Science.gov

Sample records for coal utilization ecological

  1. Environmental effects of increased coal utilization: ecological effects of gaseous emissions from coal combustion.

    PubMed Central

    Glass, N R

    1979-01-01

    This report is limited to an evaluation of the ecological and environmental effects of gaseous emissions and aerosols of various types which result from coal combustion. It deals with NOx, SOx, fine particulate, photochemical oxidant and acid precipitation as these pollutants affect natural and managed resources and ecosystems. Also, synergistic effects involving two or more pollutants are evaluated as well as ecosystem level effects of gaseous pollutants. There is a brief summary of the effects on materials and atmospheric visibility of increased coal combustion. The economic implications of ecological effects are identified to the extent they can be determined within acceptable limits. Aquatic and terrestrial effects are distinguished where the pollutants in question are clearly problems in both media. At present, acid precipitation is most abundant in the north central and northeastern states. Total SOx and NOx emissions are projected to remain high in these regions while increasing relatively more in the western than in the eastern regions of the country. A variety of ecological processes are affected and altered by air pollution. Such processes include community succession and retrogression, nutrient biogeochemical cycling, photosynthetic activity, primary and secondary productivity, species diversity and community stability. Estimates of the non health-related cost of air pollutants range from several hundred million dollars to $1.7 billion dollars per year. In general, these estimates include only those relatively easily measured considerations such as the known losses to cultivate crops from acute air pollution episodes or the cost of frequent repainting required as a result of air pollution. No substantial nationwide estimates of losses to forest productivity, natural ecosystem productivity which is tapped by domestic grazing animals and wildlife, and other significant dollar losses are available. PMID:44247

  2. Health and environmental impacts of increased generation of coal ash and FGD sludges. Report to the Committee on Health and Ecological Effects of Increased Coal Utilization.

    PubMed Central

    Santhanam, C J; Lunt, R R; Johnson, S L; Cooper, C B; Thayer, P S; Jones, J W

    1979-01-01

    This paper focuses on the incremental impacts of coal ash and flue gas desulfurization (FGD) wastes associated with increased coal usage by utilities and industry under the National Energy Plan (NEP). In the paper, 1985 and 2000 are the assessment points using the baseline data taken from the Annual Environmental Analysis Report (AEAR, September 1977). In each EPA region, the potential mix of disposal options has been broadly estimated and impacts assessed therefrom. In addition, future use of advanced combustion techniques has been taken into account. The quantities of coal ash and FGD wastes depend on ash and sulfur content of the coal, emission regulations, the types of ash collection and FGD systems, and operating conditions of the systems and boiler. The disposal of these wastes is (or will be) subject to Federal and State regulations. The one key legal framework concerning environmental impact on land is the Resource Conservation and Recovery Act (RCRA). RCRA and related Federal and State laws provide a sufficient statutory basis for preventing significant adverse health and environmental impacts from coal ash and FGD waste disposal. However, much of the development and implementation of specific regulations lie ahead. FGD wastes and coal ash and FGD wastes are currently disposed of exclusively on land. The most common land disposal methods are inpoundments (ponds) and landfills, although some mine disposal is also practiced. The potential environmental impacts of this disposal are dependent on the characteristics of the disposal site, characteristics of the coal ash and FGD wastes, control method and the degree of control employed. In general, the major potential impacts are ground and surface water contamination and the "degradation" of large quantities of land. However, assuming land is available for disposal of these wastes, control technology exists for environmentally sound disposal. Because of existing increases in coal use, the possibility of

  3. (Coal utilization in India)

    SciTech Connect

    Krishnan, R.P.

    1991-01-15

    Under the Phase II, Alternative Energy Resources Development (AERD) project of the United States Agency for International Development (USAID) and the Government of India (GOI), five collaborative coal projects have been initiated in the areas of: (1) NO{sub x}/SO{sub x} control from coal-fired power plants, (2) slagging combustor development for high-ash Indian coals, (3) characterization of Indian coals for combustion and gasification, (4) diagnostic studies for prediction of power plant life expectancy, and (5) environmental and natural resource analysis of coal cycle. The Pittsburgh Energy Technology Center (PETC) has the implementation responsibility for these projects. The Indian collaborative institutions identified for these projects are the Bharat Heavy Electricals Ltd. (BHEL), Trichy, (Projects 1--4), and the Tata Energy Research Institute (TERI) for Project 5. The Oak Ridge National Laboratory (ORNL) is providing cross-cut technical coordination and support for these five projects.

  4. Coal ash utilization in India

    SciTech Connect

    Michalski, S.R.; Brendel, G.F.; Gray, R.E.

    1998-12-31

    This paper describes methods of coal combustion product (CCP) management successfully employed in the US and considers their potential application in India. India produces about 66 million tons per year (mty) of coal ash from the combustion of 220 mty of domestically produced coal, the average ash content being about 30--40 percent as opposed to an average ash content of less than 10 percent in the US In other words, India produces coal ash at about triple the rate of the US. Currently, 95 percent of this ash is sluiced into slurry ponds, many located near urban centers and consuming vast areas of premium land. Indian coal-fired generating capacity is expected to triple in the next ten years, which will dramatically increase ash production. Advanced coal cleaning technology may help reduce this amount, but not significantly. Currently India utilizes two percent of the CCP`s produced with the remainder being disposed of primarily in large impoundments. The US utilizes about 25 percent of its coal ash with the remainder primarily being disposed of in nearly equal amounts between dry landfills and impoundments. There is an urgent need for India to improve its ash management practice and to develop efficient and environmentally sound disposal procedures as well as high volume ash uses in ash haulback to the coalfields. In addition, utilization should include: reclamation, structural fill, flowable backfill and road base.

  5. Assessment of Research Needs for Coal Utilization

    SciTech Connect

    Penner, S.S.

    1983-08-01

    The Coal Combustion and Applications Working Group (CCAWG), at the request of J.W. Mares (Assistant Secretary for Fossil Energy) and A.W. Trivelpiece (Director, Office of Energy Research), has reviewed and evaluated the U.S. programs on coal combustion and utilization. The important topical areas of coal gasification and coal liquefaction have been deliberately excluded because R and D needs for these technologies were reviewed previously by the DOE Fossil Energy Research Working Group. The CCAWG studies were performed in order to provide an independent assessment of research areas that affect prospects for augmented coal utilization. In this report, we summarize the findings and research recommendations of CCAWG.

  6. Advanced clean coal utilization technologies

    SciTech Connect

    Moritomi, Hiroshi

    1993-12-31

    The most important greenhouse gas is CO{sub 2} from coal utilization. Ways of mitigating CO{sub 2} emissions include the use of alternative fuels, using renewable resources and increasing the efficiency of power generation and end use. Adding to such greenhouse gas mitigation technologies, post combustion control by removing CO{sub 2} from power station flue gases and then storing or disposing it will be available. Although the post combustion control have to be evaluated in a systematic manner relating them to whether they are presently available technology, to be available in the near future or long term prospects requiring considerable development, it is considered to be a less promising option owing to the high cost and energy penalty. By contrast, abatement technologies aimed at improving conversion efficiency or reducing energy consumption will reduce emissions while having their own commercial justification.

  7. TRW advanced slagging coal combustor utility demonstration

    SciTech Connect

    Not Available

    1990-01-01

    The TRW Advanced Entrained Coal Combustor Demonstration Project consists of retrofitting Orange and Rockland (O R) Utility Corporation's Lovett Plant Unit No. 3 with four (4) slagging combustors which will allow the gas/oil unit to fire 2.5% sulfur coal. The slagging combustor process will provide NO{sub x} and SO{sub x} emissions that meet NSPS and New York State Environmental Standards. The TRW-Utility Demonstration Unit (UDU) is responsible for the implementation of program policies and overall direction of the project. The following projects will be carried out: process and design development of clean coal technology CCT-1 the development and operation of the entrained coal combustor will enable the boiler to burn low and medium sulfur coal while meeting all the Federal/State emission requirements; demonstrate sulfur dioxide emissions control by pulverized limestone injection into the entrained coal combustor system.

  8. MEASUREMENT OF MERCURY IN CHINESE UTILITY COAL

    EPA Science Inventory

    The paper gives results of analyzing representative samples of 20 Chinese utility coals for mercury content, and proximate, ultimate, and heating values. The data for these bituminous coals, obtained from China with the cooperation of the Chinese University of Mining Technology,...

  9. Utilization of low grade coal. Final report

    SciTech Connect

    Wells, C.E.

    1981-12-01

    Purpose was to construct and use a pilot furnace that could utilize low-grade coal (steam coal and coal fines) in place of oil or natural gas. This pilot furnace was tested on a 66-inch Raymond H.S. Roller Mill at the No. 1 plant of the James River Limestone Co. Results indicate that the commercial use is feasible; drying costs average $0.36 per ton with coal vs $0.80 per ton on annual basis when oil fired. Results are applicable to limestone manufacturers producing dry pulverized products. (DLC)

  10. Chemicals from coal. Utilization of coal-derived phenolic compounds

    SciTech Connect

    Song, C.; Schobert, H.H.

    1999-07-01

    This article provides an overview for possible utilization of coal-derived phenolic compounds. Phenolic compounds are abundant in coal-derived liquids. Coal-derived phenolic compounds include phenol, cresol, catechol, methylcatechol, naphthol, and their derivatives. Liquids from coal liquefaction, pyrolysis, gasification, and carbonization are potential sources of phenolic chemicals, although certain processing and separation are needed. There are opportunities for coal-based phenolic chemicals, because there are existing industrial applications and potential new applications. Currently the petrochemical industry produces phenol in multi-step processes, and new research and development has resulted in a one-step process. Selective methylation of phenol can produce a precursor for aromatic engineering plastics. Catalytic oxidation of phenol has been commercialized recently for catechol production. There are potential new uses of phenol that could replace large-volume multi-step chemical processes that are based on benzene as the starting material. New chemical research on coal and coal-derived liquids can pave the way for their non-fuel uses for making chemicals and materials.

  11. Materials for coal conversion and utilization

    SciTech Connect

    Not Available

    1980-01-01

    The Fifth Annual Conference on Materials for Coal Conversion and Utilization was held October 7-9, 1980, at the National Bureau of Standards, Gaithersburg, Maryland. Sixty-six papers have been entered individually into ERA and EDB; two had been entered previously from other sources. (LTN)

  12. Study on each phase characteristics of the whole coal life cycle and their ecological risk assessment-a case of coal in China.

    PubMed

    Dai, Wenting; Dong, Jihong; Yan, Wanglin; Xu, Jiren

    2017-01-01

    The paper divided the whole coal life cycle, explained each phase characteristics, and took coal mine in China as a study case to assess the ecological risk in coal utilization phase. The main conclusions are as follows: (1) the whole coal life cycle is divided into coal mining, processing, transportation, utilization, and waste disposal. (2) The key points of production organization and characteristics in the five phases have great differences. The coal mining phase is characterized by the damage of the key ecological factors (water, soil, atmosphere, vegetation, etc.) damaged while the coal processing phase by discharging waste. The characteristics in coal transportation phase mainly performance as escaping and migration of atmospheric pollutants. In coal utilization phase, the main characteristics are aggravation of greenhouse effect. The main characteristics of waste disposal phase are accumulation of negative ecological effects on the land. (3) The ecological risk of soil heavy metals is serious in coal utilization phase. The potential ecological hazard coefficients of Pb and As in coal, residue and ash are all lower than 40, presenting low environmental impact on soil; the potential ecological risk coefficients of Cd are higher than 60, nearly half of their potential ecological risk coefficients are higher than 160, which presents high environmental pollution impact on soil; Hg's potential ecological risk coefficients are higher than 320, presenting the highest environmental pollution impact on soil; the comprehensive pollution indexes in coal, residue, and ash are relatively high, which means the pollution hazard potential to soil environment is high. (4) The ecological risk of the atmospheric solid suspended matter is relatively strong in coal utilization phase. The ecological risk of Cd and As in primary flue gas is both lower than net flue gas. The geoaccumulation indexes of Cd and Hg in primary flue gas and net flue gas are both higher than 5, presenting

  13. Report on health and environmental effects of increased coal utilization*

    PubMed Central

    1980-01-01

    The National Energy Plan announced by President Carter on April 29, 1977 proposed a significant increase in the utilization of the vast domestic deposits of coal to replace the dwindling supplies of oil and natural gas, and increasingly expensive oil from foreign sources, to meet national energy needs. At the same time, in recognition of possible adverse health and ecological consequences of increased coal production and use, the President announced that a special committee would be formed to study this aspect of the National Energy Plan. The Committee held a series of public meetings during November and December 1977 to review a number of special papers on particular problems associated with increased coal utilization. These papers, which were prepared by scientists of the US Environmental Protection Agency; the Department of Energy; the HEW National Institute for Occupational Safety and Health, and the National Institute of Environmental Health Sciences; New York University; and Vanderbilt University; provided essential background information for the deliberations of the Committee and were published in EHP Vol. 33, pp. 127–314, 1979. One paper by A. P. Altschuler et al. is published in this volume of EHP. The Committee's basic finding was that it is safe to proceed with plans to increase the utilization of coal if the following environmental and safety policies are adhered to: • Compliance with Federal and State air, water, and solid waste regulations • Universal adoption and successful operation of best available control technology on new facilities • Compliance with reclamation standards • Compliance with mine health and safety standards • Judicious siting of coal-fired facilities The Committee concluded that, even with the best mitigation policies, there will be some adverse health and environmental effects from the dramatic increase in coal use. However, these will not impact all regions and individuals uniformly. The Committee identified six

  14. Utilization of Czech hard coal for clean coal technology

    SciTech Connect

    Noskievic, P.; Roubicek, V.

    1995-12-31

    The fuel and energy base in Czech Republic is presently in a period of great structural change. The substantial problem is the evolution from a centrally planned system to a market economy model of extraction, production and consumption of fuel and energy sources. The biggest contemporary problems are the following: (1) very high energy consumption per GNP-unit as a consequence of the recent period of cheap energy subsidized by the government; (2) not existing programs for energy savings, regeneration, and renewable sources; (3) up until now, low energy price and its distortion by targeted subsidies don`t allow us to estimate the alternative energy sources economically; (4) due to crude oil and gas import in the economy almost wholly dependent on unreliable sources in the former Soviet Union; (5) as a consequence of an oversized energy consumption there are relevant environment problems; and, (6) the current economic situation in the industry doesn`t enable it to provide sufficient investment capital targeted to energy savings or utilization of renewable sources. In the area of solid fuels management, the Czech economy will have to face unknown competitive forces on the free coal market, where increasingly Canadian, Australian, American and South Afrikan coals are pushed through. A specific problem appears to be the competition of some European coals that have a high rate of state subventions. Total geological coal reserves in former Czechoslovakia amount to 28 billion tons.

  15. Materials for coal conversion and utilization

    SciTech Connect

    None,

    1981-01-01

    The Sixth annual conference on materials for coal conversion and utilization was held October 13-15, 1981 at the National Bureau of Standards Gaithersburg, Maryland. It was sponsored by the US Department of Energy, the Electric Power Research Institute, the Gas Research Institute and the National Bureau of Standards. Fifty-eight papers from the proceedings have been entered individually into EDB and ERA; four papers had been entered previously from other sources. (LTN)

  16. Coal slurry tanker movements of western coal to east coast utilities. Final report

    SciTech Connect

    Rieber, M.

    1983-02-01

    From four western coal areas, coal slurry pipelines of 10 MMTY and 25 MMTY are designed and costed (1982 basis) for coal delivery to three ports. Supertankers are routed around South America, Panamax through the Panama Canal. Tanker characteristics are specified statistically and costs determined. A tidewater utility alternative is investigated. Based on western coal prices, adjusted for quality differentials, plus transport costs, delivered coal costs are compared to current east coast delivered steam coal prices. The proposed system is not economically feasible at current prices but may become commercial as steam coal demand increases and eastern coal prices rise.

  17. Characterization and subsequent utilization of microbially solubilized coal: Preliminary studies

    SciTech Connect

    Davison, B.H.; Nicklaus, D.M.; Woodward, C.A.; Lewis, S.N.; Faison, B.D.

    1989-01-01

    The solubilization of low-ranked coals by fungi, such as Paecilomyces and Candida, in defined submerged culture systems has been demonstrated. Current efforts focus on the characterization of the aqueous solubilized coal products and the development of technologies for their subsequent utilization. Solubilized coal products have been fractionated, and preliminary characterizations performed. Differences in product composition have been detected with respect to the organism used in culture duration. Prospects for the conversion of the aerobically-solubilized coal into less-oxidized products have been developed which can remain active and viable in the presence of the aqueous coal product or vanillin, a coal model compound. The results suggest that a methanogenic consortium was able to produce methane and carbon dioxide from the product of coal biosolubilization by Paecilomyces as a sole carbon source. Work continues on the development of cultures able to convert the aqueous coal product and its various fractions into methane or fuel alcohols. 17 refs., 8 figs.

  18. Coal utilization in China: environmental impacts and human health.

    PubMed

    Chen, Jian; Liu, Guijian; Kang, Yu; Wu, Bin; Sun, Ruoyu; Zhou, Chuncai; Wu, Dun

    2014-08-01

    Coal is one of the major energy resources in China, accounting for approximately 70 % of primary energy consumption. Many environmental problems and human health risks arise during coal exploitation, utilization, and waste disposal, especially in the remote mountainous areas of western China (e.g., eastern Yunnan, western Guizhou and Hubei, and southern Shaanxi). In this paper, we report a thorough review of the environmental and human health impacts related to coal utilization in China. The abundance of the toxic trace elements such as F, As, Se, and Hg in Chinese coals is summarized. The environmental problems (i.e., water, soil, and air pollution) that are related to coal utilization are outlined. The provenance, distributions, typical symptoms, sources, and possible pathways of endemic fluorosis, arsenism, and selenosis due to improper coal usage (briquettes mixed with high-F clay, mineralized As-rich coal, and Se-rich stone coal) are discussed in detail. In 2010, 14.8, 1.9 million, and 16,000 Chinese people suffered from dental fluorosis, skeletal fluorosis, and arsenism, respectively. Finally, several suggestions are proposed for the prevention and treatment for endemic problems caused by coal utilization.

  19. Expanded development of coal in Appalachian Pennsylvania through the utilization of coal-pipeline technology

    SciTech Connect

    Nelson, A.S.

    1983-01-01

    The hypothesis that the utilization of coal-pipeline technology can promote the development of Appalachian coal resources is investigated. The necessity of developing Appalachian coal is based on the assumptions that: (1) coal is the nation's primary medium-term energy source; and (2) eastern coal resources of the Appalachian and Midwestern regions constitute a significant supply source. Coal-pipeline technology offers potential for the resolution of a major impediment to coal development in the Appalachian region: the transportation constraints of handling the rapid expansion of coal production. Specifically, the integration of the coal pipeline into existing transportation networks may serve to upgrade the region's transportation capabilities, thereby facilitating the movement of coal to market places. This could enable many Appalachian coal resources, heretofore unavailable, to become available reserves. The most important contribution of this research was the creation of an analytical tool, with which a comparative cost analysis of short-haul coal-transport modes could be made. Given the assumptions of the hypothetical scenarios and the characteristics of the Appalachian region examined in the site-specific cases, results of this analysis indicated that the employment of the coal pipeline as a feeder mode could enable significant cost reductions in the short-haul transport of coal.

  20. Coal Utilization in Schools: Issues and Answers.

    ERIC Educational Resources Information Center

    Pusey, Robert H.

    Coal, at one-third the cost of natural gas and one-fifth the cost of oil, is our cheapest source of energy and is also in abundant supply. Because of significant technological advances, coal-fired equipment now approaches the clean and automatic operational characteristics of gas- and oil-fired boilers. For these reasons, and because schools are…

  1. Sixth annual coal preparation, utilization, and environmental control contractors conference

    SciTech Connect

    Not Available

    1990-01-01

    A conference was held on coal preparation, utilization and environmental control. Topics included: combustion of fuel slurries; combustor performance; desulfurization chemically and by biodegradation; coal cleaning; pollution control of sulfur oxides and nitrogen oxides; particulate control; and flue gas desulfurization. Individual projects are processed separately for the databases. (CBS).

  2. Occupational safety and health implications of increased coal utilization.

    PubMed Central

    Bridbord, K; Costello, J; Gamble, J; Groce, D; Hutchison, M; Jones, W; Merchant, J; Ortmeyer, C; Reger, R; Wagner, W L

    1979-01-01

    An area of major concern in considering increased coal production and utilization is the health and safety of increased numbers of workers who mine, process, or utilize coal. Hazards related to mining activities in the past have been especially serious, resulting in many mine related accidental deaths, disabling injuries, and disability and death from chronic lung disease. Underground coal mines are clearly less safe than surface mines. Over one-third of currently employed underground miners experience chronic lung disease. Other stresses include noise and extremes of heat and cold. Newly emphasized technologies of the use of diesel powered mining equipment and the use of longwall mining techniques may be associated with serious health effects. Workers at coal-fired power plants are also potentially at risk of occupational diseases. Occupational safety and health aspects of coal mining are understood well enough today to justify implementing necessary and technically feasible and available control measures to minimize potential problems associated with increased coal production and use in the future. Increased emphasis on safety and health training for inexperienced coal miners expected to enter the work force is clearly needed. The recently enacted Federal Mine Safety and Health Act of 1977 will provide impetus for increased control over hazards in coal mining. PMID:540621

  3. Utilization of coal-associated minerals. Final report

    SciTech Connect

    Slonaker, J. F.; Akers, D. J.; Alderman, J. K.

    1980-01-01

    Under contract number DE-AS21-77ET10533 with the US-DOE several methods of utilizing coal associated by-products were examined for potential commercial use. Such use could transform a costly waste disposal situation into new materials for further use and could provide incentive for the adoption of new coal utilization processes. Several utilization processes appear to have merit and are recommended for further study. Each process is discussed separately in the text of this report. Common coal cleaning processes were also examined to determine the effect of such processes on the composition of by-products. Data obtained in this portion of the research effort are reported in the Appendix. Information of this type is required before utilization processes can be considered. A knowledge of the mineral composition of these materials is also required before even simple disposal methods can be considered.

  4. An evaluation of physical coal cleaning plus FGD for coal fired utility applications

    SciTech Connect

    Newman, J.; Kantesaria, P.; Huettenhain, H.

    1994-12-31

    The Clean Air Act Amendment of 1990 (CAAA) requires utilities to reduce SO{sub 2} emissions from coal-fired power plants in two phases. Phase I takes effect January 1, 1995, requiring utilities to reduce SO{sub 2} emissions to 2.5 lb SO{sub 2}/MMBtu. Phase II becomes effective on January 1, 2000, requiring all plants above 25 MWe in capacity not to exceed SO{sub 2} emissions above 1.2 lb SO{sub 2}/MMBtu. Electric utilities who burn moderately high ash and sulfur bituminous coal and must develop a strategy to comply with the CAAA can choose from numerous options besides simple fuel switching or complete flue gas scrubbing. Below 2% Run of Mine (ROM) coal sulfur Strategy 2, conventional cleaning, provides the lowest cost. Below 4% sulfur in the ROM coal conventional cleaning plus confined zone dispersion (CZD), Strategy 7, is the best choice. The higher cost of advanced coal cleaning, promising an additional 12% SO{sub 2} reduction over the approximately 45% reduction by conventional cleaning, can only be justified for coals between 4 and 6% sulfur in the ROM coal. Strategy 8, advanced cleaning plus CZD has the lowest cost for this sulfur range. Higher sulfur coals require full scrubbing combined with conventional coal cleaning to achieve the lowest compliance cost for Phase I. For Phase II compliance advanced coal cleaning has no advantage over conventional cleaning. Full scrubbing will be required for ROM coals with more than 2% sulfur. Full scrubbing combined with conventional cleaning can achieve the lowest compliance cost compared to the other strategies.

  5. Utilization of coal fly ash. Master's thesis

    SciTech Connect

    Openshaw, S.C.

    1992-01-01

    Coal-fired power plants produce approximately 80 million tons of fly ash each year. Efforts to use fly ash have reached only a twenty to thirty percent reutilization rate. A literature review was performed to provide a consensus of the available information regarding fly ash. Fly ash is highly variable depending on the coal source, plant operations, and several other parameters. The various fly ash characteristics are discussed including classifications, physical characteristics, chemical properties and chemical compositions. Although extensive research has been performed on the use of fly ash, very little of this research has monitored any environmental impacts. The environmental concerns addressed include mobilization of toxic elements, biota impact, microbial impact, handling dangers, and pertinent regulations. Finally, the various disposal and reutilization options for fly ash are examined. A recommendation is provided for further research to cover deficiencies found in the literature.

  6. COAL UTILITY EVIRONMENTAL COST (CUECOST) WORKBOOK USER'S MANUAL

    EPA Science Inventory

    The document is a user's manual for the Coal Utility Environmental Cost (CUECost) workbook (an interrelated set of spreadsheets) and documents its development and the validity of methods used to estimate installed capital ad annualize costs. The CUECost workbook produces rough-or...

  7. Role of UCG in maximizing coal utilization: site specific study

    SciTech Connect

    Linn, J. K.; Love, S. L.

    1980-01-01

    The Department of Energy is sponsoring a project to develop a planning scheme for improving the utilization of coal deposits. This prototype study, called Total Economic Coal Utilization (TECU), is being applied to specific coal reserves within the Centralia-Chehalis District of Washington State. A significant aspect of the study is to determine the potential role for in situ gasification in maximizing the energy recovery and use. The results obtained indicate that UCG could be used to realize a sizeable increase in the amount of energy that can be economically recovered from the District. Since UCG technology has not reached the commercialization stage, some significant assumptions had to be made for this study. These are that the in situ process will work reliably and that product gas cleanup will proceed without major problems. However, if these conditions are met, this assessment indicates that in situ coal gasification could increase the extractable energy from Washington's Centralia-Chehalis coal deposits by a substantial amount and that this additional energy could be accessed at reasonable cost.

  8. Management of local economic and ecological system of coal processing company

    NASA Astrophysics Data System (ADS)

    Kiseleva, T. V.; Mikhailov, V. G.; Karasev, V. A.

    2016-10-01

    The management issues of local ecological and economic system of coal processing company - coal processing plant - are considered in the article. The objectives of the research are the identification and the analysis of local ecological and economic system (coal processing company) performance and the proposals for improving the mechanism to support the management decision aimed at improving its environmental safety. The data on the structure of run-of-mine coal processing products are shown. The analysis of main ecological and economic indicators of coal processing enterprises, characterizing the state of its environmental safety, is done. The main result of the study is the development of proposals to improve the efficiency of local enterprise ecological and economic system management, including technical, technological and business measures. The results of the study can be recommended to industrial enterprises to improve their ecological and economic efficiency.

  9. 30 CFR 817.87 - Coal mine waste: Burning and burned waste utilization.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Coal mine waste: Burning and burned waste...-UNDERGROUND MINING ACTIVITIES § 817.87 Coal mine waste: Burning and burned waste utilization. (a) Coal mine... extinguishing operations. (b) No burning or unburned coal mine waste shall be removed from a permitted...

  10. 30 CFR 816.87 - Coal mine waste: Burning and burned waste utilization.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Coal mine waste: Burning and burned waste...-SURFACE MINING ACTIVITIES § 816.87 Coal mine waste: Burning and burned waste utilization. (a) Coal mine... extinguishing operations. (b) No burning or burned coal mine waste shall be removed from a permitted...

  11. 30 CFR 816.87 - Coal mine waste: Burning and burned waste utilization.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Coal mine waste: Burning and burned waste...-SURFACE MINING ACTIVITIES § 816.87 Coal mine waste: Burning and burned waste utilization. (a) Coal mine... extinguishing operations. (b) No burning or burned coal mine waste shall be removed from a permitted...

  12. 30 CFR 817.87 - Coal mine waste: Burning and burned waste utilization.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Coal mine waste: Burning and burned waste...-UNDERGROUND MINING ACTIVITIES § 817.87 Coal mine waste: Burning and burned waste utilization. (a) Coal mine... extinguishing operations. (b) No burning or unburned coal mine waste shall be removed from a permitted...

  13. 30 CFR 817.87 - Coal mine waste: Burning and burned waste utilization.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Coal mine waste: Burning and burned waste...-UNDERGROUND MINING ACTIVITIES § 817.87 Coal mine waste: Burning and burned waste utilization. (a) Coal mine... extinguishing operations. (b) No burning or unburned coal mine waste shall be removed from a permitted...

  14. 30 CFR 816.87 - Coal mine waste: Burning and burned waste utilization.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Coal mine waste: Burning and burned waste...-SURFACE MINING ACTIVITIES § 816.87 Coal mine waste: Burning and burned waste utilization. (a) Coal mine... extinguishing operations. (b) No burning or burned coal mine waste shall be removed from a permitted...

  15. 30 CFR 816.87 - Coal mine waste: Burning and burned waste utilization.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Coal mine waste: Burning and burned waste...-SURFACE MINING ACTIVITIES § 816.87 Coal mine waste: Burning and burned waste utilization. (a) Coal mine... extinguishing operations. (b) No burning or burned coal mine waste shall be removed from a permitted...

  16. 30 CFR 817.87 - Coal mine waste: Burning and burned waste utilization.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Coal mine waste: Burning and burned waste...-UNDERGROUND MINING ACTIVITIES § 817.87 Coal mine waste: Burning and burned waste utilization. (a) Coal mine... extinguishing operations. (b) No burning or unburned coal mine waste shall be removed from a permitted...

  17. 30 CFR 816.87 - Coal mine waste: Burning and burned waste utilization.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Coal mine waste: Burning and burned waste utilization. 816.87 Section 816.87 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT...-SURFACE MINING ACTIVITIES § 816.87 Coal mine waste: Burning and burned waste utilization. (a) Coal...

  18. 30 CFR 817.87 - Coal mine waste: Burning and burned waste utilization.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Coal mine waste: Burning and burned waste utilization. 817.87 Section 817.87 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT...-UNDERGROUND MINING ACTIVITIES § 817.87 Coal mine waste: Burning and burned waste utilization. (a) Coal...

  19. The stabilization and utilization of coal solid wastes

    SciTech Connect

    Burnet, G. . Dept. of Chemical Engineering Ames Lab., IA )

    1988-01-01

    One of the most important technical issues of the 1980's is the effective and economical disposal or utilization of solid wastes. Solid waste utilization or resource recovery is the preferred option for coal solid waste management, but disposal remains the dominant practice. Work on waste management has achieved improved problem definition and the conceptualization of processes, some of which are ready for commercial evaluation. Processes developed at the Ames Laboratory are the granulation/sintering method for the codisposal of coal cleaning and coal combustion-related wastes and the lime-soda sinter process and HiChlor process for mineral and byproduct recovery from the wastes. The stabilization method yields an environmentally benign material and sulfur as a byproduct. The lime-soda sinter process consumes the entire fly ash yielding metallurgical-grade Al{sub 2}O{sub 3} and a partially burned portland cement. The HiChlor process permits the recovery of the major as well as the minor elements present in the ash. Cost will be the final determining factor as to the merit of these processes and will require at least pilot plant scale investigation. 12 refs., 9 figs.

  20. The fate of mercury in coal utilization byproducts

    SciTech Connect

    William Aljoe; Thomas Feeley; James Murphy; Lynn Brickett

    2005-05-01

    The US Department of Energy National Energy Technology Laboratory's (DOE/NETL's) research has helped to further scientific understanding of the environmental characteristics of coal-utilization by-products (CUBs) in both disposal and beneficial utilization applications. The following general observations can be drawn from results of the research that has been carried out to date: There appears to be only minimal mercury release to the environment in typical disposal or utilization applications for CUBs generated using activated carbon injection (ACI) control technologies; There appears to be only minimal mercury release to the environment in typical disposal and utilization applications for CUBs generated using wet FGD control technologies. The potential release of mercury from wet FGD gypsum during the manufacture of wallboard is still under evaluation; The amount of mercury leached from CUB samples tested by DOE/NETL is significantly lower than the federal drinking water standards and water quality criteria for the protection of aquatic life; in many cases, leachate concentrations were below the standard test method detection limits. DOE/NETL will continue to partner with industry and other key stakeholders in carrying out research to better understand the fate of mercury and other trace elements in the byproducts from coal combustion. 16 refs., 6 tabs.

  1. COAL-FIRED UTILITY BOILERS: SOLVING ASH DEPOSITION PROBLEMS

    SciTech Connect

    Christopher J. Zygarlicke; Donald P. McCollor; Steven A. Benson; Jay R. Gunderson

    2001-04-01

    The accumulation of slagging and fouling ash deposits in utility boilers has been a source of aggravation for coal-fired boiler operators for over a century. Many new developments in analytical, modeling, and combustion testing methods in the past 20 years have made it possible to identify root causes of ash deposition. A concise and comprehensive guidelines document has been assembled for solving ash deposition as related to coal-fired utility boilers. While this report accurately captures the current state of knowledge in ash deposition, note that substantial research and development is under way to more completely understand and mitigate slagging and fouling. Thus, while comprehensive, this document carries the title ''interim,'' with the idea that future work will provide additional insight. Primary target audiences include utility operators and engineers who face plant inefficiencies and significant operational and maintenance costs that are associated with ash deposition problems. Pulverized and cyclone-fired coal boilers are addressed specifically, although many of the diagnostics and solutions apply to other boiler types. Logic diagrams, ash deposit types, and boiler symptoms of ash deposition are used to aid the user in identifying an ash deposition problem, diagnosing and verifying root causes, determining remedial measures to alleviate or eliminate the problem, and then monitoring the situation to verify that the problem has been solved. In addition to a step-by-step method for identifying and remediating ash deposition problems, this guideline document (Appendix A) provides descriptions of analytical techniques for diagnostic testing and gives extensive fundamental and practical literature references and addresses of organizations that can provide help in alleviating ash deposition problems.

  2. Tests and specifications pertinent to coal ash utilization

    SciTech Connect

    Manz, O.

    1994-12-31

    Fortunately, in the United States, most of the test methods and specifications for the use of coal ash in cement, concrete, lime, or soil-related products are found in the American Society for Testing and Materials (ASTM) books of standards. Many of the same or slightly different specifications are also found in the American Association of State Highway and Transportation Officials (AASHTO) books of standards, as well as those of the various Departments of Transportation (DOTs). Other specifications for selected uses are found in publications of the American Petroleum Institute (API), the Sulfur Institute, the mineral wool industry, and West Virginia University. It is difficult to keep up with the most recent printed specifications, particularly in ASTM, since the committees meet twice yearly and have many time-consuming ballots. This paper summarizes the critical engineering properties required to assess the utilization applications of coal ash products. For most uses, both physical and chemical limits are specified. There are specifications for blended cement containing fly ash, for sulfate resistance, and for alkali aggregate reaction, also for fly ash for use in concrete, in oil well cement, and in grout. Coal ash is specified for use in ash-lime stabilization, as lightweight aggregate, and for mineral filler, as well as for structural fill and flowable fill. Other uses include sulfur concrete, high flexural strength ceramics, mineral wool, brick, cenospheres, and filler.

  3. Development and utilization strategies for recovery and utilization of coal mine methane

    SciTech Connect

    Byrer, C.W.; Layne, A.W.; Guthrie, H.D.

    1995-10-01

    The U.S. Department of Energy (DOE), at its Morgantown Energy Technology Center, has been involved in natural gas research since the 1970`s. DOE has assessed the potential of gas in coals throughout the U.S. and promoted research and development for recovery and use of methane found in minable and unminable coalbeds. DOE efforts have focused on the use of coal mine methane for regional economic gas self-sufficiency, energy parks, self-help initiatives, and small-power generation. This paper focuses on DOE`s past and present efforts to more effectively and efficiently recover and use this valuable domestic energy source. The Climate Change Action Plan (CCAP) (1) lists a series of 50 voluntary initiatives designed to reduce greenhouse gas emissions, such as methane from mining operations, to their 1990 levels. Action No. 36 of the CCAP expands the DOE research, development, and demonstration (RD&D) efforts to broaden the range of cost-effective technologies and practices for recovering methane associated with coal mining operations. The major thrust of Action No. 36 is to reduce methane emissions associated with coal mining operations from target year 2000 levels by 1.5 MMT of carbon equivalent. Crosscutting activities in the DOE Natural Gas Program supply the utilization sectors will address RD&D to reduce methane emissions released from various mining operations, focusing on recovery and end use technology systems to effectively drain, capture, and utilize the emitted gas. Pilot projects with industry partners will develop and test the most effective methods and technology systems for economic recovery and utilization of coal mine gas emissions in regions where industry considers efforts to be presently non-economic. These existing RD&D programs focus on near-term gas recovery and gathering systems, gas upgrading, and power generation.

  4. Coal waste resource utilization within the Sasol group of companies

    SciTech Connect

    Steynberg, E.C.; Matjie, R.H.; Bunt, J.R.; Heap, M.A.

    1998-12-31

    Sasol converts low grade coal into high value synfuels and chemicals using fixed bed gasification and Fischer-Tropsch Technology. Sasol mines approximately 45 million tons of coal annually, which is utilized in: gasification, producing 9 million t/y of coarse ash; and steam generation, producing 3 million t/y of fly ash. The optimal use of the ash produced in these processes naturally has many advantages which among others addresses the long-term environmental problems associated with ash dumping, reduces the cost of ash dumping, prevents capital expenditure on further ash slimes dams or on land to create dumping facilities and indirectly creates new job opportunities. Furthermore higher value products can also be prepared from the ash which creates new opportunities for Sasol. This paper addresses the potential utilization of this waste product by examining it from two angles, namely from an engineering perspective and from a research point of view. Firstly the possible application of ash in the road construction and building industries will be discussed; thereafter work conducted by Research and Development concerning the production of lightweight aggregates and inorganic chemicals from ash will be highlighted.

  5. Research of land resources comprehensive utilization of coal mining in plain area based on GIS: case of Panyi Coal Mine of Huainan Mining Group Corp.

    NASA Astrophysics Data System (ADS)

    Dai, Chunxiao; Wang, Songhui; Sun, Dian; Chen, Dong

    2007-06-01

    The result of land use in coalfield is important to sustainable development in resourceful city. For surface morphology being changed by subsidence, the mining subsidence becomes the main problem to land use with the negative influence of ecological environment, production and steadily develop in coal mining areas. Taking Panyi Coal Mine of Huainan Mining Group Corp as an example, this paper predicted and simulated the mining subsidence in Matlab environment on the basis of the probability integral method. The change of land use types of early term, medium term and long term was analyzed in accordance with the results of mining subsidence prediction with GIS as a spatial data management and spatial analysis tool. The result of analysis showed that 80% area in Panyi Coal Mine be affected by mining subsidence and 52km2 perennial waterlogged area was gradually formed. The farmland ecosystem was gradually turned into wetland ecosystem in most study area. According to the economic and social development and natural conditions of mining area, calculating the ecological environment, production and people's livelihood, this paper supplied the plan for comprehensive utilization of land resource. In this plan, intervention measures be taken during the coal mining and the mining subsidence formation and development, and this method can solve the problems of Land use at the relative low cost.

  6. A Course in Fundamentals of Coal Utilization and Conversion Processes.

    ERIC Educational Resources Information Center

    Radovic, Ljubisa R.

    1985-01-01

    Describes the content, objectives, and requirements for a one-semester (30 20-hour sessions) graduate engineering course at the University of Concepcion, Chile. Major course topics include: structure and properties of coal; coal pyrolysis and carbonization; coal liquefaction; coal combustion and gasification; and economic and environmental…

  7. UTILIZATION OF LIGHTWEIGHT MATERIALS MADE FROM COAL GASIFICATION SLAGS

    SciTech Connect

    Unknown

    2000-04-24

    The integrated-gasification combined-cycle (IGCC) process is an emerging technology that utilizes coal for power generation and production of chemical feedstocks. However, the process generates large amounts of solid waste, consisting of vitrified ash (slag) and some unconverted carbon. In previous projects, Praxis investigated the utilization of ''as-generated'' slags for a wide variety of applications in road construction, cement and concrete production, agricultural applications, and as a landfill material. From these studies, we found that it would be extremely difficult for ''as-generated'' slag to find large-scale acceptance in the marketplace even at no cost because the materials it could replace were abundantly available at very low cost. It was further determined that the unconverted carbon, or char, in the slag is detrimental to its utilization as sand or fine aggregate. It became apparent that a more promising approach would be to develop a variety of value-added products from slag that meet specific industry requirements. This approach was made feasible by the discovery that slag undergoes expansion and forms a lightweight material when subjected to controlled heating in a kiln at temperatures between 1400 and 1700 F. These results confirmed the potential for using expanded slag as a substitute for conventional lightweight aggregates (LWA). The technology to produce lightweight and ultra-lightweight aggregates (ULWA) from slag was subsequently developed by Praxis with funding from the Electric Power Research Institute (EPRI), Illinois Clean Coal Institute (ICCI), and internal resources. The major objectives of the subject project are to demonstrate the technical and economic viability of commercial production of LWA and ULWA from slag and to test the suitability of these aggregates for, various applications. The project goals are to be accomplished in two phases Phase I, comprising the production of LWA and ULWA from slag at the large pilot scale, and

  8. The characterization of brown coals of Kansk-Achinsk Basin for improved utilization in the coal-burning power stations

    SciTech Connect

    Solntsev, S.I.; Shorokhov, V.P.

    1998-12-31

    Kansk-Achinsk Brown Coal Basin in Siberia is the largest one of Russia. There are several large deposits in the Basin. Two main open cuts currently annually supply 35 million tonnes of brown coal for the pulverized fired boilers operated by number of Power Stations in Central Siberia. The main part of Kansk-Achinsk brown coals are characterized by low sulfur, nitrogen and heavy metal content. However, they differ in the ash content (within the range of 4--12%) and in the ash composition (in Ca, Al, Fe, Na, in particular). This has a major influence on the boiler fouling and slagging tendency. The paper describes the work in defining the geological, chemical and utilization characteristics of the coals from the different cuts and places of Kansk-Achinsk Basin. The emphasis on the ash fouling and slagging on burning brown coals from different places was made. The methods of coal preparation were developed to improve the utilization characteristics and to comply with the emission regulations. The preparation and burning of blended coals and coal-water slurry is the focus of the discussion. The technology of briquetted brown coal both with oil-derived binder and with no binder is described.

  9. UTILIZATION OF LIGHTWEIGHT MATERIALS MADE FROM COAL GASIFICATION SLAGS

    SciTech Connect

    Vas Choudhry; Stephen Kwan; Steven R. Hadley

    2001-07-01

    The objective of the project entitled ''Utilization of Lightweight Materials Made from Coal Gasification Slags'' was to demonstrate the technical and economic viability of manufacturing low-unit-weight products from coal gasification slags which can be used as substitutes for conventional lightweight and ultra-lightweight aggregates. In Phase I, the technology developed by Praxis to produce lightweight aggregates from slag (termed SLA) was applied to produce a large batch (10 tons) of expanded slag using pilot direct-fired rotary kilns and a fluidized bed calciner. The expanded products were characterized using basic characterization and application-oriented tests. Phase II involved the demonstration and evaluation of the use of expanded slag aggregates to produce a number of end-use applications including lightweight roof tiles, lightweight precast products (e.g., masonry blocks), structural concrete, insulating concrete, loose fill insulation, and as a substitute for expanded perlite and vermiculite in horticultural applications. Prototypes of these end-use applications were made and tested with the assistance of commercial manufacturers. Finally, the economics of expanded slag production was determined and compared with the alternative of slag disposal. Production of value-added products from SLA has a significant potential to enhance the overall gasification process economics, especially when the avoided costs of disposal are considered.

  10. DEVELOPMENT OF COAL BED METHANE UTILIZING GIS TECHNOLOGIES

    SciTech Connect

    J. Daniel Arthur

    2003-04-01

    During the second half of the 1990's, Coal Bed Methane (CBM) production increased dramatically nationwide to represent a significant new source of income and natural gas for many independent and established producers. Matching these soaring production rates during this period were the advancements in Geographical Information Systems (GIS) technologies generating terra-bytes of new data for the oil and gas industry. Coupled to these accelerating initiatives are many environmental concerns relating to production wastes and water table depletion of fresh water resources. It is these concerns that prompted a vital need within the industry for the development of Best Management Practices (BMPs) and mitigation strategies utilizing GIS technologies for efficient environmental protection in conjunction with effective production of CBM. This was accomplished by developing a framework to take advantage of a combination of investigative field research joined with leading edge GIS technologies for the creation of environmentally characterized regions of study. Once evaluated these regions had BMP's developed to address their unique situations for Coal Bed Methane production and environmental protection. Results of the project will be used to support the MBOGC's Programmatic Environmental Impact Statement as required by the Montana Environmental Policy Act (MEPA) and by the BLM for NEPA related issues for acreage having federally owned minerals.

  11. The utilization of Indonesia`s low rank coal: Its potential, challenges and prospects

    SciTech Connect

    Panaka, P.

    1997-07-01

    It has known that there are around 36 billion tons of coal resources potential in Indonesia, however over 21 billion tons (58.7%) is classified as low-rank (lignite) coal. Due to their properties, these coals are not economical to be transported for a long distance and are therefore unexportable. That`s why these low-rank coals still under-utilized at present. As the utilization of low-rank coals is expected to grow in importance as the domestic`s demand for energy increases in the near future, efforts should also be directed to find the possible upgrading technology for low-rank coals by reducing the total moisture of it, once the possible upgrading technology has been adopted, then those coal can be converted into coal water mixture, coal liquefaction, gasification, briquetting, etc., even for mine mouth power-plant. The challenges facing low-rank coals are: low conversion efficiency resulting from the high moisture content and relatively low in calorific values, the risk of spontaneous combustion, ash deposit formation and higher CO{sub 2} emission To response to these challenges, the adoption of new and advanced technologies for the utilization of low-rank coals from the third countries is therefore required. Combined cycle technologies such as CFBC, PFBC and IGCC, etc. combined with coal up-grading technology are applicable to low-rank coals and are expected to become a major future power plant for Indonesia. The main question for low-rank coals is whether these plants can be competitive when the extra costs involved in up-grading (drying) the coal are taken into account.

  12. INTEGRATED POWER GENERATION SYSTEMS FOR COAL MINE WASTE METHANE UTILIZATION

    SciTech Connect

    Peet M. Soot; Dale R. Jesse; Michael E. Smith

    2005-08-01

    An integrated system to utilize the waste coal mine methane (CMM) at the Federal No. 2 Coal Mine in West Virginia was designed and built. The system includes power generation, using internal combustion engines, along with gas processing equipment to upgrade sub-quality waste methane to pipeline quality standards. The power generation has a nominal capacity of 1,200 kw and the gas processing system can treat about 1 million cubic feet per day (1 MMCFD) of gas. The gas processing is based on the Northwest Fuel Development, Inc. (NW Fuel) proprietary continuous pressure swing adsorption (CPSA) process that can remove nitrogen from CMM streams. The two major components of the integrated system are synergistic. The byproduct gas stream from the gas processing equipment can be used as fuel for the power generating equipment. In return, the power generating equipment provides the nominal power requirements of the gas processing equipment. This Phase III effort followed Phase I, which was comprised of a feasibility study for the project, and Phase II, where the final design for the commercial-scale demonstration was completed. The fact that NW Fuel is desirous of continuing to operate the equipment on a commercial basis provides the validation for having advanced the project through all of these phases. The limitation experienced by the project during Phase III was that the CMM available to operate the CPSA system on a commercial basis was not of sufficiently high quality. NW Fuel's CPSA process is limited in its applicability, requiring a relatively high quality of gas as the feed to the process. The CPSA process was demonstrated during Phase III for a limited time, during which the processing capabilities met the expected results, but the process was never capable of providing pipeline quality gas from the available low quality CMM. The NW Fuel CPSA process is a low-cost ''polishing unit'' capable of removing a few percent nitrogen. It was never intended to process CMM

  13. MERCURY CONTROL IN MUNICIPAL WASTE COMBUSTORS AND COAL-FIRED UTILITIES

    EPA Science Inventory

    Control of mercury (Hg) emissions from municipal waste combustors (MWCs) and coal-fired utilities has attracted attention due to current and potential regulations. Among several techniques evaluated for Hg control, dry sorbent injection (primarily injection of activated carbon) h...

  14. Fact Sheet: Final Rule on Coal Combustion Residuals Generated by Electric Utilities

    EPA Pesticide Factsheets

    This fact sheet describes the final rule signed on December 19, 2014 establishing a comprehensive set of requirements for the disposal of coal combustion residuals generated by electric utilities in landfills and surface impoundments.

  15. Socioeconomic factors, morbidity and drug utilization--an ecological study.

    PubMed

    Henricson, K; Stenberg, P; Rametsteiner, G; Ranstam, J; Hanson, B S; Melander, A

    1998-07-01

    The aim of the present study was to elucidate the relations between demographic and socioeconomic factors, morbidity and the utilization of major drug groups in an urban Swedish population. The study was performed as an ecological analysis during November 1991 in the 17 different districts of Malmö, the third largest Swedish city (235,000 inhabitants). The material comprised 86,228 ACT-coded drug items which corresponded to 76% of all prescriptions dispensed during the study month. Of these, 43,032, dispensed to patients aged 15-64 years, were analysed in the present work. Age standardized drug utilization was expressed as the number of dispensed Defined Daily Doses per 1000 inhabitants per day. Morbidity was measured in terms of reimbursed days on sick leave. The sociodemographic parameters used were socioeconomic status (SES), employment rate, median income per family, households on social allowance, and ethnicity. For four of the five major pharmacological groups (ATC-groups A, C, J, N and R, i.e. alimentation, circulation, infectious diseases, nervous system and respiration), most pronouncedly group N and least so group R, utilization correlated positively with not only the extent of morbidity but also with an unfavourable socioeconomic situation, high proportion of immigrants, and households on social allowance or with low income and/or with a low employment rate. The utilization of antibiotics (group J), however, instead correlated negatively with these parameters. For all five drug groups, these trends were similar among men and women, albeit with varying strength. In conclusion, socioeconomic factors may have a profound influence on the utilization of several major drug groups. At least in the case of antibiotics, the consequence of this influence is irrational drug use.

  16. Coal liquefaction process utilizing coal/CO.sub.2 slurry feedstream

    DOEpatents

    Comolli, Alfred G.; McLean, Joseph B.

    1989-01-01

    A coal hydrogenation and liquefaction process in which particulate coal feed is pressurized to an intermediate pressure of at least 500 psig and slurried with CO.sub.2 liquid to provide a flowable coal/CO.sub.2 slurry feedstream, which is further pressurized to at least 1000 psig and fed into a catalytic reactor. The coal particle size is 50-375 mesh (U.S. Sieve Series) and provides 50-80 W % coal in the coal/CO.sub.2 slurry feedstream. Catalytic reaction conditions are maintained at 650.degree.-850.degree. F. temperature, 1000-4000 psig hydrogen partial pressure and coal feed rate of 10-100 lb coal/hr ft.sup.3 reactor volume to produce hydrocarbon gas and liquid products. The hydrogen and CO.sub.2 are recovered from the reactor effluent gaseous fraction, hydrogen is recycled to the catalytic reactor, and CO.sub.2 is liquefied and recycled to the coal slurrying step. If desired, two catalytic reaction stages close coupled together in series relation can be used. The process advantageously minimizes the recycle and processing of excess hydrocarbon liquid previously needed for slurrying the coal feed to the reactor(s).

  17. Coal combustion: Science and technology of industrial and utility applications

    SciTech Connect

    Junkai, F.

    1988-01-01

    This reference source offers material on theoretical research (including mathematical modeling, low NO/sub x/ combustion, and studies of sulfur), applications of the newest technologies, and actual experience of low-grade coal combustion.

  18. Hydrogenation of coal liquid utilizing a metal carbonyl catalyst

    DOEpatents

    Feder, Harold M.; Rathke, Jerome W.

    1979-01-01

    Coal liquid having a dissolved transition metal, catalyst as a carbonyl complex such as Co.sub.2 (CO.sub.8) is hydrogenated with hydrogen gas or a hydrogen donor. A dissociating solvent contacts the coal liquid during hydrogenation to form an immiscible liquid mixture at a high carbon monoxide pressure. The dissociating solvent, e.g. ethylene glycol, is of moderate coordinating ability, while sufficiently polar to solvate the transition metal as a complex cation along with a transition metal, carbonyl anion in solution at a decreased carbon monoxide pressure. The carbon monoxide pressure is reduced and the liquids are separated to recover the hydrogenated coal liquid as product. The dissociating solvent with the catalyst in ionized form is recycled to the hydrogenation step at the elevated carbon monoxide pressure for reforming the catalyst complex within fresh coal liquid.

  19. Ammonia production from coal by utilization of Texaco coal gasification process

    SciTech Connect

    Watson, J.R.; McClanhan, T.S.; Weatherington, R.W.

    1983-12-01

    Operating data will be presented for the coal gasification and gas purification unit which has been retrofitted to the front end of an existing ammonia plant. The plant uses 200 tons per day of coal and produces 135 tons per day of ammonia. The plant uses the Texaco coal gasification process, Haldor-Topsoe catalyst systems, Selexol acid gas removal process, and the Holmes-Stretford sulfur recovery process.

  20. Electricity from coal and utilization of coal combustion by-products

    SciTech Connect

    Demirbas, A.

    2008-07-01

    Most electricity in the world is conventionally generated using coal, oil, natural gas, nuclear energy, or hydropower. Due to environmental concerns, there is a growing interest in alternative energy sources for heat and electricity production. The major by-products obtained from coal combustion are fly ash, bottom ash, boiler slag, and flue gas desulfurization (FGD) materials. The solid wastes produced in coal-fired power plants create problems for both power-generating industries and environmentalists. The coal fly ash and bottom ash samples may be used as cementitious materials.

  1. Effect of coal quality on maintenance costs at utility plants. Final report. [Effect of ash and sulfur content of coal

    SciTech Connect

    Holt, E.C. Jr.

    1980-06-01

    In an attempt to determine if correlation exists between coal quality, as measured by its ash and sulfur contents, and the maintenance cost at utility plants, an examination was made of the actual maintenance cost experience of selected portions of five TVA coal-fired power plants as a function of the fuel quality consumed during an extended period of time. The results indicate that, according to our decision rules developed in compliance with accepted statistical practices, correlation does exist in many portions of the coal-fired plants for which sufficient maintenance cost records were available. The degree of correlation varies significantly among the individual portions of a particular plant as well as among the various plants. However, the indicators are sufficient to confirm that a change (within the design constraints of the unit) in the ash and/or sulfur content of the coal being consumed by a utility boiler will have a proportionate effect on the maintenance cost at the plant. In the cases examined, each percent variation in ash content could have a monetary effect of from $0.05 to $0.10 per ton of coal consumed. Similarly, each percent variation in sulfur content could influence maintenance costs from $0.30 to $0.50 per ton of coal. Since these values are based on preliminary analysis of limited data, they must be approached with caution and not removed from the context in which they are presented. However, if borne out by further study, the potential magnitude of such savings may be sufficient to justify the acquisition of superior coal supplies, either by changing the source and/or using preparation to obtain a lower ash and sulfur fuel.

  2. Ecological risk assessment for residual coal fly ash at Watts Bar Reservoir, Tennessee.

    PubMed

    Carriker, Neil E; Jones, Daniel S; Walls, Suzanne J; Stojak, Amber R

    2015-01-01

    The Tennessee Valley Authority conducted a Baseline Ecological Risk Assessment (BERA) for the Kingston Fossil Plant ash release site to evaluate potential effects of residual coal ash on biota in Watts Bar Reservoir, Tennessee. The BERA was in response to a release of 4.1 million m(3) of coal ash on December 22, 2008. It used multiple lines of evidence to assess risks for 17 different ecological receptors to approximately 400000 m(3) of residual ash in the Emory and Clinch rivers. Here, we provide a brief overview of the BERA results and then focus on how the results were used to help shape risk management decisions. Those decisions included selecting monitored natural recovery for remediation of the residual ash in the Emory and Clinch rivers and designing a long-term monitoring plan that includes adaptive management principles for timely adjustment to changing conditions. This study demonstrates the importance of site-specific ecological data (e.g., tissue concentrations for food items, reproductive data, and population data) in complex ecological risk assessments. It also illustrates the value of the US Environmental Protection Agency's (USEPA) data quality objectives process in building consensus and identifying multiple uses of results. The relatively limited adverse effects of this likely worst-case scenario for ash-related exposures in a lotic environment provide important context for the USEPA's new coal combustion residue disposal rules.

  3. Comparative analysis of coal use options for reducing the dependence of utilities on imported oil

    SciTech Connect

    Eggers, Jr, A J

    1980-01-03

    The President and the Congress are finalizing National Goals to reduce the Nation's dependence on imported oil. A key element of these goals is the conversion of utilities from oil-fired to coal-fired to yield an import reduction of 0.75 MBD by 1990. Since these utilities already exist at fixed locations, this element of the National Goals has the focus of Appolo, Polaris, Minuteman and other major successful programs. It is indicated, therefore, that the program development and management techniques employed in these programs may have useful application to the utility conversion program. These techniques include comparative systems and mission mode analysis, and the application of these techniques to the utility conversion program is discussed. It is observed that the conversions of coal-capable utilities will most likely be achieved in the first half of the next decade, while those for non coal-capable utilities will likely occur in the latter half of the next decade. It is suggested that DOE/RA initiate an in-house task force effort to make a comparative analysis of conversion alternatives to meet this goal. This analysis is discussed in some detail and it should consider the coal delivery as well as the conversion elements of the overall coal use system with a view to focusing on problems which must be addressed, and discarding those which are of no consequence to meeting the National Goal.

  4. NOx EMISSIONS PRODUCED WITH COMBUSTION OF POWDER RIVER BASIN COAL IN A UTILITY BOILER

    SciTech Connect

    John S. Nordin; Norman W. Merriam

    1997-04-01

    The objective of this report is to estimate the NOx emissions produced when Powder River Basin (PRB) coal is combusted in a utility boiler. The Clean Air Act regulations specify NOx limits of 0.45 lb/mm Btu (Phase I) and 0.40 lb/mm Btu (Phase II) for tangentially fired boilers, and 0.50 lb/mm 13tu (Phase II) and 0.46 lb/mm Btu (Phase II) for dry-bottom wall-fired boilers. The Clean Air Act regulations also specify other limits for other boiler types. Compliance for Phase I has been in effect since January 1, 1996. Compliance for Phase II goes into effect on January 1, 2000. Emission limits are expressed as equivalent NO{sub 2} even though NO (and sometimes N{sub 2}O) is the NOx species emitted during combustion. Regulatory agencies usually set even lower NOx emission limits in ozone nonattainment areas. In preparing this report, Western Research Institute (WRI) used published test results from utilities burning various coals, including PRB coal, using state-of-the art control technology for minimizing NOx emissions. Many utilities can meet Clean Air Act NOx emission limits using a combination of tight combustion control and low-NOx burners and by keeping furnaces clean (i.e., no slag buildup). In meeting these limits, some utilities also report problems such as increased carbon in their fly ash and excessive furnace tube corrosion. This report discusses utility experience. The theory of NOx emission formation during coal combustion as related to coal structure and how the coal is combusted is also discussed. From this understanding, projections are made for NOx emissions when processed PRB coal is combusted in a test similar to that done with other coals. As will be shown, there are a lot of conditions for achieving low NOx emissions, such as tight combustion control and frequent waterlancing of the furnace to avoid buildup of deposits.

  5. The utilization of forward osmosis for coal tailings dewatering

    EPA Science Inventory

    The feasibility of dewatering coal tailings slurry by forward osmosis (FO) membrane process was investigated in this research. A prototype cell was designed and used for the dewatering tests. A cellulosic FO membrane (Hydration Technology Innovations, LLC, Albany, OR) was used fo...

  6. Utilization of Partially Gasified Coal for Mercury Removal

    SciTech Connect

    Chris Samuelson; Peter Maly; David Moyeda

    2008-09-09

    In this project, General Electric Energy and Environmental Research Corporation (EER) developed a novel mercury (Hg) control technology in which the sorbent for gas-phase Hg removal is produced from coal in a gasification process in-situ at a coal burning plant. The main objective of this project was to obtain technical information necessary for moving the technology from pilot-scale testing to a full-scale demonstration. A pilot-scale gasifier was used to generate sorbents from both bituminous and subbituminous coals. Once the conditions for optimizing sorbent surface area were identified, sorbents with the highest surface area were tested in a pilot-scale combustion tunnel for their effectiveness in removing Hg from coal-based flue gas. It was determined that the highest surface area sorbents generated from the gasifier process ({approx}600 m{sup 2}/g) had about 70%-85% of the reactivity of activated carbon at the same injection rate (lb/ACF), but were effective in removing 70% mercury at injection rates about 50% higher than that of commercially available activated carbon. In addition, mercury removal rates of up to 95% were demonstrated at higher sorbent injection rates. Overall, the results of the pilot-scale tests achieved the program goals, which were to achieve at least 70% Hg removal from baseline emissions levels at 25% or less of the cost of activated carbon injection.

  7. The dynamic monitoring of coal resources exploitation in the ecological function regionalization of Hulun Buir City based on remote sensing

    NASA Astrophysics Data System (ADS)

    Wan, Huawei; Xia, Wei; Li, Jing; Wang, Changzuo

    2014-11-01

    The over-exploitation of coal resources has a serious negative influence upon the ecological environment. It causes ecological destruction and environmental pollution problems. This paper presents the current status of coal resources exploitation and dynamic monitoring in Hulun Buir. Analysis of them is based on the data of coal mines, which are obtained by RS data, including Thematic Mapper (TM) and HJ-1 satellite data. Through the research on the dynamic monitoring methods of multi-temporal RS images and GIS technology, the quantity of coal mines and the size of coal mines, are extracted based on the features of mines. Finally, it analyzes the character of coal resources exploitation status, and put forward proposals for sustainable development Hulun Buir or other areas.

  8. MENU OF NOX EMISSION CONTROL OPTIONS FOR COAL-FIRED ELECTRIC UTILITY BOILERS

    EPA Science Inventory

    The paper reviews NOx control options for coal-fired electric utility boilers. (NOTE: Acid Rain NOx regulations, the Ozone Transport Commission's NOx Budget Program, revision of the New Source Performance Standards (NSPS) for NOx emissions from utility sources, and Ozone Transpor...

  9. Reducing GHG emissions by co-utilization of coal with natural gas or biomass

    SciTech Connect

    Smith, I.M.

    2004-07-01

    Energy reserves price and security of supply issues are discussed in the context of the prospects for coal and policies to reduce greenhouse gas (GHG) emissions. Coal is projected to remain a major source of energy, with most of the demand growth in developing countries. Currently available power-generating technologies, deploying coal with natural gas or biomass, are examined. Examples of successful, partial substitution of coal by other fuels in power stations are highlighted, including the GHG emissions reductions achieved as well as the costs where available. Among various options, hybrid gasification and parallel cofiring of coal with biomass and natural gas appear to have the greatest potential to reduce GHG emissions. Much may also be achieved by cofiring, reburning, and repowering with gas turbines. The best method differs between different power systems. Co-utilization of biomass with coal is a least-cost option to reduce GHG emissions where the fuel prices are comparable, usually due to subsidies or taxes. The role of biomass is likely to increase due to greater use of subsidies, carbon taxes, and emissions trading within the context of the Kyoto Protocol. This should provide opportunities for clean coal technology transfer and diffusion, including biomass co-utilization. 32 refs., 1 fig., 3 tabs.

  10. High performance materials in coal conversion utilization. Technical progress report, October 1, 1994--December 31, 1994

    SciTech Connect

    1995-01-01

    This is the fifth quarterly report on a three year grant regarding {open_quotes}High Performance Materials in Coal Conversion Utilization.{close_quotes} The grant is for a joint university/industry effort under the US Department of Energy (DOE) University Coal Research Program. The University of Tennessee Space Institute (UTSI) is the prime contractor and The University of Pennsylvania and Lanxide Corporation are subcontractors. UTSI has completed the planned laboratory exposure tests involving pulverized coal slag on the production Lanxide DIMOX{trademark} ceramic composite material. In addition, the strength testing (at temperature) of C-ring sections of the production composite is complete.

