Dmitrienko, Margarita A; Strizhak, Pavel A
2018-02-01
This introductory study presents the analysis of the environmental, economic and energy performance indicators of burning high-potential coal water slurries containing petrochemicals (CWSP) instead of coal, fuel oil, and natural gas at typical thermal power stations (TPS) and a boiler plant. We focus on the most hazardous anthropogenic emissions of coal power industry: sulfur and nitrogen oxides. The research findings show that these emissions may be several times lower if coal and oil processing wastes are mixed with water as compared to the combustion of traditional pulverized coal, even of high grades. The study focuses on wastes, such as filter cakes, oil sludge, waste industrial oils, heavy coal-tar products, resins, etc., that are produced and stored in abundance. Their deep conversion is very rare due to low economic benefit. Effective ways are necessary to recover such industrial wastes. We present the cost assessment of the changes to the heat and power generation technologies that are required from typical power plants for switching from coal, fuel oil and natural gas to CWSPs based on coal and oil processing wastes. The corresponding technological changes pay off after a short time, ranging from several months to several years. The most promising components for CWSP production have been identified, which provide payback within a year. Among these are filter cakes (coal processing wastes), which are produced as a ready-made coal-water slurry fuel (a mixture of flocculants, water, and fine coal dust). These fuels have the least impact on the environment in terms of the emissions of sulfur and nitrogen oxides as well as fly ash. An important conclusion of the study is that using CWSPs based on filter cakes is worthwhile both as the main fuel for thermal power stations and boiler plants and as starting fuel. Copyright © 2017 Elsevier B.V. All rights reserved.
Combination gas producing and waste-water disposal well
Malinchak, Raymond M.
1984-01-01
The present invention is directed to a waste-water disposal system for use in a gas recovery well penetrating a subterranean water-containing and methane gas-bearing coal formation. A cased bore hole penetrates the coal formation and extends downwardly therefrom into a further earth formation which has sufficient permeability to absorb the waste water entering the borehole from the coal formation. Pump means are disposed in the casing below the coal formation for pumping the water through a main conduit towards the water-absorbing earth formation. A barrier or water plug is disposed about the main conduit to prevent water flow through the casing except for through the main conduit. Bypass conduits disposed above the barrier communicate with the main conduit to provide an unpumped flow of water to the water-absorbing earth formation. One-way valves are in the main conduit and in the bypass conduits to provide flow of water therethrough only in the direction towards the water-absorbing earth formation.
Combination gas-producing and waste-water disposal well. [DOE patent application
Malinchak, R.M.
1981-09-03
The present invention is directed to a waste-water disposal system for use in a gas recovery well penetrating a subterranean water-containing and methane gas-bearing coal formation. A cased bore hole penetrates the coal formation and extends downwardly therefrom into a further earth formation which has sufficient permeability to absorb the waste water entering the borehole from the coal formation. Pump means are disposed in the casing below the coal formation for pumping the water through a main conduit towards the water-absorbing earth formation. A barrier or water plug is disposed about the main conduit to prevent water flow through the casing except for through the main conduit. Bypass conduits disposed above the barrier communicate with the main conduit to provide an unpumped flow of water to the water-absorbing earth formation. One-way valves are in the main conduit and in the bypass conduits to provide flow of water therethrough only in the direction towards the water-absorbing earth formation.
Doulati Ardejani, Faramarz; Jodieri Shokri, Behshad; Moradzadeh, Ali; Shafaei, Seyed Ziadin; Kakaei, Reza
2011-12-01
Pyrite oxidation and release of the oxidation products from a low-grade coal waste dump to stream, groundwater and soil was investigated by geochemical and hydrogeochemical techniques at Alborz Sharghi coal washing plant, Shahrood, northeast Iran. Hydrogeochemical analysis of water samples indicates that the metal concentrations in the stream waters were low. Moreover, the pH of the water showed no considerable change. The analysis of the stream water samples shows that except the physical changes, pyrite oxidation process within the coal washing waste dump has not affected the quality of the stream water. Water type was determined to be calcium sulphate. The results of the analysis of groundwater samples indicate that the pH varies from 7.41 to 7.51. The concentrations of the toxic metals were low. The concentration of SO4 is slightly above than its standard concentration in potable water. It seems that the groundwater less affected by the coal washing operation in the study area. Geochemical analysis of the sediment samples shows that Fe concentration decreases gradually downstream the waste dump with pH rising. SO(4) decreases rapidly downstream direction. Copper, Zn and Co concentrations decrease with distance from the waste dump due to a dilution effect by the mixing of uncontaminated sediments. These elements, in particular, Zn are considerably elevated in sediment sample collected at the nearest distance to the waste dump. There is no doubt that such investigations can help to develop an appropriate water remediation plan.
NASA Astrophysics Data System (ADS)
Murko, Vasily; Hamalainen, Veniamin
2017-11-01
The article presents the current state of the technology for production and combustion of fuel coal water slurries in Russia and foreign countries. Experimental and industrial facilities show the technological and economic efficiency of using this technology for disposal of wastes resulting after coal processing and enrichment. The feasibility studies of use of the technology at large Kuzbass thermal power stations are presented. The possibility of solving a serious environmental problem of reducing storage of the most toxic waste of coal enrichment in the location areas of coal washing plants and coal mining enterprises is demonstrated.
The effect of coal-bed methane water on spearmint and peppermint
USDA-ARS?s Scientific Manuscript database
Coal bed methane (CBM) is extracted from underground coal seams, flooded with water. In order to reduce the pressure and release the methane, the trapped water needs to be pumped out. The resulting ‘waste water’ is known as coal-bed methane water (CBMW). Major concerns with the use of CBMW are the h...
The report, the fifth of five volumes, focuses on disposal of coal ash and FGD wastes which (together) comprise FGC wastes. The report assesses the various options for the disposal of FGC wastes with emphasis on disposal on land. A number of technical, economic, and regulatory fa...
30 CFR 780.14 - Operation plan: Maps and plans.
Code of Federal Regulations, 2011 CFR
2011-07-01
..., and non-coal waste storage area; (6) Each water diversion, collection, conveyance, treatment, storage... water impoundment, refuse pile, and coal mine waste impoundment for which plans are required by § 780.25... architecture. [44 FR 15357, Mar. 13, 1979; 44 FR 49685, Aug. 24, 1979, as amended at 45 FR 51550, Aug. 4, 1980...
Environmental Impacts Of Zirab Coal Washing Plant, Mazandaran, Iran
NASA Astrophysics Data System (ADS)
Moore, F.; Esmaeili, A.
2009-04-01
Extraction and beneficiation operations associated with coal mining increase the rate of chemical reaction of waste material to air and water media. Zirab coal washing plant is located on the bank of the Cherat stream in Mazandaran province, Iran. coal Mined from central Alborz coalfield mines is not suitable for use in Iranian Steel Corporation. Hence, coal ash content is reduced by physical and chemical processes in this plant. These processes leave a large quantity of liquid and solid wastes that accumulate in waste dump and tailing dam. sediment and water samples taken from Sheshrudbar and Cherat streams and also from Talar river show high concentration of Cd, Mo and As in water samples of coal washing plant and the associated drainage. Eh-pH diagrams revealed the chemical species of elements in water. The enrichment factor and geoaccumulation index show that Cd, Hg, Mo and V are enriched in bottom sediments of the coal washing plant and decrease with increasing distance from the plant. Sequential extraction analysis Results of three sediment samples of Cherat stream show that silicate bound is the major phase in samples taken before and after the plant, but adjacent to the plant, organic bound is dominant. The high concentration of Cd and Mo in the water soluble phase, is noticeable and may result in high mobility and bioavailability of these elements. Mann-Whitney and Wilcoxon tests on six samples, before and after the coal washing plant support the obtained results. Keywords: Zirab; coal washing plant; Sequential extraction analysis; Mann-whitney; Wilcoxon; Enrichment factor; Geoaccumulation index.
NASA Astrophysics Data System (ADS)
Kijo-Kleczkowska, Agnieszka
2012-10-01
In the paper the problem of heavily-watered fuel combustion has been undertaken as the requirements of qualitative coals combusted in power stations have been growing. Coal mines that want to fulfill expectations of power engineers have been forced to extend and modernize the coal enrichment plants. This causes growing quantity of waste materials that arise during the process of wet coal enrichment containing smaller and smaller under-grains. In this situation the idea of combustion of transported waste materials, for example in a hydraulic way to the nearby power stations appears attractive because of a possible elimination of the necessary deep dehydration and drying as well as because of elimination of the finest coal fraction loss arising during discharging of silted water from coal wet cleaning plants. The paper presents experimental research results, analyzing the process of combustion of coal-water suspension depending on the process conditions. Combustion of coal-water suspensions in fluidized beds meets very well the difficult conditions, which should be obtained to use the examined fuel efficiently and ecologically. The suitable construction of the research stand enables recognition of the mechanism of coal-water suspension contact with the inert material, that affects the fluidized bed. The form of this contact determines conditions of heat and mass exchange, which influence the course of a combustion process. The specificity of coal-water fuel combustion in a fluidized bed changes mechanism and kinetics of the process.
NASA Astrophysics Data System (ADS)
Carey, S. K.; Wellen, C. C.; Shatilla, N. J.
2015-12-01
Surface mining is a common method of accessing coal. In high-elevation environments, vegetation and soils are typically removed prior to the blasting of overburden rock, thereby allowing access to mineable ore. Following this, the removed overburden rock is deposited in adjacent valleys as waste rock spoils. Previous research has identified that areas downstream of surface coal mining have impaired water quality, yet there is limited information about the interaction of hydrology and geochemistry across a range of mining conditions, particularly at the headwater scale. Here, we provide an analysis of an extensive long-term data set of geochemistry and flows across a gradient of coal mining in the Elk Valley, British Columbia, Canada. This work is part of a broader R&D program examining the influence of surface coal mining on hydrological and water quality responses in the Elk Valley aimed at informing effective management responses. Results indicate that water from waste rock piles has an ionic profile distinct from unimpacted catchments. While the concentration of geochemicals increased with the degree of mine impact, the control of hydrological transport capacity over geochemical export did not vary with degree of mine impact. Geochemical export in mine-influenced catchments was limited more strongly by transport capacity than supply, implying that more water moving through the waste rock mobilized more geochemicals. Placement of waste rock within the catchment (headwaters or outlet) did not affect chemical concentrations but did alter the timing with which chemically distinct water mixed. This work advances on results reported earlier using empirical models of selenium loading and further highlights the importance of limiting water inputs into waste rock piles.
TENORM (Technologically Enhanced Naturally Occurring Radioactive Materials)
... and Titanium Mining Wastes Rare Earths Mining Wastes Uranium Mining Wastes Copper Mining and Production Wastes Bauxite and Alumina Production Wastes Energy production Oil and Gas Production Wastes Coal Combustion Residuals Water ...
Fang, Li; Duan, Xiaofang; Chen, Rongming; Cheng, Fangqin
2014-08-01
This paper presents an effective utilization of slag from acid leaching of coal-waste with a novel approach, namely low-temperature co-melting method, for preparation of sodium silicate (Na2O x nSiO2) using slag from acid leaching of coal-waste as feedstock. It is very interesting that the co-melting reaction temperature of the mixture of Na2CO3 and the feedstock (50-100 microm) was as low as 850 degrees C, which was significantly lower than the temperature used in traditional sodium silicate production (1400 degrees C). The optimum SiO2/Na2O ratio was identified as 7:3 according to the results of thermogravimetry-differential scanning calorimetry (TGA-DSC), ICP-AES, and X-ray diffraction (XRD) analyses. In this condition, the main product was sodium disilicate (Na2O x 2SiO2), with water solubility of 85.0%. More importantly, the impurities such as aluminum in the feedstock, which had adverse effect on subsequent treatment, were concentrated almost completely in the filter residue as insoluble sodium alumunosilicates, i.e., Na(Si2Al)O6 x H2O. The lower co-melting temperature of this process demonstrates a significant energy-saving opportunity and thus a promising approach for highly effective utilization of coal-waste. Implications: Recently, alumina extraction from coal-waste has been extensively investigated and industrial applied in China. However, the slag-containing silica generated from the acid leaching process of coal-waste led to a secondary pollution, which hindered large-scale production. The proposed low-temperature co-melting method for preparation of sodium silicate (Na2O x nSiO2) using slag from acid leaching of coal-waste as feedstock indicated that it is an efficient approach for the recovery of silica from the acid-leached slag of coal-waste with minimal environmental impact.
Experimental evaluation of main emissions during coal processing waste combustion.
Dmitrienko, Margarita A; Legros, Jean C; Strizhak, Pavel A
2018-02-01
The total volume of the coal processing wastes (filter cakes) produced by Russia, China, and India is as high as dozens of millions of tons per year. The concentrations of CO and CO 2 in the emissions from the combustion of filter cakes have been measured directly for the first time. They are the biggest volume of coal processing wastes. There have been many discussions about using these wastes as primary or secondary components of coal-water slurries (CWS) and coal-water slurries containing petrochemicals (CWSP). Boilers have already been operationally tested in Russia for the combustion of CWSP based on filter cakes. In this work, the concentrations of hazardous emissions have been measured at temperatures ranging from 500 to 1000°С. The produced CO and CO 2 concentrations are shown to be practically constant at high temperatures (over 900°С) for all the coal processing wastes under study. Experiments have shown the feasibility to lowering the combustion temperatures of coal processing wastes down to 750-850°С. This provides sustainable combustion and reduces the CO and CO 2 emissions 1.2-1.7 times. These relatively low temperatures ensure satisfactory environmental and energy performance of combustion. Using CWS and CWSP instead of conventional solid fuels significantly reduces NO x and SO x emissions but leaves CO and CO 2 emissions practically at the same level as coal powder combustion. Therefore, the environmentally friendly future (in terms of all the main atmospheric emissions: CO, CO 2 , NO x , and SO x ) of both CWS and CWSP technologies relies on low-temperature combustion. Copyright © 2017 Elsevier Ltd. All rights reserved.
ELECTROKINETIC DENSIFICATION OF COAL FINES IN WASTE PONDS
DOE Office of Scientific and Technical Information (OSTI.GOV)
E. James Davis
1999-12-18
The objective of this research was to demonstrate that electrokinetics can be used to remove colloidal coal and mineral particles from coal-washing ponds and lakes without the addition of chemical additives such as salts and polymeric flocculants. The specific objectives were: Design and develop a scaleable electrophoresis apparatus to clarify suspensions of colloidal coal and clay particles; Demonstrate the separation process using polluted waste water from the coal-washing facilities at the coal-fired power plants in Centralia, WA; Develop a mathematical model of the process to predict the rate of clarification and the suspension electrical properties needed for scale up.
Cooperative research in coal liquefaction. Technical progress report, May 1, 1993--April 30, 1994
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huffman, G.P.
Accomplishments for the past year are presented for the following tasks: coliquefaction of coal with waste materials; catalysts for coal liquefaction to clean transportation fuels; fundamental research in coal liquefaction; and in situ analytical techniques for coal liquefaction and coal liquefaction catalysts some of the highlights are: very promising results have been obtained from the liquefaction of plastics, rubber tires, paper and other wastes, and the coliquefaction of wastes with coal; a number of water soluble coal liquefaction catalysts, iron, cobalt, nickel and molybdenum, have been comparatively tested; mossbauer spectroscopy, XAFS spectroscopy, TEM and XPS have been used to characterizemore » a variety of catalysts and other samples from numerous consortium and DOE liquefaction projects and in situ ESR measurements of the free radical density have been conducted at temperatures from 100 to 600{degrees}C and H{sub 2} pressures up to 600 psi.« less
Steele, Timothy Doak; Hillier, Donald E.
1981-01-01
Expanded mining and use of coal resources in the Rocky Mountain region of the western United States will have substantial impacts on water resources, environmental amenities, and social and economic conditions. The U.S. Geological Survey has completed a 3-year assessment of the Yampa River basin, Colorado and Wyoming, where increased coal-resource development has begun to affect the environment and quality of life. Economic projections of the overall effects of coal-resource development were used to estimate water use and the types and amounts of waste residuals that need to be assimilated into the environment. Based in part upon these projections, several physical-based models and other semiquantitative assessment methods were used to determine possible effects upon the basin's water resources. Depending on the magnitude of mining and use of coal resources in the basin, an estimated 0.7 to 2.7 million tons (0.6 to 2.4 million metric tons) of waste residuals may be discharged annually into the environment by coal-resource development and associated economic activities. If the assumed development of coal resources in the basin occurs, annual consumptive use of water, which was approximately 142,000 acre-feet (175 million cubic meters) during 1975, may almost double by 1990. In a related analysis of alternative cooling systems for coal-conversion facilities, four to five times as much water may be used consumptively in a wet-tower, cooling-pond recycling system as in once-through cooling. An equivalent amount of coal transported by slurry pipeline would require about one-third the water used consumptively by once-through cooling for in-basin conversion. Current conditions and a variety of possible changes in the water resources of the basin resulting from coal-resource development were assessed. Basin population may increase by as much as threefold between 1975 and 1990. Volumes of wastes requiring treatment will increase accordingly. Potential problems associated with ammonia-nitrogen concentrations in the Yampa River downstream from Steamboat Springs were evaluated using a waste-load assimilative-capacity model. Changes in sediment loads carried by streams due to increased coal mining and construction of roads and buildings may be apparent only locally; projected increases in sediment loads relative to historic loads from the basin are estimated to be 2 to 7 percent. Solid-waste residuals generated by coal-conversion processes and disposed of into old mine pits may cause widely dispersed ground-water contamination, based on simulation-modeling results. Projected increases in year-round water use will probably result in the construction of several proposed reservoirs. Current seasonal patterns of streamflow and of dissolvedsolids concentrations in streamflow will be altered appreciably by these reservoirs. Decreases in time-weighted mean-annual dissolved-solids concentrations of as much as 34 percent are anticipated, based upon model simulations of several configurations of proposed reservoirs. Detailed statistical analyses of water-quality conditions in the Yampa River basin were made. Regionalized maximum waterquality concentrations were estimated for possible comparison with future conditions. Using Landsat imagery and aerial photographs, potential remote-sensing applications were evaluated to monitor land-use changes and to assess both snow cover and turbidity levels in streams. The technical information provided by the several studies of the Yampa River basin assessment should be useful to regional planners and resource managers in evaluating the possible impacts of development on the basin's water resources.
Modules for estimating solid waste from fossil-fuel technologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crowther, M.A.; Thode, H.C. Jr.; Morris, S.C.
1980-10-01
Solid waste has become a subject of increasing concern to energy industries for several reasons. Increasingly stringent air and water pollution regulations result in a larger fraction of residuals in the form of solid wastes. Control technologies, particularly flue gas desulfurization, can multiply the amount of waste. With the renewed emphasis on coal utilization and the likelihood of oil shale development, increased amounts of solid waste will be produced. In the past, solid waste residuals used for environmental assessment have tended only to include total quantities generated. To look at environmental impacts, however, data on the composition of the solidmore » wastes are required. Computer modules for calculating the quantities and composition of solid waste from major fossil fuel technologies were therefore developed and are described in this report. Six modules have been produced covering physical coal cleaning, conventional coal combustion with flue gas desulfurization, atmospheric fluidized-bed combustion, coal gasification using the Lurgi process, coal liquefaction using the SRC-II process, and oil shale retorting. Total quantities of each solid waste stream are computed together with the major components and a number of trace elements and radionuclides.« less
Formulation of low solids coal water slurry from advanced coal cleaning waste fines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Battista, J.J.; Morrison, J.L.; Lambert, A.
1997-07-01
GPU Genco, the New York State Electric and Gas Corporation (NYSEG), Penn State University and the Homer City Coal Processing Corporation are conducting characterization and formulation tests to determine the suitability of using minus 325 mesh coal waste fines as a low solids coal water slurry (CWS) co-firing fuel. The fine coal is contained in a centrifuge effluent stream at the recently modified Homer City Coal Preparation Plant. Recovering, thickening and then co-firing this material with pulverized coal is one means of alleviating a disposal problem and increasing the Btu recovery for the adjacent power plant. The project team ismore » currently proceeding with the design of a pilot scale system to formulate the effluent into a satisfactory co-firing fuel on a continuous basis for combustion testing at Seward Station. The ultimate goal is to burn the fuel at the pulverized coal units at the Homer City Generating Station. This paper presents the success to date of the slurry characterization and pilot scale design work. In addition, the paper will update GPU Genco`s current status for the low solids coal water slurry co-firing technology and will outline the company`s future plans for the technology.« less
USE OF COAL DRYING TO REDUCE WATER CONSUMED IN PULVERIZED COAL POWER PLANTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edward Levy; Nenad Sarunac; Harun Bilirgen
2005-04-01
This is the ninth Quarterly Report for this project. The background and technical justification for the project are described, including potential benefits of reducing fuel moisture using power plant waste heat, prior to firing the coal in a pulverized coal boiler. During this last Quarter, comparative analyses were performed for lignite and PRB coals to determine how unit performance varies with coal product moisture. Results are given showing how the coal product moisture level and coal rank affect parameters such as boiler efficiency, station service power needed for fans and pulverizers and net unit heat rate. Results are also givenmore » for the effects of coal drying on cooling tower makeup water and comparisons are made between makeup water savings for various times of the year.« less
Polonium-210 accumulates in a lake receiving coal mine discharges-anthropogenic or natural?
Nelson, A W; Eitrheim, E S; Knight, A W; May, D; Wichman, M D; Forbes, T Z; Schultz, M K
2017-02-01
Coal is an integral part of global energy production; however, coal mining is associated with numerous environmental health impacts. It is well documented that coal-mine waste can contaminate the environment with naturally-occurring radionuclides from the uranium-238 ( 238 U) decay series. However, the behavior of the final radionuclide in the 238 U-series, i.e., polonium-210 ( 210 Po) arising from coal-mine waste-water discharge is largely unexplored. Here, results of a year-long (2014-2015) field study, in which the concentrations of 210 Po in sediments and surface water of a lake that receives coal-mine waste-water discharge in West Virginia are presented. Initial measurements identified levels of 210 Po in the lake sediments that were in excess of that which could be attributed to ambient U-series parent radionuclides; and were indicative of discharge site contamination of the lake ecosystem. However, control sediment obtained from a similar lake system in Iowa (an area with no coal mining or unconventional drilling) suggests that the levels of 210 Po in the lake are a natural phenomenon; and are likely unrelated to waste-water treatment discharges. Elevated levels of 210 Po have been reported in lake bottom sediments previously, yet very little information is available on the radioecological implications of 210 Po accumulation in lake bottom sediments. The findings of this study suggest that (Monthly Energy Review, 2016) the natural accumulation and retention of 210 Po in lake sediments may be a greater than previously considered (Chadwick et al., 2013) careful selection of control sites is important to prevent the inappropriate attribution of elevated levels of NORM in lake bottom ecosystems to industrial sources; and (Van Hook, 1979) further investigation of the source-terms and potential impacts on elevated 210 Po in lake-sediment ecosystems is warranted. Copyright © 2016 Elsevier Ltd. All rights reserved.
30 CFR 784.23 - Operation plan: Maps and plans.
Code of Federal Regulations, 2011 CFR
2011-07-01
... waste storage area; (6) Each water diversion, collection, conveyance, treatment, storage and discharge... structure, permanent water impoundment, refuse pile, and coal mine waste impoundment for which plans are...; (12) Location of each water and subsidence monitoring point; (13) Location of each facility that will...
Influence of coal ash and slag dumping on dump waste waters of the Kostolac power plants (Serbia)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Popovic, A.; Djinovic, J.
2006-10-01
The content of selected trace and major elements in the river water used for transport, as well as in the subcategories of the waste waters (overflow and drainage) were analyzed in order to establish the influence of transport and dumping of coal ash and slag from the 'Kostolac A' and 'Kostolac B' power plants located 100 km from Belgrade (Serbia). It was found that during transport of coal ash and slag to the dump, the water used for transport becomes enriched with manganese, nickel, zinc, chromium, vanadium, titanium, cobalt, arsenic, aluminum, and silicon, while more calcium, iron, cadmium, and leadmore » are adsorbed by the ash and slag than is released from them. There is also an equilibrium between the release and adsorption processes of copper and magnesium during transport. The vertical penetration of the water used for transport results in a release of calcium, magnesium, manganese, and cadmium to the environment, while iron, nickel, zinc, chromium, copper, lead, vanadium, titanium, cobalt, and arsenic are adsorbed by the fractions of coal ash and slag in the dump.« less
Ji, Qinhong; Tabassum, Salma; Yu, Guangxin; Chu, Chunfeng; Zhang, Zhenjia
2015-01-01
Coal gasification waste water treatment needed a sustainable and affordable plan to eliminate the organic contaminants in order to lower the potential environmental and human health risk. In this paper, a laboratory-scale anaerobic-aerobic intermittent system carried out 66 operational cycles together for the treatment of coal gasification waste water and the removal capacity of each organic pollutant. Contaminants included phenols, carboxylic acids, long-chain hydrocarbons, and heterocyclic compounds, wherein the relative content of phenol is up to 57.86%. The long-term removal of 77 organic contaminants was evaluated at different hydraulic retention time (anaerobic24 h + aerobic48 h and anaerobic48 h +aerobic48 h). Contaminant removal ranged from no measurable removal to near-complete removal with effluent concentrations below the detection limit. Contaminant removals followed one of four trends: steady-state removal throughout, increasing removal to steady state (acclimation), decreasing removal, and no removal. Organic degradation and transformation in the reaction were analysed by gas chromatography/mass spectrometry technology.
USE OF COAL DRYING TO REDUCE WATER CONSUMED IN PULVERIZED COAL POWER PLANTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edward Levy; Harun Bilirgen; Ursla Levy
2006-01-01
This is the twelfth Quarterly Report for this project. The background and technical justification for the project are described, including potential benefits of reducing fuel moisture using power plant waste heat, prior to firing the coal in a pulverized coal boiler. During this last Quarter, the development of analyses to determine the costs and financial benefits of coal drying was continued. The details of the model and key assumptions being used in the economic evaluation are described in this report and results are shown for a drying system utilizing a combination of waste heat from the condenser and thermal energymore » extracted from boiler flue gas.« less
Phytoremediation of spoil coal dumps in Western Donbass (Ukraine)
NASA Astrophysics Data System (ADS)
Klimkina, Iryna; Kharytonov, Mykola; Wiche, Oliver; Heilmeier, Hermann
2017-04-01
At the moment, in Ukraine about 150 thousand hectares of fertile land are occupied by spoil dumps. Moreover, this figure increases every year. According to the technology used about 1500 m3 of adjacent stratum is dumped at the surface per every 1000 tons of coal mined. Apart from land amortization, waste dumps drastically change the natural landscape and pollute air, soil and water sources as the result of water and wind erosion, as well as self-ignition processes. A serious concern exists with respect to the Western Donbass coal mining region in Ukraine, where the coal extraction is made by the subsurface way and solid wastes are represented by both spoil dumps and wastes after coal processing. Sulphides, mostly pyrite (up to 4% of waste material), are widely distributed in the waste heaps freshly removed due to coal mining in Western Donbass.The oxidation of pyrite with the presence of oxygen and water is accompanied by a sharp drop in the pH from the surface layer to the spoil dumps(from 5.2-6.2 to 3.9-4.2 in soil substrates with chernozen and from 8.3-8.4 to 6.7-7.2 in soil substrates with red-brown clay, stabilizing in dump material in both cases at 2.9-3.2). Low pH generates the transformation of a number of toxic metals and other elementspresent in waste rock (e.g. Fe, Al, Mn, Zn, Mo, Co, As, Cd, Bi, Pb, U) into mobile forms. To stabilize and reduce metal mobility the most resistant plants that occur naturally in specified ecosystems can be used. On coal spoil dumpsin Western Donbas the dominant species are Bromopsis inermis, subdominant Artemisia austriaca; widespread are also Festucas pp., Lathyrus tuberosus, Inula sp., Calamagrostis epigeios, Lotus ucrainicus, and Vicias pp. Identification of plants tolerant to target metals is a key issue in phytotechnology for soil restoration. It is hypothesized that naturally occurring plants growing on coal spoil dumps can be candidates for phytostabilization, phytoextraction (phytoaccumulation) and phytomining techniques. Results on accumulation of target elements in the above- and below ground biomass of abundant plant species will be used to discuss their phytoremediation potential for spoil coal dumps in Western Donbas. Research is being carried out in the framework of DAAD project "Biotechnology in Mining - Integration of New Technologies into Educational Practice" and cooperation between TechnischeUniversität Bergakademie Freiberg, Germany, and National Mining University, Dnipro, Ukraine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heriyanto, Heri; Widya Ernayati, K.; Umam, Chairul
UBC (upgrading brown coal) is a method of improving the quality of coal by using oil as an additive. Through processing in the oil media, not just the calories that increase, but there is also water repellent properties and a decrease in the tendency of spontaneous combustion of coal products produced. The results showed a decrease in the water levels of natural coal bayah reached 69%, increase in calorific value reached 21.2%. Increased caloric value and reduced water content caused by the water molecules on replacing seal the pores of coal by oil and atoms C on the oil thatmore » is bound to increase the percentage of coal carbon. As a result of this experiment is, the produced coal has better calorific value, the increasing of this new calorific value up to 23.8% with the additive waste lubricant, and the moisture content reduced up to 69.45%.« less
NASA Astrophysics Data System (ADS)
Vershinina, K. Yu.; Kuznetsov, G. V.; Strizhak, P. A.
2017-01-01
To enlarge the power raw material base, the processes of stable initiation of combustion of drops of organic watercoal fuels have been investigated. For the main components, we used filter cakes (coal processing waste), anthracite, bituminous and brown coals of brands D and B2, water, and spent machine, turbine, and transformer oils. We have established the influence of concentrations of components on the minimum (limiting) ignition temperatures of organic water-coal fuels and the ignition delay times of drops of fuel components with initial sizes of 0.25-1.5 mm. Investigations were carried out for oxidizer temperatures of 600-1100 K and its velocities of 0.5-5 m/s characteristic of units, aggregates, and large and small power plants. We have determined the characteristic differences of organic water-coal fuel from water-coal fuel and the close laws of the investigated processes for these fuels.
Energy and Resource-Saving Sources of Energy in Small Power Engineering of Siberia
NASA Astrophysics Data System (ADS)
Baranova, Marina
2017-11-01
The sustainable development of distant areas of Siberia is associated with the structures of energy demand and supply, the implementation and promotion of the process of environmentally safe restructuring of the energy supply system. It has been established that suspension coal fuels derived from brown coal, coal mining, coal processing wastes can be used as fuel. The results of experimental and industrial boilers on suspension water coal fuel are presented. The designs of vortex combustion chambers of various powers are developed and tested. The possibility of using coal-enrichment wastes and substandard coals for the production of manure-coal fuel briquettes was studied. It is shown that the strength and thermal power characteristics of briquettes depend on the moisture content and degree of metamorphism of the raw materials. The most effective percentage of the solid phase and manure, as a binder, was determined.
USDA-ARS?s Scientific Manuscript database
Coal-bed natural gas production in the U.S. in 2012 was 1,655 billion cubic feet (bcf). A by-product of this production is co-produced water, which is categorized as a waste product by the Environmental Protection Agency. The effects of varying concentrations of coal-bed methane (produced) water wer...
Bioremediation for coal-fired power stations using macroalgae.
Roberts, David A; Paul, Nicholas A; Bird, Michael I; de Nys, Rocky
2015-04-15
Macroalgae are a productive resource that can be cultured in metal-contaminated waste water for bioremediation but there have been no demonstrations of this biotechnology integrated with industry. Coal-fired power production is a water-limited industry that requires novel approaches to waste water treatment and recycling. In this study, a freshwater macroalga (genus Oedogonium) was cultivated in contaminated ash water amended with flue gas (containing 20% CO₂) at an Australian coal-fired power station. The continuous process of macroalgal growth and intracellular metal sequestration reduced the concentrations of all metals in the treated ash water. Predictive modelling shows that the power station could feasibly achieve zero discharge of most regulated metals (Al, As, Cd, Cr, Cu, Ni, and Zn) in waste water by using the ash water dam for bioremediation with algal cultivation ponds rather than storage of ash water. Slow pyrolysis of the cultivated algae immobilised the accumulated metals in a recalcitrant C-rich biochar. While the algal biochar had higher total metal concentrations than the algae feedstock, the biochar had very low concentrations of leachable metals and therefore has potential for use as an ameliorant for low-fertility soils. This study demonstrates a bioremediation technology at a large scale for a water-limited industry that could be implemented at new or existing power stations, or during the decommissioning of older power stations. Copyright © 2015 Elsevier Ltd. All rights reserved.
Environmentally and economically efficient utilization of coal processing waste.
Dmitrienko, Margarita A; Strizhak, Pavel A
2017-11-15
High concentrations of hazardous anthropogenic emissions (sulfur, nitrogen and carbon oxides) from solid fuel combustion in coal burning plants cause environmental problems that have been especially pressing over the last 20-30 years. A promising solution to these problems is a switch from conventional pulverized coal combustion to coal-water slurry fuel. In this paper, we pay special attention to the environmental indicators characterizing the combustion of different coal ranks (gas, flame, coking, low-caking, and nonbaking coals) and coal-water slurry fuels based on the coal processing waste - filter cakes. There have been no consistent data so far on the acceptable intervals for the anthropogenic emissions of sulfur (SO x ), nitrogen (NO x ) and carbon (CO, CO 2 ) oxides. Using a specialized combustion chamber and gas analyzing system, we have measured the concentrations of typical coal and filter-cake-based CWS combustion products. We have also calculated the typical combustion heat of the fuels under study and measured the ratio between environmental and energy attributes. The research findings show that the use of filter cakes in the form of CWS is even better than coals in terms of environment and economy. Wide utilization of filter cakes solves many environmental problems: the areas of contaminated sites shrink, anthropogenic emissions decrease, and there is no need to develop new coal mines anymore. Copyright © 2017 Elsevier B.V. All rights reserved.
30 CFR 783.25 - Cross sections, maps, and plans.
Code of Federal Regulations, 2014 CFR
2014-07-01
...) Elevations and locations of monitoring stations used to gather data on water quality and quantity, fish and... aquifers on cross-sections and contour maps; (7) Location of surface water bodies such as streams, lakes... permit area; (9) Location and dimensions of existing areas of spoil, waste, coal development waste, and...
30 CFR 783.25 - Cross sections, maps, and plans.
Code of Federal Regulations, 2011 CFR
2011-07-01
...) Elevations and locations of monitoring stations used to gather data on water quality and quantity, fish and... aquifers on cross-sections and contour maps; (7) Location of surface water bodies such as streams, lakes... permit area; (9) Location and dimensions of existing areas of spoil, waste, coal development waste, and...
30 CFR 783.25 - Cross sections, maps, and plans.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) Elevations and locations of monitoring stations used to gather data on water quality and quantity, fish and... aquifers on cross-sections and contour maps; (7) Location of surface water bodies such as streams, lakes... permit area; (9) Location and dimensions of existing areas of spoil, waste, coal development waste, and...
30 CFR 783.25 - Cross sections, maps, and plans.
Code of Federal Regulations, 2012 CFR
2012-07-01
...) Elevations and locations of monitoring stations used to gather data on water quality and quantity, fish and... aquifers on cross-sections and contour maps; (7) Location of surface water bodies such as streams, lakes... permit area; (9) Location and dimensions of existing areas of spoil, waste, coal development waste, and...
30 CFR 783.25 - Cross sections, maps, and plans.
Code of Federal Regulations, 2013 CFR
2013-07-01
...) Elevations and locations of monitoring stations used to gather data on water quality and quantity, fish and... aquifers on cross-sections and contour maps; (7) Location of surface water bodies such as streams, lakes... permit area; (9) Location and dimensions of existing areas of spoil, waste, coal development waste, and...
Coal burning issues. [Book - monograph
DOE Office of Scientific and Technical Information (OSTI.GOV)
Green, A.E.S.
1980-01-01
The results of the scoping phase of an interdisciplinary assessment of the impact of the increased use of coal are reported in this monograph. Subject areas include: coal availability and coal mining; an energetics analysis of coal quality; coal transportation; coal burning technology; synthetic fuels from coal; technological innovations; water resources; atmospheric pollution; air pollution dispersion modeling; atmospheric modifications; solid waste and trace element impacts; agriculture; health effects of air pollution resulting from coal combustion; quantitative public policy assessments; financing capacity growth and coal conversions in the electric utility industry; coal and the states - a public choice perspective; andmore » federal regulatory and legal aspects.« less
NASA Astrophysics Data System (ADS)
Lin, Kae-Long; Ma, Chih-Ming; Lo, Kang-Wei; Cheng, Ta-Wui
2018-04-01
In this study, the following operating conditions were applied to develop humidity-controlling porous ceramic (HCPC) products: sintering temperatures of 800-1000 °C and percentages of coal fly ash in waste catalyst of 0%-40%. The HCPC samples then underwent a flexural strength test, to determine their quality according to the Chinese National Standards (CNS 3298). Their microstructures, crystal structures, and pore volume were determined in terms of equilibrium moisture content, water vapor adsorption/desorption, and hygroscopic sorption properties over 48 h. Nitrogen adsorption/desorption isotherms showed a hydrophobic behavior (type H3 isotherm). The water vapor adsorption/desorption and hygroscopic sorption properties satisfied the JIS A1470 intensity specification for building materials (>29 g/m2). At sintering temperatures of 950-1000 °C, HCPC samples for coal fly ash containing 20%-30% waste catalyst met the JIS A1470 intensity specifications for building materials (<29 g/m2).
Carbon-Containing Waste of Coal Enterprises in Magnetic Sorbents Technology
NASA Astrophysics Data System (ADS)
Kvashevaya, Ekaterina; Ushakova, Elena; Ushakov, Andrey
2017-11-01
The article shows the issues state of coal-mining enterprises carbonaceous wastes utilization, including by obtaining oil-sorbent. The characteristics of the feedstock are presented; experiment methods of obtaining a binder based on the livestock enterprises waste, of forming binder with filler (sawdust, coal waste); of pyrogenetic processing to obtain a sorbent are described. Possible options for the introduction of magnetite (a magnetic component) in the composition of the oil sorbent are considered: on the surface, in the volume of the granule and the magnetite core. In the course of the work it was found that the optimum content of coal dust in the sorbent granules is 75% by weight, and the most effective way of obtaining the magnetic sorbent is to apply the carbon material directly to the "core" of magnetite. However, in this case, the problem of finding an effective binder for magnetite arises. The option of applying magnetite on the surface of a carbon sorbent is not effective. Thus, at present, we use a mixture of coal waste, which binds to the uniform distribution of magnetite in the volume. The developed magnetic sorbents can be used in various weather conditions, including strong winds and icing of water bodies, as well as for small and medium currents.
Algal biochar enhances the re-vegetation of stockpiled mine soils with native grass.
Roberts, David A; Cole, Andrew J; Paul, Nicholas A; de Nys, Rocky
2015-09-15
In most countries the mining industry is required to rehabilitate disturbed land with native vegetation. A typical approach is to stockpile soils during mining and then use this soil to recreate landforms after mining. Soil that has been stockpiled for an extended period typically contains little or no organic matter and nutrient, making soil rehabilitation a slow and difficult process. Here, we take freshwater macroalgae (Oedogonium) cultivated in waste water at a coal-fired power station and use it as a feedstock for the production of biochar, then use this biochar to enhance the rehabilitation of two types of stockpiled soil - a ferrosol and a sodosol - from the adjacent coal mine. While the biomass had relatively high concentrations of some metals, due to its cultivation in waste water, the resulting biochar did not leach metals into the pore water of soil-biochar mixtures. The biochar did, however, contribute essential trace elements (particularly K) to soil pore water. The biochar had very strong positive effects on the establishment and growth of a native plant (Kangaroo grass, Themeda australis) in both of the soils. The addition of the algal biochar to both soils at 10 t ha(-1) reduced the time to germination by the grass and increased the growth and production of plant biomass. Somewhat surprisingly, there was no beneficial effect of a higher application rate (25 t ha(-1)) of the biochar in the ferrosol, which highlights the importance of matching biochar application rates to the requirements of different types of soil. Nevertheless, we demonstrate that algal biochar can be produced from biomass cultivated in waste water and used at low application rates to improve the rehabilitation of a variety of soils typical of coal mines. This novel process links biomass production in waste water to end use of the biomass in land rehabilitation, simultaneously addressing two environmental issues associated with coal-mining and processing. Copyright © 2015 Elsevier Ltd. All rights reserved.
Control of water erosion and sediment in open cut coal mines in tropical areas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ueda, T.; Nugraha, C.; Matsui, K.
2005-07-01
The purpose is to reduce the environmental impacts from open cut mining in tropical areas, such as Indonesia and Vietnam. Research conducted on methods for the control of water erosion and sediment from open cut coal mines is described. Data were collected on climate and weathering in tropical areas, mechanism of water erosion and sedimentation, characteristics of rocks in coal measures under wet conditions, water management at pits and haul roads and ramps, and construction of waste dumps and water management. The results will be applied to the optimum control and management of erosion and sediments in open cut mining.more » 6 refs., 8 figs.« less
Numerical simulation of filtration of mine water from coal slurry particles
NASA Astrophysics Data System (ADS)
Dyachenko, E. N.; Dyachenko, N. N.
2017-11-01
The discrete element method is applied to model a technology for clarification of industrial waste water containing fine-dispersed solid impurities. The process is analyzed at the level of discrete particles and pores. The effect of filter porosity on the volume fraction of particles has been shown. The degree of clarification of mine water was also calculated depending on the coal slurry particle size, taking into account the adhesion force.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gingerich, Daniel B; Bartholomew, Timothy V; Mauter, Meagan S
With the Environmental Protection Agency’s recent Effluent Limitation Guidelines for Steam Electric Generators, power plants are having to install and operate new wastewater technologies. Many plants are evaluating desalination technologies as possible compliance options. However, the desalination technologies under review that can reduce wastewater volume or treat to a zero-liquid discharges standard have a significant energy penalty to the plant. Waste heat, available from the exhaust gas or cooling water from coal-fired power plants, offers an opportunity to drive wastewater treatment using thermal desalination technologies. One such technology is forward osmosis (FO). Forward osmosis utilizes an osmotic pressure gradient tomore » passively pull water from a saline or wastewater stream across a semi-permeable membrane and into a more concentrated draw solution. This diluted draw solution is then fed into a distillation column, where the addition of low temperature waste heat can drive the separation to produce a reconcentrated draw solution and treated water for internal plant reuse. The use of low-temperature waste heat decouples water treatment from electricity production and eliminates the link between reducing water pollution and increasing air emissions from auxiliary electricity generation. In order to evaluate the feasibility of waste heat driven FO, we first build a model of an FO system for flue gas desulfurization (FGD) wastewater treatment at coal-fired power plants. This model includes the FO membrane module, the distillation column for draw solution recovery, and waste heat recovery from the exhaust gas. We then add a costing model to account for capital and operating costs of the forward osmosis system. We use this techno-economic model to optimize waste heat driven FO for the treatment of FGD wastewater. We apply this model to three case studies: the National Energy Technology Laboratory (NETL) 550 MW model coal fired power plant without carbon capture and sequestration, the NETL 550 MW model coal fired power plant with carbon capture and sequestration, and Plant Bowen in Eularhee, Georgia. For each case, we identify the design that minimizes the cost of wastewater treatment given the safely recoverable waste heat. We benchmark the cost minimum waste-heat forward osmosis solutions to two conventional options that rely on electricity, reverse osmosis and mechanical vapor recompression. Furthermore, we quantify the environmental damages from the emissions of carbon dioxide and criteria air pollutants for each treatment option. With this information we can assess the trade-offs between treatment costs, energy consumption, and air emissions between the treatment options.« less
30 CFR 816.87 - Coal mine waste: Burning and burned waste utilization.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Coal mine waste: Burning and burned waste...-SURFACE MINING ACTIVITIES § 816.87 Coal mine waste: Burning and burned waste utilization. (a) Coal mine... extinguishing operations. (b) No burning or burned coal mine waste shall be removed from a permitted disposal...
30 CFR 816.87 - Coal mine waste: Burning and burned waste utilization.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Coal mine waste: Burning and burned waste...-SURFACE MINING ACTIVITIES § 816.87 Coal mine waste: Burning and burned waste utilization. (a) Coal mine... extinguishing operations. (b) No burning or burned coal mine waste shall be removed from a permitted disposal...
30 CFR 817.87 - Coal mine waste: Burning and burned waste utilization.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Coal mine waste: Burning and burned waste...-UNDERGROUND MINING ACTIVITIES § 817.87 Coal mine waste: Burning and burned waste utilization. (a) Coal mine... extinguishing operations. (b) No burning or unburned coal mine waste shall be removed from a permitted disposal...
30 CFR 816.87 - Coal mine waste: Burning and burned waste utilization.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Coal mine waste: Burning and burned waste...-SURFACE MINING ACTIVITIES § 816.87 Coal mine waste: Burning and burned waste utilization. (a) Coal mine... extinguishing operations. (b) No burning or burned coal mine waste shall be removed from a permitted disposal...
30 CFR 817.87 - Coal mine waste: Burning and burned waste utilization.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Coal mine waste: Burning and burned waste...-UNDERGROUND MINING ACTIVITIES § 817.87 Coal mine waste: Burning and burned waste utilization. (a) Coal mine... extinguishing operations. (b) No burning or unburned coal mine waste shall be removed from a permitted disposal...
30 CFR 817.87 - Coal mine waste: Burning and burned waste utilization.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Coal mine waste: Burning and burned waste...-UNDERGROUND MINING ACTIVITIES § 817.87 Coal mine waste: Burning and burned waste utilization. (a) Coal mine... extinguishing operations. (b) No burning or unburned coal mine waste shall be removed from a permitted disposal...
30 CFR 817.87 - Coal mine waste: Burning and burned waste utilization.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Coal mine waste: Burning and burned waste...-UNDERGROUND MINING ACTIVITIES § 817.87 Coal mine waste: Burning and burned waste utilization. (a) Coal mine... extinguishing operations. (b) No burning or unburned coal mine waste shall be removed from a permitted disposal...
30 CFR 817.87 - Coal mine waste: Burning and burned waste utilization.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Coal mine waste: Burning and burned waste...-UNDERGROUND MINING ACTIVITIES § 817.87 Coal mine waste: Burning and burned waste utilization. (a) Coal mine... extinguishing operations. (b) No burning or unburned coal mine waste shall be removed from a permitted disposal...
30 CFR 816.87 - Coal mine waste: Burning and burned waste utilization.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Coal mine waste: Burning and burned waste...-SURFACE MINING ACTIVITIES § 816.87 Coal mine waste: Burning and burned waste utilization. (a) Coal mine... extinguishing operations. (b) No burning or burned coal mine waste shall be removed from a permitted disposal...
30 CFR 816.87 - Coal mine waste: Burning and burned waste utilization.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Coal mine waste: Burning and burned waste...-SURFACE MINING ACTIVITIES § 816.87 Coal mine waste: Burning and burned waste utilization. (a) Coal mine... extinguishing operations. (b) No burning or burned coal mine waste shall be removed from a permitted disposal...
NASA Astrophysics Data System (ADS)
Tyulenev, Maxim; Lesin, Yury; Litvin, Oleg; Maliukhina, Elena; Abay, Asmelash
2017-11-01
Features of geological structure of the Kuznetsk coal basin stipulate the application of a low-cost open technique of coal mining, which is more advantageous both from the economic standpoint, and by safety criteria of mining. However, open mining affects significantly the water resources of region. Intensive pollution of reservoirs and water courses, exhaustion of the underground water-bearing layers, violation of a hydrographic network, etc. be-long to the main disadvantages of an open technique of coal mining. Besides, the volume of the water coming into the mining producers exceeds signi-ficantly the needed quantity. According to the data of annual reports of ecology and natural resources department, 348.277 million m3 of water were ta-ken away during production of soft coal, brown coal and lignum fossil from waters of Kemerovo region in 2013 (mostly from underground water objects (96,5%) when draining of mine openings). At the same time, only 87.018 million m3 of water (25%) has been used within a year.
Characterization of activated carbon prepared from chicken waste and coal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan Zhang; Hong Cui; Riko Ozao
Activated carbons (ACs) were prepared from chicken waste (CW) and coal (E-coal) blended at the ratios of 100:0, 80:20, 50:50, 20:80, and 0:100. The process included carbonization in flowing gaseous nitrogen (300 mL min{sup -1}) at ca. 430{sup o}C for 60 min and successive steam activation (0.1 mL min{sup -1} water injection with a flow of N{sub 2} at 100 mL min{sup -1}) at 650{sup o}C for 30 min. Chicken waste is low in sulfur content but is high in volatile matter (about 55 wt %), and ACs with higher specific surface area were more successfully obtained by mixing withmore » coal. The specific surface area of the CW/Coal blend AC can be estimated by SSA{sub BET} = -65.8x{sup 2} + 158x + 168, where SSA{sub BET} is the specific surface area in m{sup 2} g{sup -1} as determined by the BET method using CO{sub 2} as the adsorbent, where x is the coal fraction by weight in the CW/coal blend ranging from 0.0 to 1.0 (e.g., x = 0.0 signifies the blend contains no coal and x = 1.0 signifies the blend consists of 100% coal). 26 refs., 7 figs., 3 tabs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heckmann, R.A.; Winget, R.N.; Infanger, R.C.
1984-01-31
Two series of experiments were completed to determine (a) toxicity of waste water from power plants on warm water fish and (b) multiple use of waste heat and water for aquatic animal and plant production. All three types of waste water from a typical coal-fired power plant are acceptable for growing catfish and tilapia following aeration. This growth was compared with fish raised in spring water. Closed, recirculating polyculture systems using evaporation pond water operated efficiently for plant (duckweed) and animal (fish and freshwater prawns) production. Duckweed is an excellent supplement for fish feed. Tilapia and freshwater prawns grew rapidlymore » in the tanks containing duckweed only. 10 references, 13 tables.« less
Combustion Of Poultry-Derived Fuel in a CFBC
NASA Astrophysics Data System (ADS)
Jia, Lufei; Anthony, Edward J.
Poultry farming generates large quantities of waste. Current disposal practice is to spread the poultry wastes onto farmland as fertilizer. However, as the factory farms for poultry grow both in numbers and size, the amount of poultry wastes generated has increased significandy in recent years. In consequence, excessive application of poultry wastes on farmland is resulting in more and more contaminants entering the surface water. One of the options being considered is the use of poultry waste as power plant fuel. Since poultry-derived fuel (PDF) is biomass, its co-firing will have the added advantage of reducing greenhouse gas emissions from power generation. To evaluate the combustion characteristics of co-firing PDF with coal, combustion tests of mixtures of coal and PDF were conducted in CanmetENERGY's pilot-scale CFBC. The goal of the tests was to verify that PDF can be co-fired with coal and, more importantly, that emissions from the combustion process are not adversely affected by the presence of PDF in the fuel feed. The test results were very promising and support the view that co-firing in an existing coal-fired CFBC is an effective method of utilizing this potential fuel, both resolving a potential waste disposal problem and reducing the amount of CO2 released by the boiler.
Zeta Potential Measurements on Three Clays from Turkey and Effects of Clays on Coal Flotation
Hussain; Dem&idot;rc&idot;; özbayoğlu
1996-12-25
There is a growing trend of characterizing coal and coal wastes in order to study the effect of clays present in them during coal washing. Coarse wastes from the Zonguldak Coal Washery, Turkey, were characterized and found to contain kaolinite, illite, and chlorite. These three clays, obtained in almost pure form from various locations in Turkey, have been subjected to X-ray diffraction (XRD) analysis to assess their purity and zeta potential measurements in order to evaluate their properties in terms of their surface charge and point of zero charge (pzc) values. It was found from XRD data that these clays were almost pure and their electrokinetic potential should therefore be representative of their colloidal behavior. All three clay minerals were negatively charged over the range from pH 2.5 to 11. Chlorite and illite have pzc at pH 3 and pH 2.5, respectively, whereas kaolinite has no pzc. The effect of these clays in Zonguldak coal, wastes, and black waters on coal flotation was studied by floating artificial mixtures of Zonguldak clean coal (4.5% ash) and individual clay. The flotation tests on coal/individual clay revealed that each clay influences coal flotation differently according to its type and amount. Illite had the worst effect on coal floated, followed by chlorite and kaolinite. The loss of yield in coal was found to be 18% for kaolinite, 20% for chlorite, and 28% for illite, indicating the worst effect of illite and least for kaolinite during coal flotation.
Analysis of ecological environment impact of coal exploitation and utilization
NASA Astrophysics Data System (ADS)
Zhang, Baoliu; Luo, Hong; Lv, Lianhong; Wang, Jian; Zhang, Baoshi
2018-02-01
Based on the theory of life cycle assessment, the ecological and environmental impacts of coal mining, processing, utilization and transportation will be analyzed, with analysing the status of china’s coal exploitation and utilization as the basis, it will find out the ecological and environmental impact in the development and utilization of coal, mainly consist of ecological impact including land damage, water resource destructionand biodiversity loss, etc., while the environmental impact include air, water, solid waste pollutions. Finally with a summary of the ecological and environmental problems, to propose solutionsand countermeasures to promote the rational development and consumption of coal, as well as to reduce the impact of coal production and consumption on the ecological environment, finally to achieve the coordinated development of energy and the environment.
30 CFR 817.84 - Coal mine waste: Impounding structures.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Coal mine waste: Impounding structures. 817.84... ACTIVITIES § 817.84 Coal mine waste: Impounding structures. New and existing impounding structures constructed of coal mine waste or intended to impound coal mine waste shall meet the requirements of § 817.81...
30 CFR 816.81 - Coal mine waste: General requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Coal mine waste: General requirements. 816.81... ACTIVITIES § 816.81 Coal mine waste: General requirements. (a) General. All coal mine waste disposed of in an... within a permit area, which are approved by the regulatory authority for this purpose. Coal mine waste...
30 CFR 816.84 - Coal mine waste: Impounding structures.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Coal mine waste: Impounding structures. 816.84... ACTIVITIES § 816.84 Coal mine waste: Impounding structures. New and existing impounding structures constructed of coal mine waste or intended to impound coal mine waste shall meet the requirements of § 816.81...
30 CFR 816.84 - Coal mine waste: Impounding structures.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Coal mine waste: Impounding structures. 816.84... ACTIVITIES § 816.84 Coal mine waste: Impounding structures. New and existing impounding structures constructed of coal mine waste or intended to impound coal mine waste shall meet the requirements of § 816.81...
30 CFR 817.84 - Coal mine waste: Impounding structures.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Coal mine waste: Impounding structures. 817.84... ACTIVITIES § 817.84 Coal mine waste: Impounding structures. New and existing impounding structures constructed of coal mine waste or intended to impound coal mine waste shall meet the requirements of § 817.81...
30 CFR 816.84 - Coal mine waste: Impounding structures.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Coal mine waste: Impounding structures. 816.84... ACTIVITIES § 816.84 Coal mine waste: Impounding structures. New and existing impounding structures constructed of coal mine waste or intended to impound coal mine waste shall meet the requirements of § 816.81...
30 CFR 817.81 - Coal mine waste: General requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Coal mine waste: General requirements. 817.81... ACTIVITIES § 817.81 Coal mine waste: General requirements. (a) General. All coal mine waste disposed of in an... within a permit area, which are approved by the regulatory authority for this purpose. Coal mine waste...
30 CFR 817.84 - Coal mine waste: Impounding structures.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Coal mine waste: Impounding structures. 817.84... ACTIVITIES § 817.84 Coal mine waste: Impounding structures. New and existing impounding structures constructed of coal mine waste or intended to impound coal mine waste shall meet the requirements of § 817.81...
30 CFR 817.81 - Coal mine waste: General requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Coal mine waste: General requirements. 817.81... ACTIVITIES § 817.81 Coal mine waste: General requirements. (a) General. All coal mine waste disposed of in an... within a permit area, which are approved by the regulatory authority for this purpose. Coal mine waste...
30 CFR 816.81 - Coal mine waste: General requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Coal mine waste: General requirements. 816.81... ACTIVITIES § 816.81 Coal mine waste: General requirements. (a) General. All coal mine waste disposed of in an... within a permit area, which are approved by the regulatory authority for this purpose. Coal mine waste...
30 CFR 817.81 - Coal mine waste: General requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Coal mine waste: General requirements. 817.81... ACTIVITIES § 817.81 Coal mine waste: General requirements. (a) General. All coal mine waste disposed of in an... within a permit area, which are approved by the regulatory authority for this purpose. Coal mine waste...
30 CFR 816.81 - Coal mine waste: General requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Coal mine waste: General requirements. 816.81... ACTIVITIES § 816.81 Coal mine waste: General requirements. (a) General. All coal mine waste disposed of in an... within a permit area, which are approved by the regulatory authority for this purpose. Coal mine waste...
30 CFR 816.81 - Coal mine waste: General requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Coal mine waste: General requirements. 816.81... ACTIVITIES § 816.81 Coal mine waste: General requirements. (a) General. All coal mine waste disposed of in an... within a permit area, which are approved by the regulatory authority for this purpose. Coal mine waste...
30 CFR 816.81 - Coal mine waste: General requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Coal mine waste: General requirements. 816.81... ACTIVITIES § 816.81 Coal mine waste: General requirements. (a) General. All coal mine waste disposed of in an... within a permit area, which are approved by the regulatory authority for this purpose. Coal mine waste...
30 CFR 817.84 - Coal mine waste: Impounding structures.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Coal mine waste: Impounding structures. 817.84... ACTIVITIES § 817.84 Coal mine waste: Impounding structures. New and existing impounding structures constructed of coal mine waste or intended to impound coal mine waste shall meet the requirements of § 817.81...
30 CFR 816.84 - Coal mine waste: Impounding structures.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Coal mine waste: Impounding structures. 816.84... ACTIVITIES § 816.84 Coal mine waste: Impounding structures. New and existing impounding structures constructed of coal mine waste or intended to impound coal mine waste shall meet the requirements of § 816.81...
30 CFR 817.84 - Coal mine waste: Impounding structures.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Coal mine waste: Impounding structures. 817.84... ACTIVITIES § 817.84 Coal mine waste: Impounding structures. New and existing impounding structures constructed of coal mine waste or intended to impound coal mine waste shall meet the requirements of § 817.81...
30 CFR 816.84 - Coal mine waste: Impounding structures.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Coal mine waste: Impounding structures. 816.84... ACTIVITIES § 816.84 Coal mine waste: Impounding structures. New and existing impounding structures constructed of coal mine waste or intended to impound coal mine waste shall meet the requirements of § 816.81...
30 CFR 817.81 - Coal mine waste: General requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Coal mine waste: General requirements. 817.81... ACTIVITIES § 817.81 Coal mine waste: General requirements. (a) General. All coal mine waste disposed of in an... within a permit area, which are approved by the regulatory authority for this purpose. Coal mine waste...
30 CFR 817.81 - Coal mine waste: General requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Coal mine waste: General requirements. 817.81... ACTIVITIES § 817.81 Coal mine waste: General requirements. (a) General. All coal mine waste disposed of in an... within a permit area, which are approved by the regulatory authority for this purpose. Coal mine waste...
Burnet, George; Gokhale, Ashok J.
1990-07-10
A hardened, environmentally inert and disposable composite granule of coal cleaning refuse and coal combustion waste, and method for producing the same, wherein the coal combustion waste is first granulated. The coal cleaning refuse is pulverized into fine particles and is then bound, as an outer layer, to the granulated coal combustion waste granules. This combination is then combusted and sintered. After cooling, the combination results in hardened, environmentally inert and disposable composite granules having cores of coal combustion waste, and outer shells of coal cleaning refuse. The composite particles are durable and extremely resistant to environmental and chemical forces.
Burnet, G.; Gokhale, A.J.
1990-07-10
A hardened, environmentally inert and disposable composite granule of coal cleaning refuse and coal combustion waste and method for producing the same are disclosed, wherein the coal combustion waste is first granulated. The coal cleaning refuse is pulverized into fine particles and is then bound, as an outer layer, to the granulated coal combustion waste granules. This combination is then combusted and sintered. After cooling, the combination results in hardened, environmentally inert and disposable composite granules having cores of coal combustion waste, and outer shells of coal cleaning refuse. The composite particles are durable and extremely resistant to environmental and chemical forces. 3 figs.
Potential health impacts of burning coal beds and waste banks
Finkelman, R.B.
