Sample records for coalescence vortex chains

  1. Magnetic vortex state and multi-domain pattern in electrodeposited hemispherical nanogranular nickel films

    NASA Astrophysics Data System (ADS)

    Samardak, Alexander; Sukovatitsina, Ekaterina; Ognev, Alexey; Stebliy, Maksim; Davydenko, Alexander; Chebotkevich, Ludmila; Keun Kim, Young; Nasirpouri, Forough; Janjan, Seyed-Mehdi; Nasirpouri, Farzad

    2014-12-01

    Magnetic states of nickel nanogranular films were studied in two distinct structures of individual and agglomerated granules electrodeposited on n-type Si(1 1 1) surface from a modified Watts bath at a low pH of 2. Magnetic force microscopy and micromagnetic simulations revealed three-dimensional out-of-plane magnetic vortex states in stand-alone hemispherical granules and their arrays, and multi-domain patterns in large agglomerates and integrated films. Once the granules coalesce into small chains or clusters, the coercivity values increased due to the reduction of inter-granular spacing and strengthening of the magnetostatic interaction. Further growth leads to the formation of a continuous granulated film which strongly affected the coercivity and remanence. This was characterized by the domain wall nucleation and propagation leading to a stripe domain pattern. Magnetoresistance measurements as a function of external magnetic field are indicative of anisotropic magnetoresistance (AMR) for the continuous films electrodeposited on Si substrate.

  2. Topological dynamics of vortex-line networks in hexagonal manganites

    NASA Astrophysics Data System (ADS)

    Xue, Fei; Wang, Nan; Wang, Xueyun; Ji, Yanzhou; Cheong, Sang-Wook; Chen, Long-Qing

    2018-01-01

    The two-dimensional X Y model is the first well-studied system with topological point defects. On the other hand, although topological line defects are common in three-dimensional systems, the evolution mechanism of line defects is not fully understood. The six domains in hexagonal manganites converge to vortex lines in three dimensions. Using phase-field simulations, we predicted that during the domain coarsening process, the vortex-line network undergoes three types of basic topological changes, i.e., vortex-line loop shrinking, coalescence, and splitting. It is shown that the vortex-antivortex annihilation controls the scaling dynamics.

  3. Vortex structure and breakup mechanism of gaseous jet in supersonic crossflow with laminar boundary layer

    NASA Astrophysics Data System (ADS)

    Zhao, Yanhui; Liang, Jianhan; Zhao, Yuxin

    2016-11-01

    Employing nano-particle planar laser scattering and particle image velocimetry technology, underexpanded jet in supersonic crossflow with laminar boundary layer is experimental investigated in a low noise wind tunnel. Instantaneous flow structures and average velocity distribution of jet plume are captured in experimental images. Horseshoe vortex system is dominated by oscillating and coalescing regime, contributing to vortex generation of jet shear layer. The "tilting-stretching-tearing" mechanism dominating in near field raises average fractal dimension. But vortex structures generated on the windward side of jet plume scatter in jet plume and dissipate gradually, which makes the vortexes break up from outside in near field and break down into small turbulence completely in far field.

  4. Effects of fullerene coalescence on the thermal conductivity of carbon nanopeapods

    NASA Astrophysics Data System (ADS)

    Li, Jiaqian; Shen, Haijun

    2018-05-01

    The heat conduction and its dependence on fullerene coalescence in carbon nanopeapods (CNPs) have been investigated by equilibrium molecular dynamics simulations. The effects of fullerene coalescence on the thermal conductivity of CNPs were discussed under different temperatures. It is shown that the thermal conductivity of the CNPs decreases with the coalescence of encapsulated fullerene molecules. The thermal transmission mechanism of the effect of fullerene coalescence was analysed by the mass transfer contribution, the relative contributions of phonon oscillation frequencies to total heat current and the phonon vibrational density of states (VDOS). The mass transfer in CNPs is mainly attributed to the motion of encapsulated fullerene molecule and it gets more restricted with the coalescence of the fullerene. It shows that the low-frequency phonon modes below 20 THz contribute mostly to thermal conductivity in CNPs. The analysis of VDOS demonstrates that the dominating contribution to heat transfer is from the inner fullerene chain. With the coalescence of fullerene, the interfacial heat transfer between the CNT and fullerene chain is strengthened; however, the heat conduction of the fullerene chain decreases more rapidly at the same time.

  5. Front propagation in a vortex lattice: dependence on boundary conditions and vortex depth.

    PubMed

    Beauvier, E; Bodea, S; Pocheau, A

    2016-11-04

    We experimentally address the propagation of reaction-diffusion fronts in vortex lattices by combining, in a Hele-Shaw cell and at low Reynolds number, forced electroconvective flows and an autocatalytic reaction in solution. We consider both vortex chains and vortex arrays, the former referring to mixed free/rigid boundary conditions for vortices and the latter to free boundary conditions. Varying the depth of the fluid layer, we observe no variation of the mean front velocities for vortex arrays and a noticeable variation for vortex chains. This questions the two-dimensional character of front propagation in low Reynolds number vortex lattices, as well as the mechanisms of this dependence.

  6. Coalescence of a Drop inside another Drop

    NASA Astrophysics Data System (ADS)

    Mugundhan, Vivek; Jian, Zhen; Yang, Fan; Li, Erqiang; Thoroddsen, Sigurdur

    2016-11-01

    Coalescence dynamics of a pendent drop sitting inside another drop, has been studied experimentally and in numerical simulations. Using an in-house fabricated composite micro-nozzle, a smaller salt-water drop is introduced inside a larger oil drop which is pendent in a tank containing the same liquid as the inner drop. On touching the surface of outer drop, the inner drop coalesces with the surrounding liquid forming a vortex ring, which grows in time to form a mushroom-like structure. The initial dynamics at the first bridge opening up is quantified using Particle Image Velocimetry (PIV), while matching the refractive index of the two liquids. The phenomenon is also numerically simulated using the open-source code Gerris. The problem is fully governed by two non-dimensional parameters: the Ohnesorge number and the diameter ratios of the two drops. The validated numerical model is used to better understand the dynamics of the phenomenon. In some cases a coalescence cascade is observed with liquid draining intermittently and the inner drop reducing in size.

  7. Chiral Modes at Exceptional Points in Exciton-Polariton Quantum Fluids

    NASA Astrophysics Data System (ADS)

    Gao, T.; Li, G.; Estrecho, E.; Liew, T. C. H.; Comber-Todd, D.; Nalitov, A.; Steger, M.; West, K.; Pfeiffer, L.; Snoke, D. W.; Kavokin, A. V.; Truscott, A. G.; Ostrovskaya, E. A.

    2018-02-01

    We demonstrate the generation of chiral modes-vortex flows with fixed handedness in exciton-polariton quantum fluids. The chiral modes arise in the vicinity of exceptional points (non-Hermitian spectral degeneracies) in an optically induced resonator for exciton polaritons. In particular, a vortex is generated by driving two dipole modes of the non-Hermitian ring resonator into degeneracy. Transition through the exceptional point in the space of the system's parameters is enabled by precise manipulation of real and imaginary parts of the closed-wall potential forming the resonator. As the system is driven to the vicinity of the exceptional point, we observe the formation of a vortex state with a fixed orbital angular momentum (topological charge). This method can be extended to generate higher-order orbital angular momentum states through coalescence of multiple non-Hermitian spectral degeneracies. Our Letter demonstrates the possibility of exploiting nontrivial and counterintuitive properties of waves near exceptional points in macroscopic quantum systems.

  8. NUMERICAL SIMULATIONS OF KELVIN–HELMHOLTZ INSTABILITY: A TWO-DIMENSIONAL PARAMETRIC STUDY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tian, Chunlin; Chen, Yao, E-mail: chunlin.tian@sdu.edu.cn

    2016-06-10

    Using two-dimensional simulations, we numerically explore the dependences of Kelvin–Helmholtz (KH) instability upon various physical parameters, including viscosity, the width of the sheared layer, flow speed, and magnetic field strength. In most cases, a multi-vortex phase exists between the initial growth phase and the final single-vortex phase. The parametric study shows that the evolutionary properties, such as phase duration and vortex dynamics, are generally sensitive to these parameters, except in certain regimes. An interesting result is that for supersonic flows, the phase durations and saturation of velocity growth approach constant values asymptotically as the sonic Mach number increases. We confirmmore » that the linear coupling between magnetic field and KH modes is negligible if the magnetic field is weak enough. The morphological behavior suggests that the multi-vortex coalescence might be driven by the underlying wave–wave interaction. Based on these results, we present a preliminary discussion of several events observed in the solar corona. The numerical models need to be further improved to perform a practical diagnostic of the coronal plasma properties.« less

  9. Coalescence of 3-phenyl-propynenitrile on Cu(111) into interlocking pinwheel chains

    NASA Astrophysics Data System (ADS)

    Luo, Miaomiao; Lu, Wenhao; Kim, Daeho; Chu, Eric; Wyrick, Jon; Holzke, Connor; Salib, Daniel; Cohen, Kamelia D.; Cheng, Zhihai; Sun, Dezheng; Zhu, Yeming; Einstein, T. L.; Bartels, Ludwig

    2011-10-01

    3-phenyl-propynenitrile (PPN) adsorbs on Cu(111) in a hexagonal network of molecular trimers formed through intermolecular interaction of the cyano group of one molecule with the aromatic ring of its neighbor. Heptamers of trimers coalesce into interlocking pinwheel-shaped structures that, by percolating across islands of the original trimer coverage, create the appearance of gear chains. Density functional theory aids in identifying substrate stress associated with the chemisorption of PPN's acetylene group as the cause of this transition.

  10. Equilibrium vortex structures of type-II/1 superconducting films with washboard pinning landscapes

    NASA Astrophysics Data System (ADS)

    Wei, C. A.; Xu, X. B.; Xu, X. N.; Wang, Z. H.; Gu, M.

    2018-05-01

    We numerically study the equilibrium vortex structures of type-II/1 superconducting films with a periodic quasi-one-dimensional corrugated substrate. We show as a function of substrate period and pinning strength that, the vortex system displays a variety of vortex phases including arrays consisted of vortex clumps with different morphologies, ordered vortex stripes parallel and perpendicular to pinning troughs, and ordered one-dimensional vortex chains. Our simulations are helpful in understanding the structural modulations for extensive systems with both competing interactions and competing periodicities.

  11. Action-derived molecular dynamics simulations for the migration and coalescence of vacancies in graphene and carbon nanotubes.

    PubMed

    Lee, Alex Taekyung; Ryu, Byungki; Lee, In-Ho; Chang, K J

    2014-03-19

    We report the results of action-derived molecular dynamics simulations for the migration and coalescence processes of monovacancies in graphene and carbon nanotubes with different chiralities. In carbon nanotubes, the migration pathways and barriers of a monovacancy depend on the tube chirality, while there is no preferential pathway in graphene due to the lattice symmetry and the absence of the curvature effect. The probable pathway changes from the axial to circumferential direction as the chirality varies from armchair to zigzag. The chirality dependence is attributed to the preferential orientation of the reconstructed bond formed around each vacancy site. It is energetically more favourable for two monovacancies to coalesce into a divacancy via alternative movements rather than simultaneous movements. The energy barriers for coalescence are generally determined by the migration barrier for the monovacancy, although there are some variations due to interactions between two diffusing vacancies. In graphene and armchair nanotubes, two monovacancies prefer to migrate along different zigzag atomic chains rather than a single atomic chain connecting these vacancies. On the other hand, in zigzag tubes, the energy barrier for coalescence increases significantly unless monovacancies lie on the same circumference.

  12. Finding the best resolution for the Kingman-Tajima coalescent: theory and applications.

    PubMed

    Sainudiin, Raazesh; Stadler, Tanja; Véber, Amandine

    2015-05-01

    Many summary statistics currently used in population genetics and in phylogenetics depend only on a rather coarse resolution of the underlying tree (the number of extant lineages, for example). Hence, for computational purposes, working directly on these resolutions appears to be much more efficient. However, this approach seems to have been overlooked in the past. In this paper, we describe six different resolutions of the Kingman-Tajima coalescent together with the corresponding Markov chains, which are essential for inference methods. Two of the resolutions are the well-known n-coalescent and the lineage death process due to Kingman. Two other resolutions were mentioned by Kingman and Tajima, but never explicitly formalized. Another two resolutions are novel, and complete the picture of a multi-resolution coalescent. For all of them, we provide the forward and backward transition probabilities, the probability of visiting a given state as well as the probability of a given realization of the full Markov chain. We also provide a description of the state-space that highlights the computational gain obtained by working with lower-resolution objects. Finally, we give several examples of summary statistics that depend on a coarser resolution of Kingman's coalescent, on which simulations are usually based.

  13. Transient interaction between a reaction control jet and a hypersonic crossflow

    NASA Astrophysics Data System (ADS)

    Miller, Warrick A.; Medwell, Paul R.; Doolan, Con J.; Kim, Minkwan

    2018-04-01

    This paper presents a numerical study that focuses on the transient interaction between a reaction control jet and a hypersonic crossflow with a laminar boundary layer. The aim is to better understand the underlying physical mechanisms affecting the resulting surface pressure and control force. Implicit large-eddy simulations were performed with a round, sonic, perfect air jet issuing normal to a Mach 5 crossflow over a flat plate with a laminar boundary layer, at a jet-to-crossflow momentum ratio of 5.3 and a pressure ratio of 251. The pressure distribution induced on the flat plate is unsteady and is influenced by vortex structures that form around the jet. A horseshoe vortex structure forms upstream and consists of six vortices: two quasi-steady vortices and two co-rotating vortex pairs that periodically coalesce. Shear-layer vortices shed periodically and cause localised high pressure regions that convect downstream with constant velocity. A longitudinal counter-rotating vortex pair is present downstream of the jet and is formed from a series of trailing vortices which rotate about a common axis. Shear-layer vortex shedding causes periodic deformation of barrel and bow shocks. This changes the location of boundary layer separation which also affects the normal force on the plate.

  14. Front propagation in a regular vortex lattice: Dependence on the vortex structure.

    PubMed

    Beauvier, E; Bodea, S; Pocheau, A

    2017-11-01

    We investigate the dependence on the vortex structure of the propagation of fronts in stirred flows. For this, we consider a regular set of vortices whose structure is changed by varying both their boundary conditions and their aspect ratios. These configurations are investigated experimentally in autocatalytic solutions stirred by electroconvective flows and numerically from kinematic simulations based on the determination of the dominant Fourier mode of the vortex stream function in each of them. For free lateral boundary conditions, i.e., in an extended vortex lattice, it is found that both the flow structure and the front propagation negligibly depend on vortex aspect ratios. For rigid lateral boundary conditions, i.e., in a vortex chain, vortices involve a slight dependence on their aspect ratios which surprisingly yields a noticeable decrease of the enhancement of front velocity by flow advection. These different behaviors reveal a sensitivity of the mean front velocity on the flow subscales. It emphasizes the intrinsic multiscale nature of front propagation in stirred flows and the need to take into account not only the intensity of vortex flows but also their inner structure to determine front propagation at a large scale. Differences between experiments and simulations suggest the occurrence of secondary flows in vortex chains at large velocity and large aspect ratios.

  15. Vortex-assisted liquid-liquid microextraction for the rapid screening of short-chain chlorinated paraffins in water.

    PubMed

    Chang, Chia-Yu; Chung, Wu-Hsun; Ding, Wang-Hsien

    2016-01-01

    The rapid screening of trace levels of short-chain chlorinated paraffins in various aqueous samples was performed by a simple and reliable procedure based on vortex-assisted liquid-liquid microextraction combined with gas chromatography and electron capture negative ionization mass spectrometry. The optimal vortex-assisted liquid-liquid microextraction conditions for 20 mL water sample were as follows: extractant 400 μL of dichloromethane; vortex extraction time of 1 min at 2500 × g; centrifugation of 3 min at 5000 × g; and no ionic strength adjustment. Under the optimum conditions, the limit of quantitation was 0.05 μg/L. Precision, as indicated by relative standard deviations, was less than 9% for both intra- and inter-day analysis. Accuracy, expressed as the mean extraction recovery, was above 91%. The vortex-assisted liquid-liquid microextraction with gas chromatography and electron capture negative ionization mass spectrometry method was successfully applied to quantitatively extract short-chain chlorinated paraffins from samples of river water and the effluent of a wastewater treatment plant, and the concentrations ranged from 0.8 to 1.6 μg/L. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Crossflow-Vortex Breakdown on Swept Wings: Correlation of Nonlinear Physics

    NASA Technical Reports Server (NTRS)

    Joslin, R. D.; Streett, C. L.

    1994-01-01

    The spatial evolution of cross flow-vortex packets in a laminar boundary layer on a swept wing are computed by the direct numerical simulation of the incompressible Navier- Stokes equations. A wall-normal velocity distribution of steady suction and blowing at the wing surface is used to generate a strip of equally spaced and periodic disturbances along the span. Three simulations are conducted to study the effect of initial amplitude on the disturbance evolution, to determine the role of traveling cross ow modes in transition, and to devise a correlation function to guide theories of transition prediction. In each simulation, the vortex packets first enter a chordwise region of linear independent growth, then, the individual packets coalesce downstream and interact with adjacent packets, and, finally, the vortex packets nonlinearly interact to generate inflectional velocity profiles. As the initial amplitude of the disturbance is increased, the length of the evolution to breakdown decreases. For this pressure gradient, stationary modes dominate the disturbance evolution. A two-coeffcient function was devised to correlate the simulation results. The coefficients, combined with a single simulation result, provide sufficient information to generate the evolution pattern for disturbances of any initial amplitude.

  17. Spatial and Time Dynamics of Non-Linear Vortices in Plasma Lens for High-Current Ion Beam Focusing

    NASA Astrophysics Data System (ADS)

    Goncharov, Alexei A.; Maslov, Vasyl I.; Onishchenko, Ivan N.; Tretyakov, Vitalij N.

    2002-11-01

    It is known from numerical simulation (see, for example, [1]) and from experiments (see, for example, [2]), that an electron density bunches as discrete vortices are long - living structures in vacuum. However, in laboratory experiments [2] it has been shown that the vortices are changed faster, when they are submersed in electrons, distributed around them. The charged plasma lens intended for a focussing of high-current ion beams, has the same crossed configuration of a radial electrical and longitudinal magnetic field [3], as only electron plasma. In this lens the vortical turbulence is excited [3]. The vortex - bunch and vortex - hole are rotated in the inverse directions in system of their rest. The instability development in initially homogeneous plasma causes that the vortices are excited by pairs. Namely, if the vortex - bunch of electrons is generated, near the vortex - hole of electrons is also generated. It is shown, that in nonuniform plasma the vortices behave is various in time. Namely, the vortex - bunch goes to area of larger electron density, and the vortex - hole goes to area of smaller electron density. The speed of the vortex - hole is less than speed of the vortex - bunch. It is shown, that the electron vortices, generated in the plasma lens, can result in to formation of spiral distribution of electron density. The physical mechanism of coalescence of electron vortices - bunches is proposed. 1.Driscoll C.F. et al. Plasma Phys. Contr. Fus. Res. 3 (1989) 507. 2.Kiwamoto Y. et al. Non-neutral plasma physics. Princeton. 1999. P. 99-105. 3.Goncharov A. et al. Plasma Phys. Rep. 20 (1994) 499.

  18. Modeling quantum fluid dynamics at nonzero temperatures

    PubMed Central

    Berloff, Natalia G.; Brachet, Marc; Proukakis, Nick P.

    2014-01-01

    The detailed understanding of the intricate dynamics of quantum fluids, in particular in the rapidly growing subfield of quantum turbulence which elucidates the evolution of a vortex tangle in a superfluid, requires an in-depth understanding of the role of finite temperature in such systems. The Landau two-fluid model is the most successful hydrodynamical theory of superfluid helium, but by the nature of the scale separations it cannot give an adequate description of the processes involving vortex dynamics and interactions. In our contribution we introduce a framework based on a nonlinear classical-field equation that is mathematically identical to the Landau model and provides a mechanism for severing and coalescence of vortex lines, so that the questions related to the behavior of quantized vortices can be addressed self-consistently. The correct equation of state as well as nonlocality of interactions that leads to the existence of the roton minimum can also be introduced in such description. We review and apply the ideas developed for finite-temperature description of weakly interacting Bose gases as possible extensions and numerical refinements of the proposed method. We apply this method to elucidate the behavior of the vortices during expansion and contraction following the change in applied pressure. We show that at low temperatures, during the contraction of the vortex core as the negative pressure grows back to positive values, the vortex line density grows through a mechanism of vortex multiplication. This mechanism is suppressed at high temperatures. PMID:24704874

  19. Experimental studies of one-way reaction front barriers in three-dimensional vortex flows

    NASA Astrophysics Data System (ADS)

    Gannon, Joanie; Doan, Minh; Simons, Jj; Mitchell, Kevin; Solomon, Tom

    2017-11-01

    We present results of experimental studies of the evolution of the excitable, Ruthenium (Ru)-catalyzed, Belousov-Zhabotinsky (BZ) reaction in a three-dimensional (3D) flow composed of the superposition of horizontal and vertical vortex chains. The reaction fronts are imaged in 3D with a scanning, laser-induced fluorescence technique that takes advantage of the differential fluoresence of the Ruthenium indicated at the front. When the horizontal and vertical vortex chains are lined up, a dominant scroll structure is observed that acts as a one-way barrier blocking fronts propagating across vortex boundaries and into vortex centers. A second, quarter-tube barrier is observed along the edges of the unit cell. When the vortices are shifted relative to each other, tube-like barriers are observed in the interior. All of these barriers are compared with burning invariant manifolds predicted from a 6D set of differential equations describing the evolution of front elements in the flow. Supported by NSF Grants DMR-1361881 and DUE-1317446.

  20. Difference in growth and coalescing patterns of droplets on bi-philic surfaces with varying spatial distribution.

    PubMed

    Garimella, Martand Mayukh; Koppu, Sudheer; Kadlaskar, Shantanu Shrikant; Pillutla, Venkata; Abhijeet; Choi, Wonjae

    2017-11-01

    This paper reports the condensation and subsequent motion of water droplets on bi-philic surfaces, surfaces that are patterned with regions of different wettability. Bi-philic surfaces can enhance the water collection efficiency: droplets condensing on hydrophobic regions wick into hydrophilic drain channels when droplets grow to a certain size, renewing the condensation on the dry hydrophobic region. The onset of drain phenomenon can be triggered by multiple events with distinct nature ranging from gravity, direct contact between a droplet and a drain channel, to a mutual coalescence between droplets. This paper focuses on the effect of the length scale of hydrophobic regions on the dynamics of mutual coalescence between droplets and subsequent drainage. The main hypothesis was that, when the drop size is sufficient, the kinetic energy associated with a coalescence of droplets may cause dynamic advancing of a newly formed drop, leading to further coalescence with nearby droplets and ultimately to a chain reaction. We fabricate bi-philic surfaces with hydrophilic and hydrophobic stripes, and the result confirms that coalescing droplets, when the length scale of droplets increases beyond 0.2mm, indeed display dynamic expansion and chain reaction. Multiple droplets can thus migrate to hydrophilic drain simultaneously even when the initial motion of the droplets was not triggered by the direct contact between the droplet and the hydrophilic drain. Efficiency of drain due to mutual coalescence of droplets varies depending on the length scale of bi-philic patterns, and the drain phenomenon reaches its peak when the width of hydrophobic stripes is between 800μm and 1mm. The Ohnesorge number of droplets draining on noted surfaces is between 0.0042 and 0.0037 respectively. The observed length scale of bi-philic patterns matches that on the Stenocara beetle's fog harvesting back surface. This match between length scales suggests that the surface of the insect is optimized for the drain of harvested water. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Unlocking Chain Exchange in Highly Amphiphilic Block Polymer Micellar Systems: Influence of Agitation.

    PubMed

    Murphy, Ryan P; Kelley, Elizabeth G; Rogers, Simon A; Sullivan, Millicent O; Epps, Thomas H

    2014-11-18

    Chain exchange between block polymer micelles in highly selective solvents, such as water, is well-known to be arrested under quiescent conditions, yet this work demonstrates that simple agitation methods can induce rapid chain exchange in these solvents. Aqueous solutions containing either pure poly(butadiene- b -ethylene oxide) or pure poly(butadiene- b -ethylene oxide- d 4 ) micelles were combined and then subjected to agitation by vortex mixing, concentric cylinder Couette flow, or nitrogen gas sparging. Subsequently, the extent of chain exchange between micelles was quantified using small angle neutron scattering. Rapid vortex mixing induced chain exchange within minutes, as evidenced by a monotonic decrease in scattered intensity, whereas Couette flow and sparging did not lead to measurable chain exchange over the examined time scale of hours. The linear kinetics with respect to agitation time suggested a surface-limited exchange process at the air-water interface. These findings demonstrate the strong influence of processing conditions on block polymer solution assemblies.

  2. Irreversible Markov chains in spin models: Topological excitations

    NASA Astrophysics Data System (ADS)

    Lei, Ze; Krauth, Werner

    2018-01-01

    We analyze the convergence of the irreversible event-chain Monte Carlo algorithm for continuous spin models in the presence of topological excitations. In the two-dimensional XY model, we show that the local nature of the Markov-chain dynamics leads to slow decay of vortex-antivortex correlations while spin waves decorrelate very quickly. Using a Fréchet description of the maximum vortex-antivortex distance, we quantify the contributions of topological excitations to the equilibrium correlations, and show that they vary from a dynamical critical exponent z∼ 2 at the critical temperature to z∼ 0 in the limit of zero temperature. We confirm the event-chain algorithm's fast relaxation (corresponding to z = 0) of spin waves in the harmonic approximation to the XY model. Mixing times (describing the approach towards equilibrium from the least favorable initial state) however remain much larger than equilibrium correlation times at low temperatures. We also describe the respective influence of topological monopole-antimonopole excitations and of spin waves on the event-chain dynamics in the three-dimensional Heisenberg model.

  3. Logic operations based on magnetic-vortex-state networks.

    PubMed

    Jung, Hyunsung; Choi, Youn-Seok; Lee, Ki-Suk; Han, Dong-Soo; Yu, Young-Sang; Im, Mi-Young; Fischer, Peter; Kim, Sang-Koog

    2012-05-22

    Logic operations based on coupled magnetic vortices were experimentally demonstrated. We utilized a simple chain structure consisting of three physically separated but dipolar-coupled vortex-state Permalloy disks as well as two electrodes for application of the logical inputs. We directly monitored the vortex gyrations in the middle disk, as the logical output, by time-resolved full-field soft X-ray microscopy measurements. By manipulating the relative polarization configurations of both end disks, two different logic operations are programmable: the XOR operation for the parallel polarization and the OR operation for the antiparallel polarization. This work paves the way for new-type programmable logic gates based on the coupled vortex-gyration dynamics achievable in vortex-state networks. The advantages are as follows: a low-power input signal by means of resonant vortex excitation, low-energy dissipation during signal transportation by selection of low-damping materials, and a simple patterned-array structure.

  4. Effect of vortical structures on velocity and turbulent fields in the near region of an impinging turbulent jet

    NASA Astrophysics Data System (ADS)

    Yadav, Harekrishna; Agrawal, Amit

    2018-03-01

    This experimental study pertains to the formation of a secondary peak in heat transfer distribution for an axisymmetric turbulent impinging submerged jet. The analysis of instantaneous fields is undertaken at various Reynolds numbers based upon the bulk velocity and nozzle diameter (Re = 1300-10 000) and surface spacings (L/D = 0.25-6). Our analysis shows that flow separation and reattachment correspond to decrease/increase in local pressure and are caused by primary vortices; these are further linked to the location of maxima in streamwise and cross-stream velocities. It is further observed that the locations of maxima and minima in velocities are linked to fluctuations in rms velocities and thickening/thinning of the boundary layer. The vortices transported along the surface either coalesce among themselves or combine with other eddies to form a primary vortex. The primary vortex while getting convected downstream makes multiple interactions with the inner shear layer and causes waviness in instantaneous flow fields. In their later stage, the primary vortex moves away from the wall and accelerates, while the flow decelerates in the inner shear layer. The accelerated fluid in the outer shear layer pulls the downstream fluid from the inner shear layer and leads to the formation of a secondary vortex. After a certain distance downstream, the secondary vortex rolling between the primary vortex and the wall eventually breaks down, while the flow reattaches to the wall. The behavior of time average and instantaneous velocity fields suggests that unsteadiness in the heat transfer is linked to the location of maximum streamwise velocity, location of flow attachment, location of rms velocity, and thickness of the boundary layer. The instantaneous velocity fields show that for a given surface spacing, the chances for the appearance of the secondary vortex reduce with an increase in Reynolds number because of the reduction in space available for the secondary vortex to develop. It is further deduced that the strength of the secondary vortex is primarily dependent upon the strength of the primary vortex. However, the velocity field estimated using the linear stochastic estimation technique shows a tendency for the formation of the secondary vortex at higher Reynolds number, suggesting that most measurements do not resolve them well. Our analysis explains the reason for the appearance of the secondary peak in heat transfer distribution and helps resolve the contradictions in the literature regarding this phenomenon.

  5. Structural transitions in vortex systems with anisotropic interactions

    DOE PAGES

    Olszewski, Maciej W.; Eskildsen, M. R.; Reichhardt, Charles; ...

    2017-12-29

    We introduce a model of vortices in type-II superconductors with a four-fold anisotropy in the vortex–vortex interaction potential. Using numerical simulations we show that the vortex lattice undergoes structural transitions as the anisotropy is increased, with a triangular lattice at low anisotropy, a rhombic intermediate state, and a square lattice for high anisotropy. In some cases we observe a multi-q state consisting of an Archimedean tiling that combines square and triangular local ordering. At very high anisotropy, domains of vortex chain states appear. We discuss how this model can be generalized to higher order anisotropy as well as its applicabilitymore » to other particle-based systems with anisotropic particle–particle interactions.« less

  6. Vortex motion in axisymmetric piston-cylinder configurations

    NASA Technical Reports Server (NTRS)

    Shih, T. I. P.; Smith, G. E.; Springer, G. S.

    1982-01-01

    By using the Beam and Warming implicit-factored method of solution of the Navier-Stokes equations, velocities were calculated inside axisymmetric piston cylinder configurations during the intake and compression strokes. Results are presented in graphical form which show the formation, growth and breakup of those vortices which form during the intake stroke by the jet issuing from the valve. It is shown that at bore-to-stroke ratio of less than unity, the vortices may breakup during the intake stroke. It is also shown that vortices which do not breakup during the intake stroke coalesce during the compression stroke.

  7. Phase Structure and Properties of a Biodegradable Block Copolymer Coalesced from It's Crystalline Inclusion Compound Formed with alpha-Cyclodextrin

    NASA Astrophysics Data System (ADS)

    Shuai, Xintao; Wei, Min; Probeni, Francis; Bullions, Todd A.; Shin, I. Daniel; Tonelli, Alan E.

    2002-03-01

    A well-defined biodegradable block copolymer of poly(epsilon caprolactone) (PCL) and poly(L-lactic acid) (PLLA) was synthesized and characterized and then included as a guest in an inclusion compound (IC) formed with the host alpha-cyclodextrin (CD). The PCL-b-PLLA block copolymer was subsequently coalesced from it's CD-IC crystals by either treatment with hot water (50 C) or an aqueous amylase solution at 25 C. The coalesced PCL-b-PLLA was examined by FTIR, DSC, TGA, and WAXD and was found to be much more homogeneosly organized, with much less segregation and crystallinity of the PCL and PLLA microphases. The morpholgy, crystallization kinetics, thermal behavior, and biodegradability of the coalesced PCL-b-PLLA block copolymer was studied by comparison to similar observations made on as-synthesized PCL-b-PLLA, PCL and PLLA homopolymers, and their solution-cast blend. The PCL and PLLA blocks are found to be more intimately mixed, with less phase segregation, in the coalesced diblock copolymer, and this leads to homogeneous bulk crystallization, which is not observed for the as-synthesized diblock copolymer. The coalesced PCL-b-PLLA was also found to be more quickly biodegraded (lipase from Rhizopus arrhizus)than the as-synthesized PCL-b-PLLA or the physical blend of PCL and PLLA homopolymers. Overall, the coalescence of the inherently phase segregated diblock copolymer PCL-b-PLLA results in a small amount of compact, chain-extended PCL and PLLA crystals embedded in an amorphous phase, largely consisting of well-mixed PCL and PLLA blocks. Thus, we have demonstrated that it is possible to control the morpholgy of a biodegradable diblock copolymer, thereby significantly modifying it's properties, by coalescence from it's CD-IC crystals.

  8. Growth Mechanism of Lipid-Based Nanodiscs -- a Model Membrane for Studying Kinetics of Particle Coalescence

    NASA Astrophysics Data System (ADS)

    Nieh, Mu-Ping; Dizon, Anthony; Li, Ming; Hu, Andrew; Fan, Tai-Hsi

    2012-02-01

    Lipid-based nanodiscs composed of long- and short- chain lipids [namely, dimyristoyl phosphatidylcholine (DMPC), dimyristoyl phosphatidylglycerol (DMPG) and dihexanoyl phosphatidylcholine (DHPC)] constantly form at high lipid concentrations and at low temperatures (i.e., below the melting transition temperature of DMPC, TM). The initial size of these nanodiscs (at high total lipid concentration, CL> 20 wt.%) is relatively uniform and of similar dimension (according to dynamic light scattering and small angle neutron scattering experiments), seemingly independent of thermal history. Upon dilution, the nanodiscs slowly coalesce and grow in size with time irreversibly. Our preliminary result shows that the growth rate strongly depends on several parameters such as charge density, CL and temperature. We have also found that the nanodisc coalescence is a reaction limit instead of diffusion limit process through a time-resolved study.

  9. Fermentation broth components influence droplet coalescence and hinder advanced biofuel recovery during fermentation.

    PubMed

    Heeres, Arjan S; Schroën, Karin; Heijnen, Joseph J; van der Wielen, Luuk A M; Cuellar, Maria C

    2015-08-01

    Developments in synthetic biology enabled the microbial production of long chain hydrocarbons, which can be used as advanced biofuels in aviation or transportation. Currently, these fuels are not economically competitive due to their production costs. The current process offers room for improvement: by utilizing lignocellulosic feedstock, increasing microbial yields, and using cheaper process technology. Gravity separation is an example of the latter, for which droplet growth by coalescence is crucial. The aim of this study was to study the effect of fermentation broth components on droplet coalescence. Droplet coalescence was measured using two setups: a microfluidic chip and regular laboratory scale stirred vessel (2 L). Some fermentation broth components had a large impact on droplet coalescence. Especially components present in hydrolysed cellulosic biomass and mannoproteins from the yeast cell wall retard coalescence. To achieve a technically feasible gravity separation that can be integrated with the fermentation, the negative effects of these components on coalescence should be minimized. This could be achieved by redesign of the fermentation medium or adjusting the fermentation conditions, aiming to minimize the release of surface active components by the microorganisms. This way, another step can be made towards economically feasible advanced biofuel production. © 2015 The Authors. Biotechnology Journal published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. This is an open access article under the terms of the Creative Commons Attribution-Non-Commercial-NoDerivs Licence, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

  10. DIM SUM: demography and individual migration simulated using a Markov chain.

    PubMed

    Brown, Jeremy M; Savidge, Kevin; McTavish, Emily Jane B

    2011-03-01

    An increasing number of studies seek to infer demographic history, often jointly with genetic relationships. Despite numerous analytical methods for such data, few simulations have investigated the methods' power and robustness, especially when underlying assumptions have been violated. DIM SUM (Demography and Individual Migration Simulated Using a Markov chain) is a stand-alone Java program for the simulation of population demography and individual migration while recording ancestor-descendant relationships. It does not employ coalescent assumptions or discrete population boundaries. It is extremely flexible, allowing the user to specify border positions, reactions of organisms to borders, local and global carrying capacities, individual dispersal kernels, rates of reproduction and strategies for sampling individuals. Spatial variables may be specified using image files (e.g., as exported from gis software) and may vary through time. In combination with software for genetic marker simulation, DIM SUM will be useful for testing phylogeographic (e.g., nested clade phylogeographic analysis, coalescent-based tests and continuous-landscape frameworks) and landscape-genetic methods, specifically regarding violations of coalescent assumptions. It can also be used to explore the qualitative features of proposed demographic scenarios (e.g. regarding biological invasions) and as a pedagogical tool. DIM SUM (with user's manual) can be downloaded from http://code.google.com/p/bio-dimsum. © 2010 Blackwell Publishing Ltd.

  11. Scattering and propagation of a Laguerre-Gaussian vortex beam by uniaxial anisotropic bispheres

    NASA Astrophysics Data System (ADS)

    Qu, Tan; Wu, Zhensen; Shang, Qingchao; Li, Zhengjun; Wu, Jiaji; Li, Haiying

    2018-04-01

    Within the framework of the generalized multi-particle Mie (GMM) theory, analytical solution to electromagnetic scattering of two interacting homogeneous uniaxial anisotropic spheres by a Laguerre-Gaussian (LG) vortex beam is investigated. The particles with different size and dielectric parameter tensor elements are arbitrarily configured. Based on the continuous boundary conditions at each sphere surface, the interactive scattering coefficients are derived. The internal and near-surface field is investigated to describe the propagation of LG vortex beam through the NaCl crystal. In addition, the far fields of some typical anisotropic medium such as LiNbO3, TiO2 bispheres illuminated by an LG vortex beam are numerically presented in detail to analyze the influence of the anisotropic parameters, sphere positions, separation distance and topological charge etc. The results show that LG vortex beam has a better recovery after interacting with a spherical particle compared with Gaussian beam. The study in the paper are useful for the further research on the scattering and propagation characteristics of arbitrary vortex beam in anisotropic chains and periodic structure.

  12. Magnification of signatures of a topological phase transition by quantum zero point motion

    NASA Astrophysics Data System (ADS)

    Lopes, Pedro L. e. S.; Ghaemi, Pouyan

    2015-08-01

    We show that the zero point motion of a vortex in superconducting doped topological insulators leads to significant changes in the electronic spectrum at the topological phase transition in this system. This topological phase transition is tuned by the doping level, and the corresponding effects are manifest in the density of states at energies which are on the order of the vortex fluctuation frequency. Although the electronic energy gap in the spectrum generated by a stationary vortex is but a small fraction of the bulk superconducting gap, the vortex fluctuation frequency may be much larger. As a result, this quantum zero point motion can induce a discontinuous change in the spectral features of the system at the topological vortex phase transition to energies which are well within the resolution of scanning tunneling microscopy. This discontinuous change is exclusive to superconducting systems in which we have a topological phase transition. Moreover, the phenomena studied in this paper present effects of Magnus forces on the vortex spectrum which are not present in the ordinary s -wave superconductors. Finally, we demonstrate explicitly that the vortex in this system is equivalent to a Kitaev chain. This allows for the mapping of the vortex fluctuating scenario in three dimensions into similar one-dimensional situations in which one may search for other novel signatures of topological phase transitions.

