implications of the recently signed United Nations Minamata Convention on Mercury for emissions from coal-fired power generation in Asia, and the impacts of these emissions changes on deposition of mercury worldwide by 2050. We use qualitative interviews, document analysis, and engineering analysis to create plausible technology scenarios consistent with the Convention, taking into account both technological and political factors. We translate these scenarios into possible emissions inventories for 2050, based on IPCC development scenarios, and then use the GEOS-Chem global transport model to evaluate the effect of these different technology choices on mercury deposition over geographic regions and oceans. We find that China is most likely to address mercury control through co-benefits from technologies for SO2, NOx, and particulate matter (PM) capture that will be required to attain its existing air quality goals. In contrast, India is likely to focus on improvements to plant efficiency such as upgrading boilers, and coal washing. Compared to current technologies, we project that these changes will result in emissions decreases of approximately 140 and 190 Mg/yr for China and India respectively in 2050, under an A1B development scenario. With these emissions reductions, simulated average gross deposition over India and China are reduced by approximately 10 and 3 μg/m2/yr respectively, and the global average concentration of total gaseous mercury (TGM) is reduced by approximately 10% in the Northern hemisphere. Stricter, but technologically feasible, requirements for mercury control in both countries could lead to an additional 200 Mg/yr of emissions reductions. Modeled differences in concentration and deposition patterns between technology suites are due to differences in both the mercury removal efficiency of technologies and their resulting stack speciation.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Looney, J.H.; Im, C.J.

    Under the sponsorship of DOE/METC, UCC Research completed a program in 1984 concerned with the development, testing, and manufacture of an ultra-clean coal-water mixture fuel using the UCC two-stage physical beneficiation and coal-water mixture preparation process. Several gallons of ultra-clean coal-water slurry produced at the UCC Research pilot facility was supplied to DOE/METC for combustion testing. The finalization of this project resulted in the presentation of a conceptual design and economic analysis of an ultra-clean coal-water mixture processing facility sufficient in size to continuously supply fuel to a 100 MW turbine power generation system. Upon completion of the above program,more » it became evident that substantial technological and economic improvement could be realized through further laboratory and engineering investigation of the UCC two-stage physical beneficiation process. Therefore, as an extension to the previous work, the purpose of the present program was to define the relationship between the controlling technical parameters as related to coal-water slurry quality and product price, and to determine the areas of improvement in the existing flow-scheme, associated cost savings, and the overall effect of these savings on final coal-water slurry price. Contents of this report include: (1) introduction; (2) process refinement (improvement of coal beneficiation process, different source coals and related cleanability, dispersants and other additives); (3) coal beneficiation and cost parametrics summary; (4) revised conceptual design and economic analysis; (5) operating and capital cost reduction; (6) conclusion; and (7) appendices. 24 figs., 12 tabs.« less

  14. Benefits of Integration of Aerojet Rocketdyne and RTI Advanced Gasification Technologies for Hydrogen-Rich Syngas Production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, Vijay; Denton, David; SHarma, Pradeep

    The key objective for this project was to evaluate the potential to achieve substantial reductions in the production cost of H 2-rich syngas via coal gasification with near-zero emissions due to the cumulative and synergistic benefits realized when multiple advanced technologies are integrated into the overall conversion process. In this project, Aerojet Rocketdyne’s (AR’s) advanced gasification technology (currently being offered as R-GAS™) and RTI International’s (RTI’s) advanced warm syngas cleanup technologies were evaluated via a number of comparative techno-economic case studies. AR’s advanced gasification technology consists of a dry solids pump and a compact gasifier system. Based on the uniquemore » design of this gasifier, it has been shown to reduce the capital cost of the gasification block by between 40 and 50%. At the start of this project, actual experimental work had been demonstrated through pilot plant systems for both the gasifier and dry solids pump. RTI’s advanced warm syngas cleanup technologies consist primarily of RTI’s Warm Gas Desulfurization Process (WDP) technology, which effectively allows decoupling of the sulfur and CO 2 removal allowing for more flexibility in the selection of the CO 2 removal technology, plus associated advanced technologies for direct sulfur recovery and water gas shift (WGS). WDP has been demonstrated at pre-commercial scale using an activated amine carbon dioxide recovery process which would not have been possible if a majority of the sulfur had not been removed from the syngas by WDP. This pre-commercial demonstration of RTI’s advanced warm syngas cleanup system was conducted in parallel to the activities on this project. The technical data and cost information from this pre-commercial demonstration were extensively used in this project during the techno-economic analysis. With this project, both of RTI’s advanced WGS technologies were investigated. Because RT’s advanced fixed-bed WGS (AFWGS) process was successfully implemented in the WDP pre-commercial demonstration test mentioned above, this technology was used as part of RTI’s advanced warm syngas technology package for the techno-economic analyses for this project. RTI’s advanced transport-reactor-based WGS (ATWGS) process was still conceptual at the start of this project, but one of the tasks for this project was to evaluate the technical feasibility of this technology. In each of the three application-based comparison studies conducted as part of this project, the reference case was based on an existing Department of Energy National Energy Technology Laboratory (DOE/NETL) system study. Each of these references cases used existing commercial technology and the system resulted in > 90% carbon capture. In the comparison studies for the use of the hydrogen-rich syngas generated in either an Integrated Gasification Combined Cycle (IGCC) or a Coal-to-Methanol (CTM) plant, the comparison cases consisted of the reference case, a case with the integration of each individual advanced technology (either AR or RTI), and finally a case with the integration of all the advanced technologies (AR and RTI combined). In the Coal-to-Liquids (CTL) comparison study, the comparison study consisted of only three cases, which included a reference case, a case with just RTI’s advanced syngas cleaning technology, and a case with AR’s and RTI’s advanced technologies. The results from these comparison studies showed that the integration of the advanced technologies did result in substantial benefits, and by far the greatest benefits were achieved for cases integrating all the advanced technologies. For the IGCC study, the fully integrated case resulted in a 1.4% net efficiency improvement, an 18% reduction in capital cost per kW of capacity, a 12% reduction in the operating cost per kWh, and a 75–79% reduction in sulfur emissions. For the CTM case, the fully integrated plant resulted in a 22% reduction in capital cost, a 13% reduction in operating costs, a > 99% net reduction in sulfur emissions, and a reduction of 13–15% in CO 2 emissions. Because the capital cost represents over 60% of the methanol Required Selling Price (RSP), the significant reduction in the capital cost for the advanced technology case resulted in an 18% reduction in methanol RSP. For the CTL case, the fully integrated plant resulted in a 16% reduction in capital cost, which represented a 13% reduction in diesel RSP. Finally, the technical feasibility analysis of RTI’s ATWGS process demonstrated that a fluid-bed catalyst with sufficient attrition resistance and WGS activity could be made and that the process achieved about a 24% reduction in capital cost compared to a conventional fixed-bed commercial process.« less

  15. Development of an Integrated Multi-Contaminant Removal Process Applied to Warm Syngas Cleanup for Coal-Based Advanced Gasification Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meyer, Howard

    2010-11-30

    This project met the objective to further the development of an integrated multi-contaminant removal process in which H2S, NH3, HCl and heavy metals including Hg, As, Se and Cd present in the coal-derived syngas can be removed to specified levels in a single/integrated process step. The process supports the mission and goals of the Department of Energy's Gasification Technologies Program, namely to enhance the performance of gasification systems, thus enabling U.S. industry to improve the competitiveness of gasification-based processes. The gasification program will reduce equipment costs, improve process environmental performance, and increase process reliability and flexibility. Two sulfur conversion conceptsmore » were tested in the laboratory under this project, i.e., the solventbased, high-pressure University of California Sulfur Recovery Process High Pressure (UCSRP-HP) and the catalytic-based, direct oxidation (DO) section of the CrystaSulf-DO process. Each process required a polishing unit to meet the ultra-clean sulfur content goals of <50 ppbv (parts per billion by volume) as may be necessary for fuel cells or chemical production applications. UCSRP-HP was also tested for the removal of trace, non-sulfur contaminants, including ammonia, hydrogen chloride, and heavy metals. A bench-scale unit was commissioned and limited testing was performed with simulated syngas. Aspen-Plus®-based computer simulation models were prepared and the economics of the UCSRP-HP and CrystaSulf-DO processes were evaluated for a nominal 500 MWe, coal-based, IGCC power plant with carbon capture. This report covers the progress on the UCSRP-HP technology development and the CrystaSulf-DO technology.« less

  16. Environmental monitoring for the DOE coolside and LIMB demonstration extension projects. Quarterly report for the period of February, March and April 1991

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, T.; Contos, L.; Adams, L.

    1992-02-01

    The purpose of this document is to present environmental monitoring data collected during the US DOE Limestone Injection Multistage Burner (LIMB) Demonstration Project Extension. The objective of the LIMB program is to demonstrate the sulfur dioxide (SO{sub 2}) and nitrogen oxide (NO{sub x}) emission reduction capabilities of the LIMB system. The LIMB system is a retrofit technology to be used for existing coal-fired boilers equipped with electrostatic precipitators. (VC)

  17. Effects of low-temperature catalytic pretreatments on coal structure and reactivity in liquefaction. Final technical report, Volume 1 - effects of solvents, catalysts and temperature conditions on conversion and structural changes of low-rank coals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Lili; Schobert, Harold H.; Song, Chunshan

    1998-01-01

    The main objectives of this project were to study the effects of low-temperature pretreatments on coal structure and their impacts on subsequent liquefaction. The effects of pretreatment temperatures, catalyst type, coal rank, and influence of solvent were examined. Specific objectives were to identify the basic changes in coal structure induced by catalytic and thermal pretreatments, and to determine the reactivity of the catalytically and thermally treated coals for liquefaction. In the original project management plan it was indicated that six coals would be used for the study. These were to include two each of bituminous, subbituminous, and lignite rank. Formore » convenience in executing the experimental work, two parallel efforts were conducted. The first involved the two lignites and one subbituminous coal; and the second, the two bituminous coals and the remaining subbituminous coal. This Volume presents the results of the first portion of the work, studies on two lignites and one subbituminous coal. The remaining work accomplished under this project will be described and discussed in Volume 2 of this report. The objective of this portion of the project was to determine and compare the effects of solvents, catalysts and reaction conditions on coal liquefaction. Specifically, the improvements of reaction conversion, product distribution, as well as the structural changes in the coals and coal-derived products were examined. This study targeted at promoting hydrogenation of the coal-derived radicals, generated during thermal cleavage of chemical bonds, by using a good hydrogen donor-solvent and an effective catalyst. Attempts were also made in efforts to match the formation and hydrogenation of the free radicals and thus to prevent retrogressive reaction.« less

  18. A 1,000 GtC Coal Question for Future Energy Scenarios: How Much Coal Will Renewables Need to Displace?

    NASA Astrophysics Data System (ADS)

    Ritchie, W. J.; Dowlatabadi, H.

    2016-12-01

    Twenty years ago, global coal assessments indicated reserve-to-production (R-P) ratios of more than 300 years. Consequently, most studies of energy futures established coal as a virtually unlimited backstop to meet the world's projected energy needs. Coal was modeled to offset oil and gas production declines and provide a source of energy which renewables and lower carbon supply strategies needed to outcompete. Over the past two decades, increasingly consistent methodologies have been applied globally to assess recoverable coal. Coal production has also witnessed significant mechanization to meet higher demand. Each of these has led to a significant reduction in estimates of economically recoverable coal reserves despite a doubling of market prices over this period. The current reserve to production ratio for coal is now around 100 years. It is time to reconsider coal as the inexhaustible energy backstop The energy models which develop long-term estimates of renewable energy needs and projections of greenhouse gas (GHG) emissions still adopt the characteristics of vintage coal assessments. By convention, baseline GHG emissions used by the IPCC and others, project combustion of most known coal reserves before the year 2100. When vintage assessments are used, this involves extraction of all currently known coal reserves plus twice again from resources invalidated as recoverable for geologic, environmental, social, legal, technical or economic reasons. We provide evidence for rejecting these projections of unbounded growth in coal consumption. Legacy pathways of implausibly high coal use upwardly bias long-term scenarios for total cumulative GHG emissions and subsequent research on climate change. This bias has precluded consideration of much more ambitious climate mitigation targets without significant socio-economic dislocation and unnecessarily diminishes possible future contributions from renewables.

  19. An Industrial-Based Consortium to Develop Premium Carbon Products from Coal, Annual Progress Report, October 1, 2005 through September 30, 2006

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Bruce G

    2006-09-29

    Since 1998, The Pennsylvania State University has been successfully managing the Consortium for Premium Carbon Products from Coal (CPCPC), which is a vehicle for industry-driven research on the promotion, development, and transfer of innovative technology on premium carbon produces from coal to the U.S. industry. The CPCPC is an initiative being led by Penn State, its co-charter member West Virginia University (WVU), and the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL), who also provides the base funding for the program, with Penn State responsible for consortium management. CPCPC began in 1998 under DOE Cooperative Agreement No. DE-FC26-98FT40350.more » This agreement ended November 2004 but the CPCPC activity has continued under the present cooperative agreement, No. DE-FC26-03NT41874, which started October 1, 2003. The objective of the second agreement is to continue the successful operation of the CPCPC. The CPCPC has enjoyed tremendous success with its organizational structure, that includes Penn State and WVU as charter members, numerous industrial affiliate members, and strategic university affiliate members together with NETL, forming a vibrant and creative team for innovative research in the area of transforming coal to carbon products. The key aspect of CPCPC is its industry-led council that selects proposals submitted by CPCPC members to ensure CPCPC target areas have strong industrial support. Base funding for the selected projects is provided by NETL with matching funds from industry. At the annual funding meeting held in October 2003, ten projects were selected for funding. Subcontracts were let from Penn State to the subcontractors on March 1, 2004. Nine of the ten 2004 projects were completed during the previous annual reporting period and their final reports were submitted with the previous annual report (i.e., 10/01/04-09/30/05). The final report for the remaining project, which was submitted during this reporting period (i.e., 10/01/05-09/30/06), is attached. At the annual funding meeting held in November 2004, eleven projects were selected for funding. Subcontracts were let from Penn State to the subcontractors on March 1, 2005. Three additional projects were selected for funding during the April 2005 tutorial/funding meeting. Subcontracts were let from Penn State to the subcontractors on July 1, 2005. Of these fourteen 2005 projects, eleven have been completed and the final reports are attached. An annual funding meeting was held in November 2005 and the council selected five projects for funding. Subcontracts were let from Penn State to the subcontractors on March 1, 2006, except for one that started October 1, 2006.« less

  20. Fossil Energy organization restructured

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The Department of Energy has restructured its fossil energy organization to accommodate increases in activity and visibility of the President's $2.5 billion clean coal technology initiative. The realignment also includes changes in the coal research and development program and in supporting staff functions. In the coal program, changes in the organization include the establishment of two associate deputy assistant secretaries, both reporting to the deputy Assistant Secretary for Coal Technology. One associate deputy assistant secretary will oversee the Clean Coal Technology Program. A second associate deputy assistant secretary will manage the coal research and development program. An organizational chart illustratesmore » the new fossil energy headquarters organization.« less

  1. Activities of the Institute of Chemical Processing of Coal at Zabrze

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dreszer, K.

    1995-12-31

    The Institute of Chemical Processing of Coal at Zabrze was established in 1955. The works on carbochemical technologies have been, therefore, carried out at the Institute for 40 years. The targets of the Institute`s activities are research, scientific and developing works regarding a sensible utilization of fuels via their processing into more refined forms, safe environment, highly efficient use of energy carriers and technological products of special quality. The Institute of Chemical Processing of Coal has been dealing with the following: optimized use of home hard coals; improvement of classic coal coking technologies, processing and utilization of volatile coking products;more » production technologies of low emission rate fuels for communal management; analyses of coal processing technologies; new technologies aimed at increasing the efficiency of coal utilization for energy-generating purposes, especially in industry and studies on the ecological aspects of these processes; production technologies of sorbents and carbon activating agents and technologies of the utilization; rationalization of water and wastes management in the metallurgical and chemical industries in connection with removal of pollution especially dangerous to the environment from wastes; utilization technologies of refined materials (electrode cokes, binders, impregnating agents) for making electrodes, refractories and new generation construction carbon materials; production technologies of high quality bituminous and bituminous and resin coating, anti-corrosive and insulation materials; environmentally friendly utilization technologies for power station, mine and other wastes, and dedusting processes in industrial gas streams.« less

  2. Bench-Scale Development of a Non-Aqueous Solvent (NAS) CO2 Capture Process for Coal-Fired Power Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lail, Marty

    The project aimed to advance RTI’s non-aqueous amine solvent technology by improving the solvent to reduce volatility, demonstrating long-term continuous operation at lab- (0.5 liters solvent) and bench-scale (~120 liters solvent), showing low reboiler heat duty measured during bench-scale testing, evaluating degradation products, building a rate-based process model, and evaluating the techno-economic performance of the process. The project team (RTI, SINTEF, Linde Engineering) and the technology performed well in each area of advancement. The modifications incorporated throughout the project enabled the attainment of target absorber and regenerator conditions for the process. Reboiler duties below 2,000 kJt/kg CO2 were observed inmore » a bench-scale test unit operated at RTI.« less

  3. Energy technologies and the environment: Environmental information handbook

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1988-10-01

    This revision of Energy Technologies and the Environment reflects the changes in energy supply and demand, focus of environmental concern, and emphasis of energy research and development that have occurred since publication of the earlier edition in 1980. The increase in availability of oil and natural gas, at least for the near term, is responsible in part for a reduced emphasis on development of replacement fuels and technologies. Trends in energy development also have been influenced by an increased reliance on private industry initiatives, and a correspondingly reduced government involvement, in demonstrating more developed technologies. Environmental concerns related to acidmore » rain and waste management continue to increase the demand for development of innovative energy systems. The basic criteria for including a technology in this report are that (1) the technology is a major current or potential future energy supply and (2) significant changes in employing or understanding the technology have occurred since publication of the 1980 edition. Coal is seen to be a continuing major source of energy supply, and thus chapters pertaining to the principal coal technologies have been revised from the 1980 edition (those on coal mining and preparation, conventional coal-fired power plants, fluidized-bed combustion, coal gasification, and coal liquefaction) or added as necessary to include emerging technologies (those on oil shale, combined-cycle power plants, coal-liquid mixtures, and fuel cells).« less

  4. Arctic Energy Technology Development Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sukumar Bandopadhyay; Charles Chamberlin; Robert Chaney

    2008-12-31

    The Arctic Energy Technology Development Laboratory was created by the University of Alaska Fairbanks in response to a congressionally mandated funding opportunity through the U.S. Department of Energy (DOE), specifically to encourage research partnerships between the university, the Alaskan energy industry, and the DOE. The enabling legislation permitted research in a broad variety of topics particularly of interest to Alaska, including providing more efficient and economical electrical power generation in rural villages, as well as research in coal, oil, and gas. The contract was managed as a cooperative research agreement, with active project monitoring and management from the DOE. Inmore » the eight years of this partnership, approximately 30 projects were funded and completed. These projects, which were selected using an industry panel of Alaskan energy industry engineers and managers, cover a wide range of topics, such as diesel engine efficiency, fuel cells, coal combustion, methane gas hydrates, heavy oil recovery, and water issues associated with ice road construction in the oil fields of the North Slope. Each project was managed as a separate DOE contract, and the final technical report for each completed project is included with this final report. The intent of this process was to address the energy research needs of Alaska and to develop research capability at the university. As such, the intent from the beginning of this process was to encourage development of partnerships and skills that would permit a transition to direct competitive funding opportunities managed from funding sources. This project has succeeded at both the individual project level and at the institutional development level, as many of the researchers at the university are currently submitting proposals to funding agencies, with some success.« less

  5. Current and future emissions of primary pollutants from coal-fired power plants in Shaanxi, China.

    PubMed

    Xu, Yong; Hu, Jianlin; Ying, Qi; Hao, Hongke; Wang, Dexiang; Zhang, Hongliang

    2017-10-01

    A high-resolution inventory of primary atmospheric pollutants from coal-fired power plants in Shaanxi in 2012 was built based on a detailed database compiled at unit level involving unit capacity, boiler size and type, commission time, corresponding control technologies, and average coal quality of 72 power plants. The pollutants included SO 2 , NO x , fine particulate matter (PM 2.5 ), inhalable particulate matter (PM 10 ), organic carbon (OC), elemental carbon (EC), carbon monoxide (CO) and non-methane volatile organic compounds (NMVOC). Emission factors for SO 2 , NO x , PM 2.5 and PM 10 were adopted from standardized official promulgation, supplemented by those from local studies. The estimated annual emissions of SO 2 , NO x , PM 2.5 , PM 10 , EC, OC, CO and NMVOC were 152.4, 314.8, 16.6, 26.4, 0.07, 0.27, 64.9 and 2.5kt, respectively. Small units (<100MW), which accounted for ~60% of total unit numbers, had less coal consumption but higher emission rates compared to medium (≥100MW and <300MW) and large units (≥300MW). Main factors affecting SO 2 , NO x , PM 2.5 and PM 10 emissions were decontamination efficiency, sulfur content and ash content of coal. Weinan and Xianyang were the two cities with the highest emissions, and Guanzhong Plain had the largest emission density. Despite the projected growth of coal consumption, emissions would decrease in 2030 due to improvement in emission control technologies and combustion efficiencies. SO 2 and NO x emissions would experience significant reduction by ~81% and ~84%, respectively. PM 2.5 , PM 10 , EC and OC would be decreased by ~43% and CO and NMVOC would be reduced by ~16%. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Economics of utilization of high sulfur coal resources - an integrated market approach

    USGS Publications Warehouse

    Bhagwat, S.B.

    1993-01-01

    Before the Clean Air Act Amendments of 1990, coal policies - especially coal research policies - were geared to find a solution to the sulfur emission problem. However, technologies to reduce sulfur emissions cannot be tailored for a single coal. A technology that will clean Illinois coal to compliance levels will do the same, or nearly the same, for most other types of coal. This paper will discuss an integrated approach to the analysis of the future of coals from different regions in the United States and its implications for coal-related policies by government and industry.

  7. [Tampa Electric Company IGCC project]. 1996 DOE annual technical report, January--December 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-12-31

    Tampa Electric Company`s Polk Power Station Unit 1 (PPS-1) Integrated Gasification Combined Cycle (IGCC) demonstration project uses a Texaco pressurized, oxygen-blown, entrained-flow coal gasifier to convert approximately 2,000 tons per day of coal to syngas. The gasification plant is coupled with a combined cycle power block to produce a net 250 MW electrical power output. Coal is slurried in water, combined with 95% pure oxygen from an air separation unit, and sent to the gasifier to produce a high temperature, high pressure, medium-Btu syngas with a heat content of about 250 BTUs/cf (HHV). The syngas then flows through a highmore » temperature heat recovery unit which cools the syngas prior to its entering the cleanup systems. Molten coal ash flows from the bottom of the high temperature heat recovery unit into a water-filled quench chamber where it solidifies into a marketable slag by-product. Approximately 10% of the raw, hot syngas at 900 F is designed to pass through an intermittently moving bed of metal-oxide sorbent which removes sulfur-bearing compounds from the syngas. PPS-1 will be the first unit in the world to demonstrate this advanced metal oxide hot gas desulfurization technology on a commercial unit. The emphasis during 1996 centered around start-up activities.« less

  8. Assessing U.S. coal resources and reserves

    USGS Publications Warehouse

    Shaffer, Brian N.

    2017-09-27

    The U.S. Coal Resources and Reserves Assessment Project, as part of the U.S. Geological Survey (USGS) Energy Resources Program, conducts systematic, geology-based, regional assessments of significant coal beds in major coal basins in the United States. These assessments detail the quantity, quality, location, and economic potential of the Nation’s remaining coal resources and reserves and provide objective scientific information that assists in the formulation of energy strategies, environmental policies, land-use management practices, and economic projections.

  9. Tampa Electric Company Polk Power Station IGCC project: Project status

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDaniel, J.E.; Carlson, M.R.; Hurd, R.

    1997-12-31

    The Tampa Electric Company Polk Power Station is a nominal 250 MW (net) Integrated Gasification Combined Cycle (IGCC) power plant located to the southeast of Tampa, Florida in Polk County, Florida. This project is being partially funded under the Department of Energy`s Clean Coal Technology Program pursuant to a Round II award. The Polk Power Station uses oxygen-blown, entrained-flow IGCC technology licensed from Texaco Development Corporation to demonstrate significant reductions of SO{sub 2} and NO{sub x} emissions when compared to existing and future conventional coal-fired power plants. In addition, this project demonstrates the technical feasibility of commercial scale IGCC andmore » Hot Gas Clean Up (HGCU) technology. The Polk Power Station achieved ``first fire`` of the gasification system on schedule in mid-July, 1996. Since that time, significant advances have occurred in the operation of the entire IGCC train. This paper addresses the operating experiences which occurred in the start-up and shakedown phase of the plant. Also, with the plant being declared in commercial operation as of September 30, 1996, the paper discusses the challenges encountered in the early phases of commercial operation. Finally, the future plans for improving the reliability and efficiency of the Unit in the first quarter of 1997 and beyond, as well as plans for future alternate fuel test burns, are detailed. The presentation features an up-to-the-minute update on actual performance parameters achieved by the Polk Power Station. These parameters include overall Unit capacity, heat rate, and availability. In addition, the current status of the start-up activities for the HGCU portion of the plant is discussed.« less

  10. Oxidation and carbonisation of coals: a case study of coal fire affected coals from the Wuda coalfield, Inner Mongolia, China

    NASA Astrophysics Data System (ADS)

    Kus, Jolanta; Meyer, Uwe; Ma, Jianwei; Chen-Brauchler, Dai

    2010-05-01

    At the coalfield of Wuda (Inner Mongolia, PR China) extensive underground coal fires cause widespread thermal and oxidative effects in coal seams. Within phase B of the Coal Fire Research Project of the Sino-German Initiative, methods for innovative fire-extinguishing technologies were investigated in multifaceted research approaches. Extensive investigations of oxidative and thermally affected coal seams in coal fire zone 18 were conducted in 2008 prior to application of new fire-extinguishing methods. We present results from the outcrop of coal seam No. 4 in the fire zone 18. The coal of seam No. 4 is of Early Permian age and belongs stratigraphically to the Shanxi Formation. The unaffected coal displays a high volatile bituminous A rank with a background value of random vitrinite reflectance ranging from 0.90 to 0.96 % Rr. Coal channel samples were coallected at actively extracted coal faces along multiple profiles with surface temperatures ranging from about 50° to 600°C. Microscopic examinations revealed a variety of products of coal exposure to the fire. Within coal samples, a marked rise in vitrinite reflectance from background values to 5.55% Rr (6.00 % Rmax) is encountered. In addition, a number of coal samples showed suppressed vitrinite reflectances ranging between 0.82 to 0.88% Rr. Further, seemingly heat unaffected coal samples display intensive development of oxidations rims at coal grain edges and cracks as well as shrinkage cracks and formation of iron oxides/hydroxides. Instead, thermally affected coal samples with higher coalification grade are further characterised by development of macropores (devolatilisation pores) in vitrinitic streaks, transformation of liptinite to meta-liptinite and micrinite as well as by natural coke particles of mostly porous nature and fine to coarse grained anisotropic mosaic. Coal petrographic investigations confirmed a hypothesis that both, oxidations as well as low temperature carbonisation govern the thermal regime in the coal fire zone 18. The occurrence of various thermal alteration products indicates temperatures in the range of 500-700°C.

  11. Constructing a sustainable power sector in China: current and future emissions of coal-fired power plants from 2010 to 2030

    NASA Astrophysics Data System (ADS)

    Tong, D.; Zhang, Q.

    2017-12-01

    As the largest energy infrastructure in China, power sector consumed more coal than any other sector and threatened air quality and greenhouse gas (GHG) abatement target. In this work, we assessed the evolution of coal-fired power plants in China during 2010-2030 and the evolution of associated emissions for the same period by using a unit-based emission projection model which integrated the historical power plants information, turnover of the future power plant fleet, and the evolution of end-of-pipe control technologies. We found that, driven by the stringent environmental legislation, SO2, NOx, and PM2.5 emissions from China's coal-fired power plants decreased by 49%, 45%, and 24% respectively during 2010-2015, comparing to 14% increase of coal consumption and 15% increase in CO2 emissions. We estimated that under current national energy development planning, coal consumption and CO2 emissions from coal-fired power plants will continue to increase until 2030, in which against the China's Intended Nationally Determined Contributions (INDCs) targets. Early retirement of old and low-efficient power plants will cumulatively reduce 2.2 Pg CO2 emissions from the baseline scenario during 2016-2030, but still could not curb CO2 emissions from the peak before 2030. Owing to the implementation of "near zero" emission control policy, we projected that emissions of air pollutants will significantly decrease during the same period under all scenarios, indicating the decoupling trends of air pollutants and CO2 emissions. Although with limited direct emission reduction benefits, increasing operating hours of power plants could avoid 236 GW of new power plants construction, which could indirectly reduce emissions embodied in the construction activity. Our results identified a more sustainable pathway for China's coal-fired power plants, which could reduce air pollutant emissions, improve the energy efficiency, and slow down the construction of new units. However, continuous construction of new coal-fired power plants driven by increased electricity demand would pose a potential threat to climate change mitigation and China's peak carbon pledge, and more aggressive CO2 emission reduction policy should be implemented in the future.

  12. Saga of coal bed methane, Ignacio Blanco gas field, Colorado

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyce, B.C.; Harr, C.L.; Burch, L.C.

    1989-09-01

    Prior to the 1977 discovery of the Cedar Hill Basal Fruitland pool (the first officially designated coal-bed methane field in the western US) 28.5 bcf of gas had been produced from Fruitland Formation coal seams in the Ignacio Blanco Fruitland-Pictured Cliffs field, Northern San Juan basin, Colorado. The discovery well for the field, Southern Ute D-1, was drilled and completed in 1951 on the Ignacio anticline, La Plata County, Colorado. Initial completion was attempted in the Pictured Cliffs Sandstone. The well was plugged back after making water from the Pictured Cliffs and was completed in the lower coal-bearing section ofmore » the Fruitland Formation. The well produced 487,333 mcf of gas in nine years and was abandoned in 1959 due to water encroachment. Additionally, 52 similarly completed Ignacio anticline Fruitland wells were abandoned by the early 1970s due to the nemesis of If it's starting to kick water, you're through. Under today's coal-bed methane technology and economics, Amoco has twinned 12 of the abandoned wells, drilled five additional wells, and is successfully dewatering and producing adsorbed methane from previously depleted coal sections of the Ignacio structure. Field-wide drilling activity in 1988 exceeded all previous annual levels, with coal-seam degasification projects leading the resurgence. Drilling and completion forecasts for 1989 surpass 1988 levels by 50%.« less

  13. Energy generation potential from coals of the Charqueadas Coalfield, RS, Brazil

    NASA Astrophysics Data System (ADS)

    Correa da Silva, Z. C.; Heemann, R.; Castro, L.; Ketzer, J. M.

    2009-04-01

    Three coal seams, I2B (Inferior 2), I1F (Inferior 1) and MB, from the Charqueadas Coalfield located in the central-east region of the State of Rio Grande do Sul, Southern Brazil were studied on the basis of geological, petrographic, chemical and geochemical techniques and correlated to the SR1, SR2 and SR3 coal seams from the Santa Rita Coalfield. The Charqueadas Coalfield reserves reach 2,993x106 metric tons of coal distributed in six coal seams. The study of sedimentary and organic facies is made on the subsurface data from five boreholes drilled in the area. There show a well marked lateral facies change from sub aquatic to sub aerial environment, conditioned by both the water level variations and the irregular palaeotopography of the basement. The coals change from limnic to forest-terrestrial moor types characterized by variations of composition in terms of macerals, microlithotypes and mineral matter. The coals are rich in mineral matter (28 to 40%); the vitrinite content reaches 50 %, inertinite 44 % and liptinite varies from 10 to 30 %, in mineral matter free basis. Among the microlithotypes carbominerite and vitrite are predominant. Rank studies carried out by different methods (vitrinite reflectance, max and red-green quotient among others) gave conflicting results, which are explained by the strong bituminization of the vitrinite. However, agreement between fluorescence measurements and organic geochemical parameters (e.g. CPI values) confirm that the coals are of a High Volatile Bituminous B/C (ASTM) or Gasflammkohle (DIN) rank. Based on these characteristics, the Charqueadas coal seams show great potential for use in Underground Coal Gasification (UCG) and Enhanced Coalbed Methane (ECBM) projects. Nowadays the state of Rio Grande do Sul is rapidly growing and needs to increase the energy efficiency to attend the industrial demands, filling the gap between supply and energy generation. As with conventional IGCC, UCG gas can be used to generate electricity with efficiency as high as 55% and overall UCG-IGCC process efficiency reaching 43%. Regarding to environmental problems the UCG minimize environmental impacts (waste piles/acid mine drainage) and reduce CO2 emissions because syngas contains CO2 that can be captured with relatively low-energy penalty. The Clean Coal Technologies (CCT), especially UCG and ECBM projects, will be a key factor to maintain the annual state's economy expansion associated with energy efficiency improvement programs.

  14. Review of NASA programs in applying aerospace technology to energy

    NASA Technical Reports Server (NTRS)

    Schwenk, F. C.

    1981-01-01

    NASA's role in energy research and development, with the aid of aerospace technology, is reviewed. A brief history, which began in 1974 with studies of solar energy systems on earth, is presented, and the major energy programs, consisting of over 60 different projects, are described, and include solar terrestrial systems, conservation and fossil energy systems, and space utilization systems. Special attention is given to the Satellite Power System and the isolation of nuclear wastes in space. Emerging prospects for NASA programs in energy technology include bioenergy, and ocean thermal energy conversion, coal extraction and conversion technologies, and support to the nuclear industry in power plant systems safety.

  15. The demonstration of an advanced cyclone coal combustor, with internal sulfur, nitrogen, and ash control for the conversion of a 23 MMBTU/hour oil fired boiler to pulverized coal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zauderer, B.; Fleming, E.S.

    1991-08-30

    This work contains to the final report of the demonstration of an advanced cyclone coal combustor. Titles include: Chronological Description of the Clean Coal Project Tests,'' Statistical Analysis of Operating Data for the Coal Tech Combustor,'' Photographic History of the Project,'' Results of Slag Analysis by PA DER Module 1 Procedure,'' Properties of the Coals Limestone Used in the Test Effort,'' Results of the Solid Waste Sampling Performed on the Coal Tech Combustor by an Independent Contractor During the February 1990 Tests.'' (VC)

  16. Health effects of coal technologies: research needs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1980-09-01

    In this 1977 Environmental Message, President Carter directed the establishment of a joint program to identify the health and environmental problems associated with advanced energy technologies and to review the adequacy of present research programs. In response to the President's directive, representatives of three agencies formed the Federal Interagency Committee on the Health and Environmental Effects of Energy Technologies. This report was prepared by the Health Effects Working Group on Coal Technologies for the Committee. In this report, the major health-related problems associated with conventional coal mining, storage, transportation, and combustion, and with chemical coal cleaning, in situ gasification, fluidizedmore » bed combustion, magnetohydrodynamic combustion, cocombustion of coal-oil mixtures, and cocombustion of coal with municipal solid waste are identified. The report also contains recommended research required to address the identified problems.« less

  17. Environmental Assessment for the Warren Station externally fired combined cycle demonstration project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-04-01

    The proposed Penelec project is one of 5 projects for potential funding under the fifth solicitation under the Clean Coal Technology program. In Penelec, two existing boilers would be replaced at Warren Station, PA; the new unit would produce 73 MW(e) in a combined cycle mode (using both gas-fired and steam turbines). The project would fill the need for a full utility-size demonstration of externally fire combined cycle (EFCC) technology as the next step toward commercialization. This environmental assessment was prepared for compliance with NEPA; its purpose is to provide sufficient basis for determining whether to prepare an environmental impactmore » statement or to issue a finding of no significant impact. It is divided into the sections: purpose and need for proposed action; alternatives; brief description of affected environment; environmental consequences, including discussion of commercial operation beyond the demonstration period.« less

  18. The chemical enhancement of the triboelectric separation of coal from pyrite and ash: A novel approach for electrostatic separation of mineral matter from coal. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gustafson, R.M.; DiMare, S.; Sabatini, J.

    1992-02-01

    Arthur D. Little, Inc., under contract to the US DOE Pittsburgh Energy Technology Center, has developed a triboelectric separation device for coal beneficiation, that employs an entrained-flow, rotating-cylinder concept. The described apparatus has been used to test the efficacy of chemical pretreatment and in-situ treatment of coal on separation efficiency. Coal particle entrainment is achieved with gaseous carbon dioxide and particle collection is accomplished by an electrostatic plate separator. The triboelectric separation device incorporates instrumentation for the direct measurement of charge in the dilute-phase particle stream. Some of the pretreatment materials investigated under this project to modify the surface chargingmore » characteristics of the coal included oleic acid, sodium oleate, quinoline and dicyclohexylamine. Ammonia and sulfur dioxide at a concentration up to 1000 ppM was used for in-situ treatment of the coal, with carbon dioxide as the carrier/inerting gas. Nitrogen was used earlier in the test program as the carrier/inerting gas for the coal, but a severe arcing problem was encountered in the electrostatic collector with nitrogen as the carrier gas. This problem did not occur when carbon dioxide was used. The report covers the chemical treatment employed, and summarizes and interprets the results achieved. In addition, an economic analysis of a full scale system based on this concept is presented.« less

  19. Subtask 3.9 - Direct Coal Liquefaction Process Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aulich, Ted; Sharma, Ramesh

    The Energy and Environmental Research Center (EERC), in partnership with the U.S. Department of Energy (DOE) and Accelergy Corporation, an advanced fuels developer with technologies exclusively licensed from ExxonMobil, undertook Subtask 3.9 to design, build, and preliminarily operate a bench-scale direct coal liquefaction (DCL) system capable of converting 45 pounds/hour of pulverized, dried coal to a liquid suitable for upgrading to fuels and/or chemicals. Fabrication and installation of the DCL system and an accompanying distillation system for off-line fractionation of raw coal liquids into 1) a naphtha middle distillate stream for upgrading and 2) a recycle stream was completed inmore » May 2012. Shakedown of the system was initiated in July 2012. In addition to completing fabrication of the DCL system, the project also produced a 500-milliliter sample of jet fuel derived in part from direct liquefaction of Illinois No. 6 coal, and submitted the sample to the Air Force Research Laboratory (AFRL) at Wright Patterson Air Force Base, Dayton, Ohio, for evaluation. The sample was confirmed by AFRL to be in compliance with all U.S. Air Force-prescribed alternative aviation fuel initial screening criteria.« less

  20. Chiyoda Thoroughbred CT-121 clean coal project at Georgia Power`s Plant Yates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burford, D.P.

    1997-12-31

    The Chiyoda Thoroughbred CT-121 flue gas desulfurization (FGD) process at Georgia Power`s Plant Yates completed a two year demonstration of its capabilities in late 1994 under both high- and low-particulate loading conditions. This $43 million demonstration was co-funded by Southern Company, the Electric Power Research Institute and the DOE under the auspices of the US Department of Energy`s Round II Innovative Clean Coal Technology (ICCT) program. The focus of the Yates Project was to demonstrate several cost-saving modifications to Chiyoda`s already efficient CT-121 process. These modifications included: the extensive use of fiberglass reinforced plastics (FRP) in the construction of themore » scrubber vessel and other associated vessels, the elimination of flue gas reheat through the use of an FRP wet chimney, and reliable operation without a spare absorber module. This paper focuses on the testing results from the last trimester of the second phase of testing (high-ash loading). Specifically, operation under elevated ash loading conditions, the effects of low- and high-sulfur coal, air toxics verification testing results and unexpected improvements in byproduct gypsum quality are discussed.« less

  1. 75 FR 30800 - Notice of Intent To Prepare an Environmental Impact Statement for Texas Clean Energy Project...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-02

    ... technologies used to generate electricity from fossil fuels, including natural gas. Summit proposes to build... feedstock. It would capture, in the form of CO 2 , about 90% of the carbon in the portion of its coal fuel... (Feb. 17, 2009)) (ARRA) appropriated $3.4 billion to DOE for ``Fossil Energy Research and Development...

  2. Relevance of Clean Coal Technology for India’s Energy Security: A Policy Perspective

    NASA Astrophysics Data System (ADS)

    Garg, Amit; Tiwari, Vineet; Vishwanathan, Saritha

    2017-07-01

    Climate change mitigation regimes are expected to impose constraints on the future use of fossil fuels in order to reduce greenhouse gas (GHG) emissions. In 2015, 41% of total final energy consumption and 64% of power generation in India came from coal. Although almost a sixth of the total coal based thermal power generation is now super critical pulverized coal technology, the average CO2 emissions from the Indian power sector are 0.82 kg-CO2/kWh, mainly driven by coal. India has large domestic coal reserves which give it adequate energy security. There is a need to find options that allow the continued use of coal while considering the need for GHG mitigation. This paper explores options of linking GHG emission mitigation and energy security from 2000 to 2050 using the AIM/Enduse model under Business-as-Usual scenario. Our simulation analysis suggests that advanced clean coal technologies options could provide promising solutions for reducing CO2 emissions by improving energy efficiencies. This paper concludes that integrating climate change security and energy security for India is possible with a large scale deployment of advanced coal combustion technologies in Indian energy systems along with other measures.

  3. Anaerobic bioprocessing of low-rank coals. [Veillonella alcalescens and Propionibacterium acidipropionici

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jain, M.K.; Narayan, R.; Han, O.

    1992-01-30

    The overall goal of this project is to find biological methods to remove carboxylic functionalities from low-rank coals under ambient conditions and to assess the properties of these modified coals towards coal liquefaction. The main objectives of this quarter were: (1) continuation of microbial consortia development, (2) evaluation of the isolated organisms for decarboxylation, (3) selection of best performing culture (known cultures vs. new isolates), and (4) coal decarboxylation using activated carbon as blanks. The project began on September 12, 1990.

  4. Longwall top coal caving (LTCC) mining technologies with roof softening by hydraulic fracturing method

    NASA Astrophysics Data System (ADS)

    Klishin, V.; Nikitenko, S.; Opruk, G.

    2018-05-01

    The paper discusses advanced top coal caving technologies for thick coal seams and addresses some issues of incomplete coal extraction, which can result in the environmental damage, landscape change, air and water pollution and endogenous fires. The authors put forward a fundamentally new, having no equivalent and ecology-friendly method to difficult-to-cave roof coal – directional hydraulic fracturing and nonexplosive disintegration.

  5. USE OF COAL DRYING TO REDUCE WATER CONSUMED IN PULVERIZED COAL POWER PLANTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edward Levy; Nenad Sarunac; Harun Bilirgen

    2005-04-01

    This is the ninth Quarterly Report for this project. The background and technical justification for the project are described, including potential benefits of reducing fuel moisture using power plant waste heat, prior to firing the coal in a pulverized coal boiler. During this last Quarter, comparative analyses were performed for lignite and PRB coals to determine how unit performance varies with coal product moisture. Results are given showing how the coal product moisture level and coal rank affect parameters such as boiler efficiency, station service power needed for fans and pulverizers and net unit heat rate. Results are also givenmore » for the effects of coal drying on cooling tower makeup water and comparisons are made between makeup water savings for various times of the year.« less

  6. ACCOMPLISHMENTS OF THE AMERICAN-POLISH PROGRAM FOR ELIMINATION OF LOW EMISSIONS IN KRAKOW

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BUTCHER,T.A.; PIERCE,B.