2004-01-01
Uncontrolled release of pollutants from burning coal beds and waste banks presents potential environmental and human health hazards. On a global scale, the emissions of large volumes of greenhouse gases from burning coal beds may contribute to climate change that alters ecosystems and patterns of disease occurrence. On regional and local scales, the emissions from burning coal beds and waste banks of acidic gases, particulates, organic compounds, and trace elements can contribute to a range of respiratory and other human health problems. Although there are few published reports of health problems caused by these emissions, the potential for problems can be significant. In India, large numbers of people have been displaced from their homes because of health problems caused by emissions from burning coal beds. Volatile elements such as arsenic, fluorine, mercury, and selenium are commonly enriched in coal deposits. Burning coal beds can volatilize these elements, which then can be inhaled, or adsorbed on crops and foods, taken up by livestock or bioaccumulated in birds and fish. Some of these elements can condense on dust particles that can be inhaled or ingested. In addition, selenium, arsenic, lead, tin, bismuth, fluorine, and other elements condense where the hot gaseous emissions come in contact with ambient air, forming mats of concentrated efflorescent minerals on the surface of the ground. These mats can be leached by rainwater and washed into local water bodies providing other potential routes of exposure. Although there are little data linking burning coal beds and waste banks to known health problems, a possibly analogous situation exists in rural China where mineralized coal burned in a residential environment has caused widespread and severe health problems such as fluorosis and arseniasis. ?? 2004 Elsevier B.V. All rights reserved.
The environmental impact of future coal production and use in the EEC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1983-01-01
The aims of this study are to assess the expected increased levels of coal consumption in the European Community up to the year 2000; to estimate to what extent consumer demand is likely to be met by EEC production; to determine the level of polluting emissions which are likely to derive from changes in coal consumption and production; and finally, to compare the environmental impact of alternative, existing or developing means of coal utilisation. Contents: Conclusions; Future coal supply and demand in the EEC; Environmental consequences of coal production and use; Coal extraction; Transport and storage; Coal combustion: air pollution;more » Coal combustion: water pollution; Pollution from solid wastes; Coal conversion process; Environmental control technology; Bibliography.« less
Natural radionuclides in waste water discharged from coal-fired power plants in Serbia.
Janković, Marija M; Todorović, Dragana J; Sarap, Nataša B; Krneta Nikolić, Jelena D; Rajačić, Milica M; Pantelić, Gordana K
2016-12-01
Investigation of the natural radioactivity levels in water around power plants, as well as in plants, coal, ash, slag and soil, and to assess the associated radiation hazard is becoming an emerging and interesting topic. This paper is focused on the results of the radioactivity analysis in waste water samples from five coal-fired power plants in Serbia (Nikola Tesla A, Nikola Tesla B, Kolubara, Morava and Kostolac), which were analyzed in the period 2003-2015. River water samples taken upstream and downstream from the power plants, drain water and overflow water were analyzed. In the water samples gamma spectrometry analysis was performed as well as determination of gross alpha and beta activity. Natural radionuclide 40 K was detected by gamma spectrometry, while the concentrations of other radionuclides, 226 Ra, 235 U and 238 U, usually were below the minimum detection activity (MDA). 232 Th and artificial radionuclide 137 Cs were not detected in these samples. Gross alpha and beta activities were determined by the α/β low level proportional counter Thermo Eberline FHT 770 T. In the analyzed samples, gross alpha activity ranged from MDA to 0.47 Bq L - 1 , while the gross beta activity ranged from MDA to 1.55 Bq L - 1 .
Saunders, Richard J; Paul, Nicholas A; Hu, Yi; de Nys, Rocky
2012-01-01
Biosorption of heavy metals using dried algal biomass has been extensively described but rarely implemented. We contend this is because available algal biomass is a valuable product with a ready market. Therefore, we considered an alternative and practical approach to algal bioremediation in which algae were cultured directly in the waste water stream. We cultured three species of algae with and without nutrient addition in water that was contaminated with heavy metals from an Ash Dam associated with coal-fired power generation and tested metal uptake and bioremediation potential. All species achieved high concentrations of heavy metals (to 8% dry mass). Two key elements, V and As, reached concentrations in the biomass of 1543 mg.kg(-1) DW and 137 mg.kg(-1) DW. Growth rates were reduced by more than half in neat Ash Dam water than when nutrients were supplied in excess. Growth rate and bioconcentration were positively correlated for most elements, but some elements (e.g. Cd, Zn) were concentrated more when growth rates were lower, indicating the potential to tailor bioremediation depending on the pollutant. The cosmopolitan nature of the macroalgae studied, and their ability to grow and concentrate a suite of heavy metals from industrial wastes, highlights a clear benefit in the practical application of waste water bioremediation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The coal industry, the utilities, and the state government are planning for development of high-energy coal gasification in Illinois to convert its abundant high-sulfur coal supply to a substitute natural gas. Following a summary of the findings, the following topics are discussed briefly: Illinois coal and the push for coal gasification; coal gasification: a look at the process; potential sites for an Illinois coal gasification industry; the impact of coal gasification's water requirements; solid wastes from coal gasification; land losses: the impact on agriculture; potential human health problems with coal gasification; the energy efficiency of coal gasification; potential economic impactsmore » of coal gasification; the corporations behind high-energy coal gasification; state involvement: legalizing the losses of the people; the national energy picture: the impact of western coal developments on Illinois; action: what you can do now. 27 references. (MCW)« less
Illinois basin coal fly ashes. 1. Chemical characterization and solubility
Roy, W.R.; Griffin, R.A.; Dickerson, D.R.; Schuller, R.M.; Martin, S.M.C.
1984-01-01
Twelve precipitator-collected fly ash samples (nine derived from high-sulfur Illinois Basin coals and three from Western U.S. coals) were found to contain a variety of paraffins, aryl esters, phenols, and polynuclear aromatic hydrocarbons including phenanthrene, pyrene, and chrysene but all at very low concentrations. Less than 1% of the organic carbon in the samples was extractable into benzene. Solubility studies with a short-term (24-h) extraction procedure and a long-term (20-week) procedure indicate that the inorganic chemical composition of some types of fly ash effluent is time dependent and may be most toxic to aquatic ecosystems when initially mixed with water and pumped to disposal ponds. Some acidic, high-Cd fly ashes would be classified as hazardous wastes if coal ash was included in this waste category by future RCRA revisions. ?? 1984 American Chemical Society.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cada, G.F.
H-coal is a process for the direct liquefaction of coal to produce synthetic fuels. Its development has progressed from bench-scale testing through operation of a 2.7 Mg/d (3 ton/d) Process Development Unit. A large-scale H-Coal pilot plant is presently operating at Catlettsburg, Kentucky, and there are plans for the construction of a commercial H-Coal liquefaction facility by the end of the decade. Two of the environmental concerns of the developing direct coal liquefaction industry are accidental spills of synthetic oils and treatment/storage of solid wastes. As a means of obtaining preliminary information on the severity of these potential impacts wellmore » in advance of commercialization, samples of product oils and solid wastes were obtained from the H-Coal Process Development Unit (PDU). These samples were subjected to a battery of rapid screening tests, including chemical characterization and bioassays with a variety of aquatic and terrestrial organisms. Water-soluble fraction (WSFs) of H-Coal PDU oils had considerably higher concentrations of phenols and anilines and were commonly one to two orders of magnitude more toxic to aquatic organisms than WSFs of analogous petroleum crude oil. Whole H-Coal PDU oils were also more toxic to the cricket than petroleum-based oils, and some H-Coal samples showed evidence of teratogenicity. Leachates from H-Coal PDU solid wastes, on the other hand, had relatively low concentrations of selected elements and had essentially no acute toxicity to a variety of aquatic and terrestrial species. These studies indicate that environmental effects of product oil spills from a commercial H-Coal liquefaction plant are likely to be more severe than those of conventional petroleum spills. Product upgrading or special transportation and storage techniques may be needed to ensure environmentally sound commercialization of the H-Coal process.« less
Historical releases of mercury to air, land, and water from coal combustion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Streets, David G.; Lu, Zifeng; Levin, Leonard
Coal combustion is one of the largest contemporary sources of anthropogenic mercury (Hg). It releases geologically sequestered Hg to the atmosphere, and fly ash can contaminate terrestrial and aquatic systems. We estimate that coal combustion has released a cumulative total of 38.0 (14.8–98.9, 80% C.I.) Gg (gigagrams, 10 9 g or thousand tonnes) of Hg to air, land, and water up to the year 2010, most of which (97%) has occurred since 1850. The rate of release has grown by two orders of magnitude from 0.01 Gg yr -1 in 1850 to 1 Gg yr -1 in 2010. Geographically, Asiamore » and Europe each account for 32% of cumulative releases and an additional 18% is from North America. About 26.3 (10.2–68.3) Gg, 71% of the total, were directly emitted to the atmosphere, mostly from the industrial (45%) and power generation (36%) sectors, while the remainder was disposed of to land and water bodies. While Europe and North America were the major contributing regions until 1950, Asia has surpassed both in recent decades. By 2010, Asia was responsible for 69% of the total releases of Hg from coal combustion to the environment. Control technologies installed on major emitting sources capture mainly particulate and divalent Hg, and therefore the fraction of elemental Hg in emissions from coal combustion has increased over time from 0.46 in 1850 to 0.61 in 2010. About 11.8 (4.6–30.6) Gg of Hg, 31% of the total, have been transferred to land and water bodies through the disposal or utilization of Hg-containing combustion waste and collected fly ash/FGD waste; approximately 8.8 Gg of this Hg have simply been discarded to waste piles or ash ponds or rivers.« less
Historical releases of mercury to air, land, and water from coal combustion
Streets, David G.; Lu, Zifeng; Levin, Leonard; ...
2018-02-15
Coal combustion is one of the largest contemporary sources of anthropogenic mercury (Hg). It releases geologically sequestered Hg to the atmosphere, and fly ash can contaminate terrestrial and aquatic systems. We estimate that coal combustion has released a cumulative total of 38.0 (14.8–98.9, 80% C.I.) Gg (gigagrams, 10 9 g or thousand tonnes) of Hg to air, land, and water up to the year 2010, most of which (97%) has occurred since 1850. The rate of release has grown by two orders of magnitude from 0.01 Gg yr -1 in 1850 to 1 Gg yr -1 in 2010. Geographically, Asiamore » and Europe each account for 32% of cumulative releases and an additional 18% is from North America. About 26.3 (10.2–68.3) Gg, 71% of the total, were directly emitted to the atmosphere, mostly from the industrial (45%) and power generation (36%) sectors, while the remainder was disposed of to land and water bodies. While Europe and North America were the major contributing regions until 1950, Asia has surpassed both in recent decades. By 2010, Asia was responsible for 69% of the total releases of Hg from coal combustion to the environment. Control technologies installed on major emitting sources capture mainly particulate and divalent Hg, and therefore the fraction of elemental Hg in emissions from coal combustion has increased over time from 0.46 in 1850 to 0.61 in 2010. About 11.8 (4.6–30.6) Gg of Hg, 31% of the total, have been transferred to land and water bodies through the disposal or utilization of Hg-containing combustion waste and collected fly ash/FGD waste; approximately 8.8 Gg of this Hg have simply been discarded to waste piles or ash ponds or rivers.« less
Historical releases of mercury to air, land, and water from coal combustion.
Streets, David G; Lu, Zifeng; Levin, Leonard; Ter Schure, Arnout F H; Sunderland, Elsie M
2018-02-15
Coal combustion is one of the largest contemporary sources of anthropogenic mercury (Hg). It releases geologically sequestered Hg to the atmosphere, and fly ash can contaminate terrestrial and aquatic systems. We estimate that coal combustion has released a cumulative total of 38.0 (14.8-98.9, 80% C.I.) Gg (gigagrams, 10 9 g or thousand tonnes) of Hg to air, land, and water up to the year 2010, most of which (97%) has occurred since 1850. The rate of release has grown by two orders of magnitude from 0.01Ggyr -1 in 1850 to 1Ggyr -1 in 2010. Geographically, Asia and Europe each account for 32% of cumulative releases and an additional 18% is from North America. About 26.3 (10.2-68.3) Gg, 71% of the total, were directly emitted to the atmosphere, mostly from the industrial (45%) and power generation (36%) sectors, while the remainder was disposed of to land and water bodies. While Europe and North America were the major contributing regions until 1950, Asia has surpassed both in recent decades. By 2010, Asia was responsible for 69% of the total releases of Hg from coal combustion to the environment. Control technologies installed on major emitting sources capture mainly particulate and divalent Hg, and therefore the fraction of elemental Hg in emissions from coal combustion has increased over time from 0.46 in 1850 to 0.61 in 2010. About 11.8 (4.6-30.6) Gg of Hg, 31% of the total, have been transferred to land and water bodies through the disposal or utilization of Hg-containing combustion waste and collected fly ash/FGD waste; approximately 8.8Gg of this Hg have simply been discarded to waste piles or ash ponds or rivers. Copyright © 2017 Elsevier B.V. All rights reserved.
Solid-shape energy fuels from recyclable municipal solid waste and plastics
NASA Astrophysics Data System (ADS)
Gug, Jeongin
Diversion of waste streams, such as plastics, wood and paper, from municipal landfills and extraction of useful materials from landfills is an area of increasing interest across the country, especially in densely populated areas. One promising technology for recycling MSW (municipal solid waste) is to burn the high energy content components in standard coal boilers. This research seeks to reform wastes into briquette that are compatible with typical coal combustion processes. In order to comply with the standards of coal-fired power plants, the feedstock must be mechanically robust, moisture resistance, and retain high fuel value. Household waste with high paper and fibers content was used as the base material for this study. It was combined with recyclable plastics such as PE, PP, PET and PS for enhanced binding and energy efficiency. Fuel pellets were processed using a compression molding technique. The resulting moisture absorption, proximate analysis from burning, and mechanical properties were investigated after sample production and then compared with reference data for commercial coals and biomass briquettes. The effects of moisture content, compression pressure and processing temperature were studied to identify the optimal processing conditions with water uptake tests for the durability of samples under humid conditions and burning tests to examine the composition of samples. Lastly, mechanical testing revealed the structural stability of solid fuels. The properties of fuel briquettes produced from waste and recycled plastics improved with higher processing temperature but without charring the material. Optimization of moisture content and removal of air bubbles increased the density, stability and mechanical strength. The sample composition was found to be more similar to biomass fuels than coals because the majority of the starting material was paper-based solid waste. According to the proximate analysis results, the waste fuels can be expected to have low temperature ignition, less char formation and reduced CO2 emission with the high heating energy value similar to coal. It is concluded that solid fuels from paper based waste and plastics can be a good energy resource as an alternative and sustainable fuel, which may help to alleviate the environmental problems related to landfill space at the same time.
Santhanam, C J; Lunt, R R; Johnson, S L; Cooper, C B; Thayer, P S; Jones, J W
1979-01-01
This paper focuses on the incremental impacts of coal ash and flue gas desulfurization (FGD) wastes associated with increased coal usage by utilities and industry under the National Energy Plan (NEP). In the paper, 1985 and 2000 are the assessment points using the baseline data taken from the Annual Environmental Analysis Report (AEAR, September 1977). In each EPA region, the potential mix of disposal options has been broadly estimated and impacts assessed therefrom. In addition, future use of advanced combustion techniques has been taken into account. The quantities of coal ash and FGD wastes depend on ash and sulfur content of the coal, emission regulations, the types of ash collection and FGD systems, and operating conditions of the systems and boiler. The disposal of these wastes is (or will be) subject to Federal and State regulations. The one key legal framework concerning environmental impact on land is the Resource Conservation and Recovery Act (RCRA). RCRA and related Federal and State laws provide a sufficient statutory basis for preventing significant adverse health and environmental impacts from coal ash and FGD waste disposal. However, much of the development and implementation of specific regulations lie ahead. FGD wastes and coal ash and FGD wastes are currently disposed of exclusively on land. The most common land disposal methods are inpoundments (ponds) and landfills, although some mine disposal is also practiced. The potential environmental impacts of this disposal are dependent on the characteristics of the disposal site, characteristics of the coal ash and FGD wastes, control method and the degree of control employed. In general, the major potential impacts are ground and surface water contamination and the "degradation" of large quantities of land. However, assuming land is available for disposal of these wastes, control technology exists for environmentally sound disposal. Because of existing increases in coal use, the possibility of significant environmental impacts, both regionally and nationally, exists regardless of whether the NEP scenario develops or not. Existing baseline data indicate that with sound control technology and successful development and implementation of existing regulatory framework, regional scale impacts are likely to be small; however, site-specific impacts could be significant and need to be evaluated on a case-by-case basis. Both Federal and privately-funded programs are developing additional data and information on disposal of FGD sludges and coal ash. Continuation of these programs will provide additional vital information in the future. However, further information in several areas if desirable: further data on levels of radionuclides and trace metals in these wastes: studies on biological impacts of trace metals; and completion of current and planned studies on disposal problems associated with advanced combustion techniques like fluid bed combustion. PMID:540614
Xu, Jiuping; Hou, Shuhua; Xie, Heping; Lv, Chengwei; Yao, Liming
2018-08-01
In this study, an integrated water and waste load allocation model is proposed to assist decision makers in better understanding the trade-offs between economic growth, resource utilization, and environmental protection of coal chemical industries which characteristically have high water consumption and pollution. In the decision framework, decision makers in a same park, each of whom have different goals and preferences, work together to seek a collective benefit. Similar to a Stackelberg-Nash game, the proposed approach illuminates the decision making interrelationships and involves in the conflict coordination between the park authority and the individual coal chemical company stockholders. In the proposed method, to response to climate change and other uncertainties, a risk assessment tool, Conditional Value-at-Risk (CVaR) and uncertainties through reflecting parameters and coefficients using probability and fuzzy set theory are integrated in the modeling process. Then a case study from Yuheng coal chemical park is presented to demonstrate the practicality and efficiency of the optimization model. To reasonable search the potential consequences of different responses to water and waste load allocation strategies, a number of scenario results considering environmental uncertainty and decision maker' attitudes are examined to explore the tradeoffs between economic development and environmental protection and decision makers' objectives. The results are helpful for decision/police makers to adjust current strategies adapting for current changes. Based on the scenario analyses and discussion, some propositions and operational policies are given and sensitive adaptation strategies are presented to support the efficient, balanced and sustainable development of coal chemical industrial parks. Copyright © 2018 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The study of coal wastes in Chautauga County, New York was begun on June 1, 1975. The major effort to date has been made on the fly ash dump west of Dunkirk, N.Y. The following topics are covered: description of the site; invertebrate biology; selection of trace elements for study and methods of analysis; water analyses; analyses of invertebrates; literature search; physical chemistry of coal ash and the leaching process; and study of lake sediments.
Possible environmental effects of increased coal use in California
NASA Technical Reports Server (NTRS)
Carey, D. L.
1978-01-01
If coal is to be utilized in California it must be made compatible with the state's drive toward restoring environmental quality. The impacts resulting from coal's mining and transportation, or from water consumption, water quality degradation and electric transmission line routing can probably be adequately mitigated through strong and early planning efforts, the use of improved control and process technologies, and sincere utility commitment. The socioeconomic impacts may prove somewhat more difficult to satisfactorily mitigate. Of greatest concern is adequate control of generated air pollutants and disposal of solid and liquid wastes since acceptable technologies or handling techniques have yet to be conclusively demonstrated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morris, S.C.; Hamilton, L.D.
This paper describes health and environmental impacts of coal-fired electric power plants. Effects on man, agriculture, and natural ecosystems are considered. These effects may result from direct impacts or exposures via air, water, and food chains. The paper is organized by geographical extent of effect. Occupational health impacts and local environmental effects such as noise and solid waste leachate are treated first. Then, regional effects of air pollution, including acid rain, are analyzed. Finally, potential global impacts are examined. Occupational health concerns considered include exposure to noise, dust, asbestos, mercury, and combustion products, and resulting injury and disease. Local effectsmore » considered include noise; air and water emissions of coal storage piles, solid waste operations, and cooling systems. Air pollution, once an acute local problem, is now a regional concern. Acute and chronic direct health effects are considered. Special attention is given to potential effects of radionuclides in coal and of acid rain. Finally, potential global impacts associated with carbon dioxide emissions are considered. 88 references, 9 tables.« less
Chemical quality of surface water in the Allegheny River basin, Pennsylvania and New York
McCarren, Edward F.
1967-01-01
The Allegheny River is the principal source of water to many industries and to communities in the upper Ohio River Valley. The river and its many tributaries pass through 19 counties in northwestern and western Pennsylvania. The population in these counties exceeds 3 million. A major user of the Allegheny River is the city of Pittsburgh, which has a population greater than The Allegheny River is as basic to the economy of the upper Ohio River Valley in western Pennsylvania as are the rich deposits of bituminous coal, gas, and oil that underlie the drainage basin. During the past 5 years many streams that flow into the Allegheny have been low flowing because of droughts affecting much of the eastern United States. Consequently, the concentration of solutes in some streams has been unusually high because of wastes from coal mines and oil wells. These and other water-quality problems in the Allegheny River drainage basin are affecting the economic future of some areas in western Pennsylvania. Because of environmental factors such as climate, geology, and land and water uses, surface-water quality varies considerably throughout the river basin. The natural quality of headwater streams, for example, is affected by saltwater wastes from petroleum production. One of the streams most affected is Kinzua Creek, which had 2,900 parts per million chloride in a sample taken at Westline on September 2, 1959. However, after such streams as the Conewango, Brokenstraw, Tionesta, Oil, and French Creeks merge with the Allegheny River, the dissolved-solids and chloride concentrations are reduced by dilution. Central segments of the main river receive water from the Clarion River, Redbank, Mahoning, and Crooked Creeks after they have crossed the coal fields of west-central Pennsylvania. At times, therefore, these streams carry coal-mine wastes that are acidic. The Kiskiminetas River, which crosses these coal fields, discharged sulfuric acid into the Allegheny at a rate of 299 tons a day during the 1962 water year (October 1, 1961, to September 30, 1962). Mine water affects the quality of the Allegheny River most noticeably in its lower part where large withdrawals are made by the Pittsburgh Water Company at Aspinwall and the Wilkinsburg-Penn Joint Water Authority at Nadine. At these places raw river water is chemically .treated in modern treatment plants to control such objectionable characteristics as acidity and excessive concentrations of iron and manganese. Dissolved-solids content in the river varies along its entire length. In its upper reaches the water of the Allegheny River is a sodium chloride type, and at low flow, the sodium chloride is more than half the dissolved solids. In its lower reaches the water is a calcium sulfate .type, and at low flow the calcium sulfate is more than half the dissolved solids. In middle segments of the river from Franklin to Kittanning, water is more dilute and of a mixed type. Many small and several larger streams in the upper basin--such as the Conewango, Brokenstraw, Kinzua, Tionesta, and French Creeks--support large populations of game-fish. Even in segments of the Clarion River, Mahoning, and Redbank Creeks, which are at times affected by coal-mine wastes, fish are present. Although different species withstand varying amounts of contaminants in water, the continued presence of the fish indicates that the water is relatively pure and suitable for recreation and many other uses.
Wigginton, Andrew; McSpirit, Stephanie; Sims, C Dewayne
2007-10-01
In 2000, a coal slurry impoundment failure in Martin County, Kentucky, caused concerns about contaminants entering municipal water supplies. Water samples taken from impacted and reference area hot water tanks often exceeded US EPA drinking water guidelines. Concentrations of As, Cd, Cr, Cu, Fe, Mn, and Pb had maxima of 119; 51.9; 154; 170,000; 976,000; 8,710; and 12,700 microg/L, respectively. Significantly different metal accumulation between counties indicated this procedure's utility for assessing long-term municipal water quality. Correlations between metal concentrations were strong and consistent for As, Ba, Cd, Cr, Co, and Fe indicating that some metals accumulate proportionally with others.
NASA Technical Reports Server (NTRS)
1981-01-01
The reference conceptual design of the magnetohydrodynamic (MHD) Engineering Test Facility (ETF), a prototype 200 MWe coal-fired electric generating plant designed to demonstrate the commercial feasibility of open cycle MHD, is summarized. Main elements of the design, systems, and plant facilities are illustrated. System design descriptions are included for closed cycle cooling water, industrial gas systems, fuel oil, boiler flue gas, coal management, seed management, slag management, plant industrial waste, fire service water, oxidant supply, MHD power ventilating
NASA Astrophysics Data System (ADS)
1981-09-01
The reference conceptual design of the magnetohydrodynamic (MHD) Engineering Test Facility (ETF), a prototype 200 MWe coal-fired electric generating plant designed to demonstrate the commercial feasibility of open cycle MHD, is summarized. Main elements of the design, systems, and plant facilities are illustrated. System design descriptions are included for closed cycle cooling water, industrial gas systems, fuel oil, boiler flue gas, coal management, seed management, slag management, plant industrial waste, fire service water, oxidant supply, MHD power ventilating
The impact of anaerobic microorganisms activities in ruminant waste and coal
NASA Astrophysics Data System (ADS)
Harlia, Ellin; Hamdani, H.; Winantris, Kurnani, Tb. B. A.; Hidayati, Y. A.; Marlina, E. T.; Rahmah, K. N.; Arief, H.; Ridwan, R.; Joni, I. M.
2018-02-01
Ruminant (dairy cattle, beef cattle and buffalo) waste from intensive farming concentrated in highly populated areas when stacked and accumulated in certain heights and in anaerobic condition, may produce Green House Gases (GHGs) which lead to global warming. This condition is generated through fermentation by microorganism contained in livestock waste and biogenic activities on coal. The GHGs include CH4 (methane), CO2 (carbon dioxide) and N2O (nitrous oxide). The GHG emission should be early monitored to minimize greater problems. In the other hand, methane can be utilized as an environmental friendly energy after stored as biogas on digester. The aim of this research is to detect how much GHGs formed from ruminant waste and biogenic activities on coal, which can be utilized as an alternative energy. This research conducted as an explorative study utilizing dairy cattle feces, beef cattle feces, buffalo feces and three types of coal: lignite, bituminous and sub-bituminous, which is separately added into medium 98-5 made from mixture of agar medium and chemical components in powder and crystal form diluted with distilled water and rumen liquid, with six repetitions. Each sample was stored into 250 mL anaerobic digester, observed weekly for period of 4 weeks, analyzed by Gas Chromatography (GC-A14). The result showed that GHGs: CH4, CO2 and N2O were found in all samples. Anticipation of GHGs formation to avoid air pollution is by utilizing livestock waste and coal in aerobic condition or in anaerobic condition through digester.
Saunders, Richard J.; Paul, Nicholas A.; Hu, Yi; de Nys, Rocky
2012-01-01
Biosorption of heavy metals using dried algal biomass has been extensively described but rarely implemented. We contend this is because available algal biomass is a valuable product with a ready market. Therefore, we considered an alternative and practical approach to algal bioremediation in which algae were cultured directly in the waste water stream. We cultured three species of algae with and without nutrient addition in water that was contaminated with heavy metals from an Ash Dam associated with coal-fired power generation and tested metal uptake and bioremediation potential. All species achieved high concentrations of heavy metals (to 8% dry mass). Two key elements, V and As, reached concentrations in the biomass of 1543 mg.kg−1 DW and 137 mg.kg−1 DW. Growth rates were reduced by more than half in neat Ash Dam water than when nutrients were supplied in excess. Growth rate and bioconcentration were positively correlated for most elements, but some elements (e.g. Cd, Zn) were concentrated more when growth rates were lower, indicating the potential to tailor bioremediation depending on the pollutant. The cosmopolitan nature of the macroalgae studied, and their ability to grow and concentrate a suite of heavy metals from industrial wastes, highlights a clear benefit in the practical application of waste water bioremediation. PMID:22590550
Thermal and catalytic coprocessing of coal and waste materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Orr, E.C.; Tuntawiroon, W.; Ding, W.B.
1995-12-31
Coprocessing of coal with waste materials to produce liquid fuels with emphasis on finding reasonable reaction pathways and catalysts for such processing is presently the subject of intensive investigation. Polymer wastes such as polyethylene, polystyrene, polypropylene and used rubber tires are not naturally degraded over time. More than 22 million tons of plastic waste are annually discarded in landfills and over 75 percent of used rubber tires are similarly treated. In order to obtain distillate liquids or petroleum compatible refined products from coal, addition of hydrogen is necessary. A possible method for hydrogen addition is coprocessing of coal with polymericmore » waste materials since these latter materials contain hydrogen at levels much higher than are found in coal. The breakdown of waste rubber tires is interesting because the liquids derived may prove to be important as a coal dissolution and/or hydrogen donor solvent. Recently, Badger and coworkers reported that hydrogenated tire oils (hydrogenated in the presence of CoMo catalyst) were effective for the dissolution of coal. Studies on the coprocessing of coal and waste materials have only recently been done intensively. Limited data are available on reaction conditions and catalytic effects for processing coal mixed with post-consumer wastes. The purpose of the present study was to determine the effects of reaction temperature, pressure, catalysts, and mixture ratio on the coprocessing of coal and waste materials.« less
Activities of the Institute of Chemical Processing of Coal at Zabrze
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dreszer, K.
1995-12-31
The Institute of Chemical Processing of Coal at Zabrze was established in 1955. The works on carbochemical technologies have been, therefore, carried out at the Institute for 40 years. The targets of the Institute`s activities are research, scientific and developing works regarding a sensible utilization of fuels via their processing into more refined forms, safe environment, highly efficient use of energy carriers and technological products of special quality. The Institute of Chemical Processing of Coal has been dealing with the following: optimized use of home hard coals; improvement of classic coal coking technologies, processing and utilization of volatile coking products;more » production technologies of low emission rate fuels for communal management; analyses of coal processing technologies; new technologies aimed at increasing the efficiency of coal utilization for energy-generating purposes, especially in industry and studies on the ecological aspects of these processes; production technologies of sorbents and carbon activating agents and technologies of the utilization; rationalization of water and wastes management in the metallurgical and chemical industries in connection with removal of pollution especially dangerous to the environment from wastes; utilization technologies of refined materials (electrode cokes, binders, impregnating agents) for making electrodes, refractories and new generation construction carbon materials; production technologies of high quality bituminous and bituminous and resin coating, anti-corrosive and insulation materials; environmentally friendly utilization technologies for power station, mine and other wastes, and dedusting processes in industrial gas streams.« less
NASA Astrophysics Data System (ADS)
Stolboushkin, A. Yu; Akst, D. V.; Fomina, O. A.; Ivanov, A. I.; Syromyasov, V. A.
2017-09-01
The analysis of waste coal from mining enterprises of Kemerovo region as raw materials for production of building ceramics is given. The results of studies of material, chemical and mineralogical compositions of waste coal from Abashevskaya processing plant (Novokuznetsk) are presented. It was established that the chemical composition of waste coal refers to aluminosilicate raw materials with a high content of alumina and coloring oxides, the residual carbon content in the wastes is 12-25 %. According to the granulometric composition the waste coal is basically a sandy-dusty fraction with a small amount of clay particles (1-3 %). Additional grinding of coal waste and the introduction of a clay additive in an amount of up to 30 % are recommended. The results of the study of the mineral composition of waste coal are presented. Clay minerals are represented in the descending order by hydromuscovite, montmorillonite and kaolinite, minerals-impurities consist of quartz, feldspar fine-dispersed carbonates. The results of the investigation of ceramic-technological properties of waste coal, which belong to the group of moderately plastic low-melting raw materials, are given. As a result of a comprehensive study it was been established that with chemical, granulometric and mineralogical compositions waste coal with the reduced residual carbon can be used in the production of ceramic bricks.
30 CFR 784.25 - Return of coal processing waste to abandoned underground workings.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Return of coal processing waste to abandoned... ENFORCEMENT, DEPARTMENT OF THE INTERIOR SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL... RECLAMATION AND OPERATION PLAN § 784.25 Return of coal processing waste to abandoned underground workings. (a...
30 CFR 784.25 - Return of coal processing waste to abandoned underground workings.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Return of coal processing waste to abandoned... ENFORCEMENT, DEPARTMENT OF THE INTERIOR SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL... RECLAMATION AND OPERATION PLAN § 784.25 Return of coal processing waste to abandoned underground workings. (a...
30 CFR 784.25 - Return of coal processing waste to abandoned underground workings.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Return of coal processing waste to abandoned... ENFORCEMENT, DEPARTMENT OF THE INTERIOR SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL... RECLAMATION AND OPERATION PLAN § 784.25 Return of coal processing waste to abandoned underground workings. (a...
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1997-12-31
The objective of this project is to utilize coal ashes to process hazardous materials such as industrial waste water treatment residues, contaminated soils, and air pollution control dusts from the metal industry and municipal waste incineration. This report describes the activities of the project team during the reporting period. The principal work has focused upon continuing evaluation of aged samples from Phase 1, planning supportive laboratory studies for Phase 2, completing scholarly work, reestablishing MAX Environmental Technologies, Inc., as the subcontractor for the field work of Phase 2, proposing two presentations for later in 1997, and making and responding tomore » several outside contacts.« less
The analysis of heavy metal in leaching liquid of coal
NASA Astrophysics Data System (ADS)
Cao, Hongmei; Li, Guanglou; Zhang, Lu
2018-02-01
In this paper, heavy metals in coal were extracted by pure water to simulate the leaching effect of natural precipitation or artificial rainfall on outdoor storage of coal. The results show that the leaching liquid pH was slightly declining, and Cu, Zn, Pb, Cd were in μg/L level, far less than the hazardous waste identification standard of GB5085.3-2007. It suggests that leaching liquid was less harmful to environment when coal was immersed by big amount of water. In the case of spray or precipitation less, the pH drop was more obvious, leaching of heavy metals more, and the general elution of the initial dissolution of the most obvious. Although the amount of small but more toxic, the relevant management should be alert to its harmful.
30 CFR 817.83 - Coal mine waste: Refuse piles.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Coal mine waste: Refuse piles. 817.83 Section... ACTIVITIES § 817.83 Coal mine waste: Refuse piles. Refuse piles shall meet the requirements of § 817.81, the... removed from the disposal area prior to placement of coal mine waste. Topsoil shall be removed, segregated...
30 CFR 816.83 - Coal mine waste: Refuse piles.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Coal mine waste: Refuse piles. 816.83 Section... ACTIVITIES § 816.83 Coal mine waste: Refuse piles. Refuse piles shall meet the requirements of § 816.81, the... removed from the disposal area prior to placement of coal mine waste. Topsoil shall be removed, segregated...
30 CFR 817.83 - Coal mine waste: Refuse piles.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Coal mine waste: Refuse piles. 817.83 Section... ACTIVITIES § 817.83 Coal mine waste: Refuse piles. Refuse piles shall meet the requirements of § 817.81, the... removed from the disposal area prior to placement of coal mine waste. Topsoil shall be removed, segregated...
30 CFR 816.83 - Coal mine waste: Refuse piles.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Coal mine waste: Refuse piles. 816.83 Section... ACTIVITIES § 816.83 Coal mine waste: Refuse piles. Refuse piles shall meet the requirements of § 816.81, the... removed from the disposal area prior to placement of coal mine waste. Topsoil shall be removed, segregated...
30 CFR 817.83 - Coal mine waste: Refuse piles.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Coal mine waste: Refuse piles. 817.83 Section... ACTIVITIES § 817.83 Coal mine waste: Refuse piles. Refuse piles shall meet the requirements of § 817.81, the... removed from the disposal area prior to placement of coal mine waste. Topsoil shall be removed, segregated...
30 CFR 816.83 - Coal mine waste: Refuse piles.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Coal mine waste: Refuse piles. 816.83 Section... ACTIVITIES § 816.83 Coal mine waste: Refuse piles. Refuse piles shall meet the requirements of § 816.81, the... removed from the disposal area prior to placement of coal mine waste. Topsoil shall be removed, segregated...
30 CFR 816.83 - Coal mine waste: Refuse piles.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Coal mine waste: Refuse piles. 816.83 Section... ACTIVITIES § 816.83 Coal mine waste: Refuse piles. Refuse piles shall meet the requirements of § 816.81, the... removed from the disposal area prior to placement of coal mine waste. Topsoil shall be removed, segregated...
30 CFR 816.83 - Coal mine waste: Refuse piles.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Coal mine waste: Refuse piles. 816.83 Section... ACTIVITIES § 816.83 Coal mine waste: Refuse piles. Refuse piles shall meet the requirements of § 816.81, the... removed from the disposal area prior to placement of coal mine waste. Topsoil shall be removed, segregated...
30 CFR 817.83 - Coal mine waste: Refuse piles.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Coal mine waste: Refuse piles. 817.83 Section... ACTIVITIES § 817.83 Coal mine waste: Refuse piles. Refuse piles shall meet the requirements of § 817.81, the... removed from the disposal area prior to placement of coal mine waste. Topsoil shall be removed, segregated...
30 CFR 817.83 - Coal mine waste: Refuse piles.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Coal mine waste: Refuse piles. 817.83 Section... ACTIVITIES § 817.83 Coal mine waste: Refuse piles. Refuse piles shall meet the requirements of § 817.81, the... removed from the disposal area prior to placement of coal mine waste. Topsoil shall be removed, segregated...
NASA Astrophysics Data System (ADS)
Indrawati, V.; Manaf, A.; Purwadi, G.
2009-09-01
This paper reports recent investigations on the use of biomass like rice husk, palm kernel shell, saw dust and municipal waste to reduce the use of fossil fuels energy in the cement production. Such waste materials have heat values in the range approximately from 2,000 to 4,000 kcal/kg. These are comparable to the average value of 5800 kcal/kg from fossil materials like coals which are widely applied in many industrial processing. Hence, such waste materials could be used as alternative fuels replacing the fossil one. It is shown that replacement of coals with such waste materials has a significant impact on cost effectiveness as well as sustainable development. Variation in moisture content of the waste materials, however should be taken into account because this is one of the parameter that could not be controlled. During fuel combustion, some amount of the total energy is used to evaporate the water content and thus the net effective heat value is less.
Organic coal-water fuel: Problems and advances (Review)
NASA Astrophysics Data System (ADS)
Glushkov, D. O.; Strizhak, P. A.; Chernetskii, M. Yu.
2016-10-01
The study results of ignition of organic coal-water fuel (OCWF) compositions were considered. The main problems associated with investigation of these processes were identified. Historical perspectives of the development of coal-water composite fuel technologies in Russia and worldwide are presented. The advantages of the OCWF use as a power-plant fuel in comparison with the common coal-water fuels (CWF) were emphasized. The factors (component ratio, grinding degree of solid (coal) component, limiting temperature of oxidizer, properties of liquid and solid components, procedure and time of suspension preparation, etc.) affecting inertia and stability of the ignition processes of suspensions based on the products of coaland oil processing (coals of various types and metamorphism degree, filter cakes, waste motor, transformer, and turbine oils, water-oil emulsions, fuel-oil, etc.) were analyzed. The promising directions for the development of modern notions on the OCWF ignition processes were determined. The main reasons limiting active application of the OCWF in power generation were identified. Characteristics of ignition and combustion of coal-water and organic coal-water slurry fuels were compared. The effect of water in the composite coal fuels on the energy characteristics of their ignition and combustion, as well as ecological features of these processes, were elucidated. The current problems associated with pulverization of composite coal fuels in power plants, as well as the effect of characteristics of the pulverization process on the combustion parameters of fuel, were considered. The problems hindering the development of models of ignition and combustion of OCWF were analyzed. It was established that the main one was the lack of reliable experimental data on the processes of heating, evaporation, ignition, and combustion of OCWF droplets. It was concluded that the use of high-speed video recording systems and low-inertia sensors of temperature and gas concentration could help in providing the lacking experimental information.
Parker, F L
1979-01-01
The thermal consequences of coal utilization are most meaningfully assessed in comparison with the form of power generation replaced by coal which is most likely nuclear. The different effects are influenced by siting decisions and the intrinsic thermal efficiencies of the two fuel systems. Nuclear power plants discharge 50% more waste Rheat to the atmosphere through cooling towers or to a water body than coal-fired plants. Coal-fired plants require about 2/3 as much water as nuclear power plants. Nearly every property of water is affected nonlinearly by temperature, and biological effects may amplify these changes because protein denaturation takes place more rapidly above 30 degrees C and these high temperatures affect bactericidal and viricidal activity of chlorine compounds. Usually algal populations change from a dominance of diatoms and green algae to dominance by blue-green algae. All organisms experience elevated metabolic rates at higher temperatures which may affect total energy needs, foraging ability, reproduction, migration and susceptibility to disease. Intake structures inevitably draw many organisms into the cooling system of a power plant, but the number and kind are influenced by its location, configuration, and mode of operation. Use of water recirculation systems reduces water use and with it, the number of organisms entrained. Mechanical damage in the cooling system to small organisms is generally low, but fish and their larvae and eggs may be seriously damaged. Discharge effects may also be severe but are generally local. The near field, where there are strong shear velocities and rapid temperature changes are particularly stressful to fish, and stringent limitations on the timing and strength of discharges may be required to reduce these stresses to nondamaging levels. Off-stream cooling systems may increase cloudiness, ground fog, precipitation, temperature and local winds, but these effects generally extend no further than 1000 m even in winter. There is considerable potential for using condenser cooling water for agricultural and aquacultural purposes such as irrigation, frost protection, undersoil heating, greenhouse heating and climate control. However, over the next few decades little of this waste heat is likely to be used creatively. The thermal consequences of implementing NEP are locally serious but do not pose regional problems. Creative use of the waste heat for aquaculture, agriculture, cogeneration, and power for energy intensive industries can be a powerful means of mitigating undesirable effects. PMID:540623
Geremias, Reginaldo; Bortolotto, Tiago; Wilhelm-Filho, Danilo; Pedrosa, Rozangela Curi; de Fávere, Valfredo Tadeu
2012-05-01
The aim of this study was to evaluate the efficacy of the treatment of acid mine drainage (AMD) with calcinated coal mining waste using Allium cepa L. as a bioindicator. The pH values and the concentrations of aluminum, iron, manganese, zinc, copper, lead and sulfate were determined before and after the treatment of the AMD with calcinated coal mining waste. Allium cepa L. was exposed to untreated and treated AMD, as well as to mineral water as a negative control (NC). At the end of the exposure period, the inhibition of root growth was measured and the mean effective concentration (EC(50)) was determined. Oxidative stress biomarkers such as lipid peroxidation (TBARS), protein carbonyls (PC), catalase activity (CAT) and reduced glutathione levels (GSH) in the fleshy leaves of the bulb, as well as the DNA damage index (ID) in meristematic cells, were evaluated. The results indicated that the AMD treatment with calcinated coal mining waste resulted in an increase in the pH and an expressive removal of aluminum, iron, manganese and zinc. A high sub-chronic toxicity was observed when Allium cepa L. was exposed to the untreated AMD. However, after the treatment no toxicity was detected. Levels of TBARS and PC, CAT activity and the DNA damage index were significantly increased (P<0.05) in Allium cepa L. exposed to untreated AMD when compared to treated AMD and also to negative controls. No significant alteration in the GSH content was observed. In conclusion, the use of calcinated coal mining waste associated with toxicological tests on Allium cepa L. represents an alternative system for the treatment and biomonitoring of these types of environmental contaminants. Copyright © 2011 Elsevier Inc. All rights reserved.
Dai, Wenting; Dong, Jihong; Yan, Wanglin; Xu, Jiren
2017-01-01
The paper divided the whole coal life cycle, explained each phase characteristics, and took coal mine in China as a study case to assess the ecological risk in coal utilization phase. The main conclusions are as follows: (1) the whole coal life cycle is divided into coal mining, processing, transportation, utilization, and waste disposal. (2) The key points of production organization and characteristics in the five phases have great differences. The coal mining phase is characterized by the damage of the key ecological factors (water, soil, atmosphere, vegetation, etc.) damaged while the coal processing phase by discharging waste. The characteristics in coal transportation phase mainly performance as escaping and migration of atmospheric pollutants. In coal utilization phase, the main characteristics are aggravation of greenhouse effect. The main characteristics of waste disposal phase are accumulation of negative ecological effects on the land. (3) The ecological risk of soil heavy metals is serious in coal utilization phase. The potential ecological hazard coefficients of Pb and As in coal, residue and ash are all lower than 40, presenting low environmental impact on soil; the potential ecological risk coefficients of Cd are higher than 60, nearly half of their potential ecological risk coefficients are higher than 160, which presents high environmental pollution impact on soil; Hg's potential ecological risk coefficients are higher than 320, presenting the highest environmental pollution impact on soil; the comprehensive pollution indexes in coal, residue, and ash are relatively high, which means the pollution hazard potential to soil environment is high. (4) The ecological risk of the atmospheric solid suspended matter is relatively strong in coal utilization phase. The ecological risk of Cd and As in primary flue gas is both lower than net flue gas. The geoaccumulation indexes of Cd and Hg in primary flue gas and net flue gas are both higher than 5, presenting the very strong ecological risk; 50 % of the geoaccumulation index values of As are between 3 and 4, which has also presenting a strong ecological risk while Pb does not present the ecological risk characterization.
Coal Combustion Wastes Reuse in Low Energy Artificial Aggregates Manufacturing.
Ferone, Claudio; Colangelo, Francesco; Messina, Francesco; Iucolano, Fabio; Liguori, Barbara; Cioffi, Raffaele
2013-10-31
Sustainable building material design relies mostly on energy saving processes, decrease of raw materials consumption, and increase of waste and by-products recycling. Natural and lightweight artificial aggregates production implies relevant environmental impact. This paper addresses both the issues of residues recycling and energy optimization. Particularly, three coal combustion wastes (Weathered Fly Ash, WFA; Wastewater Treatment Sludge, WTS; Desulfurization Device Sludge, DDS) supplied by the Italian electric utility company (ENEL) have been employed in the manufacture of cold bonded artificial aggregates. Previously, the residues have been characterized in terms of chemical and mineralogical compositions, water content, particle size distribution, and heavy metal release behavior. These wastes have been used in the mix design of binding systems with the only addition of lime. Finally, the artificial aggregates have been submitted to physical, mechanical, and leaching testing, revealing that they are potentially suitable for many civil engineering applications.
Coal Combustion Wastes Reuse in Low Energy Artificial Aggregates Manufacturing
Ferone, Claudio; Colangelo, Francesco; Messina, Francesco; Iucolano, Fabio; Liguori, Barbara; Cioffi, Raffaele
2013-01-01
Sustainable building material design relies mostly on energy saving processes, decrease of raw materials consumption, and increase of waste and by-products recycling. Natural and lightweight artificial aggregates production implies relevant environmental impact. This paper addresses both the issues of residues recycling and energy optimization. Particularly, three coal combustion wastes (Weathered Fly Ash, WFA; Wastewater Treatment Sludge, WTS; Desulfurization Device Sludge, DDS) supplied by the Italian electric utility company (ENEL) have been employed in the manufacture of cold bonded artificial aggregates. Previously, the residues have been characterized in terms of chemical and mineralogical compositions, water content, particle size distribution, and heavy metal release behavior. These wastes have been used in the mix design of binding systems with the only addition of lime. Finally, the artificial aggregates have been submitted to physical, mechanical, and leaching testing, revealing that they are potentially suitable for many civil engineering applications. PMID:28788372
30 CFR 816.14 - Casing and sealing of drilled holes: Temporary.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., DEPARTMENT OF THE INTERIOR PERMANENT PROGRAM PERFORMANCE STANDARDS PERMANENT PROGRAM PERFORMANCE STANDARDS... approved permit application for use to return coal processing waste or water to underground workings, or to...
The environmental problems in urban communities and the protection of the environment in Korea.
Kim, I K
1994-07-01
Korea's urban environmental problems, specifically air and water pollution, government environmental policies, and the role of nongovernmental organizations (NGOs) in protecting the environment are described and discussed. Korea's rapid industrialization and urbanization between 1961 and 1985 led to an increased volume of waste and air pollution. Automobiles increased in number from 29,234 in 1961 to 1,113,430 in 1985. In the same period, the number of factories with at least five employees rose from 15,204 to 44,037. The volume of chemical materials and agricultural chemicals dramatically increased. Household wastes in urban areas increased from 26,831 tons per day in 1978 to 61,072 tons per day in 1985. Industrial waste rose from 13,130 to 33,349 tons per day in 1985. Respiratory diseases are precipitated by exposure to sulphur dioxide, which is produced during cooking and heating with coal briquets; to nitrogen dioxide from automobile exhaust; and to carbon monoxide from coal briquets. Indoor air pollution from particles such as radon, asbestos, cigarette smoke, fungus, and bacteria also impacts on health. Tolerance limits have been reached or surpassed in many cities, particularly in Seoul. Air pollution is worse during the winter. The poor are particularly affected because of the continued use of coal briquets for heating. Industry contributes to water pollution. The volume of industrial waste water quadrupled between 1980 and 1990. In Seoul, however, population size directly contributes to 64.3% of water pollution, and the remaining 35.2% is from factories. Although livestock contributes to only 0.5% of water pollution, livestock drainage contributes to 36.3% of chemical materials in polluted water. Biological oxygen demand has also exceeded tolerance limits. Water reservoirs contain toxic chemicals such as lead, copper, mercury, arsenic, phenol, phosphorus, and nitrogen, which take a longer time to affect health. The Anti-Pollution Law of 1963 and the Environmental Protection Law of 1977 were adopted, but public participation was problematic, and funding for assessment was limited. NGOs have been active in environmental programs since democratization in 1987.
30 CFR 779.25 - Cross sections, maps, and plans.
Code of Federal Regulations, 2012 CFR
2012-07-01
... locations of monitoring stations used to gather data for water quality and quantity, fish and wildlife, and... encountered, within the proposed permit or adjacent areas; (7) Location of surface water bodies such as... the proposed permit area; (9) Location and dimensions of existing areas of spoil, waste, and non-coal...
30 CFR 779.25 - Cross sections, maps, and plans.
Code of Federal Regulations, 2010 CFR
2010-07-01
... locations of monitoring stations used to gather data for water quality and quantity, fish and wildlife, and... encountered, within the proposed permit or adjacent areas; (7) Location of surface water bodies such as... the proposed permit area; (9) Location and dimensions of existing areas of spoil, waste, and non-coal...
30 CFR 779.25 - Cross sections, maps, and plans.
Code of Federal Regulations, 2014 CFR
2014-07-01
... locations of monitoring stations used to gather data for water quality and quantity, fish and wildlife, and... encountered, within the proposed permit or adjacent areas; (7) Location of surface water bodies such as... the proposed permit area; (9) Location and dimensions of existing areas of spoil, waste, and non-coal...
30 CFR 779.25 - Cross sections, maps, and plans.
Code of Federal Regulations, 2011 CFR
2011-07-01
... locations of monitoring stations used to gather data for water quality and quantity, fish and wildlife, and... encountered, within the proposed permit or adjacent areas; (7) Location of surface water bodies such as... the proposed permit area; (9) Location and dimensions of existing areas of spoil, waste, and non-coal...
30 CFR 779.25 - Cross sections, maps, and plans.
Code of Federal Regulations, 2013 CFR
2013-07-01
... locations of monitoring stations used to gather data for water quality and quantity, fish and wildlife, and... encountered, within the proposed permit or adjacent areas; (7) Location of surface water bodies such as... the proposed permit area; (9) Location and dimensions of existing areas of spoil, waste, and non-coal...
USE OF COAL DRYING TO REDUCE WATER CONSUMED IN PULVERIZED COAL POWER PLANTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edward K. Levy; Nenad Sarunac; Harun Bilirgen
2006-03-01
U.S. low rank coals contain relatively large amounts of moisture, with the moisture content of subbituminous coals typically ranging from 15 to 30 percent and that for lignites from 25 and 40 percent. High fuel moisture has several adverse impacts on the operation of a pulverized coal generating unit, for it can result in fuel handling problems and it affects heat rate, stack emissions and maintenance costs. Theoretical analyses and coal test burns performed at a lignite fired power plant show that by reducing the fuel moisture, it is possible to improve boiler performance and unit heat rate, reduce emissionsmore » and reduce water consumption by the evaporative cooling tower. The economic viability of the approach and the actual impact of the drying system on water consumption, unit heat rate and stack emissions will depend critically on the design and operating conditions of the drying system. The present project evaluated the low temperature drying of high moisture coals using power plant waste heat to provide the energy required for drying. Coal drying studies were performed in a laboratory scale fluidized bed dryer to gather data and develop models on drying kinetics. In addition, analyses were carried out to determine the relative costs and performance impacts (in terms of heat rate, cooling tower water consumption and emissions) of drying along with the development of optimized drying system designs and recommended operating conditions.« less
NASA Astrophysics Data System (ADS)
Lesin, Yu V.; Hellmer, M. C.
2016-08-01
Among all industries in Kuzbass (Western Siberia, Russia) the coal industry provides the most environmental threat. However, the construction of new and maintenance of existing open pit mines do not often correspond to the tasks of improving the environmental safety of surface mining. So the article describes the use of innovative quarry waste water purifying technology implemented in Kuzbass open pit mine «Shestaki». This technology is based on using artificial filter arrays made of overburden rock.
Electric Power Generation, Transmission and Distribution (NAICS 2211)
Find EPA regulatory information for electrical utilities, including coal-fired power plants. Includes links to NESHAPs for RICE, stationary combustion engines, fossil fuel waste, cooling water, effluent guidelines. Find information on the MATS rule.
Appraisement of environment remote sensing method in mining area
NASA Astrophysics Data System (ADS)
Yang, Fengjie; Zhen, Han; Jiang, Tao; Lei, Liqing; Gong, Cailan
1998-08-01
Coal mining is attached great importance by society as a key profession of environmental pollution. The monitor and protection of coal-mine environment is a developing profession in China. The sulfur dioxide, carbon dioxide, carbon monoxide and other waste gases, which are put out by the spontaneous combustion or weathering of gangue are an important pollution resource of atmosphere. The stack of gangue held down many farmlands. Smoke, coal dust and powder coal ash pollute the environment of mining area and surroundings though the affection of monsoon. The pH value of water which coal mine drained off is low, and the drinking, farming and animal husbandry water where it flowed are affected. The surface subsidence which mining caused is a typical destruction of ground environment. The people pay attention to remote sensing as a method of rapidly, cheaply regional environment investigation. The paper tires making an appraisement of mining area environment monitor by many kind methods of remote sensing from the characteristic of mining area environment.
Underground thermal generation of hydrocarbons from dry, southwestern coals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vanderborgh, N.E.; Elliott, G.R.B.
1978-01-01
The LASL underground coal conversion concept produces intermediate-BTU fuel gas for nearby industries such as ''minemouth'' electric power plants, plus major byproducts in the form of liquid and gaseous hydrocarbons for feedstocks to chemical plants e.g., substitute natural gas (SNG) producers. The concept involves controlling the water influx and drying the coal, generating hydrocarbons, by pyrolysis and finally gasifying the residual char with O/sub 2//CO/sub 2/ or air/CO/sub 2/ mixtures to produce industrial fuel gases. Underground conversion can be frustrated by uncontrolled water in the coal bed. Moisture can (a) prevent combustion, (b) preclude fuel gas formation by lowering reactionmore » zone temperatures and creating kinetic problems, (c) ruin product gas quality by dropping temperatures into a thermodynamically unsatisfactory regime, (d) degrade an initially satisfactory fuel gas by consuming carbon monoxide, (e) waste large amounts of heat, and (f) isolate reaction zones so that the processing will bypass blocks of coal.« less
Compacting biomass waste materials for use as fuel
NASA Astrophysics Data System (ADS)
Zhang, Ou
Every year, biomass waste materials are produced in large quantity. The combustibles in biomass waste materials make up over 70% of the total waste. How to utilize these waste materials is important to the nation and the world. The purpose of this study is to test optimum processes and conditions of compacting a number of biomass waste materials to form a densified solid fuel for use at coal-fired power plants or ordinary commercial furnaces. Successful use of such fuel as a substitute for or in cofiring with coal not only solves a solid waste disposal problem but also reduces the release of some gases from burning coal which cause health problem, acid rain and global warming. The unique punch-and-die process developed at the Capsule Pipeline Research Center, University of Missouri-Columbia was used for compacting the solid wastes, including waste paper, plastics (both film and hard products), textiles, leaves, and wood. The compaction was performed to produce strong compacts (biomass logs) under room temperature without binder and without preheating. The compaction conditions important to the commercial production of densified biomass fuel logs, including compaction pressure, pressure holding time, back pressure, moisture content, particle size, binder effects, and mold conditions were studied and optimized. The properties of the biomass logs were evaluated in terms of physical, mechanical, and combustion characteristics. It was found that the compaction pressure and the initial moisture content of the biomass material play critical roles in producing high-quality biomass logs. Under optimized compaction conditions, biomass waste materials can be compacted into high-quality logs with a density of 0.8 to 1.2 g/cm3. The logs made from the combustible wastes have a heating value in the range 6,000 to 8,000 Btu/lb which is only slightly (10 to 30%) less than that of subbituminous coal. To evaluate the feasibility of cofiring biomass logs with coal, burn tests were conducted in a stoke boiler. A separate burning test was also carried out by burning biomass logs alone in an outdoor hot-water furnace for heating a building. Based on a previous coal compaction study, the process of biomass compaction was studied numerically by use of a non-linear finite element code. A constitutive model with sufficient generality was adapted for biomass material to deal with pore contraction during compaction. A contact node algorithm was applied to implement the effect of mold wall friction into the finite element program. Numerical analyses were made to investigate the pressure distribution in a die normal to the axis of compaction, and to investigate the density distribution in a biomass log after compaction. The results of the analyses gave generally good agreement with theoretical analysis of coal log compaction, although assumptions had to be made about the variation in the elastic modulus of the material and the Poisson's ratio during the compaction cycle.
New technological methods for protecting underground waters from agricultural pollution
NASA Astrophysics Data System (ADS)
Mavlyanov, Gani
2015-04-01
The agricultural production on the irrigated grounds can not carry on without mineral fertilizers, pesticides and herbicides. Especially it is shown in Uzbekistan, in cultivation of cotton. There is an increase in mineralization, rigidity, quantity of heavy metals, phenols and other pollutions in the cotton fields. Thus there is an exhaustion of stocks of fresh underground waters. In the year 2003 we were offered to create the ecological board to prevent pollution to get up to a level of subsoil waters in the top 30 centimeter layer of the ground. We carried out an accumulation and pollution processing. This layer possesses a high adsorbing ability for heavy metals, mineral oil, mineral fertilizers remnants, defoliants and pesticides. In order to remediate a biological pollution treatment processing should be take into account. The idea is consisted in the following. The adsorption properties of coal is all well-known that the Angren coal washing factories in Tashkent area have collected more than 10 million tons of the coal dust to mix with clays. We have picked up association of anaerobic microorganisms which, using for development, destroys nutrients of coal waste pollutions to a harmless content for people. Coal waste inoculation also are scattered by these microorganisms on the field before plowing. Deep (up to 30 cm) plowing brings them on depth from 5 up to 30 cm. Is created by a plough a layer with necessary protective properties. The norm of entering depends on the structure of ground and the intensity of pollutions. Laboratory experiments have shown that 50% of pollutions can be treated by the ecological board and are processed up to safe limit.
Method for processing coal-enrichment waste with solid and volatile fuel inclusions
NASA Astrophysics Data System (ADS)
Khasanova, A. V.; Zhirgalova, T. B.; Osintsev, K. V.
2017-10-01
The method relates to the field of industrial heat and power engineering. It can be used in coal preparation plants for processing coal waste. This new way is realized to produce a loose ash residue directed to the production of silicate products and fuel gas in rotary kilns. The proposed method is associated with industrial processing of brown coal beneficiation waste. Waste is obtained by flotation separation of rock particles up to 13 mm in size from coal particles. They have in their composition both solid and volatile fuel inclusions (components). Due to the high humidity and significant rock content, low heat of combustion, these wastes are not used on energy boilers, they are stored in dumps polluting the environment.
Ferrite Research Aimed at Improving Induction Linac Driven FEL performance. Phase 2
1992-10-01
energy costs and decrease our dependence on foreign energy sources. SO 2 control has used flue gas desulfurization scrubbers after combustion, coal...minimizing operating costs. . Dry Mode of Operation Conventional flue - gas treatment processes are generally wet systems which generate waste water and wet ...energy source in the United States. So reducing the SO 2 and NOx emission from flue gas will allow use of abundant, high-sulphur coal resources, lower
Sekhohola, Lerato Mary; Isaacs, Michelle Louise; Cowan, Ashton Keith
2014-01-01
Colonization and oxidative metabolism of South African low-rank discard coal by the fungal strain ECCN 84 previously isolated from a coal environment and identified as Neosartorya fischeri was investigated. Results show that waste coal supported fungal growth. Colonization of waste coal particles by N. fischeri ECCN 84 was associated with the formation of compact spherical pellets or sclerotia-like structures. Dissection of the pellets from liquid cultures revealed a nucleus of "engulfed" coal which when analyzed by energy dispersive X-ray spectroscopy showed a time-dependent decline in weight percentage of elemental carbon and an increase in elemental oxygen. Proliferation of peroxisomes in hyphae attached to coal particles and increased extracellular laccase activity occurred after addition of waste coal to cultures of N. fischeri ECCN 84. These results support a role for oxidative enzyme action in the biodegradation of coal and suggest that extracellular laccase is a key component in this process.