  13. Revisiting the time until fixation of a neutral mutant in a finite population - A coalescent theory approach.

    PubMed

    Greenbaum, Gili

    2015-09-07

    Evaluation of the time scale of the fixation of neutral mutations is crucial to the theoretical understanding of the role of neutral mutations in evolution. Diffusion approximations of the Wright-Fisher model are most often used to derive analytic formulations of genetic drift, as well as for the time scales of the fixation of neutral mutations. These approximations require a set of assumptions, most notably that genetic drift is a stochastic process in a continuous allele-frequency space, an assumption appropriate for large populations. Here equivalent approximations are derived using a coalescent theory approach which relies on a different set of assumptions than the diffusion approach, and adopts a discrete allele-frequency space. Solutions for the mean and variance of the time to fixation of a neutral mutation derived from the two approaches converge for large populations but slightly differ for small populations. A Markov chain analysis of the Wright-Fisher model for small populations is used to evaluate the solutions obtained, showing that both the mean and the variance are better approximated by the coalescent approach. The coalescence approximation represents a tighter upper-bound for the mean time to fixation than the diffusion approximation, while the diffusion approximation and coalescence approximation form an upper and lower bound, respectively, for the variance. The converging solutions and the small deviations of the two approaches strongly validate the use of diffusion approximations, but suggest that coalescent theory can provide more accurate approximations for small populations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Temperature-Driven Structural and Morphological Evolution of Zinc Oxide Nano-Coalesced Microstructures and Its Defect-Related Photoluminescence Properties

    PubMed Central

    Lim, Karkeng; Abdul Hamid, Muhammad Azmi; Shamsudin, Roslinda; Al-Hardan, N.H.; Mansor, Ishak; Chiu, Weesiong

    2016-01-01

    In this paper, we address the synthesis of nano-coalesced microstructured zinc oxide thin films via a simple thermal evaporation process. The role of synthesis temperature on the structural, morphological, and optical properties of the prepared zinc oxide samples was deeply investigated. The obtained photoluminescence and X-ray photoelectron spectroscopy outcomes will be used to discuss the surface structure defects of the prepared samples. The results indicated that the prepared samples are polycrystalline in nature, and the sample prepared at 700 °C revealed a tremendously c-axis oriented zinc oxide. The temperature-driven morphological evolution of the zinc oxide nano-coalesced microstructures was perceived, resulting in transformation of quasi-mountain chain-like to pyramidal textured zinc oxide with increasing the synthesis temperature. The results also impart that the sample prepared at 500 °C shows a higher percentage of the zinc interstitial and oxygen vacancies. Furthermore, the intensity of the photoluminescence emission in the ultraviolet region was enhanced as the heating temperature increased from 500 °C to 700 °C. Lastly, the growth mechanism of the zinc oxide nano-coalesced microstructures is discussed according to the reaction conditions. PMID:28773425

  15. On the Impact of Collisions on Particle Dispersion in a Shear Layer

    NASA Astrophysics Data System (ADS)

    Soteriou, Marios; Mosley, John

    1999-11-01

    In this numerical study the impact of collisions on the evolution of a dispersed phase in a gaseous shear layer flow is investigated. The disperse phase consists of spherical particles which may experience two modes of collision: In the first, the collision has no effect on the particles themselves and is simply registered for accounting purposes. In the second, the particles coalesce upon impact into a larger spherical particle. The two phase mixture is assumed to be dilute and hence the impact of the disperse phase on the carrier phase is disabled. The unaveraged evolution of the carrier phase is simulated by using the Lagrangian Vortex Element Method while that of the dispersed phase by computing the trajectories of individual particles. Thus the numerical model is totally Lagrangian and grid-free. Numerical results indicate that collisions are maximized at intermediate Stokes numbers and that for a given volume fraction they increase as the particles get smaller. Coalescence of particles tends to reduce the overall number of collisions in the flow and alters their locus, shifting them predominately upstream. It also has a dramatic impact on dispersion increasing it substantially for the cases that experience even moderate number of collisions.

  16. Vortex knots in tangled quantum eigenfunctions

    PubMed Central

    Taylor, Alexander J.; Dennis, Mark R.

    2016-01-01

    Tangles of string typically become knotted, from macroscopic twine down to long-chain macromolecules such as DNA. Here, we demonstrate that knotting also occurs in quantum wavefunctions, where the tangled filaments are vortices (nodal lines/phase singularities). The probability that a vortex loop is knotted is found to increase with its length, and a wide gamut of knots from standard tabulations occur. The results follow from computer simulations of random superpositions of degenerate eigenstates of three simple quantum systems: a cube with periodic boundaries, the isotropic three-dimensional harmonic oscillator and the 3-sphere. In the latter two cases, vortex knots occur frequently, even in random eigenfunctions at relatively low energy, and are constrained by the spatial symmetries of the modes. The results suggest that knotted vortex structures are generic in complex three-dimensional wave systems, establishing a topological commonality between wave chaos, polymers and turbulent Bose–Einstein condensates. PMID:27468801

  17. Measurement of Aharonov-Casher effect in a Josephson junction chain

    NASA Astrophysics Data System (ADS)

    Pop, Ioan Mihai; Lecocq, Florent; Pannetier, Bernard; Buisson, Olivier; Guichard, Wiebke

    2011-03-01

    We have recently measured the effect of superconducting phase-slips on the ground state of a Josephson junction chain and a rhombi chain. Here we report clear evidence of Aharonov-Casher effect in a chain of Josephson junctions. This phenomenon is the dual of the well known Aharonov-Bohm interference. Using a capacitively coupled gate to the islands of the chain, we induce oscillations of the supercurrent by tuning the polarization charges on the islands. We observe complex interference patterns for different quantum phase slip amplitudes, that we understand quantitatively as Aharonov-Casher vortex interferences. European STREP MIDAS.

  18. Using Kalman Filter Chemical Data Assimilation to Study Ozone Catalytic Loss Cycles in January 1992

    NASA Technical Reports Server (NTRS)

    Lary, David J.

    2002-01-01

    This paper presents for the first time a global study of the ozone catalytic destruction cycles operating in the stratosphere using a stratospheric analyses for January 1992. The chemical analyses were produced using a Kalman filter data assimilation system. Because a major component of the variability of trace gases is due to the atmospheric motions the analyses have been cast in a flow-tracking coordinate system that moves with the large scale flow pattern. Particular attention is paid to the kinetic aspects of these cycles such as the rate limiting step and chain length. Although it is an important kinetic parameter, the chain length of the various cycles is seldom considered when the various catalytic cycles are discussed. This survey highlights that in the low stratosphere the cycles involving HO2 and halogens (notably bromine) are particularly important. In approximate order of effectiveness the most important ozone loss cycles in the polar lower stratosphere are the BrO/ClO, HO2/BrO, and OH/HO2 cycles. The ClO/ClO cycle clearly delineates the regions of chlorine activation. The chain length of the HO2/ClO, OH/HO2, Br/BrO, and ClO/NO2, clearly delineate the vortex edge region. The chain length of the BrO/NO2 and Cl/NO2 cycles highlight the regions of chemical processing outside the vortex where streamers of chemically processed air are stripped-off and transported away from the vortex. This is also true in the very low stratosphere for the Cl/ClO and BrO/ClO cycles.

  19. Inhomogeneous Heisenberg spin chain and quantum vortex filament as non-holonomically deformed NLS systems

    NASA Astrophysics Data System (ADS)

    Abhinav, Kumar; Guha, Partha

    2018-03-01

    Through the Hasimoto map, various dynamical systems can be mapped to different integrodifferential generalizations of Nonlinear Schrödinger (NLS) family of equations some of which are known to be integrable. Two such continuum limits, corresponding to the inhomogeneous XXX Heisenberg spin chain [J. Phys. C 15, L1305 (1982)] and that of a thin vortex filament moving in a superfluid with drag [Eur. Phys. J. B 86, 275 (2013) 86; Phys. Rev. E 91, 053201 (2015)], are shown to be particular non-holonomic deformations (NHDs) of the standard NLS system involving generalized parameterizations. Crucially, such NHDs of the NLS system are restricted to specific spectral orders that exactly complements NHDs of the original physical systems. The specific non-holonomic constraints associated with these integrodifferential generalizations additionally posses distinct semi-classical signature.

  20. Topological phases in a Kitaev chain with imbalanced pairing

    NASA Astrophysics Data System (ADS)

    Li, C.; Zhang, X. Z.; Zhang, G.; Song, Z.

    2018-03-01

    We systematically study a Kitaev chain with imbalanced pair creation and annihilation, which is introduced by non-Hermitian pairing terms. An exact phase diagram shows that the topological phase is still robust under the influence of the conditional imbalance. The gapped phases are characterized by a topological invariant, the extended Zak phase, which is defined by the biorthonormal inner product. Such phases are destroyed at the points where the coalescence of ground states occurs, associated with the time-reversal symmetry breaking. We find that the Majorana edge modes also exist in an open chain in the time-reversal symmetry-unbroken region, demonstrating the bulk-edge correspondence in such a non-Hermitian system.

  1. Diffraction evidence for the structure of cellulose microfibrils in bamboo, a model for grass and cereal celluloses.

    PubMed

    Thomas, Lynne H; Forsyth, V Trevor; Martel, Anne; Grillo, Isabelle; Altaner, Clemens M; Jarvis, Michael C

    2015-06-23

    Cellulose from grasses and cereals makes up much of the potential raw material for biofuel production. It is not clear if cellulose microfibrils from grasses and cereals differ in structure from those of other plants. The structures of the highly oriented cellulose microfibrils in the cell walls of the internodes of the bamboo Pseudosasa amabilis are reported. Strong orientation facilitated the use of a range of scattering techniques. Small-angle neutron scattering provided evidence of extensive aggregation by hydrogen bonding through the hydrophilic edges of the sheets of chains. The microfibrils had a mean centre-to-centre distance of 3.0 nm in the dry state, expanding on hydration. The expansion on hydration suggests that this distance between centres was through the hydrophilic faces of adjacent microfibrils. However in the other direction, perpendicular to the sheets of chains, the mean, disorder-corrected Scherrer dimension from wide-angle X-ray scattering was 3.8 nm. It is possible that this dimension is increased by twinning (crystallographic coalescence) of thinner microfibrils over part of their length, through the hydrophobic faces. The wide-angle scattering data also showed that the microfibrils had a relatively large intersheet d-spacing and small monoclinic angle, features normally considered characteristic of primary-wall cellulose. Bamboo microfibrils have features found in both primary-wall and secondary-wall cellulose, but are crystallographically coalescent to a greater extent than is common in celluloses from other plants. The extensive aggregation and local coalescence of the microfibrils are likely to have parallels in other grass and cereal species and to influence the accessibility of cellulose to degradative enzymes during conversion to liquid biofuels.

  2. Back to BaySICS: a user-friendly program for Bayesian Statistical Inference from Coalescent Simulations.

    PubMed

    Sandoval-Castellanos, Edson; Palkopoulou, Eleftheria; Dalén, Love

    2014-01-01

    Inference of population demographic history has vastly improved in recent years due to a number of technological and theoretical advances including the use of ancient DNA. Approximate Bayesian computation (ABC) stands among the most promising methods due to its simple theoretical fundament and exceptional flexibility. However, limited availability of user-friendly programs that perform ABC analysis renders it difficult to implement, and hence programming skills are frequently required. In addition, there is limited availability of programs able to deal with heterochronous data. Here we present the software BaySICS: Bayesian Statistical Inference of Coalescent Simulations. BaySICS provides an integrated and user-friendly platform that performs ABC analyses by means of coalescent simulations from DNA sequence data. It estimates historical demographic population parameters and performs hypothesis testing by means of Bayes factors obtained from model comparisons. Although providing specific features that improve inference from datasets with heterochronous data, BaySICS also has several capabilities making it a suitable tool for analysing contemporary genetic datasets. Those capabilities include joint analysis of independent tables, a graphical interface and the implementation of Markov-chain Monte Carlo without likelihoods.

  3. Effects of Various Fillet Shapes on a 76/40 Double Delta Wing from Mach 0.18 to 0.7

    NASA Technical Reports Server (NTRS)

    Erickson, Gary E.; Bell, James H.; Gonzalez, Hugo A.; McLachlan, Blair G.

    2003-01-01

    The effects of linear, diamond, and parabolic fillets on a double delta wing were investigated in the NASA Langley 7 x 10 ft High Speed Tunnel from Mach 0.18 to 0.7 and angles of attack from 4 deg. to 42 deg. Force and moment, pneumatic pressures, pressure sensitive paint, and vapor screen flow visualization measurements were used to characterize the flow field and to determine longitudinal forces and moments. The fillets increased lift coefficient and reduced induced drag without significantly affecting pitching moment. Pressure sensitive paint showed the increase in lift is caused by an increase in suction and broadening of the vortex suction footprint. Vapor screen results showed the mixing and coalescing of the strake fillet and wing vortices causes the footprint to broaden.

  4. Su-Schrieffer-Heeger chain with one pair of [Formula: see text]-symmetric defects.

    PubMed

    Jin, L; Wang, P; Song, Z

    2017-07-19

    The topologically nontrivial edge states induce [Formula: see text] transition in Su-Schrieffer-Heeger (SSH) chain with one pair of gain and loss at boundaries. In this study, we investigated a pair of [Formula: see text]-symmetric defects located inside the SSH chain, in particular, the defects locations are at the chain centre. The [Formula: see text] symmetry breaking of the bound states leads to the [Formula: see text] transition, the [Formula: see text]-symmetric phases and the localized states were studied. In the broken [Formula: see text]-symmetric phase, all energy levels break simultaneously in topologically trivial phase; however, two edge states in topologically nontrivial phase are free from the influence of the [Formula: see text]-symmetric defects. We discovered [Formula: see text]-symmetric bound states induced by the [Formula: see text]-symmetric local defects at the SSH chain centre. The [Formula: see text]-symmetric bound states significantly increase the [Formula: see text] transition threshold and coalesce to the topologically protected zero mode with vanishing probabilities on every other site of the left-half chain and the right-half chain, respectively.

  5. Generating Localized Nonlinear Excitations in the Fermi-Pasta-Ulam-Tsingou chains

    NASA Astrophysics Data System (ADS)

    Westley, Alexandra; Sen, Surajit

    Here, we will discuss properties of energy trapping in the decorated Fermi-Pasta-Ulam-Tsingou (FPUT) mass-spring chains with quadratic and quartic coupling terms. It is well-known that the FPUT system admits highly localized nonlinear excitations (LNE) which are stable for long periods of time. We seek to generate these LNEs at will by creating regions in the chain of stiffer or softer springs, or by placing mass impurities throughout. We will show that NLEs tend to coalesce in regions of stiff springs from random perturbations throughout the system. These locations may serve as extremely powerful energy traps or heat sinks in certain materials. Furthermore, we will demonstrate that this process occurs by means of trapping solitary (or anti-solitary) waves into tight spaces.

  6. Single particle train ordering in microchannel based on inertial and vortex effects

    NASA Astrophysics Data System (ADS)

    Fan, Liang-Liang; Yan, Qing; Zhe, Jiang; Zhao, Liang

    2018-06-01

    A new microfluidic device for microparticle focusing and ordering in a single particle train is reported. The particle focusing and ordering are based on inertial and vortex effects in a microchannel with a series of suddenly contracted and widely expanded structures on one side. In the suddenly contracted regions, particles located near the contracted structures are subjected to a strong wall-effect lift force and momentum-change-induced inertial force due to the highly curved trajectory, migrating to the straight wall. A horizontal vortex is generated downstream of the contracted structure, which prevents the particle from getting close to the wall. In the widely expanded regions, the streamline is curved and no vortex is generated. The shear-gradient lift force and the momentum-change-induced inertial force are dominant for particle lateral migration, driving particles towards the wall of the expanded structures. Eventually, particles are focused and ordered in a single particle train by the combination effects of the inertial forces and the vortex. In comparison with other single-stream particle focusing methods, this device requires no sheath flow, is easy for fabrication and operation, and can work over a wide range of Reynolds numbers from 19.1–142.9. The highly ordered particle chain could be potentially utilized in a variety of lab-chip applications, including micro-flow cytometer, imaging and droplet-based cell entrapment.

  7. Anti-air pollution & energy conservation system for automobiles using leaded or unleaded gasoline, diesel or alternate fuel

    DOEpatents

    Bose, Ranendra K.

    2002-06-04

    Exhaust gases from an internal combustion engine operating with leaded or unleaded gasoline or diesel or natural gas, are used for energizing a high-speed gas turbine. The convoluting gas discharge causes a first separation stage by stratifying of heavier and lighter exhaust gas components that exit from the turbine in opposite directions, the heavier components having a second stratifying separation in a vortex tube to separate combustible pollutants from non-combustible components. The non-combustible components exit a vortex tube open end to atmosphere. The lighter combustible, pollutants effected in the first separation are bubbled through a sodium hydroxide solution for dissolving the nitric oxide, formaldehyde impurities in this gas stream before being piped to the engine air intake for re-combustion, thereby reducing the engine's exhaust pollution and improving its fuel economy. The combustible, heavier pollutants from the second separation stage are piped to air filter assemblies. This gas stream convoluting at a high-speed through the top stator-vanes of the air filters, centrifugally separates the coalescent water, aldehydes, nitrogen dioxides, sulfates, sulfur, lead particles which collect at the bottom of the bowl, wherein it is periodically released to the roadway. Whereas, the heavier hydrocarbon, carbon particles are piped through the air filter's porous element to the engine air intake for re-combustion, further reducing the engine's exhaust pollution and improving its fuel economy.

  8. Fundamental mechanisms in premixed flame propagation via vortex-flame interactions: Numerical simulations

    NASA Technical Reports Server (NTRS)

    Mantel, Thierry

    1994-01-01

    The goal of the present study is to assess numerically the ability of single-step and two-step chemical models to describe the main features encountered during the interaction between a two-dimensional vortex pair and a premixed laminar flame. In the two-step mechanism, the reaction kinetics are represented by a first chain branching reaction A + X yields 2X and a second chain termination reaction X + X yields P. This paper presents the fundamental mechanisms occurring during vortex-flame interactions and the relative impact of the major parameters encountered in turbulent premixed flames and suspected of playing a role in quenching mechanism: (1) Influence of stretch is investigated by analyzing the contribution of curvature and tangential strain on the local structure of the flame. The effect of Lewis number on the flame response to a strained field is analyzed. (2) Radiative heat losses which are suspected to be partially or totally responsible for quenching are also investigated. (3) The effect of the diffusion of the radicals is studied using a two-step mechanism in which an intermediate species is present. The parameters of the two-step mechanism are entirely determined from physical arguments. (4) Precise quantitative comparisons between the DNS and the experimental results of Samaniego et al are performed. These comparisons concern the evolution of the minimum heat release rate found along the flame front during the interaction and the distribution of the heat release rate along the flame front.

  9. Numerical simulation for a vortex street near the poleward boundary of the nighttime auroral oval

    NASA Astrophysics Data System (ADS)

    Yamamoto, T.

    2012-02-01

    The formation of a vortex street is numerically studied as an aftermath of a transient (≈1 min) depression of the energy density of injected particles. It is basically assumed that the kinetic energies of auroral particles are substantially provided by nonadiabatic acceleration in the tail current sheet. One of the causes of such energy density depression is an outward (away from the Earth) movement of the neutral line because in such situation, a particle passes the acceleration zone for a shorter time interval while it is inwardly transported in the current sheet. The numerical simulation shows that a long chain of many (≥5) vortices can be formed in the nighttime high-latitude auroral oval as a result of the hybrid Kelvin-Helmholtz/Rayleigh-Taylor (KH/RT) instability. The main characteristics of long vortex chains in the simulation such as the short lifetime (≲2 min) and the correlation between wavelength, λ, and arc system width, A, compare well with those of the periodic auroral distortions observed primarily in the high-latitude auroral oval. Specifically, either λ-A relationship from simulation or observation shows a positive correlation between λ and A but with considerable dispersion in λ. Since auroral vortices arising from the hybrid KH/RT instability are not accompanied by significant rotational motions, the magnetic shear instability caused by undulations in the field-aligned current (FAC) sheet could turn the vortices into spirals which wind or unwind in response to increase or decrease of FACs, respectively.

  10. Observations of ionospheric convection vortices - Signatures of momentum transfer

    NASA Technical Reports Server (NTRS)

    Mchenry, M. A.; Clauer, C. R.; Friis-Christensen, E.; Kelly, J. D.

    1988-01-01

    Several classes of traveling vortices in the dayside ionospheric flow have been detected and tracked using the Greenland magnetometer chain. One class observed during quiet times consists of a continuous series of vortices moving generally antisunward for several hours at a time. Assuming each vortex to be the convection pattern produced by a small field aligned current moving across the ionosphere, the amount of field aligned current was found by fitting a modeled ground magnetic signature to measurements from the chain of magnetometers. The calculated field aligned current is seen to be steady for each vortex and neighboring vortices have currents of opposite sign. Low altitude DMSP observations indicate the vortices are on field lines which map to the inner edge of the low latitude boundary layer. Because the vortices are conjugate to the boundary layer, repeat in a regular fashion and travel antisunward, it is argued that this class of vortices is caused by surface waves at the magnetopause. No strong correlations between field aligned current strength and solar wind density, velocity, or Bz is found.

  11. Understanding Past Population Dynamics: Bayesian Coalescent-Based Modeling with Covariates

    PubMed Central

    Gill, Mandev S.; Lemey, Philippe; Bennett, Shannon N.; Biek, Roman; Suchard, Marc A.

    2016-01-01

    Effective population size characterizes the genetic variability in a population and is a parameter of paramount importance in population genetics and evolutionary biology. Kingman’s coalescent process enables inference of past population dynamics directly from molecular sequence data, and researchers have developed a number of flexible coalescent-based models for Bayesian nonparametric estimation of the effective population size as a function of time. Major goals of demographic reconstruction include identifying driving factors of effective population size, and understanding the association between the effective population size and such factors. Building upon Bayesian nonparametric coalescent-based approaches, we introduce a flexible framework that incorporates time-varying covariates that exploit Gaussian Markov random fields to achieve temporal smoothing of effective population size trajectories. To approximate the posterior distribution, we adapt efficient Markov chain Monte Carlo algorithms designed for highly structured Gaussian models. Incorporating covariates into the demographic inference framework enables the modeling of associations between the effective population size and covariates while accounting for uncertainty in population histories. Furthermore, it can lead to more precise estimates of population dynamics. We apply our model to four examples. We reconstruct the demographic history of raccoon rabies in North America and find a significant association with the spatiotemporal spread of the outbreak. Next, we examine the effective population size trajectory of the DENV-4 virus in Puerto Rico along with viral isolate count data and find similar cyclic patterns. We compare the population history of the HIV-1 CRF02_AG clade in Cameroon with HIV incidence and prevalence data and find that the effective population size is more reflective of incidence rate. Finally, we explore the hypothesis that the population dynamics of musk ox during the Late Quaternary period were related to climate change. [Coalescent; effective population size; Gaussian Markov random fields; phylodynamics; phylogenetics; population genetics. PMID:27368344

  12. An Experimental Investigation of Jet Noise from Septa Nozzles

    NASA Technical Reports Server (NTRS)

    Zaman, K. B. M. Q.; Bridges, J. E.; Fagan, A. F.; Brown, C. A.

    2016-01-01

    Results of an experimental study with a large aspect ratio rectangular nozzle, divided into multiple compartments or septa, as pertinent to distributed propulsion, are presented. Noise measurements at high-subsonic conditions show that the nozzle with the septa is quieter than the corresponding baseline nozzle without the septa. At relatively lower Mach numbers a high-frequency tone is heard. This is shown to be due to Karmann vortex shedding from the trailing edge of the partitions that separate a septum from the adjacent ones. Flowfield measurements for a six septa case show that the cellular flow structure, issuing from the nozzle, goes through a curious coalescence with increasing downstream distance (x) from the nozzle. Adjacent cells pair to yield a three-cell structure by x/D =2, where D is the equivalent diameter of the baseline nozzle. By about x/D =16, both the septa case and the baseline case evolve to yield axisymmetric flowfields.

  13. HIV classification using the coalescent theory

    PubMed Central

    Bulla, Ingo; Schultz, Anne-Kathrin; Schreiber, Fabian; Zhang, Ming; Leitner, Thomas; Korber, Bette; Morgenstern, Burkhard; Stanke, Mario

    2010-01-01

    Motivation: Existing coalescent models and phylogenetic tools based on them are not designed for studying the genealogy of sequences like those of HIV, since in HIV recombinants with multiple cross-over points between the parental strains frequently arise. Hence, ambiguous cases in the classification of HIV sequences into subtypes and circulating recombinant forms (CRFs) have been treated with ad hoc methods in lack of tools based on a comprehensive coalescent model accounting for complex recombination patterns. Results: We developed the program ARGUS that scores classifications of sequences into subtypes and recombinant forms. It reconstructs ancestral recombination graphs (ARGs) that reflect the genealogy of the input sequences given a classification hypothesis. An ARG with maximal probability is approximated using a Markov chain Monte Carlo approach. ARGUS was able to distinguish the correct classification with a low error rate from plausible alternative classifications in simulation studies with realistic parameters. We applied our algorithm to decide between two recently debated alternatives in the classification of CRF02 of HIV-1 and find that CRF02 is indeed a recombinant of Subtypes A and G. Availability: ARGUS is implemented in C++ and the source code is available at http://gobics.de/software Contact: ibulla@uni-goettingen.de Supplementary Information: Supplementary data are available at Bioinformatics online. PMID:20400454

  14. Surface Wetting-Driven Separation of Surfactant-Stabilized Water-Oil Emulsions.

    PubMed

    Zhang, Qian; Li, Lei; Li, Yanxiang; Cao, Lixia; Yang, Chuanfang

    2018-05-15

    Four fluorocarbon polymers including polytetrafluoroethylene and polyvinylidene fluoride were coated on a stainless steel felt to separate emulsified water droplets from ultralow sulfur diesel (ULSD) fuels. The original fuel treated with clay to remove additives was additized again with four known surfactants including pentaerythrityoleate, (octadecadienoic acid) dipolymer, (octadecadienoic acid) tripolymer, and monoolein individually. The different surfactants adsorbed on the fuel-water interface reduce the interfacial intension with different intensities. The separation efficiency at various surfactant concentrations was used to evaluate the coalescence effect exerted by these coatings. It was found the separation was both surfactant- and coating-dependent. A fluoro-polyurethane coating (FC1) stood out to counteract the adverse effect of all the surfactants. Solid free energy was then measured using acid-base and Kaelble-Uy adhesion theories for all the coatings, but its correlation with coalescence was not found at all. Coating aging in surfactant-additized fuel on the coating's water wettability was also examined to better understand how historical wetting affects separation. A tumbled model for fluorocarbons was identified that well-explained the continuous decline of the water contact angle on the FC1 coating in fuel. Subject to the challenge of the foreign environment, the fluoroalkyl chains of the polymer tilt to expose the carbonyl groups underneath, resulting in favored coalescence separation in the presence of surfactants.

  15. Radiative effects of ozone waves on the Northern Hemisphere polar vortex and its modulation by the QBO

    NASA Astrophysics Data System (ADS)

    Silverman, Vered; Harnik, Nili; Matthes, Katja; Lubis, Sandro W.; Wahl, Sebastian

    2018-05-01

    The radiative effects induced by the zonally asymmetric part of the ozone field have been shown to significantly change the temperature of the NH winter polar cap, and correspondingly the strength of the polar vortex. In this paper, we aim to understand the physical processes behind these effects using the National Center for Atmospheric Research (NCAR)'s Whole Atmosphere Community Climate Model, run with 1960s ozone-depleting substances and greenhouse gases. We find a mid-winter polar vortex influence only when considering the quasi-biennial oscillation (QBO) phases separately, since ozone waves affect the vortex in an opposite manner. Specifically, the emergence of a midlatitude QBO signal is delayed by 1-2 months when radiative ozone-wave effects are removed. The influence of ozone waves on the winter polar vortex, via their modulation of shortwave heating, is not obvious, given that shortwave heating is largest during fall, when planetary stratospheric waves are weakest. Using a novel diagnostic of wave 1 temperature amplitude tendencies and a synoptic analysis of upward planetary wave pulses, we are able to show the chain of events that lead from a direct radiative effect on weak early fall upward-propagating planetary waves to a winter polar vortex modulation. We show that an important stage of this amplification is the modulation of individual wave life cycles, which accumulate during fall and early winter, before being amplified by wave-mean flow feedbacks. We find that the evolution of these early winter upward planetary wave pulses and their induced stratospheric zonal mean flow deceleration is qualitatively different between QBO phases, providing a new mechanistic view of the extratropical QBO signal. We further show how these differences result in opposite radiative ozone-wave effects between east and west QBOs.

  16. Engineering of many-body Majorana states in a topological insulator/s-wave superconductor heterostructure.

    PubMed

    Hung, Hsiang-Hsuan; Wu, Jiansheng; Sun, Kuei; Chiu, Ching-Kai

    2017-06-14

    We study a vortex chain in a thin film of a topological insulator with proximity-induced superconductivity-a promising platform to realize Majorana zero modes (MZMs)-by modeling it as a two-leg Majorana ladder. While each pair of MZMs hybridizes through vortex tunneling, we hereby show that MZMs can be stabilized on the ends of the ladder with the presence of tilted external magnetic field and four-Majorana interaction. Furthermore, a fruitful phase diagram is obtained by controlling the direction of magnetic field and the thickness of the sample. We reveal many-body Majorana states and interaction-induced topological phase transitions and also identify trivial-superconducting and commensurate/incommensurate charge-density-wave states in the phase diagram.

  17. Vortex-homogenized matrix solid-phase dispersion for the extraction of short chain chlorinated paraffins from indoor dust samples.

    PubMed

    Chen, Yu-Hsuan; Chang, Chia-Yu; Ding, Wang-Hsien

    2016-11-11

    A simple and effective method for determining short chain chlorinated paraffins (SCCPs) in indoor dust is presented. The method employed a modified vortex-homogenized matrix solid-phase dispersion (VH-MSPD) prior to its detection by gas chromatography - electron-capture negative-ion mass spectrometry (GC-ECNI-MS) operating in the selected-ion-monitoring (SIM) mode. Under the best extraction conditions, 0.1-g of dust sample was dispersed with 0.1-g of silica gel by using vortex (2min) instead of using a mortar and pestle (3min). After that step, the blend was transferred to a glass column containing 3-g acidic silica gel, 2-g basic silica gel, and 2-g of deactivated silica gel, used as clean-up co-sorbents. Then, target analytes were eluted with 5mL of n-hexane/dichloromethane (2:1, v/v) mixture. The extract was evaporated to dryness under a gentle stream of nitrogen. The residue was then re-dissolved in n-hexane (10μL), and subjected to GC-ECNI-MS analysis. The limits of quantitation (LOQs) ranged from 0.06 to 0.25μg/g for each SCCP congener. Precision was less than 7% for both intra- and inter-day analysis. Trueness was above 89%, which was calculated by mean extraction recovery. The VH-MSPD combined with GC-ECNI-MS was successfully applied to quantitatively detect SCCPs from various indoor dust samples, and the concentrations ranged from 1.2 to 31.2μg/g. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. On angled bounce-off impact of a drop impinging on a flowing soap film

    NASA Astrophysics Data System (ADS)

    Basu, Saikat; Yawar, Ali; Concha, Andres; Bandi, M. M.

    2017-12-01

    Small drops impinging obliquely on thin flowing soap films frequently demonstrate the rare emergence of bulk elastic effects working in-tandem with the more commonplace hydrodynamic interactions. Three collision regimes are observable: (a) drop piercing through the film, (b) it coalescing with the flow, and (c) it bouncing off the film surface. During impact, the drop deforms along with a bulk elastic deformation of the film. For impacts that are close-to-tangential, the bounce-off regime predominates. We outline a reduced order analytical framework assuming a deformable drop and a deformable three-dimensional film, and the idealization invokes a phase-based parametric study. Angular inclination of the film and the ratio of post and pre-impact drop sizes entail the phase parameters. We also perform experiments with vertically descending droplets (constituted from deionized water) impacting against an inclined soap film, flowing under constant pressure head. Model-predicted phase domain for bounce-off compares well to our experimental findings. Additionally, the experiments exhibit momentum transfer to the film in the form of shed vortex dipoles, along with propagation of free surface waves. On consulting prior published work, we note that for locomotion of water-walking insects using an impulsive action, the momentum distribution to the shed vortices and waves are both significant, taking up respectively 2/3 and 1/3 of the imparted streamwise momentum. Considering the visually similar impulse actions, this theory, despite its assumption of a quiescent liquid bath of infinite depth, is applied to the drop bounce-off experiments, and the resultant shed vortex dipole momenta are compared to the momenta of the coherent vortex structures computed from particle imaging velocimetry data. The magnitudes reveal identical order (10-7 N s), suggesting that notwithstanding the disparities, the bounce-off regime may be tapped as a toy analog for impulse-based interfacial biolocomotion.

  19. Molecular mechanisms responsible for hydrate anti-agglomerant performance.

    PubMed

    Phan, Anh; Bui, Tai; Acosta, Erick; Krishnamurthy, Pushkala; Striolo, Alberto

    2016-09-28

    Steered and equilibrium molecular dynamics simulations were employed to study the coalescence of a sI hydrate particle and a water droplet within a hydrocarbon mixture. The size of both the hydrate particle and the water droplet is comparable to that of the aqueous core in reverse micelles. The simulations were repeated in the presence of various quaternary ammonium chloride surfactants. We investigated the effects due to different groups on the quaternary head group (e.g. methyl vs. butyl groups), as well as different hydrophobic tail lengths (e.g. n-hexadecyl vs. n-dodecyl tails) on the surfactants' ability to prevent coalescence. Visual inspection of sequences of simulation snapshots indicates that when the water droplet is not covered by surfactants it is more likely to approach the hydrate particle, penetrate the protective surfactant film, reach the hydrate surface, and coalesce with the hydrate than when surfactants are present on both surfaces. Force-distance profiles obtained from steered molecular dynamics simulations and free energy profiles obtained from umbrella sampling suggest that surfactants with butyl tripods on the quaternary head group and hydrophobic tails with size similar to the solvent molecules can act as effective anti-agglomerants. These results qualitatively agree with macroscopic experimental observations. The simulation results provide additional insights, which could be useful in flow assurance applications: the butyl tripod provides adhesion between surfactants and hydrates; when the length of the surfactant tail is compatible with that of the hydrocarbon in the liquid phase a protective film can form on the hydrate; however, once a molecularly thin chain of water molecules forms through the anti-agglomerant film, connecting the water droplet and the hydrate, water flows to the hydrate and coalescence is inevitable.

  20. Preparation and characterization of a new lipid nano-emulsion containing two cosurfactants, sodium palmitate for droplet size reduction and sucrose palmitate for stability enhancement.

    PubMed

    Takegami, Shigehiko; Kitamura, Keisuke; Kawada, Hiroto; Matsumoto, Yu; Kitade, Tatsuya; Ishida, Hiroharu; Nagata, Chieyo

    2008-08-01

    A new lipid nano-emulsion (LNE) was prepared from soybean oil and phosphatidylcholine (PC) employing two cosurfactants, sodium palmitate (PA) for reduced droplet size and sucrose palmitate (SP) for stability enhancement. The mean droplet size of LNEs prepared at a PA/PC (w/w) ratio of larger than 1/10 was found to be ca. 50 nm by dynamic light scattering and atomic force microscopy. However, during the 12-month storage, the PA/PC (1/10)-LNE showed an increase in mean droplet size and broadening of the droplet size distribution due to coalescence of the LNE particles. In a saline solution, the coalescence proceeded very rapidly, i.e., the mean droplet size increased to more than 150 nm within 0.5 h. To suppress the coalescence of LNE particles, four sucrose fatty acid esters of different chain lengths were examined as candidate cosurfactants. The results showed that PA/SP/PC (1/4/10)-LNE could maintain a mean droplet size around 50 nm for 12 months. In a saline solution, the mean droplet size could be maintained within 100 nm even after 24 h. Slight formation of flocculation in the LNEs depending on the storage period was suggested by measurement of the 31P nuclear magnetic resonance line width of the LNEs.

  1. Droplet-based gene expression analysis using a device with magnetic force-based-droplet-handling system.

    PubMed

    Okochi, Mina; Tsuchiya, Hiroyoshi; Kumazawa, Fumitaka; Shikida, Mitsuhiro; Honda, Hiroyuki

    2010-02-01

    A droplet-based cell lysis and reverse transcription-polymerase chain reaction (PCR) were performed on-chip employing magnetic force-based-droplet-handling system. The actuation with a magnet offers a simple system for droplet manipulation; it does not need mechanical fluidic systems such as pumps and valves for handling solutions. It can be used as a powerful tool for various biochemical applications by moving and coalescing sample droplets using magnetic beads immersed in mineral oil. The droplet containing magnetic beads and the cells were manipulated with the magnet located underneath the channel, and coalesced with a droplet of lysis buffer. Using K562 cells as the leukemia model, the cell lysis, cDNA synthesis, and amplification of WT1 gene that is known as the prognostic factor for acute leukemia were successfully performed from a single cell. Copyright (c) 2009 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  2. Asymmetry of the velocity-matching steps in YBCO long Josephson junctions

    NASA Astrophysics Data System (ADS)

    Revin, L. S.; Pankratov, A. L.; Chiginev, A. V.; Masterov, D. V.; Parafin, A. E.; Pavlov, S. A.

    2018-04-01

    We carry out experimental and theoretical investigations into the effect of the vortex chain propagation on the current-voltage characteristics of YBa2Cu3O7-δ (YBCO) long Josephson junctions. Samples of YBCO Josephson junctions, fabricated on 24° [001]-tilt bicrystal substrates, have been measured. The improved technology has allowed us to observe and study the asymmetry of the current-voltage characteristics with opposite magnetic fields (Revin et al 2012 J. Appl. Phys. 114 243903), which we believe occurs due to anisotropy of bicrystal substrates (Kupriyanov et al (2013 JETP Lett. 95 289)). Specifically, we examine the flux-flow resonant steps versus the external magnetic field, and study the differential resistance and its relation to oscillation power for opposite directions of vortex propagation.

  3. On vortex-airfoil interaction noise including span-end effects, with application to open-rotor aeroacoustics

    NASA Astrophysics Data System (ADS)

    Roger, Michel; Schram, Christophe; Moreau, Stéphane

    2014-01-01

    A linear analytical model is developed for the chopping of a cylindrical vortex by a flat-plate airfoil, with or without a span-end effect. The major interest is the contribution of the tip-vortex produced by an upstream rotating blade in the rotor-rotor interaction noise mechanism of counter-rotating open rotors. Therefore the interaction is primarily addressed in an annular strip of limited spanwise extent bounding the impinged blade segment, and the unwrapped strip is described in Cartesian coordinates. The study also addresses the interaction of a propeller wake with a downstream wing or empennage. Cylindrical vortices are considered, for which the velocity field is expanded in two-dimensional gusts in the reference frame of the airfoil. For each gust the response of the airfoil is derived, first ignoring the effect of the span end, assimilating the airfoil to a rigid flat plate, with or without sweep. The corresponding unsteady lift acts as a distribution of acoustic dipoles, and the radiated sound is obtained from a radiation integral over the actual extent of the airfoil. In the case of tip-vortex interaction noise in CRORs the acoustic signature is determined for vortex trajectories passing beyond, exactly at and below the tip radius of the impinged blade segment, in a reference frame attached to the segment. In a second step the same problem is readdressed accounting for the effect of span end on the aerodynamic response of a blade tip. This is achieved through a composite two-directional Schwarzschild's technique. The modifications of the distributed unsteady lift and of the radiated sound are discussed. The chained source and radiation models provide physical insight into the mechanism of vortex chopping by a blade tip in free field. They allow assessing the acoustic benefit of clipping the rear rotor in a counter-rotating open-rotor architecture.

  4. Indication of Confirmation of Transition and Formation Boundary from Ordered to Disordered Flux Vortex Chain State in High-Tc Superconductors Y1Ba2Cu3O7- δ and Bi2Sr2Ca2Cu3O10 and New Low-Field Data Delineating Magnetic Transition in Gd1Ba2(Fe0.02Cu0.98)3O7- δ

    NASA Astrophysics Data System (ADS)

    Vezzoli, G. Christopher; Chen, Michaeline F.; Burke, Terence; Rosen, Carol

    1996-08-01

    Data are presented herein that support a phase boundary or quasi-phase-boundary delineating in Y1Ba2Cu3O7-δ and in Bi2Sr2Ca2Cu3O10 ceramic materials a transition from a vortex solid lattice to a line-flux disordered state that has been referred to as representing flux lattice melting to a flux liquid, but herein is interpreted not in terms of a liquid but in the form of a less-mobile `polymer'-like or entangled chain species. These data are derived from electrical resistance (r) versus applied magnetic field (H) measurements at various isotherms (T) corresponding to the zero resistance state of yttrium--barium--cuprate, and the mixed state foot regime of bismuth--strontium--calcium--cuprate. We interpret significant slope changes in r versus B at constant T in these materials to be indicative of the H-T conditions for a second-order or weakly first-order phase transition delineating the disordering of a flux lattice vortex solid. We believe that this technique is in ways more direct and at least as accurate as the conventional mechanical oscillator and vibrating magnetometer method to study the flux state. Additional very-low-field studies in Gd1Ba2(Fe0.02Cu0.98)3O7-δ, from 1 to 1000 mT, yield indication for what appears to be a magnetic transition at ca. 77 K at 575 mT, and possibly a second transition at 912 mT (also at ca. 77 K). These data points correspond well with the extrapolated low-field experimental magnetic phase transition boundary curve described at higher field herein (and by others using the mechanical technique), and also correspond well to theoretically predicted work regarding transition involving the vortex state.