    1998-11-05

    In 1991, US and Polish officials signed a Memorandum of Understanding formally initiating and directing the Cracow Clean Fossil Fuels and Energy Efficiency Program. Developing a program approach for the most effective use of the available funds required considerable effort on the part of all project participants. The team recognized early that the cost of solving the low emissions problem even in only one city far exceeded the amount of available US funds. Economic conditions in Poland limited availability of local capital funds for environmental projects. Imposing environmental costs on struggling companies or city residents under difficult conditions of themore » early 1990's required careful consideration of the economic and political impacts. For all of these reasons the program sought to identify technologies for achieving air quality goals which, through improved efficiency and/or reduced fuel cost, could be so attractive economically as to lead to self-sustaining activities beyond the end of the formal project. The effort under this program has been focused into 5 main areas of interest as follows: (1) Energy Conservation and Extension of Central Station District Heating; (2) Replacement of Coal- and Coke-Fired Boilers with Natural Gas-Fired Boilers; (3) Replacement of Coal-Fired Home Stoves with Electric Heating Appliances; (4) Reduction of Emissions from Stoker-Fired Boiler Houses; and (5) Reduction of Emissions from Coal-Fired Home Heating Stoves.« less

  7. Coal gasification systems engineering and analysis. Appendix G: Commercial design and technology evaluation

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A technology evaluation of five coal gasifier systems (Koppers-Totzek, Texaco, Babcock and Wilcox, Lurgi and BGC/Lurgi) and procedures and criteria for evaluating competitive commercial coal gasification designs is presented. The technology evaluation is based upon the plant designs and cost estimates developed by the BDM-Mittelhauser team.

  8. Advanced power assessment for Czech lignite. Task 3.6, Volume 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sondreal, E.A.; Mann, M.D.; Weber, G.W.

    1995-12-01

    The US has invested heavily in research, development, and demonstration of efficient and environmentally acceptable technologies for the use of coal. The US has the opportunity to use its leadership position to market a range of advanced coal-based technologies internationally. For example, coal mining output in the Czech Republic has been decreasing. This decrease in demand can be attributed mainly to the changing structure of the Czech economy and to environmental constraints. The continued production of energy from indigenous brown coals is a major concern for the Czech Republic. The strong desire to continue to use this resource is amore » challenge. The Energy and Environmental Research Center undertook two major efforts recently. One effort involved an assessment of opportunities for commercialization of US coal technologies in the Czech Republic. This report is the result of that effort. The technology assessment focused on the utilization of Czech brown coals. These coals are high in ash and sulfur, and the information presented in this report focuses on the utilization of these brown coals in an economically and environmentally friendly manner. Sections 3--5 present options for utilizing the as-mined coal, while Sections 6 and 7 present options for upgrading and generating alternative uses for the lignite. Contents include Czech Republic national energy perspectives; powering; emissions control; advanced power generation systems; assessment of lignite-upgrading technologies; and alternative markets for lignite.« less

  9. Reuse of Produced Water from CO 2 Enhanced Oil Recovery, Coal-Bed Methane, and Mine Pool Water by Coal-Based Power Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knutson, Chad; Dastgheib, Seyed A.; Yang, Yaning

    2012-07-01

    Power generation in the Illinois Basin is expected to increase by as much as 30% by the year 2030, and this would increase the cooling water consumption in the region by approximately 40%. This project investigated the potential use of produced water from CO 2 enhanced oil recovery (CO 2-EOR) operations; coal-bed methane (CBM) recovery; and active and abandoned underground coal mines for power plant cooling in the Illinois Basin. Specific objectives of this project were: (1) to characterize the quantity, quality, and geographic distribution of produced water in the Illinois Basin; (2) to evaluate treatment options so that producedmore » water may be used beneficially at power plants; and (3) to perform a techno-economic analysis of the treatment and transportation of produced water to thermoelectric power plants in the Illinois Basin. Current produced water availability within the basin is not large, but potential flow rates up to 257 million liters per day (68 million gallons per day (MGD)) are possible if CO 2-enhanced oil recovery and coal bed methane recovery are implemented on a large scale. Produced water samples taken during the project tend to have dissolved solids concentrations between 10 and 100 g/L, and water from coal beds tends to have lower TDS values than water from oil fields. Current pretreatment and desalination technologies including filtration, adsorption, reverse osmosis (RO), and distillation can be used to treat produced water to a high quality level, with estimated costs ranging from $2.6 to $10.5 per cubic meter ($10 to $40 per 1000 gallons). Because of the distances between produced water sources and power plants, transportation costs tend to be greater than treatment costs. An optimization algorithm was developed to determine the lowest cost pipe network connecting sources and sinks. Total water costs increased with flow rate up to 26 million liters per day (7 MGD), and the range was from $4 to $16 per cubic meter ($15 to $60 per 1000 gallons), with treatment costs accounting for 13-23% of the overall cost. Results from this project suggest that produced water is a potential large source of cooling water, but treatment and transportation costs for this water are large.« less

  10. Co-gasification of solid waste and lignite - a case study for Western Macedonia.

    PubMed

    Koukouzas, N; Katsiadakis, A; Karlopoulos, E; Kakaras, E

    2008-01-01

    Co-gasification of solid waste and coal is a very attractive and efficient way of generating power, but also an alternative way, apart from conventional technologies such as incineration and landfill, of treating waste materials. The technology of co-gasification can result in very clean power plants using a wide range of solid fuels but there are considerable economic and environmental challenges. The aim of this study is to present the available existing co-gasification techniques and projects for coal and solid wastes and to investigate the techno-economic feasibility, concerning the installation and operation of a 30MW(e) co-gasification power plant based on integrated gasification combined cycle (IGCC) technology, using lignite and refuse derived fuel (RDF), in the region of Western Macedonia prefecture (WMP), Greece. The gasification block was based on the British Gas-Lurgi (BGL) gasifier, while the gas clean-up block was based on cold gas purification. The competitive advantages of co-gasification systems can be defined both by the fuel feedstock and production flexibility but also by their environmentally sound operation. It also offers the benefit of commercial application of the process by-products, gasification slag and elemental sulphur. Co-gasification of coal and waste can be performed through parallel or direct gasification. Direct gasification constitutes a viable choice for installations with capacities of more than 350MW(e). Parallel gasification, without extensive treatment of produced gas, is recommended for gasifiers of small to medium size installed in regions where coal-fired power plants operate. The preliminary cost estimation indicated that the establishment of an IGCC RDF/lignite plant in the region of WMP is not profitable, due to high specific capital investment and in spite of the lower fuel supply cost. The technology of co-gasification is not mature enough and therefore high capital requirements are needed in order to set up a direct co-gasification plant. The cost of electricity estimated was not competitive, compared to the prices dominating the Greek electricity market and thus further economic evaluation is required. The project would be acceptable if modular construction of the unit was first adopted near operating power plants, based on parallel co-gasification, and gradually incorporating the remaining process steps (gas purification, power generation) with the aim of eventually establishing a true direct co-gasification plant.

  11. Mountaineer Commercial Scale Carbon Capture and Storage Project Topical Report: Preliminary Public Design Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guy Cerimele

    2011-09-30

    This Preliminary Public Design Report consolidates for public use nonproprietary design information on the Mountaineer Commercial Scale Carbon Capture & Storage project. The report is based on the preliminary design information developed during the Phase I - Project Definition Phase, spanning the time period of February 1, 2010 through September 30, 2011. The report includes descriptions and/or discussions for: (1) DOE's Clean Coal Power Initiative, overall project & Phase I objectives, and the historical evolution of DOE and American Electric Power (AEP) sponsored projects leading to the current project; (2) Alstom's Chilled Ammonia Process (CAP) carbon capture retrofit technology andmore » the carbon storage and monitoring system; (3) AEP's retrofit approach in terms of plant operational and integration philosophy; (4) The process island equipment and balance of plant systems for the CAP technology; (5) The carbon storage system, addressing injection wells, monitoring wells, system monitoring and controls logic philosophy; (6) Overall project estimate that includes the overnight cost estimate, cost escalation for future year expenditures, and major project risks that factored into the development of the risk based contingency; and (7) AEP's decision to suspend further work on the project at the end of Phase I, notwithstanding its assessment that the Alstom CAP technology is ready for commercial demonstration at the intended scale.« less

  12. MidAmerican's Walter Scott, Jr. Energy Center Unit 4 earns Power's highest honor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peltier, R.

    MidAmerican Energy Co. and its project partners are convinced that supercritical coal-firing technology's inherently higher efficiency and lower CO{sub 2} emissions no longer come with a price: reduced reliability. Unit 4 of the Walter Scott, Jr. Energy Center (WSEC) entered into service in June 2006 doubling the capacity of the PRB-coal fuelled plant to 1,600 MW. This is the first major new supercritical plant in the US in more than 15 years. The design of the boiler and the air pollution control systems downstream are described and illustrated. Unit 4 won the 2007 Plant of the Year awarded by Powermore » magazine. 11 figs.« less

  13. Novel Corrosion Sensor for Vision 21 Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heng Ban; Bharat Soni

    2007-03-31

    Advanced sensor technology is identified as a key component for advanced power systems for future energy plants that would have virtually no environmental impact. This project intends to develop a novel high temperature corrosion sensor and subsequent measurement system for advanced power systems. Fireside corrosion is the leading mechanism for boiler tube failures and has emerged to be a significant concern for current and future energy plants due to the introduction of technologies targeting emissions reduction, efficiency improvement, or fuel/oxidant flexibility. Corrosion damage can lead to catastrophic equipment failure, explosions, and forced outages. Proper management of corrosion requires real-time indicationmore » of corrosion rate. However, short-term, on-line corrosion monitoring systems for fireside corrosion remain a technical challenge to date due to the extremely harsh combustion environment. The overall goal of this project is to develop a technology for on-line fireside corrosion monitoring. This objective is achieved by the laboratory development of sensors and instrumentation, testing them in a laboratory muffle furnace, and eventually testing the system in a coal-fired furnace. This project successfully developed two types of sensors and measurement systems, and successful tested them in a muffle furnace in the laboratory. The capacitance sensor had a high fabrication cost and might be more appropriate in other applications. The low-cost resistance sensor was tested in a power plant burning eastern bituminous coals. The results show that the fireside corrosion measurement system can be used to determine the corrosion rate at waterwall and superheater locations. Electron microscope analysis of the corroded sensor surface provided detailed picture of the corrosion process.« less

  14. Final Environmental Impact Statement for the JEA Circulating Fluidized Bed Combustor Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    N /A

    2000-06-30

    This EIS assesses environmental issues associated with constructing and demonstrating a project that would be cost-shared by DOE and JEA (formerly the Jacksonville Electric Authority) under the Clean Coal Technology Program. The project would demonstrate circulating fluidized bed (CFB) combustion technology at JEA's existing Northside Generating Station in Jacksonville, Florida, about 9 miles northeast of the downtown area of Jacksonville. The new CFB combustor would use coal and petroleum coke to generate nearly 300 MW of electricity by repowering the existing Unit 2 steam turbine, a 297.5-MW unit that has been out of service since 1983. The proposed project ismore » expected to demonstrate emission levels of sulfur dioxide (SO{sub 2}), oxides of nitrogen (NO{sub x}), and particulate matter that would be lower than Clean Air Act limits while at the same time producing power more efficiently and at less cost than conventional coal utilization technologies. At their own risk, JEA has begun initial construction activities without DOE funding. Construction would take approximately two years and, consistent with the original JEA schedule, would be completed in December 2001. Demonstration of the proposed project would be conducted during a 2-year period from March 2002 until March 2004. In addition, JEA plans to repower the currently operating Unit 1 steam turbine about 6 to 12 months after the Unit 2 repowering without cost-shared funding from DOE. Although the proposed project consists of only the Unit 2 repowering, this EIS analyzes the Unit 1 repowering as a related action. The EIS also considers three reasonably foreseeable scenarios that could result from the no-action alternative in which DOE would not provide cost-shared funding for the proposed project. The proposed action, in which DOE would provide cost-shared finding for the proposed project, is DOE's preferred alternative. The EIS evaluates the principal environmental issues, including air quality, traffic, noise, and ecological resources, that could result from construction and operation of the proposed project. Key findings include that maximum modeled increases in ground-level concentrations of SO{sub 2} nitrogen dioxide (NO{sub 2}), and particulate matter (for the proposed project alone or in conjunction with the related action) would always be less than 10% of their corresponding standards for increases in pollutants. For potential cumulative air quality impacts, results of modeling regional sources and the proposed project indicate that the maximum 24-hour average SO{sub 2} concentration would closely approach (i.e., 97%) but not exceed the corresponding Florida standard. After the Unit 1 repowering, results indicate that the maximum 24-hour average SO{sub 2} concentration would be 91% of the Florida standard. Concentrations for other averaging periods and pollutants would be lower percentages of their standards. Regarding toxic air pollutants from the proposed project, the maximum annual cancer risk to a member of the public would be approximately 1 in 1 million; given the conservative assumptions in the estimate, the risk would probably be less. With regard to threatened and endangered species, impacts to manatees, gopher tortoises, and other species would be negligible or non-existent. Construction-induced traffic would result in noticeable congestion. In the unlikely event that all coal were transported by rail, up to 3 additional trains per week would exacerbate impacts associated with noise, vibration, and blocked roads at on-grade rail crossings. Additional train traffic could be minimized by relying more heavily on barges and ships for coal transport, which is likely to be a more economic fuel delivery mode. During construction of the proposed project, noise levels would increase from the current operational levels. Except possibly during steam blowouts and possibly during operation of equipment used to construct a nearby segment of a conveyor, construction noise should not appreciably affect the background noise of nearby residences or exceed local noise limitations. The preferred alternative for management of the combustion ash would be to sell it as a by-product to offsite customers. If more than approximately 70% of the ash could be sold over the 30-year lifetime of Northside Generating Station, the 40-acre storage site would be sufficient for complete containment.« less

  15. United States Advanced Ultra-Supercritical Component Test Facility for 760°C Steam Power Plants ComTest Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hack, Horst; Purgert, Robert Michael

    Following the successful completion of a 15-year effort to develop and test materials that would allow coal-fired power plants to be operated at advanced ultra-supercritical (A-USC) steam conditions, a United States-based consortium is presently engaged in a project to build an A-USC component test facility (ComTest). A-USC steam cycles have the potential to improve cycle efficiency, reduce fuel costs, and reduce greenhouse gas emissions. Current development and demonstration efforts are focused on enabling the construction of A-USC plants, operating with steam temperatures as high as 1400°F (760°C) and steam pressures up to 5000 psi (35 MPa), which can potentially increasemore » cycle efficiencies to 47% HHV (higher heating value), or approximately 50% LHV (lower heating value), and reduce CO 2 emissions by roughly 25%, compared to today’s U.S. fleet. A-USC technology provides a lower-cost method to reduce CO 2 emissions, compared to CO 2 capture technologies, while retaining a viable coal option for owners of coal generation assets. Among the goals of the ComTest facility are to validate that components made from advanced nickel-based alloys can operate and perform under A-USC conditions, to accelerate the development of a U.S.-based supply chain for the full complement of A-USC components, and to decrease the uncertainty of cost estimates for future A-USC power plants. The configuration of the ComTest facility would include the key A-USC technology components that were identified for expanded operational testing, including a gas-fired superheater, high-temperature steam piping, steam turbine valve, and cycling header component. Membrane walls in the superheater have been designed to operate at the full temperatures expected in a commercial A-USC boiler, but at a lower (intermediate) operating pressure. This superheater has been designed to increase the temperature of the steam supplied by the host utility boiler up to 1400°F (760°C). The steam turbine stop and control valve component has been designed to operate at full A-USC temperatures, and would be tested both in throttling operation and to accumulate accelerated, repetitive stroke cycles. A cycling header component has been designed to confirm the suitability of new high-temperature nickel alloys to cycling operation, expected of future coal-fired power plants. Current test plans would subject these components to A-USC operating conditions for at least 8,000 hours by September 2020. The ComTest project is managed by Energy Industries of Ohio, and technically directed by the Electric Power Research Institute, Inc., with General Electric designing the A-USC components. This consortium is completing the Detailed Engineering phase of the project, with procurement scheduled to begin in late 2017. The effort is primarily funded by the U.S. Department of Energy, through the National Energy Technology Laboratory, along with the Ohio Development Services Agency. This presentation outlines the motivation for the project, explains the project’s structure and schedule, and provides technical details on the design of the ComTest facility.« less

  16. Refinery Integration of By-Products from Coal-Derived Jet Fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caroline Clifford; Andre Boehman; Chunshan Song

    2008-03-31

    The final report summarizes the accomplishments toward project goals during length of the project. The goal of this project was to integrate coal into a refinery in order to produce coal-based jet fuel, with the major goal to examine the products other than jet fuel. These products are in the gasoline, diesel and fuel oil range and result from coal-based jet fuel production from an Air Force funded program. The main goal of Task 1 was the production of coal-based jet fuel and other products that would need to be utilized in other fuels or for non-fuel sources, using knownmore » refining technology. The gasoline, diesel fuel, and fuel oil were tested in other aspects of the project. Light cycle oil (LCO) and refined chemical oil (RCO) were blended, hydrotreated to removed sulfur, and hydrogenated, then fractionated in the original production of jet fuel. Two main approaches, taken during the project period, varied where the fractionation took place, in order to preserve the life of catalysts used, which includes (1) fractionation of the hydrotreated blend to remove sulfur and nitrogen, followed by a hydrogenation step of the lighter fraction, and (2) fractionation of the LCO and RCO before any hydrotreatment. Task 2 involved assessment of the impact of refinery integration of JP-900 production on gasoline and diesel fuel. Fuel properties, ignition characteristics and engine combustion of model fuels and fuel samples from pilot-scale production runs were characterized. The model fuels used to represent the coal-based fuel streams were blended into full-boiling range fuels to simulate the mixing of fuel streams within the refinery to create potential 'finished' fuels. The representative compounds of the coal-based gasoline were cyclohexane and methyl cyclohexane, and for the coal-base diesel fuel they were fluorine and phenanthrene. Both the octane number (ON) of the coal-based gasoline and the cetane number (CN) of the coal-based diesel were low, relative to commercial fuels ({approx}60 ON for coal-based gasoline and {approx}20 CN for coal-based diesel fuel). Therefore, the allowable range of blending levels was studied where the blend would achieve acceptable performance. However, in both cases of the coal-based fuels, their ignition characteristics may make them ideal fuels for advanced combustion strategies where lower ON and CN are desirable. Task 3 was designed to develop new approaches for producing ultra clean fuels and value-added chemicals from refinery streams involving coal as a part of the feedstock. It consisted of the following three parts: (1) desulfurization and denitrogenation which involves both new adsorption approach for selective removal of nitrogen and sulfur and new catalysts for more effective hydrotreating and the combination of adsorption denitrogenation with hydrodesulfurization; (2) saturation of two-ring aromatics that included new design of sulfur resistant noble-metal catalysts for hydrogenation of naphthalene and tetralin in middle distillate fuels, and (3) value-added chemicals from naphthalene and biphenyl, which aimed at developing value-added organic chemicals from refinery streams such as 2,6-dimethylnaphthalene and 4,4{prime}-dimethylbiphenyl as precursors to advanced polymer materials. Major advances were achieved in this project in designing the catalysts and sorbent materials, and in developing fundamental understanding. The objective of Task 4 was to evaluate the effect of introducing coal into an existing petroleum refinery on the fuel oil product, specifically trace element emissions. Activities performed to accomplish this objective included analyzing two petroleum-based commercial heavy fuel oils (i.e., No. 6 fuel oils) as baseline fuels and three co-processed fuel oils, characterizing the atomization performance of a No. 6 fuel oil, measuring the combustion performance and emissions of the five fuels, specifically major, minor, and trace elements when fired in a watertube boiler designed for natural gas/fuel oil, and determining the boiler performance when firing the five fuels. Two different co-processed fuel oils were tested: one that had been partially hydrotreated, and the other a product of fractionation before hydrotreating. Task 5 focused on examining refining methods that would utilize coal and produce thermally stable jet fuel, included delayed coking and solvent extraction. Delayed coking was done on blends of decant oil and coal, with the goal to produce a premium carbon product and liquid fuels. Coking was done on bench scale and large laboratory scale cokers. Two coals were examined for co-coking, using Pittsburgh seam coal and Marfork coal product. Reactions in the large, laboratory scaled coker were reproducible in yields of products and in quality of products. While the co-coke produced from both coals was of sponge coke quality, minerals left in the coke made it unacceptable for use as anode or graphite grade filler.« less

  17. JEDI Coal Model | Jobs and Economic Development Impact Models | NREL

    Science.gov Websites

    Coal Model JEDI Coal Model The Jobs and Economic Development Impacts (JEDI) Coal Model allow users to estimate economic development impacts from coal projects and includes default information that can

  18. Abstracts and research accomplishments of university coal research projects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-06-01

    The Principal Investigators of the grants supported by the University Coal Research Program were requested to submit abstracts and highlight accomplishments of their projects in time for distribution at a grantees conference. This book is a compilation of the material received in response to the request. Abstracts discuss the following area: coal science, coal surface science, reaction chemistry, advanced process concepts, engineering fundamentals and thermodynamics, environmental science.

  19. [Carbon capture and storage (CCS) and its potential role to mitigate carbon emission in China].

    PubMed

    Chen, Wen-Ying; Wu, Zong-Xin; Wang, Wei-Zhong

    2007-06-01

    Carbon capture and storage (CCS) has been widely recognized as one of the options to mitigate carbon emission to eventually stabilize carbon dioxide concentration in the atmosphere. Three parts of CCS, which are carbon capture, transport, and storage are assessed in this paper, covering comparisons of techno-economic parameters for different carbon capture technologies, comparisons of storage mechanism, capacity and cost for various storage formations, and etc. In addition, the role of CCS to mitigate global carbon emission is introduced. Finally, China MARKAL model is updated to include various CCS technologies, especially indirect coal liquefaction and poly-generation technologies with CCS, in order to consider carbon emission reduction as well as energy security issue. The model is used to generate different scenarios to study potential role of CCS to mitigate carbon emissions by 2050 in China. It is concluded that application of CCS can decrease marginal abatement cost and the decrease rate can reach 45% for the emission reduction rate of 50%, and it can lessen the dependence on nuclear power development for stringent carbon constrains. Moreover, coal resources can be cleanly used for longer time with CCS, e.g., for the scenario C70, coal share in the primary energy consumption by 2050 will increase from 10% when without CCS to 30% when with CCS. Therefore, China should pay attention to CCS R&D activities and to developing demonstration projects.

  20. The US Geological Survey's national coal resource assessment: The results

    USGS Publications Warehouse

    Ruppert, Leslie F.; Kirschbaum, Mark A.; Warwick, Peter D.; Flores, Romeo M.; Affolter, Ronald H.; Hatch, Joseph R.

    2002-01-01

    The US Geological Survey and the State geological surveys of many coal-bearing States recently completed a new assessment of the top producing coal beds and coal zones in five major producing coal regions—the Appalachian Basin, Gulf Coast, Illinois Basin, Colorado Plateau, and Northern Rocky Mountains and Great Plains. The assessments, which focused on both coal quality and quantity, utilized geographic information system technology and large databases. Over 1,600,000 million short tons of coal remain in over 60 coal beds and coal zones that were assessed. Given current economic, environmental, and technological restrictions, the majority of US coal production will occur in that portion of the assessed coal resource that is lowest in sulfur content. These resources are concentrated in parts of the central Appalachian Basin, Colorado Plateau, and the Northern Rocky Mountains.

  1. The development of coal-based technologies for Department of Defense facilities. Volume 1, Technical report. Semiannual technical progress report, September 28, 1994--March 27, 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, B.G.; Bartley, D.A.; Hatcher, P.

    1996-10-15

    This program is being conducted as a cooperative agreement between the Consortium for Coal Water Mixture Technology and the U.S. Department of Energy. Activities this reporting period are summarized by phase. Phase I is nearly completed. During this reporting period, coal beneficiation/preparation studies, engineering designs and economics for retrofitting the Crane, Indiana boiler to fire coal-based fuels, and a 1,000-hour demonstration of dry, micronized coal were completed. In addition, a demonstration-scale micronized-coal water mixture (MCWM) preparation circuit was constructed and a 1,000-hour demonstration firing MCWM began. Work in Phase II focused on emissions reductions, coal beneficiation/preparation studies, and economic analysesmore » of coal use. Emissions reductions investigations involved literature surveys of NO{sub x}, SO{sub 2}, trace metals, volatile organic compounds, and fine particulate matter capture. In addition, vendors and engineering firms were contacted to identify the appropriate emissions technologies for the installation of commercial NO{sub x} and SO{sub 2} removal systems on the demonstration boiler. Information from the literature surveys and engineering firms will be used to identify, design, and install a control system(s). Work continued on the refinement and optimization of coal grinding and MCWM preparation procedures, and on the development of advanced processes for beneficiating high ash, high sulfur coals. Work also continued on determining the basic cost estimation of boiler retrofits, and evaluating environmental, regulatory, and regional economic impacts. In addition, the feasibility of technology adoption, and the public`s perception of the benefits and costs of coal usage was studied. A coal market analysis was completed. Work in Phase III focused on coal preparation studies, emissions reductions and economic analyses of coal use.« less

  2. The role of high-Btu coal gasification technology

    NASA Astrophysics Data System (ADS)

    German, M. I.

    An analysis is given of the role and economic potential of Lurgi-technology gasification of coal to the year 2000, in relation to other gas-supply options, the further development of gasifier designs, and probable environmental impact. It is predicted that coal gasification may reach 10% of total gas supplies by the year 2000, with Eastern U.S. coal use reaching commercially significant use in the 1990's. It is concluded that coal gasification is the cleanest way of using coal, with minimal physical, chemical, biological and socioeconomic impacts.

  3. Evaluation of AFBC co-firing of coal and hospital wastes. Technical report, January 1989--August 1990

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-02-01

    The purpose of this program is to expand the use of coal by utilizing CFB (circulating fluidized bed) technology to provide an environmentally safe method for disposing of waste materials. Hospitals are currently experiencing a waste management crisis. In many instances, they are no longer permitted to burn pathological and infectious wastes in incinerators. Older hospital incinerators are not capable of maintaining the stable temperatures and residence times necessary in order to completely destroy toxic substances before release into the atmosphere. In addition, the number of available landfills which can safely handle these substances is decreasing each year. The purposemore » of this project is to conduct necessary research investigating whether the combustion of the hospital wastes in a coal-fired circulating fluidized bed boiler will effectively destroy dioxins and other hazardous substances before release into the atmosphere. If this is proven feasible, in light of the quantity of hospital wastes generated each year, it would create a new market for coal -- possibly 50 million tons/year.« less

  4. Materials for advanced ultrasupercritical steam turbines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Purgert, Robert; Shingledecker, John; Saha, Deepak

    The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have sponsored a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired power plants capable of operating at much higher efficiencies than the current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of advanced ultrasupercritical (A-USC) steam conditions. A limiting factor in this can be the materials of construction for boilers and for steam turbines. The overall project goal is to assess/develop materials technology that will enable achieving turbinemore » throttle steam conditions of 760°C (1400°F)/35MPa (5000 psi). This final technical report covers the research completed by the General Electric Company (GE) and Electric Power Research Institute (EPRI), with support from Oak Ridge National Laboratory (ORNL) and the National Energy Technology Laboratory (NETL) – Albany Research Center, to develop the A-USC steam turbine materials technology to meet the overall project goals. Specifically, this report summarizes the industrial scale-up and materials property database development for non-welded rotors (disc forgings), buckets (blades), bolting, castings (needed for casing and valve bodies), casting weld repair, and casting to pipe welding. Additionally, the report provides an engineering and economic assessment of an A-USC power plant without and with partial carbon capture and storage. This research project successfully demonstrated the materials technology at a sufficient scale and with corresponding materials property data to enable the design of an A-USC steam turbine. The key accomplishments included the development of a triple-melt and forged Haynes 282 disc for bolted rotor construction, long-term property development for Nimonic 105 for blading and bolting, successful scale-up of Haynes 282 and Nimonic 263 castings using traditional sand foundry practices, and a techno-economic study of an A-USC plant including cost estimates for an A-USC turbine which showed A-USC to be economically attractive for partial carbon and capture compared to today’s USC technology. Based on this successful materials research and a review with U.S. utility stakeholders, a new project to develop a component test facility (ComTest) including the world’s first A-USC turbine has been proposed to continue the technology development.« less

  5. (Initiation of strategic assessment of fossil options, Phase 2). Summary. Progress report, November 1981-February 1982. [USA; coal transhipment capacity in 1990 for 37 ports

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kocur, G.; Adler, T.J.

    1982-02-23

    The export coal transportation study has proceeded through the first two subtasks. Figure 1 shows a comparison between past and projected US coal export demand and US port coal transshipment capacities. Projected export demand was taken from the MIT World Coal Study, and projected port capacities were determined primarily by personal communications with port managers. Table 1 details projected 1990 capacities at each major port, with a maximum-minimum range indicating undertain projects. The obvious observation from these data is the massive discrepancy between projected capacities and projected export movements. It is very likely that many ports have publicized ambitious expansionmore » plans in order to discourage competing ports from expanding. In addition, the excess port capacity could be used for exports of, for example, iron ore and grain. Nonetheless, Fig. 1 does indicate some need to determine which subset of ports will lie on the most cost-effective routing from mine to ultimate destination and which thus deserve the largest investments. The survey of rail export (steam) coal rates began with an identification of representative mines (13) to port (19) movement (total of 54 allowable). Per carload rail rates were then obtained for approximately 25 of these movements. Regression analyses were performed relating these rates to shipping distance, and other factors. 1 figure, 1 table.« less

  6. US/China Energy and Environmental Technology Center (EETC) international business development and technology transfer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsieh, S.T.; Atwood, T.; Qiu Daxiong

    1997-12-31

    Since January 1997, the US/China Energy and Environmental Technology Center (EETC) in Beijing has been jointly operated by Tulane University and Tsinghua University. EETC is established to encourage the adoption of technologies for energy production with improved environmental performance which are essential for supporting economic growth and managing the Global Warming and Climate Change issues. International cooperation is critical to insure the environmental and energy security on a global basis. For example, the US has acquired a great deal of useful experience in clean coal technology which has been demonstrated with major utilities in commercial operations. The adaption of, andmore » the installation of, clean coal technology should be given high priority. Worldwide, the continuous exchange of information and technology between developed and developing nations relating to the current and future clean coal technologies is of great importance. Developed nations which possess environmental responsive technologies and financial resources should work closely with developing nations to facilitate technology transfer and trade of technologies. International cooperation will lower the cost of deploying clean coal technologies directed toward the clean production of energy. This paper presents the updated activities of EETC on facilitating technology transfer and promoting the clean use of coal to satisfy growing energy demand in China.« less

  7. Characterization of airborne float coal dust emitted during continuous mining, longwall mining and belt transport

    PubMed Central

    Shahan, M.R.; Seaman, C.E.; Beck, T.W.; Colinet, J.F.; Mischler, S.E.

    2017-01-01

    Float coal dust is produced by various mining methods, carried by ventilating air and deposited on the floor, roof and ribs of mine airways. If deposited, float dust is re-entrained during a methane explosion. Without sufficient inert rock dust quantities, this float coal dust can propagate an explosion throughout mining entries. Consequently, controlling float coal dust is of critical interest to mining operations. Rock dusting, which is the adding of inert material to airway surfaces, is the main control technique currently used by the coal mining industry to reduce the float coal dust explosion hazard. To assist the industry in reducing this hazard, the Pittsburgh Mining Research Division of the U.S. National Institute for Occupational Safety and Health initiated a project to investigate methods and technologies to reduce float coal dust in underground coal mines through prevention, capture and suppression prior to deposition. Field characterization studies were performed to determine quantitatively the sources, types and amounts of dust produced during various coal mining processes. The operations chosen for study were a continuous miner section, a longwall section and a coal-handling facility. For each of these operations, the primary dust sources were confirmed to be the continuous mining machine, longwall shearer and conveyor belt transfer points, respectively. Respirable and total airborne float dust samples were collected and analyzed for each operation, and the ratio of total airborne float coal dust to respirable dust was calculated. During the continuous mining process, the ratio of total airborne float coal dust to respirable dust ranged from 10.3 to 13.8. The ratios measured on the longwall face were between 18.5 and 21.5. The total airborne float coal dust to respirable dust ratio observed during belt transport ranged between 7.5 and 21.8. PMID:28936001

  8. Near-Zero Emissions Oxy-Combustion Flue Gas Purification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Minish Shah; Nich Degenstein; Monica Zanfir

    2012-06-30

    The objectives of this project were to carry out an experimental program to enable development and design of near zero emissions (NZE) CO{sub 2} processing unit (CPU) for oxy-combustion plants burning high and low sulfur coals and to perform commercial viability assessment. The NZE CPU was proposed to produce high purity CO{sub 2} from the oxycombustion flue gas, to achieve > 95% CO{sub 2} capture rate and to achieve near zero atmospheric emissions of criteria pollutants. Two SOx/NOx removal technologies were proposed depending on the SOx levels in the flue gas. The activated carbon process was proposed for power plantsmore » burning low sulfur coal and the sulfuric acid process was proposed for power plants burning high sulfur coal. For plants burning high sulfur coal, the sulfuric acid process would convert SOx and NOx in to commercial grade sulfuric and nitric acid by-products, thus reducing operating costs associated with SOx/NOx removal. For plants burning low sulfur coal, investment in separate FGD and SCR equipment for producing high purity CO{sub 2} would not be needed. To achieve high CO{sub 2} capture rates, a hybrid process that combines cold box and VPSA (vacuum pressure swing adsorption) was proposed. In the proposed hybrid process, up to 90% of CO{sub 2} in the cold box vent stream would be recovered by CO{sub 2} VPSA and then it would be recycled and mixed with the flue gas stream upstream of the compressor. The overall recovery from the process will be > 95%. The activated carbon process was able to achieve simultaneous SOx and NOx removal in a single step. The removal efficiencies were >99.9% for SOx and >98% for NOx, thus exceeding the performance targets of >99% and >95%, respectively. The process was also found to be suitable for power plants burning both low and high sulfur coals. Sulfuric acid process did not meet the performance expectations. Although it could achieve high SOx (>99%) and NOx (>90%) removal efficiencies, it could not produce by-product sulfuric and nitric acids that meet the commercial product specifications. The sulfuric acid will have to be disposed of by neutralization, thus lowering the value of the technology to same level as that of the activated carbon process. Therefore, it was decided to discontinue any further efforts on sulfuric acid process. Because of encouraging results on the activated carbon process, it was decided to add a new subtask on testing this process in a dual bed continuous unit. A 40 days long continuous operation test confirmed the excellent SOx/NOx removal efficiencies achieved in the batch operation. This test also indicated the need for further efforts on optimization of adsorption-regeneration cycle to maintain long term activity of activated carbon material at a higher level. The VPSA process was tested in a pilot unit. It achieved CO{sub 2} recovery of > 95% and CO{sub 2} purity of >80% (by vol.) from simulated cold box feed streams. The overall CO{sub 2} recovery from the cold box VPSA hybrid process was projected to be >99% for plants with low air ingress (2%) and >97% for plants with high air ingress (10%). Economic analysis was performed to assess value of the NZE CPU. The advantage of NZE CPU over conventional CPU is only apparent when CO{sub 2} capture and avoided costs are compared. For greenfield plants, cost of avoided CO{sub 2} and cost of captured CO{sub 2} are generally about 11-14% lower using the NZE CPU compared to using a conventional CPU. For older plants with high air intrusion, the cost of avoided CO{sub 2} and capture CO{sub 2} are about 18-24% lower using the NZE CPU. Lower capture costs for NZE CPU are due to lower capital investment in FGD/SCR and higher CO{sub 2} capture efficiency. In summary, as a result of this project, we now have developed one technology option for NZE CPU based on the activated carbon process and coldbox-VPSA hybrid process. This technology is projected to work for both low and high sulfur coal plants. The NZE CPU technology is projected to achieve near zero stack emissions, produce high purity CO{sub 2} relatively free of trace impurities and achieve ~99% CO{sub 2} capture rate while lowering the CO{sub 2} capture costs.« less

  9. Pressure-relief and methane production performance of pressure relief gas extraction technology in the longwall mining

    NASA Astrophysics Data System (ADS)

    Zhang, Cun; Tu, Shihao; Chen, Min; Zhang, Lei

    2017-02-01

    Pressure relief gas extraction technology (PRGET) has been successfully implemented at many locations as a coal mine methane exploitation and outburst prevention technology. Comprehensive PRGET including gob gas venthole (GGV), crossing seam drilling hole (CSDH), large diameter horizontal long drilling hole (LDHLDH) and buried pipe for extraction (BPE) have been used to extract abundant pressure-relief methane (PRM) during protective coal seam mining; these techniques mitigated dangers associated with coal and gas outbursts in 13-1 coal seam mining in the Huainan coalfield. These extraction technologies can ensure safe protective seam mining and effectively extract coal and gas. This article analyses PRGET production performance and verifies it with the field measurement. The results showed that PRGET drilling to extract PRM from the protected coal seam significantly reduced methane emissions from a longwall ventilation system and produced highly efficient extraction. Material balance analyses indicated a significant decrease in gas content and pressure in the protected coal seam, from 8.78 m3 t-1 and 4.2 MPa to 2.34 m3 t-1 and 0.285 MPa, respectively. The field measurement results of the residual gas content in protected coal seam (13-1 coal seam) indicated the reliability of the material balance analyses and the pressure relief range of PRGET in the protected coal seam is obtained.

  10. Research on Occupational Safety, Health Management and Risk Control Technology in Coal Mines.

    PubMed

    Zhou, Lu-Jie; Cao, Qing-Gui; Yu, Kai; Wang, Lin-Lin; Wang, Hai-Bin

    2018-04-26

    This paper studies the occupational safety and health management methods as well as risk control technology associated with the coal mining industry, including daily management of occupational safety and health, identification and assessment of risks, early warning and dynamic monitoring of risks, etc.; also, a B/S mode software (Geting Coal Mine, Jining, Shandong, China), i.e., Coal Mine Occupational Safety and Health Management and Risk Control System, is developed to attain the aforementioned objectives, namely promoting the coal mine occupational safety and health management based on early warning and dynamic monitoring of risks. Furthermore, the practical effectiveness and the associated pattern for applying this software package to coal mining is analyzed. The study indicates that the presently developed coal mine occupational safety and health management and risk control technology and the associated software can support the occupational safety and health management efforts in coal mines in a standardized and effective manner. It can also control the accident risks scientifically and effectively; its effective implementation can further improve the coal mine occupational safety and health management mechanism, and further enhance the risk management approaches. Besides, its implementation indicates that the occupational safety and health management and risk control technology has been established based on a benign cycle involving dynamic feedback and scientific development, which can provide a reliable assurance to the safe operation of coal mines.

  11. Research on Occupational Safety, Health Management and Risk Control Technology in Coal Mines

    PubMed Central

    Zhou, Lu-jie; Cao, Qing-gui; Yu, Kai; Wang, Lin-lin; Wang, Hai-bin

    2018-01-01

    This paper studies the occupational safety and health management methods as well as risk control technology associated with the coal mining industry, including daily management of occupational safety and health, identification and assessment of risks, early warning and dynamic monitoring of risks, etc.; also, a B/S mode software (Geting Coal Mine, Jining, Shandong, China), i.e., Coal Mine Occupational Safety and Health Management and Risk Control System, is developed to attain the aforementioned objectives, namely promoting the coal mine occupational safety and health management based on early warning and dynamic monitoring of risks. Furthermore, the practical effectiveness and the associated pattern for applying this software package to coal mining is analyzed. The study indicates that the presently developed coal mine occupational safety and health management and risk control technology and the associated software can support the occupational safety and health management efforts in coal mines in a standardized and effective manner. It can also control the accident risks scientifically and effectively; its effective implementation can further improve the coal mine occupational safety and health management mechanism, and further enhance the risk management approaches. Besides, its implementation indicates that the occupational safety and health management and risk control technology has been established based on a benign cycle involving dynamic feedback and scientific development, which can provide a reliable assurance to the safe operation of coal mines. PMID:29701715

  12. A REAL-TIME COAL CONTENT/ORE GRADE (C2OC) SENSOR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rand Swanson

    2005-04-01

    This is the final report of a three year DOE funded project titled ''A real-time coal content/ore grade (C{sub 2}OG) sensor''. The sensor, which is based on hyperspectral imaging technology, was designed to give a machine vision assay of ore or coal. Sensors were designed and built at Resonon, Inc., and then deployed at the Stillwater Mining Company core room in southcentral Montana for analyzing platinum/palladium ore and at the Montana Tech Spectroscopy Lab for analyzing coal and other materials. The Stillwater sensor imaged 91' of core and analyzed this data for surface sulfides which are considered to be pathfindermore » minerals for platinum/palladium at this mine. Our results indicate that the sensor could deliver a relative ore grade provided tool markings and iron oxidation were kept to a minimum. Coal, talc, and titanium sponge samples were also imaged and analyzed for content and grade with promising results. This research has led directly to a DOE SBIR Phase II award for Resonon to develop a down-hole imaging spectrometer based on the same imaging technology used in the Stillwater core room C{sub 2}OG sensor. The Stillwater Mining Company has estimated that this type of imaging system could lead to a 10% reduction in waste rock from their mine and provide a $650,000 benefit per year. The proposed system may also lead to an additional 10% of ore tonnage, which would provide a total economic benefit of more than $3.1 million per year. If this benefit could be realized on other metal ores for which the proposed technology is suitable, the possible economic benefits to U.S. mines is over $70 million per year. In addition to these currently lost economic benefits, there are also major energy losses from mining waste rock and environmental impacts from mining, processing, and disposing of waste rock.« less

  13. Enhanced Combustion Low NOx Pulverized Coal Burner

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David Towle; Richard Donais; Todd Hellewell

    2007-06-30

    For more than two decades, Alstom Power Inc. (Alstom) has developed a range of low cost, infurnace technologies for NOx emissions control for the domestic U.S. pulverized coal fired boiler market. This includes Alstom's internally developed TFS 2000{trademark} firing system, and various enhancements to it developed in concert with the U.S. Department of Energy. As of the date of this report, more than 270 units representing approximately 80,000 MWe of domestic coal fired capacity have been retrofit with Alstom low NOx technology. Best of class emissions range from 0.18 lb/MMBtu for bituminous coal to 0.10 lb/MMBtu for subbituminous coal, withmore » typical levels at 0.24 lb/MMBtu and 0.13 lb/MMBtu, respectively. Despite these gains, NOx emissions limits in the U.S. continue to ratchet down for new and existing boiler equipment. On March 10, 2005, the Environmental Protection Agency (EPA) announced the Clean Air Interstate Rule (CAIR). CAIR requires 25 Eastern states to reduce NOx emissions from the power generation sector by 1.7 million tons in 2009 and 2.0 million tons by 2015. Low cost solutions to meet such regulations, and in particular those that can avoid the need for a costly selective catalytic reduction system (SCR), provide a strong incentive to continue to improve low NOx firing system technology to meet current and anticipated NOx control regulations. The overall objective of the work is to develop an enhanced combustion, low NOx pulverized coal burner, which, when integrated with Alstom's state-of-the-art, globally air staged low NOx firing systems will provide a means to achieve: Less than 0.15 lb/MMBtu NOx emissions when firing a high volatile Eastern or Western bituminous coal, Less than 0.10 lb/MMBtu NOx emissions when firing a subbituminous coal, NOx reduction costs at least 25% lower than the costs of an SCR, Validation of the NOx control technology developed through large (15 MWt) pilot scale demonstration, and Documentation required for economic evaluation and commercial application. During the project performance period, Alstom performed computational fluid dynamics (CFD) modeling and large pilot scale combustion testing in its Industrial Scale Burner Facility (ISBF) at its U.S. Power Plant Laboratories facility in Windsor, Connecticut in support of these objectives. The NOx reduction approach was to optimize near-field combustion to ensure that minimum NOx emissions are achieved with minimal impact on unburned carbon in ash, slagging and fouling, corrosion, and flame stability/turn-down. Several iterations of CFD and combustion testing on a Midwest coal led to an optimized design, which was extensively combustion tested on a range of coals. The data from these tests were then used to validate system costs and benefits versus SCR. Three coals were evaluated during the bench-scale and large pilot-scale testing tasks. The three coals ranged from a very reactive subbituminous coal to a moderately reactive Western bituminous coal to a much less reactive Midwest bituminous coal. Bench-scale testing was comprised of standard ASTM properties evaluation, plus more detailed characterization of fuel properties through drop tube furnace testing and thermogravimetric analysis. Bench-scale characterization of the three test coals showed that both NOx emissions and combustion performance are a strong function of coal properties. The more reactive coals evolved more of their fuel bound nitrogen in the substoichiometric main burner zone than less reactive coal, resulting in the potential for lower NOx emissions. From a combustion point of view, the more reactive coals also showed lower carbon in ash and CO values than the less reactive coal at any given main burner zone stoichiometry. According to bench-scale results, the subbituminous coal was found to be the most amenable to both low NOx, and acceptably low combustibles in the flue gas, in an air staged low NOx system. The Midwest bituminous coal, by contrast, was predicted to be the most challenging of the three coals, with the Western bituminous coal predicted to behave in-between the subbituminous coal and the Midwest bituminous coal. CFD modeling was used to gain insight into the mechanisms governing nozzle tip performance with respect to NOx emissions. The CFD simulations were run as steady state, turbulent, non-reacting flow with heat transfer and focused on predicting the near field mixing and particle dispersion rates. CFD results were used to refine the proposed tip concepts before they were built, as well as to help identify and evaluate possible improvements to the tips for subsequent test weeks.« less

  14. Numerical Modelling by FLAC on Coal Fires in North China

    NASA Astrophysics Data System (ADS)

    Gusat, D.; Drebenstedt, C.