  11. Applications study of advanced power generation systems utilizing coal-derived fuels, volume 2

    NASA Technical Reports Server (NTRS)

    Robson, F. L.

    1981-01-01

    Technology readiness and development trends are discussed for three advanced power generation systems: combined cycle gas turbine, fuel cells, and magnetohydrodynamics. Power plants using these technologies are described and their performance either utilizing a medium-Btu coal derived fuel supplied by pipeline from a large central coal gasification facility or integrated with a gasification facility for supplying medium-Btu fuel gas is assessed.

  12. Financing coal mine, methane recovery and utilization projects

    SciTech Connect

    2006-07-01

    The article describes types and sources of funding that may be available to project developers and investors that are interested in pursuing coal mine methane (CMM) project opportunities particularly in developing countries or economies in transition. It briefly summarizes prefeasibility and feasibility studies and technology demonstrations. It provides a guide to key parties involved in project financing (equity, debt or carbon financing) as well as project risk reduction support. This article provides an update to the information contained in two previous guides - Catalogue of Coal Mine Methane Project Finance Sources (2002) and A Guide to Financing Coalbed Methane Projects (1997) - both available on the CMOP web site http://www.epa.gov/cmop/resources/reports/finance.html.

  13. Potential ecological risk assessment and prediction of soil heavy-metal pollution around coal gangue dump

    NASA Astrophysics Data System (ADS)

    Jiang, X.; Lu, W. X.; Zhao, H. Q.; Yang, Q. C.; Yang, Z. P.

    2014-06-01

    The aim of the present study is to evaluate the potential ecological risk and trend of soil heavy-metal pollution around a coal gangue dump in Jilin Province (Northeast China). The concentrations of Cd, Pb, Cu, Cr and Zn were monitored by inductively coupled plasma mass spectrometry (ICP-MS). The potential ecological risk index method developed by Hakanson (1980) was employed to assess the potential risk of heavy-metal pollution. The potential ecological risk in the order of ER(Cd) > ER(Pb) > ER(Cu) > ER(Cr) > ER(Zn) have been obtained, which showed that Cd was the most important factor leading to risk. Based on the Cd pollution history, the cumulative acceleration and cumulative rate of Cd were estimated, then the fixed number of years exceeding the standard prediction model was established, which was used to predict the pollution trend of Cd under the accelerated accumulation mode and the uniform mode. Pearson correlation analysis and correspondence analysis are employed to identify the sources of heavy metals and the relationship between sampling points and variables. These findings provided some useful insights for making appropriate management strategies to prevent or decrease heavy-metal pollution around a coal gangue dump in the Yangcaogou coal mine and other similar areas elsewhere.

  14. Potential ecological risk assessment and prediction of soil heavy metal pollution around coal gangue dump

    NASA Astrophysics Data System (ADS)

    Jiang, X.; Lu, W. X.; Yang, Q. C.; Yang, Z. P.

    2014-03-01

    Aim of the present study is to evaluate the potential ecological risk and predict the trend of soil heavy metal pollution around a~coal gangue dump in Jilin Province (Northeast China). The concentrations of Cd, Pb, Cu, Cr and Zn were monitored by inductively coupled plasma mass spectrometry (ICP-MS). The potential ecological risk index method developed by Hakanson (1980) was employed to assess the potential risk of heavy metal pollution. The potential ecological risk in an order of E(Cd) > E(Pb) > E(Cu) > E(Cr) > E(Zn) have been obtained, which showed that Cd was the most important factor led to risk. Based on the Cd pollution history, the cumulative acceleration and cumulative rate of Cd were estimated, and the fixed number of years exceeding standard prediction model was established, which was used to predict the pollution trend of Cd under the accelerated accumulation mode and the uniform mode. Pearson correlation analysis and correspondence analysis are employed to identify the sources of heavy metal, and the relationship between sampling points and variables. These findings provide some useful insights for making appropriate management strategies to prevent and decrease heavy metal pollution around coal gangue dump in Yangcaogou coal mine and other similar areas elsewhere.

  15. Synergistic Utilization of Coal Fines and Municipal Solid Waste in Coal-Fired Boilers. Phase I Final Report

    SciTech Connect

    V. Zamansky; P. Maly; M. Klosky

    1998-06-12

    A feasibility study was performed on a novel concept: to synergistically utilize a blend of waste coal fines with so-called E-fuel for cofiring and reburning in utility and industrial boilers. The E-fuel is produced from MSW by the patented EnerTech's slurry carbonization process. The slurry carbonization technology economically converts MSW to a uniform, low-ash, low-sulfur, and essentially chlorine-free fuel with energy content of about 14,800 Btu/lb.

  16. Coal/biomass fuels and the gas turbine: Utilization of solid fuels and their derivatives

    SciTech Connect

    DeCorso, M.; Newby, R.; Anson, D.; Wenglarz, R.; Wright, I.

    1996-06-01

    This paper discusses key design and development issues in utilizing coal and other solid fuels in gas turbines. These fuels may be burned in raw form or processed to produce liquids or gases in more or less refined forms. The use of such fuels in gas turbines requires resolution of technology issues which are of little or no consequence for conventional natural gas and refined oil fuels. For coal, these issues are primarily related to the solid form in which coal is naturally found and its high ash and contaminant levels. Biomass presents another set of issues similar to those of coal. Among the key areas discussed are effects of ash and contaminant level on deposition, corrosion, and erosion of turbine hot parts, with particular emphasis on deposition effects.

  17. Nitrogen oxides emission control options for coal-fired electric utility boilers.

    PubMed

    Srivastava, Ravi K; Hall, Robert E; Khan, Sikander; Culligan, Kevin; Lani, Bruce W

    2005-09-01

    Recent regulations have required reductions in emissions of nitrogen oxides (NOx) from electric utility boilers. To comply with these regulatory requirements, it is increasingly important to implement state-of-the-art NOx control technologies on coal-fired utility boilers. This paper reviews NOx control options for these boilers. It discusses the established commercial primary and secondary control technologies and examines what is being done to use them more effectively. Furthermore, the paper discusses recent developments in NOx controls. The popular primary control technologies in use in the United States are low-NOx burners and overfire air. Data reflect that average NOx reductions for specific primary controls have ranged from 35% to 63% from 1995 emissions levels. The secondary NOx control technologies applied on U.S. coal-fired utility boilers include reburning, selective noncatalytic reduction (SNCR), and selective catalytic reduction (SCR). Thirty-six U.S. coal-fired utility boilers have installed SNCR, and reported NOx reductions achieved at these applications ranged from 15% to 66%. Recently, SCR has been installed at >150 U.S. coal-fired utility boilers. Data on the performance of 20 SCR systems operating in the United States with low-NOx emissions reflect that in 2003, these units achieved NOx emission rates between 0.04 and 0.07 lb/10(6) Btu.

  18. Acid mine drainage and subsidence: effects of increased coal utilization.

    PubMed Central

    Hill, R D; Bates, E R

    1979-01-01

    The increases above 1975 levels for acid mine drainage and subsidence for the years 1985 and 2000 based on projections of current mining trends and the National Energy Plan are presented. No increases are projected for acid mine drainage from surface mines or waste since enforcement under present laws should control this problem. The increase in acid mine drainage from underground mines is projected to be 16 percent by 1985 and 10 percent by 2000. The smaller increase in 2000 over 1985 reflects the impact of the PL 95-87 abandoned mine program. Mine subsidence is projected to increase by 34 and 115 percent respectively for 1985 and 2000. This estimate assumes that subsidence will parallel the rate of underground coal production and that no new subsidence control measures are adopted to mitigate subsidence occurrence. PMID:540617

  19. The role of clean coal technologies in a deregulated rural utility market

    SciTech Connect

    Neal, J.W.

    1997-12-31

    The nation`s rural electric cooperatives own a high proportion of coal-fired generation, in excess of 80 percent of their generating capacity. As the electric utility industry moves toward a competitive electricity market, the generation mix for electric cooperatives is expected to change. Distributed generation will likely serve more customer loads than is now the case, and that will lead to an increase in gas-fired generation capacity. But, clean low-cost central station coal-fired capacity is expected to continue to be the primary source of power for growing rural electric cooperatives. Gasification combined cycle could be the lowest cost coal based generation option in this new competitive market if both capital cost and electricity production costs can be further reduced. This paper presents anticipated utility business scenarios for the deregulated future and identifies combined cycle power plant configurations that might prove most competitive.

  20. Don't force utilities to abandon coal

    SciTech Connect

    Mitnick, S.A.

    1993-07-01

    The risks of a substantial CO[sub 2] tax are -- as Mark Twain observed about the premature reports of his death -- greatly exaggerated. In any case, these risks are, to a large degree, considered by utility managers.

  1. CONTROL OF NOX EMISSIONS FROM U.S. COAL-FIRED ELECTRIC UTILITY BOILERS

    EPA Science Inventory

    The paper discusses the control of nitrogen oxide (NOx) emissions from U.S. coal-fired electric utility boilers. (NOTE: In general, NOx control technologies are categorized as being either primary or secondary control technologies. Primary technologies reduce the amount of NOx pr...

  2. DEMONSTRATION OF SORBENT INJECTION TECHNOLOGY ON A TANGENTIALLY COAL-FIRED UTILITY BOILER (YORKTOWN LIMB DEMONSTRATION)

    EPA Science Inventory

    The report summarizes activities conducted and results achieved in an EPA-sponsored program to demonstrate Limestone Injection Multistage Burner (LIMB) technology on a tangentially fired coal-burning utility boiler, Virginia Power's 180-MWe Yorktown Unit No. 2. his successfully d...

  3. Proceedings of the 2nd symposium on valves for coal conversion and utilization

    SciTech Connect

    Maxfield, D.A.

    1981-01-01

    The 2nd symposium on valves for coal conversion and utilization was held October 15 to 17, 1980. It was sponsored by the US Department of Energy, Morgantown Energy Technology Center, in cooperation with the Valve Manufacturers Association. Seventeen papers have been entered individually into EDB and ERA. (LTN)

  4. Ninth annual coal preparation, utilization, and environmental control contractors conference: Proceedings

    SciTech Connect

    Not Available

    1993-09-01

    Papers are grouped under the following sessions: compliance technology; high-efficiency preparation; characterization; advanced technologies; alternative fuels; coal utilization; industrial/commercial combustor development; combustion; superclean emission systems; carbon dioxide recovery and reuse; air toxics and fine particulates; air toxics sampling and analysis workshop; and combined poster session. Selected papers have been processed separately for inclusion in the Energy Science and Technology Database.

  5. Utilization of coal ash/coal combustion products for mine reclamation

    SciTech Connect

    Dolence, R.C.; Giovannitti, E.

    1997-09-01

    Society`s demand for an inexpensive fuel, combined with ignorance of the long term impacts, has left numerous scars on the Pennsylvania landscape. There are over 250,000 acres of abandoned surface mines with dangerous highwalls and water filled pits. About 2,400 miles of streams do not meet water quality standards because of drainage from abandoned mines. There are uncounted households without an adequate water supply due to past mining practices. Mine fires and mine subsidence plague many Pennsylvania communities. The estimated cost to reclaim these past scars is over $15 billion. The beneficial use of coal ash in Pennsylvania for mine reclamation and mine drainage pollution abatement projects increased during the past ten years. The increase is primarily due to procedural and regulatory changes by the Department of Environmental Protection (DEP). Prior to 1986, DEP required a mining permit and a separate waste disposal permit for the use of coal ash in backfilling and reclaiming a surface mine site. In order to eliminate the dual permitting requirements and promote mine reclamation, procedural changes now allow a single permit which authorize both mining and the use of coal ash in reclaiming active and abandoned pits. The actual ash placement, however, must be conducted in accordance with the technical specifications in the solid waste regulations.

  6. [Ecological protection and sustainable utilization of Erhai Lake, Yunnan].

    PubMed

    Yan, Chang-Zhou; Jin, Xiang-Can; Zhao, Jing-Zhu; Shen, Bing; Li, Ning-Bo; Huang, Chang-Zhu; Xiong, Zhong-Hua

    2005-09-01

    Economic development and increase of population pressure have caused a series of ecological environmental problems of Erhai Lake. These problems include: (1) Quickening of eutrophication process, (2) Decrease of water level and water resources, (3) Habitat deterioration of lakeside zone, and (4) Overfishing and slow depletion of aboriginal fish. Pollutant loading of Erhai Lake is as follows: COD(Cr) 3 008 t x a(-1), TP 137.31 t x a(-1), TN 1 426.35 t x a(-1). According to the mestrophic target of water quality, loading of nitrogen and phosphorus is far above environmental capacity of Erhai Lake. Erhai Lake is now in a pivotal and hypersensitive period of trophic states change, and the position is very critical. Therefore, some countermeasures to solve the problems are presented as follows: (1) Defining the dominant functions of Erhai Lake, (2) Paying attention to the adjustment of the industrial structure and distribution in the course of urbanization, (3) Setting up lakeside zone reserve, (4) Strengthening the control of tourism pollution, (5) Properly adjusting the water level of Erhai Lake, and (6) Some ecological engineering measures for water resources protection in the basin should be taken through collecting and treating of urban sewages, ecological rehabilitating of the main inflowing rivers, constructing of ecological agricultures and improving of rural environment, ecological restoring of aquatic ecosystem, and soil and water conservation.

  7. UTILIZATION OF LOW NOx COAL COMBUSTION BY-PRODUCTS

    SciTech Connect

    J.Y. Hwang; X. Huang; M.G. McKimpson; R.E. Tieder; A.M. Hein; J.M. Gillis; D.C. Popko; K.L. Paxton; Z. Li; X. Liu; X. Song; R.I. Kramer

    1998-12-01

    Low NO{sub x} combustion practices are critical for reducing NO{sub x} emissions from power plants. These low NO{sub x} combustion practices, however, generate high residual carbon contents in the fly ash produced. These high carbon contents threaten utilization of this combustion by-product. This research has successfully developed a separation technology to render fly ash into useful, quality-controlled materials. This technology offers great flexibility and has been shown to be applicable to all of the fly ashes tested (more than 10). The separated materials can be utilized in traditional fly ash applications, such as cement and concrete, as well as in nontraditional applications such as plastic fillers, metal matrix composites, refractories, and carbon adsorbents. Technologies to use beneficiated fly ash in these applications are being successfully developed. In the future, we will continue to refine the separation and utilization technologies to expand the utilization of fly ash. The disposal of more than 31 million tons of fly ash per year is an important environmental issue. With continued development, it will be possible to increase economic, energy and environmental benefits by re-directing more of this fly ash into useful materials.

  8. An integrated approach to the utilization of low rank coals and biofuel

    SciTech Connect

    Sen, S.; Sen, M.; Moitra, N.

    1999-08-01

    While suggesting an integrated approach for utilization of inferior low rank coals for power in India, the importance of low temperature carbonization followed by retrieval of all value-based products has been stressed. It is further suggested that tar, obtained in the process, could be hydrogenated and fractionated in a central plant for conversion to hydrocarbons. High ash char, the principal product of pyrolysis, has been experimentally found to be amenable to beneficiation, yielding suitable fractions for power generation, briquetting, or blending. Experimental studies have shown that forest litters and agricultural wastes, containing significant proportions of spore, cuticle, and exine--considered as precursors of hydrocarbon-generating coal macerals--also yield large quantities of tar, ammonical liquor, and the principal product, char, which can be respectively utilized for the production of petroleum substitutes, value-based chemicals, and source material for blending, briquette making, and char-water slurries, opening up new avenues for fuel utilization and conservation.

  9. Comparison of the solid waste management practices of coal-fired electric utility participants in the Clean Coal Technology Program of the Pittsburgh Energy Technology Center

    SciTech Connect

    Ruppel, T.C.

    1994-12-31

    The Clean Coal Technology (CCT) Program is at a stage where meaningful comparisons can be drawn regarding the practices of the utility participants in the handling of the solid waste and by-products produced by the combustion of coal. The waste management practices of American industry have come under intense scrutiny in recent years, mainly through the Resource Conservation and Recovery Act (RCRA) of 1976 and its amendments. The waste management practices of the coal-fired electric utility industry are no exception, having been the subject of a major report and recent decision by the Environmental Protection Agency (EPA). Coal-fired utilities in the United States are becoming veritable chemicals plants in an attempt to operate clearly. The present review examines the solid waste management practices of the coal-fired electric utility industrial participants in the US Department of Energy`s (DOE`s) CCT Program. No clean coal technologies have been commercialized yet, so no information concerning commercialized waste disposal practices is available. This review is limited to a discussion of clean coal demonstration projects; but it is also an attempt to realistically project what may be expected in the way of waste management from commercialized CCT technologies.

  10. High performance materials in coal conversion utilization. Technical progress report, October 1, 1995--December 31, 1995

    SciTech Connect

    1996-01-01

    This is the ninth quarterly report on a three year grant regarding {open_quotes}High Performance Materials in Coal Conversion Utilization.{close_quotes} The grant is for a joint university/industry effort under the U.S. Department of Energy (DOE) University Coal Research Program. The University of Tennessee Space Institute (UTSI) is the prime contractor and The University of Pennsylvania and Lanxide Corporation are subcontractors. UTSI has completed all the initially planned laboratory exposure tests involving pulverized coal slag on the production Lanxide DIMOX{trademark} ceramic composite material. In addition, the strength testing (at temperature) and analysis of C-ring sections of the exposed production composite is complete. The development of a technique to laser coat the material has been the major activity while awaiting an innovatively produced new test sample. This sample will be tested and compared to the production tubes tested at UTSI.

  11. High performance materials in coal conversion utilization. Technical progress report, April 1, 1995--June 30, 1995

    SciTech Connect

    1995-07-01

    This is the seventh quarterly report on a three year grant regarding {open_quotes}High Performance Materials in Coal Conversion Utilization.{close_quotes} The grant is for a joint university/industry effort under the US Department of Energy (DOE) University Coal Research Program. The University of Tennessee Space Institute (UTSI) is the prime contractor and The University of Pennsylvania and Lanxide Corporation are subcontractors. UTSI has completed the planned laboratory exposure tests involving pulverized coal slag on the production of Lanxide DIMOX{trademark} ceramic composite material. In addition, the strength testing (at temperature) of C-ring sections of the production composite is complete and the analysis of the data is reported in a thesis which was submitted toward a M.S. degree.

  12. Ecology and distribution of major diatom ecotypes in the southern Fort Union coal region of Montana

    SciTech Connect

    Bahls, L.L.; Weber, E.E.; Jarvie, J.O.

    1985-01-01

    From 1975 through 1980, samples were collected to determine the ecology and distribution of the major diatom ecotypes in the southern Fort Union coal region of Montana. Altogether, 370 diatom samples and 289 concurrent water-quality samples were collected at 52 surface-water stations. Sixty-eight major diatom ecotypes were selected for identification on the basis that their percent relative abundance equalled or exceeded 10 following proportional counts of 300 to 400 frustules. Each major diatom ecotype is systematically described in terms of taxonomy and morphology, abundance, ecology, and distribution in the study area. Included are tables of 24 water-quality variables of biological significance for each ecotype. Illustrations and brief descriptions of representative specimens are included to document and facilitate identification. This information may be used to help establish water-quality criteria for the region's aquatic communities, to identify indigenous diatoms or diatom groups that are useful as water-quality indicators, and to provide a basis for an ecological classification of the various diatom associations in the study area. Many of the major diatom ecotypes are identified as having sufficiently narrow ecological amplitudes to be useful as indicators of dissolved solids, suspended sediment, and temperature. These are three of the water-quality variables most likely to be affected by surface mining and related activities. 48 references.

  13. High performance materials in coal conversion utilization. Technical progress report, July 1, 1995--September 30, 1995

    SciTech Connect

    1995-10-01

    This is the eighth quarterly report on a three year grant regarding ``High Performance Materials in Coal Conversion Utilization.`` The grant is for a joint university/industry effort under the US Department of Energy (DOE) University Coal Research Program. The University of Tennessee Space Institute (UTSI) is the prime contractor and the University of Pennsylvania and Lanxide Corporation are subcontractors. The object of this grant is to test, analyze, and improve the heat and coal-slag corrosion resistance of a SiC{sub (p)}/Al{sub 2}O{sub 3} ceramic composite tubular material. The material will be evaluated for its ability to withstand the pressures, temperatures and corrosion attack which would be encountered within a coal-fired high-temperature, high pressure air heater. The evaluation includes strength testing at elevated temperatures of production tubes as well as one manufactured with an innovative new technology. The feasibility of several joining and coating techniques are also being investigated. UTSI has completed all the initially planned laboratory exposure tests involving pulverized coal slag on the production Lanxide DIMOX{trademark} ceramic composite material. In addition, the strength testing (at temperature) and analysis of C- ring sections of the exposed production composite are complete.

  14. High performance materials in coal conversion utilization. Technical progress report, January 1, 1996--March 31, 1996

    SciTech Connect

    1996-04-01

    This is the tenth quarterly report on a three year grant regarding ``High Performance Materials in Coal Conversion Utilization.`` The grant is for a joint university/industry effort under the US Department of Energy (DOE) University Coal Research Program. The University of Tennessee Space Institute (UTSI) is the prime contractor and The University of Pennsylvania and Lanxide Corporation are subcontractors. The object of this grant is to test, analyze, and improve the heat and coal-slag corrosion resistance of a SiC{sub (p)}/Al{sub 2}O{sub 3} ceramic composite tubular material. The material will be evaluated for its ability to withstand the pressures, temperatures and corrosion attack which would be encountered within a coal-fired high-temperature, high pressure air heater. The evaluation includes strength testing at elevated temperatures of production tubes as well as one tube manufactured with an innovative new technology. The feasibility of several joining and coating techniques will also be investigated. UTSI has completed all the initially planned laboratory exposure tests involving pulverized coal slag on the production Lanxide DIMOX{trademark} ceramic composite material. In addition, the strength testing (at temperature) and analysis of C-ring sections of the exposed production composite is complete. The evaluation of a laser-induced coating to laser coat the material has been the major activity this quarter while awaiting an innovatively produced new DIMOX{trademark} test sample.

  15. Estimation of NO{sub x} emissions from pulverized coal-fired utility boilers. Final report

    SciTech Connect

    Wildman, D.J.; Smouse, S.M.

    1995-05-01

    The formation of nitrogen oxides (NO{sub x}) during pulverized-coal combustion in utility boilers is governed by many factors, including the boiler`s design characteristics and operating conditions, and coal properties. Presently, no simple, reliable method is publicly available to estimate NO{sub x} emissions from any coal-fired boiler. A neural network back-propagation algorithm was previously developed using a small data set of boiler design characteristics and operating conditions, and coal properties for tangentially fired boilers. This initial effort yielded sufficient confidence in the use of neural network data analysis techniques to expand the data base to other boiler firing modes. A new neural network-based algorithm has been developed for all major pulverized coal-firing modes (wall, opposed-wall, cell, and tangential) that accurately predicts NO{sub x} emissions using 11 readily available data inputs. A sensitivity study, which was completed for all major input parameters, yielded results that agree with conventional wisdom and practical experience. This new algorithm is being used by others, including the Electric Power Research Institute (EPRI). EPRI has included the algorithm in its new software for making emissions compliance decisions, the Clean Air Technology Workstation.

  16. Direct Utilization of Coal Syngas in High Temperature Fuel Cells

    SciTech Connect

    Celik, Ismail B.

    2014-10-30

    This EPSCoR project had two primary goals: (i) to build infrastructure and work force at WVU to support long-term research in the area of fuel cells and related sciences; (ii) study effects of various impurities found in coal-syngas on performance of Solid Oxide Fuel Cells (SOFC). As detailed in this report the WVU research team has made significant accomplishments in both of these areas. What follows is a brief summary of these accomplishments: State-of-the-art test facilities and diagnostic tools have been built and put into use. These include cell manufacturing, half-cell and full-cell test benches, XPS, XRD, TEM, Raman, EDAX, SEM, EIS, and ESEM equipment, unique in-situ measurement techniques and test benches (Environmental EM, Transient Mass-Spectrometer-MS, and IR Optical Temperature measurements). In addition, computational capabilities have been developed culminating in a multi-scale multi-physics fuel cell simulation code, DREAM-SOFC, as well as a Beowulf cluster with 64 CPU units. We have trained 16 graduate students, 10 postdoctoral fellows, and recruited 4 new young faculty members who have actively participated in the EPSCoR project. All four of these faculty members have already been promoted to the tenured associate professor level. With the help of these faculty and students, we were able to secure 14 research awards/contracts amounting to a total of circa $5.0 Million external funding in closely related areas of research. Using the facilities mentioned above, the effects of PH3, HCl, Cl2, and H2S on cell performance have been studied in detail, mechanisms have been identified, and also remedies have been proposed and demonstrated in the laboratory. For example, it has been determined that PH3 reacts rapidly with Ni to from secondary compounds which may become softer or even melt at high temperature and then induce Ni migration to the surface of the cell changing the material and micro-structural properties of the cell drastically. It is found that

  17. Ash chemistry aspects of straw and coal-straw co-firing in utility boilers

    SciTech Connect

    Frandsen, F.J.; Nielsen, H.P.; Hansen, L.A.; Hansen, P.F.B.; Andersen, K.H.

    1998-12-31

    Deposits formed in straw-fired grate-boilers showed significant amounts of KCl (40--80% (w/w)) and KCl-coated Ca-Si-rich particles. CFB co-firing of straw and coal caused deposits in the convective pass containing predominantly K{sub 2}SO{sub 4} (50--60% (w/w)) with small amounts of KCl close to the metal surface. In pulverized coal-straw co-fired boilers, deposits almost free of KCl were found. Most of the potassium in these deposits is derived from K-Al-Si-rich fly ash particles and the rest occurs as K{sub 2}SO{sub 4}. The presence of K-Al-Si-rich fly ash particles indicates that solid residue quality and reuse of fly ash in cement and concrete production rather than deposit formation may be of concern when utilizing straw in pulverized fuel boilers. This paper provides a review of Danish experiences with high-temperature ash deposit formation in the following full-scale utility boilers: Slagelse CHP (31 MWth), Haslev CHP (23 MWth) and Rudkoebing CHP (10.7 MWth), all straw-fired grate-boilers; Grenaa CHP (80 MWth), a coal-straw co-fired Circulating Fluidized Bed (CFB) boiler; and the Midtkraft-Studstrup Power Station, Unit 1 (380 MWth), a coal-straw co-fired PF-boiler.

  18. Eleventh annual coal preparation, utilization, and environmental control contractors conference: Proceedings

    SciTech Connect

    1995-09-01

    The 75 papers contained in this volume are divided into the following sections: compliance technology; technology base activities; high efficiency preparation; air toxics (especially mercury); air toxics and CO{sub 2} control; superclean emissions; Combustion 2000; advanced research; commercial and industrial combustion systems; alternative fuels; environmental control; and coal utilization. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  19. Commercialization of coal diesel engines for non-utility and export power markets

    SciTech Connect

    Wilson, R.P.; Balles, E.N.; Rao, K.; Benedek, K.R.; Benson, C.E.; Mayville, R.A.; Itse, D.; Kimberley, J.; Parkinson, J.

    1993-11-01

    The basic motivation behind this project is to develop coal-burning heat engine technology primarily for 10-100 MW modular stationary power applications in the late 1990`s and beyond, when oil and gas prices may return to the $5--7/MMBtu range. The fuel is a low-cost, coal-based liquid with the consistency of black paint, composed of 12-micron mean size premium 2% ash coal dust mixed 50/50 with water. The Clean Coal Diesel Plant of the future is targeted for the 10-100 MW non-utility generation (NUG) and small utility markets, including independent power producers (IPP) and cogeneration. A family of plant designs will be offered using the Cooper-Bessemer 3.8, 5.0, and 6.3 MW Model LS engines as building blocks. In addition, larger plants will be configured with an engine in the 10-25 MW class (Cooper will license the technology to other large bore stationary engine manufacturers). The reciprocating engine offers a remarkable degree of flexibility in selecting plant capacity. This flexibility exists because the engines are modular in every sense (fuel cell stacks have similar modularity). Scale-up is accomplished simply by adding cylinders (e.g., 20 vs 16) or by adding engines (4 vs 3). There is no scale-up of the basic cylinder size. Thus, there is essentially no technical development needed to scale-up the Cooper-Bessemer Clean Coal Diesel Technology all the way from 2 MW (one 6-cylinder engine) to 50 MW (eight 20-cylinder engines), other than engineering adaptation of the turbocharger to match the engine.

  20. ASSESSMENT OF CONTROL TECHNOLOGIES FOR REDUCING EMISSIONS OF SO2 AND NOX FROM EXISTING COAL-FIRED UTILITY BOILERS

    EPA Science Inventory

    The report reviews information and estimated costs on 15 emissioncontrol technology categories applicable to existing coal-fired electric utility boilers. he categories include passive controls such as least emission dispatching, conventional processes, and emerging technologies ...

  1. NO{sub x} controls for coal-fired utility boilers in East Central Europe

    SciTech Connect

    Eskinazi, D.; Tavoulareas, E.S.

    1995-12-01

    Increasing environmental pressures worldwide, including East Central Europe are placing greater emphasis on NO{sub x} emission controls in utility power plants. Western Europe, Japan and the U.S. have significant experience in applying NO{sub x} controls, especially in boilers firing hard coal. Some countries in Europe (i.e., Germany and Austria), have gained experience in applying NO{sub x} controls in boilers firing low-rank coal. This experience can be applied to East Central European countries in providing the basis for planning NO{sub x} control projects, suggesting cost-effective solutions, and providing lessons learned. However, while the experience is generally applicable to East Central European countries, differences in boiler design, operation and coal characteristics also need to be considered. This paper begins with a comparison of the NO{sub x} regulations, identifies the key NO{sub x} control technologies and the worldwide experience with them, and discusses the achievable NO{sub x} reduction, O&M impacts, and retrofit costs for each technology. Emphasis is placed on retrofit applications for existing boilers, because new coal-fired power plants are not expected to be built for the next 5-10 years. This paper also focuses on technologies with relatively low cost and operational simplicity: combustion system tuning/optimization. low-NO{sub x} burners (LNB), overfire air (OFA), selective non-catalytic reduction (SNCR), and reburning.

  2. JV Task 126 - Mercury Control Technologies for Electric Utilities Burning Bituminous Coal

    SciTech Connect

    Jason Laumb; John Kay; Michael Jones; Brandon Pavlish; Nicholas Lentz; Donald McCollor; Kevin Galbreath

    2009-03-29

    The EERC developed an applied research consortium project to test cost-effective mercury (Hg) control technologies for utilities burning bituminous coals. The project goal was to test innovative Hg control technologies that have the potential to reduce Hg emissions from bituminous coal-fired power plants by {ge}90% at costs of one-half to three-quarters of current estimates for activated carbon injection (ACI). Hg control technology evaluations were performed using the EERC's combustion test facility (CTF). The CTF was fired on pulverized bituminous coals at 550,000 Btu/hr (580 MJ/hr). The CTF was configured with the following air pollution control devices (APCDs): selective catalytic reduction (SCR) unit, electrostatic precipitator (ESP), and wet flue gas desulfurization system (WFDS). The Hg control technologies investigated as part of this project included ACI (three Norit Americas, Inc., and eleven Envergex sorbents), elemental mercury (Hg{sup 0}) oxidation catalysts (i.e., the noble metals in Hitachi Zosen, Cormetech, and Hitachi SCR catalysts), sorbent enhancement additives (SEAs) (a proprietary EERC additive, trona, and limestone), and blending with a Powder River Basin (PRB) subbituminous coal. These Hg control technologies were evaluated separately, and many were also tested in combination.

  3. Overview of the effects of the coal fuel cycle on hydrology, water quality and use, and aquatic ecology

    SciTech Connect

    Cushman, R.M.; Gough, S.B.; Moran, M.S.

    1980-05-01

    Literature is summarized for the effects of the coal fuel cycle (mining, mine-site processing, transportation, storage, onsite processing, combustion, and waste collection and disposal) on water resources. Aspects considered include surface- and ground-water hydrology, water quality and use, and aquatic ecology. Water use is discussed with regard to both availability and water quality constraints on use. Requirements of the recently enacted Surface Mining Control and Reclamation Act are introduced where appropriate. For the combustion step in the fuel cycle, only those effects which are specific to coal as a fuel are addressed. Effects not specific to coal use (such as thermal effects, impingement, and entrainment resulting from cooling water withdrawal and use) are not considered. Reference is made to more exhaustive studies of the topics reviewed. A summary of the major environmental effects of the coal fuel cycle is given below.

  4. Utilization of a specialized clinic following an ecological accident.

    PubMed

    Aubin, J; Potvin, L; Béland, F; Pineault, R

    1994-01-01

    On August 23, 1988, a fire broke out in a warehouse storing PCBs, forcing the evacuation of 5,500 citizens. Three days later, a specialized clinic was opened to examine and reassure the population. Seventy percent of the evacuated people showed up at the clinic. The aim of this case-control study was to identify the determinants of utilization of this clinic among the evacuated population. Cases and controls were sampled from the cohort of the evacuated adults. Both cases and controls were randomly selected among those who consulted and those who did not consult at the clinic. A logistic regression identified nine predictors of utilization: age, family type of household, annual income less than $40,000, objective and perceived exposure to the toxic smoke, reaction to the risk, perceived scale of the evacuation, number of moves during the evacuation period and consultation elsewhere with a physician. Results showed that the fear resulting from exposure created a stronger motive to consult the clinic than physical symptoms and needs.

  5. Advanced Acid Gas Separation Technology for the Utilization of Low Rank Coals

    SciTech Connect

    Kloosterman, Jeff

    2012-12-31

    Air Products has developed a potentially ground-breaking technology – Sour Pressure Swing Adsorption (PSA) – to replace the solvent-based acid gas removal (AGR) systems currently employed to separate sulfur containing species, along with CO{sub 2} and other impurities, from gasifier syngas streams. The Sour PSA technology is based on adsorption processes that utilize pressure swing or temperature swing regeneration methods. Sour PSA technology has already been shown with higher rank coals to provide a significant reduction in the cost of CO{sub 2} capture for power generation, which should translate to a reduction in cost of electricity (COE), compared to baseline CO{sub 2} capture plant design. The objective of this project is to test the performance and capability of the adsorbents in handling tar and other impurities using a gaseous mixture generated from the gasification of lower rank, lignite coal. The results of this testing are used to generate a high-level pilot process design, and to prepare a techno-economic assessment evaluating the applicability of the technology to plants utilizing these coals.

  6. [Influence of Marine Aquaculture Around Coal Power Plant on Mercury Species Change in Auuatic Ecological Environment].

    PubMed

    Liang, Peng; Wang, Yuan-na; You, Qiong-zhi; Gao, Xue-fei; He, Shan-shan

    2015-08-01

    To investigate the influence of marine aquaculture around coal power plant on Hg species change in aquatic ecological environment, the fish farming area in Xiangshan Harbor, Zhejiang province, was studied. The concentrations of different Hg species in sea water collected from marine aquaculture sites (MS) and references sites (RS) were measured. The result showed that the total mercury (THg) concentration in the surface water reached 83.0 pmol x L(-1) +/- 97.1 pmol x L(-1). Dissolved Hg (DHg) in pore water of core sediment decreased with the increasing depth. Meanwhile, the DHg content in pore water above 10 cm was significantly higher (P < 0.001) than that below 10 cm, which confirmed the influence of coal-fired power plants on the surrounding areas. THg concentration in MS (96.5 pmol x L(-1) +/- 133 pmol x L(-1)) was higher than that in RS (69.5 pmol x L(-1) +/- 39.4 pmol x L(-1)), which was mainly resulted from the accumulation of sewage discharge by the employees and fish feed material in sediments during breeding that were further released to the overlying water. Methylmercury concentration in pore water of MS (24.0 pmol x L(-1) +/- 16.7 pmol x L(-1)) was also significantly higher than that in RS (6.60 pmol x L(-1) +/- 5.11 pmol x L(-1)), which demonstrated that marine aquaculture activities promoted the methylmercury production by increasing the accumulation of organic matter in sediment.

  7. Advanced research and technology: Direct utilization recovery of minerals from coal fly ash. Fossil energy program

    NASA Astrophysics Data System (ADS)

    Burnet, G.; Murtha, M. J.; Adelman, D. J.

    1980-12-01

    Methods for utilizing coal fly ash through processes for the extraction of alumina and titania, and for the separation and use of an iron-rich fraction are described. Research of the HiChlor process for the extraction of alumina and titania by high temperature chlorination of a fly ash reductant mixture is described. An engineering cost evaluation is presented for a centralized HiChlor processing facility to process the fly ash of several large coal fueled power stations. Investigations for a high temperature lime soda process for extraction of alumina from fly ash included the use of several types of quarry limestones and waste materials to replace the limestone and/or soda ash.

  8. Coal.

    ERIC Educational Resources Information Center

    Brant, Russell A.; Glass, Gary B.

    1983-01-01

    Principle work of 23 state geological surveys is summarized. Work includes mapping/estimating coal resources, centralizing data in National Coal Resources Data System through cooperative programs, exploration drilling, and others. Comments on U.S. Geological Survey activities, coal-related conferences/meetings, and industry research activities are…

  9. Computational prediction of tube erosion in coal fired power utility boilers

    SciTech Connect

    Lee, B.E.; Fletcher, C.A.J.; Behnia, M.

    1999-10-01

    Erosion of boiler tubes causes serious operational problems in many pulverized coal-fired utility boilers. A new erosion model has been developed in the present study for the prediction of boiler tube erosion. The Lagrangian approach is employed to predict the behavior of the particulate phase. The results of computational prediction of boiler tube erosion and the various parameters causing erosion are discussed in this paper. Comparison of the numerical predictions for a single tube erosion with experimental data shows very good agreement.

  10. Co-utilization of pulverized coal ash and flue gas scrubber sludge

    SciTech Connect

    Burnet, G.; Murtha, M.J.; Harnby, N.

    1984-01-01

    The increased use of coal to generate electricity and of scrubbers to reduce SO/sub x/ emissions is creating solid waste disposal problems of increasing magnitude. The lime-sinter process for the recovery of alumina from pulverized fuel ash (PFA) provides a means for co-utilization of these wastes. The FGD scrubber sludge is used as a mineralizer and partial replacement for the limestone. Extractable alumina-containing compounds are formed and high alumina yields result at moderate sintering temperatures. The process residue formed shows promise as a raw material for the manufacture of portland cement. 8 references, 6 figures, 3 tables.

  11. Present status and future initiatives regarding coal ash utilization in the United States

    SciTech Connect

    Blackstock, T.H.; Tyson, S.S.

    1996-11-01

    The American Coal Ash Association, Inc., (ACAA) has represented the coal combustion byproduct (CCB) industry in the US since 1968. ACAA`s mission is to advance the management and use of CCBs in ways that are technically sound, commercially competitive and environmentally safe. ACAA conducts an annual survey of coal-burning electric utilities in the US to determine the quantities of CCBs that are produced and used. In 1994 approximately 80.8 million metric tons (89.0 million short tons) of CCBs were produced in the US in the form of fly ash, bottom ash, boiler slag and flue gas desulfurization (FGD) material. About 25% of the combined production of these CCBs was used, while the remainder was disposed. Quantities for CCB production and use in the US for calendar-year 1994 are summarized. In 1994 fly ash production alone amounted to 49.7 million metric tons (54.8 million short tons), and of that amount approximately 24%, some 11.7 million metric tons (12.9 million short tons), was used. The major applications for fly ash were: cement and concrete products (57.0%); structural fill (9.4%); road base (5.5%); flowable fill (5.0%); waste solidification and stabilization (1.9%); mineral filler applications (1.0%); mining applications (0.7%); and various other applications (19.5%). This information is shown.

  12. Ecological Unequal Exchange: International Trade and Uneven Utilization of Environmental Space in the World System

    ERIC Educational Resources Information Center

    Rice, James

    2007-01-01

    We evaluate the argument that international trade influences disproportionate cross-national utilization of global renewable natural resources. Such uneven dynamics are relevant to the consideration of inequitable appropriation of environmental space in particular and processes of ecological unequal exchange more generally. Using OLS regression…

  13. Utilization of coal fly ash in solidification of liquid radioactive waste from research reactor.

    PubMed

    Osmanlioglu, Ahmet Erdal

    2014-05-01

    In this study, the potential utilization of fly ash was investigated as an additive in solidification process of radioactive waste sludge from research reactor. Coal formations include various percentages of natural radioactive elements; therefore, coal fly ash includes various levels of radioactivity. For this reason, fly ashes have to be evaluated for potential environmental implications in case of further usage in any construction material. But for use in solidification of radioactive sludge, the radiological effects of fly ash are in the range of radioactive waste management limits. The results show that fly ash has a strong fixing capacity for radioactive isotopes. Specimens with addition of 5-15% fly ash to concrete was observed to be sufficient to achieve the target compressive strength of 20 MPa required for near-surface disposal. An optimum mixture comprising 15% fly ash, 35% cement, and 50% radioactive waste sludge could provide the solidification required for long-term storage and disposal. The codisposal of radioactive fly ash with radioactive sludge by solidification decreases the usage of cement in solidification process. By this method, radioactive fly ash can become a valuable additive instead of industrial waste. This study supports the utilization of fly ash in industry and the solidification of radioactive waste in the nuclear industry.

  14. Coal Mining Machinery Development As An Ecological Factor Of Progressive Technologies Implementation

    NASA Astrophysics Data System (ADS)

    Efremenkov, A. B.; Khoreshok, A. A.; Zhironkin, S. A.; Myaskov, A. V.

    2017-01-01

    At present, a significant amount of energy spent for the work of mining machines and coal mining equipment on coal mines and open pits goes to the coal grinding in the process of its extraction in mining faces. Meanwhile, the increase of small fractions in mined coal does not only reduce the profitability of its production, but also causes a further negative impact on the environment and degrades labor conditions for miners. The countermeasure to the specified processes is possible with the help of coal mining equipment development. However, against the background of the technological decrease of coal mine equipment applied in Russia the negative impact on the environment is getting reinforced.

  15. Development of advanced NO sub x control concepts for coal-fired utility boilers

    SciTech Connect

    Newhall, J.; England, G.; Seeker, W.R.

    1992-01-16

    Hybrid technologies for reduction of NO{sub x} emissions from coal fired utility boilers may offer greater levels of NO{sub x} control than the sum of the individual technologies, leading to more cost effective emissions control strategies. CombiNO{sub x} is an integration of modified reburning, promoted selective non-catalytic reduction (SNCR) and methanol injection to reduce NO{sub x} emissions from coal fired flue gas. The first two steps, modified reburning and promoted SNCR are linked. It was shown previously that oxidation of CO in the presence of a SNCR agent enhances the NO reduction performance. Less reburning than is typically done is required to generate the optimum amount of CO to promote the SNCR agent. If the reburn fuel is natural gas this may result in a significant cost savings over typical reburning. Injection of methanol into the flue gas has been shown at laboratory scale to convert NO to NO{sub 2} which may subsequently be removed in a wet scrubber. The overall objective of this program is to demonstrate the effectiveness of the CombiNOx process at a large enough scale and over a sufficiently broad range of conditions to provide all of the information needed to conduct a full-scale demonstration in a coal fired utility boiler. The specific technical goals of this program are: 70% NO{sub x} reduction at 20% of the cost of selective catalytic reduction; NO{sub x} levels at the stack of 60 ppm for ozone non-attainment areas; demonstrate coal reburning; identify all undesirable by-products of the process and their controlling parameters; demonstrate 95% NO{sub 2} removal in a wet scrubber. During this reporting period, experimental work was initiated at both the laboratory and pilot scale in the Fundamental Studies phase of the program. The laboratory scale work focused on determining whether or not the NO{sub 2} formed by the methanol injection step can be removed in an SO{sub 2} scrubber.

  16. Economics of utilization of high sulfur coal resources - an integrated market approach

    USGS Publications Warehouse

    Bhagwat, S.B.

    1993-01-01

    Before the Clean Air Act Amendments of 1990, coal policies - especially coal research policies - were geared to find a solution to the sulfur emission problem. However, technologies to reduce sulfur emissions cannot be tailored for a single coal. A technology that will clean Illinois coal to compliance levels will do the same, or nearly the same, for most other types of coal. This paper will discuss an integrated approach to the analysis of the future of coals from different regions in the United States and its implications for coal-related policies by government and industry.

  17. Characterizing mercury emissions from a coal-fired power plant utilizing a venturi wet FGD system

    SciTech Connect

    Vann Bush, P.; Dismukes, E.B.; Fowler, W.K.

    1995-11-01

    Southern Research Institute (SRI) conducted a test program at a coal-fired utility plant from October 24 to October 29, 1994. The test schedule was chosen to permit us to collect samples during a period of consecutive days with a constant coal source. SRI collected the samples required to measured concentrations of anions and trace elements around two scrubber modules and in the stack. Anions of interest were CI{sup -}, F{sup -}, and SO{sub 4}{sup =}. We analyzed samples for five major elements (Al, Ca, Fe, Mg, and Ti) and 16 trace elements (As, B, Ba, Be, Cd, Co, Cr, Cu, Hg, Mn, Mo, Ni, Pb, Sb, Se, and V). SRI made measurements across two scrubber modules, each treating nominally 20% of the total effluent from the boiler. Across one module we examined the effects of changes in the liquid-to-gas ratio (L/G) on the efficiency with which the scrubber removes trace elements and anions from the flue gas. Across another module we examined the effects of slurry pH on the removal of trace elements and anions from the flue gas. Measurements in the stack quantified emissions rates of anions and trace elements.

  18. Selenium and arsenic speciation in fly ash from full-scale coal-burning utility plants.

    PubMed

    Huggins, Frank E; Senior, Constance L; Chu, Paul; Ladwig, Ken; Huffman, Gerald P

    2007-05-01

    X-ray absorption fine structure spectroscopy has been used to determine directly the oxidation states and speciation of selenium and arsenic in 10 fly ash samples collected from full-scale utility plants. Such information is needed to assess the health risk posed by these elements in fly ash and to understand their behavior during combustion and in fly ash disposal options, such as sequestration in tailings ponds. Selenium is found predominantly as Se(IV) in selenite (SeO3(2-)) species, whereas arsenic is found predominantly as As(V) in arsenate (AsO4(3-)) species. Two distinct types of selenite and arsenate spectra were observed depending upon whether the fly ash was derived from eastern U.S. bituminous (Fe-rich) coals or from western subbituminous or lignite (Ca-rich) coals. Similar spectral details were observed for both arsenic and selenium in the two different types of fly ash, suggesting that the postcombustion behavior and capture of both of these elements are likely controlled by the same dominant element or phase in each type of fly ash.

  19. Thermal pollution consequences of the implementation of the president's energy message on increased coal utilization.

    PubMed Central

    Parker, F L

    1979-01-01

    The thermal consequences of coal utilization are most meaningfully assessed in comparison with the form of power generation replaced by coal which is most likely nuclear. The different effects are influenced by siting decisions and the intrinsic thermal efficiencies of the two fuel systems. Nuclear power plants discharge 50% more waste Rheat to the atmosphere through cooling towers or to a water body than coal-fired plants. Coal-fired plants require about 2/3 as much water as nuclear power plants. Nearly every property of water is affected nonlinearly by temperature, and biological effects may amplify these changes because protein denaturation takes place more rapidly above 30 degrees C and these high temperatures affect bactericidal and viricidal activity of chlorine compounds. Usually algal populations change from a dominance of diatoms and green algae to dominance by blue-green algae. All organisms experience elevated metabolic rates at higher temperatures which may affect total energy needs, foraging ability, reproduction, migration and susceptibility to disease. Intake structures inevitably draw many organisms into the cooling system of a power plant, but the number and kind are influenced by its location, configuration, and mode of operation. Use of water recirculation systems reduces water use and with it, the number of organisms entrained. Mechanical damage in the cooling system to small organisms is generally low, but fish and their larvae and eggs may be seriously damaged. Discharge effects may also be severe but are generally local. The near field, where there are strong shear velocities and rapid temperature changes are particularly stressful to fish, and stringent limitations on the timing and strength of discharges may be required to reduce these stresses to nondamaging levels. Off-stream cooling systems may increase cloudiness, ground fog, precipitation, temperature and local winds, but these effects generally extend no further than 1000 m even in

  20. RESIDUES FROM COAL CONVERSION AND UTILIZATION: ADVANCED MINERALOGICAL CHARACTERIZATION AND DISPOSED BYPRODUCT DIAGENESIS

    SciTech Connect

    Gregory J. McCarthy; Dean G. Grier

    1998-03-01

    The goals of the project are two-fold: (1) to upgrade semi-quantitative X-ray diffraction (QXRD) methods presently used in analyzing complex coal combustion by-product (CCB) systems, with the quantitative Rietveld method, and (2) to apply this method to a set of by-product materials that have been disposed or utilized for a long period (5 years or more) in contact with the natural environment, to further study the nature of CCB diagenesis. The project is organized into three tasks to accomplish these two goals: (1) thorough characterization of a set of previously analyzed disposed by-product materials, (2) development of a set of CCB-specific protocols for Rietveld QXRD, and (3) characterization of an additional set of disposed CCB materials, including application of the protocols for Rietveld QXRD developed in Task 2.

  1. Sacrificing the West for power: utilities risk region's ruin for nukes and coal

    SciTech Connect

    Bird, E.

    1980-09-01

    Uranium and coal development in the western states is progressing at a rate which ignores the socio-economic and environmental impacts of desertification of the West in exchange for reducing oil imports. Westerners are organizing to save their homelands by challenging the large utilities, particularly the Tennessee Valley Authority. Water is the central issue, with residents claiming that agriculture replenishes ground water, but mining and energy production do not. Uranium ore tailings are another area of concern for those left to deal and live with the radioactive wastes. Environmentalists oppose the water contamination associated with TVA's in-situ mine projects and its aggressive uranium development. At least 26 energy companies have development plans involving power generation for midwest cities and the West Coast. (DCK)

  2. RESIDUES FROM COAL CONVERSION AND UTILIZATION: ADVANCED MINERALOGICAL CHARACTERIZATION AND DISPOSED BYPRODUCT DIAGENESIS

    SciTech Connect

    Gregory J. McCarthy; Dean G. Grier

    1998-09-01

    The goals of the project are two-fold: (1) to upgrade semi-quantitative X-ray diffraction (QXRD) methods presently used in analyzing complex coal combustion by-product (CCB) systems, with the quantitative Rietveld method, and (2) to apply this method to a set of by-product materials that have been disposed or utilized for a long period (5 years or more) in contact with the natural environment, to further study the nature of CCB diagenesis. The project is organized into three tasks to accomplish these two goals: (1) thorough characterization of a set of previously analyzed disposed by-product materials, (2) development of a set of CCB-specific protocols for Rietveld QXRD, and (3) characterization of an additional set of disposed CCB materials, including application of the protocols for Rietveld QXRD developed in Task 2.

  3. Development of advanced NO sub x control concepts for coal-fired utility boilers

    SciTech Connect

    Newhall, J.; England, G.; Seeker, W.R.

    1991-12-23

    Hybrid technologies for reduction of NO{sub x} emissions from coal fired utility boilers may offer greater levels of NO{sub x} control than the sum of the individual technologies, leading to more cost effective emissions control strategies. Energy and Environmental Research Corporation had developed a hybrid NO{sub x} control strategy involving two proprietary concepts which has the potential to meet the US Department of Energy's goal at a significant reduction in cost compared to existing technology. The process has been named CombiNO{sub x}. CombiNO{sub x} is the integration of three separate NO control technologies: (1) Gas Reburning, (2) CO-Promoted Selective Non-Catalytic Reduction, and (3) Methanol Injection/NO{sub 2} Scrubbing.

  4. Environmental release of mercury from coal utilization by-products: will new mercury controls at power plants make a difference?

    SciTech Connect

    Aljoe, W.W.; Feeley, T.J., III; Brickett, L.A.; Schroeder, K.T.; Murphy, J.T.

    2005-09-30

    The US Department of Energy's National Energy Technology Laboratory (DOE/NETL) uses the term coal utilization by-products (CUBs) to describe the solid materials produced by the combustion or gasification of coal. The following general observations can be drawn from results of field tests that have been carried out thus far to determine whether new technologies for mercury emission control at coal power plants will affect the release of mercury from CUBs. There appears to be only minimal potential mercury release to the environment in typical disposal or utilization application for CUBs generated using ACI control technologies. There appears to be only minimal mercury release to the environment for CUBs generated using wet FGD control technologies. The amount of mercury leached from CUBs samples tested is significantly lower than the federal drinking water standards and water quality criteria for the protection of aquatic life. 3 figs., 2 tabs.

  5. A bottom-up method to develop pollution abatement cost curves for coal-fired utility boilers

    EPA Science Inventory

    This paper illustrates a new method to create supply curves for pollution abatement using boiler-level data that explicitly accounts for technology costs and performance. The Coal Utility Environmental Cost (CUECost) model is used to estimate retrofit costs for five different NO...

  6. Floristic and ecological significance of coal balls from late Middle Pennsylvanian strata of western Pennsylvania, USA

    SciTech Connect

    Feng, B.C.

    1987-01-01

    342 coal balls or pieces of coal balls, representing a single concretionary mass occupying the full thickness of the original peat mass of a thin Allegheny Formation coal seam, were collected at the Derringer Corners locality, Lawrence County, western Pennsylvania, late Middle Pennsylvanian age. In the study of systematics of pteridosperms, two stem species (Schopfiastrum decussatum and Sutcliffia insignis), two leaf species (Alethopteris lesquereuxii and Alethopteris sullivantii), and one seed species (Pachytesta noei) are described and illustrated; the concentric leaf traces of Sutcliffia has been proved; one new stem species (Heterangium crossii) is designated. Morphological and anatomical variance of medullosan roots are also discussed. The technique transferring the entire epidermal tissue and cuticle of alethopterid pinnules from coal ball specimens, macerated by using EDTA solution, has been illustrated. Such preparations provide three-dimensional structure. The coal ball flora was composed of four major plant groups comprising about 30 genera common in the Pennsylvania Euramerican coal swamps. The abundance of lycopods found in the coal balls is generally recognized as an indicator of a wet environment or habitat. However, the low shoot/root ratio determined infers relatively dry conditions in the coal-forming peat swamps at the Derringer Corners. The discrepancy of these two environmental indicators is discussed, and it is suggested that the regional climate was relatively dry, compared to that of some earlier coal-forming environment, but edaphic and perhaps geomorphic conditions resulted in local areas of wet habitat.

  7. Evaluation of technology modifications required to apply clean coal technologies in Russian utilities. Final report

    SciTech Connect

    1995-12-01

    The report describes the following: overview of the Russian power industry; electric power equipment of Russia; power industry development forecast for Russia; clean coal technology demonstration program of the US Department of Energy; reduction of coal TPS (thermal power station) environmental impacts in Russia; and base options of advanced coal thermal power plants. Terms of the application of clean coal technology at Russian TPS are discussed in the Conclusions.

  8. Coal Research

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Coal slurries are "clean" pulverized coal mixed with oil or water. Significant fuel savings can be realized when using coal slurries. Advanced Fuels Technology (AFT) utilized a COSMIC program, (Calculation of Complex Chemical Equilibrium Compositions), which provides specific capabilities for determining combustion products. The company has developed a cleaning process that removes much of the mineral sulphur and ash from the coals.

  9. Characterization and Failure Analysis of Ceramic Filters Utilized for Emission Control Coal Gasification

    SciTech Connect

    Daniel Mei; Jianren Zhou; Ziaul Huque

    1998-03-01

    Advanced integrated gasification combined cycle (IGCC) and pressurized fluidized bed combustion (PFBC) power system requires both hot gas desulfurization and particulate filtration to improve system thermal efficiency and overall performance. Therefore, effective high temperature ceramic filters are indispensable key component in both of the advanced IGCC and PFBC coal based power systems to perform hot gas cleanup work. To meet the environmental particulate emission requirements and improve thermal efficiency, ceramic filters are mainly utilized to cleanup the hot gas particulate to protect downstream heat exchanger and gas turbine components from fouling and corrosion. The mechanical integrity of ceramic filters and an efficient dust cake removal system are the key issues for hot gas cleanup systems. The filters must survive combined stresses due to mechanical, thermal, chemical and steam attack throughout normal operations (cold back pulse cleaning jets), unexpected excessive ash accumulation, and the start up and shut down conditions. To evaluate the design and performance of ceramic filters, different long term filter testing programs were conducted. To fulfill this purpose, two Advanced Particle Filter (APF) systems were complete at Tidd PFBC Demonstration Plant, in Brilliant, Ohio in late 1990 as part of the Department of Energy's (DOE) Clean Coal Technology Program. But the most undesirable thing ever happened was the sudden functional and physical failures of filters prior to its designed life time. In Tidd APF filter vessel, twenty eight (28) filters failed one time. Significant research effort has been carried out to find out the causes that led to the early failure of filters. In this work, the studies are emphasized on the possible failure causes analysis of rigid ceramic candle filters. The objectives of this program were to provide an systematic study on the characterization of filters, material laboratory analysis on filter micro-structure, the dust

  10. Mercury speciation and distribution in a 660-megawatt utility boiler in Taiwan firing bituminous coals.

    PubMed

    Hsi, Hsing-Cheng; Lee, Hsiu-Hsia; Hwang, Jyh-Feng; Chen, Wang

    2010-05-01

    Mercury speciation and distribution in a 660-MW tangential-fired utility boiler in Taiwan burning Australian and Chinese bituminous coal blends was investigated. Flue gases were simultaneously sampled at the selective catalytic reduction (SCR) inlet, the SCR outlet, the electrostatic precipitator (ESP) outlet, and the stack. Samplings of coal, lime, bottom ash/slag, fly ash, and gypsum slurry were also conducted. Results indicated that flue gases at the inlet to SCR contained a great potion of particle-bound mercury (Hg(p)), 59-92% of the total mercury. Removal of mercury was not observed for the SCR system. However, repartitioning of mercury species across the SCR occurred that significantly increased the portion of elemental mercury (Hg0) to up to 29% and oxidized mercury (Hg2+) to up to 33% in the SCR outlet gas. Overreporting of Hg(p) at the inlet of SCR may cause the observed repartitioning; the high ammonia/nitric oxide circumstance in the SCR unit was also speculated to cause the mercury desorption from ash particles and subsequent reentrance into the gas phase. ESP can remove up to 99% of Hg(p), and wet flue gas desulfurization (FGD) can remove up to 84% of Hg2+. Mercury mass balances were calculated to range between 81 and 127.4%, with an average of 95.7% wherein 56-82% was in ESP fly ash, 8.7-18.6% was retained in the FGD gypsum, and 6.2-26.1% was emitted from the stack. Data presented here suggest that mercury removal can be largely enhanced by increasing the conversion of Hg0 into Hg(p) and Hg2+.

  11. Economic comparison of fabric filters and electrostatic precipitators for particulate control on coal-fired utility boilers

    NASA Technical Reports Server (NTRS)

    Cukor, P. M.; Chapman, R. A.

    1978-01-01

    The uncertainties and associated costs involved in selecting and designing a particulate control device to meet California's air emission regulations are considered. The basic operating principles of electrostatic precipitators and fabric filters are discussed, and design parameters are identified. The size and resulting cost of the control device as a function of design parameters is illustrated by a case study for an 800 MW coal-fired fired utility boiler burning a typical southwestern subbituminous coal. The cost of selecting an undersized particulate control device is compared with the cost of selecting an oversized device.

  12. Projections of air toxic emissions from coal-fired utility combustion: Input for hazardous air pollutant regulators

    SciTech Connect

    Szpunar, C.B.

    1993-08-01

    The US Environmental Protection Agency (EPA) is required by the 1990 CAAA to promulgate rules for all ``major`` sources of any of these HAPs. According to the HAPs section of the new Title III, any stationary source emitting 10 tons per year (TPY) of one HAP or 25 TPY of a combination of HAPs will be considered and designated a major source. In contrast to the original National Emission Standards for Hazardous Air Pollutants (NESHAP), which were designed to protect public health to ``an ample margin of safety,`` the new Title III, in its first phase, will regulate by industrial category those sources emitting HAPs in excess of the 10/25-TPY threshold levels, regardless of health risks. The trace elements normally associated with coal mineral matter and the various compounds formed during coal combustion have the potential to produce hazardous air toxic emissions from coal-fired electric utilities. Under Title III, the EPA is required to perform certain studies, prior to any regulation of electric utilities; these studies are currently underway. Also, the US Department of Energy (DOE) maintains a vested interest in addressing those energy policy questions affecting electric utility generation, coal mining, and steel producing critical to this country`s economic well-being, where balancing the costs to the producers and users of energy with the benefits of environmental protection to the workers and the general populace remains of significant concern.

  13. Coal use in the People`s Republic of China, Volume 2: The economic effects of constraining coal utilization

    SciTech Connect

    Rose, A.; Lim, D.; Frias, O.; Benavides, J.; Tompkins, M.M.

    1994-12-01

    The People`s Republic of China (hereafter referred to as China) is the largest producer and consumer of coal in the world. The dominance of coal in China`s energy balance has come at a high price to the environment. With the recent attention given to global warming issues, China`s energy consumption and production practices have become the subject of much concern. Of particular concern is China`s ability to reduce CO{sub 2} emissions by constraining coal use and the impact such policies will likely have on the Chinese economy. The study is divided into two reports. Volume 1 focuses on the full coal fuel cycle, emissions, and environmental effects. This report (Volume 2) analyzes various CO{sub 2} mitigation strategies and determines their effect on economic growth. Contrary to what some analysts have claimed, the current work suggests that it would not be costly for the Chinese to reduce CO{sub 2} emissions. In fact, some strategies were accompanied by increases in China`s energy and economic efficiency, which actually stimulated economic growth.

  14. Utilization of lightweight materials made from coal gasification slags. Quarterly report, June 1--August 31, 1996

    SciTech Connect

    1996-12-31

    Integrated-gasification combined-cycle (IGCC) technology is an emerging technology that utilizes coal for power generation and production of chemical feedstocks. However, the process generates large amounts of solid waste, consisting of vitrified ash (slag) and some unconverted carbon. In previous projects, Praxis investigated the utilization of ``as-generated`` slags for a wide variety of applications in road construction, cement and concrete production, agricultural applications, and as a landfill material. From these studies, we found that it would be extremely difficult for ``as-generated`` slag to find large-scale acceptance in the marketplace even at no cost because the materials it could replace were abundantly available at very low cost. It was further determined that the unconverted carbon, or char, in the slag is detrimental to its utilization as sand or fine aggregate. It became apparent that a more promising approach would be to develop a variety of value-added products from slag that meet specific industry requirements. This approach was made feasible by the discovery that slag undergoes expansion and forms a lightweight material when subjected to controlled heating in a kiln at temperatures between 1400 and 17000F. These results confirmed the potential for using expanded slag as a substitute for conventional lightweight aggregates (LWA). The technology to produce lightweight and ultra-lightweight aggregates (ULWA) from slag was subsequently developed by Praxis. The major objectives of the subject project are to demonstrate the technical and economic viability of commercial production of LWA and ULWA from slag and to test the suitability of these aggregates for various applications. The project goals are to be accomplished in two phases: Phase 1, comprising the production of LWA and ULWA from slag at the large pilot-scale, and Phase 2, which involves commercial evaluation of these aggregates in a number of applications. Accomplishments are described.