  5. Self organized striping in ultra thin polymer films near melt: An investigation using Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Singh, Satya Pal

    2018-05-01

    This paper work presents the results of Monte Carlo simulation performed for ultra thin short chained polymer films near melt, under strong confinement. Thin polymer films get ruptured when annealed above their glass transition temperatures. The pattern formations are generally explained on the basis of spinodal mechanism, if the thickness of the film is of the order of few tens of nanometers i.e. <100 nm. In this case, the film seems to tear apart in strips. The free end segments of the chains are more dynamic and coalescence into one another. This process seems to dominate over the spinodal waves resulting into a different type of dynamics. Polymer chains with 30 monomers are taken. 160, 200 and 240 chains are taken for three different cases of the studies. The three cases correspond to three different thickness of the films with 8, 10 and 12 layers of chains along direction perpendicular to the confining substrates. The bottom surface has affinity to monomers, whereas the upper surface has hard wall interaction with the monomers. Different time micrographs of the films are plotted along with density distributions of the monomers to explore the process.

  6. Bursting reconnection of the two co-rotating current loops

    NASA Astrophysics Data System (ADS)

    Bulanov, Sergei; Sokolov, Igor; Sakai, Jun-Ichi

    2000-10-01

    Two parallel plasma filaments carrying electric current (current loops) are considered. The Ampere force induces the filaments' coalescence, which is accompanied by the reconnection of the poloidal magnetic field. Initially the loops rotate along the axii of symmetry. Each of the two loops would be in equilibrium in the absence of the other one. The dynamics of the reconnection is numerically simulated using high-resolution numerical scheme for low-resistive magneto-hydrodynamics. The results of numerical simulation are presented in the form of computer movies. The results show that the rotation strongly modifies the reconnection process, resulting in quasi-periodic (bursting) appearance and disappearance of a current sheet. Fast sliding motion of the plasma along the current sheet is a significant element of the complicated structure of reconnection (current-vortex sheet). The magnetic surfaces in the overal flow are strongly rippled by slow magnetosonic perturbations, so that the specific spiral structures form. This should result in the particle transport enhancement.

  7. Morphological evolution of thin polymer film on chemically patterned substrates

    NASA Astrophysics Data System (ADS)

    Singh, Satya Pal

    2018-05-01

    In this paper work, pattern formation in ultra thin polymer film, adsorbed on chemically patterned substrates, is reported under strong confinement. The observations indicate for the strong influence of the surface attraction over evolution of spindoal waves, leading to the flattening of the film. But, the film appears to be torn apart in strip or nano fiber like structures, because of coalescences of the monomers at the free ends of the chains. The beads at the free ends of the chain are relatively more mobile. The chain diffusion towards attractive part of the chemically patterned surfaces is clearly seen. Prewetting or crystallization like phenomena seems to appear resulting into formation of strips with coexistence of molten phase drops at the top of the ruptured film. The investigation mimics spindoal dewetting because of the fact that the rupturing occurs in case of strong attractive surface. The investigation is of technical importance as it highlights the formation of nano scale strips and fibers though in a quasi equilibrium case.

  8. Rich phenomenology encountered when two jets collide in microgravity

    NASA Astrophysics Data System (ADS)

    Suñol, Francesc; Gonzalez-Cinca, Ricard

    The collision between two impinging liquid jets has been experimentally studied in the low gravity environment provided by the ZARM drop tower. The effects of impact angle and liquid flow rate on the collision between like-doublet jets have been considered. Tests were carried out with distilled water injected through nozzles with an internal diameter of 0.7 mm into a test cell. Impact angle varied between 10(°) and 180(°) (frontal collision), while the liquid flow rate ranged between 20 ml/min and 80 ml/min for each nozzle. Such a large parameter range allowed us to observe different phenomena resulting from the jets collision: oscillating droplets attached to the nozzles, a non-uniform spatial distribution of bouncing droplets, coalescing droplets generating a single central droplet, coalescing jets, bouncing jets, liquid chains and liquid sheets. A map of the different patterns observed has been obtained. We present results on the structure of the jets after collision, the breakup length and the size of the generated droplet. The resulting structure of impinging jets highly depends on the Reynolds and Weber numbers, and the proper alignment of the colliding jets.

  9. Estimating mutation parameters, population history and genealogy simultaneously from temporally spaced sequence data.

    PubMed Central

    Drummond, Alexei J; Nicholls, Geoff K; Rodrigo, Allen G; Solomon, Wiremu

    2002-01-01

    Molecular sequences obtained at different sampling times from populations of rapidly evolving pathogens and from ancient subfossil and fossil sources are increasingly available with modern sequencing technology. Here, we present a Bayesian statistical inference approach to the joint estimation of mutation rate and population size that incorporates the uncertainty in the genealogy of such temporally spaced sequences by using Markov chain Monte Carlo (MCMC) integration. The Kingman coalescent model is used to describe the time structure of the ancestral tree. We recover information about the unknown true ancestral coalescent tree, population size, and the overall mutation rate from temporally spaced data, that is, from nucleotide sequences gathered at different times, from different individuals, in an evolving haploid population. We briefly discuss the methodological implications and show what can be inferred, in various practically relevant states of prior knowledge. We develop extensions for exponentially growing population size and joint estimation of substitution model parameters. We illustrate some of the important features of this approach on a genealogy of HIV-1 envelope (env) partial sequences. PMID:12136032

  10. Estimating mutation parameters, population history and genealogy simultaneously from temporally spaced sequence data.

    PubMed

    Drummond, Alexei J; Nicholls, Geoff K; Rodrigo, Allen G; Solomon, Wiremu

    2002-07-01

    Molecular sequences obtained at different sampling times from populations of rapidly evolving pathogens and from ancient subfossil and fossil sources are increasingly available with modern sequencing technology. Here, we present a Bayesian statistical inference approach to the joint estimation of mutation rate and population size that incorporates the uncertainty in the genealogy of such temporally spaced sequences by using Markov chain Monte Carlo (MCMC) integration. The Kingman coalescent model is used to describe the time structure of the ancestral tree. We recover information about the unknown true ancestral coalescent tree, population size, and the overall mutation rate from temporally spaced data, that is, from nucleotide sequences gathered at different times, from different individuals, in an evolving haploid population. We briefly discuss the methodological implications and show what can be inferred, in various practically relevant states of prior knowledge. We develop extensions for exponentially growing population size and joint estimation of substitution model parameters. We illustrate some of the important features of this approach on a genealogy of HIV-1 envelope (env) partial sequences.

  11. Hydrodynamics of Peristaltic Propulsion

    NASA Astrophysics Data System (ADS)

    Athanassiadis, Athanasios; Hart, Douglas

    2014-11-01

    A curious class of animals called salps live in marine environments and self-propel by ejecting vortex rings much like jellyfish and squid. However, unlike other jetting creatures that siphon and eject water from one side of their body, salps produce vortex rings by pumping water through siphons on opposite ends of their hollow cylindrical bodies. In the simplest cases, it seems like some species of salp can successfully move by contracting just two siphons connected by an elastic body. When thought of as a chain of timed contractions, salp propulsion is reminiscent of peristaltic pumping applied to marine locomotion. Inspired by salps, we investigate the hydrodynamics of peristaltic propulsion, focusing on the scaling relationships that determine flow rate, thrust production, and energy usage in a model system. We discuss possible actuation methods for a model peristaltic vehicle, considering both the material and geometrical requirements for such a system.

  12. Characterization of solids deposited on the modular caustic-side solvent extraction unit (MCU) coalescer media removed in October 2014

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fondeur, F.

    2016-03-01

    In February 2015, Savannah River National Laboratory (SRNL) received a Strip Effluent (SE) coalescer (FLT-304) from MCU. That coalescer was first installed at MCU in July 2014 and removed in October 2014. While processing approximately 31,400 gallons of strip solution, the pressure drop steadily increased from 1 psi to beyond the administrative limit of 20 psi. The physical and chemical analysis was conducted on this coalescer to determine the mechanism that led to the plugging of this coalescer. Characterization of this coalescer revealed the adsorption of organic containing amines as well as MCU modifier. The amines are probably from themore » decomposition of the suppressor (TiDG) as well as from bacteria. This adsorption may have changed the surface energetics (characteristics) of the coalescer fibers and therefore, their wetting behavior. A very small amount of inorganic solids were found to have deposited on this coalescer (possibly an artifact of cleaning the coalescer with Boric acid. However, we believe that inorganic precipitation, as has been seen in the past, did not play a role in the high pressure drop rise of this coalescer. With regards to the current practice of reducing the radioactive content of the SE coalescer, it is recommended that future SE coalescer should be flushed with 10 mM boric acid which is currently used at MCU. Plugging of the SE coalescer was most likely due to the formation and accumulation of a water-in-oil emulsion that reduced the overall porosity of the coalescer. There is also evidence that a bimodal oil particle distribution may have entered and deposited in the coalescer and caused the initial increase in pressure drop.« less

  13. Crack Coalescence in Molded Gypsum and Carrara Marble

    NASA Astrophysics Data System (ADS)

    Wong, N.; Einstein, H. H.

    2007-12-01

    This research investigates the fracturing and coalescence behavior in prismatic laboratory-molded gypsum and Carrara marble specimens, which consist of either one or two pre-existing open flaws, under uniaxial compression. The tests are monitored by a high speed video system with a frame rate up to 24,000 frames/second. It allows one to precisely observe the cracking mechanisms, in particular if shear or tensile fracturing takes place. Seven crack types and nine crack coalescence categories are identified. The flaw inclination angle, the ligament length and the bridging angle between two flaws have different extents of influence on the coalescence patterns. For coplanar flaws, as the flaw inclination angle increases, there is a general trend of variation from shear coalescence to tensile coalescence. For stepped flaws, as the bridging angle changes from negative to small positive, and further up to large positive values, the coalescence generally progresses from categories of no coalescence, indirect coalescence to direct coalescence. For direct coalescence, it generally progresses from shear, mixed shear-tensile to tensile as the bridging angle increases. Some differences in fracturing and coalescence processes are observed in gypsum and marble, particularly the crack initiation in marble is preceded by the development of macroscopic white patches, but not in gypsum. Scanning Electron Microprobe (SEM) study reveals that the white patches consist of zones of microcracks (process zones).

  14. Mechanism and simulation of droplet coalescence in molten steel

    NASA Astrophysics Data System (ADS)

    Ni, Bing; Zhang, Tao; Ni, Hai-qi; Luo, Zhi-guo

    2017-11-01

    Droplet coalescence in liquid steel was carefully investigated through observations of the distribution pattern of inclusions in solidified steel samples. The process of droplet coalescence was slow, and the critical Weber number ( We) was used to evaluate the coalescence or separation of droplets. The relationship between the collision parameter and the critical We indicated whether slow coalescence or bouncing of droplets occurred. The critical We was 5.5, which means that the droplets gradually coalesce when We ≤ 5.5, whereas they bounce when We > 5.5. For the carbonate wire feeding into liquid steel, a mathematical model implementing a combined computational fluid dynamics (CFD)-discrete element method (DEM) approach was developed to simulate the movement and coalescence of variably sized droplets in a bottom-argon-blowing ladle. In the CFD model, the flow field was solved on the premise that the fluid was a continuous medium. Meanwhile, the droplets were dispersed in the DEM model, and the coalescence criterion of the particles was added to simulate the collision- coalescence process of the particles. The numerical simulation results and observations of inclusion coalescence in steel samples are consistent.

  15. Droplets coalescence at microchannel intersection chambers with different shapes

    NASA Astrophysics Data System (ADS)

    Liu, Zhaomiao; Wang, Xiang; Cao, Rentuo; Pang, Yan

    2016-11-01

    The influence of microchannel intersection chamber shape on droplets coalescence process is investigated in this study. Three kinds of chamber shapes (half-round, triangle and camber) are designed to realize head-on droplets coalescence. The coalescence processes are visualized with high-speed camera system and the internal flow patterns are resolved with micro-PIV system. Experimental analyses on droplets coalescence position, coalescence time and the critical conditions are discussed. Both direct coalescence and late coalescence can be observed in the camber junction while only the late coalescence is present for the half-round and the triangle junction. The critical capillary number Ca* varies for different working systems or intersection shapes. Ca* in the camber junction is larger than that in the other two junctions for each working system and it decreases with the increase of the viscosity ratios for each intersection shape. Moreover, the characteristics of the velocity fields for different coalescence cases are analyzed for in-depth understanding of the process. The authors do appreciate the financial support of No.11572013 of National Nature Scicence Funding of China.

  16. Kinematics, hydrodynamics and energetic advantages of burst-and-coast swimming of koi carps (Cyprinus carpio koi).

    PubMed

    Wu, Guanhao; Yang, Yan; Zeng, Lijiang

    2007-06-01

    Koi carps frequently swim in burst-and-coast style, which consists of a burst phase and a coast phase. We quantify the swimming kinematics and the flow patterns generated by the carps in burst-and-coast swimming. In the burst phase, the carps burst in two modes: in the first, the tail beats for at least one cycle (multiple tail-beat mode); in the second, the tail beats for only a half-cycle (half tail-beat mode). The carp generates a vortex ring in each half-cycle beat. The vortex rings generated during bursting in multiple tail-beat mode form a linked chain, but only one vortex ring is generated in half tail-beat mode. The wake morphologies, such as momentum angle and jet angle, also show much difference between the two modes. In the burst phase, the kinematic data and the impulse obtained from the wake are linked to obtain the drag coefficient (C(d,burst) approximately 0.242). In the coast phase, drag coefficient (C(d,coast) approximately 0.060) is estimated from swimming speed deceleration. Our estimation suggests that nearly 45% of energy is saved when burst-and-coast swimming is used by the koi carps compared with steady swimming at the same mean speed.

  17. Influence of the properties of soft collective spin wave modes on the magnetization reversal in finite arrays of dipolarly coupled magnetic dots

    NASA Astrophysics Data System (ADS)

    Stebliy, Maxim; Ognev, Alexey; Samardak, Alexander; Chebotkevich, Ludmila; Verba, Roman; Melkov, Gennadiy; Tiberkevich, Vasil; Slavin, Andrei

    2015-06-01

    Magnetization reversal in finite chains and square arrays of closely packed cylindrical magnetic dots, having vortex ground state in the absence of the external bias field, has been studied experimentally by measuring static hysteresis loops, and also analyzed theoretically. It has been shown that the field Bn of a vortex nucleation in a dot as a function of the finite number N of dots in the array's side may exhibit a monotonic or an oscillatory behavior depending on the array geometry and the direction of the external bias magnetic field. The oscillations in the dependence Bn(N) are shown to be caused by the quantization of the collective soft spin wave mode, which corresponds to the vortex nucleation in a finite array of dots. These oscillations are directly related to the form and symmetry of the dispersion law of the soft SW mode: the oscillation could appear only if the minimum of the soft mode spectrum is not located at any of the symmetric points inside the first Brillouin zone of the array's lattice. Thus, the purely static measurements of the hysteresis loops in finite arrays of coupled magnetic dots can yield important information about the properties of the collective spin wave excitations in these arrays.

  18. Flow of viscoelastic fluids around a sharp microfluidic bend: Role of wormlike micellar structure

    NASA Astrophysics Data System (ADS)

    Hwang, Margaret Y.; Mohammadigoushki, Hadi; Muller, Susan J.

    2017-04-01

    We examine the flow and instabilities of three viscoelastic fluids—a semidilute aqueous solution of polyethylene oxide (PEO) and two wormlike micellar solutions of cetylpyridinium chloride and sodium salicylate—around a microfluidic 90∘ bend, in which shear deformation and streamline curvature dominate. Similar to results reported by Gulati et al. [S. Gulati et al., Phys. Rev. E 78, 036314 (2008), 10.1103/PhysRevE.78.036314; S. Gulati et al., J. Rheol. 54, 375 (2010), 10.1122/1.3308643] for PEO solutions, we report a critical Weissenberg number (Wi) for the onset of lip vortex formation upstream of the corner. However, the decreased aspect ratio (channel depth to width) results in a slightly higher critical Wi and a vortex that grows more slowly. We consider wormlike micellar solutions of two salt to surfactant concentration ratios R =0.55 and R =0.79 . At R =0.55 , the wormlike micelles are linear and exhibit strong viscoelastic behavior, but at R =0.79 , the wormlike micelles become branched and exhibit shear-banding behavior. Microfluidic experiments on the R =0.55 solution reveal two flow transitions. The first transition, at Wi =6 , is characterized by the formation of a stationary lip vortex upstream of the bend; at the second transition, at Wi =20 , the vortex fluctuates in time and changes size. The R =0.79 solution also exhibits two transitions. The first transition at Wi =4 is characterized by the appearance of two intermittent vortices, one at the lip and one at the far outside corner. Increasing the flow rate to Wi >160 results in a transition to a second unstable regime, where there is only a lip vortex that fluctuates in size. The difference in flow transitions in PEO and wormlike micellar solutions presumably arises from the additional contribution of wormlike micellar breakage and reformation under shear. The flow transitions in wormlike micellar solutions are also significantly affected by chain branching.

  19. The vertical growth of MoS2 layers at the initial stage of CVD from first-principles

    NASA Astrophysics Data System (ADS)

    Xue, Xiong-Xiong; Feng, Yexin; Chen, Keqiu; Zhang, Lixin

    2018-04-01

    Chemical vapor deposition (CVD) is the highly preferred method for mass production of transition metal dichalcogenide (TMD) layers, yet the atomic-scale knowledge is still lacking about the nucleation and growth. In this study, by using first-principles calculations, we show that, on Au(111) surface, one-dimensional (1D) MoxSy chains are first formed by coalescing of smaller feeding species and are energetically favored at the early stage of nucleation. Two-dimensional (2D) layers can be stabilized only after the number of Mo atoms exceeds ˜12. A vertical growth mode is revealed which accomplishes the structural transformation from the 1D chains to the 2D layers for the clusters while growing. The competition between intralayer and interlayer interactions is the key. These findings serve as new insights for better understanding the atomistic mechanism of the nucleation and growth of TMDs on the surface.

  20. An experimental study on the coalescence process of binary droplets in oil under ultrasonic standing waves.

    PubMed

    Luo, Xiaoming; Cao, Juhang; He, Limin; Wang, Hongping; Yan, Haipeng; Qin, Yahua

    2017-01-01

    The coalescence process of binary droplets in oil under ultrasonic standing waves was investigated with high-speed photography. Three motion models of binary droplets in coalescence process were illustrated: (1) slight translational oscillation; (2) sinusoidal translational oscillation; (3) migration along with acoustic streaming. To reveal the droplets coalescence mechanisms, the influence of main factors (such as acoustic intensity, droplet size, viscosity and interfacial tension, etc) on the motion and coalescence of binary droplets was studied under ultrasonic standing waves. Results indicate that the shortest coalescence time is achieved when binary droplets show sinusoidal translational oscillation. The corresponding acoustic intensity in this case is the optimum acoustic intensity. Under the optimum acoustic intensity, drop size decrease will bring about coalescence time decrease by enhancing the binary droplets oscillation. Moreover, there is an optimum interfacial tension to achieve the shortest coalescence time. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Phylogenetic analysis at deep timescales: unreliable gene trees, bypassed hidden support, and the coalescence/concatalescence conundrum.

    PubMed

    Gatesy, John; Springer, Mark S

    2014-11-01

    Large datasets are required to solve difficult phylogenetic problems that are deep in the Tree of Life. Currently, two divergent systematic methods are commonly applied to such datasets: the traditional supermatrix approach (= concatenation) and "shortcut" coalescence (= coalescence methods wherein gene trees and the species tree are not co-estimated). When applied to ancient clades, these contrasting frameworks often produce congruent results, but in recent phylogenetic analyses of Placentalia (placental mammals), this is not the case. A recent series of papers has alternatively disputed and defended the utility of shortcut coalescence methods at deep phylogenetic scales. Here, we examine this exchange in the context of published phylogenomic data from Mammalia; in particular we explore two critical issues - the delimitation of data partitions ("genes") in coalescence analysis and hidden support that emerges with the combination of such partitions in phylogenetic studies. Hidden support - increased support for a clade in combined analysis of all data partitions relative to the support evident in separate analyses of the various data partitions, is a hallmark of the supermatrix approach and a primary rationale for concatenating all characters into a single matrix. In the most extreme cases of hidden support, relationships that are contradicted by all gene trees are supported when all of the genes are analyzed together. A valid fear is that shortcut coalescence methods might bypass or distort character support that is hidden in individual loci because small gene fragments are analyzed in isolation. Given the extensive systematic database for Mammalia, the assumptions and applicability of shortcut coalescence methods can be assessed with rigor to complement a small but growing body of simulation work that has directly compared these methods to concatenation. We document several remarkable cases of hidden support in both supermatrix and coalescence paradigms and argue that in most instances, the emergent support in the shortcut coalescence analyses is an artifact. By referencing rigorous molecular clock studies of Mammalia, we suggest that inaccurate gene trees that imply unrealistically deep coalescences debilitate shortcut coalescence analyses of the placental dataset. We document contradictory coalescence results for Placentalia, and outline a critical conundrum that challenges the general utility of shortcut coalescence methods at deep phylogenetic scales. In particular, the basic unit of analysis in coalescence analysis, the coalescence-gene, is expected to shrink in size as more taxa are analyzed, but as the amount of data for reconstruction of a gene tree ratchets downward, the number of nodes in the gene tree that need to be resolved ratchets upward. Some advocates of shortcut coalescence methods have attempted to address problems with inaccurate gene trees by concatenating multiple coalescence-genes to yield "gene trees" that better match the species tree. However, this hybrid concatenation/coalescence approach, "concatalescence," contradicts the most basic biological rationale for performing a coalescence analysis in the first place. We discuss this reality in the context of recent simulation work that also suggests inaccurate reconstruction of gene trees is more problematic for shortcut coalescence methods than deep coalescence of independently segregating loci is for concatenation methods. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Coalescence computations for large samples drawn from populations of time-varying sizes

    PubMed Central

    Polanski, Andrzej; Szczesna, Agnieszka; Garbulowski, Mateusz; Kimmel, Marek

    2017-01-01

    We present new results concerning probability distributions of times in the coalescence tree and expected allele frequencies for coalescent with large sample size. The obtained results are based on computational methodologies, which involve combining coalescence time scale changes with techniques of integral transformations and using analytical formulae for infinite products. We show applications of the proposed methodologies for computing probability distributions of times in the coalescence tree and their limits, for evaluation of accuracy of approximate expressions for times in the coalescence tree and expected allele frequencies, and for analysis of large human mitochondrial DNA dataset. PMID:28170404

  3. DEMOGRAPHIC CONSEQUENCES OF COALESCENCE IN SPORELING POPULATIONS OF MAZZAELLA LAMINARIOIDES (GIGARTINALES, RHODOPHYTA)(1).

    PubMed

    Santelices, B; Alvarado, J L

    2008-06-01

    Coalescing macroalgae are ecologically important members of intertidal and shallow subtidal communities. However, we still lack quantitative information on the demographic consequences of coalescence. Using demographic models developed for modular invertebrates, we studied the demography of settlement and early recruitment in the coalescing macroalga Mazzaella laminarioides (Bory) Fredericq. Permanently marked microscopic fields on laboratory-incubated and field-incubated plates were monitored regularly (at 15, 30, 45, and 60 d) using image analysis techniques to evaluate the relative importance of settler abundance, mortality, coalescence (fusion), and fission on the changes in size and numbers of recruits. On the plates, spores settled individually or in groups. Over time, spores in close proximity may coalesce, resulting in a mixture of unisporic and multisporic crusts. When new spores arrive, they may or may not coalesce with previously settled crusts. Coalescence and mortality reduce the number of sporelings, but coalescence increases the size of the sporelings, thereby reducing further probability of sporeling mortality. Crust fissions are negligible in frequency, while the frequency of coalescence increases from ∼25% after only 3 d, to ∼75% after 60 d. Thus, as a result of variable settlement, mortality, and coalescence, any area colonized by M. laminarioides would contain a mixture of crusts of different sizes, ages, and genetic constitution. The interactions between the above three processes create a more complex survivorship curve than the ones known for unitary organisms. © 2008 Phycological Society of America.

  4. A zero-gravity demonstration of the collision and coalescence of water droplets

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Vaughan, O. H.; Smith, R. E.

    1974-01-01

    The mechanics of the collision and coalescence of liquid droplets is one of the main research areas in the fields of nuclear physics, astrophysics, meteorology and fluid mechanics. The crew members on the Skylab 3 and 4 missions were requested to perform demonstrations of the collision and coalescence of water droplets under the low gravity environment at orbital altitude. In Skylab 4 two water droplets with equal volumes, 30 cu cm each, were used. A dark colored droplet (contaminated with grape drink) moving with a velocity of 3.14 cm/sec collided with a stationary pink colored droplet (contaminated with strawberry drink) and coalescence occurred. Theoretical models are proposed to study the various stages of the collision-coalescence processes. Special considerations are concentrated in the investigation of the bounce-coalescence and coalescence-instability processes. The surface tension of the coalesced droplets was calculated to be 52 dynes/cm in perfect agreement with laboratory measurements made after the flight using a reproduction of the liquids.

  5. Coalescence-Induced Jumping of Multiple Condensate Droplets on Hierarchical Superhydrophobic Surfaces

    PubMed Central

    Chen, Xuemei; Patel, Ravi S.; Weibel, Justin A.; Garimella, Suresh V.

    2016-01-01

    Coalescence-induced jumping of condensate droplets from a superhydrophobic surface with hierarchical micro/nanoscale roughness is quantitatively characterized. Experimental observations show that the condensate droplet jumping is induced by coalescence of multiple droplets of different sizes, and that the coalesced droplet trajectories typically deviate from the surface normal. A depth-from-defocus image processing technique is developed to track the out-of-plane displacement of the jumping droplets, so as to accurately measure the droplet size and velocity. The results demonstrate that the highest jumping velocity is achieved when two droplets coalesce. The jumping velocity decreases gradually with an increase in the number of coalescing droplets, despite the greater potential surface energy released upon coalescence. A general theoretical model that accounts for viscous dissipation, surface adhesion, line tension, the initial droplet wetting states, and the number and sizes of the coalescing droplets is developed to explain the trends of droplet jumping velocity observed in the experiments. PMID:26725512

  6. Vortex Chain in a Resonantly Pumped Polariton Superfluid

    PubMed Central

    Boulier, T.; Terças, H.; Solnyshkov, D. D.; Glorieux, Q.; Giacobino, E.; Malpuech, G.; Bramati, A.

    2015-01-01

    Exciton-polaritons are light-matter mixed states interacting via their exciton fraction. They can be excited, manipulated, and detected using all the versatile techniques of modern optics. An exciton-polariton gas is therefore a unique platform to study out-of-equilibrium interacting quantum fluids. In this work, we report the formation of a ring-shaped array of same sign vortices after injection of angular momentum in a polariton superfluid. The angular momentum is injected by a ℓ = 8 Laguerre-Gauss beam. In the linear regime, a spiral interference pattern containing phase defects is visible. In the nonlinear (superfluid) regime, the interference disappears and eight vortices appear, minimizing the energy while conserving the quantized angular momentum. The radial position of the vortices evolves in the region between the two pumps as a function of the density. Hydrodynamic instabilities resulting in the spontaneous nucleation of vortex-antivortex pairs when the system size is sufficiently large confirm that the vortices are not constrained by interference when nonlinearities dominate the system. PMID:25784592

  7. Characterization of Solids Deposited on the Modular Caustic-Side Solvent Extraction Unit (MCU) Strip Effluent (SE) Coalescer Media Removed in April 2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fondeur, F. F.

    On June 2015, Savannah River National Laboratory (SRNL) received a Strip Effluent (SE) coalescer (FLT-304) from MCU. That coalescer was first installed at MCU in late October 2014 and removed in April 2015. While processing approximately 48,700 gallons of strip solution, the pressure drop steadily increased linearly from 1 psi to near 16 psi (the administrative limit is 17 psi) with the total filtrate volume (2.1E-4 psi/gal of filtrate). The linear behavior is due to the combined effect of a constant deposition of material that starts from the closed-end to the mid-section of the coalescer reducing the available surface areamore » of the coalescer for fluid passage (linearly with filtrate volume) and the formation of a secondary emulsion (water in NG-CSSX) on the fibers of the coalescer media. Both effects reduced the coalescer porosity by at least 13% (after processing 48,700 gallons). Before the coalescer was removed, it was flushed with a 10 mM boric acid solution to reduce the dose level. To determine the nature of the deposited material, a physical and chemical analysis of the coalescer was conducted. Characterization of this coalescer revealed the adsorption of organic containing amines (secondary amides and primary amines), TiDG, degraded modifier (with no hydroxyl group), MaxCalix, and oxidized hydrocarbon (possibly from Isopar™L or from lubricant used at MCU) onto the coalescer media. The amide and amines are possibly from the decomposition of the suppressor (TiDG). The modifier and MaxCalix were the largest components of the deposited organic material, as determined from leaching the coalescer with dichloromethane. Both the Fourier-Transformed Infrared (FTIR) and Fourier-Transformed Hydrogen Nuclear Magnetic Resonance (FT-HNMR) results indicated that some of the modifier was degraded (missing their OH groups). The modifier was observed everywhere in the examined coalescer pieces (FTIR), while the TiDG and its decomposition products were observed at the entrance discs of the coalescer. A solvent trim (a cocktail of solvent components with a high concentration of modifier) was added to the solvent on 2/22/2015. It is believed that the trim did not mix completely with the solvent and that it was subsequently spread around the MCU components including the coalescers, where it may have deposited. Chronologically, the modifier, the TiDG’s decomposition products and silicates deposited on the entrance discs first and after the pressure drop increased significantly, parts of the coalescer media detached itself from the central porous steel mandrel and a significant amount of steel debris, mercury, titanium, and additional aluminum and silicates deposited on the coalescer.« less

  8. Coalescence preference in densely packed microbubbles

    DOE PAGES

    Kim, Yeseul; Lim, Su Jin; Gim, Bopil; ...

    2015-01-13

    A bubble merged from two parent bubbles with different size tends to be placed closer to the larger parent. This phenomenon is known as the coalescence preference. Here we demonstrate that the coalescence preference can be blocked inside a densely packed cluster of bubbles. We utilized high-speed high-resolution X-ray microscopy to clearly visualize individual coalescence events inside densely packed microbubbles with a local packing fraction of ~40%. Thus, the surface energy release theory predicts an exponent of 5 in a relation between the relative coalescence position and the parent size ratio, whereas our observation for coalescence in densely packed microbubblesmore » shows a different exponent of 2. We believe that this result would be important to understand the reality of coalescence dynamics in a variety of packing situations of soft matter.« less

  9. Coalescence preference in densely packed microbubbles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Yeseul; Lim, Su Jin; Gim, Bopil

    A bubble merged from two parent bubbles with different size tends to be placed closer to the larger parent. This phenomenon is known as the coalescence preference. Here we demonstrate that the coalescence preference can be blocked inside a densely packed cluster of bubbles. We utilized high-speed high-resolution X-ray microscopy to clearly visualize individual coalescence events inside densely packed microbubbles with a local packing fraction of ~40%. Thus, the surface energy release theory predicts an exponent of 5 in a relation between the relative coalescence position and the parent size ratio, whereas our observation for coalescence in densely packed microbubblesmore » shows a different exponent of 2. We believe that this result would be important to understand the reality of coalescence dynamics in a variety of packing situations of soft matter.« less

  10. Formation of hollow silica nanospheres by reverse microemulsion

    NASA Astrophysics Data System (ADS)

    Lin, Cheng-Han; Chang, Jen-Hsuan; Yeh, Yi-Qi; Wu, Si-Han; Liu, Yi-Hsin; Mou, Chung-Yuan

    2015-05-01

    Uniform hollow silica nanospheres (HSNs) synthesized with reverse microemulsion have great application potential as nanoreactors because enzymes or nanocatalysts can be easily encapsulated de novo in synthesis. Water-in-oil (w/o) reverse microemulsions comprising the polymeric surfactant polyoxyethylene (5) isooctylphenyl ether (Igepal CA-520), ammonia and water in a continuous oil phase (alkanes) coalesce into size-tunable silica nanoparticles via diffusion aggregation after the introduction of silica precursors. Here, we elucidate in detail the growth mechanism for silica nanoparticles via nucleation of ammonium-catalyzed silica oligomers from tetraethylorthosilicate (TEOS) and nanoporous aminopropyltrimethoxy silane (APTS) in the reverse microemulsion system. The formation pathway was studied in situ with small-angle X-ray scattering (SAXS). We find a four-stage process showing a sigmoidal growth behavior in time with a crossover from the induction period, early nucleation stage, coalescence growth and a final slowing down of growth. Various characterizations (TEM, N2 isotherm, dynamic light scattering, zeta potential, NMR, elemental analysis) reveal the diameters, scattering length density (SLD), mesoporosity, surface potentials and chemical compositions of the HSNs. Oil phases of alkanes with different alkyl chains are systematically employed to tune the sizes of HSNs by varying oil molar volumes, co-solvent amounts or surfactant mixture ratios. Silica condensation is incomplete in the core region, with the silica source of TEOS and APTS leading to the hollow silica nanosphere after etching with warm water.Uniform hollow silica nanospheres (HSNs) synthesized with reverse microemulsion have great application potential as nanoreactors because enzymes or nanocatalysts can be easily encapsulated de novo in synthesis. Water-in-oil (w/o) reverse microemulsions comprising the polymeric surfactant polyoxyethylene (5) isooctylphenyl ether (Igepal CA-520), ammonia and water in a continuous oil phase (alkanes) coalesce into size-tunable silica nanoparticles via diffusion aggregation after the introduction of silica precursors. Here, we elucidate in detail the growth mechanism for silica nanoparticles via nucleation of ammonium-catalyzed silica oligomers from tetraethylorthosilicate (TEOS) and nanoporous aminopropyltrimethoxy silane (APTS) in the reverse microemulsion system. The formation pathway was studied in situ with small-angle X-ray scattering (SAXS). We find a four-stage process showing a sigmoidal growth behavior in time with a crossover from the induction period, early nucleation stage, coalescence growth and a final slowing down of growth. Various characterizations (TEM, N2 isotherm, dynamic light scattering, zeta potential, NMR, elemental analysis) reveal the diameters, scattering length density (SLD), mesoporosity, surface potentials and chemical compositions of the HSNs. Oil phases of alkanes with different alkyl chains are systematically employed to tune the sizes of HSNs by varying oil molar volumes, co-solvent amounts or surfactant mixture ratios. Silica condensation is incomplete in the core region, with the silica source of TEOS and APTS leading to the hollow silica nanosphere after etching with warm water. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr01395j

  11. MAP, MAC, and vortex-rings configurations in the Weinberg-Salam model

    NASA Astrophysics Data System (ADS)

    Teh, Rosy; Ng, Ban-Loong; Wong, Khai-Ming

    2015-11-01

    We report on the presence of new axially symmetric monopoles, antimonopoles and vortex-rings solutions of the SU(2)×U(1) Weinberg-Salam model of electromagnetic and weak interactions. When the ϕ-winding number n = 1, and 2, the configurations are monopole-antimonopole pair (MAP) and monopole-antimonopole chain (MAC) with poles of alternating sign magnetic charge arranged along the z-axis. Vortex-rings start to appear from the MAP and MAC configurations when the winding number n = 3. The MAP configurations possess zero net magnetic charge whereas the MAC configurations possess net magnetic charge of 4 πn / e. In the MAP configurations, the monopole-antimonopole pair is bounded by the Z0 field flux string and there is an electromagnetic current loop encircling it. The monopole and antimonopole possess magnetic charges ± 4πn/e sin2θW respectively. In the MAC configurations there is no string connecting the monopole and the adjacent antimonopole and they possess magnetic charges ± 4 πn/e respectively. The MAC configurations possess infinite total energy and zero magnetic dipole moment whereas the MAP configurations which are actually sphalerons possess finite total energy and magnetic dipole moment. The configurations were investigated for varying values of Higgs self-coupling constant 0 ≤ λ ≤ 40 at Weinberg angle θW = π/4.

  12. Anomalous Chained Turbulence in Actively Driven Flows on Spheres

    NASA Astrophysics Data System (ADS)

    Mickelin, Oscar; Słomka, Jonasz; Burns, Keaton J.; Lecoanet, Daniel; Vasil, Geoffrey M.; Faria, Luiz M.; Dunkel, Jörn

    2018-04-01

    Recent experiments demonstrate the importance of substrate curvature for actively forced fluid dynamics. Yet, the covariant formulation and analysis of continuum models for nonequilibrium flows on curved surfaces still poses theoretical challenges. Here, we introduce and study a generalized covariant Navier-Stokes model for fluid flows driven by active stresses in nonplanar geometries. The analytical tractability of the theory is demonstrated through exact stationary solutions for the case of a spherical bubble geometry. Direct numerical simulations reveal a curvature-induced transition from a burst phase to an anomalous turbulent phase that differs distinctly from externally forced classical 2D Kolmogorov turbulence. This new type of active turbulence is characterized by the self-assembly of finite-size vortices into linked chains of antiferromagnetic order, which percolate through the entire fluid domain, forming an active dynamic network. The coherent motion of the vortex chain network provides an efficient mechanism for upward energy transfer from smaller to larger scales, presenting an alternative to the conventional energy cascade in classical 2D turbulence.

  13. Coalescence of viscous drops translating through a capillary tube

    NASA Astrophysics Data System (ADS)

    AlMatroushi, Eisa; Borhan, Ali

    2014-03-01

    An experimental study of the interaction and coalescence of viscous drops moving through a cylindrical capillary tube under low Reynolds number conditions is presented. The combined pressure- and buoyancy-driven motion of drops in a Newtonian continuous phase is examined. The interaction between two drops is quantified using image analysis, and measurements of the coalescence time are reported for various drop size ratios, Bond numbers, and viscosity ratios. The time scale for coalescence in the non-axisymmetric configuration is found to be substantially larger than that for coalescence in the axisymmetric configuration. Measurements of the radius of the liquid film formed between the two drops at the instant of apparent contact are used in conjunction with a planar film drainage model to predict the dependence of the coalescence time on drop size ratio for coalescence of low viscosity-ratio drops in the axisymmetric configuration.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giri, R. P., E-mail: rajendra.giri@saha.ac.in; Mukhopadhyay, M. K.