    2009-04-01

    Coal fires occur in many countries all over the world (e.g. Australia, China, India, Indonesia, USA and Russia) in underground and on surface. In China the most coal fires occur especially in the North. Economical and environmental damages are the negative effects of the coal fires: coal fires induce open fractures and fissures within the seam and neighbouring rocks. So that these are the predominant pathways for oxygen flow and exhaust gases from a coal fire. All over northern China there are a large number of coal fires, which cause and estimated yearly coal loss of between 100 and 200 million tons ([1], [2], [3]). Spontaneous combustion is a very complicated process and is influenced by number of factors. The process is an exothermic reaction in which the heat generated is dissipated by conduction to the surrounding environment, by radiation, by convection to the ventilation flow, and in some cases by evaporation of moisture from the coal [4]. The coal fires are very serious in China, and the dangerous extent of spontaneous combustion is bad which occupies about 72.9% in mining coal seams. During coal mining in China, the coal fires of spontaneous combustion are quite severity. The dangerous of coal spontaneous combustion has been in 56% of state major coalmines [5]. The 2D and 3D-simulation models describing coal fire damages are strong tools to predict fractures and fissures, to estimate the risk of coal fire propagation into neighbouring seams, to test and evaluate coal fire fighting and prevention methods. The numerical simulations of the rock mechanical model were made with the software for geomechanical and geotechnical calculations, the programs FLAC and FLAC3D [6]. To fight again the coal fires, exist several fire fighting techniques. Water, slurries or liquefied nitrogen can be injected to cool down the coal or cut of air supply with the backfill and thereby extinct the fire. Air supply also can be cut of by covering the coal by soil or sealing of the coal mine with the backfill. A smaller fires can also be handled by taking out burning coal by bulldozing techniques described above are applicable to small fires, but they do not work well in extinction of large coal fires. References [1] http://www.coalfire.caf.dlr.de [2] Schalke, H.J.W.G.; Rosema, A.; Van Genderen, J.L. (1993): Environmental monitoring of coal fires in North China. Project Identification Mission Report. Report Remote Sensing Programme Board, Derft, the Netherlands. [3] Zhang, X.; Kroonenberg, S. B.; De Boer, C. B. (2004): Dating of coal fires in Xinjiang, north-west China. Terra Nova. Band 16, No 2, S. 68-74. DOI: 10.1111/j.1365-3121.2004.00532.x [4] Deng Jun, Hou Shuang, Li Huirong, e.t.c (2006): Oxidation Mechanism at Initial Stage of a Simulated Coal Molecule with -CH2O-[J]. Journal of Changchun University of Science and Technology, 29(2), P. 84-87. [5] Deng, Jun (2008): Presentation. Chinese Researches and Practical Experiences on Controlling Underground Coal Fires. The 2nd Australia-China Symposium on Science, Technology and Education. 15-18 October 2008, Courtyard Marriott, Surfers Paradise Beach, Gold Coast, Queensland, Australia. [6] Itasca (2003): FLAC, Fast Lagrangian Analysis of Continua. Itasca Consultants Group, Inc., Minneapolis.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wootten, J.M.

    Using surveys of the electricity industry taken in major OECD coal producing/coal consuming regions of North America, Europe, Southern Africa, and Asia/Pacific, this paper reports on the attitudes of power plant operators and developers toward clean coal technologies, the barriers to their use and the policies and measures that might be implemented, if a country or region desired to encourage greater use of clean coal technologies.

  16. Proceedings of the Conference on Coal Use for California

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The papers, statements, and panel session transcriptions that resulted from the conference are presented. The conference brought together approximately 400 specialists, students, interest groups and general public for the examination of technological, institutional, and social issues surrounding coal use for California and the identification of attendant constraints, impediments, advantages, and target opportunities. The expertise of the participants cover a wide range of subject matter that includes systems examination of coal opportunities, energy demand forecasting, environmental aspects of coal use, coal supply and transport, viewpoint of neighboring states, air pollution control, direct firing, coal gasification and liquefaction technologies, economics of coal use, and the regulatory system.

  17. Proven clean coal technology at work: The Provence 250 MW CFB boiler

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lucat, P.; Jacquet, L.; Roulet, V.

    The successful start-up, in the last months of 1995, of the 250 MW Provence/Gardanne unit represents a significant milestone in the development of atmospheric Circulating Fluidized Bed (CFB) boilers for power stations. This high performance unit (over 700 tonnes/hour of steam at 169 bar, 567 C, with reheat at 566 C) has been in operation since April 1996. It is the first CFB boiler in the world to reach such a capacity. CFB boilers, with their excellent SO{sub 2} and NOx emission control capability, are today recognized as a very attractive Clean Coal Technology, particularly because of their simplicity. Themore » Provence/Gardanne project is part of a French development program for large CFB boilers which has been elaborated in the perspective of domestic applications (mainly future semi-base load units) and of the overseas market. It responds to the converging interests of Electricite de France (EDF), Charbonnages de France (CdF)and GEC ALSTHOM Stein Industrie. Besides comprehensive R and D-type investigations aiming at an in-depth understanding of the CFB process and preparing for future scale-up and development, this program has already been marked by two outstanding commercial repowering projects: a 125 MW unit, in operation since 1990 at the Emile Huchet Power Station, and the 250 MW Provence unit. These boilers have been designed and supplied by GEC ALSTHOM Stein Industrie in the framework of their long standing cooperation with Lurgi, a pioneer of the CFB process. The main components are: (1) Furnace; (2) Cyclone; (3) Back-pass; (4) Ash cooler; (5) External Heat Exchanger. However, a brief discussion of some key design options affecting bed performance is necessary to better understand this technology. The paper describes the design of the system, the retrofitting project at Emile Huchet/Carling, and then gives background information on the Provence/Gardanne retrofit, describing SO{sub 2} emissions, the 250 MW boiler, and results from the performance tests. The recent performance tests as well as the operating experience already accumulated demonstrates that the Provence Clean Energy Project participants have successfully overcome the scale-up challenge represented by the construction of the first 250 MW CFB boiler in the world. This simple and attractive clean coal technology is now ready for many commercial applications in power stations. Units up to 300-400 MW can be built right now, using the lessons learned at Provence. Development of 600 MW-class CFB boilers, subcritical or supercritical, appears within reach in the near future.« less

  18. Characterization of Rare Earth Element Minerals in Coal Utilization Byproducts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montross, Scott N.; Verba, Circe A.; Collins, Keith

    The United States currently produces over 100 million tons of coal utilization byproducts (CUB) per year in the form of fly ash, bottom ash, slag, and flue gas (American Coal Ash Association (ACCA), 2015). But this “waste material” also contains potentially useful levels of rare earth elements (REE). Rare earth elements are crucial for many existing and emerging technologies, but the U.S. lacks a domestic, sustainable REE source. Our project explored the possibility of developing a supply of REEs for U.S. technologies by extracting REEs from CUBs. This work offers the potential to reduce our dependence on other countries formore » supply of these critical elements (NETL, REE 2016 Project Portfolio). Geologic and diagenetic history, industrial preparation methods, and the specific combustion process all play major roles in the composition of CUB. During combustion, inorganic mineral phases of coal particles are fluidized at temperatures higher than 1400oC, so inorganic mineral materials are oxidized, fused, disintegrated, or agglomerated into larger spherical and amorphous (non-crystalline) particles. The original mineralogy of the coal-containing rock and heating/cooling of the material significantly affects the composition and morphology of the particles in the combustion byproduct (Kutchko and Kim, 2006). Thus, different types of coal/refuse/ash must be characterized to better understand mineral evolution during the combustion process. Our research focused on developing a working model to address how REE minerals behave during the combustion process: this research should help determine the most effective engineering methods for extracting REEs from CUBs. We used multimodal imaging and image processing techniques to characterize six rock and ash samples from different coal power plants with respect to morphology, grain size, presence of mineral phases, and elemental composition. The results of these characterization activities provided thresholds for realizing the occurrence of REE mineral phases in CUB and allowed us to calculate structural and volumetric estimates of REE. Collectively, the rock and coal ash samples contained minerals such as quartz, kaolinite, muscovite/illite, iron oxide (as hematite or magnetite), mullite, and clinochlore. Trace minerals included pyrite, zircon, siderite, rutile, diopside, foresterite, gypsum, and barite. We identified REE phosphate minerals monazite (Ce,La,Nd,Th)(PO 4,SiO 4), xenotime (YPO 4,SiO 4), and apatite (Ca 5(PO 4) 3(F,Cl,OH) via SEM and electron microprobe analysis: these materials generally occurred as 1-10 μm-long crystals in the rock and ash samples. As has been shown in other studies, amorphous material-aluminosilicate glass or iron oxyhydroxide-are the major components of coal fly and bottom ash. Trace amounts of amorphous calcium oxide and mixed element (e.g., Al-Si-Ca-Fe) slag are also present. Quartz, mullite, hematite, and magnetite are the crystalline phases present. We found that REEs are present as monomineralic grains dispersed within the ash, as well as fused to or encapsulated by amorphous aluminosilicate glass particles. Monazite and xenotime have relatively high melting points (>1800 °C) compared to typical combustion temperatures; our observations indicate that the REE-phosphates, which presumably contribute a large percentage of REE to the bulk ash REE pool, as measured by mass spectroscopy, are largely unaltered by the combustion. Our study shows that conventional coal combustion processes sequester REE minerals into aluminosilicate glass phases, which presents a new engineering challenge for extracting REE from coal ash. The characterization work summarized in this report provides a semi-quantitative assessments of REE in coal-containing rock and CUB. The data we obtained from 2- and 3-D imaging, elemental mapping, volumetric estimates, and advanced high-resolution pixel classification successfully identified the different mineral phases present in CUB. Further, our characterization results can guide techniques for extracting REEs from CUB, or other geologic and engineered materials. Whilst, interpretations will inform future REE separation and extraction techniques and technologies practical for commercial utilization of combustion byproducts generated by power plants.« less

  19. State perspectives on clean coal technology deployment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moreland, T.

    1997-12-31

    State governments have been funding partners in the Clean Coal Technology program since its beginnings. Today, regulatory and market uncertainties and tight budgets have reduced state investment in energy R and D, but states have developed program initiatives in support of deployment. State officials think that the federal government must continue to support these technologies in the deployment phase. Discussions of national energy policy must include attention to the Clean Coal Technology program and its accomplishments.

  20. America's Energy Potential: A Summary and Explanation; Committee on Interior and Insular Affairs, U.S. House of Representatives, Ninety-Third Congress, First Session. [Committee Print].

    ERIC Educational Resources Information Center

    Udall, Morris K.

    This report reviews America's current energy position. The energy sources studied include oil and gas, coal, nuclear energy, solar energy, and geothermal energy. Each source is analyzed in terms of current use, technology for extracting and developing the energy, research and development funding, and projections for future consumption and…

  1. Advanced fuel gas desulfurization (AFGD) demonstration project. Technical progress report No. 19, July 1, 1994--September 30, 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-12-01

    The {open_quotes}Advanced Flue Gas Desulfurization (AFGD) Demonstration Project{close_quotes} is a $150.5 million cooperative effort between the U.S. Department of Energy and Pure Air, a general partnership of Air Products and Chemicals, Inc. and Mitsubishi Heavy Industries America, Inc. The AFGD process is one of several alternatives to conventional flue gas desulfurization (FGD) being demonstrated under the Department of Energy`s Clean Coal Technology Demonstration Program. The AFGD demonstration project is located at the Northern Indiana Public Service Company`s Bailly Generating Station, about 12 miles northeast of Gary, Indiana.

  2. Economical and Energy Efficiency of Iron and Steel Industry Reindustrialisation in Russia Based on Implementation of Breakthrough Energy-Saving Technologies

    NASA Astrophysics Data System (ADS)

    Shevelev, L. N.

    2017-12-01

    Estimates were given of economical and energy efficiency of breakthrough energy-saving technologies, which increase competitive advantages and provide energy efficiency of production while reducing negative impact on the environment through reduction of emissions of harmful substances and greenhouse gases in the atmosphere. Among these technologies, preference is given to the following: pulverized coal fuel, blast-furnace gas recycling, gasification of non-coking coal in bubble-type gas-generators, iron-ore concentrate briquetting with steam coal with further use of ore-coal briquettes in electric furnace steel making. Implementation of these technologies at iron and steel works will significantly reduce the energy intensity of production through reduction of expensive coking coal consumption by means of their substitution by less expensive non-coking (steam) coal, and natural gas substitution by own secondary energy resource, which is the reducing gas. As the result, plants will get an opportunity to become self-sufficient in energy-resources and free themselves entirely from expensive purchased energy resources (natural gas, electric power, and partially coking coals), and cross over to low-carbon development.

  3. Rosebud SynCoal Partnership, SynCoal{reg_sign} demonstration technology update

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheldon, R.W.

    1997-12-31

    An Advanced Coal Conversion Process (ACCP) technology being demonstrated in eastern Montana (USA) at the heart of one of the world`s largest coal deposits is providing evidence that the molecular structure of low-rank coals can be altered successfully to produce a unique product for a variety of utility and industrial applications. The product is called SynCoal{reg_sign} and the process has been developed by the Rosebud SynCoal Partnership (RSCP) through the US Department of Energy`s multi-million dollar Clean Coal Technology Program. The ACCP demonstration process uses low-pressure, superheated gases to process coal in vibrating fluidized beds. Two vibratory fluidized processing stagesmore » are used to heat and convert the coal. This is followed by a water spray quench and a vibratory fluidized stage to cool the coal. Pneumatic separators remove the solid impurities from the dried coal. There are three major steps to the SynCoal{reg_sign} process: (1) thermal treatment of the coal in an inert atmosphere, (2) inert gas cooling of the hot coal, and (3) removal of ash minerals. When operated continuously, the demonstration plant produces over 1,000 tons per day (up to 300,000 tons per year) of SynCoal{reg_sign} with a 2% moisture content, approximately 11,800b Btu/lb and less than 1.0 pound of SO{sub 2} per million Btu. This product is obtained from Rosebud Mine sub-bituminous coal which starts with 25% moisture, 8,600 Btu/lb and approximately 1.6 pounds of SO{sub 2} per million Btu.« less

  4. Commercial-scale demonstration of the Liquid Phase Methanol (LPMEOH{trademark}) process. Technical progress report number 6, October 1--December 31, 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-12-31

    The project involves the construction of an 80,000 gallons per day (260 TPD) methanol unit utilizing coal-derived synthesis gas from Eastman`s integrated coal gasification facility. The new equipment consists of synthesis gas feed preparation and compression facilities, the liquid phase reactor and auxiliaries, product distillation facilities, and utilities. The technology to be demonstrated is the product of a cooperative development effort by Air Products and DOE in a program that started in 1981. Developed to enhance electric power generation using integrated gasification combined cycle (IGCC) technology, the LPMEOH{trademark} process is ideally suited for directly processing gases produced by modern-day coalmore » gasifiers. This liquid phase process suspends fine catalyst particles in an inert liquid, forming a slurry. The slurry dissipates the heat of the chemical reaction away from the catalyst surface protecting the catalyst and allowing the methanol synthesis reaction to proceed at higher rates. At the Eastman complex, the technology will be integrated with existing coal-gasifiers. A carefully developed test plan will allow operations at Eastman to simulate electricity demand load-following in coal-based IGCC facilities. The operations will also demonstrate the enhanced stability and heat dissipation of the conversion process, its reliable on/off operation, and its ability to produce methanol as a clean liquid fuel without additional upgrading. An off-site product testing program will be conducted to demonstrate the suitability of the methanol product as a transportation fuel and as a fuel for stationary applications for small modular electric power generators for distributed power.« less

  5. Tidd PFBC demonstration project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marrocco, M.

    1997-12-31

    The Tidd project was one of the first joint government-industry ventures to be approved by the US Department of Energy (DOE) in its Clean Coal Technology Program. In March 1987, DOE signed an agreement with the Ohio Power Company, a subsidiary of American Electric Power, to refurbish the then-idle Tidd plant on the banks of the Ohio River with advanced pressurized fluidized bed technology. Testing ended after 49 months of operation, 100 individual tests, and the generation of more than 500,000 megawatt-hours of electricity. The demonstration plant has met its objectives. The project showed that more than 95 percent ofmore » sulfur dioxide pollutants could be removed inside the advanced boiler using the advanced combustion technology, giving future power plants an attractive alternative to expensive, add-on scrubber technology. In addition to its sulfur removal effectiveness, the plant`s sustained periods of steady-state operation boosted its availability significantly above design projections, heightening confidence that pressurized fluidized bed technology will be a reliable, baseload technology for future power plants. The technology also controlled the release of nitrogen oxides to levels well below the allowable limits set by federal air quality standards. It also produced a dry waste product that is much easier to handle than wastes from conventional power plants and will likely have commercial value when produced by future power plants.« less

  6. Microbial conversion of coal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bean, R.M.

    1989-10-01

    The objectives of this project were to describe in detail the degradation of coals by fungi and microbes, to expand the range of applicability of the process to include new microbes and other coal types, to identify the means by which biosolubilization of coal is accomplished, and to explore means to enhance the rates and extent of coal bioconversion. The project was initiated in a response to the discovery by Dr. Martin Cohen at the University of Hartford, of a fungal strain of Coriolus versicolor that would render a solid coal substance, leonardite, into a liquid product. The project hasmore » identified the principal agent of leonardite solubilization as a powerful metal chelator, most likely a fungal-produced siderophore. Another nonlaccase enzyme has also been identified as a unique biosolubilizing agent produced by C. versicolor. Assays were developed for the quantitative determination of biological coal conversion, and for the determination of potency of biosolubilizing agent. Screening studies uncovered several microbial organisms capable of coal biodegradation, and led to the discovery that prolonged heating in air at the moderate temperature of 150{degree}C allowed the biodegradation of Illinois {number sign}6 coal to material soluble in dilute base. Chemical studies showed that leonardite biosolubilization was accompanied by relatively small change in composition, while solubilization of Illinois {number sign}6 coal involves considerable oxidation of the coal. 24 refs., 32 figs., 27 tabs.« less

  7. Technology for advanced liquefaction processes: Coal/waste coprocessing studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cugini, A.V.; Rothenberger, K.S.; Ciocco, M.V.

    1995-12-31

    The efforts in this project are directed toward three areas: (1) novel catalyst (supported and unsupported) research and development, (2) study and optimization of major operating parameters (specifically pressure), and (3) coal/waste coprocessing. The novel catalyst research and development activity has involved testing supported catalysts, dispersed catalysts, and use of catalyst testing units to investigate the effects of operating parameters (the second area) with both supported and unsupported catalysts. Several supported catalysts were tested in a simulated first stage coal liquefaction application at 404{degrees}C during this performance period. A Ni-Mo hydrous titanate catalyst on an Amocat support prepared by Sandiamore » National laboratories was tested. Other baseline experiments using AO-60 and Amocat, both Ni-Mo/Al{sub 2}O{sub 3} supported catalysts, were also made. These experiments were short duration (approximately 12 days) and monitored the initial activity of the catalysts. The results of these tests indicate that the Sandia catalyst performed as well as the commercially prepared catalysts. Future tests are planned with other Sandia preparations. The dispersed catalysts tested include sulfated iron oxide, Bayferrox iron oxide (iron oxide from Miles, Inc.), and Bailey iron oxide (micronized iron oxide from Bailey, Inc.). The effects of space velocity, temperature, and solvent-to-coal ratio on coal liquefaction activity with the dispersed catalysts were investigated. A comparison of the coal liquefaction activity of these catalysts relative to iron catalysts tested earlier, including FeOOH-impregnated coal, was made. These studies are discussed.« less

  8. Economic and Technological Role of Kuzbass Industry in the Implementation of National Energy Strategy of Russian Federation

    NASA Astrophysics Data System (ADS)

    Zhironkin, S. A.; Khoreshok, A. A.; Tyulenev, M. A.; Barysheva, G. A.; Hellmer, M. C.

    2016-08-01

    This article describes the problems and prospects of development of coal mining in Kuzbass - the center of coal production in Siberia and Russia, in the framework of the major initiatives of the National Energy Strategy for the period until 2035. The structural character of the regional coal industry problems, caused by decline in investment activity, high level of fixed assets depreciation, slow development of deep coal processing and technological reduction of coal mining is shown.

  9. Underground Coal Preparation System and Applications

    NASA Astrophysics Data System (ADS)

    Wei, Cao; DeYong, Shang; BaoNing, Zhang

    2018-03-01

    The underground coal preparation is a cutting-edge technology of the coal industry worldwide. This paper introduced the meaning of implementing the underground coal preparation, and the practical applications of underground mechanical moving screen jig, underground heavy medium shallow slot and underground air jigger. Through analyzing the main separation equipment and the advantages and disadvantages of three primary processes from aspects of process complexity, slime water treatment, raw coal preparation, etc., the difference among technology investment, construction scale, production cost and economic benefit is concluded.

  10. Tunable Diode Laser Sensors to Monitor Temperature and Gas Composition in High-Temperature Coal Gasifiers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanson, Ronald; Whitty, Kevin

    2014-12-01

    The integrated gasification combined cycle (IGCC) when combined with carbon capture and storage can be one of the cleanest methods of extracting energy from coal. Control of coal and biomass gasification processes to accommodate the changing character of input-fuel streams is required for practical implementation of integrated gasification combined-cycle (IGCC) technologies. Therefore a fast time-response sensor is needed for real-time monitoring of the composition and ideally the heating value of the synthesis gas (here called syngas) as it exits the gasifier. The goal of this project was the design, construction, and demonstration an in situ laserabsorption sensor to monitor multiplemore » species in the syngas output from practical-scale coal gasifiers. This project investigated the hypothesis of using laser absorption sensing in particulateladen syngas. Absorption transitions were selected with design rules to optimize signal strength while minimizing interference from other species. Successful in situ measurements in the dusty, high-pressure syngas flow were enabled by Stanford’s normalized and scanned wavelength modulation strategy. A prototype sensor for CO, CH4, CO2, and H2O was refined with experiments conducted in the laboratory at Stanford University, a pilot-scale at the University of Utah, and an engineering-scale gasifier at DoE’s National Center for Carbon Capture with the demonstration of a prototype sensor with technical readiness level 6 in the 2014 measurement campaign.« less

  11. Designing, installing and operating low NOx combustion systems in power plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lazzeri, L.; Santis, R. de

    1997-09-01

    Ansaldo Energia, in strict cooperation with the Italian Electricity Board (ENEL), has developed and implemented innovative technologies for in furnace NOx control which have been applied, both in italy and abroad, on over 20,000 MWe boilers of every kind (Tangentially Fired, Front Fired, Opposite Fired) and for different fuels like oil, gas, coal and ORIMULSION{reg_sign}. Taking advantage of innovative low NOx burners and of optimized air and fuel staging techniques NOx reductions up to 85% have been obtained with no significant impact on boiler efficiency. The paper describes: characteristics and industrial application of TEA{reg_sign} oil/gas LNB which is now capablemore » of attaining NOx reductions up to 60% in respect to original circular burners; development and industrial applications of the TEA C{reg_sign} (oil/coal) LNB, capable of attaining NOx reductions up to 50% with contemporary control of unburned carbon levels (typical values less than 300 ppm NOx corrected to 6% O{sub 2} and less than 7% UBC); application of reburning oil over oil and gas over oil for both tangential and front-opposite fired boilers rated up 660 MWe; and information on the CEE THERMIE projects of gas over coal reburning in a 600 MWe Scottish Power boiler and oil over coal and coal over coal reburning in the ENEL plant of Vado Ligure unit 4, rated 320 MWe.« less

  12. Field Test Program for Long-Term Operation of a COHPAC System for Removing Mercury from Coal-Fired Flue Gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jean Bustard; Charles Lindsey; Paul Brignac

    With the Nation's coal-burning utilities facing the possibility of tighter controls on mercury pollutants, the U.S. Department of Energy is funding projects that could offer power plant operators better ways to reduce these emissions at much lower costs. Sorbent injection technology represents one of the simplest and most mature approaches to controlling mercury emissions from coal-fired boilers. It involves injecting a solid material such as powdered activated carbon into the flue gas. The gas-phase mercury in the flue gas contacts the sorbent and attaches to its surface. The sorbent with the mercury attached is then collected by the existing particlemore » control device along with the other solid material, primarily fly ash. During 2001, ADA Environmental Solutions (ADA-ES) conducted a full-scale demonstration of sorbent-based mercury control technology at the Alabama Power E.C. Gaston Station (Wilsonville, Alabama). This unit burns a low-sulfur bituminous coal and uses a hot-side electrostatic precipitator (ESP) in combination with a Compact Hybrid Particulate Collector (COHPAC{reg_sign}) baghouse to collect fly ash. The majority of the fly ash is collected in the ESP with the residual being collected in the COHPAC{reg_sign} baghouse. Activated carbon was injected between the ESP and COHPAC{reg_sign} units to collect the mercury. Short-term mercury removal levels in excess of 90% were achieved using the COHPAC{reg_sign} unit. The test also showed that activated carbon was effective in removing both forms of mercury-elemental and oxidized. However, a great deal of additional testing is required to further characterize the capabilities and limitations of this technology relative to use with baghouse systems such as COHPAC{reg_sign}. It is important to determine performance over an extended period of time to fully assess all operational parameters. The project described in this report focuses on fully demonstrating sorbent injection technology at a coal-fired power generating plant that is equipped with a COHPAC{reg_sign} system. The overall objective is to evaluate the long-term effects of sorbent injection on mercury capture and COHPAC{reg_sign} performance. The work is being done on one-half of the gas stream at Alabama Power Company's Plant Gaston Unit 3 (nominally 135 MW). Data from the testing will be used to determine: (1) If sorbent injection into a high air-to-cloth ratio baghouse is a viable, long-term approach for mercury control; and (2) Design criteria and costs for new baghouse/sorbent injection systems that will use a similar, polishing baghouse (TOXECON{trademark}) approach.« less

  13. Why bankers force feed the coal market: Differential economics among fuels, between coals, and within coal blends make coal forecasting a very hazardous profession indeed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tinsley, C.R.

    1993-07-01

    When bankers try to assess which natural resources are [open quote]safe[close quote] lending targets for project financing, market risk-especially price volatility-is the primary concern. However, coal appears to provide the ingredients to lower this risk perception, namely: stable prices; ability to get long-term [open quotes]contracts[close quotes]; economic rent. Value of energy in thermal coal; direct link to GNP (steel) for coking/metallurgical coal; economies of scale-large unit mining operations; established seaborne trade infrastructure; huge reserves; and straightforward design, estimation, feasibility. Eighteen mine project financings in the 1965-1981 period were analyzed and it was found that of the three coal cases examined,more » two had problems. One of these never achieved the designed production level and the other came in three years late and 50% over budget. (Both were in North America). Of the 18 mines, 13 had severe problems. Despite this gloomy picture, no banks have lost money on their project financings since the sponsors gave direct credit support or injected new equity. In spite of this risky profile, banks again became hot-to-trot on project financings in the early 1980s and it is this era when the basket cases examined were financed to development.« less

  14. Techno-Economic Analysis of Scalable Coal-Based Fuel Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chuang, Steven S. C.

    Researchers at The University of Akron (UA) have demonstrated the technical feasibility of a laboratory coal fuel cell that can economically convert high sulfur coal into electricity with near zero negative environmental impact. Scaling up this coal fuel cell technology to the megawatt scale for the nation’s electric power supply requires two key elements: (i) developing the manufacturing technology for the components of the coal-based fuel cell, and (ii) long term testing of a kW scale fuel cell pilot plant. This project was expected to develop a scalable coal fuel cell manufacturing process through testing, demonstrating the feasibility of buildingmore » a large-scale coal fuel cell power plant. We have developed a reproducible tape casting technique for the mass production of the planner fuel cells. Low cost interconnect and cathode current collector material was identified and current collection was improved. In addition, this study has demonstrated that electrochemical oxidation of carbon can take place on the Ni anode surface and the CO and CO 2 product produced can further react with carbon to initiate the secondary reactions. One important secondary reaction is the reaction of carbon with CO 2 to produce CO. We found CO and carbon can be electrochemically oxidized simultaneously inside of the anode porous structure and on the surface of anode for producing electricity. Since CH 4 produced from coal during high temperature injection of coal into the anode chamber can cause severe deactivation of Ni-anode, we have studied how CH 4 can interact with CO 2 to produce in the anode chamber. CO produced was found able to inhibit coking and allow the rate of anode deactivation to be decreased. An injection system was developed to inject the solid carbon and coal fuels without bringing air into the anode chamber. Five planner fuel cells connected in a series configuration and tested. Extensive studies on the planner fuels and stack revealed that the planner fuel cell stack is not suitable for operation with carbon and coal fuels due to lack of mechanical strength and difficulty in sealing. We have developed scalable processes for manufacturing of process for planner and tubular cells. Our studies suggested that tubular cell stack could be the only option for scaling up the coal-based fuel cell. Although the direct feeding of coal into fuel cell can significantly simplify the fuel cell system, the durability of the fuel cell needs to be further improved before scaling up. We are developing a tubular fuel cell stack with a coal injection and a CO 2 recycling unit.« less

  15. Fuel Gas Demonstration Plant Program: Small-Scale Industrial Project. Coal procurement activities. Technica report No. 9

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1979-04-14

    This report consists of reference material taken from Erie Mining Company project files and includes the following: (1) Investigation of the Main Coal Producing Fields in the United States: This report identifies potential coal fiels for gasifier feedstock and factors influencing coal selection. The report analyzes coal fields located in five separate regions of the United States. Three design coals are discussed and lab reports have been included. Also included are cost considerations for selected coals and preliminary cost data and transportation routing. (2) Analysis of Test Coals Received at Erie Mining Company: Rosebud, Clarion, and Clarion-Brookfield-Kittaning coal samples weremore » received and analyzed at Erie Mining Company. The screen analysis indicated the severe decrepitation of the Rosebud western coal. (3) Criteria for Gasifier Coal: In this study, BCI states that gasifier feed should have the following characteristics: (1) the ratio between the upper and lower size for coal should be 3:1; (2) coal fines should not exceed 10%; (3) coal grading limits which can be handled are maximum range 3'' x 1'', minimum range - 1 1/2'' x 1/2''.« less

  16. Coal Mining Machinery Development As An Ecological Factor Of Progressive Technologies Implementation

    NASA Astrophysics Data System (ADS)

    Efremenkov, A. B.; Khoreshok, A. A.; Zhironkin, S. A.; Myaskov, A. V.

    2017-01-01

    At present, a significant amount of energy spent for the work of mining machines and coal mining equipment on coal mines and open pits goes to the coal grinding in the process of its extraction in mining faces. Meanwhile, the increase of small fractions in mined coal does not only reduce the profitability of its production, but also causes a further negative impact on the environment and degrades labor conditions for miners. The countermeasure to the specified processes is possible with the help of coal mining equipment development. However, against the background of the technological decrease of coal mine equipment applied in Russia the negative impact on the environment is getting reinforced.

  17. Toxecon Retrofit for Mercury and Mulit-Pollutant Control on Three 90-MW Coal-Fired Boilers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steven Derenne; Robin Stewart

    2009-09-30

    This U.S. Department of Energy (DOE) Clean Coal Power Initiative (CCPI) project was based on a cooperative agreement between We Energies and the DOE Office of Fossil Energy's National Energy Technology Laboratory (NETL) to design, install, evaluate, and demonstrate the EPRI-patented TOXECON{trademark} air pollution control process. Project partners included Cummins & Barnard, ADA-ES, and the Electric Power Research Institute (EPRI). The primary goal of this project was to reduce mercury emissions from three 90-MW units that burn Powder River Basin coal at the We Energies Presque Isle Power Plant in Marquette, Michigan. Additional goals were to reduce nitrogen oxide (NO{submore » x}), sulfur dioxide (SO{sub 2}), and particulate matter emissions; allow reuse and sale of fly ash; advance commercialization of the technology; demonstrate a reliable mercury continuous emission monitor (CEM) suitable for use at power plants; and demonstrate recovery of mercury from the sorbent. Mercury was controlled by injection of activated carbon upstream of the TOXECON{trademark} baghouse, which achieved more than 90% removal on average over a 44-month period. During a two-week test involving trona injection, SO{sub 2} emissions were reduced by 70%, although no coincident removal of NOx was achieved. The TOXECON{trademark} baghouse also provided enhanced particulate control, particularly during startup of the boilers. On this project, mercury CEMs were developed and tested in collaboration with Thermo Fisher Scientific, resulting in a reliable CEM that could be used in the power plant environment and that could measure mercury as low as 0.1 {micro}g/m{sup 3}. Sorbents were injected downstream of the primary particulate collection device, allowing for continued sale and beneficial use of captured fly ash. Two methods for recovering mercury using thermal desorption on the TOXECON{trademark} PAC/ash mixture were successfully tested during this program. Two methods for using the TOXECON{trademark} PAC/ash mixture in structural concrete were also successfully developed and tested. This project demonstrated a significant reduction in the rate of emissions from Presque Isle Units 7, 8, and 9, and substantial progress toward establishing the design criteria for one of the most promising mercury control retrofit technologies currently available. The Levelized Cost for 90% mercury removal at this site was calculated at $77,031 per pound of mercury removed with a capital cost of $63,189 per pound of mercury removed. Mercury removal at the Presque Isle Power Plant averages approximately 97 pounds per year.« less

  18. Fuel-Flexible Gasification-Combustion Technology for Production of H2 and Sequestration-Ready CO2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George Rizeq; Janice West; Raul Subia

    GE Global Research is developing an innovative energy technology for coal gasification with high efficiency and near-zero pollution. This Unmixed Fuel Processor (UFP) technology simultaneously converts coal, steam and air into three separate streams of hydrogen-rich gas, sequestration-ready CO{sub 2}, and high-temperature, high-pressure vitiated air to produce electricity in gas turbines. This is the draft final report for the first stage of the DOE-funded Vision 21 program. The UFP technology development program encompassed lab-, bench- and pilot-scale studies to demonstrate the UFP concept. Modeling and economic assessments were also key parts of this program. The chemical and mechanical feasibility weremore » established via lab and bench-scale testing, and a pilot plant was designed, constructed and operated, demonstrating the major UFP features. Experimental and preliminary modeling results showed that 80% H{sub 2} purity could be achieved, and that a UFP-based energy plant is projected to meet DOE efficiency targets. Future work will include additional pilot plant testing to optimize performance and reduce environmental, operability and combined cycle integration risks. Results obtained to date have confirmed that this technology has the potential to economically meet future efficiency and environmental performance goals.« less

  19. Status of the DOE/NASA critical gas turbine research and technology project

    NASA Technical Reports Server (NTRS)

    Clark, J. S.

    1980-01-01

    Activities performed in order to provide an R&T data base for utility gas turbine systems burning coal-derived fuels are described. Experiments were run to determine the corrosivity effects of trace metal contaminants (and potential fuel additives) on gas turbine materials and these results were correlated in a corrosion-life prediction model. Actual fuels were burned in a burner rig hot corrosion test to verify the model. A deposition prediction model was assembled and compared with results of actual coal-derived fuel deposition tests. Thermal barrier coatings were tested to determine their potential for protecting gas turbine hardware from the corrosive contaminants. Several coatings were identified with significantly improved spallation-resistance (and, hence, corrosion resistance).

  20. Pilot Studies of Geologic and Terrestrial Carbon Sequestration in the Big Sky Region, USA, and Opportunities for Commercial Scale Deployment of New Technologies

    NASA Astrophysics Data System (ADS)

    Waggoner, L. A.; Capalbo, S. M.; Talbott, J.

    2007-05-01

    Within the Big Sky region, including Montana, Idaho, South Dakota, Wyoming and the Pacific Northwest, industry is developing new coal-fired power plants using the abundant coal and other fossil-based resources. Of crucial importance to future development programs are robust carbon mitigation plans that include a technical and economic assessment of regional carbon sequestration opportunities. The objective of the Big Sky Carbon Sequestration Partnership (BSCSP) is to promote the development of a regional framework and infrastructure required to validate and deploy carbon sequestration technologies. Initial work compiled sources and potential sinks for carbon dioxide (CO2) in the Big Sky Region and developed the online Carbon Atlas. Current efforts couple geologic and terrestrial field validation tests with market assessments, economic analysis and regulatory and public outreach. The primary geological efforts are in the demonstration of carbon storage in mafic/basalt formations, a geology not yet well characterized but with significant long-term storage potential in the region and other parts of the world; and in the Madison Formation, a large carbonate aquifer in Wyoming and Montana. Terrestrial sequestration relies on management practices and technologies to remove atmospheric CO2 to storage in trees, plants, and soil. This indirect sequestration method can be implemented today and is on the front-line of voluntary, market-based approaches to reduce CO2 emissions. Details of pilot projects are presented including: new technologies, challenges and successes of projects and potential for commercial-scale deployment.

  1. Bibliography of US geological survey reports on coal drilling and geophysical logging projects, and related reports on geologic uses, Powder River Basin, Montana and Wyoming, 1973-1983

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cathcart, J.D.

    1984-01-01

    This bibliography includes reports on coal drilling, geophysical logging projects, and related geologic uses, in the Powder River Basin of Montana and Wyoming. Reports on chemical analyses of Powder River Basin coals, coal quality, methane studies, and geotechnical studies are also included, as are EMRIA (Energy Mineral Rehabilitation Inventory and Analysis) reports on resource and potential reclamation of selected study areas in Montana and Wyoming.

  2. Bio-mass utilization in high pressure cogeneration boiler

    NASA Astrophysics Data System (ADS)

    Koundinya, Sandeep; Maria Ambrose Raj, Y.; Sreeram, K.; Divakar Shetty A., S.

    2017-07-01

    Coal is widely used all over the world in almost all power plants. The dependence on coal has increased enormously as the demand for electricity has reached its peak. Coal being a non-renewable source is depleting fast. We being the engineers, it's our duty to conserve the natural resources and optimize the coal consumption. In this project, we have tried to optimize the bio-mass utilization in high pressure cogeneration boiler. The project was carried in Seshasayee Paper and Boards Limited, erode related to Boiler No:10 operating at steam pressure of 105 kscg and temperature of 510°C. Available bio-mass fuels in and around the mill premises are bagasse, bagasse pith, cane trash and chipper dust. In this project, we have found out the coal equivalent replacement by the above bio-mass fuel(s) to facilitate deciding on the optimized quantity of coal that can be replaced by biomass without modifying the existing design of the plant. The dominant fuel (coal) which could be displaced with the substitute biomass fuel had been individually (biomass) analyzed.

  3. 75 FR 44978 - Notice of Availability of the Wright Area Coal Final Environmental Impact Statement That Includes...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-30

    ... Wright Area Coal Final Environmental Impact Statement That Includes Four Federal Coal Lease- by... Statement (EIS) for the Wright Area Coal project that contains four Federal coal Lease-by-Applications (LBAs), and by this notice announces the availability of the Wright Area Coal Final EIS for review. DATES: To...

  4. Systems Analysis Of Advanced Coal-Based Power Plants

    NASA Technical Reports Server (NTRS)

    Ferrall, Joseph F.; Jennings, Charles N.; Pappano, Alfred W.

    1988-01-01

    Report presents appraisal of integrated coal-gasification/fuel-cell power plants. Based on study comparing fuel-cell technologies with each other and with coal-based alternatives and recommends most promising ones for research and development. Evaluates capital cost, cost of electricity, fuel consumption, and conformance with environmental standards. Analyzes sensitivity of cost of electricity to changes in fuel cost, to economic assumptions, and to level of technology. Recommends further evaluation of integrated coal-gasification/fuel-cell integrated coal-gasification/combined-cycle, and pulverized-coal-fired plants. Concludes with appendixes detailing plant-performance models, subsystem-performance parameters, performance goals, cost bases, plant-cost data sheets, and plant sensitivity to fuel-cell performance.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nabeel, A.; Khan, M.A.; Husain, S.

    Coal is the most abundant source of energy. However, there is a need to develop cleaner, and more efficient, economical, and convenient coal conversion technologies. It is important to understand the organic chemical structure of coal for achieving real breakthroughs in the development of such coal conversion technologies. A novel computer-assisted modeling technique based on the analysis of {sup 13}C NMR and gel permeation chromatography has been applied to predict the average molecular structure of the acetylated product of a depolymerized bituminous Indian coal. The proposed molecular structure may be of practical use in understanding the mechanism of coal conversionsmore » during the processes of liquefaction, gasification, combustion, and carbonization.« less

  6. Preliminary site evaluation report on Potomac Electric Power Company's proposed station H. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1987-06-01

    This report provides a preliminary environmental assessment of two 375-MW Coal Gasification-Combined Cycle (GCC) units which the Potomac Electric Power Company proposes to construct on their existing Dickerson Generating Station site in western Montgomery County, Maryland. A mass-burn municipal solid-waste incinerator is also proposed at the site by Montgomery County. Research on the GCC technology and data for the air, land, and water environs in and around the site indicates that the proposed GCC technology offers substantial engineering, environmental, and economic benefits. Overall environmental impacts should be less than those anticipated for a comparably sized pulverized-coal power plant. Projected air,more » land, and water impacts appear to be within any applicable regulatory standards or limitations. However, four areas of concern were identified which could be of significant consequence to the suitability of the site. Recommendations are provided for detailed site evaluations including monitoring recommendations to fill data or information gaps.« less

  7. Oxy Coal Combustion at the US EPA

    EPA Science Inventory

    Oxygen enriched coal (oxy-coal) combustion is a developing, and potentially a strategically key technology intended to accommodate direct CO2 recovery and sequestration. Oxy-coal combustion is also intended for retrofit application to existing power plants. During oxy-coal comb...

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benson, Steven; Envergex, Srivats; Browers, Bruce

    Barr Engineering Co. was retained by the Institute for Energy Studies (IES) at University of North Dakota (UND) to conduct a technical and economic feasibility analysis of an innovative hybrid sorbent technology (CACHYS™) for carbon dioxide (CO2) capture and separation from coal combustion–derived flue gas. The project team for this effort consists of the University of North Dakota, Envergex LLC, Barr Engineering Co., and Solex Thermal Science, along with industrial support from Allete, BNI Coal, SaskPower, and the North Dakota Lignite Energy Council. An initial economic and feasibility study of the CACHYS™ concept, including definition of the process, development ofmore » process flow diagrams (PFDs), material and energy balances, equipment selection, sizing and costing, and estimation of overall capital and operating costs, is performed by Barr with information provided by UND and Envergex. The technology—Capture from Existing Coal-Fired Plants by Hybrid Sorption Using Solid Sorbents Capture (CACHYS™)—is a novel solid sorbent technology based on the following ideas: reduction of energy for sorbent regeneration, utilization of novel process chemistry, contactor conditions that minimize sorbent-CO2 heat of reaction and promote fast CO2 capture, and a low-cost method of heat management. The technology’s other key component is the use of a low-cost sorbent.« less

  9. Computational Fluid Dynamics (CFD) Modeling for High Rate Pulverized Coal Injection (PCI) into the Blast Furnace

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dr. Chenn Zhou

    2008-10-15

    Pulverized coal injection (PCI) into the blast furnace (BF) has been recognized as an effective way to decrease the coke and total energy consumption along with minimization of environmental impacts. However, increasing the amount of coal injected into the BF is currently limited by the lack of knowledge of some issues related to the process. It is therefore important to understand the complex physical and chemical phenomena in the PCI process. Due to the difficulty in attaining trus BF measurements, Computational fluid dynamics (CFD) modeling has been identified as a useful technology to provide such knowledge. CFD simulation is powerfulmore » for providing detailed information on flow properties and performing parametric studies for process design and optimization. In this project, comprehensive 3-D CFD models have been developed to simulate the PCI process under actual furnace conditions. These models provide raceway size and flow property distributions. The results have provided guidance for optimizing the PCI process.« less

  10. Exporting coal through technology and countertrade

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borissoff, E.