Hussain, Rahib; Luo, Kunli; Chao, Zhao; Xiaofeng, Zhao
2018-05-07
This study probe the probable impacts of coal mining pollution and its impacts on human's health and environment. A total of 144 samples including coal and coal wastes, soil, plants, foods, and water were collected from the Hancheng county and countryside of Shaanxi, China. All the samples were analyzed for trace elements using ICP-MS, OES, and AFS. Results showed that the concentration of Se, As, Cr, Cu, Pb, Cd, Co, Ni, Mo, U, Th (mgKg -1 ), Fe, Mn, Al, Ti (%) etc., in coal and coal wastes were 7.5, 12.1, 275, 55, 54.2, 0.8, 14.8, 94.5, 8.9, 4.9, 17.2, 3.5, 0.02, 19, 0.7, respectively. While in soil 0.6, 12, 194, 27.5, 7.4, 0.6, 11.3, 83.4, 0.7, 1.7, 9.9, 3.1, 0.04, 10.5, and 0.4 for the above elements, respectively. In Hancheng foods, the average concentration of Se-0.09, As-0.15, Cr-1.8, Cu-3.2, Pb-0.4, Cd-0.02, Co-0.09, Ni-0.4, Mo-0.64, U-0.01, Th-0.03, Fe-129, Mn-15.6, Al-234, and Ti-5.2 in mgKg -1 , respectively, which are comparably higher than the countryside. The elemental concentration in groundwater of both areas was below the WHO-2004 standard. In Hancheng, the average daily intake (mgKg -1 bw/d) of Se 0.004-0.0038, As 0.004-0.13, Cr 0.055-0.06, Cd 0.001-0.004, Ni 0.018-13.91, Pb 0.05-0.001 adult-children, respectively. The toxic trace elements such as Cr, Cu, Mn, Pb, Ti, Cd, Co, Th, Fe, Al, and Mo caused non-carcinogenic risk with high morbidity in children than adults. By assessing environmental risks, coal and coal wastes caused high risk, food and plants faced moderate to high risk, while mountain and agriculture soil are prone to low to considerable risk. The pollution in Hancheng County is extreme as compared to the countryside. The study concluded that the contamination is geogenic in both the areas but coal mining enhance the metals contamination and has extensive impacts on the living community and environment of Hancheng areas.
Dugas, D.L.; Cravotta, C.A.; Saad, D.A.
1993-01-01
Water-quality and other hydrologic data for two surface coal mines in Clarion County, Pa., were collected during 1983-89 as part of studies conducted by the U.S. Geological Survey in cooperation with the Pennsylvania Department of Environmental Resources. Water samples were collected from streams, seeps, monitor wells, and lysimeters on a monthly basis to evaluate changes in water quality resulting from the addition of alkaline waste or urban sewage sludge to the reclaimed mine-spoil surface. The mines are about 3.5 miles apart and were mined for bituminous coal of the upper and lower Clarion seams of the Allegheny Group of Pennsylvanian age. The coal had high sulfur (greater than 2 weight percent) concentrations. Acidic mine drainage is present at both mines. At one mine, about 8 years after mining was completed, large quantities (greater than 400 tons per acre) of alkaline waste consisting of limestone and lime-kiln flue dust were applied on two 2.5-acre plots within the 65-acre mine area. Water-quality data for the alkaline-addition plots and surrounding area were collected for 1 year before and 3 years after application of the alkaline additives (May 1983-July 1987). Data collected for the alkaline-addition study include ground-water level, surface-water discharge rate, temperature, specific conductance, pH, and concentrations of alkalinity, acidity, sulfate, iron (total and ferrous), manganese, aluminum, calcium, and magnesium. At the other mine, about 3.5 years after mining was completed, urban sewage sludge was applied over 60 acres within the 150-acre mine area. Waterquality data for the sludge-addition study were collected for 3.5 years after the application of the sludge (June 1986-December 1989). Data collected for the sludge-addition study include the above constituents plus dissolved oxygen, redox potential (Eh), and concentrations of dissolved solids, phosphorus, nitrogen species, sulfide, chloride, silica, sodium, potassium, cyanide, arsenic, barium, boron, cadmium, chromium, copper, lead, mercury, molybdenum, nickel, selenium, strontium, and zinc. Climatic data, including monthly average temperature and cumulative precipitation, from a nearby weather station for the period January 1983 through December 1989 also are reported.
Liu, Xu-Sheng; Li, Feng; Zhao, Dan; Wang, Bei-Bei
2009-06-01
By using the evaluation approach of ecosystem services (including market value, opportunity cost, restoration cost, and shadow project approaches), and combining with situation investigation, the ecosystem service loss in Mentougou District of Beijing City caused by coal resource exploitation in 1949-2006 was systematically evaluated. In the study area, coal mining mainly induced the cost increase of solid waste disposal and sink reclamation, and the losses in food production, water self-preserving, residents moving, and water and soil resources. The ecosystem service loss caused by the coal mining in 1949-2006 was about 54.3 billion Yuan RMB, approximately 9 times high of its market economic benefit (5.9 billion Yuan RMB). It was very difficult or needed a long time to restore the damaged ecosystem.
Steele, Timothy Doak; Bauer, D.P.; Wentz, D.A.; Warner, J.W.
1979-01-01
Expanded coal production and conversion in the Yampa River basin , Colorado and Wyoming, may have substantial impacts on water resources, environmental amenities, and socioeconomic conditions. Preliminary results of a 3-year basin assessment by the U.S. Geological Survey are given for evaluation of surface- and ground-water resources using available data, modeling analysis of waste-load capacity of a Yampa River reach affected by municipal wastewater-treatment plant effluents, and semiquantitative descriptions of ambient air- and water-quality conditions. Aspects discussed are possible constraints on proposed development due to basin compacts and laws regulating water resources, possible changes in environmental-control regulations, and policies on energy-resource leasing and land use that will influence regional economic development. (Woodard-USGS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1990-12-28
The 95-acre Allied Chemical and Ironton Coke site is comprised of a former coke plant and an operating tar plant in Ironton, Lawrence County, Ohio. The site is located within a coal mining region, and surrounding land use is predominantly industrial and residential. The ROD addresses contamination at all areas not previously addressed, and provides a final remedy at the site. The primary contaminants of concern affecting the soil, sediment, and ground water are VOCs including benzene; other organics including PAHs and phenols; metals including arsenic; and other inorganics including cyanide. The selected remedial action for this site includes excavatingmore » and incinerating onsite approximately 122,000 cubic yards of waste material from Lagoon 5, and 31,000 cubic yards of waste coal, followed by onsite waste fuel recovery and disposing of the residual ash offsite; in-situ bioremediation of approximately 475,000 cubic yards of waste material from Lagoons.« less
Integrated gasification combined cycle using Egyptian Maghara coal-rice straw feedstock.
Hegazy, A; Ghallab, A O; Ashour, F H
2017-06-01
Rice straw is an agricultural waste that causes an annoying problem in Egypt if it is not well exploited. This study focuses on using this waste in power generation by co-gasification of Egyptian Maghara coal and rice straw blends using entrained flow gasifier technology. Aspen Plus was used to conduct a parametric study for investigation of the effect of changing the inputs to the gasifier on the produced gas composition. Three different input parameters, influencing the performance of the gasifier, including the percentage of coal to rice straw in the blend, the fraction of added water to the blend, and the mass percentage of oxygen with respect to the mass of the blend fed to the gasifier were analysed. Two alternative power production schemes (with and without carbon capturing) have been investigated. The obtained optimum feed conditions are: 40% coal in the feed blend, 20% water concentration in the feed slurry, and 80% oxygen with respect to the dry feed blend to the gasifier. For (10 0000 kg per hour) of the feed blend, the power generated was 270.1 MW in the case of non-carbon capturing, while in the case of carbon capturing, 263.52 MW was generated. Although it produces less power, applying carbon capturing techniques means handling less flue gas and thus using smaller gas turbines and results in more environmentally friendly emissions.
Monitoring Metal Pollution Levels in Mine Wastes around a Coal Mine Site Using GIS
NASA Astrophysics Data System (ADS)
Sanliyuksel Yucel, D.; Yucel, M. A.; Ileri, B.
2017-11-01
In this case study, metal pollution levels in mine wastes at a coal mine site in Etili coal mine (Can coal basin, NW Turkey) are evaluated using geographical information system (GIS) tools. Etili coal mine was operated since the 1980s as an open pit. Acid mine drainage is the main environmental problem around the coal mine. The main environmental contamination source is mine wastes stored around the mine site. Mine wastes were dumped over an extensive area along the riverbeds, and are now abandoned. Mine waste samples were homogenously taken at 10 locations within the sampling area of 102.33 ha. The paste pH and electrical conductivity values of mine wastes ranged from 2.87 to 4.17 and 432 to 2430 μS/cm, respectively. Maximum Al, Fe, Mn, Pb, Zn and Ni concentrations of wastes were measured as 109300, 70600, 309.86, 115.2, 38 and 5.3 mg/kg, respectively. The Al, Fe and Pb concentrations of mine wastes are higher than world surface rock average values. The geochemical analysis results from the study area were presented in the form of maps. The GIS based environmental database will serve as a reference study for our future work.
Reduction of acid rock drainage using steel slag in cover systems over sulfide rock waste piles.
de Almeida, Rodrigo Pereira; Leite, Adilson do Lago; Borghetti Soares, Anderson
2015-04-01
The extraction of gold, coal, nickel, uranium, copper and other earth-moving activities almost always leads to environmental damage. In metal and coal extraction, exposure of sulfide minerals to the atmosphere leads to generation of acid rock drainage (ARD) and in underground mining to acid mine drainage (AMD) due to contamination of infiltrating groundwater. This study proposes to develop a reactive cover system that inhibits infiltration of oxygen and also releases alkalinity to increase the pH of generated ARD and attenuate metal contaminants at the same time. The reactive cover system is constructed using steel slag, a waste product generated from steel industries. This study shows that this type of cover system has the potential to reduce some of the adverse effects of sulfide mine waste disposal on land. Geochemical and geotechnical characterization tests were carried out. Different proportions of sulfide mine waste and steel slag were studied in leachate extraction tests. The best proportion was 33% of steel slag in dry weight. Other tests were conducted as follows: soil consolidation, saturated permeability and soil water characteristic curve. The cover system was numerically modeled through unsaturated flux analysis using Vadose/w. The solution proposed is an oxygen transport barrier that allows rain water percolation to treat the ARD in the waste rock pile. The results showed that the waste pile slope is an important factor and the cover system must have 5 m thickness to achieve an acceptable effectiveness. © The Author(s) 2015.
Coal utilization in China: environmental impacts and human health.
Chen, Jian; Liu, Guijian; Kang, Yu; Wu, Bin; Sun, Ruoyu; Zhou, Chuncai; Wu, Dun
2014-08-01
Coal is one of the major energy resources in China, accounting for approximately 70 % of primary energy consumption. Many environmental problems and human health risks arise during coal exploitation, utilization, and waste disposal, especially in the remote mountainous areas of western China (e.g., eastern Yunnan, western Guizhou and Hubei, and southern Shaanxi). In this paper, we report a thorough review of the environmental and human health impacts related to coal utilization in China. The abundance of the toxic trace elements such as F, As, Se, and Hg in Chinese coals is summarized. The environmental problems (i.e., water, soil, and air pollution) that are related to coal utilization are outlined. The provenance, distributions, typical symptoms, sources, and possible pathways of endemic fluorosis, arsenism, and selenosis due to improper coal usage (briquettes mixed with high-F clay, mineralized As-rich coal, and Se-rich stone coal) are discussed in detail. In 2010, 14.8, 1.9 million, and 16,000 Chinese people suffered from dental fluorosis, skeletal fluorosis, and arsenism, respectively. Finally, several suggestions are proposed for the prevention and treatment for endemic problems caused by coal utilization.
Xiong, Yan; Xiao, Tangfu; Liu, Yizhang; Zhu, Jianming; Ning, Zengping; Xiao, Qingxiang
2017-10-01
Fluorine (F) is a topic of great interest in coal-combustion related endemic fluorosis areas. However, little extent research exists regarding the environmental geochemistry of toxic elements that are enriched in coals and coal wastes in traditional endemic fluorosis areas, particularly focusing on their occurrences and mobilities during the weathering-leaching processes of coals and coal wastes in the surface environment. This paper addressed the issue of toxic elements in coals and coal wastes in the Three Gorges Region, Southwest (SW) China, where endemic fluorosis has historically prevailed, and investigated the distribution, occurrence, mobility features, and associated potential health risks. For this purpose, a modified experiment combined with long-term humidity cell test and column leaching trial was applied to elucidate the mobility of toxic elements in coals and coal wastes. In addition, sequential chemical extraction (SCE) was used to ascertain the modes of occurrence of toxic elements. The results demonstrated that the contents of toxic elements in the study area followed the order: stone coals > gangues > coal balls > coals. Furthermore, modes of occurrence of toxic elements were obviously different in coals and coal wastes. For example, cadmium (Cd) was mainly associated with monosulfide fraction in coals, molybdenum (Mo) and arsenic (As) were mainly associated with carbonate and silicate in coal gangues and stone coals, chromium (Cr) mainly existed in silicate and insoluble matter in coal gangues and coal balls, thallium (Tl) mainly occurred in organic matter in stone coals and sulfide in coals, and the occurrence of antimony (Sb) varied with different kinds of samples. Moreover, a large amount of toxic elements released to the leachates during the weathering and leaching process, which might pollute the environment and threaten human health. Based on the geo-accumulation index (I geo ), single factor index (P i ) and Nemerow index (P N ), soils i n the study area were mainly polluted by Cd, which constituted a potential risk to locally planted crops. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Stolboushkin, A. Yu; Ivanov, A. I.; Storozhenko, G. I.; Syromyasov, V. A.; Akst, D. V.
2017-09-01
The rational technology for the production of ceramic bricks with a defect-free structure from coal mining and processing wastes was developed. The results of comparison of physical and mechanical properties and the structure of ceramic bricks manufactured from overburden rocks and waste coal with traditional for semi-dry pressing mass preparation and according to the developed method are given. It was established that a homogeneous, defect-free brick texture obtained from overburden rocks of open-pit mines and waste coal improves the quality of ceramic wall materials produced by the method of compression molding by more than 1.5 times compared to the brick with a traditional mass preparation.
The effect of cofiring coal with municipal waste on formation of polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) was examined by cofiring minor amounts (<7% by wt) of high (3.4% by wt) or low (0.7% by wt) sulfur (S) coal in a municipal waste co...
Manual of good practices for sanitation in coal mining operations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The purpose of the manual was to act as a guideline, setting reasonable recommendations relative to mine sanitation which will enable mines to install adequate facilities and make appropriate alterations conserving and improving the health and welfare of the mine worker. A systematic evaluation was undertaken of the sanitation facilities and maintenance at coal mines. Consideration was given to central facilities including building, floors, walls, partitions, ceilings, lockers, baskets and benches, showers, toilets, lavatories, lighting, ventilation and temperature control, and maintenance. Also discussed were food vending machines, water source, water quality, water treatment, water delivery systems for underground and surfacemore » mines, sanitary waste disposal, workplace toilets in underground and surface mines, refuse control and handling for underground and surface mines, and pest control.« less
Partitioning studies of coal-tar constituents in a two-phase contaminated ground-water system
Rostad, C.E.; Pereira, W.E.; Hult, M.F.
1985-01-01
Organic compounds derived from coal-tar wastes in a contaminated aquifer in St. Louis Park, Minnesota, were identified, and their partition coefficients between the tar phase and aqueous phase were determined and compared with the corresponding n-octanol/water partition coefficients. Coal tar contains numerous polycyclic aromatic compounds, many of which are suspected carcinogens or mutagens. Groundwater contamination by these toxic compounds may pose an environmental health hazard in nearby public water-supply wells. Fluid samples from this aquifer developed two phases upon settling: an upper aqueous phase, and a lower oily-tar phase. After separating the phases, polycyclic aromatic compounds in each phase were isolated using complexation with N-methyl-2-pyrrolidone and identified by fused-silica capillary gas chromatography/mass spectrometry. Thirty-one of the polycyclic aromatic compounds were chosen for further study from four different classes: 12 polycyclic aromatic hydrocarbons, 10 nitrogen heterocycles, 5 sulfur heterocycles, and 4 oxygen heterocycles. Within each compound class, the tar/water partition coefficients of these compounds were reasonably comparable with the respective n-octanol/water partition coefficient.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gug, JeongIn, E-mail: Jeongin_gug@student.uml.edu; Cacciola, David, E-mail: david_cacciola@student.uml.edu; Sobkowicz, Margaret J., E-mail: Margaret_sobkowiczkline@uml.edu
Highlights: • Briquetting was used to produce solid fuels from municipal solid waste and recycled plastics. • Optimal drying, processing temperature and pressure were found to produce stable briquettes. • Addition of waste plastics yielded heating values comparable with typical coal feedstocks. • This processing method improves utilization of paper and plastic diverted from landfills. - Abstract: Diversion of waste streams such as plastics, woods, papers and other solid trash from municipal landfills and extraction of useful materials from landfills is an area of increasing interest especially in densely populated areas. One promising technology for recycling municipal solid waste (MSW)more » is to burn the high-energy-content components in standard coal power plant. This research aims to reform wastes into briquettes that are compatible with typical coal combustion processes. In order to comply with the standards of coal-fired power plants, the feedstock must be mechanically robust, free of hazardous contaminants, and moisture resistant, while retaining high fuel value. This study aims to investigate the effects of processing conditions and added recyclable plastics on the properties of MSW solid fuels. A well-sorted waste stream high in paper and fiber content was combined with controlled levels of recyclable plastics PE, PP, PET and PS and formed into briquettes using a compression molding technique. The effect of added plastics and moisture content on binding attraction and energy efficiency were investigated. The stability of the briquettes to moisture exposure, the fuel composition by proximate analysis, briquette mechanical strength, and burning efficiency were evaluated. It was found that high processing temperature ensures better properties of the product addition of milled mixed plastic waste leads to better encapsulation as well as to greater calorific value. Also some moisture removal (but not complete) improves the compacting process and results in higher heating value. Analysis of the post-processing water uptake and compressive strength showed a correlation between density and stability to both mechanical stress and humid environment. Proximate analysis indicated heating values comparable to coal. The results showed that mechanical and moisture uptake stability were improved when the moisture and air contents were optimized. Moreover, the briquette sample composition was similar to biomass fuels but had significant advantages due to addition of waste plastics that have high energy content compared to other waste types. Addition of PP and HDPE presented better benefits than addition of PET due to lower softening temperature and lower oxygen content. It should be noted that while harmful emissions such as dioxins, furans and mercury can result from burning plastics, WTE facilities have been able to control these emissions to meet US EPA standards. This research provides a drop-in coal replacement that reduces demand on landfill space and replaces a significant fraction of fossil-derived fuel with a renewable alternative.« less
Teratogenic effects and monetary cost of selenium poisoning of fish in Lake Sutton, North Carolina
A. Dennis Lemly
2014-01-01
Selenium pollution from coal ash waste water was investigated in Lake Sutton, NC. This lake has been continuously used as a cooling pond for a coal-fired power plant since 1972. Historic and recent levels of contamination in fish tissues (14â105 µg Se/g dry weight in liver, 24â127 in eggs, 4â23 in muscle,7â38 in whole-body) exceeded toxic thresholds and teratogenic...
Environmental information volume: Liquid Phase Methanol (LPMEOH{trademark}) project
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-05-01
The purpose of this project is to demonstrate the commercial viability of the Liquid Phase Methanol Process using coal-derived synthesis gas, a mixture of hydrogen and carbon monoxide. This report describes the proposed actions, alternative to the proposed action, the existing environment at the coal gasification plant at Kingsport, Tennessee, environmental impacts, regulatory requirements, offsite fuel testing, and DME addition to methanol production. Appendices include the air permit application, solid waste permits, water permit, existing air permits, agency correspondence, and Eastman and Air Products literature.
A Feasibility Study of Burning Waste Paper in Coal-Fired Boilers on Air Force Installations
1993-09-01
from coal emissions is known as wet flue - gas desulfurization . This process involves the spraying of pulverized limestone (CaCO3 ) mixed with water...conversion to natural gas fuel or additional air : 13-tion controls . However, both of these options can be very costly, and a 6 less expensive alternative may...into the flue gas . The SO, is absorbed by the spray, creating calcium sulfite (Masters, 1991:349). The process is represented in equation form as CaCO3
Yucel, Deniz Sanliyuksel; Baba, Alper
2016-08-01
The Etili neighborhood in Can County (northwestern Turkey) has large reserves of coal and has been the site of many small- to medium-scale mining operations since the 1980s. Some of these have ceased working while others continue to operate. Once activities cease, the mining facilities and fields are usually abandoned without rehabilitation. The most significant environmental problem is acid mine drainage (AMD). This study was carried out to determine the acid generation potential of various lithological units in the Etili coal mine using static test methods. Seventeen samples were selected from areas with high acidic water concentrations: from different alteration zones belonging to volcanic rocks, from sedimentary rocks, and from coals and mine wastes. Static tests (paste pH, standard acid-base accounting, and net acid generation tests) were performed on these samples. The consistency of the static test results showed that oxidation of sulfide minerals, especially pyrite-which is widely found not only in the alteration zones of volcanic rocks but also in the coals and mine wastes-is the main factor controlling the generation of AMD in this mine. Lack of carbonate minerals in the region also increases the occurrence of AMD.
NASA Astrophysics Data System (ADS)
Junga, Robert; Wzorek, Małgorzata; Kaszubska, Mirosława
2017-10-01
This paper treats about the impact fuels from biomass wastes and coal combustion on a small boiler operation and the emission of pollutants in this process. Tests were performed in laboratory conditions on a water boiler with retort furnace and the capacity of 10 kW. Fuels from sewage sludge and agriculture wastes (PBZ fuel) and a blend of coal with laying hens mature (CLHM) were taken into account. The results in emission changes of NOx, CO2, CO and SO2 and operating parameters of the tested boiler during combustion were investigated. The obtained results were compared with corresponding results of flame coal (GFC). Combustion of the PBZ fuel turned out to be a stable process in the tested boiler but the thermal output has decreased in about 30% compared to coal combustion, while CO and NOx emission has increased. Similar effect was observed when 15% of the poultry litter was added to the coal. In this case thermal output has also decreased (in about 20%) and increase of CO and NOx emission was observed. As a conclusion, it can be stated that more effective control system with an adaptive air regulation and a modified heat exchanger could be useful in order to achieve the nominal power of the tested boiler.
Smyk, Daniel; Mytilinaiou, Maria G; Rigopoulou, Eirini I; Bogdanos, Dimitrios P
2010-01-01
Various environmental factors have been proposed as triggers of primary biliary cirrhosis (PBC), a progressive autoimmune cholestatic liver disease which is characterised by the destruction of the small intrahepatic bile ducts. Support for their pathogenic role in PBC is provided by epidemiological studies reporting familial clustering and clusters of the disease within a given geographical area. The seminal study by Triger reporting that the great majority of PBC cases in the English city of Sheffield drank water from a specific water reservoir, has been followed by studies reporting disease 'hot spots' within a restricted geographic region of the former coal mining area of Newcastle. The New York study reporting an increased risk and significant clustering of PBC cases near toxic federal waste disposal sites has added strength to the notion that environmental factors, possibly in the form of infectious agents or toxic/chemical environmental factors in areas of contaminated land, water or polluted air may play a key role in the development of the disease. This review discusses the findings of reports investigating environmental factors which may contribute to the cause of primary biliary cirrhosis.
Zhao, Yan; Xing, Wei; Lu, Wenjing; Zhang, Xu; Christensen, Thomas H
2012-10-01
The environmental impacts of waste incineration with auxiliary coal were investigated using the life-cycle-based software, EASEWASTE, based on the municipal solid waste (MSW) management system in Shuozhou City. In the current system, MSW is collected, transported, and incinerated with 250 kg of coal per ton of waste. Based on observed environmental impacts of incineration, fossil CO(2) and heavy metals were primary contributors to global warming and ecotoxicity in soil, respectively. Compared with incinerators using excess coal, incineration with adequate coal presents significant benefits in mitigating global warming, whereas incineration with a mass of coal can avoid more impacts to acidification, photochemical ozone and nutrient enrichment because of increased electricity substitution and reduced emission from coal power plants. The "Emission standard of air pollutants for thermal power plants (GB13223-2011)" implemented in 2012 introduced stricter policies on controlling SO(2) and NO(x) emissions from coal power plants. Thus, increased use of auxiliary coal during incineration yields fewer avoided impacts on acidification and nutrient enrichment. When two-thirds of ash is source-separated and landfilled, the incineration of rest-waste presents better results on global warming, acidification, nutrient enrichment, and even ecotoxicity in soil. This process is considered a promising solution for MSW management in Shuozhou City. Weighted normalized environmental impacts were assessed based on Chinese political reduction targets. Results indicate that heavy metal and acidic gas emissions should be given more attention in waste incineration. This study provides scientific support for the management of MSW systems dominated by incineration with auxiliary coal in China. Copyright © 2012 Elsevier Ltd. All rights reserved.
Assessing pollutions of soil and plant by municipal waste dump
NASA Astrophysics Data System (ADS)
Liu, Changli; Zhang, Yun; Zhang, Feng'e.; Zhang, Sheng; Yin, Miying; Ye, Hao; Hou, Hongbing; Dong, Hua; Zhang, Ming; Jiang, Jianmei; Pei, Lixin
2007-04-01
Research is few in the literature regarding the investigation and assessment of pollutions of soil and plant by municipal waste dumps. Based upon previous work in seven waste dumping sites (nonsanitary landfills) in Beijing, Shanghai and Shijiazhuang, this study expounds the investigation and assessment method and report major pollutants. Using relative background values, this study assesses soil pollution degree in the seven dumping sites. Preliminary conclusions are: (1) pollution degrees are moderate or heavy; (2) pollution distance by domestic waste that is dumped on a plane ground is 85 m; (3) the horizontal transport distance of pollutants might be up to 120 m if waste leachates are directly connected with water in saturated soils; (4) vertical transport depth is about 3 m in unsaturated silty clayey soils. Furthermore, using relative background values and hygiene standards of food and vegetable this study assesses the pollutions of different parts of reed, sorghum, watermelon and sweet-melon. It is found: (1) in comparison with the relative background values in a large distance to the waste dumping sites, domestic wastes have polluted the roots and stems of reed and sorghum, whereas fine coal ash has polluted the leaves, rattans and fruits of watermelon and sweet-melon; (2) domestic wastes and fine coal ash have heavily polluted the edible parts of sorghum, water melon and sweet-melon. As, Hg, Pb and F have far exceeded standard values, e.g., Hg has exceeded the standard value by up to 650 1,700 times and Cd by 120 275 times, and the comprehensive pollution index is up to 192.9 369.7; (3) the polluted sorghum, watermelon and sweet-melon are inedible.
Plastic wastes as modifiers of the thermoplasticity of coal
DOE Office of Scientific and Technical Information (OSTI.GOV)
M.A. Diez; C. Barriocanal; R. Alvarez
2005-12-01
Plastic waste recycling represents a major challenge in environmental protection with different routes now available for dealing with mechanical, chemical, and energy recycling. New concepts in plastic waste recycling have emerged so that now such wastes can be used to replace fossil fuels, either as an energy source or as a secondary raw material. Our objective is to explore the modification of the thermoplastic properties of coal in order to assess the possibility of adding plastic waste to coal for the production of metallurgical coke. Two bituminous coals of different rank and thermoplastic properties were used as a base componentmore » of blends with plastic wastes such as high-density polyethylene (HDPE), low-density polyethylene (LDPE), polypropylene (PP), polystyrene (PS), poly(ethylene terephthalate) (PET), and acrilonitrile-butadiene-styrene copolymer (ABS). In all cases, the addition of plastic waste led to a reduction in Gieseler maximum fluidity, the extent of the reduction depending on the fluidity of the base coal, and the amount, the molecular structure, and the thermal behavior of the polymer. As a consequence, the amount of volatile matter released by the plastic waste before, during, and after the maximum fluidity of the coal and the hydrogen-donor and hydrogen-acceptor capacities of the polymer were concluded to be key factors in influencing the extent of the reduction in fluidity and the development of anisotropic carbons. The incorporation of the plastic to the carbon matrix was clearly established in semicokes produced from blends of a high-fluid coal and the plastic tested by SEM examination. 42 refs., 10 figs., 7 tabs.« less
Utilization of waste of coal-mining enterprise in production of building materials
NASA Astrophysics Data System (ADS)
Chugunov, A. D.; Filatova, E. G.; Yakovleva, A. A.
2018-03-01
Wastes of coal producers often include substances allowing treating such wastes as valuable feeds for metallurgy, chemical and construction processes. This study concerned elemental and phase composition of samples obtained by calcination of bottom sediments of the coal producer spoil bank. The research has shown that the samples contain significant amounts of carbon, iron, silicon, aluminum and other valuable components.
A. Dennis Lemly; Joseph P. Skorupa
2012-01-01
This analysis examines wildlife poisoning from coal combustion waste (CCW) in the context of EPA's proposed policy that would allow continued use of surface impoundments as a disposal method. Data from 21 confirmed damage sites were evaluated, ranging from locations where historic poisoning has led to corrective actions that have greatly improved environmental...
Solar-assisted MED treatment of Eskom power station waste water
NASA Astrophysics Data System (ADS)
Roos, Thomas H.; Rogers, David E. C.; Gericke, Gerhard
2017-06-01
The comparative benefits of multi-effect distillation (MED) used in conjunction with Nano Filtration (NF), Reverse Osmosis (RO) and Eutectic Freeze Crystallization (EFC) are determined for waste water minimization for inland coal fired power stations for Zero Liquid Effluent Discharge (ZLED). A sequence of technologies is proposed to achieve maximal water recovery and brine concentration: NF - physico-chemical treatment - MED - EFC. The possibility of extending the concentration of RO reject arising from minewater treatment at the Lethabo power station with MED alone is evaluated with mineral formation modelling using the thermochemical modelling software Phreeq-C. It is shown that pretreatment is essential to extend the amount of water that can be recovered, and this can be beneficially supported by NF.
Messinger, Max; Silman, Miles
2016-11-01
Unmanned aerial vehicles (UAVs) offer new opportunities to monitor pollution and provide valuable information to support remediation. Their low-cost, ease of use, and rapid deployment capability make them ideal for environmental emergency response. Here we present a UAV-based study of the third largest coal ash spill in the United States. Coal ash from coal combustion is a toxic industrial waste material present worldwide. Typically stored in settling ponds in close proximity to waterways, coal ash poses significant risk to the environment and drinking water supplies from both chronic contamination of surface and ground water and catastrophic pond failure. We sought to provide an independent estimate of the volume of coal ash and contaminated water lost during the rupture of the primary coal ash pond at the Dan River Steam Station in Eden, NC, USA and to demonstrate the feasibility of using UAVs to rapidly respond to and measure the volume of spills from ponds or containers that are open to the air. Using structure-from-motion (SfM) imagery analysis techniques, we reconstructed the 3D structure of the pond bottom after the spill, used historical imagery to estimate the pre-spill waterline, and calculated the volume of material lost. We estimated a loss of 66,245 ± 5678 m 3 of ash and contaminated water. The technique used here allows rapid response to environmental emergencies and quantification of their impacts at low cost, and these capabilities will make UAVs a central tool in environmental planning, monitoring, and disaster response. Copyright © 2016 Elsevier Ltd. All rights reserved.
PEER REVIEW SUPPORTING THE STANDARDS FOR THE ...
EPA has been working on developing risk assessments to assist regulators, industry, and the public in evaluating the environmental risks associated with Fossil Fuel Combustion Waste(s) (FFCW) management/disposal in landfills, surface impoundments, other disposal procedures and beneficial uses. The U.S. Environmental Protection Agency (EPA) is evaluating management options for solid wastes from coal combustion (e.g., fly ash, bottom ash, slag). As part of this effort, EPA has prepared the Draft Human and Ecological Risk Assessment of Coal Combustion Wastes. The purpose of this draft risk assessment is to identify and quantify human health and ecological risks that may be associated with current disposal practices for high-volume coal combustion waste (CCW), including fly ash, bottom ash, boiler slag, flue gas desulfurization (FGD) sludge, coal refuse waste, and wastes from fluidized-bed combustion (FBC) units. These risk estimates will help inform EPA’s decisions about how to treat CCW under Subtitle D of the Resource Conservation and Recovery Act.
Effects of solution chemistry on arsenic(V) removal by low-cost adsorbents.
Wang, Yuru; Tsang, Daniel C W
2013-11-01
Natural and anthropogenic arsenic (As) contamination of water sources pose serious health concerns, especially for small communities in rural areas. This study assessed the applicability of three industrial byproducts (coal fly ash, lignite, and green waste compost) as the low-cost adsorbents for As(V) removal under various field-relevant conditions (dissolved oxygen, As(V)/Fe ratio, solution pH, and presence of competing species). The physico-chemical properties of the adsorbents were characterized by XRD, XRF, FT-IR, and NMR analysis. Batch experiments demonstrated that coal fly ash could provide effective As(V) removal (82.1%-95%) because it contained high content of amorphous iron/aluminium hydroxides for As(V) adsorption and dissolvable calcium minerals for calcium arsenate precipitation. However, the addition of lignite and green waste compost was found unfavourable since they hindered the As(V) removal by 10%-42% possibly due to dissolution of organic matter and ternary arsenate-iron-organic matter complexes. On the other hand, higher concentrations of dissolved iron (comparing As(V)/Fe ratios of 1:1 and 1:10) and dissolved oxygen (comparing 0.2 and 6 mg/L) only marginally enhanced the As(V) removal at pH 6 and 8. Thus, addition of dissolved iron, water aeration, or pH adjustment became unnecessary because coal fly ash was able to provide effective As(V) removal under the natural range of geochemical conditions. Moreover, the presence of low levels of background competing (0.8 or 8 mg/L of humic acid, phosphate, and silicate) imposed little influence on As(V) removal, possibly because the high adsorption capacity of coal fly ash was far from exhaustion. These results suggested that coal fly ash was a potentially promising adsorbent that warranted further investigation.
NASA Astrophysics Data System (ADS)
Cieślik, Ewelina; Konieczny, Tomasz; Bobik, Bartłomiej
2018-01-01
One of the source of air pollutants is emission from local coal-fired boiler-houses and domestic heating boilers. The consequence of incineration of municipal waste is the introduction of additional pollutants into the atmosphere, including fly ash. The aim of this work was to evaluate the particle size distribution of fly ash emitted by coal combustion and co-incineration of coal with municipal waste in a domestic 18 kW central heating boiler equipped with an automatic fuel feeder. Mixtures of bituminous coal with different types of solid waste (5, 10 and 15% of mass fraction) were used. Solid waste types consisted of: printed, colored PE caps, fragmented cable trunking, fragmented car gaskets and shredded tires from trucks. During the incineration of a given mixture of municipal waste with bituminous coal, the velocity of exhaust gas was specified, the concentration and mass flow of fly ash were determined together with the physico-chemical parameters of the exhaust gas, the samples of emitted fly ash were taken as the test material. Particle size analysis of fly ash was performed using laser particle sizer Fritch Analysette 22. The PM10 share from all fly ashes from incineration of mixtures was about 100%. Differences were noted between PM2.5 and PM1.
Gug, JeongIn; Cacciola, David; Sobkowicz, Margaret J
2015-01-01
Diversion of waste streams such as plastics, woods, papers and other solid trash from municipal landfills and extraction of useful materials from landfills is an area of increasing interest especially in densely populated areas. One promising technology for recycling municipal solid waste (MSW) is to burn the high-energy-content components in standard coal power plant. This research aims to reform wastes into briquettes that are compatible with typical coal combustion processes. In order to comply with the standards of coal-fired power plants, the feedstock must be mechanically robust, free of hazardous contaminants, and moisture resistant, while retaining high fuel value. This study aims to investigate the effects of processing conditions and added recyclable plastics on the properties of MSW solid fuels. A well-sorted waste stream high in paper and fiber content was combined with controlled levels of recyclable plastics PE, PP, PET and PS and formed into briquettes using a compression molding technique. The effect of added plastics and moisture content on binding attraction and energy efficiency were investigated. The stability of the briquettes to moisture exposure, the fuel composition by proximate analysis, briquette mechanical strength, and burning efficiency were evaluated. It was found that high processing temperature ensures better properties of the product addition of milled mixed plastic waste leads to better encapsulation as well as to greater calorific value. Also some moisture removal (but not complete) improves the compacting process and results in higher heating value. Analysis of the post-processing water uptake and compressive strength showed a correlation between density and stability to both mechanical stress and humid environment. Proximate analysis indicated heating values comparable to coal. The results showed that mechanical and moisture uptake stability were improved when the moisture and air contents were optimized. Moreover, the briquette sample composition was similar to biomass fuels but had significant advantages due to addition of waste plastics that have high energy content compared to other waste types. Addition of PP and HDPE presented better benefits than addition of PET due to lower softening temperature and lower oxygen content. It should be noted that while harmful emissions such as dioxins, furans and mercury can result from burning plastics, WTE facilities have been able to control these emissions to meet US EPA standards. This research provides a drop-in coal replacement that reduces demand on landfill space and replaces a significant fraction of fossil-derived fuel with a renewable alternative. Copyright © 2014 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matsumura, Yukihiko; Nuessle, F.W.; Antal, M.J. Jr.
Recently, carbonaceous materials including activated carbon were proven to be effective catalysts for hazardous waste gasification in supercritical water. Using coconut shell activated carbon catalyst, complete decomposition of industrial organic wastes including methanol and acetic acid was achieved. During this process, the total mass of the activated carbon catalyst changes by two competing processes: a decrease in weight via gasification of the carbon by supercritical water, or an increase in weight by deposition of carbonaceous materials generated by incomplete gasification of the biomass feedstocks. The deposition of carbonaceous materials does not occur when complete gasification is realized. Gasification of themore » activated carbon in supercritical water is often favored, resulting in changes in the quality and quantity of the catalyst. To thoroughly understand the hazardous waste decomposition process, a more complete understanding of the behavior of activated carbon in pure supercritical water is needed. The gasification rate of carbon by water vapor at subcritical pressures was studied in relation to coal gasification and generating activated carbon.« less
2011-12-01
burning of fossil fuels (e.g., oil , natural gas , coal), solid waste decay, and trees and wood products and also as a result of chemical reactions...to negative GHG effects. Methane. CH4 is a GHG that is emitted during the production and transport of coal, natural gas , and oil . Methane...the pump station (Facility 486); Control Room (Facility 487); and the oil -water separator (Facility 488). • Construction of a new Type III pump house
Ellison, Michael B; de Nys, Rocky; Paul, Nicholas A; Roberts, David A
2014-01-01
The bioremediation of industrial waste water by macroalgae is a sustainable and renewable approach to the treatment of waste water produced by multiple industries. However, few studies have tested the bioremediation of complex multi-element waste streams from coal-fired power stations by live algae. This study compares the ability of three species of green freshwater macroalgae from the genus Oedogonium, isolated from different geographic regions, to grow in waste water for the bioremediation of metals. The experiments used Ash Dam water from Tarong power station in Queensland, which is contaminated by multiple metals (Al, Cd, Ni and Zn) and metalloids (As and Se) in excess of Australian water quality guidelines. All species had consistent growth rates in Ash Dam water, despite significant differences in their growth rates in "clean" water. A species isolated from the Ash Dam water itself was not better suited to the bioremediation of that waste water. While there were differences in the temporal pattern of the bioconcentration of metals by the three species, over the course of the experiment, all three species bioconcentrated the same elements preferentially and to a similar extent. All species bioconcentrated metals (Cu, Mn, Ni, Cd and Zn) more rapidly than metalloids (As, Mo and Se). Therefore, bioremediation in situ will be most rapid and complete for metals. Overall, all three species of freshwater macroalgae had the ability to grow in waste water and bioconcentrate elements, with a consistent affinity for the key metals that are regulated by Australian and international water quality guidelines. Together, these characteristics make Oedogonium a clear target for scaled bioremediation programs across a range of geographic regions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jantzen, Carol M.; Missimer, David M.; Guenther, Chris P.
A full engineering scale Fluidized Bed Steam Reformer (FBSR) system is being used at the Idaho Nuclear Technology and Engineering Center (INTEC) to stabilize acidic Low Activity Waste (LAW) known as Sodium Bearing Waste (SBW). The INTEC facility, known as the Integrated Waste Treatment Unit (IWTU), underwent an Operational Readiness Review (ORR) and a Technology Readiness Assessment (TRA) in March 2014. The IWTU began non-radioactive simulant processing in late 2014 and by January, 2015 ; the IWTU had processed 62,000 gallons of simulant. The facility is currently in a planned outage for inspection of the equipment and will resume processingmore » simulated waste feed before commencing to process 900,000 gallons of radioactive SBW. The SBW acidic waste will be made into a granular FBSR product (carbonate based) for disposal in the Waste Isolation Pilot Plant (WIPP). In the FBSR process calcined coal is used to create a CO2 fugacity to force the waste species to convert to carbonate species. The quality of the coal, which is a feed input, is important because the reactivity, moisture, and volatiles (C,H,N,O, and S) in the coal impact the reactions and control of the mineralizing process in the primary steam reforming vessel, the Denitration and Mineralizing Reformer (DMR). Too much moisture in the coal can require that additional coal be used. However since moisture in the coal is only a small fraction of the moisture from the fluidizing steam this can be self-correcting. If the coal reactivity or heating value is too low then the coal feedrate needs to be adjusted to achieve the desired heat generation. Too little coal and autothermal heat generation in the DMR cannot be sustained and/or the carbon dioxide fugacity will be too low to create the desired carbonate mineral species. Too much coal and excess S and hydroxide species can form. Excess sulfur from coal that (1) is too rich in sulfur or (2) from overfeeding coal can promote wall scale and contribute to corrosion in process piping and materials, in excessive off-gas absorbent loading, and in undesired process emissions. The ash content of the coal is important as the ash adds to the DMR and other vessel products which affect the final waste product mass and composition. The amount and composition of the ash also affects the reaction kinetics. Thus ash content and composition contributes to the mass balance. In addition, sodium, potassium, calcium, sulfur, and maybe silica and alumina in the ash may contribute to wall-scale formation. Sodium, potassium, and alumina in the ash will be overwhelmed by the sodium, potassium, and alumina from the feed but the impact from the other ash components needs to be quantified. A maximum coal particle size is specified so the feed system does not plug and a minimum particle size is specified to prevent excess elutriation from the DMR to the Process Gas Filter (PGF). A vendor specification was used to procure the calcined coal for IWTU processing. While the vendor supplied a composite analysis for the 22 tons of coal (Appendix A), this study compares independent analyses of the coal performed at the Savannah River National Laboratory (SRNL) and at the National Energy Technology Laboratory (NETL). Three supersacks a were sampled at three different heights within the sack in order to determine within bag variability and between bag variability of the coal. These analyses were also compared to the vendor’s composite analyses and to the coal specification. These analyses were also compared to historic data on Bestac coal analyses that had been performed at Hazen Research Inc. (HRI) between 2004-2011.« less
Hendry, M Jim; Wassenaar, Leonard I; Barbour, S Lee; Schabert, Marcie S; Birkham, Tyler K; Fedec, Tony; Schmeling, Erin E
2018-05-29
Ammonium nitrate (NH 4 NO 3 ) mixed with fuel oil is a common blasting agent used to fragment rock into workable size fractions at mines throughout the world. The decomposition and oxidation of undetonated explosives can result in high NO 3 - concentrations in waters emanating from waste rock dumps. We used the stable isotopic composition of NO 3 - (δ 15 N- and δ 18 O-NO 3 - ) to define and quantify the controls on NO 3 - composition in waste rock dumps by studying water-unsaturated and saturated conditions at nine coal waste rock dumps located in the Elk Valley, British Columbia, Canada. Estimates of the extent of nitrification of NH 4 NO 3 in oxic zones in the dumps, initial NO 3 - concentrations prior to denitrification, and the extent of NO 3 - removal by denitrification in sub-oxic to anoxic zones are provided. δ 15 N data from unsaturated waste rock dumps confirm NO 3 - is derived from blasting. δ 15 N- and δ 18 O-NO 3 - data show extensive denitrification can occur in saturated waste rock and in localized zones of elevated water saturation and low oxygen concentrations in unsaturated waste rock. At the mine dump scale, the extent of denitrification in the unsaturated waste rock was inferred from water samples collected from underlying rock drains. Copyright © 2018. Published by Elsevier B.V.
Evaluation of AFBC co-firing of coal and hospital wastes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1991-02-01
The purpose of this program is to expand the use of coal by utilizing CFB (circulating fluidized bed) technology to provide an environmentally safe method for disposing of waste materials. Hospitals are currently experiencing a waste management crisis. In many instances, they are no longer permitted to burn pathological and infectious wastes in incinerators. Older hospital incinerators are not capable of maintaining the stable temperatures and residence times necessary in order to completely destroy toxic substances before release into the atmosphere. In addition, the number of available landfills which can safely handle these substances is decreasing each year. The purposemore » of this project is to conduct necessary research investigating whether the combustion of the hospital wastes in a coal-fired circulating fluidized bed boiler will effectively destroy dioxins and other hazardous substances before release into the atmosphere. If this is proven feasible, in light of the quantity of hospital wastes generated each year, it would create a new market for coal -- possibly 50 million tons/year.« less
Villeneuve, S A; Barbour, S L; Hendry, M J; Carey, S K
2017-12-01
Long term (1999 to 2014) flow and water quality data from a rock drain located at the base of a coal waste rock dump constructed in the Elk Valley, British Columbia was used to characterize the release of three solutes (NO 3 - , Cl - and SO 4 2- ) from the dump and obtain whole dump estimates of net percolation (NP). The concentrations of dump derived solutes in the rock drain water were diluted by snowmelt waters from the adjacent natural watershed during the spring freshet and reached a maximum concentration during the winter baseflow period. Historical peak baseflow concentrations of conservative ions (NO 3 - and Cl - ) increased until 2006/07 after which they decreased. This decrease was attributed to completion of the flushing of the first pore volume of water stored within the dump. The baseflow SO 4 2- concentrations increased proportionally with NO 3 - and Cl - to 2007, but then continued to slowly increase as NO 3 - and Cl - concentrations decreased. This was attributed to ongoing production of SO 4 2- due to oxidation of sulfide minerals within the dump. Based on partitioning of the annual volume of water discharged from the rock drain to waste rock effluent (NP) and water entering the rock drain laterally from the natural watershed, the mean NP values were estimated to be 446±50mm/a (area normalized net percolation/year) for the dump and 172±71mm/a for the natural watershed. The difference was attributed to greater rates of recharge in the dump from summer precipitation compared to the natural watershed where rainfall interception and enhanced evapotranspiration will increase water losses. These estimates included water moving through subsurface pathways. However, given the limitations in quantifying these flows the estimated NP rates for both the natural watershed and the waste rock dump are considered to be low, and could be much higher (e.g. ~450mm/a and ~800mm/a). Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neufeld, R. D.; Bern, J.; Erdogan, H.
1979-11-15
Activities are underway to investigate basic phenomena that would assist demonstration and commercial sized coal conversion facilities in the environmentally acceptable disposal of process solid waste residuals. The approach taken is to consider only those residuals coming from the conversion technology itself, i.e. from gasification, liquefaction, and hot-clean-up steps as well as residuals from the wastewater treatment train. Residuals from the coal mining and coal grinding steps will not be considered in detail since those materials are being handled in some manner in the private sector. Laboratory evalations have been conducted on solid waste samples of fly ash from anmore » existing Capman gasifier. ASTM-A and EPA-EP leaching procedures have been completed on sieved size fractions of the above wastes. Data indicate that smaller size fractions pose greater contamination potential than do larger size particles with a transition zone occurring at particle sizes of about 0.05 inches in diameter. Ames testing of such residuals is reported. Similar studies are under way with samples of H-Coal solid waste residuals.« less
Model of environmental life cycle assessment for coal mining operations.
Burchart-Korol, Dorota; Fugiel, Agata; Czaplicka-Kolarz, Krystyna; Turek, Marian
2016-08-15
This paper presents a novel approach to environmental assessment of coal mining operations, which enables assessment of the factors that are both directly and indirectly affecting the environment and are associated with the production of raw materials and energy used in processes. The primary novelty of the paper is the development of a computational environmental life cycle assessment (LCA) model for coal mining operations and the application of the model for coal mining operations in Poland. The LCA model enables the assessment of environmental indicators for all identified unit processes in hard coal mines with the life cycle approach. The proposed model enables the assessment of greenhouse gas emissions (GHGs) based on the IPCC method and the assessment of damage categories, such as human health, ecosystems and resources based on the ReCiPe method. The model enables the assessment of GHGs for hard coal mining operations in three time frames: 20, 100 and 500years. The model was used to evaluate the coal mines in Poland. It was demonstrated that the largest environmental impacts in damage categories were associated with the use of fossil fuels, methane emissions and the use of electricity, processing of wastes, heat, and steel supports. It was concluded that an environmental assessment of coal mining operations, apart from direct influence from processing waste, methane emissions and drainage water, should include the use of electricity, heat and steel, particularly for steel supports. Because the model allows the comparison of environmental impact assessment for various unit processes, it can be used for all hard coal mines, not only in Poland but also in the world. This development is an important step forward in the study of the impacts of fossil fuels on the environment with the potential to mitigate the impact of the coal industry on the environment. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Mishra, S. B.; Langwenya, S. P.; Mamba, B. B.; Balakrishnan, M.
South African coal and coal fly ash were selected as the raw materials to be used for study of their morphology and physicochemical properties and their respective activated carbons for adsorption applications. Coal and fly ash were individually steam activated at a temperature range of 550-1000 °C for 1 h in a muffle furnace using cylindrical stainless steel containers. Scanning electron micrographs revealed a change in surface morphology with more mineral matter available on the surface of the coal particles due to increased devolatilization. However, in the case of fly ash, the macerals coalesced to form agglomerates and the presence of unburnt carbon constituted pores of diameter between 50 and 100 nm. The BET surface area of coal improved significantly from 5.31 to 52.12 m 2/g whereas in case of fly ash the surface area of the raw sample which was originally 0.59 m 2/g and upon activation increased only up to 2.04 m 2/g. The chemical composition of the fly ash confirmed that silica was the major component which was approximately 60% by weight fraction. The impact of this study was to highlight the importance of using raw materials such as coal and a waste product, in the form of coal ash, in order to produce affordable activated carbon that can be used in drinking water treatment. This would therefore ensure that the quality of water supplied to communities for drinking is not contaminated especially by toxic organic compounds.
Method for recovery of hydrocarbons form contaminated soil or refuse materials
Ignasiak, Teresa; Turak, Ali A.; Pawlak, Wanda; Ignasiak, Boleslaw L.; Guerra, Carlos R.; Zwillenberg, Melvin L.
1991-01-01
A method is provided for separating an inert solid substantially inorganic fraction comprising sand or soil from a tarry or oily organic matter in a feedstock. The feedstock may be contaminated soil or tarry waste. The feedstock is combined with pulverized coal and water. The ratio (oil or tar to dry weight of coal) of about 1.0:10 to about 4.0:10 at a temperature in the range of 60.degree.-95.degree. C. The mixture is agitated, the coarse particles are removed, and up to about 0.10% by weight (based on weight of coal) of a frothing agent is added. The mixture is then subjected to flotation, and the froth is removed from the mixture.
NASA Astrophysics Data System (ADS)
Anikin, A. E.; Galevsky, G. V.; Nozdrin, E. V.; Rudneva, V. V.; Galevsky, S. G.
2016-09-01
The research of the metallization process of the roll scale and sludge after gas treatment in the BOF production with the use of brown coal semicoke mined in Berezovsky field of the Kansk-Achinsk Basin was carried out. A flow diagram of “cold” briquetting using a water-soluble binder was offered. The reduction of iron from its oxide Fe2O3 with brown coal semicoke in the laboratory electric-tube furnace in the argon atmosphere was studied. The mathematical models of dependence of the metallization degree on variable factors were developed. The optimal values of technological factors and essential characteristics of the obtained metallized products were revealed.
Water-quality trends in the nation's rivers
Smith, R.A.; Alexander, R.B.; Wolman, M.G.
1987-01-01
Water-quality records from two nationwide sampling networks now permit nationally consistent analysis of long-term water-quality trends at more than 300 locations on major U.S. rivers. Observed trends in 24 measures of water quality for the period from 1974 to 1981 provide new insight into changes in stream quality that occurred during a time of major changes in both terrestrial and atmospheric influences on surface waters. Particularly noteworthy are widespread decreases in fecal bacteria and lead concentrations and widespread increases in nitrate, chloride, arsenic, and cadmium concentrations. Recorded increases in municipal waste treatment, use of salt on highways, and nitrogen fertilizer application, along with decreases in leaded gasoline consumption and regionally variable trends in coal production and combustion during the period appear to be reflected in water-quality changes.Water-quality records from two nationwide sampling networks now permit nationally consistent analysis of long-term water-quality trends at more than 300 locations on major U. S. rivers. Observed trends in 24 measures of water quality for the period from 1974 to 1981 provide new insight into changes in stream quality that occurred during a time of major changes in both terrestrial and atmospheric influences on surface waters. Particularly noteworthy are widespread decreases in fecal bacteria and lead concentrations and widespread increases in nitrate, chloride, arsenic, and cadmium concentrations. Recorded increases in municipal waste treatment, use of salt on highways, and nitrogen fertilizer application, along with decreases in leaded gasoline consumption and regionally variable trends in coal production and combustion during the period appear to be reflected in water-quality changes.
NASA Astrophysics Data System (ADS)
Afiza Mohammed, Syakirah; Rehan Karim, Mohamed
2017-06-01
Worldwide annual production of coal bottom ash waste was increased in the last decade and is being dumped on landfill over the years. Its improper disposal has become an environmental concern and resulted in a waste of recoverable resources. There is a pressing and on-going need to develop new recycling methods for coal bottom ash. The utilization of coal bottom ash in highway engineering is one of the options to reduce the environmental problems related to the disposal of bottom ash. The present review describe the physical and chemical properties of coal bottom ash waste and its current application as highway embankment material, as acoustic absorbing material and as aggregate replacement in asphalt mixtures. The purpose of this review is to stimulate and promote the effective recycling of coal bottom ash in highway engineering industry.
Nurrokhmah, Laila; Mezher, Toufic; Abu-Zahra, Mohammad R M
2013-01-01
A waste slip-stream is generated from the reclaiming process of monoethanolamine (MEA) based Post-Combustion Capture (PCC). It mainly consists of MEA itself, ammonium, heat-stable salts (HSS), carbamate polymers, and water. In this study, the waste quantity and nature are characterized for Fluor's Econamine FGSM coal-fired CO2 capture base case. Waste management options, including reuse, recycling, treatment, and disposal, are investigated due to the need for a more environmentally sound handling. Regulations, economic potential, and associated costs are also evaluated. The technical, economic, and regulation assessment suggests waste reuse for NOx scrubbing. Moreover, a high thermal condition is deemed as an effective technique for waste destruction, leading to considerations of waste recycling into a coal burner or incineration. As a means of treatment, three secondary-biological processes covering Complete-Mix Activated Sludge (CMAS), oxidation ditch, and trickling filter are designed to meet the wastewater standards in the United Arab Emirates (UAE). From the economic point of view, the value of waste as a NOx scrubbing agent is 6,561,600-7,348,992 USD/year. The secondary-biological treatment cost is 0.017-0.02 USD/ton of CO2, while the cost of an on-site incinerator is 0.031 USD/ton of CO2 captured. In conclusion, secondary biological treatment is found to be the most economical option.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kosaka, Hitoshi; Iwahashi, Takashi; Yoshida, Nobuhiro
1998-07-01
A new concept of a gasifier for coal and wastes is proposed where entrained bed and fixed pebble bed are combined. Main features of this pebble bed gasifier are high efficiency molten slag capture, high efficiency gasification and compactness. Coal and RFD combustion experiments using the pebble bed gasifier demonstrated high efficiency capture and continuous extraction of molten slag as well as complete char combustion with extra ordinarily short residence time of pulverized coal and crushed RDF at the temperature level of about 1,500 C within the pebble bed. Durability tests using high temperature electric furnace has shown that highmore » density alumna is a good candidate for pebble material.« less
Cytotoxic, genotoxic and mutagenic evaluation of surface waters from a coal exploration region.
Porta, Cynthia Silva; Dos Santos, Débora Lemes; Bernardes, Hélio Vieira; Bellagamba, Bruno Corrêa; Duarte, Anaí; Dias, Johnny Ferraz; da Silva, Fernanda Rabaioli; Lehmann, Mauricio; da Silva, Juliana; Dihl, Rafael Rodrigues
2017-04-01
Coal mining generates a considerable amount of waste, which is disposed of in piles or dams near mining sites. As a result, leachates may reach rivers and streams, promoting the wide dispersion of contaminants in solution and as particulate matter. The present study evaluated the cytotoxic, genotoxic, and mutagenic action of surface waters collected around a thermoelectric power plant and the largest mining area in Brazil (Candiota). Four sites in Candiota stream were selected, and samples were collected in winter and summer. Water samples were analyzed using the comet and CBMN assays in V79 and HepG2 cells. Furthermore, genotoxicity of water samples was evaluated in vivo using the SMART in Drosophila melanogaster. In addition, polycyclic aromatic hydrocarbons and inorganic elements were quantified. The results indicate that water samples exhibited no genotoxic and mutagenic activities, whether in vitro or in vivo. On the other hand, surface water samples collected in sites near the power plant in both summer and winter inhibited cell proliferation and induced increased frequencies of V79 cell death, apoptosis, and necrosis. The cytotoxicity observed may be associated with the presence of higher concentration of inorganic elements, especially aluminum, silicon, sulfur, titanium and zinc at sites 1 and 2 in the stream, as well as with the complex mixture present in the coal, in both seasons. Therefore, the results obtained point to the toxicity potential of water samples with the influence of coal mining and combustion processes and the possible adverse effects on the health of exposed organisms. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Jung, Sang Hwa; Kwon, Seung-Jun
2013-09-01
Among the wastes from coal combustion product, only fly ash is widely used for mineral mixture in concrete for its various advantages. However the other wastes including bottom ash, so called PA (pond ash) are limitedly reused for reclamation. In this paper, the engineering properties of domestic pond ash which has been used for reclamation are experimentally studied. For this, two reclamation sites (DH and TA) in South Korea are selected, and two domestic PAs are obtained. Cement mortar with two different w/c (water to cement) ratios and 3 different replacement ratios (0%, 30%, and 60%) of sand are prepared for the tests. For workability and physical properties of PA cement mortar, several tests like flow, setting time, and compressive strength are evaluated. Several durability tests including porosity measuring, freezing and thawing, chloride migration, and accelerated carbonation are also performed. Through the tests, PA (especially from DH area) in surface saturated condition is evaluated to have internal curing action which leads to reasonable strength development and durability performances. The results show a potential applicability of PA to concrete aggregate, which can reduce consuming natural resources and lead to active reutilization of coal product waste.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
This project is one of eight projects selected under the assessment program in the Support of Eastern Democracy (SEED) Act of 0989 by the federal government to reduce low-level emission sources in the Krakow area of Poland. The objective of this Cooperative Agreement is to demonstrate that the quality of stack gas emissions can be improved through the substitution of run-of-mine coal by washed coal. To this end, EFH Coal Company will design, build, and operate a 300-mtph (330 stph) preparation plant and produce a low ash, double-screened washed coal for burning in a traveling-grate stoker in one of themore » many water heating plants in the city of Krakow. By burning this prepared coal under proper combustion condition, combustion efficiency will be increased, stoker maintenance will be lowered and the amount of carbon monoxide, sulfur dioxide and particulates in the stack gases will be reduced significantly. Contracts to: provide the raw-coal feed to the plant; dispose of plant wastes; burn the clean coal in a demonstration water heating plant in Krakow; and to market any surplus production are in place. An international irrevocable purchase order has been let for the procurement of a customized modular 300 mtph (330 stph) dense medium cyclone preparation plant to wash the 20 mm ({approx} 3/4 in.) by 5 mm. ({approx} 1/4 in.) size fraction of raw coal produced by the Katowice Coal Holding Company. This plant will be fabricated and shipped from the United States to Poland as soon as the final land-us and construction permits are granted.« less
The problem with coal-waste dumps inventory in Upper Silesian Coal Basin
NASA Astrophysics Data System (ADS)
Abramowicz, Anna; Chybiorz, Ryszard
2017-04-01
Coal-waste dumps are the side effect of coal mining, which has lasted in Poland for 250 years. They have negative influence on the landscape and the environment, and pollute soil, vegetation and groundwater. Their number, size and shape is changing over time, as new wastes have been produced and deposited changing their shape and enlarging their size. Moreover deposited wastes, especially overburned, are exploited for example road construction, also causing the shape and size change up to disappearing. Many databases and inventory systems were created in order to control these hazards, but some disadvantages prevent reliable statistics. Three representative databases were analyzed according to their structure and type of waste dumps description, classification and visualization. The main problem is correct classification of dumps in terms of their name and type. An additional difficulty is the accurate quantitative description (area and capacity). A complex database was created as a result of comparison, verification of the information contained in existing databases and its supplementation based on separate documentation. A variability analysis of coal-waste dumps over time is also included. The project has been financed from the funds of the Leading National Research Centre (KNOW) received by the Centre for Polar Studies for the period 2014-2018.