  15. A CO-UTILIZATION OF COAL WITH E-FUEL FROM ENERTECH'S SLURRYCARBtm PROCESS

    SciTech Connect

    Susan L. Hoang

    2000-03-02

    In August 1999, EnerTech Environmental, LLC (EnerTech) and the Federal Energy Technology Center (FETC) entered into a Cooperative Agreement to develop the first SlurryCarb{trademark} facility for converting Municipal Sewage Sludge (MSS) into a high-density slurry fuel, which could be co-utilized with coal in various industrial applications. Funded primarily by private investors, this program was divided into two major phases, Project Definition (Phase 0) and Design, Construction, and Operation (Phase 1). Project Definition, performed during this reporting period, was designed to define the project from a technical, economic, and scheduling standpoint. Once defined, much of the project risk would be appropriately mitigated thereby providing stakeholders, such as FETC, less risk when investing in the more costly Phase 1, which includes the design, construction, and operation of the first SlurryCarb{trademark} facility. Since May 1999, EnerTech has made significant progress in the tasks required in Phase 0 for bringing this project to Phase 1. These accomplishments have enhanced the probability for success thereby reducing the risk to the United States Department of Energy's (DOE) for its investment in the project. Phase 0 technical accomplishments include: Locating and securing a project site for the 60 dry ton per day (DTPD) SlurryCarb{trademark} facility; Locating and securing a project partner who will supply the necessary MSS for the project revenue stream; Completing the basic engineering of the project, which included value engineering for reducing technical risk and lowering project costs (final drawings, detail technical review, test runs on process development unit, fuel production for fuel usage research, and final cost estimate all pending); Research and a market study necessary for finding a potential fuel user, which included working with General Electric Environmental Research Corporation (EER) with a focus on coal utilization (locate actual fuel user

  16. Energy-technological method for utilization of coal of the Kansko-Achinskii basin

    NASA Astrophysics Data System (ADS)

    Islamov, S. R.

    2013-11-01

    The state of the market segments connected with coal fuel consumption is estimated. As a whole it is characterized by the shortage of high-calorific coals for special purposes and the excess of offerings of low-rank coals. The classic method for firing coal has substantially exhausted its potential and is not in the condition to meet the ever increasing needs of power efficiency and environmental safety. For resolution of the existing situation the author proposes to use the technology of internal partial coal gasification with the parallel production of heat energy and brown-coal coke. Scopes of new products are briefly described with the prevailing orientation on the replacement of classic coke in metallurgy.

  17. Determination of ecologically vital groundwaters at selected sites in the Formerly Utilized Sites Remedial Action Program

    SciTech Connect

    Vinikour, W.S.; Yin, S.C.L.

    1989-08-01

    The US Department of Energy is classifying groundwaters at sites in its Formerly Utilized Sites Remedial Action Program (FUSRAP). Of particular concern is the potential presence of groundwaters that are highly vulnerable to contamination and that are either (1) irreplaceable sources of drinking water or (2) ecologically vital. Conditions at nine FUSRAP sites were evaluated to determine if ecologically vital groundwaters are present. The sites evaluated were Wayne Interim Storage Site, Maywood Interim Storage Site, and Middlesex Sampling Plant in New Jersey; Ashland 2 Site, Seaway Industrial Park, Colonie Interim storage Site, and Niagara Falls Storage Site in New York; and the St. Louis Airport Site and Hazelwood Interim Storage Site in Missouri. The analyses indicated that groundwaters are vulnerable to contamination at all but two of the sites -- the Ashland 2 and Seaway Industrial Park sites in New York. Groundwater discharge points were identified within a 2-mile radius (i.e., the classification review area) of all of the sites. No ecologically vital groundwater areas exist in the vicinities of any of the nine FUSRAP sites evaluated. 35 refs., 17 figs.

  18. Commercialization of coal-fired diesel engines for cogeneration and non-utility power markets

    SciTech Connect

    Wilson, R.P.; Rao, K.; Benedek, K.R.; Itse, D.; Parkinson, J.; Kimberley, J.; Balles, E.N.; Benson, C.E.; Smith, C.

    1992-12-31

    The primary objective of this METC project is to established practical, durable components compatible with clean coal slurry fuel and capable of low emissions. The components will be integrated into a coal power system for a 100-hr proof-of-concept test. The goal of this program is to advance the stationary coal-fueled diesel engine to the next plateau of technological readiness, and thus provide the springboard to commercialization.

  19. Commercialization of coal-fired diesel engines for cogeneration and non-utility power markets

    SciTech Connect

    Wilson, R.P.; Rao, K.; Benedek, K.R.; Itse, D.; Parkinson, J.; Kimberley, J.; Balles, E.N.; Benson, C.E.; Smith, C.

    1992-01-01

    The primary objective of this METC project is to established practical, durable components compatible with clean coal slurry fuel and capable of low emissions. The components will be integrated into a coal power system for a 100-hr proof-of-concept test. The goal of this program is to advance the stationary coal-fueled diesel engine to the next plateau of technological readiness, and thus provide the springboard to commercialization.

  20. A novel route to utilize waste engine oil by blending it with water and coal.

    PubMed

    Zhang, Kang; Cao, Qing; Jin, Li'e; Li, Ping; Zhang, Xiaohua

    2017-03-01

    Coal-oil-water slurry (COWS) synfuel can be prepared successfully by waste engine oil (WEO), water and coal in the existence of Tween 80 and SL. The effects of coal type, coal particle size distribution, and WEO blending proportion (α) on the slurryability of COWS were investigated, and certain essential properties, such as slurryability, rheology, thixotropy, and stability of COWS were examined. The results show that the maximum coal content of COWS decreases with an increment in α, ranging from 60wt.% at α=0 to 48wt.% at α=15wt.%. The apparent viscosity of COWS becomes high when the amount of WEO is increased for the same coal content. The lower heating value (19.15kJ/g) of 48wt.% COWS (α=15wt.%) is equivalent to that of CWS with 67.88wt.% coal. The mass ratio of separated supernatant to oil-water emulsion for COWS with 49wt.% coal decreases by 1.12% while the amount of WEO is increased to 15wt.% from 10wt.%. COWS exhibits the non-Newtonian pseudoplastic fluid behavior. Its pseudoplasticity and thixotropy are also promoted as the coal content of COWS is increased. And the dispersion and stabilization mechanism of COWS is discussed.

  1. In-situ study of beneficial utilization of coal fly ash in reactive mine tailings.

    PubMed

    Lee, Joon Kyu; Shang, Julie Q; Wang, Hongliu; Zhao, Cheng

    2014-03-15

    Oxidation of reactive mine tailings and subsequent generation of acid mine drainage (AMD) have been long recognized as the largest environmental concern for the mining industry. Laboratory studies on utilization of coal fly ash in management of reactive mine tailings have shown reducing water and oxygen infiltration into tailings matrix, thus preventing oxidation of sulphide minerals and acid generation. However, few data from field studies to evaluate the performance of co-placement of mine tailings and fly ash (CMF hereafter) are reported in the open literature. This paper documents the construction and instrumentation of three CMF systems on the Musselwhite mine located in Ontario, Canada and presents results of 3-year real time monitoring. The field data indicates that the CMFs reduced the ingress of water due to cementation generated by hydration of fly ash. It was also found that the electrical conductivity of leachate from CMFs decreased in the early stage of co-placement, compared to the control. With further study, the principle and approach demonstrated in this paper can be adopted as a sustainable technology in the mine tailings management.

  2. Utilization of lightweight materials made from coal gasification slags. Quarterly report, September--November 1995

    SciTech Connect

    1995-12-01

    Integrated-gasification combined-cycle (IGCC) technology is an emerging technology that utilizes coal for power generation and production of chemical feedstocks. However, the process generates large amounts of solid waste, consisting of vitrified ash (slag) and some unconverted carbon. Slag undergoes expansion and forms a lightweight material when subjected to controlled heating in a kiln. The potential exists for using expanded slag as a substitute for conventional lightweight aggregates (LWA). The technology to produce lightweight and ultra-lightweight aggregates (ULWA) from slag was subsequently developed. The project scope consists of collecting a 20-ton sample of slag (primary slag), processing it for char removal, and subjecting it to pyroprocessing to produce expanded slag aggregates of various size gradations and unit weights, ranging from 12 to 50 lb/ft{sup 3}. A second smaller slag sample will be used for confirmatory testing. The expanded slag aggregates will then be tested for their suitability in manufacturing precast concrete products (e.g., masonry blocks and roof tiles) and insulating concrete, first at the laboratory scale and subsequently in commercial manufacturing plants. These products will be evaluated using ASTM and industry test methods. Technical data generated during production and testing of the products will be used to assess the overall technical viability of expanded slag production. In addition, a market assessment will be made based on an evaluation of both the expanded slag aggregates and the final products, and market prices for these products will be established in order to assess the economic viability of these utilization technologies.

  3. Coal pump

    DOEpatents

    Bonin, John H.; Meyer, John W.; Daniel, Jr., Arnold D.

    1983-01-01

    A device for pressurizing pulverized coal and circulating a carrier gas is disclosed. This device has utility in a coal gasification process and eliminates the need for a separate collection hopper and eliminates the separate compressor.

  4. DOE/EA-1498: Environmental Assessment for the Advanced Coal Utilization Byproduct Beneficiation Processing Plant Ghent Power Station, Carroll County, Kentucky (January 2005)

    SciTech Connect

    N /A

    2005-01-01

    The Clean Coal Power Initiative (CCPI) is a cost-shared partnership between the U.S. Department of Energy (DOE) and industry to demonstrate advanced coal-based power generation technologies. Through the CCPI, candidate technologies are demonstrated at commercial-scale facilities to foster widespread application. The goals of the program are to realize environmental and economic benefits through DOE and industry partnerships, as well as to move promising, yet commercially risky, advanced coal energy systems to market. DOE proposes to provide funding, through a cooperative agreement with the University of Kentucky Research Foundation (UKRF), Center for Applied Energy Research (CAER), for the design, construction, and operation of an advanced coal ash beneficiation processing plant at Kentucky Utilities (KU) Ghent Power Station in Carroll County, Kentucky. The proposed project would contribute to CCPI program goals by demonstrating a means to reduce the net costs of particulate control technologies through the conversion of ash into salable products. DOE would provide $4,492,008, approximately 50 percent of total project cost. The proposed demonstration plant would process 200,000 tons per year of fly ash generated at the Ghent Power Station into: 156,000 tons per year of pozzolan for concrete; 16,000 tons per year of high-quality block sand; 16,000 tons per year of graded fill sand; 1,500 tons per year of high-quality polymer filler; and 8,000 tons of carbon fuel. Because the proposed project would utilize an existing waste to produce concrete and masonry materials, which could replace Portland cement, overall CO2 emissions resulting from concrete manufacturing could be reduced. Furthermore, the need for additional storage areas for fly ash would be reduced. The findings of this Environmental are that no significant impacts to human health and safety or the environment from construction and operation of the proposed demonstration plant are anticipated. Because the

  5. ADVANCED MULTI-PRODUCT COAL UTILIZATION BY-PRODUCT PROCESSING PLANT

    SciTech Connect

    Robert Jewell; Thomas Robl; John Groppo

    2005-03-01

    The objective of the project is to build a multi-product ash beneficiation plant at Kentucky Utilities 2,200-MW Ghent Generating Station, located in Carroll County, Kentucky. This part of the study includes the examination of the feedstocks for the beneficiation plant. The ash, as produced by the plant, and that stored in the lower pond were examined. The ash produced by the plant was found to be highly variable as the plant consumes high and low sulfur bituminous coal, in Units 1 and 2 and a mixture of subbituminous and bituminous coal in Units 3 and 4. The ash produced reflected this consisting of an iron-rich ({approx}24%, Fe{sub 2}O{sub 3}), aluminum rich ({approx}29% Al{sub 2}O{sub 3}) and high calcium (6%-7%, CaO) ash, respectively. The LOI of the ash typically was in the range of 5.5% to 6.5%, but individual samples ranged from 1% to almost 9%. The lower pond at Ghent is a substantial body, covering more than 100 acres, with a volume that exceeds 200 million cubic feet. The sedimentation, stratigraphy and resource assessment of the in place ash was investigated with vibracoring and three-dimensional, computer-modeling techniques. Thirteen cores to depths reaching nearly 40 feet, were retrieved, logged in the field and transported to the lab for a series of analyses for particle size, loss on ignition, petrography, x-ray diffraction, and x-ray fluorescence. Collected data were processed using ArcViewGIS, Rockware, and Microsoft Excel to create three-dimensional, layered iso-grade maps, as well as stratigraphic columns and profiles, and reserve estimations. The ash in the pond was projected to exceed 7 million tons and contain over 1.5 million tons of coarse carbon, and 1.8 million tons of fine (<10 {micro}m) glassy pozzolanic material. The size, quality and consistency of the ponded material suggests that it is the better feedstock for the beneficiation plant.

  6. Characterization of Coal Combustion Residues from Electric Utilities Using Wet Scrubbers for Multi-Pollutant Control

    EPA Science Inventory

    This report evaluates changes that may occur to coal combustion residues (CCRs) in response to changes in air pollution control technology at coal-fired power plants, which will reduce emissions from the flue gas stack by transferring pollutants to fly ash and other air pollution...

  7. Characterization of Coal Combustion Residues from Electric Utilities--Leaching and Characterization Data

    EPA Science Inventory

    This report evaluates changes in composition and constituent release by leaching that may occur to fly ash and other coal combustion residues (CCRs) in response to changes in air pollution control technology at coal-fired power plants. The addition of flue-gas desulfurization (FG...

  8. Trace metals in the coals of the East Siberia: Distribution, utilization and environmental aspects

    SciTech Connect

    Pashkov, G.L.; Kuznetsov, P.N.; Kuzmin, V.I.; Boiko, Y.V.; Kontsevoi, A.A.

    1998-12-31

    Three coal basins in East Siberia, the Russia Lena, Kansk-Achinsk and South-Yakutsk basins, are huge coal basins which contain various sorts of both brown and high quality subbituminous and bituminous coals with low ash and sulfur content. The coals have great industrial significance for the production of energy, coke and chemicals. However, these coals are less characterized in terms of the content and distribution of trace metals, some of which are of industrial significance, other metals are toxic and radioactive. The data on the distribution of trace metals in these three coal basins, their geochemical occurrence and the behavior in chemical treatment and burning are presented in the paper. Separate coals were found to contain a large amount of valuable metals such as Ge (up to 1,400 g/ton of ash), V (up to 1,400 g/t), Sc (up to 220 g/t), Nb (up to 280 g/t), Cr (up to 1,300 g/t), Co (up to 320 g/t), Ni (580 g/t) and thus could be an industrial source of metal production. The methods for the extraction of Ge, Sc, Y, Nb and other metals prior or after combustion are described. The aspects of coal characterization in terms of toxic and radioactive impact on the environment are discussed.

  9. Combining support vector regression and ant colony optimization to reduce NOx emissions in coal-fired utility boilers

    SciTech Connect

    Ligang Zheng; Hao Zhou; Chunlin Wang; Kefa Cen

    2008-03-15

    Combustion optimization has recently demonstrated its potential to reduce NOx emissions in high capacity coal-fired utility boilers. In the present study, support vector regression (SVR), as well as artificial neural networks (ANN), was proposed to model the relationship between NOx emissions and operating parameters of a 300 MW coal-fired utility boiler. The predicted NOx emissions from the SVR model, by comparing with that of the ANN-based model, showed better agreement with the values obtained in the experimental tests on this boiler operated at different loads and various other operating parameters. The mean modeling error and the correlation factor were 1.58% and 0.94, respectively. Then, the combination of the SVR model with ant colony optimization (ACO) to reduce NOx emissions was presented in detail. The experimental results showed that the proposed approach can effectively reduce NOx emissions from the coal-fired utility boiler by about 18.69% (65 ppm). A time period of less than 6 min was required for NOx emissions modeling, and 2 min was required for a run of optimization under a PC system. The computing times are suitable for the online application of the proposed method to actual power plants. 37 refs., 8 figs., 3 tabs.

  10. Development of an Advanced Deshaling Technology to Improve the Energy Efficiency of Coal Handling, Processing, and Utilization Operations

    SciTech Connect

    Rick Honaker; Gerald Luttrell

    2007-09-30

    The concept of using a dry, density-based separator to achieve efficient, near-face rock removal, commonly referred to as deshaling, was evaluated in several applications across the U.S.. Varying amounts of high-density rock exist in most run-of-mine feed. In the central Appalachian coalfields, a rock content exceeding 50% in the feed to a preparation plant is commonplace due to high amounts of out-of-seam dilution made necessary by extracting coal from thin seams. In the western U.S, an increase in out-of-seam dilution and environmental regulations associated with combustion emissions have resulted in a need to clean low rank coals and dry cleaning may be the only option. A 5 ton/hr mobile deshaling unit incorporating a density-based, air-table technology commercially known as the FGX Separator has been evaluated at mine sites located within the states of Utah, Wyoming, Texas, West Virginia, Virginia, Pennsylvania and Kentucky. The FGX technology utilizes table riffling principles with air as the medium. Air enters through the table and creates a fluidized bed of particles comprised of mostly fine, high density particles. The high density particle bed lifts the low-density coal particles to the top of the bed. The low-density coal moves toward the front of the table due to mass action and the downward slope of the table. The high-density particles settle through the fluidized particle bed and, upon making contact with the table, moves toward the back of the table with the assistance of table vibration. As a result, the low-density coal particles exit the front of the table closest to the feed whereas the high-density, high-ash content particles leave on the side and front of the table located at the farthest from the feed entry. At each test site, the run-of-mine feed was either directly fed to the FGX unit or pre-screened to remove the majority of the -6mm material. The surface moisture of the feed must be maintained below 9%. Pre-screening is required when the

  11. Capacity mapping for optimum utilization of pulverizers for coal fired boilers - article no. 032201

    SciTech Connect

    Bhattacharya, C.

    2008-09-15

    Capacity mapping is a process of comparison of standard inputs with actual fired inputs to assess the available standard output capacity of a pulverizer. The base capacity is a function of grindability; fineness requirement may vary depending on the volatile matter (VM) content of the coal and the input coal size. The quantity and the inlet will change depending on the quality of raw coal and output requirement. It should be sufficient to dry pulverized coal (PC). Drying capacity is also limited by utmost PA fan power to supply air. The PA temperature is limited by air preheater (APH) inlet flue gas temperature; an increase in this will result in efficiency loss of the boiler. The higher PA inlet temperature can be attained through the economizer gas bypass, the steam coiled APH, and the partial flue gas recirculation. The PS/coal ratioincreases with a decrease in grindability or pulverizer output and decreases with a decrease in VM. The flammability of mixture has to be monitored on explosion limit. Through calibration, the PA flow and efficiency of conveyance can be verified. The velocities of coal/air mixture to prevent fallout or to avoid erosion in the coal carrier pipe are dependent on the PC particle size distribution. Metal loss of grinding elements inversely depends on the YGP index of coal. Variations of dynamic loading and wearing of grinding elements affect the available milling capacity and percentage rejects. Therefore, capacity mapping in necessary to ensure the available pulverizer capacity to avoid overcapacity or undercapacity running of the pulverizing system, optimizing auxiliary power consumption. This will provide a guideline on the distribution of raw coal feeding in different pulverizers of a boiler to maximize system efficiency and control, resulting in a more cost effective heat rate.

  12. Characterization and modes of occurrence of elements in feed coal and coal combustion products from a power plant utilizing low-sulfur coal from the Powder River Basin, Wyoming

    USGS Publications Warehouse

    Brownfield, Michael E.; Cathcart, James D.; Affolter, Ronald H.; Brownfield, Isabelle K.; Rice, Cynthia A.; O'Connor, Joseph T.; Zielinski, Robert A.; Bullock, John H.; Hower, James C.; Meeker, Gregory P.

    2005-01-01

    The U.S. Geological Survey and the University of Kentucky Center for Applied Energy Research are collaborating with an Indiana utility company to determine the physical and chemical properties of feed coal and coal combustion products from a coal-fired power plant. The Indiana power plant utilizes a low-sulfur (0.23 to 0.47 weight percent S) and lowash (4.9 to 6.3 weight percent ash) subbituminous coal from the Wyodak-Anderson coal zone in the Tongue River Member of the Paleocene Fort Union Formation, Powder River Basin, Wyoming. Based on scanning electron microscope and X-ray diffraction analyses of feed coal samples, two mineral suites were identified: (1) a primary or detrital suite consisting of quartz (including beta-form grains), biotite, feldspar, and minor zircon; and (2) a secondary authigenic mineral suite containing alumino-phosphates (crandallite and gorceixite), kaolinite, carbonates (calcite and dolomite), quartz, anatase, barite, and pyrite. The primary mineral suite is interpreted, in part, to be of volcanic origin, whereas the authigenic mineral suite is interpreted, in part, to be the result of the alteration of the volcanic minerals. The mineral suites have contributed to the higher amounts of barium, calcium, magnesium, phosphorus, sodium, strontium, and titanium in the Powder River Basin feed coals in comparison to eastern coals. X-ray diffraction analysis indicates that (1) fly ash is mostly aluminate glass, perovskite, lime, gehlenite, quartz, and phosphates with minor amounts of periclase, anhydrite, hematite, and spinel group minerals; and (2) bottom ash is predominantly quartz, plagioclase (albite and anorthite), pyroxene (augite and fassaite), rhodonite, and akermanite, and spinel group minerals. Microprobe and scanning electron microscope analyses of fly ash samples revealed quartz, zircon, and monazite, euhedral laths of corundum with merrillite, hematite, dendritic spinels/ferrites, wollastonite, and periclase. The abundant calcium and

  13. Initial study of dry ultrafine coal beneficiation utilizing triboelectric charging with subsequent electrostatic separation

    SciTech Connect

    Link, T.A.; Killmeyer, R.P.; Elstrodt, R.H.; Haden, N.H.

    1990-10-01

    A novel, dry process using electrostatics to beneficiate ultrafine coal is being developed by the Coal Preparation Division at the Pittsburgh Energy Technology Center. The historical concept of triboelectricity and its eventual use as a means of charging coal for electrostatic separation will be discussed. Test data from a first-generation and a second-generation Tribo-Electrostatic separator are presented showing the effects of feed particle size, separator voltage, solids concentration in air, and particle velocity on separation performance. 10 refs., 10 figs., 9 tabs.

  14. Prediction of the furnace heat absorption by utilizing thermomechanical analysis for various kinds of coal firing

    SciTech Connect

    Ishinomori, T.; Watanabe, S.; Kiga, T.; Wall, T.F.; Gupta, R.P.; Gupta, S.K.

    1999-07-01

    In order to predict the furnace heat absorption, which is sensitive to coal properties, an attempt to make a model universally applicable for any kind of pulverized coal fired boiler is in progress. First of all, the heat absorption rates on to furnace wall were surveyed for 600MWe pulverized coal fired boiler, and they were ranked into four levels by indicating a furnace heat absorption index (FHAI). Some ash composition is relatively well related to the FHAI, while a new index from thermomechanical analysis (TMA) offers a good prediction of the furnace heat absorption.

  15. Utilizing Ecological Momentary Assessment in pediatric obesity to quantify behavior, emotion, and sleep.

    PubMed

    Rofey, Dana L; Hull, Ethan E; Phillips, Jennifer; Vogt, Kristen; Silk, Jennifer S; Dahl, Ronald E

    2010-06-01

    This study examined the feasibility of using Ecological Momentary Assessment (EMA) to examine important domains relevant to interregulatory health processes in overweight adolescent females in their natural environments. Participants were 20 overweight adolescent females engaged in a cognitive-behavioral and motivational interviewing intervention aimed at weight loss and improving mood (11-19 years old, 80% white, 15% African American, mean BMI = 39). During this EMA protocol, participants were asked to report their physical activity (PA), nutrition, mood, and sleep during 14 cellular phone calls over three extended weekends (Thursday to Monday). Simultaneously, participants wore an actigraph (armband and watch communicator) that provided instantaneous PA feedback (steps taken and kilocalories) and sleep parameters (duration and efficiency). EMA compliance rates for the armband and phone calls were 74.7 +/- 0.3% and 64.2 +/- 0.3%, respectively. Data from the armband and phone calls are presented to illustrate the depth of information acquired by utilizing this innovative methodology.

  16. Utilization of coal mine methane for methanol and SCP production. Topical report, May 5, 1995--March 4, 1996

    SciTech Connect

    1998-12-31

    The feasibility of utilizing a biological process to reduce methane emissions from coal mines and to produce valuable single cell protein (SCP) and/or methanol as a product has been demonstrated. The quantities of coal mine methane from vent gas, gob wells, premining wells and abandoned mines have been determined in order to define the potential for utilizing mine gases as a resource. It is estimated that 300 MMCFD of methane is produced in the United States at a typical concentration of 0.2-0.6 percent in ventilation air. Of this total, almost 20 percent is produced from the four Jim Walter Resources (JWR) mines, which are located in very gassy coal seams. Worldwide vent gas production is estimated at 1 BCFD. Gob gas methane production in the U.S. is estimated to be 38 MMCFD. Very little gob gas is produced outside the U.S. In addition, it is estimated that abandoned mines may generate as much as 90 MMCFD of methane. In order to make a significant impact on coal mine methane emissions, technology which is able to utilize dilute vent gases as a resource must be developed. Purification of the methane from the vent gases would be very expensive and impractical. Therefore, the process application must be able to use a dilute methane stream. Biological conversion of this dilute methane (as well as the more concentrated gob gases) to produce single cell protein (SCP) and/or methanol has been demonstrated in the Bioengineering Resources, Inc. (BRI) laboratories. SCP is used as an animal feed supplement, which commands a high price, about $0.11 per pound.

  17. Wintertime organic aerosols in Christchurch and Auckland, New Zealand: contributions of residential wood and coal burning and petroleum utilization

    SciTech Connect

    Haobo Wang; Kimitaka Kawamura; David Shooter

    2006-09-01

    Wintertime PM10 samples from two New Zealand cities (Christchurch and Auckland) have been characterized using gas chromatography - mass spectrometry for biomass burning tracers, hopanes, n-alkanes, fatty acids, n-alkanols and sugars. The aerosol samples of Christchurch, which were heavily influenced by residential wood and coal burning, showed substantially higher ambient concentrations for most of the organic compounds than those of Auckland, where major sources of aerosols were vehicular emissions and sea-salt. Mass ratios between the biomass burning tracers studied were found to be significantly different (e.g., {beta}-sitosterol to nssK{sup +} ratios were more than three times higher in Christchurch than in Auckland), although levoglucosan to nssK{sup +} ratios were similar at the both sites. We also estimated, for the first time using stereochemical configurations of hopanes, that 60% of fossil fuel emissions came from petroleum utilization with the remaining 40% being from coal burning in Christchurch. In contrast, contribution of coal burning was negligible in Auckland. Moreover, contributions of most biomass burning tracers to organic carbon (OC) were significantly higher in Christchurch than in Auckland. On the other hand, saccharides (excluding levoglucosan) and hopanes accounted for larger fractions of OC in Auckland. This study demonstrates that intensive wood and coal burning can significantly affect organic aerosol composition in an urban environment. 46 refs., 4 figs., 1 tab.

  18. High performance materials in coal conversion utilization. Technical progress report, April 1, 1996--June 30, 1996

    SciTech Connect

    1996-07-01

    Object is to test, analyze, and improve the heat and coal-slag corrosion resistance of a SiC(p)/Al{sub 2}O{sub 3} ceramic composite tubular material. The material will be evaluated for resistance to pressures, temperatures, and corrosion within a coal-fired high- temperature, high-pressure air heater. Microstructures and some mechanical properties of composite tubes were studied. Other studies include corrosion thermodynamic analysis of Al oxide coated composite.

  19. Opportunities for Decarbonizing Existing U.S. Coal-Fired Power Plants via CO2 Capture, Utilization and Storage.

    PubMed

    Zhai, Haibo; Ou, Yang; Rubin, Edward S

    2015-07-07

    This study employs a power plant modeling tool to explore the feasibility of reducing unit-level emission rates of CO2 by 30% by retrofitting carbon capture, utilization, and storage (CCUS) to existing U.S. coal-fired electric generating units (EGUs). Our goal is to identify feasible EGUs and their key attributes. The results indicate that for about 60 gigawatts of the existing coal-fired capacity, the implementation of partial CO2 capture appears feasible, though its cost is highly dependent on the unit characteristics and fuel prices. Auxiliary gas-fired boilers can be employed to power a carbon capture process without significant increases in the cost of electricity generation. A complementary CO2 emission trading program can provide additional economic incentives for the deployment of CCS with 90% CO2 capture. Selling and utilizing the captured CO2 product for enhanced oil recovery can further accelerate CCUS deployment and also help reinforce a CO2 emission trading market. These efforts would allow existing coal-fired EGUs to continue to provide a significant share of the U.S. electricity demand.

  20. Canary in the Coal Mine: Monitoring Indicators and Thresholds of Ecological Integrity

    NASA Astrophysics Data System (ADS)

    Applegate, L. M.

    2010-12-01

    Ecological integrity is the ability of an ecosystem to maintain resilience when disturbed; retain native or natural components and processes; and remain sustainable without external inputs. Ecosystems may be subject to a variety of anthropogenic disturbances from intentional natural resource harvesting such as cattle grazing or timber harvest to unintentional large scale processes including climate change. Monitoring ecological integrity can aid in the prevention of irreversible degradation of a system by identifying indicators to serve as early warning signs of degradation. Our central hypothesis is that changes in ecological integrity and movement towards thresholds may be anticipated through monitoring. Our research objective is to develop efficient and effective methods and indicators for natural resource management. We have collected data for four years (2006-2010) on grazed Wildlife Management Areas in southeastern Washington State using a replicated study design in two ecosystem types stratified by six ecological sites distributed within nine pastures. Methods and metrics were developed from quantitative data (cover, frequency, and species richness), qualitative data (photo monitoring and rangeland health surveys), and desired ecological conditions based on state and transition models and classification systems previously published for the study area. The data are a first step to identify efficient and effective methods and metrics to enable natural resource managers to monitor ecological integrity and identify and avoid crossing irreversible thresholds. Study area, southeast Washington State. Photo by Laura Applegate

  1. ADVANCED FLUE GAS CONDITIONING AS A RETROFIT UPGRADE TO ENHANCE PM COLLECTION FROM COAL-FIRED ELECTRIC UTILITY BOILERS

    SciTech Connect

    C. Jean Bustard; Kenneth E. Baldrey; Richard Schlager

    2000-04-01

    The U.S. Department of Energy and ADA Environmental Solutions has begun a project to develop commercial flue gas conditioning additives. The objective is to develop conditioning agents that can help improve particulate control performance of smaller or under-sized electrostatic precipitators on utility coal-fired boilers. The new chemicals will be used to control both the electrical resistivity and the adhesion or cohesivity of the flyash. There is a need to provide cost-effective and safer alternatives to traditional flue gas conditioning with SO{sub 3} and ammonia. Preliminary testing has identified a class of common deliquescent salts that effectively control flyash resistivity on a variety of coals. A method to evaluate cohesive properties of flyash in the laboratory has been selected and construction of an electrostatic tensiometer test fixture is underway. Preliminary selection of a variety of chemicals that will be screened for effect on flyash cohesion has been completed.

  2. ADVANCED FLUE GAS CONDITIONING AS A RETROFIT UPGRADE TO ENHANCE PM COLLECTION FROM COAL-FIRED ELECTRIC UTILITY BOILERS

    SciTech Connect

    Kenneth E. Baldrey

    2003-01-01

    The U.S. Department of Energy and ADA Environmental Solutions are engaged in a project to develop commercial flue gas conditioning additives. The objective is to develop conditioning agents that can help improve particulate control performance of smaller or under-sized electrostatic precipitators on utility coal-fired boilers. The new chemicals will be used to control both the electrical resistivity and the adhesion or cohesivity of the fly ash. There is a need to provide cost-effective and safer alternatives to traditional flue gas conditioning with SO{sub 3} and ammonia. During this reporting quarter, installation of a liquid flue gas conditioning system was completed at the American Electric Power Conesville Plant, Unit 3. This plant fires a bituminous coal and has opacity and particulate emissions performance issues related to fly ash re-entrainment. Two cohesivity-specific additive formulations, ADA-44C and ADA-51, will be evaluated. In addition, ammonia conditioning will also be compared.

  3. Studies of the fate of sulfur trioxide in coal-fired utility boilers based on modified selected condensation methods.

    PubMed

    Cao, Yan; Zhou, Hongcang; Jiang, Wu; Chen, Chien-Wei; Pan, Wei-Ping

    2010-05-01

    The formation of sulfur trioxide (SO(3)) in coal-fired utility boilers can have negative effects on boiler performance and operation, such as fouling and corrosion of equipment, efficiency loss in the air preheater (APH), increase in stack opacity, and the formation of PM(2.5). Sulfur trioxide can also compete with mercury when bonding with injected activated carbons. Tests in a lab-scale reactor confirmed there are major interferences between fly ash and SO(3) during SO(3) sampling. A modified SO(3) procedure to maximize the elimination of measurement biases, based on the inertial-filter-sampling and the selective-condensation-collecting of SO(3), was applied in SO(3) tests in three full-scale utility boilers. For the two units burning bituminous coal, SO(3) levels starting at 20 to 25 ppmv at the inlet to the selective catalytic reduction (SCR), increased slightly across the SCR, owing to catalytic conversion of SO(2) to SO(3,) and then declined in other air pollutant control device (APCD) modules downstream to approximately 5 ppmv and 15 ppmv at the two sites, respectively. In the unit burning sub-bituminous coal, the much lower initial concentration of SO(3) estimated to be approximately 1.5 ppmv at the inlet to the SCR was reduced to about 0.8 ppmv across the SCR and to about 0.3 ppmv at the exit of the wet flue gas desulfurization (WFGD). The SO(3) removal efficiency across the WFGD scrubbers at the three sites was generally 35% or less. Reductions in SO(3) across either the APH or the dry electrostatic precipitator (ESP) in units burning high-sulfur bituminous coal were attributed to operating temperatures being below the dew point of SO(3).

  4. Potential health and environmental effects of trace elements and radionuclides from increased coal utilization.

    PubMed Central

    Van Hook, R I

    1979-01-01

    This report addresses the effects of coal-derived trace and radioactive elements. A summary of our current understanding of health and environmental effects of trace and radioactive elements released during coal mining, cleaning, combustion, and ash disposal is presented. Physical and biological transport phenomena which are important in determining organism exposure are also discussed. Biological concentration and transformation as well as synergistic and antagonistic actions among trace contaminants are discussed in terms of their importance in mobility, persistence, availability, and ultimate toxicity. The consequences of implementing the President's National Energy Plan are considered in terms of the impact of the NEP in 1985 and 2000 on the potential effects of trace and radioactive elements from the coal fuel cycle. Areas of needed research are identified in specific recommendations. PMID:540619

  5. RESIDUES FROM COAL CONVERSION AND UTILIZATION: ADVANCED MINERALOGICAL CHARACTERIZATION AND DISPOSED BYPRODUCT DIAGENESIS

    SciTech Connect

    Gregory J. McCarthy; Dean G. Grier

    2001-01-01

    Prior to the initiation of this study, understanding of the long-term behavior of environmentally-exposed Coal Combustion By-Products (CCBs) was lacking in (among others) two primary areas addressed in this work. First, no method had been successfully applied to achieve full quantitative analysis of the partitioning of chemical constituents into reactive or passive crystalline or noncrystalline compounds. Rather, only semi-quantitative methods were available, with large associated errors. Second, our understanding of the long-term behavior of various CCBs in contact with the natural environment was based on a relatively limited set of study materials. This study addressed these areas with two objectives, producing (1) a set of protocols for fully quantitative phase analysis using the Rietveld Quantitative X-ray Diffraction (RQXRD) method and (2) greater understanding of the hydrologic and geochemical nature of the long-term behavior of disposed and utilized CCBs. The RQXRD technique was initially tested using (1) mixtures of National Institute of Standards and Technology (NIST) crystalline standards, and (2) mixtures of synthetic reagents simulating various CCBs, to determine accuracy and precision of the method, and to determine the most favorable protocols to follow in order to efficiently quantify multi-phase mixtures. Four sets of borehole samples of disposed or utilized CCBs were retrieved and analyzed by RQXRD according to the protocols developed under the first objective. The first set of samples, from a Class F ash settling pond in Kentucky disposed for up to 20 years, showed little mineralogical alteration, as expected. The second set of samples, from an embankment in Indiana containing a mixture of chain-grate (stoker) furnace ash and fluidized bed combustion (FBC) residues, showed formation of the mineral thaumasite, as observed in previously studied exposed FBC materials. Two high-calcium CCBs studied, including a dry-process flue gas desulfurization

  6. Fire rehabilitation decisions at landscape scales: utilizing state-and-transition models developed through disturbance response grouping of ecological sites

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recognizing the utility of ecological sites and the associated state-and-transition model (STM) for decision support, the Bureau of Land Management in Nevada partnered with Nevada NRCS and the University of Nevada, Reno (UNR) in 2009 with the goal of creating a team that could (1) expedite developme...

  7. Demonstration of SCR technology for the control of NOx emissions from high-sulfur coal-fired utility boilers

    SciTech Connect

    Hinton, W.S.; Maxwell, J.D.; Healy, E.C.; Hardman, R.R.; Baldwin, A.L.

    1997-12-31

    This paper describes the completed Innovative Clean Coal Technology project which demonstrated SCR technology for reduction of flue gas NO{sub x} emissions from a utility boiler burning US high-sulfur coal. The project was sponsored by the US Department of Energy, managed and co-funded by Southern Company Services, Inc. on behalf of the Southern Company, and also co-funded by the Electric Power Research Institute and Ontario Hydro. The project was located at Gulf Power Company`s Plant Crist Unit 5 (a 75 MW tangentially-fired boiler burning US coals that had a sulfur content ranging from 2.5--2.9%), near Pensacola, Florida. The test program was conducted for approximately two years to evaluate catalyst deactivation and other SCR operational effects. The SCR test facility had nine reactors: three 2.5 MW (5,000 scfm), and operated on low-dust flue gas. The reactors operated in parallel with commercially available SCR catalysts obtained from suppliers throughout the world. Long-term performance testing began in July 1993 and was completed in July 1995. A brief test facility description and the results of the project are presented in this paper.

  8. Tenth annual coal preparation, utilization, and environmental control contractors conference: Proceedings. Volume 1

    SciTech Connect

    Not Available

    1994-08-01

    Volume I contains papers presented at the following sessions: high efficiency preparation; advanced physical coal cleaning; superclean emission systems; air toxics and mercury measurement and control workshop; and mercury measurement and control workshop. Selected papers have been processed for inclusion in the Energy Science and Technology Database.

  9. Advanced Multi-Product Coal Utilization By-Product Processing Plant

    SciTech Connect

    Thomas Robl; John Groppo

    2009-06-30

    The overall objective of this project is to design, construct, and operate an ash beneficiation facility that will generate several products from coal combustion ash stored in a utility ash pond. The site selected is LG&E's Ghent Station located in Carroll County, Kentucky. The specific site under consideration is the lower ash pond at Ghent, a closed landfill encompassing over 100 acres. Coring activities revealed that the pond contains over 7 million tons of ash, including over 1.5 million tons of coarse carbon and 1.8 million tons of fine (<10 {micro}m) glassy pozzolanic material. These potential products are primarily concentrated in the lower end of the pond adjacent to the outlet. A representative bulk sample was excavated for conducting laboratory-scale process testing while a composite 150 ton sample was also excavated for demonstration-scale testing at the Ghent site. A mobile demonstration plant with a design feed rate of 2.5 tph was constructed and hauled to the Ghent site to evaluate unit processes (i.e. primary classification, froth flotation, spiral concentration, secondary classification, etc.) on a continuous basis to determine appropriate scale-up data. Unit processes were configured into four different flowsheets and operated at a feed rate of 2.5 tph to verify continuous operating performance and generate bulk (1 to 2 tons) products for product testing. Cementitious products were evaluated for performance in mortar and concrete as well as cement manufacture process addition. All relevant data from the four flowsheets was compiled to compare product yields and quality while preliminary flowsheet designs were generated to determine throughputs, equipment size specifications and capital cost summaries. A detailed market study was completed to evaluate the potential markets for cementitious products. Results of the study revealed that the Ghent local fly ash market is currently oversupplied by more than 500,000 tpy and distant markets (i.e. Florida

  10. An experimental study on the hazard assessment and mechanical properties of porous concrete utilizing coal bottom ash coarse aggregate in Korea.

    PubMed

    Park, Seung Bum; Jang, Young Il; Lee, Jun; Lee, Byung Jae

    2009-07-15

    This study evaluates quality properties and toxicity of coal bottom ash coarse aggregate and analyzes mechanical properties of porous concrete depending on mixing rates of coal bottom ash. As a result, soundness and resistance to abrasion of coal bottom ash coarse aggregate were satisfied according to the standard of coarse aggregate for concrete. To satisfy the standard pertaining to chloride content, the coarse aggregates have to be washed more than twice. In regards to the result of leaching test for coal bottom ash coarse aggregate and porous concrete produced with these coarse aggregates, it was satisfied with the environment criteria. As the mixing rate of coal bottom ash increased, influence of void ratio and permeability coefficient was very little, but compressive and flexural strength decreased. When coal bottom ash was mixed over 40%, strength decreased sharply (compressive strength: by 11.7-27.1%, flexural strength: by maximum 26.4%). Also, as the mixing rate of coal bottom ash increased, it was confirmed that test specimens were destroyed by aggregate fracture more than binder fracture and interface fracture. To utilize coal bottom ash in large quantities, it is thought that an improvement method in regards to strength has to be discussed such as incorporation of reinforcing materials and improvement of aggregate hardness.

  11. High performance materials in coal conversion utilization. Technical progress report, January 1--March 31, 1995

    SciTech Connect

    1995-04-01

    The object of this grant is to test, analyze, and improve the heat and coal-slag corrosion resistance of a SIC(p)/AI203 ceramic composite tubular material. The material will be evaluated for its ability to withstand the pressures, temperatures and corrosion attack which would be encountered within a coal-fired high-temperature, high pressure air heater. The evaluation will include strength testing at elevated temperatures. The feasibility of several joining and coating techniques will also be investigated. Results from the following tasks and subtasks are presented: Task 1--materials; Task 2--pre and post test material characterization; Subtask 2A--strength of materials testing and analysis; Subtask 2B--corrosion thermodynamic analysis; Subtask 3A--bench scale lab tests; Subtask 3B--field exposure tests; and Task 4--project management. An appendix explains the coating of Lanxide SiC/Al{sub 2}O{sub 3} ceramic composite.

  12. RDF (Refuse Derived Fuel) Utilization in a Navy Stoker Coal-Fired Boiler.

    DTIC Science & Technology

    1984-10-01

    based upon the most practical and economical fuel mix. RDF-3 has a high degree of refinement and is best suited for use with pulverized coal where...thermally efficient way to convert waste to energy products. The factors contributing to this high conver- sion efficiency are the ability of the boiler...are also disadvantages with the RDF-to-energy conversion scheme, including the following: An MSW-to-RDF processing plant will require complex, high

  13. Contrasted nitrogen utilization in annual C 3 grass and legume crops: Physiological explorations and ecological considerations

    NASA Astrophysics Data System (ADS)

    Del Pozo, Alejandro; Garnier, Eric; Aronson, James

    2000-01-01

    Although it is well known that legumes have unusually high levels of nitrogen in both reproductive and vegetative organs, the physiological implications of this pattern have been poorly assessed. We conducted a literature survey and used data from two (unpublished) experiments on annual legumes and C 3 grasses in order to test whether these high nitrogen concentrations in legumes are correlated to high rates of carbon gain. Three different temporal/spatial scales were considered: full growing season/stand, days to month/whole plant and seconds/leaf. At the stand level, and for plants grown under both extratropical and tropical settings, biomass per unit organic-nitrogen was lower in legume than in grass crops. At a shorter time scale, the relative growth rate per unit plant nitrogen (`nitrogen productivity') was lower in faba bean ( Vicia faba var. minor cv. Tina) than in wheat ( Triticum aestivum cv. Alexandria), and this was confirmed in a comparison of two wild, circum-Mediterranean annuals - Medicago minima, a legume, and Bromus madritensis, a grass. Finally, at the leaf level, a synthesis of published data comparing soybean ( Glycine max) and rice ( Oryza sativa) on the one hand, and our own data on faba bean and wheat on the other hand, demonstrates that the photosynthetic rate per unit leaf nitrogen (the photosynthetic nitrogen use efficiency) is consistently lower in legumes than in grasses. These results demonstrate that, regardless of the scale considered and although the organic-nitrogen concentration in vegetative organs of legumes is higher than in grasses, this does not lead to higher rates of carbon gain in the former. Various physiological factors affecting the efficiency of nitrogen utilization at the three time scales considered are discussed. The suggestion is made that the ecological significance of the high nitrogen concentration in legumes may be related to a high nitrogen demand for high quality seed production at a time when nitrogen

  14. Phanerozoic changes in hardpart availability and utilization in benthic communities: evolutionary ecology or evolutionary stratigraphy

    SciTech Connect

    Kidwell, S.M.

    1985-01-01

    Published experiments on modern communities and quantitative data from Miocene assemblages indicate that the accumulation of dead hardparts can drive specific changes in the composition of benthic communities (taphonomic feedback). Both opportunities and pathways of taphonomic feedback have changed over the Phanerozoic, however, owing to the evolution and environmental expansion of hardpart producers, utilizers, and destroyers. These changes were tracked using semi-quantitative estimates of hardpart availability based on familial diversity of the most abundant taxa, scored according to preservation potential at or near the seafloor. The data suggest a dramatic increase in hardpart availability from the Cambrian into the later Paleozoic, with a decline through the Mesozoic and Cenozoic related to the loss or dramatic reduction in calcitic epifauna, recliners on soft substrata, and large shelled nekton/plankton. The reduction in opportunities for taphonomic feedback among epifauna was accompanied by an increase in levels of infaunal interactions in the Cenozoic, which is characterized by fully three-dimensional shell gravels. In addition to evolutionary change in body sizes of hardpart producers and biotically-driven declines in certain benthic life habits, the change in pathways of taphonomic feedback was also a consequence of the large-scale shift from predominantly carbonate sedimentation in the Paleozoic to predominantly terrigenous sedimentation in the Cenozoic. For example, the waning of epifauna-dominated communities is closely associated with the restriction of level-bottom carbonate environments through the late Mesozoic and Cenozoic. The global evolution of sedimentary environments and their relative representation is important not only in its consequences for sampling but as a driving mechanism of evolutionary ecology of marine benthos.

  15. Implementation of Paste Backfill Mining Technology in Chinese Coal Mines

    PubMed Central

    Chang, Qingliang; Zhou, Huaqiang; Bai, Jianbiao

    2014-01-01

    Implementation of clean mining technology at coal mines is crucial to protect the environment and maintain balance among energy resources, consumption, and ecology. After reviewing present coal clean mining technology, we introduce the technology principles and technological process of paste backfill mining in coal mines and discuss the components and features of backfill materials, the constitution of the backfill system, and the backfill process. Specific implementation of this technology and its application are analyzed for paste backfill mining in Daizhuang Coal Mine; a practical implementation shows that paste backfill mining can improve the safety and excavation rate of coal mining, which can effectively resolve surface subsidence problems caused by underground mining activities, by utilizing solid waste such as coal gangues as a resource. Therefore, paste backfill mining is an effective clean coal mining technology, which has widespread application. PMID:25258737

  16. Implementation of paste backfill mining technology in Chinese coal mines.

    PubMed

    Chang, Qingliang; Chen, Jianhang; Zhou, Huaqiang; Bai, Jianbiao

    2014-01-01

    Implementation of clean mining technology at coal mines is crucial to protect the environment and maintain balance among energy resources, consumption, and ecology. After reviewing present coal clean mining technology, we introduce the technology principles and technological process of paste backfill mining in coal mines and discuss the components and features of backfill materials, the constitution of the backfill system, and the backfill process. Specific implementation of this technology and its application are analyzed for paste backfill mining in Daizhuang Coal Mine; a practical implementation shows that paste backfill mining can improve the safety and excavation rate of coal mining, which can effectively resolve surface subsidence problems caused by underground mining activities, by utilizing solid waste such as coal gangues as a resource. Therefore, paste backfill mining is an effective clean coal mining technology, which has widespread application.

  17. Utilization of lightweight materials made from coal gasification slags. Quaterly report, March 1, 1997--May 30, 1997

    SciTech Connect

    1998-12-31

    The integrated-gasification combined-cycle (IGCC) process is an emerging technology that utilizes coal for power generation and production of chemical feedstocks. However, the process generates large amounts of solid waste, consisting of vitrified ash (slag) and some unconverted carbon. In previous projects, Praxis investigated the utilization of {open_quotes}as-generated{close_quotes} slags for a wide variety of applications in road construction, cement and concrete production, agricultural applications, and as a landfill material. From these studies, we found that it would be extremely difficult for {open_quotes}as-generated{close_quotes} slag to find large-scale acceptance in the marketplace even at no cost because the materials it could replace were abundantly available at very low cost. It was further determined that the unconverted carbon, or char, in the slag is detrimental to its utilization as sand or fine aggregate. It became apparent that a more promising approach would be to develop a variety of value-added products from slag that meet specific industry requirements. This approach was made feasible by the discovery that slag undergoes expansion and forms a lightweight material when subjected to controlled heating in a kiln at temperatures between 1400 and 1700{degrees}F. These results confirmed the potential for using expanded slag as a substitute for conventional lightweight aggregates (LWA). The technology to produce lightweight and ultra-lightweight aggregates (ULWA) from slag was subsequently developed by Praxis with funding from the Electric Power Research Institute (EPRI), Illinois Clean Coal Institute (ICCI), and internal resources. The major objectives of the subject project are to demonstrate the technical and economic viability of commercial production of LWA and ULWA from slag and to test the suitability of these aggregates for various applications.

  18. Effective utilization of waste ash from MSW and coal co-combustion power plant: Zeolite synthesis.

    PubMed

    Fan, Yun; Zhang, Fu-Shen; Zhu, Jianxin; Liu, Zhengang

    2008-05-01

    The solid by-product from power plant fueled with municipal solid waste and coal was used as a raw material to synthesize zeolite by fusion-hydrothermal process in order to effectively use this type of waste material. The effects of treatment conditions, including NaOH/ash ratio, operating temperature and hydrothermal reaction time, were investigated, and the product was applied to simulated wastewater treatment. The optimal conditions for zeolite X synthesis were: NaOH/ash ratio=1.2:1, fusion temperature=550 degrees C, crystallization time=6-10 h and crystallization temperature=90 degrees C. In the synthesis process, it was found that zeolite X tended to transform into zeolite HS when NaOH/ash ratio was 1.8 or higher, crystallization time was 14-18 h, operating temperature was 130 degrees C or higher. The CEC value, BET surface area and pore volume for the synthesized product at optimal conditions were 250 cmol kg(-1), 249 m(2) g(-1) and 0.46 cm(3) g(-1) respectively, higher than coal fly ash based zeolite. Furthermore, when applied to Zn(2+) contaminated wastewater treatment, the synthesized product presented larger adsorption capacity and bond energy than coal fly ash based zeolite, and the adsorption isotherm data could be well described by Langmuir and Freundlich isotherm models. These results demonstrated that the special type of co-combustion ash from power plant is suitable for synthesizing high quality zeolite, and the products are suitable for heavy metal removal from wastewater.

  19. The directory of United States coal & technology export resources. Profiles of domestic US corporations, associations and public entities, nationwide, which offer products or services suitable for export, relating to coal and its utilization

    SciTech Connect

    Not Available

    1994-01-01

    The purpose of this directory is to provide a listing of available U.S. coal and coal related resources to potential purchasers of those resources abroad. The directory lists business entities within the US which offer coal related resources, products and services for sale on the international market. Each listing is intended to describe the particular business niche or range of product and/or services offered by a particular company. The listing provides addresses, telephones, and telex/fax for key staff in each company committed to the facilitation of international trade. The content of each listing has been formulated especially for this directory and reflects data current as of the date of this edition. The directory listings are divided into four primary classifications: coal resources; technology resources; support services; and financing and resource packaging. The first three of which are subdivided as follows: Coal Resources -- coal derivatives, coal exporters, and coal mining; Technology Resources -- advanced utilization, architects and engineers, boiler equipment, emissions control and waste disposal systems, facility construction, mining equipment, power generation systems, technical publications, and transport equipment; Support Services -- coal transport, facility operations, freight forwarders, sampling services and equipment, and technical consultants. Listings for the directory were solicited on the basis of this industry breakdown. Each of the four sections of this directory begins with a matrix illustrating which companies fall within the particular subclassifications specific to that main classification. A general alphabetical index of companies and an index by product/service classification are provided following the last section of the directory.

  20. Control of mercury emissions from coal-fired electric utility boilers

    SciTech Connect

    Ravi K. Srivastava; Nick Hutson; Blair Martin; Frank Princiotta; James Staudt

    2006-03-01

    New US EPA regulations place caps on the levels of mercury that can be emitted from coal-burning power plants, with targets to hit in 2010 and 2018. To meet these targets, technologies already available to reduce other pollutants, such as SO{sub 2} and NOx, will probably be modified to reduce mercury as a cobenefit. The authors review the effectiveness of these technologies at holding the line on mercury and explore how they can be improved for deeper emission cuts. 19 refs., 3 figs., 1 tab.

  1. Ecology.

    ERIC Educational Resources Information Center

    National Audubon Society, New York, NY.

    This set of teaching aids consists of nine Audubon Nature Bulletins, providing teachers and students with informational reading on various ecological topics. The bulletins have these titles: Schoolyard Laboratories, Owls and Predators, The Forest Community, Life in Freshwater Marshes, Camouflage in the Animal World, Life in the Desert, The…

  2. Energy and environmental research emphasizing low-rank coal: Task 3.7, Fuel utilization properties

    SciTech Connect

    Zygarlicke, C.J.

    1995-08-01

    Gasification-type entrained ash and deposits were produced in a pressurized test furnace at high temperature. For the subbituminous Black Thunder coal, the effect of fuel-rich conditions was an increase in quartz, calcite, dolomite, and calcium-rich phases in the entrained ash. Lower particle temperatures, as compared to full air conventional combustion, and the oxygen-lean atmosphere may have caused a reduction in the interaction and assimilation of pure quartz and organically bound calcium into calcium aluminosilicate phases. For the Illinois No. 6 entrained fly ash fuel-rich conditions prevented the oxidation of pyrite and pyrrhotite to iron oxide. Lower temperatures within and surrounding char particles during reducing conditions combustion may have prevented the decomposition of pyrrhotite and enhanced the reaction of iron with aluminosilicate phases. The deposits show similar trends, with the Illinois No. 6 deposit grown under pressurized conditions at a lower temperature having Na and (Ca, Mg, Fe, Na, K) aluminosilicates, calcium carbonate, and an iron sulfide, probably pyrrohotite, present. At higher temperature, loss of sulfur occurs with the increased formation of iron aluminosilicate phases. The Illinois No. 6 and Black Thunder coals were tested with kaolin and lime additives under highly reducing conditions to simulate a gasification environment. The deposit collection zone temperature was varied from 750{degree}C to 1OOO{degree}C. Although no clear trends were evident for the interaction of kaolin or lime with the deposits, the deposits did become more porous, with greatly reduced strength shown for both additives.

  3. Applications study of advanced power generation systems utilizing coal-derived fuels. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    Robson, F. L.

    1981-01-01

    The technology status of phosphoric acid and molten carbon fuel cells, combined gas and steam turbine cycles, and magnetohydrodynamic energy conversion systems was assessed and the power performance of these systems when operating with medium-Btu fuel gas whether delivered by pipeline to the power plant or in an integrated mode in which the coal gasification process and power system are closely coupled as an overall power plant was evaluated. Commercially available combined-cycle gas turbine systems can reach projected required performance levels for advanced systems using currently available technology. The phosphoric acid fuel cell appears to be the next most likely candidate for commercialization. On pipeline delivery, the systems efficiency ranges from 40.9% for the phosphoric acid fuel cell to 63% for the molten carbonate fuel cell system. The efficiencies of the integrated power plants vary from approximately 39-40% for the combined cycle to 46-47% for the molden carbonate fuel cell systems. Conventional coal-fired steam stations with flue-gas desulfurization have only 33-35% efficiency.

  4. Heat removal from high temperature tubular solid oxide fuel cells utilizing product gas from coal gasifiers.

    SciTech Connect

    Parkinson, W. J. ,

    2003-01-01

    In this work we describe the results of a computer study used to investigate the practicality of several heat exchanger configurations that could be used to extract heat from tubular solid oxide fuel cells (SOFCs) . Two SOFC feed gas compositions were used in this study. They represent product gases from two different coal gasifier designs from the Zero Emission Coal study at Los Alamos National Laboratory . Both plant designs rely on the efficient use of the heat produced by the SOFCs . Both feed streams are relatively rich in hydrogen with a very small hydrocarbon content . One feed stream has a significant carbon monoxide content with a bit less hydrogen . Since neither stream has a significant hydrocarbon content, the common use of the endothermic reforming reaction to reduce the process heat is not possible for these feed streams . The process, the method, the computer code, and the results are presented as well as a discussion of the pros and cons of each configuration for each process .

  5. High performance materials in coal conversion utilization. Final report, October 1, 1993--September 30, 1996

    SciTech Connect

    McCay, T.D.; Boss, W.H.; Dahotre, N.

    1996-12-01

    This report describes the research conducted at the University of Tennessee Space Institute on high performance materials for use in corrosive environments. The work was supported by a US Department of Energy University Coal Research grant. Particular attention was given to the silicon carbide particulate reinforced alumina matrix ceramic composite manufactured by Lanxide Corporation as a potential tubular component in a coal-fired recuperative high-temperature air heater. Extensive testing was performed to determine the high temperature corrosion effects on the strength of the material. A computer modeling of the corrosion process was attempted but the problem proved to be too complex and was not successful. To simplify the situation, a computer model was successfully produced showing the corrosion thermodynamics involved on a monolithic ceramic under the High Performance Power System (HIPPS) conditions (see Appendix A). To seal the material surface and thus protect the silicon carbide particulate from corrosive attack, a dense non porous alumina coating was applied to the material surface. The coating was induced by a defocused carbon dioxide laser beam. High temperature corrosion and strength tests proved the effectiveness of the coating. The carbon dioxide laser was also used to successfully join two pieces of the Lanxide material, however, resources did not allow for the testing of the resulting joint.

  6. Development of advanced NO[sub x] control concepts for coal-fired utility boilers

    SciTech Connect

    Evans, A.; Pont, J.N.; England, G.; Seeker, W.R.

    1993-03-04

    The complete CombiNO[sub x], process has now been demonstrated at a level that is believed to be representative of a full-scale boiler in terms of mixing capabilities. A summary of the results is displayedin Figure 5-1. While firing Illinois Coal on the Reburn Tower, Advanced Reburning was capable of reducing NO[sub x], by 83 percent. The injection of methanol oxidized 50--58 percent of the existing NO to N0[sub 2]. Assuming that 85 percent of the newly formed N0[sub 2] can be scrubbed in a liquor modified wet-limestone scrubber, the CombiNO[sub x], process has been shown capable of reducing NO[sub 2], by 90--91 percent in a large pilot-scale coal-fired furnace. There is still uncertainty regarding the fate of the N0[sub 2] formed with methanol injection. Tests should be conducted to determine whether the reconversion is thermodynamic or catalytic, and what steps can be taken (such as quench rate) to prevent it from happening.

  7. ADVANCED FLUE GAS CONDITIONING AS A RETROFIT UPGRADE TO ENHANCE PM COLLECTION FROM COAL-FIRED ELECTRIC UTILITY BOILERS

    SciTech Connect

    Kenneth E. Baldrey

    2002-01-01

    The U.S. Department of Energy and ADA Environmental Solutions are engaged in a project to develop commercial flue gas conditioning additives. The objective is to develop conditioning agents that can help improve particulate control performance of smaller or under-sized electrostatic precipitators on utility coal-fired boilers. The new chemicals will be used to control both the electrical resistivity and the adhesion or cohesivity of the fly ash. There is a need to provide cost-effective and safer alternatives to traditional flue gas conditioning with SO{sub 3} and ammonia. During this reporting quarter, installation of a flue gas conditioning system was completed at PacifiCorp Jim Bridger Power Plant. Performance testing was underway. Results will be detailed in the next quarterly and subsequent technical summary reports. Also in this quarter, discussions were initiated with a prospective long-term candidate plant. This plant fires a bituminous coal and has opacity performance issues related to fly ash re-entrainment. Ammonia conditioning has been proposed here, but there is interest in liquid additives as a safer alternative.

  8. An Ecological Study on the Introduction of the Banded Sculpin Into a Coal Flyash Impacted Stream

    SciTech Connect

    Carrico, B.A.; Ryon, M.G.

    1996-02-01

    A number of banded sculpins [Cottus carolinae (Gill)] were obtained from a population in a reference stream, marked with subcutaneous acrylic paint injections, and introduced into McCoy Branch, a small second-order stream located on the Oak Ridge Reservation in eastern Tennessee, which was inhabited by only a few banded sculpins prior to the study. McCoy Branch had received deposits of coal ash slurry for a prolonged period, however, there were some indications of recovery in the macroinvertebrate community due to improvements in water quality. Stream habitat characteristics and water chemistry parameters were monitored in McCoy Branch and a reference stream for a three-year period. Feeding patterns and reproductive activities of the banded sculpins were also monitored during the study. Sculpin population parameters including density, condition factor, and young-of-year (YOY) abundance and survival were studied. The results of the study show that the introduced fish have survived and appear to be in good condition. The sculpins have maintained a density of approximately 0.12 fish per square meter of stream, a figure similar to that found in other headwater streams located in the region. Colonization rates and sculpin densities in McCoy Branch were lower than expected, perhaps due to physical habitat degradation and reduced macroinvertebrate abundance. Evidence of sculpin reproduction in McCoy Branch was seen in the presence of gravid female sculpins (1994 and 1995) and YOY fish (1993 through 1995 year classes). This study indicates that McCoy Branch continues to recover from past perturbations to the point where it can now support a viable population of banded sculpins.

  9. ADVANCED FLUE GAS CONDITIONING AS A RETROFIT UPGRADE TO ENHANCE PM COLLECTION FROM COAL-FIRED ELECTRIC UTILITY BOILERS

    SciTech Connect

    Kenneth E. Baldrey

    2000-09-01

    The U.S. Department of Energy and ADA Environmental Solutions have begun a project to develop commercial flue gas conditioning additives. The objective is to develop conditioning agents that can help improve particulate control performance of smaller or under-sized electrostatic precipitators on utility coal-fired boilers. The new chemicals will be used to control both the electrical resistivity and the adhesion or cohesivity of the flyash. There is a need to provide cost-effective and safer alternatives to traditional flue gas conditioning with SO{sub 3} and ammonia. During the second reporting quarter for this project, design and development is continuing on an electrostatic tensiometer to measure cohesion of flyash layers. A dedicated test fixture to automate flyash electrical resistivity testing is also underway. Ancillary instrumentation to control gas humidification within these test fixtures is also under construction.

  10. ADVANCED FLUE GAS CONDITIONING AS A RETROFIT UPGRADE TO ENHANCE PM COLLECTION FROM COAL-FIRED ELECTRIC UTILITY BOILERS

    SciTech Connect

    Kenneth E. Baldrey

    2001-05-01

    The U.S. Department of Energy and ADA Environmental Solutions has begun a project to develop commercial flue gas conditioning additives. The objective is to develop conditioning agents that can help improve particulate control performance of smaller or under-sized electrostatic precipitators on utility coal-fired boilers. The new chemicals will be used to control both the electrical resistivity and the adhesion or cohesivity of the flyash. There is a need to provide cost-effective and safer alternatives to traditional flue gas conditioning with SO{sub 3} and ammonia. During this reporting quarter, further laboratory-screening tests of additive formulations were completed. For these tests, the electrostatic tensiometer method was used for determination of flyash cohesivity. Resistivity was measured for each screening test with a multi-cell laboratory flyash resistivity furnace constructed for this project. Also during this quarter chemical formulation testing was undertaken to identify stable and compatible resistivity/cohesivity liquid products.

  11. ADVANCED FLUE GAS CONDITIONING AS A RETROFIT UPGRADE TO ENHANCE PM COLLECTION FROM COAL-FIRED ELECTRIC UTILITY BOILERS

    SciTech Connect

    Kenneth E. Baldrey

    2001-01-01

    The U.S. Department of Energy and ADA Environmental Solutions has begun a project to develop commercial flue gas conditioning additives. The objective is to develop conditioning agents that can help improve particulate control performance of smaller or under-sized electrostatic precipitators on utility coal-fired boilers. The new chemicals will be used to control both the electrical resistivity and the adhesion or cohesivity of the flyash. There is a need to provide cost-effective and safer alternatives to traditional flue gas conditioning with SO{sub 3} and ammonia. During the third reporting quarter, the electrostatic tensiometer for laboratory determination of flyash cohesivity was completed. Modifications were made to this method to improve repeatability. In addition, a new multi-cell laboratory flyash resistivity furnace was completed. Also during this quarter an agreement was reached for the initial field trial of the new additives at the City of Ames, Iowa Municipal Power Plant.