    The spontaneous surface aggregation of diblock copolymer, containing polystyrene-polydimethylsiloxane or PS-PDMS, have been studied at air-water interface using Brewster’s angle microscopy (BAM) and grazing incidence small angle x-ray scattering (GISAXS) technique. Pronounced differences in the molecular weight and solvent dependence of the size of aggregation on the water surface are observed. Structural characterization is done using atomic force microscopy (AFM) for a monolayer transferred to Si substrate. It shows that, individual polymer chains coalesce to form some disc like micelle aggregation on the Si surface which is also evident from the BAM image of the water floated monolayer. GISAXS studymore » is also corroborating the same result.« less

  15. Coalescence-induced jumping of nanoscale droplets on super-hydrophobic surfaces

    NASA Astrophysics Data System (ADS)

    Liang, Zhi; Keblinski, Pawel; Nanoscale Science; Engineering Center Team

    The coalescence-induced jumping of tens of microns size droplets on super-hydrophobic surfaces has been observed in both experiments and simulations. However, whether the coalescence-induced jumping would occur for smaller, particularly nanoscale droplets, is an open question. Using molecular dynamics simulations, we demonstrate that in spite of the large internal viscous dissipation, coalescence of two nanoscale droplets on a super-hydrophobic surface can result in a jumping of the coalesced droplet from the surface with a speed of a few m/s. Similar to the coalescence-induced jumping of microscale droplets, we observe that the bridge between the coalescing nano-droplets expands and impacts the solid surface, which leads to an acceleration of the coalesced droplet by the pressure force from the solid surface. We observe that the jumping velocity decreases with the droplet size and its ratio to the inertial-capillary velocity is a constant of about 0.126, which is close to the minimum value of 0.111 predicted by continuum-level modeling of Enright et al. [R. Enright, N. Miljkovic, J. Sprittles, K. Nolan, R. Mitchell, and E. N. Wang, ACS Nano 8, 10352 (2014)].

  16. Effect of electrolytes on bubble coalescence in columns observed with visualization techniques.

    PubMed

    Aguilera, María Eugenia; Ojeda, Antonieta; Rondón, Carolina; López De Ramos, Aura

    2002-10-01

    Bubble coalescence and the effect of electrolytes on this phenomenon have been previously studied. This interfacial phenomenon has attracted attention for reactor design/operation and enhanced oil recovery. Predicting bubble coalescence may help prevent low yields in reactors and predict crude oil recovery. Because of the importance of bubble coalescence, the objectives of this work were to improve the accuracy of measuring the percentage of coalescing bubbles and to observe the interfacial gas-liquid behavior. An experimental setup was designed and constructed. Bubble interactions were monitored with a visualization setup. The percentage of air bubble coalescence was 100% in distilled water, about 50% in 0.1 M sodium chloride (NaCl) aqueous solution, and 0% in 0.145 M NaCl aqueous solution. A reduction of the contact gas-liquid area was observed in distillate water. The volume of the resulting bubble was the sum of the original bubble volumes. Repulsion of bubbles was observed in NaCl solutions exceeding 0.07 M. The percentage of bubble coalescence diminishes as the concentration of NaCl chloride increases. High-speed video recording is an accurate technique to measure the percentage of bubble coalescence, and represents an important advance in gas-liquid interfacial studies.

  17. Coalescence driven self-organization of growing nanodroplets around a microcap

    NASA Astrophysics Data System (ADS)

    Dyett, Brendan; Hao, Hao; Lohse, Detlef; Zhang, Xuehua

    The coalescence between growing droplets is important for the surface coverage and spatial arrangements of droplets on surfaces. In this work, total internal reflection fluorescence (TIRF) microscopy is utilized to in-situ investigate the formation of nanodroplets around the rim of a polymer microcap, with sub-micron spatial and millisecond temporal resolution. We observe that the coalescence among droplets occurs frequently during their growth by solvent exchange. Our experimental results show that the position of the droplet from two merged droplets is related to the size of the parent droplets. The position of the coalesced droplet and the ratio of parent droplet sizes obey a scaling law, reflecting a coalescence preference based on the size inequality. As a result of droplet coalescence, the angles between the centroids of two neighbouring droplets increase with time, obeying a nearly symmetrical arrangement of droplets at various time intervals. The evolution of the position and number from coalescence of growing droplets is modelled. The mechanism for coalescence driven self-organization of growing droplets is general, applicable to microcaps of different sizes and droplets of different liquids. The understanding from this work may be valuable for positioning nanodroplets by nucleation and growth without using templates.

  18. Coalescence driven self-organization of growing nanodroplets around a microcap.

    PubMed

    Dyett, Brendan; Hao, Hao; Lohse, Detlef; Zhang, Xuehua

    2018-04-04

    The coalescence between growing droplets is important for the surface coverage and spatial arrangements of droplets on surfaces. In this work, total internal reflection fluorescence (TIRF) microscopy is utilized to in situ investigate the formation of nanodroplets around the rim of a polymer microcap, with sub-micron spatial and millisecond temporal resolution. We observe that the coalescence among droplets occurs frequently during their growth by solvent exchange. Our experimental results show that the position of the droplet from two merged droplets is related to the size of the parent droplets. The position of the coalesced droplet and the ratio of parent droplet sizes obey a scaling law, reflecting a coalescence preference based on the size inequality. As a result of droplet coalescence, the angles between the centroids of two neighbouring droplets increase with time, obeying a nearly symmetrical arrangement of droplets at various time intervals. The evolution of the position and number from coalescence of growing droplets is modelled. The mechanism for coalescence driven self-organization of growing droplets is general, applicable to microcaps of different sizes and droplets of different liquids. The understanding from this work may be valuable for positioning nanodroplets by nucleation and growth without using templates.

  19. Optofluidic droplet coalescence on a microfluidic chip

    NASA Astrophysics Data System (ADS)

    Jung, Jin Ho; Lee, Kyung Heon; Lee, Kang Soo; Cho, Hyunjun; Ha, Byung Hang; Destgeer, Ghulam; Sung, Hyung Jin

    2013-11-01

    Coalescence is the procedure that two or more droplets fuse during contact to form a larger droplet. Optofluidic droplet coalescence on a microfluidic chip was demonstrated with theoretical and experimental approaches. Droplets were produced in a T-junction geometry and their velocities and sizes were adjusted by flow rate. In order to bring them in a direct contact of coalescence, optical gradient force was used to trap the droplets. A theoretical modeling of the coalescence was derived by combining the optical force and drag force on the droplet. The analytical expression of the optical force on a sphere droplet was employed to estimate the trapping efficiency in the ray optics regime. The drag force acting on the droplet was calculated in terms of the fluid velocity, viscosity and the geometrical parameters of a microfluidic channel. The droplet coalescence was conducted in a microfluidic setup equipped with a 1064 CW laser, focusing optics, a syringe pump, a custom-made stage and a sCMOS camera. The droplets were successfully coalesced using the optical gradient force. The experimental data of coalescence were in good agreement with the prediction. This work was supported by the Creative Research Initiatives program (No.2013-003364) of the National Research Foundation of Korea (MSIP).

  20. Enhancements of Nucleate Boiling Under Microgravity Conditions

    NASA Technical Reports Server (NTRS)

    Zhang, Nengli; Chao, David F.; Yang, W. J.

    2000-01-01

    This paper presents two means for enhancing nucleate boiling and critical heat flux under microgravity conditions: using micro-configured metal-graphite composites as the boiling surface and dilute aqueous solutions of long-chain alcohols as the working fluid. In the former, thermocapillary force induced by temperature difference between the graphite-fiber tips and the metal matrix plays an important role in bubble detachment. Thus boiling-heat transfer performance does not deteriorate in a reduced-gravity environment. In the latter cases, the surface tension-temperature gradient of the long-chain alcohol solutions turns positive as the temperature exceeds a certain value. Consequently, the Marangoni effect does not impede, but rather aids in bubble departure from the heating surface. This feature is most favorable in microgravity. As a result, the bubble size of departure is substantially reduced at higher frequencies. Based on the existing experimental data, and a two-tier theoretical model, correlation formulas are derived for nucleate boiling on the copper-graphite and aluminum-graphite composite surfaces, in both the isolated and coalesced bubble regimes. In addition, performance equations for nucleate boiling and critical heat flux in dilute aqueous solutions of long-chain alcohols are obtained.

  1. Application of parametric equations of motion to study the resonance coalescence in H2(+).

    PubMed

    Kalita, Dhruba J; Gupta, Ashish K

    2012-12-07

    Recently, occurrence of coalescence point was reported in H(2)(+) undergoing multiphoton dissociation in strong laser field. We have applied parametric equations of motion and smooth exterior scaling method to study the coalescence phenomenon of H(2)(+). The advantage of this method is that one can easily trace the different states that are changing as the field parameters change. It was reported earlier that in the parameter space, only two bound states coalesce [R. Lefebvre, O. Atabek, M. Sindelka, and N. Moiseyev, Phys. Rev. Lett. 103, 123003 (2009)]. However, it is found that increasing the accuracy of the calculation leads to the coalescence between resonance states originating from the bound and the continuum states. We have also reported many other coalescence points.

  2. Multi-body coalescence in Pickering emulsions

    NASA Astrophysics Data System (ADS)

    Wu, Tong; Wang, Haitao; Jing, Benxin; Liu, Fang; Burns, Peter C.; Na, Chongzheng

    2015-01-01

    Particle-stabilized Pickering emulsions have shown unusual behaviours such as the formation of non-spherical droplets and the sudden halt of coalescence between individual droplets. Here we report another unusual behaviour of Pickering emulsions—the simultaneous coalescence of multiple droplets in a single event. Using latex particles, silica particles and carbon nanotubes as model stabilizers, we show that multi-body coalescence can occur in both water-in-oil and oil-in-water emulsions. The number of droplets involved in the nth coalscence event equals four times the corresponding number of the tetrahedral sequence in close packing. Furthermore, coalescence is promoted by repulsive latex and silica particles but inhibited by attractive carbon nanotubes. The revelation of multi-body coalescence is expected to help better understand Pickering emulsions in natural systems and improve their designs in engineering applications.

  3. Coalescence preference and droplet size inequality during fluid phase segregation

    NASA Astrophysics Data System (ADS)

    Roy, Sutapa

    2018-02-01

    Using molecular dynamics simulations and scaling arguments, we investigate the coalescence preference dynamics of liquid droplets in a phase-segregating off-critical, single-component fluid. It is observed that the preferential distance of the product drop from its larger parent, during a coalescence event, gets smaller for large parent size inequality. The relative coalescence position exhibits a power-law dependence on the parent size ratio with an exponent q ≃ 3.1 . This value of q is in strong contrast with earlier reports 2.1 and 5.1 in the literature. The dissimilarity is explained by considering the underlying coalescence mechanisms.

  4. Mitochondrial Ca2+ influx targets cardiolipin to disintegrate respiratory chain complex II for cell death induction

    PubMed Central

    Hwang, M-S; Schwall, C T; Pazarentzos, E; Datler, C; Alder, N N; Grimm, S

    2014-01-01

    Massive Ca2+ influx into mitochondria is critically involved in cell death induction but it is unknown how this activates the organelle for cell destruction. Using multiple approaches including subcellular fractionation, FRET in intact cells, and in vitro reconstitutions, we show that mitochondrial Ca2+ influx prompts complex II of the respiratory chain to disintegrate, thereby releasing an enzymatically competent sub-complex that generates excessive reactive oxygen species (ROS) for cell death induction. This Ca2+-dependent dissociation of complex II is also observed in model membrane systems, but not when cardiolipin is replaced with a lipid devoid of Ca2+ binding. Cardiolipin is known to associate with complex II and upon Ca2+ binding coalesces into separate homotypic clusters. When complex II is deprived of this lipid, it disintegrates for ROS formation and cell death. Our results reveal Ca2+ binding to cardiolipin for complex II disintegration as a pivotal step for oxidative stress and cell death induction. PMID:24948011

  5. Effects of macromolecular crowding on biochemical reaction equilibria: a molecular thermodynamic perspective.

    PubMed

    Hu, Zhongqiao; Jiang, Jianwen; Rajagopalan, Raj

    2007-09-01

    A molecular thermodynamic model is developed to investigate the effects of macromolecular crowding on biochemical reactions. Three types of reactions, representing protein folding/conformational isomerization, coagulation/coalescence, and polymerization/association, are considered. The reactants, products, and crowders are modeled as coarse-grained spherical particles or as polymer chains, interacting through hard-sphere interactions with or without nonbonded square-well interactions, and the effects of crowder size and chain length as well as product size are examined. The results predicted by this model are consistent with experimentally observed crowding effects based on preferential binding or preferential exclusion of the crowders. Although simple hard-core excluded-volume arguments do in general predict the qualitative aspects of the crowding effects, the results show that other intermolecular interactions can substantially alter the extent of enhancement or reduction of the equilibrium and can even change the direction of the shift. An advantage of the approach presented here is that competing reactions can be incorporated within the model.

  6. Asymptotic Distributions of Coalescence Times and Ancestral Lineage Numbers for Populations with Temporally Varying Size

    PubMed Central

    Chen, Hua; Chen, Kun

    2013-01-01

    The distributions of coalescence times and ancestral lineage numbers play an essential role in coalescent modeling and ancestral inference. Both exact distributions of coalescence times and ancestral lineage numbers are expressed as the sum of alternating series, and the terms in the series become numerically intractable for large samples. More computationally attractive are their asymptotic distributions, which were derived in Griffiths (1984) for populations with constant size. In this article, we derive the asymptotic distributions of coalescence times and ancestral lineage numbers for populations with temporally varying size. For a sample of size n, denote by Tm the mth coalescent time, when m + 1 lineages coalesce into m lineages, and An(t) the number of ancestral lineages at time t back from the current generation. Similar to the results in Griffiths (1984), the number of ancestral lineages, An(t), and the coalescence times, Tm, are asymptotically normal, with the mean and variance of these distributions depending on the population size function, N(t). At the very early stage of the coalescent, when t → 0, the number of coalesced lineages n − An(t) follows a Poisson distribution, and as m → n, n(n−1)Tm/2N(0) follows a gamma distribution. We demonstrate the accuracy of the asymptotic approximations by comparing to both exact distributions and coalescent simulations. Several applications of the theoretical results are also shown: deriving statistics related to the properties of gene genealogies, such as the time to the most recent common ancestor (TMRCA) and the total branch length (TBL) of the genealogy, and deriving the allele frequency spectrum for large genealogies. With the advent of genomic-level sequencing data for large samples, the asymptotic distributions are expected to have wide applications in theoretical and methodological development for population genetic inference. PMID:23666939

  7. Asymptotic distributions of coalescence times and ancestral lineage numbers for populations with temporally varying size.

    PubMed

    Chen, Hua; Chen, Kun

    2013-07-01

    The distributions of coalescence times and ancestral lineage numbers play an essential role in coalescent modeling and ancestral inference. Both exact distributions of coalescence times and ancestral lineage numbers are expressed as the sum of alternating series, and the terms in the series become numerically intractable for large samples. More computationally attractive are their asymptotic distributions, which were derived in Griffiths (1984) for populations with constant size. In this article, we derive the asymptotic distributions of coalescence times and ancestral lineage numbers for populations with temporally varying size. For a sample of size n, denote by Tm the mth coalescent time, when m + 1 lineages coalesce into m lineages, and An(t) the number of ancestral lineages at time t back from the current generation. Similar to the results in Griffiths (1984), the number of ancestral lineages, An(t), and the coalescence times, Tm, are asymptotically normal, with the mean and variance of these distributions depending on the population size function, N(t). At the very early stage of the coalescent, when t → 0, the number of coalesced lineages n - An(t) follows a Poisson distribution, and as m → n, $$n\\left(n-1\\right){T}_{m}/2N\\left(0\\right)$$ follows a gamma distribution. We demonstrate the accuracy of the asymptotic approximations by comparing to both exact distributions and coalescent simulations. Several applications of the theoretical results are also shown: deriving statistics related to the properties of gene genealogies, such as the time to the most recent common ancestor (TMRCA) and the total branch length (TBL) of the genealogy, and deriving the allele frequency spectrum for large genealogies. With the advent of genomic-level sequencing data for large samples, the asymptotic distributions are expected to have wide applications in theoretical and methodological development for population genetic inference.

  8. Detecting past changes of effective population size

    PubMed Central

    Nikolic, Natacha; Chevalet, Claude

    2014-01-01

    Understanding and predicting population abundance is a major challenge confronting scientists. Several genetic models have been developed using microsatellite markers to estimate the present and ancestral effective population sizes. However, to get an overview on the evolution of population requires that past fluctuation of population size be traceable. To address the question, we developed a new model estimating the past changes of effective population size from microsatellite by resolving coalescence theory and using approximate likelihoods in a Monte Carlo Markov Chain approach. The efficiency of the model and its sensitivity to gene flow and to assumptions on the mutational process were checked using simulated data and analysis. The model was found especially useful to provide evidence of transient changes of population size in the past. The times at which some past demographic events cannot be detected because they are too ancient and the risk that gene flow may suggest the false detection of a bottleneck are discussed considering the distribution of coalescence times. The method was applied on real data sets from several Atlantic salmon populations. The method called VarEff (Variation of Effective size) was implemented in the R package VarEff and is made available at https://qgsp.jouy.inra.fr and at http://cran.r-project.org/web/packages/VarEff. PMID:25067949

  9. Coalescent histories for caterpillar-like families.

    PubMed

    Rosenberg, Noah A

    2013-01-01

    A coalescent history is an assignment of branches of a gene tree to branches of a species tree on which coalescences in the gene tree occur. The number of coalescent histories for a pair consisting of a labeled gene tree topology and a labeled species tree topology is important in gene tree probability computations, and more generally, in studying evolutionary possibilities for gene trees on species trees. Defining the Tr-caterpillar-like family as a sequence of n-taxon trees constructed by replacing the r-taxon subtree of n-taxon caterpillars by a specific r-taxon labeled topology Tr, we examine the number of coalescent histories for caterpillar-like families with matching gene tree and species tree labeled topologies. For each Tr with size r≤8, we compute the number of coalescent histories for n-taxon trees in the Tr-caterpillar-like family. Next, as n→∞, we find that the limiting ratio of the numbers of coalescent histories for the Tr family and caterpillars themselves is correlated with the number of labeled histories for Tr. The results support a view that large numbers of coalescent histories occur when a tree has both a relatively balanced subtree and a high tree depth, contributing to deeper understanding of the combinatorics of gene trees and species trees.

  10. Recent results and persisting problems in modeling flow induced coalescence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fortelný, I., E-mail: fortelny@imc.cas.cz, E-mail: juza@imc.cas.cz; Jza, J., E-mail: fortelny@imc.cas.cz, E-mail: juza@imc.cas.cz

    2014-05-15

    The contribution summarizes recent results of description of the flow induced coalescence in immiscible polymer blends and addresses problems that call for which solving. The theory of coalescence based on the switch between equations for matrix drainage between spherical or deformed droplets provides a good agreement with more complicated modeling and available experimental data for probability, P{sub c}, that the collision of droplets will be followed by their fusion. A new equation for description of the matrix drainage between deformed droplets, applicable to the whole range of viscosity ratios, p, of the droplets and matrixes, is proposed. The theory facilitatesmore » to consider the effect of the matrix elasticity on coalescence. P{sub c} decreases with the matrix relaxation time but this decrease is not pronounced for relaxation times typical of most commercial polymers. Modeling of the flow induced coalescence in concentrated systems is needed for prediction of the dependence of coalescence rate on volume fraction of droplets. The effect of the droplet anisometry on P{sub c} should be studied for better understanding the coalescence in flow field with high and moderate deformation rates. A reliable description of coalescence in mixing and processing devices requires proper modeling of complex flow fields.« less

  11. Vortex dynamics during blade-vortex interactions

    NASA Astrophysics Data System (ADS)

    Peng, Di; Gregory, James W.

    2015-05-01

    Vortex dynamics during parallel blade-vortex interactions (BVIs) were investigated in a subsonic wind tunnel using particle image velocimetry (PIV). Vortices were generated by applying a rapid pitch-up motion to an airfoil through a pneumatic system, and the subsequent interactions with a downstream, unloaded target airfoil were studied. The blade-vortex interactions may be classified into three categories in terms of vortex behavior: close interaction, very close interaction, and collision. For each type of interaction, the vortex trajectory and strength variation were obtained from phase-averaged PIV data. The PIV results revealed the mechanisms of vortex decay and the effects of several key parameters on vortex dynamics, including separation distance (h/c), Reynolds number, and vortex sense. Generally, BVI has two main stages: interaction between vortex and leading edge (vortex-LE interaction) and interaction between vortex and boundary layer (vortex-BL interaction). Vortex-LE interaction, with its small separation distance, is dominated by inviscid decay of vortex strength due to pressure gradients near the leading edge. Therefore, the decay rate is determined by separation distance and vortex strength, but it is relatively insensitive to Reynolds number. Vortex-LE interaction will become a viscous-type interaction if there is enough separation distance. Vortex-BL interaction is inherently dominated by viscous effects, so the decay rate is dependent on Reynolds number. Vortex sense also has great impact on vortex-BL interaction because it changes the velocity field and shear stress near the surface.

  12. Recursions for the exchangeable partition function of the seedbank coalescent.

    PubMed

    Kurt, Noemi; Rafler, Mathias

    2017-04-01

    For the seedbank coalescent with mutation under the infinite alleles assumption, which describes the gene genealogy of a population with a strong seedbank effect subject to mutations, we study the distribution of the final partition with mutation. This generalizes the coalescent with freeze by Dong et al. (2007) to coalescents where ancestral lineages are blocked from coalescing. We derive an implicit recursion which we show to have a unique solution and give an interpretation in terms of absorption problems of a random walk. Moreover, we derive recursions for the distribution of the number of blocks in the final partition. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Phase segregation due to simultaneous migration and coalescence

    NASA Technical Reports Server (NTRS)

    Davis, Robert H.

    1994-01-01

    The primary objective of the research is to perform ground-based analysis and experiments on the interaction and coalescence of drops (or bubbles) leading to macroscopic phase separation. Migration of the drops occurs as a result of the individual and collective action of gravity and thermocapillary effects. Larger drops migrate faster than smaller ones, leading to the possibility of collisions and coalescence. Coalescence increases the rate of macroscopic phase separation, since the result is larger drops with higher migration rates. It is hoped that the understanding gained will lead to the design of microgravity experiments to further elucidate the mechanisms governing coalescence and phase separation.

  14. Short time dynamics of water coalescence on a flat water pool

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lim, Su Jin; Gim, Bopil; Fezzaa, Kamel

    2016-12-01

    Coalescence is an important hydrodynamic event that frequently takes place in nature as well as in industry. Here we provide an experimental study on short time dynamics of water coalescence, particularly when a water droplet comes in contact with a flat water surface, by utilizing high-resolution high-penetration ultrafast X-ray microscopy. Our results demonstrate a possibility that an extreme curvature difference between a drop and a flat surface can significantly modify the hydrodynamics of water coalescence, which is unexpected in the existing theory. We suggest a plausible explanation for why coalescence can be modified by an extreme curvature difference.

  15. Characteristic time scales of coalescence of silver nanocomposite and nanoparticle films induced by continuous wave laser irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paeng, Dongwoo; Grigoropoulos, Costas P., E-mail: cgrigoro@berkeley.edu; Lee, Daeho

    2014-08-18

    In-situ optical probing has been performed to analyze and compare the characteristic coalescence time scales of silver ion-doped polyvinylalcohol nanocomposite (Ag-PVA NC) and polyvinylpyrrolidone-capped silver nanoparticle (Ag-PVP NP) films subjected to continuous wave laser irradiation. The Ag-PVA NC yielded conductive metallic patterns by photothermal reduction of PVA, formation of nanoparticles from silver ions and their subsequent coalescence. On the other hand, Ag-PVP NP thin films produced conductive patterns through only coalescence of nanoparticles. Upon laser irradiation, Ag-PVA NC and Ag-PVP NP films exhibited different coalescence characteristics.

  16. An investigation of bubble coalescence and post-rupture oscillation in non-ionic surfactant solutions using high-speed cinematography.

    PubMed

    Bournival, G; Ata, S; Karakashev, S I; Jameson, G J

    2014-01-15

    Most processes involving bubbling in a liquid require small bubbles to maximise mass/energy transfer. A common method to prevent bubbles from coalescing is by the addition of surfactants. In order to get an insight into the coalescence process, capillary bubbles were observed using a high speed cinematography. Experiments were performed in solutions of 1-pentanol, 4-methyl-2-pentanol, tri(propylene glycol) methyl ether, and poly(propylene glycol) for which information such as the coalescence time and the deformation of the resultant bubble upon coalescence was extracted. It is shown in this study that the coalescence time increases with surfactant concentration until the appearance of a plateau. The increase in coalescence time with surfactant concentration could not be attributed only to surface elasticity. The oscillation of the resultant bubble was characterised by the damping of the oscillation. The results suggested that a minimum elasticity is required to achieve an increased damping and considerable diffusion has a detrimental effect on the dynamic response of the bubble, thereby reducing the damping. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Coalescence-Induced Jumping of Nanodroplets on Textured Surfaces.

    PubMed

    Gao, Shan; Liao, Quanwen; Liu, Wei; Liu, Zhichun

    2018-01-04

    Conducting experimental studies on nanoscale droplet coalescence using traditional microscopes is a challenging research topic, and views differ as to whether the spontaneous removal can occur in the coalescing nanodroplets. Here, a molecular dynamics simulation is carried out to investigate the coalescence process of two equally sized nanodroplets. On the basis of atomic coordinates, we compute the liquid bridge radii for various cases, which is described by a power law of spreading time, and these nanodroplets undergo coalescence in the inertially limited-viscous regime. Moreover, coalescence-induced jumping is also possible for the nanodroplets, and the attraction force between surface and water molecules plays a crucial role in this process, where the merged nanodroplets prefer to jump away from those surfaces with lower attraction force. When the solid-liquid interaction intensity and surface structure parameters are varied, the attraction force is shown to decrease with decreasing surface wettability intensity and solid fraction.

  18. Hybrid-Lambda: simulation of multiple merger and Kingman gene genealogies in species networks and species trees.

    PubMed

    Zhu, Sha; Degnan, James H; Goldstien, Sharyn J; Eldon, Bjarki

    2015-09-15

    There has been increasing interest in coalescent models which admit multiple mergers of ancestral lineages; and to model hybridization and coalescence simultaneously. Hybrid-Lambda is a software package that simulates gene genealogies under multiple merger and Kingman's coalescent processes within species networks or species trees. Hybrid-Lambda allows different coalescent processes to be specified for different populations, and allows for time to be converted between generations and coalescent units, by specifying a population size for each population. In addition, Hybrid-Lambda can generate simulated datasets, assuming the infinitely many sites mutation model, and compute the F ST statistic. As an illustration, we apply Hybrid-Lambda to infer the time of subdivision of certain marine invertebrates under different coalescent processes. Hybrid-Lambda makes it possible to investigate biogeographic concordance among high fecundity species exhibiting skewed offspring distribution.

  19. Surfactant effect on drop coalescence and film drainage hydrodynamics

    NASA Astrophysics Data System (ADS)

    Weheliye, Weheliye; Chinaud, Maxime; Voulgaropoulos, Victor; Angeli, Panagiota

    2015-11-01

    Coalescence of a drop on an aqueous-organic interface is studied in two test geometries A rectangular acrylic vessel and a Hele-Shaw cell (two parallel plates placed 2mm apart) are investigated for the experiments. Time resolved Particle Image Velocimetry (PIV) measurements provide information on the hydrodynamics during the bouncing stage of the droplet and on the vortices generated at the bulk fluid after the droplet has coalesced. The velocity field inside the droplet during its coalescence is presented. By localizing the rupture point of the coalescence in the quasi two dimensional cell, the film drainage dynamics are discussed by acquiring its flow velocity by PIV measurements with a straddling camera. The effect of surface tension forces in the coalescence of the droplet is investigated by introducing surface active agents at various concentrations extending on both sides of the critical micelle concentration.

  20. Coalescence of Fluid-Driven Fractures

    NASA Astrophysics Data System (ADS)

    O'Keeffe, Niall; Zheng, Zhong; Huppert, Herbert; Linden, Paul

    2017-11-01

    We present an experimental study on the coalescence of two in-plane fluid-driven penny-shaped fractures in a brittle elastic medium. Initially, two fluid-driven fractures propagate independently of each other in the same plane. Then when the radial extent of each fracture reaches a certain distance the fractures begin to interact and coalesce. This coalescence forms a bridge between the fractures and then, in an intermediate period following the contact of the two fractures, most growth is observed to focus along this bridge, perpendicular to the line connecting the injection sources. We analyse the growth and shape of this bridge at various stages after coalescence and the transitions between different stages of growth. We also investigate the influence of the injection rate, the distance between two injection points, the viscosity of the fluid and the Young's modulus of the elastic medium on the coalescence of the fractures.

  1. The detachment of particles from coalescing bubble pairs.

    PubMed

    Ata, Seher

    2009-10-15

    This paper is concerned with the detachment of particles from coalescing bubble pairs. Two bubbles were generated at adjacent capillaries and coated with hydrophobic glass particles of mean diameter 66 microm. The bubbles were then positioned next to each other until the thin liquid film between them ruptured. The particles that dropped from the bubble surface during the coalescence process were collected and measured. The coalescence process was very vigorous and observations showed that particles detached from the bubble surfaces as a result of the oscillations caused by coalescence. The attached particles themselves and, to some extent the presence of the surfactant had a damping affect on the bubble oscillation, which played a decisive role on the particle detachment phenomena. The behaviour of particles on the surfaces of the bubbles during coalescence was described, and implications of results for the flotation process were discussed.

  2. Wetting and Coalescence of Drops of Self-Healing Agents on Electrospun Nanofiber Mats.

    PubMed

    An, Seongpil; Kim, Yong Il; Lee, Min Wook; Yarin, Alexander L; Yoon, Sam S

    2017-10-10

    Here we study experimentally the behavior of liquid healing agents released in vascular core-shell nanofiber mats used in self-healing engineered materials. It is shown that wettability-driven spreading of liquid drops is accompanied by the imbibition into the nanofiber matrix, and its laws deviate from those known for spreading on an intact surface. We also explore coalescence of the released drops on nanofiber mats, in particular, coalescence of drops of resin monomer and cure important for self-healing. The coalescence process is also affected by the imbibition into the pores of an underlying nanofiber mat. A theoretical model is developed to account for the imbibition effect on drop coalescence.

  3. Vortex-Surface Interactions: Vortex Dynamics and Instabilities

    DTIC Science & Technology

    2015-10-16

    31 May 2015 4. TITLE AND SUBTITLE VORTEX -SURFACE INTERACTIONS: VORTEX DYNAMICS AND INSTABILITIES Sa. CONTRACT NUMBER Sb. GRANT NUMBER N00014-12...new natural instabilities coming from vortex - vortex or vortex -surface interactions, but also ultimately the possibility to control these flows...design of vortex generators to modify surface pressures. We find a short wave instability of the secondary vortices that are created by the

  4. A lattice Boltzmann simulation of coalescence-induced droplet jumping on superhydrophobic surfaces with randomly distributed structures

    NASA Astrophysics Data System (ADS)

    Zhang, Li-Zhi; Yuan, Wu-Zhi

    2018-04-01

    The motion of coalescence-induced condensate droplets on superhydrophobic surface (SHS) has attracted increasing attention in energy-related applications. Previous researches were focused on regularly rough surfaces. Here a new approach, a mesoscale lattice Boltzmann method (LBM), is proposed and used to model the dynamic behavior of coalescence-induced droplet jumping on SHS with randomly distributed rough structures. A Fast Fourier Transformation (FFT) method is used to generate non-Gaussian randomly distributed rough surfaces with the skewness (Sk), kurtosis (K) and root mean square (Rq) obtained from real surfaces. Three typical spreading states of coalesced droplets are observed through LBM modeling on various rough surfaces, which are found to significantly influence the jumping ability of coalesced droplet. The coalesced droplets spreading in Cassie state or in composite state will jump off the rough surfaces, while the ones spreading in Wenzel state would eventually remain on the rough surfaces. It is demonstrated that the rough surfaces with smaller Sks, larger Rqs and a K at 3.0 are beneficial to coalescence-induced droplet jumping. The new approach gives more detailed insights into the design of SHS.

  5. On spatial coalescents with multiple mergers in two dimensions.

    PubMed

    Heuer, Benjamin; Sturm, Anja

    2013-08-01

    We consider the genealogy of a sample of individuals taken from a spatially structured population when the variance of the offspring distribution is relatively large. The space is structured into discrete sites of a graph G. If the population size at each site is large, spatial coalescents with multiple mergers, so called spatial Λ-coalescents, for which ancestral lines migrate in space and coalesce according to some Λ-coalescent mechanism, are shown to be appropriate approximations to the genealogy of a sample of individuals. We then consider as the graph G the two dimensional torus with side length 2L+1 and show that as L tends to infinity, and time is rescaled appropriately, the partition structure of spatial Λ-coalescents of individuals sampled far enough apart converges to the partition structure of a non-spatial Kingman coalescent. From a biological point of view this means that in certain circumstances both the spatial structure as well as larger variances of the underlying offspring distribution are harder to detect from the sample. However, supplemental simulations show that for moderately large L the different structure is still evident. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. Coalescence preference in dense packing of bubbles

    NASA Astrophysics Data System (ADS)

    Kim, Yeseul; Gim, Bopil; Gim, Bopil; Weon, Byung Mook

    2015-11-01

    Coalescence preference is the tendency that a merged bubble from the contact of two original bubbles (parent) tends to be near to the bigger parent. Here, we show that the coalescence preference can be blocked by densely packing of neighbor bubbles. We use high-speed high-resolution X-ray microscopy to clearly visualize individual coalescence phenomenon which occurs in micro scale seconds and inside dense packing of microbubbles with a local packing fraction of ~40%. Previous theory and experimental evidence predict a power of -5 between the relative coalescence position and the parent size. However, our new observation for coalescence preference in densely packed microbubbles shows a different power of -2. We believe that this result may be important to understand coalescence dynamics in dense packing of soft matter. This work (NRF-2013R1A22A04008115) was supported by Mid-career Researcher Program through NRF grant funded by the MEST and also was supported by Ministry of Science, ICT and Future Planning (2009-0082580) and by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry and Education, Science and Technology (NRF-2012R1A6A3A04039257).

  7. Comparison of nonwoven fiberglass and stainless steel microfiber media in aerosol coalescence filtration

    NASA Astrophysics Data System (ADS)

    Manzo, Gabriel

    Coalescing filters are used to remove small liquid droplets from air streams. They have numerous industrial applications including dehumidification, cabin air filtration, compressed air filtration, metal working, CCV, and agriculture. In compressed air systems, oils used for lubrication of compressor parts can aerosolize into the main air stream causing potential contamination concerns for downstream applications. In many systems, humid air can present problems to sensitive equipment and sensors. As the humid air cools, small water drops condense and can disrupt components that need to be kept dry. Fibrous nonwoven filter media are commonly used to coalesce small drops into larger drops for easier removal. The coalescing performance of a medium is dependent upon several parameters including permeability, porosity, and wettability. In many coalescing filters, glass fibers are used. In this work, the properties of steel fiber media are measured to see how these properties compare to glass fiber media. Steel fiber media has different permeability, porosity and wettability to oil and water than fiber glass media. These differences can impact coalescence performance. The impact of these differences in properties on coalescence filtration performance was evaluated in a coalescence test apparatus. The overall coalescence performance of the steel and glass nonwoven fiber media are compared using a filtration efficiency and filtration index. In many cases, the stainless steel media performed comparably to fiber glass media with efficiencies near 90%. Since stainless steel media had lower pressure drops than fiber glass media, its filtration index values were significantly higher. Broader impact of this work is the use of stainless steel fiber media as an alternative to fiber glass media in applications where aerosol filtration is needed to protect the environment or sensitive equipment and sensors.

  8. Determination of the coalescence temperature of latexes by environmental scanning electron microscopy.

    PubMed

    Gonzalez, Edurne; Tollan, Christopher; Chuvilin, Andrey; Barandiaran, Maria J; Paulis, Maria

    2012-08-01

    A new methodology for quantitative characterization of the coalescence process of waterborne polymer dispersion (latex) particles by environmental scanning electron microscopy (ESEM) is proposed. The experimental setup has been developed to provide reproducible latex monolayer depositions, optimized contrast of the latex particles, and a reliable readout of the sample temperature. Quantification of the coalescence process under dry conditions has been performed by image processing based on evaluation of the image autocorrelation function. As a proof of concept the coalescence of two latexes with known and differing glass transition temperatures has been measured. It has been shown that a reproducibility of better than 1.5 °C can be obtained for the measurement of the coalescence temperature.

  9. Distribution, morphology, and origins of Martian pit crater chains

    NASA Astrophysics Data System (ADS)

    Wyrick, Danielle; Ferrill, David A.; Morris, Alan P.; Colton, Shannon L.; Sims, Darrell W.

    2004-06-01

    Pit craters are circular to elliptical depressions found in alignments (chains), which in many cases coalesce into linear troughs. They are common on the surface of Mars and similar to features observed on Earth and other terrestrial bodies. Pit craters lack an elevated rim, ejecta deposits, or lava flows that are associated with impact craters or calderas. It is generally agreed that the pits are formed by collapse into a subsurface cavity or explosive eruption. Hypotheses regarding the formation of pit crater chains require development of a substantial subsurface void to accommodate collapse of the overlying material. Suggested mechanisms of formation include: collapsed lava tubes, dike swarms, collapsed magma chamber, substrate dissolution (analogous to terrestrial karst), fissuring beneath loose material, and dilational faulting. The research described here is intended to constrain current interpretations of pit crater chain formation by analyzing their distribution and morphology. The western hemisphere of Mars was systematically mapped using Mars Orbiter Camera (MOC) images to generate ArcView™ Geographic Information System (GIS) coverages. All visible pit crater chains were mapped, including their orientations and associations with other structures. We found that pit chains commonly occur in areas that show regional extension or local fissuring. There is a strong correlation between pit chains and fault-bounded grabens. Frequently, there are transitions along strike from (1) visible faulting to (2) faults and pits to (3) pits alone. We performed a detailed quantitative analysis of pit crater morphology using MOC narrow angle images, Thermal Emission Imaging System (THEMIS) visual images, and Mars Orbiter Laser Altimeter (MOLA) data. This allowed us to determine a pattern of pit chain evolution and calculate pit depth, slope, and volume. Volumes of approximately 150 pits from five areas were calculated to determine volume size distribution and regional trends. The information collected in the study was then compared with non-Martian examples of pit chains and physical analog models. We evaluated the various mechanisms for pit chain development based on the data collected and conclude that dilational normal faulting and sub-vertical fissuring provide the simplest and most comprehensive mechanisms to explain the regional associations, detailed geometry, and progression of pit chain development.

  10. Behavior of streamwise rib vortices in a three-dimensional mixing layer

    NASA Technical Reports Server (NTRS)

    Lopez, J. M.; Bulbeck, C. J.

    1992-01-01

    The structure and behavior of a streamwise rib vortex in a direct numerical simulation of a time-developing three-dimensional incompressible plane mixing layer is examined. Where the rib vortex is being stretched, the vorticity vector is primarily directed in the vortex axial direction and the radial and azimuthal velocity distribution is similar to that of a Burger's vortex. In the region where the vortex stretching is negative, there is a change in the local topology of the vortex. The axial flow is decelerated and a negative azimuthal component of vorticity is induced. These features are characteristic of vortex breakdown. The temporal evolution of the rib vortex is similar to the evolution of an axisymmetric vortex in the early stages of vortex breakdown. The effect of vortex breakdown on other parts of the flow is, however, not as significant as the interaction between the rib vortex and other vortices.

  11. Bubble coalescence in a Newtonian fluid

    NASA Astrophysics Data System (ADS)

    Garg, Vishrut; Basaran, Osman

    2017-11-01

    Bubble coalescence plays a central role in the hydrodynamics of gas-liquid systems such as bubble column reactors, spargers, and foams. Two bubbles approaching each other at velocity V coalesce when the thin film between them ruptures, which is often the rate-limiting step. Experimental studies of this system are difficult, and recent works provide conflicting results on the effect of V on coalescence times. We simulate the head-on approach of two bubbles of equal radii R in an incompressible Newtonian fluid (density ρ, viscosity μ, and surface tension σ) by solving numerically the free boundary problem comprised of the Navier Stokes and continuity equations. Simulations are made challenging by the existence of highly disparate lengthscales, i.e. film thickness and drop radii, which are resolved by using the method of elliptic mesh generation. For a given liquid, the bubbles are shown to coalesce for all velocities below a critical value. The effects of Ohnesorge number Oh = μ /√{ ρσR } on coalescence time and critical velocity are also investigated.