    1985-08-01

    Straightforward coal exporting on a simple price-and-delivery basis is becoming increasingly difficult for US suppliers. Technology and countertrade are two tools which could help coal suppliers' exports and, at the same time, satisfy the needs of their overseas customers. Neither would complicate the established process of coal exporting, but both would offer the prospect of increased sales and higher profits. Technical selling involves demonstrating to a customer that US steam coal is more competitive when burned in boiler designed specifically to burn that coal efficiently. To do this, the exporter must know the chemical characteristic of his coal and establishmore » a working relationship with his customers' purchasing agents and boiler chiefs. Technical selling to new users offers even more opportunities. Countertrade occurs when the customer pays for coal or a coal/boiler package with something other than US dollars.« less

  11. COSTS FOR ADVANCED COAL COMBUSTION TECHNOLOGIES

    EPA Science Inventory

    The report gives results of an evaluation of the development status of advanced coal combustion technologies and discusses the preparation of performance and economic models for their application to electric utility plants. he technologies addressed were atmospheric fluidized bed...

  12. Weaving Ecosystem Service Assessment into Environmental Impact Assessments of Thar Coal Field: Impact of Coal Mining on Socio-Ecological Systems of Rural Communities.

    NASA Astrophysics Data System (ADS)

    Hina, A.

    2016-12-01

    The Research takes into account Block II Mining and Power Plant Project of Thar Coal field in Pakistan by carrying out ecosystem service assessment of the region to identify the impact on important ecosystem service losses and the contribution of mining companies to mitigate the socio-economic problems as a part of their Corporate Social Responsibility (CSR). The study area includes 7 rural settlements, around 921 households and 7000 individuals, dependent on agriculture and livestock for their livelihoods. Currently, the project has adopted the methods of strip mining (also called open-cut mining, open-cast mining, and stripping), undergoing removing the overburden in strips to enable excavation of the coal seams. Since the consequences of mine development can easily spill across community and ecological boundaries, the rising scarcity of some ecosystem services makes the case to examine both project impact and dependence on ecosystem services. A preliminary Ecosystem Service review of Thar Coal Field identifies key ecosystems services owing to both high significance of project impact and high project dependence are highlighted as: the hydrogeological study results indicate the presence of at least three aquifer zones: one above the coal zone (the top aquifer), one within the coal and the third below the coal zone. Hence, Water is identified as a key ecosystem service to be addressed and valued due to its high dependency in the area for livestock, human wellbeing, agriculture and other purposes. Crop production related to agricultural services, in association with supply services such as soil quality, fertility, and nutrient recycling and water retention need to be valued. Cultural services affected in terms of land use change and resettlement and rehabilitation factors are recommended to be addressed.

  13. Liquid fuels from coal: analysis of a partial transition from oil to coal; light liquids in Zimbabwe's liquid fuels base

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maya, R.S.

    1986-01-01

    This study assesses the feasibility of a coal based light liquids program as a way to localize forces that determine the flow of oil into the Zimbabwean economy. Methods in End-use Energy Analysis and Econometrics in which the utilization of petroleum energy is related to economic and industrial activity are used to gain insight into the structure and behavior of petroleum utilization in that country and to forecast future requirements of this resource. The feasibility of coal liquefaction as a substitute for imported oil is assessed by the use of engineering economics in which the technical economics of competing oilmore » supply technologies are analyzed and the best option is selected. Coal conversion technologies are numerous but all except the Fischer-Trosch indirect coal liquefaction technology are deficient in reliability as commercial ventures. The Fischer-Tropsch process by coincidence better matches Zimbabwe's product configuration than the less commercially advanced technologies. Using present value analysis to compare the coal liquefaction and the import option indicates that it is better to continue importing oil than to resort to a coal base for a portion of the oil supplies. An extended analysis taking special consideration of the risk and uncertainty factors characteristic of Zimbabwe's oil supply system indicates that the coal option is better than the import option. The relative infancy of the coal liquefaction industry and the possibility that activities responsible for the risk and uncertainty in the oil supply system will be removed in the future, however, make the adoption of the coal option an unusually risky undertaking.« less

  14. Current status and prospect: Coal water mixture technology in Indonesia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sastrawinata, T.; Suwono, A.

    1996-12-31

    This paper covers the status of Coal Water Mixture (CWM) technology in Indonesia and also the prospect for implementing this technology. Advantageous use of a pipeline for coal transportation is geographically inconvenient. Characteristics of CWM for Indonesian coal and combustion characteristics of CWM for Indonesian coal are reviewed. The coal reserve estimated in Indonesia is about 36 billions tons with ratio of lignite and higher rank is 60:40. The main problems faced in the coal utilization in Indonesia is the transportation from the mines to the users. Remote, limited infrastructure and the geographic conditions are factors which contribute to themore » problems. The CWM made of Indonesian low rank coal from various origins has been prepared for further study. The CWM of various coal concentration up to 66% with good handling and storage stability was obtained. Rheological measurements of the obtained CWM shows that for high coal concentration (greater than about 40%), in addition to the yield stress, the solution also behaves as the power law model of fluid. Energy Technology Laboratory has just started to investigate the combustion characteristics of CWM. CWM in Indonesia has not been utilized commercially in the industrial boiler, so that needs to be studied comprehensively. The technical aspects in this is stressed on the combustion characteristics in the boiler furnace. LSDE has a state of the art coal combustion facility that includes a chemical analytic laboratory and a boiler simulator equipped with complete data acquisition. The experiments will have several numerical criteria to characterize CWS combustion process, i.e., Maximum Furnace Exit Temperature, firing rate, pressure drop in the test section, deposit strength and deposit weight, swirl flow number.« less

  15. Identifying/Quantifying Environmental Trade-offs Inherent in GHG Reduction Strategies for Coal-Fired Power. Environmental Science and Technology

    EPA Science Inventory

    Improvements to coal power plant technology and the co-fired combustion of biomass promise direct greenhouse gas (GHG) reductions for existing coal-fired power plants. Questions remain as to what the reduction potentials are from a life cycle perspective and if it will result in ...

  16. Study on Resources Assessment of Coal Seams covered by Long-Distance Oil & Gas Pipelines

    NASA Astrophysics Data System (ADS)

    Han, Bing; Fu, Qiang; Pan, Wei; Hou, Hanfang

    2018-01-01

    The assessment of mineral resources covered by construction projects plays an important role in reducing the overlaying of important mineral resources and ensuring the smooth implementation of construction projects. To take a planned long-distance gas pipeline as an example, the assessment method and principles for coal resources covered by linear projects are introduced. The areas covered by multiple coal seams are determined according to the linear projection method, and the resources covered by pipelines directly and indirectly are estimated by using area segmentation method on the basis of original blocks. The research results can provide references for route optimization of projects and compensation for mining right..

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kammen, D.M.

    Kenya is said to be an ideal site for projects that promote renewable energy sources since it devotes over forty percent of its GNP to the purchase of imported coal and oil. The author presents a chronology of solar oven projects in Kenya and suggests that success of the program will be measured by the number of people who move on to wind turbine use. He discusses the role of renewable energy technology in reducing greenhouse gases and closes by recommending that industrialized nations that produce large amounts of carbon dioxide provide aid to develop projects that reduce carbon dioxidemore » elsewhere in the world. At the same time they would receive credit towards their carbon dioxide quotas.« less

  18. Long-term energy and climate implications of carbon capture and storage deployment strategies in the US coal-fired electricity fleet.

    PubMed

    Sathre, Roger; Masanet, Eric

    2012-09-04

    To understand the long-term energy and climate implications of different implementation strategies for carbon capture and storage (CCS) in the US coal-fired electricity fleet, we integrate three analytical elements: scenario projection of energy supply systems, temporally explicit life cycle modeling, and time-dependent calculation of radiative forcing. Assuming continued large-scale use of coal for electricity generation, we find that aggressive implementation of CCS could reduce cumulative greenhouse gas emissions (CO(2), CH(4), and N(2)O) from the US coal-fired power fleet through 2100 by 37-58%. Cumulative radiative forcing through 2100 would be reduced by only 24-46%, due to the front-loaded time profile of the emissions and the long atmospheric residence time of CO(2). The efficiency of energy conversion and carbon capture technologies strongly affects the amount of primary energy used but has little effect on greenhouse gas emissions or radiative forcing. Delaying implementation of CCS deployment significantly increases long-term radiative forcing. This study highlights the time-dynamic nature of potential climate benefits and energy costs of different CCS deployment pathways and identifies opportunities and constraints of successful CCS implementation.

  19. Assessment on the Benefits from Energy Structure Optimization and Coal-fired Emission Control in Beijing: 1998-2013

    NASA Astrophysics Data System (ADS)

    Zong, Y.; He, K.; Zhang, Q.; Hong, C.

    2016-12-01

    Coal has long been an important energy type of Beijing's energy consumption. Since 1998, to improve urban air quality, Beijing has vigorously promoted the structure optimization of energy consumption. Primary measures included the implementation of strict emission standards for coal-fired power plant boilers, subsidized replacement and after-treatment retrofit of coal-fired boilers, the mandatory application of low-sulfur coal, and the accelerated use of natural gas, imported electricity and other clean energy. This work attempts to assess the emission reduction benefits on measures of three sectors, including replacing with clean energy and application of end-of-pipe control technologies in power plants, comprehensive control on coal-fired boilers and residential heating renovation. This study employs the model of Multi-resolution Emission Inventory for China (MEIC) to quantify emission reductions from upfront measures. These control measures have effectively reduced local emissions of major air pollutants in Beijing. The total emissions of PM2.5, PM10, SO2 and NOX from power plants in Beijing are estimated to have reduced 14.5 kt, 23.7 kt, 45.0 kt and 7.6 kt from 1998 to 2013, representing reductions of 86%, 87%, 85% and 16%, respectively. Totally, 14.3 kt, 24.0 kt, 136 kt and 48.7kt of PM2.5, PM10, SO2 and NOX emissions have been mitigated due to the comprehensive control measures on coal-fired boilers from 1998 to 2013. Residential heating renovation projects by replacing coal with electricity in Beijing's conventional old house areas contribute to emission reductions of 630 t, 870 t, 2070 t and 790 t for PM2.5, PM10, SO2 and NOX, respectively.

  20. The influence of coal physical and mechanical properties and mining energy consumption factor on airborne respirable dust level

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koziel, A.; Malec, M.; Wardas, E.

    1999-07-01

    The fact that there are not any explicitly defined relationships describing the influence of physical and mechanical properties of coal and of energy consumption factor on dust level prompted Polish and American investigators to carry out a joint research project within the framework of the US-Poland Maria Sklodowska-Curie Joint Fund II. The paper presents methods used to perform tests under laboratory conditions at the Pittsburgh Research Laboratory as well as under real conditions in the course of coal cutting in Polish coal mines. Measuring systems and results of the tests are described. The analysis carried out has provided a basismore » for determining the influence of specified operational parameters, i.e., coal compression strength R{sub c}, coal cuttability factor A, energy consumption factor of mining E{sub uc}, load of cutting drums as well as of laboratory parameters, i.e., grindability, coal breakage characteristics (product size distribution), moisture content, volatile and fixed carbon content, specific energy of crushing on a level of generated dust (total dust, specific dust and airborne respirable dust). The effect of technical parameters, i.e., face height, airflow velocity in a face, amount and pressure of water in spraying systems of longwall shearers, depth of cut taken by a cutting drum and application of powered cowls on dust level under operating conditions are also presented. Results of the tests made it possible to work out guidelines relating to methods and technology for effective reduction of dust emission on longwall faces.« less

  1. The treatment of some low-rank coals with carbon dioxide water: Effects on slurry-relevant properties: Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Slegeir, W.; Sanchez, J.; Coughlan, R.

    1986-09-01

    This project is concerned with the results of employing CO/sub 2//H/sub 2/O treatments on two low-rank coals. The coals employed in this project were North Dakota lignite from the Indianhead Mine and Utah subbituminous from the Sufco mine. This project is concerned with changes in slurry-relevant characteristics for these low-rank coals due to such treatments. These characteristics include equilibrium moisture, ash content and composition, grindability and slurry rheology. Batch CO/sub 2//water treatments on North Dakota Indianhead lignite afforded a reduction in coal-bound moisture, affording as much as a 35% decrease in equilibrium moisture content. The resulting treated lignite also provedmore » to be a ''cleaner'' coal, with a 30 to 35% reduction in ash content. For the Utah Sufco coal, no appreciable changes in equilibrium moisture were attained and the ash contents generally only slightly reduced Sufco. However, for the more severe treatment, alkaline and alkaline earth were lowered appreciably, with a commensurate increase in ash fusion temperature. For both coals, some improvements in grindability were realized under the most severe treatment conditions (80/sup 0/C, 1200 psi). The less severe conditions afforded little changes in grindability. Some measurements taken of the rheology of treated -200 mesh Indianhead coal slurries have shown non-Newtonian behavior. These slurries settled rapidly when concentrations greater than 50% were reached, hence viscosity measurements were difficult to obtain. Although the mechanism of CO/sub 2//H/sub 2/O action on coal is not clear, the results of this project are consistent with an ion-exchange process, whereby the basic components are exchanged with the hydronium ion of the CO/sub 2//H/sub 2/O mixture. Such ion exchange may lead to other changes in the coal matrix. 38 refs., 8 figs, 18 tabs.« less

  2. Proceedings of the American Power Conference. Volume 60-1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McBride, A.E.

    1998-12-01

    The American Power Conference, 60th annual meeting, 1998, addressed reliability and economy as related to technology for competition and globalization. The topics of the papers included needs and advances in power engineering education, global climate change, distributed generation, the critical role of the nations largest coal, nuclear and hydropower stations, advances in generation technology, financing electric power projects, successful deregulation, year 2000 outlook for equipment conflict with information and control, system planning, asset management, relay and communication, particulate and SO{sub x} control, environmental protection compliance strategies, fuel cells, gas turbines, renewable energy, steam turbines, and cost reduction strategies.

  3. Proceedings of the American Power Conference. Volume 60-2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McBride, A.E.

    1998-12-01

    The American Power Conference, 60th annual meeting, 1998, addressed reliability and economy as related to technology for competition and globalization. The topics of the papers included needs and advances in power engineering education, global climate change, distributed generation, the critical role of the nations largest coal, nuclear and hydropower stations, advances in generation technology, financing electric power projects, successful deregulation, year 2000 outlook for equipment conflict with information and control, system planning, asset management, relay and communication, particulate and SO{sub x} control, environmental protection compliance strategies, fuel cells, gas turbines, renewable energy, steam turbines, and cost reduction strategies.

  4. ECONOMIC EVALUATION OF CO2 STORAGE AND SINK ENHANCEMENT OPTIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bert Bock; Richard Rhudy; Howard Herzog

    2003-02-01

    This project developed life-cycle costs for the major technologies and practices under development for CO{sub 2} storage and sink enhancement. The technologies evaluated included options for storing captured CO{sub 2} in active oil reservoirs, depleted oil and gas reservoirs, deep aquifers, coal beds, and oceans, as well as the enhancement of carbon sequestration in forests and croplands. The capture costs for a nominal 500 MW{sub e} integrated gasification combined cycle plant from an earlier study were combined with the storage costs from this study to allow comparison among capture and storage approaches as well as sink enhancements.

  5. The Concept of Resource Use Efficiency as a Theoretical Basis for Promising Coal Mining Technologies

    NASA Astrophysics Data System (ADS)

    Mikhalchenko, Vadim

    2017-11-01

    The article is devoted to solving one of the most relevant problems of the coal mining industry - its high resource use efficiency, which results in high environmental and economic costs of operating enterprises. It is shown that it is the high resource use efficiency of traditional, historically developed coal production systems that generates a conflict between indicators of economic efficiency and indicators of resistance to uncertainty and variability of market environment parameters. The traditional technological paradigm of exploitation of coal deposits also predetermines high, technology-driven, economic risks. The solution is shown and a real example of the problem solution is considered.

  6. Economic tools for realization of methane production project on Kuzbass coal deposits

    NASA Astrophysics Data System (ADS)

    Sharf, I.; Sokolova, M.; Kochetkova, O.; Dmitrieva, N.

    2016-09-01

    Environmental issues and, above all, issues related to the release of greenhouse gases into the atmosphere, such as coal bed methane, actualize the challenge of searching a variety of options for its disposal. The difference in the macroeconomic, industrial, geological and infrastructural features determine the need to choose the most cost-effective option for using of methane emitted from the coal deposits. Various economic ways to improve the profitability of production are viewed on the basis of the analysis of methane production project from Kuzbass coal deposits, Kemerovo region, Russia.

  7. Total Factor Productivity Growth, Technical Progress & Efficiency Change in Vietnam Coal Industry - Nonparametric Approach

    NASA Astrophysics Data System (ADS)

    Phuong, Vu Hung

    2018-03-01

    This research applies Data Envelopment Analysis (DEA) approach to analyze Total Factor Productivity (TFP) and efficiency changes in Vietnam coal mining industry from 2007 to 2013. The TFP of Vietnam coal mining companies decreased due to slow technological progress and unimproved efficiency. The decadence of technical efficiency in many enterprises proved that the coal mining industry has a large potential to increase productivity through technical efficiency improvement. Enhancing human resource training, technology and research & development investment could help the industry to improve efficiency and productivity in Vietnam coal mining industry.

  8. Application of Modern Coal Technologies to Military Facilities. Volume II. Evaluation of the Applicability and Cost of Current and Emerging Coal Technologies for the Utilization of Coal as a Primary Energy Source

    DTIC Science & Technology

    1968-05-01

    flue gas . Is one. The more popular method Is wet limestone scrubbing. In the limestone Injection system, ground limestone Is mixed with the coal and...is removed. The remainder must be eliminated from the flue gas as SO2 by wet scrubbing. Reduced boiler efficiency, due to ash accumulation on the...use of the fluldlzed-bed boiler, rather than a conventional coal-fired boiler requiring a flue gas cleanup system, will result In an

  9. Preliminary Public Design Report for the Texas Clean Energy Project: Topical Report - Phase 1, June 2010-July 2011

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mattes, Karl

    Summit Texas Clean Energy, LLC (Summit) is developing the Texas Clean Energy Project (TCEP or the project) to be located near Penwell, Texas. The TCEP will include an Integrated Gasification Combined Cycle (IGCC) plant with a nameplate capacity of 400 megawatts electric (MWe), combined with the production of urea fertilizer and the capture, utilization and storage of carbon dioxide (CO 2) sold commercially for regional use in enhanced oil recovery (EOR) in the Permian Basin of west Texas. The TCEP will utilize coal gasification technology to convert Powder River Basin sub-bituminous coal delivered by rail from Wyoming into a syntheticmore » gas (syngas) which will be cleaned and further treated so that at least 90 percent of the overall carbon entering the facility will be captured. The clean syngas will then be divided into two high-hydrogen (H 2) concentration streams, one of which will be combusted as a fuel in a combined cycle power block for power generation and the other converted into urea fertilizer for commercial sale. The captured CO 2 will be divided into two streams: one will be used in producing the urea fertilizer and the other will be compressed for transport by pipeline for offsite use in EOR. The TCEP was selected by the U.S. Department of Energy (DOE) Office of Fossil Energy (FE) for cost-shared co-funded financial assistance under Round 3 of its Clean Coal Power Initiative (CCPI). A portion of this financial assistance was budgeted and provided for initial development, permitting and design activities. Front-end Engineering and Design (FEED) commenced in June 2010 and was completed in July 2011, setting the design basis for entering into the detailed engineering phase of the project. During Phase 1, TCEP conducted and completed the FEED, applied for and received its air construction permit, provided engineering and other technical information required for development of the draft Environmental Impact Statement, and completed contracts for the sale of all of the urea and most of the CO 2. Significant progress was made on the contracts for the purchase of coal feedstock from Cloud Peak Energy’s Cordero Rojo mine and the sale of electricity to CPS Energy, as well as a memorandum of understanding with the Union Pacific Railroad (UPRR) for delivery of the coal to the TCEP site.« less

  10. Ash characterization in laboratory-scale oxy-coal combustor

    EPA Science Inventory

    Oxygen enriched coal (oxy-coal) combustion is a developing technology. During oxy-coal combustion, combustion air is separated and the coal is burned in a mixture of oxygen and recycled flue gas. The resulting effluent must be further processed before the C02 can be compressed, t...

  11. A fine coal circuitry study using column flotation and gravity separation. Quarterly report, 1 March 1995--31 May 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Honaker, R.Q.; Reed, S.

    1995-12-31

    Column flotation provides excellent recovery of ultrafine coal while producing low ash content concentrates. However, column flotation is not efficient for treating fine coal containing significant amounts of mixed-phase particles. Fortunately, enhanced gravity separation has proved to have the ability to treat the mixed-phased particles more effectively. A disadvantage of gravity separation is that ultrafine clay particles are not easily rejected. Thus, a combination of these two technologies may provide a circuit that maximizes both the ash and sulfur rejection that can be achieved by physical coal cleaning while maintaining a high energy recovery. This project is studying the potentialmore » of using different combinations of gravity separators, i.e., a Floatex hydrosizer and a Falcon Concentrator, and a proven flotation column, which will be selected based on previous studies by the principle investigator. During this reporting period, an extensive separation performance comparison between a pilot-scale Floatex Density Separator (18{times}18-inch) and an existing spiral circuit has been conducted at Kerf-McGee Coal Preparation plan for the treatment of nominally {minus}16 mesh coal. The results indicate that the Floatex is a more efficient separation device (E{sub p}=0.12) than a conventional coal spiral (E{sub p}=0.18) for Illinois seam coals. In addition, the treatment of {minus}100 mesh Illinois No. 5 fine coal from the same plant using Falcon concentrator, column flotation (Packed-Column) and their different combinations was also evaluated. For a single operation, both Falcon concentrator and column flotation can produce a clean coal product with 90% combustible recovery and 5% ash content. In the case of the combined circuit, column flotation followed by the Falcon achieved a higher combustible recovery value (about 75%) than that obtained by the individual units while maintaining an ash content less than 3%.« less

  12. Monitoring the Thickness of Coal-Conversion Slag

    NASA Technical Reports Server (NTRS)

    Walsh, J. V.

    1984-01-01

    Technique adapts analogous ocean-floor-mapping technology. Existing ocean floor acoustic technology adapted for real-time monitoring of thickness and viscosity of flowing slag in coal-conversion processing.

  13. Evaluation of costs associated with atmospheric mercury emission reductions from coal combustion in China in 2010 and projections for 2020.

    PubMed

    Zhang, Yue; Ye, Xuejie; Yang, Tianjun; Li, Jinling; Chen, Long; Zhang, Wei; Wang, Xuejun

    2018-01-01

    Coal combustion is the most significant anthropogenic mercury emission source in China. In 2013, China signed the Minamata Convention affirming that mercury emissions should be controlled more strictly. Therefore, an evaluation of the costs associated with atmospheric mercury emission reductions from China's coal combustion is essential. In this study, we estimated mercury abatement costs for coal combustion in China for 2010, based on a provincial technology-based mercury emission inventory. In addition, four scenarios were used to project abatement costs for 2020. Our results indicate that actual mercury emission related to coal combustion in 2010 was 300.8Mg, indicating a reduction amount of 174.7Mg. Under a policy-controlled scenario for 2020, approximately 49% of this mercury could be removed using air pollution control devices, making mercury emissions in 2020 equal to or lower than in 2010. The total abatement cost associated with mercury emissions in 2010 was 50.2×10 9 RMB. In contrast, the total abatement costs for 2020 under baseline versus policy-controlled scenarios, having high-energy and low-energy consumption, would be 32.0×10 9 versus 51.2×10 9 , and 27.4×10 9 versus 43.9×10 9 RMB, respectively. The main expense is associated with flue gas desulfurization. The unit abatement cost of mercury emissions in 2010 was 288×10 3 RMB/(kgHg). The unit abatement costs projected for 2020 under a baseline, a policy-controlled, and an United Nations Environmental Programme scenario would be 143×10 3 , 172×10 3 and 1066×10 3 RMB/(kgHg), respectively. These results are much lower than other international ones. However, the relative costs to China in terms of GPD are higher than in most developed countries. We calculated that abatement costs related to mercury emissions accounted for about 0.14% of the GDP of China in 2010, but would be between 0.03% and 0.06% in 2020. This decrease in abatement costs in terms of GDP suggests that various policy-controlled scenarios would be viable. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Coal liquefaction processes and development requirements analysis for synthetic fuels production

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Focus of the study is on: (1) developing a technical and programmatic data base on direct and indirect liquefaction processes which have potential for commercialization during the 1980's and beyond, and (2) performing analyses to assess technology readiness and development trends, development requirements, commercial plant costs, and projected synthetic fuel costs. Numerous data sources and references were used as the basis for the analysis results and information presented.

  15. The U. S. DOE Carbon Storage Program: Status and Future Directions

    NASA Astrophysics Data System (ADS)

    Damiani, D.

    2016-12-01

    The U.S. Department of Energy (DOE) is taking steps to reduce carbon dioxide (CO2) emissions through clean energy innovation, including carbon capture and storage (CCS) research. The Office of Fossil Energy Carbon Storage Program is focused on ensuring the safe and permanent storage and/or utilization of CO2 captured from stationary sources. The Program is developing and advancing geologic storage technologies both onshore and offshore that will significantly improve the effectiveness of CCS, reduce the cost of implementation, and be ready for widespread commercial deployment in the 2025-2035 timeframe. The technology development and field testing conducted through this Program will be used to benefit the existing and future fleet of fossil fuel power generating and industrial facilities by creating tools to increase our understanding of geologic reservoirs appropriate for CO2 storage and the behavior of CO2 in the subsurface. The Program is evaluating the potential for storage in depleted oil and gas reservoirs, saline formations, unmineable coal, organic-rich shale formations, and basalt formations. Since 1997, DOE's Carbon Storage Program has significantly advanced the CCS knowledge base through a diverse portfolio of applied research projects. The Core Storage R&D research component focuses on analytic studies, laboratory, and pilot- scale research to develop technologies that can improve wellbore integrity, increase reservoir storage efficiency, improve management of reservoir pressure, ensure storage permanence, quantitatively assess risks, and identify and mitigate potential release of CO2 in all types of storage formations. The Storage Field Management component focuses on scale-up of CCS and involves field validation of technology options, including large-volume injection field projects at pre-commercial scale to confirm system performance and economics. Future research involves commercial-scale characterization for regionally significant storage locations capable of storing from 50 to 100 million metric tons of CO2 in a saline formation. These projects will lay the foundation for fully integrated carbon capture and storage demonstrations of future first of a kind (FOAK) coal power projects. Future research will also bring added focus on offshore CCS.

  16. USE OF COAL DRYING TO REDUCE WATER CONSUMED IN PULVERIZED COAL POWER PLANTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edward Levy; Harun Bilirgen; Ursla Levy

    2006-01-01

    This is the twelfth Quarterly Report for this project. The background and technical justification for the project are described, including potential benefits of reducing fuel moisture using power plant waste heat, prior to firing the coal in a pulverized coal boiler. During this last Quarter, the development of analyses to determine the costs and financial benefits of coal drying was continued. The details of the model and key assumptions being used in the economic evaluation are described in this report and results are shown for a drying system utilizing a combination of waste heat from the condenser and thermal energymore » extracted from boiler flue gas.« less

  17. World Energy Projection System Plus Model Documentation: Coal Module

    EIA Publications

    2011-01-01

    This report documents the objectives, analytical approach and development of the World Energy Projection System Plus (WEPS ) Coal Model. It also catalogues and describes critical assumptions, computational methodology, parameter estimation techniques, and model source code.

  18. Future CO2 emissions and electricity generation from proposed coal-fired power plants in India

    NASA Astrophysics Data System (ADS)

    Fofrich, R.; Shearer, C.; Davis, S. J.

    2017-12-01

    India represents a critical unknown in global projections of future CO2 emissions due to its growing population, industrializing economy, and large coal reserves. In this study, we assess existing and proposed construction of coal-fired power plants in India and evaluate their implications for future energy production and emissions in the country. In 2016, India had 369 coal-fired power plants under development totaling 243 gigawatts (GW) of generating capacity. These coal-fired power plants would increase India's coal-fired generating capacity by 123% and would exceed India's projected electricity demand. Therefore, India's current proposals for new coal-fired power plants would be forced to retire early or operate at very low capacity factors and/or would prevent India from meeting its goal of producing at least 40% of its power from renewable sources by 2030. In addition, future emissions from proposed coal-fired power plants would exceed India's climate commitment to reduce its 2005 emissions intensity 33% - 35% by 2030.

  19. Improving Competitiveness of U.S. Coal Dialogue

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kokkinos, Angelos

    The Improving Competitiveness of U.S. Coal Dialogue held in September 2017 explored a broad range of technical developments that have the potential to improve U.S. coal competitiveness in domestic and overseas markets. The workshop is one in a series of events hosted by DOE to gather expert input on challenges and opportunities for reviving the coal economy. This event brought together coal industry experts to review developments in a broad range of technical areas such as conventional physical (e.g. dense-medium) technologies, and dry coal treatments; thermal, chemical, and bio-oxidation coal upgrading technologies; coal blending; and applications for ultrafine coal andmore » waste streams. The workshop was organized to focus on three main discussion topics: Challenges and Opportunities for Improving U.S. Coal Competitiveness in Overseas Markets, Mineral Processing, and Technologies to Expand the Market Reach of Coal Products. In each session, invited experts delivered presentations to help frame the subsequent group discussion. Throughout the discussions, participants described many possible areas of research and development (R&D) in which DOE involvement could help to produce significant outcomes. In addition, participants discussed a number of open questions—those that the industry has raised or investigated but not yet resolved. In discussing the three topics, the participants suggested potential areas of research and issues for further investigation. As summarized in Table ES-1, these crosscutting suggestions centered on combustion technologies, coal quality, coal processing, environmental issues, and other issues. The discussions at this workshop will serve as an input that DOE considers in developing initiatives that can be pursued by government and industry. This workshop generated strategies that described core research concepts, identified implementation steps, estimated benefits, clarified roles of government and industry, and outlined next steps. While more work is needed, each of these initiatives, included in the sections that follow, details new ideas to increase efficiency and reduce carbon emissions. DOE will integrate the results of this workshop with ongoing research work at the National Laboratories as well as other relevant data sources. This combined information will be used to develop a comprehensive strategy for capitalizing on the opportunity for U.S. coal and mineral competitiveness.« less

  20. FutureGen 2.0 Oxy-combustion Large Scale Test – Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kenison, LaVesta; Flanigan, Thomas; Hagerty, Gregg

    The primary objectives of the FutureGen 2.0 CO 2 Oxy-Combustion Large Scale Test Project were to site, permit, design, construct, and commission, an oxy-combustion boiler, gas quality control system, air separation unit, and CO 2 compression and purification unit, together with the necessary supporting and interconnection utilities. The project was to demonstrate at commercial scale (168MWe gross) the capability to cleanly produce electricity through coal combustion at a retrofitted, existing coal-fired power plant; thereby, resulting in near-zeroemissions of all commonly regulated air emissions, as well as 90% CO 2 capture in steady-state operations. The project was to be fully integratedmore » in terms of project management, capacity, capabilities, technical scope, cost, and schedule with the companion FutureGen 2.0 CO 2 Pipeline and Storage Project, a separate but complementary project whose objective was to safely transport, permanently store and monitor the CO 2 captured by the Oxy-combustion Power Plant Project. The FutureGen 2.0 Oxy-Combustion Large Scale Test Project successfully achieved all technical objectives inclusive of front-end-engineering and design, and advanced design required to accurately estimate and contract for the construction, commissioning, and start-up of a commercial-scale "ready to build" power plant using oxy-combustion technology, including full integration with the companion CO 2 Pipeline and Storage project. Ultimately the project did not proceed to construction due to insufficient time to complete necessary EPC contract negotiations and commercial financing prior to expiration of federal co-funding, which triggered a DOE decision to closeout its participation in the project. Through the work that was completed, valuable technical, commercial, and programmatic lessons were learned. This project has significantly advanced the development of near-zero emission technology and will be helpful to plotting the course of, and successfully executing future large demonstration projects. This Final Scientific and Technical Report describes the technology and engineering basis of the project, inclusive of process systems, performance, effluents and emissions, and controls. Further, the project cost estimate, schedule, and permitting requirements are presented, along with a project risk and opportunity assessment. Lessons-learned related to these elements are summarized in this report. Companion reports Oxy-combustion further document the accomplishments and learnings of the project, including: A.01 Project Management Report which describes what was done to coordinate the various participants, and to track their performance with regard to schedule and budget B.02 Lessons Learned - Technology Integration, Value Improvements, and Program Management, which describes the innovations and conclusions that we arrived upon during the development of the project, and makes recommendations for improvement of future projects of a similar nature . B.03 Project Economics, which details the capital and operation costs and their basis, and also illustrates the cost of power produced by the plant with certain sensitivities. B.04 Power Plant, Pipeline, and Injection Site Interfaces, which details the interfaces between the two FutureGen projects B.05 Contractual Mechanisms for Design, Construction, and Operation, which describes the major EPC, and Operations Contracts required to execute the project.« less

  1. Hybrid Molten Bed Gasifier for High Hydrogen Syngas Production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rue, David

    The techno-economic analyses of the hybrid molten bed gasification technology and laboratory testing of the HMB process were carried out in this project by the Gas Technology Institute and partner Nexant, Inc. under contract with the US Department of Energy’s National Energy Technology Laboratory. This report includes the results of two complete IGCC and Fischer-Tropsch TEA analyses comparing HMB gasification with the Shell slagging gasification process as a base case. Also included are the results of the laboratory simulation tests of the HMB process using Illinois #6 coal fed along with natural gas, two different syngases, and steam. Work inmore » this 18-month project was carried out in three main Tasks. Task 2 was completed first and involved modeling, mass and energy balances, and gasification process design. The results of this work were provided to Nexant as input to the TEA IGCC and FT configurations studied in detail in Task 3. The results of Task 2 were also used to guide the design of the laboratory-scale testing of the HMB concept in the submerged combustion melting test facility in GTI’s industrial combustion laboratory. All project work was completed on time and budget. A project close-out meeting reviewing project results was conducted on April 1, 2015 at GTI in Des Plaines, IL. The hybrid molten bed gasification process techno-economic analyses found that the HMB process is both technically and economically attractive compared with the Shell entrained flow gasification process. In IGCC configuration, HMB gasification provides both efficiency and cost benefits. In Fischer-Tropsch configuration, HMB shows small benefits, primarily because even at current low natural gas prices, natural gas is more expensive than coal on an energy cost basis. HMB gasification was found in the TEA to improve the overall IGCC economics as compared to the coal only Shell gasification process. Operationally, the HMB process proved to be robust and easy to operate. The burner was stable over the full oxygen to fuel firing range (0.8 to 1.05 of fuel gas stoichiometry) and with all fuel gases (natural gas and two syngas compositions), with steam, and without steam. The lower Btu content of the syngases presented no combustion difficulties. The molten bed was stable throughout testing. The molten bed was easily established as a bed of molten glass. As the composition changed from glass cullet to cullet with slag, no instabilities were encountered. The bed temperature and product syngas temperature remained stable throughout testing, demonstrating that the bed serves as a good heat sink for the gasification process. Product syngas temperature measured above the bed was stable at ~1600ºF. Testing found that syngas quality measured as H 2/CO ratio increased with decreasing oxygen to fuel gas stoichiometric ratio, higher steam to inlet carbon ratio, higher temperature, and syngas compared with natural gas. The highest H 2/CO ratios achieved were in the range of 0.70 to 0.78. These values are well below the targets of 1.5 to 2.0 that were expected and were predicted by modeling. The team, however, is encouraged that the HMB process can and will achieve H 2/CO ratios up to 2.0. Changes needed include direct injection of coal into the molten bed of slag to prevent coal particle bypass into the product gas stream, elevation of the molten bed temperature to approximately 2500ºF, and further decrease of the oxygen to fuel gas ratio to well below the 0.85 minimum ratio used in the testing in this project.« less

  2. The United States of America and the People`s Republic of China experts report on integrated gasification combined-cycle technology (IGCC) (in English;Chinese)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-12-01

    A report written by the leading US and Chinese experts in Integrated Gasification Combined Cycle (IGCC) power plants, intended for high level decision makers, may greatly accelerate the development of an IGCC demonstration project in the People`s Republic of China (PRC). The potential market for IGCC systems in China and the competitiveness of IGCC technology with other clean coal options for China have been analyzed in the report. Such information will be useful not only to the Chinese government but also to US vendors and companies. The goal of this report is to analyze the energy supply structure of China,more » China`s energy and environmental protection demand, and the potential market in China in order to make a justified and reasonable assessment on feasibility of the transfer of US Clean Coal Technologies to China. The Expert Report was developed and written by the joint US/PRC IGCC experts and will be presented to the State Planning Commission (SPC) by the President of the CAS to ensure consideration of the importance of IGCC for future PRC power production.« less

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tavoulareas, E.S.; Hardman, R.; Eskinazi, D.

    This report provides the key findings of the Innovative Clean Coal Technology (ICCT) demonstration project at Gulf Power`s Lansing Smith Unit No. 2 and the implications for other tangentially-fired boilers. L. Smith Unit No. 2 is a 180 MW tangentially-fired boiler burning Eastern Bituminous coal, which was retrofitted with Asea Brown Boveri/Combustion Engineering Services` (ABB/CE) LNCFS I, II, and III technologies. An extensive test program was carried-out with US Department of Energy, Southern Company and Electric Power Research Institute (EPRI) funding. The LNCFS I, II, and III achieved 37 percent, 37 percent, and 45 percent average long-term NO{sub x} emissionmore » reduction at full load, respectively (see following table). Similar NO{sub x} reduction was achieved within the control range (100--200 MW). However, below the control point (100 MW), NO{sub x} emissions with the LNCFS technologies increased significantly, reaching pre-retrofit levels at 70 MW. Short-term testing proved that low load NO{sub x} emissions could be reduced further by using lower excess O{sub 2} and burner tilt, but with adversed impacts on unit performance, such as lower steam outlet temperatures and, potentially, higher CO emissions and LOI.« less

  4. Coal to methanol feasiblity study: Beluga methanol project. Volume 4: Environmental

    NASA Astrophysics Data System (ADS)

    1981-09-01

    The major environmental issues relevant to development of a coal gasification and methanol fuels production facility and related coal mining activities and transportation systems in the west Cook Inlet area, Alaska were assessed. An extensive review into existing information on the Beluga region of west Cook Inlet was conducted and updated with the findings of land resource projects. Specific field activities then were initiated to expand the environmental data base in areas relevant to this project where there was a paucity of information. Based on these findings the project was reviewed in detail to identify significant environmental issues and to outline the state and federal permit requirements to ensure that these element are an integral component of all subsequent project planning and management decisions.

  5. ASSESSMENT OF CONTROL TECHNOLOGIES FOR REDUCING EMISSIONS OF SO2 AND NOX FROM EXISTING COAL-FIRED UTILITY BOILERS

    EPA Science Inventory

    The report reviews information and estimated costs on 15 emissioncontrol technology categories applicable to existing coal-fired electric utility boilers. he categories include passive controls such as least emission dispatching, conventional processes, and emerging technologies ...