  12. ADVANCED FLUE GAS CONDITIONING AS A RETROFIT UPGRADE TO ENHANCE PM COLLECTION FROM COAL-FIRED ELECTRIC UTILITY BOILERS

    SciTech Connect

    Kenneth E. Baldrey

    2001-10-01

    The U.S. Department of Energy and ADA Environmental Solutions are engaged in a project to develop commercial flue gas conditioning additives. The objective is to develop conditioning agents that can help improve particulate control performance of smaller or under-sized electrostatic precipitators on utility coal-fired boilers. The new chemicals will be used to control both the electrical resistivity and the adhesion or cohesivity of the fly ash. There is a need to provide cost-effective and safer alternatives to traditional flue gas conditioning with SO{sub 3} and ammonia. During this reporting quarter, progress was made in obtaining an industry partner for a long-term demonstration and in technology transfer activities. Engineering and equipment procurement activities related to the long-term demonstration were also completed.

  13. Coal processing plants

    NASA Astrophysics Data System (ADS)

    Bitterlich, W.; Bohn, T.; Eickhoff, H. G.; Geldmacher, H.; Mengis, W.; Oomatia, H.; Stroppel, K. G.

    1980-08-01

    The efficient design of processing plants which combine various coal based technologies in order to maximize the effectiveness of coal utilization is considered. The technical, economical and ecological virtues which compound plants for coal conversion offer are assayed. Twenty-two typical processes of coal conversion and product refinement are selected and described by a standardized method of characterization. An analysis of product market and a qualitative assessment of plant design support six different compound plant propositions. The incorporation of such coal conversion schemes into future energy supply systems was simulated by model calculations. The analysis shows that byproducts and nonconverted materials from individual processes can be processed in a compound plant in a profitable manner. This leads to an improvement in efficiencies. The product spectrum can be adapted to a certain degree to demand variations. Furthermore, the integration of fluidized bed combustion can provide an efficient method of desulfurization. Compound plants are expected to become economic in the 1990's. A necessary condition to compound technologies is high reliability in the functioning of all individual processes.

  14. Solids throttling valves for coal conversion and utilization development. Final report

    SciTech Connect

    Sine, G.C.

    1980-11-01

    A complete test system to test, evaluate, and develop control valves for slurry letdown service in coal liquefaction plants is needed. The site identified for the test system was the SRC II Pilot Plant located at Ft. Lewis, Washington. The US Department of Energy, Morgantown Energy Technology Center, requested a test system design that would enable testing of various configuration letdown valves that would be compatible with the existing facility and have minimum impact on Pilot Plant operations. Drawings and specifications for such a test system were prepared, coordinated with Ft. Lewis personnel, revised to reflect Ft. Lewis operating personnel comments, and approved for use by the Morgantown Energy Technology Center. These drawings and specifications will enable the test system to be built, installed, and integrated with the existing facility by a general contractor.

  15. Utilization of zeolites synthesized from coal fly ash for the purification of acid mine waters.

    PubMed

    Moreno, N; Querol, X; Ayora, C; Pereira, C F; Janssen-Jurkovicová, M

    2001-09-01

    Two pilot plant products containing 65 and 45% NaP1 zeolite were obtained from two Spanish coal fly ashes (Narcea and Teruel Power Station, respectively). The zeolitic product obtained showed a cation exchange capacity (CEC) of 2.7 and 2.0 mequiv/g, respectively. Decontamination tests of three acid mine waters from southwestern Spain were carried out using the zeolite derived from fly ash and commercial synthetic zeolite. The results demonstrate that the zeolitic material could be employed for heavy metal uptake in the water purification process. Doses of 5-30 g of zeolite/L have been applied according on the zeolite species and the heavy metal levels. Moreover, the application of zeolites increases the pH. This causes metal-bearing solid phases to precipitate and enhances the efficiency of the decontamination process.

  16. Options and costs for CO{sub 2} reductions at coal-burning utilities

    SciTech Connect

    Hawk, E.W. Jr.

    1999-07-01

    The power generation industry may be required to reduce CO{sub 2} emissions if regulations related to global climate change are enacted. Coal-fired generation, which emits 88% of the power sector CO{sub 2}, would be a likely target for CO{sub 2} reduction. Compliance with the Kyoto protocol will require a 33% reduction from the projected year 2012 emission level even with moderate load growth. This paper describes an analysis of power industry CO{sub 2} reduction options and their costs to assess how a generator would make compliance decisions under a mandatory CO{sub 2} emissions reduction program. Carbon sequestration, fuel switching and new plant construction are considered.

  17. Coal combustion science

    SciTech Connect

    Hardesty, D.R.; Baxter, L.L.; Fletcher, T.H.; Mitchell, R.E.

    1990-11-01

    The objective of this activity is to support the Office of Fossil Energy in executing research on coal combustion science. This activity consists of basic research on coal combustion that supports both the Pittsburgh Energy Technology Center (PETC) Direct Utilization Advanced Research and Technology Development Program, and the International Energy Agency (IEA) Coal Combustion Science Project. Specific tasks include: coal devolatilization, coal char combustion, and fate of mineral matter during coal combustion. 91 refs., 40 figs., 9 tabs.

  18. Ecological study of revegetated coal mine spoil of an Indian dry tropical ecosystem along an age gradient.

    PubMed

    Singh, R S; Tripathi, N; Chaulya, S K

    2012-11-01

    Mineral nitrogen (MN), belowground (root) biomass (BGB), soil nitrogen (N) mineralization (NM), microbial biomass N (MBN) and mine dump stability of a revegetated mine spoil were studied after 2, 6, 10 and 12 years of re-vegetation on coal mine spoil site. MN in revegetated mine spoil ranged from 7.4 to 11.6 kg ha(-1), NM from 38.4 to 252 kg ha(-1) year(-1), MBN from 86 to 426 kg ha(-1), and BGB from 380 to 3,750 kg ha(-1). Mining caused decline of physico-chemical characteristics of soil like MN by 46 %, N-mineralization by 92 %, MBN values by 91 %, respectively compared to forest ecosystems and reduction of total plant biomass (above ground and below ground). Revegetation of mine spoil caused increase in MN values by 12, 36 and 76 %, BGB values by 380, 1770 and 3750 times, NM values by 0.6, 3.58 and 9.5 times and MBN values by 0.43, 2.77, and 6.07 times in 2, 6 and 12 years, respectively. BGB was highly correlated with MN and MBN. Clay content was positively correlated to MN, NM, and the age of revegetation (P < 0.01). Numerical modelling indicated that revegetation increased the dump slope stability with a factor of safety from 1.2 to 1.4, 1.7, 1.9 and 2.1 after 2, 6, 10 and 12 years, respectively. Thus, long-term revegetation was found to enhance the dump stability and the soil fertility status in mine spoil, where plant biomass and microbial biomass provide major contributions in ecological redevelopment of the mine spoil.

  19. Utilization of fuel cells to beneficially use coal mine methane. Final report

    SciTech Connect

    Brown, J.T.; O`Brien, D.G.; Miller, A.R.; Atkins, R.; Sanders, M.

    1996-03-01

    DOE has been given the responsibility to encourage industry to recover and use methane that is currently being released to the atmosphere. At this time the only method being employed at the Left Fork Mine to remove methane is the mine ventilation system. The methane content was measured at one one-hundredth of a percent. To prevent this methane from being vented to the atmosphere, degasification wells are proposed. To use the coal mine methane, it is proposed to use phosphoric-acid fuel cells to convert methane to electric power. These fuel cells contain (1) a steam reformer to convert the methane to hydrogen (and carbon dioxide), (2) the fuel cell stack, and (3) a power conditioner that provides 200 kW of 60 Hz alternating current output. The environmental impacts and benefits of using this technology ware summarized in the report. The study indicates the methane emission reduction that could be achieved on a national and Global level. The important point being that this technology is economically viable as is demonstrated in the report.

  20. Coal ash utilization for soil amendment to enhance water relations and turf growth. Final report

    SciTech Connect

    Adriano, D.C.; Weber, J.T.

    1998-10-01

    A long-term (1993--96) field study assessed the effects of applying high rates of coal fly-ash as a soil amendment for the growth of the turf species, centipedegrass (Eremochloa ophiroides). A Latin Square plot design was employed with a control (no ash applied), and 280, 560, and 1,120 Mg ha{sup {minus}1} (i.e., tonne/ha) application rates of unweathered baghouse fly-ash from a power station of the South Carolina Electric and Gas Company. The applied fly-ash was spread evenly over each plot area, rototilled, and allowed to weather for 8 months before seeding to centipedegrass. High levels of soluble salts, indicated by the electrical conductivity of the soil extracts, in tandem with the phytotoxic effect of B, apparently inhibited the initial plant establishment as shown by substantially lower germination counts in ashed soils. The plant height and root length, however, were not adversely affected, nor were the dry matter yields throughout the study period. Ash treatment did not significantly influence infiltration rate, bulk density, or temperature of the soil, but substantially improved its water holding capacity and plant available water. This enhanced water retention capacity apparently rendered the soil less droughty and improved the coherence and handling property of the harvested sod.

  1. Application of the SULF-X process to coal conversion and utilization. Phase II final report

    SciTech Connect

    Shapiro, E.; Bramer, H.C.; New, R.A.

    1984-01-01

    Pittsburgh Environmental and Energy Systems, Inc. contracted with the Department of Energy to demonstrate the efficacy of an iron sulfide flue gas treatment system (FGT) for removing sulfur dioxide (SO/sub 2/) and nitrogen oxides (NO/sub x/) and to correlate process variables to system performance. Laboratory and bench-scale testing was conducted with the SULF-X process, using both synthesized gas and actual flue gas from a coal-fired furnace. Laboratory tests resulted in 95% SO/sub 2/ removal and up to 95% NO/sub x/ removal. The bench-scale system demonstrated similar SO/sub 2/ removal efficiencies, but achieved only 39% NO/sub x/ removal due to relatively high oxygen concentrations in the flue gas and insufficient liquid-gas interfacial area within the absorber. Elemental sulfur was recovered during the regeneration steps. Total capital investment for the SULF-X system was estimated to be $91 to $103 per kilowatt (electric), compared to $90/kw for sodium solution scrubbing, $78 to $83/kw for magnesia slurry scrubbing and $74/kw for limestone slurry scrubbing. Annual operating costs for the SULF-X system were estimated to be 5.44 to 6.90 mills per kilowatt-hour, compared to 4.96 to 5.22 for sodium, 3.68 to 3.99 for magnesia and 3.73 to 4.25 for limestone. 6 references, 6 figures, 9 tables.

  2. COMPARING THE UTILITY OF MULTIMEDIA MODELS FOR HUMAN AND ECOLOGICAL EXPOSURE ANALYSIS: TWO CASES

    EPA Science Inventory

    A number of models are available for exposure assessment; however, few are used as tools for both human and ecosystem risks. This discussion will consider two modeling frameworks that have recently been used to support human and ecological decision making. The study will compare ...

  3. Can ecological land classification increase the utility of vegetation monitoring data

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vegetation dynamics in rangelands and other ecosystems are known to be mediated by topoedaphic properties. Vegetation monitoring programs, however, often do not consider the impact of soils and other sources of landscape heterogeneity on the temporal patterns observed. Ecological sites (ES) comprise...

  4. CONTROL OF MERCURY EMISSIONS FROM COAL-FIRED ELECTRIC UTILITY BOILERS: INTERIM REPORT

    EPA Science Inventory

    The report provides additional information on mercury (Hg) emissions control following the release of "Study of Hazardous Air Pollutant Emissions from Electric Utility Steam Generating Units--Final Report to Congress" in February 1998. Chapters 1-3 describe EPA's December 2000 de...

  5. FIELD EVALUATION OF LOW-EMISSION COAL BURNER TECHNOLOGY ON UTILITY BOILERS VOLUME III. FIELD EVALUATIONS

    EPA Science Inventory

    The report gives results of field tests conducted to determine the emission characteristics of a Babcock and Wilcox Circular burner and Dual Register burner (DRB). The field tests were performed at two utility boilers, generally comparable in design and size except for the burner...

  6. Tenth annual coal preparation, utilization, and environmental control contractors conference: Proceedings. Volume 2

    SciTech Connect

    Not Available

    1994-08-01

    Volume II contains papers presented at the following sessions: combustion 2000 session; advanced research and technology development session; commercial/industrial combustion systems session; alternative fuels utilization session; environmental control poster session; and advanced combustion technology poster session. Selected papers have been processed separately for inclusion in the Energy Science and Technology Database.

  7. Advanced Multi-Product Coal Utilization By-Product Processing Plant

    SciTech Connect

    John Groppo; Thomas Robl

    2006-09-30

    The objective of the project is to build a multi-product ash beneficiation plant at Kentucky Utilities 2,200-MW Ghent Generating Station, located in Carroll County, Kentucky. This part of the study includes an investigation of the secondary classification characteristics of the ash feedstock excavated from the lower ash pond at Ghent Station.

  8. Some thoughts on the strategy of direct coal liquefaction -- Partial liquefaction and utilization of heavy liquefaction products

    SciTech Connect

    Liu, Z.; Yang, J.

    1998-12-31

    Hydrogenation has long been the only goal of coal liquefaction. However, analysis show that partial hydrogenation along with carbon rejection may be a better strategy for coal liquefaction, which reduces hydrogen consumption and reaction severity, eliminates the necessity for expensive catalyst, and may results in better economy for overall liquefaction. The hydrogenation and carbon rejection approach can be called partial liquefaction of coal. This paper presents analysis supporting the strategy of partial coal liquefaction based on the point of view of mass and energy balance, chemical reaction kinetics, reactivity of coal constituents and possible use of the heavy liquefaction products.

  9. Cyanobacteria to Link Closed Ecological Systems and In-Situ Resources Utilization Processes

    NASA Astrophysics Data System (ADS)

    Brown, Igor

    Introduction: A major goal for the Vision of Space Exploration is to extend human presence across the solar sys-tem. With current technology, however, all required consumables for these missions (propellant, air, food, water) as well as habitable volume and shielding to support human explorers will need to be brought from Earth. In-situ pro-duction of consumables (In-Situ Resource Utilization-ISRU) will significantly facilitate current plans for human ex-ploration and colonization of the solar system, especially by reducing the logistical overhead such as recurring launch mass. The production of oxygen from lunar materials is generally recognized as the highest priority process for lunar ISRU, for both human metabolic and fuel oxidation needs. The most challenging technology developments for future lunar settlements may lie in the extraction of elements (O, Fe, Mn, Ti, Si, etc) from local rocks and soils for life support, industrial feedstock and the production of propellants. With few exceptions (e.g., Johannson, 1992), nearly all technology development to date has employed an ap-proach based on inorganic chemistry (e.g. Allen et al., 1996). None of these technologies include concepts for inte-grating the ISRU system with a bioregenerative life support system and a food production systems. Bioregenerative life support efforts have recently been added to the Constellation ISRU development program (Sanders et al, 2007). Methods and Concerns: The European Micro-Ecological Life Support System Alternative (MELiSSA) is an ad-vanced concept for organizing a bioregenerative system for long term space flights and extraterrestrial settlements (Hendrickx, De Wever et al., 2005). However the MELiSSA system is a net consumer of ISRU products without a net return to in-situ technologies, e.g.. to extract elements as a result of complete closure of MELiSSA. On the other hand, the physical-chemical processes for ISRU are typically massive (relative to the rate of oxygen

  10. Study of Indonesia low rank coal utilization on modified fixed bed gasification for combined cycle power plant

    NASA Astrophysics Data System (ADS)

    Hardianto, T.; Amalia, A. R.; Suwono, A.; Riauwindu, P.

    2015-09-01

    Gasification is a conversion process converting carbon-based solid fuel into gaseous products that have considerable amount of calorific value. One of the carbon-based solid fuel that serves as feed for gasification is coal. Gasification gaseous product is termed as syngas (synthetic gas) that is composed of several different gases. Syngas produced from gasification vary from one process to another, this is due to several factors which are: feed characteristics, operation condition, gasified fluid condition, and gasification method or technology. One of the utilization of syngas is for combined cycle power plant fuel. In order to meet the need to convert carbon-based solid fuel into gaseous fuel for combined cycle power plant, engineering adjustment for gasification was done using related software to create the syngas with characteristics of natural gas that serve as fuel for combined cycle power plant in Indonesia. Feed used for the gasification process in this paper was Indonesian Low Rank Coal and the method used to obtain syngas was Modified Fixed Bed Gasifier. From the engineering adjustment process, the yielded syngas possessed lower heating value as much as 31828.32 kJ/kg in gasification condition of 600°C, 3.5 bar, and steam to feed ratio was 1 kg/kg. Syngas characteristics obtained from the process was used as a reference for the adjustment of the fuel system modification in combined cycle power plant that will have the same capacity with the conversion of the system's fuel from natural gas to syngas.

  11. Direct utilization - recovery of minerals from coal fly ash. Technical progress report, October 1, 1982-December 31, 1982

    SciTech Connect

    Burnet, G.; Murtha, M.J.; Seaverson, L.M.

    1983-02-01

    Research included an examination of the adsorbed water on coal fly ash, the utilization of phosgene as a chlorination agent, the physical adsorption and chemisorption of phosgene on fly ash particles, and the aqueous separation of chlorination products. Results of an investigation of coal fly ash powder samples using photoacoustic infrared spectroscopy showed almost complete removal of adsorbed water after drying for 30 hours at 700/sup 0/C. A thermodynamic computer simulation of the chlorination of an SiO/sub 2/ and Al/sub 2/O/sub 3/ mixture of 2:1 molar ratio with a stoichiometric amount of carbon present revealed that silica is the preferred reactant at lower temperature, but that alumina chlorination is preferred at 800/sup 0/C. Experiments using phosgene to chlorinate acid-leached Texas lignite fly ash gave information about the kinetic rate dependence of the reaction involved. Work to determine the amount of chemisorption and physical adsorption of phosgene on pellets of the leached Texas lignite ash was initiated to permit the calculation of surface reaction rates. Separation of FeCl/sub 3/ by solvent extraction improved as the chloride ion concentration of the aqueous phase increased, regardless of whether the associated cation was hydrogen or aluminum. A static equilibrium cell/furnace arrangement with ultraviolet spectroscopy capability has been confirmed to be suitable for measurement of the absorbance of vapor species. A Harper 6 in. dia rotary kiln was used to continuously sinter a limestone-soda ash-fly ash mixture in the form of 1/8 in. dia pellets. Extraction of sintered material with dilute aqueous soda ash solution gave aluminate recoveries comparable to those obtained when small samples were sintered in a benchscale tube furnace. Results are presented which show that x-ray diffraction data can be used to calculate the amounts of individual compounds in sintered samples.

  12. ADVANCED FLUE GAS CONDITIONING AS A RETROFIT UPGRADE TO ENHANCE PM COLLECTION FROM COAL-FIRED ELECTRIC UTILITY BOILERS

    SciTech Connect

    Kenneth E. Baldrey

    2002-07-01

    The U.S. Department of Energy and ADA Environmental Solutions are engaged in a project to develop commercial flue gas conditioning additives. The objective is to develop conditioning agents that can help improve particulate control performance of smaller or under-sized electrostatic precipitators on utility coal-fired boilers. The new chemicals will be used to control both the electrical resistivity and the adhesion or cohesivity of the fly ash. There is a need to provide cost-effective and safer alternatives to traditional flue gas conditioning with SO{sub 3} and ammonia. During this reporting quarter, performance testing of flue gas conditioning was completed at the PacifiCorp Jim Bridger Power Plant. The product tested, ADA-43, was a combination resistivity modifier with cohesivity polymers. The product was effective as a flue gas conditioner. However, ongoing problems with in-duct deposition resulting from the flue gas conditioning were not entirely resolved. Primarily these problems were the result of difficulties encountered with retrofit of an existing spray humidification system. Eventually it proved necessary to replace all of the original injection lances and to manually bypass the PLC-based air/liquid feed control. This yielded substantial improvement in spray atomization and system reliability. However, the plant opted not to install a permanent system. Also in this quarter, preparations continued for a test of the cohesivity additives at the American Electric Power Conesville Plant, Unit 3. This plant fires a bituminous coal and has opacity and particulate emissions performance issues related to fly ash re-entrainment. Ammonia conditioning is employed here on one unit, but there is interest in liquid cohesivity additives as a safer alternative.

  13. Barriers to the increased utilization of coal combustion/desulfurization by-products by government and commercial sectors - Update 1998

    SciTech Connect

    Pflughoeft-Hassett, D.F.; Sondreal, E.A.; Steadman, E.N.; Eylands, K.E.; Dockter, B.A.

    1999-07-01

    The following conclusions are drawn from the information presented in this report: (1) Joint efforts by industry and government focused on meeting RTC recommendations for reduction/removal of barriers have met with some success. The most notable of these are the changes in regulations related to CCB utilization by individual states. Regionally or nationally consistent state regulation of CCB utilization would further reduce regulatory barriers. (2) Technology changes will continue to be driven by the CAAA, and emission control technologies are expected to continue to impact the type and properties of CCBs generated. As a result, continued RD and D will be needed to learn how to utilize new and changing CCBs in environmentally safe, technically sound, and economically advantageous ways. Clean coal technology CCBs offer a new challenge because of the high volumes expected to be generated and the different characteristics of these CCBs compared to those of conventional CCBs. (3) Industry and government have developed the RD and D infrastructure to address the technical aspects of developing and testing new CCB utilization applications, but this work as well as constant quality control/quality assurance testing needs to be continued to address both industry wide issues and issues related to specific materials, regions, or users. (4) Concerns raised by environmental groups and the public will continue to provide environmental and technical challenges to the CCB industry. It is anticipated that the use of CCBs in mining applications, agriculture, structural fills, and other land applications will continue to be controversial and will require case-by-case technical and environmental information to be developed. The best use of this information will be in the development of generic regulations specifically addressing the use of CCBs in these different types of CCB applications. (5) The development of federal procurement guidelines under Executive Order 12873 titled

  14. Utilizing acid mine drainage sludge and coal fly ash for phosphate removal from dairy wastewater.

    PubMed

    Wang, Y R; Tsang, Daniel C W; Olds, William E; Weber, Paul A

    2013-01-01

    This study aims to investigate a new and sustainable approach for the reuse of industrial by-products from wastewater treatment. The dairy industry produces huge volumes of wastewater, characterized by high levels of phosphate that can result in eutrophication and degradation of aquatic ecosystems. This study evaluated the application of acid mine drainage (AMD) sludge, coal fly ash, and lignite as low-cost adsorbents for the removal of phosphate from dairy wastewater. Material characterization using X-ray fluorescence, X-ray diffraction, and Brunauer-Emmett-Teller surface area analysis revealed significant amounts of crystalline/amorphous Fe/Al/Si/Ca-based minerals and large surface areas of AMD sludge and fly ash. Batch adsorption isotherms were best described using the Freundlich model. The Freundlich distribution coefficients were 13.7 mg(0.577) L(0.423) g(-1) and 16.9 mg(0.478) L(0.522) g(-1) for AMD sludge and fly ash, respectively, and the nonlinearity constants suggested favourable adsorption for column applications. The breakthrough curves of fixed-bed columns, containing greater than 10 wt% of the waste materials (individual or composite blends) mixed with sand, indicated that phosphate breakthrough did not occur within 100 pore volumes while the cumulative removal was 522 and 490 mg kg(-1) at 10 wt% AMD sludge and 10 wt% fly ash, respectively. By contrast, lignite exhibited negligible phosphate adsorption, possibly due to small amounts of inorganic minerals suitable for phosphate complexation and limited surface area. The results suggest that both AMD sludge and fly ash were potentially effective adsorbents if employed individually at a ratio of 10 wt% or above for column application.

  15. An overview of the utility of population simulation software in molecular ecology.

    PubMed

    Hoban, Sean

    2014-05-01

    Stochastic simulation software that simultaneously model genetic, population and environmental processes can inform many topics in molecular ecology. These include forecasting species and community response to environmental change, inferring dispersal ecology, revealing cryptic mating, quantifying past population dynamics, assessing in situ management options and monitoring neutral and adaptive biodiversity change. Advances in population demographic-genetic simulation software, especially with respect to individual life history, landscapes and genetic processes, are transforming and expanding the ways that molecular data can be used. The aim of this review is to explain the roles that such software can play in molecular ecology studies (whether as a principal component or a supporting function) so that researchers can decide whether, when and precisely how simulations can be incorporated into their work. First, I use seven case studies to demonstrate how simulations are employed, their specific advantage/necessity and what alternative or complementary (nonsimulation) approaches are available. I also explain how simulations can be integrated with existing spatial, environmental, historical and genetic data sets. I next describe simulation features that may be of interest to molecular ecologists, such as spatial and behavioural considerations and species' interactions, to provide guidance on how particular simulation capabilities can serve particular needs. Lastly, I discuss the prospect of simulation software in emerging challenges (climate change, biodiversity monitoring, population exploitation) and opportunities (genomics, ancient DNA), in order to emphasize that the scope of simulation-based work is expanding. I also suggest practical considerations, priorities and elements of best practice. This should accelerate the uptake of simulation approaches and firmly embed them as a versatile tool in the molecular ecologist's toolbox.

  16. Nesting ecology of a population of Gopherus agassizii at a utility-scale wind energy facility in southern California

    USGS Publications Warehouse

    Ennen, Joshua R.; Lovich, Jeffrey E.; Meyer, Katherin P.; Bjurlin, Curtis; Arundel, Terence R.

    2012-01-01

    We investigated the annual nesting ecology of a population of Desert Tortoises (Gopherus agassizii) inhabiting a utility-scale renewable energy (USRE) facility in southern California and compared our results with populations inhabiting relatively undisturbed sites. In 2000, 15 radio-tracked females produced 29 clutches, and 24 nests were monitored to examine nest-site selection, nest predation, hatching success, date of emergence of hatchlings, and hatchling mass and carapace length. Overall, the nesting ecology of the population inhabiting the USRE facility was very similar to other populations of Desert Tortoises inhabiting relatively undisturbed habitats. Oviposition occurred from 12 May to 8 July, which was similar to other sites. Nest depths (11.1 cm), nest predation (12%), hatchling emergence date (7 August and 29 September), and hatchling morphometrics (i.e., MCL: 44.5 mm; mass: 23 g) were all within ranges reported in other populations. Unlike within other populations, we observed no relationship between hatchling size and either maternal body size or egg width. We found no evidence of females selecting for a particular burrow for oviposition of eggs based on environmental or anthropogenic variables. Most nests were located in or near burrows, and nest depth was greater for nests near the entrance than those deeper in the burrow. Although this study suggests that the nesting ecology of the Desert Tortoise population we studied was not adversely affected by the USRE facility, this relationship is only correlative because our study was not a before-after-control-impact (BACI) study, which would establish a cause and effect relationship. As pointed out in a recent review, BACI studies are critically needed to address the wildlife impacts of utility-scale renewable energy development.

  17. Advanced Multi-Product Coal Utilization By-Product Processing Plant

    SciTech Connect

    Thomas Robl; John Groppo

    2007-03-31

    The objective of the project is to build a multi-product ash beneficiation plant at Kentucky Utilities 2,200-MW Ghent Generating Station, located in Carroll County, Kentucky. Phase 1 was completed successfully, but the project did not continue on to Phase 2 due to withdrawal of CEMEX from the project. Attempts at replacing CEMEX were not successful. Problematic to the continuation of the project was its location in the Ohio Valley which is oversupplied and has low prices for fly ash and the change in CEMEX priorities due to merger and acquisitions. Thus, CAER concurred with the DOE to conclude the project at the end of Budget Period 1, March 31, 2007.

  18. ADVANCED FLUE GAS CONDITIONING AS A RETROFIT UPGRADE TO ENHANCE PM COLLECTION FROM COAL-FIRED ELECTRIC UTILITY BOILERS

    SciTech Connect

    Kenneth E. Baldrey

    2003-07-30

    The U.S. Department of Energy and ADA Environmental Solutions are engaged in a project to develop commercial flue gas conditioning additives. The objective is to develop conditioning agents that can help improve particulate control performance of smaller or under-sized electrostatic precipitators on utility coal-fired boilers. The new chemicals will be used to control both the electrical resistivity and the adhesion or cohesivity of the fly ash. There is a need to provide cost-effective and safer alternatives to traditional flue gas conditioning with SO{sub 3} and ammonia. This quarterly report summarizes project activity for the period April-June, 2003. In this period there was limited activity and no active field trials. Results of ash analysis from the AEP Conesville demonstration were received. In addition, a site visit was made to We Energies Presque Isle Power Plant and a proposal extended for a flue gas conditioning trial with the ADA-51 cohesivity additive. It is expected that this will be the final full-scale evaluation on the project.

  19. ADVANCED FLUE GAS CONDITIONING AS A RETROFIT UPGRADE TO ENHANCE PM COLLECTION FROM COAL-FIRED ELECTRIC UTILITY BOILERS

    SciTech Connect

    Kenneth E. Baldrey

    2003-02-01

    The U.S. Department of Energy and ADA Environmental Solutions are engaged in a project to develop commercial flue gas conditioning additives. The objective is to develop conditioning agents that can help improve particulate control performance of smaller or under-sized electrostatic precipitators on utility coal-fired boilers. The new chemicals will be used to control both the electrical resistivity and the adhesion or cohesivity of the fly ash. There is a need to provide cost-effective and safer alternatives to traditional flue gas conditioning with SO{sub 3} and ammonia. During this reporting quarter, two cohesivity-specific additive formulations, ADA-44C and ADA-51, were evaluated in a full-scale trial at the American Electric Power Conesville plant. Ammonia conditioning was also evaluated for comparison. ADA-51 and ammonia conditioning significantly reduced rapping and non-rapped particulate re-entrainment based on stack opacity monitor data. Based on the successful tests to date, ADA-51 will be evaluated in a long-term test.

  20. ADVANCED FLUE GAS CONDITIONING AS A RETROFIT UPGRADE TO ENHANCE PM COLLECTION FROM COAL-FIRED ELECTRIC UTILITY BOILERS

    SciTech Connect

    Kenneth E. Baldrey

    2001-05-01

    The U.S. Department of Energy and ADA Environmental Solutions has begun a project to develop commercial flue gas conditioning additives. The objective is to develop conditioning agents that can help improve particulate control performance of smaller or under-sized electrostatic precipitators on utility coal-fired boilers. The new chemicals will be used to control both the electrical resistivity and the adhesion or cohesivity of the flyash. There is a need to provide cost-effective and safer alternatives to traditional flue gas conditioning with SO{sub 3} and ammonia. During the fourth reporting quarter, laboratory-screening tests of more than 20 potential additive formulations were completed. For these tests, the electrostatic tensiometer method was used for determination of flyash cohesivity. Resistivity was measured for each screening test with a new multi-cell laboratory flyash resistivity furnace constructed for this project. An initial field trial of three additive formulations was also conducted at the City of Ames, Iowa Municipal Power Plant.

  1. ADVANCED FLUE GAS CONDITIONING AS A RETROFIT UPGRADE TO ENHANCE PM COLLECTION FROM COAL-FIRED ELECTRIC UTILITY BOILERS

    SciTech Connect

    Kenneth E. Baldrey

    2001-09-01

    The U.S. Department of Energy and ADA Environmental Solutions are engaged in a project to develop commercial flue gas conditioning additives. The objective is to develop conditioning agents that can help improve particulate control performance of smaller or under-sized electrostatic precipitators on utility coal-fired boilers. The new chemicals will be used to control both the electrical resistivity and the adhesion or cohesivity of the fly ash. There is a need to provide cost-effective and safer alternatives to traditional flue gas conditioning with SO{sub 3} and ammonia. During this reporting quarter, further laboratory-screening tests of additive formulations were completed. For these tests, the electrostatic tensiometer method was used for determination of fly ash cohesivity. Resistivity was measured for each screening test with a multi-cell laboratory fly ash resistivity furnace constructed for this project. Also during this quarter chemical formulation testing was undertaken to identify stable and compatible resistivity/cohesivity liquid products.

  2. Utilization of blended fluidized bed combustion (FBC) ash and pulverized coal combustion (PCC) fly ash in geopolymer.

    PubMed

    Chindaprasirt, Prinya; Rattanasak, Ubolluk

    2010-04-01

    In this paper, synthesis of geopolymer from fluidized bed combustion (FBC) ash and pulverized coal combustion (PCC) fly ash was studied in order to effectively utilize both ashes. FBC-fly ash and bottom ash were inter-ground to three different finenesses. The ashes were mixed with as-received PCC-fly ash in various proportions and used as source material for synthesis of geopolymer. Sodium silicate (Na(2)SiO(3)) and 10M sodium hydroxide (NaOH) solutions at mass ratio of Na(2)SiO(3)/NaOH of 1.5 and curing temperature of 65 degrees C for 48h were used for making geopolymer. X-ray diffraction (XRD), scanning electron microscopy (SEM), degree of reaction, and thermal gravimetric analysis (TGA) were performed on the geopolymer pastes. Compressive strength was also tested on geopolymer mortars. The results show that high strength geopolymer mortars of 35.0-44.0MPa can be produced using mixture of ground FBC ash and as-received PCC-fly ash. Fine FBC ash is more reactive and results in higher degree of reaction and higher strength geopolymer as compared to the use of coarser FBC ash. Grinding increases reactivity of ash by means of increasing surface area and the amount of reactive phase of the ash. In addition, the packing effect due to fine particles also contributed to increase in strength of geopolymers.

  3. Utilization of blended fluidized bed combustion (FBC) ash and pulverized coal combustion (PCC) fly ash in geopolymer

    SciTech Connect

    Chindaprasirt, Prinya; Rattanasak, Ubolluk

    2010-04-15

    In this paper, synthesis of geopolymer from fluidized bed combustion (FBC) ash and pulverized coal combustion (PCC) fly ash was studied in order to effectively utilize both ashes. FBC-fly ash and bottom ash were inter-ground to three different finenesses. The ashes were mixed with as-received PCC-fly ash in various proportions and used as source material for synthesis of geopolymer. Sodium silicate (Na{sub 2}SiO{sub 3}) and 10 M sodium hydroxide (NaOH) solutions at mass ratio of Na{sub 2}SiO{sub 3}/NaOH of 1.5 and curing temperature of 65 deg. C for 48 h were used for making geopolymer. X-ray diffraction (XRD), scanning electron microscopy (SEM), degree of reaction, and thermal gravimetric analysis (TGA) were performed on the geopolymer pastes. Compressive strength was also tested on geopolymer mortars. The results show that high strength geopolymer mortars of 35.0-44.0 MPa can be produced using mixture of ground FBC ash and as-received PCC-fly ash. Fine FBC ash is more reactive and results in higher degree of reaction and higher strength geopolymer as compared to the use of coarser FBC ash. Grinding increases reactivity of ash by means of increasing surface area and the amount of reactive phase of the ash. In addition, the packing effect due to fine particles also contributed to increase in strength of geopolymers.

  4. Anatomically preserved marattiales from coal swamps of the Desmoinesian and Missourian of the midcontinent United States: Systematics, ecology and evolution

    SciTech Connect

    Lesnikowska, A.D.

    1989-01-01

    Eleven species-level assemblages of stems, frond members and fertile foliage of anatomically preserved Marattiales are proposed, based on specimens in coal balls from 16 coals in the Desmoinesian and Missourian (Westphalian D and Stephanian) of the Illinois, Forest City and Arkoma Basins. Four new combinations, Psaronius calicifolius (Millay) Lesnikowska, and Psaronius gnomus (Lesnikowska Millay) Lesnikowska, Psaronius illinoensis (Eqart) Lesnikowska, and Psaronius minor (Hoskins) Lesnikowska are made to accommodate well documented assemblages and seven are treated informally. The taxonomy of the fertile foliage is revised as follows: Scolecopteris dispora Lesnikowska sp. nov. is described from an Iowa coal and Scolecopteris parkerensis Lesnikowska sp. nov. from the Parker Coal of Indiana. Scolecopteris fragilis is made a synonym of S. mamayi, and S. revoluta, and S. saharaensis synonyms of S. minor. The type and Middle Pennsylvanian specimens of Scolecopteris parvifolia belong in S. minor but the Upper Pennsylvanian specimens are S. illinoensis. Only one species occurs in both the Middle and the Upper Pennsylvanian; the extinction event near the Middle/Upper Pennsylvanian boundary extended to coal-swamp Marattiales as well as tree lycopods. The Upper Pennsylvanian tree ferns are interpreted as derived from clastic-swamp species that recolonized the coal-swamp habitat after this extinction. Upper Pennsylvanian tree ferns were significantly larger than Middle Pennsylvanian ones and were characterized by a massive root mantle whereas as least one Middle Pennsylvanian species lacked a root mantle and had a scrambling habit. Biomass allocation to reproduction was significantly greater in the Middle Pennsylvanian species.

  5. Advanced Multi-Product Coal Utilization By-Product Processing Plant

    SciTech Connect

    Andrew Jackura; John Groppo; Thomas Robl

    2006-12-31

    The objective of the project is to build a multi-product ash beneficiation plant at Kentucky Utilities 2,200-MW Ghent Generating Station, located in Carroll County, Kentucky. This part of the study includes an investigation of the secondary classification characteristics of the ash feedstock excavated from the lower ash pond at Ghent Station. The market study for the products of the processing plant (Subtask 1.6), conducted by Cemex, is reported herein. The study incorporated simplifying assumptions and focused only on pozzolan and ultra fine fly ash (UFFA). It found that the market for pozzolan in the Ghent area was oversupplied, with resultant poor pricing structure. Reachable export markets for the Ghent pozzolan market were mostly locally served with the exception of Florida. It was concluded that a beneficiated material for that market may be at a long term disadvantage. The market for the UFFA was more complex as this material would compete with other beneficiated ash and potential metakaolin and silica fume as well. The study concluded that this market represented about 100,000 tons of sales per year and, although lucrative, represented a widely dispersed niche market.

  6. Advanced Multi-Product Coal Utilization By-Product Processing Plant

    SciTech Connect

    John Groppo; Thomas Robl

    2006-06-30

    The objective of the project is to build a multi-product ash beneficiation plant at Kentucky Utility's 2,200-MW Ghent Generating Station, located in Carroll County, Kentucky. This part of the study includes an investigation of the secondary classification characteristics of the ash feedstock excavated from the lower ash pond at Ghent Station. The secondary classification testing was concluded using a continuous demonstration-scale lamella classifier that was operated at a feed rate of 0.3 to 1.5 tons/hr. Feed to the secondary classifier was generated by operating the primary classifier at the conditions shown to be effective previously. Samples were taken while the secondary classifier was operated under a variety of conditions in order to determine the range of conditions where the unit could be efficiently operated. A Topical Report was prepared and included all of the pertinent processing data generated during Budget Period 1 of the project as well as results of beneficiated ash product evaluations in mortar and concrete, schematic plant designs with mass and water balances for the four flowsheets tested with equipment lists, capital and installation costs, expected product outputs and equipment justifications. A proposal for continuation of the project to Budget Period 2 was also prepared and submitted, with the exception of a Letter of Commitment from Cemex. The proposal is currently under internal review with Cemex and a decision is expected by the end of September, 2006.

  7. Advanced Multi-Product Coal Utilization By-Product Processing Plant

    SciTech Connect

    Thomas Robl; John Groppo

    2005-09-01

    The objective of the project is to build a multi-product ash beneficiation plant at Kentucky Utilities 2,200-MW Ghent Generating Station, located in Carroll County, Kentucky. This part of the study includes the examination of the feedstocks for the beneficiation plant. The ash, as produced by the plant, and that stored in the lower pond were examined. A mobile demonstration unit has been designed and constructed for field demonstration. The demonstration unit was hauled to the test site on trailers that were place on a test pad located adjacent to the ash pond and re-assembled. The continuous test unit will be operated at the Ghent site and will evaluate three processing configurations while producing sufficient products to facilitate thorough product testing. The test unit incorporates all of the unit processes that will be used in the commercial design and is self sufficient with respect to water, electricity and processing capabilities. Representative feed ash for the operation of the filed testing unit was excavated from a location within the lower ash pond determined from coring activities. Approximately 150 tons of ash was excavated and pre-screened to remove +3/8 inch material that could cause plugging problems during operation of the demonstration unit.

  8. Project Wild and the Dominant Western Paradigm: A Content Analysis Utilizing Deep Ecology.

    ERIC Educational Resources Information Center

    Ingraham, Blake

    Environmental educators utilize activity guides as a primary method of diffusing environmental education material into educational settings. The most popular environmental education activity guide in use today is Project WILD. Project WILD has come under fire by various groups, especially animal rights groups. Accordingly, a content analysis study…

  9. Fishing Ecology: Unit F#5 Grade 7. Project COULD: Career Orientation Utilizing Language Development.

    ERIC Educational Resources Information Center

    Coos County Intermediate Education District, North Bend, OR.

    Project COULD (Career Orientation Utilizing Language Development) was developed as a means of building skills, knowledges, and attitudes on elementary children's previously acquired backgrounds. Children learn to speak the grammar and vocabulary characteristic of the language heard most frequently at home and in the immediate environment. A series…

  10. Application of Modern Coal Technologies to Military Facilities. Volume II. Evaluation of the Applicability and Cost of Current and Emerging Coal Technologies for the Utilization of Coal as a Primary Energy Source

    DTIC Science & Technology

    1968-05-01

    eroded by coal and Impurities, annual repair or replacement Is usually required. Often oil or gas auxiliary burners are required to preheat the...necessary and the abrasive nature of the coal Increases maintenance and repair frequency. Stokers burn coal within specified size limits, but some...high rates of repair due to erosion. Gas-and oil-fired units are designed for pressurized firing operating under a positive pressure of 10-20 Inches

  11. Utilization of lightweight materials made from coal gasification slags. Quarterly report, September 1--November 30, 1997

    SciTech Connect

    1997-12-31

    In previous projects, Praxis investigated the utilization of as-generated slags for a wide variety of applications in road construction, cement and concrete production, agricultural applications, and as a landfill material. From these studies, the authors found that it would be extremely difficult for as-generated slag to find large-scale acceptance in the marketplace even at no cost because the materials it could replace were abundantly available at very low cost. It became apparent that a more promising approach would be to develop a variety of value-added products from slag that meet specific industry requirements. This approach was made feasible by the discovery that slag undergoes expansion and forms a lightweight material when subjected to controlled heating in a kiln at temperatures between 1,400 and 1,700 F. These results confirmed the potential for using expanded slag as a substitute for conventional lightweight aggregates (LWA). The technology to produce lightweight and ultra-lightweight aggregates (ULWA) from slag was subsequently developed by Praxis. The major objectives of the subject project are to demonstrate the technical and economic viability of commercial production of LWA and ULWA from slag and to test the suitability of these aggregates for various applications. The project goals are to be accomplished in two phases: Phase 1, comprising the production of LWA and ULWA from slag at the large pilot scale, and Phase 2, which involves commercial evaluation of these aggregates in a number of applications. This document summarizes the Phase 2 accomplishments to date along with the major accomplishments from Phase 1.

  12. Advanced Multi-Product Coal Utilization By-Product Processing Plant

    SciTech Connect

    John Groppo; Thomas Robl

    2005-06-01

    The objective of the project is to build a multi-product ash beneficiation plant at Kentucky Utilities 2,200-MW Ghent Generating Station, located in Carroll County, Kentucky. This part of the study includes the examination of the feedstocks for the beneficiation plant. The ash, as produced by the plant, and that stored in the lower pond were examined. Filter media candidates were evaluated for dewatering the ultrafine ash (UFA) product. Media candidates were selected based on manufacturer recommendations and evaluated using standard batch filtration techniques. A final media was selected; 901F, a multifilament polypropylene. While this media would provide adequate solids capture and cake moisture, the use of flocculants would be necessary to enable adequate filter throughput. Several flocculant chemistries were also evaluated and it was determined that polyethylene oxide (PEO) at a dosage of 5 ppm (slurry basis) would be the most suitable in terms of both settling rate and clarity. PEO was evaluated on a continuous vacuum filter using 901F media. The optimum cycle time was found to be 1.25 minutes which provided a 305% moisture cake, 85% solids capture with a throughput of 115 lbs dry solids per hour and a dry cake rate of 25 lb/ft2/hr. Increasing cycle time not did not reduce cake moisture or increase throughput. A mobile demonstration unit has been designed and constructed for field demonstration. The continuous test unit will be operated at the Ghent site and will evaluate three processing configurations while producing sufficient products to facilitate thorough product testing. The test unit incorporates all of the unit processes that will be used in the commercial design and is self sufficient with respect to water, electricity and processing capabilities.

  13. Evaluation of Exxon Donor Solvent (EDS) coal-derived liquid as utility diesel fuel. Final report

    SciTech Connect

    Heater, W.R.; Froh, T.W.; Ariga, S.; Baker, Q.A.; Piispanen, W.; Webb, P.; Trayser, D.; Keane, W.J.

    1983-10-01

    The program consisted of three phases: (I) characterization of the physical and chemical properties of EDS, (II) evaluation of EDS in a laboratory medium-speed diesel engine, and (III) evaluation of EDS in a low-speed diesel engine operating at a utility. The characteristics of high aromatic content and low cetane number that were found during Phase I made it unlikely that EDS could be used as a direct substitute for diesel fuel without engine modification to provide ignition assistance. Phase II was conducted on a 12-cylinder General Electric Company 7FDL diesel engine. Blends of up to 30% EDS and 70% 0.2 diesel fuel (DF-2) were successfully consumed. Dual fuel tests were also conducted on a single cylinder by injecting EDS through the existing engine fuel oil system and injecting DF-2 through an auxiliary nozzle as an ignition source. Acceptable operation was achieved using 5 to 10% pilot oil heat input. Phase III was conducted on a 16-cylinder Cooper-Bessemer LSV-16-GDT diesel engine at an EUC plant in Easton, Maryland. Blends of up to 66.7% EDS and 33.3% DF-2 were successfully consumed. Dual fuel tests were also conducted on a single cylinder by injecting EDS through the existing fuel oil system and using a natural-gas-fueled precombustion chamber as an ignition source. Acceptable operation was achieved using 3 to 6% pilot gas heat input. The program confirmed that it is feasible to consume significant proportions of EDS in a diesel engine, but more development is needed before EDS can be considered a viable alternative liquid fuel for diesel engines, and an industrial hygiene program is needed to assure safe handling of the fuel.

  14. Utilizing the great blue heron (Ardea herodias) in ecological risk assessments of bioaccumulative contaminants.

    PubMed

    Seston, Rita Marie; Zwiernik, Matthew John; Fredricks, Timothy Brian; Coefield, Sarah Jean; Tazelaar, Dustin Lee; Hamman, David Wayne; Paulson, John David; Giesy, John Paul

    2009-10-01

    Selection of an appropriate species is a key element of effective ecological risk assessments (ERA), especially when site-specific field studies are to be employed. Great blue herons (GBH) possess several ideal characteristics of a receptor species for the assessment of bioaccumulative compounds in the environment, such as ease of study, high potential for exposure, widespread distribution, and territorial foraging behavior. Methodologies for assessing exposure and population health are described herein. As outlined, the collection of GBH eggs, GBH nestling blood, and adult GBH blood allows for the determination of contaminant concentrations in various GBH tissues, a top-down assessment, which can be done in conjunction with predicted dietary exposure, a bottom-up assessment, to support a multiple lines of evidence approach. Additionally, population parameters, such as productivity and survival, can also be measured to elucidate if the contaminant exposure may be causing population level effects. Over the course of two years, three GBH rookeries were monitored for productivity and nestling exposure. Nests were monitored from blinds and individually accessed at multiple time points to obtain measures of nestling health, band nestlings, and collect eggs and nestling plasma. Multiple nests could frequently be accessed by climbing one tree, resulting in minimal effort to obtain the necessary sample size. Additionally, 51 adult GBH, captured in their foraging areas, were banded, and provided a blood sample. With these samples, a statistical difference in tissue based exposure was identified between the reference and target area. Statistically significant differences were also identified between the upper and lower reaches of the target area, thereby identifying a range of doses geographically which could be correlated to specific measurement endpoints. The ability to identify a dose response greatly increases the ability of the dataset to determine causation, a key goal

  15. Hydromechanical Advanced Coal Excavator

    NASA Technical Reports Server (NTRS)

    Estus, Jay M.; Summers, David

    1990-01-01

    Water-jet cutting reduces coal dust and its hazards. Advanced mining system utilizes full-face, hydromechanical, continuous miner. Coal excavator uses high-pressure water-jet lances, one in each of cutting heads and one in movable lance, to make cuts across top, bottom and middle height, respectively, of coal face. Wedge-shaped cutting heads advance into lower and upper cuts in turn, thereby breaking coal toward middle cut. Thrust cylinders and walking pads advance excavator toward coal face.

  16. CHALLENGES AND OPPORTUNITIES FOR EMISSION REDUCTIONS FROM THE COAL-FIRED POWER SECTOR IN GROWING ECONOMIES: THE CASE OF COAL-FIRED ELECTRIC UTILITY PLANTS IN RUSSIA

    EPA Science Inventory

    China, Russia and India together contribute over one-fourth of the total global greenhouse gas emissions from the combustion of fossil-fuels. This paper focuses on the Russian coal-fired power sector, and identifies potential opportunities for reducing emissions. The Russian powe...

  17. Advanced research and technology: direct utilization, recovery of minerals from coal fly ash. Fossil energy program. Technical progress report, July 1-September 30, 1980

    SciTech Connect

    Burnet, G.; Murtha, M.J.; Adelman, D.J.

    1980-12-01

    This investigation is to develop methods for utilizing coal fly ash through processes for the extraction of alumina and titania, and for the separation and use of an iron-rich fraction. Research of the HiChlor process for the extraction of alumina and titania by high-temperature chlorination of a fly ash-reductant mixture is described. An engineering cost evaluation is presented for a centralized HiChlor processing facility to process the fly ash of several large coal-fueled power stations. Investigations for a high-temperature lime-soda process for extraction of alumina from fly ash included the use of several types of quarry limestones and waste materials to replace the limestone and/or soda ash. A breakthrough was made on the development of a limestone-fly ash process without soda. The addition of less than 5% by weight waste coal refuse to the sinter mixtures increased alumina recoveries from a 55 to 90%, at a much lower sintering temperature of 1200/sup 0/C. For the lime-soda sinter process, an engineering cost evaluation was prepared for a facility to process the fly ash from a 1000 MWe coal-fueled power station to produce alumina and Portland cement. This facility will process and dispose of the total generated fly ash volume as products rather than as waste, and the facility investment will be less than 10% of the cost of the corresponding power station. The magnetic fly ash fraction, separated before either HiChlor or sinter processing, was shown to have a market value as a heavy medium material for coal and ore beneficiation. Research was also conducted on the upgrading of magnetic fly ash to iron ore quality. Research of coal beneficiation using magnetic fly ash media was expanded.

  18. Advanced Multi-Product Coal Utilization By-Product Processing Plant

    SciTech Connect

    John Groppo; Thomas Robl; Robert Rathbone

    2006-06-01

    The objective of the project is to build a multi-product ash beneficiation plant at Kentucky Utilities 2,200-MW Ghent Generating Station, located in Carroll County, Kentucky. This part of the study includes an investigation of the secondary classification characteristics of the ash feedstock excavated from the lower ash pond at Ghent Station. The secondary classification testing was concluded using a continuous demonstration-scale lamella classifier that was operated at a feed rate of 0.3 to 1.5 tons/hr. Feed to the secondary classifier was generated by operating the primary classifier at the conditions shown to be effective previously. Samples were taken while the secondary classifier was operated under a variety of conditions in order to determine the range of conditions where the unit could be efficiently operated. Secondary classification was effective for producing an ultra-fine ash (UFA) product. Inclined lamella plates provided an effective settling surface for coarser ash particles and plate spacing was shown to be an important variable. Results showed that the closer the plate spacing, the finer the size distribution of the UFA product. Flotation of the secondary classifier feed provided a lower LOI UFA product (2.5% LOI vs. 4.5% LOI) and a dispersant dosage of 2 to 2.5 g/kg was adequate to provide UFA grade (3.8 to 4.4 {micro}m) and recovery (53 to 68% 5{micro}m recovery). The UFA yield without flotation was {approx}33% and lower ({approx}20%) with flotation. Demonstration plant product evaluations showed that water requirements in mortar were reduced and 100% of control strength was achieved in 28 days for the coarser products followed by further strength gain of up to 130% in 56 days. The highest strengths of 110% of control in 7 days and 140% in 56 days were achieved with the finer products. Mortar air requirements for processed products were essentially the same as those for standard mortar, suggesting that the unburned carbon remaining does not have

  19. Independent steam-electric power plants in the Anthracite region, NE Pennsylvania: Site geology, coal-refuse bank utilization, and environmental benefits

    SciTech Connect

    Inners, J.D.; Edmunds, W.E.; Laregina, J.A.

    1996-12-31

    The Public Utility Regulatory Policies Act of 1978 created economic incentives that resulted in the proliferation of small independent, coal-refuse burning, steam-electric stations in Pennsylvania during the 1980`s and 1990`s. Eight such plants, ranging from 18 to 83 MW in net power output, have been operating for several years within the Anthracite region of northeastern Pennsylvania, and a ninth (having a net output of 108 MW) has recently come on line in the Lehigh Valley just to the south. All of these plants utilize circulating fluidized-bed combustion boilers in which finely crushed limestone is burned along with pulverized coal-refuse fuel. Seven are cogeneration plants that sell process steam commercially. Heat value of the pulverized coal-refuse used in the boilers ranges from 2,810 to 7,000 BTU/lb; higher values indicate washing of the fuel to remove some non-combustible material. Past episodes of bank-processing for fine coal, in addition to historic changes in coal-preparation and mining methods, give the refuse banks a complex stratigraphy in which beds vary greatly in thickness and quality. Detailed sampling and study of historic air photos are necessary to evaluate the economic potential of each individual bank. Environmental benefits of the Anthracite region`s independent power plants include: (1) removal of many black, barren piles of colliery refuse which contribute to acid-pollution and siltation of streams and (2) reclamation of strip-mined lands through disposal, compaction and grading of the alkaline ash generated by the fluidized-bed boilers.

  20. Direct utilization - recovery of minerals from coal fly ash. Advanced research and technology. Technical progress report, 1 January 1983-31 March 1983

    SciTech Connect

    Burnet, G.; Murtha, M.J.

    1983-05-01

    The primary objective is to develop and/or improve methods for utilization of coal fly ash as a source of minerals. Processes are being studied for the recovery of aluminium, iron, and titanium from fly ash and for the utilization of residues. There are 4 tasks which include: development of the HiChlor process; improvement of the Lime-Soda Sinter Process; improvement of the Lime-Flyash Sinter Process; and the recovery and use of an iron-rich fly ash fraction. Progress accomplished during the quarter ending March 31, 1983, is reported. 6 references, 21 figures, 9 tables. (DMC)

  1. Low/medium-Btu coal-gasification assessment program for specific sites of two New York utilities

    SciTech Connect

    Not Available

    1980-12-01

    The scope of this study is to investigate the technical and economic aspects of coal gasification to supply low- or medium-Btu gas to the two power plant boilers selected for study. This includes the following major studies (and others described in the text): investigate coals from different regions of the country, select a coal based on its availability, mode of transportation and delivered cost to each power plant site; investigate the effects of burning low- and medium-Btu gas in the selected power plant boilers based on efficiency, rating and cost of modifications and make recommendations for each; and review the technical feasibility of converting the power plant boilers to coal-derived gas. The following two coal gasification processes have been used as the basis for this Study: the Combustion Engineering coal gasification process produces a low-Btu gas at approximately 100 Btu/scf at near atmospheric pressure; and the Texaco coal gasification process produces a medium-Btu gas at 292 Btu/scf at 800 psig. The engineering design and economics of both plants are described. Both plants meet the federal, state, and local environmental requirements for air quality, wastewater, liquid disposal, and ground level disposal of byproduct solids. All of the synthetic gas alternatives result in bus bar cost savings on a yearly basis within a few years of start-up because the cost of gas is assumed to escalate at a lower rate than that of fuel oil, approximately 4 to 5%.

  2. Depressive symptoms and baseline prefrontal EEG alpha activity: a study utilizing Ecological Momentary Assessment.

    PubMed

    Putnam, Katherine M; McSweeney, Lauren B

    2008-02-01

    Prefrontal cortex (PFC) electroencephalography (EEG) alpha asymmetry has been found in individuals with major depression. However, EEG activity has never been examined in regard to specific depressive symptoms. We examine the relationship between resting baseline PFC alpha activity and both rumination and self-esteem in a depressed outpatient group (N=6) and a healthy control group (N=7) using high-density EEG sampling and multiple longitudinal self report measures, i.e. Ecological Momentary Assessment (EMA). Symptom measures were collected five times daily for 7 days, i.e. 35 assessments. Using a mixed-level analysis, significant Group x Hemisphere interactions for PFC sites and both rumination and self-esteem were found. Within the depressed group, lower bilateral PFC activity predicted higher levels of rumination, and lower right PFC activity predicted higher levels of self-esteem. There were no significant effects for the control group. Results indicate that specific symptoms of depression are uniquely associated with patterns of PFC EEG alpha activity.

  3. Refinement of biodegradation tests methodologies and the proposed utility of new microbial ecology techniques.

    PubMed

    Kowalczyk, Agnieszka; Martin, Timothy James; Price, Oliver Richard; Snape, Jason Richard; van Egmond, Roger Albert; Finnegan, Christopher James; Schäfer, Hendrik; Davenport, Russell James; Bending, Gary Douglas

    2015-01-01

    Society's reliance upon chemicals over the last few decades has led to their increased production, application and release into the environment. Determination of chemical persistence is crucial for risk assessment and management of chemicals. Current established OECD biodegradation guidelines enable testing of chemicals under laboratory conditions but with an incomplete consideration of factors that can impact on chemical persistence in the environment. The suite of OECD biodegradation tests do not characterise microbial inoculum and often provide little insight into pathways of degradation. The present review considers limitations with the current OECD biodegradation tests and highlights novel scientific approaches to chemical fate studies. We demonstrate how the incorporation of molecular microbial ecology methods (i.e., 'omics') may improve the underlying mechanistic understanding of biodegradation processes, and enable better extrapolation of data from laboratory based test systems to the relevant environment, which would potentially improve chemical risk assessment and decision making. We outline future challenges for relevant stakeholders to modernise OECD biodegradation tests and put the 'bio' back into biodegradation.

  4. An effective utilization of the slag from acid leaching of coal-waste: preparation of water glass with a low-temperature co-melting reaction.

    PubMed

    Fang, Li; Duan, Xiaofang; Chen, Rongming; Cheng, Fangqin

    2014-08-01

    This paper presents an effective utilization of slag from acid leaching of coal-waste with a novel approach, namely low-temperature co-melting method, for preparation of sodium silicate (Na2O x nSiO2) using slag from acid leaching of coal-waste as feedstock. It is very interesting that the co-melting reaction temperature of the mixture of Na2CO3 and the feedstock (50-100 microm) was as low as 850 degrees C, which was significantly lower than the temperature used in traditional sodium silicate production (1400 degrees C). The optimum SiO2/Na2O ratio was identified as 7:3 according to the results of thermogravimetry-differential scanning calorimetry (TGA-DSC), ICP-AES, and X-ray diffraction (XRD) analyses. In this condition, the main product was sodium disilicate (Na2O x 2SiO2), with water solubility of 85.0%. More importantly, the impurities such as aluminum in the feedstock, which had adverse effect on subsequent treatment, were concentrated almost completely in the filter residue as insoluble sodium alumunosilicates, i.e., Na(Si2Al)O6 x H2O. The lower co-melting temperature of this process demonstrates a significant energy-saving opportunity and thus a promising approach for highly effective utilization of coal-waste. Implications: Recently, alumina extraction from coal-waste has been extensively investigated and industrial applied in China. However, the slag-containing silica generated from the acid leaching process of coal-waste led to a secondary pollution, which hindered large-scale production. The proposed low-temperature co-melting method for preparation of sodium silicate (Na2O x nSiO2) using slag from acid leaching of coal-waste as feedstock indicated that it is an efficient approach for the recovery of silica from the acid-leached slag of coal-waste with minimal environmental impact.

  5. Nutritional ecology of a parasitic wasp: food source affects gustatory response, metabolic utilization, and survivorship.

    PubMed

    Williams, Livy; Roane, Timberley M

    2007-12-01

    The success of biological control is partly mediated by the longevity and reproductive success of beneficial insects. Availability of nectar and honeydew can improve the nutrition of parasitic insects, and thereby increase their longevity and realized fecundity. The egg parasitoid, Anaphes iole, showed strong gustatory perception of trehalulose, a carbohydrate found in homopteran honeydew. Chromatographic analysis demonstrated that enzymatic hydrolysis of sucrose, a common nectar sugar, proceeded at a faster rate than that of melezitose, a sugar common in aphid honeydew. A long-term bioassay showed that longevity was greater at 20 degrees C than at 27 degrees C, and at both temperatures survival was generally greatest for wasps provisioned with the three major nectar sugars, sucrose, glucose, and fructose. Patterns of food acceptance and utilization showed that A. iole accepted and utilized a broad range of sugars found in nature, including those found in nectar as well as honeydew. Glucose, fructose, and several oligosaccharides composed of these monosaccharide units appear to be more suitable for A. iole than other sugars tested. Evidence suggests that individual fitness benefits afforded by food sources are important for a time-limited parasitoid, and that continued investigations on the interface between nutrition and biological control are warranted for A. iole.

  6. Combustion characteristics and NOx emissions of two kinds of swirl burners in a 300-MWe wall-fired pulverized-coal utility boiler

    SciTech Connect

    Li, Z.Q.; Jing, J.P.; Chen, Z.C.; Ren, F.; Xu, B.; Wei, H.D.; Ge, Z.H.

    2008-07-01

    Measurements were performed in a 300-MWe wall-fired pulverized-coal utility boiler. Enhanced ignition-dual register (EI-DR) burners and centrally fuel rich (CFR) swirl coal combustion burners were installed in the bottom row of the furnace during experiments. Local mean concentrations of O{sub 2}, CO, CO{sub 2} and NOx gas species, gas temperatures, and char burnout were determined in the region of the two types of burners. For centrally fuel rich swirl coal combustion burners, local mean CO concentrations, gas temperatures and the temperature gradient are higher and mean concentrations of O{sub 2} and NOx along the jet flow direction in the burner region are lower than for the enhanced ignition-dual register burners. Moreover, the mean O{sub 2} concentration is higher and the gas temperature and mean CO concentration are lower in the side wall region. For centrally fuel rich swirl coal combustion burners in the bottom row, the combustion efficiency of the boiler increases from 96.73% to 97.09%, and NOx emission decreases from 411.5 to 355 ppm at 6% O{sub 2} compared to enhanced ignition-dual register burners and the boiler operates stably at 110 MWe without auxiliary fuel oil.

  7. DEVELOPMENT OF A VALIDATED MODEL FOR USE IN MINIMIZING NOx EMISSIONS AND MAXIMIZING CARBON UTILIZATION WHEN CO-FIRING BIOMASS WITH COAL

    SciTech Connect

    Larry G. Felix; P. Vann Bush; Stephen Niksa

    2003-04-30

    In full-scale boilers, the effect of biomass cofiring on NO{sub x} and unburned carbon (UBC) emissions has been found to be site-specific. Few sets of field data are comparable and no consistent database of information exists upon which cofiring fuel choice or injection system design can be based to assure that NOX emissions will be minimized and UBC be reduced. This report presents the results of a comprehensive project that generated an extensive set of pilot-scale test data that were used to validate a new predictive model for the cofiring of biomass and coal. All testing was performed at the 3.6 MMBtu/hr (1.75 MW{sub t}) Southern Company Services/Southern Research Institute Combustion Research Facility where a variety of burner configurations, coals, biomasses, and biomass injection schemes were utilized to generate a database of consistent, scalable, experimental results (422 separate test conditions). This database was then used to validate a new model for predicting NO{sub x} and UBC emissions from the cofiring of biomass and coal. This model is based on an Advanced Post-Processing (APP) technique that generates an equivalent network of idealized reactor elements from a conventional CFD simulation. The APP reactor network is a computational environment that allows for the incorporation of all relevant chemical reaction mechanisms and provides a new tool to quantify NOx and UBC emissions for any cofired combination of coal and biomass.