  12. Gene tree rooting methods give distributions that mimic the coalescent process.

    PubMed

    Tian, Yuan; Kubatko, Laura S

    2014-01-01

    Multi-locus phylogenetic inference is commonly carried out via models that incorporate the coalescent process to model the possibility that incomplete lineage sorting leads to incongruence between gene trees and the species tree. An interesting question that arises in this context is whether data "fit" the coalescent model. Previous work (Rosenfeld et al., 2012) has suggested that rooting of gene trees may account for variation in empirical data that has been previously attributed to the coalescent process. We examine this possibility using simulated data. We show that, in the case of four taxa, the distribution of gene trees observed from rooting estimated gene trees with either the molecular clock or with outgroup rooting can be closely matched by the distribution predicted by the coalescent model with specific choices of species tree branch lengths. We apply commonly-used coalescent-based methods of species tree inference to assess their performance in these situations. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Upper limits for gravitational radiation from supermassive coalescing binaries

    NASA Technical Reports Server (NTRS)

    Anderson, J. D.; Armstrong, J. W.; Lau, E. L.

    1993-01-01

    We report a search for waves from supermassive coalescing binaries using a 10.5 day Pioneer 10 data set taken in 1988. Depending on the time to coalescence, the initial frequency of the wave, and the length of the observing interval, a coalescing binary waveform appears in the tracking record either as a sinusoid, a 'chirp', or as a more complicated signal. We searched our data for coalescing binary waveforms in all three regimes. We successfully detected a (fortuitous) 'chirp' signal caused by the varying spin rate of the spacecraft; this nicely served as a calibration of the data quality and as a test of our analysis procedures on real data. We did not detect any signals of astronomical origin in the millihertz band to an upper limit of about 7 x 10 exp -15 (rms amplitude). This is the first time spacecraft Doppler data have been analyzed for coalescing binary waveforms, and the upper limits reported here are the best to date for any waveform in the millihertz band.

  14. Pareto genealogies arising from a Poisson branching evolution model with selection.

    PubMed

    Huillet, Thierry E

    2014-02-01

    We study a class of coalescents derived from a sampling procedure out of N i.i.d. Pareto(α) random variables, normalized by their sum, including β-size-biasing on total length effects (β < α). Depending on the range of α we derive the large N limit coalescents structure, leading either to a discrete-time Poisson-Dirichlet (α, -β) Ξ-coalescent (α ε[0, 1)), or to a family of continuous-time Beta (2 - α, α - β)Λ-coalescents (α ε[1, 2)), or to the Kingman coalescent (α ≥ 2). We indicate that this class of coalescent processes (and their scaling limits) may be viewed as the genealogical processes of some forward in time evolving branching population models including selection effects. In such constant-size population models, the reproduction step, which is based on a fitness-dependent Poisson Point Process with scaling power-law(α) intensity, is coupled to a selection step consisting of sorting out the N fittest individuals issued from the reproduction step.

  15. Minimal-assumption inference from population-genomic data

    NASA Astrophysics Data System (ADS)

    Weissman, Daniel; Hallatschek, Oskar

    Samples of multiple complete genome sequences contain vast amounts of information about the evolutionary history of populations, much of it in the associations among polymorphisms at different loci. Current methods that take advantage of this linkage information rely on models of recombination and coalescence, limiting the sample sizes and populations that they can analyze. We introduce a method, Minimal-Assumption Genomic Inference of Coalescence (MAGIC), that reconstructs key features of the evolutionary history, including the distribution of coalescence times, by integrating information across genomic length scales without using an explicit model of recombination, demography or selection. Using simulated data, we show that MAGIC's performance is comparable to PSMC' on single diploid samples generated with standard coalescent and recombination models. More importantly, MAGIC can also analyze arbitrarily large samples and is robust to changes in the coalescent and recombination processes. Using MAGIC, we show that the inferred coalescence time histories of samples of multiple human genomes exhibit inconsistencies with a description in terms of an effective population size based on single-genome data.

  16. Liquid Marble Coalescence and Triggered Microreaction Driven by Acoustic Levitation.

    PubMed

    Chen, Zhen; Zang, Duyang; Zhao, Liang; Qu, Mengfei; Li, Xu; Li, Xiaoguang; Li, Lixin; Geng, Xingguo

    2017-06-27

    Liquid marbles show promising potential for application in the microreactor field. Control of the coalescence between two or among multiple liquid marbles is critical; however, the successful merging of two isolated marbles is difficult because of their mechanically robust particle shells. In this work, the coalescence of multiple liquid marbles was achieved via acoustic levitation. The dynamic behaviors of the liquid marbles were monitored by a high-speed camera. Driven by the sound field, the liquid marbles moved toward each other, collided, and eventually coalesced into a larger single marble. The underlying mechanisms of this process were probed via sound field simulation and acoustic radiation pressure calculation. The results indicated that the pressure gradient on the liquid marble surface favors the formation of a liquid bridge between the liquid marbles, resulting in their coalescence. A preliminary indicator reaction was induced by the coalescence of dual liquid marbles, which suggests that expected chemical reactions can be successfully triggered with multiple reagents contained in isolated liquid marbles via acoustic levitation.

  17. Accurate quantification of within- and between-host HBV evolutionary rates requires explicit transmission chain modelling.

    PubMed

    Vrancken, Bram; Suchard, Marc A; Lemey, Philippe

    2017-07-01

    Analyses of virus evolution in known transmission chains have the potential to elucidate the impact of transmission dynamics on the viral evolutionary rate and its difference within and between hosts. Lin et al. (2015, Journal of Virology , 89/7: 3512-22) recently investigated the evolutionary history of hepatitis B virus in a transmission chain and postulated that the 'colonization-adaptation-transmission' model can explain the differential impact of transmission on synonymous and non-synonymous substitution rates. Here, we revisit this dataset using a full probabilistic Bayesian phylogenetic framework that adequately accounts for the non-independence of sequence data when estimating evolutionary parameters. Examination of the transmission chain data under a flexible coalescent prior reveals a general inconsistency between the estimated timings and clustering patterns and the known transmission history, highlighting the need to incorporate host transmission information in the analysis. Using an explicit genealogical transmission chain model, we find strong support for a transmission-associated decrease of the overall evolutionary rate. However, in contrast to the initially reported larger transmission effect on non-synonymous substitution rate, we find a similar decrease in both non-synonymous and synonymous substitution rates that cannot be adequately explained by the colonization-adaptation-transmission model. An alternative explanation may involve a transmission/establishment advantage of hepatitis B virus variants that have accumulated fewer within-host substitutions, perhaps by spending more time in the covalently closed circular DNA state between each round of viral replication. More generally, this study illustrates that ignoring phylogenetic relationships can lead to misleading evolutionary estimates.

  18. Vortex formation and instability in the left ventricle

    NASA Astrophysics Data System (ADS)

    Le, Trung Bao; Sotiropoulos, Fotis; Coffey, Dane; Keefe, Daniel

    2012-09-01

    We study the formation of the mitral vortex ring during early diastolic filling in a patient-specific left ventricle (LV) using direct numerical simulation. The geometry of the left ventricle is reconstructed from Magnetic Resonance Imaging (MRI) data of a healthy human subject. The left ventricular kinematics is modeled via a cell-based activation methodology, which is inspired by cardiac electro-physiology and yields physiologic LV wall motion. In the fluid dynamics videos, we describe in detail the three-dimensional structure of the mitral vortex ring, which is formed during early diastolic filling. The ring starts to deform as it propagates toward the apex of the heart and becomes inclined. The trailing secondary vortex tubes are formed as the result of interaction between the vortex ring and the LV wall. These vortex tubes wrap around the circumference and begin to interact with and destabilize the mitral vortex ring. At the end of diastole, the vortex ring impinges on the LV wall and the large-scale intraventricular flow rotates in clockwise direction. We show for the first time that the mitral vortex ring evolution is dominated by a number of vortex-vortex and vortex-wall interactions, including lateral straining and deformation of vortex ring, the interaction of two vortex tubes with unequal strengths, helicity polarization of vortex tubes and twisting instabilities of the vortex cores.

  19. Interaction of a Vortex with Axial Flow and a Cylindrical Surface

    NASA Astrophysics Data System (ADS)

    Radcliff, T. D.; Burgraff, O. R.; Conlisk, A. T.

    1998-11-01

    The direct collision of a vortex with a surface is an important problem because significant impulsive loads may be generated leading to premature fatigue. Experimental results for the impingement of a tip-vortex on a cylindrical airframe indicate that a suction peak forms on the top of the airframe which is subsequently reduced within milliseconds of vortex-surface contact. A simple line-vortex model can predict the experimental results until the vortex is within a vortex-core radius of the airframe. After this the model predicts continually deepening rather than lessening suction. Study of the experimental results suggests that axial flow within the core of a tip-vortex has an impact on the airframe pressure distribution upon close approach. The mechanism for this is hypothesized to be the inviscid redistribution of the vorticity field within the vortex coupled with deformation of the vortex core. Two models of a tip-vortex with axial flow are considered. First a classical line vortex with a cut-off parameter is superimposed with suitably placed vortex rings. This model simulates the helically wound vortex shed by the rotor tip. Inclusion of axial flow is found to prevent thinning of the vortex core as the vortex stretches around the cylindrical surface during the collision process. With less thinning, vorticity is observed to overlap the solid cylinder, highlighting the fact that the vortex core must deform from its original cylindrical shape. A second model is developed in which axial and azimuthal vorticity are uniformly distributed throughout a rectangular-section vortex. Area and aspect ratio of this vortex can be varied independently to simulate deformation of the vortex core. Both vorticity redistribution and core deformation are shown to be important to properly calculate the local induced pressure loads. The computational results are compared with the results of experiments conducted at the Georgia Institute of Technology.

  20. Vortex flow during early and late left ventricular filling in normal subjects: quantitative characterization using retrospectively-gated 4D flow cardiovascular magnetic resonance and three-dimensional vortex core analysis.

    PubMed

    Elbaz, Mohammed S M; Calkoen, Emmeline E; Westenberg, Jos J M; Lelieveldt, Boudewijn P F; Roest, Arno A W; van der Geest, Rob J

    2014-09-27

    LV diastolic vortex formation has been suggested to critically contribute to efficient blood pumping function, while altered vortex formation has been associated with LV pathologies. Therefore, quantitative characterization of vortex flow might provide a novel objective tool for evaluating LV function. The objectives of this study were 1) assess feasibility of vortex flow analysis during both early and late diastolic filling in vivo in normal subjects using 4D Flow cardiovascular magnetic resonance (CMR) with retrospective cardiac gating and 3D vortex core analysis 2) establish normal quantitative parameters characterizing 3D LV vortex flow during both early and late ventricular filling in normal subjects. With full ethical approval, twenty-four healthy volunteers (mean age: 20±10 years) underwent whole-heart 4D Flow CMR. The Lambda2-method was used to extract 3D LV vortex ring cores from the blood flow velocity field during early (E) and late (A) diastolic filling. The 3D location of the center of vortex ring core was characterized using cylindrical cardiac coordinates (Circumferential, Longitudinal (L), Radial (R)). Comparison between E and A filling was done with a paired T-test. The orientation of the vortex ring core was measured and the ring shape was quantified by the circularity index (CI). Finally, the Spearman's correlation between the shapes of mitral inflow pattern and formed vortex ring cores was tested. Distinct E- and A-vortex ring cores were observed with centers of A-vortex rings significantly closer to the mitral valve annulus (E-vortex L=0.19±0.04 versus A-vortex L=0.15±0.05; p=0.0001), closer to the ventricle's long-axis (E-vortex: R=0.27±0.07, A-vortex: R=0.20±0.09, p=0.048) and more elliptical in shape (E-vortex: CI=0.79±0.09, A-vortex: CI=0.57±0.06; <0.001) compared to E-vortex. The circumferential location and orientation relative to LV long-axis for both E- and A-vortex ring cores were similar. Good to strong correlation was found between vortex shape and mitral inflow shape through both the annulus (r=0.66) and leaflet tips (r=0.83). Quantitative characterization and comparison of 3D vortex rings in LV inflow during both early and late diastolic phases is feasible in normal subjects using retrospectively-gated 4D Flow CMR, with distinct differences between early and late diastolic vortex rings.

  1. Molecular Processing of Polymers with Cyclodextrins

    NASA Astrophysics Data System (ADS)

    Tonelli, Alan E.

    We summarize our recent studies employing the cyclic starch derivatives called cyclodextrins (CDs) to both nanostructure and functionalize polymers. Two important structural characteristics of CDs are taken advantage of to achieve these goals. First the ability of CDs to form noncovalent inclusion complexes (ICs) with a variety of guest molecules, including many polymers, by threading and inclusion into their relatively hydrophobic interior cavities, which are roughly cylindrical with diameters of ˜ 0.5 - 1.0 nm. α-, β-, and γ-CD contain six, seven, and eight α-1,4-linked glucose units, respectively. Warm water washing of polymer-CD-ICs containing polymer guests insoluble in water or treatment with amylase enzymes serves to remove the host CDs and results in the coalescence of the guest polymers into solid samples. When guest polymers are coalesced from the CD-ICs by removing their host CDs, they are observed to solidify with structures, morphologies, and even conformations that are distinct from bulk samples made from their solutions and melts. Molecularly mixed, intimate blends of two or more polymers that are normally immiscible can be obtained from their common CD-ICs, and the phase segregation of incompatible blocks can be controlled (suppressed or increased) in CD-IC coalesced block copolymers. In addition, additives may be more effectively delivered to polymers in the form of their crystalline CD-ICs or soluble CD-rotaxanes. Secondly, the many hydroxyl groups attached to the exterior rims of CDs, in addition to conferring water solubility, provide an opportunity to covalently bond them to polymers either during their syntheses or via postpolymerization reactions. Polymers containing CDs in their backbones or attached to their side chains are observed to more readily accept and retain additives, such as dyes and fragrances. Processing with CDs can serve to both nanostructure and functionalize polymers, leading to greater understanding of their behaviors and to new properties and applications.

  2. Influence of Structural Parameters on the Performance of Vortex Valve Variable-Thrust Solid Rocket Motor

    NASA Astrophysics Data System (ADS)

    Wei, Xianggeng; Li, Jiang; He, Guoqiang

    2017-04-01

    The vortex valve solid variable thrust motor is a new solid motor which can achieve Vehicle system trajectory optimization and motor energy management. Numerical calculation was performed to investigate the influence of vortex chamber diameter, vortex chamber shape, and vortex chamber height of the vortex valve solid variable thrust motor on modulation performance. The test results verified that the calculation results are consistent with laboratory results with a maximum error of 9.5%. The research drew the following major conclusions: the optimal modulation performance was achieved in a cylindrical vortex chamber, increasing the vortex chamber diameter improved the modulation performance of the vortex valve solid variable thrust motor, optimal modulation performance could be achieved when the height of the vortex chamber is half of the vortex chamber outlet diameter, and the hot gas control flow could result in an enhancement of modulation performance. The results can provide the basis for establishing the design method of the vortex valve solid variable thrust motor.

  3. Void growth and coalescence in irradiated copper under deformation

    NASA Astrophysics Data System (ADS)

    Barrioz, P. O.; Hure, J.; Tanguy, B.

    2018-04-01

    A decrease of fracture toughness of irradiated materials is usually observed, as reported for austenitic stainless steels in Light Water Reactors (LWRs) or copper alloys for fusion applications. For a wide range of applications (e.g. structural steels irradiated at low homologous temperature), void growth and coalescence fracture mechanism has been shown to be still predominant. As a consequence, a comprehensive study of the effects of irradiation-induced hardening mechanisms on void growth and coalescence in irradiated materials is required. The effects of irradiation on ductile fracture mechanisms - void growth to coalescence - are assessed in this study based on model experiments. Pure copper thin tensile samples have been irradiated with protons up to 0.01 dpa. Micron-scale holes drilled through the thickness of these samples subjected to uniaxial loading conditions allow a detailed description of void growth and coalescence. In this study, experimental data show that physical mechanisms of micron-scale void growth and coalescence are similar between the unirradiated and irradiated copper. However, an acceleration of void growth is observed in the later case, resulting in earlier coalescence, which is consistent with the decrease of fracture toughness reported in irradiated materials. These results are qualitatively reproduced with numerical simulations accounting for irradiation macroscopic hardening and decrease of strain-hardening capability.

  4. Inhibition of bubble coalescence: effects of salt concentration and speed of approach.

    PubMed

    Del Castillo, Lorena A; Ohnishi, Satomi; Horn, Roger G

    2011-04-01

    Bubble coalescence experiments have been performed using a sliding bubble apparatus, in which mm-sized bubbles in an aqueous electrolyte solution without added surfactant rose toward an air meniscus at different speeds obtained by varying the inclination of a closed glass cylinder containing the liquid. The coalescence times of single bubbles contacting the meniscus were monitored using a high speed camera. Results clearly show that stability against coalescence of colliding air bubbles is influenced by both the salt concentration and the approach speed of the bubbles. Contrary to the widespread belief that bubbles in pure water are unstable, we demonstrate that bubbles formed in highly purified water and colliding with the meniscus at very slow approach speeds can survive for minutes or even hours. At higher speeds, bubbles in water only survive for a few seconds, and at still higher speeds they coalesce instantly. Addition of a simple electrolyte (KCl) removes the low-speed stability and shifts the transition between transient stability and instant coalescence to higher approach speeds. At high electrolyte concentration no bubbles were observed to coalesce instantly. These observations are consistent with recent results of Yaminsky et al. (Langmuir 26 (2010) 8061) and the transitions between different regions of behavior are in semi-quantitative agreement with Yaminsky's model. Copyright © 2010 Elsevier Inc. All rights reserved.

  5. Investigation of the Vortex Tab. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Hoffler, K. D.

    1985-01-01

    An investigation was made into the drag reduction capability of vortex tabs on delta wing vortex flaps. The vortex tab is an up-deflected leading edge portion of the vortex flap. Tab deflection augments vortex suction on the flap, thus improving its thrust, but the tab itself is drag producing. Whether a net improvement in the drag reduction can be obtained with vortex tabs, in comparison with plane vortex flaps of the same total area, was the objective of this investigation. Wind tunnel tests were conducted on two models, and analytical studies were performed on one of them using a free vortex sheet theory.

  6. Experimental examination of vorticity stripping from a wing-tip vortex in free-stream turbulence

    NASA Astrophysics Data System (ADS)

    Ghimire, Hari C.; Bailey, Sean C. C.

    2018-03-01

    Time-resolved stereoscopic particle image velocimetry measurements were conducted of a wing-tip vortex decaying in free-stream turbulence. The objective of the research was to experimentally investigate the mechanism causing the increased rate of decay of the vortex in the presence of turbulence. It was observed that the circulation of the vortex core experienced periods of rapid loss and recovery when immersed in free-stream turbulence. These events were not observed when the vortex was in a laminar free stream. A connection was made between these events and distortion of the vortex, coinciding with stripping of core fluid from the vortex core. Specifically, vortex stripping events were connected to asymmetry in the vortex core, and this asymmetry was associated with instances of rapid circulation loss. The increased rate of decay of the vortex in turbulence coincided with the formation of secondary vortical structures which wrapped azimuthally around the primary vortex.

  7. Analysis of Predicted Aircraft Wake Vortex Transport and Comparison with Experiment Volume I -- Wake Vortex Predictive System Study

    DOT National Transportation Integrated Search

    1974-04-01

    A unifying wake vortex transport model is developed and applied to a wake vortex predictive system concept. The fundamentals of vortex motion underlying the predictive model are discussed including vortex decay, bursting and instability phenomena. A ...

  8. On the three-dimensional interaction of a rotor-tip vortex with a cylindrical surface

    NASA Astrophysics Data System (ADS)

    Radcliff, Thomas D.; Burggraf, Odus R.; Conlisk, A. T.

    2000-12-01

    The collision of a strong vortex with a surface is an important problem because significant impulsive loads may be generated. Prediction of helicopter fatigue lifetime may be limited by an inability to predict these loads accurately. Experimental results for the impingement of a helicopter rotor-tip vortex on a cylindrical airframe show a suction peak on the top of the airframe that strengthens and then weakens within milliseconds. A simple line-vortex model can predict the experimental results if the vortex is at least two vortex-core radii away from the airframe. After this, the model predicts continually deepening rather than lessening suction as the vortex stretches. Experimental results suggest that axial flow within the core of a tip vortex has an impact on the airframe pressure distribution upon close approach. The mechanism for this is hypothesized to be the inviscid redistribution of the vorticity field within the vortex as the axial velocity stagnates. Two models of a tip vortex with axial flow are considered. First, a classical axisymmetric line vortex with a cutoff parameter is superimposed with vortex ringlets suitably placed to represent the helically wound vortex shed by the rotor tip. Thus, inclusion of axial flow is found to advect vortex core thinning away from the point of closest interaction as the vortex stretches around the cylindrical surface during the collision process. With less local thinning, vorticity in the cutoff parameter model significantly overlaps the solid cylinder in an unphysical manner, highlighting the fact that the vortex core must deform from its original cylindrical shape. A second model is then developed in which axial and azimuthal vorticity are confined within a rectangular-section vortex. Area and aspect ratio of this vortex can be varied independently to simulate deformation of the vortex core. Both axial velocity and core deformation are shown to be important to calculate the local induced pressure loads properly. The computational results are compared with experiments conducted at the Georgia Institute of Technology.

  9. Experimental study of interaction between a vortex ring and a solid surface for a wide range of ring velocities

    NASA Astrophysics Data System (ADS)

    Nikulin, V. V.

    2014-12-01

    Experiments were carried out for interaction of water-travelling vortex ring with a solid surface with the normal impingement to the surface; the vortex velocity was varied by factor of 30 and the Reynolds number had 60-times span. Laminar and turbulent vortex rings have been studied. The ratio of the vortex diameter at the moment of rebound from the surface to the vortex diameter before impingement is almost independent of the vortex velocity and Reynolds number. Within the experimental accuracy, the diameter of the vortex ring after rebound equals the footprint of the vortex on the solid surface. This brings assumption that the previously observed restrictions on the trace were related to the vortex rebound from the solid surface.

  10. The structure and development of streamwise vortex arrays embedded in a turbulent boundary layer. Ph.D. Thesis - Case Western Reserve Univ.

    NASA Technical Reports Server (NTRS)

    Wendt, Bruce J.; Greber, Isaac; Hingst, Warren R.

    1991-01-01

    An investigation of the structure and development of streamwise vortices embedded in a turbulent boundary layer was conducted. The vortices were generated by a single spanwise row of rectangular vortex generator blades. A single embedded vortex was examined, as well as arrays of embedded counter rotating vortices produced by equally spaced vortex generators. Measurements of the secondary velocity field in the crossplane provided the basis for characterization of vortex structure. Vortex structure was characterized by four descriptors. The center of each vortex core was located at the spanwise and normal position of peak streamwise vorticity. Vortex concentration was characterized by the magnitude of the peak streamwise vorticity, and the vortex strength by its circulation. Measurements of the secondary velocity field were conducted at two crossplane locations to examine the streamwise development of the vortex arrays. Large initial spacings of the vortex generators produced pairs of strong vortices which tended to move away from the wall region while smaller spacings produced tight arrays of weak vortices close to the wall. A model of vortex interaction and development is constructed using the experimental results. The model is based on the structure of the Oseen Vortex. Vortex trajectories are modelled by including the convective effects of neighbors.

  11. Delimiting Coalescence Genes (C-Genes) in Phylogenomic Data Sets.

    PubMed

    Springer, Mark S; Gatesy, John

    2018-02-26

    coalescence methods have emerged as a popular alternative for inferring species trees with large genomic datasets, because these methods explicitly account for incomplete lineage sorting. However, statistical consistency of summary coalescence methods is not guaranteed unless several model assumptions are true, including the critical assumption that recombination occurs freely among but not within coalescence genes (c-genes), which are the fundamental units of analysis for these methods. Each c-gene has a single branching history, and large sets of these independent gene histories should be the input for genome-scale coalescence estimates of phylogeny. By contrast, numerous studies have reported the results of coalescence analyses in which complete protein-coding sequences are treated as c-genes even though exons for these loci can span more than a megabase of DNA. Empirical estimates of recombination breakpoints suggest that c-genes may be much shorter, especially when large clades with many species are the focus of analysis. Although this idea has been challenged recently in the literature, the inverse relationship between c-gene size and increased taxon sampling in a dataset-the 'recombination ratchet'-is a fundamental property of c-genes. For taxonomic groups characterized by genes with long intron sequences, complete protein-coding sequences are likely not valid c-genes and are inappropriate units of analysis for summary coalescence methods unless they occur in recombination deserts that are devoid of incomplete lineage sorting (ILS). Finally, it has been argued that coalescence methods are robust when the no-recombination within loci assumption is violated, but recombination must matter at some scale because ILS, a by-product of recombination, is the raison d'etre for coalescence methods. That is, extensive recombination is required to yield the large number of independently segregating c-genes used to infer a species tree. If coalescent methods are powerful enough to infer the correct species tree for difficult phylogenetic problems in the anomaly zone, where concatenation is expected to fail because of ILS, then there should be a decreasing probability of inferring the correct species tree using longer loci with many intralocus recombination breakpoints (i.e., increased levels of concatenation).

  12. Delimiting Coalescence Genes (C-Genes) in Phylogenomic Data Sets

    PubMed Central

    Springer, Mark S.; Gatesy, John

    2018-01-01

    Summary coalescence methods have emerged as a popular alternative for inferring species trees with large genomic datasets, because these methods explicitly account for incomplete lineage sorting. However, statistical consistency of summary coalescence methods is not guaranteed unless several model assumptions are true, including the critical assumption that recombination occurs freely among but not within coalescence genes (c-genes), which are the fundamental units of analysis for these methods. Each c-gene has a single branching history, and large sets of these independent gene histories should be the input for genome-scale coalescence estimates of phylogeny. By contrast, numerous studies have reported the results of coalescence analyses in which complete protein-coding sequences are treated as c-genes even though exons for these loci can span more than a megabase of DNA. Empirical estimates of recombination breakpoints suggest that c-genes may be much shorter, especially when large clades with many species are the focus of analysis. Although this idea has been challenged recently in the literature, the inverse relationship between c-gene size and increased taxon sampling in a dataset—the ‘recombination ratchet’—is a fundamental property of c-genes. For taxonomic groups characterized by genes with long intron sequences, complete protein-coding sequences are likely not valid c-genes and are inappropriate units of analysis for summary coalescence methods unless they occur in recombination deserts that are devoid of incomplete lineage sorting (ILS). Finally, it has been argued that coalescence methods are robust when the no-recombination within loci assumption is violated, but recombination must matter at some scale because ILS, a by-product of recombination, is the raison d’etre for coalescence methods. That is, extensive recombination is required to yield the large number of independently segregating c-genes used to infer a species tree. If coalescent methods are powerful enough to infer the correct species tree for difficult phylogenetic problems in the anomaly zone, where concatenation is expected to fail because of ILS, then there should be a decreasing probability of inferring the correct species tree using longer loci with many intralocus recombination breakpoints (i.e., increased levels of concatenation). PMID:29495400

  13. Shear driven droplet shedding and coalescence on a superhydrophobic surface

    NASA Astrophysics Data System (ADS)

    Moghtadernejad, S.; Tembely, M.; Jadidi, M.; Esmail, N.; Dolatabadi, A.

    2015-03-01

    The interest on shedding and coalescence of sessile droplets arises from the importance of these phenomena in various scientific problems and industrial applications such as ice formation on wind turbine blades, power lines, nacelles, and aircraft wings. It is shown recently that one of the ways to reduce the probability of ice accretion on industrial components is using superhydrophobic coatings due to their low adhesion to water droplets. In this study, a combined experimental and numerical approach is used to investigate droplet shedding and coalescence phenomena under the influence of air shear flow on a superhydrophobic surface. Droplets with a size of 2 mm are subjected to various air speeds ranging from 5 to 90 m/s. A numerical simulation based on the Volume of Fluid method coupled with the Large Eddy Simulation turbulent model is carried out in conjunction with the validating experiments to shed more light on the coalescence of droplets and detachment phenomena through a detailed analysis of the aerodynamics forces and velocity vectors on the droplet and the streamlines around it. The results indicate a contrast in the mechanism of two-droplet coalescence and subsequent detachment with those related to the case of a single droplet shedding. At lower speeds, the two droplets coalesce by attracting each other with successive rebounds of the merged droplet on the substrate, while at higher speeds, the detachment occurs almost instantly after coalescence, with a detachment time decreasing exponentially with the air speed. It is shown that coalescence phenomenon assists droplet detachment from the superhydrophobic substrate at lower air speeds.

  14. Impacts of Non-Divergence-Free Flows on the Coalescence of Initially Distant Buoyant Scalars on a Turbulent Free Surface

    NASA Astrophysics Data System (ADS)

    Pratt, K.; Crimaldi, J. P.

    2016-02-01

    Lagrangian Coherent Structures (LCS) have been shown to play a predictive role in the coalescence of initially distant scalars in incompressible flows. Buoyant scalars on the free surface of a 3D incompressible turbulent fluid, however, are advected by a 2D compressible velocity field, resulting in scalar distributions that differ from those seen in a 2D incompressible flow. Our research uses both numerical and experimental approaches to investigate the coalescence of two initially distant reactive scalars to infer the impact of non-divergence-free behavior on buoyant scalar coalescence. Preliminary numerical results, utilizing incompressible and compressible chaotic 2D models, indicate that non-divergence-free behavior increases the likelihood of scalar coalescence and therefore enhances any interactions or reactions between the scalars. In addition, the shape and distribution of LCS is altered in compressible flows, which may explain the increased likelihood of scalar coalescence. Experimentally, we have constructed a 60 X 60 X 60 cm tank that generates three-dimensional turbulence via random pulsing of 36 jets on the tank bottom. Buoyant fluorescent red and green particles are used to quantify coalescence. Through the addition of a thin surfactant film on the free surface, results for incompressible flow cases are also obtained and directly compared to the compressible results. From these results, we hope to elucidate the role of free-surface flow on the coalescence of initially distant buoyant scalars, and extend these results to oceanic mixing problems, such as the transport of phytoplankton blooms and oil spills.

  15. Anti-Bubbles

    NASA Astrophysics Data System (ADS)

    Tufaile, Alberto; Sartorelli, José Carlos

    2003-08-01

    An anti-bubble is a striking kind of bubble in liquid that seemingly does not comply the buoyancy, and after few minutes it disappears suddenly inside the liquid. Different from a simple air bubble that rises directly to the liquid surface, an anti-bubble wanders around in the fluid due to its slightly lesser density than the surrounding liquid. In spite of this odd behavior, an anti-bubble can be understood as the opposite of a conventional soap bubble in air, which is a shell of liquid surrounding air, and an anti-bubble is a shell of air surrounding a drop of the liquid inside the liquid. Two-phase flow has been a subject of interest due to its relevance to process equipment for contacting gases and liquids applied in industry. A chain of bubbles rising in a liquid formed from a nozzle is a two-phase flow, and there are certain conditions in which spherical air shells, called anti-bubbles, are produced. The purpose of this work is mainly to note the existence of anti-bubbling regime as a sequel of a bubbling system. We initially have presented the experimental apparatus. After this we have described the evolution of the bubbling regimes, and emulated the effect of bubbling coalescence with simple maps. Then is shown the inverted dripping as a consequence of the bubble coalescence, and finally the conditions for anti-bubble formation.

  16. Marangoni-flow-induced partial coalescence of a droplet on a liquid/air interface

    NASA Astrophysics Data System (ADS)

    Sun, Kai; Zhang, Peng; Che, Zhizhao; Wang, Tianyou

    2018-02-01

    The coalescence of a droplet and a liquid/air interface of lower surface tension was numerically studied by using the lattice Boltzmann phase-field method. The experimental phenomenon of droplet ejection observed by Blanchette et al. [Phys. Fluids 21, 072107 (2009), 10.1063/1.3177339] at sufficiently large surface tension differences was successfully reproduced for the first time. Furthermore, the emergence, disappearance, and re-emergence of "partial coalescence" with increasing surface tension difference was observed and explained. The re-emergence of partial coalescence under large surface tension differences is caused by the remarkable lifting motion of the Marangoni flow, which significantly retards the vertical collapse. Two different modes of partial coalescence were identified by the simulation, namely peak injection occurs at lower Ohnesorge numbers and bottom pinch-off at higher Ohnesorge numbers. By comparing the characteristic timescales of the upward Marangoni flow with that of the downward flow driven by capillary pressure, a criterion for the transition from partial to total coalescence was derived based on scaling analysis and numerically validated.

  17. An analysis of shock coalescence including three-dimensional effects with application to sonic boom extrapolation. Ph.D. Thesis - George Washington Univ.

    NASA Technical Reports Server (NTRS)

    Darden, C. M.

    1984-01-01

    A method for analyzing shock coalescence which includes three dimensional effects was developed. The method is based on an extension of the axisymmetric solution, with asymmetric effects introduced through an additional set of governing equations, derived by taking the second circumferential derivative of the standard shock equations in the plane of symmetry. The coalescence method is consistent with and has been combined with a nonlinear sonic boom extrapolation program which is based on the method of characteristics. The extrapolation program, is able to extrapolate pressure signatures which include embedded shocks from an initial data line in the plane of symmetry at approximately one body length from the axis of the aircraft to the ground. The axisymmetric shock coalescence solution, the asymmetric shock coalescence solution, the method of incorporating these solutions into the extrapolation program, and the methods used to determine spatial derivatives needed in the coalescence solution are described. Results of the method are shown for a body of revolution at a small, positive angle of attack.

  18. Vortex Flow Aerodynamics, volume 1

    NASA Technical Reports Server (NTRS)

    Campbell, J. F. (Editor); Osborn, R. F. (Editor); Foughner, J. T., Jr. (Editor)

    1986-01-01

    Vortex modeling techniques and experimental studies of research configurations utilizing vortex flows are discussed. Also discussed are vortex flap investigations using generic and airplane research models and vortex flap theoretical analysis and design studies.

  19. Analysis and control of asymmetric vortex flows and supersonic vortex breakdown

    NASA Technical Reports Server (NTRS)

    Kandil, Osama A.

    1991-01-01

    Topics relative to the analysis and control of asymmetric vortex flow and supersonic vortex breakdown are discussed. Specific topics include the computation of compressible, quasi-axisymmetric slender vortex flow and breakdown; supersonic quasi-axisymmetric vortex breakdown; and three-dimensional Navier-Stokes asymmetric solutions for cones and cone-cylinder configurations.

  20. The Geomorphology of Rhea

    NASA Technical Reports Server (NTRS)

    Moore, J. M.; Horner, V. M.; Greeley, R.

    1985-01-01

    Rhea was imaged to a resolution of approximately 1 km/lp by the Voyager spacecraft, providing the most detailed view of any Saturnian satellite. A preliminary study of Rhea divided the northern hemisphere into population 1 cratered terrain (between 20 deg and 120 deg) and population 2 cratered terrain (between 300 deg and 360 deg). Population 1 includes craters that are 40 km and were formed before the termination of population 2 bombardment, which formed craters primarily 40 km. Several geomorphic features on Rhea are classified and interpreted including three physiographic provinces, multiringed basins, craters, megascarps, ridges and scarps, and troughs and coalescing pit chains. A generalized chronology for Rhea is constructed from an analysis of the superposition relationships among the landforms and physiographic provinces.

  1. Vortex line topology during vortex tube reconnection

    NASA Astrophysics Data System (ADS)

    McGavin, P.; Pontin, D. I.

    2018-05-01

    This paper addresses reconnection of vortex tubes, with particular focus on the topology of the vortex lines (field lines of the vorticity). This analysis of vortex line topology reveals key features of the reconnection process, such as the generation of many small flux rings, formed when reconnection occurs in multiple locations in the vortex sheet between the tubes. Consideration of three-dimensional reconnection principles leads to a robust measurement of the reconnection rate, even once instabilities break the symmetry. It also allows us to identify internal reconnection of vortex lines within the individual vortex tubes. Finally, the introduction of a third vortex tube is shown to render the vortex reconnection process fully three-dimensional, leading to a fundamental change in the topological structure of the process. An additional interesting feature is the generation of vorticity null points.

  2. Electron acceleration via magnetic island coalescence

    NASA Astrophysics Data System (ADS)

    Shinohara, I.; Yumura, T.; Tanaka, K. G.; Fujimoto, M.

    2009-06-01

    Electron acceleration via fast magnetic island coalescence that happens as quick magnetic reconnection triggering (QMRT) proceeds has been studied. We have carried out a three-dimensional full kinetic simulation of the Harris current sheet with a large enough simulation run for two magnetic islands coalescence. Due to the strong inductive electric field associated with the non-linear evolution of the lower-hybrid-drift instability and the magnetic island coalescence process observed in the non-linear stage of the collisionless tearing mode, electrons are significantly accelerated at around the neutral sheet and the subsequent X-line. The accelerated meandering electrons generated by the non-linear evolution of the lower-hybrid-drift instability are resulted in QMRT, and QMRT leads to fast magnetic island coalescence. As a whole, the reconnection triggering and its transition to large-scale structure work as an effective electron accelerator.

  3. Characterization of solids deposited on the modular caustic-side solvent extraction unit (MCU) coalescer media removed in May and October 2014

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fondeur, F. F.

    During routine maintenance, the coalescers utilized in the Modular Caustic-Side Solvent Extraction Unit (MCU) processing of Salt Batch 6 and a portion of Salt Batch 7 were sampled and submitted to the Savannah River National Laboratory (SRNL) for characterization, for the purpose of identifying solid phase constituents that may be accumulating in these coalescers. Specifically, two samples were received and characterized: A decontaminated salt solution (DSS) coalescer sample and a strip effluent (SE) coalescer sample. Aliquots of the samples were analyzed by XRD, Fourier Transform Infrared (FTIR) Spectroscopy, SEM, and EDS. Other aliquots of the samples were leached in acidmore » solution, and the leachates were analyzed by ICP-AES. In addition, modeling was performed to provide a basis for comparison of the analytical results.« less

  4. ProFile Vortex and Vortex Blue Nickel-Titanium Rotary Instruments after Clinical Use.

    PubMed

    Shen, Ya; Zhou, Huimin; Coil, Jeffrey M; Aljazaeri, Bassim; Buttar, Rene; Wang, Zhejun; Zheng, Yu-feng; Haapasalo, Markus

    2015-06-01

    The aim of this study was to analyze the incidence and mode of ProFile Vortex and Vortex Blue instrument defects after clinical use in a graduate endodontic program and to examine the impact of clinical use on the instruments' metallurgical properties. A total of 330 ProFile Vortex and 1136 Vortex Blue instruments from the graduate program were collected after each had been used in 3 teeth. The incidence and type of instrument defects were analyzed. The lateral surfaces and fracture surfaces of the fractured files were examined by using scanning electron microscopy. Unused and used instruments were examined by full and partial differential scanning calorimetry. No fractures were observed in the 330 ProFile Vortex instruments, whereas 20 (6.1%) revealed bent or blunt defects. Only 2 of the 1136 Vortex Blue files fractured during clinical use. The cause of fracture was shear stress. The fractures occurred at the tip end of the spirals. Only 1.8% (21 of 1136) of the Vortex Blue files had blunt tips. Austenite-finish temperatures were very similar for unused and used ProFile Vortex files and were all greater than 50°C. The austenite-finish temperatures of used and unused Vortex Blue files (38.5°C) were lower than those in ProFile Vortex instruments (P < .001). However, the transformation behavior of Vortex Blue files had an obvious 2-stage transformation, martensite-to-R phase and R-to-austenite phase. The trends of differential scanning calorimetry plots of unused Vortex Blue instruments and clinically used instruments were very similar. The risk of ProFile Vortex and Vortex Blue instrument fracture is very low when instruments are discarded after clinical use in the graduate endodontic program. The Vortex Blue files have metallurgical behavior different from ProFile Vortex instruments. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  5. Exact Calculation of the Joint Allele Frequency Spectrum for Isolation with Migration Models.