  6. Environmentally conscious alternative energy production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kutz, M.

    This fourth volume of the series describes and compares the environmental and economic impacts of renewable and conventional power generation technologies. Chapter heading are: Economic comparisons of power generation technologies (Todd Nemec); Solar energy applications (Jan F. Kreider); Fuel cells (Matthew W. Mench); Geothermal resources and technology: an introduction (Peter D. Blair); Wind power generation (Todd Nemec); Cogeneration (Jerald Caton); Hydrogen energy (Elias K. Stefanakos, Yogi Goswami, S.S. Srinivasan, and J.T. Wolan); Clean power generation from coal (Prabir Basu and James Butler); and Using waste heat from power plants (Herbert A. Ingley). The chapter on clean coal power generation frommore » coal has been abstracted separately on the Coal Abstracts database. 2 apps.« less

  7. Novel Functionally Graded Thermal Barrier Coatings in Coal-Fired Power Plant Turbines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jing

    This project presents a detailed investigation of a novel functionally graded coating material, pyrochlore oxide, for thermal barrier coating (TBC) in gas turbines used in coal-fired power plants. Thermal barrier coatings are refractory materials deposited on gas turbine components, which provide thermal protection for metallic components at operating conditions. The ultimate goal of this research is to develop a manufacturing process to produce the novel low thermal conductivity and high thermal stability pyrochlore oxide based coatings with improved high-temperature durability. The current standard TBC, yttria stabilized zirconia (YSZ), has service temperatures limited to <1200°C, due to sintering and phase transitionmore » at higher temperatures. In contrast, pyrochlore oxide, e.g., lanthanum zirconate (La 2Zr 2O 7, LZ), has demonstrated lower thermal conductivity and better thermal stability, which are crucial to high temperature applications, such as gas turbines used in coal-fired power plants. Indiana University – Purdue University Indianapolis (IUPUI) has collaborated with Praxair Surface Technologies (PST), and Changwon National University in South Korea to perform the proposed research. The research findings are critical to the extension of current TBCs to a broader range of high-temperature materials and applications. Several tasks were originally proposed and accomplished, with additional new opportunities identified during the course of the project. In this report, a description of the project tasks, the main findings and conclusions are given. A list of publications and presentations resulted from this research is listed in the Appendix at the end of the report.« less

  8. Mercury Emission Measurement at a CFB Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    John Pavlish; Jeffrey Thompson; Lucinda Hamre

    2009-02-28

    In response to pending regulation to control mercury emissions in the United States and Canada, several projects have been conducted to perform accurate mass balances at pulverized coal (pc)-fired utilities. Part of the mercury mass balance always includes total gaseous mercury as well as a determination of the speciation of the mercury emissions and a concentration bound to the particulate matter. This information then becomes useful in applying mercury control strategies, since the elemental mercury has traditionally been difficult to control by most technologies. In this instance, oxidation technologies have proven most beneficial for increased capture. Despite many years ofmore » mercury measurement and control projects at pc-fired units, far less work has been done on circulating fluidized-bed (CFB) units, which are able to combust a variety of feedstocks, including cofiring coal with biomass. Indeed, these units have proven to be more problematic because it is very difficult to obtain a reliable mercury mass balance. These units tend to have very different temperature profiles than pc-fired utility boilers. The flexibility of CFB units also tends to be an issue when a mercury balance is determined, since the mercury inputs to the system come from the bed material and a variety of fuels, which can have quite variable chemistry, especially for mercury. In addition, as an integral part of the CFB operation, the system employs a feedback loop to circulate the bed material through the combustor and the solids collection system (the primary cyclone), thereby subjecting particulate-bound metals to higher temperatures again. Despite these issues, CFB boilers generally emit very little mercury and show good native capture. The Energy & Environmental Research Center is carrying out this project for Metso Power in order to characterize the fate of mercury across the unit at Rosebud Plant, an industrial user of CFB technology from Metso. Appropriate solids were collected, and flue gas samples were obtained using the Ontario Hydro method, mercury continuous emission monitors, and sorbent trap methods. In addition, chlorine and fluorine were determined for solids and in the flue gas stream. Results of this project have indicated a very good mercury mass balance for Rosebud Plant, indicating 105 {+-} 19%, which is well within acceptable limits. The mercury flow through the system was shown to be primarily in with the coal and out with the flue gas, which falls outside of the norm for CFB boilers.« less

  9. DEVELOPMENT, TESTING, AND DEMONSTRATION OF AN OPTIMAL FINE COAL CLEANING CIRCUIT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steven R. Hadley; R. Mike Mishra; Michael Placha

    1999-01-27

    The objective of this project was to improve the efficiency of the fine coal froth flotation circuit in commercial coal preparation plants. The plant selected for this project, Cyprus Emerald Coal Preparation Plant, cleans 1200-1400 tph of Pittsburgh seam raw coal and uses conventional flotation cells to clean the minus 100-mesh size fraction. The amount of coal in this size fraction is approximately 80 tph with an average ash content of 35%. The project was carried out in two phases. In Phase I, four advanced flotation cells, i.e., a Jameson cell, an Outokumpu HG tank cell, an open column, andmore » a packed column cell, were subjected to bench-scale testing and demonstration. In Phase II, two of these flotation cells, the Jameson cell and the packed column, were subjected to in-plant, proof-of-concept (POC) pilot plant testing both individually and in two-stage combination in order to ascertain whether a two-stage circuit results in lower levelized production costs. The bench-scale results indicated that the Jameson cell and packed column cell would be amenable to the single- and two-stage flotation approach. POC tests using these cells determined that single-stage coal matter recovery (CMR) of 85% was possible with a product ash content of 5.5-7%. Two-stage operation resulted in a coal recovery of 90% with a clean coal ash content of 6-7.5%. This compares favorably with the plant flotation circuit recovery of 80% at a clean coal ash of 11%.« less

  10. FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George Rizeq; Janice West; Arnaldo Frydman

    It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the process efficiency and environmental impact performance of fossil fuel utilization. GE Energy and Environmental Research Corporation (GE EER) has developed an innovative fuel-flexible Unmixed Fuel Processor (UFP) technology to produce H{sub 2}, power, and sequestration-ready CO{sub 2} from coal and other solid fuels. The UFP module offers the potential for reduced cost, increased process efficiency relative to conventional gasification and combustion systems, and near-zero pollutant emissions including NO{sub x}. GEmore » EER (prime contractor) was awarded a Vision 21 program from U.S. DOE NETL to develop the UFP technology. Work on this Phase I program started on October 1, 2000. The project team includes GE EER, Southern Illinois University at Carbondale (SIU-C), California Energy Commission (CEC), and T. R. Miles, Technical Consultants, Inc. In the UFP technology, coal/opportunity fuels and air are simultaneously converted into separate streams of (1) pure hydrogen that can be utilized in fuel cells, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure oxygen-depleted air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on process modeling work, has an estimated process efficiency of 68%, based on electrical and H{sub 2} energy outputs relative to the higher heating value of coal, and an estimated equivalent electrical efficiency of 60%. The Phase I R&D program will determine the operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrates lab-, bench- and pilot-scale studies to demonstrate the UFP technology. This is the tenth quarterly technical progress report for the Vision 21 UFP program supported by U.S. DOE NETL (Contract No. DE-FC26-00FT40974). This report summarizes program accomplishments for the period starting January 1, 2003 and ending March 31, 2003. The report includes an introduction summarizing the UFP technology, main program tasks, and program objectives; it also provides a summary of program activities and accomplishments covering progress in tasks including lab-scale experimental testing, pilot-scale assembly, and program management.« less

  11. FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George Rizeq; Janice West; Arnaldo Frydman

    It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the process efficiency and environmental impact performance of fossil fuel utilization. GE Energy and Environmental Research Corporation (GE EER) has developed an innovative fuel-flexible Unmixed Fuel Processor (UFP) technology to produce H{sub 2}, power, and sequestration-ready CO{sub 2} from coal and other solid fuels. The UFP module offers the potential for reduced cost, increased process efficiency relative to conventional gasification and combustion systems, and near-zero pollutant emissions including NO{sub x}. GEmore » EER was awarded a Vision 21 program from U.S. DOE NETL to develop the UFP technology. Work on this Phase I program started on October 1, 2000. The project team includes GE EER, California Energy Commission, Southern Illinois University at Carbondale, and T. R. Miles, Technical Consultants, Inc. In the UFP technology, coal/opportunity fuels and air are simultaneously converted into separate streams of (1) pure hydrogen that can be utilized in fuel cells, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure oxygen-depleted air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on process modeling work, has an estimated process efficiency of 68%, based on electrical and H{sub 2} energy outputs relative to the higher heating value of coal, and an estimated equivalent electrical efficiency of 60%. The Phase I R&D program will determine the operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrates lab-, bench- and pilot-scale studies to demonstrate the UFP technology. This is the ninth quarterly technical progress report for the Vision 21 UFP program supported by U.S. DOE NETL (Contract No. DE-FC26-00FT40974). This report summarizes program accomplishments for the period starting October 1, 2002 and ending December 31, 2002. The report includes an introduction summarizing the UFP technology, main program tasks, and program objectives; it also provides a summary of program activities and accomplishments covering progress in tasks including lab- and bench-scale experimental testing, pilot-scale design and assembly, and program management.« less

  12. FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George Rizeq; Janice West; Arnaldo Frydman

    It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the process efficiency and environmental impact performance of fossil fuel utilization. GE Global Research (GEGR) has developed an innovative fuel-flexible Unmixed Fuel Processor (UFP) technology to produce H{sub 2}, power, and sequestration-ready CO{sub 2} from coal and other solid fuels. The UFP module offers the potential for reduced cost, increased process efficiency relative to conventional gasification and combustion systems, and near-zero pollutant emissions including NO{sub x}. GEGR (prime contractor) was awardedmore » a Vision 21 program from U.S. DOE NETL to develop the UFP technology. Work on this Phase I program started on October 1, 2000. The project team includes GEGR, Southern Illinois University at Carbondale (SIU-C), California Energy Commission (CEC), and T. R. Miles, Technical Consultants, Inc. In the UFP technology, coal/opportunity fuels and air are simultaneously converted into separate streams of (1) pure hydrogen that can be utilized in fuel cells, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure oxygen-depleted air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on process modeling with best-case scenario assumptions, has an estimated process efficiency of 68%, based on electrical and H{sub 2} energy outputs relative to the higher heating value of coal, and an estimated equivalent electrical efficiency of 60%. The Phase I R&D program will determine the operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrates lab-, bench- and pilot-scale studies to demonstrate the UFP technology. This is the eleventh quarterly technical progress report for the Vision 21 UFP program supported by U.S. DOE NETL (Contract No. DE-FC26-00FT40974). This report summarizes program accomplishments for the period starting April 1, 2003 and ending June 30, 2003. The report includes an introduction summarizing the UFP technology, main program tasks, and program objectives; it also provides a summary of program activities and accomplishments covering progress in tasks including lab-scale experimental testing, pilot-scale assembly, and program management.« less

  13. Enhancement of Operating Efficiency Of The Central Coal-Preparation Plant of "MMK - UGOL" Ltd. Under Current Conditions

    NASA Astrophysics Data System (ADS)

    Basarygin, Maksim

    2017-11-01

    In this article the subject of enhancement of operating efficiency of the central coal-preparation plant of OOO "MMK-UGOL" is encompassed. Modern trends in the development of technologies and equipment for coal beneficiation are due to the following requirements: improving competitiveness of coal products, improvement of quality of marketable products, reduction of coal production cost, environmental requirements: polluting emission abatement, prepared coal saving, improvement of the effectiveness of resource conservation; complex mechanization and beneficiation process automation. In the article the contemporary problems of raw coal benefication under current conditions of the increased dilution of withdrawable coals with rock fractions are considered. Comparative analysis of efficiency of application of modern concentrating equipment under the conditions of the CCPP of OOO "MMK-UGOL" is carried out on the basis of research works. Particular attention is paid to dehydration of produced coal concentrate with content of volatile agents of more than 35.0% and content of fine-dispersed particles in flotation concentrate of more than 50.0%. Comparative analysis of the coal concentrate dehydration technologies is conducted.

  14. CONTROL OF NOX EMISSIONS FROM U.S. COAL-FIRED ELECTRIC UTILITY BOILERS

    EPA Science Inventory

    The paper discusses the control of nitrogen oxide (NOx) emissions from U.S. coal-fired electric utility boilers. (NOTE: In general, NOx control technologies are categorized as being either primary or secondary control technologies. Primary technologies reduce the amount of NOx pr...

  15. A Review of CO2 Sequestration Projects and Application in China

    PubMed Central

    Tang, Yong; Yang, Ruizhi; Bian, Xiaoqiang

    2014-01-01

    In 2008, the top CO2 emitters were China, United States, and European Union. The rapid growing economy and the heavy reliance on coal in China give rise to the continued growth of CO2 emission, deterioration of anthropogenic climate change, and urgent need of new technologies. Carbon Capture and sequestration is one of the effective ways to provide reduction of CO2 emission and mitigation of pollution. Coal-fired power plants are the focus of CO2 source supply due to their excessive emission and the energy structure in China. And over 80% of the large CO2 sources are located nearby storage reservoirs. In China, the CO2 storage potential capacity is of about 3.6 × 109 t for all onshore oilfields; 30.483 × 109 t for major gas fields between 900 m and 3500 m of depth; 143.505 × 109 t for saline aquifers; and 142.67 × 109 t for coal beds. On the other hand, planation, soil carbon sequestration, and CH4–CO2 reforming also contribute a lot to carbon sequestration. This paper illustrates some main situations about CO2 sequestration applications in China with the demonstration of several projects regarding different ways of storage. It is concluded that China possesses immense potential and promising future of CO2 sequestration. PMID:25302323

  16. Novel Application of Carbonate Fuel Cell for Capturing Carbon Dioxide from Flue Gas Streams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jolly, Stephen; Ghezel-Ayagh, Hossein; Willman, Carl

    To address concerns about climate change resulting from emission of CO2 by coal-fueled power plants, FuelCell Energy, Inc. has developed the Combined Electric Power and Carbon-dioxide Separation (CEPACS) system concept. The CEPACS system utilizes Electrochemical Membrane (ECM) technology derived from the Company’s Direct FuelCell® products. The system separates the CO2 from the flue gas of other plants and produces electric power using a supplementary fuel. FCE is currently evaluating the use of ECM to cost effectively separate CO2 from the flue gas of Pulverized Coal (PC) power plants under a U.S. Department of Energy contract. The overarching objective of themore » project is to verify that the ECM can achieve at least 90% CO2 capture from the flue gas with no more than 35% increase in the cost of electricity. The project activities include: 1) laboratory scale operational and performance tests of a membrane assembly, 2) performance tests of the membrane to evaluate the effects of impurities present in the coal plant flue gas, in collaboration with Pacific Northwest National Laboratory, 3) techno-economic analysis for an ECM-based CO2 capture system applied to a 550 MW existing PC plant, in partnership with URS Corporation, and 4) bench scale (11.7 m2 area) testing of an ECM-based CO2 separation and purification system.« less

  17. Completing the CCT mission: The challenge of change

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Monk, J.R.

    1997-12-31

    In order to complete the clean coal technology mission it will be necessary to determine CCT`s role in the restructured electricity industry and develop a strategy to promote that role. First, one must understand where the industry is headed and how clean coal technology fits into that future. Then, one needs to develop a strategy for getting from here to there, from where CCT is today to where it must be in five, ten or twenty years to be a viable option for decision-makers. Coal makes sense for the United States for several important reasons, not the least of whichmore » is its abundance here. It also makes sense in terms of its economic impact on large areas of the nation. And if coal makes sense, especially economically, then clean coal technology makes even more sense because of its potential to capitalize on this abundant resource in an environmentally friendly manner. But after nearly thirty years of involvement in the political world at all levels from Washington, D.C. to Washington, Indiana, the author has learned the hard way that ``common sense`` does not always, or even often, carry the day in the policymaking process. He believes that the future of clean coal technology hinges on the ability in the next few months and years to mobilize all those who favor that technology to move forward in a cohesive and coordinated effort to affect the policymaking and political process and thereby promote and accelerate CCT development. If this can be done, then the nation will be well on the way to completing the clean coal technology mission and meeting the challenge of change.« less

  18. Coal-oil coprocessing at HTI - development and improvement of the technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stalzer, R.H.; Lee, L.K.; Hu, J.

    1995-12-31

    Co-Processing refers to the combined processing of coal and petroleum-derived heavy oil feedstocks. The coal feedstocks used are those typically utilized in direct coal liquefaction: bituminous, subbituminous, and lignites. Petroleum-derived oil, is typically a petroleum residuum, containing at least 70 W% material boiling above 525{degrees}C. The combined coal and oil feedstocks are processed simultaneously with the dual objective of liquefying the coal and upgrading the petroleum-derived residuum to lower boiling (<525{degrees}C) premium products. HTI`s investigation of the Co-Processing technology has included work performed in laboratory, bench and PDU scale operations. The concept of co-processing technology is quite simple and amore » natural outgrowth of the work done with direct coal liquefaction. A 36 month program to evaluate new process concepts in coal-oil coprocessing at the bench-scale was begun in September 1994 and runs until September 1997. Included in this continuous bench-scale program are provisions to examine new improvements in areas such as: interstage product separation, feedstock concentrations (coal/oil), improved supported/dispersed catalysts, optimization of reactor temperature sequencing, and in-line hydrotreating. This does not preclude other ideas from DOE contracts and other sources that can lead to improved product quality and economics. This research work has led to important findings which significantly increased liquid yields, improved product quality, and improved process economics.« less

  19. Development of a 5 kW Prototype Coal-Based Fuel Cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chuang, Steven S.C.; Mirzababaei, Jelvehnaz; Rismanchian, Azadeh

    2014-01-20

    The University of Akron Fuel Cell Laboratory pioneered the development of a laboratory scale coal-based fuel cell, which allows the direct use of high sulfur content coal as fuel. The initial research and coal fuel cell technology development (“Coal-based Fuel Cell,” S. S. C. Chuang, PCT Int. Appl. 2006, i.e., European Patent Application, 35 pp. CODEN: PIXXD2 WO 2006028502 A2 20060316) have demonstrated that it is feasible to electrochemically oxidize carbon to CO2, producing electricity. The key innovative concept of this coal-based fuel cell technology is that carbon in coal can be converted through an electrochemical oxidation reaction into manageablemore » carbon dioxide, efficiently generating electricity without involving coal gasification, reforming, and water-gas shift reaction. This study has demonstrated that electrochemical oxidation of carbon can take place on the Ni anode surface and the CO and CO 2 product produced can further react with carbon to initiate the secondary reaction. A carbon injection system was developed to inject the solid fuel without bringing air into the anode chamber; a fuel cell stack was developed and tested to demonstrate the feasibility of the fuel cell stack. Further improvement of anode catalyst activity and durability is needed to bring this novel coal fuel cell to a highly efficient, super clean, multi-use electric generation technology, which promises to provide low cost electricity by expanding the utilization of U.S. coal supplies and relieving our dependence on foreign oil.« less

  20. 30 CFR 816.59 - Coal recovery.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Coal recovery. 816.59 Section 816.59 Mineral... PERFORMANCE STANDARDS PERMANENT PROGRAM PERFORMANCE STANDARDS-SURFACE MINING ACTIVITIES § 816.59 Coal recovery... coal, while utilizing the best appropriate technology currently available to maintain environmental...

  1. 30 CFR 816.59 - Coal recovery.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Coal recovery. 816.59 Section 816.59 Mineral... PERFORMANCE STANDARDS PERMANENT PROGRAM PERFORMANCE STANDARDS-SURFACE MINING ACTIVITIES § 816.59 Coal recovery... coal, while utilizing the best appropriate technology currently available to maintain environmental...

  2. 30 CFR 816.59 - Coal recovery.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Coal recovery. 816.59 Section 816.59 Mineral... PERFORMANCE STANDARDS PERMANENT PROGRAM PERFORMANCE STANDARDS-SURFACE MINING ACTIVITIES § 816.59 Coal recovery... coal, while utilizing the best appropriate technology currently available to maintain environmental...

  3. 30 CFR 816.59 - Coal recovery.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Coal recovery. 816.59 Section 816.59 Mineral... PERFORMANCE STANDARDS PERMANENT PROGRAM PERFORMANCE STANDARDS-SURFACE MINING ACTIVITIES § 816.59 Coal recovery... coal, while utilizing the best appropriate technology currently available to maintain environmental...

  4. 30 CFR 816.59 - Coal recovery.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Coal recovery. 816.59 Section 816.59 Mineral... PERFORMANCE STANDARDS PERMANENT PROGRAM PERFORMANCE STANDARDS-SURFACE MINING ACTIVITIES § 816.59 Coal recovery... coal, while utilizing the best appropriate technology currently available to maintain environmental...

  5. Coal and Coal/Biomass-Based Power Generation

    EPA Science Inventory

    For Frank Princiotta's book, Global Climate Change--The Technology Challenge Coal is a key, growing component in power generation globally. It generates 50% of U.S. electricity, and criteria emissions from coal-based power generation are being reduced. However, CO2 emissions m...

  6. CO-FIRING COAL, FEEDLOT, AND LITTER BIOMASS (CFB AND LFB) FUELS IN PULVERIZED FUEL AND FIXED BED BURNERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalyan Annamalai; John Sweeten; Saqib Mukhtar

    2002-01-15

    Intensive animal feeding operations create large amounts of animal waste that must be safely disposed of in order to avoid environmental degradation. Cattle feedlots and chicken houses are two examples. In feedlots, cattle are confined to small pens and fed a high calorie grain diet in preparation for slaughter. In chicken houses, thousands of chickens are kept in close proximity. In both of these operations, millions of tons of manure are produced every year. In this project a co-firing technology is proposed which would use manure that cannot be used for fertilizer, for power generation. Since the animal manure hasmore » economic uses as both a fertilizer and as a fuel, it is properly referred to as feedlot biomass (FB) for cow manure, or litter biomass (LB) for chicken manure. The biomass will be used a as a fuel by mixing it with coal in a 90:10 blend and firing it in existing coal fired combustion devices. This technique is known as co-firing, and the high temperatures produced by the coal will allow the biomass to be completely combusted. Therefore, it is the goal of the current research to develop an animal biomass cofiring technology. A cofiring technology is being developed by performing: (1) studies on fundamental fuel characteristics, (2) small scale boiler burner experiments, (3) gasifier experiments, (4) computer simulations, and (5) an economic analysis. The fundamental fuel studies reveal that biomass is not as high a quality fuel as coal. The biomass fuels are higher in ash, higher in moisture, higher in nitrogen and sulfur (which can cause air pollution), and lower in heat content than coal. Additionally, experiments indicate that the biomass fuels have higher gas content, release gases more readily than coal, and less homogeneous. Small-scale boiler experiments revealed that the biomass blends can be successfully fired, and NO{sub x} pollutant emissions produced will be similar to or lower than pollutant emissions when firing coal. This is a surprising result as the levels of N are higher in the biomass fuel than in coal. Further experiments showed that biomass is twice or more effective than coal when used in a reburning process to reduce NO{sub x} emissions. Since crushing costs of biomass fuels may be prohibitive, stoker firing may be cost effective; in order simulate such a firing, future work will investigate the performance of a gasifier when fired with larger sized coal and biomass. It will be a fixed bed gasifier, and will evaluate blends, coal, and biomass. Computer simulations were performed using the PCGC-2 code supplied by BYU and modified by A&M with three mixture fractions for handling animal based biomass fuels in order to include an improved moisture model for handling wet fuels and phosphorus oxidation. Finally the results of the economic analysis show that considerable savings can be achieved with the use of biomass. In the case of higher ash and moisture biomass, the fuel cost savings will be reduced, due to increased transportation costs. A spreadsheet program was created to analyze the fuel savings for a variety of different moisture levels, ash levels, and power plant operating parameters.« less

  7. Montana Integrated Carbon to Liquids (ICTL) Demonstration Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fiato, Rocco A.; Sharma, Ramesh; Allen, Mark

    Integrated carbon-to-liquids technology (ICTL) incorporates three basic processes for the conversion of a wide range of feedstocks to distillate liquid fuels: (1) Direct Microcatalytic Coal Liquefaction (MCL) is coupled with biomass liquefaction via (2) Catalytic Hydrodeoxygenation and Isomerization (CHI) of fatty acid methyl esters (FAME) or trigylceride fatty acids (TGFA) to produce liquid fuels, with process derived (3) CO 2 Capture and Utilization (CCU) via algae production and use in BioFertilizer for added terrestrial sequestration of CO 2, or as a feedstock for MCL and/or CHI. This novel approach enables synthetic fuels production while simultaneously meeting EISA 2007 Section 526more » targets, minimizing land use and water consumption, and providing cost competitive fuels at current day petroleum prices. ICTL was demonstrated with Montana Crow sub-bituminous coal in MCL pilot scale operations at the Energy and Environmental Research Center at the University of North Dakota (EERC), with related pilot scale CHI studies conducted at the University of Pittsburgh Applied Research Center (PARC). Coal-Biomass to Liquid (CBTL) Fuel samples were evaluated at the US Air Force Research Labs (AFRL) in Dayton and greenhouse tests of algae based BioFertilizer conducted at Montana State University (MSU). Econometric modeling studies were also conducted on the use of algae based BioFertilizer in a wheat-camelina crop rotation cycle. We find that the combined operation is not only able to help boost crop yields, but also to provide added crop yields and associated profits from TGFA (from crop production) for use an ICTL plant feedstock. This program demonstrated the overall viability of ICTL in pilot scale operations. Related work on the Life Cycle Assessment (LCA) of a Montana project indicated that CCU could be employed very effectively to reduce the overall carbon footprint of the MCL/CHI process. Plans are currently being made to conduct larger-scale process demonstration studies of the CHI process in combination with CCU to generate synthetic jet and diesel fuels from algae and algae fertilized crops. Site assessment and project prefeasibility studies are planned with a major EPC firm to determine the overall viability of ICTL technology commercialization with Crow coal resources in south central Montana.« less

  8. The secondary release of mercury in coal fly ash-based flue-gas mercury removal technology.

    PubMed

    He, Jingfeng; Duan, Chenlong; Lei, Mingzhe; Zhu, Xuemei

    2016-01-01

    The secondary release of mercury from coal fly ash is a negative by-product from coal-fired power plants, and requires effective control to reduce environmental pollution. Analysing particle size distribution and composition of the coal fly ash produced by different mercury removing technologies indicates that the particles are generally less than 0.5 mm in size and are composed mainly of SiO2, Al2O3, and Fe2O3. The relationships between mercury concentration in the coal fly ash, its particle size, and loss of ignition were studied using different mercury removing approaches. The research indicates that the coal fly ash's mercury levels are significantly higher after injecting activated carbon or brominating activated carbon when compared to regular cooperating-pollution control technology. This is particularly true for particle size ranges of >0.125, 0.075-0.125, and 0.05-0.075 mm. Leaching experiments revealed the secondary release of mercury in discarded coal fly ash. The concentration of mercury in the coal fly ash increases as the quantity of injecting activated carbon or brominating activated carbon increases. The leached concentrations of mercury increase as the particle size of the coal fly ash increases. Therefore, the secondary release of mercury can be controlled by adding suitable activated carbon or brominating activated carbon when disposing of coal fly ash. Adding CaBr2 before coal combustion in the boiler also helps control the secondary release of mercury, by increasing the Hg(2+) concentration in the leachate. This work provides a theoretical foundation for controlling and removing mercury in coal fly ash disposal.

  9. CONSOL`s perspective on CCT deployment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burke, F.P.; Statnick, R.M.

    1997-12-31

    The principal focus of government investment in Clean Coal Technology must be to serve the interests of the US energy consumer. Because of its security of supply and low cost, coal will continue to be the fuel of choice in the existing domestic electricity generating market. The ability of coal to compete for new generating capacity will depend largely on natural gas prices and the efficiency of coal and gas-fired generating options. Furthermore, potential environmental regulations, coupled with utility deregulation, create a climate of economic uncertainty that may limit future investment decisions favorable to coal. Therefore, the federal government, throughmore » programs such as CCT, should promote the development of greenfield and retrofit coal use technology that improves generating efficiency and meets environmental requirements for the domestic electric market.« less

  10. Investigation on the Activity Activation and Cementitious Property of Coal Gangue with High Iron and Silica Contents

    NASA Astrophysics Data System (ADS)

    Wu, Hong; Li, Yu; Teng, Min; Yang, Yu

    2017-11-01

    The activity of coal gangue by thermal activation and composite activation technologies was investigated. The crystal composition, framework structure and morphology change were analyzed by XRD, FT-IR and SEM, respectively. The cementitious property of coal gangue was measured by strength test. The results showed that thermal activation decomposed kaolinite in coal gangue, and formed the metastable structure with a porous state, multiple internal broken bonds and large specific surface areas. Based on thermal activation, the added lime provided the alkaline environment, then this reduced the bond energy of reactant particles and the degree of crystallinity of quartz in coal gangue. The two activation methods could effectively improve the cementitious property of coal gangue based unburned bricks, and that the composite activation technology was superior performance.

  11. Coping with carbon: a near-term strategy to limit carbon dioxide emissions from power stations.

    PubMed

    Breeze, Paul

    2008-11-13

    Burning coal to generate electricity is one of the key sources of atmospheric carbon dioxide emissions; so, targeting coal-fired power plants offers one of the easiest ways of reducing global carbon emissions. Given that the world's largest economies all rely heavily on coal for electricity production, eliminating coal combustion is not an option. Indeed, coal consumption is likely to increase over the next 20-30 years. However, the introduction of more efficient steam cycles will improve the emission performance of these plants over the short term. To achieve a reduction in carbon emissions from coal-fired plant, however, it will be necessary to develop and introduce carbon capture and sequestration technologies. Given adequate investment, these technologies should be capable of commercial development by ca 2020.

  12. Phytoremediation of spoil coal dumps in Western Donbass (Ukraine)

    NASA Astrophysics Data System (ADS)

    Klimkina, Iryna; Kharytonov, Mykola; Wiche, Oliver; Heilmeier, Hermann

    2017-04-01

    At the moment, in Ukraine about 150 thousand hectares of fertile land are occupied by spoil dumps. Moreover, this figure increases every year. According to the technology used about 1500 m3 of adjacent stratum is dumped at the surface per every 1000 tons of coal mined. Apart from land amortization, waste dumps drastically change the natural landscape and pollute air, soil and water sources as the result of water and wind erosion, as well as self-ignition processes. A serious concern exists with respect to the Western Donbass coal mining region in Ukraine, where the coal extraction is made by the subsurface way and solid wastes are represented by both spoil dumps and wastes after coal processing. Sulphides, mostly pyrite (up to 4% of waste material), are widely distributed in the waste heaps freshly removed due to coal mining in Western Donbass.The oxidation of pyrite with the presence of oxygen and water is accompanied by a sharp drop in the pH from the surface layer to the spoil dumps(from 5.2-6.2 to 3.9-4.2 in soil substrates with chernozen and from 8.3-8.4 to 6.7-7.2 in soil substrates with red-brown clay, stabilizing in dump material in both cases at 2.9-3.2). Low pH generates the transformation of a number of toxic metals and other elementspresent in waste rock (e.g. Fe, Al, Mn, Zn, Mo, Co, As, Cd, Bi, Pb, U) into mobile forms. To stabilize and reduce metal mobility the most resistant plants that occur naturally in specified ecosystems can be used. On coal spoil dumpsin Western Donbas the dominant species are Bromopsis inermis, subdominant Artemisia austriaca; widespread are also Festucas pp., Lathyrus tuberosus, Inula sp., Calamagrostis epigeios, Lotus ucrainicus, and Vicias pp. Identification of plants tolerant to target metals is a key issue in phytotechnology for soil restoration. It is hypothesized that naturally occurring plants growing on coal spoil dumps can be candidates for phytostabilization, phytoextraction (phytoaccumulation) and phytomining techniques. Results on accumulation of target elements in the above- and below ground biomass of abundant plant species will be used to discuss their phytoremediation potential for spoil coal dumps in Western Donbas. Research is being carried out in the framework of DAAD project "Biotechnology in Mining - Integration of New Technologies into Educational Practice" and cooperation between TechnischeUniversität Bergakademie Freiberg, Germany, and National Mining University, Dnipro, Ukraine.

  13. Coal Research

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Coal slurries are "clean" pulverized coal mixed with oil or water. Significant fuel savings can be realized when using coal slurries. Advanced Fuels Technology (AFT) utilized a COSMIC program, (Calculation of Complex Chemical Equilibrium Compositions), which provides specific capabilities for determining combustion products. The company has developed a cleaning process that removes much of the mineral sulphur and ash from the coals.

  14. 30 CFR 817.59 - Coal recovery.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Coal recovery. 817.59 Section 817.59 Mineral... PERFORMANCE STANDARDS PERMANENT PROGRAM PERFORMANCE STANDARDS-UNDERGROUND MINING ACTIVITIES § 817.59 Coal... conservation of the coal, while utilizing the best technology currently available to maintain environmental...

  15. 30 CFR 817.59 - Coal recovery.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Coal recovery. 817.59 Section 817.59 Mineral... PERFORMANCE STANDARDS PERMANENT PROGRAM PERFORMANCE STANDARDS-UNDERGROUND MINING ACTIVITIES § 817.59 Coal... conservation of the coal, while utilizing the best technology currently available to maintain environmental...

  16. 30 CFR 817.59 - Coal recovery.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Coal recovery. 817.59 Section 817.59 Mineral... PERFORMANCE STANDARDS PERMANENT PROGRAM PERFORMANCE STANDARDS-UNDERGROUND MINING ACTIVITIES § 817.59 Coal... conservation of the coal, while utilizing the best technology currently available to maintain environmental...

  17. 30 CFR 817.59 - Coal recovery.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Coal recovery. 817.59 Section 817.59 Mineral... PERFORMANCE STANDARDS PERMANENT PROGRAM PERFORMANCE STANDARDS-UNDERGROUND MINING ACTIVITIES § 817.59 Coal... conservation of the coal, while utilizing the best technology currently available to maintain environmental...

  18. 30 CFR 817.59 - Coal recovery.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Coal recovery. 817.59 Section 817.59 Mineral... PERFORMANCE STANDARDS PERMANENT PROGRAM PERFORMANCE STANDARDS-UNDERGROUND MINING ACTIVITIES § 817.59 Coal... conservation of the coal, while utilizing the best technology currently available to maintain environmental...

  19. Fast and safe gas detection from underground coal fire by drone fly over.

    PubMed

    Dunnington, Lucila; Nakagawa, Masami

    2017-10-01

    Underground coal fires start naturally or as a result of human activities. Besides burning away the important non-renewable energy resource and causing financial losses, burning coal seams emit carbon dioxide, carbon monoxide, sulfur oxide and methane, and is a leading cause of smog, acid rain, global warming, and air toxins. In the U.S. alone, the combined cost of coal-fire remediation projects that have been completed, budgeted, or projected by the U.S. Department of the Interior's Office of Surface Mining Remediation and Enforcement (OSM), exceeds $1 billion. It is estimated that these fires generate as much as 3% of the world's annual carbon dioxide emissions and consume as much as 5% of its minable coal. Considering the magnitude of environmental impact and economic loss caused by burning underground coal seams, we have developed a new, safe, reliable surface measurement of coal fire gases to assess the nature of underground coal fires. We use a drone mounted with gas sensors. Drone collected gas concentration data provides a safe alternative for evaluating the rank of a burning coal seam. In this study, a new method of determining coal rank by gas ratios is developed. Coal rank is valuable for defining parameters of a coal seam such as burn temperature, burn rate, and volume of burning seam. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Greenidge Multi-Pollutant Control Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Connell, Daniel

    2008-10-18

    The Greenidge Multi-Pollutant Control Project was conducted as part of the U.S. Department of Energy's Power Plant Improvement Initiative to demonstrate an innovative combination of air pollution control technologies that can cost-effectively reduce emissions of SO{sub 2}, NO{sub x}, Hg, acid gases (SO{sub 3}, HCl, and HF), and particulate matter from smaller coal-fired electric generating units (EGUs). There are about 400 units in the United States with capacities of 50-300 MW that currently are not equipped with selective catalytic reduction (SCR), flue gas desulfurization (FGD), or mercury control systems. Many of these units, which collectively represent more than 55 GWmore » of installed capacity, are difficult to retrofit for deep emission reductions because of space constraints and unfavorable economies of scale, making them increasingly vulnerable to retirement or fuel switching in the face of progressively more stringent environmental regulations. The Greenidge Project sought to confirm the commercial readiness of an emissions control system that is specifically designed to meet the environmental compliance requirements of these smaller coal-fired EGUs by offering a combination of deep emission reductions, low capital costs, small space requirements, applicability to high-sulfur coals, mechanical simplicity, and operational flexibility. The multi-pollutant control system includes a NO{sub x}OUT CASCADE{reg_sign} hybrid selective non-catalytic reduction (SNCR)/in-duct SCR system for NO{sub x} control and a Turbosorp{reg_sign} circulating fluidized bed dry scrubbing system (with a new baghouse) for SO{sub 2}, SO{sub 3}, HCl, HF, and particulate matter control. Mercury removal is provided as a co-benefit of the in-duct SCR, dry scrubber, and baghouse, and by injection of activated carbon upstream of the scrubber, if required. The multi-pollutant control system was installed and tested on the 107-MW{sub e}, 1953-vintage AES Greenidge Unit 4 by a team including CONSOL Energy Inc. as prime contractor, AES Greenidge LLC as host site owner, and Babcock Power Environmental Inc. as engineering, procurement, and construction contractor. About 44% of the funding for the project was provided by the U.S. Department of Energy, through its National Energy Technology Laboratory, and the remaining 56% was provided by AES Greenidge. Project goals included reducing high-load NO{sub x} emissions to {le} 0.10 lb/mmBtu; reducing SO{sub 2}, SO{sub 3}, HCl, and HF emissions by at least 95%; and reducing Hg emissions by at least 90% while the unit fired 2-4% sulfur eastern U.S. bituminous coal and co-fired up to 10% biomass. This report details the final results from the project. The multi-pollutant control system was constructed in 2006, with a total plant cost of $349/kW and a footprint of 0.4 acre - both substantially less than would have been required to retrofit AES Greenidge Unit 4 with a conventional SCR and wet scrubber. Start-up of the multi-pollutant control system was completed in March 2007, and the performance of the system was then evaluated over an approximately 18-month period of commercial operation. Guarantee tests conducted in March-June 2007 demonstrated attainment of all of the emission reduction goals listed above. Additional tests completed throughout the performance evaluation period showed 96% SO{sub 2} removal, 98% mercury removal (with no activated carbon injection), 95% SO{sub 3} removal, and 97% HCl removal during longer-term operation. Greater than 95% SO{sub 2} removal efficiency was observed even when the unit fired high-sulfur coals containing up to 4.8 lb SO{sub 2}/mmBtu. Particulate matter emissions were reduced by more than 98% relative to the emission rate observed prior to installation of the technology. The performance of the hybrid SNCR/SCR system was affected by problems with large particle ash, ammonia slip, and nonideal combustion characteristics, and high-load NO{sub x} emissions averaged 0.14 lb/mmBtu during long-term operation. Nevertheless, the system has reduced the unit's overall NO{sub x} emissions by 52% on a lb/mmBtu basis. The commercial viability of the multi-pollutant control system was demonstrated at AES Greenidge Unit 4. The system, which remains in service after the conclusion of the project, has enabled the unit to satisfy its permit requirements while continuing to operate profitably. As a result of the success at AES Greenidge Unit 4, three additional deployments of the Turbosorp{reg_sign} technology had been announced by the end of the project.« less

  1. Drill hole data for coal beds in the Powder River Basin, Montana and Wyoming

    USGS Publications Warehouse

    Haacke, Jon E.; Scott, David C.

    2013-01-01

    This report by the U.S. Geological Survey (USGS) of the Powder River Basin (PRB) of Montana and Wyoming is part of the U.S. Coal Resources and Reserves Assessment Project. Essential to that project was the creation of a comprehensive drill hole database that was used for coal bed correlation and for coal resource and reserve assessments in the PRB. This drill hole database was assembled using data from the USGS National Coal Resources Data System, several other Federal and State agencies, and selected mining companies. Additionally, USGS personnel manually entered lithologic picks into the database from geophysical logs of coalbed methane, oil, and gas wells. Of the 29,928 drill holes processed, records of 21,393 are in the public domain and are included in this report. The database contains location information, lithology, and coal bed names for each drill hole.

  2. Evaluation of ERDA-sponsored coal feed system development

    NASA Technical Reports Server (NTRS)

    Phen, R. L.; Luckow, W. K.; Mattson, L.; Otth, D.; Tsou, P.

    1977-01-01

    Coal feeders were evaluated based upon criteria such as technical feasibility, performance (i.e. ability to meet process requirements), projected life cycle costs, and projected development cost. An initial set of feeders was selected based on the feeders' cost savings potential compared with baseline lockhopper systems. Additional feeders were considered for selection based on: (1) increasing the probability of successful feeder development; (2) application to specific processes; and (3) technical merit. A coal feeder development program is outlined.

  3. Options for near-term phaseout of CO(2) emissions from coal use in the United States.

    PubMed

    Kharecha, Pushker A; Kutscher, Charles F; Hansen, James E; Mazria, Edward

    2010-06-01

    The global climate problem becomes tractable if CO(2) emissions from coal use are phased out rapidly and emissions from unconventional fossil fuels (e.g., oil shale and tar sands) are prohibited. This paper outlines technology options for phasing out coal emissions in the United States by approximately 2030. We focus on coal for physical and practical reasons and on the U.S. because it is most responsible for accumulated fossil fuel CO(2) in the atmosphere today, specifically targeting electricity production, which is the primary use of coal. While we recognize that coal emissions must be phased out globally, we believe U.S. leadership is essential. A major challenge for reducing U.S. emissions is that coal provides the largest proportion of base load power, i.e., power satisfying minimum electricity demand. Because this demand is relatively constant and coal has a high carbon intensity, utility carbon emissions are largely due to coal. The current U.S. electric grid incorporates little renewable power, most of which is not base load power. However, this can readily be changed within the next 2-3 decades. Eliminating coal emissions also requires improved efficiency, a "smart grid", additional energy storage, and advanced nuclear power. Any further coal usage must be accompanied by carbon capture and storage (CCS). We suggest that near-term emphasis should be on efficiency measures and substitution of coal-fired power by renewables and third-generation nuclear plants, since these technologies have been successfully demonstrated at the relevant (commercial) scale. Beyond 2030, these measures can be supplemented by CCS at power plants and, as needed, successfully demonstrated fourth-generation reactors. We conclude that U.S. coal emissions could be phased out by 2030 using existing technologies or ones that could be commercially competitive with coal within about a decade. Elimination of fossil fuel subsidies and a substantial rising price on carbon emissions are the root requirements for a clean, emissions-free future.

  4. The Ohio River Valley CO2 Storage Project AEP Mountaineer Plan, West Virginia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neeraj Gupta

    2009-01-07

    This report includes an evaluation of deep rock formations with the objective of providing practical maps, data, and some of the issues considered for carbon dioxide (CO{sub 2}) storage projects in the Ohio River Valley. Injection and storage of CO{sub 2} into deep rock formations represents a feasible option for reducing greenhouse gas emissions from coal-burning power plants concentrated along the Ohio River Valley area. This study is sponsored by the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL), American Electric Power (AEP), BP, Ohio Coal Development Office, Schlumberger, and Battelle along with its Pacific Northwest Division. Anmore » extensive program of drilling, sampling, and testing of a deep well combined with a seismic survey was used to characterize the local and regional geologic features at AEP's 1300-megawatt (MW) Mountaineer Power Plant. Site characterization information has been used as part of a systematic design feasibility assessment for a first-of-a-kind integrated capture and storage facility at an existing coal-fired power plant in the Ohio River Valley region--an area with a large concentration of power plants and other emission sources. Subsurface characterization data have been used for reservoir simulations and to support the review of the issues relating to injection, monitoring, strategy, risk assessment, and regulatory permitting. The high-sulfur coal samples from the region have been tested in a capture test facility to evaluate and optimize basic design for a small-scale capture system and eventually to prepare a detailed design for a capture, local transport, and injection facility. The Ohio River Valley CO{sub 2} Storage Project was conducted in phases with the ultimate objectives of demonstrating both the technical aspects of CO{sub 2} storage and the testing, logistical, regulatory, and outreach issues related to conducting such a project at a large point source under realistic constraints. The site characterization phase was completed, laying the groundwork for moving the project towards a potential injection phase. Feasibility and design assessment activities included an assessment of the CO{sub 2} source options (a slip-stream capture system or transported CO{sub 2}); development of the injection and monitoring system design; preparation of regulatory permits; and continued stakeholder outreach.« less

  5. Environmental monitoring handbook for coal conversion facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salk, M.S.; DeCicco, S.G.

    1978-05-01

    The primary objectives of the Department of Energy's (DOE) coal conversion program are to demonstrate the environmental acceptability, technical feasibility, and economic viability of various technologies for gaseous, liquid, and solid fuels from coal. The Environmental Monitoring Handbook for Coal Conversion Facilities will help accomplish the objective of environmental acceptability by guiding the planning and execution of socioeconomic and environmental monitoring programs for demonstration facilities. These programs will provide information adequate to (1) predict, insofar as is possible, the potential impacts of construction and operation of a coal conversion plant, (2) verify the occurrence of these or any other impactsmore » during construction and operation, (3) determine the adequacy of mitigating measures to protect the environment, (4) develop effluent source terms for process discharges, and (5) determine the effectiveness of pollution control equipment. Although useful in a variety of areas, the handbook is intended primarily for contractors who, as industrial partners with DOE, are building coal conversion plants. For the contractor it is a practical guide on (1) the methodology for developing site- and process-specific environmental monitoring programs, (2) state-of-the-art sampling and analytical techniques, and (3) impact analyses.To correspond to the phases of project activity, the subject matter is divided into four stages of monitoring: (1) a reconnaissance or synoptic survey, (2) preconstruction or baseline, (3) construction, and (4) operation, including process monitoring (prepared by Radian Corp., McLean, Va.). For each stage of monitoring, guidelines are given on socioeconomics, aquatic and terrestrial ecology, air quality and meteorology, surface and groundwater quality, geohydrology and soil survey, and surface water hydrology.« less

  6. Pipeline transportation of upgraded Yugoslavian lignite fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ljubicic, B.; Anderson, C.; Bukurov, Z.

    1993-12-31

    Hydraulic transport and handling procedures for coal are not widely used, but when practiced, they result in a technically and economically successful operation. Potentially the most attractive way to utilize lignitic coals for power generation would be to combine hydraulic mining techniques with aqueous ash removal, hydrothermal processing, solids concentration, and coal-water fuel (CWF) combustion. Technical and economic assessment of this operation is being implemented within the Yugoslavian-American Scientific Technical Cooperation Agreement. The Energy and Environmental Research Center (EERC), Grand Forks, North Dakota, with support from the U.S. Department of Energy, has entered into a jointly sponsored research project withmore » Electric Power of Serbia (EPS), Belgrade, Yugoslavia, to investigate the application of the nonevaporative hydrothermal drying procedure, commonly called hot-water drying (HWD), developed at the EERC, to the lignite from the Kovin deposit. Advances in hydrothermal treatment of low-rank coals (LRCs) at the EERC have enabled cheaper, more reactive LRCs to be used in coal-water fuels (CWFs). HWD is a high-temperature, nonevaporative drying technique carried out at high pressure in water that permanently alters the structure of LRC. It solves the stability problems by producing a safe, easily transported, liquid fuel that can be handled and used like oil. For continued or increased success, it is necessary to evaluate carefully all aspects of slurry technology that permit further optimization. This paper discusses some aspects of low-rank coal hydraulic transport combined with hydrothermal treatment as an alternative energy solution toward less oil dependence in Yugoslavia.« less

  7. TREATMENT OF METAL-LADEN HAZARDOUS WASTES WITH ADVANCED CLEAN COAL TECHNOLOGY BY-PRODUCTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James T. Cobb, Jr.