  8. Flexible associations between Pocillopora corals and Symbiodinium limit utility of symbiosis ecology in defining species

    NASA Astrophysics Data System (ADS)

    Cunning, R.; Glynn, P. W.; Baker, A. C.

    2013-09-01

    Corals in the genus Pocillopora are the primary framework builders of eastern tropical Pacific (ETP) reefs. These corals typically associate with algal symbionts (genus Symbiodinium) in clade C and/or D, with clade D associations having greater thermal tolerance and resistance to bleaching. Recently, cryptic "species" delineations within both Pocillopora and Symbiodinium have been suggested, with host-symbiont specificity used as a supporting taxonomic character in both genera. In particular, it has been suggested that three lineages of Pocillopora (types 1-3) exist in the ETP, of which type 1 is the exclusive host of heat-tolerant Symbiodinium D1. This host specificity has been used to support the species name " Symbiodinium glynni" for this symbiont. To validate these host-symbiont relationships and their taxonomic utility, we identified Pocillopora types and their associated Symbiodinium at three sites in the ETP. We found greater flexibility in host-symbiont combinations than previously reported, with both Pocillopora types 1 and 3 able to host and be dominated by Symbiodinium in clade C or D. The prevalence of certain combinations did vary among sites, showing that a gradient of specificity exists which may be mediated by evolutionary relationships and environmental disturbance history. However, these results limit the utility of apparent host-symbiont specificity (which may have been a result of undersampling) in defining species boundaries in either corals or Symbiodinium. They also suggest that a greater diversity of corals may benefit from the thermal tolerance of clade D symbionts, affirming the need to conserve Pocillopora across its entire geographic and environmental range.

  9. A study of toxic emissions from a coal-fired power plant utilizing an ESP while demonstrating the ICCT CT-121 FGD Project. Final report

    SciTech Connect

    Not Available

    1994-06-16

    The US Department of Energy is performing comprehensive assessments of toxic emissions from eight selected coal-fired electric utility units. This program responds to the Clean Air Act Amendments of 1990, which require the US Environmental Protection Agency (EPA) to evaluate emissions of hazardous air pollutants (HAPs) from electric utility power plants for Potential health risks. The resulting data will be furnished to EPA utility power plants and health risk determinations. The assessment of emissions involves the collection and analysis of samples from the major input, process, and output streams of each of the eight power plants for selected hazardous Pollutants identified in Title III of the Clean Air Act. Additional goals are to determine the removal efficiencies of pollution control subsystems for these selected pollutants and the Concentrations associated with the particulate fraction of the flue gas stream as a function of particle size. Material balances are being performed for selected pollutants around the entire power plant and several subsystems to identify the fate of hazardous substances in each utility system. Radian Corporation was selected to perform a toxics assessment at a plant demonstrating an Innovative Clean Coal Technology (ICCT) Project. The site selected is Plant Yates Unit No. 1 of Georgia Power Company, which includes a Chiyoda Thoroughbred-121 demonstration project.

  10. A Polysaccharide Utilization Locus from an Uncultured Bacteroidetes Phylotype Suggests Ecological Adaptation and Substrate Versatility

    PubMed Central

    Mackenzie, A. K.; Naas, A. E.; Kracun, S. K.; Schückel, J.; Fangel, J. U.; Agger, J. W.; Willats, W. G. T.; Eijsink, V. G. H.

    2014-01-01

    Recent metagenomic analyses have identified uncultured bacteria that are abundant in the rumen of herbivores and that possess putative biomass-converting enzyme systems. Here we investigate the saccharolytic capabilities of a polysaccharide utilization locus (PUL) that has been reconstructed from an uncultured Bacteroidetes phylotype (SRM-1) that dominates the rumen microbiome of Arctic reindeer. Characterization of the three PUL-encoded outer membrane glycoside hydrolases was performed using chromogenic substrates for initial screening, followed by detailed analyses of products generated from selected substrates, using high-pressure anion-exchange chromatography with electrochemical detection. Two glycoside hydrolase family 5 (GH5) endoglucanases (GH5_g and GH5_h) demonstrated activity against β-glucans, xylans, and xyloglucan, whereas GH5_h and the third enzyme, GH26_i, were active on several mannan substrates. Synergy experiments examining different combinations of the three enzymes demonstrated limited activity enhancement on individual substrates. Binding analysis of a SusE-positioned lipoprotein revealed an affinity toward β-glucans and, to a lesser extent, mannan, but unlike the two SusD-like lipoproteins previously characterized from the same PUL, binding to cellulose was not observed. Overall, these activities and binding specificities correlated well with the glycan content of the reindeer rumen, which was determined using comprehensive microarray polymer profiling and showed an abundance of various hemicellulose glycans. The substrate versatility of this single PUL putatively expands our perceptions regarding PUL machineries, which so far have demonstrated gene organization that suggests one cognate PUL for each substrate type. The presence of a PUL that possesses saccharolytic activity against a mixture of abundantly available polysaccharides supports the dominance of SRM-1 in the Svalbard reindeer rumen microbiome. PMID:25326301

  11. A polysaccharide utilization locus from an uncultured bacteroidetes phylotype suggests ecological adaptation and substrate versatility.

    PubMed

    Mackenzie, A K; Naas, A E; Kracun, S K; Schückel, J; Fangel, J U; Agger, J W; Willats, W G T; Eijsink, V G H; Pope, P B

    2015-01-01

    Recent metagenomic analyses have identified uncultured bacteria that are abundant in the rumen of herbivores and that possess putative biomass-converting enzyme systems. Here we investigate the saccharolytic capabilities of a polysaccharide utilization locus (PUL) that has been reconstructed from an uncultured Bacteroidetes phylotype (SRM-1) that dominates the rumen microbiome of Arctic reindeer. Characterization of the three PUL-encoded outer membrane glycoside hydrolases was performed using chromogenic substrates for initial screening, followed by detailed analyses of products generated from selected substrates, using high-pressure anion-exchange chromatography with electrochemical detection. Two glycoside hydrolase family 5 (GH5) endoglucanases (GH5_g and GH5_h) demonstrated activity against β-glucans, xylans, and xyloglucan, whereas GH5_h and the third enzyme, GH26_i, were active on several mannan substrates. Synergy experiments examining different combinations of the three enzymes demonstrated limited activity enhancement on individual substrates. Binding analysis of a SusE-positioned lipoprotein revealed an affinity toward β-glucans and, to a lesser extent, mannan, but unlike the two SusD-like lipoproteins previously characterized from the same PUL, binding to cellulose was not observed. Overall, these activities and binding specificities correlated well with the glycan content of the reindeer rumen, which was determined using comprehensive microarray polymer profiling and showed an abundance of various hemicellulose glycans. The substrate versatility of this single PUL putatively expands our perceptions regarding PUL machineries, which so far have demonstrated gene organization that suggests one cognate PUL for each substrate type. The presence of a PUL that possesses saccharolytic activity against a mixture of abundantly available polysaccharides supports the dominance of SRM-1 in the Svalbard reindeer rumen microbiome.

  12. Wellsite, laboratory, and mathematical techniques for determining sorbed gas content of coals and gas shales utilizing well cuttings

    USGS Publications Warehouse

    Newell, K.D.

    2007-01-01

    Drill cuttings can be used for desorption analyses but with more uncertainty than desorption analyses done with cores. Drill cuttings are not recommended to take the place of core, but in some circumstances, desorption work with cuttings can provide a timely and economic supplement to that of cores. The mixed lithologic nature of drill cuttings is primarily the source of uncertainty in their analysis for gas content, for it is unclear how to apportion the gas generated from both the coal and the dark-colored shale that is mixed in usually with the coal. In the Western Interior Basin Coal Basin in eastern Kansas (Pennsylvanian-age coals), dark-colored shales with normal (??? 100 API units) gamma-ray levels seem to give off minimal amounts of gas on the order of less than five standard cubic feet per ton (scf/ton). In some cuttings analyses this rule of thumb for gas content of the shale is adequate for inferring the gas content of coals, but shales with high-gamma-ray values (>150 API units) may yield several times this amount of gas. The uncertainty in desorption analysis of drill cuttings can be depicted graphically on a diagram identified as a "lithologic component sensitivity analysis diagram." Comparison of cuttings desorption results from nearby wells on this diagram, can sometimes yield an unique solution for the gas content of both a dark shale and coal mixed in a cuttings sample. A mathematical solution, based on equating the dry, ash-free gas-contents of the admixed coal and dark-colored shale, also yields results that are correlative to data from nearby cores. ?? 2007 International Association for Mathematical Geology.

  13. Advanced research and technology: direct utilization-recovery of minerals from coal fly ash. Fossil energy program. Technical progress report, 1 April-30 June 1980

    SciTech Connect

    Burnet, G.; Murtha, M.J.; Frederick, J.

    1980-08-01

    The purpose of this investigation is to develop methods to utilize coal fly ashes through processes for the extraction of alumina and titania, and for the separation and utilization of an iron-rich fraction. Research of the HiChlor process for the extraction of alumina and titania by high-temperature chlorination of a fly ash-reductant mixture has involved comparative calculations for several fly ashes, and the design of a bench-scale fluidized chlorination system. The initial chlorination research of the high-volume fly ashes from western coals was begun. Process development of the sinter process for alumina recovery has included the investigation of several variables for improving the quantity and quality of the alumina extracted from sintered materials. As a result of this work, it is clear that further optimization of the sintering and extraction variables is required for commercialization of the fly ash sinter process. Iron-rich, magnetically separated coal fly ash particles were beneficiated to a quality equal to high grade, naturally mined iron ore by a high-temperature pressurized caustic treatment. About 95% of the contained silica and 65% of the alumina was extracted. Work was begun on the assembly of equipment for a detailed comparison of magnetically separated iron-rich fly ashes and commercial magnetities for use in heavy media coal beneficiation. Characterization of the particles, ad stability and rheological properties of media solutions prepared with these materials will provide data for further evaluating magnetic fly ash as a heavy media material. A circuit is also being built for long-term flow tests of the media suspensions for measurement of construction material erosion and solid medium particle friability.

  14. Co-combustion of bituminous coal and biomass fuel blends: Thermochemical characterization, potential utilization and environmental advantage.

    PubMed

    Zhou, Chuncai; Liu, Guijian; Wang, Xudong; Qi, Cuicui

    2016-10-01

    The thermochemical characteristics and gaseous trace pollutant behaviors during co-combustion medium-to-low ash bituminous coal with typical biomass residues (corn stalk and sawdust) were investigated. Lowering of ignition index, burnout temperature and activation energy in the major combustion stage are observed in the coal/biomass blends. The blending proportion of 20% and 30% are regarded as the optimum blends for corn stalk and sawdust, respectively, in according the limitations of heating value, activation energy, flame stability and base/acid ratio. The reductions of gaseous As, Cd, Cu, Pb, Zn and polycyclic aromatic hydrocarbon (PAHs) were 4.5%, 7.8%, 6.3%, 9.8%, 9.4% and 17.4%, respectively, when co-combustion coal with 20% corn stalk. The elevated capture of trace elements were found in coal/corn stalk blend, while the coal/sawdust blend has the better PAHs control potential. The reduction mechanisms of gaseous trace pollutants were attributed to the fuel property, ash composition and relative residence time during combustion.

  15. Do sampling methods differ in their utility for ecological monitoring? Comparison of line-point intercept, grid-point intercept, and ocular estimate methods

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study compared the utility of three sampling methods for ecological monitoring based on: interchangeability of data (rank correlations), precision (coefficient of variation), cost (minutes/transect), and potential of each method to generate multiple indicators. Species richness and foliar cover...

  16. SAMPLING, ANALYSIS, AND PROPERTIES OF PRIMARY PM-2.5: APPLICATION TO COAL-FIRED UTILITY BOILERS

    SciTech Connect

    Allen L. Robinson; Spyros N. Pandis; Eric Lipsky; Charles Stainer; Natalie Anderson; Satoshi Takahama; Sarah Rees

    2003-02-01

    A dilution sampler was used to examine the effects of dilution ratio and residence time on the particulate emissions from a pilot-scale pulverized coal combustor. Measurements include the particle size distribution from 0.003 to 2.5 {micro}m, PM{sub 2.5} mass emission rate and PM2.5 composition (OC/EC, major ions, and elemental). Hot filter samples were also collected simultaneously in order to compare the dilution sampler measurement with standard stack sampling methodologies such as EPA Method 5. Measurements were made both before and after the bag-house, the particle control device used on the coal combustor. Measurements were made with three different coal types and a coal-biomass blend. The residence time and dilution ratio do not influence the PM{sub 2.5} mass emission rate, but have a significant effect on the size distribution and total number emissions. Measurements made before the bag-house showed increasing the residence time dramatically decreases the total particle number concentration, and shifts the particle mass to larger sizes. The effects of residence time can be explained quantitatively by the coagulation of the emitted particles. Measurements made after the bag-house were not affected by coagulation due to the lower concentration of particles. Nucleation of sulfuric acid vapor within the dilution was an important source of ultrafine particles. This nucleation is strongly a function of dilution ratio because of the competition between condensation and nucleation. At low dilution ratios condensation dominates and little nucleation is observed; increasing the dilution ratio promotes nucleation because of the corresponding decrease in available surface area per unit volume for condensation. No nucleation was observed after the bag house where conditions greatly favor nucleation over condensation; we suspect that the bag house removed the SO{sub 3} in the flue gas. Exhaust SO{sub 3} levels were not measured during these experiments. Dilution caused

  17. Upgraded Coal Interest Group

    SciTech Connect

    Evan Hughes

    2009-01-08

    The Upgraded Coal Interest Group (UCIG) is an EPRI 'users group' that focuses on clean, low-cost options for coal-based power generation. The UCIG covers topics that involve (1) pre-combustion processes, (2) co-firing systems and fuels, and (3) reburn using coal-derived or biomass-derived fuels. The UCIG mission is to preserve and expand the economic use of coal for energy. By reducing the fuel costs and environmental impacts of coal-fired power generation, existing units become more cost effective and thus new units utilizing advanced combustion technologies are more likely to be coal-fired.

  18. Impacts of combustion and post-combustion NO{sub x} reduction technologies on the properties and utilization potential of coal fly ash

    SciTech Connect

    Venta, G.J.; Hemmings, R.T.; Golden, D.M.

    1995-12-31

    The paper describes the findings of a study in progress being carried out by Radian Corporation for the Electric Power Research Institute under EPRI RP3176-17. The purpose of the study is to provide utilities with vital information on the impact of current NO{sub x} control technologies on coal ash quality, how it impacts the reuse options, and to explore process options for improving the ash quality. The study also addresses other ash use options that do not require a low carbon content and/or are not sensitive to ammonia-related chemical impurities.

  19. Reducing NOx Emissions for a 600 MWe Down-Fired Pulverized-Coal Utility Boiler by Applying a Novel Combustion System.

    PubMed

    Ma, Lun; Fang, Qingyan; Lv, Dangzhen; Zhang, Cheng; Chen, Yiping; Chen, Gang; Duan, Xuenong; Wang, Xihuan

    2015-11-03

    A novel combustion system was applied to a 600 MWe Foster Wheeler (FW) down-fired pulverized-coal utility boiler to solve high NOx emissions, without causing an obvious increase in the carbon content of fly ash. The unit included moving fuel-lean nozzles from the arches to the front/rear walls and rearranging staged air as well as introducing separated overfire air (SOFA). Numerical simulations were carried out under the original and novel combustion systems to evaluate the performance of combustion and NOx emissions in the furnace. The simulated results were found to be in good agreement with the in situ measurements. The novel combustion system enlarged the recirculation zones below the arches, thereby strengthening the combustion stability considerably. The coal/air downward penetration depth was markedly extended, and the pulverized-coal travel path in the lower furnace significantly increased, which contributed to the burnout degree. The introduction of SOFA resulted in a low-oxygen and strong-reducing atmosphere in the lower furnace region to reduce NOx emissions evidently. The industrial measurements showed that NOx emissions at full load decreased significantly by 50%, from 1501 mg/m3 (O2 at 6%) to 751 mg/m3 (O2 at 6%). The carbon content in the fly ash increased only slightly, from 4.13 to 4.30%.

  20. Coal data: A reference

    SciTech Connect

    Not Available

    1995-02-01

    This report, Coal Data: A Reference, summarizes basic information on the mining and use of coal, an important source of energy in the US. This report is written for a general audience. The goal is to cover basic material and strike a reasonable compromise between overly generalized statements and detailed analyses. The section ``Supplemental Figures and Tables`` contains statistics, graphs, maps, and other illustrations that show trends, patterns, geographic locations, and similar coal-related information. The section ``Coal Terminology and Related Information`` provides additional information about terms mentioned in the text and introduces some new terms. The last edition of Coal Data: A Reference was published in 1991. The present edition contains updated data as well as expanded reviews and additional information. Added to the text are discussions of coal quality, coal prices, unions, and strikes. The appendix has been expanded to provide statistics on a variety of additional topics, such as: trends in coal production and royalties from Federal and Indian coal leases, hours worked and earnings for coal mine employment, railroad coal shipments and revenues, waterborne coal traffic, coal export loading terminals, utility coal combustion byproducts, and trace elements in coal. The information in this report has been gleaned mainly from the sources in the bibliography. The reader interested in going beyond the scope of this report should consult these sources. The statistics are largely from reports published by the Energy Information Administration.

  1. Synthesis of merlinoite from Chinese coal fly ashes and its potential utilization as slow release K-fertilizer.

    PubMed

    Li, Jing; Zhuang, Xinguo; Font, Oriol; Moreno, Natalia; Vallejo, V Ramon; Querol, Xavier; Tobias, Aurelio

    2014-01-30

    This study focuses on the synthesis of merlinoite from Chinese coal fly ashes by KOH direct conversion method, with special emphasis on the application of synthetic merlinoite as fertilizer. These fly ashes were collected from two pulverized-coal combustion (PCC) power plants in Xinjiang, Northwest China. The synthesis results are influenced by fly ash characteristics and different synthesis conditions (KOH solution concentrations, activation temperature, time, and KOH/fly ash ratios). A high quality merlinoite-rich product was synthesized under optimal activation conditions (KOH concentration of 5M, activation temperature of 150°C, activation time of 8h and KOH/fly ash ratio of 2l/kg), with a cation exchange capacity (CEC) of 160cmolkg(-1). The synthetic merlinoite is proved to be an efficient slow release K-fertilizer for plant growth, indicating that it can be widely used for high-nutrient demanding crops growing in nutrient-limited soils and for large-area poor soil amendment in opencast coal mine areas around the power plants that will substantially grow with the increasing coal combustion in Xinjiang in the near future.

  2. CHARACTERIZATION OF MERCURY-ENRICHED COAL COMBUSTION RESIDUES FROM ELECTRIC UTILITIES USING ENHANCED SORBENTS FOR MERCURY CONTROL

    EPA Science Inventory

    Leaching of mercury and other constituents of potential concern during land disposal or beneficial use of coal combustion residues (CCRs) is the environmental impact pathway evaluated in this report. The specific objectives of the research was to: (1) evaluate mercury, arsenic an...

  3. NATIONAL ASSESSMENT OF ENVIRONMENTAL AND ECONOMIC BENEFITS FROM METHANE CONTROL AND UTILIZATION TECHNOLOGIES AT U.S. UNDERGROUND COAL MINES

    EPA Science Inventory

    The report gives results of EPA research into the emission processes and control strategies associated with underground coal mines in the U.S. (NOTE: Methane is a greenhouse gas in the atmosphere which ranks behind carbon dioxide as the second largest contributor to global warmin...

  4. Coal Extraction - Environmental Prediction

    USGS Publications Warehouse

    Cecil, C. Blaine; Tewalt, Susan J.

    2002-01-01

    Coal from the Appalachian region has supplied energy to the Nation for more than 200 years. Appalachian coal fueled America through a civil war and helped win two world wars. Appalachian coal has also provided fuel for keeping America warm in the winter and cool in the summer and has served as the basis for the steel, automobile, organic chemicals, chlorine, and aluminum industries. These benefits have not come without environmental costs, however. Coal extraction and utilization have had significant environmental impacts.

  5. Coal Activities for Secondary Students.

    ERIC Educational Resources Information Center

    American Coal Foundation, Washington, DC.

    This collection of lesson plans designed for teachers of 4th- through 12th-grade students utilizes an assortment of teaching strategies for topics related to coal and the coal industry. Activities cover the following topics: coal formation; coal identification; "the geologist's dilemma" (a supply and demand activity); geologic time and…

  6. Comparing the effectiveness of heat rate improvements in different coal-fired power plants utilizing carbon dioxide capture

    NASA Astrophysics Data System (ADS)

    Walsh, Martin Jeremy

    New Congressional legislation may soon require coal-fired power generators to pay for their CO2 emissions and capture a minimum level of their CO2 output. Aminebased CO2 capture systems offer plants the most technically proven and commercially feasible option for CO2 capture at this time. However, these systems require a large amount of heat and power to operate. As a result, amine-based CO2 capture systems significantly reduce the net power of any units in which they are installed. The Energy Research Center has compiled a list of heat rate improvements that plant operators may implement before installing a CO2 capture system. The goal of these improvements is to upgrade the performance of existing units and partially offset the negative effects of adding a CO2 capture system. Analyses were performed in Aspen Plus to determine the effectiveness of these heat rate improvements in preserving the net power and net unit heat rate (NUHR) of four different power generator units. For the units firing high-moisture sub-bituminous coal, the heat rate improvements reduced NUHR by an average of 13.69% across a CO 2 capture level range of 50% to 90%. For the units firing bituminous coal across the same CO2 capture range, the heat rate improvements reduced NUHR by an average of 12.30%. Regardless of the units' coal or steam turbine cycle type, the heat rate improvements preserved 9.7% to 11.0% of each unit's net power across the same CO2 capture range. In general, the heat rate improvements were found to be most effective in improving the performance of units firing high-moisture sub-bituminous. The effect of the CO2 capture system on these units and the reasons for the improvements' greater effectiveness in them are described in this thesis.

  7. Ecological Validity and Clinical Utility of Patient-Reported Outcomes Measurement Information System (PROMIS®) instruments for detecting premenstrual symptoms of depression, anger, and fatigue

    PubMed Central

    Junghaenel, Doerte U.; Schneider, Stefan; Stone, Arthur A.; Christodoulou, Christopher; Broderick, Joan E.

    2014-01-01

    Objective This study examined the ecological validity and clinical utility of NIH Patient Reported-Outcomes Measurement Information System (PROMIS®) instruments for anger, depression, and fatigue in women with premenstrual symptoms. Methods One-hundred women completed daily diaries and weekly PROMIS assessments over 4 weeks. Weekly assessments were administered through Computerized Adaptive Testing (CAT). Weekly CATs and corresponding daily scores were compared to evaluate ecological validity. To test clinical utility, we examined if CATs could detect changes in symptom levels, if these changes mirrored those obtained from daily scores, and if CATs could identify clinically meaningful premenstrual symptom change. Results PROMIS CAT scores were higher in the pre-menstrual than the baseline (ps < .0001) and post-menstrual (ps < .0001) weeks. The correlations between CATs and aggregated daily scores ranged from .73 to .88 supporting ecological validity. Mean CAT scores showed systematic changes in accordance with the menstrual cycle and the magnitudes of the changes were similar to those obtained from the daily scores. Finally, Receiver Operating Characteristic (ROC) analyses demonstrated the ability of the CATs to discriminate between women with and without clinically meaningful premenstrual symptom change. Conclusions PROMIS CAT instruments for anger, depression, and fatigue demonstrated validity and utility in premenstrual symptom assessment. The results provide encouraging initial evidence of the utility of PROMIS instruments for the measurement of affective premenstrual symptoms. PMID:24630180

  8. Utilization of coal-water fuels in fire-tube boilers. Final report, October 1990--August 1994

    SciTech Connect

    Sommer, T.; Melick, T.; Morrison, D.

    1994-12-31

    The objective of this DOE sponsored project was to successfully fire coal-water slurry in a fire-tube boiler that was designed for oil/gas firing and establish a data base that will be relevant to a large number of existing installations. Firing slurry in a fire-tube configuration is a very demanding application because of the extremely high heat release rates and the correspondingly low furnace volume where combustion can be completed. Recognizing that combustion efficiency is the major obstacle when firing slurry in a fire-tube boiler, the program was focused on innovative approaches for improving carbon burnout without major modifications to the boiler. The boiler system was successfully designed and operated to fire coal-water slurry for extended periods of time with few slurry related operational problems. The host facility was a 3.8 million Btu/hr Cleaver-Brooks fire-tube boiler located on the University of Alabama Campus. A slurry atomizer was designed that provided outstanding atomization and was not susceptible to pluggage. The boiler was operated for over 1000 hours and 12 shipments of slurry were delivered. The new equipment engineered for the coal-water slurry system consisted of the following: combustion air and slurry heaters; cyclone; baghouse; fly ash reinjection system; new control system; air compressor; CWS/gas burner and gas valve train; and storage tank and slurry handling system.

  9. LIFE CYCLE, HOST UTILIZATION, AND ECOLOGICAL FITTING FOR INVASIVE LANCET LIVER FLUKE, DICROCOELIUM DENDRITICUM, EMERGING IN SOUTHERN ALBERTA, CANADA.

    PubMed

    van Paridon, Bradley; Gilleard, John S; Colwell, Douglas D; Goater, Cameron P

    2017-02-17

    The expansion of parasite distributions outside of their native host and geographical ranges has occurred repeatedly over evolutionary time. Contemporary examples include emerging infectious diseases (EID's), many of which pose threats to human, domestic animal, and wildlife populations. Theory predicts that parasites with complex life cycles will be rare as EID's due to constraints imposed by host specialization at each life-cycle stage. In contrast to predictions of this theory, we report 2 new intermediate hosts in the 3-host life cycle of the liver fluke Dicrocoelium dendriticum in Cypress Hills Provincial Park, Alberta, Canada. Results of sequence analysis of the cytochrome oxidase 1 (cox1) mitochondrial gene identified the terrestrial snail Oreohelix subrudis, and the ant, Formica aserva, as first and second intermediate hosts, respectively, in the region. Neither of these intermediate hosts, nor their suite of domestic and wild mammalian grazers used in the life cycle, occurs within the native range of D. dendriticum in Europe. Our results from host surveys show that the prevalence of D. dendriticum in samples of O. subrudis varied between 4-10%, whereas mean metacercariae intensity in F. aserva varied between 33-41 (n = 163, mean ± SD = 38 ± 35). These results are the first to describe the complete life cycle of emerging lancet fluke in western North America. The process of multi-level ecological fitting, in which the lancet fluke possesses pre-existing traits to utilize host resources, rather than host species, at each life-cycle stage provides a mechanism for the establishment of this complex life cycle in a novel habitat and in novel hosts.

  10. Underground coal gasification with extended CO2 utilization as economic and carbon neutral approach to address energy and fertilizer supply shortages in Bangladesh

    NASA Astrophysics Data System (ADS)

    Nakaten, Natalie; Islam, Rafiqul; Kempka, Thomas

    2014-05-01

    The application of underground coal gasification (UCG) with proven carbon mitigation techniques may provide a carbon neutral approach to tackle electricity and fertilizer supply shortages in Bangladesh. UCG facilitates the utilization of deep-seated coal seams, not economically exploitable by conventional coal mining. The high-calorific synthesis gas produced by UCG can be used for e.g. electricity generation or as chemical raw material for hydrogen, methanol and fertilizer production. Kempka et al. (2010) carried out an integrated assessment of UCG operation, demonstrating that about 19 % of the CO2 produced during UCG may be mitigated by CO2 utilization in fertilizer production. In the present study, we investigated an extension of the UCG system by introducing excess CO2 storage in the gas deposit of the Bahkrabad gas field (40 km east of Dhaka, Bangladesh). This gas field still holds natural gas resources of 12.8 million tons of LNG equivalent, but is close to abandonment due to a low reservoir pressure. Consequently, applying enhanced gas recovery (EGR) by injection of excess carbon dioxide from the coupled UCG-urea process may mitigate carbon emissions and support natural gas production from the Bahkrabad gas field. To carry out an integrated techno-economic assessment of the coupled system, we adapted the techno-economic UCG-CCS model developed by Nakaten et al. (2014) to consider the urea and EGR processes. Reservoir simulations addressing EGR in the Bakhrabad gas field by utilization of excess carbon dioxide from the UCG process were carried out to account for the induced pressure increase in the reservoir, and thus additional gas recovery potentials. The Jamalganj coal field in Northwest Bangladesh provides favorable geological and infrastructural conditions for a UCG operation at coal seam depths of 640 m to 1,158 m. Excess CO2 can be transported via existing pipeline networks to the Bahkrabad gas field (about 300 km distance from the coal deposit) to be

  11. A study of toxic emissions from a coal-fired power plant utilizing the SNOX innovative clean coal technology demonstration. Volume 1, Sampling/results/special topics: Final report

    SciTech Connect

    Not Available

    1994-07-01

    This study was one of a group of assessments of toxic emissions from coal-fired power plants, conducted for DOE during 1993. The motivation for those assessments was the mandate in the 1990 Clean Air Act Amendments that a study be made of emissions of hazardous air pollutants (HAPs) from electric utilities. The report is organized in two volumes. Volume 1: Sampling describes the sampling effort conducted as the basis for this study; Results presents the concentration data on HAPs in the several power plant streams, and reports the results of evaluations and calculations conducted with those data; and Special Topics report on issues such as comparison of sampling methods and vapor/solid distributions of HAPs. Volume 2: Appendices include quality assurance/quality control results, uncertainty analysis for emission factors, and data sheets. This study involved measurements of a variety of substances in solid, liquid, and gaseous samples from input, output, and process streams at the Innovative Clean Coal Technology Demonstration (ICCT) of the Wet Sulfuric Acid-Selective Catalytic Reduction (SNOX) process. The SNOX demonstration is being conducted at Ohio Edison`s Niles Boiler No. 2 which uses cyclone burners to burn bituminous coal. A 35 megawatt slipstream of flue gas from the boiler is used to demonstrate SNOX. The substances measured at the SNOX process were the following: 1. Five major and 16 trace elements, including mercury, chromium, cadmium, lead, selenium, arsenic, beryllium, and nickel; 2. Acids and corresponding anions (HCl, HF, chloride, fluoride, phosphate, sulfate); 3. Ammonia and cyanide; 4. Elemental carbon; 5. Radionuclides; 6. Volatile organic compounds (VOC); 7. Semi-volatile compounds (SVOC) including polynuclear aromatic hydrocarbons (PAH); and 8. Aldehydes.

  12. Investigations into coal coprocessing and coal liquefaction

    SciTech Connect

    Guffey, F.D.; Netzel, D.A.; Miknis, F.P.; Thomas, K.P.; Zhang, Tiejun; Haynes, H.W. Jr.

    1994-06-01

    The conversion of coal to liquid suitable as feedstock to a petroleum refinery is dependent upon several process variables. These variables include temperature, pressure, coal rank, catalyst type, nature of the feed to the reactor, type of process, etc. Western Research Institute (WRI) has initiated a research program in the area of coal liquefaction to address the impact of some of these variables upon the yield and quality of the coal-derived liquid. The principal goal of this research is to improve the efficiency of the coal liquefaction process. Two different approaches are currently being investigated. These include the coprocessing of a heavy liquid, such as crude oil, and coal using a dispersed catalyst and the direct liquefaction of coal using a supported catalyst. Another important consideration in coal liquefaction is the utilization of hydrogen, including both externally- and internally-supplied hydrogen. Because the incorporation of externally-supplied hydrogen during conversion of this very aromatic fossil fuel to, for example, transportation fuels is very expensive, improved utilization of internally-supplied hydrogen can lead to reducing processing costs. The objectives of this investigation, which is Task 3.3.4, Coal Coprocessing, of the 1991--1992 Annual Research Plan, are: (1) to evaluate coal/oil pretreatment conditions that are expected to improve the liquid yield through more efficient dispersion of an oil-soluble, iron-based catalyst, (2) to characterize the coke deposits on novel, supported catalysts after coal liquefaction experiments and to correlate the carbon skeletal structure parameters of the coke deposit with catalyst performance as measured by coal liquefaction product yield, and (3) to determine the modes of hydrogen utilization during coal liquefaction and coprocessing. Experimental results are discussed in this report.

  13. Development of advanced NO{sub x} control concepts for coal-fired utility boilers. Quarterly technical progress report No. 3, April 1--June 30, 1991

    SciTech Connect

    Newhall, J.; England, G.; Seeker, W.R.

    1992-01-16

    Hybrid technologies for reduction of NO{sub x} emissions from coal fired utility boilers may offer greater levels of NO{sub x} control than the sum of the individual technologies, leading to more cost effective emissions control strategies. CombiNO{sub x} is an integration of modified reburning, promoted selective non-catalytic reduction (SNCR) and methanol injection to reduce NO{sub x} emissions from coal fired flue gas. The first two steps, modified reburning and promoted SNCR are linked. It was shown previously that oxidation of CO in the presence of a SNCR agent enhances the NO reduction performance. Less reburning than is typically done is required to generate the optimum amount of CO to promote the SNCR agent. If the reburn fuel is natural gas this may result in a significant cost savings over typical reburning. Injection of methanol into the flue gas has been shown at laboratory scale to convert NO to NO{sub 2} which may subsequently be removed in a wet scrubber. The overall objective of this program is to demonstrate the effectiveness of the CombiNOx process at a large enough scale and over a sufficiently broad range of conditions to provide all of the information needed to conduct a full-scale demonstration in a coal fired utility boiler. The specific technical goals of this program are: 70% NO{sub x} reduction at 20% of the cost of selective catalytic reduction; NO{sub x} levels at the stack of 60 ppm for ozone non-attainment areas; demonstrate coal reburning; identify all undesirable by-products of the process and their controlling parameters; demonstrate 95% NO{sub 2} removal in a wet scrubber. During this reporting period, experimental work was initiated at both the laboratory and pilot scale in the Fundamental Studies phase of the program. The laboratory scale work focused on determining whether or not the NO{sub 2} formed by the methanol injection step can be removed in an SO{sub 2} scrubber.

  14. Low-Btu coal-gasification-process design report for Combustion Engineering/Gulf States Utilities coal-gasification demonstration plant. [Natural gas or No. 2 fuel oil to natural gas or No. 2 fuel oil or low Btu gas

    SciTech Connect

    Andrus, H E; Rebula, E; Thibeault, P R; Koucky, R W

    1982-06-01

    This report describes a coal gasification demonstration plant that was designed to retrofit an existing steam boiler. The design uses Combustion Engineering's air blown, atmospheric pressure, entrained flow coal gasification process to produce low-Btu gas and steam for Gulf States Utilities Nelson No. 3 boiler which is rated at a nominal 150 MW of electrical power. Following the retrofit, the boiler, originally designed to fire natural gas or No. 2 oil, will be able to achieve full load power output on natural gas, No. 2 oil, or low-Btu gas. The gasifier and the boiler are integrated, in that the steam generated in the gasifier is combined with steam from the boiler to produce full load. The original contract called for a complete process and mechanical design of the gasification plant. However, the contract was curtailed after the process design was completed, but before the mechanical design was started. Based on the well defined process, but limited mechanical design, a preliminary cost estimate for the installation was completed.

  15. Assessing ecological risks to the fish community from residual coal fly ash in Watts Bar Reservoir, Tennessee

    DOE PAGES

    Rigg, David K.; Wacksman, Mitch N.; Iannuzzi, Jacqueline; ...

    2014-12-18

    For this research, extensive site-specific biological and environmental data were collected to support an evaluation of risks to the fish community in Watts Bar Reservoir from residual ash from the December 2008 Tennessee Valley Authority (TVA) Kingston ash release. This paper describes the approach used and results of the risk assessment for the fish community, which consists of multiple measurement endpoints (measures of exposure and effects) for fish. The lines of evidence included 1) comparing postspill annual fish community assessments with nearby prespill data and data from other TVA reservoirs, 2) evaluating possible effects of exposures of fish eggs andmore » larval fish to ash in controlled laboratory toxicity tests, 3) evaluating reproductive competence of field-exposed fish, 4) assessing individual fish health through physical examination, histopathology, and blood chemistry, 5) comparing fish tissue concentrations with literature-based critical body residues, and 6) comparing concentrations of ash-related contaminants in surface waters with US Environmental Protection Agency's (USEPA) Ambient Water Quality Standards for Fish and Aquatic Life. These measurement endpoints were treated as independent lines of evidence that were integrated into an overall weight-of-evidence estimate of risk to the fish community. Collectively, the data and analysis presented here indicate that ash and ash-related constituents pose negligible risks to the fish communities in Watts Bar Reservoir. This conclusion contradicts the predictions by some researchers immediately following the ash release of devastating effects on the aquatic ecology of Watts Bar Reservoir. The information presented in this article reaffirms the wisdom of carefully evaluating the evidence before predicting probable ecological effects of a major event such as the TVA Kingston ash release. Lastly, this study demonstrates that a thorough and detailed investigation using multiple measurement endpoints

  16. Assessing ecological risks to the fish community from residual coal fly ash in Watts Bar Reservoir, Tennessee.

    PubMed

    Rigg, David K; Wacksman, Mitch N; Iannuzzi, Jacqueline; Baker, Tyler F; Adams, Marshall; Greeley, Mark S

    2015-01-01

    Extensive site-specific biological and environmental data were collected to support an evaluation of risks to the fish community in Watts Bar Reservoir from residual ash from the December 2008 Tennessee Valley Authority (TVA) Kingston ash release. This article describes the approach used and results of the risk assessment for the fish community, which consists of multiple measurement endpoints (measures of exposure and effects) for fish. The lines of evidence included 1) comparing postspill annual fish community assessments with nearby prespill data and data from other TVA reservoirs, 2) evaluating possible effects of exposures of fish eggs and larval fish to ash in controlled laboratory toxicity tests, 3) evaluating reproductive competence of field-exposed fish, 4) assessing individual fish health through physical examination, histopathology, and blood chemistry, 5) comparing fish tissue concentrations with literature-based critical body residues, and 6) comparing concentrations of ash-related contaminants in surface waters with US Environmental Protection Agency's (USEPA) Ambient Water Quality Standards for Fish and Aquatic Life. These measurement endpoints were treated as independent lines of evidence that were integrated into an overall weight-of-evidence estimate of risk to the fish community. Collectively, the data and analysis presented here indicate that ash and ash-related constituents pose negligible risks to the fish communities in Watts Bar Reservoir. This conclusion contradicts the predictions by some researchers immediately following the ash release of devastating effects on the aquatic ecology of Watts Bar Reservoir. The information presented in this article reaffirms the wisdom of carefully evaluating the evidence before predicting probable ecological effects of a major event such as the TVA Kingston ash release. This study demonstrates that a thorough and detailed investigation using multiple measurement endpoints is needed to properly evaluate

  17. Assessing ecological risks to the fish community from residual coal fly ash in Watts Bar Reservoir, Tennessee

    SciTech Connect

    Rigg, David K.; Wacksman, Mitch N.; Iannuzzi, Jacqueline; Baker, Tyler F.; Adams, Marshall; Greeley, Jr., Mark Stephen

    2014-12-18

    For this research, extensive site-specific biological and environmental data were collected to support an evaluation of risks to the fish community in Watts Bar Reservoir from residual ash from the December 2008 Tennessee Valley Authority (TVA) Kingston ash release. This paper describes the approach used and results of the risk assessment for the fish community, which consists of multiple measurement endpoints (measures of exposure and effects) for fish. The lines of evidence included 1) comparing postspill annual fish community assessments with nearby prespill data and data from other TVA reservoirs, 2) evaluating possible effects of exposures of fish eggs and larval fish to ash in controlled laboratory toxicity tests, 3) evaluating reproductive competence of field-exposed fish, 4) assessing individual fish health through physical examination, histopathology, and blood chemistry, 5) comparing fish tissue concentrations with literature-based critical body residues, and 6) comparing concentrations of ash-related contaminants in surface waters with US Environmental Protection Agency's (USEPA) Ambient Water Quality Standards for Fish and Aquatic Life. These measurement endpoints were treated as independent lines of evidence that were integrated into an overall weight-of-evidence estimate of risk to the fish community. Collectively, the data and analysis presented here indicate that ash and ash-related constituents pose negligible risks to the fish communities in Watts Bar Reservoir. This conclusion contradicts the predictions by some researchers immediately following the ash release of devastating effects on the aquatic ecology of Watts Bar Reservoir. The information presented in this article reaffirms the wisdom of carefully evaluating the evidence before predicting probable ecological effects of a major event such as the TVA Kingston ash release. Lastly, this study demonstrates that a thorough and detailed investigation using multiple measurement endpoints is needed

  18. The role of a fertilizer trial in reconciling agricultural expectations and landscape ecology requirements on an opencast coal site in South Wales, United Kingdom

    SciTech Connect

    Humphries, C.E.L.; Humphries, R.N.; Wesemann, H.

    1999-07-01

    Since the 1940s the restoration of opencast coal sites in the UK has been predominantly to productive agriculture and forestry. With new UK government policies on sustainability and biodiversity such land uses may be no longer be acceptable or appropriate in the upland areas of South Wales. A scheme was prepared for the upland Nant Helen site with the objective of restoring the landscape ecology of the site; it included acid grassland to provide the landscape setting and for grazing. The scheme met with the approval of the planning authority. An initial forty hectares (about 13% of the site) was restored between 1993 and 1996. While the approved low intensity grazing and low fertilizer regime met the requirements of the planning authority and the statutory agencies, it was not meeting the expectations of the grazers who had grazing rights to the land. To help reconcile the apparent conflict a fertilizer trial was set up. The trial demonstrated that additional fertilizer and intensive grazing was required to meet the nutritional needs of sheep. It also showed typical upland stocking densities of sheep could be achieved with the acid grassland without the need for reseeding with lowland types. However this was not acceptable to the authority and agencies as such fertilizer and grazing regimes would be detrimental to the landscape and ecological objectives of the restoration scheme. A compromise was agreed whereby grazing intensity and additional fertilizer have been zoned. This has been implemented and is working to the satisfaction of all parties. Without the fertilizer trial it is unlikely that the different interests could have been reconciled.

  19. Demonstration program for coal-oil mixture combustion in an electric utility boiler - Category III A. 1978 annual report

    SciTech Connect

    Not Available

    1980-04-01

    The 1978 annual report covers New England Power Service Company's participation in the Department of Energy coal-oil mixture (COM) program. Continued world-wide unrest resulting in an unstable fuel oil supply coupled with rapidly inflating costs have caused continued interest in a demonstrable viable solution. NEPSCO's program, while not attaining all the milestones forecast, has made considerable progress. As of January 31, 1979, ninety-five (95% percent of engineering and design has been completed. Construction of facilities and installation of required equipment was approximately 75% complete and the six-week Feasibility Testing program was expected to commence during April 1979.

  20. Coal Combustion Science

    SciTech Connect

    Hardesty, D.R.; Fletcher, T.H.; Hurt, R.H.; Baxter, L.L. )

    1991-08-01

    The objective of this activity is to support the Office of Fossil Energy in executing research on coal combustion science. This activity consists of basic research on coal combustion that supports both the Pittsburgh Energy Technology Center Direct Utilization Advanced Research and Technology Development Program, and the International Energy Agency Coal Combustion Science Project. Specific tasks for this activity include: (1) coal devolatilization - the objective of this risk is to characterize the physical and chemical processes that constitute the early devolatilization phase of coal combustion as a function of coal type, heating rate, particle size and temperature, and gas phase temperature and oxidizer concentration; (2) coal char combustion -the objective of this task is to characterize the physical and chemical processes involved during coal char combustion as a function of coal type, particle size and temperature, and gas phase temperature and oxygen concentration; (3) fate of mineral matter during coal combustion - the objective of this task is to establish a quantitative understanding of the mechanisms and rates of transformation, fragmentation, and deposition of mineral matter in coal combustion environments as a function of coal type, particle size and temperature, the initial forms and distribution of mineral species in the unreacted coal, and the local gas temperature and composition.

  1. Innovative clean coal technology (ICCT): demonstration of selective catalytic reduction (SCR) technology for the control of nitrogen oxide (NO{sub x}) emission from high-sulfur, coal-fired boilers - economic evaluation of commercial-scale SCR applications for utility boilers

    SciTech Connect

    Healy, E.C.; Maxwell, J.D.; Hinton, W.S.

    1996-09-01

    This report presents the results of an economic evaluation produced as part of the Innovative Clean Coal Technology project, which demonstrated selective catalytic reduction (SCR) technology for reduction of NO{sub x} emissions from utility boilers burning U.S. high-sulfur coal. The document includes a commercial-scale capital and O&M cost evaluation of SCR technology applied to a new facility, coal-fired boiler utilizing high-sulfur U.S. coal. The base case presented herein determines the total capital requirement, fixed and variable operating costs, and levelized costs for a new 250-MW pulverized coal utility boiler operating with a 60-percent NO{sub x} removal. Sensitivity evaluations are included to demonstrate the variation in cost due to changes in process variables and assumptions. This report also presents the results of a study completed by SCS to determine the cost and technical feasibility of retrofitting SCR technology to selected coal-fired generating units within the Southern electric system.

  2. Ecological relationships of fauna and flora on a pre-law coal surface-mined area in Perry County, Illinois

    SciTech Connect

    Smith, J.R.

    1986-01-01

    Pre-law coal surface-mined lands in Pyramid State Park, Perry County, Illinois, were examined 1976-1980 to determine changes in fauna and flora from that on the area in 1954-1960. Vegetative development on naturally revegetated spoils reflected diverse habitat conditions with interspersion of cover types; some of oldest spoils displayed inhibited succession while others exhibited early flood plain forest development. Ground and overstory species richness and overstory density increased since mid 1950's and ground cover domination by therophytes in 1954-1956 shifted to phanerophytes and hemicryptophytes in 1976-1978. Thirty vegetative compositional and structural parameters indicated that ground cover was limited by subcanopy rather than large scattered trees. Aquatic vegetation communities developed but hydrosphere was not well represented; emergent vegetation was limited by morphology of basins. Although isolated sites exhibited deleterious conditions, vegetation was not generally inhibited by physico-chemical factors. The 29 mammals reflected an increase in species richness. Abundance of early successional forms decreased while occupants of shrub/forest increased. Past habitat enhancement influenced wildlife distribution; and plantations attracted woodland fauna. Leveled spoil crests, valleys and clearings with fescue retarded succession and provided open areas and edges for others.

  3. Optimized grid representation of plant species richness in India-Utility of an existing national database in integrated ecological analysis.

    PubMed

    Tripathi, Poonam; Behera, Mukund Dev; Roy, Partha Sarathi

    2017-01-01

    Data on the distribution of plant species at spatial (grid) scales are required as input for integrative analysis along with related climate, environment, topography and soil data. Although the world's scientific community is increasingly generating data on plant species at various spatial grids and statistically interpolating and extrapolating the available information, data on plant diversity from the Asian continent are scant. Such data are unavailable for India, the mainland of which has part of three of the world's 36 biodiversity hotspots. Although sufficient field sampling is always impossible and impractical, it is essential to utilize fully any available database by adjudging the sampling sufficiency at a given scale. In this work, we used an exhaustive database of the plant species of the Indian mainland that was sufficient in terms of sampling vegetation types. We transformed the data, obtained the distribution at the 1° and 2° spatial grid levels and evaluated the sampling sufficiency at acceptable threshold limits (60% to 80%). The greatest species richness values recorded in the 0.04 ha quadrant, 1° grid and 2° grid were 59, 623 and 1244, respectively. Clench model was significantly (p value < 0.001) fitted using the plant species data at both the grid levels with a very high coefficient of determination (>0.95). At an acceptable threshold limit of 70%, almost all the grids at the 2° level and more than 80% of the grids at the 1° level were found to be sufficiently sampled. Sampling sufficiency was observed to be highly scale-dependent as a greater number of 2° grids attained asymptotic behaviour following the species-area curve. Grid-level sampling insufficiency was attributed to lower numbers of sampling quadrats in forests with poor approachability, which coincided with the world biodiversity hotspots', suggesting that additional sampling was required. We prescribe the use of the 1° and 2° spatial grids with sufficient sampling for any

  4. Optimized grid representation of plant species richness in India—Utility of an existing national database in integrated ecological analysis

    PubMed Central

    Behera, Mukund Dev; Roy, Partha Sarathi

    2017-01-01

    Data on the distribution of plant species at spatial (grid) scales are required as input for integrative analysis along with related climate, environment, topography and soil data. Although the world’s scientific community is increasingly generating data on plant species at various spatial grids and statistically interpolating and extrapolating the available information, data on plant diversity from the Asian continent are scant. Such data are unavailable for India, the mainland of which has part of three of the world’s 36 biodiversity hotspots. Although sufficient field sampling is always impossible and impractical, it is essential to utilize fully any available database by adjudging the sampling sufficiency at a given scale. In this work, we used an exhaustive database of the plant species of the Indian mainland that was sufficient in terms of sampling vegetation types. We transformed the data, obtained the distribution at the 1° and 2° spatial grid levels and evaluated the sampling sufficiency at acceptable threshold limits (60% to 80%). The greatest species richness values recorded in the 0.04 ha quadrant, 1° grid and 2° grid were 59, 623 and 1244, respectively. Clench model was significantly (p value < 0.001) fitted using the plant species data at both the grid levels with a very high coefficient of determination (>0.95). At an acceptable threshold limit of 70%, almost all the grids at the 2° level and more than 80% of the grids at the 1° level were found to be sufficiently sampled. Sampling sufficiency was observed to be highly scale-dependent as a greater number of 2° grids attained asymptotic behaviour following the species–area curve. Grid-level sampling insufficiency was attributed to lower numbers of sampling quadrats in forests with poor approachability, which coincided with the world biodiversity hotspots’, suggesting that additional sampling was required. We prescribe the use of the 1° and 2° spatial grids with sufficient sampling for

  5. Variations of emission characterization of PAHs emitted from different utility boilers of coal-fired power plants and risk assessment related to atmospheric PAHs.

    PubMed

    Wang, Ruwei; Liu, Guijian; Zhang, Jiamei

    2015-12-15

    Coal-fired power plants (CFPPs) represent important source of atmospheric PAHs, however, their emission characterization are still largely unknown. In this work, the concentration, distribution and gas-particle partitioning of PM10- and gas-phase PAHs in flue gas emitted from different coal-fired utility boilers were investigated. Moreover, concentration and distribution in airborne PAHs from different functional areas of power plants were studied. People's inhalatory and dermal exposures to airborne PAHs at these sites were estimated and their resultant lung cancer and skin cancer risks were assessed. Results indicated that the boiler capacity and operation conditions have significant effect on PAH concentrations in both PM10 and gas phases due to the variation of combustion efficiency, whereas they take neglected effect on PAH distributions. The wet flue gas desulphurization (WFGD) takes significant effect on the scavenging of PAH in both PM10 and gas phases, higher scavenging efficiency were found for less volatile PAHs. PAH partitioning is dominated by absorption into organic matter and accompanied by adsorption onto PM10 surface. In addition, different partitioning mechanism is observed for individual PAHs, which is assumed arising from their chemical affinity and vapor pressure. Risk assessment indicates that both inhalation and dermal contact greatly contribute to the cancer risk for CFPP workers and nearby residents. People working in workshop are exposed to greater inhalation and dermal exposure risk than people living in nearby vicinity and working office.

  6. Activities of the Institute of Chemical Processing of Coal at Zabrze

    SciTech Connect

    Dreszer, K.

    1995-12-31

    The Institute of Chemical Processing of Coal at Zabrze was established in 1955. The works on carbochemical technologies have been, therefore, carried out at the Institute for 40 years. The targets of the Institute`s activities are research, scientific and developing works regarding a sensible utilization of fuels via their processing into more refined forms, safe environment, highly efficient use of energy carriers and technological products of special quality. The Institute of Chemical Processing of Coal has been dealing with the following: optimized use of home hard coals; improvement of classic coal coking technologies, processing and utilization of volatile coking products; production technologies of low emission rate fuels for communal management; analyses of coal processing technologies; new technologies aimed at increasing the efficiency of coal utilization for energy-generating purposes, especially in industry and studies on the ecological aspects of these processes; production technologies of sorbents and carbon activating agents and technologies of the utilization; rationalization of water and wastes management in the metallurgical and chemical industries in connection with removal of pollution especially dangerous to the environment from wastes; utilization technologies of refined materials (electrode cokes, binders, impregnating agents) for making electrodes, refractories and new generation construction carbon materials; production technologies of high quality bituminous and bituminous and resin coating, anti-corrosive and insulation materials; environmentally friendly utilization technologies for power station, mine and other wastes, and dedusting processes in industrial gas streams.

  7. Development of advanced NO{sub x} control concepts for coal-fired utility boilers. Quarterly technical progress report No. 1, September 26--December 31, 1990

    SciTech Connect

    Newhall, J.; England, G.; Seeker, W.R.

    1991-12-23

    Hybrid technologies for reduction of NO{sub x} emissions from coal fired utility boilers may offer greater levels of NO{sub x} control than the sum of the individual technologies, leading to more cost effective emissions control strategies. Energy and Environmental Research Corporation had developed a hybrid NO{sub x} control strategy involving two proprietary concepts which has the potential to meet the US Department of Energy`s goal at a significant reduction in cost compared to existing technology. The process has been named CombiNO{sub x}. CombiNO{sub x} is the integration of three separate NO control technologies: (1) Gas Reburning, (2) CO-Promoted Selective Non-Catalytic Reduction, and (3) Methanol Injection/NO{sub 2} Scrubbing.

  8. Recovery of calcium carbonate from waste gypsum and utilization for remediation of acid mine drainage from coal mines.

    PubMed

    Mulopo, J; Radebe, V

    2012-01-01

    The recovery of calcium carbonate from waste gypsum (a waste product of the reverse osmosis (RO) desalination process) was tested using sodium carbonate. Batch recovery of calcium carbonate from waste gypsum slurries by reacting with sodium carbonate under ambient conditions was used to assess the technical feasibility of CaCO(3) recovery and its use for pre-treatment of acid mine drainage (AMD) from coal mines. The effect of key process parameters, such as the slurry concentration (%) and the molar ratio of sodium carbonate to gypsum were considered. It was observed that batch waste gypsum conversion significantly increased with decrease in the slurry concentration or increase in the molar ratio of sodium carbonate to gypsum. The CaCO(3) recovered from the bench-scale batch reactor demonstrated effective neutralization ability during AMD pre-treatment compared with commercial laboratory grade CaCO(3).

  9. Coal char fragmentation during pulverized coal combustion

    SciTech Connect

    Baxter, L.L.

    1995-07-01

    A series of investigations of coal and char fragmentation during pulverized coal combustion is reported for a suite of coals ranging in rank from lignite to low-volatile (lv) bituminous coal under combustion conditions similar to those found in commercial-scale boilers. Experimental measurements are described that utilize identical particle sizing characteristics to determine initial and final size distributions. Mechanistic interpretation of the data suggest that coal fragmentation is an insignificant event and that char fragmentation is controlled by char structure. Chars forming cenospheres fragment more extensively than solid chars. Among the chars that fragment, large particles produce more fine material than small particles. In all cases, coal and char fragmentation are seen to be sufficiently minor as to be relatively insignificant factors influencing fly ash size distribution, particle loading, and char burnout.

  10. Characterization, extraction, and reuse of coal-gasification solid wastes. Volume 3. Technical and economic feasibility of bulk utilization and metal recovery for ashes from an integrated coal-gasification facility. Final report, April 1983-June 1986

    SciTech Connect

    Manz, O.E.; Hassett, D.J.; Laudal, D.L.; Ellman, R.C.

    1986-06-01

    Coal-gasification waste products, including those from Lurgi gasification, have different properties from the combustion ashes, especially with respect to mineralogy. To date, comparatively little effort has been directed toward the investigation of bulk utilization or metals extraction. This project was directed towards correction of that deficiency by matching properties of the Great Plains Gasification Plant gasifier ash and the Antelope Valley Power Plant combustion explored: mineral wool; sulfur concrete; high-flexural-strength ceramics; ceramic glazed wall tile and vitrified floor tile; dual concrete replacement; road stabilization; blended cement; and recovery of aluminum. Mineral wool of similar physical character to commercial wool and at lower potential cost was produced using the ashes from the GPGA complex. Sulfur concrete utilizing 80% ash and 20% modified sulfur developed flexural and compressive strengths in excess of 2250 and 6000 psi, respectively. A vitrified ceramic product with flexural strength above 7800 psi was produced from a mixture of 50% AVS scrubber ash 45% sand, and 5% clay. By using a total ash mixture of 26% gasifier ash and 74% combustion ash, a very satisfactory, economical, and durable road-base material was developed. The replacement of up to 50% of the cement in concrete with AVS scrubber ash produces higher strength. A modified lime-soda sinter process for aluminum recovery was developed, but is not economical.

  11. EVALUATION OF INTERNALLY STAGED COAL BURNERS AND SORBENT JET AERODYNAMICS FOR COMBINED SO2/NOX CONTROL IN UTILITY BOILERS, VOLUME 1, TESTING IN A 10 MILLION BTU/HR EXPERIMENTAL FURNACE

    EPA Science Inventory

    The document gives results of tests conducted in a 2 MWt experimental furnace to: (1) investigate ways to reduce NOx emissions from utility coal burners without external air ports (i.e., with internal fuel/air staging); and (2) improve the performance of calcium-based sorbents fo...

  12. Technological Change and Its Labor Impact in Five Energy Industries. Coal Mining/Oil and Gas Extraction/Petroleum Refining/Petroleum Pipeline Transportation/Electric and Gas Utilities.

    ERIC Educational Resources Information Center

    Bureau of Labor Statistics (DOL), Washington, DC.

    This bulletin appraises major technological changes emerging in five American industries (coal mining, oil and gas extraction, petroleum refining, petroleum pipeline transportation, and electric and gas utilities) and discusses the impact of these changes on productivity and occupations over the next five to ten years. Its separate reports on each…

  13. ADVANCED FLUE GAS CONDITIONING AS A RETROFIT UPGRADE TO ENHANCE PM COLLECTION FROM COAL-FIRED ELECTRIC UTILITY BOILERS

    SciTech Connect

    C. Jean Bustard

    2003-12-01

    ADA Environmental Solutions (ADA-ES) has successfully completed a research and development program granted by the Department of Energy National Energy Technology Laboratory (NETL) to develop a family of non-toxic flue gas conditioning agents to provide utilities and industries with a cost-effective means of complying with environmental regulations on particulate emissions and opacity. An extensive laboratory screening of potential additives was completed followed by full-scale trials at four utility power plants. The developed cohesivity additives have been demonstrated on a 175 MW utility boiler that exhibited poor collection of unburned carbon in the electrostatic precipitator. With cohesivity conditioning, opacity spiking caused by rapping reentrainment was reduced and total particulate emissions were reduced by more than 30%. Ammonia conditioning was also successful in reducing reentrainment on the same unit. Conditioned fly ash from the process is expected to be suitable for dry or wet disposal and for concrete admixture.

  14. Utilization of coal combustion by-products in mine reclamation and agriculture -- A summary of selected U.S. Department of Energy projects

    SciTech Connect

    Aljoe, W.W.

    1998-12-31

    Most solid coal combustion by-products (CCBs) such as fly ash, bottom ash, and flue gas desulfurization (FGD) sludge are currently disposed of in slurry ponds or landfills. While these practices may continue to be the most economical alternatives for some utilities, increasingly stringent environmental regulations and public opposition to new landfill construction are forcing many utilities to explore alternative uses for CCBs. Some alternative uses have proven to be very profitable, such as the sale of fly ash for use in cement and the production of wallboard from FGD sludge. However, in many cases such uses are not economically feasible because the physical or chemical characteristics of the CCBs are not suitable and/or the market price of the processed, recycled CCB is not competitive. Therefore, there is a need to find alternative, environmentally friendly uses for large volumes of CCBs that do not require tight quality specifications or extensive processing by the utility. To date, mine reclamation and agricultural applications appear to be the most attractive high-volume utilization methods, but the actual costs and environmental benefits of these practices need to be demonstrated and documented before the industry and regulatory agencies can accept them routinely as viable alternatives to landfilling. This paper summarizes the results of various completed and ongoing projects sponsored or cosponsored by the US Department of Energy that have been directed toward the demonstration of CCB use in mine reclamation and agriculture. Important benefits of these demonstrations include the mitigation of underground mine subsidence, abatement of acid mine drainage, increased productivity from highwall mines, improvement of mine soil productivity, inexpensive substitution for agricultural lime in growth of selected crops, and increased efficiency of cattle feeding via structural stabilization of feedlots.

  15. Service Modules for Coal Extraction

    NASA Technical Reports Server (NTRS)

    Gangal, M. D.; Lewis, E. V.

    1985-01-01

    Service train follows group of mining machines, paying out utility lines as machines progress into coal face. Service train for four mining machines removes gases and coal and provides water and electricity. Flexible, coiling armored carriers protect cables and hoses. High coal production attained by arraying row of machines across face, working side by side.

  16. Direct utilization: recovery of minerals from coal fly ash. Fossil Energy program. Technical progress report, 1 January-30 March 1980

    SciTech Connect

    Burnet, G.; Murtha, M.J.

    1980-05-01

    Research is focused on the development of methods for recovering minerals from power station fly ash, use of less costly reactants, improvement of energy efficiency, and development of uses for by-products. A research plan developed for collection of kinetic data for fly ash chlorination (HiChlor process) includes the use of different reactant gas mixtures contacting a small bed of fly ash in a new, vertical, down-flow reactor. In work on the lime-soda sinter process, research includes the common ion effect on the concentrations of dissolved alumina, silica, and calcium in the filtrates obtained from extraction of the sintered clinker. Experiments conducted to determine decomposition data for several samples of limestone scrubber sludge are reported. These experiments are the first step toward the possible use of the waste sludge as a replacement for limestone in the sintering process. A series of experiments conducted to evaluate the reactivity of commercial limestones showed that high grade limestone gave alumina recoveries equivalent to those obtained using reagent-grade CaCO/sub 3/ for nine sinter mixtures which were tested. Increased interest use of the iron-rich magnetic fly ash fraction as a heavy media material for coal beneficiation led to preparation of a research proposal to increase the scale of testing by use of commercial heavy media cyclones. The scope of the research is to be expanded to include a range of fly ashes and several commercial magnetite samples. Hydrochemical beneficiation tests of the iron-rich fraction to produce iron ore indicate that the limited dissolution of alumina from the ash is probably due to secondary precipitation reactions during digestion.

  17. Utilization of low NO{sub x} coal combustion by-products. Quarterly report, July--September 1995

    SciTech Connect

    1995-11-01

    Three ash samples have been processed in the pilot plant, providing samples for the utilization tasks. The concrete task is nearly complete and efforts are underway to evaluate market potential and ash suitability for use in related concrete products such as block, aggregate, and aerated autoclaved concrete. Use of ash as a filler in plastics has attracted attention from a nationwide filler supplier. The task to evaluate the carbon products is just getting underway, with the preliminary market study indicating that wastewater sorbent applications may be the best way to go with this product. Moving the project into a third or demonstration phase has been discussed with several utilities, including Detroit Edison and American Electric Power. The feedback has been very favorable. This report discusses the work accomplished under each subtask.

  18. Utilization of urea, ammonia, nitrite, and nitrate by crop plants in a Controlled Ecological Life Support System (CELSS)

    NASA Technical Reports Server (NTRS)

    Huffaker, R. C.; Rains, D. W.; Qualset, C. O.