    PubMed

    Kern, Andrew D; Hey, Jody

    2017-09-01

    Population genomic datasets collected over the past decade have spurred interest in developing methods that can utilize massive numbers of loci for inference of demographic and selective histories of populations. The allele frequency spectrum (AFS) provides a convenient statistic for such analysis, and, accordingly, much attention has been paid to predicting theoretical expectations of the AFS under a number of different models. However, to date, exact solutions for the joint AFS of two or more populations under models of migration and divergence have not been found. Here, we present a novel Markov chain representation of the coalescent on the state space of the joint AFS that allows for rapid, exact calculation of the joint AFS under isolation with migration (IM) models. In turn, we show how our Markov chain method, in the context of composite likelihood estimation, can be used for accurate inference of parameters of the IM model using SNP data. Lastly, we apply our method to recent whole genome datasets from African Drosophila melanogaster . Copyright © 2017 Kern and Hey.

  6. Analysis of the geometric parameters of a solitary waves-based harvester to enhance its power output

    NASA Astrophysics Data System (ADS)

    Rizzo, Piervincenzo; Li, Kaiyuan

    2017-07-01

    We present a harvester formed by a metamaterial, an isotropic medium bonded to the metamaterial, and a wafer-type transducer glued to the medium. The harvester conveys the distributed energy of a mechanical oscillator into a focal point where this energy is converted into electricity. The metamaterial is made with an array of granular chains that host the propagation of highly nonlinear solitary waves triggered by the impact of the oscillator. At the interface between the chains and the isotropic solid, part of the acoustic energy refracts into the solid where it triggers the vibration of the solid and coalesces at a point. Here, the transducer converts the focalized stress wave and the waves generated by the reverberation with the edges into electric potential. The effects of the harvester’s geometric parameters on the amount of electrical power that can be harvested are quantified numerically. The results demonstrate that the power output of the harvester increases a few orders of magnitude when the appropriate geometric parameters are selected.

  7. Preliminary study of the three-dimensional deformation of the vortex in Karman vortex street

    NASA Astrophysics Data System (ADS)

    Ling, Guocan; Guo, Liang; Wu, Zuobin; Ma, Huiyang

    1992-03-01

    The mechanism for 3D evolution of the isolated Karman vortex and the thin-vortex filament in a circular cylinder wake is studied numerically using the LIA method. The results show that the vortex motion is unstable for small 3D disturbances in the separated wake of a circular cylinder. Karman vortex in the time-averaged wake flowfield wolves into a horseshoe-spoon-like 3D structure. The thin vortex filament deforms three-dimensionally in the braid and generates streamwise vortex structures which incline to the region maximum-deformation direction of the flowfield.

  8. Inference of Epidemiological Dynamics Based on Simulated Phylogenies Using Birth-Death and Coalescent Models

    PubMed Central

    Boskova, Veronika; Bonhoeffer, Sebastian; Stadler, Tanja

    2014-01-01

    Quantifying epidemiological dynamics is crucial for understanding and forecasting the spread of an epidemic. The coalescent and the birth-death model are used interchangeably to infer epidemiological parameters from the genealogical relationships of the pathogen population under study, which in turn are inferred from the pathogen genetic sequencing data. To compare the performance of these widely applied models, we performed a simulation study. We simulated phylogenetic trees under the constant rate birth-death model and the coalescent model with a deterministic exponentially growing infected population. For each tree, we re-estimated the epidemiological parameters using both a birth-death and a coalescent based method, implemented as an MCMC procedure in BEAST v2.0. In our analyses that estimate the growth rate of an epidemic based on simulated birth-death trees, the point estimates such as the maximum a posteriori/maximum likelihood estimates are not very different. However, the estimates of uncertainty are very different. The birth-death model had a higher coverage than the coalescent model, i.e. contained the true value in the highest posterior density (HPD) interval more often (2–13% vs. 31–75% error). The coverage of the coalescent decreases with decreasing basic reproductive ratio and increasing sampling probability of infecteds. We hypothesize that the biases in the coalescent are due to the assumption of deterministic rather than stochastic population size changes. Both methods performed reasonably well when analyzing trees simulated under the coalescent. The methods can also identify other key epidemiological parameters as long as one of the parameters is fixed to its true value. In summary, when using genetic data to estimate epidemic dynamics, our results suggest that the birth-death method will be less sensitive to population fluctuations of early outbreaks than the coalescent method that assumes a deterministic exponentially growing infected population. PMID:25375100

  9. Rewritable ferroelectric vortex pairs in BiFeO3

    NASA Astrophysics Data System (ADS)

    Li, Yang; Jin, Yaming; Lu, Xiaomei; Yang, Jan-Chi; Chu, Ying-Hao; Huang, Fengzhen; Zhu, Jinsong; Cheong, Sang-Wook

    2017-08-01

    Ferroelectric vortex in multiferroic materials has been considered as a promising alternative to current memory cells for the merit of high storage density. However, the formation of regular natural ferroelectric vortex is difficult, restricting the achievement of vortex memory device. Here, we demonstrated the creation of ferroelectric vortex-antivortex pairs in BiFeO3 thin films by using local electric field. The evolution of the polar vortex structure is studied by piezoresponse force microscopy at nanoscale. The results reveal that the patterns and stability of vortex structures are sensitive to the poling position. Consecutive writing and erasing processes cause no influence on the original domain configuration. The Z4 proper coloring vortex-antivortex network is then analyzed by graph theory, which verifies the rationality of artificial vortex-antivortex pairs. This study paves a foundation for artificial regulation of vortex, which provides a possible pathway for the design and realization of non-volatile vortex memory devices and logical devices.

  10. Advance Ratio Effects on the Dynamic-stall Vortex of a Rotating Blade in Steady Forward Flight

    DTIC Science & Technology

    2014-08-06

    dependence on advance ratio is used to relate the stability of the dynamic-stall vortex to Coriolis effects . Advance ratio effects on the dynamic-stall vortex...relate the stability of the dynamic-stall vortex to Coriolis effects . Keywords: Leading-edge vortex, Dynamic stall vortex, Vortex flows, Rotating wing...Reynolds number are not decoupled. 3. Radial flow field In the rotating environment the coupled effect of centripetal and Coriolis accelerations is ex

  11. Longitudinal vortex control - Techniques and applications (The 32nd Lanchester Lecture)

    NASA Technical Reports Server (NTRS)

    Bushnell, D. M.

    1992-01-01

    A summary is presented of vortex control applications and current techniques for the control of longitudinal vortices produced by bodies, leading edges, tips and intersections. Vortex control has up till now been performed by many approaches in an empirical fashion, assisted by the essentially inviscid nature of much of longitudinal vortex behavior. Attention is given to Reynolds number sensitivities, vortex breakdown and interactions, vortex control on highly swept wings, and vortex control in juncture flows.

  12. Point vortex modelling of the wake dynamics behind asymmetric vortex generator arrays

    NASA Astrophysics Data System (ADS)

    Baldacchino, D.; Ferreira, C.; Ragni, D.; van Bussel, G. J. W.

    2016-09-01

    In this work, we present a simple inviscid point vortex model to study the dynamics of asymmetric vortex rows, as might appear behind misaligned vortex generator vanes. Starting from the existing solution of the infinite vortex cascade, a numerical model of four base-vortices is chosen to represent two primary counter-rotating vortex pairs and their mirror plane images, introducing the vortex strength ratio as a free parameter. The resulting system of equations is also defined in terms of the vortex row separation and the qualitative features of the ensuing motion are mapped. A translating and orbiting regime are identified for different cascade separations. The latter occurs for all unequal strength vortex pairs. Thus, the motion is further classified by studying the cyclic behaviour of the orbiting regime and it is shown that for small mismatches in vortex strength, the orbiting length and time scales are sufficiently large as to appear, in the near wake, as translational (non-orbiting). However, for larger mismatches in vortex strength, the orbiting motion approaches the order of the starting height of the vortex. Comparisons between experimental data and the potential flow model show qualitative agreement whilst viscous effects account for the major discrepancies. Despite this, the model captures the orbital mode observed in the measurements and provides an impetus for considering the impact of these complex interactions on vortex generator designs.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lü, B.; Münger, E. P.; Sarakinos, K.

    The morphology and physical properties of thin films deposited by vapor condensation on solid surfaces are predominantly set by the processes of island nucleation, growth, and coalescence. When deposition is performed using pulsed vapor fluxes, three distinct nucleation regimes are known to exist depending on the temporal profile of the flux. These regimes can be accessed by tuning deposition conditions; however, their effect on film microstructure becomes marginal when coalescence sets in and erases morphological features obtained during nucleation. By preventing coalescence from being completed, these nucleation regimes can be used to control microstructure evolution and thus access a largermore » palette of film morphological features. Recently, we derived the quantitative criterion to stop coalescence during continuous metal vapor flux deposition on insulating surfaces—which typically yields 3-dimensional growth—by describing analytically the competition between island growth by atomic incorporation and the coalescence rate of islands [Lü et al., Appl. Phys. Lett. 105, 163107 (2014)]. Here, we develop the analytical framework for entering a coalescence-free growth regime for metal vapor deposition on insulating substrates using pulsed vapor fluxes, showing that there exist three distinct criteria for suppressing coalescence that correspond to the three nucleation regimes of pulsed vapor flux deposition. The theoretical framework developed herein is substantiated by kinetic Monte Carlo growth simulations. Our findings highlight the possibility of using atomistic nucleation theory for pulsed vapor deposition to control morphology of thin films beyond the point of island density saturation.« less

  14. Assessment of partial coalescence in whippable oil-in-water food emulsions.

    PubMed

    Petrut, Raul Flaviu; Danthine, Sabine; Blecker, Christophe

    2016-03-01

    Partial coalescence influences to a great extent the properties of final food products such as ice cream and whipped toppings. In return, the partial coalescence occurrence and development are conditioned, in such systems, by the emulsion's intrinsic properties (e.g. solid fat content, fat crystal shape and size), formulation (e.g. protein content, surfactants presence) and extrinsic factors (e.g. cooling rate, shearing). A set of methods is available for partial coalescence investigation and quantification. These methods are critically reviewed in this paper, balancing the weaknesses of the methods in terms of structure alteration (for turbidity, dye dilution, etc.) and assumptions made for mathematical models (for particle size determination) with their advantages (good repeatability, high sensitivity, etc.). With the methods proposed in literature, the partial coalescence investigations can be conducted quantitatively and/or qualitatively. Good correlation were observed between some of the quantitative methods such as dye dilution, calorimetry, fat particle size; while a poor correlation was found in the case of solvent extraction method with other quantitative methods. The most suitable way for partial coalescence quantification was implied to be the fat particle size method, which would give results with a high degree of confidence if used in combination with a microscopic technique for the confirmation of partial coalescence as the main destabilization mechanism. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Vortex Ring Dynamics in Radially Confined Domains

    NASA Astrophysics Data System (ADS)

    Stewart, Kelley; Niebel, Casandra; Jung, Sunghwan; Vlachos, Pavlos

    2010-11-01

    Vortex ring dynamics have been studied extensively in semi-infinite quiescent volumes. However, very little is known about vortex-ring formation in wall-bounded domains where vortex wall interaction will affect both the vortex ring pinch-off and propagation velocity. This study addresses this limitation and studies vortex formation in radially confined domains to analyze the affect of vortex-ring wall interaction on the formation and propagation of the vortex ring. Vortex rings were produced using a pneumatically driven piston cylinder arrangement and were ejected into a long cylindrical tube which defined the confined downstream domain. A range of confinement domains were studied with varying confinement diameters Velocity field measurements were performed using planar Time Resolved Digital Particle Image Velocimetry (TRDPIV) and were processed using an in-house developed cross-correlation PIV algorithm. The experimental analysis was used to facilitate the development of a theoretical model to predict the variations in vortex ring circulation over time within confined domains.

  16. Vortex mass in a superfluid

    NASA Astrophysics Data System (ADS)

    Simula, Tapio

    2018-02-01

    We consider the inertial mass of a vortex in a superfluid. We obtain a vortex mass that is well defined and is determined microscopically and self-consistently by the elementary excitation energy of the kelvon quasiparticle localized within the vortex core. The obtained result for the vortex mass is found to be consistent with experimental observations on superfluid quantum gases and vortex rings in water. We propose a method to measure the inertial rest mass and Berry phase of a vortex in superfluid Bose and Fermi gases.

  17. Compressible Vortex Ring

    NASA Astrophysics Data System (ADS)

    Elavarasan, Ramasamy; Arakeri, Jayawant; Krothapalli, Anjaneyulu

    1999-11-01

    The interaction of a high-speed vortex ring with a shock wave is one of the fundamental issues as it is a source of sound in supersonic jets. The complex flow field induced by the vortex alters the propagation of the shock wave greatly. In order to understand the process, a compressible vortex ring is studied in detail using Particle Image Velocimetry (PIV) and shadowgraphic techniques. The high-speed vortex ring is generated from a shock tube and the shock wave, which precedes the vortex, is reflected back by a plate and made to interact with the vortex. The shadowgraph images indicate that the reflected shock front is influenced by the non-uniform flow induced by the vortex and is decelerated while passing through the vortex. It appears that after the interaction the shock is "split" into two. The PIV measurements provided clear picture about the evolution of the vortex at different time interval. The centerline velocity traces show the maximum velocity to be around 350 m/s. The velocity field, unlike in incompressible rings, contains contributions from both the shock and the vortex ring. The velocity distribution across the vortex core, core diameter and circulation are also calculated from the PIV data.

  18. Genes with minimal phylogenetic information are problematic for coalescent analyses when gene tree estimation is biased.

    PubMed

    Xi, Zhenxiang; Liu, Liang; Davis, Charles C

    2015-11-01

    The development and application of coalescent methods are undergoing rapid changes. One little explored area that bears on the application of gene-tree-based coalescent methods to species tree estimation is gene informativeness. Here, we investigate the accuracy of these coalescent methods when genes have minimal phylogenetic information, including the implementation of the multilocus bootstrap approach. Using simulated DNA sequences, we demonstrate that genes with minimal phylogenetic information can produce unreliable gene trees (i.e., high error in gene tree estimation), which may in turn reduce the accuracy of species tree estimation using gene-tree-based coalescent methods. We demonstrate that this problem can be alleviated by sampling more genes, as is commonly done in large-scale phylogenomic analyses. This applies even when these genes are minimally informative. If gene tree estimation is biased, however, gene-tree-based coalescent analyses will produce inconsistent results, which cannot be remedied by increasing the number of genes. In this case, it is not the gene-tree-based coalescent methods that are flawed, but rather the input data (i.e., estimated gene trees). Along these lines, the commonly used program PhyML has a tendency to infer one particular bifurcating topology even though it is best represented as a polytomy. We additionally corroborate these findings by analyzing the 183-locus mammal data set assembled by McCormack et al. (2012) using ultra-conserved elements (UCEs) and flanking DNA. Lastly, we demonstrate that when employing the multilocus bootstrap approach on this 183-locus data set, there is no strong conflict between species trees estimated from concatenation and gene-tree-based coalescent analyses, as has been previously suggested by Gatesy and Springer (2014). Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Impact of tree priors in species delimitation and phylogenetics of the genus Oligoryzomys (Rodentia: Cricetidae).

    PubMed

    da Cruz, Marcos de O R; Weksler, Marcelo

    2018-02-01

    The use of genetic data and tree-based algorithms to delimit evolutionary lineages is becoming an important practice in taxonomic identification, especially in morphologically cryptic groups. The effects of different phylogenetic and/or coalescent models in the analyses of species delimitation, however, are not clear. In this paper, we assess the impact of different evolutionary priors in phylogenetic estimation, species delimitation, and molecular dating of the genus Oligoryzomys (Mammalia: Rodentia), a group with complex taxonomy and morphological cryptic species. Phylogenetic and coalescent analyses included 20 of the 24 recognized species of the genus, comprising of 416 Cytochrome b sequences, 26 Cytochrome c oxidase I sequences, and 27 Beta-Fibrinogen Intron 7 sequences. For species delimitation, we employed the General Mixed Yule Coalescent (GMYC) and Bayesian Poisson tree processes (bPTP) analyses, and contrasted 4 genealogical and phylogenetic models: Pure-birth (Yule), Constant Population Size Coalescent, Multiple Species Coalescent, and a mixed Yule-Coalescent model. GMYC analyses of trees from different genealogical models resulted in similar species delimitation and phylogenetic relationships, with incongruence restricted to areas of poor nodal support. bPTP results, however, significantly differed from GMYC for 5 taxa. Oligoryzomys early diversification was estimated to have occurred in the Early Pleistocene, between 0.7 and 2.6 MYA. The mixed Yule-Coalescent model, however, recovered younger dating estimates for Oligoryzomys diversification, and for the threshold for the speciation-coalescent horizon in GMYC. Eight of the 20 included Oligoryzomys species were identified as having two or more independent evolutionary units, indicating that current taxonomy of Oligoryzomys is still unsettled. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Dynamics of gas cell coalescence during baking expansion of leavened dough.

    PubMed

    Miś, Antoni; Nawrocka, Agnieszka; Lamorski, Krzysztof; Dziki, Dariusz

    2018-01-01

    The investigation of the dynamics of gas cell coalescence, i.e. a phenomenon that deteriorates the homogeneity of the cellular structure of bread crumb, was carried out performing simultaneously measurements of the dough volume, pressure, and viscosity. It was demonstrated that, during the baking expansion of chemically leavened wheat flour dough, the maximum growth rate of the gas cell radius determined from the ratio of pressure exerted by the expanded dough to its viscosity was on average four-fold lower than that calculated from volume changes in the gas phase of the dough. Such a high discrepancy was interpreted as a result of the course of coalescence, and a formula for determination of its rate was developed. The coalescence rate in the initial baking expansion phase had negative values, indicating nucleation of newly formed gas cells, which increased the number of gas cells even by 8%. In the next baking expansion phase, the coalescence rate started to exhibit positive values, reflecting dominance of the coalescence phenomenon over nucleation. The maximum coalescence rates indicate that, during the period of the most intensive dough expansion, the number of gas cells decreased by 2-3% within one second. At the end of the formation of bread crumb, the number of the gas cells declined by 55-67% in comparison with the initial value. The correctness of the results was positively verified using X-ray micro-computed tomography. The developed method can be a useful tool for more profound exploration of the coalescence phenomenon at various stages of evolution of the cellular structure and its determinants, which may contribute to future development of more effective methods for improving the texture and sensory quality of bread crumb. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Predicting nuclear gene coalescence from mitochondrial data: the three-times rule.

    PubMed

    Palumbi, S R; Cipriano, F; Hare, M P

    2001-05-01

    Coalescence theory predicts when genetic drift at nuclear loci will result in fixation of sequence differences to produce monophyletic gene trees. However, the theory is difficult to apply to particular taxa because it hinges on genetically effective population size, which is generally unknown. Neutral theory also predicts that evolution of monophyly will be four times slower in nuclear than in mitochondrial genes primarily because genetic drift is slower at nuclear loci. Variation in mitochondrial DNA (mtDNA) within and between species has been studied extensively, but can these mtDNA data be used to predict coalescence in nuclear loci? Comparison of neutral theories of coalescence of mitochondrial and nuclear loci suggests a simple rule of thumb. The "three-times rule" states that, on average, most nuclear loci will be monophyletic when the branch length leading to the mtDNA sequences of a species is three times longer than the average mtDNA sequence diversity observed within that species. A test using mitochondrial and nuclear intron data from seven species of whales and dolphins suggests general agreement with predictions of the three-times rule. We define the coalescence ratio as the mitochondrial branch length for a species divided by intraspecific mtDNA diversity. We show that species with high coalescence ratios show nuclear monophyly, whereas species with low ratios have polyphyletic nuclear gene trees. As expected, species with intermediate coalescence ratios show a variety of patterns. Especially at very high or low coalescence ratios, the three-times rule predicts nuclear gene patterns that can help detect the action of selection. The three-times rule may be useful as an empirical benchmark for evaluating evolutionary processes occurring at multiple loci.

  2. Persistence of metastable vortex lattice domains in MgB2 in the presence of vortex motion.

    PubMed

    Rastovski, C; Schlesinger, K J; Gannon, W J; Dewhurst, C D; DeBeer-Schmitt, L; Zhigadlo, N D; Karpinski, J; Eskildsen, M R

    2013-09-06

    Recently, extensive vortex lattice metastability was reported in MgB2 in connection with a second-order rotational phase transition. However, the mechanism responsible for these well-ordered metastable vortex lattice phases is not well understood. Using small-angle neutron scattering, we studied the vortex lattice in MgB2 as it was driven from a metastable to the ground state through a series of small changes in the applied magnetic field. Our results show that metastable vortex lattice domains persist in the presence of substantial vortex motion and directly demonstrate that the metastability is not due to vortex pinning. Instead, we propose that it is due to the jamming of counterrotated vortex lattice domains which prevents a rotation to the ground state orientation.

  3. Fluorescence correlation spectroscopy directly monitors coalescence during nanoparticle preparation.

    PubMed

    Schaeffel, David; Staff, Roland Hinrich; Butt, Hans-Juergen; Landfester, Katharina; Crespy, Daniel; Koynov, Kaloian

    2012-11-14

    Dual color fluorescence cross-correlation spectroscopy (DC FCCS) experiments were conducted to study the coalescence and aggregation during the formation of nanoparticles. To assess the generality of the method, three completely different processes were selected to prepare the nanoparticles. Polymeric nanoparticles were formed either by solvent evaporation from emulsion nanodroplets of polymer solutions or by miniemulsion polymerization. Inorganic nanocapsules were formed by polycondensation of alkoxysilanes at the interface of nanodroplets. In all cases, DC FCCS provided fast and unambiguous information about the occurrence of coalescence and thus a deeper insight into the mechanism of nanoparticle formation. In particular, it was found that coalescence played a minor role for the emulsion-solvent evaporation process and the miniemulsion polymerization, whereas substantial coalescence was detected during the formation of the inorganic nanocapsules. These findings demonstrate that DC FCCS is a powerful tool for monitoring nanoparticles genesis.

  4. Motion of vortices in inhomogeneous Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Groszek, Andrew J.; Paganin, David M.; Helmerson, Kristian; Simula, Tapio P.

    2018-02-01

    We derive a general and exact equation of motion for a quantized vortex in an inhomogeneous two-dimensional Bose-Einstein condensate. This equation expresses the velocity of a vortex as a sum of local ambient density and phase gradients in the vicinity of the vortex. We perform Gross-Pitaevskii simulations of single-vortex dynamics in both harmonic and hard-walled disk-shaped traps, and find excellent agreement in both cases with our analytical prediction. The simulations reveal that, in a harmonic trap, the main contribution to the vortex velocity is an induced ambient phase gradient, a finding that contradicts the commonly quoted result that the local density gradient is the only relevant effect in this scenario. We use our analytical vortex velocity formula to derive a point-vortex model that accounts for both density and phase contributions to the vortex velocity, suitable for use in inhomogeneous condensates. Although good agreement is obtained between Gross-Pitaevskii and point-vortex simulations for specific few-vortex configurations, the effects of nonuniform condensate density are in general highly nontrivial, and are thus difficult to efficiently and accurately model using a simplified point-vortex description.

  5. Interaction of Vortex Ring with Cutting Plate

    NASA Astrophysics Data System (ADS)

    Musta, Mustafa

    2015-11-01

    The interaction of a vortex ring impinging on a thin cutting plate was made experimentally using Volumetric 3-component Velocitmetry (v3v) technique. The vortex rings were generated with piston-cylinder vortex ring generator using piston stroke-to-diameter ratios and Re at 2-3 and 1500 - 3000, respectively. The cutting of vortex rings below center line leads to the formation of secondary vortices on each side of the plate which is look like two vortex rings, and a third vortex ring propagates further downstream in the direction of the initial vortex ring, which is previously showed by flow visualization study of Weigand (1993) and called ``trifurcation''. Trifurcation is very sensitive to the initial Reynolds number and the position of the plate with respect to the vortex ring generator pipe. The present work seeks more detailed investigation on the trifurcation using V3V technique. Conditions for the formation of trifurcation is analyzed and compared with Weigand (1993). The formed secondary vortex rings and the propagation of initial vortex ring in the downstream of the plate are analyzed by calculating their circulation, energy and trajectories.

  6. The Aerodynamic and Dynamic Loading of a Slender Structure by an Impacting Tornado-Like Vortex: The Influence of Relative Vortex-to-Structure Size on Structural Loading

    NASA Astrophysics Data System (ADS)

    Strasser, Matthew N.

    Structural loading produced by an impacting vortex is a hazardous phenomenon that is encountered in numerous applications ranging from the destruction of residences by tornados to the chopping of tip vortices by rotors. Adequate design of structures to resist vortex-induced structural loading necessitates study of the phenomenon that control the structural loading produced by an impacting vortex. This body of work extends the current knowledge base of vortex-structure interaction by evaluating the influence of the relative vortex-to-structure size on the structural loading that the vortex produces. A computer model is utilized to directly simulate the two-dimensional impact of an impinging vortex with a slender, cylindrical structure. The vortex's tangential velocity profile (TVP) is defined by a normalization of the Vatistas analytical (TVP) which realistically replicates the documented spectrum of measured vortex TVPs. The impinging vortex's maximum tangential velocity is fixed, and the vortex's critical radius is incremented from one to one-hundred times the structure's diameter. When the impinging vortex is small, it interacts with vortices produced on the structure by the free stream, and maximum force coefficient amplitudes vary by more than 400% when the impinging vortex impacts the structure at different times. Maximum drag and lift force coefficient amplitudes reach asymptotic values as the impinging vortex's size increases that are respectively 94.77% and 10.66% less than maximum force coefficients produced by an equivalent maximum velocity free stream. The vortex produces maximum structural loading when its path is shifted above the structure's centerline, and maximum drag and lift force coefficients are respectively up to 4.80% and 34.07% greater than maximum force coefficients produced by an equivalent-velocity free stream. Finally, the dynamic load factor (DLF) concept is used to develop a generalized methodology to assess the dynamic amplification of a structure's response to vortex loading and to assess the dynamic loading threat that tornados pose. Typical civil and residential structures will not experience significant response amplification, but responses of very flexible structures may be amplified by up to 2.88 times.

  7. Analysis of Predicted Aircraft Wake Vortex Transport and Comparison with Experiment Volume II -- Appendixes

    DOT National Transportation Integrated Search

    1974-04-01

    A unifying wake vortex transport model is developed and applied to a wake vortex predictive system concept. The fundamentals of vortex motion underlying the predictive model are discussed including vortex decay, bursting and instability phenomena. A ...

  8. Fundamental Characterization of the Micellar Self-Assembly of Sophorolipid Esters.

    PubMed

    Koh, Amanda; Todd, Katherine; Sherbourne, Ezekiel; Gross, Richard A

    2017-06-13

    Surfactants are ubiquitous constituents of commercial and biological systems that function based on complex structure-dependent interactions. Sophorolipid (SL) n-alkyl esters (SL-esters) comprise a group of modified naturally derived glycolipids from Candida bombicola. Herein, micellar self-assembly behavior as a function of SL-ester chain length was studied. Surface tensions as low as 31.2 mN/m and critical micelle concentrations (CMCs) as low as 1.1 μM were attained for diacetylated SL-decyl ester (dASL-DE) and SL-octyl ester, respectively. For deacetylated SL-esters, CMC values reach a lower limit at SL-ester chains above n-butyl (SL-BE, 1-3 μM). This behavior of SL-esters with increasing hydrophobic tail length is unlike other known surfactants. Diffusion-ordered spectroscopy (DOSY) and T 1 relaxation NMR experiments indicate this behavior is due to a change in intramolecular interactions, which impedes the self-assembly of SL-esters with chain lengths above SL-BE. This hypothesis is supported by micellar thermodynamics where a disruption in trends occurs at n-alkyl ester chain lengths above those of SL-BE and SL-hexyl ester (SL-HE). Diacetylated (dA) SL-esters exhibit an even more unusual trend in that CMC increases from 1.75 to 815 μM for SL-ester chain lengths of dASL-BE and dASL-DE, respectively. Foaming studies, performed to reveal the macroscopic implications of SL-ester micellar behavior, show that the observed instability in foams formed using SL-esters are due to coalescence, which highlights the importance of understanding intermicellar interactions. This work reveals that SL-esters are an important new family of green high-performing surfactants with unique structure-property relationships that can be tuned to optimize micellar characteristics.

  9. Rotating hot-wire investigation of the vortex responsible for blade-vortex interaction noise

    NASA Technical Reports Server (NTRS)

    Fontana, Richard Remo

    1988-01-01

    This distribution of the circumferential velocity of the vortex responsible for blade-vortex interaction noise was measured using a rotating hot-wire rake synchronously meshed with a model helicopter rotor at the blade passage frequency. Simultaneous far-field acoustic data and blade differential pressure measurements were obtained. Results show that the shape of the measured far-field acoustic blade-vortex interaction signature depends on the blade-vortex interaction geometry. The experimental results are compared with the Widnall-Wolf model for blade-vortex interaction noise.

  10. Non-coaxial superposition of vector vortex beams.

    PubMed

    Aadhi, A; Vaity, Pravin; Chithrabhanu, P; Reddy, Salla Gangi; Prabakar, Shashi; Singh, R P

    2016-02-10

    Vector vortex beams are classified into four types depending upon spatial variation in their polarization vector. We have generated all four of these types of vector vortex beams by using a modified polarization Sagnac interferometer with a vortex lens. Further, we have studied the non-coaxial superposition of two vector vortex beams. It is observed that the superposition of two vector vortex beams with same polarization singularity leads to a beam with another kind of polarization singularity in their interaction region. The results may be of importance in ultrahigh security of the polarization-encrypted data that utilizes vector vortex beams and multiple optical trapping with non-coaxial superposition of vector vortex beams. We verified our experimental results with theory.

  11. VORCOR: A computer program for calculating characteristics of wings with edge vortex separation by using a vortex-filament and-core model

    NASA Technical Reports Server (NTRS)

    Pao, J. L.; Mehrotra, S. C.; Lan, C. E.

    1982-01-01

    A computer code base on an improved vortex filament/vortex core method for predicting aerodynamic characteristics of slender wings with edge vortex separations is developed. The code is applicable to camber wings, straked wings or wings with leading edge vortex flaps at subsonic speeds. The prediction of lifting pressure distribution and the computer time are improved by using a pair of concentrated vortex cores above the wing surface. The main features of this computer program are: (1) arbitrary camber shape may be defined and an option for exactly defining leading edge flap geometry is also provided; (2) the side edge vortex system is incorporated.

  12. Coalescence growth mechanism of ultrafine metal particles

    NASA Astrophysics Data System (ADS)

    Kasukabe, S.

    1990-01-01

    Ultrafine particles produced by a gas-evaporation technique show clear-cut crystal habits. The convection of an inert gas makes distinct growth zones in a metal smoke. The coalescence stages of hexagonal plates and multiply twinned particles are observed in the outer zone of a smoke. A model of the coalescence growth of particles with different crystal habits is proposed. Size distributions can be calculated by counting the ratio of the number of collisions by using the effective cross section of collisions and the existence probability of the volume of a particle. This simulation model makes clear the effect on the growth rate of coalescence growth derived from crystal habit.

  13. Prevention of nanoparticle coalescence under high-temperature annealing.

    PubMed

    Mizuno, Mikihisa; Sasaki, Yuichi; Yu, Andrew C C; Inoue, Makoto

    2004-12-21

    An effective method of employing 3-aminopropyldimethylethoxysilane linker molecules to stabilize 4.4 nm FePt nanoparticle monolayer films on a SiO2 substrate as well as to prevent coalescence of the particles under 800 degrees C annealing is reported. As-deposited FePt nanoparticle films in chemically disordered face-centered-cubic phase transform to mostly chemically ordered L1 0 structure after annealing, while the nanoparticles are free from serious coalescence. The method may fulfill the pressing need to prevent nanoparticle coalescence under high-temperature annealing for the development of FePt nanoparticle based products, such as ultrahigh-density magnetic recording media and novel memory devices.

  14. Generalized Boltzmann-Type Equations for Aggregation in Gases

    NASA Astrophysics Data System (ADS)

    Adzhiev, S. Z.; Vedenyapin, V. V.; Volkov, Yu. A.; Melikhov, I. V.

    2017-12-01

    The coalescence and fragmentation of particles in a dispersion system are investigated by applying kinetic theory methods, namely, by generalizing the Boltzmann kinetic equation to coalescence and fragmentation processes. Dynamic equations for the particle concentrations in the system are derived using the kinetic equations of motion. For particle coalescence and fragmentation, equations for the particle momentum, coordinate, and mass distribution functions are obtained and the coalescence and fragmentation coefficients are calculated. The equilibrium mass and velocity distribution functions of the particles in the dispersion system are found in the approximation of an active terminal group (Becker-Döring-type equation). The transition to a continuum description is performed.

  15. Coalescence of Drops of a Power-law Fluid

    NASA Astrophysics Data System (ADS)

    Kamat, Pritish; Thete, Sumeet; Basaran, Osman

    2014-11-01

    Drop coalescence is crucial in a host of industrial, household, and natural processes that involve dispersions. Coalescence is a rate-controlling process in breaking emulsions and strongly influences drop-size-distributions in sprays. In a continuum approach, coalescence begins by the formation of a microscopic, non-slender bridge connecting the two drops. Indefinitely large axial curvature at the neck results in local lowering of pressure that drives fluid from the bulk of the drops toward the neck, thereby causing the bridge radius r (t) and height z (t) to increase in time t. The coalescence of Newtonian drops in air has heretofore been thoroughly studied. Here, we extend these earlier studies by analyzing the coalescence of drops of power-law fluids because many fluids encountered in real applications, including cosmetic creams, shampoos, grease, and paint, exhibit power-law (deformation-rate thinning) rheology. On account of the non-slender geometry of the liquid bridge connecting the two drops (z << r) , we analyze the resulting free surface flow problem by numerical simulation. Among other results, we present and discuss the nature of flows and scaling behaviors for r and z as functions of the initial viscosity and power-law index (0 < n <= 1) .

  16. Vortex Filaments in Grids for Scalable, Fine Smoke Simulation.

    PubMed

    Meng, Zhang; Weixin, Si; Yinling, Qian; Hanqiu, Sun; Jing, Qin; Heng, Pheng-Ann

    2015-01-01

    Vortex modeling can produce attractive visual effects of dynamic fluids, which are widely applicable for dynamic media, computer games, special effects, and virtual reality systems. However, it is challenging to effectively simulate intensive and fine detailed fluids such as smoke with fast increasing vortex filaments and smoke particles. The authors propose a novel vortex filaments in grids scheme in which the uniform grids dynamically bridge the vortex filaments and smoke particles for scalable, fine smoke simulation with macroscopic vortex structures. Using the vortex model, their approach supports the trade-off between simulation speed and scale of details. After computing the whole velocity, external control can be easily exerted on the embedded grid to guide the vortex-based smoke motion. The experimental results demonstrate the efficiency of using the proposed scheme for a visually plausible smoke simulation with macroscopic vortex structures.

  17. An experimental investigation of S-duct flow control using arrays of low-profile vortex generators

    NASA Technical Reports Server (NTRS)

    Reichert, Bruce A.; Wendt, Bruce J.

    1993-01-01

    An experimental investigation was undertaken to measure the effect of various configurations of low-profile vortex generator arrays on the flow in a diffusing S-duct. Three parameters that characterize the vortex generator array were systematically varied to determine their effect: (1) the vortex generator height; (2) the streamwise location of the vortex generator array; and (3) the vortex generator spacing. Detailed measurements of total pressure at the duct exit, surface static pressure, and surface flow visualization were gathered for each vortex generator configuration. These results are reported here along with total pressure recovery and distortion coefficients determined from the experimental data. Each array of vortex generators tested improved total pressure recovery. The configuration employing the largest vortex generators was the most effective in reducing total pressure recovery. No configuration of vortex generators completely eliminated the flow separation that naturally occurs in the S-duct, however the extent of the separated flow region was reduced.

  18. Symmetry breaking motion of a vortex pair in a driven cavity

    NASA Astrophysics Data System (ADS)

    McHugh, John; Osman, Kahar; Farias, Jason

    2002-11-01

    The two-dimensional driven cavity problem with an anti-symmetric sinusoidal forcing has been found to exhibit a subcritical symmetry breaking bifurcation (Farias and McHugh, Phys. Fluids, 2002). Equilibrium solutions are either a symmetric vortex pair or an asymmetric motion. The asymmetric motion is an asymmetric vortex pair at low Reynolds numbers, but merges into a three vortex motion at higher Reynolds numbers. The asymmetric solution is obtained by initiating the flow with a single vortex centered in the domain. Symmetric motion is obtained with no initial vortex, or weak initial vortex. The steady three-vortex motion occurs at a Reynolds number of approximately 3000, where the symmetric vortex pair has already gone through a Hopf bifurcation. Further two-dimensional results show that forcing with two full oscillations across the top of the cavity results in two steady vortex motions, depending on initial conditions. Three-dimensional results have even more steady solutions. The results are computational and theoretical.

  19. Experimental Study of Shock Generated Compressible Vortex Ring

    NASA Astrophysics Data System (ADS)

    Das, Debopam; Arakeri, Jaywant H.; Krothapalli, Anjaneyulu

    2000-11-01

    Formation of a compressible vortex ring and generation of sound associated with it is studied experimentally. Impulse of a shock wave is used to generate a vortex ring from the open end of a shock-tube. Vortex ring formation process has been studied in details using particle image Velocimetry (PIV). As the shock wave exits the tube it diffracts and expands. A circular vortex sheet forms at the edge and rolls up into a vortex ring. Far field microphone measurement shows that the acoustic pressure consists of a spike due to shock wave followed by a low frequency pressure wave of decaying nature, superimposed with high frequency pressure wave. Acoustic waves consist of waves due to expansion, waves formed in the tube during diaphragm breakage and waves associated with the vortex ring and shear-layer vortices. Unsteady evolution of the vortex ring and shear-layer vortices in the jet behind the ring is studied by measuring the velocity field using PIV. Corresponding vorticity field, circulation around the vortex core and growth rate of the vortex core is calculated from the measured velocity field. The velocity field in a compressible vortex ring differs from that of an incompressible ring due to the contribution from both shock and vortex ring.

  20. Evolution of supersonic corner vortex in a hypersonic inlet/isolator model

    NASA Astrophysics Data System (ADS)

    Huang, He-Xia; Tan, Hui-Jun; Sun, Shu; Ling, Yu

    2016-12-01

    There are complex corner vortex flows in a rectangular hypersonic inlet/isolator. The corner vortex propagates downstream and interacts with the shocks and expansion waves in the isolator repeatedly. The supersonic corner vortex in a generic hypersonic inlet/isolator model is theoretically and numerically analyzed at a freestream Mach number of 4.92. The cross-flow topology of the corner vortex flow is found to obey Zhang's theory ["Analytical analysis of subsonic and supersonic vortex formation," Acta Aerodyn. Sin. 13, 259-264 (1995)] strictly, except for the short process with the vortex core situated in a subsonic flow which is surrounded by a supersonic flow. In general, the evolution history of the corner vortex under the influence of the background waves in the hypersonic inlet/isolator model can be classified into two types, namely, from the adverse pressure gradient region to the favorable pressure gradient region and the reversed one. For type 1, the corner vortex is a one-celled vortex with the cross-sectional streamlines spiraling inwards at first. Then the Hopf bifurcation occurs and the streamlines in the outer part of the limit cycle switch to spiraling outwards, yielding a two-celled vortex. The limit cycle shrinks gradually and finally vanishes with the streamlines of the entire corner vortex spiraling outwards. For type 2, the cross-sectional streamlines of the corner vortex spiral outwards first. Then a stable limit cycle is formed, yielding a two-celled vortex. The short-lived limit cycle forces the streamlines in the corner vortex to change the spiraling trends rapidly. Although it is found in this paper that there are some defects on the theoretical proof of the limit cycle, Zhang's theory is proven useful for the prediction and qualitative analysis of the complex corner vortex in a hypersonic inlet/isolator. In addition, three conservation laws inside the limit cycle are obtained.