    2003-09-12

    Metal-laden wastes can be stabilized and solidified using advanced clean coal technology by-products (CCTBs)--fluid bed combustor ash and spray drier solids. These utility-generated treatment chemicals are available for purchase through brokers, and commercial applications of this process are being practiced by treaters of metal-laden hazardous waste. A complex of regulations governs this industry, and sensitivities to this complex has discouraged public documentation of treatment of metal-laden hazardous wastes with CCTBs. This report provides a comprehensive public documentation of laboratory studies that show the efficacy of the stabilization and solidification of metal-laden hazardous wastes--such as lead-contaminated soils and sandblast residues--through treatmentmore » with CCTBs. It then describes the extensive efforts that were made to obtain the permits allowing a commercial hazardous waste treater to utilize CCTBs as treatment chemicals and to install the equipment required to do so. It concludes with the effect of this lengthy process on the ability of the treatment company to realize the practical, physical outcome of this effort, leading to premature termination of the project.« less

  8. Emissions from Coal Fires and Their Impact on the Environment

    USGS Publications Warehouse

    Kolker, Allan; Engle, Mark; Stracher, Glenn; Hower, James; Prakash, Anupma; Radke, Lawrence; ter Schure, Arnout; Heffern, Ed

    2009-01-01

    Self-ignited, naturally occurring coal fires and fires resulting from human activities persist for decades in underground coal mines, coal waste piles, and unmined coal beds. These uncontrolled coal fires occur in all coal-bearing parts of the world (Stracher, 2007) and pose multiple threats to the global environment because they emit greenhouse gases - carbon dioxide (CO2), and methane (CH4) - as well as mercury (Hg), carbon monoxide (CO), and other toxic substances (fig. 1). The contribution of coal fires to the global pool of atmospheric CO2 is little known but potentially significant. For China, the world's largest coal producer, it is estimated that anywhere between 10 million and 200 million metric tons (Mt) of coal reserves (about 0.5 to 10 percent of production) is consumed annually by coal fires or made inaccessible owing to fires that hinder mining operations (Rosema and others, 1999; Voigt and others, 2004). At this proportion of production, coal amounts lost to coal fires worldwide would be two to three times that for China. Assuming this coal has mercury concentrations similar to those in U.S. coals, a preliminary estimate of annual Hg emissions from coal fires worldwide is comparable in magnitude to the 48 tons of annual Hg emissions from all U.S. coal-fired power-generating stations combined (U.S. Environmental Protection Agency, 2002). In the United States, the combined cost of coal-fire remediation projects, completed, budgeted, or projected by the U.S. Department of the Interior's Office of Surface Mining Reclamation and Enforcement (OSM), exceeds $1 billion, with about 90% of that in two States - Pennsylvania and West Virginia (Office of Surface Mining Enforcement and Reclamation, 2008; fig. 2). Altogether, 15 States have combined cumulative OSM coal-fire project costs exceeding $1 million, with the greatest overall expense occurring in States where underground coal fires are predominant over surface fires, reflecting the greater cost of extinguishing underground fires (fig. 2) (see 'Controlling Coal Fires'). In this fact sheet we review how coal fires occur, how they can be detected by airborne and remote surveys, and, most importantly, the impact coal-fire emissions may have on the environment and human health. In addition, we describe recent efforts by the U.S. Geological Survey (USGS) and collaborators to measure fluxes of CO2, CO, CH4, and Hg, using groundbased portable detectors, and combining these approaches with airborne thermal imaging and CO2 measurements. The goal of this research is to develop approaches that can be extrapolated to large fires and to extrapolate results for individual fires in order to estimate the contribution of coal fires as a category of global emissions.

  9. Geologic Assessment of Coal in the Colorado Plateau: Arizona, Colorado, New Mexico, and Utah

    USGS Publications Warehouse

    Kirschbaum, Mark A.; Roberts, Lauara N.R.; Biewick, Laura

    2000-01-01

    This CD-ROM set contains a geologic assessment of coal deposits of the Colorado Plateau region and new resource estimates for selected assessment units within the Colorado Plateau. Original resource estimates (in-place resources before production) for the 12 priority assessment units of the Colorado Plateau exceed one half trillion short tons of coal in beds greater than 1 ft thick and under less than 6,000 ft of overburden. The coal is high quality and low sulfur, and a portion of these resources will provide future energy production for the Nation. Disc 1, in Portable Document Format, contains results of the assessment in summary and (or) technical reports for 12 priority coal assessment units in the Colorado Plateau and also contains an ArcView Data Publisher project, which is an interactive geographic information system of digital data collected during the assessment. Disc 2 contains stratigraphic data bases for seven of the priority coal assessment areas within the Colorado Plateau region and an ArcView project identical to the ArcView Data Publisher project on disc 1 except that it retains some of the functionality that is disabled in the ArcView Data Publisher program.

  10. Forecast of long term coal supply and mining conditions: Model documentation and results

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A coal industry model was developed to support the Jet Propulsion Laboratory in its investigation of advanced underground coal extraction systems. The model documentation includes the programming for the coal mining cost models and an accompanying users' manual, and a guide to reading model output. The methodology used in assembling the transportation, demand, and coal reserve components of the model are also described. Results presented for 1986 and 2000, include projections of coal production patterns and marginal prices, differentiated by coal sulfur content.

  11. The Reduction of NOx Using Pulsed Electron Beams

    DTIC Science & Technology

    2015-12-30

    flue gas (SFG) is described. The SFG is a simulant for exhaust flue gas from a coal combustion power plant. The technology utilizes a pulsed electron...a surrogate flue gas (SFG) is described. The SFG simulates exhaust flue gas from a coal combustion power plant. The technology utilizes a pulsed...temperature combustion in air-breathing engines and coal power plants. The gases are also produced in nature during thunderstorms by lightning

  12. Coal reburning for cost-effective NO{sub x} compliance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Folsom, B.A.; Sommer, T.M.; Engelhardt, D.A.

    1997-12-31

    This paper presents the application of micronized coal reburning to a cyclone-fired boiler in order to meet RACT emissions requirements in New York State. Discussed in the paper are reburning technology, the use of a coal micronizer, and the application of the technology to an Eastman Kodak unit. The program is designed to demonstrate the economical reduction of NO{sub x} emissions without adverse impact to the boiler.

  13. Applications study of advanced power generation systems utilizing coal-derived fuels, volume 2

    NASA Technical Reports Server (NTRS)

    Robson, F. L.

    1981-01-01

    Technology readiness and development trends are discussed for three advanced power generation systems: combined cycle gas turbine, fuel cells, and magnetohydrodynamics. Power plants using these technologies are described and their performance either utilizing a medium-Btu coal derived fuel supplied by pipeline from a large central coal gasification facility or integrated with a gasification facility for supplying medium-Btu fuel gas is assessed.

  14. Water Transportation Requirements for Coal Movement in the 1980's

    DOT National Transportation Integrated Search

    1976-12-01

    This report develops and presents barge industry estimates of additional equipment and facilities required to handle a projected doubling of coal traffic. It also describes present coal flows, associated operational policies and practices, and the in...

  15. Low-Rank Coal Grinding Performance Versus Power Plant Performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rajive Ganguli; Sukumar Bandopadhyay

    2008-12-31

    The intent of this project was to demonstrate that Alaskan low-rank coal, which is high in volatile content, need not be ground as fine as bituminous coal (typically low in volatile content) for optimum combustion in power plants. The grind or particle size distribution (PSD), which is quantified by percentage of pulverized coal passing 74 microns (200 mesh), affects the pulverizer throughput in power plants. The finer the grind, the lower the throughput. For a power plant to maintain combustion levels, throughput needs to be high. The problem of particle size is compounded for Alaskan coal since it has amore » low Hardgrove grindability index (HGI); that is, it is difficult to grind. If the thesis of this project is demonstrated, then Alaskan coal need not be ground to the industry standard, thereby alleviating somewhat the low HGI issue (and, hopefully, furthering the salability of Alaskan coal). This project studied the relationship between PSD and power plant efficiency, emissions, and mill power consumption for low-rank high-volatile-content Alaskan coal. The emissions studied were CO, CO{sub 2}, NO{sub x}, SO{sub 2}, and Hg (only two tests). The tested PSD range was 42 to 81 percent passing 76 microns. Within the tested range, there was very little correlation between PSD and power plant efficiency, CO, NO{sub x}, and SO{sub 2}. Hg emissions were very low and, therefore, did not allow comparison between grind sizes. Mill power consumption was lower for coarser grinds.« less

  16. The directory of United States coal & technology export resources. Profiles of domestic US corporations, associations and public entities, nationwide, which offer products or services suitable for export, relating to coal and its utilization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-01-01

    The purpose of this directory is to provide a listing of available U.S. coal and coal related resources to potential purchasers of those resources abroad. The directory lists business entities within the US which offer coal related resources, products and services for sale on the international market. Each listing is intended to describe the particular business niche or range of product and/or services offered by a particular company. The listing provides addresses, telephones, and telex/fax for key staff in each company committed to the facilitation of international trade. The content of each listing has been formulated especially for this directorymore » and reflects data current as of the date of this edition. The directory listings are divided into four primary classifications: coal resources; technology resources; support services; and financing and resource packaging. The first three of which are subdivided as follows: Coal Resources -- coal derivatives, coal exporters, and coal mining; Technology Resources -- advanced utilization, architects and engineers, boiler equipment, emissions control and waste disposal systems, facility construction, mining equipment, power generation systems, technical publications, and transport equipment; Support Services -- coal transport, facility operations, freight forwarders, sampling services and equipment, and technical consultants. Listings for the directory were solicited on the basis of this industry breakdown. Each of the four sections of this directory begins with a matrix illustrating which companies fall within the particular subclassifications specific to that main classification. A general alphabetical index of companies and an index by product/service classification are provided following the last section of the directory.« less

  17. CONTROLLING MULTIPLE EMISSIONS FROM COAL-FIRED POWER PLANTS

    EPA Science Inventory

    The paper presents and analyzes nine existing and novel control technologies designed to achieve multipollutant emissions reductions. It provides an evaluation of multipollutant emission control technologies that are potentially available for coal-fired power plants of 25 MW capa...

  18. Preliminary draft industrial siting administration permit application: Socioeconomic factors technical report. Final technical report, November 1980-May 1982. [Proposed WyCoalGas project in Converse County, Wyoming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1982-01-01

    Under the with-project scenario, WyCoalGas is projected to make a difference in the long-range future of Converse County. Because of the size of the proposed construction and operations work forces, the projected changes in employment, income, labor force, and population will alter Converse County's economic role in the region. Specifically, as growth occurs, Converse County will begin to satisfy a larger portion of its own higher-ordered demands, those that are currently being satisfied by the economy of Casper. Business-serving and household-serving activities, currently absent, will find the larger income and population base forecast to occur with the WyCoalGas project desirable.more » Converse County's economy will begin to mature, moving away from strict dependence on extractive industries to a more sophisticated structure that could eventually appeal to national, and certainly, regional markets. The technical demand of the WyCoalGas plant will mean a significant influx of varying occupations and skills. The creation of basic manufacturing, advanced trade and service sectors, and concomitant finance and transportation firms will make Converse County more economically autonomous. The county will also begin to serve market center functions for the smaller counties of eastern Wyoming that currently rely on Casper, Cheyenne or other distant market centers. The projected conditions expected to exist in the absence of the WyCoalGas project, the socioeconomic conditions that would accompany the project, and the differences between the two scenarios are considered. The analysis is keyed to the linkages between Converse County and Natrona County.« less

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steven Buckley; Reza Gharavi; Marco Leon

    The overall goal of this project has been to develop a highly sensitive, multiplexed TDL-based sensor for CO{sub 2}, CO, H{sub 2}O (and temperature), CH{sub 4}, H{sub 2}S, and NH{sub 3}. Such a sensor was designed with so-called 'plug-and-play' characteristics to accommodate additional sensors, and provided in situ path-integrated measurements indicative of average concentrations at speeds suitable for direct gasifier control. The project developed the sensor and culminated in a real-world test of the underlying technology behind the sensor. During the project, new underlying measurements of spectroscopic constants for all of the gases of interest performed, in custom cells builtmore » for the project. The envisioned instrument was built from scratch from component lasers, fiber optics, amplifier blocks, detectors, etc. The sensor was tested for nearly a week in an operational power plant. The products of this research are expected to have a direct impact on gasifier technology and the production of high-quality syngas, with substantial broader application to coal and other energy systems. This report is the final technical report on project DE-FG26-04NT42172. During the project we completed all of the milestones planned in the project, with a modification of milestone (7) required due to lack of funding and personnel.« less

  20. Coal systems analysis: A new approach to the understanding of coal formation, coal quality and environmental considerations, and coal as a source rock for hydrocarbons

    USGS Publications Warehouse

    Warwick, Peter D.

    2005-01-01

    Coal is an important and required energy source for today's world. Current rates of world coal consumption are projected to continue at approximately the same (or greater) levels well into the twenty-first century. This paper will provide an introduction to the concept of coal systems analysis and the accompanying volume of papers will provide examples of how coal systems analysis can be used to understand, characterize, and evaluate coal and coal gas resources. Coal systems analysis incorporates the various disciplines of coal geology to provide a complete characterization of the resource. The coal system is divided into four stages: (1) accumulation, (2) preservation-burial, (3) diagenesis-coalification, and (4) coal and hydrocarbon resources. These stages are briefly discussed and key references and examples of the application of coal systems analysis are provided.

  1. Feasibility study of algae-based Carbon Dioxide capture ...

    EPA Pesticide Factsheets

    SUMMARY: The biomass of microalgae contains approximately 50% carbon, which is commonly obtained from the atmosphere, but can also be taken from commercial sources that produce CO2, such as coal-fired power plants. A study of operational demonstration projects is being undertaken to evaluate the benefits of using algae to reduce CO2 emissions from industrial and small-scale utility power boilers. The operations are being studied for the use of CO2 from flue gas for algae growth along with the production of biofuels and other useful products to prepare a comprehensive characterization of the economic feasibility of using algae to capture CO2. Information is being generated for analyses of the potential for these technologies to advance in the market and assist in meeting environmental goals, as well as to examine their associated environmental implications. Three electric power generation plants (coal and fuel oil fired) equipped to send flue-gas emissions to algae culture at demonstration facilities are being studied. Data and process information are being collected and developed to facilitate feasibility and modeling evaluations of the CO2 to algae technology. An understanding of process requirements to apply this technology to existing industries would go far in advancing carbon capture opportunities. Documenting the successful use of this technology could help bring “low-tech”, low-cost, CO2 to algae, carbon capture to multiple size industries and

  2. Use of saline water in energy development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Israelsen, C.E.; Adams, V.D.; Batty, J.C.

    1980-06-01

    Maps were made of the Upper Colorado River Basin showing locations of coal deposits, oil and gas, oil shale, uranium, and tar sand, in relationship to cities and towns in the area. Superimposed on these are locations of wells showing four ranges of water quality; 1000 to 3000 mg/l, 3000 to 10,000 mg/l, 10,000 to 35,000 mg/l, and over 35,000 mg/l. Information was assembled relative to future energy-related projects in the upper basin, and estimates were made of their anticipated water needs. Using computer models, various options were tested for using saline water for coal-fired power plant cooling. Both coolingmore » towers and brine evaporation ponds were included. Information is presented of several proven water treatment technologies, and comparisons are made of their cost effectiveness when placed in various combinations in the power plant makeup and blowdown water systems. A relative value scale was developed which compares graphically the relative values of waters of different salinities based on three different water treatment options and predetermined upper limits of cooling tower circulating salinities. Coal from several different mines was slurried in waters of different salinities. Samples were analyzed in the laboratory to determine which constituents had been leached from or absorbed by the coal, and what possible deleterious effects this might have on the burning properties of the coal, or on the water for culinary use or irrigation.« less

  3. The World Coal Quality Inventory: A status report

    USGS Publications Warehouse

    Tewalt, S.J.; Willett, J.C.; Finkelman, R.B.

    2005-01-01

    National and international policy makers and industry require accurate information on coal, including coal quality data, to make informed decisions regarding international import needs and export opportunities, foreign policy, technology transfer policies, foreign investment prospects, environmental and health assessments, and byproduct use and disposal issues. Unfortunately, the information needed is generally proprietary and does not exist in the public domain. The U.S. Geological Survey (USGS), in conjunction with partners in about 60 countries, is developing a digital compilation of worldwide coal quality. The World Coal Quality Inventory (WoCQI) will contain coal quality information for samples obtained from major coal beds in countries having significant coal production, as well as from many countries producing smaller volumes of coal, with an emphasis on coals currently being burned. The information that will be incorporated includes, but is not limited to, proximate and ultimate analyses; sulfur-form data; major, minor, and trace element analysis; and semi-quantitative analyses of minerals, modes of occurrence, and petrography. The coal quality information will eventually be linked to a Geographic Information System (GIS) that shows the coal basins and sample locations along with geologic, land use, transportation, industrial, and cultural information. The WoCQI will be accessible on the USGS web page and new data added periodically. This multi-national collaboration is developing global coal quality data that contain a broad array of technologic, economic, and environmental parameters, which should help to ensure the efficient and environmentally compatible use of global coal resources in the 21st century.

  4. CO 2 Capture by Cold Membrane Operation with Actual Power Plant Flue Gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chaubey, Trapti; Kulkarni, Sudhir; Hasse, David

    The main objective of the project was to develop a post-combustion CO 2 capture process based on the hybrid cold temperature membrane operation. The CO 2 in the flue gas from coal fired power plant is pre-concentrated to >60% CO 2 in the first stage membrane operation followed by further liquefaction of permeate stream to achieve >99% CO 2 purity. The aim of the project was based on DOE program goal of 90% CO 2 capture with >95% CO 2 purity from Pulverized Coal (PC) fired power plants with $40/tonne of carbon capture cost by 2025. The project moves themore » technology from TRL 4 to TRL 5. The project involved optimization of Air Liquide commercial 12” PI-1 bundle to improve the bundle productivity by >30% compared to the previous baseline (DE-FE0004278) using computational fluid dynamics (CFD) modeling and bundle testing with synthetic flue gas at 0.1 MWe bench scale skid located at Delaware Research and Technology Center (DRTC). In parallel, the next generation polyimide based novel PI-2 membrane was developed with 10 times CO 2 permeance compared to the commercial PI-1 membrane. The novel PI-2 membrane was scaled from mini-permeator to 1” permeator and 1” bundle for testing. Bundle development was conducted with a Development Spin Unit (DSU) installed at MEDAL. Air Liquide’s cold membrane technology was demonstrated with real coal fired flue gas at the National Carbon Capture Center (NCCC) with a 0.3 MWe field-test unit (FTU). The FTU was designed to incorporate testing of two PI-1 commercial membrane bundles (12” or 6” diameter) in parallel or series. A slip stream was sent to the next generation PI-2 membrane for testing with real flue gas. The system exceeded performance targets with stable PI-1 membrane operation for over 500 hours of single bundle, steady state testing. The 12” PI-1 bundle exceeded the productivity target by achieving ~600 Nm3/hr, where the target was set at ~455 Nm3/hr at 90% capture rate. The cost of 90% CO 2 capture from a 550 MWe net coal power plant was estimated between 40 and $45/tonne. A 6” PI-1 bundle exhibited superior bundle performance compared to the 12” PI-1 bundle. However, the carbon capture cost was not lower with the 6” PI-1 bundle due to the higher bundle installed cost. A 1” PI-1 bundle was tested to compare bundles with different length / diameter ratios. This bundle exhibited the lowest performance due to the different fiber winding pattern and increased bundle non-ideality. Several long-term and parametric tests were conducted with 3,200 hours of total run-time at NCCC. Finally, the new PI-2 membrane fiber was tested at a small scale (1” modules) in real flue gas and exhibited up to 10 times the CO 2 permeance and slightly lower CO 2/N 2 selectivity as the commercial PI-1 fiber. This corresponded to a projected 4 - 5 times increase in the productivity per bundle and a potential cost reduction of $3/tonne for CO2 capture, as compared with PI-1. An analytical campaign was conducted to trace different impurities such as NOx, mercury, Arsenic, Selenium in gas and liquid samples through the carbon capture system. An Environmental, Health and Safety (EH&S) analysis was completed to estimate emissions from a 550 MWe net power plant with carbon capture using cold membrane. A preliminary design and cost analysis was completed for 550 tpd (~25 MWe) plant to assess the capital investment and carbon capture cost for PI-1 and PI-2 membrane solutions from coal fired flue gas. A comparison was made with an amine based solution with significant cost advantage for the membrane at this scale. Additional preliminary design and cost analysis was completed between coal, natural gas and SMR flue gas for carbon capture at 550 tpd (~25 MWe) plant.« less

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mutanen, K.I.

    Development of fluidized bed combustion (FBC) was started both in North America and in Europe in the 1960`s. In Europe and especially in Scandinavia the major driving force behind the development was the need to find new more efficient technologies for utilization of low-grade fuels like different biomasses and wastes. Both bubbling fluidized bed (BFB) and circulating fluidized bed (CFB) technologies were under intensive R&D,D efforts and have now advanced to dominating role in industrial and district heating power plant markets in Europe. New advanced CFB designs are now entering the markets. In North America and especially in the USmore » the driving force behind the FBC development was initially the need to utilize different types of coals in a more efficient and environmentally acceptable way. The present and future markets seem to be mainly in biomass and multifuel applications where there is benefit from high combustion efficiency, high fuel flexibility and low emissions such as in the pulp and paper industry. The choice between CFB technology and BFB technology is based on selected fuels, emission requirements, plant size and on technical and economic feasibility. Based on Scandinavian experience there is vast potential in the North American industry to retrofit existing oil fired, pulverized coal fired, chemical recovery or grate fired boilers with FBC systems or to build a new FBC based boiler plant. This paper will present the status of CFB technologies and will compare technical and economic feasibility of CFB technology to CFB technology to BFB and also to other combustion methods. Power plant projects that are using advanced CFB technology e.g. Ahlstrom Pyroflow Compact technology for biomass firing and co-firing of biomass with other fuels will also be introduced.« less

  6. COAL CONVERSION CONTROL TECHNOLOGY. VOLUME I. ENVIRONMENTAL REGULATIONS; LIQUID EFFLUENTS

    EPA Science Inventory

    This volume is the product of an information-gathering effort relating to coal conversion process streams. Available and developing control technology has been evaluated in view of the requirements of present and proposed federal, state, regional, and international environmental ...

  7. COAL CONVERSION CONTROL TECHNOLOGY. VOLUME II. GASEOUS EMISSIONS; SOLID WASTES

    EPA Science Inventory

    This volume is the product of an information-gathering effort relating to coal conversion process streams. Available and developing control technology has been evaluated in view of the requirements of present and proposed federal, state, regional, and international environmental ...

  8. Fossil fuels in a sustainable energy future

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bechtel, T.F.

    1995-12-01

    The coal industry in the United States has become a world leader in safety, productivity, and environmental protection in the mining of coal. The {open_quotes}pick-and-shovel{close_quotes} miner with mangled limbs and black lung disease has been replaced by the highly skilled technicians that lead the world in tons per man-hour. The gob piles, polluted streams, and scared land are a thing of the past. The complementary efforts of the DOE and EPRI-funded programs in coal utilization R&D and the Clean Coal Technology Program commercial demonstrations, have positioned the power generation industry to utilize coal in a way that doesn`t pollute themore » air or water, keeps electrical power costs low, and avoids the mountains of waste material. This paper reviews the potential for advanced coal utilization technologies in new power generation applications as well as the repowering of existing plants to increase their output, raise their efficiency, and reduce pollution. It demonstrates the potential for these advanced coal-fueled plants to play a complementary role in future planning with the natural gas and oil fired units currently favored in the market place. The status of the US program to demonstrate these technologies at commercial scale is reviewed in some detail.« less

  9. Technological challenges for boosting coal production with environmental sustainability.

    PubMed

    Ghose, Mrinal K

    2009-07-01

    The global energy requirement has grown at a phenomenon rate and the consumption of primary energy sources has been a very high positive growth. This paper focuses on the consumption of different primary energy sources and it identifies that coal will continue to remain as the prime energy source in foreseeable future. It examines the energy requirement perspective for India and demand of coal as the prime energy source. Economic development and poverty alleviation depend on securing affordable energy sources and Indian coal mining industry offers a bright future for the country's energy security, provided the industry is allowed to develop by supportive government policies and adopts latest technologies for mining. It is an irony that in-spite of having a plentiful reserves, India is not able to jack up coal production to meet its current and future demand. It discusses the strategies to be adopted for growth and meeting the coal demand. But such energy are very much concerned with environmental degradation and must be driven by contemporary managerial acumen addressing environmental and social challenges effectively The paper highlights the emissions of greenhouse gases due to burning of fossil fuels and environmental consequences of global warming and sea-level rise. Technological solutions for environment friendly coal mining and environmental laws for the abatement of environmental degradation are discussed in this paper.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The project objective is to demonstrate removal of 90--95% or more of the SO{sub 2} at approximately one-half the cost of conventional scrubbing technology; and to demonstrate significant reduction of space requirements. In this project, Pure Air has built a single SO{sub 2} absorber for a 528-MWe power plant. The absorber performs three functions in a single vessel: prequencher, absorber, and oxidation of sludge to gypsum. Additionally, the absorber is of a co- current design, in which the flue gas and scrubbing slurry move in the same direction and at a relatively high velocity compared to conventional scrubbers. These featuresmore » all combine to yield a state- of-the-art SO{sub 2} absorber that is more compact and less expensive than conventional scrubbers. The project incorporated a number of technical features including the injection of pulverized limestone directly into the absorber, a device called an air rotary sparger located within the base of the absorber, and a novel wastewater evaporation system. The air rotary sparger combines the functions of agitation and air distribution into one piece of equipment to facilitate the oxidation of calcium sulfite to gypsum. Additionally, wastewater treatment is being demonstrated to minimize water disposal problems inherent in many high-chloride coals. Bituminous coals primarily from the Indiana, Illinois coal basin containing 2--4.5% sulfur were tested during the demonstration. The Advanced Flue Gas Desulfurization (AFGD) process has demonstrated removal of 95% or more of the SO{sub 2} while providing a commercial gypsum by-product in lieu of solid waste. A portion of the commercial gypsum is being agglomerated into a product known as PowerChip{reg_sign} gypsum which exhibits improved physical properties, easier flowability and more user friendly handling characteristics to enhance its transportation and marketability to gypsum end-users.« less

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Craig N. Eatough

    In order to produce steel (a necessary commodity in developed nations) using conventional technologies, you must have metallurgical coke. Current coke-making technology pyrolyzes high-quality coking coals in a slot oven, but prime coking coals are becoming more expensive and slot ovens are being shut-down because of age and environmental problems. The United States typically imports about 4 million tons of coke per year, but because of a world-wide coke scarcity, metallurgical coke costs have risen from about $77 per tonne to more than $225. This coke shortage is a long-term challenge driving up the price of steel and is forcingmore » steel makers to search for alternatives. Combustion Resources (CR) has developed a technology to produce metallurgical coke from alternative feedstocks in an environmentally clean manner. The purpose of the current project was to refine material and process requirements in order to achieve improved economic benefits and to expand upon prior work on the proposed technology through successful prototype testing of coke products. The ultimate objective of this project is commercialization of the proposed technology. During this project period, CR developed coke from over thirty different formulations that meet the strength and reactivity requirements for use as metallurgical coke. The technology has been termed CR Clean Coke because it utilizes waste materials as feedstocks and is produced in a continuous process where pollutant emissions can be significantly reduced compared to current practice. The proposed feed material and operating costs for a CR Clean Coke plant are significantly less than conventional coke plants. Even the capital costs for the proposed coke plant are about half that of current plants. The remaining barrier for CR Clean Coke to overcome prior to commercialization is full-scale testing in a blast furnace. These tests will require a significant quantity of product (tens of thousands of tons) necessitating the construction of a demonstration facility. Talks are currently underway with potential partners and investors to build a demonstration facility that will generate enough coke for meaningful blast furnace evaluation tests. If the testing is successful, CR Clean Coke could potentially eliminate the need for the United States to import any coke, effectively decreasing US Steel industry dependence on foreign nations and reducing the price of domestic steel.« less

  12. Coal Mining Technology, An Innovative Program.

    ERIC Educational Resources Information Center

    Wabash Valley Coll., Mt. Carmel, IL.

    Described in detail in this report are the processes and procedures involved in the development of a State funded curriculum and program for a new emerging technology, in this instance a Coal Mining Technology Program, to be taught at Wabash Valley College in Illinois. The document provides a step-by-step account of the determination of need,…

  13. Characterization of alternative electric generation technologies for the SPS comparative assessment. Volume 1: Summary of central station technologies

    NASA Astrophysics Data System (ADS)

    1980-08-01

    The technologies selected for the detailed characterization were: solar technology; terrestrial photovoltaic (200 MWe); coal technologies; conventional high sulfur coal combustion with advanced fine gas desulfurization (1250 MWe), and open cycle gas turbine combined cycle plant with low Btu gasifier (1250 MWe); and nuclear technologies: conventional light water reactor (1250 MWe), liquid metal fast breeder reactor (1250 MWe), and magnetic fusion reactor (1320 MWe). A brief technical summary of each power plant design is given.

  14. Coal-Powered Electric Generating Unit Efficiency and Reliability Dialogue: Summary Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, Emmanuel

    Coal continues to play a critical role in powering the Nation’s electricity generation, especially for baseload power plants. With aging coal generation assets facing decreased performance due to the state of the equipment, and with challenges exacerbated by the current market pressures on the coal sector, there are opportunities to advance early-stage technologies that can retrofit or replace equipment components. These changes will eventually result in significant improvements in plant performance once further developed and deployed by industry. Research and development in areas such as materials, fluid dynamics, fuel properties and preparation characteristics, and a new generation of plant controlsmore » can lead to new components and systems that can help improve the efficiency and reliability of coal-fired power plants significantly, allowing these assets to continue to provide baseload power. Coal stockpiles at electricity generation plants are typically large enough to provide 30 to 60 days of power prior to resupply—significantly enhancing the stability and reliability of the U.S. electricity sector. Falling prices for non-dispatchable renewable energy and mounting environmental regulations, among other factors, have stimulated efforts to improve the efficiency of these coal-fired electric generating units (EGUs). In addition, increased reliance on natural gas and non-dispatchable energy sources has spurred efforts to further increase the reliability of coal EGUs. The Coal Powered EGU Efficiency and Reliability Dialogue brought together stakeholders from across the coal EGU industry to discuss methods for improvement. Participants at the event reviewed performance-enhancing innovations in coal EGUs, discussed the potential for data-driven management practices to increase efficiency and reliability, investigated the impacts of regulatory compliance on coal EGU performance, and discussed upcoming challenges for the coal industry. This report documents the key findings and research suggestions discussed at the event. Discussions at the workshop will aid DOE in developing a set of distinct initiatives that can be pursued by government and industry to realize promising technological pursuits. DOE plans to use the results of the Dialogue coupled with ongoing technical analysis of efficiency opportunities within the coal-fired fleet, and additional studies to develop a comprehensive strategy for capitalizing on thermal efficiency improvements. Expected Power Plant Efficiency Improvements include developing cost-effective, efficient, and reliable technologies for boilers, turbines, and sensors and controls to improve the reliability and efficiency of existing coal-based power plants. The Office of Fossil Energy at DOE plans to work with industry to develop knowledge pertaining to advanced technologies and systems that industry can subsequently develop. These technologies and systems will increase reliability, add operational flexibility and improve efficiency, thereby providing more robust power generation infrastructure. The following table lists the research suggestions and questions for further investigation that were identified by participants in each session of the dialogue.« less

  15. Research on the competitiveness and development strategy of china's modern coal chemical industry

    NASA Astrophysics Data System (ADS)

    Wang, Q.; Han, Y. J.; Yu, Z. F.

    2016-08-01

    China's modern coal chemical industry has grown into a certain scale after over a decade of development, and remarkable progress has been made in key technologies. But as oil price collapsed since 2015, the economic benefit of the industry also slumped, with loud controversies in China over the necessity of modern coal chemical industry. The research believes that the modern coal chemical industry plays a positive role in the clean and sustainable exploitation of coal in China. It makes profit when oil price is no lower than 60/bbl, and outperforms petrochemical in terms of cost effectiveness when the price is between 60/bbl and 80/bbl. Given the low oil price and challenges posed by environmental protection and water restraints, we suggest that the state announce a guideline quickly, with adjusted tax policies and an encouragement to technological innovation, so that the modern coal chemical industry in China can grow sound and stable.

  16. Superacid Catalyzed Coal Conversion Chemistry. Final Technical Report, September 1, 1983-September 1, 1986

    DOE R&D Accomplishments Database

    Olah, G. A.

    1986-01-01

    This research project involved the study of a raw comparatively mild coal conversion process. The goal of the project was to study model systems to understand the basic chemistry involved and to provide a possible effective pretreatment of coal which significantly improves liquefaction-depolymerization under mild conditions. The conversion process operates at relatively low temperatures (170 degrees C) and pressures and uses an easily recyclable, stable superacid catalysts (HF-BF{sub 3}). It consequently offers an attractive alternative to currently available processes. From the present studies it appears that the modification of coal structure by electrophilic alkylation and subsequent reaction of alkylated coal with HF-BF{sub 3}-H{sub 2} system under mild conditions considerably improves the extractability of coal in pyridine and cyclohexane. On the other hand, nitration of coal and its subsequent reaction with HF-BF{sub 3}H{sub 2} decreases the pyridine and cyclohexane extractability. Study of model compounds under conditions identical with the superacidic HF/BF{sub 3}/H{sub 2} system provided significant information about the basic chemistry of the involved cleavage-hydrogenation reactions.

  17. Review of Facility Technology Options and their Development Status

    DTIC Science & Technology

    1989-06-01

    added to these commercial technologies, such as flue gas desulfurization and low-NO x burners. " New coal-fired power technologies, such as AFBC, CFBC...Issues When compared to conventional technologies with pollution control equipment (such as pulverized coal/ flue gas desulfurization ), AFBC/CFBC systems...performance trade- offs exist. Since less energy is available in the flue gas as a result of heating water, less refrigerant vapor will be

  18. Spin-mapping of Coal Structures with ESE and ENDOR

    DOE R&D Accomplishments Database

    Belford, R. L.; Clarkson, R. B.

    1989-12-01

    The broad goals of this project are to determine by nondestructive magnetic resonance methods chemical and physical structural characteristics of organic parts of native and treated coals. In this project period, we have begun to explore a technique which promises to enable us to follow to course of coal cleaning processes with microscopic spatial resolution. For the past five years, our laboratory has worked on extensions of the EPR technique as applied to coal to address these analytical problems. In this report we (1) describe the world's first nuclear magnetic resonance imaging results from an Illinois {number sign}6 coal and (2) transmit a manuscript describing how organic sulfur affect the very-high-frequency EPR spectra of coals. Magnetic resonance imaging (MRI) is a non-destructive technique that has found wide medical application as a means of visualizing the interior of human bodies. We have used MRI techniques to study the diffusion of an organic solvent (DMSO) into the pores of Illinois {number sign}6 coal. Proton MRI images reveal that this solvent at room temperature does not penetrate approximately 30% of the coal volume. Regions of the coal that exclude solvent could be related to inertinite and mineral components. A multi-technique imaging program is contemplated.

  19. Coal + Biomass → Liquids + Electricity (with CCS)

    EPA Science Inventory

    In this presentation, Matt Aitken applies the MARKet ALlocation energy system model to evaluate the market potential for a class of technologies that convert coal and biomass to liquid fuels and electricity (CBtLE), paired with carbon capture and storage (CCS). The technology is ...

  20. National Environmental Policy: Coordination or Confusion?

    ERIC Educational Resources Information Center

    Adams, Sexton; And Others

    1976-01-01

    The Fossil Energy Program is attempting to develop and demonstrate, in conjunction with industry, the technology necessary for establishing a synthetic fuels-from coal industry. Technologies discussed include coal liquefaction, high and low BTU gasification, advanced power systems, direct combustion, Magnetohydrodynamics (MHD) and petroleum,…

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    O`Leary, H.R.

    The author first gives a tribute to clean coal pioneers and partnerships from a historical perspective. She then discusses the environmental advantages of clean coal technologies, the success of CCT because industry picked the technologies, not government mandate, Congress`s commitment to results, future possibilities, and the power of partnerships.

  2. The Mehrum Coalfire Test Field (MCTF)

    NASA Astrophysics Data System (ADS)

    Halisch, M.; Wuttke, M. W.; Hesse, Ph.; Han, J.; Kessels, W.

    2009-04-01

    Spontaneous self ignition of coal causes an immense emission of climate relevant gases and affects regional groundwater conditions in such a large scale, that it could not be even rough estimated. This problem occurs all over the world where coal is mined, stored or processed. Keeping these things and also global warming problems in mind, the extinction of such fires becomes a significant task for future climate and environmental protection. In the big arid coal mining belt of the northwest PR China the necessity of environmental as well as resource protection is now realized, leading to increased fire fighting activities. Mostly, the burning coal is partially removed, the surface is insufficiently sealed from oxygen and fire-zones are cooled with valuable fresh water. Such cooling of fire centers is often not sustainable because oxygen rich air may keep on penetrating through the soil surface and reach the cooled down coal which subsequently starts to burn again. Within the Sino-German project "Innovative Technologies for Exploration, Extinction and Monitoring of Coal Fires in North China" numerical models are developed to simulate the propagation of underground coal fires in realistic scenarios. These models will be adapted to new data from lab and field experiments including multiphase transport and phase transition processes. The Mehrum test site is used to set up a small scale in situ coal fire experiment in order to validate and verify the codes as well as to better understand the coal fire genesis. The experiment will be carried out under usage of two coal heaps with a total volume of about 1 m3. At the bottom, a layer of hydraulic conductive coarse gravel has been built in. Within this layer, a special ventilation system for air supplying has been embedded. The exact amount of led in air is measured by high resolution flow rate devices. The coal lies directly above the coarse gravel layer. The heating source is located in the lower forth of the coal layer. Positions of other sensors (temperature sensors, electrodes for geoelectrical measurements, gas probing tubes) are based on first numerical results. The coverage consists of a 10 cm to 15 cm strong layer of sand (middle to fine sand). Extinction of the fire by application of water with additives (e. g. salt) and its implication for the underground convection can finally be tested with these installations.

  3. Sensor for Individual Burner Control of Coal Firing Rate, Fuel-Air Ratio and Coal Fineness Correlation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    R. Demler

    2006-04-01

    Accurate, cost-efficient monitoring instrumentation has long been considered essential to the operation of power plants. Nonetheless, for the monitoring of coal flow, such instrumentation has been sorely lacking and technically difficult to achieve. With more than half of the electrical power in the United States currently supplied by coal, energy generated by this resource is critical to the US economy. The demand for improvement in this area has only increased as a result of the following two situations: First, deregulation has produced a heightened demand for both reduced electrical cost and improved grid connectivity. Second, environmental concerns have simultaneously resultedmore » in a need for both increased efficiency and reduced carbon and NOx emissions. A potential approach to addressing both these needs would be improvement in the area of combustion control. This would result in a better heat rate, reduced unburned carbon in ash, and reduced NOx emissions. However, before feedback control can be implemented, the ability to monitor coal flow to the burners in real-time must be established. While there are several ''commercially available'' products for real-time coal flow measurement, power plant personnel are highly skeptical about the accuracy and longevity of these systems in their current state of development. In fact, following several demonstration projects of in-situ coal flow measurement systems in full scale utility boilers, it became obvious that there were still many unknown influences on these instruments during field applications. Due to the operational environment of the power plant, it has been difficult if not impossible to sort out what parameters could be influencing the various probe technologies. Additionally, it has been recognized for some time that little is known regarding the performance of coal flow splitters, even where rifflers are employed. Often the coal flow distribution from these splitters remains mal-distributed. There have been mixed results in the field using variable orifices in coal pipes. Development of other coal flow control devices has been limited. An underlying difficulty that, to date, has hindered the development of an accurate instrument for coal flow measurements is the fact that coal flow is characterized by irregular temporal and spatial variation. However, despite the inherent complexity of the dynamic system, the system is in fact deterministic. Therefore, in principle, the coal flow can be deduced from the dynamics it exhibits. Nonetheless, the interactions are highly nonlinear, rendering standard signal processing approaches, which rely on techniques such as frequency decomposition, to be of little value. Foster-Miller, Inc. has developed a methodology that relates the complex variation in such systems to the information of interest. This technology will be described in detail in Section 2. A second concern regarding the current measurement systems is installation, which can be labor-intensive and cost-prohibitive. A process that does not require the pulverizer to be taken off line would be highly desirable. Most microwave and electrostatic methods require drilling up to 20 holes in the pipe, all with a high degree of precision so as to produce a proper alignment of the probes. At least one electrostatic method requires a special spool piece to be fitted into each existing coal pipe. Overall, these procedures are both difficult and very expensive. An alternative approach is pursued here, namely the development of an instrument that relies on an acoustic signal captured by way of a commercial accelerometer. The installation of this type of sensor is both simpler and less invasive than other techniques. An accelerometer installed in a pipe wall need not penetrate through the wall, which means that the system may be able to remain on line during the installation. Further, due to the fact that the Dynamical Instruments technology, unlike other systems, does not rely on uniformity of the air or coal profile, the installation location need not be on a long, straight run of pipe. In fact, an optimal signal is obtained near a pipe elbow. This is fortuitous, as bends are often more accessible on pipes in a power plant than straight sections. In contrast to measurement systems that rely on the uniformity of the air and coal profile, the accuracy of the system under development will not compromised by varying levels of flow uniformity.« less

  4. Coal availability in the Hilight Quadrangle, Powder River Basin, Wyoming; a prototype study in a western coal field

    USGS Publications Warehouse

    Molnia, Carol L.; Biewick, Laura; Blake, Dorsey; Tewalt, Susan J.; Carter, M. Devereaux; Gaskill, Charlie

    1997-01-01

    The U.S. Geological Survey (USGS), in cooperation with the Bureau of Land Management (BLM), Geological Survey of Wyoming, and U.S. Bureau of Mines (USBM), has produced an estimate of the amount of available coal in an area about 35 miles south of Gillette, Wyo., where the Wyodak coal bed is, in places, more than 100 ft thick. Available coal is the quantity of the total coal resource that is accessible for mine development under current regulatory, land-use, and technologic constraints. This first western coal availability study, of the Hilight 7 1/2-minute quadrangle, indicates that approximately 60 percent (2.7 billion short tons) of the total 4.4 billion tons of coal in-place in the quadrangle is available for development. (There has been no commercial mining in the Hilight quadrangle.) Approximately 67 percent (1.9 billion tons) of the Main Wyodak coal bed is considered available. All tonnage measurements in this report are given in short tons. Coal-development considerations in the quadrangle include dwellings, railroads, pipelines, power lines, wildlife habitat (eagles), alluvial valley floors, cemeteries, and the Hilight oil and gas field and gas plant. Some of these considerations could be mitigated so that surface mining of the coal may proceed; others could not be mitigated and would preclude mining in their vicinity. Other technological constraints that influence the availability of the coal include overburden thickness, coal beds too thin, and areas of clinker.

  5. Regulation of coal polymer degradation by fungi. Eighth quarterly report, [April--June 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Irvine, R.L.; Bumpus, J.A.

    1996-07-28

    This project addresses the solubilization of low-rank coal (leonardite) by lignin degrading fungi. During this reporting period efforts were focused on determining the effect of pH on coal solubilization by oxalate ion and other biologically important compounds that might function as metal chelators, on the role of laccase in coal solubilization and metabolism, on decolorization of soluble coal macromolecule by Phanerochaete chrysosporium and T. versicolor in solid agar media, and on solubilization of coal in slurry cultures and solid phase reactors.

  6. Status of NO sub x control for coal-fired power plants

    NASA Technical Reports Server (NTRS)

    Teixeira, D. P.

    1978-01-01

    The status of technologies for controlling emissions of oxides of nitrogen (NOx) from coal-fired power plants is reviewed. A discussion of current technology as well as future NOx control approaches is presented. Advanced combustion approaches are included as well as post-combustion alternatives such as catalytic and noncatalytic ammonia-bases systems and wet scrubbing. Special emphasis is given to unresolved development issues as they relate to practical applications on coal-fired power plants.

  7. RESEARCH TO IDENTIFY COMPONENTS OF ENERGY-RELATED WASTES: A STATE-OF-THE-ART REPORT

    EPA Science Inventory

    Pertinent abstracts from a survey of current (post-1976) research projects are categorized according to energy-related activity. Subjects include coal strip mines, oil refineries, oil shale operations, coal-fired power plants, geothermal energy production, coal liquefaction plant...