NASA Astrophysics Data System (ADS)
Muthusamy, K.; Mohamad Hafizuddin, R.; Mat Yahaya, F.; Sulaiman, M. A.; Syed Mohsin, S. M.; Tukimat, N. N.; Omar, R.; Chin, S. C.
2018-04-01
Concerns regarding the negative impact towards environment due to the increasing use of natural sand in construction industry and dumping of industrial solid wastes namely coal bottom ash (CBA) and oil palm shell (OPS) has resulted in the development of environmental friendly lightweight concrete. The present study investigates the effect of coal bottom ash as partial fine aggregate replacement towards workability and compressive strength of oil palm shell lightweight aggregate concrete (OPS LWAC). The fresh and mechanical properties of this concrete containing various percentage of coal bottom ash as partial fine aggregate replacement were investigated. The result was compared to OPS LWAC with 100 % sand as a control specimen. The concrete workability investigated by conducting slump test. All specimens were cast in form of cubes and water cured until the testing age. The compressive strength test was carried out at 7 and 28 days. The finding shows that integration of coal bottom ash at suitable proportion enhances the strength of oil palm shell lightweight aggregate concrete.
Characteristics of process oils from HTI coal/plastics co-liquefaction runs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robbins, G.A.; Brandes, S.D.; Winschel, R.A.
1995-12-31
The objective of this project is to provide timely analytical support to DOE`s liquefaction development effort. Specific objectives of the work reported here are presented. During a few operating periods of Run POC-2, HTI co-liquefied mixed plastics with coal, and tire rubber with coal. Although steady-state operation was not achieved during these brief tests periods, the results indicated that a liquefaction plant could operate with these waste materials as feedstocks. CONSOL analyzed 65 process stream samples from coal-only and coal/waste portions of the run. Some results obtained from characterization of samples from Run POC-2 coal/plastics operation are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1991-02-01
The purpose of this program is to expand the use of coal by utilizing CFB (circulating fluidized bed) technology to provide an environmentally safe method for disposing of waste materials. Hospitals are currently experiencing a waste management crisis. In many instances, they are no longer permitted to burn pathological and infectious wastes in incinerators. Older hospital incinerators are not capable of maintaining the stable temperatures and residence times necessary in order to completely destroy toxic substances before release into the atmosphere. In addition, the number of available landfills which can safely handle these substances is decreasing each year. The purposemore » of this project is to conduct necessary research investigating whether the combustion of the hospital wastes in a coal-fired circulating fluidized bed boiler will effectively destroy dioxins and other hazardous substances before release into the atmosphere. If this is proven feasible, in light of the quantity of hospital wastes generated each year, it would create a new market for coal -- possibly 50 million tons/year.« less
Energy recovery from solid waste. [production engineering model
NASA Technical Reports Server (NTRS)
Dalton, C.; Huang, C. J.
1974-01-01
A recent group study on the problem of solid waste disposal provided a decision making model for a community to use in determining the future for its solid waste. The model is a combination of the following factors: technology, legal, social, political, economic and environmental. An assessment of local or community needs determines what form of energy recovery is desirable. A market for low pressure steam or hot water would direct a community to recover energy from solid waste by incineration to generate steam. A fuel gas could be produced by a process known as pyrolysis if there is a local market for a low heating value gaseous fuel. Solid waste can also be used directly as a fuel supplemental to coal in a steam generator. An evaluation of these various processes is made.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vories, K.C.
2003-07-01
Short papers are given on: the Coal Combustion Program (C2P2) (J. Glenn); regional environmental concerns with disposal of coal combustion wastes at mines (T. FitzGerald); power plant waste mine filling - an environmental perspective (L.G. Evans); utility industry perspective regarding coal combustion product management and regulation (J. Roewer); coal combustion products opportunities for beneficial use (D.C. Goss); state perspective on mine placement of coal combustion by-products (G.E. Conrad); Texas regulations provide for beneficial use of coal combustion ash (S.S. Ferguson); and the Surface Mining Control and Reclamation Act - a response to concerns about placement of CCBs at coal minemore » sites (K.C. Vories). The questions and answers are also included.« less
Effects of Coal Gangue on Cement Grouting Material Properties
NASA Astrophysics Data System (ADS)
Liu, J. Y.; Chen, H. X.
2018-05-01
The coal gangue is one of the most abundant industrial solid wastes and pollute source of air and water. The use of coal gangue in the production of cement grouting material comforms to the basic state policy of environment protection and the circular using of natural resources. Through coal gangue processing experiment, coal gangue cement grouting materials making test, properties detection of properties and theoretical analysis, the paper studied the effects of coal gangue on the properties of cement grouting materials. It is found that at the range of 600 to 700 °C, the fluidity and the compressive and flexural strengths of the cement grouting materials increase with the rising up of the calcination temperatures of coal gangue. The optimum calcination temperature is around 700 °C. The part substitution of cement by the calcined coal gangue in the cement grouting material will improve the mechanical properties of the cement grouting material, even thought it will decrease its fluidity. The best substitution amount of cement by coal gangue is about 30%. The fluidity and the long term strength of the ordinary silicate cement grouting material is obviously higher than that of the sulphoaluminate cement one as well as that of the silicate-sulphoaluminate complex cement one.
Energetic valorization of wood waste: estimation of the reduction in CO2 emissions.
Vanneste, J; Van Gerven, T; Vander Putten, E; Van der Bruggen, B; Helsen, L
2011-09-01
This paper investigates the potential CO(2) emission reductions related to a partial switch from fossil fuel-based heat and electricity generation to renewable wood waste-based systems in Flanders. The results show that valorization in large-scale CHP (combined heat and power) systems and co-firing in coal plants have the largest CO(2) reduction per TJ wood waste. However, at current co-firing rates of 10%, the CO(2) reduction per GWh of electricity that can be achieved by co-firing in coal plants is five times lower than the CO(2) reduction per GWh of large-scale CHP. Moreover, analysis of the effect of government support for co-firing of wood waste in coal-fired power plants on the marginal costs of electricity generation plants reveals that the effect of the European Emission Trading Scheme (EU ETS) is effectively counterbalanced. This is due to the fact that biomass integrated gasification combined cycles (BIGCC) are not yet commercially available. An increase of the fraction of coal-based electricity in the total electricity generation from 8 to 10% at the expense of the fraction of gas-based electricity due to the government support for co-firing wood waste, would compensate entirely for the CO(2) reduction by substitution of coal by wood waste. This clearly illustrates the possibility of a 'rebound' effect on the CO(2) reduction due to government support for co-combustion of wood waste in an electricity generation system with large installed capacity of coal- and gas-based power plants, such as the Belgian one. Copyright © 2011 Elsevier B.V. All rights reserved.
The Leaching of Aluminium In Spanish Clays, Coal Mining Wastes and Coal Fly Ashes by Sulphuric Acid.
NASA Astrophysics Data System (ADS)
Fernández, A. M.; Ibáñez, J. L.; Llavona, M. A.; Zapico, R.
The acid leaching of aluminium from several non traditional ores, bayerite, kaolinite, different clays, coal mining wastes and coal fly ashes, and the kinetic of their dissolution are described. The effects of time, temperature, acid concentration, sample calcination, particle size were examined. The leaching of aluminium is dependent on acid concentration and strongly on temperature. Generally, the time to reach a fixed percentage of dissolution decreases with increasing acid concentration in the range 6% to 40% acid by weight. On clays and coal mining wastes a good relation between Al removal and ratio kaolinite/illite was also observed at all temperatures and acid concentration tested. Coal fly ashes are particles that were heated at very high temperatures in the power station and Al compounds were transformed into mullite and so Al recovery was minor. Several rate equations describing the kinetics of the leach reaction were discussed and Kinetic parameters and activation energy values of samples are presented.
Comparative Human Toxicity Impact of Electricity Produced from Shale Gas and Coal.
Chen, Lu; Miller, Shelie A; Ellis, Brian R
2017-11-07
The human toxicity impact (HTI) of electricity produced from shale gas is lower than the HTI of electricity produced from coal, with 90% confidence using a Monte Carlo Analysis. Two different impact assessment methods estimate the HTI of shale gas electricity to be 1-2 orders of magnitude less than the HTI of coal electricity (0.016-0.024 DALY/GWh versus 0.69-1.7 DALY/GWh). Further, an implausible shale gas scenario where all fracturing fluid and untreated produced water is discharged directly to surface water throughout the lifetime of a well also has a lower HTI than coal electricity. Particulate matter dominates the HTI for both systems, representing a much larger contribution to the overall toxicity burden than VOCs or any aquatic emission. Aquatic emissions can become larger contributors to the HTI when waste products are inadequately disposed or there are significant infrastructure or equipment failures. Large uncertainty and lack of exposure data prevent a full risk assessment; however, the results of this analysis provide a comparison of relative toxicity, which can be used to identify target areas for improvement and assess potential trade-offs with other environmental impacts.
Water quality of the Swatara Creek Basin, PA
McCarren, Edward F.; Wark, J.W.; George, J.R.
1964-01-01
The Swatara Creek of the Susquehanna River Basin is the farthest downstream sub-basin that drains acid water (pH of 4.5 or less) from anthracite coal mines. The Swatara Creek drainage area includes 567 square miles of parts of Schuylkill, Berks, Lebanon, and Dauphin Counties in Pennsylvania.To learn what environmental factors and dissolved constituents in water were influencing the quality of Swatara Creek, a reconnaissance of the basin was begun during the summer of 1958. Most of the surface streams and the wells adjacent to the principal tributaries of the Creek were sampled for chemical analysis. Effluents from aquifers underlying the basin were chemically analyzed because ground water is the basic source of supply to surface streams in the Swatara Creek basin. When there is little runoff during droughts, ground water has a dominating influence on the quality of surface water. Field tests showed that all ground water in the basin was non-acidic. However, several streams were acidic. Sources of acidity in these streams were traced to the overflow of impounded water in unworked coal mines.Acidic mine effluents and washings from coal breakers were detected downstream in Swatara Creek as far as Harper Tavern, although the pH at Harper Tavern infrequently went below 6.0. Suspended-sediment sampling at this location showed the mean daily concentration ranged from 2 to 500 ppm. The concentration of suspended sediment is influenced by runoff and land use, and at Harper Tavern it consisted of natural sediments and coal wastes. The average daily suspended-sediment discharge there during the period May 8 to September 30, 1959, was 109 tons per day, and the computed annual suspended-sediment load, 450 tons per square mile. Only moderate treatment would be required to restore the quality of Swatara Creek at Harper Tavern for many uses. Above Ravine, however, the quality of the Creek is generally acidic and, therefore, of limited usefulness to public supplies, industries and recreation. In general, the quality of Swatara Creek improves after it mixes with water from the Upper Little and Lower Little Swatara Creeks, which converge with the main stream near Pine Grove. Jonestown is the first downstream location where Swatara Creek contains bicarbonate ion most of the time, and for the remaining downstream length of the stream, the concentration of bicarbonate progressively increases. Before the stream enters the Susquehanna River, chemical and diluting processes contributed by tributaries change the acidic calcium sulfate water, which characterizes the upper Swatara, to a calcium bicarbonate water.A major tributary to Swatara Creek is Quittapahilla Creek, which drains a limestone region and has alkaline characteristics. Effluents from a sewage treatment plant are discharged into this stream west of Lebanon. Adjacent to the Creek are limestone quarries and during the recovery of limestone, ground water seeps into the mining areas. This water is pumped to upper levels and flows over the land surface into Quittapahilla Creek. As compared with the 1940's, the quality of Swatara Creek is better today, and the water is suitable for more uses. In large part, this improvement is due to curtailment of anthracite coal mining and because of the controls imposed on new mines, stripping mines, and the related coal mining operations, by the Pennsylvania Sanitary Water Board. Thus, today (1962) smaller amounts of coal mine wastes are more effectively flushed and scoured away with each successive runoff during storms that affect the drainage basin. Natural processes neutralizing acid water in the stream by infiltration of alkaline ground water through springs and through the streambed are also indicated.
MERCURY CONTROL IN MUNICIPAL WASTE COMBUSTORS AND COAL-FIRED UTILITIES
Control of mercury (Hg) emissions from municipal waste combustors (MWCs) and coal-fired utilities has attracted attention due to current and potential regulations. Among several techniques evaluated for Hg control, dry sorbent injection (primarily injection of activated carbon) h...
NASA Astrophysics Data System (ADS)
Tauanov, Z.; Abylgazina, L.; Spitas, C.; Itskos, G.; Inglezakis, V.
2017-09-01
Coal fly ash (CFA) is a waste by-product of coal combustion. Kazakhstan has vast coal deposits and is major consumer of coal and hence produces huge amounts of CFA annually. The government aims to recycle and effectively utilize this waste by-product. Thus, a detailed study of the physical and chemical properties of material is required as the data available in literature is either outdated or not applicable for recently produced CFA samples. The full mineralogical, microstructural and thermal characterization of three types of coal fly ash (CFA) produced in two large Kazakhstani power plants is reported in this work. The properties of CFAs were compared between samples as well as with published values.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Federal coal; ensure production practices that prevent wasting or loss of coal or other resources; avoid unnecessary damage to coal-bearing or mineral-bearing formations; ensure MER of Federal coal; ensure that... regulation of surface and underground coal mining operations; require an accurate record and accounting of...
Code of Federal Regulations, 2012 CFR
2012-10-01
... Federal coal; ensure production practices that prevent wasting or loss of coal or other resources; avoid unnecessary damage to coal-bearing or mineral-bearing formations; ensure MER of Federal coal; ensure that... regulation of surface and underground coal mining operations; require an accurate record and accounting of...
Code of Federal Regulations, 2013 CFR
2013-10-01
... Federal coal; ensure production practices that prevent wasting or loss of coal or other resources; avoid unnecessary damage to coal-bearing or mineral-bearing formations; ensure MER of Federal coal; ensure that... regulation of surface and underground coal mining operations; require an accurate record and accounting of...
Code of Federal Regulations, 2014 CFR
2014-10-01
... Federal coal; ensure production practices that prevent wasting or loss of coal or other resources; avoid unnecessary damage to coal-bearing or mineral-bearing formations; ensure MER of Federal coal; ensure that... regulation of surface and underground coal mining operations; require an accurate record and accounting of...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wood, K.
The principal study site is the landfill of the Niagara Mohawk Power Corp., Dunkirk, N.Y. Concentrations of dissolved metals are determined in the waters from the site and aquatic invertebrates from ponds and streams at the site are being identified and analyzed for trace metals. Elevated levels of Fe and Mn occur in the runoff from the site and in the aquatic invertebrates. The metals Cd, Zn, Cu, and Cr are found at low levels (ppB range) in the waters and in variable, generally low concentrations in the biota. Taxonomic study is focused primarily on the Chironomidae (10 general) andmore » Ephemeroptera (6 genera) with detailed studies in progress. The rate of leaching of metals from coal ash is also being studied in the laboratory by two methods. Sediments from Lake Erie at Dunkirk, N.Y., are being assessed for textural classification and composition. Attempts are being made to distinguish between coal wastes and other sediment in the silt and finer size range. The dump site is being evaluated for groundwater, surface water, and geological structure, so that trace element cycling can be evaluated.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brenkert, A.L.; Parr, P.D.; Taylor, F.G.
This report reviews available literature on soil conditions, hydrology, and climatological data and suggests plant species suitable for covering the low-level nuclear waste disposal areas in the White Oak Creek Watershed within the Oak Ridge Reservation. Literature on naturally invading species and secondary succession, on plant species used for reclamation of coal spoils and roadsides, and on horticultural species is reviewed. The potential of plant species to take up, or mine, the waste through deep rooting is assessed. The effects of vegetation cover on the water balance in a watershed are reviewed. Several conclusions are presented concerning the management ofmore » vegetation cover on low-level solid waste disposal areas. 163 references, 2 figures, 9 tables.« less
Chen, Liming; Stehouwer, Richard; Tong, Xiaogang; Kost, Dave; Bigham, Jerry M; Dick, Warren A
2015-09-01
Abandoned coal-mined lands are a worldwide concern due to their potential negative environmental impacts, including erosion and development of acid mine drainage. A field study investigated the use of a dry flue gas desulfurization product for reclamation of abandoned coal mined land in USA. Treatments included flue gas desulfurization product at a rate of 280 Mg ha(-1) (FGD), FGD at the same rate plus 112 Mg ha(-1) yard waste compost (FGD/C), and conventional reclamation that included 20 cm of re-soil material plus 157 Mg ha(-1) of agricultural limestone (SOIL). A grass-legume sward was planted after treatment applications. Chemical properties of surface runoff and tile water (collected from a depth of 1.2m below the ground surface) were measured over both short-term (1-4 yr) and long-term (14-20 yr) periods following reclamation. The pH of surface runoff water was increased from approximately 3, and then sustained at 7 or higher by all treatments for up to 20 yr, and the pH of tile flow water was also increased and sustained above 5 for 20 yr. Compared with SOIL, concentrations of Ca, S and B in surface runoff and tile flow water were generally increased by the treatments with FGD product in both short- and long-term measurements and concentrations of the trace elements were generally not statistically increased in surface runoff and tile flow water over the 20-yr period. However, concentrations of As, Ba, Cr and Hg were occasionally elevated. These results suggest the use of FGD product for remediating acidic surface coal mined sites can provide effective, long-term reclamation. Copyright © 2015. Published by Elsevier Ltd.
DISPOSAL OF FLUE-GAS-CLEANING WASTES
The article describes current commercial and emerging technology for disposal of wastes from flue gas cleaning (FGC) systems for coal-fired power plants. Over 80 million metric tons/yr (dry) of coal ash and desulfurization solids are expected to be produced by the 1980's. Althoug...
Influence of preheating on grindability of coal
Lytle, J.; Choi, N.; Prisbrey, K.
1992-01-01
Enormous quantities of coal must be ground as feed to power generation facilities. The energy cost of grinding is significant at 5 to 15 kWh/ton. If grindability could be increased by preheating the coal with waste heat, energy costs could be reduced. The objective of this work was to determine how grindability was affected by preheating. The method was to use population balance grinding models to interpret results of grinding coal before and after a heat treatment. Simulation of locked cycle tests gave a 40% increase in grindability. Approximately 40% grinding energy saving can be expected. By using waste heat for coal treatment, the targeted energy savings would be maintained. ?? 1992.
Direct liquefaction of plastics and coprocessing of coal with plastics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huffman, G.P.; Feng, Z.; Mahajan, V.
1995-12-31
The objectives of this work were to optimize reaction conditions for the direct liquefaction of waste plastics and the coprocessing of coal with waste plastics. In previous work, the direct liquefaction of medium and high density polyethylene (PE), polypropylene (PPE), poly(ethylene terephthalate) (PET), and a mixed plastic waste, and the coliquefaction of these plastics with coals of three different ranks was studied. The results established that a solid acid catalyst (HZSM-5 zeolite) was highly active for the liquefaction of the plastics alone, typically giving oil yields of 80-95% and total conversions of 90-100% at temperatures of 430-450 {degrees}C. In themore » coliquefaction experiments, 50:50 mixtures of plastic and coal were used with a tetralin solvent (tetralin:solid = 3:2). Using approximately 1% of the HZSM-5 catalyst and a nanoscale iron catalyst, oil yields of 50-70% and total conversion of 80-90% were typical. In the current year, further investigations were conducted of the liquefaction of PE, PPE, and a commingled waste plastic obtained from the American Plastics Council (APC), and the coprocessing of PE, PPE and the APC plastic with Black Thunder subbituminous coal. Several different catalysts were used in these studies.« less
Coal Producer's Rubber Waste Processing Development
NASA Astrophysics Data System (ADS)
Makarevich, Evgeniya; Papin, Andrey; Nevedrov, Alexander; Cherkasova, Tatyana; Ignatova, Alla
2017-11-01
A large amount of rubber-containing waste, the bulk of which are worn automobile tires and conveyor belts, is produced at coal mining and coal processing enterprises using automobile tires, conveyor belts, etc. The volume of waste generated increases every year and reaches enormous proportions. The methods for processing rubber waste can be divided into three categories: grinding, pyrolysis (high and low temperature), and decomposition by means of chemical solvents. One of the known techniques of processing the worn-out tires is their regeneration, aimed at producing the new rubber substitute used in the production of rubber goods. However, the number of worn tires used for the production of regenerate does not exceed 20% of their total quantity. The new method for processing rubber waste through the pyrolysis process is considered in this article. Experimental data on the upgrading of the carbon residue of pyrolysis by the methods of heavy media separation, magnetic and vibroseparation, and thermal processing are presented.
Diehl, S.F.; Smith, Kathleen S.; Desborough, G.A.; White, W.W.; Lapakko, K.A.; Goldhaber, Martin B.; Fey, David L.
2003-01-01
To assess the potential impact of metal and acid contamination from mine-waste piles, it is important to identify the mineralogic source of trace metals and their mode of occurrence. Microscopic analysis of mine-waste samples from both hard-rock and coalmine waste samples demonstrate a microstructural control, as well as mineralogic control, on the source and release of trace metals into local water systems. The samples discussed herein show multiple periods of sulfide mineralization with varying concentrations of trace metals. In the first case study, two proprietary hard-rock mine-waste samples exposed to a series of humidity cell tests (which simulate intense chemical weathering conditions) generated acid and released trace metals. Some trace elements of interest were: arsenic (45-120 ppm), copper (60-320 ppm), and zinc (30-2,500 ppm). Untested and humidity cell-exposed samples were studied by X-ray diffraction, scanning electron microscope with energy dispersive X-ray (SEM/EDX), and electron microprobe analysis. Studies of one sample set revealed arsenic-bearing pyrite in early iron- and magnesium-rich carbonate-filled microveins, and iron-, copper-, arsenic-, antimony-bearing sulfides in later crosscutting silica-filled microveins. Post humidity cell tests indicated that the carbonate minerals were removed by leaching in the humidity cells, exposing pyrite to oxidative conditions. However, sulfides in the silica-filled veins were more protected. Therefore, the trace metals contained in the sulfides within the silica-filled microveins may be released to the surface and (or) ground water system more slowly over a greater time period. In the second case study, trace metal-rich pyrite-bearing coals from the Warrior Basin, Alabama were analyzed. Arsenic-bearing pyrite was observed in a late-stage pyrite phase in microfaults and microveins that crosscut earlier arsenic.
Thermal alterations of organic matter in coal wastes from Upper Silesia, Poland
NASA Astrophysics Data System (ADS)
Misz-Kennan, Magdalena
2010-01-01
Self-heating and self-combustion are currently taking place in some coal waste dumps in the Upper Silesian Coal Basin, Poland, e.g. the dumps at Rymer Cones, Starzykowiec, and the Marcel Coal Mine, all in the Rybnik area. These dumps are of similar age and self-heating and combustion have been occurring in all three for many years. The tools of organic petrography (maceral composition, rank, etc.), gas chromatography-mass spectrometry, and proximate and ultimate analysis are used to investigate the wastes. Organic matter occurs in quantities up to 85 vol.%, typically a few to several vol.%, in the wastes. All three maceral groups (vitrinite, liptinite, and inertinite) are present as unaltered and variously-altered constituents associated with newly-formed petrographic components (bitumen expulsions, pyrolytic carbon). The predominant maceral group is vitrinite with alterations reflected in the presence of irregular cracks, oxidation rims and, rarely, devolatilisation pores. In altered wastes, paler grey-vitrinite and/or coke dominates. The lack of plasticity, the presence of paler-coloured particles, isotropic massive coke, dispersed coked organic matter, and expulsions of bitumens all indicate that heating was slow and extended over a long time. Macerals belonging to other groups are present in unaltered form or with colours paler than the colours of the parent macerals. Based on the relative contents of organic compounds, the most important groups of these identified in the wastes are
NASA Astrophysics Data System (ADS)
McNeese, L. E.
1981-01-01
Increased utilization of coal and other fossil fuel alternatives as sources of clean energy is reported. The following topics are discussed: coal conversion development, chemical research and development, materials technology, component development and process evaluation studies, technical support to major liquefaction projects, process analysis and engineering evaluations, fossil energy environmental analysis, flue gas desulfurization, solid waste disposal, coal preparation waste utilization, plant control development, atmospheric fluidized bed coal combustor for cogeneration, TVA FBC demonstration plant program technical support, PFBC systems analysis, fossil fuel applications assessments, performance assurance system support for fossil energy projects, international energy technology assessment, and general equilibrium models of liquid and gaseous fuel supplies.
Utilization of coal-water fuel in heat power industry and by public utilities of Ukraine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Papayani, F.A.; Switly, Y.G.
1995-12-31
One of the major problems of the fuel and energy balance of Ukraine is acute shortage of its own resources of organic fuel. At present the steam coal output in Ukraine approaches 100 mln t, oil production makes up about 5 min t and that of gas reaches 22 bln. m{sup 3}, which in terms of equivalent fuel (e.f ) totals 94 min t, the annual demand being approximately 300 mln t e.f. To make up for fuel deficiency Ukraine has to annually import 120 bln. m{sup 3} of gas, 50 mln t of oil and about 10 mln tmore » of coal, their approximate cost being U.S.$ 15.6 bln. At the same time coal reserves in developed fields only make up 10 bln. t, the total reserves of this fuel being 100 bln. t. Thus the whole burden of meeting the requirements of Ukraine in power resources when nuclear power plants capacities are being reduced and expected to be reducing in the nearest future falls on coal. Under wasting conditions a problem of today is to develop and introduce new technologies of coal mining and utilization with due regard for technical, economic and ecological aspects which are particularly important for densely populated industrial regions. Ecological problems associated with a dramatic increase in the volume of coal combustion can be solved by developing new methods and means for flue gas cleaning in the first place and by wide-scale introduction of coal-water fuel (CWF) in the second place. Investigations have shown that the second way is more preferable since it is based on the integrated technology for original coal demineralization and CWT production, advantages of each process being used in full measure. Thus demineralization of coal is among major requirements to development of a CWT production technology.« less
Fossil fuels in a sustainable energy future
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bechtel, T.F.
1995-12-01
The coal industry in the United States has become a world leader in safety, productivity, and environmental protection in the mining of coal. The {open_quotes}pick-and-shovel{close_quotes} miner with mangled limbs and black lung disease has been replaced by the highly skilled technicians that lead the world in tons per man-hour. The gob piles, polluted streams, and scared land are a thing of the past. The complementary efforts of the DOE and EPRI-funded programs in coal utilization R&D and the Clean Coal Technology Program commercial demonstrations, have positioned the power generation industry to utilize coal in a way that doesn`t pollute themore » air or water, keeps electrical power costs low, and avoids the mountains of waste material. This paper reviews the potential for advanced coal utilization technologies in new power generation applications as well as the repowering of existing plants to increase their output, raise their efficiency, and reduce pollution. It demonstrates the potential for these advanced coal-fueled plants to play a complementary role in future planning with the natural gas and oil fired units currently favored in the market place. The status of the US program to demonstrate these technologies at commercial scale is reviewed in some detail.« less
Evaluation of engineering properties for the use of leached brown coal ash in soil covers.
Mudd, Gavin M; Chakrabarti, Srijib; Kodikara, Jayantha
2007-01-31
The need to engineer cover systems for the successful rehabilitation or remediation of a wide variety of solid wastes is increasing. Some common applications include landfills, hazardous waste repositories, or mine tailings dams and waste rock/overburden dumps. The brown coal industry of the Latrobe Valley region of Victoria, Australia, produces significant quantities of coal ash and overburden annually. There are some site-specific acid mine drainage (AMD) issues associated with overburden material. This needs to be addressed both during the operational phase of a project and during rehabilitation. An innovative approach was taken to investigate the potential to use leached brown coal ash in engineered soil covers on this overburden dump. The basis for this is two-fold: first, the ash has favourable physical characteristics for use in cover systems (such as high storage capacity/porosity, moderately low permeability, and an ability to act as a capillary break layer generating minimal leachate or seepage); and second, the leachate from the ash is mildly alkaline (which can help to mitigate and reduce the risk of AMD). This paper will review the engineering issues involved in using leached brown coal ash in designing soil covers for potentially acid-forming overburden dumps. It presents the results of laboratory work investigating the technical feasibility of using leached brown coal ash in engineered solid waste cover systems.
Photostabilization of a landfill containing coal combustion waste
Christopher Barton; Donald Marx; Domy Adriano; Bon Jun Koo; Lee Newman; Stephen Czapka; John Blake
2005-01-01
The establishment of a vegetative cover to enhance evapotranspiration and control runoff and drainage was examined as a method for stabilizing a landfill containing coal combustion waste. Suitable plant species and pretreatment techniques in the form of amendments, tilling, and chemical stabilization were evaluated. A randomized plot design consisting of three...
Phytostabilization of a landfill containing coal combustion waste
Christopher Barton; Donald Marx; Domy Adriano; Bon Jun Koo; Lee Newman; Stephen Czapka; John Blake
2005-01-01
The establishment of a vegetative cover to enhance evapotranspiration and control runoff and drainage was examined as a method for stabilizing a landfill containing coal combustion waste. Suitable plant species and pretreatment techniques in the form of amendments, tilling, and chemical stabilization were evaluated. A randomized plot design consisting of three...
Chemical Technology Division annual technical report, 1992
DOE Office of Scientific and Technical Information (OSTI.GOV)
Battles, J.E.; Myles, K.M.; Laidler, J.J.
1993-06-01
In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for fluidized-bed combustion and coal-fired magnetohydrodynamics; (3) methods for treatment of hazardous waste, mixed hazardous/radioactive waste, and municipal solid waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; (5) processes for separating and recovering transuranic elements from nuclear waste streams, treating water contaminated with volatile organics, and concentrating radioactive waste streams; (6) recovery processes for discharged fuel and the uranium blanket in the Integral Fast Reactor (EFR); (7)more » processes for removal of actinides in spent fuel from commercial water-cooled nuclear reactors and burnup in IFRs; and (8) physical chemistry of selected materials (corium; Fe-U-Zr, tritium in LiAlO{sub 2} in environments simulating those of fission and fusion energy systems. The Division also conducts basic research in catalytic chemistry associated with molecular energy resources and novel` ceramic precursors; materials chemistry of superconducting oxides, electrified metal/solution interfaces, and molecular sieve structures; and the geochemical processes involved in water-rock interactions occurring in active hydrothermal systems. In addition, the Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the technical programs at Argonne National Laboratory (ANL).« less
Civeira, Matheus S; Pinheiro, Rafael N; Gredilla, Ainara; de Vallejuelo, Silvia Fdez Ortiz; Oliveira, Marcos L S; Ramos, Claudete G; Taffarel, Silvio R; Kautzmann, Rubens M; Madariaga, Juan Manuel; Silva, Luis F O
2016-02-15
Brazilian coal area (South Brazil) impacted the environment by means of a large number of coal waste piles emplaced over the old mine sites and the adjacent areas of the Criciúma, Urussanga, and Siderópolis cities. The area studied here was abandoned and after almost 30 years (smokeless visual) some companies use the actual minerals derived from burning coal cleaning rejects (BCCRs) complied in the mentioned area for industry tiles or refractory bricks. Mineralogical and geochemical similarities between the BCCRs and non-anthropogenic geological environments are outlined here. Although no visible flames were observed, this study revealed that auto-combustion existed in the studied area for many years. The presence of amorphous phases, mullite, hematite and other Fe-minerals formed by high temperature was found. There is also pyrite, Fe-sulphates (eg. jarosite) and unburnt coal present, which are useful for comparison purposes. Bad disposal of coal-dump wastes represents significant environmental concerns due to their potential influence on atmosphere, river sediments, soils and as well as on the surface and groundwater in the surroundings of these areas. The present study using advanced analytical techniques were performed to provide an improved understanding of the complex processes related with sulphide-rich coal waste oxidation, spontaneous combustion and mineral formation. It is reporting huge numbers of rare minerals with alunite, montmorillonite, szomolnokite, halotrichite, coquimbite and copiapite at the BCCRs. The data showed the presence of abundant amorphous Si-Al-Fe-Ti as (oxy-)hydroxides and Fe-hydro/oxides with goethite and hematite with various degrees of crystallinity, containing hazardous elements, such as Cu, Cr, Hf, Hg, Mo, Ni, Se, Pb, Th, U, Zr, and others. By Principal Component Analysis (PCA), the mineralogical composition was related with the range of elemental concentration of each sample. Most of the nano-minerals and ultra-fine particles found in the burned coal-dump wastes are the same as those commonly associated with coal cleaning rejects, in which oxidation of sulphides plays an important role to environment and human health. Copyright © 2015 Elsevier B.V. All rights reserved.
China: A sleeping giant awakens to environment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ni Shaoxiang
1995-07-01
This article discusses the approach the Chinese government is taking to environmental issues. Included are the following topics: pollution abatement; improved rural environment by curbing the production and use of highly toxic pesticides; limiting erosion; natural reserves. Problems awaiting solutions are also discussed: air pollution (particularly coal combustion); water pollution; solid-waste pollution; rural pollution; soil erosion; desertification; soil salinization; deforestation; grassland deterioration; natural disasters.
The Disposal of Hazardous Wastes.
ERIC Educational Resources Information Center
Barnhart, Benjamin J.
1978-01-01
The highlights of a symposium held in October, 1977 spotlight some problems and solutions. Topics include wastes from coal technologies, radioactive wastes, and industrial and agricultural wastes. (BB)
Update on specified European R and D efforts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1980-10-01
Information was collected for DOE on various European research programs of interest: Shell-Koppers coal gasification demonstration plant, fluidized-bed combustion pilot plant, a boiler super heat system, energy conservation on ships, waste heat utilization from large diesel engines and nuclear power plants and uranium enrichment plants, coal-water slurries with additive (CARBOGEL), electrostatic precipitators, radial inflow turbines, carbonization, heat pumps, heat exchangers, gas turbines, and research on heat resisting alloys and corrosion protection of these alloys. A number of organizations expressed a desire for creation of a formal interchange with DOE on specific subjects of mutual interest (one organization is unhappy aboutmore » furnishing information to DOE). (LTN)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cirrito, A.J.
Combustion jet pumps ingest waste heat gases from power plant engines and boilers to boost their pressure for the ultimate low temperature utilization of the captured heat for heating homes, full-year hot houses, sterilization purposes, recreational hot water, absorption refrigeration and the like. Jet pump energy is sustained from the incineration of solids, liquids and gases and vapors or simply from burning fuels. This is the energy needed to transport the reaction products to the point of heat utilization and to optimize the heat transfer to that point. Sequent jet pumps raise and preserve energy levels. Crypto-steady and special jetmore » pumps increase pumping efficiency. The distribution conduit accepts fluidized solids, liquids, gases and vapors in multiphase flow. Temperature modulation and flow augmentation takes place by water injection. Macro solids such as dried sewage waste are removed by cyclone separation. Micro particles remain entrained and pass out with waste condensate just beyond each point of final heat utilization to recharge the water table. The non-condensible gases separated at this point are treated for pollution control. Further, jet pump reactions are controlled to yield fuel gas as necessary to power jet pumps or other use. In all these effects introduced sequentially, the available energy necessary to provide the flow energy, for the continuously distributed heating medium, is first extracted from fuel and fuel-like additions to the stream. As all energy, any way, finally converts to heat, which in this case is retained or recaptured in the flow, the captured heat is practically 90% available at the point of low temperature utilization. The jet pump for coal gasification is also disclosed as are examples of coal gasification and hydrogen production.« less
NASA Astrophysics Data System (ADS)
Abdaal, Ahmed; Jordan, Gyozo; Bartha, Andras; Fugedi, Ubul
2013-04-01
The Mine Waste Directive 2006/21/EC requires the risk-based inventory of all mine waste sites in Europe. The geochemical documentation concerning inert classification and ranking of the mine wastes requires detailed field study and laboratory testing and analyses of waste material to assess the Acid Mine Drainage potential and toxic element mobility. The procedure applied in this study used a multi-level decision support scheme including: 1) expert judgment, 2) data review, 3) representative field sampling and laboratory analysis of formations listed in the Inert Mining Waste List, and 4) requesting available laboratory analysis data from selected operating mines. Based on expert judgment, the listed formations were classified into three categories. A: inert B: probably inert, but has to be checked, C: probably not inert, has to be examined. This paper discusses the heavy metal contamination risk assessment (RA) in leached quarry-mine waste sites in Hungary. In total 34 mine waste sites (including tailing lagoons and heaps of both abandoned mines and active quarries) have been selected for scientific testing using the EU Pre-selection Protocol. Over 93 field samples have been collected from the mine sites including Ore (Andesite and Ryolite), Coal (Lignite, black and brown coals), Peat, Alginite, Bauxite, Clay and Limestone. Laboratory analyses of the total toxic element content (aqua regia extraction), the mobile toxic element content (deionized water leaching) and the analysis of different forms of sulfur (sulfuric acid potential) ) on the base of Hungarian GKM Decree No. 14/2008. (IV. 3) concerning mining waste management. A detailed geochemical study together with spatial analysis and GIS has been performed to derive a geochemically sound contamination RA of the mine waste sites. Key parameters such as heavy metal and sulphur content, in addition to the distance to the nearest surface and ground water bodies, or to sensitive receptors such as settlements and protected areas are calculated and statistically evaluated using STATGRAPHICS® in order to calibrate the RA methods. Results show that some of the waste rock materials assumed to be inert were found non/inert. Thus, regional RA needs more spatial and petrological examination with special care to rock and mineral deposit genetics.
Yamamoto, T; Kim, K H; Shirono, K
2015-01-15
In order to evaluate the ability of granulated coal ash (GCA), a byproduct of coal thermal electric power stations, to remove hydrogen sulfide from organically enriched sediments, a pilot study was carried out at oyster farming sites, where sediments were enriched with oyster feces and dead oysters. Concentration of hydrogen sulfide in the interstitial water of the sediment decreased to nearly zero in both experimental sites, whereas it remained over 0.2mg/l in the control site. Concentration of acid volatile sulfide (AVS) in the sediment also decreased significantly in both experimental sites, while remained over 0.4 mg/g in the control site. Increases were observed in both the number of benthic microalgae species and the individual number of benthic animals in the surface sediments. This may have been due to the decrease in hydrogen sulfide. Copyright © 2014 Elsevier Ltd. All rights reserved.
EVALUATION OF THE DISPOSAL OF FLUE GAS CLEANING WASTES IN COAL MINES AND AT SEA: REFINED ASSESSMENT
The report gives a refined assessment of the feasibility of disposing of flue gas cleaning (FGC) wastes in coal mines and at sea. Its focus is on specific impact areas identified in an earlier assessment. These areas were further investigated through laboratory studies as well as...
30 CFR 816.57 - Hydrologic balance: Activities in or adjacent to perennial or intermittent streams.
Code of Federal Regulations, 2013 CFR
2013-07-01
... accordance with § 800.40(c)(2) of this chapter. (4) Construction of excess spoil fills and coal mine waste... part for coal mine waste disposal facilities. (c) Additional clarifications. All surface mining... using the best technology currently available, additional contribution of suspended solids to streamflow...
Reclamation of soils influenced by coal mining in Southern European Russia
NASA Astrophysics Data System (ADS)
Alekseenko, Vladimir; Bech, Jaume; Alekseenko, Alexey; Shvydkaya, Natalya; Roca, Núria
2016-04-01
In the recent decades, the concentrations of metals have increased in such media of biosphere as atmosphere, hydrosphere, pedosphere. The greatest geochemical changes have occurred in soils, which are the deposing medium where the high concentrations of metals are saved for years after their direct human use. Mining sites and beneficiation zones are the areas of the highest concentrations of metals in soils. Coal mining areas in the European part of Russia (Rostov region) were selected for a detailed consideration. Soil samples were taken from the uppermost soil horizons: layer of 0-30 cm. The soil samples were analysed for gross concentrations of Cu, Zn, Pb, Ag, Sn, Mo, Ba, Co, Ni, Mn, Ti, V, Cr, Ga, P, Li, Sr, Y, Yb, Nb, Sc, and Zr, using emission spectral analysis. All ordinary analyses were carried out in the certified and accredited laboratory. The external control was conducted by the X-ray fluorescence, gravimetric, and neutron activation analyses. Calculation of random and systematic errors showed high analyses repeatability and correctness. Several cases of self-purification of soils and restoration of landscapes were discussed. The way of remediation through the flooding of mining sites with water was investigated as well as filling of natural relief depressions with soils and dumps. The process of Technosols remediation at the sites occupied by tailings of waste heaps was considered separately. In conclusion: 1. The dominant contemporary way of remediation in Southern European Russia does not prevent the spread of metals through the decades. The modern underground coal mining leads to the destruction of soils in the area directly occupied by wastes and by rock dumps located nearby. 2. Soils have not formed yet as a result of self-restoration at the waste heaps at the age of 50 years, spontaneously combusted decades ago. The vegetation formed during this time virtually eliminates the occurrence of any significant soil-forming process. The ponds formed by the flooding of burning waste heaps, do not give possibility for the formation of soils and hardly contribute to plant growth. 3. The Technosols of waste heaps' surface layers are different from the surrounding steppe soils in geochemical features and mineralogical composition at every stage of their development. 4. The atmospheric and water inflow of material from the waste heaps changes (in the cases studied - worsens) the state of steppe soils within a radius of 1 km, and leads to the increase of heavy metals content in these soils. Keywords: Technosols, Technogenic Superficial Formations, self-purification, flooding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chu, C.I.C.; Gillespie, B.L.
One of the most perplexing problems facing the coal industry is how to properly dispose of the waste and/or even recovery a small fraction of the Btu value of the waste, while minimizing the environmental concerns. UCC Research considers this monumental environmental problems as an opportunity to recovery useable organic materials and reduce the environmental problems created by coal waste. Mild gasification is the method used by UCC Research to realize these objectives. Coal feedstocks are fed into the mild gasification system yielding liquids, char, and gases for commercial application. The program consists of seven tasks: Task 1, Characterize Managementmore » of Coal Preparation Wastes; Task 2, Review Design Specifications and Prepare Preliminary Test Plan; Task 3, Select and Characterize Test Feedstocks; Task 4, Acquire/Construct Process Elements; Task 5, Prepare Final Test Plan; Task 6, Implement Final Test Plan; Task 7, Analyze Test Results and Assess System Economics. A schedule of the program is given. The program was initiated on September 30, 1984. Tasks 1, 2, 3, 4, 5, and 6 have been completed. Work is continuing on Task 7.« less
Bayless, E. Randall; Arihood, Leslie D.; Fowler, Kathleen K.
2011-01-01
The Green Valley reclaimed coal refuse site, near Terre Haute, Ind., was mined for coal from 1948 to 1963. Subsurface coal was cleaned and sorted at land surface, and waste material was deposited over the native glacial till. Approximately 2.7 million cubic yards of waste was deposited over 159 acres (92.3 hectares) in tailings ponds and gob piles. During 1993, the Indiana Department of Natural Resources, Division of Reclamation, improved the site by grading gob piles, filling tailings ponds, and covering the refuse with a layer of glacial drift. During 2008, the Division of Reclamation and U.S. Geological Survey initiated a cooperative investigation to characterize the hydrogeology of the site and construct a calibrated groundwater flow model that could be used to simulate the results of future remedial actions. In support of the modeling, a data-collection network was installed at the Green Valley site to measure weather components, geophysical properties, groundwater levels, and stream and seep flow. Results of the investigation indicate that (1) there is negligible overland flow from the site, (2) the prevailing groundwater-flow direction is from northeast to southwest, with a much smaller drainage to the northeast, (3) there is not a direct hydraulic connection between the refuse and West Little Sugar Creek, (4) about 24 percent of the groundwater recharge emerges through seeps, and water from the seeps evaporates or eventually flows to West Little Sugar Creek and the Green Valley Mine Pond, and (5) about 72 percent of groundwater recharge moves vertically downward from the coal refuse into the till and follows long, slow flow paths to eventual dischage points.
Nitrate release from waste rock dumps in the Elk Valley, British Columbia, Canada.
Mahmood, Fazilatun N; Barbour, S Lee; Kennedy, C; Hendry, M Jim
2017-12-15
The origin, distribution and leaching of nitrate (NO 3 - ) from coal waste rock dumps in the Elk Valley, British Columbia, Canada were defined using chemical and NO 3 - isotope analyses (δ 15 N- and δ 18 O-NO 3 - ) of solids samples of pre- and post-blast waste rock and from thick (up to 180m) unsaturated waste rock dump profiles constructed between 1982 and 2012 as well as water samples collected from a rock drain located at the base of one dump and effluent from humidity cell (HC) and leach pad (LP) tests on waste rock. δ 15 N- and δ 18 O-NO 3 - values and NO 3 - concentrations of waste rock and rock drain waters confirmed the source of NO 3 - in the waste rock to be explosives and that limited to no denitrification occurs in the dump. The average mass of N released during blasting was estimated to be about 3-6% of the N in the explosives. NO 3 - concentrations in the fresh-blast waste rock and recently placed waste rock used for the HC and LP experiments were highly variable, ranging from below detection to 241mg/kg. The mean and median concentrations of these samples ranged from 10-30mg/kg. In this range of concentrations, the initial aqueous concentration of fresh-blasted waste rock could range from approximately 200-600mg NO 3 - -N/L. Flushing of NO 3 - from the HCs, LPs and a deep field profile was simulated using a scale dependent leaching efficiency (f) where f ranged from 5-15% for HCs, to 35-80% for the LPs, to 80-90% for the field profile. Our findings show aqueous phase NO 3 - from blasting residuals is present at highly variable initial concentrations in waste rock and the majority of this NO 3 - (>75%) should be flushed by recharging water during displacement of the first stored water volume. Copyright © 2017 Elsevier B.V. All rights reserved.
Acidity control in the North Branch Potomac
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheer, D.P.; Harris, D.C.
1982-11-01
The North Branch of the Potomac River is polluted by acid drainage from abandoned coal mines. Recent studies have shown an improvement in water quality since the construction of a large dam near Bloomington, MD; the reservoir formed by the dam intercepts and dilutes slugs of acid. In addition, secondary treatment of pulp and paper industry waste waters at Westernport, MD, results in the production of bicarbonate which also helps to neutralise the acid. The authors propose a method for determining the optimal operation of the reservoir to control acidity.
Fossil energy waste management. Technology status report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bossart, S.J.; Newman, D.A.
1995-02-01
This report describes the current status and recent accomplishments of the Fossil Energy Waste Management (FE WM) projects sponsored by the Morgantown Energy Technology Center (METC) of the US Department of Energy (DOE). The primary goal of the Waste Management Program is to identify and develop optimal strategies to manage solid by-products from advanced coal technologies for the purpose of ensuring the competitiveness of advanced coal technologies as a future energy source. The projects in the Fossil Energy Waste Management Program are divided into three types of activities: Waste Characterization, Disposal Technologies, and Utilization Technologies. This technology status report includesmore » a discussion on barriers to increased use of coal by-products. Also, the major technical and nontechnical challenges currently being addressed by the FE WM program are discussed. A bibliography of 96 citations and a list of project contacts is included if the reader is interested in obtaining additional information about the FE WM program.« less
Full cost accounting for the life cycle of coal.
Epstein, Paul R; Buonocore, Jonathan J; Eckerle, Kevin; Hendryx, Michael; Stout Iii, Benjamin M; Heinberg, Richard; Clapp, Richard W; May, Beverly; Reinhart, Nancy L; Ahern, Melissa M; Doshi, Samir K; Glustrom, Leslie
2011-02-01
Each stage in the life cycle of coal-extraction, transport, processing, and combustion-generates a waste stream and carries multiple hazards for health and the environment. These costs are external to the coal industry and are thus often considered "externalities." We estimate that the life cycle effects of coal and the waste stream generated are costing the U.S. public a third to over one-half of a trillion dollars annually. Many of these so-called externalities are, moreover, cumulative. Accounting for the damages conservatively doubles to triples the price of electricity from coal per kWh generated, making wind, solar, and other forms of nonfossil fuel power generation, along with investments in efficiency and electricity conservation methods, economically competitive. We focus on Appalachia, though coal is mined in other regions of the United States and is burned throughout the world. © 2011 New York Academy of Sciences.
Coprocessing of plastics with coal and petroleum resid
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joo, H.; Curtis, C.W.
1995-12-31
Waste plastics have become an increasing problem in the United States since land filling is no longer considered a feasible disposal method. Since plastics are petroleum-derived materials, coprocessing then with coal to produce transportation fuels is a feasible alternative. In this study, catalytic coprocessing reactions were performed using Blind Canyon bituminous coal, Manji petroleum resid, and waste plastics. Model polymers including polystyrene, low density polyethylene (LDPE) and polyethylene tereplithalare (PET) were selected because they represent a substantial portion of the waste plastics generated in the United States. Coprocessing reactions of coal, resid, and polymer as well as reactions of individualmore » components and combinations of two components were performed at 430{degrees}C for one hour with an initial H{sub 2} pressure of 8.5 MPa introduced at ambient temperature with presulfided NiMo/Al{sub 2}O{sub 3} as catalyst. Coprocessing all three materials resulted in a substantial improvement in the total conversion compared to the coal plus polymer reaction and slightly less conversion than the resid plus polymer combinations.« less
Radioactivity of coals and ash and slag wastes at coal-fired thermal power plants
NASA Astrophysics Data System (ADS)
Krylov, D. A.; Sidorova, G. P.
2013-04-01
This paper presents an analysis of published data on the content of radioactive nuclides in coals originating from various coal deposits, and in ash and slag wastes produced at coal-fired thermal power plants, as well as in fly ash emitted from thermal power plants into the atmosphere. Problems related to the use of coals with an elevated content of natural radionuclides (NRNs) and methods of their solution implemented at the Urtuyskoe coalfield are dealt with. Data on the analysis of Transbaikal coals for the NRN content, as well as weighted mean content of uranium and thorium in coals from the Siberian Region, are given. In order to reduce irradiation of plant personnel and the population of the areas where coal producers and coal-fired thermal power plants are located, it is necessary to organize very careful control of the NRN content in both coals and products of their combustion that are released into the environment. To solve the problem related to the control of radioactivity, the centralized approach and creation of a proper normative base are needed. Experience gained in developing the Urtuyskoe coalfield shows that it is possible to create an efficient system of coal quality control with respect to the radiation hygiene factor and provide protection of the environment and health of the population.
Environmental Reconnaissance of Shivee-Ovoo Coal Mine, Mongolia
NASA Astrophysics Data System (ADS)
Battogtokh, B.; Woo, N. C.; Nemer, B.
2011-12-01
Mining sector is one of most rapidly developing industries in Mongolia for the last several decades. However, environmental monitoring and protection measures have been left out. An exploratory investigation was conducted to evaluate potential impacts of the mining activities on the soil and water environment at the Shivee-Ovoo surface coal mine. Water samples were collected from the mine dewatering boreholes, discharge lakes and drinking water sources around the mine area. High levels of electrical conductivity, ranging from 325μS/cm to 2,909μS/cm, indicate significant contents of dissolved solids in water. In general, Mg, Fe, F and EC levels in drinking water exceed the level of Mongolian and WHO guidelines for drinking water, and they appear to result from water-rock interaction along the groundwater flow paths. Hierarchical cluster analysis implies that the waters from the mine area and those from public water-supply wells be originated from the same aquifer. However, the water from the spring, dug well and artesian well are grouped separately, indicating different geological effects due to the shallow groundwater system with relatively short period of water-rock interaction. Groundwater dewatering for open-pit mine excavation causes significant water-level decline, and subsequently, the residents nearby areas happen to be provided with water from the deeper aquifer, which has with higher dissolved solids probably through longer period of water-rock interaction. Soil samples were collected from the top, middle and lower soil layers of excavation bench, mine-waste dump sites, topsoil and subsoil from nearby area of the mine. To evaluate potential of Acid Rock Drainage (ARD), samples were analyzed for chemical composition using X-ray photoelectron spectroscopy (XPS). Results show 0.36% of sulfur in only one sample, collected from waste dumping site of low quality coal. Since sulfur component were not detected in other samples, there appear no apparent threat of ARD for this mine at present. In addition, particle size distribution (PSD) analysis and fractal dimensions of PSD were performed to evaluate desertification degree. Fractal dimensions (Dm) show the high sensitivity to the coarsening of the soil samples, and values decrease with increasing content of the sand. The soil samples from nearby area of the mine contained high percentage of sand, indicating desertification prone- area. Based on active and increased number of mining operation in Mongolia, we suggest that this kind of environmental study and continuous monitoring be performed at each mine area.
Jacukowicz-Sobala, Irena; Ociński, Daniel; Kociołek-Balawejder, Elżbieta
2015-07-01
Industrial wastes with a high iron or aluminium oxide content are produced in huge quantities as by-products of water treatment (water treatment residuals), bauxite processing (red mud) and hard and brown coal burning in power plants (fly ash). Although they vary in their composition, the wastes have one thing in common--a high content of amorphous iron and/or aluminium oxides with a large specific surface area, whereby this group of wastes shows very good adsorbability towards heavy metals, arsenates, selenates, etc. But their physical form makes their utilisation quite difficult, since it is not easy to separate the spent sorbent from the solution and high bed hydraulic resistances occur in dynamic regime processes. Nevertheless, because of the potential benefits of utilising the wastes in industrial effluent treatment, this issue attracts much attention today. This study describes in detail the waste generation processes, the chemical structure of the wastes, their physicochemical properties, and the mechanisms of fixing heavy metals and semimetals on the surface of iron and aluminium oxides. Typical compositions of wastes generated in selected industrial plants are given. A detailed survey of the literature on the adsorption applications of the wastes, including methods of their thermal and chemical activation, as well as regeneration of the spent sorbents, is presented. The existing and potential ways of modifying the physical form of the discussed group of wastes, making it possible to overcome the basic limitation on their practical use, are discussed. © The Author(s) 2015.
Satellite Power System (SPS) environmental impacts, preliminary assessment
NASA Technical Reports Server (NTRS)
Livingston, F. R.
1978-01-01
Present power plant assessment factors are used to present satellite power system (SPS) impacts. In contrast to oil, gas, nuclear and coal fueled power plants, the SPS and hydroelectric power plants produce air, water, and solid waste emissions only during the construction phase. Land use impacts result from the placement of rectennas used for microwave receiving and rectifying. Air quality impacts of the SPS resulting from the construction phase amount to 0.405 metric tons per megawatt year. Solid wastes impacts are 0.108 metric tons per year of operation. Other impacts such as those caused by heavy lift launch vehicle sites are also discussed.
NASA Astrophysics Data System (ADS)
Niemiec, Dominik; Duraj, Miloš; Cheng, Xianfeng; Marschalko, Marian; Kubáč, Jan
2017-12-01
The paper aims to analyse the options for the use of selected black-coal mine waste dump bodies in the Ostrava-Karviná Region. In the Czech Republic there are approximately 70 mine waste dumps, out of which 50 are located in the Ostrava-Karviná Coal District. The issue is highly topical, particularly in the region, because the dump bodies significantly affect the landscape character of the Ostrava-Karviná Region and pose ecological risks. In such cases, their redevelopment and land reclamation are not easy either from the environmental or economic points of view. It is clear that the redevelopment of such geological environment is difficult, and it is vital to make the right decisions as for what purposes the mine waste dumps should be used. Next, it is important to take into account all the economic and environmental aspects of the locality in question.
Bangladesh Country Analysis Brief
2015-01-01
Natural gas and solid biomass and waste account for the majority of Bangladesh’s total primary energy consumption with the remainder being oil, coal, and hydro. In 2012, Bangladesh’s primary energy consumption was an estimated 55% natural gas, 27% traditional biomass and waste, 15% oil, 3% coal, and less than 1% hydropower and solar, according to the International Energy Agency.
Code of Federal Regulations, 2013 CFR
2013-07-01
... accordance with § 800.40(c)(2) of this chapter. (4) Construction of excess spoil fills and coal mine waste... part for coal mine waste disposal facilities. (c) Additional clarifications. All surface activities... discharges, and runoff be handled in a manner that prevents, to the extent possible using the best technology...
MUNICIPAL WASTE COMBUSTION ASSESSMENT: FOSSIL FUEL CO-FIRING
The report identifies refuse derived fuel (RDF) processing operations and various RDF types; describes such fossil fuel co-firing techniques as coal fired spreader stokers, pulverized coal wall fired boilers, pulverized coal tangentially fired boilers, and cyclone fired boilers; ...
Surveys of research in the Chemistry Division, Argonne National Laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grazis, B.M.
1992-01-01
Research reports are presented on reactive intermediates in condensed phase (radiation chemistry, photochemistry), electron transfer and energy conversion, photosynthesis and solar energy conversion, metal cluster chemistry, chemical dynamics in gas phase, photoionization-photoelectrons, characterization and reactivity of coal and coal macerals, premium coal sample program, chemical separations, heavy elements coordination chemistry, heavy elements photophysics/photochemistry, f-electron interactions, radiation chemistry of high-level wastes (gas generation in waste tanks), ultrafast molecular electronic devices, and nuclear medicine. Separate abstracts have been prepared. Accelerator activites and computer system/network services are also reported.
Surveys of research in the Chemistry Division, Argonne National Laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grazis, B.M.
1992-11-01
Research reports are presented on reactive intermediates in condensed phase (radiation chemistry, photochemistry), electron transfer and energy conversion, photosynthesis and solar energy conversion, metal cluster chemistry, chemical dynamics in gas phase, photoionization-photoelectrons, characterization and reactivity of coal and coal macerals, premium coal sample program, chemical separations, heavy elements coordination chemistry, heavy elements photophysics/photochemistry, f-electron interactions, radiation chemistry of high-level wastes (gas generation in waste tanks), ultrafast molecular electronic devices, and nuclear medicine. Separate abstracts have been prepared. Accelerator activites and computer system/network services are also reported.
Exposure-Reducing Behaviors among Residents Living near a Coal Ash Storage Site
ERIC Educational Resources Information Center
Zierold, Kristina M.; Sears, Clara G.; Brock, Guy N.
2016-01-01
Coal ash, a waste product generated from burning coal for energy, is composed of highly respirable particles containing heavy metals, radioactive elements, and polycylic aromatic hydrocarbons. Coal ash is stored in landfills and surface impoundments frequently located near neighborhoods. Fugitive dust from the storage sites exposes neighborhoods,…
Comparing the greenhouse gas emissions from three alternative waste combustion concepts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vainikka, Pasi, E-mail: pasi.vainikka@vtt.fi; Tsupari, Eemeli; Sipilae, Kai
2012-03-15
Highlights: Black-Right-Pointing-Pointer Significant GHG reductions are possible by efficient WtE technologies. Black-Right-Pointing-Pointer CHP and high power-to-heat ratio provide significant GHG savings. Black-Right-Pointing-Pointer N{sub 2}O and coal mine type are important in LCA GHG emissions of FBC co-combustion. Black-Right-Pointing-Pointer Substituting coal and fuel oil by waste is beneficial in electricity and heat production. Black-Right-Pointing-Pointer Substituting natural gas by waste may not be reasonable in CHP generation. - Abstract: Three alternative condensing mode power and combined heat and power (CHP) waste-to-energy concepts were compared in terms of their impacts on the greenhouse gas (GHG) emissions from a heat and power generation system.more » The concepts included (i) grate, (ii) bubbling fluidised bed (BFB) and (iii) circulating fluidised bed (CFB) combustion of waste. The BFB and CFB take advantage of advanced combustion technology which enabled them to reach electric efficiency up to 35% and 41% in condensing mode, respectively, whereas 28% (based on the lower heating value) was applied for the grate fired unit. A simple energy system model was applied in calculating the GHG emissions in different scenarios where coal or natural gas was substituted in power generation and mix of fuel oil and natural gas in heat generation by waste combustion. Landfilling and waste transportation were not considered in the model. GHG emissions were reduced significantly in all of the considered scenarios where the waste combustion concepts substituted coal based power generation. With the exception of condensing mode grate incinerator the different waste combustion scenarios resulted approximately in 1 Mton of fossil CO{sub 2}-eq. emission reduction per 1 Mton of municipal solid waste (MSW) incinerated. When natural gas based power generation was substituted by electricity from the waste combustion significant GHG emission reductions were not achieved.« less
The Empirical Relationship between Mining Industry Development and Environmental Pollution in China.