    1982-01-01

    The utilization of nitrogen compounds by crop plants is studied. The selection of crop varieties for efficient production using urea, ammonia, nitrite, and nitrate, and the assimilation of mixed nitrogen sources by cereal leaves and roots are discussed.

  19. Coal supply for California

    NASA Technical Reports Server (NTRS)

    Yancik, J. J.

    1978-01-01

    The potential sources and qualities of coals available for major utility and industrial consumers in California are examined and analyzed with respect to those factors that would affect the reliability of supplies. Other considerations, such as the requirements and assurances needed by the coal producers to enter into long-term contracts and dedicate large reserves of coal to these contracts are also discussed. Present and potential future mining contraints on coal mine operators are identified and analyzed with respect to their effect on availability of supply.

  20. PASSIVE CONTROL OF PARTICLE DISPERSION IN A PARTICLE-LADEN CIRCULAR JET USING ELLIPTIC CO-ANNULAR FLOW: A MEANS FOR IMPROVING UTILIZATION AND EMISSION REDUCTIONS IN PULVERIZED COAL BURNER

    SciTech Connect

    Ahsan R. Choudhuri

    2003-06-01

    A passive control technology utilizing elliptic co-flow to control the particle flinging and particle dispersion in a particle (coal)-laden flow was investigated using experimental and numerical techniques. Preferential concentration of particles occurs in particle-laden jets used in pulverized coal burner and causes uncontrollable NO{sub x} formation due to inhomogeneous local stoichiometry. This particular project was aimed at characterizing the near-field flow behavior of elliptic coaxial jets. The knowledge gained from the project will serve as the basis of further investigation on fluid-particle interactions in an asymmetric coaxial jet flow-field and thus is important to improve the design of pulverized coal burners where non-homogeneity of particle concentration causes increased NO{sub x} formation.

  1. Clean power generation from coal

    SciTech Connect

    Butler, J.W.; Basu, P.

    2007-09-15

    The chapter gives an overview of power generation from coal, describing its environmental impacts, methods of cleaning coal before combustion, combustion methods, and post-combustion cleanup. It includes a section on carbon dioxide capture, storage and utilization. Physical, chemical and biological cleaning methods are covered. Coal conversion techniques covered are: pulverized coal combustion, fluidized-bed combustion, supercritical boilers, cyclone combustion, magnetohydrodynamics and gasification. 66 refs., 29 figs., 8 tabs.

  2. Plasma coal reprocessing

    NASA Astrophysics Data System (ADS)

    Messerle, V. E.; Ustimenko, A. B.

    2013-12-01

    Results of many years of investigations of plasma-chemical technologies for pyrolysis, hydrogenation, thermochemical preparation for combustion, gasification, and complex reprocessing of solid fuels and hydrocarbon gas cracking are represented. Application of these technologies for obtaining the desired products (hydrogen, industrial carbon, synthesis gas, valuable components of the mineral mass of coal) corresponds to modern ecological and economical requirements to the power engineering, metallurgy, and chemical industry. Plasma fuel utilization technologies are characterized by the short-term residence of reagents within a reactor and the high degree of the conversion of source substances into the desired products without catalyst application. The thermochemical preparation of the fuel to combustion is realized in a plasma-fuel system presenting a reaction chamber with a plasmatron; and the remaining plasma fuel utilization technologies, in a combined plasma-chemical reactor with a nominal power of 100 kW, whose zone of the heat release from an electric arc is joined with the chemical reaction zone.

  3. JV TASK 45-MERCURY CONTROL TECHNOLOGIES FOR ELECTRIC UTILITIES BURNING LIGNITE COAL, PHASE I BENCH-AND PILOT-SCALE TESTING

    SciTech Connect

    John H. Pavlish; Michael J. Holmes; Steven A. Benson; Charlene R. Crocker; Edwin S. Olson; Kevin C. Galbreath; Ye Zhuang; Brandon M. Pavlish

    2003-10-01

    The Energy & Environmental Research Center has completed the first phase of a 3-year, two-phase consortium project to develop and demonstrate mercury control technologies for utilities that burn lignite coal. The overall project goal is to maintain the viability of lignite-based energy production by providing utilities with low-cost options for meeting future mercury regulations. Phase I objectives are to develop a better understanding of mercury interactions with flue gas constituents, test a range of sorbent-based technologies targeted at removing elemental mercury (Hg{sup o}) from flue gases, and demonstrate the effectiveness of the most promising technologies at the pilot scale. The Phase II objectives are to demonstrate and quantify sorbent technology effectiveness, performance, and cost at a sponsor-owned and operated power plant. Phase I results are presented in this report along with a brief overview of the Phase II plans. Bench-scale testing provided information on mercury interactions with flue gas constituents and relative performances of the various sorbents. Activated carbons were prepared from relatively high-sodium lignites by carbonization at 400 C (752 F), followed by steam activation at 750 C (1382 F) and 800 C (1472 F). Luscar char was also steam-activated at these conditions. These lignite-based activated carbons, along with commercially available DARCO FGD and an oxidized calcium silicate, were tested in a thin-film, fixed-bed, bench-scale reactor using a simulated lignitic flue gas consisting of 10 {micro}g/Nm{sup 3} Hg{sup 0}, 6% O{sub 2}, 12% CO{sub 2}, 15% H{sub 2}O, 580 ppm SO{sub 2}, 120 ppm NO, 6 ppm NO{sub 2}, and 1 ppm HCl in N{sub 2}. All of the lignite-based activated (750 C, 1382 F) carbons required a 30-45-minute conditioning period in the simulated lignite flue gas before they exhibited good mercury sorption capacities. The unactivated Luscar char and oxidized calcium silicate were ineffective in capturing mercury. Lignite

  4. Utilization of farm animal genetic resources in a changing agro-ecological environment in the Nordic countries

    PubMed Central

    Kantanen, Juha; Løvendahl, Peter; Strandberg, Erling; Eythorsdottir, Emma; Li, Meng-Hua; Kettunen-Præbel, Anne; Berg, Peer; Meuwissen, Theo

    2015-01-01

    Livestock production is the most important component of northern European agriculture and contributes to and will be affected by climate change. Nevertheless, the role of farm animal genetic resources in the adaptation to new agro-ecological conditions and mitigation of animal production’s effects on climate change has been inadequately discussed despite there being several important associations between animal genetic resources and climate change issues. The sustainability of animal production systems and future food security require access to a wide diversity of animal genetic resources. There are several genetic questions that should be considered in strategies promoting adaptation to climate change and mitigation of environmental effects of livestock production. For example, it may become important to choose among breeds and even among farm animal species according to their suitability to a future with altered production systems. Some animals with useful phenotypes and genotypes may be more useful than others in the changing environment. Robust animal breeds with the potential to adapt to new agro-ecological conditions and tolerate new diseases will be needed. The key issue in mitigation of harmful greenhouse gas effects induced by livestock production is the reduction of methane (CH4) emissions from ruminants. There are differences in CH4 emissions among breeds and among individual animals within breeds that suggest a potential for improvement in the trait through genetic selection. Characterization of breeds and individuals with modern genomic tools should be applied to identify breeds that have genetically adapted to marginal conditions and to get critical information for breeding and conservation programs for farm animal genetic resources. We conclude that phenotyping and genomic technologies and adoption of new breeding approaches, such as genomic selection introgression, will promote breeding for useful characters in livestock species. PMID:25767477

  5. Coal sector profile

    SciTech Connect

    Not Available

    1990-06-05

    Coal is our largest domestic energy resource with recoverable reserves estimated at 268 billion short tons or 5.896 quads Btu equivalent. This is approximately 95 percent of US fossil energy resources. It is relatively inexpensive to mine, and on a per Btu basis it is generally much less costly to produce than other energy sources. Its chief drawbacks are the environmental, health and safety concerns that must be addressed in its production and consumption. Historically, coal has played a major role in US energy markets. Coal fueled the railroads, heated the homes, powered the factories. and provided the raw materials for steel-making. In 1920, coal supplied over three times the amount of energy of oil, gas, and hydro combined. From 1920 until the mid 1970s, coal production remained fairly constant at 400 to 600 million short tons a year. Rapid increases in overall energy demands, which began during and after World War II were mostly met by oil and gas. By the mid 1940s, coal represented only half of total energy consumption in the US. In fact, post-war coal production, which had risen in support of the war effort and the postwar Marshall plan, decreased approximately 25 percent between 1945 and 1960. Coal demand in the post-war era up until the 1970s was characterized by increasing coal use by the electric utilities but decreasing coal use in many other markets (e.g., rail transportation). The oil price shocks of the 1970s, combined with natural gas shortages and problems with nuclear power, returned coal to a position of prominence. The greatly expanded use of coal was seen as a key building block in US energy strategies of the 1970s. Coal production increased from 613 million short tons per year in 1970 to 950 million short tons in 1988, up over 50 percent.

  6. Ecological response of plant consumers to Middle-Upper Pennsylvanian extinctions in Illinois Basin coal swamps: Evidence from plant/arthropod interactions

    SciTech Connect

    Labandeira, C. ); Phillips, T. . Dept. of Plant Biology)

    1992-01-01

    Paleobotanical studies of coal-swamp vegetation during the Middle to Upper Pennsylvanian of North America indicate major changes from lycopsid dominated to tree-fern dominated coal-swamp forests as a result of extinction. This taxonomic shift from lycopsids to tree ferns should have implications on dependent feeding guilds, such as detritivores and herbivores. Comparative coal-ball evidence from the Springfield and Herrin Coals (Carbondale Fm.) and Calhoun Coal (Mattoon Fm.) is used to address this issue. The two major feeding guilds of Pennsylvanian coal-swamps were detritivores and herbivores. Detritivores were dominant throughout the interval. Evidence suggests an increasing presence of herbivores during the Desmoinesian and especially during the Missourian. Based on identifications of tissue types found in coprolite types and plant tissue damage patterns, detritivores such as oribatid mites and an unknown stem-parenchyma consumer of Psaronius tree ferns occur before and after the extinction. Based on available evidence, detritivores apparently exhibited stability, particularly since the taxonomic affiliation of their food resource shifted considerably, thus indicating dietary specificities based instead on tissue type. There is evidence for herbivory by stem-miners on Missourian age tree-fern petioles; this distinctive behavior has not been reported for Desmoinesean or older deposits. The arthropod body-fossil record is consistent with this pattern: detritivore groups such as roaches survive the extinction largely intact, whereas other groups such as diverse protorthopterans,'' some of which were most likely herbivorous, experienced a significant extinction.

  7. A study of toxic emissions from a coal-fired power plant utilizing an ESP/wet FGD system. Final report, Volume 2 of 2 - appendices

    SciTech Connect

    Not Available

    1994-07-01

    This volume contains the appendices for a coal-fired power plant toxic emissions study. Included are Process data log sheets from Coal Creek, Auditing information, Sampling protocol, Field sampling data sheets, Quality assurance/quality control, Analytical protocol, and Uncertainty analyses.

  8. Derivation of Draft Ecological Soil Screening Levels for TNT and RDX Utilizing Terrestrial Plant and Soil Invertebrate Toxicity Benchmarks

    DTIC Science & Technology

    2012-11-01

    contaminant in soil and on plant growth or soil invertebrate reproduction endpoints, which were determined in standardized toxicity tests...Derivation of Terrestrial Plant -Based Draft Eco-SSL Value for RDX Weathered-and-Aged in SSL or TSL Soils Utilizing Growth Benchmarks for Alfalfa...and the USEPA early seedling growth toxicity test (USEPA, 1996) were selected for assessing TNT or RDX effects on terrestrial plants . The toxicity

  9. Land utilization and ecological aspects in the Sylhet-Mymensingh Haor Region of Bangladesh: An analysis of LANDSAT data

    NASA Technical Reports Server (NTRS)

    Chowdhury, M. I.; Elahi, K. M.

    1977-01-01

    The use of remote sensing data from LANDSAT (ERTS) imageries in identifying, evaluating and mapping land use patterns of the Haor area in Bangladesh was investigated. Selected cloud free imageries of the area for the period 1972-75 were studied. Imageries in bands 4, 5 and 7 were mostly used. The method of analysis involved utilization of both human and computer services of information from ground, aerial photographs taken during this period and space imageries.

  10. Low-rank coal research

    SciTech Connect

    Weber, G. F.; Laudal, D. L.

    1989-01-01

    This work is a compilation of reports on ongoing research at the University of North Dakota. Topics include: Control Technology and Coal Preparation Research (SO{sub x}/NO{sub x} control, waste management), Advanced Research and Technology Development (turbine combustion phenomena, combustion inorganic transformation, coal/char reactivity, liquefaction reactivity of low-rank coals, gasification ash and slag characterization, fine particulate emissions), Combustion Research (fluidized bed combustion, beneficiation of low-rank coals, combustion characterization of low-rank coal fuels, diesel utilization of low-rank coals), Liquefaction Research (low-rank coal direct liquefaction), and Gasification Research (hydrogen production from low-rank coals, advanced wastewater treatment, mild gasification, color and residual COD removal from Synfuel wastewaters, Great Plains Gasification Plant, gasifier optimization).

  11. Coal extrusion in the plastic state

    NASA Technical Reports Server (NTRS)

    England, C.; Ryason, P. R.

    1977-01-01

    Continuous feeding of coal in a compressing screw extruder is described as a method of introducing coal into pressurized systems. The method utilizes the property of many bituminous coals of softening at temperatures from 350 to 425 C. Coal is then fed, much in the manner of common thermoplastics, using screw extruders. Data on the viscosity and extruder parameters for extrusion of Illinois No. 6 coal are presented.

  12. Coal and the Present Energy Situation

    ERIC Educational Resources Information Center

    Osborn, Elburt F.

    1974-01-01

    Advocates an increase in the use of coal to alleviate the oil and gas shortage. Outlines present deterrents which limit the exploitation of coal, and discusses ways in which this energy source might be more effectively utilized. (JR)

  13. Coal to gas substitution using coal?!

    NASA Astrophysics Data System (ADS)

    Kempka, Thomas; Schlüter, Ralph

    2010-05-01

    Substitution of carbon-intensive coal with less carbon-intensive natural gas for energy production is discussed as one main pillar targeting reduction of antrophogenic greenhouse gas emissions by means of climate change mitigation. Other pillars are energy efficiency, renewable energies, carbon capture and storage as well as further development of nuclear energy. Taking into account innovative clean coal technologies such as UCG-CCS (underground coal gasification with carbon capture and storage), in which coal deposits are developed using directional drilling technologies and subsequently converted into a synthesis gas of high calorific value, the coupled conceptual approach can provide a synergetic technology for coal utilization and mitigation of carbon emissions. This study aims at the evaluation of UCǴ s carbon mitigation potentials and the review of the economical boundary conditions. The analytical models applied within this study are based on data available from world-wide UCG projects and extensive laboratory studies. In summary, scenarios considering costs and carbon storage potentials are economically feasible and thus competitive with less carbon-intensive energy generation technologies such as natural gas. Thus, coal to gas substitution can be one of the coal based options.

  14. Enzymatic desulfurization of coal

    SciTech Connect

    Boyer, Y.N.; Crooker, S.C.; Kitchell, J.P.; Nochur, S.V.

    1991-05-16

    The overall objective of this program was to investigate the feasibility of an enzymatic desulfurization process specifically intended for organic sulfur removal from coal. Toward that end, a series of specific objectives were defined: (1) establish the feasibility of (bio)oxidative pretreatment followed by biochemical sulfate cleavage for representative sulfur-containing model compounds and coals using commercially-available enzymes; (2) investigate the potential for the isolation and selective use of enzyme preparations from coal-utilizing microbial systems for desulfurization of sulfur-containing model compounds and coals; and (3) develop a conceptual design and economic analysis of a process for enzymatic removal of organic sulfur from coal. Within the scope of this program, it was proposed to carry out a portion of each of these efforts concurrently. (VC)

  15. Utilization of Coal Fly Ash

    DTIC Science & Technology

    1992-01-01

    the animals. However, no growth, strength, or pathological damage was noted. Stoewsand etal. (1990) performed a study on rats fed rutabagas grown on a...519 (1987). Stoewsand, G., J. Anderson, L. Weinstein, J. Osmeloski, W. Gutenmann, and D. Lisk, "Selenium in Tissues of Rats Fed Rutabagas Grown on Soil

  16. Myanmar Ecological Forecasting: Utilizing NASA Earth Observations to Monitor, Map, and Analyze Mangrove Forests in Myanmar for Enhanced Conservation

    NASA Technical Reports Server (NTRS)

    Weber, Samuel J.; Keddell, Louis; Kemal, Mohammed

    2014-01-01

    Mangroves supply many essential environmental amenities, such as preventing soil erosion, filtering water pollution, and protecting shorelines from harmful waves, floods, storms and winds. The Mangroves in Myanmar not only provide citizens with a food source, but they also offer firewood, charcoal, and construction materials. The depletion of mangroves is threatening more than the biodiversity however; Myanmar's fiscal livelihood is also in harm's way. Mangroves are valued at $100,000 to $277,000 per square kilometer and if managed in a sustainable fashion, can infuse constant income to the emerging Myanmarese economy. This study analyzed three coastline regions, the Ayeyarwady Delta, Rakhine and Tanintharyi, and mapped the spatial extent of mangrove forest during the dry season in 2000 and 2013. The classifications were derived from Landsat 7 Enhanced Thematic Mapper Plus (ETM+) and Landsat 8 Operation Land Imager (OLI) imagery, as well as the Terra Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) digital elevation model information. This data was atmospherically corrected, mosaicked, masked and classified in ENVI, followed by ArcGIS to perform raster calculations and create final products. Forest degradation collected from 2000 to 2013 was later used to forecast the density and health of Mangroves in the year 2030. These results were subsequently presented to project partners Dr. Peter Leimgruber and Ellen Aiken at the Smithsonian Conservation Biology Institute in Front Royal, VA. After the presentation of the project to the partners, these organizations formally passed on to the Myanmar Ministry of Environment, Conservation and Forestry for policy makers and forest managers to utilize in order to protect the Myanmar mangrove ecosystem while sustaining a healthy economy.

  17. Development of a coal quality expert

    SciTech Connect

    Not Available

    1991-01-09

    Four companies and seven host utilities have teamed with CQ Inc. and C-E to perform the work on this project. The 42-month project will provide the utility industry with a PC expert system to confidently and inexpensively evaluate the potential for coal cleaning, blending, and switching options to reduce emissions while producing lowest cost electricity. Specifically, this project will: enhance the existing Coal Quality Information System (CQIS) database and Coal Quality Impact Model (CQIM) to allow confident assessment of the effects of cleaning on specific boiler cost and performance; and develop and validate a methodology, Coal Quality Expert (CQE) which allows accurate and detailed predictions of coal quality impacts on total power plant capital cost, operating cost, and performance based upon inputs from inexpensive bench-scale tests. During the past quarter, coal cleanability characterization and utility boiler field tests were conducted. Coal characterization studies were performed with the Croweburg Seam coal, obtained from Peabody Coal Company's Rogers County No. 2 Mine located in northeastern Oklahoma. This coal is burned as part of a blend at Public Service Oklahoma's Northeastern Unit 4 (PSO-NE4), a 450-MW unit located at Oologah, Oklahoma. Full-scale combustion tests were initiated at PSO-NE4. Three coal feed scenarios will be evaluated at this site: (1) 100 percent Wyoming Coal (baseline), (2) 90/10 blend of Wyoming and Oklahoma coals, and (3) 70/30 blend of Wyoming and Oklahoma coals. Results to date are given. 3 figs., 5 tabs.

  18. LIBS Analysis for Coal

    NASA Astrophysics Data System (ADS)

    E. Romero, Carlos; De Saro, Robert

    Coal is a non-uniform material with large inherent variability in composition, and other important properties, such as calorific value and ash fusion temperature. This quality variability is very important when coal is used as fuel in steam generators, since it affects boiler operation and control, maintenance and availability, and the extent and treatment of environmental pollution associated with coal combustion. On-line/in situ monitoring of coal before is fed into a boiler is a necessity. A very few analytical techniques like X-ray fluorescence and prompt gamma neutron activation analysis are available commercially with enough speed and sophistication of data collection for continuous coal monitoring. However, there is still a need for a better on-line/in situ technique that has higher selectivity, sensitivity, accuracy and precision, and that is safer and has a lower installation and operating costs than the other options. Laser induced breakdown spectroscopy (LIBS) is ideal for coal monitoring in boiler applications as it need no sample preparation, it is accurate and precise it is fast, and it can detect all of the elements of concern to the coal-fired boiler industry. LIBS data can also be adapted with advanced data processing techniques to provide real-time information required by boiler operators nowadays. This chapter summarizes development of LIBS for on-line/in situ coal applications in utility boilers.

  19. New method of feeding coal - Continuous extrusion of fully plastic coal

    NASA Technical Reports Server (NTRS)

    Ryason, P. R.; England, C.

    1978-01-01

    Continuous feeding of coal in a compressing screw extruder is described as a method of introducing coal into pressurized systems. The method utilizes the property of many bituminous coals of softening at temperatures from 350 to 400 C. Coal is then fed much in the manner of common thermoplastics, using screw extruders. Preliminary results show that coals can be extruded at rates of about 3.3 kg/MJ, similar to those for plastics.

  20. Direct utilization - recovery of minerals from coal fly ash. Technical progress report, April 1-June 30, 1982. [HiChlor process

    SciTech Connect

    Burnet, G.; Murtha, M.J.

    1982-08-01

    Research on the chlorination of coal fly ash has included the evaluation of several reducing and chlorinating agents for use in the HiChlor process. Several additional coal fly ashes were chlorinated to demonstrate that processing is usable for a range of bituminous coal fly ash compositions. Aqueous separation research for purification of the mixed metal chloride products was initiated. Exploratory evaluation of the potential for using a fused salt media for coal fly ash chlorination coupled with a thermodynamic study of the possible reactions provided encouragement for pursuing this alternative chlorination procedure. The use of a fused salt should significantly improve the process reaction kinetics and the potential for more selective chlorination of specific oxides. Research was continued on the development of a desilication procedure to remove dissolved silica from lime-soda filtrates. Essentially all of the silica (less than 150 ppM) must be removed from solution before an alumina product suitable for aluminum metal production can be recovered. Further experiments were conducted on the magnetic separation of coal fly ash - water slurries. Counter-current air sparging was used to increase the agitation inside the magnetic grid volume but the separated products were still not of comparable quality to those obtained by dry separation using a moving-field electromagnet.

  1. Developing a foundation for eco-epidemiological assessment of aquatic ecological status over large geographic regions utilizing existing data resources and models.

    PubMed

    Kapo, Katherine E; Holmes, Christopher M; Dyer, Scott D; de Zwart, Dick; Posthuma, Leo

    2014-07-01

    Eco-epidemiological studies utilizing existing monitoring program data provide a cost-effective means to bridge the gap between the ecological status and chemical status of watersheds and to develop hypotheses of stressor attribution that can influence the design of higher-tier assessments and subsequent management. The present study describes the process of combining existing data and models to develop a robust starting point for eco-epidemiological analyses of watersheds over large geographic scales. Data resources from multiple federal and local agencies representing a range of biological, chemical, physical, toxicological, and other landscape factors across the state of Ohio, USA (2000-2007), were integrated with the National Hydrography Dataset Plus hydrologic model (US Environmental Protection Agency and US Geological Survey). A variety of variable reduction, selection, and optimization strategies were applied to develop eco-epidemiological data sets for fish and macroinvertebrate communities. The relative importance of landscape variables was compared across spatial scales (local catchment, watershed, near-stream) using conditional inference forests to determine the scales most relevant to variation in biological community condition. Conditional inference forest analysis applied to a holistic set of environmental variables yielded stressor-response hypotheses at the statewide and eco-regional levels. The analysis confirmed the dominant influence of state-level stressors such as physical habitat condition, while highlighting differences in predictive strength of other stressors based on ecoregional and land-use characteristics. This exercise lays the groundwork for subsequent work designed to move closer to causal inference.

  2. National Coal Quality Inventory (NACQI)

    SciTech Connect

    Robert Finkelman

    2005-09-30

    The U.S. Geological Survey (USGS) conducted the National Coal Quality Inventory (NaCQI) between 1999 and 2005 to address a need for quality information on coals that will be mined during the next 20-30 years. Collaboration between the USGS, State geological surveys, universities, coal burning utilities, and the coal mining industry plus funding support from the Electric Power Research Institute (EPRI) and the U.S. Department of Energy (DOE) permitted collection and submittal of coal samples for analysis. The chemical data (proximate and ultimate analyses; major, minor and trace element concentrations) for 729 samples of raw or prepared coal, coal associated shale, and coal combustion products (fly ash, hopper ash, bottom ash and gypsum) from nine coal producing States are included. In addition, the project identified a new coal reference analytical standard, to be designated CWE-1 (West Elk Mine, Gunnison County, Colorado) that is a high-volatile-B or high-volatile-A bituminous coal with low contents of ash yield and sulfur, and very low, but detectable contents of chlorine, mercury and other trace elements.

  3. Supersonic coal water slurry fuel atomizer

    DOEpatents

    Becker, Frederick E.; Smolensky, Leo A.; Balsavich, John

    1991-01-01

    A supersonic coal water slurry atomizer utilizing supersonic gas velocities to atomize coal water slurry is provided wherein atomization occurs externally of the atomizer. The atomizer has a central tube defining a coal water slurry passageway surrounded by an annular sleeve defining an annular passageway for gas. A converging/diverging section is provided for accelerating gas in the annular passageway to supersonic velocities.

  4. 30 CFR 816.59 - Coal recovery.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Coal recovery. 816.59 Section 816.59 Mineral... PERFORMANCE STANDARDS PERMANENT PROGRAM PERFORMANCE STANDARDS-SURFACE MINING ACTIVITIES § 816.59 Coal recovery... coal, while utilizing the best appropriate technology currently available to maintain...

  5. 30 CFR 817.59 - Coal recovery.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Coal recovery. 817.59 Section 817.59 Mineral... PERFORMANCE STANDARDS PERMANENT PROGRAM PERFORMANCE STANDARDS-UNDERGROUND MINING ACTIVITIES § 817.59 Coal... conservation of the coal, while utilizing the best technology currently available to maintain...

  6. 30 CFR 817.59 - Coal recovery.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Coal recovery. 817.59 Section 817.59 Mineral... PERFORMANCE STANDARDS PERMANENT PROGRAM PERFORMANCE STANDARDS-UNDERGROUND MINING ACTIVITIES § 817.59 Coal... conservation of the coal, while utilizing the best technology currently available to maintain...

  7. 30 CFR 817.59 - Coal recovery.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Coal recovery. 817.59 Section 817.59 Mineral... PERFORMANCE STANDARDS PERMANENT PROGRAM PERFORMANCE STANDARDS-UNDERGROUND MINING ACTIVITIES § 817.59 Coal... conservation of the coal, while utilizing the best technology currently available to maintain...

  8. 30 CFR 816.59 - Coal recovery.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Coal recovery. 816.59 Section 816.59 Mineral... PERFORMANCE STANDARDS PERMANENT PROGRAM PERFORMANCE STANDARDS-SURFACE MINING ACTIVITIES § 816.59 Coal recovery... coal, while utilizing the best appropriate technology currently available to maintain...

  9. 30 CFR 816.59 - Coal recovery.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Coal recovery. 816.59 Section 816.59 Mineral... PERFORMANCE STANDARDS PERMANENT PROGRAM PERFORMANCE STANDARDS-SURFACE MINING ACTIVITIES § 816.59 Coal recovery... coal, while utilizing the best appropriate technology currently available to maintain...

  10. Demonstration of selective catalytic reduction (SCR) technology for the control of nitrogen oxides (NOx) emissions from high sulfur coal-fired utility boilers at Plant Crist SCR test facility

    SciTech Connect

    Hinton, W.S.; Maxwell, J.D.; Baldwin, A.L.

    1996-01-01

    This paper describes the status of the Innovative Clean Coal Technology project to demonstrate SCR technology for reduction of NOx emissions from flue gas of utility boilers burning U.S. high-sulfur coal. The project is sponsored by the U.S. Department of Energy, managed and co- funded by Southern Company Services, Inc. on behalf of the Southern Company, and also co-funded by the Electric Power Research Institute and Ontario Hydro; and is located at Gulf Power Company`s Plant Crist Unit 5 (75 MW tangentially-fired boiler burning U.S. coals that have a sulfur content near 3.0%), near Pensacola, Florida. The test program is being conducted for approximately two years to evaluate catalyst deactivation and other SCR operational effects. The SCR test facility has nine reactors: three 2.5 MW (5000 scfm), and six 0.2 MW(400 scfm). Eight reactors operate on high-dust flue gas, while the ninth reactor operates on low-dust flue gas using a slip stream at the exit of the host unit`s hot side precipitator. The reactors operate in parallel with commercially available SCR catalysts obtained from vendors throughout the world. Long-term performance testing began in July 1993. A general test facility description and the results from three parametric test sequences and long term test data through December 1994 are presented in this paper.

  11. Behavior of Mercury Emissions from a Commercial Coal-Fired Utility Boiler: TheRelationship Between Stack Speciation and Near-Field Plume Measurements

    EPA Science Inventory

    The reduction of divalent gaseous mercury (HgII) to elemental gaseous mercury (Hg0) in a commercial coal-fired power plant (CFPP)exhaust plume was investigated by simultaneous measurement in-stack and in-plume as part of a collaborative study among the U.S....

  12. DEVELOPMENT OF A VALIDATED MODEL FOR USE IN MINIMIZING NOx EMISSIONS AND MAXIMIZING CARBON UTILIZATION WHEN CO-FIRING BIOMASS WITH COAL

    SciTech Connect

    Larry G. Felix; P. Vann Bush

    2002-07-01

    This is the seventh Quarterly Technical Report for DOE Cooperative Agreement No. DE-FC26-00NT40895. A statement of the project objectives is included in the Introduction of this report. Two additional biomass co-firing test burns were conducted during this quarter. In the first test (Test 12), up to 20% by weight dry hardwood sawdust and switchgrass was comilled with Galatia coal and injected through the single-register burner. Liquid ammonia was intermittently added to the primary air stream to increase fuel-bound nitrogen and simulate cofiring with chicken litter. Galatia coal is a medium-sulfur ({approx} 1.2% S), high chlorine ({approx}0.5%) Illinois Basin coal. In the second test (Test 13), up to 20% by weight dry hardwood sawdust and switchgrass was comilled with Jim Walters No.7 mine coal and injected through the single-register burner. Jim Walters No.7 coal is a low-volatility, low-sulfur ({approx} 0.7% S) Eastern bituminous coal. The results of these tests are presented in this quarterly report. Progress has continued to be made in implementing a modeling approach to combine reaction times and temperature distributions from computational fluid dynamic models of the pilot-scale combustion furnace with char burnout and chemical reaction kinetics to predict NO{sub x} emissions and unburned carbon levels in the furnace exhaust. The Configurable Fireside Simulator has been delivered from REI, Inc. and is being tested with exiting CFD solutions. Preparations are under way for a final pilot-scale combustion experiment using the single-register burner fired with comilled mixtures of Jim Walters No.7 low-volatility bituminous coal and switchgrass. Because of the delayed delivery of the Configurable Fireside Simulator, it is planned to ask for a no-cost time extension for the project until the end of this calendar year. Finally, a paper describing this project that included preliminary results from the first four cofiring tests was presented at the 12th European

  13. Enhancement of surface properties for coal beneficiation

    SciTech Connect

    Chander, S.; Aplan, F.F.

    1992-01-30

    This report will focus on means of pyrite removal from coal using surface-based coal cleaning technologies. The major subjects being addressed in this study are the natural and modulated surface properties of coal and pyrite and how they may best be utilized to facilitate their separation using advanced surface-based coal cleaning technology. Emphasis is based on modified flotation and oil agglomerative processes and the basic principles involved. The four areas being addressed are: (1) Collectorless flotation of pyrite; (2) Modulation of pyrite and coal hydrophobicity; (3) Emulsion processes and principles; (4) Evaluation of coal hydrophobicity.

  14. New cleaning technologies advance coal

    SciTech Connect

    Onursal, B.

    1984-05-01

    Alternative options are discussed for reducing sulfur dioxide emissions from coal burning utility and industrial sources. Test results indicate that it may be most advantageous to use the AED Process after coal preparation or on coals that do not need much ash removal. However, the developer claims that research efforts after 1981 have led to process improvements for producing clean coals containing 1.5% to 3% ash. This paper describes the test facility where a full-scale test of the AED Process is underway.

  15. American coal imports 2015

    SciTech Connect

    Frank Kolojeski

    2007-09-15

    As 2007 ends, the US coal industry passes two major milestones - the ending of the Synfuel tax break, affecting over 100M st annually, and the imposition of tighter and much more expensive safety measures, particularly in deep mines. Both of these issues, arriving at a time of wretched steam coal price levels, promise to result in a major shake up in the Central Appalachian mining sector. The report utilizes a microeconomic regional approach to determine whether either of these two schools of thought have any validity. Transport, infrastructure, competing fuels and regional issues are examined in detail and this forecasts estimates coal demand and imports on a region by region basis for the years 2010 and 2015. Some of the major highlights of the forecast are: Import growth will be driven by steam coal demand in the eastern and southern US; Transport will continue to be the key driver - we believe that inland rail rates will deter imports from being railed far inland and that the great majority of imports will be delivered directly by vessel, barge or truck to end users; Colombian coal will be the overwhelmingly dominant supply source and possesses a costs structure to enable it to compete with US-produced coal in any market conditions; Most of the growth will come from existing power plants - increasing capacity utilization at existing import facilities and other plants making investments to add imports to the supply portfolio - the growth is not dependent upon a lot of new coal fired capacity being built. Contents of the report are: Key US market dynamics; International supply dynamics; Structure of the US coal import market; and Geographic analysis.

  16. Vacuum pyrolyzed tire oil as a coal solvent

    SciTech Connect

    Orr, E.C.; Shi, Y.; Ji, Q.

    1995-12-31

    Coal liquefaction is highly dependent upon the type of coal liquefaction solvent used. The solvent must readily solubilize the coal and must act as an effective hydrogen donor or shuttler. Oil derived from the vacuum pyrolysis of used rubber tires has recently been used as a coal solvent with good conversion of coal to liquids in a hydrogen atmosphere. All experiments were completed in shaken tubing reactors at 450{degrees}C utilizing a bituminous coal. Results show the effectiveness of the pyrolyzed tire oil as a coal liquefaction solvent depends upon hydrogen pressure. Electron probe microanalysis data reveal good dispersion of the molybdenum catalyst in coal particles taken from liquefaction experiments.

  17. Direct utilization: recovery of minerals from coal fly ash. Fossil Energy program, technical progress report, July 1, 1983-September 30, 1983

    SciTech Connect

    Burnet, G.; Murtha, M.J.

    1984-01-01

    Work has focused on two methods for resource recovery from coal conversion solid wastes. The HiChlor Process recovers Al, Fe, and Ti minerals from coal fly ash by high temperature chlorination in the presence of a reductant. An understanding of the mechanisms of the gas-solid reactions involved is essential to the design and development of the reactor system. Three possible reaction mechanisms are considered, evaluated, and tested. The second method involves a lime-sinter step to produce soluble aluminates. Research on the process includes scale-up of the sinter step using a 5 in. diam electrically heated kilm. Batch samples of limestone-fly ash-soda ash mixtures are processed, at a rate of about 4 lb/hr. The resulting clinker is used to fully evaluate processing conditions for the extraction, desilication, and product recovery steps. Experiments are completed which evaluate raw material preparation requirements, for sintering and clinker crushing requirements for extraction.

  18. Pyrolysis of coal

    DOEpatents

    Babu, Suresh P.; Bair, Wilford G.

    1992-01-01

    A method for mild gasification of crushed coal in a single vertical elongated reaction vessel providing a fluidized bed reaction zone, a freeboard reaction zone, and an entrained reaction zone within the single vessel. Feed coal and gas may be fed separately to each of these reaction zones to provide different reaction temperatures and conditions in each reaction zone. The reactor and process of this invention provides for the complete utilization of a coal supply for gasification including utilization of caking and non-caking or agglomerating feeds in the same reactor. The products may be adjusted to provide significantly greater product economic value, especially with respect to desired production of char having high surface area.

  19. DEVELOPMENT OF A VALIDATED MODEL FOR USE IN MINIMIZING NOx EMISSIONS AND MAXIMIZING CARBON UTILIZATION WHEN CO-FIRING BIOMASS WITH COAL

    SciTech Connect

    Larry G. Felix; P. Vann Bush

    2002-01-31

    This is the fifth Quarterly Technical Report for DOE Cooperative Agreement No. DE-FC26-00NT40895. A statement of the project objectives is included in the Introduction of this report. One additional biomass co-firing test burn was conducted during this quarter. In this test (Test 9), up to 20% by weight dry hardwood sawdust and switchgrass was injected through the center of the single-register burner with Jacobs Ranch coal. Jacobs Ranch coal is a low-sulfur Powder River Basin coal ({approx} 0.5% S). The results from Test 9 as well as for Test 8 (conducted late last quarter) are presented in this quarterly report. Significant progress has been made in implementing a modeling approach to combine reaction times and temperature distributions from computational fluid dynamic models of the pilot-scale combustion furnace with char burnout and chemical reaction kinetics to predict NO{sub x} emissions and unburned carbon levels in the furnace exhaust. Additional results of CFD modeling efforts have been received and preparations are under way for continued pilot-scale combustion experiments with the dual-register burner. Finally, a project review was held at NETL in Pittsburgh, on November 13, 2001.

  20. Comparative Evaluation of Phase 1 Results from the Energy Conversion Alternatives Study (ECAS). [coal utilization for electric power plants feasibility analysis

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Ten advanced energy conversion systems for central-station, based-load electric power generation using coal and coal-derived fuels which were studied by NASA are presented. Various contractors were selected by competitive bidding to study these systems. A comparative evaluation is provided of the contractor results on both a system-by-system and an overall basis. Ground rules specified by NASA, such as coal specifications, fuel costs, labor costs, method of cost comparison, escalation and interest during construction, fixed charges, emission standards, and environmental conditions, are presented. Each system discussion includes the potential advantages of the system, the scope of each contractor's analysis, typical schematics of systems, comparison of cost of electricity and efficiency for each contractor, identification and reconciliation of differences, identification of future improvements, and discussion of outside comments. Considerations common to all systems, such as materials and furnaces, are also discussed. Results of selected in-house analyses are presented, in addition to contractor data. The results for all systems are then compared.

  1. Coal desulfurization

    NASA Technical Reports Server (NTRS)

    Corcoran, William H. (Inventor); Vasilakos, Nicholas P. (Inventor); Lawson, Daniel D. (Inventor)

    1982-01-01

    A method for enhancing solubilizing mass transport of reactive agents into and out of carbonaceous materials, such as coal. Solubility parameters of mass transfer and solvent media are matched to individual peaks in the solubility parameter spectrum of coals to enhance swelling and/or dissolution. Methanol containing reactive agent carriers are found particularly effective for removing organic sulfur from coals by chlorinolysis.

  2. “You Know You Are Sick, Why Do You Carry A Pregnancy Again?” Applying the Socio-Ecological Model to Understand Barriers to PMTCT Service Utilization in Western Kenya

    PubMed Central

    Onono, Maricianah; Kwena, Zachary; Turan, Janet; Bukusi, Elizabeth A; Cohen, Craig R; Gray, Glenda E

    2015-01-01

    Objective Throughout most of sub-Saharan Africa (SSA), prevention of mother-to-child transmission (PMTCT) services are readily available. However, PMTCT programs in SSA have had suboptimal performance compared to other regions of the world. The main objective of this study is to explore the socio-ecological and individual factors influencing the utilization of PMTCT services among HIV-positive pregnant women in western Kenya using a social ecological model as our analytical lens. Methods Data were collected using in-depth interviews with 33 HIV-infected women attending government health facilities in rural western Kenya. Women with HIV-infected infants aged between 6 weeks to 6 months with a definitive diagnosis of HIV in the infant, as well as those with an HIV-negative test result in the infant were interviewed between November 2012 and June 2013. Coding and analysis of the transcripts followed grounded theory tenets. Coding reports were discussed in a series of meetings held among the authors. We then employed constant comparative analysis to discover dominant individual, family, society and structural determinants of PMTCT use. Results Barriers to women’s utilization of PMTCT services fell within the broad constructs of the socio-ecological model of individual, family, society and structural determinants. Several themes cut across the different steps of PMTCT cascade and relate to different constructs of the socio-ecological model. These themes include: self-motivation, confidence and resilience, family support, absence or reduced stigma, right provider attitude and quality of health services provided. We also found out that these factors ensured enhanced maternal health and HIV negative children. Conclusion The findings of this study suggest that a woman’s social environment is an important determinant of MTCT. PMTCT Interventions must comprehensively address multiple factors across the different ecological levels. More research is however required for the

  3. Characterization of fine and carbonaceous particles emissions from pelletized biomass-coal blends combustion: Implications on residential crop residue utilization in China

    NASA Astrophysics Data System (ADS)

    Xu, Yue; Wang, Yan; Chen, Yingjun; Tian, Chongguo; Feng, Yanli; Li, Jun; Zhang, Gan

    2016-09-01

    Bulk biofuel, biomass pellets and pelletized biomass-coal blends were combusted in a typical rural conventional household stove and a high-efficiency stove. Reductions in PM2.5, organic carbon (OC) and elemental carbon (EC) emissions were evaluated by comparing emission factors (EFs) among 19 combinations of biofuel/residential stove types measured using a dilution sampling system. In the low-efficiency stove, the average EFs of PM2.5, OC, and EC of biomass pellets were 2.64 ± 1.56, 0.42 ± 0.36, and 0.30 ± 0.11 g/kg, respectively, significantly lower than those burned in bulk form. EFPM2.5 and EFOC of pelletized biomass combustion in the high-efficiency stove were lower than those of the same biofuel burned in the low-efficiency stove. Furthermore, pelletized corn residue and coal blends burned in the high-efficiency stove could significantly decrease emissions. Compared with the bulk material burned in the low-efficiency stove, the reduction rates of PM2.5, OC and EC from pelletized blends in the high-efficiency stove can reach 84%, 96% and 93%, respectively. If the annually produced corn residues in 2010 had been blended with 10% anthracite coal powder and burnt as pellets, it would have reduced about 82% of PM2.5, 90-96% of OC and 81-92% of EC emission in comparison with burning raw materials in conventional household stoves. Given the low cost, high health benefit and reduction effect on atmospheric pollutants, pelletized blends could be a promising alternative to fossil fuel resources or traditional bulk biofuel.

  4. Eleventh annual international Pittsburgh coal conference proceedings: Volume 2

    SciTech Connect

    Chiang, S.H.

    1994-12-31

    The conference presented over 300 papers in 39 separate sessions. These presentations are grouped into five topical areas: the technologies in pre- and post-utilization of coal; research and development in coal conversion; advanced coal combustion; environmental control technologies, and environmental policy issues related to coal use. The program has expanded its coverage in non-fuel use of coal. This is reflected in the three sessions on use of coal in the steel industry, and a sessions on carbon products and non-fuel coal applications. Volume 2 includes the following topics: Environmental systems and technologies/Environmental policy; Coal drying, dewatering and reconstitution; Coal cleaning technology; Slurry bed technology; Coal syngas, methanol, DME, olefins and oxygenates; Environmental issues in energy conversion technology; Applied coal geology; Use of coal in the steel industry; Recent developments in coal preparation; International coal gasification projects; Progress on Clean Coal projects; Retrofit air quality control technologies;Fluidized bed combustion; Commercialization of coal preparation technologies; Integrated gasification combined cycle program; the US Department of Energy`s Combustion 2000 program; and Environmental issues in coal utilization. All papers have been processed separately for inclusion on the data base.

  5. Toxic substances from coal energy: an overview.

    PubMed Central

    Shy, C M

    1979-01-01

    Environmental concerns over increased coal consumption are fully justified by the past history of coal use. Although improved technology has provided some safeguards, increased utilization will require mining practices, emission control technologies, and waste disposal procedures that are not yet fully integrated into the routine use of the coal energy system. The Committee on Health and Evnironmental Effects of Increased Coal Utilization identified six critical environmental issues which are of concern: coal mine worker health and safety, reclamation of arid lands from surface mining, the health effects of coal combustion products, toxic trace elements in coal combustion wastes, acid fallout, and global effects of carbon dioxide in the atmosphere. This presentation addresses the first four of these issues. PMID:540602

  6. Toxic substances from coal energy: an overview.

    PubMed

    Shy, C M

    1979-10-01

    Environmental concerns over increased coal consumption are fully justified by the past history of coal use. Although improved technology has provided some safeguards, increased utilization will require mining practices, emission control technologies, and waste disposal procedures that are not yet fully integrated into the routine use of the coal energy system. The Committee on Health and Evnironmental Effects of Increased Coal Utilization identified six critical environmental issues which are of concern: coal mine worker health and safety, reclamation of arid lands from surface mining, the health effects of coal combustion products, toxic trace elements in coal combustion wastes, acid fallout, and global effects of carbon dioxide in the atmosphere. This presentation addresses the first four of these issues.

  7. Benthic Habitat-Based Framework for Ecological Production Functions: Case Study for Utilization by Estuarine Birds in a Northeast Pacific Estuary

    EPA Science Inventory

    Habitat-based frameworks have been proposed for developing Ecological Production Functions (EPFs) to describe the spatial distribution of ecosystem services. As proof of concept, we generated EPFs that compared bird use patterns among intertidal benthic habitats for Yaquina estu...

  8. Impacts of Coal Seam Gas (Coal Bed Methane) and Coal Mining on Water Resources in Australia

    NASA Astrophysics Data System (ADS)

    Post, D. A.

    2013-12-01

    Mining of coal bed methane deposits (termed ';coal seam gas' in Australia) is a rapidly growing source of natural gas in Australia. Indeed, expansion of the industry is occurring so quickly that in some cases, legislation is struggling to keep up with this expansion. Perhaps because of this, community concern about the impacts of coal seam gas development is very strong. Responding to these concerns, the Australian Government has recently established an Independent Expert Scientific Committee (IESC) to provide advice to the Commonwealth and state regulators on potential water-related impacts of coal seam gas and large coal mining developments. In order to provide the underlying science to the IESC, a program of ';bioregional assessments' has been implemented. One aim of these bioregional assessments is to improve our understanding of the connectivity between the impacts of coal seam gas extraction and groundwater aquifers, as well as their connection to surface water. A bioregional assessment can be defined as a scientific analysis of the ecology, hydrology, geology and hydrogeology of a bioregion, with explicit assessment of the potential direct, indirect and cumulative impacts of coal seam gas and large coal mining development on water resources. These bioregional assessments are now being carried out across large portions of eastern Australia which are underlain by coal reserves. This presentation will provide an overview of the issues related to the impacts of coal seam gas and coal mining on water resources in Australia. The methodology of undertaking bioregional assessments will be described, and the application of this methodology to six priority bioregions in eastern Australia will be detailed. Preliminary results of the program of research to date will be assessed in light of the requirements of the IESC to provide independent advice to the Commonwealth and State governments. Finally, parallels between the expansion of the industry in Australia with that

  9. Integrated coal cleaning, liquefaction, and gasification process

    DOEpatents

    Chervenak, Michael C.

    1980-01-01

    Coal is finely ground and cleaned so as to preferentially remove denser ash-containing particles along with some coal. The resulting cleaned coal portion having reduced ash content is then fed to a coal hydrogenation system for the production of desirable hydrocarbon gases and liquid products. The remaining ash-enriched coal portion is gasified to produce a synthesis gas, the ash is removed from the gasifier usually as slag, and the synthesis gas is shift converted with steam and purified to produce the high purity hydrogen needed in the coal hydrogenation system. This overall process increases the utilization of as-mined coal, reduces the problems associated with ash in the liquefaction-hydrogenation system, and permits a desirable simplification of a liquids-solids separation step otherwise required in the coal hydrogenation system.

  10. [Ecology and ecologies].

    PubMed

    Valera, Luca

    2011-01-01

    Ecology (from the Greek words οιχοσ, "house" and λογια "study of") is the science of the "house", since it studies the environments where we live. There are three main ways of thinking about Ecology: Ecology as the study of interactions (between humans and the environment, between humans and living beings, between all living beings, etc.), Ecology as the statistical study of interactions, Ecology as a faith, or rather as a science that requires a metaphysical view. The history of Ecology shows us how this view was released by the label of "folk sense" to gain the epistemological status of science, a science that strives to be interdisciplinary. So, the aim of Ecology is to study, through a scientific methodology, the whole natural world, answering to very different questions, that arise from several fields (Economics, Biology, Sociology, Philosophy, etc.). The plurality of issues that Ecology has to face led, during the Twentieth-century, to branch off in several different "ecologies". As a result, each one of these new approaches chose as its own field a more limited and specific portion of reality.

  11. Advanced research and technology: direct utilization-recovery of minerals from coal fly ash. Technical progress report, 1 October 1978-30 September 1979

    SciTech Connect

    Burnet, G.; Murtha, M.

    1980-01-01

    Research focused on technical development of promising methods for recovering minerals from power plant fly ash. Development of the high-temperature (HiChlor) gas chlorination process and refinement and definition of the recovery steps of extraction and desilication for the lime-soda sinter process were emphasized. A preliminary design and cost estimate for commercialization of the HiChlor process and a proposal for a process development unit for scale-up of the lime-soda sinter process were prepared. Both physical and chemical beneficiation techniques to upgrade the iron content of the magnetic fly ash were tested; chemical beneficiation using high-temperature NaOH leaching was found to be the most effective method. Pretreatment for each of the processes includes magnetic separation of coal fly ash. Bituminous coal fly ashes contain magnetic iron oxide particles which can be removed by magnetic separation. The magnetic material consists primarily of iron oxides, with small amounts of silica and alumina. Removal of additional silica and alumina will give a product which can be used for steel production. Physical investigations included careful study of internal structure of fly ash particles. Fly ash samples were separated for a range of electromagnetic power settings and the fractions were analyzed for size determinations, chemical compositions, and morphological contents. Chemical analyses showed that, for the nonmagnetic fly ash fractions, the silica and iron contents are independent of size, and that the alumina content is highest in the smaller particles.

  12. A study of toxic emissions from a coal-fired power plant utilizing an ESP/Wet FGD system. Volume 1, Sampling, results, and special topics: Final report

    SciTech Connect

    Not Available

    1994-07-01

    This was one of a group of assessments of toxic emissions from coal-fired power plants, conducted for DOE-PETC in 1993 as mandated by the 1990 Clean Air Act. It is organized into 2 volumes; Volume 1 describes the sampling effort, presents the concentration data on toxic chemicals in several power plant streams, and reports the results of evaluations and calculations. The study involved solid, liquid, and gaseous samples from input, output, and process streams at Coal Creek Station Unit No. 1, Underwood, North Dakota (1100 MW mine-mouth plant burning lignite from the Falkirk mine located adjacent to the plant). This plant had an electrostatic precipitator and a wet scrubber flue gas desulfurization unit. Measurements were conducted on June 21--24, 26, and 27, 1993; chemicals measured were 6 major and 16 trace elements (including Hg, Cr, Cd, Pb, Se, As, Be, Ni), acids and corresponding anions (HCl, HF, chloride, fluoride, phosphate, sulfate), ammonia and cyanide, elemental C, radionuclides, VOCs, semivolatiles (incl. PAH, polychlorinated dioxins, furans), and aldehydes. Volume 2: Appendices includes process data log sheets, field sampling data sheets, uncertainty calculations, and quality assurance results.

  13. Development of advanced NO{sub x} control concepts for coal-fired utility boilers. Quarterly technical progress report No. 8, July 1, 1992--September 30, 1992

    SciTech Connect

    Evans, A.; Pont, J.N.; England, G.; Seeker, W.R.

    1993-03-04

    The complete CombiNO{sub x}, process has now been demonstrated at a level that is believed to be representative of a full-scale boiler in terms of mixing capabilities. A summary of the results is displayed in Figure 5-1. While firing Illinois Coal on the Reburn Tower, Advanced Reburning was capable of reducing NO{sub x}, by 83 percent. The injection of methanol oxidized 50--58 percent of the existing NO to N0{sub 2}. Assuming that 85 percent of the newly formed N0{sub 2} can be scrubbed in a liquor modified wet-limestone scrubber, the CombiNO{sub x}, process has been shown capable of reducing NO{sub 2}, by 90--91 percent in a large pilot-scale coal-fired furnace. There is still uncertainty regarding the fate of the N0{sub 2} formed with methanol injection. Tests should be conducted to determine whether the reconversion is thermodynamic or catalytic, and what steps can be taken (such as quench rate) to prevent it from happening.

  14. Chemical analyses of coal, coal-associated rocks and coal combustion products collected for the National Coal Quality Inventory

    USGS Publications Warehouse

    Hatch, Joseph R.; Bullock, John H.; Finkelman, Robert B.

    2006-01-01

    In 1999, the USGS initiated the National Coal Quality Inventory (NaCQI) project to address a need for quality information on coals that will be mined during the next 20-30 years. At the time this project was initiated, the publicly available USGS coal quality data was based on samples primarily collected and analyzed between 1973 and 1985. The primary objective of NaCQI was to create a database containing comprehensive, accurate and accessible chemical information on the quality of mined and prepared United States coals and their combustion byproducts. This objective was to be accomplished through maintaining the existing publicly available coal quality database, expanding the database through the acquisition of new samples from priority areas, and analysis of the samples using updated coal analytical chemistry procedures. Priorities for sampling include those areas where future sources of compliance coal are federally owned. This project was a cooperative effort between the U.S. Geological Survey (USGS), State geological surveys, universities, coal burning utilities, and the coal mining industry. Funding support came from the Electric Power Research Institute (EPRI) and the U.S. Department of Energy (DOE).

  15. Influence of staged-air on airflow, combustion characteristics and NO(x) emissions of a down-fired pulverized-coal 300 MW(e) utility boiler with direct flow split burners.

    PubMed

    Li, Zhengqi; Kuang, Min; Zhang, Jia; Han, Yunfeng; Zhu, Qunyi; Yang, Lianjie; Kong, Weiguang

    2010-02-01

    Cold airflow experiments were conducted to investigate the aerodynamic field in a small-scale furnace of a down-fired pulverized-coal 300 MW(e) utility boiler arranged with direct flow split burners enriched by cyclones. By increasing the staged-air ratio, a deflected flow field appeared in the lower furnace; larger staged-air ratios produced larger deflections. Industrial-sized experiments on a full-scale boiler were also performed at different staged-air damper openings with measurements taken of gas temperatures in the burner region and near the right-side wall, wall heat fluxes, and gas components (O(2), CO, and NO(x)) in the near-wall region. Combustion was unstable at staged-air damper openings below 30%. For openings of 30% and 40%, late ignition of the pulverized coal developed and large differences arose in gas temperatures and heat fluxes between the regions near the front and rear walls. In conjunction, carbon content in the fly ash was high and boiler efficiency was low with high NO(x) emission above 1200 mg/m(3) (at 6% O(2) dry). For fully open dampers, differences in gas temperatures and heat fluxes, carbon in fly ash and NO(x) emission decreased yielding an increase in boiler efficiency. The optimal setting is fully open staged-air dampers.

  16. Lessons learned in handling western coals

    SciTech Connect

    Wilks, D.M.

    1982-12-01

    This paper describes specific design features and improvements incorporated into the coal handling facility for Roy Tolk Station, a power plant utilizing western coal. Traditionally, western electric generation has been through the use of natural gas as a boiler fuel. Some utilities have selected western coal as an alternative due to high costs and the need to conserve natural gas. Special design considerations are necessary to cope with the friability and propensity for spontaneous combustion found in western coal. As a result of hands-on experience such as the Tolk Station, practices can be developed to reduce dusting, minimize routine clean-up, optimize system design and conserve washdown water.

  17. Washability of fine coal

    SciTech Connect

    Cavallaro, J.A.

    1984-01-01

    The objectives of this study are: (1) to determine the theoretical beneficiation potential of US coals when pulverized down to 44 microns, (2) to determine the effects of fine grinding on the liberation of ash, pyritic sulfur, and other impurities, and (3) to assess the impact of their removal on oil and gas replacement, environmental regulations, and specification feedstocks for emerging coal utilization technologies. With the emphasis on fine coal cleaning, we have developed a centrifugal float-sink technique for coals crushed down to 44 microns. Employing this technique will provide a complete fine coal gravimetric evaluation of US coals crushed down to 44 microns. Parallel research is being conducted through in-house studies by PETC, and contracts with the University of Alaska, the University of North Dakota, and Commercial Testing and Engineering, Inc. Results thus far have been encouraging for selected Northern Appalachian Region Coals (NAR), which have shown pyritic sulfur, SO/sub 2/ emission, and ash reductions of 94, 60, and 82%, respectively, for the float 1.30 specific gravity product. However, the data evaluated for several samples indicate a possible problem in the yield/ash relationship for the float 1.30 specific gravity products for samples crushed to 75 and 44 microns top size. Thus, testing was begun to try to resolve these anomalies in the data. Test results using surface active agents, a reverse order of float-sink, and sample pre-heat techniques have been promising. These modifications to the standard technique resulted in an increase in weight recovery of float 1.30 specific gravity material and a decrease in ash content for each of the other specific gravity fractions, thus showing an improvement in the yield/ash relationship.

  18. Development of a coal quality expert

    SciTech Connect

    Not Available

    1991-04-03

    This 42-month project will provide the utility industry with a PC expert system to confidently and inexpensively evaluate the potential for coal cleaning, blending, and switching options to reduce emissions while producing lowest cost electricity. The project consists of the following seven tasks: (Task 1) Project management, (Task 2) Coal cleanability characterization, (Task 3) Pilot-scale combustion testing, (Task 4) Utility boiler field testing, (Task 5) CQIM completion and development of CQE specification (Task 6) Develop CQE, and (Task 7) CQE workstation testing and validation. During the past quarter, coal cleanability characterization, pilot-scale combustion, and utility boiler field tests were conducted. Coal characterization studies were performed at CQ Inc. with the Croweburg Seam coal (alternate coal at Public Service Oklahoma's Northeastern Unit 4) and Western Kentucky No. 11 Seam coal (alternate coal at Mississippi Power Company's Plant Watson Unit 4). Pilot-scale combustion testing was initiated at Combustion Engineering's Fireside Performance Test Facility (FPTF) with evaluations of two of the four PSO test coals. Full-scale combustion tests were completed at the first two utility test sites: Public Service Oklahoma's Northeastern Unit 4 (PSO-NE4) and Mississippi Power Company's Plant Watson Unit 4 (MPC-W4). 3 figs., 7 tabs.

  19. Review of a Proposed Quarterly Coal Publication

    SciTech Connect

    Not Available

    1981-01-01

    This Review of a Proposed Quartery Coal Publication contains findings and recommendations regarding the content of a new summary Energy Information Administration (EIA) coal and coke publication entitled The Quarterly Coal Review (QCR). It is divided into five sections: results of interviews with selected EIA data users; identification of major functions of the coal and coke industries; analysis of coal and coke data collection activities; evaluation of issues conerning data presentation including recommendations for the content of the proposed QCR; and comparison of the proposed QCR with other EIA publications. Major findings and recommendations are as follows: (1) User interviews indicate a definite need for a compehensive publication that would support analyses and examine economic, supply and demand trends in the coal industry; (2) the organization of the publication should reflect the natural order of activities of the coal and coke industries. Based on an analysis of the industries, these functions are: production, stocks, imports, exports, distribution, and consumption; (3) current EIA coal and coke surveys collect sufficient data to provide a summary of the coal and coke industries on a quarterly basis; (4) coal and coke data should be presented separately. Coke data could be presented as an appendix; (5) three geographic aggregations are recommended in the QCR. These are: US total, coal producing districts, and state; (6) coal consumption data should be consolidated into four major consumer categories: electric utilities, coke plants, other industrial, and residential commercial; (7) several EIA publications could be eliminated by the proposed QCR.

  20. The US Geological Survey's national coal resource assessment: The results

    USGS Publications Warehouse

    Ruppert, L.F.; Kirschbaum, M.A.; Warwick, P.D.; Flores, R.M.; Affolter, R.H.; Hatch, J.R.

    2002-01-01

    The US Geological Survey and the State geological surveys of many coal-bearing States recently completed a new assessment of the top producing coal beds and coal zones in five major producing coal regions the Appalachian Basin, Gulf Coast, Illinois Basin, Colorado Plateau, and Northern Rocky Mountains and Great Plains. The assessments, which focused on both coal quality and quantity, utilized geographic information system technology and large databases. Over 1,600,000 million short tons of coal remain in over 60 coal beds and coal zones that were assessed. Given current economic, environmental, and technological restrictions, the majority of US coal production will occur in that portion of the assessed coal resource that is lowest in sulfur content. These resources are concentrated in parts of the central Appalachian Basin, Colorado Plateau, and the Northern Rocky Mountains. ?? Elsevier Science B.V. All rights reserved.

  1. [Study on Microwave Co-Pyrolysis of Low Rank Coal and Circulating Coal Gas].

    PubMed

    Zhou, Jun; Yang, Zhe; Liu, Xiao-feng; Wu, Lei; Tian, Yu-hong; Zhao, Xi-cheng

    2016-02-01

    The pyrolysis of low rank coal to produce bluecoke, coal tar and gas is considered to be the optimal method to realize its clean and efficient utilization. However, the current mainstream pyrolysis production technology generally has a certain particle size requirements for raw coal, resulting in lower yield and poorer quality of coal tar, lower content of effective components in coal gas such as H₂, CH₄, CO, etc. To further improve the yield of coal tar obtained from the pyrolysis of low rank coal and explore systematically the effect of microwave power, pyrolysis time and particle size of coal samples on the yield and composition of microwave pyrolysis products of low rank coal through the analysis and characterization of products with FTIR and GC-MS, introducing microwave pyrolysis of low rank coal into the microwave pyrolysis reactor circularly was suggested to carry out the co-pyrolysis experiment of the low rank coal and coal gas generated by the pyrolysis of low rank coal. The results indicated that the yield of the bluecoke and liquid products were up to 62.2% and 26.8% respectively when the optimal pyrolysis process conditions with the microwave power of 800W, pyrolysis time of 40 min, coal samples particle size of 5-10 mm and circulating coal gas flow rate of 0.4 L · min⁻¹ were selected. The infrared spectrogram of the bluecoke under different microwave power and pyrolysis time overlapped roughly. The content of functional groups with -OH, C==O, C==C and C−O from the bluecoke through the pyrolysis of particle size coal samples had a larger difference. To improve microwave power, prolonging pyrolysis time and reducing particle size of coal samples were conducive to converting heavy component to light one into coal tar.

  2. Directory of coal production ownership, 1979

    SciTech Connect

    Thompson, B.

    1981-10-01

    Ownership patterns in the coal industry are highly complex. Many producers are diversified into other lines of activity. The pattern and extent of this diversification has varied through time. In the past, steel and nonferrous metals companies had major coal industry involvement. This is still true today. However, other types of enterprises have entered the industry de novo or through merger. Those of greatest significance in recent times have involved petroleum and particularly public utility companies. This report attempts to identify, as accurately as possible, production ownership patterns in the coal industry. The audience for this Directory is anyone who is interested in accurately tracing the ownership of coal companies to parent companies, or who is concerned about the structure of ownership in the US coal industry. This audience includes coal industry specialists, coal industry policy analysts, economists, financial analysts, and members of the investment community.

  3. Biochemical Removal of HAP Precursors From Coal

    SciTech Connect

    Olson, G.; Tucker, L.; Richards, J.

    1997-07-01

    This project addresses DOE`s interest in advanced concepts for controlling emissions of air toxics from coal-fired utility boilers. We are determining the feasibility of developing a biochemical process for the precombustion removal of substantial percentages of 13 inorganic hazardous air pollutant (HAP) precursors from coal. These HAP precursors are Sb, As, Be, Cd, Cr, Cl, Co, F, Pb, Hg, Mn, Ni, and Se. Although rapid physical coal cleaning is done routinely in preparation plants, biochemical processes for removal of HAP precursors from coal potentially offer advantages of deeper cleaning, more specificity, and less coal loss. Compared to chemical processes for coal cleaning, biochemical processes potentially offer lower costs and milder process conditions. Pyrite oxidizing bacteria, most notably Thiobacillusferrooxidans, are being evaluated in this project for their ability to remove HAP precursors from U.S. coals.