  1. Coalescent Processes with Skewed Offspring Distributions and Nonequilibrium Demography.

    PubMed

    Matuszewski, Sebastian; Hildebrandt, Marcel E; Achaz, Guillaume; Jensen, Jeffrey D

    2018-01-01

    Nonequilibrium demography impacts coalescent genealogies leaving detectable, well-studied signatures of variation. However, similar genomic footprints are also expected under models of large reproductive skew, posing a serious problem when trying to make inference. Furthermore, current approaches consider only one of the two processes at a time, neglecting any genomic signal that could arise from their simultaneous effects, preventing the possibility of jointly inferring parameters relating to both offspring distribution and population history. Here, we develop an extended Moran model with exponential population growth, and demonstrate that the underlying ancestral process converges to a time-inhomogeneous psi-coalescent. However, by applying a nonlinear change of time scale-analogous to the Kingman coalescent-we find that the ancestral process can be rescaled to its time-homogeneous analog, allowing the process to be simulated quickly and efficiently. Furthermore, we derive analytical expressions for the expected site-frequency spectrum under the time-inhomogeneous psi-coalescent, and develop an approximate-likelihood framework for the joint estimation of the coalescent and growth parameters. By means of extensive simulation, we demonstrate that both can be estimated accurately from whole-genome data. In addition, not accounting for demography can lead to serious biases in the inferred coalescent model, with broad implications for genomic studies ranging from ecology to conservation biology. Finally, we use our method to analyze sequence data from Japanese sardine populations, and find evidence of high variation in individual reproductive success, but few signs of a recent demographic expansion. Copyright © 2018 by the Genetics Society of America.

  2. Dynamic measurements and simulations of airborne picolitre-droplet coalescence in holographic optical tweezers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bzdek, Bryan R.; Reid, Jonathan P., E-mail: j.p.reid@bristol.ac.uk; Collard, Liam

    We report studies of the coalescence of pairs of picolitre aerosol droplets manipulated with holographic optical tweezers, probing the shape relaxation dynamics following coalescence by simultaneously monitoring the intensity of elastic backscattered light (EBL) from the trapping laser beam (time resolution on the order of 100 ns) while recording high frame rate camera images (time resolution <10 μs). The goals of this work are to: resolve the dynamics of droplet coalescence in holographic optical traps; assign the origin of key features in the time-dependent EBL intensity; and validate the use of the EBL alone to precisely determine droplet surface tensionmore » and viscosity. For low viscosity droplets, two sequential processes are evident: binary coalescence first results from the overlap of the optical traps on the time scale of microseconds followed by the recapture of the composite droplet in an optical trap on the time scale of milliseconds. As droplet viscosity increases, the relaxation in droplet shape eventually occurs on the same time scale as recapture, resulting in a convoluted evolution of the EBL intensity that inhibits quantitative determination of the relaxation time scale. Droplet coalescence was simulated using a computational framework to validate both experimental approaches. The results indicate that time-dependent monitoring of droplet shape from the EBL intensity allows for robust determination of properties such as surface tension and viscosity. Finally, the potential of high frame rate imaging to examine the coalescence of dissimilar viscosity droplets is discussed.« less

  3. Flocculation and coalescence of droplets in oil-in-water emulsions formed with highly hydrolysed whey proteins as influenced by starch.

    PubMed

    Ye, Aiqian; Hemar, Yacine; Singh, Harjinder

    2004-10-10

    The effects of added unmodified amylopectin starch, modified amylopectin starch and amylose starch on the formation and properties of emulsions (4 wt.% corn oil) made with an extensively hydrolysed commercial whey protein (WPH) product under a range of conditions were examined. The rate of coalescence was calculated based on the changes in the droplet size of the emulsions during storage at 20 degrees C. The rates of creaming and coalescence in emulsions containing amylopectin starches were enhanced with increasing concentration of the starches during storage for up to 7 days. At a given starch concentration, the rate of coalescence was higher in the emulsions containing modified amylopectin starch than in those containing unmodified amylopectin starch, whereas it was lowest in the emulsions containing amylose starch. All emulsions containing unmodified and modified amylopectin starches showed flocculation of oil droplets by a depletion mechanism. However, flocculation was not observed in the emulsions containing amylose starch. The extent of flocculation was considered to correlate with the rate of coalescence of oil droplets. The different rates of coalescence could be explained on the basis of the strength of the depletion potential, which was dependent on the molecular weight and the radius of gyration of the starches. At high levels of starch addition (>1.5%), the rate of coalescence decreased gradually, apparently because of the high viscosity of the aqueous phase caused by the starch.

  4. Asymptotic Properties of the Number of Matching Coalescent Histories for Caterpillar-Like Families of Species Trees.

    PubMed

    Disanto, Filippo; Rosenberg, Noah A

    2016-01-01

    Coalescent histories provide lists of species tree branches on which gene tree coalescences can take place, and their enumerative properties assist in understanding the computational complexity of calculations central in the study of gene trees and species trees. Here, we solve an enumerative problem left open by Rosenberg (IEEE/ACM Transactions on Computational Biology and Bioinformatics 10: 1253-1262, 2013) concerning the number of coalescent histories for gene trees and species trees with a matching labeled topology that belongs to a generic caterpillar-like family. By bringing a generating function approach to the study of coalescent histories, we prove that for any caterpillar-like family with seed tree t , the sequence (h n ) n ≥ 0 describing the number of matching coalescent histories of the n th tree of the family grows asymptotically as a constant multiple of the Catalan numbers. Thus, h n  ∼ β t c n , where the asymptotic constant β t > 0 depends on the shape of the seed tree t. The result extends a claim demonstrated only for seed trees with at most eight taxa to arbitrary seed trees, expanding the set of cases for which detailed enumerative properties of coalescent histories can be determined. We introduce a procedure that computes from t the constant β t as well as the algebraic expression for the generating function of the sequence (h n ) n ≥ 0 .

  5. PREFACE: Special section on vortex rings Special section on vortex rings

    NASA Astrophysics Data System (ADS)

    Fukumoto, Yasuhide

    2009-10-01

    This special section of Fluid Dynamics Research includes five articles on vortex rings in both classical and quantum fluids. The leading scientists of the field describe the trends in and the state-of-the-art development of experiments, theories and numerical simulations of vortex rings. The year 2008 was the 150th anniversary of 'vortex motion' since Hermann von Helmholtz opened up this field. In 1858, Helmholtz published a paper in Crelle's Journal which put forward the concept of 'vorticity' and made the first analysis of vortex motion. Fluid mechanics before that was limited to irrotational motion. In the absence of vorticity, the motion of an incompressible homogeneous fluid is virtually equivalent to a rigid-body motion in the sense that the fluid motion is determined once the boundary configuration is specified. Helmholtz proved, among other things, that, without viscosity, a vortex line is frozen into the fluid. This Helmholtz's law immediately implies the preservation of knots and links of vortex lines and its implication is enormous. One of the major trends of fluid mechanics since the latter half of the 20th century is to clarify the topological meaning of Helmholtz's law and to exploit it to develop theoretical and numerical methods to find the solutions of the Euler equations and to develop experimental techniques to gain an insight into fluid motion. Vortex rings are prominent coherent structures in a variety of fluid motions from the microscopic scale, through human and mesoscale to astrophysical scales, and have attracted people's interest. The late professor Philip G Saffman (1981) emphasized the significance of studies on vortex rings. One particular motion exemplifies the whole range of problems of vortex motion and is also a commonly known phenomenon, namely the vortex ring or smoke ring. Vortex rings are easily produced by dropping drops of one liquid into another, or by puffing fluid out of a hole, or by exhaling smoke if one has the skill. Their formation is a problem of vortex sheet dynamics, the steady state is a problem of existence, their duration is a problem of stability, and if there are several we have the problem of vortex interactions. Helmholtz himself, in the same paper (1858), devoted a few pages to an analysis of the motion of a vortex ring, and made substantial contributions. Since then, theoretical, experimental and numerical treatments of vortex rings have been developing continuously, yet we encounter mysteries and novel phenomena, with which vortex rings find new applications in, say, bio-fluid mechanics. Recently vortex rings have enlarged their scope beyond classical fluids to encompass super-fluids and Bose-Einstein condensates. On the occasion of the 150th anniversary of Helmholtz's theory on a vortex ring, it is worthwhile to bring together, in one issue, the latest understandings of and open problems in vortex rings from various aspects. The topics in this issue include development of theories and experiments for motion of vortex rings and their interaction with other vortex rings, flows and boundaries, with application to vortex-ring manipulation for flow control, original experiments on collision of vortex rings with a porous boundary, a novel numerical technique to simulate three-dimensional motion of vortex rings and new theories of dynamics of quantum vortex rings governed by nonlinear Schrödinger equations. I hope that this special section gives a sketch, in some proportion, of the current frontier of the field and provides a means to tackle future problems. References Saffman P G 1981 Dynamics of vorticity J. Fluid Mech. 106 49-58 von Helmholtz H 1858 Über Integrale der hydrodynamischen Gleichungen welche den Wirbelbewegungen entsprechen J. Reine Angew. Math. 55 25-55 (Engl. transl.: Tait P G 1867 On the integrals of the hydrodynamical equations which express vortex-motion Phil. Mag. 33 (4) 485-512)

  6. What does it mean to be pseudo single domain? Demystifying the PSD state

    NASA Astrophysics Data System (ADS)

    Lascu, I.; Harrison, R. J.; Einsle, J. F.; Ball, M.

    2016-12-01

    Until recently, non-interacting stable single domain grains were thought to be the sole reliable paleomagnetic recorders. However most natural samples contain so-called "non-ideal" paleomagnetic recorders, which are either interacting single domain particles, or magnetic grains larger than single domain grains, but smaller than proper multi domain grains, which are poor paleomagnetic recorders. The grain size range for these recorders, which for magnetite comprises grains from 100 nm to a few μm in size, is known as the pseudo single domain (PSD) state. Natural samples containing abundant PSD grains have been shown time and again to reliably record thermomagnetic remanent magnetizations that are stable over billions of years. Here we attempt to shed new light on the PSD state by investigating obsidian varieties found at Glass Butte, Oregon, which present the opportunity to study simple cases of magnetic grains encapsulated in volcanic glass. We do this by combining rock magnetism, scanning electron microscopy (SEM) nanotomography, and finite-element micromagnetic modeling. Using rock magnetism we have identified PSD signatures in these samples via their fingerprint in first-order reversal curve (FORC) diagrams. Tomographic reconstructions obtained by stacking SEM images acquired via sequential milling through sample volumes of a few tens of cubic μm reveal the presence of abundant grains that span the PSD grain size interval. These grains have a variety of shapes, from simple ellipsoidal particles, to more complex morphologies attained through the coalescence of neighboring grains during crystallization, to intricate "rolling snowball" morphologies in larger grains that contain appendices formed as a result of particle growth in a dynamic environment as the flowing lava cooled. Micromagnetic modeling of the simplest morphologies reveals that these grains are in single vortex states, with the remanence controlled by irregularities in grain morphology. Coalesced grains present extreme cases of shape anisotropy, which will control the remanence. The remanence of the largest grains is controlled by the collection of PSD states from areas of the grain with pronounced shape anisotropy. Finally, micromagnetic modeling of realistic grain shapes allows the understanding of PSD signatures in FORC diagrams.

  7. Internal scanning method as unique imaging method of optical vortex scanning microscope

    NASA Astrophysics Data System (ADS)

    Popiołek-Masajada, Agnieszka; Masajada, Jan; Szatkowski, Mateusz

    2018-06-01

    The internal scanning method is specific for the optical vortex microscope. It allows to move the vortex point inside the focused vortex beam with nanometer resolution while the whole beam stays in place. Thus the sample illuminated by the focused vortex beam can be scanned just by the vortex point. We show that this method enables high resolution imaging. The paper presents the preliminary experimental results obtained with the first basic image recovery procedure. A prospect of developing more powerful tools for topography recovery with the optical vortex scanning microscope is discussed shortly.

  8. The Effect of the Air-Delivery Method on Parameters of the Precessing Vortex Core in a Hydrodynamic Vortex Chamber

    NASA Astrophysics Data System (ADS)

    Alekseenko, S. V.; Shtork, S. I.; Yusupov, R. R.

    2018-03-01

    The effect of the method of gas-phase injection into a swirled fluid flow on parameters of a precessing vortex core is studied experimentally. Conditions of the appearance of the vortex-core precession effect were modeled in a hydrodynamic sudden expansion vortex chamber. The dependences of the vortexcore precession frequency, flow-pulsation level, and full pressure differential in the vortex chamber on the consumption gas content in the flow have been obtained. The results of measurements permit one to determine optimum conditions for the most effective control of vortex-core precession.

  9. Dynamic Control of Collapse in a Vortex Airy Beam

    PubMed Central

    Chen, Rui-Pin; Chew, Khian-Hooi; He, Sailing

    2013-01-01

    Here we study systematically the self-focusing dynamics and collapse of vortex Airy optical beams in a Kerr medium. The collapse is suppressed compared to a non-vortex Airy beam in a Kerr medium due to the existence of vortex fields. The locations of collapse depend sensitively on the initial power, vortex order, and modulation parameters. The collapse may occur in a position where the initial field is nearly zero, while no collapse appears in the region where the initial field is mainly distributed. Compared with a non-vortex Airy beam, the collapse of a vortex Airy beam can occur at a position away from the area of the initial field distribution. Our study shows the possibility of controlling and manipulating the collapse, especially the precise position of collapse, by purposely choosing appropriate initial power, vortex order or modulation parameters of a vortex Airy beam. PMID:23518858

  10. Calculations of axisymmetric vortex sheet roll-up using a panel and a filament model

    NASA Technical Reports Server (NTRS)

    Kantelis, J. P.; Widnall, S. E.

    1986-01-01

    A method for calculating the self-induced motion of a vortex sheet using discrete vortex elements is presented. Vortex panels and vortex filaments are used to simulate two-dimensional and axisymmetric vortex sheet roll-up. A straight forward application using vortex elements to simulate the motion of a disk of vorticity with an elliptic circulation distribution yields unsatisfactroy results where the vortex elements move in a chaotic manner. The difficulty is assumed to be due to the inability of a finite number of discrete vortex elements to model the singularity at the sheet edge and due to large velocity calculation errors which result from uneven sheet stretching. A model of the inner portion of the spiral is introduced to eliminate the difficulty with the sheet edge singularity. The model replaces the outermost portion of the sheet with a single vortex of equivalent circulation and a number of higher order terms which account for the asymmetry of the spiral. The resulting discrete vortex model is applied to both two-dimensional and axisymmetric sheets. The two-dimensional roll-up is compared to the solution for a semi-infinite sheet with good results.

  11. Laminar Horse Shoe Vortex for a Triangular Cylinder Flat Plate Juncture

    NASA Astrophysics Data System (ADS)

    Younis, Muhammad Yamin; Zhang, H.; Hu, B.; Sohail, Muhammad Amjad; Muhammad, Zaka

    2011-09-01

    Juncture Flows are 3-D flows which occur when fluid, flowing on a flat surface encounters an obstacle on its way. The flow separates from the surface due to the adverse pressure gradient produced by the obstacle and rolls up to form a vortical structure known as "Horse Shoe Vortex". Studies and research is underway to completely identify and understand different hidden features of the horse shoe vortex. In the present study the structure of horse shoe vortex for a Triangular cylinder flat plate juncture is visualized using particle image velocimetry (PIV). The diameter Reynolds number experimented is within the range of 2 000 ≤ ReA ≤ 8 000. The flow characteristics are studied for the horse shoe vortex and the flow is categorized into different flow regimes. (1) Steady or static vortex system, (2) periodic amalgamating vortex system, and (3) periodic break away vortex system. The range for different vortex systems is also calculated with shedding frequency for the periodic unsteady vortex system. Most importantly the range of Reynolds number for which the above mentioned vortex systems exist is much higher for Sharp leading edge cylinder than for blunt (circular and Elliptical) and flat (Square) leading edge cylinders studied earlier.

  12. Research on aircraft trailing vortex detection based on laser's multiplex information echo

    NASA Astrophysics Data System (ADS)

    Zhao, Nan-xiang; Wu, Yong-hua; Hu, Yi-hua; Lei, Wu-hu

    2010-10-01

    Airfoil trailing vortex is an important reason for the crash, and vortex detection is the basic premise for the civil aeronautics boards to make the flight measures and protect civil aviation's security. So a new method of aircraft trailing vortex detection based on laser's multiplex information echo has been proposed in this paper. According to the classical aerodynamics theories, the formation mechanism of the trailing vortex from the airfoil wingtip has been analyzed, and the vortex model of Boeing 737 in the taking-off phase has also been established on the FLUENT software platform. Combining with the unique morphological structure characteristics of trailing vortex, we have discussed the vortex's possible impact on the frequency, amplitude and phase information of laser echo, and expounded the principle of detecting vortex based on fusing this information variation of laser echo. In order to prove the feasibility of this detecting technique, the field experiment of detecting the vortex of civil Boeing 737 by laser has been carried on. The experimental result has shown that the aircraft vortex could be found really in the laser scanning area, and its diffusion characteristic has been very similar to the previous simulation result. Therefore, this vortex detection means based on laser's multiplex information echo was proved to be practicable relatively in this paper. It will provide the detection and identification of aircraft's trailing vortex a new way, and have massive research value and extensive application prospect as well.

  13. Applying species-tree analyses to deep phylogenetic histories: challenges and potential suggested from a survey of empirical phylogenetic studies.

    PubMed

    Lanier, Hayley C; Knowles, L Lacey

    2015-02-01

    Coalescent-based methods for species-tree estimation are becoming a dominant approach for reconstructing species histories from multi-locus data, with most of the studies examining these methodologies focused on recently diverged species. However, deeper phylogenies, such as the datasets that comprise many Tree of Life (ToL) studies, also exhibit gene-tree discordance. This discord may also arise from the stochastic sorting of gene lineages during the speciation process (i.e., reflecting the random coalescence of gene lineages in ancestral populations). It remains unknown whether guidelines regarding methodologies and numbers of loci established by simulation studies at shallow tree depths translate into accurate species relationships for deeper phylogenetic histories. We address this knowledge gap and specifically identify the challenges and limitations of species-tree methods that account for coalescent variance for deeper phylogenies. Using simulated data with characteristics informed by empirical studies, we evaluate both the accuracy of estimated species trees and the characteristics associated with recalcitrant nodes, with a specific focus on whether coalescent variance is generally responsible for the lack of resolution. By determining the proportion of coalescent genealogies that support a particular node, we demonstrate that (1) species-tree methods account for coalescent variance at deep nodes and (2) mutational variance - not gene-tree discord arising from the coalescent - posed the primary challenge for accurate reconstruction across the tree. For example, many nodes were accurately resolved despite predicted discord from the random coalescence of gene lineages and nodes with poor support were distributed across a range of depths (i.e., they were not restricted to a particular recent divergences). Given their broad taxonomic scope and large sampling of taxa, deep level phylogenies pose several potential methodological complications including difficulties with MCMC convergence and estimation of requisite population genetic parameters for coalescent-based approaches. Despite these difficulties, the findings generally support the utility of species-tree analyses for the estimation of species relationships throughout the ToL. We discuss strategies for successful application of species-tree approaches to deep phylogenies. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Formation and evolution of the near axis 8˚20'N seamount chain: Evidences from the geophysical data analysis

    NASA Astrophysics Data System (ADS)

    Romano, V.; Gregg, P. M.; Zhan, Y.; Fornari, D. J.; Perfit, M. R.; Battaglia, M.

    2017-12-01

    The OASIS (Off-Axis Seamount Investigations at Siqueiros) expedition is a multidisciplinary effort to systematically investigate the 8˚20'N Seamount Chain to better understand the melting processes in the southern portion of the 9-10˚N segment of the East Pacific Rise (EPR). The 8˚20'N Seamount Chain extends 160 km west from its initiation, 15km northwest of the EPR-Siqueiros ridge transform intersection (RTI). To investigate the emplacement of the 8˚20'N Seamounts, shipboard EM-122 multibeam, BGM-3 gravity, and towed magnetometer data were collected using the R/V Atlantis in November 2016. Multibeam data show that the seamount chain is characterized by discrete seamounts in the distal portion of the chain, while east of 105˚20' W, the chain is a nearly-continuous volcanic ridge comprised of small cones and coalesced edifices. Free Air Anomalies are used to calculate isostatic anomalies along several profiles crossing the main edifices of the seamount chain, and indicate that the seamounts formed within 100 km of the EPR ridge axis. Excess crustal thickness variations of 0.5 to 1 km, derived from the Residual Mantle Bouguer Anomaly, suggest an increase in melt flux eastward along the chain. Consistently high emplacement volumes are observed east of -105 ˚20' W, 130 km from the ridge axis corresponding with lithosphere younger than 2 Myr. Inverted three-dimensional magnetization data indicate that the seamounts have recorded a series of magnetic reversals along the chain, which correlate to reversals recorded in the surrounding seafloor upon which the seamounts were built. However, reversals along the eastern portion of the chain appear skewed to the west indicating that seamount formation is likely long-lived. While the geophysical observations indicate that the overall seamount chain is age progressive, they suggest coeval volcanism in a region 15-100km from the EPR. The seamounts do not follow absolute plate motions, but are located consistently 15-20 km north of the Siqueiros fracture zone, which further suggests that their formation is linked to the location and tectonic evolution of the Siqueiros-EPR-RTI. These findings have implications for the melt region sourcing the EPR as well as how melt is transported in the vicinity of a fracture zone.

  15. Vortex formation and saturation for low-aspect-ratio rotating flat-plate fins

    NASA Astrophysics Data System (ADS)

    Devoria, Adam C.; Ringuette, Matthew J.

    2012-02-01

    We investigate experimentally the unsteady, three-dimensional vortex formation of low-aspect-ratio, trapezoidal flat-plate fins undergoing rotation from rest at a 90° angle of attack and Reynolds numbers of O(103). The objectives are to characterize the unsteady three-dimensional vortex structure, examine vortex saturation, and understand the effects of the root-to-tip flow for different velocity programs. The experiments are conducted in a water tank facility, and the diagnostic tools are dye flow visualization and digital particle image velocimetry. The dye visualizations show that the low-aspect-ratio plate produces symmetric ring-like vortices comprised mainly of tip-edge vorticity. They also indicate the presence of the root-to-tip velocity. For large rotational amplitudes, the primary ring-like vortex sheds and a secondary ring-like vortex is generated while the plate is still in motion, indicating saturation of the leading vortex. The time-varying vortex circulation in the flow symmetry plane provides quantitative evidence of vortex saturation. The phenomenon of saturation is observed for several plate velocity programs. The temporal development of the vortex circulation is often complex, which prevents an objective determination of an exact saturation time. This is the result of an interaction between the developing vortex and the root-to-tip flow, which breaks apart the vortex. However, it is possible to define a range of time during which the vortex reaches saturation. A formation-parameter definition is investigated and is found to reasonably predict the state corresponding to the pinch-off of the initial tip vortex across the velocity programs tested. This event is the lower bound on the saturation time range.

  16. Numerical Simulations of Vortex Generator Vanes and Jets on a Flat Plate

    NASA Technical Reports Server (NTRS)

    Allan, Brian G.; Yao, Chung-Sheng; Lin, John C.

    2002-01-01

    Numerical simulations of a single low-profile vortex generator vane, which is only a small fraction of the boundary-layer thickness, and a vortex generating jet have been performed for flows over a flat plate. The numerical simulations were computed by solving the steady-state solution to the Reynolds-averaged Navier-Stokes equations. The vortex generating vane results were evaluated by comparing the strength and trajectory of the streamwise vortex to experimental particle image velocimetry measurements. From the numerical simulations of the vane case, it was observed that the Shear-Stress Transport (SST) turbulence model resulted in a better prediction of the streamwise peak vorticity and trajectory when compared to the Spalart-Allmaras (SA) turbulence model. It is shown in this investigation that the estimation of the turbulent eddy viscosity near the vortex core, for both the vane and jet simulations, was higher for the SA model when compared to the SST model. Even though the numerical simulations of the vortex generating vane were able to predict the trajectory of the stream-wise vortex, the initial magnitude and decay of the peak streamwise vorticity were significantly under predicted. A comparison of the positive circulation associated with the streamwise vortex showed that while the numerical simulations produced a more diffused vortex, the vortex strength compared very well to the experimental observations. A grid resolution study for the vortex generating vane was also performed showing that the diffusion of the vortex was not a result of insufficient grid resolution. Comparisons were also made between a fully modeled trapezoidal vane with finite thickness to a simply modeled rectangular thin vane. The comparisons showed that the simply modeled rectangular vane produced a streamwise vortex which had a strength and trajectory very similar to the fully modeled trapezoidal vane.

  17. Spatiotemporal evolution of hairpin eddies, Reynolds stress, and polymer torque in polymer drag-reduced turbulent channel flows.

    PubMed

    Kim, Kyoungyoun; Sureshkumar, Radhakrishna

    2013-06-01

    To study the influence of dynamic interactions between turbulent vortical structures and polymer stress on turbulent friction drag reduction, a series of simulations of channel flow is performed. We obtain self-consistent evolution of an initial eddy in the presence of polymer stresses by utilizing the finitely extensible nonlinear elastic-Peterlin (FENE-P) model. The initial eddy is extracted by the conditional averages for the second quadrant event from fully turbulent Newtonian flow, and the initial polymer conformation fields are given by the solutions of the FENE-P model equations corresponding to the mean shear flow in the Newtonian case. At a relatively low Weissenberg number We(τ) (=50), defined as the ratio of the polymer relaxation time to the wall time scale, the generation of new vortices is inhibited by polymer-induced countertorques. Thus fewer vortices are generated in the buffer layer. However, the head of the primary hairpin is unaffected by the polymer stress. At larger We(τ) values (≥100), the hairpin head becomes weaker and vortex autogeneration and Reynolds stress growth are almost entirely suppressed. The temporal evolution of the vortex strength and polymer torque magnitude reveals that polymer extension by the vortical motion results in a polymer torque that increases in magnitude with time until a maximum value is reached over a time scale comparable to the polymer relaxation time. The polymer torque retards the vortical motion and Reynolds stress production, which in turn weakens flow-induced chain extension and torque itself. An analysis of the vortex time scales reveals that with increasing We(τ), vortical motions associated with a broader range of time scales are affected by the polymer stress. This is qualitatively consistent with Lumley's time criterion for the onset of drag reduction.

  18. Interaction of a turbulent vortex with a lifting surface

    NASA Technical Reports Server (NTRS)

    Lee, D. J.; Roberts, L.

    1985-01-01

    The impulsive noise due to blade-vortex-interaction is analyzing in the time domain for the extreme case when the blade cuts through the center of the vortex core with the assumptions of no distortion of the vortex path or of the vortex core. An analytical turbulent vortex core model, described in terms of the tip aerodynamic parameters, is used and its effects on the unsteady loading and maximum acoustic pressure during the interaction are determined.

  19. Control of submersible vortex flows

    NASA Technical Reports Server (NTRS)

    Bushnell, D. M.; Donaldson, C. D.

    1990-01-01

    Vortex flows produced by submersibles typically unfavorably influence key figures of merit such as acoustic and nonacoustic stealth, control effectiveness/maneuverability, and propulsor efficiency/body drag. Sources of such organized, primarily longitudinal, vorticity include the basic body (nose and sides) and appendages (both base/intersection and tip regions) such as the fairwater, dive planes, rear control surfaces, and propulsor stators/tips. Two fundamentally different vortex control approaches are available: (1) deintensification of the amplitude and/or organization of the vortex during its initiation process; and (2) downstream vortex disablement. Vortex control techniques applicable to the initiation region (deintensification approach) include transverse pressure gradient minimization via altered body cross section, appendage dillets, fillets, and sweep, and various appendage tip and spanload treatment along with the use of active controls to minimize control surface size and motions. Vortex disablement can be accomplished either via use of control vortices (which can also be used to steer the vortices off-board), direct unwinding, inducement of vortex bursting, or segmentation/tailoring for enhanced dissipation. Submersible-applicable vortex control technology is also included derived from various aeronautical applications such as mitigation of the wing wake vortex hazard and flight aircraft maneuverability at high angle of attack as well as the status of vortex effects upon, and mitigation of, nonlinear control forces on submersibles. Specific suggestions for submersible-applicable vortex control techniques are presented.

  20. Rotor Wake Vortex Definition Using 3C-PIV Measurements: Corrected for Vortex Orientation

    NASA Technical Reports Server (NTRS)

    Burley, Casey L.; Brooks, Thomas F.; vanderWall, Berend; Richard, Hughues Richard; Raffel, Markus; Beaumier, Philippe; Delrieux, Yves; Lim, Joon W.; Yu, Yung H.; Tung, Chee

    2003-01-01

    Three-component (3-C) particle image velocimetry (PIV) measurements, within the wake across a rotor disk plane, are used to determine wake vortex definitions important for BVI (Blade Vortex Interaction) and broadband noise prediction. This study is part of the HART II test program conducted using a 40 percent scale BO-105 helicopter main rotor in the German-Dutch Wind Tunnel (DNW). In this paper, measurements are presented of the wake vortex field over the advancing side of the rotor operating at a typical descent landing condition. The orientations of the vortex (tube) axes are found to have non-zero tilt angles with respect to the chosen PIV measurement cut planes, often on the order of 45 degrees. Methods for determining the orientation of the vortex axis and reorienting the measured PIV velocity maps (by rotation/projection) are presented. One method utilizes the vortex core axial velocity component, the other utilizes the swirl velocity components. Key vortex parameters such as vortex core size, strength, and core velocity distribution characteristics are determined from the reoriented PIV velocity maps. The results are compared with those determined from velocity maps that are not corrected for orientation. Knowledge of magnitudes and directions of the vortex axial and swirl velocity components as a function of streamwise location provide a basis for insight into the vortex evolution.

  1. Interactions of a co-rotating vortex pair at multiple offsets

    NASA Astrophysics Data System (ADS)

    Forster, Kyle J.; Barber, Tracie J.; Diasinos, Sammy; Doig, Graham

    2017-05-01

    Two NACA0012 vanes at various lateral offsets were investigated by wind tunnel testing to observe the interactions between the streamwise vortices. The vanes were separated by nine chord lengths in the streamwise direction to allow the upstream vortex to impact on the downstream geometry. These vanes were evaluated at an angle of incidence of 8° and a Reynolds number of 7 ×104 using particle image velocimetry. A helical motion of the vortices was observed, with rotational rate increasing as the offset was reduced to the point of vortex merging. Downstream meandering of the weaker vortex was found to increase in magnitude near the point of vortex merging. The merging process occurred more rapidly when the upstream vortex was passed on the pressure side of the vane, with the downstream vortex being produced with less circulation and consequently merging into the upstream vortex. The merging distance was found to be statistical rather than deterministic quantity, indicating that the meandering of the vortices affected their separations and energies. This resulted in a fluctuation of the merging location. A loss of circulation associated with the merging process was identified, with the process of achieving vortex circularity causing vorticity diffusion, however all merged cases maintained higher circulation than a single vortex condition. The presence of the upstream vortex was found to reduce the strength of the downstream vortex in all offsets evaluated.

  2. Simulation of the formation of nonequilibrium structures in magnetorheological fluids subject to an external magnetic field

    NASA Astrophysics Data System (ADS)

    Mohebi, M.; Jamasbi, N.; Liu, Jing

    1996-11-01

    We developed a computer model to understand the nonequilibrium structures induced in a magnetorheological (MR) fluid by rapidly applying an external magnetic field. MR fluids consist of particles suspended in a liquid where particles interact through dipole moments induced by the external magnetic field. We have simulated these induced structures in both directions, parallel and perpendicular to the field, in the limit of fastest response, by neglecting thermal motion and applying the field instantaneously. Our results show that the process of structure formation starts with particles forming chains aligned with the external field. The chains then coalesce to form columns and wall-like structures (``worms'' as viewed from the top). The complexity of this pattern is found to depend on the concentration of particles and the confinement of the cell in the direction of the external field. These results are consistent with experimental observations [G.A. Flores et al., in Proceedings of the Fifth International Conference on ER Fluids, MR Suspensions, and Associate Technology, University of Sheffield, Sheffield, 1995, edited by W. Bullough (World Scientific, Singapore, 1996), p. 140]. We have also used this model to study the interaction of two chains. The results of this study help in the understanding of the connection between the thickness of the sample and the increased complexity of the observed lateral pattern.

  3. Carbon dioxide-in-oil emulsions stabilized with silicone-alkyl surfactants for waterless hydraulic fracturing.

    PubMed

    Alzobaidi, Shehab; Lee, Jason; Jiries, Summer; Da, Chang; Harris, Justin; Keene, Kaitlin; Rodriguez, Gianfranco; Beckman, Eric; Perry, Robert; Johnston, Keith P; Enick, Robert

    2018-09-15

    The design of surfactants for CO 2 /oil emulsions has been elusive given the low CO 2 -oil interfacial tension, and consequently, low driving force for surfactant adsorption. Our hypothesis is that waterless, high pressure CO 2 /oil emulsions can be stabilized by hydrophobic comb polymer surfactants that adsorb at the interface and sterically stabilize the CO 2 droplets. The emulsions were formed by mixing with an impeller or by co-injecting CO 2 and oil through a beadpack (CO 2 volume fractions (ϕ) of 0.50-0.90). Emulsions were generated with comb polymer surfactants with a polydimethylsiloxane (PDMS) backbone and pendant linear alkyl chains. The C 30 alkyl chains are CO 2 -insoluble but oil soluble (oleophilic), whereas PDMS with more than 50 repeat units is CO 2 -philic but only partially oleophilic. The adsorbed surfactants sterically stabilized CO 2 droplets against Ostwald ripening and coalescence. The optimum surfactant adsorption was obtained with a PDMS degree of polymerization of ∼88 and seven C 30 side chains. The emulsion apparent viscosity reached 18 cP at a ϕ of 0.70, several orders of magnitude higher than the viscosity of pure CO 2 , with CO 2 droplets in the 10-150 µm range. These environmentally benign waterless emulsions are of interest for hydraulic fracturing, especially in water-sensitive formations. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. From nucleation to coalescence of Cu2O islands during in situ oxidation of Cu(001)

    NASA Astrophysics Data System (ADS)

    Yang, J. C.; Evan, D.; Tropia, L.

    2002-07-01

    The nucleation, growth, and coalescence of Cu2O islands due to oxidation of Cu(001) films were visualized by in situ ultrahigh-vacuum transmission electron microscopy. We have previously demonstrated that the nucleation and initial growth of copper oxides is dominated by oxygen surface diffusion. These surface models have been extended to quantitatively represent the coalescence behavior of copper oxidation in the framework of the Johnson-Mehl-Avrami-Kolmogorov theory. An excellent agreement exists between the experimental data of nucleation to coalescence with the surface model. The implication could be an alternate paradigm for passivation and oxidation, since classic theories assume uniform film growth.

  5. Differences in aortic vortex flow pattern between normal and patients with stroke: qualitative and quantitative assessment using transesophageal contrast echocardiography.

    PubMed

    Son, Jang-Won; Hong, Geu-Ru; Hong, Woosol; Kim, Minji; Houle, Helene; Vannan, Mani A; Pedrizzetti, Gianni; Chung, Namsik

    2016-06-01

    The flow in the aorta forms a vortex, which is a critical determinant of the flow dynamics in the aorta. Arteriosclerosis can alter the blood flow pattern of the aorta and cause characteristic alterations of the vortex. However, this change in aortic vortex has not yet been studied. This study aimed to characterize aortic vortex flow pattern using transesophageal contrast echocardiography in normal and stroke patients. A total of 85 patients who diagnosed with ischemic stroke and 16 normal controls were recruited for this study. The 16 normal control subjects were designated as the control group, and the 85 ischemic stroke patients were designated as the stroke group. All subjects underwent contrast transesophageal echocardiography (TEE), and particle image velocimetry was used to assess aortic vortex flow. Qualitative and quantitative analyses of vortex flow morphology, location, phasic variation, and pulsatility were undertaken and compared between the groups. In the control group, multiple irregularly-shaped vortices were observed in a peripheral location in the descending thoracic aorta. In contrast, the stroke group had a single, round, merged, and more centrally located aortic vortex flow. In the quantitative analysis of vortex, vortex depth, which represents the location of the major vortex in the aorta, was significantly higher in the control group than in the stroke group (0.599 ± 0.159 vs. 0.522 ± 0.101, respectively, P = 0.013). Vortex relative strength, which is the pulsatility parameter of the vortex itself, was significantly higher in the stroke group than in the control group (0.367 ± 0.148 vs. 0.304 ± 0.087, respectively, P = 0.025). It was feasible to visualize and quantify the characteristic morphology and pulsatility of the aortic vortex flow using contrast TEE, and aortic vortex pattern significantly differed between normal and stroke patients.

  6. Devices that Alter the Tip Vortex of a Rotor

    NASA Technical Reports Server (NTRS)

    McAlister, Kenneth W.; Tung, Chee; Heineck, James T.

    2001-01-01

    Small devices were attached near the tip of a hovering rotor blade 'in order to alter the structure and trajectory of the trailing vortex. Stereo particle image velocimetry (PIV) images were used to quantify the wake behind the rotor blade during the first revolution. A procedure for analyzing the 3D-velocity field is presented that includes a method for accounting for vortex wander. The results show that a vortex generator can alter the trajectory of the trailing vortex and that a major change in the size and intensity of the trailing vortex can be achieved by introducing a high level of turbulence into the core of the vortex.

  7. Non-Coalescence Effects in Microgravity

    NASA Technical Reports Server (NTRS)

    Neitzel, G. Paul

    1998-01-01

    Non-coalescence of two bodies of the same liquid and the suppression of contact between liquid drops and solid surfaces is being studied through a pair of parallel investigations being conducted at the Georgia Institute of Technology and the Microgravity Research and Support (MARS) Center in Naples, Italy. Both non-coalescence and contact suppression are achieved by exploiting the mechanism of thermocapillary convection to drive a lubricating film of surrounding gas (air) into the space between the two liquid free surfaces (non-coalescence) or between the drop free surface and the solid (contact suppression). Earlier experiments performed included flow-visualization experiments in both axisymmetric and (nearly) two-dimensional geometries and quantitative measurements of film thickness in the contact-suppression case in both geometries. Work done in the second year has focused on obtaining quantitative results relating to the effects of variable air pressure, development of analytical and numerical models of non-coalescing droplets and to pursuing potential applications of these self-lubricated systems.

  8. Interactions Forces and the Flow-Induced Coalescence of Drops and Bubbles

    NASA Technical Reports Server (NTRS)

    Leal, L. Gary; Israelachvili, J.

    2004-01-01

    In order to accomplish the proposed macroscale experimental goals, we designed and built a pair of miniaturized computer-controlled four-roll mills, similar but much smaller than the 4-roll mill that had been develop earlier in Prof. Leal's group for studies of drop deformation and breakup. This unique experimental facility allows for controlled experiments on the breakup and coalescence of very small drops in the size range of 20-200 micrometers in diameter for a wide variety of flows and under a wide range of flow conditions including time-dependent flows, etc. The small size of this device is necessary for coalescence studies, since coalescence occurs in viscous fluids at capillary numbers that are large enough to be experimentally accessible only for drops that are smaller than approximately 100_m in diameter. Using these miniaturized 4-roll mills, we have obtained the first quantitative data (so far as we are aware) on the flow-induced coalescence process.

  9. Confinement of Screw Dislocations to Predetermined Lateral Positions in (0001) 4H-SiC Epilayers Using Homoepitaxial Web Growth

    NASA Technical Reports Server (NTRS)

    Neudeck, Philip G.; Spry, Andrew J.; Trunek, Andrew J.; Powell, J. Anthony; Beheim, Glenn M.