Li, Gerui; Lei, Yalin; Ge, Jianping; Wu, Sanmang
2017-03-02
This study uses a vector autoregression (VAR) model to analyze changes in pollutants among different mining industries and related policy in China from 2001 to 2014. The results show that: (1) because the pertinence of standards for mining waste water and waste gas emissions are not strong and because the maximum permissible discharge pollutant concentrations in these standards are too high, ammonia nitrogen and industrial sulfur dioxide discharges increased in most mining industries; (2) chemical oxygen demand was taken as an indicator of sewage treatment in environmental protection plans; hence, the chemical oxygen demand discharge decreased in all mining industries; (3) tax reduction policies, which are only implemented in coal mining and washing and extraction of petroleum and natural gas, decreased the industrial solid waste discharge in these two mining industries.
Bio-coal briquettes using low-grade coal
NASA Astrophysics Data System (ADS)
Estiaty, L. M.; Fatimah, D.; Widodo
2018-02-01
The technology in using briquettes for fuel has been widely used in many countries for both domestic and industrial purposes. Common types of briquette used are coal, peat, charcoal, and biomass. Several researches have been carried out in regards to the production and the use of briquettes. Recently, researches show that mixing coal and biomass will result in an environmentally friendly briquette with better combustion and physical characteristics. This type of briquette is known as bio-coal briquettes. Bio-coal briquettes are made from agriculture waste and coal, which are readily available, cheap and affordable. Researchers make these bio-coal briquettes with different aims and objectives, depending on the issues to address, e.g. utilizing agricultural waste as an alternative energy to replace fossil fuels that are depleting its reserves, adding coal to biomass in order to add calorific value to bio-coal briquette, and adding biomass to coal to improve its chemical and physical properties. In our research, biocoal briquettes are made to utilize low grade coal. The biomass we use, however, is different from the ones used in past researches because it has undergone fermentation. The benefits of using such biomass are 1. Fermentation turns the hemi cellulose into a simpler form, so that the burning activation energy decreases while the calorific value increases. 2. Enzym produced will bind to heavy metals from coal as co-factors, forming metals that are environmentally friendly.
NASA Astrophysics Data System (ADS)
Suryaningsih, S.; Nurhilal, O.; Yuliah, Y.; Mulyana, C.
2017-05-01
The increasing in world population and the industrial sector led to increased demand for energy sources. To do this by utilizing the agricultural waste as a fuel source of alternative energy in the form of bio briquette. The aim at this study was to obtain data onto the characteristics of a wide variety of biomass briquettes from waste agricultural industry. The basic ingredients used are biomass waste from coconut husks, sawdust, rice husks and coffee husks. Each of these biomass residues are dried, crushed, then mixed with starch adhesives. This mixture is molded and dried using sunlight. Each type of briquettes was characterized and analyzed the physical-chemical properties, including calorific value, water content, fixed carbon content and the results were compared with charcoal and coal that was used as fuel in public. The results showed that bio briquettes from coconut husks get the highest calorific value of 4,451 cal/g.
Alternative fuels for multiple-hearth furnaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bracken, B.D.; Lawson, T.U.
1980-04-01
A study of alternative procedures for reducing the consumption of No. 2 fuel oil at the Lower Molonglo Water Quality Control Centre near Canberra, Aust., indicated that in comparison with the present system of incineration with heat supplied by burning fuel oil, the installation of a sludge drying operation, consisting of a rotary dryer heated by furnace exhaust gases with the dried sludge used to fuel the furnace, would become economically desirable by 1985 if afterburning is not required, and would be justified immediately if afterburning is required to meet air pollution control regulations. The substitution of any of fourmore » waste fuels (refuse-derived fuel, waste paper, wood waste, or waste oil) or of coal for the No. 2 fuel oil would not be cost-effective through 1989. The furnace system, including afterburning and fuel oil requirements, the envisioned alternative fuel use systems, sludge processing alternatives, heat balance results, and economics are discussed.« less
Phytostabilization of a landfill containing coal combustion waste.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barton, Christopher; Marx, Donald; Adriano, Domy
2005-12-01
The establishment of a vegetative cover to enhance evapotranspiration and control runoff and drainage was examined as a method for stabilizing a landfill containing coal combustion waste. Suitable plant species and pretreatment techniques in the form of amendments, tilling, and chemical stabilization were evaluated. A randomized plot design consisting of three subsurface treatments (blocks) and five surface amendments (treatments) was implemented. The three blocks included (1) ripping and compost amended, (2) ripping only, and (3) control. Surface treatments included (1) topsoil, (2) fly ash, (3) compost, (4) apatite, and (5) control. Inoculated loblolly (Pinus taeda) and Virginia (Pinus virginiana) pinemore » trees were planted on each plot. After three growing seasons, certain treatments were shown to be favorable for the establishment of vegetation on the basin. Seedlings located on block A developed a rooting system that penetrated into the basin media without significant adverse effects to the plant. However, seedlings on blocks B and C displayed poor rooting conditions and high mortality, regardless of surface treatment. Pore-water samples from lysimeters in block C were characterized by high acidity, Fe, Mn, Al, sulfate, and traceelement concentrations. Water-quality characteristics of the topsoil plots in block A, however, conformed to regulatory protocols. A decrease in soil-moisture content was observed in the rooting zone of plots that were successfully revegetated, which suggests that the trees, in combination with the surface treatments, influenced the water balance by facilitating water loss through transpiration and thereby reducing the likelihood of unwanted surface runoff and/or drainage effluent.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scofield, R.
1984-01-01
This report includes toxicological and regulatory evaluations performed in support of U.S. EPA regulation of toxic materials and hazardous wastes. The first section of the report describes evaluations which support: (a) the regulation of small-volume generators of hazardous wastes, (b) the regulation of hazardous wastes from pesticide manufacturing, and (c) the disposal of the herbicide, silvex. The second section describes the environmental fate, transport, and effect of glyphosate and dalapon. The third section deals with synthetic fuels, including evaluations of synfuel-product toxicity, uncontrolled air emissions, and particular focus on the toxicity of products from several indirect coal liquefaction processes includingmore » methanol synthesis, Fischer-Tropsch, Mobil M-Gasoline, and Lurgi gasification technologies. Three direct coal liquefaction processes were examined for product toxicity and air emissions: Solvent Refined Coal (I and II) and the Exxon Donor Solvent Process. Also described in the third section is an evaluation of environmental and health hazards associated with the use of synthetic fuels from indirect coal liquefaction, direct coal liquefaction, and shale oil. Finally, the fourth section discusses some problems associated with performing, on a contractual basis, scientific and technical evaluations in support of U.S. EPA regulatory and research decisions.« less
Remote sensing investigations at a hazardous-waste landfill
Stohr, C.; Su, W.-J.; DuMontelle, P.B.; Griffin, R.A.
1987-01-01
In 1976 state licensed landfilling of industrial chemicals was begun above an abandoned, underground coal mine in Illinois. Five years later organic chemical pollutants were discovered in a monitoring well, suggesting migration 100 to 1000 times faster than predicted by laboratory tests. Remote sensing contributed to the determination of the causes of faster-than-predicted pollutant migration at the hazardous-waste landfill. Aerial and satellite imagery were employed to supplement field studies of local surface and groundwater hydrology, and to chronicle site history. Drainage impediments and depressions in the trench covers collected runoff, allowing rapid recharge of surface waters to some burial trenches. These features can be more effectively identified by photointerpretation than by conventional field reconnaissance. A ground-based, post-sunset survey of the trench covers that showed that a distinction between depressions which hold moisture at the surface from freely-draining depressions which permit rapid recharge to the burial trenches could be made using thermal infrared imagery.In 1976 state licensed landfilling of industrial chemicals was begun above an abandoned, underground coal mine in Illinois. Five years later organic chemical pollutants were discovered in a monitoring well, suggesting migration 100 to 1000 times faster than predicted by laboratory tests. Remote sensing contributed to the determination of the causes of faster-than-predicted pollutant migration at the hazardous-waste landfill. Aerial and satellite imagery were employed to supplement field studies of local surface and groundwater hydrology, and to chronicle site history. Drainage impediments and depressions in the trench covers collected runoff, allowing rapid recharge of surface waters to some burial trenches.
Sobik-Szołtysek, Jolanta; Wystalska, Katarzyna; Grobelak, Anna
2017-07-01
This study evaluated the content of bioavailable forms of selected heavy metals present in the waste from Zn and Pb processing that can potentially have an effect on the observed difficulties in reclamation of landfills with this waste. The particular focus of the study was on iron because its potential excess or deficiency may be one of the causes of the failure in biological reclamation. The study confirmed that despite high content of total iron in waste (mean value of 200.975gkg -1 ), this metal is present in the forms not available to plants (mean: 0.00009gkg -1 ). The study attempted to increase its potential bioavailability through preparation of the mixtures of this waste with additions in the form of sewage sludge and coal sludge in different proportions. Combination of waste with 10% of coal sludge and sewage sludge using the contents of 10%, 20% and 30% increased the amounts of bioavailable iron forms to the level defined as sufficient for adequate plant growth. The Lepidum sativum test was used to evaluate phytotoxicity of waste and the mixtures prepared based on this waste. The results did not show unambiguously that the presence of heavy metals in the waste had a negative effect on the growth of test plant roots. Copyright © 2017 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jodeiri Shokri, Behshad, E-mail: b.jodeiri@hut.ac.ir; Doulati Ardejani, Faramarz; Ramazi, Hamidreza
In this paper, an abandoned waste coal pile, which is resulted from Alborz-Sharghi coal washing plant, NE of Iran was mineralogically and geochemically characterized to evaluate pyrite oxidation, acid mine drainage (AMD) generation, and trace element mobility. After digging ten trenches and vertical sampling, a quantitative method including the atomic absorption test, and the quality-based methods including optical study were carried out for determination of pyrite fractions in the waste pile. The geochemical results revealed that the fraction of remaining pyrite increased with depth, indicating that pyrite oxidation is limited to the shallower depths of the pile which were confirmedmore » by variations of sulfate, pH, EC, and carbonate with depth of the pile. To evaluate the trend of trace elements and mineralogical constituents of the waste particles, the samples were analyzed by using XRD, ICP-MS, and ICP-OES methods. The results showed the secondary and neutralizing minerals comprising gypsum have been formed below the oxidation zone. Besides, positive values of net neutralization potential indicated that AMD generation has not taken in the waste pile. In addition, variations of trace elements with depth reveal that Pb and Zn exhibited increasing trends from pile surface toward the bottom sampling trenches while another of them such as Cu and Ni had decreasing trends with increasing depth of the waste pile.« less
Organic contamination of ground water at Gas Works Park, Seattle, Washington
Turney, G.L.; Goerlitz, D.F.
1990-01-01
Gas Works Park, in Seattle, Washington, is located on the site of a coal and oil gasification plant that ceased operation in 1956. During operation, many types of wastes, including coal, tar, and oil, accumulated on-site. The park soil is currently (1986) contaminated with compounds such as polynuclear aromatic hydrocarbons, volatile organic compounds, trace metals, and cyanide. Analyses of water samples from a network of observation wells in the park indicate that these compounds are also present in the ground water. Polynuclear aromatic hydrocarbons and volatile organic compounds were identified in ground water samples in concentrations as large as 200 mg/L. Concentrations of organic compounds were largest where ground water was in contact with a non-aqueous phase liquid in the soil. Where no non-aqueous phase liquid was present, concentrations were much smaller, even if the ground water was in contact with contaminated soils. This condition is attributed to weathering processes in which soluble, low-molecular-weight organic compounds are preferentially dissolved from the non-aqueous phase liquid into the ground water. Where no non-aqueous phase liquid is present, only stained soils containing relatively insoluble, high-molecular-weight compounds remain. Concentrations of organic contaminants in the soils may still remain large.
Baba, Alper; Kaya, Abidin
2004-11-01
Use of lignite in power generation has led to increasing environmental problems associated not only with gaseous emissions, but also with the disposal of ash residues. In particular, use of low quality coals with high ash content results in huge quantities of both fly and bottom ashes to be disposed of. A main problem related to coal ash disposal is the heavy metal content of the residue. In this regard, experimental results of numerous studies indicate that toxic trace metals may leach when fly and bottom ashes are in contact with water. In this study, fly and bottom ash samples obtained from thermal power plants, namely Yenikoy, Kemerkoy and Yatagan, located at the southwestern coast of Turkey, were subjected to toxicity tests such as the extraction (EP) and toxicity characteristic leaching (TCLP) procedures of the US Environmental Protection Agency (USEPA) and the so-called 'Method A' extraction procedure of the American Society of Testing and Material (ASTM). The geochemical composition of ash samples showed variations depending on the coal burned in the plants. Furthermore, the EP, TCLP and ASTM toxicity tests showed variations such that the ash samples were classified as 'toxic waste' based on EP and TCLP results whereas they were classified as 'non-toxic' based on ASTM results, indicating test results are pH dependent. When the extraction results were compared with the chemical composition of water samples obtained in the vicinity of the thermal power plants, it was found that the results obtained using the ASTM procedure cannot be used to predict subsurface contamination whereas the EP and TCLP procedures can be used.
Alvarez-Ayuso, E; Querol, X; Plana, F; Alastuey, A; Moreno, N; Izquierdo, M; Font, O; Moreno, T; Diez, S; Vázquez, E; Barra, M
2008-06-15
The synthesis of geopolymer matrixes from coal (co-)combustion fly ashes as the sole source of silica and alumina has been studied in order to assess both their capacity to immobilise the potentially toxic elements contained in these coal (co-)combustion by-products and their suitability to be used as cement replacements. The geopolymerisation process has been performed using (5, 8 and 12 M) NaOH solutions as activation media and different curing time (6-48 h) and temperature (40-80 degrees C) conditions. Synthesised geopolymers have been characterised with regard to their leaching behaviour, following the DIN 38414-S4 [DIN 38414-S4, Determination of leachability by water (S4), group S: sludge and sediments. German standard methods for the examination of water, waste water and sludge. Institut für Normung, Berlin, 1984] and NEN 7375 [NEN 7375, Leaching characteristics of moulded or monolithic building and waste materials. Determination of leaching of inorganic components with the diffusion test. Netherlands Normalisation Institute, Delft, 2004] procedures, and to their structural stability by means of compressive strength measurements. In addition, geopolymer mineralogy, morphology and structure have been studied by X-ray diffraction (XRD), scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR), respectively. It was found that synthesised geopolymer matrixes were only effective in the chemical immobilisation of a number of elements of environmental concern contained in fly ashes, reducing (especially for Ba), or maintaining their leachable contents after the geopolymerisation process, but not for those elements present as oxyanions. Physical entrapment does not seem either to contribute in an important way, in general, to the immobilisation of oxyanions. The structural stability of synthesised geopolymers was mainly dependent on the glass content of fly ashes, attaining at the optimal activation conditions (12 M NaOH, 48 h, 80 degrees C) compressive strength values about 60 MPa when the fly ash glass content was higher than 90%.
Ground-water contamination by organic bases derived from coal-tar wastes
Pereira, Wilfred E.; Rostad, Colleen E.; Garbarino, John R.; Hult, Marc F.
1983-01-01
A fluid sample from a shallow aquifer contaminated by coal-tar wastes was analyzed for organic bases. The sample consisted of a mixture of aqueous and oily-tar phases. The phases were separated by centrifugation and filtration. Organic bases were isolated from each phase by pH adjustment and solvent extraction. Organic bases in the oily-tar phase were further purified by neutral-alumina, micro-column adsorption chromatography. Separation and identification of the organic bases in each phase were achieved by using capillary gas chromatography-mass spectrometry-computer (GC-MS-COM) and probe distillation-high resolution mass spectrometry (PD-HRMS) techniques. Organic bases present in the aqueous phase included primary aromatic amines (such as aniline, alkylated anilines, and naphthylamines) as well as azaarenes (such as alkylated pyridines, quinolines, acridine, and benzoquinolines). The oily-tar phase contained acridine, benzacridines, dibenzacridines, and numerous other azaarenes, the elemental compositions of which were determined by PD-HRMS. Azaarenes in the oily-tar phase, varying in size from 6 to 12 rings, are reported for the first time. The origin and environmental significance of these compounds are discussed.
Fletcher, Dean E; Lindell, Angela H; Stillings, Garrett K; Mills, Gary L; Blas, Susan A; Vaun McArthur, J
2014-03-01
Dissimilarities in habitat use, feeding habits, life histories, and physiology can result in syntopic aquatic taxa of similar trophic position bioaccumulating trace elements in vastly different patterns. We compared bioaccumulation in a clam, Corbicula fluminea and mayfly nymph Maccaffertium modestum from a coal combustion waste contaminated stream. Collection sites differed in distance to contaminant sources, incision, floodplain activity, and sources of flood event water and organic matter. Contaminants variably accumulated in both sediment and biofilm. Bioaccumulation differed between species and sites with C. fluminea accumulating higher concentrations of Hg, Cs, Sr, Se, As, Be, and Cu, but M. modestum higher Pb and V. Stable isotope analyses suggested both spatial and taxonomic differences in resource use with greater variability and overlap between species in the more physically disturbed site. The complex but essential interactions between organismal biology, divergence in resource use, and bioaccumulation as related to stream habitat requires further studies essential to understand impacts of metal pollution on stream systems. Copyright © 2014 Elsevier Inc. All rights reserved.
RESEARCH TO IDENTIFY COMPONENTS OF ENERGY-RELATED WASTES: A STATE-OF-THE-ART REPORT
Pertinent abstracts from a survey of current (post-1976) research projects are categorized according to energy-related activity. Subjects include coal strip mines, oil refineries, oil shale operations, coal-fired power plants, geothermal energy production, coal liquefaction plant...
Reclamation technology development for western Arkansas coal refuse waste materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
King, J.R.; Veith, D.L.
Coal mining has been an important industry in the Arkansas River Valley Major Land Resource Area (MLRA) of western Arkansas for more than 100 yr., most of it with little regard for environmental concerns. Almost 3,640 ha. of land affected by surface coal mines cover the seven-county area, with less than 1,200 ha. currently in various stages of operation or reclamation. Since only the active mining sites must now be reclaimed by law, the remaining 2,440 ha. of abandoned land remains at the mercy of natural forces. Little topsoil exists on these sites and the coal wastes are generally acidicmore » with a pH in the 4.0-5.5 range. Revegetation attempts under these conditions generally require continued maintenance and retreatment until an acceptable cover is achieved. If and when an acceptable vegetative cover is established, the cost frequently approaches $7,400/ha. ($3,000/acre). In an effort to resolve these issues and provide some direction for stabilizing coal waste lands, the US Department of Agriculture through its Soil Conservation Service Plant Materials Center at Boonville, Arkansas, received a Congressional Pass through administered by the US Bureau of Mines, to support a 5-yr. revegetation study on the coal mine spoils of western Arkansas. This paper reports the results through the spring of 1994 on that portion of the study dealing with the establishment of blackberries as a cash crop on coal mine spoils.« less
Using the adsorption chillers for waste heat utilisation from the CCS installation
NASA Astrophysics Data System (ADS)
Sztekler, Karol; Kalawa, Wojciech; Nowak, Wojciech; Stefański, Sebastian; Krzywański, Jarosław; Grabowska, Karolina
2018-06-01
Worldwide tendencies in the scope of environmental protection demonstrate the requirement for the limited carbon dioxide emission, that influences on the development of greenhouse effect. As a result of coal as a basic fuel used in the professional power industry, this industry sector is the greatest CO2 polluter and it means that works on the reduction of carbon dioxide in such industry are completely justified. In the IPSEpro programming environment, a reference block model for a conventional coal power station was elaborated, including the CO2 separation unit basing on the adsorption methods with the CO2 preparation installation to liquid state. Simulation researches were conducted with means of numeric techniques, that enabled the system analysis for the CO2 separation unit with the CO2 preparation system to the liquid state, as well as analysis was made for the use of chiller systems, basing on the adsorption technology for waste heat use originating from the compression of CO2 in a cascade system, as well as for potential opportunities for further exploitation of the produced chilled water in the CCS cycle. We analysed in these papers the opportunities for chiller systems application, based on the adsorption chillers in the CCS installation used for the reduction of CO2 emission in the coal power station and its influence on the operation of a power station cycle.
Coal liquefaction by base-catalyzed hydrolysis with CO.sub.2 capture
Xiao, Xin
2014-03-18
The one-step hydrolysis of diverse biomaterials including coal, cellulose materials such as lumber and forestry waste, non-food crop waste, lignin, vegetable oils, animal fats and other source materials used for biofuels under mild processing conditions which results in the formation of a liquid fuel product along with the recovery of a high purity CO.sub.2 product is provided.
NASA Astrophysics Data System (ADS)
Zajusz-Zubek, Elwira; Mainka, Anna; Kaczmarek, Konrad
2018-01-01
The analysis reported in this study was performed to characterize the concentrations and water-soluble content of trace elements (As, Cd, Co, Cr, Hg, Mn, Ni, Pb, Sb and Se) in PM2.5, PM10 and PM2.5-10 samples collected in the surroundings of power plants in southern Poland. The solubility of trace elements bound to PM2.5 and PM10 was higher than for PM2.5-10, and in most cases, significant differences were revealed in the relative percentage concentrations of the water-soluble fractions. The occurrence of Cd, Cr, Mn, Ni, Pb and Se in first PCA (Principal Component Analysis) factor (PC1) - indicate coal combustion processes as the potential source of these elements. Other factors indicate two further anthropogenic sources: the resuspension of road dust due to vehicular activities and waste burning in domestic sources - factor (PC2), and, soil dust sources affected by fugitive dust from the mining processes and unpaved roads, as well as transportation and deposition of coal -factor (PC3).
Irradiation pretreatment for coal desulfurization
NASA Technical Reports Server (NTRS)
Hsu, G. C.
1979-01-01
Process using highly-penetrating nuclear radiation (Beta and Gamma radiation) from nuclear power plant radioactive waste to irradiate coal prior to conventional desulfurization procedures increases total extraction of sulfur.
Pharmaceuticals as emerging contaminants and their removal from water. A review.
Rivera-Utrilla, José; Sánchez-Polo, Manuel; Ferro-García, María Ángeles; Prados-Joya, Gonzalo; Ocampo-Pérez, Raúl
2013-10-01
The main objective of this study was to conduct an exhaustive review of the literature on the presence of pharmaceutical-derived compounds in water and on their removal. The most representative pharmaceutical families found in water were described and related water pollution issues were analyzed. The performances of different water treatment systems in the removal of pharmaceuticals were also summarized. The water treatment technologies were those based on conventional systems (chlorine, chlorine dioxide, wastewater treatment plants), adsorption/bioadsorption on activated carbon (from lotus stalks, olive-waste cake, coal, wood, plastic waste, cork powder waste, peach stones, coconut shell, rice husk), and advanced oxidation processes by means of ozonation (O₃, O₃/H₂O₂, O₃/activated carbon, O₃/biological treatment), photooxidation (UV, UV/H₂O₂, UV/K₂S₂O₈, UV/TiO₂, UV/H₂O₂/TiO₂, UV/TiO₂/activated carbon, photo-Fenton), radiolysis (e-Beam, ⁶⁰Co, ¹³⁷Cs. Additives used: H₂O₂, SO₃²⁻, HCO₃⁻, CH₃₋OH, CO₃²⁻, or NO₃⁻), and electrochemical processes (Electrooxidation without and with active chlorine generation). The effect of these treatments on pharmaceutical compounds and the advantages and disadvantages of different methodologies used were described. The most important parameters of the above water treatment systems (experimental conditions, removal yield, pharmaceutical compound mineralization, TOC removal, toxicity evolution) were indicated. The key publications on pharmaceutical removal from water were summarized. Copyright © 2013 Elsevier Ltd. All rights reserved.
Japanese experiences of environmental management.
Matsuo, T
2003-01-01
Japan experienced a very rapid industrialization and economic growth in the era of income doubling in 1960s and at the same time Japan experienced very severe damage from various types of environmental pollution. In this paper, historical development of population, GNP, energy consumption with classification of petroleum, coal and electric power, and CO2 emission are introduced as basic background data on Japanese development. The tragic experience of Minamata disease and Itai-itai disease caused by methyl mercury and cadmium, respectively, are introduced. In two tables, historical development of water pollution and air pollution are summarized. Regarding solid wastes management, the total mass balance in Japan and recent development in legislation framework for enhancement of recycling of wastes are introduced briefly.
Torrefaction of landfill food waste for possible application in biomass co-firing.
Pahla, G; Ntuli, F; Muzenda, E
2018-01-01
Greenhouse gas emissions and municipal solid waste management have presented challenges globally. This study aims to produce a high-quality biochar with properties close to bituminous coal from landfill food waste (FW). FW was analyzed by proximate and ultimate analyses to determine its fuel properties and elemental composition before torrefaction. Temperature was varied from 200 to 300 °C at a constant residence time of 40 min and 10 °C/min heating rate. Calorific value, mass yield, energy yield and energy density were computed and used to determine the quality of the resulting biochar. Quality of raw food waste was also determined by elemental analysis. Thermal evolution was then investigated using hyphenated Thermogravimetric Analysis (TGA) and Fourier Transform Infra-Red Spectrometry (FTIR). Torrefaction was done at 225 °C, 275 °C and 300 °C. The calorific value was upgraded from 19.76 MJ/kg for dried raw food waste to 26.15 MJ/kg for torrefied food waste at the appropriate conditions which were 275 °C, 40 min and 10 °C/min. The higher heating value was comparable to that of bituminous coal from Anglo Mafube in South Africa. Elemental analysis of biochar showed an increase in carbon content with temperature due to loss of oxygen containing volatiles. This agreed with TG curves and FTIR spectra which confirmed release of H 2 O, CO and CO 2 . This resulted in a more hydrophobic solid fuel with high energy density. Food waste can therefore be upgraded to a biochar with similar fuel properties as pulverized coal used in coal fired boilers. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lajtner, J.; Erben, R.; Klobucar, G.I.V.
1996-12-31
Phenolic wastes are common water pollutants generated from a variety of industrial processes used in oil refineries, gas operations, coke ovens, coal gasification and by natural processes such as the decomposition of plant matter. Relatively high concentrations of phenol are found in rivers near the outlets of channels into which industrial waste waters have been discharged. There are data about the toxic effects of phenol on fish, and on some invertebrates, including snails. However, little is known about histopathological changes induced by phenol`s toxic effects, and these changes might be a basic indicator in assessing the condition of a particularmore » water ecosystem. The existing data are mostly relevant for fish, and we know very little about the snail`s histopathology; however, the snail is a good research model due to its effectiveness as a pollution indicator species. This study attempts to establish the structure of the normal digestive gland and histopathological changes as a result of exposure to phenol. 22 refs., 4 figs.« less
NASA Astrophysics Data System (ADS)
Papers are presented in the areas of biomass production and procurement, biomass and waste combustion, gasification processes, liquefaction processes, environmental effects and government programs. Specific topics include a water hyacinth wastewater treatment system with biomass production, the procurement of wood as an industrial fuel, the cofiring of densified refuse-derived fuel and coal, the net energy production in anaerobic digestion, photosynthetic hydrogen production, the steam gasification of manure in a fluidized bed, and biomass hydroconversion to synthetic fuels. Attention is also given to the economics of deriving alcohol for power applications from grain, ethanol fermentation in a yeast-immobilized column fermenter, a solar-fired biomass flash pyrolysis reactor, particulate emissions from controlled-air modular incinerators, and the DOE program for energy recovery from urban wastes.
The Empirical Relationship between Mining Industry Development and Environmental Pollution in China
Li, Gerui; Lei, Yalin; Ge, Jianping; Wu, Sanmang
2017-01-01
This study uses a vector autoregression (VAR) model to analyze changes in pollutants among different mining industries and related policy in China from 2001 to 2014. The results show that: (1) because the pertinence of standards for mining waste water and waste gas emissions are not strong and because the maximum permissible discharge pollutant concentrations in these standards are too high, ammonia nitrogen and industrial sulfur dioxide discharges increased in most mining industries; (2) chemical oxygen demand was taken as an indicator of sewage treatment in environmental protection plans; hence, the chemical oxygen demand discharge decreased in all mining industries; (3) tax reduction policies, which are only implemented in coal mining and washing and extraction of petroleum and natural gas, decreased the industrial solid waste discharge in these two mining industries. PMID:28257126
Banerjee, Soumya; LaminKa-Ot, Augustine; Joshi, S R; Mandal, Tamal; Halder, Gopinath
2017-09-01
The present study investigates the sorptive removal of Fe2+ from simulated coal mine waste water using steam activated biochar (SABC) developed from the roots of Colocasia esculenta. The process was optimized by response surface methodology (RSM) under the influence of pH, temperature, adsorbent dosage and contact time at a constant shaking speed of 180 rpm with an initial concentration of 3 mg/L. The uptake performance of the biosorbent was assessed following a 24 full factorial experimental matrix developed by central composite design approach. Adsorbent was characterised by SEM, EDAX, XRD and B.E.T surface area analyzer. Maximum removal of 72.96% of Fe2+ was observed at pH 7.75, temperature 37.5 °C, adsorbent dosage 1.5 g/L for a time period of 180 mins. The study suggested that SABC prepared from roots of Colocasia esculenta could be used as an efficient and cost effective sorbent for removal of Fe2+ from coal mine wastewater.
Cost Reductions for Wastewater Treatment Utilizing Water Management at Holston Army Ammunition Plant
1976-05-01
says that the granular carbon used is made from bituminous coal. As the waste stream pass through a bed of carbon granules, com- pounds are adsorbed to...findings of laboratory-scale reactor studies conducted at Purdue University for * Clark, Dietz and Associates. The original recommendations and cost...Pretreatment Denitrification by Submerged Anaerbbic I ilters I ~ Trickling Filters S F ,2al Clarification "•’i Pump - ~ Sludge ,Treatment Dual Media Filh:ration
Moore, Albert S.; Verhoff, Francis H.
1980-01-01
The present invention is directed to an improved wet air oxidation system and method for reducing the chemical oxygen demand (COD) of waste water used from scrubbers of coal gasification plants, with this COD reduction being sufficient to effectively eliminate waste water as an environmental pollutant. The improvement of the present invention is provided by heating the air used in the oxidation process to a temperature substantially equal to the temperature in the oxidation reactor before compressing or pressurizing the air. The compression of the already hot air further heats the air which is then passed in heat exchange with gaseous products of the oxidation reaction for "superheating" the gaseous products prior to the use thereof in turbines as the driving fluid. The superheating of the gaseous products significantly minimizes condensation of gaseous products in the turbine so as to provide a substantially greater recovery of mechanical energy from the process than heretofore achieved.
Leaching properties of stabilised/solidified cement-admixtures-sewage sludges systems.
Valls, S; Vàzquez, E
2002-01-01
One of the main objectives of this work is to present an effective alternative for the final destination of sludge from urban waste water treatment plants by its use as a component of mortar or concrete. A binding and stabilizing matrix of sludge-cement and sludge-cement-coal fly-ash was investigated and the effects of various percentages of waste and binder, on the behavior of sludge in the system are presented. Assessment of the environmental quality of the final product and the consequent guarantee of its use in the building industry demand that it meets a number of requisites, one of which is that the effluents extracted by water action should be contamination-free, or at least that the concentration of contaminants should be below certain pre-set limits. For this a number of leaching tests must be carried out, such as the Netherlands Leaching Test .
Ferone, Claudio; Colangelo, Francesco; Messina, Francesco; Santoro, Luciano; Cioffi, Raffaele
2013-01-01
In this work, three samples of municipal solid waste incinerators fly ash (MSWI-FA) have been stabilized in systems containing coal fly ash to create geopolymers through a polycondensation reaction. Monolithic products have been obtained with both MSWI fly ash as received and after the partial removal of chloride and sulfate by water washing. The polycondensation products have been characterized qualitatively by means of Fourier transform infrared spectroscopy, X-ray diffraction and scanning electron microscopy and quantitatively, through the determination of the volume of reacted water and silicate. Furthermore, the heavy metals and chloride releases together with the physico-mechanical properties have been evaluated on the hardened products. In conclusion, considering the technological and environmental performances of the obtained geopolymers, they could be suitable for many non-structural applications, such as backfilling of abandoned quarries, decorative materials or brick fireplaces, hearths, patios, etc. PMID:28811443
Direct liquefaction proof-of-concept program. Topical report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Comolli, A.G.; Lee, L.K.; Pradhan, V.R.
This report presents the results of work conducted under the DOE Proof-of-Concept Program in direct coal liquefaction at Hydrocarbon Technologies, Inc. in Lawrenceville, New Jersey, from February 1994 through April 1995. The work includes modifications to HRI`s existing 3 ton per day Process Development Unit (PDU) and completion of the second PDU run (POC Run 2) under the Program. The 45-day POC Run 2 demonstrated scale up of the Catalytic Two-Stage Liquefaction (CTSL Process) for a subbituminous Wyoming Black Thunder Mine coal to produce distillate liquid products at a rate of up to 4 barrels per ton of moisture-ash-free coal.more » The combined processing of organic hydrocarbon wastes, such as waste plastics and used tire rubber, with coal was also successfully demonstrated during the last nine days of operations of Run POC-02. Prior to the first PDU run (POC-01) in this program, a major effort was made to modify the PDU to improve reliability and to provide the flexibility to operate in several alternative modes. The Kerr McGee Rose-SR{sup SM} unit from Wilsonville, Alabama, was redesigned and installed next to the U.S. Filter installation to allow a comparison of the two solids removal systems. The 45-day CTSL Wyoming Black Thunder Mine coal demonstration run achieved several milestones in the effort to further reduce the cost of liquid fuels from coal. The primary objective of PDU Run POC-02 was to scale-up the CTSL extinction recycle process for subbituminous coal to produce a total distillate product using an in-line fixed-bed hydrotreater. Of major concern was whether calcium-carbon deposits would occur in the system as has happened in other low rank coal conversion processes. An additional objective of major importance was to study the co-liquefaction of plastics with coal and waste tire rubber with coal.« less
Explosive fluid transmitted shock method for mining deeply buried coal
Archibald, Paul B.
1976-06-22
A method for recovering coal from deeply buried deposits comprising drilling a hole down into a coal seam, filling the hole with water, and periodically detonating an explosive charge at the bottom of the water-filled hole. The water transmits the explosive shock wave to the face of the coal seam, thereby fracturing and dislodging the coal. The resulting suspension of loose coal in water is then pumped to the surface where the coal is recovered and the water is recycled to the mining operation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1987-06-01
This report provides a preliminary environmental assessment of two 375-MW Coal Gasification-Combined Cycle (GCC) units which the Potomac Electric Power Company proposes to construct on their existing Dickerson Generating Station site in western Montgomery County, Maryland. A mass-burn municipal solid-waste incinerator is also proposed at the site by Montgomery County. Research on the GCC technology and data for the air, land, and water environs in and around the site indicates that the proposed GCC technology offers substantial engineering, environmental, and economic benefits. Overall environmental impacts should be less than those anticipated for a comparably sized pulverized-coal power plant. Projected air,more » land, and water impacts appear to be within any applicable regulatory standards or limitations. However, four areas of concern were identified which could be of significant consequence to the suitability of the site. Recommendations are provided for detailed site evaluations including monitoring recommendations to fill data or information gaps.« less
Burnout control at the Albright coal-waste-bank fire. Rept. of investigations/1991
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chaiken, R.F.; Bayles, L.G.
1991-01-01
Burnout Control is a process developed by the U.S. Bureau of Mines for accelerating the burning of wasted coal fires in situ, while at the same time controlling the heat and fumes produced. The Albright fire project is a first field trial of Burnout Control as applied to a coal waste bank. An exhaust ventilation system was designed and constructed and then operated over a 1-year period at the site of an existing abandoned mine land fire near the town of Albright, W.V. While predicted exhaust gas temperatures of 900 C and thermal power levels of 5 MW were achievedmore » at 20- to 30-in H2O vacuum levels, problems were encountered with engineering designs, equipment breakdown, and fuel-rich combustion that curtailed the time period of satisfactory operation. Effective afterburning of the exhaust gases (as they were drawn from the bank) corrected the problems associated with combustion stoichiometry and led to high thermal outputs. It is believed that with (1) improvements in engineering design and construction, (2) better control of the afterburning process, and (3) the use of conventional stack gas air-pollution controls, Burnout Control can be applied successfully to a coal waste bank fire.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mathieu, Johanna L.; Gadgil, Ashok J.; Kowolik, Kristin
2009-09-17
ARUBA (Arsenic Removal Using Bottom Ash) has proven effective at removing high concentrations of arsenic from drinking water in Bangladesh. During fieldwork in four sub-districts of the country, ARUBA reduced arsenic levels ranging from 200 to 900 ppb to below the Bangladesh standard of 50 ppb. The technology is cost-effective because the substrate--bottom ash from coal fired power plants--is a waste material readily available in South Asia. In comparison to similar technologies, ARUBA uses less media for arsenic removal due to its high surface area to volume ratio. Hence, less waste is produced. A number of experiments were conducted inmore » Bangladesh to determine the effectiveness of various water treatment protocols. It was found that (1) ARUBA removes more than half of the arsenic from water within five minutes of treatment, (2) ARUBA, that has settled at the bottom of a treatment vessel, continues to remove arsenic for 2-3 days, (3) ARUBA's arsenic removal efficiency can be improved through sequential partial dosing (adding a given amount of ARUBA in fractions versus all at once), and (4) allowing water to first stand for two to three days followed by treatment with ARUBA produced final arsenic levels ten times lower than treating water directly out of the well. Our findings imply a number of tradeoffs between ARUBA's effective arsenic removal capacity, treatment system costs, and waste output. These tradeoffs, some a function of arsenic-related policies in Bangladesh (e.g., waste disposal regulations), must be considered when designing an arsenic removal system. We propose that the most attractive option is to use ARUBA in communityscale water treatment centers, installed as public-private partnerships, in Bangladeshi villages.« less
... through industrial processes, like burning waste or burning coal in power plants. It can fall from the ... volcanoes) and man-made sources (such as burning coal and other pollution). You can get methylmercury in ...
Adsorption of Crystal Violet on Activated Carbon Prepared from Coal Flotation Concentrate
NASA Astrophysics Data System (ADS)
Aydogmus, Ramazan; Depci, Tolga; Sarikaya, Musa; Riza Kul, Ali; Onal, Yunus
2016-10-01
The objective of this study is firstly to investigate the floatability properties of Zilan- Van coal after microwave irradiation and secondly to produce activated carbon from flotation concentrate in order to remove Crystal Violet (CV) from waste water. The flotation experiments showed that microwave heating at 0.9 kW power level for 60 sec exposure time enhanced the hydrophobicity and increased the flotation yield. The activated carbon with remarkable surface area (696 m2/g) was produced from the flotation concentrate and used to adsorb CV from aqueous solution in a batch reactor at different temperature. The adsorption properties of CV onto the activated carbon are discussed in terms of the adsorption isotherms (Langmuir and Freundlich) and found that the experimental results best fitted by the Langmuir model.
Greening coal: breakthroughs and challenges in carbon capture and storage.
Stauffer, Philip H; Keating, Gordon N; Middleton, Richard S; Viswanathan, Hari S; Berchtold, Kathryn A; Singh, Rajinder P; Pawar, Rajesh J; Mancino, Anthony
2011-10-15
Like it or not, coal is here to stay, for the next few decades at least. Continued use of coal in this age of growing greenhouse gas controls will require removing carbon dioxide from the coal waste stream. We already remove toxicants such as sulfur dioxide and mercury, and the removal of CO₂ is the next step in reducing the environmental impacts of using coal as an energy source (i.e., greening coal). This paper outlines some of the complexities encountered in capturing CO₂ from coal, transporting it large distances through pipelines, and storing it safely underground.
Utilization of coal fly ash in solidification of liquid radioactive waste from research reactor.
Osmanlioglu, Ahmet Erdal
2014-05-01
In this study, the potential utilization of fly ash was investigated as an additive in solidification process of radioactive waste sludge from research reactor. Coal formations include various percentages of natural radioactive elements; therefore, coal fly ash includes various levels of radioactivity. For this reason, fly ashes have to be evaluated for potential environmental implications in case of further usage in any construction material. But for use in solidification of radioactive sludge, the radiological effects of fly ash are in the range of radioactive waste management limits. The results show that fly ash has a strong fixing capacity for radioactive isotopes. Specimens with addition of 5-15% fly ash to concrete was observed to be sufficient to achieve the target compressive strength of 20 MPa required for near-surface disposal. An optimum mixture comprising 15% fly ash, 35% cement, and 50% radioactive waste sludge could provide the solidification required for long-term storage and disposal. The codisposal of radioactive fly ash with radioactive sludge by solidification decreases the usage of cement in solidification process. By this method, radioactive fly ash can become a valuable additive instead of industrial waste. This study supports the utilization of fly ash in industry and the solidification of radioactive waste in the nuclear industry.
Water quality and discharge of streams in the Lehigh River Basin, Pennsylvania
McCarren, Edward F.; Keighton, Walter B.
1969-01-01
The Lehigh River, 100 miles long, is the second largest tributary to the Delaware River. It drains 1,364 square miles in four physiographic provinces. The Lehigh River basin includes mountainous and forested areas, broad agricultural valleys and areas of urban and industrial development. In the headwaters the water is of good quality and has a low concentration of solutes. Downstream, some tributaries receive coal-mine drainage and become acidic; others drain areas underlain by limestone and acquire alkaline characteristics. The alkaline streams neutralize and dilute the acid mine water where they mix. The dissolved-oxygen content of river water, which is high in the upper reaches of the stream, is reduced in the lower reaches because of lower turbulence, higher temperature, and the respiration of organisms. The Lehigh is used for public supply, recreation, waterpower, irrigation, and mining and other industrial purposes. Because the river is shallow in its upper reaches, most of the water comes in contact with the atmosphere as it churns over rocks and around islets and large boulders. Aeration of the water is rapid. When water that was low in dissolved-oxygen concentration was released from the lower strata of the Francis E. Walter Reservoir in June 1966, it quickly became aerated in the Lehigh River, and for 40 miles downstream from the dam the water was nearly saturated with oxygen. Most of the river water requires only moderate treatment for industrial use and public distribution throughout the Lehigh River valley. At times, however, some segments of the main river and its tributaries transport industrial wastes and acid coal-mine drainage. Usually the relatively high concentrations of solutes in water and the ensuing damage caused to quality by such waste discharges are more extensive and prolonged during droughts and other periods of low streamflow. For many years the Lehigh River flow has been continuously measured and its water chemically analyzed. Since May 1966 an instrument installed by the U.S. Geological Survey at Easton, Pa., has continuously recorded such water-quality parameters as specific conductance, temperature, and dissolved oxygen content.
NASA Astrophysics Data System (ADS)
Meri, N. H.; Alias, A. B.; Talib, N.; Rashid, Z. A.; Ghani, W. A. W. A. K.
2018-03-01
This study are covered the adsorption performance of two adsorbent Empty Fruit Bunch Hydrogel Biochar Composite (EFB-HBC) and Coal Fly Ash Hydrogel Composite (CFA-HC) on hydrogen sulphide. The EFB biochar were produce by pyrolysed and heated from room temperature to 550˚C at 10˚C/min under the Nitrogen flow. Meanwhile, coal fly ash collected from a power plant located in Selangor, Malaysia. Both of the materials is a waste from different industries and became the precursor to our adsorbents. EFB biochar and coal fly ash has been synthesized to become hydrogel by polymerization process with acrylamide (AAm) as monomer, N,N’-methylene bisacry lamide (MBA) as cross linker and ammonium persulfate (APS) as initiator. In addition, because of the speciality of hydrogel itself, which is has high ability in storing water, the effect of H2O wetness on EFB-HBC and CFA-HC were investigate in adsorption of H2S. EFB-HBC gave a longest breakthrough time and highest adsorption capacity compared with CFA-HC in both condition (dry/wet). The result also indicated that, the increased the bed height, increased the adsorption capacity.
Coal combustion products: trash or treasure?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hansen, T.
2006-07-15
Coal combustion by-products can be a valuable resource to various industries. The American Coal Ash Association (ACAA) collects data on production and uses of coal combustion products (CCPs). 122.5 million tons of CCPs were produced in 2004. The article discusses the results of the ACCA's 2004 survey. Fly ash is predominantly used as a substitute for Portland cement; bottom ash for structural fill, embankments and paved road cases. Synthetic gypsum from the FGD process is commonly used in wallboard. Plant owners are only likely to have a buyer for a portion of their CCPs. Although sale of hot water (frommore » Antelope Valley Station) from condensers for use in a fish farm to raise tilapia proved unviable, the Great Plains Synfuels Plant which manufactures natural gas from lignite produces a wide range of products including anhydrous ammonia, phenol, krypton, carbon dioxide (for enhanced oil recovery), tar oils and liquid nitrogen. ACCA's goal is to educate people about CCPs and how to make them into useful products, and market them, in order to reduce waste disposal and enhance revenue. The article lists members of the ACCA. 2 photos., 1 tab.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yao, S.C.; Manwani, P.
Coal-water slurries have been regarded as a potential substitute for heavy fuel oil. Various demonstrations of coal-water slurry combustion have been performed; however, a fundamental understanding of how the combustion process of a slurry fuel is enhanced is still not adequate. The combustion of coal-water mixture droplets suspended on microthermocouples has been investigated. It was found that droplets of lignite coal (which is a noncaking coal) burn effectively; however, droplets of bituminous coal (which is a caking coal) are relatively difficult to burn. During the heat-up of bituminous coal-water slurry droplets may turn to ''popcorn'' and show significant agglomeration. Themore » incomplete combustion of coal-water slurry droplets in furnaces has been reported, and this is a drawback of this process. The objective of the present study is to explore the possibility of enhancing the combustion of coal-water slurry droplets with the use of a combustible emulsified oil.« less
Quarterly technical progress report, April-June 1982
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1984-04-01
Progress reports are presented for the following tasks: (1) preparation of low-rank coals; application of liquefaction processes to low-rank coals; (2) slagging fixed-bed gasification; (3) atmospheric fluidized-bed combustion of low-rank coal; (4) ash fouling and combustion modification for low-rank coal; (5) combined flue gas cleanup/simultaneous SO/sub x/-NO/sub x/ control; (6) particulate control and hydrocarbons and trace element emissions from low-rank coals; (7) waste characterization and disposal; and (9) exploratory research.
Jedidi, Ilyes; Saïdi, Sami; Khemakhem, Sabeur; Larbot, André; Elloumi-Ammar, Najwa; Fourati, Amine; Charfi, Aboulhassan; Salah, Abdelhamid Ben; Amar, Raja Ben
2009-12-15
This work aims to develop a new mineral porous tubular membrane based on mineral coal fly ash. Finely ground mineral coal powder was calcinated at 700 degrees C for about 3 h. The elaboration of the mesoporous layer was performed by the slip-casting method using a suspension made of the mixture of fly-ash powder, water and polyvinyl alcohol (PVA). The obtained membrane was submitted to a thermal treatment which consists in drying at room temperature for 24 h then a sintering at 800 degrees C. SEM photographs indicated that the membrane surface was homogeneous and did not present any macrodefects (cracks, etc...). The average pore diameter of the active layer was 0.25 microm and the thickness was around 20 microm. The membrane permeability was 475 l/h m(2) bar. This membrane was applied to the treatment of the dying effluents generated by the washing baths in the textile industry. The performances in term of permeate flux and efficiency were determined and compared to those obtained using a commercial alumina microfiltration membrane. Almost the same stabilised permeate flux was obtained (about 100 l h(-1)m(-2)). The quality of permeate was almost the same with the two membranes: the COD and color removal was 75% and 90% respectively.
Centrifugal Modelling of Soil Structures. Part I. Centrifugal Modelling of Slope Failures.
1979-03-01
comparing successive photographs in which soil movement was noted by the change in position of the original grid of silvered indicator balls . Inherent in...SECIJ RITY CLASSIFICATION OF THIS PAGE(1Thon Pat& Entered) of uplift forces was also observed. In nineteen coal mine waste embankment dam models...In’nineteen coal mine waste embankment dam models, throughout which the soil particle size distribution was altered for modelling of dif- ferent
NASA Astrophysics Data System (ADS)
Stolboushkin, A. Yu; Ivanov, A. I.; Temlyantsev, M. V.; Fomina, O. A.
2016-10-01
Rational preparation of the mixture containing technogenic raw material - waste coal for the production of wall ceramics is developed. It was established that the technology of high-quality ceramic bricks requires: grinding of raw materials to class 0.3 + 0 mm, its aggregation in the intensive mixers into granules 1-3 mm, compression molding of adobe to plastic deformation of granules, drying and firing.
Acetylene from the co-pyrolysis of biomass and waste tires or coal in the H{sub 2}/Ar plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bao, W.; Cao, Q.; Lv, Y.
Acetylene from carbon-containing materials via plasma pyrolysis is not only simple but also environmentally friendly. In this article, the acetylene produced from co-pyrolyzing biomass with waste tire or coal under the conditions of H{sub 2}/Ar DC arc plasma jet was investigated. The experimental results showed that the co-pyrolysis of mixture with biomass and waste tire or coal can improve largely the acetylene relative volume fraction (RVF) in gaseous products and the corresponding yield of acetylene. The change trends for the acetylene yield of plasma pyrolysis from mixture with raw sample properties were the same as relevant RVF. But the yieldmore » change trend with feeding rate is different from its RVF. The effects of the feeding rate of raw materials and the electric current of plasmatron on acetylene formation are also discussed.« less
Peng, Nana; Li, Yi; Liu, Zhengang; Liu, Tingting; Gai, Chao
2016-09-15
Emission and distribution characteristics of polycyclic aromatic hydrocarbons (PAHs) were investigated during municipal solid waste (MSW) and coal combustion alone and MSW/coal blend (MSW weight fraction of 25%) co-combustion within a temperature range of 500°C-900°C. The results showed that for all combustion experiments, flue gas occupied the highest proportion of total PAHs and fly ash contained more high-ring PAHs. Moreover, the 3- and 4-ring PAHs accounted for the majority of total PAHs and Ant or Phe had the highest concentrations. Compared to coal, MSW combustion generated high levels of total PAHs with the range of 111.28μg/g-10,047.22μg/g and had high toxicity equivalent value (TEQ). MSW/coal co-combustion generated the smallest amounts of total PAHs and had the lowest TEQ than MSW and coal combustion alone. Significant synergistic interactions occurred between MSW and coal during co-combustion and the interactions suppressed the formation of PAHs, especially hazardous high-ring PAHs and decreased the TEQ. The present study indicated that the reduction of the yield and toxicity of PAHs can be achieved by co-combustion of MSW and coal. Copyright © 2016 Elsevier B.V. All rights reserved.
Sehn, Janaína L; de Leão, Felipe B; da Boit, Kátia; Oliveira, Marcos L S; Hidalgo, Gelsa E; Sampaio, Carlos H; Silva, Luis F O
2016-03-01
Detailed geochemistry similarities between the burning coal cleaning rejects (BCCRs) and non-anthropogenic geological environments are outlined here. While no visible flames were detected, this research revealed that auto-combustion existed in the studied area for many years. The occurrence of several amorphous phases, mullite, hematite and many other Al/Fe-minerals formed by high temperature was found. Bad disposal of coal-dump wastes represents significant environmental concerns due to their potential influence on atmosphere, river sediments, soils and as well as on the surface and groundwater in the surroundings of these areas. The present work using multi-analytical techniques were performed to provide an improved understanding of the complex processes related with sulphide-rich coal waste oxidation, spontaneous combustion and newmineral creation. It recording huge numbers of rare minerals with alunite, montmorillonite, szmolnockite, halotrichite, coquimbite and copiapite at the BCCRs. The information presented the presence of abundant amorphous Si-Al-Fe-Ti as (oxy-)hydroxides and Fe-hydro/oxides with goethite and hematite with various degrees of crystallinity, containing potential hazardous elements (PHEs), such as Cu, Cr, Hf, Hg, Mo, Ni, Se, Pb, Th, U, Zr, and others. Most of the nano-particles and ultra-fine particles found in the burned coal-dump wastes are the same as those commonly associated with coal cleaning rejects, in which oxidation of sulphides plays an important impact to environment and subsequently animal and human health. Copyright © 2015 Elsevier Ltd. All rights reserved.
30 CFR 874.12 - Eligible coal lands and water.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Eligible coal lands and water. 874.12 Section... INTERIOR ABANDONED MINE LAND RECLAMATION GENERAL RECLAMATION REQUIREMENTS § 874.12 Eligible coal lands and water. Coal lands and water are eligible for reclamation activities if— (a) They were mined for coal or...
30 CFR 874.12 - Eligible coal lands and water.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Eligible coal lands and water. 874.12 Section... INTERIOR ABANDONED MINE LAND RECLAMATION GENERAL RECLAMATION REQUIREMENTS § 874.12 Eligible coal lands and water. Coal lands and water are eligible for reclamation activities if— (a) They were mined for coal or...
30 CFR 874.12 - Eligible coal lands and water.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Eligible coal lands and water. 874.12 Section... INTERIOR ABANDONED MINE LAND RECLAMATION GENERAL RECLAMATION REQUIREMENTS § 874.12 Eligible coal lands and water. Coal lands and water are eligible for reclamation activities if— (a) They were mined for coal or...
30 CFR 874.12 - Eligible coal lands and water.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Eligible coal lands and water. 874.12 Section... INTERIOR ABANDONED MINE LAND RECLAMATION GENERAL RECLAMATION REQUIREMENTS § 874.12 Eligible coal lands and water. Coal lands and water are eligible for reclamation activities if— (a) They were mined for coal or...
30 CFR 874.12 - Eligible coal lands and water.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Eligible coal lands and water. 874.12 Section... INTERIOR ABANDONED MINE LAND RECLAMATION GENERAL RECLAMATION REQUIREMENTS § 874.12 Eligible coal lands and water. Coal lands and water are eligible for reclamation activities if— (a) They were mined for coal or...
Water produced with coal-bed methane
,
2000-01-01
Natural gas produced from coal beds (coal-bed methane, CBM) accounts for about 7.5 percent of the total natural gas production in the United States. Along with this gas, water is also brought to the surface. The amount of water produced from most CBM wells is relatively high compared to conventional natural gas wells because coal beds contain many fractures and pores that can contain and transmit large volumes of water. In some areas, coal beds may function as regional or local aquifers and important sources for ground water. The water in coal beds contributes to pressure in the reservoir that keeps methane gas adsorbed to the surface of the coal. This water must be removed by pumping in order to lower the pressure in the reservoir and stimulate desorption of methane from the coal (fi g. 1). Over time, volumes of pumped water typically decrease and the production of gas increases as coal beds near the well bore are dewatered.
'Bugs' used to treat FGD wastewater
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blankinship, S.
2009-09-15
Tough regulation of heavy metals may justify a bioreactor approach in addition to chemical treatment of FGD wastewater. Two of Duke Energy' coal-fired plants, Belews Creek and Allen (in North Carolina) have installed new biological reactor systems to increase selenium removal to levels not achievable by existing scrubber waste water systems. The ABMet system removes nitrate and selenium in a single step. Progress Energy has installed the system at Roxboro and Mayo Stations, also in North Carolina. 1 fig., 2 photos.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, F.Y.; Bi, Y.L.; Wong, M.H.
2009-07-01
A pot experiment was conducted to investigate the effects of Glomus mosseae and Rhizobium on Medicago sativa grown on three types of coal mine substrates, namely a mixture of coal wastes and sands (CS), coal wastes and fly ash (CF), and fly ash (FA). Inoculation with Rhizobium alone did not result in any growth response but G. mosseae alone displayed a significant effect on plant growth. G. mosseae markedly increased the survival rate of M. sativa in CS substrate. In CF and FA substrates the respective oven dry weights of M. sativa inoculated with G. mosseae were 1.8 and 5.1more » times higher than those without inoculation. Based on nitrogen (N), phosphorus (P) and potassium (K) uptake and legume growth, the results also show that dual inoculation in CS and CF substrates elicited a synergistic effect. This indicates that inoculation with arbuscular mycorrhizal (AM) fungi may be a promising approach for revegetation of coal mine substrates.« less
NASA Astrophysics Data System (ADS)
Wuttke, M. W.; Kessels, W.; Wessling, S.; Han, J.
2007-05-01
Spontaneous combustion is a world wide problem for technical operations in mining, waste disposal and power plant facilities. The principle driving the combustion is every where the same independent of the different reactive materials: Fresh air with the common oxygen content is getting in contact with the reactive material by human operations. The following reaction process produces heat at a usually low but constant rate. The reactive material in operating or abandoned coal mines, heaps of coal, waste or reactive minerals is most times strongly broken or fractured, such that the atmospheric oxygen can deeply penetrate into the porous or fractured media. Because the strongly broken or fractured medium with air filled pores and fractures is often combined with a low thermal conductivity of the bulk material the produced heat accumulates and the temperature increases with time. If the reactivity strongly increases with temperature, the temperature rise accelerates up to the "combustion temperature". Once the temperature is high enough the combustion process is determined by the oxygen transport to the combustion center rather than the chemical reactivity. Spontaneous combustion is thus a self- amplifying process where an initial small variation in the parameters and the starting conditions can create exploding combustion hot spots in an apparently homogenous material. The phenomenon will be discussed by various examples in the context of the German - Sino coal fire project. A temperature monitoring in hot fracture systems documents the strong influence of the weather conditions on the combustion process. Numerical calculations show the sensitivity of the combustion to the model geometries, the boundary conditions and mainly the permeability. The most used fire fighting operations like covering and water injection are discussed. A new method of using saltwater for fire fighting is presented and discussed. References: Kessels, W., Wessling, S., Li, X., and Wuttke, M. W. Numerical element distinction for reactive transport modeling regarding reaction rate. In Proceedings of MODFLOW and MORE 2006: Managing Groundwater Systems, May 21 - 24, 2006, Golden, CO USA (2006). Kessels, W., Wuttke, M. W., Wessling, S., and Li, X. Coal fires between self ignition and fire fighting: Numerical modeling and basic geophysical measurements. In ERSEC Ecological Book Series - 4 on Coal Fire Research (2007). Wessling, S., Litschke, T., Wiegand, J., Schlömer, S., and Kessels, W. Simulating dynamic subsurface coal fires and its applications. In ERSEC Ecological Book Series - 4 on Coal Fire Reserach (2007). Wessling, S., Kessels, W., Schmidt, M., and Krause, U. Investigating dynamic underground coal fires by means of numerical simulation. Geophys. J. Int. (submitted).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Debadutta Das; Sagarika Panigrahi; Pramila K. Misra
2008-05-15
Coal-water slurry has received considerable research nowadays due to its ability in substituting energy sources. The present work reports the formulation of highly concentrated coal-water slurry using a natural occurring surface active compound, saponin, extracted from the fruits of plant Sapindous laurifolia. The isolation of saponin from the plant and its surface activity has been discussed. The rheological characteristics of coal-water slurry have been investigated as a function of coal loading, ash content of coal, pH, temperature, and amount of saponin. The viscosity of the slurry and zeta potential are substantially decreased with concomitant shift of the isoelectric point ofmore » coal on adsorption of saponin to it. In the presence of 0.8% of saponin, coal-water slurry containing 64% weight fraction of coal could be achieved. The slurry is stable for a period of as long as 1 month in contrast to 4-5 h in the case of bare coal-water slurry. The results confirm the use of saponin as a suitable additive for coal-water slurry similar to the commercially available additive such as sodium dodecyl sulfate. Basing on the effect of pH on the zeta potential and viscosity of slurry, a suitable mechanism for saponin-coal interaction and orientation of saponin at the coal-water interface has been proposed. 47 refs., 12 figs., 5 tabs.« less
Concept of Heat Recovery from Exhaust Gases
NASA Astrophysics Data System (ADS)
Bukowska, Maria; Nowak, Krzysztof; Proszak-Miąsik, Danuta; Rabczak, Sławomir
2017-10-01
The theme of the article is to determine the possibility of waste heat recovery and use it to prepare hot water. The scope includes a description of the existing sample of coal-fired boiler plant, the analysis of working condition and heat recovery proposals. For this purpose, a series of calculations necessary to identify the energy effect of exhaust temperature decreasing and transferring recovery heat to hot water processing. Heat recover solutions from the exhaust gases channel between boiler and chimney section were proposed. Estimation for the cost-effectiveness of such a solution was made. All calculations and analysis were performed for typical Polish conditions, for coal-fired boiler plant. Typicality of this solution is manifested by the volatility of the load during the year, due to distribution of heat for heating and hot water, determining the load variation during the day. Analysed system of three boilers in case of load variation allows to operational flexibility and adaptation of the boilers load to the current heat demand. This adaptation requires changes in the operating conditions of boilers and in particular assurance of properly conditions for the combustion of fuel. These conditions have an impact on the existing thermal loss and the overall efficiency of the boiler plant. On the boiler plant efficiency affects particularly exhaust gas temperature and the excess air factor. Increasing the efficiency of boilers plant is possible to reach by following actions: limiting the excess air factor in coal combustion process in boilers and using an additional heat exchanger in the exhaust gas channel outside of boilers (economizer) intended to preheat the hot water.