  8. JPRS Report, Science & Technology China: Energy

    DTIC Science & Technology

    1992-10-26

    The Xiaolongtan power plant is located at the Xiaolongtan open-cut coal mine and uses its coal directly from the conveyer belt. The first...which has resulted in high coal consumption, large power use by the plants, and low full-staff labor productivity and economic results. Examine coal ...consuming an additional 70 million tons-plus of raw coal . Examine the power used at power plants. The efficiency of the blowers, water pumps,

  9. Psycho-social aspects of productivity in underground coal mining

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akin, G.

    1981-10-01

    The psychosocial aspects of productivity in underground coal mining were investigated. The following topics were studied: (1) labor productivity in deep mines and the explanations for productivity changes; (2) current concepts and research on psychosocial factors in productivity; (3) a survey of experiments in productivity improvement (4) the impact of the introduction of new technology on the social system and the way that it accomplishes production (5) a clinical study of a coal mining operation, model described how production is actually accomplished by workers at the coal face; and (6) implications and recommendations for new technology design, implementation and ongoingmore » management.« less

  10. Training of Engineering Personnel for the Innovative Coal Industry: Problems and Ways of Solution

    NASA Astrophysics Data System (ADS)

    Zaruba, Natalya; Fraltsova, Tamara; Snegireva, Tatyana

    2017-11-01

    The article is written based on some results of the long-term scientific research of the problem related to the urgent need to find the ways of training personnel for the innovative coal industry in the higher education system. This is due to the fundamental changes in the Russian social and economic conditions: the change in the social system and the owner of the coal industry, the emergence of new technologies in the field of coal mining and processing, and in the management of these processes. At the same time, the system of training specialists for the coal industry in the higher education institutions has largely remained unchanged: technologies and principles of training, scientific approaches and concepts take little account of the changed situation, traditional views of specialists work-ing in the university continue to dominate innovative ideas. Many innovations, especially related to technology and the principles of education, struggle to make their way into the higher education system. The article substantiates the urgency of the problem of training personnel for the innovative coal industry in the higher education system, as well as the importance of scientific analysis of the problem in order to find the ways to solve it.

  11. Low/medium-Btu coal-gasification feasibility study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1980-11-01

    This study examines the feasibility of applying the concepts of Coal Gasification and Combined Cycle Technology to the re-powering of existing steam turbine-electric generating facilities. The primary objectives of this study include: (1) the determination of the feasibility of designing a technically sound system embodying this technology; (2) the determination of the potential for displacing foreign oil by the project; (3) the identificaton of any constraints and/or barriers that might impede the accomplishment of such a project; and (4) the evaluation of the potential benefits of such a system. Although the system is designed around the use of commercially available,more » state-of-the-art components and equipment, a completely integrated, electric generating plant, such as is being proposed here, has not yet been demonstrated. However, the designs developed as part of this study combine these components, utilizing well developed and technically sound concepts in such a way as to provide a reasonable degree of confidence in the workability of the total system. This study offers the potential for reducing oil dependency; the possibility of improving cycle efficiency and extending the useful life of existing facilities; the feasibility of re-vitalizing a facility located within a major load center; and presents some attractive possibilities for a co-generation, district heating application in the central portions of Bridgeport. Although the results of the study produce a number of clear conclusions, they also stimulate additional questions, the resolution of which would require further study and more detailed design. The final resolution of these questions that still remain may have a significant effect on the final conclusions concerning the viability of this project, and it is for this reason that further study is required.« less

  12. ESTIMATION OF NEAR SUBSURFACE COAL FIRE GAS EMISSIONS BASED ON GEOPHYSICAL INVESTIGATIONS

    NASA Astrophysics Data System (ADS)

    Chen-Brauchler, D.; Meyer, U.; Schlömer, S.; Kus, J.; Gundelach, V.; Wuttke, M.; Fischer, C.; Rueter, H.

    2009-12-01

    Spontaneous and industrially caused subsurface coal fires are worldwide disasters that destroy coal resources, cause air pollution and emit a large amount of green house gases. Especially in developing countries, such as China, India and Malaysia, this problem has intensified over the last 15 years. In China alone, 10 to 20 million tons of coal are believed to be lost in uncontrolled coal fires. The cooperation of developing countries and industrialized countries is needed to enforce internationally concerted approaches and political attention towards the problem. The Clean Development Mechanism (CDM) under the framework of the Kyoto Protocol may provide an international stage for financial investment needed to fight the disastrous situation. A Sino-German research project for coal fire exploration, monitoring and extinction applied several geophysical approaches in order to estimate the annual baseline especially of CO2 emissions from near subsurface coal fires. As a result of this project, we present verifiable methodologies that may be used in the CDM framework to estimate the amount of CO2 emissions from near subsurface coal fires. We developed three possibilities to approach the estimation based on (1) thermal energy release, (2) geological and geometrical determinations as well as (3) direct gas measurement. The studies involve the investigation of the physical property changes of the coal seam and bedrock during different burning stages of a underground coal fire. Various geophysical monitoring methods were applied from near surface to determine the coal volume, fire propagation, temperature anomalies, etc.

  13. COST OF SELECTIVE CATALYTIC REDUCTION (SCR) APPLICATION FOR NOX CONTROL ON COAL-FIRED BOILERS

    EPA Science Inventory

    The report provides a methodology for estimating budgetary costs associated with retrofit applications of selective catalytic reduction (SCR) technology on coal-fired boilers. SCR is a postcombustion nitrogen oxides (NOx) control technology capable of providing NOx reductions >90...

  14. TECHNOECONOMIC APPRAISAL OF INTEGRATED GASIFICATION COMBINED-CYCLE POWER GENERATION

    EPA Science Inventory

    The report is a technoeconomic appraisal of the integrated (coal) gasification combined-cycle (IGCC) system. lthough not yet a proven commercial technology, IGCC is a future competitive technology to current pulverized-coal boilers equipped with SO2 and NOx controls, because of i...

  15. EPA Research Highlights: Minimizing SO3 Emissions from Coal-Fired Power Plants

    EPA Science Inventory

    There have been substantial reductions in emissions of particulate matter, nitrogen oxides, and sulfur dioxide through the application of control technologies and strategies. The installation of control technologies has added to the complexity of coal-fired boilers and their ope...

  16. Trends in multi-pollutant emissions from a technology-linked inventory for India: II. Residential, agricultural and informal industry sectors

    NASA Astrophysics Data System (ADS)

    Pandey, Apoorva; Sadavarte, Pankaj; Rao, Anand B.; Venkataraman, Chandra

    2014-12-01

    Dispersed traditional combustion technologies, characterized by inefficient combustion and significant emissions, are widely used in residential cooking and "informal industries" including brick production, food and agricultural product processing operations like drying and cooking operations related to sugarcane juice, milk, food-grain, jute, silk, tea and coffee. In addition, seasonal agricultural residue burning in field is a discontinuous source of significant emissions. Here we estimate fuel consumption in these sectors and agricultural residue burned using detailed technology divisions and survey-based primary data for 2010 and projected between 1996 and 2015. In the residential sector, a decline in the fraction of solid biomass users for cooking from 79% in 1996 to 65% in 2010 was offset by a growing population, leading to a nearly constant population of solid biomass users, with a corresponding increase in the population of LPG users. Emissions from agriculture followed the growth in agricultural production and diesel use by tractors and pumps. Trends in emissions from the informal industries sector followed those in coal combustion in brick kilns. Residential biomass cooking stoves were the largest contributors to emissions of PM2.5, OC, CO, NMVOC and CH4. Highest emitting technologies of BC were residential kerosene wick lamps. Emissions of SO2 were largely from coal combustion in Bull's trench kilns and other brick manufacturing technologies. Diesel use in tractors was the major source of NOx emissions. Uncertainties in emission estimates were principally from highly uncertain emission factors, particularly for technologies in the informal industries.

  17. Influence of high-energy impact on the physical and technical characteristics of coal fuels

    NASA Astrophysics Data System (ADS)

    Mal'tsev, L. I.; Belogurova, T. P.; Kravchenko, I. V.

    2017-08-01

    Currently, in the world's large-scale coal-fired power industry, the combustion of pulverized coal is the most widely spread technology of combusting the coals. In recent years, the micropulverization technology for preparation and combustion of the coal has been developed in this field. As applied to the small-scale power industry, the method of combusting the coal in the form of a coal-water slurry has been explored for years. Fine coal powders are produced and used in the pulverized-coal gasification. Therefore, the coal preparation methods that involve high-dispersion disintegration of coals attract the greatest interest. The article deals with the problems of high-energy impact on the coal during the preparation of pulverized-coal fuels and coal-water slurries, in particular, during the milling of the coal in ball drum mills and the subsequent regrinding in disintegrators or the cavitation treatment of the coal-water slurries. The investigations were conducted using samples of anthracite and lignite from Belovskii open-pit mine (Kuznetsk Basin). It is shown that both the disintegration and the cavitation treatment are efficient methods for controlling the fuel characteristics. Both methods allow increasing the degree of dispersion of the coal. The content of the small-sized particles reground by cavitation considerably exceeds the similar figure obtained using the disintegrator. The specific surface area of the coal is increased by both cavitation and disintegration with the cavitation treatment producing a considerably greater effect. Being subjected to the cavitation treatment, most coal particles assume the form of a split characterized by the thermodynamically nonequilibrium state. Under external action, in particular, of temperature, the morphological structure of such pulverized materials changes faster and, consequently, the combustion of the treated coal should occur more efficiently. The obtained results are explained from the physical point of view.

  18. UNDERGROUNG PLACEMENT OF COAL PROCESSING WASTE AND COAL COMBUSTION BY-PRODUCTS BASED PASTE BACKFILL FOR ENHANCED MINING ECONOMICS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Y.P. Chugh; D. Biswas; D. Deb

    2002-06-01

    This project has successfully demonstrated that the extraction ratio in a room-and-pillar panel at an Illinois mine can be increased from the current value of approximately 56% to about 64%, with backfilling done from the surface upon completion of all mining activities. This was achieved without significant ground control problems due to the increased extraction ratio. The mined-out areas were backfilled from the surface with gob, coal combustion by-products (CCBs), and fine coal processing waste (FCPW)-based paste backfill containing 65%-70% solids to minimize short-term and long-term surface deformations risk. This concept has the potential to increase mine productivity, reduce miningmore » costs, manage large volumes of CCBs beneficially, and improve the miner's health, safety, and environment. Two injection holes were drilled over the demonstration panel to inject the paste backfill. Backfilling was started on August 11, 1999 through the first borehole. About 9,293 tons of paste backfill were injected through this borehole with a maximum flow distance of 300-ft underground. On September 27, 2000, backfilling operation was resumed through the second borehole with a mixture of F ash and FBC ash. A high-speed auger mixer (new technology) was used to mix solids with water. About 6,000 tons of paste backfill were injected underground through this hole. Underground backfilling using the ''Groutnet'' flow model was simulated. Studies indicate that grout flow over 300-foot distance is possible. Approximately 13,000 tons of grout may be pumped through a single hole. The effect of backfilling on the stability of the mine workings was analyzed using SIUPANEL.3D computer program and further verified using finite element analysis techniques. Stiffness of the backfill mix is most critical for enhancing the stability of mine workings. Mine openings do not have to be completely backfilled to enhance their stability. Backfill height of about 50% of the seam height is adequate to minimize surface deformations. Freeman United Coal Company performed engineering economic evaluation studies for commercialization. They found that the costs for underground management at the Crown III mine would be slightly higher than surface management at this time. The developed technologies have commercial potential but each site must be analyzed on its merit. The Company maintains significant interest in commercializing the technology.« less

  19. International energy outlook 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-05-01

    This International Energy Outlook presents historical data from 1970 to 1993 and EIA`s projections of energy consumption and carbon emissions through 2015 for 6 country groups. Prospects for individual fuels are discussed. Summary tables of the IEO96 world energy consumption, oil production, and carbon emissions projections are provided in Appendix A. The reference case projections of total foreign energy consumption and of natural gas, coal, and renewable energy were prepared using EIA`s World Energy Projection System (WEPS) model. Reference case projections of foreign oil production and consumption were prepared using the International Energy Module of the National Energy Modeling Systemmore » (NEMS). Nuclear consumption projections were derived from the International Nuclear Model, PC Version (PC-INM). Alternatively, nuclear capacity projections were developed using two methods: the lower reference case projections were based on analysts` knowledge of the nuclear programs in different countries; the upper reference case was generated by the World Integrated Nuclear Evaluation System (WINES)--a demand-driven model. In addition, the NEMS Coal Export Submodule (CES) was used to derive flows in international coal trade. As noted above, foreign projections of electricity demand are now projected as part of the WEPS. 64 figs., 62 tabs.« less

  20. COAL USE REPORT

    EPA Science Inventory

    The world's coal reserves have been estimated to be about one exagram accessible with current extraction technology. The energy content has been valued at 290 zettajourles. Using a value of 15 terawatt as the current global energy consumption, the coal supply could global needs f...

  1. MEASUREMENT OF MERCURY IN CHINESE UTILITY COAL

    EPA Science Inventory

    The paper gives results of analyzing representative samples of 20 Chinese utility coals for mercury content, and proximate, ultimate, and heating values. The data for these bituminous coals, obtained from China with the cooperation of the Chinese University of Mining Technology,...

  2. Addition to the Lewis Chemical Equilibrium Program to allow computation from coal composition data

    NASA Technical Reports Server (NTRS)

    Sevigny, R.

    1980-01-01

    Changes made to the Coal Gasification Project are reported. The program was developed by equilibrium combustion in rocket engines. It can be applied directly to the entrained flow coal gasification process. The particular problem addressed is the reduction of the coal data into a form suitable to the program, since the manual process is involved and error prone. A similar problem in relating the normal output of the program to parameters meaningful to the coal gasification process is also addressed.

  3. Coal-Based Fuel-Cell Powerplants

    NASA Technical Reports Server (NTRS)

    Ferral, J. F.; Pappano, A. W.; Jennings, C. N.

    1986-01-01

    Report assesses advanced technologyy design alternatives for integrated coal-gasifier/fuel-cell powerplants. Various gasifier, cleanup, and fuelcell options evaluated. Evaluation includes adjustments to assumed performances and costs of proposed technologies where required. Analysis identifies uncertainties remaining in designs and most promising alternatives and research and development required to develop these technologies. Bulk of report summary and detailed analysis of six major conceptual designs and variations of each. All designs for plant that uses Illinois No. 6 coal and produces 675 MW of net power.

  4. A moving baseline for evaluation of advanced coal extraction systems

    NASA Technical Reports Server (NTRS)

    Bickerton, C. R.; Westerfield, M. D.

    1981-01-01

    Results from the initial effort to establish baseline economic performance comparators for a program whose intent is to define, develop, and demonstrate advanced systems suitable for coal resource extraction beyond the year 2000 are reported. Systems used were selected from contemporary coal mining technology and from conservation conjectures of year 2000 technology. The analysis was also based on a seam thickness of 6 ft. Therefore, the results are specific to the study systems and the selected seam extended to other seam thicknesses.

  5. DEMONSTRATION OF SORBENT INJECTION TECHNOLOGY ON A TANGENTIALLY COAL-FIRED UTILITY BOILER (YORKTOWN LIMB DEMONSTRATION)

    EPA Science Inventory

    The report summarizes activities conducted and results achieved in an EPA-sponsored program to demonstrate Limestone Injection Multistage Burner (LIMB) technology on a tangentially fired coal-burning utility boiler, Virginia Power's 180-MWe Yorktown Unit No. 2. his successfully d...

  6. Energy Options: Challenge for the Future

    ERIC Educational Resources Information Center

    Hammond, Allen L.

    1972-01-01

    Summarizes alternative technological possibilities for ensuring a supply of energy for the United States, including nuclear technology, solar energy, shale oil and coal gassification, low pollutant techniques for burning coal, and a fuel cell suitable for commercial use. Reports the extent of existing research and development efforts. (AL)

  7. COST OF SELECTIVE CATALYTIC REDUCTION (SCR) APPLICATION FOR NOX CONTROL ON COAL-FIRED BOILERS

    EPA Science Inventory

    The report provides a methodology for estimating budgetary costs associ-ated with retrofit applications of selec-tive catalytic reduction (SCR) technology on coal-fired boilers. SCR is a post-combustion nitrogen oxides (NOX) con-trol technology capable of providing NOX reductions...

  8. Texas Clean Energy Project: Topical Report, Phase 1 - February 2010-December 2012

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mattes, Karl

    2012-11-01

    Summit Texas Clean Energy, LLC (STCE) is developing the Texas Clean Energy Project (TCEP or the project) to be located near Penwell, Texas. The TCEP will include an Integrated Gasification Combined Cycle (IGCC) plant with a nameplate capacity of 400 megawatts electric (MWe), combined with the production of urea fertilizer and the capture, utilization and storage of carbon dioxide (CO 2) sold commercially for regional use in enhanced oil recovery (EOR) in the Permian Basin of west Texas. The TCEP will utilize coal gasification technology to convert Powder River Basin subbituminous coal delivered by rail from Wyoming into a syntheticmore » gas (syngas) which will be cleaned and further treated so that at least 90 percent of the overall carbon entering the facility will be captured. The clean syngas will then be divided into two high-hydrogen (H 2) concentration streams, one of which will be combusted as a fuel in a combined cycle power block for power generation and the other converted into urea fertilizer for commercial sale. The captured CO 2 will be divided into two streams: one will be used in producing the urea fertilizer and the other will be compressed for transport by pipeline for offsite use in EOR and permanent underground sequestration. The TCEP was selected by the U.S. Department of Energy (DOE) Office of Fossil Energy (FE) for cost-shared co-funded financial assistance under Round 3 of its Clean Coal Power Initiative (CCPI). A portion of this financial assistance was budgeted and provided for initial development, permitting and design activities. STCE and the DOE executed a Cooperative Agreement dated January 29, 2010, which defined the objectives of the project for all phases. During Phase 1, STCE conducted and completed all objectives defined in the initial development, permitting and design portions of the Cooperative Agreement. This topical report summarizes all work associated with the project objectives, and additional work required to complete the financing of the project. In general, STCE completed project definition, a front-end, engineering and design study (FEED), applied for and received its Record of Decision (ROD) associated with the NEPA requirements summarized in a detailed Environmental Impact Statement. A topical report covering the results of the FEED is the subject of a separate report submitted to the DOE on January 26, 2012. References to the FEED report are contained herein. In December 2011, STCE executed fixed-price turnkey EPC contracts and a long-term O&M agreement with industry-leading contractors.. Other work completed during Phase 1 includes execution of all major commercial input and offtake agreements. STCE negotiated long-term agreements for power, CO 2 and urea offtake. A contract for the purchase of coal feedstock from Cloud Peak Energy’s Cordero Rojo mine was executed, as well as a memorandum of understanding with the Union Pacific Railroad (UPRR) for delivery of the coal to the TCEP site. An MOU for natural gas supply was completed with ONEOK, and a long-term water supply agreement was completed with a private landowner. In addition, STCE secured options for easements and rights-of-way, completed a transmission study, executed an interconnection agreement and devoted substantial effort to debt and conventional and tax equity structuring to position the Project for project financing, currently scheduled for closing on December 31, 2012.« less

  9. The environmental impact of future coal production and use in the EEC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1983-01-01

    The aims of this study are to assess the expected increased levels of coal consumption in the European Community up to the year 2000; to estimate to what extent consumer demand is likely to be met by EEC production; to determine the level of polluting emissions which are likely to derive from changes in coal consumption and production; and finally, to compare the environmental impact of alternative, existing or developing means of coal utilisation. Contents: Conclusions; Future coal supply and demand in the EEC; Environmental consequences of coal production and use; Coal extraction; Transport and storage; Coal combustion: air pollution;more » Coal combustion: water pollution; Pollution from solid wastes; Coal conversion process; Environmental control technology; Bibliography.« less

  10. National Coal Utilization Assessment. a preliminary assessment of the health and environmental effects of coal utilization in the Midwest. Volume I. Energy scenarios, technology characterizations, air and water resource impacts, and health effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1977-01-01

    This report presents an initial evaluation of the major health and environmental issues associated with increased coal use in the six midwestern states of Illinois, Indiana, Michigan, Minnesota, Ohio, and Wisconsin. Using an integrated assessment approach, the evaluation proceeds from a base-line scenario of energy demand and facility siting for 1975-2020. Emphasis is placed on impacts from coal extraction, land reclamation, coal combustion for electrical generation, and coal gasification. The range of potential impacts and constraints is illustrated by a second scenario that represents an expected upper limit for coal utilization in Illinois. The following are among the more significantmore » issues identified and evaluated in this study: If environmental and related issues can be resolved, coal will continue to be a major source of energy for the Midwest; existing sulfur emission constraints will increase use of western coal; the resource requirements and environmental impacts of coal utilization will require major significant environmental and economic tradeoffs in site selection; short-term (24-hr) ambient standards for sulfur dioxide will limit the sizes of coal facilities or require advanced control technologies; an impact on public health may result from long-range transport of airborne sulfur emissions from coal facilities in the Midwest; inadequately controlled effluents from coal gasification may cause violations of water-quality standards; the major ecological effects of coal extraction are from pre-mining and post-reclamation land use; and sulfur dioxide is the major potential contributor to effects on vegetation of atmospheric emissions from coal facilities.« less

  11. Technological developments in Japanese coke-making from 1950 to the 1980s -- Memories of an old researcher

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miyazu, Takashi

    1994-12-31

    The author will give a brief history of the technological developments in Japanese coke-making from 1950 to the 1980s. This period may be divided as follows: (a) The Mythological Age (1950--1960) when Japan imported US heavy coking coals such as Itmann, Keystone, etc. It was believed by coke plant engineers that good metallurgical coke could not be produced without such coals, because the blending of these coals with Japanese low rank high fluidity coals yielded unbelievably excellent coke. Their feeling for such US coals was so strong as to approach a kind of religious fervor. (b) The Groping Age (1960--1970)more » when Japan had a few means to research coke making, such as analytical data, Gieseler Plastometer and test coking ovens. Therefore, most of the studies were repeated ``trial and error``. (c) The Take-off Age (1970--1980s) when Japan introduced the very useful weapon for research into coal and coke -- ``Petrographic Studies``. It is no exaggeration to say that the application of petrographic studies was the most important factor in the technological developments of coke-making in Japan during this period. The blending design using many kinds of coal was able to achieve the minimization of the coke cost at that time, and it would have been impossible but for the studies.« less

  12. Emissions and temperature benefits: The role of wind power in China.

    PubMed

    Duan, Hongbo

    2017-01-01

    As a non-fossil technology, wind power has an enormous advantage over coal because of its role in climate change mitigation. Therefore, it is important to investigate how substituting wind power for coal-fired electricity will affect emission reductions, changes in radiative forcing and rising temperatures, particularly in the context of emission limits. We developed an integrated methodology that includes two parts: an energy-economy-environmental (3E) integrated model and an emission-temperature response model. The former is used to simulate the dynamic relationships between economic output, wind energy and greenhouse gas (GHG) emissions; the latter is used to evaluate changes in radiative forcing and warming. Under the present development projection, wind energy cannot serve as a major force in curbing emissions, even under the strictest space-restraining scenario. China's temperature contribution to global warming will be up to 21.76% if warming is limited to 2 degrees. With the wind-for-coal power substitution, the corresponding contribution to global radiative forcing increase and temperature rise will decrease by up to 10% and 6.57%, respectively. Substituting wind power for coal-fired electricity has positive effects on emission reductions and warming control. However, wind energy alone is insufficient for climate change mitigation. It forms an important component of the renewable energy portfolio used to combat global warming. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. REDUCTION OF COAL-BASED METAL EMISSIONS BY FURNACE SORBENT INJECTION

    EPA Science Inventory

    The ability of sorbent injection technology to reduce the potential for trace metal emissions from coal combustion was researched. Pilot scale tests of high-temperature furnace sorbent injection were accompanied by stack sampling for coal-based, metallic air toxics. Tested sorben...

  14. Royal Society, Discussion on New Coal Chemistry, London, England, May 21, 22, 1980, Proceedings

    NASA Astrophysics Data System (ADS)

    1981-03-01

    A discussion of new coal chemistry is presented. The chemical and physical structure of coal is examined in the first section, including structural studies of coal extracts, metal and metal complexes in coal and coal microporosity. The second section presents new advances in applied coal technology. The development of liquid fuels and chemicals from coal is given especial emphasis, with papers on the Sasol Synthol process, the Shell-Koppers gasification process, liquefaction and gasification in Germany, the Solvent Refined Coal process, the Exxon Donor Solvent liquefaction process and the Mobil Methanol-to-Gasoline process. Finally, some developments that will be part of the future of coal chemistry in the year 2000 are examined in the third section, including coal-based chemical complexes and the use of coal as an alternative source to oil for chemical feedstocks.

  15. Cogeneration Technology Alternatives Study (CTAS). Volume 1: Summary

    NASA Technical Reports Server (NTRS)

    Barna, G. J.; Burns, R. K.; Sagerman, G. D.

    1980-01-01

    Various advanced energy conversion systems that can use coal or coal-derived fuels for industrial cogeneration applications were compared to provide information needed by DOE to establish research and development funding priorities for advanced-technology systems that could significantly advance the use of coal or coal-derived fuels in industrial cogeneration. Steam turbines, diesel engines, open-cycle gas turbines, combined cycles, closed-cycle gas turbines, Stirling engines, phosphoric acid fuel cells, molten carbonate fuel cells, and thermionics were studied with technology advancements appropriate for the 1985-2000 time period. The various advanced systems were compared and evaluated for wide diversity of representative industrial plants on the basis of fuel energy savings, annual energy cost savings, emissions savings, and rate of return on investment as compared with purchasing electricity from a utility and providing process heat with an on-site boiler. Also included in the comparisons and evaluations are results extrapolated to the national level.

  16. Cogeneration Technology Alternatives Study (CTAS). Volume 2: Comparison and evaluation of results

    NASA Technical Reports Server (NTRS)

    1984-01-01

    CTAS compared and evaluated various advanced energy conversion systems that can use coal or coal-derived fuels for industrial cogeneration applications. The principal aim of the study was to provide information needed by DOE to establish research and development (R&D) funding priorities for advanced-technology systems that could significantly advance the use of coal or coal-derived fuels in industrial cogeneration. Steam turbines, diesel engines, open-cycle gas turbines, combined cycles, closed-cycle gas turbines, Stirling engines, phosphoric acid fuel cells, molten carbonate fuel cells, and thermionics were studied with technology advancements appropriate for the 1985-2000 time period. The various advanced systems were compared and evaluated for a wide diversity of representative industrial plants on the basis of fuel energy savings, annual energy cost savings, emissions savings, and rate of return on investment (ROI) as compared with purchasing electricity from a utility and providing process heat with an on-site boiler.

  17. Sensing underground coal gasification by ground penetrating radar

    NASA Astrophysics Data System (ADS)

    Kotyrba, Andrzej; Stańczyk, Krzysztof

    2017-12-01

    The paper describes the results of research on the applicability of the ground penetrating radar (GPR) method for remote sensing and monitoring of the underground coal gasification (UCG) processes. The gasification of coal in a bed entails various technological problems and poses risks to the environment. Therefore, in parallel with research on coal gasification technologies, it is necessary to develop techniques for remote sensing of the process environment. One such technique may be the radar method, which allows imaging of regions of mass loss (voids, fissures) in coal during and after carrying out a gasification process in the bed. The paper describes two research experiments. The first one was carried out on a large-scale model constructed on the surface. It simulated a coal seam in natural geological conditions. A second experiment was performed in a shallow coal deposit maintained in a disused mine and kept accessible for research purposes. Tests performed in the laboratory and in situ conditions showed that the method provides valuable data for assessing and monitoring gasification surfaces in the UCG processes. The advantage of the GPR method is its high resolution and the possibility of determining the spatial shape of various zones and forms created in the coal by the gasification process.

  18. [The inclusion of health in environmental impact studies: case report of a coal-fired power plant in Ceará State].

    PubMed

    Rigotto, Raquel Maria

    2009-01-01

    The study discusses the inclusion of health in the evaluation of environmental impacts to allow actors potentially involved in decision-making to determine the need and technological and geographic adequacy of projects ahead of implementation. The point of departure was a request from the Public Attorney to the Federal University of Ceará to analyze the project of a coal-fired power plant to be built within the Port of Pecém Industrial Compound in Ceará State, Brazil. The methodology included a description of the social and historical context of the area, a bibliographical study of health and environmental impacts and dialogues with affected communities, followed by an analysis of state environmental guidelines for this type of enterprise. The results shows the main categories of analysis identified and proposed additions to current regulations intended to anticipate relations between production processes, the environment and an uneven distribution of health impacts. Besides, it also assesses the need to advance the development of the approach in order to subsidize and democratize decision-making processes closer to actual circumstances in the present and near future.

  19. PROTOTYPE SCALE TESTING OF LIMB TECHNOLOGY FOR A PULVERIZED-COAL-FIRED BOILER

    EPA Science Inventory

    The report summarizes results of an evaluation of furnace sorbent injection (FSI) to control sulfur dioxide (SO2) emissions from coal-fired utility boilers. (NOTE: FSI of calcium-based sorbents has shown promise as a moderate SO2 removal technology.) The Electric Power Research I...

  20. Comparative analyses for selected clean coal technologies in the international marketplace

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szpunar, C.B.; Gillette, J.L.

    1990-07-01

    Clean coal technologies (CCTs) are being demonstrated in research and development programs under public and private sponsorship. Many of these technologies could be marketed internationally. To explore the scope of these international opportunities and to match particular technologies with markets appearing to have high potential, a study was undertaken that focused on seven representative countries: Italy, Japan, Morocco, Turkey, Pakistan, the Peoples' Republic of China, and Poland. The results suggest that there are international markets for CCTs and that these technologies can be cost competitive with more conventional alternatives. The identified markets include construction of new plants and refurbishment ofmore » existing ones, especially when decision makers want to decrease dependence on imported oil. This report describes potential international market niches for U.S. CCTs and discusses the status and implications of ongoing CCT demonstration activities. Twelve technologies were selected as representative of technologies under development for use in new or refurbished industrial or electric utility applications. Included are the following: Two generic precombustion technologies: two-stage froth-flotation coal beneficiation and coal-water mixtures (CWMs); Four combustion technologies: slagging combustors, integrated-gasification combined-cycle (IGCC) systems, atmospheric fluidized-bed combustors (AFBCs), and pressurized fluidized-bed combustors (PFBCs); and Six postcombustion technologies: limestone-injection multistage burner (LIMB) systems, gas-reburning sorbent-injection (GRSI) systems, dual-alkali flue-gas desulfurization (FGD), spray-dryer FGD, the NOXSO process, and selective catalytic reduction (SCR) systems. Major chapters of this report have been processed separately for inclusion on the data base.« less

  1. Technology for the production of Zero Q.I pitch from coal tar

    NASA Astrophysics Data System (ADS)

    Karthik, K.; Kumar, K. Rajesh; Rao, C. V. Nageswara; Kumar, B. Vinod; Murty, J. V. S.

    2013-06-01

    Zero Quinoline Insolubles (Q.I) pitch is a special type of pitch obtained from pre-treatment of coal tar, which is converted into pitch. This is used for impregnation of electrodes for improving the strength, electrical properties and also used as a pre-cursor for Mesophase pitch for producing Mesophase pitch based carbon fibers, carbon foam, and Meso carbon micro beads. This paper discusses the technology of Q.I separation from Coal Tar by using decantation of Coal Tar mixed with Heavy Creosote Oil (HC Oil) at different temperatures. By this method we were able to produce the Zero Q.I pitch with a Q.I value of 0.1%.

  2. Environmental implications of United States coal exports: a comparative life cycle assessment of future power system scenarios.

    PubMed

    Bohnengel, Barrett; Patiño-Echeverri, Dalia; Bergerson, Joule

    2014-08-19

    Stricter emissions requirements on coal-fired power plants together with low natural gas prices have contributed to a recent decline in the use of coal for electricity generation in the United States. Faced with a shrinking domestic market, many coal companies are taking advantage of a growing coal export market. As a result, U.S. coal exports hit an all-time high in 2012, fueled largely by demand in Asia. This paper presents a comparative life cycle assessment of two scenarios: a baseline scenario in which coal continues to be burned domestically for power generation, and an export scenario in which coal is exported to Asia. For the coal export scenario we focus on the Morrow Pacific export project being planned in Oregon by Ambre Energy that would ship 8.8 million tons of Powder River Basin (PRB) coal annually to Asian markets via rail, river barge, and ocean vessel. Air emissions (SOx, NOx, PM10 and CO2e) results assuming that the exported coal is burned for electricity generation in South Korea are compared to those of a business as usual case in which Oregon and Washington's coal plants, Boardman and Centralia, are retrofitted to comply with EPA emissions standards and continue their coal consumption. Findings show that although the environmental impacts of shipping PRB coal to Asia are significant, the combination of superior energy efficiency among newer South Korean coal-fired power plants and lower emissions from U.S. replacement of coal with natural gas could lead to a greenhouse gas reduction of 21% in the case that imported PRB coal replaces other coal sources in this Asian country. If instead PRB coal were to replace natural gas or nuclear generation in South Korea, greenhouse gas emissions per unit of electricity generated would increase. Results are similar for other air emissions such as SOx, NOx and PM. This study provides a framework for comparing energy export scenarios and highlights the importance of complete life cycle assessment in determining net emissions effects resulting from energy export projects and related policy decisions.

  3. World Energy Resources and New Technologies

    NASA Astrophysics Data System (ADS)

    Szmyd, Janusz S.

    2016-01-01

    The development of civilisation is linked inextricably with growing demand for electricity. Thus, the still-rapid increase in the level of utilisation of natural resources, including fossil fuels, leaves it more and more urgent that conventional energy technologies and the potential of the renewable energy sources be made subject to re-evaluation. It is estimated that last 200 years have seen use made of more than 50% of the available natural resources. Equally, if economic forecasts prove accurate, for at least several more decades, oil, natural gas and coal will go on being the basic primary energy sources. The alternative solution represented by nuclear energy remains a cause of considerable public concern, while the potential for use to be made of renewable energy sources is seen to be very much dependent on local environmental conditions. For this reason, it is necessary to emphasise the impact of research that focuses on the further sharpening-up of energy efficiency, as well as actions aimed at increasing society's awareness of the relevant issues. The history of recent centuries has shown that rapid economic and social transformation followed on from the industrial and technological revolutions, which is to say revolutions made possible by the development of power-supply technologies. While the 19th century was "the age of steam" or of coal, and the 20th century the era of oil and gas, the question now concerns the name that will at some point come to be associated with the 21st century. In this paper, the subjects of discussion are primary energy consumption and energy resources, though three international projects on the global scale are also presented, i.e. ITER, Hydrates and DESERTEC. These projects demonstrate new scientific and technical possibilities, though it is unlikely that commercialisation would prove feasible before 2050. Research should thus be focused on raising energy efficiency. The development of high-efficiency technologies that reinforce energy security is presented, with it being assumed that these new high-efficiency technologies are capable of being applied globally in the near future.

  4. Philadelphia gas works medium-Btu coal gasification project: environmental assessment. [GKT supplied by Krupp-Koppers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1981-12-01

    The coal gasification plant will occupy a 43-acre site, known as the Riverside Site, located along the Delaware River next to Port Richmond between the Betsy Ross and Benjamin Franklin Bridges. The cleared site was previously used for industrial purposes and has a G-2 industrial zoning. Adverse impacts during the construction phase of the project are not expected to be significantly different than those occurring during any major industrial construction project. During operation of the coal gasification facility, specific mitigative measures have been designed into the facility to avoid adverse environmental impacts wherever possible. In addition to these extensive engineeringmore » safeguards, elaborate monitoring and control instrumentation shall be used. The GKT entrained bed, oxygen-blown gasification process provided by Krupp/Koppers was selected because it is a commercially proven system and because of its positive environmental characteristics such as its ability to gasify many coal types and the fact that it does not produce tars, phenols, or ammonia. During gasification of the coal, pollutants such as heavy metals in the coal are concentrated into the slag and ash. None of these pollutants are found in the product gas. The facility will produce 250 tpd of non-hazardous slag and fly ash. The combined slag and fly ash will occupy 347 cubic yards per day of landfill volume. Available haulers and landfills have been identified.A sophisticated health and safety program will include appropriate monitoring instruments for CO, H/sub 2/, H/sub 2/S, polynuclear aromatic hydrocarbons, organic compounds, and coal dust. Air emissions from operation of the coal gasification plant are not considered significant. Dust control systems have been designed into the facility to minimize fugitive dust emissions.« less

  5. FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George Rizeq; Janice West; Arnaldo Frydman

    It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the process efficiency and environmental impact performance of fossil fuel utilization. GE Global Research has developed an innovative fuel-flexible Unmixed Fuel Processor (UFP) technology to produce H{sub 2}, power, and sequestration-ready CO{sub 2} from coal and other solid fuels. The UFP module offers the potential for reduced cost, increased process efficiency relative to conventional gasification and combustion systems, and near-zero pollutant emissions including NO{sub x}. GE Global Research (prime contractor) wasmore » awarded a contract from U.S. DOE NETL to develop the UFP technology. Work on this Phase I program started on October 1, 2000. The project team includes GE Global Research, Southern Illinois University at Carbondale (SIU-C), California Energy Commission (CEC), and T. R. Miles, Technical Consultants, Inc. In the UFP technology, coal and air are simultaneously converted into separate streams of (1) high-purity hydrogen that can be utilized in fuel cells or turbines, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure vitiated air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on ASPEN Plus process modeling, has an estimated process efficiency of 6 percentage points higher than IGCC with conventional CO{sub 2} separation. The current R&D program will determine the feasibility of the integrated UFP technology through pilot-scale testing, and will investigate operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrates experimental testing, modeling and economic studies to demonstrate the UFP technology. This is the fourteenth quarterly technical progress report for the UFP program, which is supported by U.S. DOE NETL (Contract No. DE-FC26-00FT40974) and GE. This report summarizes program accomplishments for the period starting January 1, 2004 and ending March 31, 2004. The report includes an introduction summarizing the UFP technology, main program tasks, and program objectives; it also provides a summary of program activities and accomplishments covering progress in tasks including lab-scale experimental testing, pilot-scale shakedown and performance testing, program management and technology transfer.« less

  6. FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George Rizeq; Janice West; Arnaldo Frydman

    It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the process efficiency and environmental impact performance of fossil fuel utilization. GE Global Research has developed an innovative fuel-flexible Unmixed Fuel Processor (UFP) technology to produce H{sub 2}, power, and sequestration-ready CO{sub 2} from coal and other solid fuels. The UFP module offers the potential for reduced cost, increased process efficiency relative to conventional gasification and combustion systems, and near-zero pollutant emissions including NO{sub x}. GE Global Research (prime contractor) wasmore » awarded a contract from U.S. DOE NETL to develop the UFP technology. Work on this Phase I program started on October 1, 2000. The project team includes GE Global Research, Southern Illinois University at Carbondale (SIU-C), California Energy Commission (CEC), and T. R. Miles, Technical Consultants, Inc. In the UFP technology, coal and air are simultaneously converted into separate streams of (1) high-purity hydrogen that can be utilized in fuel cells or turbines, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure vitiated air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on ASPEN Plus process modeling, has an estimated process efficiency of 6% higher than IGCC with conventional CO{sub 2} separation. The current R&D program will determine the feasibility of the integrated UFP technology through pilot-scale testing, and will investigate operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrates experimental testing, modeling and economic studies to demonstrate the UFP technology. This is the thirteenth quarterly technical progress report for the UFP program, which is supported by U.S. DOE NETL under Contract No. DE-FC26-00FT40974. This report summarizes program accomplishments for the period starting October 1, 2003 and ending December 31, 2003. The report includes an introduction summarizing the UFP technology, main program tasks, and program objectives; it also provides a summary of program activities and accomplishments covering progress in tasks including lab-scale experimental testing, pilot-scale assembly, pilot-scale demonstration and program management and technology transfer.« less

  7. FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George Rizeq; Janice West; Arnaldo Frydman

    It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the process efficiency and environmental impact performance of fossil fuel utilization. GE Global Research has developed an innovative fuel-flexible Unmixed Fuel Processor (UFP) technology to produce H{sub 2}, power, and sequestration-ready CO{sub 2} from coal and other solid fuels. The UFP module offers the potential for reduced cost, increased process efficiency relative to conventional gasification and combustion systems, and near-zero pollutant emissions including NO{sub x}. GE Global Research (prime contractor) wasmore » awarded a contract from U.S. DOE NETL to develop the UFP technology. Work on this Phase I program started on October 1, 2000. The project team includes GE Global Research, Southern Illinois University at Carbondale (SIU-C), California Energy Commission (CEC), and T. R. Miles, Technical Consultants, Inc. In the UFP technology, coal and air are simultaneously converted into separate streams of (1) high-purity hydrogen that can be utilized in fuel cells or turbines, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure vitiated air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on ASPEN Plus process modeling, has an estimated process efficiency of 6 percentage points higher than IGCC with conventional CO{sub 2} separation. The current R&D program has determined the feasibility of the integrated UFP technology through pilot-scale testing, and investigated operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrated experimental testing, modeling and economic studies to demonstrate the UFP technology. This is the fifteenth quarterly technical progress report for the UFP program, which is supported by U.S. DOE NETL (Contract No. DE-FC26-00FT40974) and GE. This report summarizes program accomplishments for the period starting April 1, 2004 and ending June 30, 2004. The report includes an introduction summarizing the UFP technology, main program tasks, and program objectives; it also provides a summary of program activities and accomplishments covering progress in tasks including lab-scale experimental testing, pilot-scale testing, kinetic modeling, program management and technology transfer.« less

  8. The Evaluation of a Risk Degree for the Process of a Brown Coal Spontaneous Ignition on Dumps with Using of Modern Numeric Methods

    NASA Astrophysics Data System (ADS)

    Klouda, Petr; Moni, Vlastimil; Řehoř, Michal; Blata, Jan; Helebrant, František

    2018-06-01

    The article is a summary of information about evaluation of a risk degree for a brown coal spontaneous ignition which is realized on the base of a database analysis of information about the development of stative quantities and desorbated gases in the stored bodies of the brown coal. The data were gained from the long term complex measurements which were realized at chosen companies during the coal mining in the previous parts of the project. In the last part of the project, we examined results of temperature models from thermographs with results of gasses and coal samples from the mines. Then, the influence of atmospheric conditions (insolation, water downfall, changes of barometric pressure etc.), the influence of coal mass degradation, the influence of physical and chemical factors, and the influence of other defective factors on the process of the coal spontaneous ignition. The gasmetry was assess with gas in-situ samples and laboratory gas models of indicative gasses for the spontaneous ignition, which were taken from the method of the thermic oxidation with the aim of the correlation finding for an epicentre of temperature within the spontaneous ignition.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, M.J.

    The author outlines what he considers to be the key environmental issues affecting Clean Coal Technology (CCT) deployment both in the US and internationally. Since the international issues are difficult to characterize given different environmental drivers in various countries and regions, the primary focus of his remarks is on US deployment. However, he makes some general remarks, particularly regarding the environmental issues in developing vs. developed countries and how these issues may affect CCT deployment. Further, how environment affects deployment depends on which particular type of clean coal technology one is addressing. It is not the author`s intention to mentionmore » many specific technologies other than to use them for the purposes of example. He generally categorizes CCTs into four groups since environment is likely to affect deployment for each category somewhat differently. These four categories are: Precombustion technologies such as coal cleaning; Combustion technologies such as low NOx burners; Postcombustion technologies such as FGD systems and postcombustion NOx control; and New generation technologies such as gasification and fluidized bed combustion.« less

  10. Pilot-Scale Demonstration of Pefi's Oxygenated Transportation Fuels Production Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Coal-cleaning processes have been utilized to increase the heating value of coal by extracting ash-forming minerals in the coal. These processes involve the crushing or grinding of raw coal followed by physical separation processes, taking advantage of the density difference between carbonaceous particles and mineral particles. In addition to the desired increase in the heating value of coal, a significant reduction of the sulfur content of the coal fed to a combustion unit is effected by the removal of pyrite and other sulfides found in the mineral matter. WRI is assisting PulseWave to develop an alternate, more efficient method ofmore » liberating and separating the undesirable mineral matter from the carbonaceous matter in coal. The approach is based on PulseWave's patented resonance disintegration technology that reduces that particle size of materials by application of destructive resonance, shock waves, and vortex generating forces. Illinois No.5 coal, a Wyodak coal, and a Pittsburgh No.8 coal were processed using the resonance disintegration apparatus then subjected to conventional density separations. Initial microscopic results indicate that up to 90% of the pyrite could be liberated from the coal in the machine, but limitations in the density separations reduced overall effectiveness of contaminant removal. Approximately 30-80% of the pyritic sulfur and 30-50% of the mercury was removed from the coal. The three coals (both with and without the pyritic phase separated out) were tested in WRI's 250,000 Btu/hr Combustion Test Facility, designed to replicate a coal-fired utility boiler. The flue gases were characterized for elemental, particle bound, and total mercury in addition to sulfur. The results indicated that pre-combustion cleaning could reduce a large fraction of the mercury emissions.« less

  11. Preparation and combustion of Yugoslavian lignite-water fuel, Task 7.35. Topical report, July 1991--December 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, C.M.; DeWall, R.A.; Ljubicic, B.R.