  4. Administrative Ecology

    ERIC Educational Resources Information Center

    McGarity, Augustus C., III; Maulding, Wanda

    2007-01-01

    This article discusses how all four facets of administrative ecology help dispel the claims about the "impossibility" of the superintendency. These are personal ecology, professional ecology, organizational ecology, and community ecology. Using today's superintendency as an administrative platform, current literature describes a preponderance of…

  5. [Study of mycobiota in the reclaimed Nazarovo coal mine (Krasnoyarsk Krai)].

    PubMed

    Kriuchkova, O E

    2014-01-01

    This paper presents the results of study of species diversity and certain aspects of macromycete ecology in reclaimed areas of Nazarovo coal mine. A relatively low number of species and ecological groups of fungi on the reclaimed areas were revealed.

  6. Proceedings of the 9th annual conference on coal production and transportation

    SciTech Connect

    Not Available

    1983-01-01

    This book presents the papers given at a conference which considered the economic and policy aspects of coal. Topics covered at the conference included forecasting US coal demands, forecasting foreign coal supply and demand, surface mining, acid rain, land leasing, the potential and economics of Gulf Coast and Southwestern lignite deposits, coal buying, transport, an electric utilities' shift from oil to coal, and coal burning.

  7. Fundamental bioprocessing research for coal applications

    SciTech Connect

    Kaufman, E.N.

    1996-06-01

    The purpose of this program is to gain a fundamental understanding and sound scientific technical basis for evaluating the potential roles of innovative bioprocessing concepts for the utilization and conversion of coal. The aim is to explore the numerous ways in which advanced biological processes and techniques can open new opportunities for coal utilization or can replace more conventional techniques by use of milder conditions with less energy consumption or loss. There are several roles where biotechnology is likely to be important in coal utilization and conversion. These include potential bioprocessing systems such.

  8. Advanced research and technology direct utilization: recovery of minerals from coal fly ash. Fossil energy program technical progress report, 1 April 1981-30 June 1981

    SciTech Connect

    Burnet, G.; Dunker, J.W.; Murtha, M.J.

    1981-09-01

    The purpose of this research is to develop methods to process fly ash for (1) the separation and use of an iron-rich fraction; (2) the recovery of metals (primarily Al, Fe, and Ti); and (3) the use of the process residues. During this report period, research on the HiChlor process for the high-temperature chlorination of fly ash included investigation of prechlorinations using Cl/sub 2/-CO gas mixtures to selectively remove iron and titanium, and the physical characterization of fly ash pellets. Gas diffusion coefficients, surface areas, and pore size distributions were measured for both gamma-alumina and fly ash pellets. Experiments on the high temperature sintering of limestone-fly ash mixtures include alumina extractions from sinters prepared using waste materials. High alumina recoveries were obtained for sinters prepared using cement kiln dust as the lime source, and with small amounts of coal refuse added as a mineralizer. Sinter feed mixtures prepared from fly ash, kiln dust, and soda ash were also tested. X-ray diffraction measurements were used to identify the soluble and insoluble compounds found in the clinkers produced. Research has been initiated on methods to agglomerate fly ash mixtures for processing. Agglomerators rather than finely-divided powder mixtures will be more easily handled, transported, and processed. Feed mixtures for both the lime-sinter and HiChlor processes are being studied. A balling disc unit is being used to form agglomerate spheroids. A theoretical analysis of the magnetic separation of fly ash has been completed.

  9. Advanced research and technology: direct utilization, recovery of minerals from coal fly ash. Fossil-Energy Program technical progress report, October 1, 1981-December 31, 1981

    SciTech Connect

    Burnet, G.; Dunker, J.W.; Murtha, M.J.

    1982-03-01

    Research on the chlorination of alpha-alumina with CO and Cl/sub 2/ indicates that mass transfer limitations of the reaction can be minimized through use of the thin layer technique. Kinetic studies of the reaction indicate that it is first order with respect to both CO and Cl/sub 2/, and has an apparent activation energy of 13.35 kcal/mole. Preliminary results show that the chlorination of a leached Texas lignite fly ash with CO and Cl/sub 2/ is about 50 times slower than the chlorination of alpha-alumina. Work continues to explain this phenomenon. The development of sintering processes for alumina solubilization focuses on the collection of additional data for limestone-kiln dust-fly ash sinters, and for limestone-soda ash-fly ash sinters. These results more clearly describe the relationship between sinter mixture compositions and the extraction of high percentages of alumina. X-ray diffraction analysis techniques are also used to identify the compounds formed and to describe the sinter reaction mechanisms. Research conducted on the use of magnetically separated iron-rich fly ash as heavy medium material in coal beneficiation included: determination of the magnetic content of samples, a study of the effects of grinding on the stability of fly ash heavy media suspensions, measurement of corrosion and abrasion caused by flowing heavy media slurries, and measurement of the rheological properties of fly ash suspensions. Performance of suspensions of iron-rich fly ash and commercial magnetites is compared.

  10. Quarterly coal report, January--March 1993

    SciTech Connect

    Not Available

    1993-08-20

    The United States produced 242 million short tons of coal in the first quarter of 1993, a decrease of 6 percent (14 million short tons) from the amount produced during the first quarter of 1992. The decrease was due to a decline in production east of the Mississippi River. All major coal-producing States in this region had lower coal production levels led by West Virginia, which produced 5 million short tons less coal. The principal reasons for the overall drop in coal output compared to a year earlier were: A decrease in demand for US coal in foreign markets; a slower rate of producer/distributor stock build-up; and a drawn-down of electric utility coal stocks. Distribution of US coal in the first quarter of 1993 was 10 million short tons lower than in the first quarter of 1992, with 5 million short tons less distributed to both electric utilities and overseas markets. The average price of coal delivered to electric utilities during the first quarter of 1993 was $28.65 per short ton, the lowest value since the first quarter of 1980. Coal consumption in the first quarter of 1993 was 230 million short tons, 4 percent higher than in the first quarter of 1992, due primarily to a 5-percent increase in consumption at electric utility plants. Total consumer stocks, at 153 million short tons, and electric utility stocks, at 144 million short tons, were at their lowest quarterly level since the end of 1989. US. coal exports totaled 19 million short tons, 6 million short tons less than in the first quarter of 1992, and the lowest quarterly level since 1988. The decline was primarily due to a 1-million-short-ton drop in exports to each of the following destinations: Italy, France, Belgium and Luxembourg, and Canada.

  11. Carbon cycle in advanced coal chemical engineering.

    PubMed

    Yi, Qun; Li, Wenying; Feng, Jie; Xie, Kechang

    2015-08-07

    This review summarizes how the carbon cycle occurs and how to reduce CO2 emissions in highly efficient carbon utilization from the most abundant carbon source, coal. Nowadays, more and more attention has been paid to CO2 emissions and its myriad of sources. Much research has been undertaken on fossil energy and renewable energy and current existing problems, challenges and opportunities in controlling and reducing CO2 emission with technologies of CO2 capture, utilization, and storage. The coal chemical industry is a crucial area in the (CO2 value chain) Carbon Cycle. The realization of clean and effective conversion of coal resources, improving the utilization and efficiency of resources, whilst reducing CO2 emissions is a key area for further development and investigation by the coal chemical industry. Under a weak carbon mitigation policy, the value and price of products from coal conversion are suggested in the carbon cycle.

  12. Unusual Formation of Precursors for Crystallization of Ultra-High Performance Polypropylene and Poly(ethylene terephthalate) Fibers by Utilization of Ecologically Friendly Horizontal Isothermal Bath

    NASA Astrophysics Data System (ADS)

    Avci, Huseyin

    The concept of production of new families of high performance polymers and engineering fibers has been reported many times in the technical literature. Such fibers have various end uses in industrial applications and exhibit the enhanced potential in the challenging areas such as ballistic, automotive, aerospace, bullet-proof vests, energy, and electronics. Since the first commercial synthesis of high polymers by Carothers and Hill, filament manufacturers have looked for ways to increase strength and fibers dimensional stability, thermal degradation resistance, etc., even at extreme conditions. Therefore, studies on the fine structure development and its relation with production conditions during the wet, dry, and melt spinning processes have received much attention by researchers to describe in detail the fundamental aspects of the fiber formation. The production of ultra-high performance fibers at relatively high throughputs by a simple method using fiber-forming polymers via developing an ecologically friendly isothermal bath (ECOB) is the first aim of this study. In this case, polypropylene (PP) was chosen as a semicrystalline thermoplastic polymer which is extensively used in industry and our daily lives. A unique, highly oriented precursor (fa = 0.60), and yet noncrystallized, undrawn fibers were obtained with superior mechanical properties. Fibrillated break, high crystalline and amorphous orientation factors of 0.95 and 0.87, respectively, demonstrate an unusual structural development after only 1.34 draw ratio for the treated fibers. The second melting peak increased 9 °C for the treated fibers, which implies a higher level of molecular ordering and thermodynamically more stable phase. After hot drawing and 1.49 draw ratio, the fibers tenacity was close to 12 g/d, the initial modulus was higher than 150 g/d, and the ultimate elongation was at a break of about 20 %. In the next phase of the research, the effects of horizontal isothermal bath (hIB)11 on the

  13. Clean Coal Program Research Activities

    SciTech Connect

    Larry Baxter; Eric Eddings; Thomas Fletcher; Kerry Kelly; JoAnn Lighty; Ronald Pugmire; Adel Sarofim; Geoffrey Silcox; Phillip Smith; Jeremy Thornock; Jost Wendt; Kevin Whitty

    2009-03-31

    Although remarkable progress has been made in developing technologies for the clean and efficient utilization of coal, the biggest challenge in the utilization of coal is still the protection of the environment. Specifically, electric utilities face increasingly stringent restriction on the emissions of NO{sub x} and SO{sub x}, new mercury emission standards, and mounting pressure for the mitigation of CO{sub 2} emissions, an environmental challenge that is greater than any they have previously faced. The Utah Clean Coal Program addressed issues related to innovations for existing power plants including retrofit technologies for carbon capture and sequestration (CCS) or green field plants with CCS. The Program focused on the following areas: simulation, mercury control, oxycoal combustion, gasification, sequestration, chemical looping combustion, materials investigations and student research experiences. The goal of this program was to begin to integrate the experimental and simulation activities and to partner with NETL researchers to integrate the Program's results with those at NETL, using simulation as the vehicle for integration and innovation. The investigators also committed to training students in coal utilization technology tuned to the environmental constraints that we face in the future; to this end the Program supported approximately 12 graduate students toward the completion of their graduate degree in addition to numerous undergraduate students. With the increased importance of coal for energy independence, training of graduate and undergraduate students in the development of new technologies is critical.

  14. Ecological gradients within a Pennsylvanian mire forest

    SciTech Connect

    DiMichele, W.A.; Falcon-Lang, H.J.; Nelson, W.J.; Brick, S.D.; Ames, P.R.

    2007-05-15

    Pennsylvanian coals represent remains of the earliest peat-forming rain forests, but there is no current consensus on forest ecology. Localized studies of fossil forests suggest intermixture of taxa (heterogeneity), while, in contrast, coal ball and palynological analyses imply the existence of pronounced ecological gradients. Here, we report the discovery of a spectacular fossil forest preserved over 1000 ha on top of the Pennsylvanian (Desmoinesian) Herrin (No. 6) Coal of Illinois, United States. The forest was abruptly drowned when fault movement dropped a segment of coastal mire below sea level. In the largest study of its kind to date, forest composition is statistically analyzed within a well-constrained paleogeographic context. Findings resolve apparent conflicts in models of Pennsylvanian mire ecology by confirming the existence of forest heterogeneity at the local scale, while additionally demonstrating the emergence of ecological gradients at landscape scale.

  15. Ecological gradients within a Pennsylvanian mire forest

    USGS Publications Warehouse

    DiMichele, W.A.; Falcon-Lang, H. J.; Nelson, W.J.; Elrick, S.D.; Ames, P.R.

    2007-01-01

    Pennsylvanian coals represent remains of the earliest peat-forming rain forests, but there is no current consensus on forest ecology. Localized studies of fossil forests suggest intermixture of taxa (heterogeneity), while, in contrast, coal ball and palynological analyses imply the existence of pronounced ecological gradients. Here, we report the discovery of a spectacular fossil forest preserved over ???1000 ha on top of the Pennsylvanian (Desmoinesian) Herrin (No. 6) Coal of Illinois, United States. The forest was abruptly drowned when fault movement dropped a segment of coastal mire below sea level. In the largest study of its kind to date, forest composition is statistically analyzed within a well-constrained paleogeographic context. Findings resolve apparent conflicts in models of Pennsylvanian mire ecology by confirming the existence of forest heterogeneity at the local scale, while additionally demonstrating the emergence of ecological gradients at landscape scale. ?? 2007 The Geological Society of America.

  16. Classification of Indian coals for combustion

    SciTech Connect

    Gopalakrishnan, V.; Vasudevan, R.

    1996-12-31

    In annual coal production India ranks fourth in the world, behind China, USA and Russia, with an estimated production of 225 million tons in 1995-96. The utilities burn nearly 60% of the mined coal while industries consume 25-30% of the coal for captive power generation and process heat. The remaining 10-15% goes for the production of coke and miscellaneous applications. Combustion is thus the most important use of coal in India or for that matter, anywhere in the world. Countries like USA have national coal sample banks and databases. The Pennsylvania state (PENN) coal sample bank and database are well known, which are also used by the US Department of Energy (DOE). The Argonne National Laboratory has used 200 samples from the PENN coal database and using cluster analysis, has identified 8 representative samples among American coals. Similar exercises have been carried out by Illinois Coal Development Board, US DOE`s Pittsburgh Energy Technology Center and several universities. The need for a similar coal data bank/database for India and the lack of it at present have been highlighted by Nandakumar and Gopalakrishnan. Especially, for the design of combustion equipment, it will be highly helpful if one can come up with a set of typical Indian coals.

  17. Bioprocessing of lignite coals using reductive microorganisms

    SciTech Connect

    Crawford, D.L.

    1990-01-01

    Depolymerization of lignite is being investigated. Research objectives include: isolate and characterize microbial strains that carry out chemical transformations of lignite coal that would cause its depolymerization, reduction, and/or liquefaction; characterize desirable reactions by growing selected of the microbial isolates on coal model compounds, and determine if the reactions occur when the microbial strains are growing on coal; and characterize several newly isolated coal-depolymerizing bacteria to determine their mechanisms of coal depolymerization, and utilize the depolymerized coal as a substrate for the isolation of additional strictly anaerobic bacteria that reductively transform the depolymerized coal. Since the last report we have made a significant breakthrough in our characterizations of the coal depolymerization mechanism. Not only have we characterized several additional bacterial strains that are superior to P. cepacia DLC-07 in their coal depolymerization abilities, but we have confirmed that depolymerization is catalyzed by a highly active extracellular enzymatic activity in several Pseudomonas and Flavobacterium strains. Our breakthrough discovery of a coal-depolymerizing enzyme system opens the way for elucidating the mechanism by which bacteria attack the macromolecular structure of lignite coals. 8 figs., 1 tab.

  18. Applications of acoustics in the measurement of coal slab thickness

    NASA Technical Reports Server (NTRS)

    Hadden, W. J., Jr.; Mills, J. M.; Pierce, A. D.

    1980-01-01

    The determination of the possibility of employing acoustic waves at ultrasonic frequencies for measurements of thicknesses of slabs of coal backed by shale is investigated. Fundamental information concerning the acoustical properties of coal, and the relationship between these properties and the structural and compositional parameters used to characterize coal samples was also sought. The testing device, which utilizes two matched transducers, is described.

  19. Milliken Clean Coal Demonstration Project: A DOE Assessment

    SciTech Connect

    National Energy Technology Laboratory

    2001-08-15

    The goal of the U.S. Department of Energy's (DOE) Clean Coal Technology (CCT) program is to furnish the energy marketplace with a number of advanced, more efficient, and environmentally responsible coal-utilization technologies through demonstration projects. These projects seek to establish the commercial feasibility of the most promising advanced coal technologies that have developed beyond the proof-of-concept stage.

  20. 75 FR 64719 - National Coal Council; Notice of Open Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-20

    ... National Coal Council; Notice of Open Meeting AGENCY: Department of Energy. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the National Coal Council (NCC). The Federal Advisory... Mr. Ben Yamagata, Executive Director of the Coal Utilization Research Council on Carbon...

  1. Process for converting coal into liquid fuel and metallurgical coke

    DOEpatents

    Wolfe, Richard A.; Im, Chang J.; Wright, Robert E.

    1994-01-01

    A method of recovering coal liquids and producing metallurgical coke utilizes low ash, low sulfur coal as a parent for a coal char formed by pyrolysis with a volatile content of less than 8%. The char is briquetted and heated in an inert gas over a prescribed heat history to yield a high strength briquette with less than 2% volatile content.

  2. A New Use for High-Sulfur Coal

    NASA Technical Reports Server (NTRS)

    Lawson, D. D.; England, C.

    1982-01-01

    New process recovers some of economic value of high-sulfur coal. Although high-sulfur content is undesirable in most coal-utilization schemes (such as simple burning), proposed process prefers high-sulfur coal to produce electrical power or hydrogen. Potential exists for widespread application in energy industry.

  3. Ecological Schoolyards.

    ERIC Educational Resources Information Center

    Danks, Sharon Gamson

    2000-01-01

    Presents design guidelines and organizational and site principles for creating schoolyards where students can learn about ecology. Principles for building schoolyard ecological systems are described. (GR)

  4. The migration law of overlay rock and coal in deeply inclined coal seam with fully mechanized top coal caving.

    PubMed

    Liu, Jian; Chen, Shan-Le; Wang, Hua-Jun; Li, Yu-Cheng; Geng, Xiaowei

    2015-07-01

    In a mine area, some environment geotechnics problems always occure, induced by mined-out region such as the subsidence and cracks at ground level, deformation and destruction of buildings, landslides destruction of water resources and the ecological environment. In order to research the migration of surrounding rock and coal in steeply inclined super high seams which used fully mechanized top coal caving, a working face of a certain mine was made as an example, analyzed the migration law of the overlay rock and coal under different caving ratio of fully mechanized top coal caving with numerical simulation analysis. The results suggest that the laws of overlay rock deformation caused by deeply inclined coal seam were different from horizontal coal seam. On the inclined direction, with an increase of dip angle and caving ratio, the vertical displacement of overlay rock and coal became greater, the asymmetric phenomenon of vertical displacement became obvious. On the trend direction, active region and transition region in goaf became smaller along with the increase of mining and caving ratio. On the contrary, the stable region area became greater. Therefore, there was an essential difference between the mechanism of surface movement deformation with deeply inclined coal seam and that with horizontal coal seam.

  5. Health impacts of domestic coal combustion

    SciTech Connect

    Finkelman, R.B.

    1999-07-01

    The US Environmental Protection Agency (EPA) has concluded that, with the possible exception of mercury, there is no compelling evidence to indicate that emissions from coal-burning electric utility generators cause human health problems. The absence of detectable health problems is in part due to the fact that the coals burned in the US generally contain low to modest concentrations of potentially toxic trace elements and that many coal-burning utilities employ sophisticated pollution control systems that efficiently reduce the emissions of hazardous elements. This is not so in many developing countries, especially in homes where coal is used for heating and cooking. Domestic use of coal can present serious human health problems because the coals are generally mined locally with little regard to their composition and the coals are commonly burned in poorly vented or unvented stoves directly exposing residents to the emissions. In China alone several hundred million people commonly burn raw coal in unvented stoves that permeate their homes with high levels of toxic metals and organic compounds. At least 3,000 people in Guizhou Province in southwest China are suffering from severe arsenic poisoning. The primary source of the arsenic appears to be consumption of chili peppers dried over fires fueled with high-arsenic coal. Coal's in the region contain up to 35,000 ppm arsenic. Chili peppers dried over these high-arsenic coal fires absorb 500 ppm arsenic on average. More than 10 million people in Guizhou Province and surrounding areas suffer from dental and skeletal fluorosis. The excess fluorine is due to eating corn dried over burning briquettes made from high-fluorine coals and high-fluoring clay binders. Polycyclic aromatic hydrocarbons formed during coal combustion are believed to cause or contribute to the high incidence of esophageal and lung cancers in parts of China. Domestic coal combustion has also caused selenium poisoning and possibly mercury poisoning

  6. CoalVal-A coal resource valuation program

    USGS Publications Warehouse

    Rohrbacher, Timothy J.; McIntosh, Gary E.

    2010-01-01

    CoalVal is a menu-driven Windows program that produces cost-of-mining analyses of mine-modeled coal resources. Geological modeling of the coal beds and some degree of mine planning, from basic prefeasibility to advanced, must already have been performed before this program can be used. United States Geological Survey mine planning is done from a very basic, prefeasibility standpoint, but the accuracy of CoalVal's output is a reflection of the accuracy of the data entered, both for mine costs and mine planning. The mining cost analysis is done by using mine cost models designed for the commonly employed, surface and underground mining methods utilized in the United States. CoalVal requires a Microsoft Windows? 98 or Windows? XP operating system and a minimum of 1 gigabyte of random access memory to perform operations. It will not operate on Microsoft Vista?, Windows? 7, or Macintosh? operating systems. The program will summarize the evaluation of an unlimited number of coal seams, haulage zones, tax entities, or other area delineations for a given coal property, coalfield, or basin. When the reader opens the CoalVal publication from the USGS website, options are provided to download the CoalVal publication manual and the CoalVal Program. The CoalVal report is divided into five specific areas relevant to the development and use of the CoalVal program: 1. Introduction to CoalVal Assumptions and Concepts. 2. Mine Model Assumption Details (appendix A). 3. CoalVal Project Tutorial (appendix B). 4. Program Description (appendix C). 5. Mine Model and Discounted Cash Flow Formulas (appendix D). The tutorial explains how to enter coal resource and quality data by mining method; program default values for production, operating, and cost variables; and ones own operating and cost variables into the program. Generated summary reports list the volume of resource in short tons available for mining, recoverable short tons by mining method; the seam or property being mined

  7. Enhancement of surface properties for coal beneficiation. Final report

    SciTech Connect

    Chander, S.; Aplan, F.F.

    1992-01-30

    This report will focus on means of pyrite removal from coal using surface-based coal cleaning technologies. The major subjects being addressed in this study are the natural and modulated surface properties of coal and pyrite and how they may best be utilized to facilitate their separation using advanced surface-based coal cleaning technology. Emphasis is based on modified flotation and oil agglomerative processes and the basic principles involved. The four areas being addressed are: (1) Collectorless flotation of pyrite; (2) Modulation of pyrite and coal hydrophobicity; (3) Emulsion processes and principles; (4) Evaluation of coal hydrophobicity.

  8. Appalachian clean coal technology consortium

    SciTech Connect

    Kutz, K.; Yoon, Roe-Hoan

    1995-11-01

    The Appalachian Clean Coal Technology Consortium (ACCTC) has been established to help U.S. coal producers, particularly those in the Appalachian region, increase the production of lower-sulfur coal. The cooperative research conducted as part of the consortium activities will help utilities meet the emissions standards established by the 1990 Clean Air Act Amendments, enhance the competitiveness of U.S. coals in the world market, create jobs in economically-depressed coal producing regions, and reduce U.S. dependence on foreign energy supplies. The research activities will be conducted in cooperation with coal companies, equipment manufacturers, and A&E firms working in the Appalachian coal fields. This approach is consistent with President Clinton`s initiative in establishing Regional Technology Alliances to meet regional needs through technology development in cooperation with industry. The consortium activities are complementary to the High-Efficiency Preparation program of the Pittsburgh Energy Technology Center, but are broader in scope as they are inclusive of technology developments for both near-term and long-term applications, technology transfer, and training a highly-skilled work force.

  9. [Swimmers' dermatitis in an excavation pool--an incentive for the status analysis of the water and for the preparation of an ecology-friendly utilization concept].

    PubMed

    Allgöwer, R; Effelsberg, W

    1991-03-01

    In recent years, swimmer's itch occurred in several ground water lakes dud excavation pools in sporadic or epidemic outbreaks in the upper Rhine valley. They were caused by Trichobilharzia szidati. The Public Health Offices in Offenburg and Freiburg have been dealing extensively with this problem. They were also requested to comment on the use of lakes within a framework for regional development (Landschaftsrahmenplan) by the Southern Upper Rhine Regional Authority. An ecological study of water quality was prepared in summer 1989 in Offenburg. Hydrological and biological criteria were applied. Eutrophication due to excessive nutrient input proved to be the main problem. Measures for reduction were proposed that also included determining water use. Thus, specific use should either be prescribed from the beginning for each lake and made possible via ecologically oriented long-term maintenance measures, or use should be adapted to the natural succession process. Thus, after gravel quarrying, water sports including bathing would be possible, followed by fish farming and finally reservation as protected area.

  10. Clean Coal Diesel Demonstration Project

    SciTech Connect

    Robert Wilson

    2006-10-31

    A Clean Coal Diesel project was undertaken to demonstrate a new Clean Coal Technology that offers technical, economic and environmental advantages over conventional power generating methods. This innovative technology (developed to the prototype stage in an earlier DOE project completed in 1992) enables utilization of pre-processed clean coal fuel in large-bore, medium-speed, diesel engines. The diesel engines are conventional modern engines in many respects, except they are specially fitted with hardened parts to be compatible with the traces of abrasive ash in the coal-slurry fuel. Industrial and Municipal power generating applications in the 10 to 100 megawatt size range are the target applications. There are hundreds of such reciprocating engine power-plants operating throughout the world today on natural gas and/or heavy fuel oil.

  11. Production development and utilization of Zimmer Station wet FGD by-products. Final report. Volume 4, A laboratory study conducted in fulfillment of Phase 2, Objective 1 titled. Inhibition of acid production in coal refuse amended with calcium sulfite and calcium sulfate - containing FGD solids

    SciTech Connect

    Hao, Y. L.; Dick, W. A.; Stehouwer, R. C.; Bigham, J. M.

    1998-06-30

    combination effect was partially due to the positive interaction of CaS03 with CaC03 and fly ash on inhibition of acid leaching. In Chapter 3, CaS03-containing FGD was found to inhibit acid leaching from both fresh and aged coal refuse in large scale columns under simulated field conditions. During 39 weeks of leaching, the reduction of leachate acidity and Fe concentration and the increase ofleachate pH were significant (p <0.05) for the 22% FGD treatment with a linear response to increasing FGD rates (0%, 5.5%, 11%, and 22%). I conclude that CaS03 and CaS03-containing FGD have the ability to inhibit acid production in coal refuse and the inhibitory effect shown in this experiment is likely to occur under field conditions. Thus, the research results present a potential new method for mitigation of acid production in coal refuse and another beneficial utilization of FGD by-products.

  12. Deep-coal potential in the Appalachian Coal Basin, USA: The Kentucky model

    USGS Publications Warehouse

    Haney, D.C.; Chesnut, D.R.

    1997-01-01

    The Eastern Kentucky Coal Field is located in the Appalachian Basin of the United States and occupies an area of approximately 15,000 square kilometers. The coal beds range from a few centimeters to several meters in thickness and consist of high-grade bituminous coal. Currently the amount of coal mined by surface methods exceeds underground extraction; however, there is a steady and gradual shift toward underground mining. In the future, as near-surface resources are depleted, this trend toward increased underground mining will continue. Knowledge about deeper coals is essential for future economic development of resources. Preliminary investigations indicate that coal-bearing strata with deep-mining potential exist in several parts of eastern Kentucky, especially along the Eastern Kentucky Syncline. Eastern Kentucky coals are Westphalian A through D; however, current production is from major beds of Westphalian A and B. Because coals that occur above drainage are more easily accessible and are generally of better quality, most of the current mining takes place in formations that are at or near the surface. In the future, however, due to environmental regulations and increased demands, it will be necessary to attempt to utilize deeper coals about which little is known. Future development of deep resources will require data from boreholes and high-resolution geophysical-logging techniques. There is also potential for coal-bed methane from the deeper coals which could be an important resource in the Appalachian Coal Basin where a natural gas distribution system already exists.

  13. Coal-fired power generaion, new air quality regulations, and future U.S. coal production

    USGS Publications Warehouse

    Attanasi, E.D.; Root, D.H.

    1999-01-01

    Tighter new regulation of stack gas emissions and competition in power generation are driving electrical utilities to demand cleaner, lower sulfur coal. Historical data on sulfur content of produced coals shows little variability in coal quality for individual mines and individual coal-producing counties over relatively long periods of time. If coal-using power generators follow the compliance patterns established in Phase I of the 1990 Clean Air Act Amendments, then the industry's response to the tighter Phase II emissions standards will result in large amounts of coal production shifting from higher sulfur areas to areas with lower cost low sulfur coal. One reason this shift will likely occur is that currently only 30% of U.S. coal-fired electrical generating capacity is equipped with flue-gas scrubbers. In 1995, coal mines in the higher sulfur areas of the Illinois Basin and Northern and Central Appalachia employed 78% of all coal miners (>70,000 miners). A substantial geographical redistribution of the nation's coal supplies will likely lead to economic dislocations that will reach beyond local coal-producing areas.

  14. Effective ways to modernize outdated coal heat power plants

    NASA Astrophysics Data System (ADS)

    Suchkov, S. I.; Kotler, V. R.; Batorshin, V. A.

    2016-12-01

    An analysis of the state of equipment of 72 outdated coal HPP (heat power plants) of a total capacity 14.3 GW with steam parameters before the turbines p before ≤ 9 MPa, t before = 420-540°C was performed. The equipment is characterized by a considerably low efficiency factor, even if it were converted to burning the natural gas, and by increased release of harmful substances. However, on the most part of the considered HPP, the steam turbines, unlike the boilers, have thus far retained the operation applicability and satisfactory reliability of performance. The analysis has shown that it makes sense to effectively modernize the outdated coal HPP by transformation of their equipment into combined-cycle plant (CCP) with coal gasification, which has high economic and ecological indicators due to thermodynamic advantage of the combined cycle and simpler purification of the generator gas in the process under pressure. As the most rational way of this transformation, the one was recognized wherein—instead of the existing boiler (boilers) or parallel to it—a gasification and gas turbine system is installed with a boiler-utilizer (BU), from which steam is fed to the HPP main steam pipe. In doing this, the basic part of the power station equipment persists. In the world, this kind of reconstruction of steam power equipment is applied widely and successfully, but it is by use of natural gas for the most part. It is reasonable to use the technology developed at Heat Engineering Research Institute (HERI) of hearth-steam gasification of coal and high-temperature purification of the generator gas. The basic scheme and measures on implementation of this method for modernization of outdated coal HPP is creation of CCP with blast-furnace of coal on the basis of accessible and preserved HPP equipment. CCP power is 120 MW, input-output ratio (roughly) 44%, emissions of hazardous substances are 5 mg/MJ dust, 20-60 mg/MJ SO2, and 50-100 mg/MJ NO x . A considerable decrease of

  15. Life Cycle Assessment of Coal-fired Power Production

    SciTech Connect

    Spath, P. L.; Mann, M. K.; Kerr, D. R.

    1999-09-01

    Coal has the largest share of utility power generation in the US, accounting for approximately 56% of all utility-produced electricity (US DOE, 1998). Therefore, understanding the environmental implications of producing electricity from coal is an important component of any plan to reduce total emissions and resource consumption. A life cycle assessment (LCA) on the production of electricity from coal was performed in order to examine the environmental aspects of current and future pulverized coal boiler systems. Three systems were examined: (1) a plant that represents the average emissions and efficiency of currently operating coal-fired power plants in the US (this tells us about the status quo), (2) a new coal-fired power plant that meets the New Source Performance Standards (NSPS), and (3) a highly advanced coal-fired power plant utilizing a low emission boiler system (LEBS).

  16. Hydrogen production with coal using a pulverization device

    DOEpatents

    Paulson, Leland E.

    1989-01-01

    A method for producing hydrogen from coal is described wherein high temperature steam is brought into contact with coal in a pulverizer or fluid energy mill for effecting a steam-carbon reaction to provide for the generation of gaseous hydrogen. The high temperature steam is utilized to drive the coal particles into violent particle-to-particle contact for comminuting the particulates and thereby increasing the surface area of the coal particles for enhancing the productivity of the hydrogen.

  17. COSTS FOR ADVANCED COAL COMBUSTION TECHNOLOGIES

    EPA Science Inventory

    The report gives results of an evaluation of the development status of advanced coal combustion technologies and discusses the preparation of performance and economic models for their application to electric utility plants. he technologies addressed were atmospheric fluidized bed...

  18. DFC coal reclamation system for the plant of the future for processing clean coal

    SciTech Connect

    Karsnak, G.; Hoppe, J.

    1993-12-31

    The coal resources of the United States are vast and provide a sound uninterruptable source of energy for both domestic use and international export which will continue to be available for hundreds of years in the future. It has been estimated that the vast U.S. Coal resources can be used as an economic way of producing power for another 300-400 years as predicted by both federal and industrial energy analysis sources. The {open_quotes}proven coal reserves{close_quotes} of the country or demonstrated reserve base (DRB) was estimated to be 467 billion short tons in 1987 based on DOE/EIA estimates of the coal that can be economically removed from the ground by state-of-the-art coal mining technology currently used by industry. These estimates are based on {open_quotes}state level{close_quotes} data that were collected by the DOE/EIA in recent studies attempting to quantify the economically usable coal reserves of the U.S. and provide estimates of the total available reserve base. The estimation of the U.S. coal resource base often leads to a misunderstanding of the actual coal reserves available as a carbon based fuel. Coal resources are defined as the amount of coal in the ground which may be made available for end-use in energy production while the quantifying of coal reserves is based on the amount of recoverable coal which can be economically extracted from the ground through conventional mining methods. What is customarily ignored in these estimates is the coal waste generated during coal beneficiation and which accumulates as a result of coal cleaning plants associated with most coal utilization applications.

  19. Direct utilization - recovery of minerals from coal fly ash. Fossil Energy Program. Technical progress report, 1 July 1984-30 September 1984 including summary of work for FY84

    SciTech Connect

    Burnet, G.; Murtha, M.J.; Benson, J.D.

    1985-03-01

    The research discussed in this report deals with resource recovery from coal conversion solid wastes. Progress is reported on two methods (the HiChlor and Lime-Sinter processes) for extracting metal values from power plant fly ash. Preliminary work is also reported on a method of making cement from the residue of the lime-sinter process. In the HiChlor Process, metal oxides in the fly ash are converted to volatile chlorides by reaction with chlorine in the presence of a reductant. Several versions of this approach are being investigated. The Lime-Sinter Process utilizes a solid state reaction to selectively convert the alumina in fly ash to a soluble form. Fly ash is mixed with limestone and a suitable mineralizer (to reduce the temperature required for sintering and to enhance alumina recovery) and then sintered in a high temperature kiln. Alumina is recovered by leaching the resulting clinker. A complex relationship between the calcium, alumina, silica, and sulfur constituents in the feed mixture controls the formation and extraction of aluminate compounds. Alumina recovery levels are enhanced by promoting the formation of less-soluble calcium compounds and/or more-soluble aluminum compounds. A study is underway to determine the degree to which flue gas scrubber sludge can be used both as a limestone substitute and as a sulfur bearing mineralizer. Results show that 20 to 25% of the limestone can be provided by the scrubber sludges. 25 refs.,25 figs., 10 tabs.

  20. Estimation of Coal Reserves for UCG in the Upper Silesian Coal Basin, Poland

    SciTech Connect

    Bialecka, Barbara

    2008-03-15

    One of the prospective methods of coal utilization, especially in case of coal resources which are not mineable by means of conventional methods, is underground coal gasification (UCG). This technology allows recovery of coal energy 'in situ' and thus avoid the health and safety risks related to people which are inseparable from traditional coal extraction techniques.In Poland most mining areas are characterized by numerous coal beds where extraction was ceased on account of technical and economic reasons or safety issues. This article presents estimates of Polish hard coal resources, broken down into individual mines, that can constitute the basis of raw materials for the gasification process. Five mines, representing more than 4 thousand tons, appear to be UCG candidates.

  1. Utilization of DNA as a Sole Source of Phosphorus, Carbon, and Energy by Shewanella spp.: Ecological and Physiological Implications for Dissimilatory Metal Reduction

    SciTech Connect

    Pinchuk, Grigoriy E.; Ammons, Christine G.; Culley, David E.; Li, Shu-Mei; McLean, Jeffrey S.; Romine, Margaret F.; Nealson, Kenneth H.; Fredrickson, Jim K.; Beliaev, Alex S.

    2008-02-15

    As a constituent of dissolved organic matter, DNA may be consumed by microorganisms inhabiting various freshwater and marine environments. In this study, we demonstrate that dissolved extracellular DNA can serve as a sole source of carbon, energy, nitrogen, and phosphorus for microorganisms residing in the upper layer of Columbia River (WA, USA) water column as well as a sole source of phosphorus for the dissimilatory metal-reducing bacteria Shewanella oneidensis MR-1 and Geobacter sulfurreducens and for Bacillus subtilis ATCC 49760. Our results suggest that DNA assimilation by S. oneidensis is linked to the activity of Ca2+-dependent nuclease(s) and extracellular phosphatase(s). The ability to use DNA as the sole source of phosphorus may be of particular ecological advantage for microorganisms living under Fe(III)-reducing conditions where bioavailability of inorganic phosphate may be limited by the formation of vivianite [Fe3(PO4)2•8H20].

  2. Utility of bioassays (lettuce, red clover, red fescue, Microtox, MetSTICK, Hyalella, bait lamina) in ecological risk screening of acid metal (Zn) contaminated soil.

    PubMed

    Chapman, E Emily V; Hedrei Helmer, Stephanie; Dave, Göran; Murimboh, John D

    2012-06-01

    The objective of this study was to assess selected bioassays and ecological screening tools for their suitability in a weight of evidence risk screening process of acidic metal contaminated soil. Intact soil cores were used for the tests, which minimizes changes in pH and metal bioavailability that may result from homogenization and drying of the soil. Soil cores were spiked with ZnCl(2) or CaCl(2). Leachate collected from the soil cores was used to account for the exposure pathways through pore water and groundwater. Tests assessed included MetSTICK in soil cores and Microtox in soil leachate, lettuce (Lactuca sativa), red fescue (Festuca rubra) and red clover (Trifolium pratense) in the soil cores and lettuce and red clover in soil leachate, Hyallella azteca in soil leachate, and an ecological soil function test using Bait Lamina in soil cores. Microtox, H. azteca, lettuce and red fescue showed higher sensitivity to low pH than to Zn concentrations and are therefore not recommended as tests on intact acidic soil cores and soil leachate. The Bait Lamina test appeared sensitive to pH levels below 3.7 but should be investigated further as a screening tool in less acidic soils. Among the bioassays, the MetSTICK and the T. pratense bioassays in soil cores were the most sensitive to Zn, with the lowest nominal NOEC of 200 and 400mg Zn/kg d.w., respectively. These bioassays were also tolerant of low pH, which make them suitable for assessing hazards of metal contaminated acid soils.

  3. Quarterly coal report, April--June 1993

    SciTech Connect

    Not Available

    1993-11-26

    In the second quarter of 1993, the United States produced 235 million short tons of coal. This brought the total for the first half of 1993 to 477 million short tons, a decrease of 4 percent (21 million short tons) from the amount produced during the first half of 1992. The decrease was due to a 26-million-short-ton decline in production east of the Mississippi River, which was partially offset by a 5-million-short-ton increase in coal production west of the Mississippi River. Compared with the first 6 months of 1992, all States east of the Mississippi River had lower coal production levels, led by West Virginia and Illinois, which produced 9 million short tons and 7 million short tons less coal, respectively. The principal reasons for the drop in coal output for the first 6 months of 1993 compared to a year earlier were: a decrease in demand for US coal in foreign markets, particularly the steam coal markets; a draw-down of electric utility coal stocks to meet the increase in demand for coal-fired electricity generation; and a lower producer/distributor stock build-up. Distribution of US coal in the first half of 1993 was 15 million short tons lower than in the first half of 1992, with 13 million short tons less distributed to overseas markets and 2 million short tons less distributed to domestic markets.

  4. The coal slime slurry combustion technology

    SciTech Connect

    Li, Y.; Xu, Z.

    1997-12-31

    This paper presents the coal slime slurry combustion technology in circulating fluidized bed (CFB) boilers. The technique is that the slurry-based flow from the concentrator in the coal washery plant directly feeds into the fluidized bed by pump for combustion after a simple filtration and enrichment to an approximate concentration of 50% of coal. The coal slime slurry can burn in a CFB boiler alone or jointly with coal refuse. The technique has been used in a 35 t/h (6MWe) CFB for power generation. The result shows that the combustion efficiency is over 96% and boiler thermal efficiency is over 77%. As compared with burning coal refuse alone, the thermal efficiency was improved by 3--4 percent. This technology is simple, easy to operate and reliable. It is an effective way to utilize coal slime slurry. It has a practical significance for saving coal resources and reducing environmental pollution near coal mine areas. As a clean coal technology, it will result in great social, environmental and economic benefits.

  5. A FUEL-RICH PRECOMBUSTOR. FIELD EVALUATION OF LOW-EMISSION COAL BURNER TECHNOLOGY ON UTILITY BOILERS - VOLUME IV. ALTERNATE CON- CEPTS FOR SOX, NOX, AND PARTICULATE EMISSIONS CONTROL FROM

    EPA Science Inventory

    The report gives results a study of the use of precombustors for the simultaneous control of S02, NOx, and ash emissions from coal combustion. In Phase 1, exploratory testing was conducted on a small pilot scale--293 kW (million Btu/hr)-pulverized-coal-fired precombustor to ident...

  6. Who's doing coal plant maintenance?

    SciTech Connect

    Oldani, R.

    2008-02-15

    POWER has reported on several EUCG bench marking studies over the past several years. This paper examines the maintenance staffing of 45 coal plants reported by 13 EUCG member utilities. If you benchmark your plants or fleet, as you should, some of the study's results challenge what is considered conventional wisdom.

  7. Surfactant-assisted coal liquefaction

    NASA Technical Reports Server (NTRS)

    Hsu, G. C.

    1977-01-01

    Improved process of coal liquefaction utilizing nonaqueous surfactant has increased oil yield from 50 to about 80%. Asphaltene molecule formation of colloid particles is prevented by surfactant. Separated molecules present more surface area for hydrogenation reaction. Lower requirements for temperature, pressure, and hydrogen lead to reduction in capital and operation costs.

  8. TRW utility demonstration unit

    SciTech Connect

    Not Available

    1990-01-01

    The TRW Advanced Entrained Coal Combustor Demonstration Project consists of retrofitting Orange and Rockland (O R) Utility Corporation's Lovett Plant Unit No. 3 with four (4) slagging combustors which will allow the gas/oil unit to fire 2.5% sulfur coal. The slagging combustor process will provide NO{sub x} and SO{sub x} emissions that meet NSPS and New York State Environmental Standards. During this report period, activity continued to address the total program funding shortfall. Ideas and responsibilities for further evaluation have been put forward to reduce the shortfall. In addition, an effort aimed at gaining additional program sponsorships, was initiated.

  9. Functional analysis of Agaricus bisporus serine proteinase 1 reveals roles in utilization of humic rich substrates and adaptation to the leaf‐litter ecological niche

    PubMed Central

    Heneghan, Mary N.; Burns, Claire; Costa, Ana M. S. B.; Burton, Kerry S.; Challen, Michael P.

    2016-01-01

    Summary Agaricus bisporus is a secondary decomposer fungus and an excellent model for the adaptation, persistence and growth of fungi in humic‐rich environments such as soils of temperate woodland and pastures. The A. bisporus serine proteinase SPR1 is induced by humic acids and is highly expressed during growth on compost. Three Spr1 gene silencing cassettes were constructed around sense, antisense and non‐translatable‐stop strategies (pGRsensehph, pGRantihph and pGRstophph). Transformation of A. bisporus with these cassettes generated cultures showing a reduction in extracellular proteinase activity as demonstrated by the reduction, or abolition, of a clearing zone on plate‐based bioassays. These lines were then assessed by detailed enzyme assay, RT‐qPCR and fruiting. Serine proteinase activity in liquid cultures was reduced in 83% of transformants. RT‐qPCR showed reduced Spr1 mRNA levels in all transformants analysed, and these correlated with reduced enzyme activity. When fruiting was induced, highly‐silenced transformant AS5 failed to colonize the compost, whilst for those that did colonize the compost, 60% gave a reduction in mushroom yield. Transcriptional, biochemical and developmental observations, demonstrate that SPR1 has an important role in nutrient acquisition in compost and that SPR1 is a key enzyme in the adaptation of Agaricus to the humic‐rich ecological niche formed during biomass degradation. PMID:27113919

  10. Rosebud SynCoal Partnership, SynCoal{reg_sign} demonstration technology update

    SciTech Connect

    Sheldon, R.W.

    1997-12-31

    An Advanced Coal Conversion Process (ACCP) technology being demonstrated in eastern Montana (USA) at the heart of one of the world`s largest coal deposits is providing evidence that the molecular structure of low-rank coals can be altered successfully to produce a unique product for a variety of utility and industrial applications. The product is called SynCoal{reg_sign} and the process has been developed by the Rosebud SynCoal Partnership (RSCP) through the US Department of Energy`s multi-million dollar Clean Coal Technology Program. The ACCP demonstration process uses low-pressure, superheated gases to process coal in vibrating fluidized beds. Two vibratory fluidized processing stages are used to heat and convert the coal. This is followed by a water spray quench and a vibratory fluidized stage to cool the coal. Pneumatic separators remove the solid impurities from the dried coal. There are three major steps to the SynCoal{reg_sign} process: (1) thermal treatment of the coal in an inert atmosphere, (2) inert gas cooling of the hot coal, and (3) removal of ash minerals. When operated continuously, the demonstration plant produces over 1,000 tons per day (up to 300,000 tons per year) of SynCoal{reg_sign} with a 2% moisture content, approximately 11,800b Btu/lb and less than 1.0 pound of SO{sub 2} per million Btu. This product is obtained from Rosebud Mine sub-bituminous coal which starts with 25% moisture, 8,600 Btu/lb and approximately 1.6 pounds of SO{sub 2} per million Btu.

  11. Liquid chromatographic analysis of coal surface properties. Quarterly progress report, September--December 1991

    SciTech Connect

    Kwon, K.C.

    1991-12-31

    The main objectives of this proposed research are to refine further the inverse liquid chromatography technique for the study of surface properties of raw coals, treated coals and coal minerals in water, to evaluate relatively surface properties of raw coals, treated coals and coal minerals by inverse liquid chromatography, and to evaluate floatability of various treated coals in conjunction with surface properties of coals. Alcohols such as methanol, ethanol, isopropanol, isobutanol, tert-butanol, heptanol, 1-hexadecanol, 2-methyl-pentanol, 4-methyl-2-penthanol (methylisobutyl carbinol), n-octanol, s-octanol, and cyclohexanol as probe compounds are utilized to evaluate hydrophilicity of coals and coal minerals. N-alkanes such as hexane, heptane and octane, and stearic acid are employed as probe compounds to evaluate hydrophobicity of coals and coal minerals. Aromatic compounds such as benzene and toluene as probe compounds are used to examine aromaticity of coal surface. Aromatic acids such as o-cresol, m-cresol, p-cresol, phenol and B-naphthol are used to detect aromatic acidic sites of coal surface. Hydrophilicity, hydrophobicity and aromaticity of surfaces for either raw coals or treated coals in water are relatively determined by evaluating both equilibrium physical/chemical adsorption and dynamic adsorption of probe compounds on various raw coals and treated coals to compare affinities of coals for water.

  12. Biological upgrading of coal liquids. Final report

    SciTech Connect

    1995-02-01

    A large number of bacterial enrichments have been developed for their ability to utilize nitrogen and sulfur in coal liquids and the model compound naphtha. These bacteria include the original aerobic bacteria isolated from natural sources which utilize heteroatom compounds in the presence of rich media, aerobic nitrogen-utilizing bacteria and denitrifying bacteria. The most promising isolates include Mix M, a mixture of aerobic bacteria; ER15, a pyridine-utilizing isolate; ERI6, an aniline-utilizing isolate and a sewage sludge isolate. Culture optimization experiments have led to these bacteria being able to remove up to 40 percent of the sulfur and nitrogen in naphtha and coal liquids in batch culture. Continuous culture experiments showed that the coal liquid is too toxic to the bacteria to be fed without dilution or extraction. Thus either semi-batch operation must be employed with continuous gas sparging into a batch of liquid, or acid extracted coal liquid must be employed in continuous reactor studies with continuous liquid flow. Isolate EN-1, a chemical waste isolate, removed 27 percent of the sulfur and 19 percent of the nitrogen in fed batch experiments. Isolate ERI5 removed 28 percent of the nitrogen in coal liquid in 10 days in fed batch culture. The sewage sludge isolate removed 22.5 percent of the sulfur and 6.5 percent of the nitrogen from extracted coal liquid in continuous culture, and Mix M removed 17.5 percent of the nitrogen from medium containing extracted coal liquid. An economic evaluation has been prepared for the removal of nitrogen heteroatom compounds from Wilsonville coal liquid using acid extraction followed by fermentation. Similar technology can be developed for sulfur removal. The evaluation indicates that the nitrogen heteroatom compounds can be removed for $0.09/lb of coal liquid treated.

  13. Energy Policy Act transportation rate study: Interim report on coal transportation

    SciTech Connect

    1995-10-01

    The primary purpose of this report is to examine changes in domestic coal distribution and railroad coal transportation rates since enactment of the Clean Air Act Amendments of 1990 (CAAA90). From 1988 through 1993, the demand for low-sulfur coal increased, as a the 1995 deadline for compliance with Phase 1 of CAAA90 approached. The shift toward low-sulfur coal came sooner than had been generally expected because many electric utilities switched early from high-sulfur coal to ``compliance`` (very low-sulfur) coal. They did so to accumulate emissions allowances that could be used to meet the stricter Phase 2 requirements. Thus, the demand for compliance coal increased the most. The report describes coal distribution and sulfur content, railroad coal transportation and transportation rates, and electric utility contract coal transportation trends from 1979 to 1993 including national trends, regional comparisons, distribution patterns and regional profiles. 14 figs., 76 tabs.

  14. Ecological Misconceptions.

    ERIC Educational Resources Information Center

    Munson, Bruce H.

    1994-01-01

    Presents a summary of the research literature on students' ecological conceptions and the implications of misconceptions. Topics include food webs, ecological adaptation, carrying capacity, ecosystem, and niche. (Contains 35 references.) (MKR)

  15. Coal industry annual 1997

    SciTech Connect

    1998-12-01

    Coal Industry Annual 1997 provides comprehensive information about US coal production, number of mines, prices, productivity, employment, productive capacity, and recoverable reserves. US Coal production for 1997 and previous years is based on the annual survey EIA-7A, Coal Production Report. This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report includes a national total coal consumption for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. 14 figs., 145 tabs.

  16. Coal Industry Annual 1995

    SciTech Connect

    1996-10-01

    This report presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 21 million short tons for 1995.

  17. Coal industry annual 1996

    SciTech Connect

    1997-11-01

    This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States.This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 24 million short tons for 1996. 14 figs., 145 tabs.

  18. Backyard Ecology.

    ERIC Educational Resources Information Center

    Elser, Monica; Musheno, Birgit; Saltz, Charlene

    2003-01-01

    Describes the Ecology Explorers, the community education component of Arizona State University's Central Arizona Phoenix Long-Term Ecological Research project, which offers teacher internship programs that link university researchers, K-12 teachers, and students in studying urban ecology. Explains that student neighborhoods are dynamic ecosystems…

  19. Utility of population models to reduce uncertainty and increase value relevance in ecological risk assessments of pesticides: an example based on acute mortality data for daphnids.

    PubMed

    Hanson, Niklas; Stark, John D

    2012-04-01

    Traditionally, ecological risk assessments (ERA) of pesticides have been based on risk ratios, where the predicted concentration of the chemical is compared to the concentration that causes biological effects. The concentration that causes biological effect is mostly determined from laboratory experiments using endpoints on the level of the individual (e.g., mortality and reproduction). However, the protection goals are mostly defined at the population level. To deal with the uncertainty in the necessary extrapolations, safety factors are used. Major disadvantages with this simplified approach is that it is difficult to relate a risk ratio to the environmental protection goals, and that the use of fixed safety factors can result in over- as well as underprotective assessments. To reduce uncertainty and increase value relevance in ERA, it has been argued that population models should be used more frequently. In the present study, we have used matrix population models for 3 daphnid species (Ceriodaphnia dubia, Daphnia magna, and D. pulex) to reduce uncertainty and increase value relevance in the ERA of a pesticide (spinosad). The survival rates in the models were reduced in accordance with data from traditional acute mortality tests. As no data on reproductive effects were available, the conservative assumption that no reproduction occurred during the exposure period was made. The models were used to calculate the minimum population size and the time to recovery. These endpoints can be related to the European Union (EU) protection goals for aquatic ecosystems in the vicinity of agricultural fields, which state that reversible population level effects are acceptable if there is recovery within an acceptable (undefined) time frame. The results of the population models were compared to the acceptable (according to EU documents) toxicity exposure ratio (TER) that was based on the same data. At the acceptable TER, which was based on the most sensitive species (C. dubia

  20. Coal and Energy.

    ERIC Educational Resources Information Center

    Bryant, Reba; And Others

    This teaching unit explores coal as an energy resource. Goals, student objectives, background information, and activity options are presented for each major section. The sections are: (1) an introduction to coal (which describes how and where coal was formed and explains the types of coal); (2) the mining of coal (including the methods and ways of…

  1. Microbial solubilization of coal

    DOEpatents

    Strandberg, G.W.; Lewis, S.N.

    1988-01-21

    The present invention relates to a cell-free preparation and process for the microbial solubilization of coal into solubilized coal products. More specifically, the present invention relates to bacterial solubilization of coal into solubilized coal products and a cell-free bacterial byproduct useful for solubilizing coal. 5 tabs.

  2. Biogenic Methane from Coal: The Oxidation Factor

    NASA Astrophysics Data System (ADS)

    Gallagher, L. K.; Glossner, A. W.; Landkamer, L.; Figueroa, L. A.; Mandernack, K. W.; Munakata Marr, J.

    2011-12-01

    Vast reserves of coal represent an untapped resource that can be used to produce methane gas, a cleaner energy alternative compared to standard fossil fuels. Microorganisms have demonstrated the ability to utilize coal as a carbon source, producing biogenic methane. With increasing demand for cleaner energy resources, understanding and enhancing biogenic methane production has become an area of active research. The conversion of coal to methane by microorganisms has been demonstrated experimentally by a number of research groups, but the state of the coal used as a substrate has not always been reported and may impact biogenic methane production. Microcosm experiments were designed in order to assess how the oxidation state of coal might influence methane production (e.g. as in a dewatered coal-bed natural gas system). Oxidized and un-oxidized coal samples from the Powder River Basin were incubated in microcosms inoculated with an enrichment culture that was derived from coal. Microcosms were characterized by headspace gas analysis, organic acid production, functional gene abundance (qPCR), and pyrosequencing of the 16S rRNA gene. Although the microbial consortium demonstrated the ability to utilize both oxidized and un-oxidized coal as a sole carbon source to generate methane, it was produced in higher quantities from the un-oxidized coal. This microbial community was dominated by Methanobacteriaceae (45%), epsilon-Proteobacteria (32%) and delta-Proteobacteria (13%). The results of this study provide a basis to develop strategies to enhance biogenic methane production from coal, as well as demonstrate the need for careful substrate preparation for inter-study comparisons.

  3. Mercury in coal and the impact of coal quality on mercury emissions from combustion systems

    USGS Publications Warehouse

    Kolker, A.; Senior, C.L.; Quick, J.C.

    2006-01-01

    The proportion of Hg in coal feedstock that is emitted by stack gases of utility power stations is a complex function of coal chemistry and properties, combustion conditions, and the positioning and type of air pollution control devices employed. Mercury in bituminous coal is found primarily within Fe-sulfides, whereas lower rank coal tends to have a greater proportion of organic-bound Hg. Preparation of bituminous coal to reduce S generally reduces input Hg relative to in-ground concentrations, but the amount of this reduction varies according to the fraction of Hg in sulfides and the efficiency of sulfide removal. The mode of occurrence of Hg in coal does not directly affect the speciation of Hg in the combustion flue gas. However, other constituents in the coal, notably Cl and S, and the combustion characteristics of the coal, influence the species of Hg that are formed in the flue gas and enter air pollution control devices. The formation of gaseous oxidized Hg or particulate-bound Hg occurs post-combustion; these forms of Hg can be in part captured in the air pollution control devices that exist on coal-fired boilers, without modification. For a given coal type, the capture efficiency of Hg by pollution control systems varies according to type of device and the conditions of its deployment. For bituminous coal, on average, more than 60% of Hg in flue gas is captured by fabric filter (FF) and flue-gas desulfurization (FGD) systems. Key variables affecting performance for Hg control include Cl and S content of the coal, the positioning (hot side vs. cold side) of the system, and the amount of unburned C in coal ash. Knowledge of coal quality parameters and their effect on the performance of air pollution control devices allows optimization of Hg capture co-benefit. ?? 2006 Elsevier Ltd. All rights reserved.

  4. Coal-sand attrition system and its importance in fine coal cleaning. Final report

    SciTech Connect

    Mehta, R.K.; Zhu, Qinsheng

    1993-08-01

    It is known that ultra-fine coals are prerequisite for the deep cleaning of most US coal seams if environmental pollution arising from the use of such coals is to be minimized. Therefore, the production of finely liberated coal particles in conjunction with reduced heavy metal contaminants at low costs is desirable, if not mandatory. The liberation of intimately disseminated impurities from the coal matrix therefore, demands that the material be ground to a high degree of fineness. Similarily, some technologies for coal utilization require superfine particles (i.e., sizes less than ten microns). This implies additional costs for coal preparation plants due to the high energy and media costs associated with fine grinding operations. Besides, there are problems such as severe product contaminations due to media wear and impairment of the quality of coal. Hence, proper choice of grinding media type is important from the viewpoints of cost reduction and product quality. The use of natural quartz sand as grinding media in the comminution of industrial minerals in stirred ball mills has been indicated. The advantages of natural sand compared to steel media include low specific energy inputs, elimination of heavy metal contaminants and low media costs. In this work, the effect of rotor speed, solids concentration and feed-size are studied on four coals in conjunction with silica sand and steel shot. The results obtained are used to evaluate the suitability of silica sands as an alternative grinding media. for coal. Coal-sand and coal-steel systems are compared in terms of specific energy consumption, product fineness, media/wear contaminationanalysis and calorific values, liberation spectrum and particle shape characteristics. In general cleaner flotation concentrate was obtained from coals when they were ground with sand media. The zeta potential of coals was found to be different and lower when they ground with sand.

  5. A Semester Ecology Project

    ERIC Educational Resources Information Center

    Baskett, Russell C.

    1969-01-01

    Describes a semester-long study of microorganisms in an aquarium as performed by a beginning microbiology class. Gives results and conclusions drawn by students utilizing many ecological principles to interpret the results. Similar projects could be used from beginning high school through advanced college biology. (EB)

  6. Ecology, Elementary Teaching Guide.

    ERIC Educational Resources Information Center

    Gross, Iva Helen

    In an effort to provide background information and encourage incorporation of ecological understandings into the curriculum, this teacher's guide has been devised for fourth and fifth grade teachers. It utilizes an activity-oriented approach to discovery and inquiry, outlining behavioral objectives, learning activities, teaching suggestions, and…

  7. Investigation of coal structure. Final report

    SciTech Connect

    Nishioka, Masaharu

    1994-03-01

    A better understanding of coal structure is the first step toward more effective utilization of the most abundant hydrocarbon resource. Detailed characterization of coal structure is very difficult, even with today`s highly developed analytical techniques. This is primarily due to the amorphous nature of these high-molecular-weight mixtures. Coal has a polymeric character and has been popularly represented as a three-dimensional cross-linked network. There is, however, little or no information which positively verifies this model. The principal objective of this research was to further investigate the physical structure of coal and to determine the extent to which coal molecules may be covalently cross-linked and/or physically associated. Two common characterization methods, swellability and extractability, were used. A technique modifying the conventional swelling procedure was established to better determine network or associated model conformation. A new method for evaluating coal swelling involving laser scattering has also been developed. The charge-transfer interaction is relatively strong in high-volatile bituminous coal. Soaking in the presence of electron donors and acceptors proved effective for solubilizing the coal, but temperatures in excess of 200 C were required. More than 70 wt% of the coal was readily extracted with pyridine after soaking. Associative/dissociative equilibria of coal molecules were observed during soaking. From these results, the associated model has gained credibility over the network model as the representative structure of coal. Significant portions of coal molecules are unquestionably physically associated, but the overall extent is not known at this time.

  8. Coal industry annual 1993

    SciTech Connect

    Not Available

    1994-12-06

    Coal Industry Annual 1993 replaces the publication Coal Production (DOE/FIA-0125). This report presents additional tables and expanded versions of tables previously presented in Coal Production, including production, number of mines, Productivity, employment, productive capacity, and recoverable reserves. This report also presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for a wide audience including the Congress, Federal and State agencies, the coal industry, and the general public. In addition, Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility Power Producers who are not in the manufacturing, agriculture, mining, construction, or commercial sectors. This consumption is estimated to be 5 million short tons in 1993.

  9. Coal liquefaction and hydrogenation

    DOEpatents

    Schindler, Harvey D.; Chen, James M.

    1985-01-01

    Disclosed is a coal liquefaction process using two stages. The first stage liquefies the coal and maximizes the product while the second stage hydrocracks the remainder of the coal liquid to produce solvent.

  10. Semiconductor electrochemistry of coal pyrite

    SciTech Connect

    Osseo-Asare, K.

    1992-05-01

    This project seeks to advance the fundamental understanding of the physicochemical processes occurring at the pyrite/aqueous interface, in the context of coal cleaning, coal desulfurization, and acid mine drainage. A novel approach to the study of pyrite aqueous electrochemistry is proposed, based on the use of both synthetic and natural (i.e. coal-derived) pyrite specimens, the utilization of pyrite both in the form of micro (i.e. colloidal and subcolloidal) and macro (i.e. rotating ring disk)-electrodes, and the application of in-situ direct electroanalytical and spectroelectrochemical characterization techniques. Central to this research is the recognition that pyrite is a semiconductor material. (Photo)electrochemical experiments will be conducted to unravel the mechanisms of anodic and cathodic processes such as those associated with pyrite decomposition and the reduction of oxidants such as molecular oxygen and the ferric ion.

  11. Clean coal

    SciTech Connect

    Liang-Shih Fan; Fanxing Li

    2006-07-15

    The article describes the physics-based techniques that are helping in clean coal conversion processes. The major challenge is to find a cost- effective way to remove carbon dioxide from the flue gas of power plants. One industrially proven method is to dissolve CO{sub 2} in the solvent monoethanolamine (MEA) at a temperature of 38{sup o}C and then release it from the solvent in another unit when heated to 150{sup o}C. This produces CO{sub 2} ready for sequestration. Research is in progress with alternative solvents that require less energy. Another technique is to use enriched oxygen in place of air in the combustion process which produces CO{sub 2} ready for sequestration. A process that is more attractive from an energy management viewpoint is to gasify coal so that it is partially oxidized, producing a fuel while consuming significantly less oxygen. Several IGCC schemes are in operation which produce syngas for use as a feedstock, in addition to electricity and hydrogen. These schemes are costly as they require an air separation unit. Novel approaches to coal gasification based on 'membrane separation' or chemical looping could reduce the costs significantly while effectively capturing carbon dioxide. 1 ref., 2 figs., 1 photo.