Coal tar-containing asphalt - resource or hazardous waste?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andersson-Skold, Y.; Andersson, K.; Lind, B.
2007-09-30
Coal tar was used in Sweden for the production of asphalt and for the drenching of stabilization gravel until 1973. The tar has high concentrations of polycyclic aromatic hydrocarbons (PAH), some of which may be strongly carcinogenic. Approximately 20 million tonnes of tar-containing asphalt is present in the public roads in Sweden. Used asphalt from rebuilding can be classified as hazardous waste according to the Swedish Waste Act. The cost of treating the material removed as hazardous waste can be very high due to the large amount that has to be treated, and the total environmental benefit is unclear. Themore » transport of used asphalt to landfill or combustion will affect other environmental targets. The present project, based on three case studies of road projects in Sweden, evaluates the consequences of four scenarios for handling the material: reuse, landfill, biological treatment, and incineration. The results show that reuse of the coal tar-containing materials in new road construction is the most favorable alternative in terms of cost, material use, land use, energy consumption, and air emissions.« less
40 CFR 62.15410 - What definitions must I know?
Code of Federal Regulations, 2014 CFR
2014-07-01
... period during which the municipal waste combustion unit combusts fossil fuel or other solid waste fuel... combusts municipal solid waste with nonmunicipal solid waste fuel (for example, coal, industrial process... permit that limits it to combusting a fuel feed stream which is 30 percent or less (by weight) municipal...
Naturally occurring radioactive materials (NORM): a matter of wide societal implication.
Pescatore, C; Menon, S
2000-12-01
Naturally occurring radioactive materials are ubiquitous on Earth and their radioactivity may become concentrated as a result of human activities. Numerous industries produce concentrated radioactivity in their by-products: the coal industry, petroleum extraction and processing, water treatment, etc. The present reference system of radiation protection does not provide a complete framework for the coherent management of all types of radioactively contaminated materials. Inconsistencies in waste management policy and practice can be noted across the board, and especially vis-à-vis the management of radioactive waste from the nuclear industry. This article reviews the present societal approach to manage materials that are radioactive but are often not recognised as being such, and place the management of radioactive materials from the nuclear industry in perspective.
Ignition of a Droplet of Composite Liquid Fuel in a Vortex Combustion Chamber
NASA Astrophysics Data System (ADS)
Valiullin, T. R.; Vershinina, K. Yu; Glushkov, D. O.; Strizhak, P. A.
2017-11-01
Experimental study results of a droplet ignition and combustion were obtained for coal-water slurry containing petrochemicals (CWSP) prepared from coal processing waste, low-grade coal and waste petroleum products. A comparative analysis of process characteristics were carried out in different conditions of fuel droplet interaction with heated air flow: droplet soars in air flow in a vortex combustion chamber, droplet soars in ascending air flow in a cone-shaped combustion chamber, and droplet is placed in a thermocouple junction and motionless in air flow. The size (initial radii) of CWSP droplet was varied in the range of 0.5-1.5 mm. The ignition delay time of fuel was determined by the intensity of the visible glow in the vicinity of the droplet during CWSP combustion. It was established (under similar conditions) that ignition delay time of CWSP droplets in the combustion chamber is lower in 2-3.5 times than similar characteristic in conditions of motionless droplet placed in a thermocouple junction. The average value of ignition delay time of CWSP droplet is 3-12 s in conditions of oxidizer temperature is 600-850 K. Obtained experimental results were explained by the influence of heat and mass transfer processes in the droplet vicinity on ignition characteristics in different conditions of CWSP droplet interaction with heated air flow. Experimental results are of interest for the development of combustion technology of promising fuel for thermal power engineering.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zauderer, B.; Fleming, E.S.
1991-08-30
This work contains to the final report of the demonstration of an advanced cyclone coal combustor. Titles include: Chronological Description of the Clean Coal Project Tests,'' Statistical Analysis of Operating Data for the Coal Tech Combustor,'' Photographic History of the Project,'' Results of Slag Analysis by PA DER Module 1 Procedure,'' Properties of the Coals Limestone Used in the Test Effort,'' Results of the Solid Waste Sampling Performed on the Coal Tech Combustor by an Independent Contractor During the February 1990 Tests.'' (VC)
Integrated Fuel Cell/Coal Gasifier
NASA Technical Reports Server (NTRS)
Ferrall, J. F.
1985-01-01
Powerplant design with low-temperature coal gasifier coupled to highly-exothermic fuel cell for efficient production of dc power eliminates need for oxygen in gasifier and achieves high fuel efficiency with recycling of waste heat from fuel cell.
NASA Astrophysics Data System (ADS)
McNeese, L. E.
1981-12-01
The progress made during the period from July 1 through September 30 for the Oak Ridge National Laboratory research and development projects in support of the increased utilization of coal and other fossil fuels as sources of clean energy is reported. The following topics are discussed: coal conversion development, chemical research and development, materials technology, fossil energy materials program, liquefaction projects, component development, process analysis, environmental control technology, atmospheric fluidized bed combustion, underground coal gasification, coal preparation and waste utilization.
Temporal and spatial changes of land use and landscape in a coal mining area in Xilingol grassland
NASA Astrophysics Data System (ADS)
Guan, Chunzhu; Zhang, Baolin; Li, Jiannan; Zhao, Junling
2017-01-01
Coal mining, particularly surface mining, inevitably disturbs land. According to Landsat images acquired over Xilingol grassland in 2005, 2009 and 2015, land uses were divided into seven classes, i. e., open stope, stripping area, waste-dump area, mine industrial area, farmland, urban area and the original landscape (grassland), using supervised classification and human-computer interactive interpretation. The overall classification accuracies were 97.72 %, 98.43 % and 96.73 %, respectively; the Kappa coefficients were 0.95, 0.97 and 0.95, respectively. Analysis on LUCC (Land Use and Cover Change) showed that surface coal mining disturbed grassland ecosystem: grassland decreased by 8661.15 hm2 in 2005-2015. The area and proportion of mining operation areas (open stope, stripping area, waste-dump area, mine industrial field) increased, but those of grassland decreased continuously. Transfer matrix of land use changes showed that waste-dump had the largest impacts in mining disturbance, and that effective reclamation of waste-dump areas would mitigate eco-environment destruction, as would be of great significance to protect fragile grassland eco-system. Six landscape index showed that landscape fragmentation increased, and the influences of human activity on landscape was mainly reflected in the expansion of mining area and urban area. Remote sensing monitoring of coal surface mining in grassland would accurately demonstrate the dynamics and trend of LUCC, providing scientific supports for ecological reconstruction in surface mining area.
El-Mekawy, A F; Badran, H M; Seddeek, M K; Sharshar, T; Elnimr, T
2015-09-01
Non-nuclear industries use raw materials containing significant levels of naturally occurring radioactive material (NORM). The processing of these materials may expose workers engaged in or even people living near such sites to technologically enhanced naturally occurring radioactive material (TENORM) above the natural background. Inductively coupled plasma and gamma ray spectrometry have been used to determine major and trace elements and radionuclide concentrations in various samples, respectively, in order to investigate the environmental impact of coal mining and cement plant in North Sinai, Egypt. Generally, very little attention was directed to the large volumes of waste generated by either type of industrial activities. Different samples were analyzed including various raw materials, coal, charcoal, Portland and white cement, sludge, and wastes. Coal mine and cement plant workers dealing with waste and kaolin, respectively, are subjected to a relatively high annual effective dose. One of the important finding is the enhancement of all measured elements and radionuclides in the sludge found in coal mine. It may pose an environmental threat because of its large volume and its use as combustion material. The mine environment may have constituted Al, Fe, Cr, and V pollution source for the local area. Higher concentration of Al, Fe, Mn, B, Co, Cr, Mn, Ni, Sr, V, and TENORM were found in Portland cement and Zn in white cement. Coal has higher concentrations of Al, Fe, B, Co, Cr, and V as well as (226)Ra and (232)Th. The compiled results from the present study and different worldwide investigations demonstrate the obvious unrealistic ranges normally used for (226)Ra and (232)Th activity concentrations in coal and provided ranges for coal, Portland and white cement, gypsum, and limestone.
Leaching characteristics of fly ash from thermal power plants of Soma and Tuncbilek, Turkey.
Baba, Alper; Kaya, Abidin
2004-02-01
Use of lignite in power generation has led to increasing environmental problems associated not only with gaseous emissions but also with the disposal of ash residues. In particular, use of low quality coal with high ash content results in huge quantities of fly ash to be disposed of. The main problem related to fly ash disposal is the heavy metal content of the residue. In this regard, experimental results of numerous studies indicate that toxic trace metals may leach when fly ash contacts water. In this study, fly ash samples obtained from thermal power plants, namely Soma and Tunçbilek, located at the west part of Turkey, were subjected to toxicity tests such as European Committee for standardization (CEN) and toxicity characteristic leaching (TCLP) procedures of the U.S. Environmental Protection Agency (U.S. EPA). The geochemical composition of the tested ash samples from the power plant show variations depending on the coal burned in the plants. Furthermore, the CEN and TCLP extraction results showed variations such that the ash samples were classified as 'toxic waste' based on TCLP result whereas they were classified as 'non-toxic' wastes based on CEN results, indicating test results are pH dependent.
Alkaline Activator Impact on the Geopolymer Binders
NASA Astrophysics Data System (ADS)
Błaszczyński, Tomasz Z.; Król, Maciej R.
2017-10-01
Concrete structures are constantly moving in the direction of improving the durability. Durability depends on many factors, which are the composition of concrete mix, the usage of additives and admixtures and the place, where material will work and carry the load. The introduction of new geopolymer binders for geopolymer structures adds a new aspect that is type of used activator. This substance with strongly alkaline reaction is divided because of the physical state, the alkaline degree and above all the chemical composition. Taking into account, that at present the geopolymer binders are made essentially from waste materials or by-products from the combustion of coal or iron ore smelting, unambiguous determination of the effect of the activator on the properties of the geopolymer material requires a number of trials, researches and observation. This paper shows the influence of the most alkaline activators on the basic parameters of the durability of geopolymer binders. In this study there were used highly alkaline hydroxides, water glasses and granules, which are waste materials in a variety of processes taking place in chemical plants. As the substrate of geopolymer binders there were used fly ash which came from coal and high calcareous ash from the burning of lignite.
Durability of cement and geopolimer composites
NASA Astrophysics Data System (ADS)
Błaszczyński, T.; Król, M.
2017-10-01
Concrete structures are constantly moving in the direction of improving the durability. This main feature depends on many factors, which are the composition of concrete mix, the usage of additives and admixtures and the place, where material will work and carry the load. The introduction of new geopolymer binders for geopolymer structures adds a new aspect that is type of used activator. This substance with strongly alkaline reaction is divided because of the physical state, the alkaline degree and above all the chemical composition. Taking into account, that at present the geopolymer binders are made essentially from waste materials or by products from the combustion of coal or iron ore smelting, unambiguous determination of the effect of the activator on the properties of the geopolymer material requires a number of trials, researches and observation. This paper shows the influence of the most alkaline activators on the basic parameters of the durability of geopolymer binders. In this study there were used a highly alkaline hydroxides, water glasses and granules, which are waste materials in a variety of processes taking place in a chemical plants. As the substrate of geopolymer binders there were used fly ash which came from coal and high calcium ash from the burning of lignite.
Trace element emissions from spontaneous combustion of gob piles in coal mines, Shanxi, China
Zhao, Y.; Zhang, Jiahua; Chou, C.-L.; Li, Y.; Wang, Z.; Ge, Y.; Zheng, C.
2008-01-01
The emissions of potentially hazardous trace elements from spontaneous combustion of gob piles from coal mining in Shanxi Province, China, have been studied. More than ninety samples of solid waste from gob piles in Shanxi were collected and the contents of twenty potentially hazardous trace elements (Be, F, V, Cr, Mn, Co, Ni, Cu, Zn, As, Se, Mo, Cd, Sn, Sb, Hg, Tl, Pb, Th, and U) in these samples were determined. Trace element contents in solid waste samples showed wide ranges. As compared with the upper continental crust, the solid waste samples are significantly enriched in Se (20x) and Tl (12x) and are moderately enriched in F, As, Mo, Sn, Sb, Hg, Th, and U (2-5x). The solid waste samples are depleted in V, Cr, Mn, Co, Ni, Cu, and Zn. The solid waste samples are enriched in F, V, Mn, Cr, Co, Ni, Cu, Zn, Sb, Th, and U as compared with the Shanxi coals. Most trace elements are higher in the clinker than in the unburnt solid waste except F, Sn, and Hg. Trace element abundances are related to the ash content and composition of the samples. The content of F is negatively correlated with the ash content, while Pb is positively correlated with the ash. The concentrations of As, Mn, Zn, and Cd are highly positively correlated with Fe2O3 in the solid waste. The As content increases with increasing sulfur content in the solid waste. The trace element emissions are calculated for mass balance. The emission factors of trace elements during the spontaneous combustion of the gobs are determined and the trace element concentrations in the flue gas from the spontaneous combustion of solid waste are calculated. More than a half of F, Se, Hg and Pb are released to the atmosphere during spontaneous combustion. Some trace element concentrations in flue gas are higher than the national emission standards. Thus, gob piles from coal mining pose a serious environmental problem. ?? 2007 Elsevier B.V. All rights reserved.
Water-quality assessment of the Cypress Creek watershed, Warrick County, Indiana
Bobo, Linda L.; Peters, Charles A.
1980-01-01
The U.S. Soil Conservation Service needs chemical, biological, microbiological, and hydrological data to prepare an environmental evaluation of the water quality in the Cypress Creek watershed, Warrick County, Ind., before plans can be devised to (1) improve water quality, (2) minimize flooding, (3) reduce sedimentation, and (4) provide adequate outlets for drainage in the watershed. The U.S. Geological Survey obtained these data for the Soil Conservation Service in a water-quality survey of the watershed from March to August 1979. Past and present surface coal mining is the factor having the greatest impact on water quality in the watershed. The upper reaches of Cypress Creek receive acid-mine drainage from a coal-mine waste slurry during periods of intense rainfall. All the remaining tributaries, except Summer Pecka ditch, drain mined or reclaimed lands. The general water type of Cypress Creek and most of its tributaries is calcium and magnesium sulfate. In contrast, the water type at background site 21 on Summer Pecka ditch is calcium sulfate. Specific conductance ranged from 470 to 4,730 micromhos per centimeter at 25 degrees Celsius, and pH ranged from 1.2 to 8.8. Specific conductance, hardness, and concentrations of major ions and dissolved solids were highest in tributaries affected by mining. The pH was lowest in the same tributaries. Concentrations of iron, manganese, and sulfate in water samples and chlordane, DDT, and PCB 's in streambed samples exceeded water-quality limits set by the U.S. Environmental Protection Agency. (USGS)
Examination of water spray airborne coal dust capture with three wetting agents
Organiscak, J.A.
2015-01-01
Water spray applications are one of the principal means of controlling airborne respirable dust in coal mines. Since many coals are hydrophobic and not easily wetted by water, wetting agents can be added to the spray water in an effort to improve coal wetting and assist with dust capture. In order to study wetting agent effects on coal dust capture, laboratory experiments were conducted with three wetting agents used by the coal industry on -325 mesh sized Pocahontas No. 3 coal dust. Significant differences in coal dust sink times were observed among the three wetting agents at water mixture concentrations of 0.05%, 0.1% and 0.2%. The best wetting agent as identified by the coal dust sink test was only tested at the lowest 0.05% water mixture concentration and was found to have a negligible effect on spray airborne dust capture. Water spray airborne dust capture results for all three wetting agents tested at a 0.2% water mixture concentration showed that all three wetting agents exhibit similar but small improvements in dust capture efficiency as compared with water. These results indicate that the coal dust sink test may not be a good predictor for the capture of airborne dust. Additional research is needed to examine if the coal dust sink test is a better predictor of wetting agent dust suppression effects during cutting, loading, conveying and dumping of coal products by comparison to airborne dust capture from sprays. PMID:26251565
Waste plastics as supplemental fuel in the blast furnace process: improving combustion efficiencies.
Kim, Dongsu; Shin, Sunghye; Sohn, Seungman; Choi, Jinshik; Ban, Bongchan
2002-10-14
The possibility of using waste plastics as a source of secondary fuel in a blast furnace has been of recent interest. The success of this process, however, will be critically dependent upon the optimization of operating systems. For instance, the supply of waste plastics must be reliable as well as economically attractive compared with conventional secondary fuels such as heavy oil, natural gas and pulverized coal. In this work, we put special importance on the improvement of the combustibility of waste plastics as a way to enhance energy efficiency in a blast furnace. As experimental variables to approach this target, the effects of plastic particle size, blast temperature, and the level of oxygen enrichment were investigated using a custom-made blast model designed to simulate a real furnace. Lastly, the combustion efficiency of the mixture of waste plastics and pulverized coal was tested. The observations made from these experiments led us to the conclusion that with the increase of both blast temperature and the level of oxygen enrichment, and with a decrease in particle size, the combustibility of waste polyethylene could be improved at a given distance from the tuyere. Also it was found that the efficiency of coal combustion decreased with the addition of plastics; however, the combustion efficiency of mixture could be comparable at a longer distance from the tuyere.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharypov, V.I.; Kiselev, V.P.; Beregovtsova, N.G.
2008-07-15
The properties of asphalt binder modifiers prepared by dissolving butadiene-acrylonitrile rubbers and their production waste in liquid products of heat treatment of various brands of coal were studied.
CFB: technology of the future?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blankship, S.
2008-02-15
Fuel flexibility and a smaller carbon footprint are behind renewed interest in circulating fluidized bed (CFB) technology. The article explains the technology of CFB and discusses development of CFB units since the late 1990s. China is seeing an explosion in the number of utility-size CFBs. Alstom, Foster Wheeler, Babcock and Wilson and Alex Kvaener are today's major CFB boiler manufacturers. Alstom is testing and developing oxy-firing and post-combustion carbon capture strategies on CFB boilers. One CFB asset is its ability to burn a variety of fuels including waste coal, high sulfur coal and even discarded tires. The article mentions successfulmore » CFB projects at the Seward Station using waste coal and at the Gilbert 3 plant in the USA. Lamar is converting its Light and Power Plant from natural gas to burn coal in a 38.5 MW CFB boiler. 1 tab., 3 photos.« less
Development of clean coal and clean soil technologies using advanced agglomeration techniques
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ignasiak, B.; Ignasiak, T.; Szymocha, K.
1990-01-01
Three major topics are discussed in this report: (1) Upgrading of Low Rank Coals by the Agflotherm Process. Test data, procedures, equipment, etc., are described for co-upgrading of subbituminous coals and heavy oil; (2) Upgrading of Bituminous Coals by the Agflotherm Process. Experimental procedures and data, bench and pilot scale equipments, etc., for beneficiating bituminous coals are described; (3) Soil Clean-up and Hydrocarbon Waste Treatment Process. Batch and pilot plant tests are described for soil contaminated by tar refuse from manufactured gas plant sites. (VC)
Nanofiltration/reverse osmosis for treatment of coproduced waters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mondal, S.; Hsiao, C.L.; Wickramasinghe, S.R.
2008-07-15
Current high oil and gas prices have lead to renewed interest in exploration of nonconventional energy sources such as coal bed methane, tar sand, and oil shale. However oil and gas production from these nonconventional sources has lead to the coproduction of large quantities of produced water. While produced water is a waste product from oil and gas exploration it is a very valuable natural resource in the arid Western United States. Thus treated produced water could be a valuable new source of water. Commercially available nanofiltration and low pressure reverse osmosis membranes have been used to treat three producedmore » waters. The results obtained here indicate that the permeate could be put to beneficial uses such as crop and livestock watering. However minimizing membrane fouling will be essential for the development of a practical process. Field Emission Scanning Electron Microscopy imaging may be used to observe membrane fouling.« less
Mine waters: Acidic to circumneutral
Nordstrom, D. Kirk
2011-01-01
Acid mine waters, often containing toxic concentrations of Fe, Al, Cu, Zn, Cd, Pb, Ni, Co, and Cr, can be produced from the mining of coal and metallic deposits. Values of pH for acid mine waters can range from –3.5 to 5, but even circumneutral (pH ≈ 7) mine waters can have high concentrations of As, Sb, Mo, U, and F. When mine waters are discharged into streams, lakes, and the oceans, serious degradation of water quality and injury to aquatic life can ensue, especially when tailings impoundments break suddenly. The main acid-producing process is the exposure of pyrite to air and water, which promotes oxidative dissolution, a reaction catalyzed by microbes. Current and future mining should plan for the prevention and remediation of these contaminant discharges by the application of hydrogeochemical principles and available technologies, which might include remining and recycling of waste materials.
Analysis and interpretation of water-quality trends in major U.S. rivers, 1974-81
Smith, Richard A.; Alexander, Richard B.; Wolman, M. Gordon
1987-01-01
Water-quality records from two nationwide sampling networks are now of sufficient length to permit nationally consistent analysis of long-term water-quality trends at more than 300 locations on major U.S. rivers. Observed trends in 24 water-quality measures for the period 1974--81 provide evidence of both improvement and deterioration in stream quality during a time of major changes in atmospheric and terrestrial influences on surface waters. Particularly noteworthy are widespread decreases in lead and fecal bacteria concentrations and widespread increases in nitrate, arsenic, and cadmium concentrations. Changes in municipal waste treatment, leaded-gasoline consumption, highway-salt use, and nitrogen-fertilizer application, and regionally variable trends in coal production and combustion during the period, appear to be reflected in water-quality changes. There is evidence that atmospheric deposition of a variety of substances has played a surprisingly large role in water-quality changes.
Tuck, L.K.; Pearson, Daniel K.; Cannon, M.R.; Dutton, DeAnn M.
2013-01-01
The Tongue River Member of the Tertiary Fort Union Formation is the primary source of groundwater in the Northern Cheyenne Indian Reservation in southeastern Montana. Coal beds within this formation generally contain the most laterally extensive aquifers in much of the reservation. The U.S. Geological Survey, in cooperation with the Northern Cheyenne Tribe, conducted a study to estimate the volume of water in five coal aquifers. This report presents estimates of the volume of water in five coal aquifers in the eastern and southern parts of the Northern Cheyenne Indian Reservation: the Canyon, Wall, Pawnee, Knobloch, and Flowers-Goodale coal beds in the Tongue River Member of the Tertiary Fort Union Formation. Only conservative estimates of the volume of water in these coal aquifers are presented. The volume of water in the Canyon coal was estimated to range from about 10,400 acre-feet (75 percent saturated) to 3,450 acre-feet (25 percent saturated). The volume of water in the Wall coal was estimated to range from about 14,200 acre-feet (100 percent saturated) to 3,560 acre-feet (25 percent saturated). The volume of water in the Pawnee coal was estimated to range from about 9,440 acre-feet (100 percent saturated) to 2,360 acre-feet (25 percent saturated). The volume of water in the Knobloch coal was estimated to range from about 38,700 acre-feet (100 percent saturated) to 9,680 acre-feet (25 percent saturated). The volume of water in the Flowers-Goodale coal was estimated to be about 35,800 acre-feet (100 percent saturated). Sufficient data are needed to accurately characterize coal-bed horizontal and vertical variability, which is highly complex both locally and regionally. Where data points are widely spaced, the reliability of estimates of the volume of coal beds is decreased. Additionally, reliable estimates of the volume of water in coal aquifers depend heavily on data about water levels and data about coal-aquifer characteristics. Because the data needed to define the volume of water were sparse, only conservative estimates of the volume of water in the five coal aquifers are presented in this report. These estimates need to be used with caution and mindfulness of the uncertainty associated with them.
NASA Astrophysics Data System (ADS)
Letina, D.; Letshwenyo, W. M.
2018-06-01
Wastewater from the mining industry is a concern because most of the time it contains heavy metals with concentrations above permissible levels, posing a threat to terrestrial and aquatic life. The study was conducted to evaluate the effectiveness of locally available waste materials (waste rock, tailings, coal ash clinker, and slag) generated by BCL (Ltd) mine, a copper and nickel mining and smelting company in Botswana, for removal of nickel and copper from the real mining wastewater. Batch adsorption studies were conducted to establish the adsorptive efficiency and kinetics of each media with respect to nickel and copper ions. The best media was further evaluated through fixed bed column studies at 24 and 48 h empty bed contact time. The results indicate that the percentage removal for coal ash clinker, waste rock, smelter slag and tailings was 98%, 15%, 3% and -3% with respect to copper ions, and 46%, 9%, 7% and 2% with respect to nickel ions for each media respectively. Coal ash clinker followed pseudo first order kinetic model and Langmuir isotherm model with respect to nickel ions indicating the dominance of physisorption and mono layer coverage respectively. The Langmuir separation factor (RL) was 0.37 suggesting favourable adsorption onto the media. Fixed bed column studies revealed that copper was completely retained in the bed at both 24 and 48 h contact times. In the case of nickel, removal efficiency ranged between 83% and 99% when contact time was 48 h and between 68% and 99% when the contact time was reduced to 24 h. Breakthrough was not reached after 19 bed volumes. It can be concluded that coal ash clinker is a better candidate for the removal of copper and nickel ions from mining wastewater.
Soil amendments promote vegetation establishment and control acidity in coal combustion waste
R.M. Danker; D.C. Adriano; Bon-Jun Koo; C.D. Barton
2003-01-01
The effects of adding various soil amendments and a pyrite oxidation inhibitor to aid in the establishment of vegetation and to reduce acid drainage (AD) from coal fly ash and coal reject (FA + CR*) were assessed in an outdoor mesocosm study. Preliminary greenhouse experiments and field observations at the U.S. Department of Energy's Savannah River Site (SRS)...
Coal fly ash has several uses but much of the material is treated as waste and disposed of in various ways including land filling. Coal fly ash also has a very high sorption capacity for a variety of anthropogenic contaminants and has been used to cleanse wastewater of such poll...
Clean Power Generation from the Intractable Natural Coalfield Fires: Turn Harm into Benefit.
Shi, Bobo; Su, Hetao; Li, Jinshi; Qi, Haining; Zhou, Fubao; Torero, José L; Chen, Zhongwei
2017-07-13
The coal fires, a global catastrophe for hundreds of years, have been proved extremely difficult to control, and hit almost every coal-bearing area globally. Meanwhile, underground coal fires contain tremendous reservoir of geothermal energy. Approximately one billion tons of coal burns underground annually in the world, which could generate ~1000 GW per annum. A game-changing approach, environmentally sound thermal energy extraction from the intractable natural coalfield fires, is being developed by utilizing the waste energy and reducing the temperature of coalfield fires at the same time. Based on the Seebeck effect of thermoelectric materials, the temperature difference between the heat medium and cooling medium was employed to directly convert thermal energy into clean electrical energy. By the time of December 2016, the power generation from a single borehole at Daquan Lake fire district in Xinjiang has been exceeded 174.6 W. The field trial demonstrates that it is possible to exploit and utilize the waste heat resources in the treated coal fire areas. It promises a significant impact on the structure of global energy generation and can also promote progress in thermoelectric conversion materials, geothermal exploration, underground coal fires control and other energy related areas.
Hossain, Md Nazir; Paul, Shitangsu Kumar; Hasan, Md Muyeed
2015-04-01
The study was carried out to analyse the environmental impacts of coal mine and coal-based thermal power plant to the surrounding environment of Barapukuria, Dinajpur. The analyses of coal, water, soil and fly ash were carried out using standard sample testing methods. This study found that coal mining industry and coal-based thermal power plant have brought some environmental and socio-economic challenges to the adjacent areas such as soil, water and air pollution, subsidence of agricultural land and livelihood insecurity of inhabitants. The pH values, heavy metal, organic carbon and exchangeable cations of coal water treated in the farmland soil suggest that coal mining deteriorated the surrounding water and soil quality. The SO4(2-) concentration in water samples was beyond the range of World Health Organisation standard. Some physico-chemical properties such as pH, conductivity, moisture content, bulk density, unburned carbon content, specific gravity, water holding capacity, liquid and plastic limit were investigated on coal fly ash of Barapukuria thermal power plant. Air quality data provided by the Barapukuria Coal Mining Company Limited were contradictory with the result of interview with the miners and local inhabitants. However, coal potentially contributes to the development of economy of Bangladesh but coal mining deteriorates the environment by polluting air, water and soil. In general, this study includes comprehensive baseline data for decision makers to evaluate the feasibility of coal power industry at Barapukuria and the coalmine itself.
Li, Hui-Qiang; Han, Hong-Jun
2015-01-01
An aerobic moving bed biofilm reactor (MBBR) was adopted to treat Lurgi coal gasification waste water (LCGW) in about 10 months. The pollutant load and dissolve oxygen (DO) concentration were adjusted by trying to maximize the accumulation of [Formula: see text] in the MBBR for LCGW treatment. The highest [Formula: see text] accumulation proportion [Formula: see text] was 73.9%, but was not stable with influent chemical oxygen demand (COD) and DO concentrations of around 1000 and 1.5 mg/L, respectively. Around 1500 mg/L of influent COD concentration and 1.5 mg/L of DO concentration were proper operation conditions for the aerobic MBBR to achieve relatively stable [Formula: see text] accumulation, with [Formula: see text] ratio at 53% and [Formula: see text] ratio at just 4.3% in the effluent. More specifically, free ammonia concentration and DO concentration affected [Formula: see text] accumulation much more obvious than phenols concentration. The activity and quantity of nitrifying bacteria growth in suspended sludge and biofilm of the MBBR were monitored simultaneously to explain the variations of [Formula: see text] accumulation performance under different operation conditions. An aerobic moving bed biofilm reactor (MBBR) was adopted to treat Lurgi coal gasification waste water (LCGW)in about 10 months. The pollutant load and dissolve oxygen (DO) concentration were adjusted by trying to maximize the accumulation of NO(−)(2)−N in the MBBR for LCGW treatment. The highest NO(−)(2)−N accumulation proportion(NO(−)(2)−Neffluent/TN effluent) was 73.9%, but was not stable with influent chemical oxygen demand (COD) and DO concentrations of around 1000 and 1.5 mg/L, respectively. Around 1500 mg/L of influent COD concentration and 1.5 mg/L of DO concentration were proper operation conditions for the aerobic MBBR to achieve relatively stable NO(−)(2)−N accumulation,with NO(−)(2)−N/TN ratio at 53% and NO(-)(3)−N/TN ratio at just 4.3% in the effluent. More specifically, free ammonia concentration and DO concentration affected NO(2)(−)N accumulation much more obvious than phenols concentration. The activity and quantity of nitrifying bacteria growth in suspended sludge and biofilm of the MBBR were monitored simultaneously toexplain the variations of NO(−)(2)−N accumulation performance under different operation conditions.
Rare and Rare-Earth Metals in Coal Processing Waste
NASA Astrophysics Data System (ADS)
Cherkasova, Tatiana; Cherkasova, Elizaveta; Tikhomirova, Anastasia; Bobrovni-kova, Alyona; Goryunova, Irina
2017-11-01
An urgent issue for power plants operating on solid fuels (coal) is the issue of utilization or use of accumulated production waste - ash and slag materials - in the related production. Ash-slag materials are classified as "waste", usually grade 5; tens of millions of tons of them being pro-duced annually in the Kemerovo region, which threatens the ecology of the region. At the same time, ash and slag is a very promising raw material. The use of this material as a base for the final product allows us to signifi-cantly expand the possibilities of using coal. The most widespread is the system of ash and slag involving in construction or as a replacement for sand in road construction, or as an additive to building mixtures. However, there are both industrially valuable and environmentally dangerous ele-ments in ash-slag materials. Ash-slag materials can be considered as inde-pendent ore deposits located on the surface and requiring the costs of their extraction.
A CHARACTERIZATION AND EVALUATION OF COAL LIQUEFACTION PROCESS STREAMS
DOE Office of Scientific and Technical Information (OSTI.GOV)
G.A. Robbins; R.A. Winschel; S.D. Brandes
This is the first Annual Technical Report of activities under DOE Contract No. DE-AC22-94PC93054. Activities from the first three quarters of the fiscal 1998 year were reported previously as Quarterly Technical Progress Reports (DOE/PC93054-57, DOE/PC93054-61, and DOE/PC93054-66). Activities for the period July 1 through September 30, 1998, are reported here. This report describes CONSOL's characterization of process-derived samples obtained from HTI Run PB-08. These samples were derived from operations with Black Thunder Mine Wyoming subbituminous coal, simulated mixed waste plastics, and pyrolysis oils derived from waste plastics and waste tires. Comparison of characteristics among the PB-08 samples was made tomore » ascertain the effects of feed composition changes. A comparison also was made to samples from a previous test (Run PB-06) made in the same processing unit, with Black Thunder Mine coal, and in one run condition with co-fed mixed plastics.« less
Kidgell, Joel T.; de Nys, Rocky; Paul, Nicholas A.; Roberts, David A.
2014-01-01
Fe-treated biochar and raw biochar produced from macroalgae are effective biosorbents of metalloids and metals, respectively. However, the treatment of complex effluents that contain both metalloid and metal contaminants presents a challenging scenario. We test a multiple-biosorbent approach to bioremediation using Fe-biochar and biochar to remediate both metalloids and metals from the effluent from a coal-fired power station. First, a model was derived from published data for this effluent to predict the biosorption of 21 elements by Fe-biochar and biochar. The modelled outputs were then used to design biosorption experiments using Fe-biochar and biochar, both simultaneously and in sequence, to treat effluent containing multiple contaminants in excess of water quality criteria. The waste water was produced during ash disposal at an Australian coal-fired power station. The application of Fe-biochar and biochar, either simultaneously or sequentially, resulted in a more comprehensive remediation of metalloids and metals compared to either biosorbent used individually. The most effective treatment was the sequential use of Fe-biochar to remove metalloids from the waste water, followed by biochar to remove metals. Al, Cd, Cr, Cu, Mn, Ni, Pb, Zn were reduced to the lowest concentration following the sequential application of the two biosorbents, and their final concentrations were predicted by the model. Overall, 17 of the 21 elements measured were remediated to, or below, the concentrations that were predicted by the model. Both metalloids and metals can be remediated from complex effluent using biosorbents with different characteristics but derived from a single feedstock. Furthermore, the extent of remediation can be predicted for similar effluents using additive models. PMID:25061756
NASA Astrophysics Data System (ADS)
Marlina, E. T.; Kurnani, Tb. B. A.; Hidayati, Y. A.; Rahmah, K. N.; Joni, I. M.; Harlia, E.
2018-02-01
Coal-bed Methane (CBM) is a form of natural gas extracted from coal and has been developed as future energy source. Organic materials are required as nutrition source for methanogenic microbes. The addition of cattle waste in the formation of CBM on coal media can be utilized as organic materials as well as methanogenic microbe sources. This research covered study of total amount of anaerobic microbes, methane production, protozoa, fungi and endoparasites. Descriptive approach is conducted for this study. Media used for culturing methanogens is Nutrient Agar in powder form and Lactose Broth with the addition of rumen fluid. The technique for counting microbes is through Total Plate Count in anaerobic Hungate tube, methane was analyzed using Gas Chromatography (GC), while identification of protozoa, fungi and endoparasites based on its morphology is conducted before and after anaerobic fermentation process. Incubation period is 30 days. The results showed that growth of anaerobic microbes from dairy cattle waste i.e. biogas sludge is 3.57×103 CFU/ml and fresh feces is 3.38 × 104 CFU/ml, growth of anaerobic microbes from beef cattle waste i.e. biogas sludge is 7.0 × 105 CFU/ml; fresh feces is 7.5 x 104 CFU/ml; and rumen contents of about 1.33 × 108 CFU/ml. Methane production in dairy cattle waste in sludge and fresh feces amounted to 10.57% and 2.39%, respectively. Methane production in beef cattle waste in sludge accounted for 5.95%; in fresh feces it is about 0.41%; and rumen contents of 4.92%. Decreasing of protozoa during fermentation to 84.27%, dominated by Eimeria sp. Decreasing of fungi to 16%, dominated by A. Niger, A. Flavus, A. Fumigatus and Monilia sitophila. Decreasing of endoparasitic worms to 15%, dominated by Strongylus sp. and Fasciola sp. The growth of anaerobic microbes and methane production indicated that dairy cattle waste and beef cattle waste have potential as source of methanogenic microbes, meanwhile the decreasing amount of protozoa, fungi and endoparasites indicated that CBM formation process can reduce pollutants from microorganism in the environment.
COAL CONVERSION CONTROL TECHNOLOGY. VOLUME II. GASEOUS EMISSIONS; SOLID WASTES
This volume is the product of an information-gathering effort relating to coal conversion process streams. Available and developing control technology has been evaluated in view of the requirements of present and proposed federal, state, regional, and international environmental ...
Stabilization/solidification of hot dip galvanizing ash using different binders.
Vinter, S; Montanes, M T; Bednarik, V; Hrivnova, P
2016-12-15
This study focuses on solidification of hot dip-galvanizing ash with a high content of zinc and soluble substances. The main purpose of this paper is to immobilize these pollutants into a matrix and allow a safer way for landfill disposal of that waste. Three different binders (Portland cement, fly ash and coal fluidized-bed combustion ash) were used for the waste solidification. Effectiveness of the process was evaluated using leaching test according to EN 12457-4 and by using the variance analysis and the categorical multifactorial test. In the leaching test, four parameters were observed: pH, zinc concentration in leachate, and concentration of chlorides and dissolved substances in leachate. The acquired data was then processed using statistical software to find an optimal solidifying ratio of the addition of binder, water, and waste to the mixture, with the aim to fulfil the requirement for landfill disposal set by the Council Decision 2003/33/EC. The influence on the main observed parameters (relative amount of water and a binder) on the effectiveness of the used method and their influence of measured parameters was also studied. Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ward, C.K.; Fontes, C.; Breuner, C.W.
2007-05-15
Corticosteroid-binding globulin (CBG) is a plasma protein that binds corticosterone and may regulate access of hormone to tissues. The role of CBG during a stress response is not clear. In this study, southern toads, Bufo terrestris, were exposed to a chronic pollutant (coal-combustion-waste), to determine changes in CBG and free corticosterone levels. Since toads exposed to chronic pollutants in previous studies did not exhibit the predicted changes in metabolic rate and mass, but did experience a significant elevation in total corticosterone, we hypothesized that CBG would likewise increase and thus, mitigate the effects of a chronic (i.e. 2 months) pollutantmore » stressor. To conduct this study, we first characterized the properties of CBG in southern toads. After characterization, we monitored the changes in CBG, total corticosterone, and free corticosterone in male toads that were exposed to either coal-combustion-waste or control conditions. CBG increased in all groups throughout the experiment. Total corticosterone, on the other hand, was only significantly elevated at four weeks of exposure to coal-combustion-waste. The increase in CBG did not parallel the increase in total corticosterone; as a result, free corticosterone levels were not buffered by CBG, but showed a peak at four weeks similar to total corticosterone. This finding indicates that, in this species, CBG may not provide a protective mechanism during long-term pollution exposure.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-21
...The Environmental Protection Agency (EPA or Agency) is proposing to regulate for the first time, coal combustion residuals (CCRs) under the Resource Conservation and Recovery Act (RCRA) to address the risks from the disposal of CCRs generated from the combustion of coal at electric utilities and independent power producers. However, the Agency is considering two options in this proposal and, thus, is proposing two alternative regulations. Under the first proposal, EPA would reverse its August 1993 and May 2000 Bevill Regulatory Determinations regarding coal combustion residuals (CCRs) and list these residuals as special wastes subject to regulation under subtitle C of RCRA, when they are destined for disposal in landfills or surface impoundments. Under the second proposal, EPA would leave the Bevill determination in place and regulate disposal of such materials under subtitle D of RCRA by issuing national minimum criteria. Under both alternatives EPA is proposing to establish dam safety requirements to address the structural integrity of surface impoundments to prevent catastrophic releases. EPA is not proposing to change the May 2000 Regulatory Determination for beneficially used CCRs, which are currently exempt from the hazardous waste regulations under Section 3001(b)(3)(A) of RCRA. However, EPA is clarifying this determination and seeking comment on potential refinements for certain beneficial uses. EPA is also not proposing to address the placement of CCRs in mines, or non-minefill uses of CCRs at coal mine sites in this action.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Virr, M.J.
Burning coal waste in small boilers at low emissions poses considerable problem. While larger boiler suppliers have successfully installed designs in the 40 to 80 MW range for some years, the author has been developing small automated fluid bed boiler plants for 25 years that can be applied in the range of 10,000 to 140,000 lbs/hr of steam. Development has centered on the use of an internally circulating fluid bed (CFB) boiler, which will burn waste fuels of most types. The boiler is based on the traditional D-shaped watertable boiler, with a new type of combustion chamber that enables amore » three-to-one turndown to be achieved. The boilers have all the advantages of low emissions of the large fluid boilers while offering a much lower height incorporated into the package boiler concept. Recent tests with a waste coal that had a high nitrogen content of 1.45% demonstrated a NOx emission below the federal limit of 0.6 lbs/mm Btu. Thus a NOx reduction on the order of 85% can be demonstrate by combustion modification alone. Further reductions can be made by using a selective non-catalytic reduction (SNCR) system and sulfur absorption of up to 90% retention is possible. The article describes the operation of a 30,000 lbs/hr boiler at the Fayette Thermal LLC plant. Spinheat has installed three ICFB boilers at a nursing home and a prison, which has been tested on poor-grade anthracite and bituminous coal. 2 figs.« less
PEER REVIEW SUPPORTING THE STANDARDS FOR THE MANAGEMENT OF COAL COMBUSTION WASTES PART 1 AND 2
EPA has been working on developing risk assessments to assist regulators, industry, and the public in evaluating the environmental risks associated with Fossil Fuel Combustion Waste(s) (FFCW) management/disposal in landfills, surface impoundments, other disposal procedures and b...
NASA Astrophysics Data System (ADS)
Tugov, A. N.; Ryabov, G. A.; Shtegman, A. V.; Ryzhii, I. A.; Litun, D. S.
2016-07-01
This article presents the results of the research carried out at the All-Russia Thermal Engineering Institute (VTI) aimed at using saline coal, municipal solid waste and bark waste, sunflower husk, and nesting/ manure materials from poultry farms. The results of saline coal burning experience in Troitsk and Verkhny Tagil thermal power plants (TPP) show that when switching the boiler to this coal, it is necessary to take into account its operating reliability and environmental safety. Due to increased chlorine content in saline coal, the concentration of hydrogen chloride can make over 500 mg/m3. That this very fact causes the sharp increase of acidity in sludge and the resulting damage of hydraulic ash removal system equipment at these power stations has been proven. High concentration of HCl can trigger damage of the steam superheater due to high-temperature corrosion and result in a danger of low-temperature corrosion of air heating surfaces. Besides, increased HCl emissions worsen the environmental characteristics of the boiler operation on the whole. The data on waste-to-energy research for municipal solid waste (MSW) has been generalized. Based on the results of mastering various technologies of MSW thermal processing at special plants nos. 2 and 4 in Moscow, as well as laboratory, bench, and industrial studies, the principal technical solutions to be implemented in the modern domestic thermal power plant with the installed capacity of 24 MW and MSW as the primary fuel type has been developed. The experience of the VTI in burning various kinds of organic waste—bark waste, sunflower husk, and nesting/manure materials from poultry farms—has been analyzed.
Our national energy future - The role of remote sensing
NASA Technical Reports Server (NTRS)
Schmitt, H. H.
1975-01-01
An overview of problems and opportunities in remote sensing of resources. The need for independence from foreign and precarious energy sources, availability of fossil fuel materials for other purposes (petrochemicals, fertilizer), environmental conservation, and new energy sources are singled out as the main topics. Phases of response include: (1) crisis, with reduced use of petroleum and tapping of on-shore and off-shore resources combined; (2) a transition phase involving a shift from petroleum to coal and oil shale; and (3) exploitation of renewable (inexhaustible and clean) energy. Opportunities for remote sensing in fuel production and energy conservation are discussed along with problems in identifying the spectral signatures of productive and unproductive regions. Mapping of water resources, waste heat, byproducts, and wastes is considered in addition to opportunities for international collaboration.
Geochemistry of an abandoned landfill containing coal combustion waste: Implications for remediation
Christopher Barton; Linda Paddock; Christopher Romanek; John Seaman
2001-01-01
The 488-D Ash Basin (488-DAB) is an unlined, earthen landfill containing approximately one million tons of dry ash and coal reject material at the U.S. Department of Energy's Savannah River Site, SC. The pyritic nature of the coal rejects has resulted in the formation of acidic drainage (AD), which has contributed to groundwater deterioration and threatened biota...
Christopher Barton; Lindy Paddock; Christopher Romanek; Sally Maharaj; John Seaman
2005-01-01
The 488-D Ash Basin (488-DAB) is an unlined, earthen landfill containing approximately 1 million t of dry ash and coal reject material at the U.S. Department of Energy's Savannah River Site, South Carolina. The pyritic nature of the coal rejects has resulted in the formation of acidic drainage, which has contributed to groundwater deterioration and threatened...
NASA Astrophysics Data System (ADS)
Karaca, Hüseyin; Koyunoglu, Cemil
2017-12-01
Most coal hydrogenation processes require a large quantity of hydrogen. In general, a coal derived liquid such as anthracene oil was used as a hydrogen donor solvent. Tetralin, partially hydrogenated pyrene, phenantrene and coal-derived solvents, which contain hydroaromatic compounds, are efficient solvents to donate hydrogen. In an attempt to reduce the high cost of hydrogen, part of the hydrogen was replaced by a low cost hydrogen donor solvent. This must be hydrogenated during or before the process and recycled. To reduce the cost of hydrogen donor vehicles instead of liquids recycled from the liquefaction process or several biomass types, industrial by products, liquid fractions derived from oil sands bitumen were successfully used to solubilize a coal from the past. In an attempt to reduce the high cost of hydrogen, part of the hydrogen was replaced by a low cost hydrogen donor solvent. However, when hydrogen is supplied from the hydroaromatic structures present in the solvent, the activity of coal minerals is too low to rehydrogenate the solvent in-situ. Nevertheless, a decrease of using oxygen, in addition to enhanced usage of the hydrogen supply by using various waste materials might lead to a decrease of the cost of the liquefaction procedure. So instead of using tetralin another feeding material such as biomass is becoming another solution improving hydrogen donor substances. Most of the liquefaction process were carried out in a batch reactor, in which the residence time of the liquefaction products is long enough to favour the retrogressive reactions, early studies which are related to liquefaction of coal with biomass generally focus on the synergetic effects of coal while biomass added. Early studies which are related to liquefaction of coal with biomass generally focus on the synergetic effects of coal while biomass added. Alternatively, to understand the hydrogen transfer from biomass to coal, in this study, Elbistan Lignite (EL) with manure, tea pulp and waste plastic liquefied and to understand hydrogen quantity change after liquefaction, (H/C)atomic ratio of products obtained. Due to the highest oil conversion of manure biomass and highest (H/C)atomic ratio results show manure is the favourable biomass for EL amongst the other biomass used. And liquid/solid ratio optimized. About high total conversion of oil products the optimum ratio obtained as 3/1. And also EL with manure liquefied with the w/EL ratio between 0:1 to 1:1. As a result, by thinking about the yield values obtained, the optimum waste to lignite ratio found to be 1:1.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raphaelian, L.A.; Boparai, A.S.; Schneider, J.F.
1987-01-01
Objectives of this research project were: (1) to enhance the capabilities of analyzing the complex mixtures found in coal wastes by using gas chromatography/matrix isolation infrared spectroscopy (GC/MIIR); (2) to separate, by supercritical fluid chromatography (SFC), the complex mixtures found in coal wastes into a few, less-complex mixtures so that analysis by gas chromatography (GC/MS) and GC/MIIR would be simplified. Preliminary results are presented for the mass spectra and infrared spectra of xylene isomers, gas chromatogram of 12 C/sub 2/-Napthalenes, averaged IR spectrum and a comparison of matrix isolation with light-pipe infrared spectra. A SFC chromatogram of polynuclear aromatic hydrocarbonsmore » is also presented. 2 refs., 5 figs.« less
Wang, Lei; Tsang, Daniel C W; Poon, Chi-Sun
2015-03-01
Navigational/environmental dredging of contaminated sediment conventionally requires contained marine disposal and continuous monitoring. This study proposed a green remediation approach to treat and recycle the contaminated sediment by means of stabilization/solidification enhanced by the addition of selected solid wastes. With an increasing amount of contaminated sediment (20-70%), the 28-d compressive strength of sediment blocks decreased from greater than 10MPa to slightly above 1MPa. For augmenting the cement hydration, coal fly ash was more effective than lime and ground seashells, especially at low sediment content. The microscopic and spectroscopic analyses showed varying amounts of hydration products (primarily calcium hydroxide and calcium silicate hydrate) in the presence of coal fly ash, signifying the influence of pozzolanic reaction. To facilitate the waste utilization, cullet from beverage glass bottles and bottom ashes from coal combustion and waste incineration were found suitable to substitute coarse aggregate at 33% replacement ratio, beyond which the compressive strength decreased accordingly. The mercury intrusion porosimetry analysis indicated that the increase in the total pore area and average pore diameter were linearly correlated with the decrease of compressive strength due to waste replacement. All the sediment blocks complied with the acceptance criteria for reuse in terms of metal leachability. These results suggest that, with an appropriate mixture design, contaminated sediment and waste materials are useful resources for producing non-load-bearing masonry units or fill materials for construction uses. Copyright © 2014 Elsevier Ltd. All rights reserved.
Madzivire, Godfrey; Maleka, Peane P; Vadapalli, Viswanath R K; Gitari, Wilson M; Lindsay, Robert; Petrik, Leslie F
2014-01-15
Mining of coal is very extensive and coal is mainly used to produce electricity. Coal power stations generate huge amounts of coal fly ash of which a small amount is used in the construction industry. Mining exposes pyrite containing rocks to H2O and O2. This results in the oxidation of FeS2 to form H2SO4. The acidic water, often termed acid mine drainage (AMD), causes dissolution of potentially toxic elements such as, Fe, Al, Mn and naturally occurring radioactive materials such as U and Th from the associated bedrock. This results in an outflow of AMD with high concentrations of sulphate ions, Fe, Al, Mn and naturally occurring radioactive materials. Treatment of AMD with coal fly ash has shown that good quality water can be produced which is suitable for irrigation purposes. Most of the potentially toxic elements (Fe, Al, Mn, etc) and substantial amounts of sulphate ions are removed during treatment with coal fly ash. This research endeavours to establish the fate of the radioactive materials in mine water with coal fly ash containing radioactive materials. It was established that coal fly ash treatment method was capable of removing radioactive materials from mine water to within the target water quality range for drinking water standards. The alpha and beta radioactivity of the mine water was reduced by 88% and 75% respectively. The reduced radioactivity in the mine water was due to greater than 90% removal of U and Th radioactive materials from the mine water after treatment with coal fly ash as ThO2 and UO2. No radioisotopes were found to leach from the coal fly ash into the mine water. Copyright © 2013 Elsevier Ltd. All rights reserved.
Co-combustion of tannery sludge in a commercial circulating fluidized bed boiler.
Dong, Hao; Jiang, Xuguang; Lv, Guojun; Chi, Yong; Yan, Jianhua
2015-12-01
Co-combusting hazardous wastes in existing fluidized bed combustors is an alternative to hazardous waste treatment facilities, in shortage in China. Tannery sludge is a kind of hazardous waste, considered fit for co-combusting with coal in fluidized bedboilers. In this work, co-combustion tests of tannery sludge and bituminous coal were conducted in a power plant in Jiaxing, Zhejiang province. Before that, the combustion behavior of tannery sludge and bituminous were studied by thermogravimetric analysis. Tannery sludge presented higher reactivity than bituminous coal. During the co-combustion tests, the emissions of harmful gases were monitored. The results showed that the pollutant emissions met the Chinese standard except for NOx. The Concentrations of seven trace elements (As, Cr, Cd, Ni, Cu, Pb, Mn) in three exit ash flows (bottom ash in bed, fly ash in filter, and submicrometer aerosol in flue gas) were analyzed. The results of mono-combustion of bituminous coal were compared with those of co-combustion with tannery sludge. It was found that chromium enriched in fly ash. At last, the leachability of fly ash and bottom ash was analyzed. The results showed that most species were almost equal to or below the limits except for As in bottom ashes and Cr in the fly ash of co-combustion test. The concentrations of Cr in leachates of co-combustion ashes are markedly higher than that of coal mono-combustion ashes. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Caton, J. A.; Payne, S. E.; Terracina, D. P.; Kihm, K. D.
Experiments have been completed to characterize coal-water slurry sprays from an electronically-controlled accumulator fuel injection system of a diesel engine. The sprays were injected into a pressurized chamber equipped with windows. High speed movies, fuel pressures, and needle lifts were obtained as a function of time, orifice diameter, coal loading, gas density in the chamber, and accumulator fuel pressure. For the base conditions (50% by mass coal loading, 0.4 mm diameter nozzle hole, coal-water slurry pressure of 82 MPa (12,000 psi), and a chamber density of 25 kg/m(exp 3)), the break-up time was 0.30 ms. An empirical correlation for spray tip penetration, break-up time, and initial jet velocity was developed. For the conditions of this study, the spray tip penetration and initial jet velocity were 15% greater for coal-water slurry than for diesel fuel or water. Results of this study and the correlation are specific to the tested coal-water slurry and are not general for other coal-water slurry fuels.
López-Vilariño, J M; Fernández-Martínez, G; Turnes-Carou, I; Muinategui-Lorenzo, S; López-Mahía, P; Prada-Rodríguez, D
2003-06-01
Behavior and contents of fluorine and chlorine in coal feedstock, combustion wastes (slag and fly ash) and emissions were studied in five conventional coal fired power plants and in a fluidized bed coal power plant. The halide levels found in the used coal were quite low. Mass balances and emission factors were calculated. The volatility of these elements makes the gaseous emission the main target between the residues. The influence of combustion parameters is not clearly established. Several analytical techniques (ion selective electrodes, capillary electrophoresis and ion chromatography) are employed to determinate the halide concentration in the different samples taken in the power plants studied (coal, slag, fly ash and flue gases).
Effect of Flue Gas Desulfurization Waste on Corn Plants
USDA-ARS?s Scientific Manuscript database
Flue gas desulfurization gypsum (FGDG) is a by-product of conversion of sulfur dioxide into solid waste from coal combustion power generation plant. This by-product is rich in calcium, magnesium, and contains various other essential plant nutrients. The beneficial use of application of this waste as...
Hazardous Waste Cleanup: Chemical Waste Management of NJ in Newark, New Jersey
Chemical Waste Management of NJ is located at 100 Lister Avenue in Newark, New Jersey. This section of Newark has been industrial since the late 1800s when the marshlands of the Passaic River were filled in with a mixture of coal ash, construction debris
EPA is amending its regulations under the Resource Conservation and Recovery Act (RCRA) by listing as hazardous seven wastes generated during the production, recovery, and refining of coke by-products produced from coal.
Moist caustic leaching of coal
Nowak, Michael A.
1994-01-01
A process for reducing the sulfur and ash content of coal. Particulate coal is introduced into a closed heated reaction chamber having an inert atmosphere to which is added 50 mole percent NaOH and 50 mole percent KOH moist caustic having a water content in the range of from about 15% by weight to about 35% by weight and in a caustic to coal weight ratio of about 5 to 1. The coal and moist caustic are kept at a temperature of about 300.degree. C. Then, water is added to the coal and caustic mixture to form an aqueous slurry, which is washed with water to remove caustic from the coal and to produce an aqueous caustic solution. Water is evaporated from the aqueous caustic solution until the water is in the range of from about 15% by weight to about 35% by weight and is reintroduced to the closed reaction chamber. Sufficient acid is added to the washed coal slurry to neutralize any remaining caustic present on the coal, which is thereafter dried to produce desulfurized coal having not less than about 90% by weight of the sulfur present in the coal feed removed and having an ash content of less than about 2% by weight.
Clark, D.W.
1995-01-01
A potential hydrologic effect of surface mining of coal in southeastern Montana is a change in the quality of ground water. Dissolved-solids concen- trations in water in spoils aquifers generally are larger than concentrations in water in the coal aquifers they replaced; however, laboratory experiments have indicated that concentrations can decrease if ground water flows from coal-mine spoils to coal. This study was conducted to determine if decreases in concentrations occur onsite and, if so, which geochemical processes caused the decreases. Solid-phase core samples of spoils, unmined over- burden, and coal, and ground-water samples were collected from 16 observation wells at two mine areas. In the Big Sky Mine area, changes in ground- water chemistry along a flow path from an upgradient coal aquifer to a spoils aquifer probably were a result of dedolomitization. Dissolved-solids concentrations were unchanged as water flowed from a spoils aquifer to a downgradient coal aquifer. In the West Decker Mine area, dissolved-solids concentrations apparently decreased from about 4,100 to 2,100 milligrams per liter as water moved along an inferred flow path from a spoils aquifer to a downgradient coal aquifer. Geochemical models were used to analyze changes in water chemistry on the basis of results of solid-phase and aqueous geochemical characteristics. Geochemical processes postulated to result in the apparent decrease in dissolved-solids concentrations along this inferred flow path include bacterial reduction of sulfate, reverse cation exchange within the coal, and precipitation of carbonate and iron-sulfide minerals.
Zhu, Li; Ji, Jiayou; Wang, Shulin; Xu, Chenxi; Yang, Kun; Xu, Man
2018-09-01
Al 2 O 3 -NaA zeolite composite hollow fiber membranes were successfully fabricated via hydrothermal synthesis by using industrial solid waste coal fly ash and porous Al 2 O 3 hollow fiber supports. The as-synthesized Al 2 O 3 -NaA zeolite composite hollow fiber membranes were then characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The hollow fiber membranes were used to remove lead ions (Pb(II), 50 mg L -1 ) from synthetic wastewater with a removal efficiency of 99.9% at 0.1 MPa after 12 h of filtration. This study showed that the Al 2 O 3 -NaA zeolite composite hollow fiber membranes (the pore size of the membrane was about 0.41 nm in diameter) synthesized from coal fly ash could be efficiently used for treating low concentration Pb(II) wastewater. It recycled solid waste coal fly ash not only to solve its environment problems, but also can produce high-value Al 2 O 3 -NaA zeolite composite hollow fiber membranes for separation application in treating wastewater containing Pb(II). Copyright © 2018 Elsevier Ltd. All rights reserved.
Huang, Huan-Fang; Xing, Xin-Li; Zhang, Ze-Zhou; Qi, Shi-Hua; Yang, Dan; Yuen, Dave A; Sandy, Edward H; Zhou, Ai-Guo; Li, Xiao-Qian
2016-10-01
Mining activities are among the major culprits of the wide occurrences of soil and water pollution by PAHs in coal district, which have resulted in ecological fragilities and health risk for local residents. Sixteen PAHs in multimedia environment from the Heshan coal district of Guangxi, South China, were measured, aiming to investigate the contamination level, distribution and possible sources and to estimate the potential health risks of PAHs. The average concentrations of 16 PAHs in the coal, coal gangue, soil, surface water and groundwater were 5114.56, 4551.10, 1280.12 ng g(-1), 426.98 and 381.20 ng L(-1), respectively. Additionally, higher soil and water PAH concentrations were detected in the vicinities of coal or coal gangue dump. Composition analysis, isomeric ratio, Pearson correlation analysis and principal component analysis were performed to diagnose the potential sources of PAHs in different environmental matrices, suggesting the dominant inputs of PAHs from coal/coal combustion and coal gangue in the soil and water. Soil and water guidelines and the incremental lifetime risk (ICLR) were used to assess the health risk, showing that soil and water were heavily contaminated by PAHs, and mean ICLRcoal/coal-gangue and mean ICLRsoil were both significantly higher than the acceptable levels (1 × 10(-4)), posing high potential carcinogenic risk to residents, especially coal workers. This study highlights the environmental pollution problems and public health concerns of coal mining, particularly the potential occupational health hazards of coal miners exposed in Heshan.
Potassic zeolites from Brazilian coal ash for use as a fertilizer in agriculture.