    1994-03-01

    Yugoslavia`s interest in lignite-water fuel (LWF) stems from its involvement in an unusual power project at Kovin in northern Serbia. In the early 1980s, Electric Power of Serbia (EPS) proposed constructing a 600-MW power plant that would be fueled by lignite found in deposits along and under the Danube River. Trial underwater mining at Kovin proved that the dredging operation is feasible. The dredging method produces a coal slurry containing 85% to 90% water. Plans included draining the water from the coal, drying it, and then burning it in the pulverized coal plant. In looking for alternative ways to utilizemore » the ``wet coal`` in a more efficient and economical way, a consortium of Yugoslavian companies agreed to assess the conversion of dredged lignite into a LWF using hot-water-drying (HWD) technology. HWD is a high-temperature, nonevaporative drying technique carried out under high pressure in water that permanently alters the structure of low-rank coals. Changes effected by the drying process include irreversible removal of moisture, micropore sealing by tar, and enhancement of heating value by removal of oxygen, thus, enhancement of the slurry ability of the coal with water. Physical cleaning results indicated a 51 wt % reduction in ash content with a 76 wt % yield for the lignite. In addition, physical cleaning produced a cleaned slurry that had a higher attainable solids loading than a raw uncleaned coal slurry. Combustion studies were then performed on the raw and physically cleaned samples with the resulting indicating that both samples were very reactive, making them excellent candidates for HWD. Bench-scale results showed that HWD increased energy densities of the two raw lignite samples by approximately 63% and 81%. An order-of-magnitude cost estimate was conducted to evaluate the HWD and pipeline transport of Kovin LWF to domestic and export European markets. Results are described.« less

  12. Key Technologies and Applications of Gas Drainage in Underground Coal Mine

    NASA Astrophysics Data System (ADS)

    Zhou, Bo; Xue, Sheng; Cheng, Jiansheng; Li, Wenquan; Xiao, Jiaping

    2018-02-01

    It is the basis for the long-drilling directional drilling, precise control of the drilling trajectory and ensuring the effective extension of the drilling trajectory in the target layer. The technology can be used to complete the multi-branch hole construction and increase the effective extraction distance of the coal seam. The gas drainage and the bottom grouting reinforcement in the advanced area are realized, and the geological structure of the coal seam can be proved accurately. It is the main technical scheme for the efficient drainage of gas at home and abroad, and it is applied to the field of geological structure exploration and water exploration and other areas. At present, the data transmission method is relatively mature in the technology and application, including the mud pulse and the electromagnetic wave. Compared with the mud pulse transmission mode, the electromagnetic wave transmission mode has obvious potential in the data transmission rate and drilling fluid, and it is suitable for the coal mine. In this paper, the key technologies of the electromagnetic wave transmission mode are analyzed, including the attenuation characteristics of the electromagnetic transmission channel, the digital modulation scheme, the channel coding method and the weak signal processing technology. A coal mine under the electromagnetic wave drilling prototype is developed, and the ground transmission experiments and down hole transmission test are carried out. The main work includes the following aspects. First, the equivalent transmission line method is used to establish the electromagnetic transmission channel model of coal mine drilling while drilling, and the attenuation of the electromagnetic signal is measured when the electromagnetic channel measured. Second, the coal mine EM-MWD digital modulation method is developed. Third, the optimal linear block code which suitable for EM-MWD communication channel in coal mine is proposed. Fourth, the noise characteristics of well near horizontal directional drilling are analyzed, and the multi-stage filter method is proposed to suppress the natural potential and strong frequency interference signal. And the weak electromagnetic communication signal is extracted from the received signal. Finally, the detailed design of the electromagnetic wave while drilling is given.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Middleton, Richard S.; Levine, Jonathan S.; Bielicki, Jeffrey M.

    CO 2 capture, utilization, and storage (CCUS) technology has yet to be widely deployed at a commercial scale despite multiple high-profile demonstration projects. We suggest that developing a large-scale, visible, and financially viable CCUS network could potentially overcome many barriers to deployment and jumpstart commercial-scale CCUS. To date, substantial effort has focused on technology development to reduce the costs of CO 2 capture from coal-fired power plants. Here, we propose that near-term investment could focus on implementing CO 2 capture on facilities that produce high-value chemicals/products. These facilities can absorb the expected impact of the marginal increase in the costmore » of production on the price of their product, due to the addition of CO 2 capture, more than coal-fired power plants. A financially viable demonstration of a large-scale CCUS network requires offsetting the costs of CO 2 capture by using the CO 2 as an input to the production of market-viable products. As a result, we demonstrate this alternative development path with the example of an integrated CCUS system where CO 2 is captured from ethylene producers and used for enhanced oil recovery in the U.S. Gulf Coast region.« less

  14. Valuation of clean energy investments: The case of the Zero Emission Coal (ZEC) technology

    NASA Astrophysics Data System (ADS)

    Yeboah, Frank Ernest

    Today, coal-fired power plants produce about 55% of the electrical energy output in the U.S. Demand for electricity is expected to grow in future. Coal can and will continue to play a substantial role in the future global energy supply, despite its high emission of greenhouse gases (e.g. CO2 etc.) and low thermal energy conversion efficiency of about 37%. This is due to the fact that, it is inexpensive and global reserves are abundant. Furthermore, cost competitive and environmentally acceptable energy alternatives are lacking. New technologies could also make coal-fired plants more efficient and environmentally benign. One such technology is the Zero Emission Carbon (ZEC) power plant, which is currently being proposed by the ZECA Corporation. How much will such a technology cost? How competitive will it be in the electric energy market when used as a technology for mitigating CO2 emission? If there were regulatory mechanisms, such as carbon tax to regulate CO2 emission, what would be the minimum carbon tax that should be imposed? How will changes in energy policy affect the implementation of the ZEC technology? How will the cost of the ZEC technology be affected, if a switch from coal (high emission-intensive fuel) to natural gas (low emission-intensive fuel) were to be made? This work introduces a model that can be used to analyze and assess the economic value of a ZEC investment using valuation techniques employed in the electric energy industry such as revenue requirement (e.g. cost-of-service). The study concludes that the cost of service for ZEC technology will be about 95/MWh at the current baseline scenario of using fuel cell as the power generation system and coal as the primary fuel, and hence will not be competitive in the energy markets. For the technology to be competitive, fuel cell capital cost should be as low as 500/kW with a lifetime of 20 years or more, the cost of capital should be around 10%, and a carbon tax of 30/t of CO2 should be in place. Under these conditions, the cost of service would be 54/MWh and ZEC technology would become as competitive as the highly efficient combined-cycle gas-turbine technology.

  15. Hybrid Technology of Hard Coal Mining from Seams Located at Great Depths

    NASA Astrophysics Data System (ADS)

    Czaja, Piotr; Kamiński, Paweł; Klich, Jerzy; Tajduś, Antoni

    2014-10-01

    Learning to control fire changed the life of man considerably. Learning to convert the energy derived from combustion of coal or hydrocarbons into another type of energy, such as steam pressure or electricity, has put him on the path of scientific and technological revolution, stimulating dynamic development. Since the dawn of time, fossil fuels have been serving as the mankind's natural reservoir of energy in an increasingly great capacity. A completely incomprehensible refusal to use fossil fuels causes some local populations, who do not possess a comprehensive knowledge of the subject, to protest and even generate social conflicts as an expression of their dislike for the extraction of minerals. Our times are marked by the search for more efficient ways of utilizing fossil fuels by introducing non-conventional technologies of exploiting conventional energy sources. During apartheid, South Africa demonstrated that cheap coal can easily satisfy total demand for liquid and gaseous fuels. In consideration of current high prices of hydrocarbon media (oil and gas), gasification or liquefaction of coal seems to be the innovative technology convergent with contemporary expectations of both energy producers as well as environmentalists. Known mainly from literature reports, underground coal gasification technologies can be brought down to two basic methods: - shaftless method - drilling, in which the gasified seam is uncovered using boreholes drilled from the surface, - shaft method, in which the existing infrastructure of underground mines is used to uncover the seams. This paper presents a hybrid shaft-drilling approach to the acquisition of primary energy carriers (methane and syngas) from coal seams located at great depths. A major advantage of this method is the fact that the use of conventional coal mining technology requires the seams located at great depths to be placed on the off-balance sheet, while the hybrid method of underground gasification enables them to become a source of additional energy for the economy. It should be noted, however, that the shaft-drilling method cannot be considered as an alternative to conventional methods of coal extraction, but rather as a complementary and cheaper way of utilizing resources located almost beyond the technical capabilities of conventional extraction methods due to the associated natural hazards and high costs of combating them. This article presents a completely different approach to the issue of underground coal gasification. Repurposing of the already fully depreciated mining infrastructure for the gasification process may result in a large value added of synthesis gas production and very positive economic effect.

  16. Hubbert's Peak, The Coal Question, and Climate Change

    NASA Astrophysics Data System (ADS)

    Rutledge, D.

    2008-12-01

    The United Nations Intergovernmental Panel on Climate Change (IPCC) makes projections in terms of scenarios that include estimates of oil, gas, and coal production. These scenarios are defined in the Special Report on Emissions Scenarios or SRES (Nakicenovic et al., 2000). It is striking how different these scenarios are. For example, total oil production from 2005 to 2100 in the scenarios varies by 5:1 (Appendix SRES Version 1.1). Because production in some of the scenarios has not peaked by 2100, this ratio would be comparable to 10:1 if the years after 2100 were considered. The IPCC says "... the resultant 40 SRES scenarios together encompass the current range of uncertainties of future GHG [greenhouse gas] emissions arising from different characteristics of these models ..." (Nakicenovic et al., 2000, Summary for Policy Makers). This uncertainty is important for climate modeling, because it is larger than the likely range for the temperature sensitivity, which the IPCC gives as 2.3:1 (Gerard Meehl et al., 2007, the Fourth Assessment Report, Chapter 10, Global Climate Projections, p. 799). The uncertainty indicates that we could improve climate modeling if we could make a better estimate of future oil, gas, and coal production. We start by considering the two major fossil-fuel regions with substantial exhaustion, US oil and British coal. It turns out that simple normal and logistic curve fits to the cumulative production for these regions give quite stable projections for the ultimate production. By ultimate production, we mean total production, past and future. For US oil, the range for the fits for the ultimate is 1.15:1 (225- 258 billion barrels) for the period starting in 1956, when King Hubbert made his prediction of the peak year of US oil production. For UK coal, the range is 1.26:1 for the period starting in 1905, at the time of a Royal Commission on coal supplies. We extend this approach to find fits for world oil and gas production, and by a regional analysis, for world coal production. For world oil and gas production, the fit for the ultimate is 640Gtoe (billion metric tons of oil equivalent). This is somewhat larger than the sum of cumulative production and reserves, 580Gtoe. Because future discoveries are not included in the reserves, it is to be expected that our fit would be larger. On the other hand, there have been large increases in OPEC reserves that have not been subject to outside audit, so it is not clear how close the two numbers should be. For world coal, the sum of the fits for regional ultimate production is 660Gt (billion metric tons). This is considerably less than the sum of cumulative production and reserves, 1,100Gt, but it is consistent with the British experience, where until recently, reserves were a large multiple of future production. The projection is that we will have consumed half of the ultimate world oil, gas, and coal production by 2019. This means that the current intense development of alternative sources of energy can be justified independently of climate considerations. When these projections are converted to carbon equivalents, the projected future emissions from burning oil, gas, and coal from 2005 on are 520GtC. The projected emissions for the 2005-2100 period are smaller than for any of the 40 SRES scenarios. This suggests that future scenarios should take exhaustion into account. These projections, if correct, are good news for climate change.

  17. A characterization and evaluation of coal liquefaction process streams. Quarterly technical progress report, October 1--December 31, 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robbins, G.A.; Brandes, S.D.; Winschel, R.A.

    1995-05-01

    The objectives of this project are to support the DOE direct coal liquefaction process development program and to improve the useful application of analytical chemistry to direct coal liquefaction process development. Independent analyses by well-established methods will be obtained of samples produced in direct coal liquefaction processes under evaluation by DOE. Additionally, analytical instruments and techniques which are currently underutilized for the purpose of examining coal-derived samples will be evaluated. The data obtained from this study will be used to help guide current process development and to develop an improved data base on coal and coal liquids properties. A samplemore » bank will be established and maintained for use in this project and will be available for use by other researchers. The reactivity of the non-distillable resids toward hydrocracking at liquefaction conditions (i.e., resid reactivity) will be examined. From the literature and data experimentally obtained, a mathematical kinetic model of resid conversion will be constructed. It is anticipated that such a model will provide insights useful for improving process performance and thus the economics of direct coal liquefaction. During this quarter, analyses were completed on 65 process samples from representative periods of HRI Run POC-2 in which coal, coal/plastics, and coal/rubber were the feedstocks. A sample of the oil phase of the oil/water separator from HRI Run POC-1 was analyzed to determine the types and concentrations of phenolic compounds. Chemical analyses and microautoclave tests were performed to monitor the oxidation and measure the reactivity of the standard coal (Old Ben Mine No. 1) which has been used for the last six years to determine solvent quality of process oils analyzed in this and previous DOE contracts.« less

  18. 76 FR 26753 - Grant Program To Assess, Evaluate and Promote Development of Tribal Energy and Mineral Resources

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-09

    ...: (720) 407-0609, e-mail: [email protected] . Conventional Energy Projects (Oil, Natural Gas, Coal..., development, feasibility and market studies. Energy includes conventional energy resources (such as oil, gas, coal, uranium, and coal bed gas) and renewable energy resources (such as wind, solar, biomass, hydro...

  19. Advanced coal cleaning meets acid rain emission limits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boron, D.J.; Matoney, J.P.; Albrecht, M.C.

    1987-03-01

    The following processes were selected for study: fine-coal, heavy-medium cyclone separation/flotation, advanced flotation, Dow true heavy liquid separation, Advanced Energy Dynamics (AED) electrostatic separation, and National Research Council of Canada oil agglomeration. Advanced coal cleaning technology was done for the state of New York to investigate methods to use high sulfur coal in view of anticipated lower SO/sub 2/ emission limits.

  20. Influences of Government Championship on the Technology Innovation Process at the Project-level

    NASA Astrophysics Data System (ADS)

    Yue, Xin

    Government support is a popular instrument to foster technology innovation. It can take various forms such as financial aid, tax credits, and technological assistance. Along with the firm characteristics, strategic behavior of the project team, characteristics of the technology and the market, and the regulatory environment, government support influences firms' research and development (R&D) motivations, decision making process, and hence technology development performance. How government support influences the performance in different industries is an important policy and research question. There are many studies on the effectiveness and impacts of government support, mostly at program-level or industry-level. Government Championship is a form of government support distinct from direct financial or technological assistance. Championship includes expressing confidence in the innovation, encouraging others to support the innovation, and persisting under adversity. Championship has been studied as a critical inside factor for innovation success, particularly at project-level. Usually a champion emerged within the organization responsible for the innovation project. However, with the intention to encourage technology development, governments can also play a championship role. Government championship, besides government financial and technological assistance (hereafter "government F&T"), could be one major category of government support to facilitate high-technology innovation. However, there are few studies focusing on the effectiveness of government championship, and how it influences the innovation process. This thesis addresses this question through two studies on high-technology development projects. The first study has tested the effectiveness of government championship on the performance of 431 government sponsored technology innovation projects. Government championship and government F&T, as well as project team strategic behavior, are hypothesized to influence the technology innovation performance. The team strategy has two dimensions in this model: pro-activeness and defensiveness, which indicate the emphasis of the team on exploiting new opportunities, and enhancing the current methods, respectively. A survey was administered to the project managers of li-ion battery projects in the United States. After data was collected, factor analysis and regression were used to test hypotheses. The results suggest that both government championship and government F&T are positive factors in technology innovation performance, while strategic behaviors are positive and more significant. The results also suggest a strong correlation between government support (both championship and F&T assistance) and the R&D team strategy, which means government intervention and team strategic behavior could affect each other. To understand how the government champions and the project team impact each other during the project, the second study employed a single in-depth case study, investigating the Shenhua Direct-Coal-Liquefaction (DCL) Project. A variety of government championship behaviors have been identified, and their situation and impacts on the project performance and outcome were analyzed. This case is a good start to accumulate information and observations for a better understanding of the influences of government championship in technology innovation. These two studies will help increase understanding of how government championship behaviors influence the process, the project performance, and the outcome of technology innovation, particularly in high-technology industries.

  1. Texas Clean Energy Project: Decision Point Application, Section 2: Topical Report - Phase 1, February 2010-October 2013

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mattes, Karl

    Summit Texas Clean Energy, LLC (STCE) is developing the Texas Clean Energy Project (TCEP or the Project) to be located near Penwell, Texas. The TCEP will include an Integrated Gasification Combined Cycle (IGCC) power plant with a nameplate capacity of 400 megawatts electric (MWe), combined with the production of urea fertilizer and the capture, utilization and storage of carbon dioxide (CO 2) sold commercially for regional use in enhanced oil recovery (EOR) in the Permian Basin of west Texas. The TCEP will utilize coal gasification technology to convert Powder River Basin subbituminous coal delivered by rail from Wyoming into amore » synthetic gas (syngas) that will be cleaned and further treated so that at least 90 percent of the overall carbon entering the IGCC facility will be captured. The clean syngas will then be divided into two highhydrogen (H 2) concentration streams, one of which will be combusted as a fuel in a combined cycle power block for power generation and the other converted into urea fertilizer for commercial sale. The captured CO 2 will be divided into two streams: one will be used in producing the urea fertilizer and the other will be compressed for transport by pipeline for offsite use in EOR and permanent underground sequestration. The TCEP was selected by the U.S. Department of Energy (DOE) Office of Fossil Energy (FE) for cost-shared co-funded financial assistance under Round 3 of its Clean Coal Power Initiative (CCPI). A portion of this financial assistance was budgeted and provided for initial development, permitting and design activities. STCE and the DOE executed a Cooperative Agreement dated January 29, 2010, which defined the objectives of the Project for all phases. During Phase 1, STCE conducted and completed all objectives defined in the initial development, permitting and design portions of the Cooperative Agreement. This topical report summarizes all work associated with the project objectives, and additional work required to complete the financing of the Project. In general, STCE completed project definition, a front-end, engineering and design study (FEED), applied for and received its Record of Decision (ROD) associated with the NEPA requirements summarized in a detailed Environmental Impact Statement. A topical report covering the results of the FEED is the subject of a separate report submitted to the DOE on January 26, 2012. References to the FEED report are contained herein. In August 2013, STCE executed fixed-price turnkey EPC contracts and previously, in December 2011 a long-term O&M agreement, with industry-leading contractors. Other work completed during Phase 1 includes execution of all commercial input and offtake agreements required for project financing. STCE negotiated long-term agreements for power, CO 2 and urea offtake. A contract for the purchase of coal feedstock from Cloud Peak Energy’s Cordero Rojo mine was executed, as well as necessary agreements (supplementing the tariff) with the Union Pacific Railroad (UPRR) for delivery of the coal to the TCEP site. STCE executed firm agreements for natural gas transportation with ONEOK for long-term water supply with a private landowner. In addition, STCE secured options for critical easements and rights-of-way, completed and updated a transmission study, executed an interconnection agreement and has agreed a target October 31, 2013 financial closing date with debt and conventional and tax equity.« less

  2. Geotechnical approaches to coal ash content control in mining of complex structure deposits

    NASA Astrophysics Data System (ADS)

    Batugin, SA; Gavrilov, VL; Khoyutanov, EA

    2017-02-01

    Coal deposits having complex structure and nonuniform quality coal reserves require improved processes of production quality control. The paper proposes a method to present coal ash content as components of natural and technological dilution. It is chosen to carry out studies on the western site of Elginsk coal deposit, composed of four coal beds of complex structure. The reported estimates of coal ash content in the beds with respect to five components point at the need to account for such data in confirmation exploration, mine planning and actual mining. Basic means of analysis and control of overall ash content and its components are discussed.

  3. 78 FR 32270 - Kenai National Wildlife Refuge, Soldotna, AK; Environmental Impact Statement for the Shadura...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-29

    .... (CIRI), owns the subsurface estate of coal, oil, and gas in the project area. The project would be in... and brown bears, lynx, snowshoe hares, and numerous species of Neotropical birds, such as olive-sided... within the Refuge, portions of the subsurface estate, consisting of the oil, gas, and coal are owned by...

  4. New cleaning technologies advance coal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Onursal, B.

    1984-05-01

    Alternative options are discussed for reducing sulfur dioxide emissions from coal burning utility and industrial sources. Test results indicate that it may be most advantageous to use the AED Process after coal preparation or on coals that do not need much ash removal. However, the developer claims that research efforts after 1981 have led to process improvements for producing clean coals containing 1.5% to 3% ash. This paper describes the test facility where a full-scale test of the AED Process is underway.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mills, M.P.

    The United States` competitive position in world markets will be determined by many forces. Two of the fundamental factors are the increased use of new technologies, and the availability of low-cost electricity to operate those technologies. The US currently has an will likely continue to have market dominance in both these critical areas. Both of these factors are intimately related since the primary source of new technologies is electric in nature. And, because low-cost coal now dominates and will continue to dominate the electric supply system, and because the US has both an abundance of coal and the world`s largestmore » fleet of coal-fired power plants, the US will have an expanding base of low-cost electricity that will secure its current competitive advantage for years to come. Electric technologies and, increasingly, computer-based technologies integrated with electric technologies are the primary sources of innovative advancement and economic growth. As a consequence, the growth in electricity, which has historically tracked GNP growth, is expected to continue. And, with the restructuring of the electric utility industry and the emergence of vigorous competition, prices are expected to decline as competition increases. The net effect of these forces will be to dramatically increase the use of electric technologies -- and those sources of electricity that can provide low-cost electricity. The data show that coal, the primary source of new los-cost electricity, will supply between one-half and three-fourths of all new electric supply through 2010, at prices of about 3{cents}/kWh, and can do so without new power plant construction. Since the use of coal is expected to rise by at least 200 to 250 million tons/year over the current consumption of 850 million tons, and could increase as much as 400 million tons/yr, some have raised concerns about the emissions impact from the power plants. This report also shows that the net effect of increased electric use, assuming coal dominance, will be a decrease in emissions. This decrease will occur for two reasons: (a) power plants are becoming increasingly clean, and (b) the electric technologies that consume the electricity displace more emissions than are created at the power plants.« less

  6. Comparative evaluation of solar, fission, fusion, and fossil energy resources. Part 4: Energy from fossil fuels

    NASA Technical Reports Server (NTRS)

    Williams, J. R.

    1974-01-01

    The conversion of fossil-fired power plants now burning oil or gas to burn coal is discussed along with the relaxation of air quality standards and the development of coal gasification processes to insure a continued supply of gas from coal. The location of oil fields, refining areas, natural gas fields, and pipelines in the U.S. is shown. The technologies of modern fossil-fired boilers and gas turbines are defined along with the new technologies of fluid-bed boilers and MHD generators.

  7. Pressurized fluidized bed offers promising route to cogeneration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1980-03-01

    STAL-LAVAL has been monitoring the development of pressurized fluidized-bed combustion (PFBC) technology and has decided to apply it as a way to burn coal and satisfy the important criteria of efficiency, low cost, environmental acceptability, low investment cost, and the capacity to use a wide range of coal qualities. The present status of PFBC and co-generation technology is reviewed and examples of industrial as well as utiltiy applications are cited. A successful commercialization of PFBC could contribute to the success of coal-utilization policies. (DCK)

  8. Field Testing of a Wet FGD Additive for Enhanced Mercury Control - Task 5 Full-Scale Test Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gary Blythe; MariJon Owens

    2007-12-01

    This Topical Report summarizes progress on Cooperative Agreement DE-FC26-04NT42309, 'Field Testing of a Wet FGD Additive'. The objective of the project is to demonstrate the use of two flue gas desulfurization (FGD) additives, Evonik Degussa Corporation's TMT-15 and Nalco Company's Nalco 8034, to prevent the re-emission of elemental mercury (Hg{sup 0}) in flue gas exiting wet FGD systems on coal-fired boilers. Furthermore, the project intends to demonstrate whether the additive can be used to precipitate most of the mercury (Hg) removed in the wet FGD system as a fine salt that can be separated from the FGD liquor and bulkmore » solid byproducts for separate disposal. The project is conducting pilot- and full-scale tests of the additives in wet FGD absorbers. The tests are intended to determine required additive dosages to prevent Hg{sup 0} re-emissions and to separate mercury from the normal FGD byproducts for three coal types: Texas lignite/Powder River Basin (PRB) coal blend, high-sulfur Eastern bituminous coal, and low-sulfur Eastern bituminous coal. The project team consists of URS Group, Inc., EPRI, Luminant Power (was TXU Generation Company LP), Southern Company, IPL (an AES company), Evonik Degussa Corporation and the Nalco Company. Luminant Power has provided the Texas lignite/PRB co-fired test site for pilot FGD tests and cost sharing. Southern Company has provided the low-sulfur Eastern bituminous coal host site for wet scrubbing tests, as well as the pilot- and full-scale jet bubbling reactor (JBR) FGD systems tested. IPL provided the high-sulfur Eastern bituminous coal full-scale FGD test site and cost sharing. Evonik Degussa Corporation is providing the TMT-15 additive, and the Nalco Company is providing the Nalco 8034 additive. Both companies are also supplying technical support to the test program as in-kind cost sharing. The project is being conducted in six tasks. Of the six project tasks, Task 1 involves project planning and Task 6 involves management and reporting. The other four tasks involve field testing on FGD systems, either at pilot or full scale. The four tasks include: Task 2 - Pilot Additive Testing in Texas Lignite Flue Gas; Task 3 - Full-scale FGD Additive Testing in High-sulfur Eastern Bituminous Flue Gas; Task 4 - Pilot Wet Scrubber Additive Tests at Plant Yates; and Task 5 - Full-scale Additive Tests at Plant Yates. The pilot-scale tests and the full-scale test using high-sulfur coal were completed in 2005 and 2006 and have been previously reported. This topical report presents the results from the Task 5 full-scale additive tests, conducted at Southern Company's Plant Yates Unit 1. Both additives were tested there.« less

  9. Utilization of coal-water fuel in heat power industry and by public utilities of Ukraine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Papayani, F.A.; Switly, Y.G.

    1995-12-31

    One of the major problems of the fuel and energy balance of Ukraine is acute shortage of its own resources of organic fuel. At present the steam coal output in Ukraine approaches 100 mln t, oil production makes up about 5 min t and that of gas reaches 22 bln. m{sup 3}, which in terms of equivalent fuel (e.f ) totals 94 min t, the annual demand being approximately 300 mln t e.f. To make up for fuel deficiency Ukraine has to annually import 120 bln. m{sup 3} of gas, 50 mln t of oil and about 10 mln tmore » of coal, their approximate cost being U.S.$ 15.6 bln. At the same time coal reserves in developed fields only make up 10 bln. t, the total reserves of this fuel being 100 bln. t. Thus the whole burden of meeting the requirements of Ukraine in power resources when nuclear power plants capacities are being reduced and expected to be reducing in the nearest future falls on coal. Under wasting conditions a problem of today is to develop and introduce new technologies of coal mining and utilization with due regard for technical, economic and ecological aspects which are particularly important for densely populated industrial regions. Ecological problems associated with a dramatic increase in the volume of coal combustion can be solved by developing new methods and means for flue gas cleaning in the first place and by wide-scale introduction of coal-water fuel (CWF) in the second place. Investigations have shown that the second way is more preferable since it is based on the integrated technology for original coal demineralization and CWT production, advantages of each process being used in full measure. Thus demineralization of coal is among major requirements to development of a CWT production technology.« less

  10. Coal without carbon: an investment plan for federal action

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pettus, A.; Tatsutani, M.

    2009-09-15

    This study examines several technologies for CCS that are not currently receiving adequate development support but that could - in the right policy environment - provide the kind of significant cost reductions (and significant improvements in efficiency) that could greatly accelerate broad, economically attractive CCS deployment. Clean Air Task Force selected these technology areas (though not the technologies themselves) and solicited reports from experts in each field to explore how these technologies might fit into a broader CCS deployment strategy. Each expert was asked to develop a research, development, and demonstration (RD&D) 'road map' that could efficiently move each technologymore » from the laboratory into the commercial mainstream. Because the chapter authors are either technical experts or commercial players and are not, for the most part, energy policy experts, subsequent work will translate their RD&D recommendations into actionable policy proposals. The heart of this report consists of four chapters on advanced coal and CCS technologies: underground coal gasification (UCG), written by Julio Friedmann at Lawrence Livermore National Laboratory; Next generation coal gasification (surface-based gasification) led by Eric Redman at Summit Power Group; Advanced technologies for post-combustion capture (PCC) of CO{sub 2}, led by Howard Herzog at Massachusetts Institute of Technology; and RD&D to speed commercialization of geological CO{sub 2} sequestration (GCS), led by Julio Friedmann. 12 refs., 5 figs., 2 tabs.« less

  11. Rational Use of Land Resource During the Implementation of Transportless System of Coal Strata Surface Mining

    NASA Astrophysics Data System (ADS)

    Gvozdkova, T.; Tyulenev, M.; Zhironkin, S.; Trifonov, V. A.; Osipov, Yu M.

    2017-01-01

    Surface mining and open pits engineering affect the environment in a very negative way. Among other pollutions that open pits make during mineral deposits exploiting, particular problem is the landscape changing. Along with converting the land into pits, surface mining is connected with pilling dumps that occupy large ground. The article describes an analysis of transportless methods of several coal seams strata surface mining, applied for open pits of South Kuzbass coal enterprises (Western Siberia, Russia). To improve land-use management of open pit mining enterprises, the characteristics of transportless technological schemes for several coal seams strata surface mining are highlighted and observed. These characteristics help to systematize transportless open mining technologies using common criteria that characterize structure of the bottom part of a strata and internal dumping schemes. The schemes of transportless systems of coal strata surface mining implemented in South Kuzbass are given.

  12. Origins of the Human Genome Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cook-Deegan, Robert

    1993-07-01

    The human genome project was borne of technology, grew into a science bureaucracy in the US and throughout the world, and is now being transformed into a hybrid academic and commercial enterprise. The next phase of the project promises to veer more sharply toward commercial application, harnessing both the technical prowess of molecular biology and the rapidly growing body of knowledge about DNA structure to the pursuit of practical benefits. Faith that the systematic analysis of DNA structure will prove to be a powerful research tool underlies the rationale behind the genome project. The notion that most genetic information ismore » embedded in the sequence of CNA base pairs comprising chromosomes is a central tenet. A rough analogy is to liken an organism's genetic code to computer code. The coal of the genome project, in this parlance, is to identify and catalog 75,000 or more files (genes) in the software that directs construction of a self-modifying and self-replicating system -- a living organism.« less

  13. Origins of the Human Genome Project

    DOE R&D Accomplishments Database

    Cook-Deegan, Robert (Affiliation: Institute of Medicine, National Academy of Sciences)

    1993-07-01

    The human genome project was borne of technology, grew into a science bureaucracy in the United States and throughout the world, and is now being transformed into a hybrid academic and commercial enterprise. The next phase of the project promises to veer more sharply toward commercial application, harnessing both the technical prowess of molecular biology and the rapidly growing body of knowledge about DNA structure to the pursuit of practical benefits. Faith that the systematic analysis of DNA structure will prove to be a powerful research tool underlies the rationale behind the genome project. The notion that most genetic information is embedded in the sequence of CNA base pairs comprising chromosomes is a central tenet. A rough analogy is to liken an organism's genetic code to computer code. The coal of the genome project, in this parlance, is to identify and catalog 75,000 or more files (genes) in the software that directs construction of a self-modifying and self-replicating system -- a living organism.

  14. Near-Zero Emissions Oxy-Combustion Flue Gas Purification Task 3: SOx/NOx/Hg Removal for Low Sulfur Coal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zanfir, Monica; Solunke, Rahul; Shah, Minish

    2012-06-01

    The goal of this project was to develop a near-zero emissions flue gas purification technology for existing PC (pulverized coal) power plants that are retrofitted with oxycombustion technology. The objective of Task 3 of this project was to evaluate an alternative method of SOx, NOx and Hg removal from flue gas produced by burning low sulfur coal in oxy-combustion power plants. The goal of the program was to conduct an experimental investigation and to develop a novel process for simultaneously removal of SOx and NOx from power plants that would operate on low sulfur coal without the need for wet-FGDmore » & SCRs. A novel purification process operating at high pressures and ambient temperatures was developed. Activated carbon's catalytic and adsorbent capabilities are used to oxidize the sulfur and nitrous oxides to SO{sub 3} and NO{sub 2} species, which are adsorbed on the activated carbon and removed from the gas phase. Activated carbon is regenerated by water wash followed by drying. The development effort commenced with the screening of commercially available activated carbon materials for their capability to remove SO{sub 2}. A bench-unit operating in batch mode was constructed to conduct an experimental investigation of simultaneous SOx and NOx removal from a simulated oxyfuel flue gas mixture. Optimal operating conditions and the capacity of the activated carbon to remove the contaminants were identified. The process was able to achieve simultaneous SOx and NOx removal in a single step. The removal efficiencies were >99.9% for SOx and >98% for NOx. In the longevity tests performed on a batch unit, the retention capacity could be maintained at high level over 20 cycles. This process was able to effectively remove up to 4000 ppm SOx from the simulated feeds corresponding to oxyfuel flue gas from high sulfur coal plants. A dual bed continuous unit with five times the capacity of the batch unit was constructed to test continuous operation and longevity. Full-automation was implemented to enable continuous operation (24/7) with minimum operator supervision. Continuous run was carried out for 40 days. Very high SOx (>99.9%) and NOx (98%) removal efficiencies were also achieved in a continuous unit. However, the retention capacity of carbon beds for SOx and NOx was decreased from ~20 hours to ~10 hours over a 40 day period of operation, which was in contrast to the results obtained in a batch unit. These contradictory results indicate the need for optimization of adsorption-regeneration cycle to maintain long term activity of activated carbon material at a higher level and thus minimize the capital cost of the system. In summary, the activated carbon process exceeded performance targets for SOx and NOx removal efficiencies and it was found to be suitable for power plants burning both low and high sulfur coals. More efforts are needed to optimize the system performance.« less

  15. Wireless microwave acoustic sensor system for condition monitoring in power plant environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pereira da Cunha, Mauricio

    This project successfully demonstrated novel wireless microwave acoustic temperature and pressure sensors that can be embedded into equipment and structures located in fossil fuel power plant environments to monitor the condition of components such as steam headers, re-heat lines, water walls, burner tubes, and power turbines. The wireless microwave acoustic sensor technology researched and developed through a collaborative partnership between the University of Maine and Environetix Technologies Corporation can provide a revolutionary impact in the power industry since it is anticipated that the wireless sensors will deliver reliable real-time sensing information in harsh power plant conditions that involve temperatures upmore » to 1100oC and pressures up to 750 psi. The work involved the research and development of novel high temperature harsh environment thin film electrodes, piezoelectric smart microwave acoustic sensing elements, sensor encapsulation materials that were engineered to function over long times up to 1100oC, and a radio-frequency (RF) wireless interrogation electronics unit that are located both inside and outside the high temperature harsh environment. The UMaine / Environetix team have interacted with diverse power plant facilities, and identified as a testbed a local power generation facility, which burns municipal solid waste (MSW), the Penobscot Energy Recovery Company (PERC), Orrington, Maine. In this facility Environetix / UMaine successfully implemented and tested multiple wireless temperature sensor systems within the harsh-environment of the economizer chamber and at the boiler tubes, transferring the developed technology to the power plant environment to perform real-time sensor monitoring experiments under typical operating conditions, as initially targeted in the project. The wireless microwave acoustic sensor technology developed under this project for power plant applications offers several significant advantages including wireless, battery-free, maintenance-free operation, and operation in the harsh-environment of power plant equipment up to about 1100 oC. Their small size and configuration allows flexible sensor placement and embedding of multiple sensor arrays into a variety of components within power systems that can be interrogated by a single RF unit. The outcomes of this project and technological transfer respond to a DOE analysis need, which indicated that if one percent efficiency in coal burning is achieved, an additional 2 gigawatt-hours of energy per year is generated and the resulting coal cost savings is $300 million per year, also accompanied by a reduction of more than 10 million metric tons of CO2 per year emitted into the atmosphere. Therefore, the developed harsh environment wireless microwave acoustic sensor technology and the technological transfer achievements that resulted from the execution of this project have significant impact for power plant equipment and systems and are well-positioned to contribute to the cost reduction in power generation, the increase in power plant efficiency, the improvement in maintenance, the reduction in down-time, and the decrease in environmental pollution. The technology is also in a position to be extended to address other types of high-temperature harsh-environment power plant and energy sector sensing needs.« less

  16. Characteristics of process oils from HTI coal/plastics co-liquefaction runs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robbins, G.A.; Brandes, S.D.; Winschel, R.A.

    1995-12-31

    The objective of this project is to provide timely analytical support to DOE`s liquefaction development effort. Specific objectives of the work reported here are presented. During a few operating periods of Run POC-2, HTI co-liquefied mixed plastics with coal, and tire rubber with coal. Although steady-state operation was not achieved during these brief tests periods, the results indicated that a liquefaction plant could operate with these waste materials as feedstocks. CONSOL analyzed 65 process stream samples from coal-only and coal/waste portions of the run. Some results obtained from characterization of samples from Run POC-2 coal/plastics operation are presented.

  17. Oil substitution and energy saving - A research and development strategy of the International Energy Agency /IEA/

    NASA Astrophysics Data System (ADS)

    Rath-Nagel, S.

    1981-03-01

    Systems analyses were carried out by the International Energy Agency for the participating 15 countries in order to work out strategies and scenarios for lessening the dependence on imported oil and for developing new energy technologies. MARKAL model computations show the technology and energy mixes necessary for achieving a reduction of oil imports by two thirds over the next 40 years. The scenario 'high social security' examines the projected rise in energy consumption, the development of oil substitutes, the increase in alternative heating sources, the development of markets for liquid energy products, the demand for gas, and the relative usage of various energy generation methods. The recommended strategy involves as the most important points an increase in coal consumption, greater nuclear energy reliance and development of alternative technologies.

  18. Support Services for Ceramic Fiber-Ceramic Matrix Composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hurley, JP

    2001-08-16

    To increase national energy self-sufficiency for the near future, power systems will be required to fire low-grade fuels more efficiently than is currently possible. The typical coal-fired steam cycle used at present is limited to a maximum steam temperature of 540 C and a conversion efficiency of 35%. Higher working-fluid temperatures are required to boost efficiency, exposing subsystems to very damaging conditions. Issues of special concern to materials developers are corrosion and warping of hot-gas particulate filters and corrosion and erosion of high-temperature heat exchangers. The University of North Dakota Energy and Environmental Research Center (EERC) is working with themore » National Energy Technology Laboratory in conjunction with NCC Engineering, Inc., to provide technical assistance and coal by-products to the Fossil Energy Materials Advanced Research and Technology Development Materials Program investigating materials failure in fossil energy systems. The main activities of the EERC are to assemble coal slag and hot-gas filter ash samples for use by materials researchers, to assist in providing opportunities for realistic tests of advanced materials in pilot-scale fossil energy systems, and to provide analytical support in determining corrosion mechanisms of the exposed materials. In this final report for the project year of September 2000 through August 2001, the facilities at the EERC that can be used by researchers for realistic testing of materials are described. Researchers can include sample coupons in each of these facilities at no cost since they are being operated under separate funding. In addition, two pilot-scale coal combustion tests are described in which material sample coupons were included from researchers involved in the development of fossil energy materials. The results of scanning electron microscopy (SEM) energy dispersive x-ray analyses of the corrosion products and interactions between the surface scales of the coupons and the products of coal combustion found on the coupons exposed during those tests are reported. Finally, a relative comparison of ceramic and alloy material performance based on the SEM results is presented.« less

  19. Environmental Assessment for Toxecon Retrofit for Mercury and Multi-Pollutant Control, Presque Isle Power Plant, Marquette, Michigan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    N /A

    This Environmental Assessment (EA) evaluates environmental issues associated with constructing and operating an integrated emissions control system proposed by We Energies and its project partners with cost-shared funding support by DOE. The proposed project would be demonstrated at the existing 90-MW Units 7, 8, and 9 of We Energies' coal-fired Presque Isle Power Plant in Marquette, Michigan. The commercial-scale demonstrate would allow utilities to make decisions regarding the integrated emissions control system as a viable commercial option. DOE's share of the funding for the 5-year demonstration project would be about $25 million, while $25 million would also be provided bymore » We Energies and its project partners. This project was selected by DOE under the Clean Coal Power Initiative (CCPI) for negotiation of a cooperative agreement to demonstrate the integration of technologies to reduce emissions of mercury (Hg) and particulate matter, as well as potentially control sulfur dioxide (SO{sub 2}), oxides of nitrogen (NO{sub x}) and hydrochloric acid (HCl) emissions. DOE's decision is whether or not to fund the project. The EA evaluates the principal environmental issues, including air quality, waste management, and traffic, that could result from construction and operation of the proposed project. The EA also considers two reasonably foreseeable scenarios that could result from the no-action alternative in which DOE would not provide cost-shared funding for the proposed project. Key findings include that potential air quality impacts resulting from the proposed project would generally be beneficial because plantwide air emissions would decrease or continue at the same level. The decrease in stack exit temperature would decrease the plume rise, which could result in increased downwind ground-level concentrations of those air pollutants experience little or no decrease in stack emissions. However, results of air dispersion modeling indicated that no major impacts would be expected relative to Prevention of Significant Deterioration increments and National Ambient Air Quality Standards.« less

  20. A strategic approach to selecting policy mechanisms for addressing coal mine methane emissions: A case study on Kazakhstan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roshchanka, Volha; Evans, Meredydd; Ruiz, Felicia

    Coal production globally is projected to grow in the foreseeable future. Countries with heavy reliance on coal could reduce methane and other emissions through the capture and utilization of coal mine methane (CMM) in the short and medium term, while they pursue structural and long-term economic changes. Several countries have successfully implemented policies to promote CMM capture and utilization; however, some countries still struggle to implement projects. This paper outlines key factors to consider in adapting policies for CMM mitigation. The authors propose an approach for selecting adequate mechanisms for stimulating CMM mitigation that involves reviewing global best practices andmore » categorizing them functionally either as mechanisms needed to improve the underlying conditions or as CMM-specific policies. It is important to understand local policy frameworks and to consider whether it is more feasible to improve underlying policy conditions or to provide targeted incentives as an interim measure. Using Kazakhstan as a case study, the authors demonstrate how policymakers could assess the overall policy framework to find the most promising options to facilitate CMM projects. Kazakhstan’s emissions from underground coal mines have been increasing both in total and per tonne of coal production, while overall production has been declining. CMM mitigation presents an opportunity for the country to reduce its greenhouse gas emissions in the near and medium term, while the government pursues sustainable development goals. Analysis shows that policymakers in Kazakhstan can leverage existing policies to stimulate utilization by extending feed-in tariffs to cover CMM and by developing working methodologies for companies to obtain emission reduction credits from CMM projects.« less

Top