  12. Ultrasonic coal washing to leach alkali elements from coals.

    PubMed

    Balakrishnan, S; Reddy, V Midhun; Nagarajan, R

    2015-11-01

    Deposition of fly ash particles onto heat-transfer surfaces is often one of the reasons for unscheduled shut-downs of coal-fired boilers. Fouling deposits encountered in convective sections of a boiler are characterized by arrival of ash particles in solidified (solid) state. Fouling is most frequently caused by condensation and chemical reaction of alkali vapors with the deposited ash particles creating a wet surface conducive to collect impacting ash particles. Hence, the amount of alkali elements present in coals, which, in turn, is available in the flue gas as condensable vapors, determines the formation and growth of fouling deposits. In this context, removal of alkali elements becomes vital when inferior coals having high-ash content are utilized for power generation. With the concept of reducing alkali elements present in a coal entering the combustor, whereby the fouling deposits can either be minimized or be weakened due to absence of alkali gluing effect, the ultrasonic leaching of alkali elements from coals is investigated in this study. Ultrasonic water-washing and chemical-washing, in comparison with agitation, are studied in order to estimate the intensification of the alkali removal process by sonication.

  13. Clean coal technology and emissions trading: Is there a future for high-sulfur coal under the Clean Air Act Amendments of 1990?

    SciTech Connect

    Bailey, K.A.; South, D.W.; McDermott, K.A. |

    1991-12-31

    The near-term and long-term fate of high-sulfur coal is linked to utility compliance plans, the evolution of emission allowance trading, state and federal regulation, and technological innovation. All of these factors will play an implicit role in the demand for high-sulfur coal. This paper will explore the potential impact that emissions trading will have on high-sulfur coal utilization by electric utilities. 28 refs., 6 figs., 4 tabs.

  14. Clean coal technology and emissions trading: Is there a future for high-sulfur coal under the Clean Air Act Amendments of 1990

    SciTech Connect

    Bailey, K.A.; South, D.W. ); McDermott, K.A. Illinois State Univ., Normal, IL )

    1991-01-01

    The near-term and long-term fate of high-sulfur coal is linked to utility compliance plans, the evolution of emission allowance trading, state and federal regulation, and technological innovation. All of these factors will play an implicit role in the demand for high-sulfur coal. This paper will explore the potential impact that emissions trading will have on high-sulfur coal utilization by electric utilities. 28 refs., 6 figs., 4 tabs.

  15. Plant betterment for an anthracite-burning utility in Ukraine: Coal preparation as part of a SO{sub 2}, NO{sub x}, and particulate emission control strategy

    SciTech Connect

    Ruether, J.A.; Freeman, M.C.; Gollakota, S.V.

    1997-12-31

    Workers at the Energy Departments of the US and Ukraine have cooperatively devised a strategy for upgrading performance of a 200 MWe wet bottom pulverized coal boiler in eastern Ukraine at the Lugansk GRES power station. The plant currently burns poor quality anthracite (30% ash versus 18% ash design coal, as-received basis) and is in need of maintenance. Oil or gas support fuel in the amount of 30% (calorific basis) is required to stabilize the flame and supplement the calorific value of the coal feed. No NO{sub x} or SO{sub 2} controls are used at present, and unburned carbon content in the fly ash is high. An experimental program was carried out at the Federal Energy Technology Center (FETC) to estimate the improvement in plant performance that could be expected if the unit is supplied with design coal and is refurbished. High ash Ukrainian anthracite was cleaned to design specifications. Raw and cleaned coal were fed to a 490 MJ/h coal feed combustion unit at a number of conditions of support fuel use and ingress air leakage designed to simulate current and improved operations at the power plant. The results indicate the improvement in performance and reductions in SO{sub 2} and NO{sub x} emissions that can be expected as a result of the planned upgrade and conversion to use of cleaned coal. A detailed engineering and financial analysis indicates that plant rehabilitation combined with the use of cleaned schtib reduces not only pollutant emissions but also cost of electricity (COE). Additional benefits include increased plant life and capacity, and reduced supplementary fuel consumption.

  16. The coal resources of Armenia

    SciTech Connect

    Pierce, B.; Martirossian, A.; Amazaspian, H.; Kochinian, G.

    1997-12-31

    The US Geological Survey (USGS) is conducting a program of coal exploration and resource assessment in Armenia. The project is funded by the US Agency for International Development (USAID) as part of USAID`s emphasis on energy resources in the former Soviet Union. Relatively little is known about the coal resources of Armenia because the Soviet Union had many other sources for fuel. As part of the Soviet Union, Armenia relied on nuclear power, hydropower, or imported power for their electricity and heating needs. Within the Soviet Union, there was a universal centralized system for providing electricity and thus there was little reason to explore for fuel in Armenia. However, with the breakup of the Soviet Union, emphasis has been placed on finding and utilizing indigenous, non-nuclear resources for power generation. The USGS program is conducting exploratory drilling to expand the areas of known resources, characterize the quality of those resources, and estimate the resources in each geographic locality. Armenia`s coal resources are quite variable in terms of age (ranging from Triassic to Oligocene/Miocene), rank (apparent rank ranging from lignite to high volatile A/B bituminous coal), quality, and resource tonnages. Past work previously carried out by the Soviet Ministry of Geology on coal exploration and some early work by the USGS during the current program on the coal resources of Armenia are contained in this report. It is well known that the Soviet system (developed by the USSR Ministry of Geology) and the American system (developed at the USGS) of classifying coal resources are quite similar. Throughout this report, both classifications will be used together. Within the Soviet system, only those coal beds deemed economically viable have official resource estimates (that is, resource estimates approved by the State Committee on Reserves). Only one coal field in Armenia, the Djadjur field, has official estimates. Resource estimates have been calculated for

  17. Energy Information Administration quarterly coal report, October--December 1992

    SciTech Connect

    Not Available

    1993-05-21

    The United States produced just over 1 billion short tons of coal in 1992, 0.4 percent more than in 1991. Most of the 4-million-short-ton increase in coal production occurred west of the Mississippi River, where a record level of 408 million short tons of coal was produced. The amount of coal received by domestic consumers in 1992 totaled 887 million short tons. This was 7 million short tons more than in 1991, primarily due to increased coal demand from electric utilities. The average price of delivered coal to each sector declined by about 2 percent. Coal consumption in 1992 was 893 million short tons, only 1 percent higher than in 1991, due primarily to a 1-percent increase in consumption at electric utility plants. Consumer coal stocks at the end of 1992 were 163 million short tons, a decrease of 3 percent from the level at the end of 1991, and the lowest year-end level since 1989. US coal exports fell 6 percent from the 1991 level to 103 million short tons in 1992. Less coal was exported to markets in Europe, Asia, and South America, but coal exports to Canada increased 4 million short tons.

  18. High sulfur coal research at the SIUC Coal Technology Laboratory. Quarterly progress report

    SciTech Connect

    Not Available

    1984-01-01

    The research effort addressed in this cooperative agreement includes the conduct of a high-sulfur coal research program and the establishment of a research facility, the Coal Technology Laboratory at the site of the former Carbondale Mining Technology Center. The associated research program is broadly based and directed toward high-sulfur coal, the goal being expand the technology to allow for the increased use of high-sulfur coal in an environmentally acceptable manner. Progress continues to be made on the research in the four areas of coal science, coal preparation, coal conversion, and coal utilization. In the Coal Science area, the maceral separation laboratory is about 90% operational. In the area of coal preparation, a mechanical auger feeder device for introducing material into an experimental hydrocyclone along its axis was constructed and incorporated. A froth flotation pilot plant has been acquired and renovated. Coal conversion studies included experiments to examine the effects of chemical pretreatment on supercritical extraction and desulfurization of coal. It was found that with pretreatment a high-sulfur coal containing predominantly organic sulfur experienced a 57% reduction in sulfur on a concentration basis. Without pretreatment, the sulfur reduction was only 40%. In the work examining the mechanism of hydrogen sulfide formation from iron sulfides, it was found that hydrogen sulfide is formed from hydrogen and iron sulfides by a Langmuir-Hinselwood mechanism. Mixtures of H/sub 2/ and D/sub 2/ produce (H,D)H/sub 2/S with random distributions of H and D. Preliminary studies have been conducted in a 10 cm diameter laboratory scale AFBC unit preparatory to the tests to be conducted on waste fuels.

  19. Fluidized bed selective pyrolysis of coal

    DOEpatents

    Shang, Jer Y.; Cha, Chang Y.; Merriam, Norman W.

    1992-01-01

    The present invention discloses a process for the pyrolysis of coal which comprises the effective utilization of two zonal inclined fluidized beds, where said zones can be selectively controlled as to temperature and heating rate. The first zonal inclined fluidized bed serves as a dryer for crushed coal and additionally is controlled to selectively pyrolyze said coal producing substantially carbon dioxide for recycle use. The second zonal inclined fluidized bed further pyrolyzes the coal to gaseous, liquid and char products under controlled temperature and heating rate zones designed to economically integrate the product mix. The gas and liquid products are recovered from the gaseous effluent stream while the char which remains can be further treated or utilized in a subsequent process step.

  20. Fluidized bed selective pyrolysis of coal

    DOEpatents

    Shang, J.Y.; Cha, C.Y.; Merriam, N.W.

    1992-12-15

    The present invention discloses a process for the pyrolysis of coal which comprises the effective utilization of two zonal inclined fluidized beds, where said zones can be selectively controlled as to temperature and heating rate. The first zonal inclined fluidized bed serves as a dryer for crushed coal and additionally is controlled to selectively pyrolyze said coal producing substantially carbon dioxide for recycle use. The second zonal inclined fluidized bed further pyrolyses the coal to gaseous, liquid and char products under controlled temperature and heating rate zones designed to economically integrate the product mix. The gas and liquid products are recovered from the gaseous effluent stream while the char which remains can be further treated or utilized in a subsequent process step. 9 figs.

  1. Mulled coal: A beneficiated coal form for use as a fuel or fuel intermediate. Phase 3, Final report

    SciTech Connect

    Not Available

    1993-08-01

    Energy International Corporation (El) was awarded a contract to evaluate a new concept for utilization of the fine coal wetcake produced by many of the physical beneficiation processes now under development. EI proposed development of a stabilized wetcake with properties that would facilitate storage, handling, transport, and subsequent conversion of the material into Coal-Water Fuel (CWF) at the point of use. The effort was performed in three phases. Phase I established the technical feasibility of stabilizing the fine coal ``wetcake`` in a form that can be readily handled and converted into a desired fuel form at the combustion site. The preferred form of stabilized ``wetcake`` was a granular free flowing material with the moisture encapsulated with the fine coal particles. The product was termed Mulled Coal. Phase I results indicated that the Mulled Coal was not only suitable as a CWF intermediate, but also had potential as a solid fuel. Phase II demonstrated the utilization of the Mulled Coal process to store and move fine coal products as a stable ``wetcake.`` Tasks in this phase tested components of the various systems required for storage, handling and combustion of the fine coals. Phase III expanded the technology by: 1. Evaluating Mulled Coal from representative coals from all producing regions in the US. 2. Development of bench-scale tests. 3. Design, construction, and operation of a 1 ton/hr continuous processing unit. 4. Evaluation of the effects of beneficiation. and 5. Developing an estimate of capital and operating costs for commercial units.

  2. Thiophenic Sulfur Compounds Released During Coal Pyrolysis.

    PubMed

    Xing, Mengwen; Kong, Jiao; Dong, Jie; Jiao, Haili; Li, Fan

    2013-06-01

    Thiophenic sulfur compounds are released during coal gasification, carbonization, and combustion. Previous studies indicate that thiophenic sulfur compounds degrade very slowly in the environment, and are more carcinogenic than polycyclic aromatic hydrocarbons and nitrogenous compounds. Therefore, it is very important to study the principle of thiophenic sulfur compounds during coal conversion, in order to control their emission and promote clean coal utilization. To realize this goal and understand the formation mechanism of thiophenic sulfur compounds, this study focused on the release behavior of thiophenic sulfur compounds during coal pyrolysis, which is an important phase for all coal thermal conversion processes. The pyrolyzer (CDS-5250) and gas chromatography-mass spectrometry (Focus GC-DSQII) were used to analyze thiophenic sulfur compounds in situ. Several coals with different coal ranks and sulfur contents were chosen as experimental samples, and thiophenic sulfur compounds of the gas produced during pyrolysis under different temperatures and heating rates were investigated. Levels of benzothiophene and dibenzothiophene were obtained during pyrolysis at temperatures ranging from 200°C to 1300°C, and heating rates ranging from 6°C/ms to 14°C/ms and 6°C/s to 14°C/s. Moreover, the relationship between the total amount of benzothiophene and dibenzothiophene released during coal pyrolysis and the organic sulfur content in coal was also discussed. This study is beneficial for understanding the formation and control of thiophenic sulfur compounds, since it provides a series of significant results that show the impact that operation conditions and organic sulfur content in coal have on the amount and species of thiophenic sulfur compounds produced during coal pyrolysis.

  3. Thiophenic Sulfur Compounds Released During Coal Pyrolysis

    PubMed Central

    Xing, Mengwen; Kong, Jiao; Dong, Jie; Jiao, Haili; Li, Fan

    2013-01-01

    Abstract Thiophenic sulfur compounds are released during coal gasification, carbonization, and combustion. Previous studies indicate that thiophenic sulfur compounds degrade very slowly in the environment, and are more carcinogenic than polycyclic aromatic hydrocarbons and nitrogenous compounds. Therefore, it is very important to study the principle of thiophenic sulfur compounds during coal conversion, in order to control their emission and promote clean coal utilization. To realize this goal and understand the formation mechanism of thiophenic sulfur compounds, this study focused on the release behavior of thiophenic sulfur compounds during coal pyrolysis, which is an important phase for all coal thermal conversion processes. The pyrolyzer (CDS-5250) and gas chromatography–mass spectrometry (Focus GC-DSQII) were used to analyze thiophenic sulfur compounds in situ. Several coals with different coal ranks and sulfur contents were chosen as experimental samples, and thiophenic sulfur compounds of the gas produced during pyrolysis under different temperatures and heating rates were investigated. Levels of benzothiophene and dibenzothiophene were obtained during pyrolysis at temperatures ranging from 200°C to 1300°C, and heating rates ranging from 6°C/ms to 14°C/ms and 6°C/s to 14°C/s. Moreover, the relationship between the total amount of benzothiophene and dibenzothiophene released during coal pyrolysis and the organic sulfur content in coal was also discussed. This study is beneficial for understanding the formation and control of thiophenic sulfur compounds, since it provides a series of significant results that show the impact that operation conditions and organic sulfur content in coal have on the amount and species of thiophenic sulfur compounds produced during coal pyrolysis. PMID:23781126

  4. Dewatering studies of fine clean coal

    SciTech Connect

    Parekh, B.K.

    1991-01-01

    The main objective of the present research program is to study and understand dewatering characteristics of ultrafine clean coal obtained using the advanced column flotation technique from the Kerr-McGee's Galatia preparation plant fine coal waste stream. It is also the objective of the research program to utilize the basic study results, i.e., surface chemical, particle shape particle size distribution, etc., in developing a cost-effective dewatering method. The ultimate objective is to develop process criteria to obtain a dewatered clean coal product containing less that 20 percent moisture, using the conventional vacuum dewatering equipment. (VC)

  5. Supercritical Fluid Reactions for Coal Processing

    SciTech Connect

    Charles A. Eckert

    1997-11-01

    Exciting opportunities exist for the application of supercritical fluid (SCF) reactions for the pre-treatment of coal. Utilizing reactants which resemble the organic nitrogen containing components of coal, we developed a method to tailor chemical reactions in supercritical fluid solvents for the specific application of coal denitrogenation. The tautomeric equilibrium of a Schiff base was chosen as one model system and was investigated in supercritical ethane and cosolvent modified supercritical ethane. The Diels-Alder reaction of anthracene and 4-phenyl-1,2,4-triazoline-3,5-dione (PTAD) was selected as a second model system, and it was investigated in supercritical carbon dioxide.

  6. Coal gasification for electric power generation.

    PubMed

    Spencer, D F; Gluckman, M J; Alpert, S B

    1982-03-26

    The electric utility industry is being severely affected by rapidly escalating gas and oil prices, restrictive environmental and licensing regulations, and an extremely tight money market. Integrated coal gasification combined cycle (IGCC) power plants have the potential to be economically competitive with present commercial coal-fired power plants while satisfying stringent emission control requirements. The current status of gasification technology is discussed and the critical importance of the 100-megawatt Cool Water IGCC demonstration program is emphasized.

  7. Chemical characteristics of Victorian brown coal

    SciTech Connect

    Perry, G.J.; Allardice, D.J.; Kiss, L.T.

    1983-01-01

    The chemical properties of brown coal in Victoria, Australia, are discussed. Of importance is the content of moisture, minerals and inorganics, and organic oxygen compounds. Information on the variation in properties within a seam and between coalfields is presented. A discussion of the effects of the properties of the coal on its utilization is included. This covers carbonate formation during hydrogenation and ash formation during combustion.

  8. Minimization of moisture readsorption in dried coal samples

    SciTech Connect

    Karthikeyan, M.

    2008-07-01

    Low-rank coals constitute a major energy source for the future as reserves of such high-moisture coals around the world are vast. Currently they are considered undesirable since high moisture content entails high transportation costs, potential safety hazards in transportation and storage, and the low thermal efficiency obtained in combustion of such coals. Furthermore, low-moisture-content coal is needed for the various coal pyrolysis and gasification processes. Hence, various upgrading processes have been developed to reduce the moisture content. Moisture readsorption and spontaneous combustion are important issues in coal upgrading processes. This article discusses results of laboratory experiments conducted to study the options for minimization of readsorption of moisture after drying of selected coal samples. Results suggest that there is little benefit in drying low-rank coal at high temperatures. It was found that the higher the amount of bitumen used for coating, the lower is the readsorption of moisture by dried coal. Also, mixing high-temperature-dried coal with wet coal in appropriate proportion can yield reduced moisture content as the sensible heat in the hot coal is utilized for evaporation.

  9. Coal availability and coal recoverability studies of the Matewan 7.5-minute quadrangle, Kentucky -- A USGS National Coal Resources Data System (NCRDS) CD-ROM

    SciTech Connect

    Carter, M.D.; Levine, M.J.; Teeters, D.D.; Sergeant, R.E.

    1995-12-31

    The Coal Availability Study program was initiated in 1987 by the US Geological survey (USGS) and State Geological Surveys of the major coal-bearing regions. The purpose of the program is to identify areas of societal and technologic restrictions to mining and to estimate the amount of coal remaining in the ground that may be available for development under current regulatory and general economic and technologic conditions. In 1990, the US Bureau of Mines (USBM) began a follow-on Coal Recoverability Study program to determine the recoverability and marketability of the coal within these same study areas. The Matewan, Kentucky, study area was the first of the Coal Availability and Coal Recoverability Studies to be completed. Coal bed crop lines, mined areas, and restrictions to mining were plotted on 1:24,000-scale maps and geographic information system (GIS) analytical techniques provided by the NCRDS were applied to delineate coal availability. This CD-ROM contains both graphical images of the original GIS files created during the project and the original GIS files. Thickness and geochemical data for the coal beds that were utilized for the study are also included. The CD-ROM will be part of the USGS Digital Data Series and will be available from the USGS Branch of Coal Geology. Ultimately it will be available on Internet. The CD-ROM will be on both MSDOS and Macintosh platforms.

  10. Coal liquefaction

    DOEpatents

    Schindler, Harvey D.

    1985-01-01

    In a two-stage liquefaction wherein coal, hydrogen and liquefaction solvent are contacted in a first thermal liquefaction zone, followed by recovery of an essentially ash free liquid and a pumpable stream of insoluble material, which includes 850.degree. F.+ liquid, with the essentially ash free liquid then being further upgraded in a second liquefaction zone, the liquefaction solvent for the first stage includes the pumpable stream of insoluble material from the first liquefaction stage, and 850.degree. F.+ liquid from the second liquefaction stage.

  11. Induced polarization signature of coal seam fires

    NASA Astrophysics Data System (ADS)

    Shao, Zhenlu; Revil, André; Mao, Deqiang; Wang, Deming

    2017-03-01

    Coal seam fires are a worldwide disaster of both ecological and economic importance. Their remote detection from the ground surface or using airborne techniques is required for developing efficient strategies to extinguish them. We investigate here the use of time-domain-induced polarization to localize coal seam fires. For laboratory experiments, we first introduce a modified time-domain-induced polarization methodology to quickly acquire and invert the secondary voltage distribution mapped after the shutdown of the primary current. A set of sandbox experiments is conducted in which coal is embedded into humidified sand. Raw coal alone generates significant induced polarization anomalies, above those shown by the sand. Even higher induced polarization anomalies are detected in presence of a coal seam fire. We postulate that the higher chargeability is due to the pyrolysis, which may enhance electronic polarization or the polarization associated with the cation exchange capacity (CEC) of the material. The position of the coal seam fire is well recovered inside the tank by inverting the secondary voltages in term of a source current density distribution. We also collected field data over a recognized coal seam fire in Colorado, USA. A chargeability anomaly (˜800 mV V-1) and a resistivity anomaly (˜1 Ohm m) are observed at the position of the coal seam fire. We propose a normalized burning front index (a scaled normalized chargeability) to image and localize, without ambiguity, the position of the coal seam fire in the subsurface. The 3-D reconstructed target is located below a negative self-potential anomaly (similarly to what is observed in laboratory experiments) and a temperature anomaly recorded at a depth of 30 cm.

  12. Induced polarization signature of coal seam fires

    NASA Astrophysics Data System (ADS)

    Shao, Zhenlu; Revil, André; Mao, Deqiang; Wang, Deming

    2016-12-01

    Coal seam fires are a worldwide disaster of both ecological and economic importance. Their remote detection from the ground surface or using airborne techniques is required for developing efficient strategies to extinguish them. We investigate here the use of time-domain induced polarization to localize coal seam fires. For laboratory experiments, we first introduce a modified time-domain induced polarization methodology to quickly acquire and invert the secondary voltage distribution mapped after the shutdown of the primary current. A set of sandbox experiments is conducted in which coal is embedded into humidified sand. Raw coal alone generates significant induced polarization anomalies, significantly above those shown by the sand. Even higher induced polarization anomalies are detected in presence of a coal seam fire. We postulate that the higher chargeability is due to the pyrolysis, which may enhance electronic polarization or the polarization associated with the cation exchange capacity of the material. The position of the coal seam fire is well recovered inside the tank by inverting the secondary voltages in term of a source current density distribution. We also collected field data over a recognized coal seam fire in Colorado, USA. A chargeability anomaly (˜800 mV/V) and a resistivity anomaly (˜1 Ohm m) are observed at the position of the coal seam fire. We propose a normalized burning front index (a scaled normalized chargeability) to image and localize, without ambiguity, the position of the coal seam fire in the subsurface. The 3D reconstructed target is located below a negative self-potential anomaly (similarly to what is observed in laboratory experiments) and a temperature anomaly recorded at a depth of 30 cm.

  13. Soil Ecology

    NASA Astrophysics Data System (ADS)

    Killham, Ken

    1994-04-01

    Soil Ecology is designed to meet the increasing challenge faced by today's environmental scientists, ecologists, agriculturalists, and biotechnologists for an integrated approach to soil ecology. It emphasizes the interrelations among plants, animals, and microbes, by first establishing the fundamental physical and chemical properties of the soil habitat and then functionally characterizing the major components of the soil biota and some of their most important interactions. The fundamental principles underpinning soil ecology are established and this then enables an integrated approach to explore and understand the processes of soil nutrient (carbon, nitrogen, and phosphorus) cycling and the ecology of extreme soil conditions such as soil-water stress. Two of the most topical aspects of applied soil ecology are then selected. First, the ecology of soil pollution is examined, focusing on acid deposition and radionuclide pollution. Second, manipulation of soil ecology through biotechnology is discussed, illustrating the use of pesticides and microbial inocula in soils and pointing toward the future by considering the impact of genetically modified inocula on soil ecology.

  14. Microbially Mediated Leaching of Low-Sulfur Coal in Experimental Coal Columns †

    PubMed Central

    Radway, JoAnn C.; Tuttle, Jon H.; Fendinger, Nicholas J.; Means, Jay C.

    1987-01-01

    The leaching of a low-sulfur bituminous coal was investigated with experimental coal columns subjected to simulated rainfall events. Leachates from the columns became dominated by iron-oxidizing bacteria as evidenced by specific enrichment cultures and measurements of CO2 assimilation. Heterotrophic microorganisms were also present in the coal leachates, but their numbers and activity decreased with decreasing pH. This pattern could be reversed by increasing the pH of the coal with lime. Organosulfur-utilizing bacteria made up a substantial portion of the heterotrophic community. Measurements of microbial activity in coal cores indicated that although much of the microbial community remained associated with coal particles, the relative abundance of heterotrophs and autotrophs in leachate seemed to reflect that in coal cores. When bacterial growth was delayed by autoclaving coal samples, acid production and leaching of iron and sulfur were also delayed. Rapid leaching of materials from coal thus appears to be strongly dependent on the presence of the natural bacterial microflora. PMID:16347336

  15. Annual Coal Distribution

    EIA Publications

    2016-01-01

    The Annual Coal Distribution Report (ACDR) provides detailed information on domestic coal distribution by origin state, destination state, consumer category, and method of transportation. Also provided is a summary of foreign coal distribution by coal-producing state. All data for the report year are final and this report supersedes all data in the quarterly distribution reports.

  16. Coal gasifier cogeneration powerplant project

    NASA Technical Reports Server (NTRS)

    Shure, L. I.; Bloomfield, H. S.

    1980-01-01

    Industrial cogeneration and utility pr systems were analyzed and a conceptual design study was conducted to evaluate the economic feasibility of a coal gasifier power plant for NASA Lewis Research Center. Site location, plant size, and electric power demand were considered in criteria developed for screening and selecting candidates that could use a wide variety of coals, including that from Ohio. A fluidized bed gasifier concept was chosen as the baseline design and key components of the powerplant were technically assessed. No barriers to environmental acceptability are foreseen. If funded, the powerplant will not only meet the needs of the research center, but will reduce the commercial risk for utilities and industries by fully verifying and demonstrating the technology, thus accelerating commercialization.

  17. Mercury emissions and coal-fired power plants: Understanding the problems and identifying solutions

    SciTech Connect

    Davis, S.E.

    1997-12-31

    Electric utility emissions contribute to an array of air quality concerns, most notably ground-level ozone, acid deposition, global warming, and fine particulate pollution. More recently, electric utility emissions of air toxics such as mercury have been linked to serious ecological health effects, especially in fish-eating birds. Another issue that is gaining attention is that of eutrophication in marine waters from nitrogen oxide emissions. Coal-fired power plants warrant special consideration, particularly in regards to mercury. Coal-fired power plants currently represent over 30% of controllable anthropogenic emissions in the US and are expected to emit nearly half of all anthropogenic emissions in the US by 2010. However, because the human health threshold for mercury is not known with certainty and mercury control technologies such as activated carbon injection are extremely expensive, mercury emissions from electric utilities have not been addressed in the US through either regulation or voluntary initiatives. The Center is beginning to evaluate the viability of no- or low-regrets measures that may be more consistent with the current state of the science on human and ecological health effects. The Center is also looking at options to reduce eutophication. Specifically, the Center has: hosted a workshop to assess the viability of low-cost mercury control options for electric utilities, developed a proposal to undertake a mercury banking initiative, worked to reduce compliance costs associated with multiple and conflicting regulations, and investigated the potential benefits and workability of NOx trading between air and water sources These activities are described in greater detail in the Center`s paper.

  18. Coal combustion products

    USGS Publications Warehouse

    Kalyoncu, R.S.; Olson, D.W.

    2001-01-01

    Coal-burning powerplants, which supply more than half of U.S. electricity, also generate coal combustion products, which can be both a resource and a disposal problem. The U.S. Geological Survey collaborates with the American Coal Ash Association in preparing its annual report on coal combustion products. This Fact Sheet answers questions about present and potential uses of coal combustion products.

  19. Coal to electricity - Integrated gasification combined cycle

    NASA Astrophysics Data System (ADS)

    Corman, J. C.

    1982-04-01

    An advanced energy conversion system - the integrated gasification combined cycle (IGCC) - has been identified as an efficient and economical means of converting coal to electricity for utility application. Several demonstration projects on a near-commercial scale are approaching the construction stage. A coal conversion facility has been constructed to simulate the operational features of an IGCC. This process evaluation facility (PEF-scale) performs a dual function: (1) acquiring and processing data on the performance of the individual components - coal gasifier, gas clean up, and turbine simulator - that comprise the IGCC concept and (2) simulating the total system in an operational control mode that permits evaluation of system response to imposed load variations characteristic of utility operation. The results to date indicate that an efficient, economical IGCC can be designed so that the gasification/gas clean up plant and the power generation system operate compatibly to meet utility requirements in an environmentally acceptable manner.

  20. Novel injector techniques for coal-fueled diesel engines

    SciTech Connect

    Badgley, P.R.

    1992-09-01

    This report, entitled Novel Injector Techniques for Coal-Fueled Diesel Engines,'' describes the progress and findings of a research program aimed at development of a dry coal powder fuel injector in conjunction with the Thermal Ignition Combustion System (TICS) concept to achieve autoignition of dry powdered coal in a single-cylinder high speed diesel engine. The basic program consisted of concept selection, analysis and design, bench testing and single cylinder engine testing. The coal injector concept which was selected was a one moving part dry-coal-powder injector utilizing air blast injection. Adiabatics has had previous experience running high speed diesel engines on both direct injected directed coal-water-slurry (CWS) fuel and also with dry coal powder aspirated into the intake air. The Thermal Ignition Combustion System successfully ignited these fuels at all speeds and loads without requiring auxiliary ignition energy such as pilot diesel fuel, heated intake air or glow or spark plugs. Based upon this prior experience, it was shown that the highest efficiency and fastest combustion was with the dry coal, but that the use of aspiration of coal resulted in excessive coal migration into the engine lubrication system. Based upon a desire of DOE to utilize a more modern test engine, the previous naturally-aspirated Caterpillar model 1Y73 single cylinder engine was replaced with a turbocharged (by use of shop air compressor and back pressure control valve) single cylinder version of the Cummins model 855 engine.

  1. Direct utilization - recovery of minerals from coal fly ash. Technical progress report, January 1-March 31, 1982. [CO/Cl/sub 2/; C/Cl/sub 2/ and COCl

    SciTech Connect

    Burnet, G.; Dunker, J.W.; Murtha, M.J.

    1982-05-01

    Research on the chlorination of a leached Texas lignite fly ash has examined CO/Cl/sub 2/, C/Cl/sub 2/, and COCl/sub 2/ as reaction systems. Arrhenius plots suggest that there is a change in reaction mechanisms with increasing temperature in both the CO/Cl/sub 2/ and the C/Cl/sub 2/ systems. Reaction in the COCl/sub 2/ system appears to be limited by mass transfer, but this system has the highest initial reaction rates at lower temperatures of the systems studied. The research of coal fly ash sinter processes include the collection of limestone-soda ash sinter alumina extraction data using two additional fly ashes. A fly ash sample containing over 30 weight percent alumina was obtained from South Africa. This fly ash, which is the highest alumina content ash that has been investigated in this work, yielded, for optimum sinter mixture composition, over 90% alumina extraction. The other fly ash processed was a subbituminous fly ash of western coal which was obtained from the Ottumwa, Iowa, power station. This fly ash is very similar to other western coal fly ashes which have been investigated previously, but this ash is available locally and it will be used in the larger-scale sinter tests using the rotary kiln. Several tests were run investigating the desilication of extracted filtrates. Research has also been conducted on the magnetic separation of coal fly ash in a water slurry, and data are presented on the use of magnetically separated fly ash as heavy medium material in coal beneficiation.

  2. Ecological Inference

    NASA Astrophysics Data System (ADS)

    King, Gary; Rosen, Ori; Tanner, Martin A.

    2004-09-01

    This collection of essays brings together a diverse group of scholars to survey the latest strategies for solving ecological inference problems in various fields. The last half-decade has witnessed an explosion of research in ecological inference--the process of trying to infer individual behavior from aggregate data. Although uncertainties and information lost in aggregation make ecological inference one of the most problematic types of research to rely on, these inferences are required in many academic fields, as well as by legislatures and the Courts in redistricting, by business in marketing research, and by governments in policy analysis.

  3. Recovery of ultra fine bituminous coal from screen-bowl centrifuge effluent: A possible feedstock for coal-water slurry fuels?

    SciTech Connect

    Morrison, J.L.; Miller, B.G.; Battista, J.J.

    1998-07-01

    Coal fines have historically been viewed as a size fraction which are difficult to handle and expensive to clean and dewater. Consequently, many coal suppliers in the past have chosen to discard their coal fines in slurry impoundments rather than beneficiating them. These disposal costs are then passed onto the end user. Today, with the advent of advanced fine coal cleaning technologies, more stringent environmental policies, and increased pressure by coal-fired utilities to reduce their operating costs, the industry is taking a more progressive look at fine coal recovery options. This paper discusses a fine coal recovery project which is currently being conducted at the Homer City Coal Cleaning Plant (HCCCP) located in western Pennsylvania. The HCCCP utilizes heavy media cyclone, spiral, and conventional froth flotation circuits to clean approximately 4.3 million tons of low to medium volatile bituminous coal annually for the adjacent 1,884 net MW{sub e} Homer City Generating Station. The project focuses on recovering minus 325 mesh coal fines from the effluent of screen-bowl centrifuges. The HCCCP screen-bowl effluent contains approximately 3 to 5 wt.% of suspended coal fines. Approximately 100,000 tons of coal fines are estimated to be lost per year. These coal fines represent a Btu loss, require flocculant prior to the static thickeners and belt presses, contribute excess moisture to the plant refuse which leads to handling and compaction problems during refuse disposal, and contribute to the premature filling of the refuse site.

  4. Recovery of ultra fine bituminous coal from screen-bowl centrifuge effluent: A possible feedstock for coal-water slurry fuels?

    SciTech Connect

    Morrison, J.L.; Miller, B.G.; Battista, J.J.

    1998-04-01

    Coal fines have historically been viewed as a size fraction which are difficult to handle and expensive to clean and dewater. Consequently, many coal suppliers in the past have chosen to discard their coal fines in slurry impoundments rather than beneficiating them. These disposal costs are then passed onto the end user. Today, with the advent of advanced fine coal cleaning technologies, more stringent environmental policies, and increased pressure by coal-fired utilities to reduce their operating costs, the industry is taking a more progressive look at fine coal recovery options. This paper discusses a fine coal recovery project which is currently being conducted at the Homer City Coal Cleaning Plant (HCCCP) located in western Pennsylvania. The HCCCP utilizes heavy media cyclone, spiral, and conventional froth flotation circuits to clean approximately 4.3 million tons of low to medium volatile bituminous coal annually for the adjacent 1,884 net MW{sub e} Homer City Generating Station. The project focuses on recovering minus 325 mesh coal fines from the effluent of screen-bowl centrifuges. The HCCCP screen-bowl effluent contains approximately 3 to 5 wt.% of suspended coal fines. Approximately 100,000 tons of coal fines are estimated to be lost per year. These coal fines represent a Btu loss, require flocculent prior to the static thickeners and belt presses, contribute excess moisture to the plant refuse which leads to handling and compaction problems during refuse disposal, and contribute to the premature filling of the refuse site.

  5. Low-rank coal research: Volume 3, Combustion research: Final report. [Great Plains

    SciTech Connect

    Mann, M. D.; Hajicek, D. R.; Zobeck, B. J.; Kalmanovitch, D. P.; Potas, T. A.; Maas, D. J.; Malterer, T. J.; DeWall, R. A.; Miller, B. G.; Johnson, M. D.

    1987-04-01

    Volume III, Combustion Research, contains articles on fluidized bed combustion, advanced processes for low-rank coal slurry production, low-rank coal slurry combustion, heat engine utilization of low-rank coals, and Great Plains Gasification Plant. These articles have been entered individually into EDB and ERA. (LTN)

  6. Evaluating the fate of metals in air pollution control residues from coal-fired power plants

    EPA Science Inventory

    Changes in air pollution control at coal-fired power plants are shifting mercury (Hg) and other metals from the flue gas at electric utilities to the coal ash. This paper presents data from the characterization of73 coal combustion residues (CCRs) evaluating the composition and c...

  7. Cognitive ecology.

    PubMed

    Hutchins, Edwin

    2010-10-01

    Cognitive ecology is the study of cognitive phenomena in context. In particular, it points to the web of mutual dependence among the elements of a cognitive ecosystem. At least three fields were taking a deeply ecological approach to cognition 30 years ago: Gibson's ecological psychology, Bateson's ecology of mind, and Soviet cultural-historical activity theory. The ideas developed in those projects have now found a place in modern views of embodied, situated, distributed cognition. As cognitive theory continues to shift from units of analysis defined by inherent properties of the elements to units defined in terms of dynamic patterns of correlation across elements, the study of cognitive ecosystems will become an increasingly important part of cognitive science.

  8. Impacts of Coal Seam Gas (Coal Bed Methane) Extraction on Water Resources in Australia

    NASA Astrophysics Data System (ADS)

    Post, David

    2014-05-01

    While extraction of methane from shale gas deposits has been the principal source of the recent expansion of the industry in the United States and potentially in Europe, extraction of methane from coal bed methane deposits (termed 'coal seam gas' in Australia) has been the focus in Australia. The two sources of methane share many of the same characteristics, with hydraulic fracturing generally (but not always) required to extract coal seam gas also. However, as coal seam gas deposits generally occur at shallower depths than shale gas, the potential impacts of extraction and hydraulic fracturing on surface and groundwater resources may be potentially of more concern for coal seam gas than for shale gas. To determine the potential for coal seam gas extraction (and coal mining more generally) to impact on water resources and water-related assets in Australia, the Commonwealth Government has recently established an Independent Expert Scientific Committee (the IESC) to provide advice to Commonwealth and State Government regulators on potential water-related impacts of coal seam gas and large coal mining developments. The IESC has in turn implemented a program of research termed 'bioregional assessments' to investigate these potential impacts. A bioregional assessment can be defined as a scientific analysis of the ecology, hydrology, geology and hydrogeology of a bioregion, with explicit assessment of the potential direct, indirect and cumulative impacts of coal seam gas and large coal mining development on water resources. These bioregional assessments are now being carried out across large portions of eastern Australia which are underlain by coal reserves. Further details of the program can be found at http://www.environment.gov.au/coal-seam-gas-mining/bioregional-assessments.html. This presentation will provide an overview of the issues related to the impacts of coal seam gas extraction on surface and groundwater resources and water-related assets in Australia. The

  9. Cooperative research program in coal liquefaction. Quarterly report, May 1, 1993--October 31, 1993

    SciTech Connect

    Hoffman, G.P.

    1994-07-01

    This report summarizes progress in four areas of research under the general heading of Coal Liquefaction. Results of studies concerning the coliquefaction of coal with waste organic polymers or chemical products of these polymers were reported. Secondly, studies of catalytic systems for the production of clean transportation fuels from coal were discussed. Thirdly, investigations of the chemical composition of coals and their dehydrogenated counterparts were presented. These studies were directed toward elucidation of coal liquefaction processes on the chemical level. Finally, analytical methodologies developed for in situ monitoring of coal liquefaction were reported. Techniques utilizing model reactions and methods based on XAFS, ESR, and GC/MS are discussed.

  10. Effects of temperature and glucose limitation on coal solubilization by Candida ML13

    SciTech Connect

    Evans, B. )

    1991-04-01

    Biological processing has received considerable attention in recent years as a technology for the utilization of low-ranked coals. Several fungi and actinomycetes have been shown to liquefy highly oxidized coal in pure culture under aerobic conditions. This report describes the optimization of cultural conditions for coal solubilization by Candida sp. ML13, an organism originally isolated from a naturally weathered coal seam. Coal solubilization by surface cultures of Candida sp. has previously been demonstrated. The author describes here the elicitation of the activity in submerged cultures as well as the effect of carbohydrate concentration, carbon source, temperature, and agitation rate on coal solubilization by this organism.

  11. Integration of aquatic ecology and biological oceanographic knowledge for development of area-based eutrophication assessment criteria leading to water resource remediation and utilization management: a case study in Tha Chin, the most eutrophic river of Thailand.

    PubMed

    Meksumpun, Charumas; Meksumpun, Shettapong

    2008-01-01

    This research was carried out in Tha Chin Watershed in the central part of Thailand with attempts to apply multidisciplinary knowledge for understanding ecosystem structure and response to anthropogenic pollution and natural impacts leading to a proposal for an appropriate zonation management approach for sustainable utilization of the area. Water quality status of the Tha Chin River and Estuary had been determined by analyzing ecological, hydrological, and coastal oceanographic information from recent field surveys (during March 2006 to November 2007) together with secondary data on irrigation, land utilization, and socio-economic status.Results indicated that the Tha Chin River and Estuary was eutrophic all year round. Almost 100% of the brackish to marine areas reflected strongly hypertrophic water condition during both dry and high-loading periods. High NH(4)(+) and PO(4)(3-) loads from surrounding agricultural land use, agro-industry, and community continuously flew into the aquatic environment. Deteriorated ecosystem was clearly observed by dramatically low DO levels (ca 1 mg/l) in riverine to coastal areas and Noctiluca and Ceratium red tide outbreaks occurred around tidal front closed to the estuary. Accordingly, fishery resources were significantly decreased. Some riverine benthic habitats became dominated by deposit-feeding worms e.g. Lumbriculus, Branchiura, and Tubifex, while estuarine benthic habitats reflected succession of polychaetes and small bivalves. Results on analysis on integrated ecosystem responses indicated that changing functions were significantly influenced by particulates and nutrients dynamics in the system.Based on the overall results, the Tha Chin River and Estuary should be divided into 4 zones (I: Upper freshwater zone; II: Middle freshwater zone; III Lower freshwater zone; and IV: Lowest brackish to marine zone) for further management schemes on water remediation. In this study, the importance of habitat morphology and water flow

  12. Constructing ecologies.

    PubMed

    Cropp, Roger; Norbury, John

    2012-02-07

    We synthesize the generic properties of ecologically realistic multi-trophic level models and define criteria for ecological realism. We define an "ecospace" in which all ecologically realistic dynamics are confined, and construct "resource rays" that define the resources available to each species at every point in the ecospace. Resource rays for a species are lines from a vertex of maximum resource to the opposite boundary where no resources are available. The growth functions of all biota normally decrease along their resource rays, and change sign from positive to negative. This property prescribes that each species must have a zero isosurface within the ecospace. We illustrate our conditions on a highly cited three trophic level model from population dynamics, showing how to extend this system biologically consistently to a closed ecological system. Our synthesis extends the concept of carrying capacity of population models to explicitly include exhaustion of limiting resources, and so allows for population biology models to be considered as ecologically closed systems with respect to a key limiting nutrient. This approach unifies many theoretical and applied models in a common biogeochemical framework, facilitates better understanding of the key structures of complex ecologies, and suggests strategies for efficient design of experiments.

  13. Mercury in US coal: Observations using the COALQUAL and ICR data

    USGS Publications Warehouse

    Quick, J.C.; Brill, T.C.; Tabet, D.E.

    2003-01-01

    The COALQUAL data set lists the mercury content of samples collected from the in-ground US coal resource, whereas the ICR data set lists the mercury content of samples collected from coal shipments delivered to US electric utilities. After selection and adjustment of records, the COALQUAL data average 0.17 ??g Hg/g dry coal or 5.8 kg Hg/PJ, whereas the ICR data average 0.10 ??g Hg/g dry coal or 3.5 kg Hg/PJ. Because sample frequency does not correspond to the inground or produced tonnage, these values are not accurate estimates of the mercury content of either in-ground or delivered US coal. Commercial US coal contains less mercury than previously estimated, and its mercury content has declined during the 1990s. Selective mining and more extensive coal washing may accelerate the current trend towards lower mercury content in coal burned at US electric utilities.

  14. USE OF COAL DRYING TO REDUCE WATER CONSUMED IN PULVERIZED COAL POWER PLANTS

    SciTech Connect

    Edward Levy; Harun Bilirgen; Ursla Levy; John Sale; Nenad Sarunac

    2006-01-01

    This is the twelfth Quarterly Report for this project. The background and technical justification for the project are described, including potential benefits of reducing fuel moisture using power plant waste heat, prior to firing the coal in a pulverized coal boiler. During this last Quarter, the development of analyses to determine the costs and financial benefits of coal drying was continued. The details of the model and key assumptions being used in the economic evaluation are described in this report and results are shown for a drying system utilizing a combination of waste heat from the condenser and thermal energy extracted from boiler flue gas.

  15. National Coal Quality Inventory (NaCQI) and U.S. Geological Survey Coal Quality Databases

    USGS Publications Warehouse

    ,

    1999-01-01

    Coal will remain a very significant part of U.S. energy needs (fig.l), even though there will continue to be concern about environmental impacts associated with its use. Currently, about 88 percent of U.S. coal production is used by electric utilities. The remaining 12 percent is either exported or used domestically for other industrial applications, such as coke for steel production.

  16. USGS international activities in coal resources

    USGS Publications Warehouse

    ,

    1999-01-01

    During the last 30 years the U.S. Geological Survey (USGS) has been engaged in coal exploration and characterization in more that 30 foreign countries, including India, Pakistan, China, Turkey, several Eastern European countries, Russia, and other former Soviet Union countries. Through this work, the USGS has developed an internationally recognized capability for assessing coal resources and defining their geochemical and physical characteristics. More recently, these data have been incorporated into digital databases and Geographic Information System (GIS) digital map products. The USGS has developed a high level of expertise in assessing the technological, economic, environmental, and human health impacts of coal occurrences and utilization based on comprehensive characterization of representative coal samples.

  17. Solar coal gasification

    NASA Astrophysics Data System (ADS)

    Gregg, D. W.; Aiman, W. R.; Otsuki, H. H.; Thorsness, C. B.

    1980-01-01

    A preliminary evaluation of the technical and economic feasibility of solar coal gasification has been performed. The analysis indicates that the medium-Btu product gas from a solar coal-gasification plant would not only be less expensive than that from a Lurgi coal-gasification plant but also would need considerably less coal to produce the same amount of gas. A number of possible designs for solar coal-gasification reactors are presented. These designs allow solar energy to be chemically stored while at the same time coal is converted to a clean-burning medium-Btu gas.

  18. Catagenesis of coals

    SciTech Connect

    Stanov, V.V.

    1981-09-01

    On the basis of the equations of chemical kinetics and thermodynamics a general equation is derived for the metamorphosis of coals. This equation is used to investigate the conditions for catagenic processes in several coal deposits and oil-bearing structures. It is shown that the catagenesis of coal ceases when the temperature falls in connection with uplift and denudation of the strata surrounding the coal. If there is a very rapid burial of the coal-bearing rocks and thus rapid heating, the catagenesis lags somewhat behind coals and anthracites. Catagenesis of lignites is governed by the pressure and rate of burial.

  19. Coal desulfurization process

    NASA Technical Reports Server (NTRS)

    Hsu, G. C.; Gavalas, G. R.; Ganguli, P. S.; Kalfayan, S. H.

    1978-01-01

    A method for chlorinolysis of coal is an organic solvent at a moderate temperautre and atmospheric pressure has been proven to be effective in removing sulfur, particularly the organic sulfur, from coal. Chlorine gas is bubbled through a slurry of moist coal in chlorinated solvent. The chlorinated coal is separated, hydrolyzed and the dechlorinated. Preliminary results of treating a high sulfutr (4.77%S) bituminous coal show that up to 70% organic sulfur, 90% hyritic sulfur and 76% total sulfur can be removed. The treated coal is dechlorinated by heating at 500 C. The presence of moisture helps to remove organic sulfur.

  20. Coal extraction - environmental prediction

    SciTech Connect

    C. Blaine Cecil; Susan J. Tewalt

    2002-08-01

    To predict and help minimize the impact of coal extraction in the Appalachian region, the U.S. Geological Survey (USGS) is addressing selected mine-drainage issues through the following four interrelated studies: spatial variability of deleterious materials in coal and coal-bearing strata; kinetics of pyrite oxidation; improved spatial geologic models of the potential for drainage from abandoned coal mines; and methodologies for the remediation of waters discharged from coal mines. As these goals are achieved, the recovery of coal resources will be enhanced. 2 figs.

  1. Hydrodesulfurization of chlorinized coal

    NASA Technical Reports Server (NTRS)

    Kalvinskas, J. J.; Rohatgi, N. K. (Inventor)

    1983-01-01

    A method of desulfurization is described in which high sulfur coals are desulfurized by low temperature chlorinolysis of coal in liquid media, preferably water, followed by hydrodesulfurization at a temperature above 500 C. The coals are desulfurized to an extent of up to 90% by weight and simultaneously dechlorinated to a chlorine content below 0.1% by weight. The product coals have lower volatiles loss, lower oxygen and nitrogen content and higher fixed carbon than raw coals treated with hydrogen under the same conditions. Heating the chlorinated coal to a temperature above 500 C. in inert gas such as nitrogen results in significantly less desulfurization.

  2. Coal feed lock

    DOEpatents

    Pinkel, I. Irving

    1978-01-01

    A coal feed lock is provided for dispensing coal to a high pressure gas producer with nominal loss of high pressure gas. The coal feed lock comprises a rotor member with a diametral bore therethrough. A hydraulically activated piston is slidably mounted in the bore. With the feed lock in a charging position, coal is delivered to the bore and then the rotor member is rotated to a discharging position so as to communicate with the gas producer. The piston pushes the coal into the gas producer. The rotor member is then rotated to the charging position to receive the next load of coal.

  3. The Dangers of "Proofiness” in the Evaluation of Mountaintop Removal Coal Mining Impacts

    EPA Science Inventory

    Assessment of ecological and human health impacts from coal mining in West Virginia presents challenges for agencies responsible for permitting and evaluating those impacts. These challenges include correctly identifying, locating and diagnosing stressor sources and understandin...

  4. ADVANCED SOLIDS NMR STUDIES OF COAL STRUCTURE AND CHEMISTRY

    SciTech Connect

    1997-09-01

    This report covers the progress made on the title project for the project period. The study of coal chemical structure is a vital component of research efforts to develop better chemical utilization of coals, and for furthering our basic understanding of coal geochemistry. In this grant we are addressing several structural questions pertaining to coals with advances in state of the art solids NMR methods. The main activity during this granting period was a completion of a detailed comparative analysis of the suite of spectral editing techniques developed in our laboratory for this purpose. The appended report is a manuscript being submitted to the Journal of Magnetic Resonance on this subject.

  5. Ignition Rate Measurement of Laser-Ignited Coals

    SciTech Connect

    Chen, J.C.; Kabadi, V.

    1997-05-01

    We are proposing to establish a novel experiment to study the ignition of pulverized coals under conditions relevant to utility boiler. Specifically, our aims are to determine the ignition mechanism, which is either homogeneous or heterogeneous, of pulverized coal particles under various condition of particle size, coal type, freestream oxygen concentration, and heating rate. Furthermore, we will measure the ignition rate constants of various coals by direct measurement of the particle temperature at ignition, and incorporating this measurement into a mathematical model for the ignition process.

  6. Ignition Rate Measurement of Laser-Ignited Coals

    SciTech Connect

    John C. Chen; Vinayak Kabadi

    1997-10-31

    We established a novel experiment to study the ignition of pulverized coals under conditions relevant to utility boilers. Specifically, we determined the ignition mechanism of pulverized-coal particles under various conditions of particle size, coal type, and freestream oxygen concentration. We also measured the ignition rate constant of a Pittsburgh #8 high-volatile bituminous coal by direct measurement of the particle temperature at ignition, and incorporating this measurement into a mathematical model for the ignition process. The model, called Distributed Activation Energy Model of Ignition, was developed previously by our group to interpret conventional drop-tube ignition experiments, and was modified to accommodate the present study.

  7. Fundamental bioprocessing research for coal applications

    SciTech Connect

    Kaufman, E.N.; Scott, T.C.

    1995-06-01

    The purpose of this program is to gain a fundamental understanding and sound scientific and technical basis for evaluating the potential roles of innovative bioprocessing concepts for the utilization and conversion of coal. The aim is to explore the numerous ways in which advanced biological processes and techniques can open new opportunities for coal utilization or can replace more conventional techniques by using milder conditions with less energy consumption or loss. There are several roles where biotechnology is likely to be important in coal utilization and conversion. These include potential bioprocessing systems such as conversion of coal to liquids or gases; biocatalytic beneficiation of coal-derived liquids and conversion to useful chemical feedstocks; biocatalytic removal of SO{sub x} and NO{sub x} from coal combustion off-gas; environmental control technology for the removal or destruction of hazardous materials in process effluents and/or solid residues; and the removal and utilization of CO{sub 2} from combustion off-gas. Effective bioprocesses for such applications will require detailed knowledge of the biological process mechanisms and advanced bioreactor technology than can be optimized for high productivity, as well as supporting upstream and downstream processes that will allow an effective integrated bioprocess. Of particular interest is the development of predictive models that can be used for process design and scaleup. In this program, a generic approach is taken so that there will be utility over a broad range of applications. In conjunction with the generic approach, model experimental systems that address real-world problems are used to verify the results.

  8. Low-rank coal research. Quarterly report, January--March 1990

    SciTech Connect

    Not Available

    1990-08-01

    This document contains several quarterly progress reports for low-rank coal research that was performed from January-March 1990. Reports in Control Technology and Coal Preparation Research are in Flue Gas Cleanup, Waste Management, and Regional Energy Policy Program for the Northern Great Plains. Reports in Advanced Research and Technology Development are presented in Turbine Combustion Phenomena, Combustion Inorganic Transformation (two sections), Liquefaction Reactivity of Low-Rank Coals, Gasification Ash and Slag Characterization, and Coal Science. Reports in Combustion Research cover Fluidized-Bed Combustion, Beneficiation of Low-Rank Coals, Combustion Characterization of Low-Rank Coal Fuels, Diesel Utilization of Low-Rank Coals, and Produce and Characterize HWD (hot-water drying) Fuels for Heat Engine Applications. Liquefaction Research is reported in Low-Rank Coal Direct Liquefaction. Gasification Research progress is discussed for Production of Hydrogen and By-Products from Coal and for Chemistry of Sulfur Removal in Mild Gas.

  9. Appalachian Clean Coal Technology Consortium. Technical progress report, January 1, 1995--March 31, 1995

    SciTech Connect

    Feeley, T.J. III

    1995-06-26

    The Appalachian Clean Coal Technology Consortium (ACCTC) has been established to help U.S. Coal producers, particularly those in the Appalachian region, increase the production of lower-sulfur coal. The cooperative research conducted as part of the consortium activities will help utilities meet the emissions standards established by the 1990 Clean Air Act Amendments, enhance the competitiveness of U.S. coals in the world market, create jobs in economically-depressed coal producing regions, and reduce U.S. dependence on foreign energy supplies. The consortium has three charter members, including Virginia Polytechnic Institute and State University, West Virginia University, and the University of Kentucky. The Consortium also includes industry affiliate members that form an Advisory Committee. Affiliate members currently include AMVEST Minerals; Arch Minerals Corp.; A.T. Massey Coal Co.; Carpco, Inc.; CONSOL Inc.; Cyprus Amax Coal Co.; Pittston Coal Management Co.; and Roberts & Schaefer Company. First year research has focused on fine coal dewatering and modeling.

  10. International perspectives on coal preparation

    SciTech Connect

    1997-12-31

    The report consists of the vugraphs from the presentations which covered the following topics: Summaries of the US Department of Energy`s coal preparation research programs; Preparation trends in Russia; South African coal preparation developments; Trends in hard coal preparation in Germany; Application of coal preparation technology to oil sands extraction; Developments in coal preparation in China; and Coal preparation in Australia.

  11. Coal pump development phase 3

    NASA Technical Reports Server (NTRS)

    Kushida, R. O.; Sankur, V. D.; Gerbracht, F. G.; Mahajan, V.

    1980-01-01

    Techniques for achieving continuous coal sprays were studied. Coazial injection with gas and pressure atomization were studied. Coal particles, upon cooling, were found to be porous and fragile. Reactivity tests on the extruded coal showed overall conversion to gases and liquids unchanged from that of the raw coal. The potentials for applications of the coal pump to eight coal conversion processes were examined.

  12. Environmental damage and countermeasures in Chinese coal mine areas

    SciTech Connect

    Hu, B. |; Cui, Z.

    1998-12-31

    The paper discusses three aspects of the ecological environmental damage in China: ground subsidence due to underground coal mining, pollution of mine refuse from underground, and release of fly ash from power plants within coal mine areas. The paper proposes the comprehensive countermeasures for solving these problems. The author puts forward several ways and applications of disposal which could help alleviate the problems, and introduces the subsidence prediction principle in long wall mining. This technology calculates the subsidence, displacement and deformation at every point according to mining schedule. It provides a very useful tool for subsidence control. Finally, the author provides some suggestions to improve the environment in Chinese coal mine areas.

  13. Air quality as a constraint to the use of coal in California

    NASA Technical Reports Server (NTRS)

    Austin, T. C.

    1978-01-01

    Low-NOx burners, wet scrubbing systems, baghouses and ammonia injection systems are feasible for use on large combustion sources such as utility boilers. These devices, used in combination with coal handling techniques which minimize fugitive dust and coal transportation related emissions, should enable new power plants and large industrial boilers to burn coal without the adverse air quality impacts for which coal became notorious.

  14. Coal beneficiation. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect

    Not Available

    1993-12-01

    The bibliography contains citations concerning methods and equipment utilized to improve the physical and chemical properties of coal. Grinding, flotation, chemical cleaning, and drying are among the operations discussed, and specific project descriptions are reviewed. Considerable attention is given to coal preparation for coal conversion processes and coal-water slurry development. (Contains a minimum of 68 citations and includes a subject term index and title list.)

  15. The status of coal briquetting technology in Korea

    SciTech Connect

    Choi, Woo-Zin

    1993-12-31

    Anthracite is the only indigenous fossil fuel resource produced in Korea and is an important main source of residential fuel. Due to its particular characteristics, the best way to use Korean coal is in the form of briquettes, called {open_quotes}Yontan.{close_quotes} The ability to use this coal as briquettes was a great discovery made nearly 50 years ago and since then, has made a great contribution to the energy consumption of low and middle income households. Korean anthracite in coal briquette form has been used widely for household heating purposes. Collieries in Korea produced no more than one million tons of anthracite annually in the 1960s. Production, however, increased substantially up to about 17 million tons per year in the mid-1970s. In 1986, Korea succeeded in raising its coal production to 24.2 million tons, which was the maximum production level achieved by the Korean coal industrial sector. Since then, anthracite production has fallen. In 1991, coal output dropped to 15.1 million tons, a decrease of 12.2 percent from the 17.2 million tons produced in 1990, due to falling coal demand and rising labor costs. The role of coal as an energy source will be more important in the future to meet projected economic growth in Korea. While the production of indigenous Korean anthracite is expected to decrease under a coal mining rationalization policy, imports of bituminous coal will increase rapidly and will be used as an oil substitute in industry and power generation. In this chapter, general aspects of the Korean coal industry and coal utilization for residential uses, especially the Yontan coal briquetting techniques, are discussed. In addition, coal briquetting technology applications suitable for the APEC region will be presented.

  16. CWS co-firing on two cyclone-fired electric utility boilers

    SciTech Connect

    Ashworth, R.A.; Carson, W.R.; DeSollar, R.; Brown, R.A.

    1997-07-01

    Coal water slurry (CWS) Co-firing is of interest to electric utilities for several reasons. Studies have shown that there are some two billion tons of coal in coal pond impoundments throughout the Eastern/Midwestern United States with an additional 50 million tons being added each year. The use of such coal pond fines can provide utilities with a fuel that is potentially lower in cost than currently contracted supply coal. A CWS fuel used for co-firing in a cyclone-fired unit requires only minimal processing for this type of unit can handle high ash coals. CWS Co-firing in a cyclone might also be done in such a way to reduce NO{sub x} emissions. Further, certain utilities operate their own coal preparation plants. By removing coal fines from preparation plant impoundments, more landfill volume becomes available. This paper describes a demonstration of CWS combustion on a 33 MWe cyclone-fired unit.

  17. Ecological epigenetics.

    PubMed

    Kilvitis, Holly J; Alvarez, Mariano; Foust, Christy M; Schrey, Aaron W; Robertson, Marta; Richards, Christina L

    2014-01-01

    Biologists have assumed that heritable variation due to DNA sequence differences (i.e., genetic variation) allows populations of organisms to be both robust and adaptable to extreme environmental conditions. Natural selection acts on the variation among different genotypes and ultimately changes the genetic composition of the population. While there is compelling evidence about the importance of genetic polymorphisms, evidence is accumulating that epigenetic mechanisms (e.g., chromatin modifications, DNA methylation) can affect ecologically important traits, even in the absence of genetic variation. In this chapter, we review this evidence and discuss the consequences of epigenetic variation in natural populations. We begin by defining the term epigenetics, providing a brief overview of various epigenetic mechanisms, and noting the potential importance of epigenetics in the study of ecology. We continue with a review of the ecological epigenetics literature to demonstrate what is currently known about the amount and distribution of epigenetic variation in natural populations. Then, we consider the various ecological contexts in which epigenetics has proven particularly insightful and discuss the potential evolutionary consequences of epigenetic variation. Finally, we conclude with suggestions for future directions of ecological epigenetics research.

  18. Characterization and Recovery of Rare Earths from Coal and By-Products

    SciTech Connect

    Granite, Evan J.; Roth, Elliot; Alvin, Mary Anne

    2016-03-25

    Coal is a precious resource, both in the United States and around the world. The United States has a 250-year supply of coal, and generates between 30 - 40% of its electricity through coal combustion. Approximately 1 Gt of coal has been mined annually in the US, although the 2015 total will likely be closer to 900 Mt (http://www.eia.gov/coal/production/quarterly/). Most of the coal is burned for power generation, but substantial quantities are also employed in the manufacture of steel, chemicals, and activated carbons. Coal has a positive impact upon many industries, including mining, power, rail transportation, manufacturing, chemical, steel, activated carbon, and fuels. Everything that is in the earth’s crust is also present within coal to some extent, and the challenge is always to utilize abundant domestic coal in clean and environmentally friendly manners. In the case of the rare earths, these valuable and extraordinarily useful elements are present within the abundant coal and coal by-products produced domestically and world-wide. These materials include the coals, as well as the combustion by-products such as ashes, coal preparation wastes, gasification slags, and mining by-products. All of these materials can be viewed as potential sources of rare earth elements. Most of the common inorganic lanthanide compounds, such as the phosphates found in coal, have very high melting, boiling, and thermal decomposition temperatures, allowing them to concentrate in combustion and gasification by-products. Furthermore, rare earths have been found in interesting concentrations in the strata above and below certain coal seams. Much of the recent research on coal utilization in the United States has focused upon the capture of pollutants such as acid gases, particulates, and mercury, and the greenhouse gas carbon dioxide. The possible recovery of rare earth and other critical elements from abundant coal and by-products is an exciting new research area, representing a

  19. Coal Production 1992

    SciTech Connect

    Not Available

    1993-10-29

    Coal Production 1992 provides comprehensive information about US coal production, the number of mines, prices, productivity, employment, productive capacity, and recoverable reserves to a wide audience including Congress, Federal and State agencies, the coal industry, and the general public. In 1992, there were 3,439 active coal mining operations made up of all mines, preparation plants, and refuse operations. The data in Table 1 cover the 2,746 mines that produced coal, regardless of the amount of production, except for bituminous refuse mines. Tables 2 through 33 include data from the 2,852 mining operations that produced, processed, or prepared 10 thousand or more short tons of coal during the period, except for bituminous refuse, and includes preparation plants with 5 thousand or more employee hours. These mining operations accounted for over 99 percent of total US coal production and represented 83 percent of all US coal mining operations in 1992.

  20. Fluidized coal combustion

    NASA Technical Reports Server (NTRS)

    Moynihan, P. I.; Young, D. L.

    1979-01-01

    Fluidized-bed coal combustion process, in which pulverized coal and limestone are burned in presence of forced air, may lead to efficient, reliable boilers with low sulfur dioxide and nitrogen dioxide emissions.