Flores, Camila Gomes; Schneider, Helena; Marcilio, Nilson Romeu; Ferret, Lizete; Oliveira, João Carlos Pinto
2017-12-01
Brazilian coal has an ash content ranging from 30 to 50% by weight. Consequently, its use in coal-fired thermoelectric for power production generates a lot of waste. The construction sector is the largest consumer of coal ash, but it cannot absorb the entire amount generated. Thus, other applications for coal ash should be studied in aim to optimize the use of this industrial waste. This research had as focus to synthesize potassic zeolite from of the coal ash into on potassium fertilizer for the grown wheat plant. In this work, it was used a subbituminous coal from Mina do Leão (RS, Brazil) presenting 48.7% ash content on a dry basis. Concerning the synthesis of potassic zeolite, it was adopted the conventional method of hydrothermal treatment with potassium hydroxide. A schedule of experiments was conducted in order to define the optimum condition of zeolite synthesis that was then used an alkaline solution of 5M KOH with a reaction time of 24h at 150°C. According to this procedure, it was obtained a zeolite with a single crystalline phase, identified through X-ray diffraction as Merlinoite. Subsequently, it was performed a set of tests using potassic zeolite asa fertilizer for plants in a greenhouse. The synthesized potassic zeolite showed a good potential for its use as fertilizer in agriculture. Copyright © 2017 Elsevier Ltd. All rights reserved.
Supersonic coal water slurry fuel atomizer
Becker, Frederick E.; Smolensky, Leo A.; Balsavich, John
1991-01-01
A supersonic coal water slurry atomizer utilizing supersonic gas velocities to atomize coal water slurry is provided wherein atomization occurs externally of the atomizer. The atomizer has a central tube defining a coal water slurry passageway surrounded by an annular sleeve defining an annular passageway for gas. A converging/diverging section is provided for accelerating gas in the annular passageway to supersonic velocities.
The Wireless Sensor Network (WSN) Based Coal Ash Impoundments Safety Monitoring System
NASA Astrophysics Data System (ADS)
Sun, E. J.; Nieto, A.; Zhang, X. K.
2017-01-01
Coal ash impoundments are inevitable production of the coal-fired power plants. All coal ash impoundments in North Carolina USA that tested for groundwater contamination are leaking toxic heavy metals and other pollutants. Coal ash impoundments are toxic sources of dangerous pollutants that pose a danger to human and environmental health if the toxins spread to adjacent surface waters and drinking water wells. Coal ash impoundments failures accidents resulted in serious water contamination along with toxic heavy metals. To improve the design and stability of coal ash impoundments, the Development of a Coal Ash Impoundment Safety Monitoring System (CAISM) was proposed based on the implementation of a wireless sensor network (WSN) with the ability to monitor the stability of coal ash impoundments, water level, and saturation levels on-demand and remotely. The monitoring system based on a robust Ad-hoc network could be adapted to different safety conditions.
Reconnaissance of water quality at a US Department of Energy site, Pinellas County, Florida
Fernandez, Mario
1985-01-01
Sanitary and industrial wastes at the Pinellas Plant of the U.S. Department of Energy, prior to December 1982, were combined, treated, and disposed of by ponding and spray irrigation on a 10-acre tract within the plant site. Prior to 1972, the treated wastes were released to surface drainage features. An electromagnetic survey for ground conductivity was made to identify changes in the ground conductivity that may be due to the spray irrigation disposal operations. Water samples from four test wells drilled into the surficial aquifer and the two disposal ponds and bottom material from the ponds were analyzed for priority and nonpriority pollutants, total organic carbon, volatile organic carbon, herbicides, insecticides, trace metals, nutrients, and major constituents. Overall, concentrations of constituents in the water samples were (1) less than the detection limits, (2) within U.S. Environmental Protection Agency quality criteria for water, or (3) within the range of results for a designated background water-quality site. Concentrations of 12 priority pollutants were found to be considerably above detection limits. Concentrations of these compounds, mostly coal-tar derivatives, ranged from 220 to 5,500 micrograms per kilogram; the detection limit for these compounds is 10 micrograms per kilogram. Included in these compounds were anthracene, pyrenes, and chrysene. (USGS)
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-12
... of Appalachian Surface Coal Mining Operations under the Clean Water Act, National Environmental... Appalachian Surface Coal Mining Operations under the Clean Water Act, National Environmental Policy Act, and... coal mining operations under the Clean Water Act, National Environmental Policy Act, and the...
Effect of Water Invasion on Outburst Predictive Index of Low Rank Coals in Dalong Mine
Jiang, Jingyu; Cheng, Yuanping; Mou, Junhui; Jin, Kan; Cui, Jie
2015-01-01
To improve the coal permeability and outburst prevention, coal seam water injection and a series of outburst prevention measures were tested in outburst coal mines. These methods have become important technologies used for coal and gas outburst prevention and control by increasing the external moisture of coal or decreasing the stress of coal seam and changing the coal pore structure and gas desorption speed. In addition, techniques have had a significant impact on the gas extraction and outburst prevention indicators of coal seams. Globally, low rank coals reservoirs account for nearly half of hidden coal reserves and the most obvious feature of low rank coal is the high natural moisture content. Moisture will restrain the gas desorption and will affect the gas extraction and accuracy of the outburst prediction of coals. To study the influence of injected water on methane desorption dynamic characteristics and the outburst predictive index of coal, coal samples were collected from the Dalong Mine. The methane adsorption/desorption test was conducted on coal samples under conditions of different injected water contents. Selective analysis assessed the variations of the gas desorption quantities and the outburst prediction index (coal cutting desorption index). Adsorption tests indicated that the Langmuir volume of the Dalong coal sample is ~40.26 m3/t, indicating a strong gas adsorption ability. With the increase of injected water content, the gas desorption amount of the coal samples decreased under the same pressure and temperature. Higher moisture content lowered the accumulation desorption quantity after 120 minutes. The gas desorption volumes and moisture content conformed to a logarithmic relationship. After moisture correction, we obtained the long-flame coal outburst prediction (cutting desorption) index critical value. This value can provide a theoretical basis for outburst prediction and prevention of low rank coal mines and similar occurrence conditions of coal seams. PMID:26161959
The effect of coal bed dewatering and partial oxidation on biogenic methane potential
Jones, Elizabeth J.P.; Harris, Steve H.; Barnhart, Elliott P.; Orem, William H.; Clark, Arthur C.; Corum, Margo D.; Kirshtein, Julie D.; Varonka, Matthew S.; Voytek, Mary A.
2013-01-01
Coal formation dewatering at a site in the Powder River Basin was associated with enhanced potential for secondary biogenic methane determined by using a bioassay. We hypothesized that dewatering can stimulate microbial activity and increase the bioavailability of coal. We analyzed one dewatered and two water-saturated coals to examine possible ways in which dewatering influences coal bed natural gas biogenesis by looking at differences with respect to the native coal microbial community, coal-methane organic intermediates, and residual coal oxidation potential. Microbial biomass did not increase in response to dewatering. Small Subunit rRNA sequences retrieved from all coals sampled represented members from genera known to be aerobic, anaerobic and facultatively anaerobic. A Bray Curtis similarity analysis indicated that the microbial communities in water-saturated coals were more similar to each other than to the dewatered coal, suggesting an effect of dewatering. There was a higher incidence of long chain and volatile fatty acid intermediates in incubations of the dewatered coal compared to the water-saturated coals, and this could either be due to differences in microbial enzymatic activities or to chemical oxidation of the coal associated with O2 exposure. Dilute H2O2 treatment of two fractions of structural coal (kerogen and bitumen + kerogen) was used as a proxy for chemical oxidation by O2. The dewatered coal had a low residual oxidation potential compared to the water-saturated coals. Oxidation with 5% H2O2 did increase the bioavailability of structural coal, and the increase in residual oxidation potential in the water saturated coals was approximately equivalent to the higher methanogenic potential measured in the dewatered coal. Evidence from this study supports the idea that coal bed dewatering could stimulate biogenic methanogenesis through partial oxidation of the structural organics in coal once anaerobic conditions are restored.
Recycling of coal combustion wastes.
Oz, Derya; Koca, Sabina; Koca, Huseyin
2009-05-01
The separation of unburned carbon from coal-fired power plant bottom ashes was conducted in order to increase the possibility of the recycling of coal combustion wastes. A two-stage flotation technique was used for this study. In the rougher flotation experiments the amounts of collector, dispersant and frother, pulp density, pH, particle size distribution, flotation time and flotation temperature were tested as variables. After rougher flotation experiments, at optimum conditions, the carbon content of the concentrate increased from 13.85 to 51.54% at a carbon recovery of 54.54%. Under the same conditions, the carbon content was reduced to 4.54% at a weight yield of over 80% in the tailings fraction. This fraction meets the industrial specifications and can be utilized as a cement additive. After the cleaner flotation experiment the carbon content of the product was enhanced to 64.81% with a 52.16% carbon recovery. This fraction can be blended back into the coal feed to the power plant boilers.
Lin, Li; Dong, Lei; Meng, Xiaoyang; Li, Qingyun; Huang, Zhuo; Li, Chao; Li, Rui; Yang, Wenjun; Crittenden, John
2018-07-01
After the impoundment of the Three Gorges Reservoir (TGR), the hydrological situation of the reservoir has changed greatly. The concentration and distribution of typical persistent organic pollutants in water and sediment have also changed accordingly. In this study, the concentration, distribution and potential sources of 16 polycyclic aromatic hydrocarbons (PAHs) and 6 phthalic acid esters (PAEs) during the water drawdown and impoundment periods were investigated in water and sediment from the TGR. According to our results, PAHs and PAEs showed temporal and spatial variations. The mean ΣPAH and ΣPAE concentrations in water and sediment were both higher during the water impoundment period than during the water drawdown period. The water samples from the main stream showed larger ΣPAH concentration fluctuations than those from tributaries. Both the PAH and PAE concentrations meet the Chinese national water environmental quality standard (GB 3838-2002). PAH monomers with 2-3 rings and 4 rings were dominant in water, and 4-ring and 5-6-ring PAHs were dominant in sediment. Di-n-butyl phthalate (DBP) and di-2-ethylhexyl phthalate (DEHP) were the dominant PAE pollutants in the TGR. DBP and DEHP had the highest concentrations in water and sediment, respectively. The main source of PAHs in water from the TGR was petroleum and emissions from coal and biomass combustion, whereas the main sources of PAHs in sediments included coal and biomass combustion, petroleum, and petroleum combustion. The main source of PAEs in water was domestic waste, and the plastics and heavy chemical industries were the main sources of PAEs in sediment. Copyright © 2017. Published by Elsevier B.V.
Roberts, David A; Paul, Nicholas A; Cole, Andrew J; de Nys, Rocky
2015-07-01
Macroalgae can be grown in industrial waste water to sequester metals and the resulting biomass used for biotechnological applications. We have previously cultivated the freshwater macroalga Oedogonium at a coal-fired power station to treat a metal-contaminated effluent from that facility. We then produced biochar from this biomass and determined the suitability of both the biomass and the biochar for soil amelioration. The dried biomass of Oedogonium cultivated in the waste water contained several elements for which there are terrestrial biosolids criteria (As, Cd, Cr, Cu, Pb, Ni, Se and Zn) and leached significant amounts of these elements into solution. Here, we demonstrate that these biomass leachates impair the germination and growth of radishes as a model crop. However, the biochar produced from this same biomass leaches negligible amounts of metal into solution and the leachates support high germination and growth of radishes. Biochar produced at 750 °C leaches the least metal and has the highest recalcitrant C content. When this biochar is added to a low-quality soil it improves the retention of nutrients (N, P, Ca, Mg, K and Mo) from fertilizer in the soil and the growth of radishes by 35-40%. Radishes grown in the soils amended with the biochar have equal or lower metal contents than radishes grown in soil without biochar, but much higher concentrations of essential trace elements (Mo) and macro nutrients (P, K, Ca and Mg). The cultivation of macroalgae is an effective waste water bioremediation technology that also produces biomass that can be used as a feedstock for conversion to biochar for soil amelioration. Copyright © 2015 Elsevier Ltd. All rights reserved.
Berge, Nicole D; Li, Liang; Flora, Joseph R V; Ro, Kyoung S
2015-09-01
Although there are numerous studies suggesting hydrothermal carbonization is an environmentally advantageous process for transformation of wastes to value-added products, a systems level evaluation of the environmental impacts associated with hydrothermal carbonization and subsequent hydrochar combustion has not been conducted. The specific objectives of this work are to use a life cycle assessment approach to evaluate the environmental impacts associated with the HTC of food wastes and the subsequent combustion of the generated solid product (hydrochar) for energy production, and to understand how parameters and/or components associated with food waste carbonization and subsequent hydrochar combustion influence system environmental impact. Results from this analysis indicate that HTC process water emissions and hydrochar combustion most significantly influence system environmental impact, with a net negative GWP impact resulting for all evaluated substituted energy-sources except biomass. These results illustrate the importance of electricity production from hydrochar particularly when it is used to offset coal-based energy sources. HTC process water emissions result in a net impact to the environment, indicating a need for developing appropriate management strategies. Results from this analysis also highlight a need for additional exploration of liquid and gas-phase composition, a better understanding of how changes in carbonization conditions (e.g., reaction time and temperature) influence metal and nutrient fate, and the exploration of liquid-phase treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shea, Q.
2006-07-15
Quin Shea explores the need for power generated with coal and the advanced technologies that will generate that power more efficiently and cleanly in the future. The article considers the air and waste challenges of using coal, including progress toward reducing emissions of SO{sub 2}, NOx, and mercury; efforts to address CO{sub 2}, including voluntary programs like the Climate Challenge, Power Partners, and the Asia-Pacific Partnership on Clean Development and Climate; and the regulation and beneficial use of coal-combustion byproducts (e.g., fly ash, bottom ash, flue gas desulfurization materials, boiler slag). 17 refs.
Sapienza, R.S.; Slegeir, W.A.R.
1983-09-30
This invention relates to a method of producing a crushable coal and reducing the metallic values in coal represented by Si, Al, Ca, Na, K, and Mg, which comprises contacting a coal/water mix in a weight ratio of from about 4:1 to 1:6 in the presence of CO/sub 2/ at pressures of about 100 to 1400 psi and a minimum temperature of about 15/sup 0/C for a period of about one or more hours to produce a treated coal/water mix. In the process the treated coal/water mix has reduced values for Ca and Mg of up to 78% over the starting mix and the advantageous CO/sub 2/ concentration is in the range of about 3 to 30 g/L. Below 5 g/L CO/sub 2/ only small effects are observed and above 30 g/L no further special advantages are achieved. The coal/water ratios in the range 1:2 to 2:1 are particularly desirable and such ratios are compatible with coal water slurry applications.
Ecological effects of contaminants in McCoy Branch, 1989-1990
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryon, M.G.
1992-01-01
The 1984 Hazardous and Solid Waste Amendments to the Resource Conservation and Recovery Act (RCRA) required assessment of all current and former solid waste management units. Such a RCRA Facility Investigation (RFI) was required of the Y-12 Plant for their Filled Coal Ash Pond on McCoy Branch. Because the disposal of coal ash in the ash pond, McCoy Branch, and Rogers Quarry was not consistent with the Tennessee Water Quality Act, several remediation steps were implemented or planned for McCoy Branch to address disposal problems. The McCoy Branch RFI plan included provisions for biological monitoring of the McCoy Branch watershed.more » The objectives of the biological monitoring were to: (1) document changes in biological quality of McCoy Branch after completion of a pipeline and after termination of all discharges to Rogers Quarry, (2) provide guidance on the need for additional remediation, and (3) evaluate the effectiveness of implemented remedial actions. The data from the biological monitoring program will also determine if the classified uses, as identified by the State of Tennessee, of McCoy Branch are being protected and maintained. This report discusses results from toxicity monitoring of snails fish community assessment, and a Benthic macroinvertebrate community assessment.« less
Implementation of Paste Backfill Mining Technology in Chinese Coal Mines
Chang, Qingliang; Zhou, Huaqiang; Bai, Jianbiao
2014-01-01
Implementation of clean mining technology at coal mines is crucial to protect the environment and maintain balance among energy resources, consumption, and ecology. After reviewing present coal clean mining technology, we introduce the technology principles and technological process of paste backfill mining in coal mines and discuss the components and features of backfill materials, the constitution of the backfill system, and the backfill process. Specific implementation of this technology and its application are analyzed for paste backfill mining in Daizhuang Coal Mine; a practical implementation shows that paste backfill mining can improve the safety and excavation rate of coal mining, which can effectively resolve surface subsidence problems caused by underground mining activities, by utilizing solid waste such as coal gangues as a resource. Therefore, paste backfill mining is an effective clean coal mining technology, which has widespread application. PMID:25258737
Implementation of paste backfill mining technology in Chinese coal mines.
Chang, Qingliang; Chen, Jianhang; Zhou, Huaqiang; Bai, Jianbiao
2014-01-01
Implementation of clean mining technology at coal mines is crucial to protect the environment and maintain balance among energy resources, consumption, and ecology. After reviewing present coal clean mining technology, we introduce the technology principles and technological process of paste backfill mining in coal mines and discuss the components and features of backfill materials, the constitution of the backfill system, and the backfill process. Specific implementation of this technology and its application are analyzed for paste backfill mining in Daizhuang Coal Mine; a practical implementation shows that paste backfill mining can improve the safety and excavation rate of coal mining, which can effectively resolve surface subsidence problems caused by underground mining activities, by utilizing solid waste such as coal gangues as a resource. Therefore, paste backfill mining is an effective clean coal mining technology, which has widespread application.
The use of Mössbauer spectroscopy in environmental research
NASA Astrophysics Data System (ADS)
Waanders, F. B.; Silva, Luis F. O.; Saikia, Binoy K.
2017-11-01
The impact that mining has on the environment is becoming an ever increasing problem all over the world. South Africa, Brazil and India are main producers of various valuable resources such as for example iron ore, platinum, gold and coal, of which coal and platinum mining will be discussed in this paper. Dumping of ash, waste and discards, result in the formation of acid mine drainage (AMD) due to the high sulphur content of the coal and the waste products. The main Fe-S-bearing minerals in the coals investigated were pyrite, jarosite and ferrous sulphate, a weathering product of pyrite. In the ash produced due to combustion or gasification of the coal, the main Fe-constituents are Fe2+,3+ glass (≈ 30%) and hematite (70%). The amorphous phase of the sample was composed mainly of SiO2 and Al2O3 with trace element inclusions of Hg, Ti, Cd and As. The soil, sediment and overburden in the coal mining areas contain pyrite as Fe-S-mineral and also ferrous sulphate as weathering product, with illite the main clay mineral. From laboratory leaching products of coal and ash, sulphur in the form of SO4^{2-}, was found to be one of the most leached ions with a concentration ranging between 100-1000 ppm. The amount of Fe leached out from the ash samples was between 2-5 ppm, but the Fe-leachability depends on the pH, with higher amounts leached out at pH ≤ 1.5. Magnetite losses, to the amount of about 1kg per tonne of magnetite used, occur during the dense medium separation process (DMS) used in cleaning the coal, which also reports in the waste product. South Africa is the largest producer of platinum and smelting of the ore can lead to various forms of pollution. Magnetite formation in the 2-stage furnace process is used as an indicator of the effectiveness of the reduction and the Fe2+ and Fe3+ ratio is used to monitor the process. In the flash furnace the ratio is 2-6, whilst in the electric furnace it is ≤0.02. If not monitored closely a large amount of nickel loss will occur if sent to the waste dump. Mössbauer spectroscopy was used to identify the Fe-species and the results were augmented by High Resolution-Transmission Electron microscopy (HR-TEM), Field Emission-Scanning Electron Microscopy (FE-SEM)/EDS, X-Ray Diffraction (XRD) and ICP-EOS results.
TREATMENT OF METAL-LADEN HAZARDOUS WASTES WITH ADVANCED CLEAN COAL TECHNOLOGY BY-PRODUCTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
James T. Cobb, Jr.
2003-09-12
Metal-laden wastes can be stabilized and solidified using advanced clean coal technology by-products (CCTBs)--fluid bed combustor ash and spray drier solids. These utility-generated treatment chemicals are available for purchase through brokers, and commercial applications of this process are being practiced by treaters of metal-laden hazardous waste. A complex of regulations governs this industry, and sensitivities to this complex has discouraged public documentation of treatment of metal-laden hazardous wastes with CCTBs. This report provides a comprehensive public documentation of laboratory studies that show the efficacy of the stabilization and solidification of metal-laden hazardous wastes--such as lead-contaminated soils and sandblast residues--through treatmentmore » with CCTBs. It then describes the extensive efforts that were made to obtain the permits allowing a commercial hazardous waste treater to utilize CCTBs as treatment chemicals and to install the equipment required to do so. It concludes with the effect of this lengthy process on the ability of the treatment company to realize the practical, physical outcome of this effort, leading to premature termination of the project.« less
Mercury in municipal solid wastes and New Jersey mercury prevention and reduction program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erdogan, H.; Stevenson, E.
1994-12-31
Mercury is a very toxic heavy metal which accumulates in the brain causing neurological damages involving psychasthenic and vegetative syndrome. At high exposure levels it causes behavioral and personality changes, loss of memory and insomnia. Long-term exposure or exposure during pregnancy to mercury or mercury compounds can permanently damage the kidney and fetus. In addition to potential effects on human health, mercury poisoning can also affect other living organisms. Mercury is different than other heavy metals. It consistently biomagnifies and bioaccumulates within the aquatic food chain. Global sources of mercury release are both natural and anthropogenic. Natural sources include volatilizationmore » of gaseous-mercury iron soils ana rocks, volcanic releases, evaporation from the ocean and other water bodies. Anthropogenic sources are fuel and coal combustion, mining, smelting, manufacturing activities, disposal of sludge, pesticides, animal and food waste, and incineration of municipal solid waste. Worldwide combustion of municipal solid waste is the second largest source of atmospheric emission of mercury. In New Jersey, incineration of solid waste is the largest source of atmospheric emission of mercury. The New Jersey Department of Environmental Protection and Energy (NJDEPE) has developed a comprehensive program to control and prevent emission of mercury resulting from combustion municipal solid waste.« less
Banerjee, Soumya; Joshi, S R; Mandal, Tamal; Halder, Gopinath
2017-01-01
A microbial treatment of Cr 6+ contaminated wastewater with a chromium reducing bacteria isolated from coal mine area was investigated. In a series of batch study metal removal was executed under different parametric conditions which include pH (2-7), temperature (20-50 °C), initial Cr 6+ concentration (1-100 mg/L), substrate utilization and its overall effect on biomass generation. Impact of oxygen availability was checked at different agitation speed and its role on the remedial process. Liquid phase reduction of Cr 6+ was measured in terms of substrate reduction and total biomass yield. The bacterium species isolated was able to tolerate Cr 6+ over a wide range from 1 to 100 mg/L before it reached minimum inhibition concentration. Apart from Cr 6+ , the bacterial isolate showed tolerance towards Fe, As, Cu, Ag, Zn, Mn, Mg and Pb. Removal mechanism adopted by the bacterium recommended that it employed accumulation of Cr 6+ as Cr 3+ both within and outside the cell. Classical Monod equation was used to determine the biokinetics of the bacterial isolate along with the interference of metal ion concentration and substrate utilization. Cr 6+ removal was found prominent even in bimetallic solutions. The bacterial isolate was confirmed to be Rhodococcus erythopolis by 16s rRNA molecular characterization. Thus the bacterial isolate obtained from the coal mine area proved to be a potential agent for microbial remediation of Cr 6+ laden waste water. Copyright © 2016 Elsevier Ltd. All rights reserved.
Microbial production of natural gas from coal and organic-rich shale
Orem, William
2013-01-01
Natural gas is an important component of the energy mix in the United States, producing greater energy yield per unit weight and less pollution compared to coal and oil. Most of the world’s natural gas resource is thermogenic, produced in the geologic environment over time by high temperature and pressure within deposits of oil, coal, and shale. About 20 percent of the natural gas resource, however, is produced by microorganisms (microbes). Microbes potentially could be used to generate economic quantities of natural gas from otherwise unexploitable coal and shale deposits, from coal and shale from which natural gas has already been recovered, and from waste material such as coal slurry. Little is known, however, about the microbial production of natural gas from coal and shale.
Apparatus and method for feeding coal into a coal gasifier
Bissett, Larry A.; Friggens, Gary R.; McGee, James P.
1979-01-01
This invention is directed to a system for feeding coal into a gasifier operating at high pressures. A coal-water slurry is pumped to the desired pressure and then the coal is "dried" prior to feeding the coal into the gasifier by contacting the slurry with superheated steam in an entrained bed dryer for vaporizing the water in the slurry.
Process for forming coal compacts and product thereof
Gunnink, Brett; Kanunar, Jayanth; Liang, Zhuoxiong
2002-01-01
A process for forming durable, mechanically strong compacts from coal particulates without use of a binder is disclosed. The process involves applying a compressive stress to a particulate feed comprising substantially water-saturated coal particles while the feed is heated to a final compaction temperature in excess of about 100.degree. C. The water present in the feed remains substantially in the liquid phase throughout the compact forming process. This is achieved by heating and compressing the particulate feed and cooling the formed compact at a pressure sufficient to prevent water present in the feed from boiling. The compacts produced by the process have a moisture content near their water saturation point. As a result, these compacts absorb little water and retain exceptional mechanical strength when immersed in high pressure water. The process can be used to form large, cylindrically-shaped compacts from coal particles (i.e., "coal logs") so that the coal can be transported in a hydraulic coal log pipeline.
EPA office of solid waste (OSW) report to Congress
DOE Office of Scientific and Technical Information (OSTI.GOV)
Derkics, D.
1996-12-31
An EPA Office of Solid Waste Report to Congress is presented in outline form. The following topics are discussed: special waste chronology; statutory hazardous waste exemption; 1988 report to Congress findings; 1993 regulatory determination; current (1996), regulatory status of fossil fuel combustion wastes; co-management study; Electric Power Research Institute (EPRI) activities; EPRI coal ash field study sites; oil ash total combustion; fossil fuel combustion; current EPA activities; and Federal Register Notice.
Cannon, M.R.
1984-01-01
The Circle West coal tracts in McCone County, Montana, contain about 460 million tons of recoverable coal reserves. Estimates of coal reserves for the tract are based predominantly on the S coal bed, which averages about 16 ft in thickness. About 175 million tons, or 38%, of the recoverable coal is Federally owned and has been identified for potential lease sale. A hydrologic study has been conducted in the potential lease area to describe existing hydrologic systems and to assess potential effects of surface coal mining on local water resources. Geohydrologic data collected from wells and drill holes indicate that shallow aquifers exist in sandstone and coal beds of the Tongue River Member of the Fort Union Formation (Paleocene age). These shallow aquifers generally have small values of hydraulic conductivity (0.1 to 380 ft/day) and typically yield from 2 to 20 gal/min to stock and domestic wells. Where coal is extremely fractured or the thickness of saturated sandstone is large, some wells can yield in excess of 70 gal/min. Chemical analyses indicate that most shallow aquifers contain a sodium sulfate bicarbonate type water. Surface water resources of the area consist of intermittent streamflow in parts of the Nelson and Timber Creek basins plus a large network of reservoirs. The reservoirs provide a large part of the water supply for area livestock and irrigation. Water quality data for Nelson and Timber Creeks indicate that the water generally is a sodium sulfate type and has a large concentration (181 to 6,960 mg/L) of dissolved solids. Mining of the S coal bed in the Circle West coal tracts would permanently remove shallow coal and sandstone aquifers, resulting in the loss of shallow stock wells. Mining would destroy livestock reservoirs, alter runoff characteristics of Nelson Creek, and temporarily lower water levels in shallow aquifers near the mine. Leaching of soluble constituents from mine spoils may cause a long-term degradation of the quality of water in shallow aquifers in and near the coal tracts. Some of the effects on local water supplies could be mitigated by development of alternative water resources in deeper aquifers such as the Tullock aquifer of Paleocene age and the Fox Hills-lower Hell Creek aquifer of Late Cretaceous age. (Author 's abstract)
Damgaard, Anders; Riber, Christian; Fruergaard, Thilde; Hulgaard, Tore; Christensen, Thomas H
2010-07-01
Incineration of municipal solid waste is a debated waste management technology. In some countries it is the main waste management option whereas in other countries it has been disregarded. The main discussion point on waste incineration is the release of air emissions from the combustion of the waste, but also the energy recovery efficiency has a large importance. The historical development of air pollution control in waste incineration was studied through life-cycle-assessment modelling of eight different air pollution control technologies. The results showed a drastic reduction in the release of air emissions and consequently a significant reduction in the potential environmental impacts of waste incineration. Improvements of a factor 0.85-174 were obtained in the different impact potentials as technology developed from no emission control at all, to the best available emission control technologies of today (2010). The importance of efficient energy recovery was studied through seven different combinations of heat and electricity recovery, which were modelled to substitute energy produced from either coal or natural gas. The best air pollution control technology was used at the incinerator. It was found that when substituting coal based energy production total net savings were obtained in both the standard and toxic impact categories. However, if the substituted energy production was based on natural gas, only the most efficient recovery options yielded net savings with respect to the standard impacts. With regards to the toxic impact categories, emissions from the waste incineration process were always larger than those from the avoided energy production based on natural gas. The results shows that the potential environmental impacts from air emissions have decreased drastically during the last 35 years and that these impacts can be partly or fully offset by recovering energy which otherwise should have been produced from fossil fuels like coal or natural gas. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
Solid Waste from the Operation and Decommissioning of Power Plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Marilyn Ann; D'Arcy, Daniel; Lapsa, Melissa Voss
This baseline report examines the solid waste generated by the U.S. electric power industry, including both waste streams resulting from electricity generation and wastes resulting from the decommissioning of power plants. Coal and nuclear plants produce large volumes of waste during electricity generation, and this report describes the policies and procedures for handling these materials. Natural gas and oil-fired power plants face similar waste challenges. Renewables considered in this baseline report include hydropower, wind and solar.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pradhan, V.R.; Lee, L.K.; Stalzer, R.H.
1995-12-31
The development of Catalytic Multi-Stage Liquefaction (CMSL) at HTI has focused on both bituminous and sub-bituminous coals using laboratory, bench and PDU scale operations. The crude oil equivalent cost of liquid fuels from coal has been curtailed to about $30 per barrel, thus achieving over 30% reduction in the price that was evaluated for the liquefaction technologies demonstrated in the late seventies and early eighties. Contrary to the common belief, the new generation of catalytic multistage coal liquefaction process is environmentally very benign and can produce clean, premium distillates with a very low (<10ppm) heteroatoms content. The HTI Staff hasmore » been involved over the years in process development and has made significant improvements in the CMSL processing of coals. A 24 month program (extended to September 30, 1995) to study novel concepts, using a continuous bench scale Catalytic Multi-Stage unit (30kg coal/day), has been initiated since December, 1992. This program consists of ten bench-scale operations supported by Laboratory Studies, Modelling, Process Simulation and Economic Assessments. The Catalytic Multi-Stage Liquefaction is a continuation of the second generation yields using a low/high temperature approach. This paper covers work performed between October 1994- August 1995, especially results obtained from the microautoclave support activities and the bench-scale operations for runs CMSL-08 and CMSL-09, during which, coal and the plastic components for municipal solid wastes (MSW) such as high density polyethylene (HDPE)m, polypropylene (PP), polystyrene (PS), and polythylene terphthlate (PET) were coprocessed.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-01
..., open-loop biomass, geothermal energy, solar energy, small irrigation power, municipal solid waste... electricity produced from closed-loop biomass, open-loop biomass, geothermal energy, solar energy, small... electricity produced from the qualified energy resources of wind, closed-loop biomass, geothermal energy, and...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-03
... electricity from closed-loop biomass, open-loop biomass, geothermal energy, solar energy, small irrigation..., geothermal energy, solar energy, small irrigation power, municipal solid waste, qualified hydropower... from the qualified energy resources of wind, closed-loop biomass, geothermal energy, and solar energy...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-11
..., open-loop biomass, geothermal energy, solar energy, small irrigation power, municipal solid waste... electricity produced from closed-loop biomass, open-loop biomass, geothermal energy, solar energy, small... electricity produced from the qualified energy resources of wind, closed-loop biomass, geothermal energy, and...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-19
..., open-loop biomass, geothermal energy, solar energy, small irrigation power, municipal solid waste... electricity produced from closed-loop biomass, open-loop biomass, geothermal energy, solar energy, small... electricity produced from the qualified energy resources of wind, closed-loop biomass, geothermal energy, and...
MIGRATION OF HAZARDOUS SUBSTANCES THROUGH SOIL
Factorlally designed column and batch leaching studies were conducted on samples of various Industrial wastes, flue gas desulfurlzatlon sludges, and coal fly ash to determine the effect of leaching solution composition on release of hazardous substances from waste samples, and t...
30 CFR 75.501 - Permissible electric face equipment; coal seams above water table.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Permissible electric face equipment; coal seams..., DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Electrical Equipment-General § 75.501 Permissible electric face equipment; coal seams above water table. [Statutory...
30 CFR 75.501 - Permissible electric face equipment; coal seams above water table.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Permissible electric face equipment; coal seams..., DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Electrical Equipment-General § 75.501 Permissible electric face equipment; coal seams above water table. [Statutory...
30 CFR 75.501 - Permissible electric face equipment; coal seams above water table.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Permissible electric face equipment; coal seams..., DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Electrical Equipment-General § 75.501 Permissible electric face equipment; coal seams above water table. [Statutory...
30 CFR 75.501 - Permissible electric face equipment; coal seams above water table.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Permissible electric face equipment; coal seams..., DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Electrical Equipment-General § 75.501 Permissible electric face equipment; coal seams above water table. [Statutory...
Treatment of Produced Water from Carbon Sequestration Sites for Water Reuse and Mineral Recovery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Renew, Jay; Jenkins, Kristen; Bhagavatula, Abhijit
Southern Research along with Advanced Resources International, Inc. (ARI), Heartland Technology Partners, LLC (Heartland), New Logic Research, Inc. (New Logic), and Mr. Michael N. DiFilippo, Consultant developed a concept for an on-site strategy and design for management of produced water from CO 2 sequestration sites for maximum water reuse. When CO 2 is injected into deep saline aquifers, it may be necessary to produce water from the reservoir to reduce reservoir pressure. The New Logic Research, vibratory shear enhanced process (VSEP) membrane technology, and Heartland Technology Partners, low momentum-high turbulence (LM-HT) evaporation technology was selected for evaluation for treating thismore » produced water from a 530 MW natural gas combined cycle (NGCC) power plant by utilizing waste heat from the plant to drive the evaporation process. The technology was also evaluated for application to a coal-fired power plant in lieu of the NGCC power plant. The results from the project show that the application of the proposed technology to the 530 MW NGCC power plant scenario could be feasible. The results indicate that formation water TDS has a very large impact on the technical and economic feasibility of the process. One advantage of formations with low TDS water is that the VSEP membrane can be utilized to pre-concentrate the produced water upstream of the LM-HT. The results indicate that a significant portion of the exhaust gas from the NGCC power plant will have to be utilized to provide waste heat for the LM-HT evaporator; however, less will be required with low-TDS formation water. The CAPEX costs for LM-HT for all three formations (97.8USD to 122.7USD MM/year) and VSEP plus LM-HT (106.6USD MM/year) for the Keg River formation is high in cost but lower than all technology compared including crystallization, VSEP plus crystallization, FO plus LM-HT, VCE plus LM-HT, and VCE plus crystallization. The OPEX for the LM-HT for all three formations (6.33USD to 7.97USD MM/year) and VSEP plus LM-HT (13.29USD MM/year) for the Keg River formation is lower than crystallization, VSEP plus crystallization, FO plus LM-HT, and FO plus crystallization. Only VCE plus LM-HT and VCE plus crystallization have a comparable OPEX costs to LM-HT for all three formation and VSEP plus LM-HT for the Keg River formation. The coal-fired power plant comparison showed that it is not feasible to apply the technology to that type of fossil fuel plant. Even utilizing 20% of the flue gas, produced water could only be treated from sequestration of approximately 6% to 9% of the CO 2 produced by the coal-fired power plant. This technology operates better when applied to a NGCC power plant due to the higher temperature of the exhaust gas, approximately 1,149 oF/621 oC versus 650 oF/343 oC for flue gas at a coal fired-power plant. The high heat content of the gas turbine significantly improves system performance compared to cooler coal-fired flue gas. The results indicate that a successful S/S process could potentially be achieved with only the minimal addition of binder (4%-10% of CaO or PC). The addition of a SO 4 2- to the S/S process can enhance Ba 2+ immobilization. However, it is noted that metal or other contaminant stabilization could be more difficult based on the particular contaminant content of the produced water. Stabilization additives may be required on a case by case basis. The capital costs and operational costs for a S/S are difficult to estimate due to few large-scale installations of this process. However, the capital costs appears to be fairly small while the operational costs can be significant due to the cost of pozzolanic agents. A review of available literature on the concentrations of valuable metals in produced water from the upstream oil and gas industry indicates that Li + may be present at concentrations that would make recovery attractive. However, more research is needed on Li + concentrations in produced water from CO 2 sequestrations sites.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-02-01
This Supplement to AP-42 addresses pollutant-generating activity from Bituminous and Subbituminous Coal Combustion; Anthracite Coal Combustion; Fuel Oil Combustion; Natural Gas Combustion; Wood Waste Combustion in Boilers; Lignite Combustion; Waste Oil Combustion: Stationary Gas Turbines for Electricity Generation; Heavy-duty Natural Gas-fired Pipeline Compressor Engines; Large Stationary Diesel and all Stationary Dual-fuel engines; Natural Gas Processing; Organic Liquid Storage Tanks; Meat Smokehouses; Meat Rendering Plants; Canned Fruits and Vegetables; Dehydrated Fruits and Vegetables; Pickles, Sauces and Salad Dressing; Grain Elevators and Processes; Cereal Breakfast Foods; Pasta Manufacturing; Vegetable Oil Processing; Wines and Brandy; Coffee Roasting; Charcoal; Coal Cleaning; Frit Manufacturing; Sandmore » and Gravel Processing; Diatomite Processing; Talc Processing; Vermiculite Processing; paved Roads; and Unpaved Roads. Also included is information on Generalized Particle Size Distributions.« less
Feasible Recycling of Industrial Waste Coal Gangue for Preparation of Mullite Based Ceramic Proppant
NASA Astrophysics Data System (ADS)
Li, Guomin; Ma, Haiqiang; Tian, Yuming; Wang, Kaiyue; Zhou, Yi; Wu, Yaqiao; Zou, Xinwei; Hao, Jianying; Bai, Pinbo
2017-09-01
Industrial waste coal gangue was successfully utilized to prepare the mullite-based ceramic proppants. The experiments involved the pelletizing technology of proppant through intensive mixer and following the sintering process under different temperatures. The crystalline phase, microstructure, density and breakage ratio of the proppants were investigated. The results showed that with the increasing of sintering temperature, the crystalline phases were transformed to rod-like mullite, which formed the cross-linked structure, improving the densification of proppants. Consequently, the breakage ratio under the closure pressure of 35 MPa exhibited declining trend and reached the minimum value of 6.8% at 1450 °C. Owing to the easy preparation, feasible design, low cost and moderate breakage ratio, the mullite-based ceramic proppant prepared by coal gangue and bauxite is promising candidate for fracturing proppants in future applications.
Impact of socioeconomic status on municipal solid waste generation rate.
Khan, D; Kumar, A; Samadder, S R
2016-03-01
The solid waste generation rate was expected to vary in different socioeconomic groups due to many environmental and social factors. This paper reports the assessment of solid waste generation based on different socioeconomic parameters like education, occupation, income of the family, number of family members etc. A questionnaire survey was conducted in the study area to identify the different socioeconomic groups that may affect the solid waste generation rate and composition. The average waste generated in the municipality is 0.41 kg/capita/day in which the maximum waste was found to be generated by lower middle socioeconomic group (LMSEG) with average waste generation of 0.46 kg/capita/day. Waste characterization indicated that there was no much difference in the composition of wastes among different socioeconomic groups except ash residue and plastic. Ash residue is found to increase as we move lower down the socioeconomic groups with maximum (31%) in lower socioeconomic group (LSEG). The study area is a coal based city hence application of coal and wood as fuel for cooking in the lower socioeconomic group is the reason for high amount of ash content. Plastic waste is maximum (15%) in higher socioeconomic group (HSEG) and minimum (1%) in LSEG. Food waste is a major component of generated waste in almost every socioeconomic group with maximum (38%) in case of HSEG and minimum (28%) in LSEG. This study provides new insights on the role of various socioeconomic parameters on generation of household wastes. Copyright © 2016 Elsevier Ltd. All rights reserved.
Technology for advanced liquefaction processes: Coal/waste coprocessing studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cugini, A.V.; Rothenberger, K.S.; Ciocco, M.V.
1995-12-31
The efforts in this project are directed toward three areas: (1) novel catalyst (supported and unsupported) research and development, (2) study and optimization of major operating parameters (specifically pressure), and (3) coal/waste coprocessing. The novel catalyst research and development activity has involved testing supported catalysts, dispersed catalysts, and use of catalyst testing units to investigate the effects of operating parameters (the second area) with both supported and unsupported catalysts. Several supported catalysts were tested in a simulated first stage coal liquefaction application at 404{degrees}C during this performance period. A Ni-Mo hydrous titanate catalyst on an Amocat support prepared by Sandiamore » National laboratories was tested. Other baseline experiments using AO-60 and Amocat, both Ni-Mo/Al{sub 2}O{sub 3} supported catalysts, were also made. These experiments were short duration (approximately 12 days) and monitored the initial activity of the catalysts. The results of these tests indicate that the Sandia catalyst performed as well as the commercially prepared catalysts. Future tests are planned with other Sandia preparations. The dispersed catalysts tested include sulfated iron oxide, Bayferrox iron oxide (iron oxide from Miles, Inc.), and Bailey iron oxide (micronized iron oxide from Bailey, Inc.). The effects of space velocity, temperature, and solvent-to-coal ratio on coal liquefaction activity with the dispersed catalysts were investigated. A comparison of the coal liquefaction activity of these catalysts relative to iron catalysts tested earlier, including FeOOH-impregnated coal, was made. These studies are discussed.« less
American power conference: Proceedings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1994-01-01
The first volume of this conference contains papers on the following topics: (1) Controls, monitoring, and expert systems (Harnessing microprocessor revolution for a more competitive power industry; Plant control--Upgrades; Neural network applications); (2) Diversification and globalization (Electric utility diversification/globalization--Panel; Private power in developing countries); (3) Environment and clean air (Clean Air compliance costs; Site selection for power stations and related facilities; Electric utility trace substance emissions; Solid waste disposal and commercial use; Precipitators/fabric filters; and Effect of flow modifications on fisheries and water quality); (4) Generation--Fuel options equipment (Alternate fuels; Advances in fuel cells for electric power applications; Secondary containmentmore » and seismic requirements for petrochemical facilities; Clean coal technology demonstration; Advanced energy systems; Hydropower); (5) Nuclear operations options (Radioactive waste management and disposal; Off normal conditions; Advanced light water reactors--15 years after TMI; Structural dynamic analyses for nuclear power plants); (6) Retrofit, betterment, repowering maintenance (Project management; Improving competitiveness through process re-engineering; Central stations; Water and wastewater treatment); (7) System planning, operation demand maintenance (Transmission system access; Stability; Systems planning); (8) Transmission and distribution (Transformers; Relaying for system protection; Managing EMF effects); and (9) Education (Power engineering). 155 papers have been processed separately for inclusion on the data base.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, X.; Matsumura, Y.; Stenberg, J.
Spruce wood charcoal, macadamia shell charcoal, coal activated carbon, and coconut shell activated carbon catalyze the gasification of organic compounds in supercritical water. Feedstocks studied in this paper include glycerol, glucose, cellobiose, whole biomass feedstocks (depithed bagasse liquid extract and sewage sludge), and representative Department of Defense (DoD) wastes (methanol, methyl ethyl ketone, ethylene glycol, acetic acid, and phenol). The effects of temperature, pressure, reactant concentration, weight hourly space velocity, and the type of catalyst on the gasification of glucose are reported. Complete conversion of glucose (22% by weight in water) to a hydrogen-rich synthesis gas was realized at amore » weight hourly space velocity (WHSV) of 22.2 h{sup {minus}1} in supercritical water at 600 C, 34.5 MPa. Complete conversions of the whole biomass feeds were also achieved at the same temperature and pressure. The destruction efficiencies for the representative DoD wastes were also high. Deactivation of the carbon catalyst was observed after 4 h of operation without swirl in the entrance region of the reactor, but the carbon gasification efficiency remained near 100% for more than 6 h when a swirl generator was employed in the entrance of the reactor.« less
Davis, R.E.; Dodge, K.A.
1986-01-01
Batch-mixing experiments using spoils water and coal from the West Decker and Big Sky Mines were conducted to determine possible chemical changes in water moving from coal-mine spoils through a coal aquifer. The spoils water was combined with air-dried and oven-dried chunks of coal and air-dried and oven-dried crushed coal at a 1:1 weight ratio, mixed for 2 hr, and separated after a total contact time of 24 hr. The dissolved-solids concentration in water used in the experiments decreased an average 210 mg/liter (5-10%). Other chemical changes included general decreases in the concentrations of magnesium, potassium, and bicarbonate, and general increases in the concentrations of barium and boron. The magnitude of the changes increased as the surface area of the coal increased. The quantity of extractable cations and exchangeable cations on the post-mixing coal was larger than on the pre-mixing coal. Equilibrium and mass-transfer relations indicate that adsorption reactions or ion-exchange and precipitation reactions, or both, probably are the major reactions responsible for the chemical changes observed in the experiments. (Authors ' abstract)
NASA Astrophysics Data System (ADS)
Caton, J. A.; Payne, S. E.; Terracina, D. P.; Kihm, K. D.
Experiments have been complete to characterize coal-water slurry sprays from a electronically-controlled accumulator fuel injection system of diesel engine. The sprays were injected into a pressurized chamber equipped with windows. High speed movies, fuel pressures and needle lifts were obtained as a function of time, orifice diameter, coal loading, gas density in the chamber, and accumulator fuel pressure. For the base conditions 50% (by mass) coal loading, 0.4 mm diameter nozzle hole, coal-water slurry pressure of 82 MPa (12,000 psi), and a chamber density of 25 kg/m(exp 3), the break-up time was 0.30 ms. An empirical correlation for both spray tip penetration and initial jet velocity was developed. For the conditions of this study, the spray tip penetration and initial jet velocity were 15% greater for coal-water slurry than for diesel fuel or water. Cone angles of the sprays were dependent on the operating conditions and fluid, as well as the time and locations of the measurement. The time-averaged cone angle for the base case conditions was 13.6 degrees. Results of this study and the correlation are specific to the tested coal-water slurry and are not general for other coal-water slurry fuels.
Impact of solid discharges from coal usage in the Southwest.
Jones, D G; Straughan, I R
1978-12-01
The Southwestern region of the United States is extremely wealthy in low sulfur coal resources which must be eventually utilized in response to national energy balance priorities. Fly ash and scrubber sludge can be safely disposed of using properly managed techniques to ensure that any potential impact from elements such as boron, molybdenum, or selenium is rendered insignificant. Alternative methods of solids utilization are presently being developed. Fly ash is presently being marketed commercially as an additive for concrete manufacture. Successful experiments have been completed to demonstrate the manufacture of commercial-grade wallboard from scrubber sludge. Also, greenhouse studies and field experiments have been conducted to demonstrate increased yields of selected crops grown on typical soils amended with fly ash in amounts ranging from 2% to 8%, by weight. These studies also indicate that barium and strontium may be good monitoring indices for determining atmospheric deposition of fly ash, due to their concentration ratios in soil and vegetation samples. Further studies are being conducted to confirm encouraging irrigation and crop-yield data obtained with fly ash amended soils. Finally, the composition of many fly ashes and soils are similar in the Southwest, and there are no anticipated solid discharges from coal usage which cannot be rendered insignificant with proper management of existing and emerging methods of treatment. Compared with the water availability impact of coal usage in the Southwest, the impact of solid waste discharges are insignificant.
PAH emissions from coal combustion and waste incineration.
Hsu, Wei Ting; Liu, Mei Chen; Hung, Pao Chen; Chang, Shu Hao; Chang, Moo Been
2016-11-15
The characteristics of PAHs that are emitted by a municipal waste incinerator (MWI) and coal-fired power plant are examined via intensive sampling. Results of flue gas sampling reveal the potential for PAH formation within the selective catalytic reduction (SCR) system of a coal-fired power plant. In the large-scale MWI, the removal efficiency of PAHs achieved with the pilot-scaled catalytic filter (CF) exceeds that achieved by activated carbon injection with a bag filter (ACI+BF) owing to the effective destruction of gas-phase contaminants by a catalyst. A significantly lower PAH concentration (1640ng/g) was measured in fly ash from a CF module than from an ACI+BF system (5650ng/g). Replacing the ACI+BF system with CF technology would significantly reduce the discharge factor (including emission and fly ash) of PAHs from 251.6 to 77.8mg/ton-waste. The emission factors of PAHs that are obtained using ACI+BF and the CF system in the MWI are 8.05 and 7.13mg/ton, respectively. However, the emission factor of MWI is significantly higher than that of coal-fired power plant (1.56mg/ton). From the perspective of total environmental management to reduce PAH emissions, replacing the original ACI+BF process with a CF system is expected to reduce environmental impact thereof. Copyright © 2016 Elsevier B.V. All rights reserved.
Komnitsas, Kostas; Modis, Kostas
2006-12-01
The present paper aims to map As and Zn contamination and assess the risk for agricultural soils in a wider disposal site containing wastes derived from coal beneficiation. Geochemical data related to environmental studies show that the waste characteristics favor solubilisation and mobilization of inorganic contaminants and in some cases the generation of acidic leachates. 135 soil samples were collected from a 34 km(2) area and analysed by using geostatistics under the maximum entropy principle in order to produce risk assessment maps and estimate the probability of soil contamination. In addition, the present paper discusses the main issues related to risk assessment in wider mining and waste disposal sites in order to assist decision makers in selecting feasible rehabilitation schemes.
Origin and influence of coal mine drainage on streams of the United States
Powell, J.D.
1988-01-01
Degradation of water quality related to oxidation of iron disulfide minerals associated with coal is a naturally occurring process that has been observed since the late seventeenth century, many years before commencement of commercial coal mining in the United States. Disturbing coal strata during mining operations accelerates this natural deterioration of water quality by exposing greater surface areas of reactive minerals to the weathering effects of the atmosphere, hydrosphere, and biosphere. Degraded water quality in the temperate eastern half of the United States is readily detected because of the low mineralization of natural water. Maps are presented showing areas in the eastern United States where concentrations of chemical constituents in water affected by coal mining (pH, dissolved sulfate, total iron, total manganese) exceed background values and indicate effects of coal mining. Areas in the East most affected by mine drainage are in western Pennsylvania, southern Ohio, western Maryland, West Virginia, southern Illinois, western Kentucky, northern Missouri, and southern Iowa. Effects of coal mining on water quality in the more arid western half of the United States are more difficult to detect because of the high degree of mineralization of natural water. Normal background concentrations of constituents are not useful in evaluating effects of coal mine drainage on streams in the more arid West. Three approaches to reduce the effects of coal mining on water quality are: (1) exclusion of oxygenated water from reactive minerals, (2) neutralization of the acid produced, (3) retardation of acid-producing bacteria population in spoil material, by application of detergents that do not produce byproducts requiring disposal. These approaches can be used to help prevent further degradation of water quality in streams by future mining. ?? 1988 Springer-Verlag New York Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kasmer, O.; Ulusay, R.
One of the major problems in surface mining of coal is the stability of disposed overburden materials. Geotechnical considerations are thus very important in rational planning for disposal, reclamation, treatment, and utilization of mine waste material. The subject of this study is the stability of spoil piles at open pit coal mines located in the Central Anatolia, Turkey. The coal is produced from two adjacent open pits. While a large portion of the spoil piles dumped at the Central Pit has experienced slope failure, no spoil pile instability has been experienced at the South Pit. This article outlines the resultsmore » of field and laboratory investigations to describe the mechanism of the spoil pile failure in the Central Pit and the geotechnical design considerations for the spoil piles at the South Pit based on the experience gained from the previous spoil failures. Limit equilibrium analysis carried out for the large-scale spoil failure indicated that deep-seated sliding along the interface between underclay and dragline spoil piles and rotational slip through the overburden spoil material may be all occurring simultaneously as water migrates through these areas. Sensitivity analyses revealed that spoil pile instability is not expected at the South Pit when the current spoil placement method is used as long as the generation of high water pressures in the spoil piles is not permitted. Comparisons between the results of finite element analysis and long-term monitoring data also confirmed the results of sensitivity analyses and indicated a vertical deformation associated with compaction of the spoil material.« less
Managing Scarce Water Resources in China's Coal Power Industry.
Zhang, Chao; Zhong, Lijin; Fu, Xiaotian; Zhao, Zhongnan
2016-06-01
Coal power generation capacity is expanding rapidly in the arid northwest regions in China. Its impact on water resources is attracting growing concerns from policy-makers, researchers, as well as mass media. This paper briefly describes the situation of electricity-water conflict in China and provides a comprehensive review on a variety of water resources management policies in China's coal power industry. These policies range from mandatory regulations to incentive-based instruments, covering water withdrawal standards, technological requirements on water saving, unconventional water resources utilization (such as reclaimed municipal wastewater, seawater, and mine water), water resources fee, and water permit transfer. Implementing these policies jointly is of crucial importance for alleviating the water stress from the expanding coal power industry in China.
Managing Scarce Water Resources in China's Coal Power Industry
NASA Astrophysics Data System (ADS)
Zhang, Chao; Zhong, Lijin; Fu, Xiaotian; Zhao, Zhongnan
2016-06-01
Coal power generation capacity is expanding rapidly in the arid northwest regions in China. Its impact on water resources is attracting growing concerns from policy-makers, researchers, as well as mass media. This paper briefly describes the situation of electricity-water conflict in China and provides a comprehensive review on a variety of water resources management policies in China's coal power industry. These policies range from mandatory regulations to incentive-based instruments, covering water withdrawal standards, technological requirements on water saving, unconventional water resources utilization (such as reclaimed municipal wastewater, seawater, and mine water), water resources fee, and water permit transfer. Implementing these policies jointly is of crucial importance for alleviating the water stress from the expanding coal power industry in China.
NASA Astrophysics Data System (ADS)
Feng, Qing; Lu, Li
2018-01-01
In the process of coal mining, destruction and pollution of groundwater in has reached an imminent time, and groundwater is not only related to the ecological environment, but also affect the health of human life. Similarly, coal and water conflict is still one of the world's problems in large scale coal mining regions. Based on this, this paper presents a dynamic multi-objective optimization model to deal with the conflict of the coal and water in the coal group with multiple subordinate collieries and arrive at a comprehensive arrangement to achieve environmentally friendly coal mining strategy. Through calculation, this paper draws the output of each subordinate coal mine. And on this basis, we continue to adjust the environmental protection parameters to compare the coal production at different collieries at different stages under different attitude of the government. At last, the paper conclude that, in either case, it is the first arrangement to give priority to the production of low-drainage, high-yield coal mines.
An overview of metals recovery from thermal power plant solid wastes.
Meawad, Amr S; Bojinova, Darinka Y; Pelovski, Yoncho G
2010-12-01
Thermal power plants (TPPs) that burn fossil fuels emit several pollutants linked to the environmental problems of acid rain, urban ozone, and the possibility of global climate change. As coal is burned in a power plant, its noncombustible mineral content is partitioned into bottom ash, which remains in the furnace, and fly ash, which rises with flue gases. Two other by-products of coal combustion air-pollution control technologies are flue gas desulfurization (FGD) wastes and fluidized-bed combustion (FBC) wastes. This paper analyzed and summarized the generation, characteristics and application of TPP solid wastes and discussed the potential effects of such solid wastes on the environment. On this basis, a review of a number of methods for recovery of metals from TPP solid wastes was made. They usually contain a quantity of valuable metals and they are actually a secondary resource of metals. By applying mineral processing technologies and hydrometallurgical and biohydrometallurgical processes, it is possible to recover metals such as Al, Ga, Ge, Ca, Cd, Fe, Hg, Mg, Na, Ni, Pb, Ra, Th, V, Zn, etc., from TPP solid wastes. Recovery of metals from such wastes and its utilization are important not only for saving metal resources, but also for protecting the environment. Copyright © 2010 Elsevier Ltd. All rights reserved.
Processing of converter sludges on the basis of thermal-oxidative coking with coals
NASA Astrophysics Data System (ADS)
Kuznetsov, S. N.; Shkoller, M. B.; Protopopov, E. V.; Kazimirov, S. A.; Temlyantsev, M. V.
2017-09-01
The paper deals with the solution of an important problem related to the recycling of converter sludge. High moisture and fine fractional composition of waste causes the application of their deep dehydration and lumping. To reduce environmental emissions the non-thermal method of dehydration is considered - adsorption-contact drying. As a sorbent, the pyrolysis product of coals from the Kansko-Achinsky basin - brown coal semi-coke (BSC) obtained by the technology “Thermokoks”. Experimental data on the dehydration of high-moisture wastes with the help of BSC showed high efficiency of the selected material. The lumping of the dried converter dust was carried out by thermo-chemical coking with coals of grades GZh (gas fat coal) and Zh (fat coal). As a result, an iron-containing product was obtained - ferrocoke, which is characterized by almost complete reduction of iron oxides, as well as zinc transition into a vapor state, and is removed with gaseous process products. Based on the results of the experimental data a process basic diagram of the utilization of converter sludge to produce ferrocoke was, which can be effectively used in various metallurgical aggregates, for example, blast furnaces, converters and electric arc furnaces. In the basic technological scheme heat generated by ferrocoke cooling and the energy of the combustion products after the separation of zinc in the gas turbine plant will be used.
Chemical Technology Division, Annual technical report, 1991
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-03-01
Highlights of the Chemical Technology (CMT) Division's activities during 1991 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for fluidized-bed combustion and coal-fired magnetohydrodynamics; (3) methods for treatment of hazardous and mixed hazardous/radioactive waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; (5) processes for separating and recovering transuranic elements from nuclear waste streams; (6) recovery processes for discharged fuel and the uranium blanket in the Integral Fast Reactor (IFR); (7) processes for removalmore » of actinides in spent fuel from commercial water-cooled nuclear reactors and burnup in IFRs; and (8) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also conducts basic research in catalytic chemistry associated with molecular energy resources; chemistry of superconducting oxides and other materials of interest with technological application; interfacial processes of importance to corrosion science, catalysis, and high-temperature superconductivity; and the geochemical processes involved in water-rock interactions occurring in active hydrothermal systems. In addition, the Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the technical programs at Argonne National Laboratory (ANL).« less
Chemical Technology Division, Annual technical report, 1991
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-03-01
Highlights of the Chemical Technology (CMT) Division`s activities during 1991 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for fluidized-bed combustion and coal-fired magnetohydrodynamics; (3) methods for treatment of hazardous and mixed hazardous/radioactive waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; (5) processes for separating and recovering transuranic elements from nuclear waste streams; (6) recovery processes for discharged fuel and the uranium blanket in the Integral Fast Reactor (IFR); (7) processes for removalmore » of actinides in spent fuel from commercial water-cooled nuclear reactors and burnup in IFRs; and (8) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also conducts basic research in catalytic chemistry associated with molecular energy resources; chemistry of superconducting oxides and other materials of interest with technological application; interfacial processes of importance to corrosion science, catalysis, and high-temperature superconductivity; and the geochemical processes involved in water-rock interactions occurring in active hydrothermal systems. In addition, the Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the technical programs at Argonne National Laboratory (ANL).« less
Manufacturing and Application of Metalized Ore-Coal Pellets in Synthetic Pig Iron Smelting
NASA Astrophysics Data System (ADS)
Nokhrina, O. I.; Rozhikhina, I. D.; Khodosov, I. E.
2016-08-01
The article presents research data on manufacturing and application of metalized ore-coal pellets in synthetic pig iron smelting. A technology of pellets metallization by means of solid-phase reduction of iron from oxides using hematite-magnetite iron ore and low-caking coal as raw materials is described. Industrial testing of replacing 10, 15, and 20% of waste metal by the metalized ore-coal pellets in the coreless induction furnace IST-1 is described. Optimal temperature and time conditions of feeding the metalized pellets into the furnace in smelting pig iron of SCh-40-60 grade are determined.
Use of sulfide-containing liquors for removing mercury from flue gases
Nolan, Paul S.; Downs, William; Bailey, Ralph T.; Vecci, Stanley J.
2006-05-02
A method and apparatus for reducing and removing mercury in industrial gases, such as a flue gas, produced by the combustion of fossil fuels, such as coal, adds sulfide ions to the flue gas as it passes through a scrubber. Ideally, the source of these sulfide ions may include at least one of: sulfidic waste water, kraft caustic liquor, kraft carbonate liquor, potassium sulfide, sodium sulfide, and thioacetamide. The sulfide ion source is introduced into the scrubbing liquor as an aqueous sulfide species. The scrubber may be either a wet or dry scrubber for flue gas desulfurization systems.
Use of sulfide-containing liquors for removing mercury from flue gases
Nolan, Paul S.; Downs, William; Bailey, Ralph T.; Vecci, Stanley J.
2003-01-01
A method and apparatus for reducing and removing mercury in industrial gases, such as a flue gas, produced by the combustion of fossil fuels, such as coal, adds sulfide ions to the flue gas as it passes through a scrubber. Ideally, the source of these sulfide ions may include at least one of: sulfidic waste water, kraft caustic liquor, kraft carbonate liquor, potassium sulfide, sodium sulfide, and thioacetamide. The sulfide ion source is introduced into the scrubbing liquor as an aqueous sulfide species. The scrubber may be either a wet or dry scrubber for flue gas desulfurization systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barton, A.R. Jr.; Redwine, J.C.
1985-03-01
Major areas of concern to power companies include the leaching of both solid wastes and stored coal, land subsidence and sinkhole development, and seepage away from all types of impoundments. These groundwater considerations can produce substantial increases in the cost of generating electricity. The leaching of fly ash, bottom ash, coal piles, and other materials has recently developed into an area of major environmental concern. Federal, state, and local regulations require various degrees of leachate monitoring. Land subsidence and sinkhole development can adversely affect power-generating facilities and frequently result in substantial property losses. Seepage from impoundments of all sorts (formore » example, ash ponds or hydroelectric facilities) may result in substantial water losses, lost generation, reduced stability of structures, and in extreme cases, abandonment or failure of dikes and dams. The groundwater manual is organized into three volumes. Volume 1 explains hydrogeologic concepts basic to understanding the occurrence, availability, and importance of underground waters and aquifers. It also contains a glossary of terms on subsurface hydrology and discusses such topics as the hydrologic cycle, groundwater quality in the 12 major US groundwater regions, and groundwater regulation. (ACR)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mele, L.M.; Prodan, P.F.
1983-04-01
Hydrologic data were collected and analyzed for three coal refuse disposal sites in southern Illinois. The disposal sites were associated with underground mines and consisted of piles of coarse waste (gob) and slurry areas where fine waste rejected from coal washing was deposited. Prereclamation data were available for the Superior washer site in Macoupin County and the New Kathleen site in Perry County. Post-reclamation data were available for the Staunton 1 site in Macoupin County and the New Kathleen site. Data analyzed from each phase (i.e., pre- or post-reclamation) were limited to one year. Storm event runoff coefficients were calculatedmore » for each site. Average runoff coefficients were compared for sites within the same reclamation phase to determine the effects of topographical parameters such as gob pile slope and percentage of drainage basin covered by the gob pile. Average runoff coefficients were then compared for pre- and post-reclamation data. Multiple regression analyses were performed on rainfall-runoff data for each site to determine the significance of independent variables other than rainfall in determining runoff. A generalized regression equation corrected data for topographical differences and included only those independent variables that were significant at all sites. Regression coefficients were compared for pre- and post-reclamation sites. The results of rainfall-runoff analysis indicate that the runoff coefficient increases because of reclamation. It is hypothesized that this effect is due to the placement of a soil cover that is less permeable than gob or slurry and occurs despite reduction in slope and the establishment of vegetation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bardhan, S.; Watson, M.; Dick, W.A.
2008-07-15
Large quantities of organic materials such as animal manures, yard trimmings, and biosolids are produced each year. Beneficial use options for them are often limited, and composting has been proposed as a way to better manage these organic materials. Similarly, burning of coal created 125 million tons of coal combustion products (CCP) in the United States in 2006. An estimated 53 million tons of CCP were reused, whereas the remainder was deposited in landfills. By combining CCP and composted organic materials (COM), we were able to create soilless plant growth mixes with physicochemical conditions that can support excellent plant growth.more » An additional benefit is the conservation of natural raw materials, such as peat, which is generally used for making soilless mixes. Experimental mixes were formulated by combining CCP and COM at ratios ranging from 2:8 to 8:2 (vol/vol), respectively. Water content at saturation for the created mixes was 63% to 72%, whereas for the commercial control, it was 77%. pH values for the best performing mixes ranged between 5.9 and 6.8. Electrical conductivity and concentrations of required plant nutrient were also within plant growth recommendations for container media. Significantly (P < 0.0001) higher plant biomass growth (7%-130%) was observed in the experimental mixes compared with a commercial mix. No additional fertilizers were provided during the experiment, and reduced fertilization costs can thus accrue as an added benefit to the grower. In summary, combining CCP and COM, derived from source materials often viewed as wastes, can create highly productive plant growth mixes.« less
Park, Jin Hee; Li, Xiaofang; Edraki, Mansour; Baumgartl, Thomas; Kirsch, Bernie
2013-06-01
Coal mining wastes in the form of spoils, rejects and tailings deposited on a mine lease can cause various environmental issues including contamination by toxic metals, acid mine drainage and salinity. Dissolution of salt from saline mine spoil, in particular, during rainfall events may result in local or regional dispersion of salts through leaching or in the accumulation of dissolved salts in soil pore water and inhibition of plant growth. The salinity in coal mine environments is from the geogenic salt accumulations and weathering of spoils upon surface exposure. The salts are mainly sulfates and chlorides of calcium, magnesium and sodium. The objective of the research is to investigate and assess the source and mobility of salts and trace elements in various spoil types, thereby predicting the leaching behavior of the salts and trace elements from spoils which have similar geochemical properties. X-ray diffraction analysis, total digestion, sequential extraction and column experiments were conducted to achieve the objectives. Sodium and chloride concentrations best represented salinity of the spoils, which might originate from halite. Electrical conductivity, sodium and chloride concentrations in the leachate decreased sharply with increasing leaching cycles. Leaching of trace elements was not significant in the studied area. Geochemical classification of spoil/waste defined for rehabilitation purposes was useful to predict potential salinity, which corresponded with the classification from cluster analysis based on leaching data of major elements. Certain spoil groups showed high potential salinity by releasing high sodium and chloride concentrations. Therefore, the leaching characteristics of sites having saline susceptible spoils require monitoring, and suitable remediation technologies have to be applied.
Water resources activities in Kentucky, 1986
Faust, R. J.
1986-01-01
The U.S. Geological Survey, Water Resources Division, conducts three major types of activities in Kentucky in order to provide hydrologic information and understanding needed for the best management of Kentucky 's and the Nation 's water resources. These activities are: (1) Data collection and dissemination; (2) Water-resources appraisals (interpretive studies); and (3) Research. Activities described in some detail following: (1) collection of surface - and groundwater data; (2) operation of stations to collect data on water quality, atmospheric deposition, and sedimentation; (3) flood investigations; (4) water use; (5) small area flood hydrology; (6) feasibility of disposal of radioactive disposal in deep crystalline rocks; (7) development of a groundwater model for the Louisville area; (8) travel times for streams in the Kentucky River Basin; (9) the impact of sinkholes and streams on groundwater flow in a carbonate aquifer system; (10) sedimentation and erosion rates at the Maxey Flats Radioactive Waste Burial site; and (11) evaluation of techniques for evaluating the cumulative impacts of mining as applied to coal fields in Kentucky. (Lantz-PTT)
Turney, G.L.; Goerlitz, D.F.
1989-01-01
Gas Works Park, in Seattle, Washington, is located on the site of a coal and oil gasification plant that ceased operation in 1956. During operation, many types of wastes, including coal, tar, and oil, accumulated on site. The park soil is presently (1986) contaminated with compounds such as polynuclear aromatic hydrocarbons, volatile organic compounds, trace metals, and cyanide. Analyses of water samples from a network of observation wells in the park indicate that these compounds are also present in the groundwater. Polynuclear aromatic hydrocarbons and volatile organic compounds were identified in groundwater samples in concentrations as large as 200 mg/L. Concentrations of organic compounds were largest where groundwater was in contact with a nonaqueous phase liquid in the soil. Concentrations in groundwater were much smaller where no nonaqueous phase liquid was present, even if the groundwater was in contact with contaminated soils. This condition is attributed to weathering processes at the site, such as dissolution, volatilization, and biodegradation. Soluble, volatile, low-molecular-weight organic compounds are preferentially dissolved from the nonaqueous phase liquid into the groundwater. Where no nonaqueous phase liquid is present, only stained soils containing relatively insoluble, high-molecular-weight compounds remain; therefore, contaminant concentrations in the groundwater are much smaller. Concentrations of organic contaminants in the soils may still remain large. Values of specific conductance were as large as 5,280 microsiemens/cm, well above a background of 242 microsiemens/cm, suggesting large concentrations of minerals in the groundwater. Trace metal concentrations, however , were generally < 0.010 mg/L, and below limits of US EPA drinking water standards. Cyanide was present in groundwater samples from throughout the park, ranging in concentration from 0.01 to 8.6 mg/L. (Author 's abstract)
Substance Flow Analysis of Mercury in China
NASA Astrophysics Data System (ADS)
Hui, L. M.; Wang, S.; Zhang, L.; Wang, F. Y.; Wu, Q. R.
2015-12-01
In previous studies, the emission of anthropogenic atmospheric Hg in China as well as single sector have been examined a lot. However, there might have been more Hg released as solid wastes rather than air. Hg stored in solid wastes may be released to air again when the solid wastes experience high temperature process or cause local pollution if the solid wastes are stacked casually for a long time. To trace the fate of Hg in China, this study developed the substance flow of Hg in 2010 covering all the sectors summarized in table 1. Below showed in Figure 1, the total Hg input is 2825t. The unintentional input of Hg, mined Hg, and recycled Hg account for 57%, 32% and 11% respectively. Figure 2 provides the detail information of substance flow of Hg. Byproducts from one sector may be used as raw materials of another, causing cross Hg flow between sectors. The Hg input of cement production is 303 t, of which 34% comes from coal and limestone, 33% comes from non-ferrous smelting, 23% comes from coal combustion, 7% comes from iron and steel production and 3% comes from mercury mining. Hg flowing to recycledHg production is 639 t, mainly from Hg contained in waste active carbon and mercuric chloride catalyst from VCM production and acid sludge from non-ferrous smelting. There are 20 t mercury flowing from spent mercury adding products to incineration. Figure1 and Figure 2 also show that 46% of the output Hg belongs to "Lagged release", which means this part of mercury might be released later. The "Lagged release" Hg includes 809 t Hg contained in stacked byproducts form coal combustion, non-ferrous smelting, iron and steel production, Al production, cement production and mercury mining, 161t Hg stored in the pipeline of VCM producing, 10 t Hg in fluorescent lamps that are in use and 314 t mercury stored in materials waiting to be handled with in recycled mercury plants. There is 112 t Hg stored in landfill and 129 t Hg exported abroad with the export of mercury adding products. Besides, 729t Hg is released to the environment, among which, 534 t is emitted to air, 129 t flows into water and 66 t is discharged to soil. To decrease the released mercury, the used mercury should be reduced firstly. On the one hand, large users like VCM production (the largest intentionally mercury user) should lower used mercury, on the other hand, mercury recycling should be enhanced.
Hydromechanical Advanced Coal Excavator
NASA Technical Reports Server (NTRS)
Estus, Jay M.; Summers, David
1990-01-01
Water-jet cutting reduces coal dust and its hazards. Advanced mining system utilizes full-face, hydromechanical, continuous miner. Coal excavator uses high-pressure water-jet lances, one in each of cutting heads and one in movable lance, to make cuts across top, bottom and middle height, respectively, of coal face. Wedge-shaped cutting heads advance into lower and upper cuts in turn, thereby breaking coal toward middle cut. Thrust cylinders and walking pads advance excavator toward coal face.
Chemical Technology Division annual technical report, 1990
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1991-05-01
Highlights of the Chemical Technology (CMT) Division's activities during 1990 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for coal- fired magnetohydrodynamics and fluidized-bed combustion; (3) methods for recovery of energy from municipal waste and techniques for treatment of hazardous organic waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for a high-level waste repository; (5) processes for separating and recovering transuranic elements from nuclear waste streams, concentrating plutonium solids in pyrochemical residues by aqueous biphase extraction, andmore » treating natural and process waters contaminated by volatile organic compounds; (6) recovery processes for discharged fuel and the uranium blanket in the Integral Fast Reactor (IFR); (7) processes for removal of actinides in spent fuel from commercial water-cooled nuclear reactors and burnup in IFRs; and (8) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also has a program in basic chemistry research in the areas of fluid catalysis for converting small molecules to desired products; materials chemistry for superconducting oxides and associated and ordered solutions at high temperatures; interfacial processes of importance to corrosion science, high-temperature superconductivity, and catalysis; and the geochemical processes responsible for trace-element migration within the earth's crust. The Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the scientific and engineering programs at Argonne National Laboratory (ANL). 66 refs., 69 figs., 6 tabs.« less
SPECIATION OF MERCURY IN THE PRESENCE OF COAL AND WASTE COMBUSTION FLY ASHES
The paper gives results of a study that focused on the oxidation of elemental mercury (Hgo) in the presence of both complex, four-component, model fly ashes, and actual coal combustion fly ashes collected from a pilot plant. Steady-state oxidation of Hgo promoted by the four-com...
40 CFR 60.53b - Standards for municipal waste combustor operating practices.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Circulating fluidized bed combustor 100 4 Pulverized coal/refuse-derived fuel mixed fuel-fired combustor 150 4 Spreader stoker coal/refuse-derived fuel mixed fuel-fired combustor 150 24 a Measured at the combustor... activated carbon injection rate during dioxin/furan or mercury testing. [60 FR 65419, Dec. 19, 1995, as...
30 CFR 843.15 - Informal public hearing.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., “mining” includes (1) extracting coal from the earth or from coal waste piles and transporting it within... section shall be delivered to such person by an authorized representative or sent by certified mail to... of the mine. (e) Section 554 of Title 5 of the United States Code, regarding requirements for formal...
30 CFR 843.15 - Informal public hearing.
Code of Federal Regulations, 2012 CFR
2012-07-01
... days after it is served unless an informal public hearing has been held within that time. The hearing..., “mining” includes (1) extracting coal from the earth or from coal waste piles and transporting it within... informal public hearing is held later than 30 days after the notice or order was served. For purposes of...
30 CFR 843.15 - Informal public hearing.
Code of Federal Regulations, 2011 CFR
2011-07-01
... days after it is served unless an informal public hearing has been held within that time. The hearing..., “mining” includes (1) extracting coal from the earth or from coal waste piles and transporting it within... informal public hearing is held later than 30 days after the notice or order was served. For purposes of...
30 CFR 843.15 - Informal public hearing.
Code of Federal Regulations, 2013 CFR
2013-07-01
... days after it is served unless an informal public hearing has been held within that time. The hearing..., “mining” includes (1) extracting coal from the earth or from coal waste piles and transporting it within... informal public hearing is held later than 30 days after the notice or order was served. For purposes of...
30 CFR 843.15 - Informal public hearing.
Code of Federal Regulations, 2014 CFR
2014-07-01
... days after it is served unless an informal public hearing has been held within that time. The hearing..., “mining” includes (1) extracting coal from the earth or from coal waste piles and transporting it within... informal public hearing is held later than 30 days after the notice or order was served. For purposes of...
Thermal Analysis of Solid Fuels in an Inert Atmosphere
NASA Astrophysics Data System (ADS)
Kijo-Kleczkowska, Agnieszka; Szumera, Magdalena; Środa, Katarzyna
2017-12-01
The paper takes the analysis of thermal studies of different types of fuels. It allowed diversification of fuels depending on their composition and origin. Consideration of coal, biomass and waste (coal mule, sewage sludge) as fuel is nowadays an important aspect of energy in our country. It should be emphasized that Poland power engineering is based up to 95% on coal - the primary fuel. Mining industry, forced to deliver power engineering more and better fuel, must however, use a deeper cleaning of coal. This results in a continuous increase waste in the form of mule flotation. The best method of disposing these mule is combustion and co-combustion with other fuels. On the other hand, commonly increasing awareness state of the environment and the need to reduce CO2 emissions energy industry have committed to implement alternative solutions in order to gain power, through, i.a.: development technologies use of biomass, which is one of the most promising renewable energy sources in Poland. The paper presents the results of research TG-DTA fuels made in an inert atmosphere.
Energy and emission aspects of co-combustion solid recovered fuel with coal in a stoker boiler
NASA Astrophysics Data System (ADS)
Wasielewski, Ryszard; Głód, Krzysztof; Telenga-Kopyczyńska, Jolanta
2018-01-01
The results of industrial research on co-combustion of solid recovered fuel (SRF) with hard coal in a stoker boiler type WR-25 has been presented. The share of SRF in the fuel mixture was 10%. During the co-combustion of SRF, no technological disturbances or significant reduction in energy efficiency of the boiler were noted. Obtained SO2, NOx and CO emissions were comparable with coal combustion but dust emissions increased. During combustion of the coal mixture with a 10% share of SRF in the test boiler WR-25, the emission standards established for the combustion of the dedicated fuel were met. However, comparison of obtained emission results with the emission standards established for co-incineration of waste, revealed the exceedance of permissible levels of HCl, dust, heavy metals, dioxins and furans. Additionally, the residence time of flue gases in over 850°C conditions for the test boiler WR-25 was too short (1.3 seconds) in refer to the legislative requirements (2 seconds) for the thermal conversion of waste.
Process for selective grinding of coal
Venkatachari, Mukund K.; Benz, August D.; Huettenhain, Horst
1991-01-01
A process for preparing coal for use as a fuel. Forming a coal-water slurry having solid coal particles with a particle size not exceeding about 80 microns, transferring the coal-water slurry to a solid bowl centrifuge, and operating same to classify the ground coal-water slurry to provide a centrate containing solid particles with a particle size distribution of from about 5 microns to about 20 microns and a centrifuge cake of solids having a particle size distribution of from about 10 microns to about 80 microns. The classifer cake is reground and mixed with fresh feed to the solid bowl centrifuge for additional classification.
Bunnell, Joseph E.
2008-01-01
Coal is usually 'washed' with water and a variety of chemicals to reduce its content of sulfur and mineral matter. The 'washings' or 'coal slurry' derived from this process is a viscous black liquid containing fine particles of coal, mineral matter, and other dissolved and particulate substances. Coal slurry may be stored in impoundments or in abandoned underground mines. Human health and environmental effects potentially resulting from leakage of chemical substances from coal slurry into drinking water supplies or aquatic ecosystems have not been systematically examined. Impoundments are semipermeable, presenting the possibility that inorganic and organic substances, some of which may be toxic, may contaminate ground or surface water. The Agency for Toxic Substances and Disease Registry, part of the Centers for Disease Control and Prevention, has concluded that well water in Mingo County, West Virginia, constitutes a public health hazard.
Health Risks of Nuclear Power.
ERIC Educational Resources Information Center
Cohen, Bernard L.
1978-01-01
Deals with the wastes generated in nuclear power plants and the health risks involved as compared to those of wastes generated by coal-fired plants. Concludes that the risks of nuclear power plants are many times smaller than the risks from alternative energy resources. (GA)
61. Picking Floor, Large Pile of Waste Rock and Wood ...
61. Picking Floor, Large Pile of Waste Rock and Wood date unknown Historic Photograph, Photographer Unknown; Collection of William Everett, Jr. (Wilkes-Barre, PA), photocopy by Joseph E.B. Elliot - Huber Coal Breaker, 101 South Main Street, Ashley, Luzerne County, PA
Ash from thermal power plants as secondary raw material.
Cudić, Vladica; Kisić, Dragica; Stojiljković, Dragoslava; Jovović, Aleksandar
2007-06-01
The basic characteristic of thermal power plants in the Republic of Serbia is that they use low-grade brown coal (lignite) as a fuel. Depending on the location of coal mines, lignite may have different properties such as heating value, moisture, and mineral content, resulting in different residue upon combustion. Because of several million tonnes of ash and slag generated every year, their granularmetric particle size distribution, and transport and disposal methods, these plants have a negative impact on the environment. According to the waste classification system in the Republic of Serbia, ash and slag from thermal power plants are classified as hazardous waste, but with an option of usability. The proposed revision of waste legislation in Serbia brings a number of simple and modern solutions. A procedure is introduced which allows for end-of-waste criteria to be set, clarifying the point where waste ceases to be waste, and thereby introducing regulatory relief for recycled products or materials that represent low risk for the environment. The new proposal refocuses waste legislation on the environmental impacts of the generation and management of waste, taking into account the life cycle of resources, and develops new waste prevention programmes. Stakeholders, as well as the general public, should have the opportunity to participate in the drawing up of the programmes, and should have access to them.
Comparing the greenhouse gas emissions from three alternative waste combustion concepts.
Vainikka, Pasi; Tsupari, Eemeli; Sipilä, Kai; Hupa, Mikko
2012-03-01
Three alternative condensing mode power and combined heat and power (CHP) waste-to-energy concepts were compared in terms of their impacts on the greenhouse gas (GHG) emissions from a heat and power generation system. The concepts included (i) grate, (ii) bubbling fluidised bed (BFB) and (iii) circulating fluidised bed (CFB) combustion of waste. The BFB and CFB take advantage of advanced combustion technology which enabled them to reach electric efficiency up to 35% and 41% in condensing mode, respectively, whereas 28% (based on the lower heating value) was applied for the grate fired unit. A simple energy system model was applied in calculating the GHG emissions in different scenarios where coal or natural gas was substituted in power generation and mix of fuel oil and natural gas in heat generation by waste combustion. Landfilling and waste transportation were not considered in the model. GHG emissions were reduced significantly in all of the considered scenarios where the waste combustion concepts substituted coal based power generation. With the exception of condensing mode grate incinerator the different waste combustion scenarios resulted approximately in 1 Mton of fossil CO(2)-eq. emission reduction per 1 Mton of municipal solid waste (MSW) incinerated. When natural gas based power generation was substituted by electricity from the waste combustion significant GHG emission reductions were not achieved. Copyright © 2011 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-12-01
Methane emitted during underground coal mining operations is a hazard that is dealt with by diluting the methane with fresh air and exhausting the contaminated air to the atmosphere. Unfortunately this waste stream may contain more than 60% of the methane resource from the coal, and in the atmosphere the methane acts as a greenhouse gas with an effect about 24.5 times greater than CO{sub 2}. Though the waste stream is too dilute for normal recovery processes, it can be used as combustion air for a turbine-generator, thereby reducing the turbine fuel requirements while reducing emissions. Preliminary analysis indicates thatmore » such a system, built using standard equipment, is economically and environmentally attractive, and has potential for worldwide application.« less
Arce, R; Galán, B; Coz, A; Andrés, A; Viguri, J R
2010-05-15
The application of solvent-based paints by spraying in paint booths is extensively used in a wide range of industrial activities for the surface treatment of a vast array of products. The wastes generated as overspray represent an important environmental and managerial problem mainly due to the hazardous characteristics of the organic solvent, rendering it necessary to appropriately manage this waste. In this paper a solidification/stabilization (S/S) process based on accelerated carbonation was investigated as an immobilization pre-treatment prior to the disposal, via landfill, of an alkyd solvent-based paint waste coming from the automotive industry; the purpose of this S/S process was to immobilize the contaminants and reduce their release into the environment. Different formulations of paint waste with lime, lime-coal fly-ash and lime-Portland cement were carbonated to study the effect of the water/solid ratio and carbonation time on the characteristics of the final product. To assess the efficiency of the studied S/S process, metals, anions and dissolved organic carbon (DOC) were analyzed in the leachates obtained from a battery of compliance and characterization leaching tests. Regarding the carbonation of paint waste-lime formulations, a mathematical expression has been proposed to predict the results of the leachability of DOC from carbonated mixtures working at water/solid ratios from 0.2 to 0.6. However, lower DOC concentrations in leachates (400mg/kg DOC in L/S=10 batch leaching test) were obtained when carbonation of paint waste-lime-fly-ash mixtures was used at 10h carbonation and water to solid ratio of 0.2. The flammability characteristics, the total contents of contaminants and the contaminant release rate in compliance leaching tests provide evidence for a final product suitable for deposition in non-hazardous landfills. The characterization of this carbonated sample using a dynamic column leaching test shows a high stabilization of metals, partial immobilization of Cl(-), SO(4)(2-), F(-) and limited retention of DOC. However, the obtained results improve the previous findings obtained after the paint waste S/S using uncarbonated formulations and would be a useful pre-treatment technique of the alkyd paint waste prior to its disposal in a landfill. Copyright (c) 2009 Elsevier B.V. All rights reserved.
Morrow, William S.
2007-01-01
The Metropolitan Water Reclamation District of Greater Chicago has applied biosolids, followed by revegetation, to reclaim three coal-refuse areas. Most of the reclamation at the three sites was done from 1989 through 1992, and included the application of lime, clay, and various loads of biosolids up to 1,000 dry tons per acre. Water samples collected from 12 monitoring wells installed in the vicinity of the three reclaimed coal-refuse areas were analyzed to better understand the hydrogeology and water-quality effects. Ground water probably flows along preferential paths in the disturbed coal-refuse areas, and is impeded by undisturbed glacial till. Most of the samples contained elevated concentrations of sulfate, iron, and manganese, constituents associated with ground water in coal-mined areas. Concentrations of aluminum, cadmium, nickel, or zinc were somewhat elevated in samples from four wells, and greatest in water samples with pH less than 5. The smaller nutrient concentrations indicate that the applied biosolids are not identifiably affecting nutrients or metal concentrations in shallow ground water near the refuse piles. The coal refuse likely is the primary influence on the chemical characterization of ground-water in the area.
A novel process for preparing fireproofing materials from various industrial wastes.
Su, Yi; Wang, Lei; Zhang, Fu-Shen
2018-05-09
In the current study, the possibility of incorporating various industrial wastes into fireproofing materials was investigated. It was found that the newly developed materials showed excellent air sealing and fireproofing performance, with air permeability coefficients 3 to 4 orders of magnitude smaller than traditional fire prevention materials. The influence of different parameters on the air permeability was investigated, and the air sealing mechanisms were clarified through microstructure analysis. In addition, the workability and mechanical properties of the fireproofing materials for practical application in coal mine were studied. The new materials derived from industrial wastes had a compact and monolithic structure, and the excellent air tightness could be attributed to the pozzolanic activity of the industrial wastes and the film-forming property of organic polymers. Among the industrial wastes examined, a special coal fly ash with high pozzolanic activity and little free calcium oxide derived the best product with air permeability coefficient, tensile strength and breaking elongation of 4.17 × 10 -8 m 2 /s, 2.14 MPa and 48.90%, respectively. This study provides an economical, environmentally friendly and promising approach for industrial wastes recycling. Copyright © 2018 Elsevier Ltd. All rights reserved.
Coal-bed methane water effects on dill and essential oils
USDA-ARS?s Scientific Manuscript database
Pumping water from coal seams decreases the pressure in the seam and in turn releases trapped methane; this is the most common and economic way of methane extraction. The water that is pumped out is known as coal-bed methane water (CBMW), which is high in sodium and other salts. In past 25 years, th...
Hydraulic characteristics of, and ground-water flow in, coal-bearing rocks of southwestern Virginia
Harlow, George E.; LeCain, Gary D.
1993-01-01
This report presents the results of a study by the U.S Geological Survey, in cooperation with the Virginia Department of Mines, Minerals, and Energy, Division of Mined Land Reclamation, and the Powell River Project, to describe the hydraulic characteristics of major water-bearing zones in the coal-bearing rocks of southwestern Virginia and to develop a conceptual model of the ground-water-flow system. Aquifer testing in1987 and 1988 of 9-ft intervals in coal-exploration coreholes indicates that transmissivity decreases with increasing depth. Most rock types are permeable to a depth of approximately 100 ft; however, only coal seams are consistently permeable (transmissivity greater than 0.001 ft/d) at depths greater than 200 ft . Constant-head injection testing of rock intervals adjacent to coal seams usually indicated lower values of transmissivity than those values obtained when coal seams were isolated within the test interval; thus, large values of horizontal hydraulic conductivity at depth are associated with coal seams. Potentiometric-head measurements indicate that high topographic areas (ridges) function as recharge areas; water infiltrates through the surface, percolates into regolith, and flows downward and laterally through fractures in the shallow bedrock. Hydraulic conductivity decreases with increasing depth, and ground water flows primarily in the lateral direction along fractures or bedding planes or through coal seams. If vertical hydraulic conductivity is negligible, ground water continues to flow laterally, discharging as springs or seeps on hill slopes. Where vertical hydraulic conductivity is appreciable, groundwater follows a stair step path through the regolith, fractures, bedding planes, and coal seams, discharging to streams and (or) recharging coal seams at depth. Permeable coal seams probably underlie valleys in the region; however, aquifer-test data indicate that the horizontal hydraulic conductivity of coal is a function of depth and probably decreases under ridges because of increased overburden pressures. Ground water beneath valleys that does not discharge to streams probably flows down gradient as underflow beneath the streams. Topographic relief in the area provides large hydraulic-head differences (greater than 300 ft in some instances) for the ground-water-flow system. Transmissivity data from the range of depths tested during this study indicate that most ground-water flow takes place at moderate depths (less than 300 ft) and that little deep regional ground-water flow occurs.
Yucel, Deniz Sanliyuksel; Baba, Alper
2013-04-01
Mining activity generates a large quantity of mine waste. The potential hazard of mine waste depends on the host mineral. The tendency of mine waste to produce acid mine drainage (AMD) containing potentially toxic metals depends on the amounts of sulfide, carbonate minerals, and trace-element concentrations found in ore deposits. The acid mine process is one of the most significant environmental challenges and a major source of water pollution worldwide. AMD and its effects were studied in northwest Turkey where there are several sedimentary and hydrothermal mineral deposits that have been economically extracted. The study area is located in Can county of Canakkale province. Canakkale contains marine, lagoon, and lake sediments precipitated with volcanoclastics that occurred as a result of volcanism, which was active during various periods from the Upper Eocene to Plio-Quaternary. Can county is rich in coal with a total lignite reserve >100 million tons and contains numerous mines that were operated by private companies and later abandoned without any remediation. As a result, human intervention in the natural structure and topography has resulted in large open pits and deterioration in these areas. Abandoned open pit mines typically fill with water from runoff and groundwater discharge, producing artificial lakes. Acid drainage waters from these mines have resulted in the degradation of surface-water quality around Can County. The average pH and electrical conductivity of acid mine lakes (AMLs) in this study were found to be 3.03 and 3831.33 μS cm(-1), respectively. Total iron (Fe) and aluminum (Al) levels were also found to be high (329.77 and 360.67 mg L(-1), respectively). The results show that the concentration of most elements, such as Fe and Al in particular, exceed national and international water-quality standards.
Weimann, E; Patel, B
2016-12-21
The healthcare sector itself contributes to climate change, the creation of hazardous waste, use of toxic metals such as mercury, and water and air pollution. To mitigate the effect of healthcare provision on the deteriorating environment and avoid creating further challenges for already burdened health systems, Global Green Hospitals was formed as a global network. Groote Schuur Hospital (GSH), as the leading academic hospital in Africa, joined the network in 2014. Since then, several projects have been initiated to reduce the amount of general waste, energy consumption and food waste, and create an environmentally friendlier and more sustainable hospital in a resource-constrained public healthcare setting. We outline the various efforts made to reduce the carbon footprint of GSH and reduce waste and hazardous substances such as mercury and polystyrene, and elaborate how obstacles and resistance to change were overcome. The hospital was able to halve the amount of coal and water used, increase recycling by 50% over 6 months, replace polystyrene cups and packaging with Forest Stewardship Council recyclable paper-based products, reduce the effect of food wastage by making use of local farmers, and implement measures to reduce the amount of expired pharmaceutical drugs. To improve commitment from all involved roleplayers, political leadership, supportive government policies and financial funding is mandatory, or public hospitals will be unable to tackle the exponentially increasing costs related to climate change and its effects on healthcare.
Comparative assessment of water use and environmental implications of coal slurry pipelines
Palmer, Richard N.; James II, I. C.; Hirsch, R.M.
1977-01-01
With other studies conducted by the U.S. Geological Survey of water use in the conversion and transportation of the West 's coal, an analysis of water use and environmental implications of coal-slurry pipeline transport is presented. Simulations of a hypothetical slurry pipeline of 1000-mile length transporting 12.5 million tons per year indicate that pipeline costs and energy requirements are quite sensitive to the coal-to-water ratio. For realistic water prices, the optimal ratio will not vary far from the 50/50 ratio by weight. In comparison to other methods of energy conversion and transport, coal-slurry pipeline utilize about 1/3 the amount of water required for coal gasification, and about 1/5 the amount required for on-site electrical generation. An analysis of net energy output from operating alternative energy transportation systems for the assumed conditions indicates that both slurry pipeline and rail shipment require approximately 4.5 percent of the potential electrical energy output of the coal transported, and high-voltage, direct-current transportation requires approximately 6.5 percent. The environmental impacts of the different transports options are so substantially different that a common basis for comparison does not exist. (Woodard-USGS)
Coal beneficiation by gas agglomeration
Wheelock, Thomas D.; Meiyu, Shen
2003-10-14
Coal beneficiation is achieved by suspending coal fines in a colloidal suspension of microscopic gas bubbles in water under atmospheric conditions to form small agglomerates of the fines adhered by the gas bubbles. The agglomerates are separated, recovered and resuspended in water. Thereafter, the pressure on the suspension is increased above atmospheric to deagglomerate, since the gas bubbles are then re-dissolved in the water. During the deagglomeration step, the mineral matter is dispersed, and when the pressure is released, the coal portion of the deagglomerated gas-saturated water mixture reagglomerates, with the small bubbles now coming out of the solution. The reagglomerate can then be separated to provide purified coal fines without the mineral matter.
Modeling the Use of Mine Waste Rock as a Porous Medium Reservoir for Compressed Air Energy Storage
NASA Astrophysics Data System (ADS)
Donelick, R. A.; Donelick, M. B.
2016-12-01
We are studying the engineering and economic feasibilities of constructing Big Mass Battery (BiMBy) compressed air energy storage devices using some of the giga-tonnes of annually generated and historically produced mine waste rock/overburden/tailings (waste rock). This beneficial use of waste rock is based on the large mass (Big Mass), large pore volume, and wide range of waste rock permeabilities available at some large open pit metal mines and coal strip mines. Porous Big Mass is encapsulated and overlain by additional Big Mass; compressed air is pumped into the encapsulated pore space when renewable energy is abundant; compressed air is released from the encapsulated pore space to run turbines to generate electricity at the grid scale when consumers demand electricity. Energy storage capacity modeling: 1) Yerington Pit, Anaconda Copper Mine, Yerington, NV (inactive metal mine): 340 Mt Big Mass, energy storage capacity equivalent to 390k-710k home batteries of size 10 kW•h/charge, assumed 20% porosity, 50% overall efficiency. 2) Berkeley Pit, Butte Copper Mine, Butte, MT (inactive metal mine): 870 Mt Big Mass, energy storage capacity equivalent to 1.4M-2.9M home batteries of size 10 kW•h/charge, assumed 20% porosity, 50% overall efficiency. 3) Rosebud Mine, Colstrip, MT (active coal strip mine): 87 Mt over 2 years, energy storage capacity equivalent to 45k-67k home batteries of size 10 kW•h/charge, assumed 30% porosity, 50% overall efficiency. Encapsulating impermeable layer modeling: Inactive mine pits like Yerington Pit and Berkeley Pit, and similar active pits, have associated with them low permeability earthen material (silt and clay in Big Mass) at sufficient quantities to manufacture an encapsulating structure with minimal loss of efficiency due to leakage, a lifetime of decades or even centuries, and minimal need for the use of geomembranes. Active coal strip mines like Rosebud mine have associated with them low permeability earthen material such as coal combustion products (fly ash, bottom ash, boiler slag, other) that may be put to beneficial use as part of the encapsulating structure; however, coal strip mines have lower volume to surface ratios than mine pits increasing the potential need to use geomembranes.
NASA Astrophysics Data System (ADS)
Turuallo, Gidion; Mallisa, Harun
2018-03-01
The use of waste materials in concrete gave many advantages to prove the properties of concrete such as its workability, strength and durability; as well to support sustaianable development programs. Fly ash was a waste material produced from coal combustion. This research was conducted to find out the effect of fly ash as a part replacement of cement to produce high strength concrete. The fly ash, which was used in this research, was taken from PLTU Mpanau Palu, Central Sulawesi. The water-binder ratio used in this research was 0.3 selected from trial mixes done before. The results of this research showed that the strength of fly ash concretes were higher than concrete with PCC only. The replacement of cement with fly ash concrete could be up to 20% to produce high strength concrete.
The exposure of readily soluble components of overburden materials from surface coal mining to air and water results in mineral oxidation and carbonate mineral dissolution, thus increasing coal mine water conductivity. A conductivity benchmark of 300 µS/cm for mine water dischar...
Plantz, Gerald G.
1985-01-01
The study area in south-central Utah (fig. 1) is noted for its large coal reserves in the Alton, Kolob, and Kaiparowits Plateau coal fields. The area also is noted for its scenic beauty and general scarcity of water. Although there has been very little development of the coal resources through 1983, there is a potential for large-scale development with both surface- and underground-mining methods. Mining of coal could have significant effects on the quantity and quality of the water resources. The purpose of this atlas is to define the surface- and ground-water resources of the area and to identify the potential effects on these resources by coal mining.
Process for blending coal with water immiscible liquid
Heavin, Leonard J.; King, Edward E.; Milliron, Dennis L.
1982-10-26
A continuous process for blending coal with a water immiscible liquid produces a uniform, pumpable slurry. Pulverized raw feed coal and preferably a coal derived, water immiscible liquid are continuously fed to a blending zone (12 and 18) in which coal particles and liquid are intimately admixed and advanced in substantially plug flow to form a first slurry. The first slurry is withdrawn from the blending zone (12 and 18) and fed to a mixing zone (24) where it is mixed with a hot slurry to form the pumpable slurry. A portion of the pumpable slurry is continuously recycled to the blending zone (12 and 18) for mixing with the feed coal.
Energy generation potential from coals of the Charqueadas Coalfield, RS, Brazil
NASA Astrophysics Data System (ADS)
Correa da Silva, Z. C.; Heemann, R.; Castro, L.; Ketzer, J. M.
2009-04-01
Three coal seams, I2B (Inferior 2), I1F (Inferior 1) and MB, from the Charqueadas Coalfield located in the central-east region of the State of Rio Grande do Sul, Southern Brazil were studied on the basis of geological, petrographic, chemical and geochemical techniques and correlated to the SR1, SR2 and SR3 coal seams from the Santa Rita Coalfield. The Charqueadas Coalfield reserves reach 2,993x106 metric tons of coal distributed in six coal seams. The study of sedimentary and organic facies is made on the subsurface data from five boreholes drilled in the area. There show a well marked lateral facies change from sub aquatic to sub aerial environment, conditioned by both the water level variations and the irregular palaeotopography of the basement. The coals change from limnic to forest-terrestrial moor types characterized by variations of composition in terms of macerals, microlithotypes and mineral matter. The coals are rich in mineral matter (28 to 40%); the vitrinite content reaches 50 %, inertinite 44 % and liptinite varies from 10 to 30 %, in mineral matter free basis. Among the microlithotypes carbominerite and vitrite are predominant. Rank studies carried out by different methods (vitrinite reflectance, max and red-green quotient among others) gave conflicting results, which are explained by the strong bituminization of the vitrinite. However, agreement between fluorescence measurements and organic geochemical parameters (e.g. CPI values) confirm that the coals are of a High Volatile Bituminous B/C (ASTM) or Gasflammkohle (DIN) rank. Based on these characteristics, the Charqueadas coal seams show great potential for use in Underground Coal Gasification (UCG) and Enhanced Coalbed Methane (ECBM) projects. Nowadays the state of Rio Grande do Sul is rapidly growing and needs to increase the energy efficiency to attend the industrial demands, filling the gap between supply and energy generation. As with conventional IGCC, UCG gas can be used to generate electricity with efficiency as high as 55% and overall UCG-IGCC process efficiency reaching 43%. Regarding to environmental problems the UCG minimize environmental impacts (waste piles/acid mine drainage) and reduce CO2 emissions because syngas contains CO2 that can be captured with relatively low-energy penalty. The Clean Coal Technologies (CCT), especially UCG and ECBM projects, will be a key factor to maintain the annual state's economy expansion associated with energy efficiency improvement programs.
Using SPL (Spent Pot-Lining) as an Alternative Fuel in Metallurgical Furnaces
NASA Astrophysics Data System (ADS)
Gao, Lei; Mostaghel, Sina; Ray, Shamik; Chattopadyay, Kinnor
2016-09-01
Replacing coke (coal) in a metallurgical furnace with other alternative fuels is beneficial for process economics and environmental friendliness. Coal injection is a common practice in blast furnace ironmaking, and spent pot-lining (SPL) was conceptualized as an alternative to coal. SPL is a resourceful waste from primary Aluminum production, with high carbon value. Equilibrium thermodynamics was used to calculate the energy content of SPL, and the compositional changes during SPL combustion. In order to capture the kinetics and mass transfer aspects, a blast furnace tuyere region CFD model was developed. The results of SPL combustion were compared with standard PCI coals, which are commonly used in blast furnaces. The CFD model was validated with experimental results for standard high volatile coals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Looney, J.H.; Im, C.J.
Under the sponsorship of DOE/METC, UCC Research completed a program in 1984 concerned with the development, testing, and manufacture of an ultra-clean coal-water mixture fuel using the UCC two-stage physical beneficiation and coal-water mixture preparation process. Several gallons of ultra-clean coal-water slurry produced at the UCC Research pilot facility was supplied to DOE/METC for combustion testing. The finalization of this project resulted in the presentation of a conceptual design and economic analysis of an ultra-clean coal-water mixture processing facility sufficient in size to continuously supply fuel to a 100 MW turbine power generation system. Upon completion of the above program,more » it became evident that substantial technological and economic improvement could be realized through further laboratory and engineering investigation of the UCC two-stage physical beneficiation process. Therefore, as an extension to the previous work, the purpose of the present program was to define the relationship between the controlling technical parameters as related to coal-water slurry quality and product price, and to determine the areas of improvement in the existing flow-scheme, associated cost savings, and the overall effect of these savings on final coal-water slurry price. Contents of this report include: (1) introduction; (2) process refinement (improvement of coal beneficiation process, different source coals and related cleanability, dispersants and other additives); (3) coal beneficiation and cost parametrics summary; (4) revised conceptual design and economic analysis; (5) operating and capital cost reduction; (6) conclusion; and (7) appendices. 24 figs., 12 tabs.« less
Utilization of Yatagan Power Plant Fly Ash in Production of Building Bricks
NASA Astrophysics Data System (ADS)
Önel, Öznur; Tanriverdi, Mehmet; Cicek, Tayfun
2017-12-01
Fly ash is a by-product of coal combustion, which accumulates in large quantities near the coal-fired power plants as waste material. Fly ash causes serious operational and environmental problems. In this study, fly ash from Yatağgan thermal power plant was used to produce light-weight building bricks. The study aimed to reduce the problems related to fly ash by creating a new area for their use. The optimum process parameters were determined for the production of real size bricks to be used in construction industry. The commercial size bricks (200 × 200 × 90-110 mm) were manufactured using pilot size equipment. Mechanical properties, thermal conductivity coefficients, freezing and thawing strengths, water absorption rates, and unit volume weights of the bricks were determined. Etringite (Ca6Al2 (SO4)3 (OH)12 25(H2O)) and Calcium Silicate Hydrate (2CaO.SiO2.4H2O) were identified as the binding phases in the real size brick samples after 2 days of pre-curing and 28 days curing at 50° C and 95% relative moisture. The water absorption rate was found to be 27.7 % in terms of mass. The mechanical and bending strength of the brick samples with unit volume weight of 1.29 g.cm-3 were determined as 6.75 MPa and 1,56 MPa respectively. The thermal conductivity of the fly ash bricks was measured in average as 0,340 W m-1 K-1. The fly ash sample produced was subjected to toxic leaching tests (Toxic Property Leaching Procedure (EPA-TCLP 1311), Single-step BATCH Test and Method-A Disintegration Procedure (ASTM)). The results of these tests suggested that the materials could be classified as non-hazardous wastes / materials.
The use of hospital waste as a fuel. Part one.
Dagnall, S
1989-05-01
The total quantity of hospital waste produced in the UK has been estimated to be 430kte/yr, having a combustible content equivalent to about 190kte of coal; its average gross calorific value (GCV) depends on the type of hospital, but has been estimated to be about 14GJ/te for the teaching and general hospitals which were examined. Hospitals are obliged to incinerate some of these wastes in order to destroy any pathogens which may be present, and although several hospitals have been involved in recovering the energy from this process, a number of such projects have proved to be unsuccessful. The Glenfield General Hospital (GGH) is burning combustible hospital waste on a Corsair (Erithglen) 0.5MWt (2MBtu/h) hot water boiler, the second such installation involving a new design of plant which accepts bagged, unprepared material. Although the plant suffered inevitable commissioning and teething problems, which have led to further design improvements, it has nevertheless demonstrated its ability to dispose of hospital waste reliably, safely and efficiently; it is felt, however, that it could have performed better with improved project organisation. In the light of likely future legislation to tighten control over emissions from the combustion of hospital wastes, it is anticipated that large scale plant might prove economically and environmentally attractive under certain circumstances; such plant will, in all probability, involve power generation or combined heat and power (CHP).
Utilization of coal fly ash as a slow-release granular medium for soil improvement.
Yoo, Jeong Gun; Jo, Young Min
2003-01-01
This work proposes a new potential application of waste coal fly ash as a K fertilizer support. Fly ash was reacted with KOH to facilitate the impregnation of K as well as to enhance the bonding force. In particular, the applied process resulted in a significant slow-releasing characteristic of fertilizer elements. To examine the effect of K impregnation, a few detailed leaching tests were carried out in terms of process variables such as reaction time and temperature, sintering time and temperature, and KOH concentration. The current experiment presented an optimum preparation condition that is competitive with conventional commercial fertilizers. The manufactured ash fertilizers inhibited release of the K elements. It was also found through the continuous leaching test with pure water that the ash fertilizer had excellent moisture absorbability. However, the effects of some trace elements in fly ash on soil health and crop productivity as well as environmental considerations need to be established with long-term studies.
Ecological effects of contaminants in McCoy Branch, 1991--1993
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryon, M.G.
1996-09-01
The 1984 Hazardous and Solid Waste Amendments to the Resource Conservation and Recovery Act (RCRA) required assessment of all current and former solid waste management units. Following guidelines under RCRA and the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), a remedial investigation (RI) was required of the Y-12 Plant for their filled coal ash pond (FCAP) and associated areas on McCoy Branch. The RI process was initiated and assessments were presented. Because the disposal of coal ash in the ash pond, McCoy Branch, and Rogers Quarry was not consistent with the Tennessee Water Quality Act, several remediation steps weremore » implemented between 1986 and 1994 for McCoy Branch to address disposal problems. The required ecological risk assessments of McCoy Branch watershed included provisions for biological monitoring of the watershed. The objectives of the biological monitoring were to (1) document changes in biological quality of McCoy Branch after completion of a pipeline bypassing upper McCoy Branch and further, after termination of all discharges to Rogers Quarry, (2) provide guidance on the need for additional remediation, and (3) evaluate the effectiveness of implemented remedial actions. The data from the biological monitoring program may also determine whether the goals of protection of human health and the environment of McCoy Branch are being accomplished.« less
Surface and Ground Water Quality in Köprüören Basin (Kütahya), Turkey
NASA Astrophysics Data System (ADS)
Arslan, Şebnem; Çelik, Mehmet; Erdem Dokuz, Uǧur; Abadi Berhe, Berihu
2014-05-01
In this study, quality of the water resources in Köprüören Basin, located to the west of Kütahya city in western Anatolia, were investigated. The total catchment area of the basin is 275 km2 and it is located upstream of Kütahya and Eskişehir plains. Therefore, besides 6,000 people residing in the basin, a much larger population will be impacted by the quality of surface and groundwater resources. Groundwater occurs under confined conditions in the limestones of Pliocene units. Groundwater flow is from north to south and south to north towards Kocasu stream, which flows to Enne Dam. The surface and ground water quality in this area are negatively affected by the mining activities. In the northern part of the area, there are coal deposits present in Miocene Tunçbilek formation. Ground waters in contact with the coal deposits contain low concentrations of arsenic (up to 30 µg/l). In the southern part, the only silver deposit of Turkey is present, which is developed in metamorphic basement rocks, Early Miocene volcanics and Pliocene units near Gümüşköy (Gümüş means silver, köy means village in Turkish). The amount of silver manufactured annually in this silver plant is huge and comprises about 1% of the World's Silver Production. The wastes, enriched in cyanide, arsenic, stibnite, lead and zinc, are stored in waste pools and there is extensive leakage of these heavy metals from these pools. Therefore, surface waters, soils and plants in the affected areas contain high concentrations of arsenic, stibnite and lead. The As, Sb, Pb and Zn concentrations are up to 733 µg/l, 158 µg/l, 48 µg/l, and 286 µg/l in surface waters (in dry season), 6180 ppm, 410 ppm, 4180 ppm, 9950 ppm in soils and 809 ppm, 399 ppm, 800 ppm, 2217 ppm in plants, respectively. Today, most of the As, Sb, Pb and Zn are absorbed by the soils and only a small part are dissolved in water. However, conditions might change in future leading to desorption of these contaminants. Therefore, necessary precautions should be undertaken immediately to protect the environment in the area.
30 CFR 75.501-1 - Coal seams above the water table.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Coal seams above the water table. 75.501-1 Section 75.501-1 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Electrical Equipment-General § 75.501...
30 CFR 75.501-1 - Coal seams above the water table.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Coal seams above the water table. 75.501-1 Section 75.501-1 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Electrical Equipment-General § 75.501...
30 CFR 75.501-1 - Coal seams above the water table.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Coal seams above the water table. 75.501-1 Section 75.501-1 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Electrical Equipment-General § 75.501...
30 CFR 75.501-1 - Coal seams above the water table.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Coal seams above the water table. 75.501-1 Section 75.501-1 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Electrical Equipment-General § 75.501...
30 CFR 75.501-1 - Coal seams above the water table.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Coal seams above the water table. 75.501-1 Section 75.501-1 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Electrical Equipment-General § 75.501...
Variation in polychlorinated dibenzo-p-dioxin and polychlorinated dibenzofuran (PCDD and PCDF) homologue profiles from a pilot scale (0.6 MWt, 2x106 Btu/hr), co-fired-fuel [densified refuse derived fuel (dRDF) and high-sulfur Illinois coal] combustion system was used to provide i...
The effect of co-firing minor amounts (5-10 wt%) of high sulfur coal with municipal refuse-derived fuel (RDF) on emissions of polychlorinated dibenzo-p-dioxin (PCDD) and polychlorinated dibenzofuran (PCDF) was studied under a range of operating conditions. Through use of 2x facto...
Cho, Jae Han; Lee, Tai Gyu; Eom, Yujin
2012-10-01
A previously proposed technology incorporating TiO2 into common household fluorescent lighting was further tested for its Hg0 removal capability in a simulated flue-gas system. The flue gas is simulated by the addition of O2, SO2, HCl, NO, H2O, and Hg0, which are frequently found in combustion facilities such as waste incinerators and coal-fired power plants. In the O2 + N2 + Hg0 environment, a Hg0 removal efficiency (etaHg) greater than 95% was achieved. Despite the tendency for etaHg to decrease with increasing SO2 and HCl, no significant drop was observed at the tested level (SO2: 5-300 ppm, HCl: 30-120 ppm(v)). In terms of NO and moisture, a significant negative effect on etaHg was observed for both factors. NO eliminated the OH radical on the TiO2 surface, whereas water vapor caused either the occupation of active sites available to Hg0 or the reduction of Hg0 by free electron. However, the negative effect of NO was minimized (etaHg > 90%) by increasing the residence time in the photochemical reactor. The moisture effect can be avoided by installing a water trap before the flue gas enters the Hg0 removal system. This paper reports a novel technology for a removal of gas-phase elemental mercury (Hg0) from a simulated flue gas using TiO2-coated glass beads under a low-cost, easily maintainable household fluorescent light instead of ultraviolet (UV) light. In this study, the effects of individual chemical species (O2, SO2, HCl, NO, and water vapor) on the performance of the proposed technology for Hg0 removal are investigated. The result suggests that the proposed technology can be highly effective, even in real combustion environments such as waste incinerators and coal-fired power plants.
NASA Astrophysics Data System (ADS)
Plaza, F.; Liang, X.; Wen, Y.; Perone, H.
2015-12-01
Acid mine drainage (AMD) is one of the most adverse environmental problems of the mine industry. Surface water and ground water affected by this pollution are characterized by their acidity and the high content of sulfates and heavy metals. In this study, alkaline clay, an industrial waste with a high pH, which is utilized in the alumina refining process, was used as the remediation material to inhibit pyrite oxidation. Through a series of batch and column experiments, complemented with field measurements and geochemical modeling, three important issues associated with this passive and auto sustainable acid mine drainage remediation method were investigated: 1) the potential use of alkaline clay as an AMD remediation material, 2) the adequate alkaline clay/coal refuse mixing ratio (AC/CR) to ensure pH values near to neutral conditions, and, 3) the prediction of long term impacts, in terms of the trends of the main parameters involved in this process such as pH, concentrations of sulfate, iron and other dissolved contaminants. Both field measurements and the samples used for the experiments came from a coal waste site located in Mather, Pennsylvania. Alkaline clay proved to be an effective remediation material for AMD. It was found that 10% AC/CR is an adequate mixing ratio (i.e. the upper limit), which has been also indicated by field measurements. The concentrations of some contaminants such as iron, manganese or sulfate are significantly reduced with the remediation approach, compared to those representative concentrations found in mine tailings. Moreover, results suggest a very reliable long-term stability of the remediation (i.e. neutral pH conditions are maintained), thus enhancing the generation of iron precipitates that could produce pyrite grain coating and hardpan (i.e. cemented layer) on the surface. These processes also made the amended layer less porous, thus increasing water retention and hindering oxygen diffusion.
Integrating Waste Heat from CO 2 Removal and Coal-Fired Flue Gas to Increase Plant Efficiency
DOE Office of Scientific and Technical Information (OSTI.GOV)
Irvin, Nick; Kowalczyk, Joseph
In project DE-FE0007525, Southern Company Services demonstrated heat integration methods for the capture and sequestration of carbon dioxide produced from pulverized coal combustion. A waste heat recovery technology (termed High Efficiency System) from Mitsubishi Heavy Industries America was integrated into an existing 25-MW amine-based CO 2 capture process (Kansai Mitsubishi Carbon Dioxide Recovery Process®1) at Southern Company’s Plant Barry to evaluate improvements in the energy performance of the pulverized coal plant and CO 2 capture process. The heat integration system consists of two primary pieces of equipment: (1) the CO 2 Cooler which uses product CO 2 gas from themore » capture process to heat boiler condensate, and (2) the Flue Gas Cooler which uses air heater outlet flue gas to further heat boiler condensate. Both pieces of equipment were included in the pilot system. The pilot CO 2 Cooler used waste heat from the 25-MW CO 2 capture plant (but not always from product CO 2 gas, as intended). The pilot Flue Gas Cooler used heat from a slipstream of flue gas taken from downstream of Plant Barry’s air heater. The pilot also included a 0.25-MW electrostatic precipitator. The 25-MW High Efficiency System operated for approximately six weeks over a four month time period in conjunction with the 25-MW CO 2 capture facility at Plant Barry. Results from the program were used to evaluate the technical and economic feasibility of full-scale implementation of this technology. The test program quantified energy efficiency improvements to a host power plant that could be realized due to the High Efficiency System. Through the execution of this project, the team verified the integrated operation of the High Efficiency System and Kansai Mitsubishi Carbon Dioxide Recovery Process®. The ancillary benefits of the High Efficiency System were also quantified, including reduced water consumption, a decrease in toxic air emissions, and better overall air quality control systems performance.« less
Interfacial properties and coal cleaning in the LICADO process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chi, S.M.B.
1986-01-01
The LICADO LIquid CArbon DiOxide process is currently being investigated as a new technique for cleaning coal. It relies on the relative wettability of clean coal and mineral particles between liquid CO/sub 2/ and water so that when liquid CO/sub 2/ is dispersed into a coal-water slurry, it tends to form agglomerates with the clean coal particles and float them to the liquid CO/sub 2/ phase. The mineral particles, on the other hand, remain in the aqueous phase as refuse. Since the surface/interfacial properties of fine coal particles play such an important role in this coal cleaning operation, an understandingmore » of their behavior becomes indispensable. In order to understand the separation mechanisms involved in the LICADO process, it is necessary to study the interfacial interactions occurring in the CO/sub 2/-water-coal system. It is believed that a relationship between the process performance and the wetting characteristics of the coal/refuse particles can be established. Upper Freeport -200 mesh coal from Indiana County, PA with 23.5% ash content was selected for the experimental work. A specially designed high pressure experimental unit, equipped with necessary optical and photographic accessories, was constructed for this study. Contact angles were also measured on the coal surface under two different sample pretreatment conditions: water-first-wet and liquid CO/sub 2/-first-wet. The results infer that an optimum mixing is necessary to provide sufficient shear force to expose the clean coal particles to the CO/sub 2/ droplets. The coal maceral and mineral association on the coal particle surface was determined based on the reflective grey level distinction between the mineral and Litho-type of various coal components.« less
NASA Astrophysics Data System (ADS)
Kumar, Ashish; Chatterjee, Snehamoy
2017-05-01
Production scheduling is a crucial aspect of the mining industry. An optimal and efficient production schedule can increase the profits manifold and reduce the amount of waste to be handled. Production scheduling for coal mines is necessary to maintain consistency in the quality and quantity parameters of coal supplied to power plants. Irregularity in the quality parameters of the coal can lead to heavy losses in coal-fired power plants. Moreover, the stockpiling of coal poses environmental and fire problems owing to low incubation periods. This article proposes a production scheduling formulation for open-pit coal mines including stockpiling and blending opportunities, which play a major role in maintaining the quality and quantity of supplied coal. The proposed formulation was applied to a large open-pit coal mine in India. This contribution provides an efficient production scheduling formulation for coal mines after utilizing the stockpile coal within the incubation periods with the maximization of discounted cash flows. At the same time, consistency is maintained in the quality and quantity of coal to power plants through blending and stockpiling options to ensure smooth functioning.
Health effects of coal technologies: research needs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1980-09-01
In this 1977 Environmental Message, President Carter directed the establishment of a joint program to identify the health and environmental problems associated with advanced energy technologies and to review the adequacy of present research programs. In response to the President's directive, representatives of three agencies formed the Federal Interagency Committee on the Health and Environmental Effects of Energy Technologies. This report was prepared by the Health Effects Working Group on Coal Technologies for the Committee. In this report, the major health-related problems associated with conventional coal mining, storage, transportation, and combustion, and with chemical coal cleaning, in situ gasification, fluidizedmore » bed combustion, magnetohydrodynamic combustion, cocombustion of coal-oil mixtures, and cocombustion of coal with municipal solid waste are identified. The report also contains recommended research required to address the identified problems.« less
Environmental risks associated with unconventional gas extraction: an Australian perspective
NASA Astrophysics Data System (ADS)
Mallants, Dirk; Bekele, Elise; Schmidt, Wolfgang; Miotlinski, Konrad; Gerke Gerke, Kirill
2015-04-01
Coal seam gas is naturally occurring methane gas (CH4) formed by the degradation of organic material in coal seam layers over geological times, typically over several millions of years. Unlike conventional gas resources, which occur as discrete accumulations in traps formed by folds and other structures in sedimentary layers, coal seam gas is generally trapped in low permeable rock by adsorption of the gas molecules within the rock formation and cannot migrate to a trap and form a conventional gas deposit. Extraction of coal seam gas requires producers to de pressurise the coal measures by abstracting large amounts of groundwater through pumping. For coal measures that have too low permeabilities for gas extraction to be economical, mechanical and chemical techniques are required to increase permeability and thus gas yield. One such technique is hydraulic fracturing (HF). Hydraulic fracturing increases the rate and total amount of gas extracted from coal seam gas reservoirs. The process of hydraulic fracturing involves injecting large volumes of hydraulic fracturing fluids under high pressure into the coal seam layers to open up (i.e. fracture) the gas-containing coal layers, thus facilitating extraction of methane gas through pumping. After a hydraulic fracturing operation has been completed in a coal seam gas well, the fracturing fluid pressure is lowered and a significant proportion of the injected fluid returns to the surface as "flowback" water via coal seam gas wells. Flowback water is fluid that returns to the surface after hydraulic fracturing has occurred but before the well is put into production; whereas produced water is fluid from the coal measure that is pumped to the surface after the well is in production. This paper summarises available literature data from Australian coal seam gas practices on i) spills from hydraulic fracturing-related fluids used during coal seam gas drilling and hydraulic fracturing operations, ii) leaks to soil and shallow groundwater of flowback water and produced water from surface impoundments, iii) risks from well integrity failure, and iv) increased gas in water bores.