    2002-01-01

    This paper reports initial demonstration of a cantilevered homoepitaxial growth process that places screw dislocations at predetermined lateral positions in on-axis 4H-SiC mesa epilayers. Thin cantilevers were grown extending toward the interior of hollow pre-growth mesa shapes etched into an on-axis 4H-SiC wafer, eventually completely coalescing to form roofed cavities. Each completely coalesced cavity exhibited either: 1) a screw dislocation growth spiral located exactly where final cantilever coalescence occurred, or 2) no growth spiral. The fact that growth spirals are not observed at any other position except the central coalescence point suggests that substrate screw dislocations, initially surrounded by the hollow portion of the pre-growth mesa shape, are relocated to the final coalescence point of the webbed epilayer roof. Molten potassium hydroxide etch studies revealed that properly grown webbed cantilevers exhibited no etch pits, confirming the superior crystal quality of the cantilevers.

  10. The Genealogical Consequences of Fecundity Variance Polymorphism

    PubMed Central

    Taylor, Jesse E.

    2009-01-01

    The genealogical consequences of within-generation fecundity variance polymorphism are studied using coalescent processes structured by genetic backgrounds. I show that these processes have three distinctive features. The first is that the coalescent rates within backgrounds are not jointly proportional to the infinitesimal variance, but instead depend only on the frequencies and traits of genotypes containing each allele. Second, the coalescent processes at unlinked loci are correlated with the genealogy at the selected locus; i.e., fecundity variance polymorphism has a genomewide impact on genealogies. Third, in diploid models, there are infinitely many combinations of fecundity distributions that have the same diffusion approximation but distinct coalescent processes; i.e., in this class of models, ancestral processes and allele frequency dynamics are not in one-to-one correspondence. Similar properties are expected to hold in models that allow for heritable variation in other traits that affect the coalescent effective population size, such as sex ratio or fecundity and survival schedules. PMID:19433628

  11. Optimized self nano-emulsifying systems of ezetimibe with enhanced bioavailability potential using long chain and medium chain triglycerides.

    PubMed

    Bandyopadhyay, Shantanu; Katare, O P; Singh, Bhupinder

    2012-12-01

    The objective of the current work is to develop systematically optimized self-nanoemulsifying drug delivery systems (SNEDDS) using long chain triglycerides (LCT's) and medium chain triglycerides (MCT's) of ezetimibe employing Formulation by Design (FbD), and evaluate their in vitro and in vivo performance. Equilibrium solubility studies indicated the choice of Maisine 35-1 and Capryol 90 as lipids, and of Labrasol and Tween 80 as emulgents for formulating the LCT and MCT systems, respectively. Ternary phase diagrams were constructed to select the areas of nanoemulsion, and the amounts of lipid (X(1)) and emulgent (X(2)) as the critical factor variables. The SNEDDS were systematically optimized using 3(2) central composite design and the optimized formulations located using overlay plot. TEM studies on reconstituted SNEDDS demonstrated uniform shape and size of globules. The nanometer size range and high negative values of zeta potential depicted non-coalescent nature of the optimized SNEDDS. Thermodynamic studies, cloud point determination and accelerated stability studies ascertained the stability of optimized formulations. In situ perfusion (SPIP) studies in Sprague Dawley (SD) rats construed remarkable enhancement in the absorptivity and permeability parameters of SNEDDS vis-à-vis the conventional marketed product. In vivo pharmacodynamic studies in SD rats indicated significantly superior modification in plasma lipid levels of optimized SNEDDS vis-à-vis marketed product, inclusion complex and pure drug. The studies, therefore, indicate the successful formulation development of self-nanoemulsifying systems with distinctly improved bioavailability potential of ezetimibe. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. The challenges of simulating wake vortex encounters and assessing separation criteria

    NASA Technical Reports Server (NTRS)

    Dunham, R. E.; Stuever, Robert A.; Vicroy, Dan D.

    1993-01-01

    During landings and take-offs, the longitudinal spacing between airplanes is in part determined by the safe separation required to avoid the trailing vortex wake of the preceding aircraft. Safe exploration of the feasibility of reducing longitudinal separation standards will require use of aircraft simulators. This paper discusses the approaches to vortex modeling, methods for modeling the aircraft/vortex interaction, some of the previous attempts of defining vortex hazard criteria, and current understanding of the development of vortex hazard criteria.

  13. Vortex-Airfoil Interaction and Application of Methods for Digital Fringe Analysis.

    DTIC Science & Technology

    1986-03-15

    angles of attack. Different kinds of bluff bodies are used as vortex generators. Their wake is a Karman vortex street consisting of strong vortices of...Table of Contents 1. Introduction 1 2. A model for vortex paths around a profile and the sound generated by vortex -profile interaction 2"-- 3...I’ S.TTE(d~,t. TYPE OF PIrPORT a PERID COWERED ’. * Vortex -airfoil interaction and application of *methods for digital fringe analysis . 1 6

  14. Vortex creep at very low temperatures in single crystals of the extreme type-II Rh 9In 4S 4

    DOE PAGES

    Herrera, Edwin; Bemito-Llorens, Jose; Kalarachchi, Udhara; ...

    2017-04-07

    Here, we image vortex creep at very low temperatures using scanning tunneling microscopy in the superconductor Rh 9In 4S 4 (T c = 2.25 K). We measure the superconducting gap of Rh 9In 4S 4, finding Δ ≈ 0.33 meV, and image a hexagonal vortex lattice up to close to H c2 observing slow vortex creep at temperatures as low as 150 mK. We estimate thermal and quantum barriers for vortex motion and show that thermal fluctuations likely cause vortex creep, in spite of being at temperatures T/T c < 0.1. We study creeping vortex lattices by making images duringmore » long times and show that the vortex lattice remains hexagonal during creep with vortices moving along one of the high-symmetry axes of the vortex lattice. Furthermore, the creep velocity changes with the scanning window suggesting that creep depends on the local arrangements of pinning centers. Vortices fluctuate on small-scale erratic paths, indicating that the vortex lattice makes jumps trying different arrangements during its travel along the main direction for creep. Lastly, the images provide a visual account of how vortex lattice motion maintains hexagonal order, while showing dynamic properties characteristic of a glass.« less

  15. Numerical study of the properties of optical vortex array laser tweezers.

    PubMed

    Kuo, Chun-Fu; Chu, Shu-Chun

    2013-11-04

    Chu et al. constructed a kind of Ince-Gaussian modes (IGM)-based vortex array laser beams consisting of p x p embedded optical vortexes from Ince-Gaussian modes, IG(e)(p,p) modes [Opt. Express 16, 19934 (2008)]. Such an IGM-based vortex array laser beams maintains its vortex array profile during both propagation and focusing, and is applicable to optical tweezers. This study uses the discrete dipole approximation (DDA) method to study the properties of the IGM-based vortex array laser tweezers while it traps dielectric particles. This study calculates the resultant force exerted on the spherical dielectric particles of different sizes situated at the IGM-based vortex array laser beam waist. Numerical results show that the number of trapping spots of a structure light (i.e. IGM-based vortex laser beam), is depended on the relation between the trapped particle size and the structure light beam size. While the trapped particle is small comparing to the beam size of the IGM-based vortex array laser beams, the IGM-based vortex array laser beams tweezers are suitable for multiple traps. Conversely, the tweezers is suitable for single traps. The results of this study is useful to the future development of the vortex array laser tweezers applications.

  16. Signatures of two-step impurity mediated vortex lattice melting in Bose-Einstein condensate

    NASA Astrophysics Data System (ADS)

    Dey, Bishwajyoti

    2017-04-01

    We study impurity mediated vortex lattice melting in a rotating two-dimensional Bose-Einstein condensate (BEC). Impurities are introduced either through a protocol in which vortex lattice is produced in an impurity potential or first creating the vortex lattice in the absence of random pinning and then cranking up the impurity potential. These two protocols have obvious relation with the two commonly known protocols of creating vortex lattice in a type-II superconductor: zero field cooling protocol and the field cooling protocol respectively. Time-splitting Crank-Nicolson method has been used to numerically simulate the vortex lattice dynamics. It is shown that the vortex lattice follows a two-step melting via loss of positional and orientational order. This vortex lattice melting process in BEC closely mimics the recently observed two-step melting of vortex matter in weakly pinned type-II superconductor Co-intercalated NbSe2. Also, using numerical perturbation analysis, we compare between the states obtained in two protocols and show that the vortex lattice states are metastable and more disordered when impurities are introduced after the formation of an ordered vortex lattice. The author would like to thank SERB, Govt. of India and BCUD-SPPU for financial support through research Grants.

  17. Vortex creep at very low temperatures in single crystals of the extreme type-II superconductor Rh9In4S4

    NASA Astrophysics Data System (ADS)

    Herrera, Edwin; Benito-Llorens, José; Kaluarachchi, Udhara S.; Bud'ko, Sergey L.; Canfield, Paul C.; Guillamón, Isabel; Suderow, Hermann

    2017-04-01

    We image vortex creep at very low temperatures using scanning tunneling microscopy in the superconductor Rh9In4S4 (Tc=2.25 K ). We measure the superconducting gap of Rh9In4S4 , finding Δ ≈0.33 meV , and image a hexagonal vortex lattice up to close to Hc 2, observing slow vortex creep at temperatures as low as 150 mK. We estimate thermal and quantum barriers for vortex motion and show that thermal fluctuations likely cause vortex creep, in spite of being at temperatures T /Tc<0.1 . We study creeping vortex lattices by making images during long times and show that the vortex lattice remains hexagonal during creep with vortices moving along one of the high-symmetry axes of the vortex lattice. Furthermore, the creep velocity changes with the scanning window suggesting that creep depends on the local arrangements of pinning centers. Vortices fluctuate on small-scale erratic paths, indicating that the vortex lattice makes jumps trying different arrangements during its travel along the main direction for creep. The images provide a visual account of how vortex lattice motion maintains hexagonal order, while showing dynamic properties characteristic of a glass.

  18. Tunable artificial vortex ice in nanostructured superconductors with a frustrated kagome lattice of paired antidots

    NASA Astrophysics Data System (ADS)

    Xue, C.; Ge, J.-Y.; He, A.; Zharinov, V. S.; Moshchalkov, V. V.; Zhou, Y. H.; Silhanek, A. V.; Van de Vondel, J.

    2018-04-01

    Theoretical proposals for spin-ice analogs based on nanostructured superconductors have suggested larger flexibility for probing the effects of fluctuations and disorder than in the magnetic systems. In this paper, we unveil the particularities of a vortex ice system by direct observation of the vortex distribution in a kagome lattice of paired antidots using scanning Hall probe microscopy. The theoretically suggested vortex ice distribution, lacking long-range order, is observed at half matching field (H1/2 ). Moreover, the vortex ice state formed by the pinned vortices is still preserved at 2 H1/3 . This unexpected result is attributed to the introduction of interstitial vortices at these magnetic-field values. Although the interstitial vortices increase the number of possible vortex configurations, it is clearly shown that the vortex ice state observed at 2 H1/3 is less prone to defects than at H1/2 . In addition, the nonmonotonic variations of the vortex ice quality on the lattice spacing indicates that a highly ordered vortex ice state cannot be attained by simply reducing the lattice spacing. The optimal design to observe defect-free vortex ice is discussed based on the experimental statistics. The direct observations of a tunable vortex ice state provides new opportunities to explore the order-disorder transition in artificial ice systems.

  19. Balance of baryon number in the quark coalescence model

    NASA Astrophysics Data System (ADS)

    Bialas, A.; Rafelski, J.

    2006-02-01

    The charge and baryon balance functions are studied in the coalescence hadronization mechanism of quark-gluon plasma. Assuming that in the plasma phase the qqbar pairs form uncorrelated clusters whose decay is also uncorrelated, one can understand the observed small width of the charge balance function in the Gaussian approximation. The coalescence model predicts even smaller width of the baryon-antibaryon balance function: σBBbar /σ+ - =√{ 2 / 3 }.

  20. A dual-core double emulsion platform for osmolarity-controlled microreactor triggered by coalescence of encapsulated droplets.

    PubMed

    Guan, Xuewei; Hou, Likai; Ren, Yukun; Deng, Xiaokang; Lang, Qi; Jia, Yankai; Hu, Qingming; Tao, Ye; Liu, Jiangwei; Jiang, Hongyuan

    2016-05-01

    Droplet-based microfluidics has provided a means to generate multi-core double emulsions, which are versatile platforms for microreactors in materials science, synthetic biology, and chemical engineering. To provide new opportunities for double emulsion platforms, here, we report a glass capillary microfluidic approach to first fabricate osmolarity-responsive Water-in-Oil-in-Water (W/O/W) double emulsion containing two different inner droplets/cores and to then trigger the coalescence between the encapsulated droplets precisely. To achieve this, we independently control the swelling speed and size of each droplet in the dual-core double emulsion by controlling the osmotic pressure between the inner droplets and the collection solutions. When the inner two droplets in one W/O/W double emulsion swell to the same size and reach the instability of the oil film interface between the inner droplets, core-coalescence happens and this coalescence process can be controlled precisely. This microfluidic methodology enables the generation of highly monodisperse dual-core double emulsions and the osmolarity-controlled swelling behavior provides new stimuli to trigger the coalescence between the encapsulated droplets. Such swelling-caused core-coalescence behavior in dual-core double emulsion establishes a novel microreactor for nanoliter-scale reactions, which can protect reaction materials and products from being contaminated or released.

  1. A dual-core double emulsion platform for osmolarity-controlled microreactor triggered by coalescence of encapsulated droplets

    PubMed Central

    Guan, Xuewei; Hou, Likai; Ren, Yukun; Deng, Xiaokang; Lang, Qi; Jia, Yankai; Hu, Qingming; Tao, Ye; Liu, Jiangwei; Jiang, Hongyuan

    2016-01-01

    Droplet-based microfluidics has provided a means to generate multi-core double emulsions, which are versatile platforms for microreactors in materials science, synthetic biology, and chemical engineering. To provide new opportunities for double emulsion platforms, here, we report a glass capillary microfluidic approach to first fabricate osmolarity-responsive Water-in-Oil-in-Water (W/O/W) double emulsion containing two different inner droplets/cores and to then trigger the coalescence between the encapsulated droplets precisely. To achieve this, we independently control the swelling speed and size of each droplet in the dual-core double emulsion by controlling the osmotic pressure between the inner droplets and the collection solutions. When the inner two droplets in one W/O/W double emulsion swell to the same size and reach the instability of the oil film interface between the inner droplets, core-coalescence happens and this coalescence process can be controlled precisely. This microfluidic methodology enables the generation of highly monodisperse dual-core double emulsions and the osmolarity-controlled swelling behavior provides new stimuli to trigger the coalescence between the encapsulated droplets. Such swelling-caused core-coalescence behavior in dual-core double emulsion establishes a novel microreactor for nanoliter-scale reactions, which can protect reaction materials and products from being contaminated or released. PMID:27279935

  2. Estimating trace-suspect match probabilities for singleton Y-STR haplotypes using coalescent theory.

    PubMed

    Andersen, Mikkel Meyer; Caliebe, Amke; Jochens, Arne; Willuweit, Sascha; Krawczak, Michael

    2013-02-01

    Estimation of match probabilities for singleton haplotypes of lineage markers, i.e. for haplotypes observed only once in a reference database augmented by a suspect profile, is an important problem in forensic genetics. We compared the performance of four estimators of singleton match probabilities for Y-STRs, namely the count estimate, both with and without Brenner's so-called 'kappa correction', the surveying estimate, and a previously proposed, but rarely used, coalescent-based approach implemented in the BATWING software. Extensive simulation with BATWING of the underlying population history, haplotype evolution and subsequent database sampling revealed that the coalescent-based approach is characterized by lower bias and lower mean squared error than the uncorrected count estimator and the surveying estimator. Moreover, in contrast to the two count estimators, both the surveying and the coalescent-based approach exhibited a good correlation between the estimated and true match probabilities. However, although its overall performance is thus better than that of any other recognized method, the coalescent-based estimator is still computation-intense on the verge of general impracticability. Its application in forensic practice therefore will have to be limited to small reference databases, or to isolated cases of particular interest, until more powerful algorithms for coalescent simulation have become available. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  3. Lateral vegetation growth rates exert control on coastal foredune hummockiness and coalescing time

    NASA Astrophysics Data System (ADS)

    Goldstein, Evan B.; Moore, Laura J.; Durán Vinent, Orencio

    2017-08-01

    Coastal foredunes form along sandy, low-sloped coastlines and range in shape from continuous dune ridges to hummocky features, which are characterized by alongshore-variable dune crest elevations. Initially scattered dune-building plants and species that grow slowly in the lateral direction have been implicated as a cause of foredune hummockiness. Our goal in this work is to explore how the initial configuration of vegetation and vegetation growth characteristics control the development of hummocky coastal dunes including the maximum hummockiness of a given dune field. We find that given sufficient time and absent external forcing, hummocky foredunes coalesce to form continuous dune ridges. Model results yield a predictive rule for the timescale of coalescing and the height of the coalesced dune that depends on initial plant dispersal and two parameters that control the lateral and vertical growth of vegetation, respectively. Our findings agree with previous observational and conceptual work - whether or not hummockiness will be maintained depends on the timescale of coalescing relative to the recurrence interval of high-water events that reset dune building in low areas between hummocks. Additionally, our model reproduces the observed tendency for foredunes to be hummocky along the southeast coast of the US where lateral vegetation growth rates are slower and thus coalescing times are likely longer.

  4. The research on the drag reduction of a transport aircraft with upswept afterbody using long fins

    DTIC Science & Technology

    2016-03-30

    drag. A pair of fins installed under the fuselage extruding the core of the vortices effectively damp the vortex. Parametric study shows that the length...space near the body and move downstream. The vortex system shifts from lower vortexes, none vortex to upper vortexes when the AOA change from negative to

  5. Electrohydrodynamic coalescence of droplets using an embedded potential flow model

    NASA Astrophysics Data System (ADS)

    Garzon, M.; Gray, L. J.; Sethian, J. A.

    2018-03-01

    The coalescence, and subsequent satellite formation, of two inviscid droplets is studied numerically. The initial drops are taken to be of equal and different sizes, and simulations have been carried out with and without the presence of an electrical field. The main computational challenge is the tracking of a free surface that changes topology. Coupling level set and boundary integral methods with an embedded potential flow model, we seamlessly compute through these singular events. As a consequence, the various coalescence modes that appear depending upon the relative ratio of the parent droplets can be studied. Computations of first stage pinch-off, second stage pinch-off, and complete engulfment are analyzed and compared to recent numerical studies and laboratory experiments. Specifically, we study the evolution of bridge radii and the related scaling laws, the minimum drop radii evolution from coalescence to satellite pinch-off, satellite sizes, and the upward stretching of the near cylindrical protrusion at the droplet top. Clear evidence of partial coalescence self-similarity is presented for parent droplet ratios between 1.66 and 4. This has been possible due to the fact that computational initial conditions only depend upon the mother droplet size, in contrast with laboratory experiments where the difficulty in establishing the same initial physical configuration is well known. The presence of electric forces changes the coalescence patterns, and it is possible to control the satellite droplet size by tuning the electrical field intensity. All of the numerical results are in very good agreement with recent laboratory experiments for water droplet coalescence.

  6. Full-potential modeling of blade-vortex interactions

    NASA Technical Reports Server (NTRS)

    Jones, H. E.; Caradonna, F. X.

    1986-01-01

    A comparison is made of four different models for predicting the unsteady loading induced by a vortex passing close to an airfoil. (1) The first model approximates the vortex effect as a change in the airfoil angle of attack. (2) The second model is related to the first but, instead of imposing only a constant velocity on the airfoil, the distributed effect of the vortex is computed and used. This is analogous to a lifting surface method. (3) The third model is to specify a branch cut discontinuity in the potential field. The vortex is modeled as a jump in potential across the branch cut, the edge of which represents the center of the vortex. (4) The fourth method models the vortex expressing the potential as the sum of a known potential due to the vortex and an unknown perturbation due to the airfoil. The purpose of the current study is to investigate the four vortex models described above and to determine their relative merits and suitability for use in large three-dimensional codes.

  7. Modeling Vortex Generators in the Wind-US Code

    NASA Technical Reports Server (NTRS)

    Dudek, Julianne C.

    2010-01-01

    A source term model which simulates the effects of vortex generators was implemented into the Wind-US Navier Stokes code. The source term added to the Navier-Stokes equations simulates the lift force which would result from a vane-type vortex generator in the flowfield. The implementation is user-friendly, requiring the user to specify only three quantities for each desired vortex generator: the range of grid points over which the force is to be applied and the planform area and angle of incidence of the physical vane. The model behavior was evaluated for subsonic flow in a rectangular duct with a single vane vortex generator, supersonic flow in a rectangular duct with a counterrotating vortex generator pair, and subsonic flow in an S-duct with 22 co-rotating vortex generators. The validation results indicate that the source term vortex generator model provides a useful tool for screening vortex generator configurations and gives comparable results to solutions computed using a gridded vane.

  8. Mechanics of Individual, Isolated Vortices in a Cuprate Superconductor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Auslaender, M.

    2010-05-25

    Superconductors often contain quantized microscopic whirlpools of electrons, called vortices, that can be modeled as one-dimensional elastic objects. Vortices are a diverse playground for condensed matter because of the interplay between thermal fluctuations, vortex-vortex interactions, and the interaction of the vortex core with the three-dimensional disorder landscape. While vortex matter has been studied extensively, the static and dynamic properties of an individual vortex have not. Here we employ magnetic force microscopy (MFM) to image and manipulate individual vortices in detwinned, single crystal YBa{sub 2}Cu{sub 3}O{sub 6.991} (YBCO), directly measuring the interaction of a moving vortex with the local disorder potential.more » We find an unexpected and dramatic enhancement of the response of a vortex to pulling when we wiggle it transversely. In addition, we find enhanced vortex pinning anisotropy that suggests clustering of oxygen vacancies in our sample and demonstrates the power of MFM to probe vortex structure and microscopic defects that cause pinning.« less

  9. The effect of tip vortex structure on helicopter noise due to blade/vortex interaction

    NASA Technical Reports Server (NTRS)

    Wolf, T. L.; Widnall, S. E.

    1978-01-01

    A potential cause of helicopter impulsive noise, commonly called blade slap, is the unsteady lift fluctuation on a rotor blade due to interaction with the vortex trailed from another blade. The relationship between vortex structure and the intensity of the acoustic signal is investigated. The analysis is based on a theoretical model for blade/vortex interaction. Unsteady lift on the blades due to blade/vortex interaction is calculated using linear unsteady aerodynamic theory, and expressions are derived for the directivity, frequency spectrum, and transient signal of the radiated noise. An inviscid rollup model is used to calculate the velocity profile in the trailing vortex from the spanwise distribution of blade tip loading. A few cases of tip loading are investigated, and numerical results are presented for the unsteady lift and acoustic signal due to blade/vortex interaction. The intensity of the acoustic signal is shown to be quite sensitive to changes in tip vortex structure.

  10. Rotor Vortex Filaments: Living on the Slipstream's Edge

    NASA Technical Reports Server (NTRS)

    Young, Larry A.

    1997-01-01

    The purpose of this paper is to gain a better understanding of rotor wake evolution in hover and axial flow by deriving an analytical solution for the time dependent behavior of vortex filament circulation and core size. This solution is applicable only for vortex filaments in the rotor far-wake. A primarily inviscid vortex/shear layer interaction (where the slipstream boundary is modeled as a shear layer) has been identified in this analytical treatment. This vortex/shear layer interaction results in decreasing, vortex filament circulation and core size with time. The inviscid vortex/shear layer interaction is shown, in a first-order treatment, to be of greater magnitude than viscous diffusion effects. The rate of contraction, and ultimate collapse, of the vortex filament core is found to be directly proportional to the rotor inflow velocity. This new insight into vortex filament decay promises to help reconcile several disparate observations made in the literature and will, hopefully, promote new advances in theoretical modeling of rotor wakes.

  11. A panel method study of vortex sheets with special emphasis on sheets of axisymmetric geometry. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Sugioka, I.; Widnall, S. E.

    1985-01-01

    The self induced evolution of a vortex sheet was simulated by modeling the sheet using an integration of discrete elements of vorticity. Replacing small sections of a vortex sheet by flat panels of constant vorticity is found to reproduce more accurately the initial conditions for the Lagrangian simulation technique than replacement by point vortices. The flat panel method for the vortex sheet was then extended to model axisymmetric vortex sheets. The local and far field velocities induced by the axisymmetric panels were obtained using matched asymptotic analysis, and some of the uncertainties involved in other models of the axisymmetric vortex sheet have been eliminated. One important result of this analysis is the determination of the proper choice of core size for a circular vortex filament which may replace a section of an axisymmetric vortex sheet. Roll-up of both two dimensional and axisymmetric vortex sheets was computed using the panel methods developed in the report.

  12. Vortex interaction with a leading-edge of finite thickness

    NASA Technical Reports Server (NTRS)

    Sohn, D.; Rockwell, Donald

    1987-01-01

    Vortex interaction with a thick elliptical leading-edge at zero relative offset produces a pronounced secondary vortes of opposite sense that travels with the same phase speed as the primaty vortex along the lower surface of the edge. The edge thickness (scale) relative to the incident vorticity field has a strong effect on the distortion of the incident primary vortex during the impingement processs. When the thickness is sufficiently small, there is a definite severing of the incident vortex and the portion of the incident vortex that travels along the upper part of the elliptical surface has a considerably larger phase speed than that along the lower surface; this suggests that the integrated loading along the upper surface is more strongly correlated. When the thickness becomes too large, then most, if not all, of the incident vortex passes below the leading-edge. On the other hand, the relative tranverse offset of the edge with respect to the center of the incident vortex has a significant effect on the secondary vortex formation.

  13. Wake Vortex and Groundwind Meteorological Measurements

    DOT National Transportation Integrated Search

    1976-05-01

    Wake vortex groundwind and meteorological measurements obtained by DOT-TSC at John F. Kennedy (JKF) International Airport have been reduced, analyzed, and correlated with a theoretical vortex transport model. The predictive Wake Vortex Transport Mode...

  14. Phase diagrams of vortex matter with multi-scale inter-vortex interactions in layered superconductors.

    PubMed

    Meng, Qingyou; Varney, Christopher N; Fangohr, Hans; Babaev, Egor

    2017-01-25

    It was recently proposed to use the stray magnetic fields of superconducting vortex lattices to trap ultracold atoms for building quantum emulators. This calls for new methods for engineering and manipulating of the vortex states. One of the possible routes utilizes type-1.5 superconducting layered systems with multi-scale inter-vortex interactions. In order to explore the possible vortex states that can be engineered, we present two phase diagrams of phenomenological vortex matter models with multi-scale inter-vortex interactions featuring several attractive and repulsive length scales. The phase diagrams exhibit a plethora of phases, including conventional 2D lattice phases, five stripe phases, dimer, trimer, and tetramer phases, void phases, and stable low-temperature disordered phases. The transitions between these states can be controlled by the value of an applied external field.

  15. Thermal coupling effect on the vortex dynamics of superconducting thin films: time-dependent Ginzburg–Landau simulations

    NASA Astrophysics Data System (ADS)

    Jing, Ze; Yong, Huadong; Zhou, Youhe

    2018-05-01

    In this paper, vortex dynamics of superconducting thin films are numerically investigated by the generalized time-dependent Ginzburg–Landau (TDGL) theory. Interactions between vortex motion and the motion induced energy dissipation is considered by solving the coupled TDGL equation and the heat diffusion equation. It is found that thermal coupling has significant effects on the vortex dynamics of superconducting thin films. Branching in the vortex penetration path originates from the coupling between vortex motion and the motion induced energy dissipation. In addition, the environment temperature, the magnetic field ramp rate and the geometry of the superconducting film also greatly influence the vortex dynamic behaviors. Our results provide new insights into the dynamics of superconducting vortices, and give a mesoscopic understanding on the channeling and branching of vortex penetration paths during flux avalanches.

  16. Spin-orbit torque induced magnetic vortex polarity reversal utilizing spin-Hall effect

    NASA Astrophysics Data System (ADS)

    Li, Cheng; Cai, Li; Liu, Baojun; Yang, Xiaokuo; Cui, Huanqing; Wang, Sen; Wei, Bo

    2018-05-01

    We propose an effective magnetic vortex polarity reversal scheme that makes use of spin-orbit torque introduced by spin-Hall effect in heavy-metal/ferromagnet multilayers structure, which can result in subnanosecond polarity reversal without endangering the structural stability. Micromagnetic simulations are performed to investigate the spin-Hall effect driven dynamics evolution of magnetic vortex. The mechanism of magnetic vortex polarity reversal is uncovered by a quantitative analysis of exchange energy density, magnetostatic energy density, and their total energy density. The simulation results indicate that the magnetic vortex polarity is reversed through the nucleation-annihilation process of topological vortex-antivortex pair. This scheme is an attractive option for ultra-fast magnetic vortex polarity reversal, which can be used as the guidelines for the choice of polarity reversal scheme in vortex-based random access memory.

  17. Application of Wind Tunnel Free-Flight Technique for Wake Vortex Encounters

    NASA Technical Reports Server (NTRS)

    Brandon, Jay M.; Jordan, Frank L., Jr.; Stuever, Robert A.; Buttrill, Catherine W.

    1997-01-01

    A wind tunnel investigation was conducted in the Langley 30- by 60-Foot Tunnel to assess the free-flight test technique as a tool in research on wake vortex encounters. A typical 17.5-percent scale business-class jet airplane model was flown behind a stationary wing mounted in the forward portion of the wind tunnel test section. The span ratio (model span-generating wingspan) was 0.75. The wing angle of attack could be adjusted to produce a vortex of desired strength. The test airplane model was successfully flown in the vortex and through the vortex for a range of vortex strengths. Data obtained included the model airplane body axis accelerations, angular rates, attitudes, and control positions as a function of vortex strength and relative position. Pilot comments and video records were also recorded during the vortex encounters.

  18. Review of Idealized Aircraft Wake Vortex Models

    NASA Technical Reports Server (NTRS)

    Ahmad, Nashat N.; Proctor, Fred H.; Duparcmeur, Fanny M. Limon; Jacob, Don

    2014-01-01

    Properties of three aircraft wake vortex models, Lamb-Oseen, Burnham-Hallock, and Proctor are reviewed. These idealized models are often used to initialize the aircraft wake vortex pair in large eddy simulations and in wake encounter hazard models, as well as to define matched filters for processing lidar observations of aircraft wake vortices. Basic parameters for each vortex model, such as peak tangential velocity and circulation strength as a function of vortex core radius size, are examined. The models are also compared using different vortex characterizations, such as the vorticity magnitude. Results of Euler and large eddy simulations are presented. The application of vortex models in the postprocessing of lidar observations is discussed.

  19. Antisymmetric vortex interactions in the wake behind a step cylinder

    NASA Astrophysics Data System (ADS)

    Tian, Cai; Jiang, Fengjian; Pettersen, Bjørnar; Andersson, Helge I.

    2017-10-01

    Flow around a step cylinder at the Reynolds number 150 was simulated by directly solving the full Navier-Stokes equations. The configuration was adopted from the work of Morton and Yarusevych ["Vortex shedding in the wake of a step cylinder," Phys. Fluids 22, 083602 (2010)], in which the wake dynamics were systematically described. A more detailed investigation of the vortex dislocation process has now been performed. Two kinds of new loop vortex structures were identified. Additionally, antisymmetric vortex interactions in two adjacent vortex dislocation processes were observed and explained. The results in this letter serve as a supplement for a more thorough understanding of the vortex dynamics in the step cylinder wake.

  20. Transition to Quantum Turbulence and the Propagation of Vortex Loops at Finite Temperatures

    NASA Astrophysics Data System (ADS)

    Yamamoto, Shinji; Adachi, Hiroyuki; Tsubota, Makoto

    2011-02-01

    We performed numerical simulation of the transition to quantum turbulence and the propagation of vortex loops at finite temperatures in order to understand the experiments using vibrating wires in superfluid 4He by Yano et al. We injected vortex rings to a finite volume in order to simulate emission of vortices from the wire. When the injected vortices are dilute, they should decay by mutual friction. When they are dense, however, vortex tangle are generated through vortex reconnections and emit large vortex loops. The large vortex loops can travel a long distance before disappearing, which is much different from the dilute case. The numerical results are consistent with the experimental results.

  1. Bayesian Analysis of Evolutionary Divergence with Genomic Data under Diverse Demographic Models.

    PubMed

    Chung, Yujin; Hey, Jody

    2017-06-01

    We present a new Bayesian method for estimating demographic and phylogenetic history using population genomic data. Several key innovations are introduced that allow the study of diverse models within an Isolation-with-Migration framework. The new method implements a 2-step analysis, with an initial Markov chain Monte Carlo (MCMC) phase that samples simple coalescent trees, followed by the calculation of the joint posterior density for the parameters of a demographic model. In step 1, the MCMC sampling phase, the method uses a reduced state space, consisting of coalescent trees without migration paths, and a simple importance sampling distribution without the demography of interest. Once obtained, a single sample of trees can be used in step 2 to calculate the joint posterior density for model parameters under multiple diverse demographic models, without having to repeat MCMC runs. Because migration paths are not included in the state space of the MCMC phase, but rather are handled by analytic integration in step 2 of the analysis, the method is scalable to a large number of loci with excellent MCMC mixing properties. With an implementation of the new method in the computer program MIST, we demonstrate the method's accuracy, scalability, and other advantages using simulated data and DNA sequences of two common chimpanzee subspecies: Pan troglodytes (P. t.) troglodytes and P. t. verus. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. An Introduction to Vortex Breakdown and Vortex Core Bursting (Introduction a la Rupture et a l’Eclatement du Noyau des Vortex).

    DTIC Science & Technology

    1985-03-01

    solved by the use of finite - .- core vortex filament models (Chorin and Bernard, 1973). A recent paper by Stremel (1984) briefly reviewed this...history of vortex sheet numerical modeling and presented a ’state of the art’ numerical technique. Stremel compared his numerical results with experimental

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herrera, Edwin; Bemito-Llorens, Jose; Kalarachchi, Udhara

    Here, we image vortex creep at very low temperatures using scanning tunneling microscopy in the superconductor Rh 9In 4S 4 (T c = 2.25 K). We measure the superconducting gap of Rh 9In 4S 4, finding Δ ≈ 0.33 meV, and image a hexagonal vortex lattice up to close to H c2 observing slow vortex creep at temperatures as low as 150 mK. We estimate thermal and quantum barriers for vortex motion and show that thermal fluctuations likely cause vortex creep, in spite of being at temperatures T/T c < 0.1. We study creeping vortex lattices by making images duringmore » long times and show that the vortex lattice remains hexagonal during creep with vortices moving along one of the high-symmetry axes of the vortex lattice. Furthermore, the creep velocity changes with the scanning window suggesting that creep depends on the local arrangements of pinning centers. Vortices fluctuate on small-scale erratic paths, indicating that the vortex lattice makes jumps trying different arrangements during its travel along the main direction for creep. Lastly, the images provide a visual account of how vortex lattice motion maintains hexagonal order, while showing dynamic properties characteristic of a glass.« less

  4. Simple point vortex model for the relaxation of 2D superfluid turbulence in a Bose-Einstein condensate

    NASA Astrophysics Data System (ADS)

    Kim, Joon Hyun; Kwon, Woo Jin; Shin, Yong-Il

    2016-05-01

    In a recent experiment, it was found that the dissipative evolution of a corotating vortex pair in a trapped Bose-Einstein condensate is well described by a point vortex model with longitudinal friction on the vortex motion and the thermal friction coefficient was determined as a function of sample temperature. In this poster, we present a numerical study on the relaxation of 2D superfluid turbulence based on the dissipative point vortex model. We consider a homogeneous system in a cylindrical trap having randomly distributed vortices and implement the vortex-antivortex pair annihilation by removing a pair when its separation becomes smaller than a certain threshold value. We characterize the relaxation of the turbulent vortex states with the decay time required for the vortex number to be reduced to a quarter of initial number. We find the vortex decay time is inversely proportional to the thermal friction coefficient. In particular, we observe the decay times obtained from this work show good quantitative agreement with the experimental results in, indicating that in spite of its simplicity, the point vortex model reasonably captures the physics in the relaxation dynamics of the real system.

  5. Wake Vortex Field Measurement Program at Memphis, Tennessee: Data Guide

    NASA Technical Reports Server (NTRS)

    Campbell, S. D.; Dasey, T. J.; Freehart, R. E.; Heinrichs, R. M.; Mathews, M. P.; Perras, G. H.; Rowe, G. S.

    1997-01-01

    Eliminating or reducing current restrictions in the air traffic control system due to wake vortex considerations would yield increased capacity, decreased delays, and cost savings. Current wake vortex separation standards are widely viewed as very conservative under most conditions. However, scientific uncertainty about wake vortex behavior under different atmospheric conditions remains a barrier to development of an adaptive vortex spacing system. The objective of the wake vortex field measurement efforts during December, 1994 and August, 1995 at Memphis, TN were to record wake vortex behavior for varying atmospheric conditions and types of aircraft. This effort is part of a larger effort by the NASA Langley Research Center to develop an Aircraft Vortex Spacing System (AVOSS) as an element of the Terminal Area Productivity (TAP) program. The TAP program is being performed in concert with the FAA Terminal Air Traffic Control Automation (TATCA) program and ATC Automation. Wake vortex behavior was observed using a mobile continuous-wave (CW) coherent laser Doppler radar (lidar) developed at Lincoln Laboratory. This lidar features a number of improvements over previous systems, including the first-ever demonstration of an automatic wake vortex detection and tracking algorithm.

  6. Effect of Vortex Circulation on Injectant from a Single Film-Cooling Hole and a Row of Film-Cooling Holes in a Turbulent Boundary Layer. Part 1. Injection Beneath the Vortex Downwash

    DTIC Science & Technology

    1989-06-01

    coefficients vortex circulation, symbols used in vorticity plots representing circulation values derived from different vortex core models injection...derived from different vortex core models dimensionless core size parameter: t wice the a verage core radius divided by t h e i n jection hole...Wall Heating, xjd=109.2, m=0.5, Single Injection Hole Vortex w, Temp. Difference Range (.5- 2.5) degree s 91. Local Temperature Distribution

  7. Vortex/boundary layer interactions

    NASA Technical Reports Server (NTRS)

    Cutler, A. D.; Bradshaw, P.

    1989-01-01

    Detailed and high quality measurements with hot-wires and pressure probes are presented for two different interactions between a vortex pair with common flow down and a turbulent boundary layer. The interactions studied have larger values of the vortex circulation parameter than those studied previously. The results indicate that the boundary layer under the vortex pair is thinned by lateral divergence and that boundary layer fluid is entrained into the vortex. The effect of the interaction on the vortex core (other than the inviscid effect of the image vortices behind the surface) is small.

  8. Evolution of a plasma vortex in air

    NASA Astrophysics Data System (ADS)

    Tsai, Cheng-Mu; Chu, Hong-Yu

    2016-01-01

    We report the generation of a vortex-shaped plasma in air by using a capacitively coupled dielectric barrier discharge system. We show that a vortex-shaped plasma can be produced inside a helium gas vortex and is capable of propagating for 3 cm. The fluctuation of the plasma ring shows a scaling relation with the Reynolds number of the vortex. The transient discharge reveals the property of corona discharge, where the conducting channel within the gas vortex and the blur plasma emission are observed at each half voltage cycle.

  9. Evolution of a plasma vortex in air.

    PubMed

    Tsai, Cheng-Mu; Chu, Hong-Yu

    2016-01-01

    We report the generation of a vortex-shaped plasma in air by using a capacitively coupled dielectric barrier discharge system. We show that a vortex-shaped plasma can be produced inside a helium gas vortex and is capable of propagating for 3 cm. The fluctuation of the plasma ring shows a scaling relation with the Reynolds number of the vortex. The transient discharge reveals the property of corona discharge, where the conducting channel within the gas vortex and the blur plasma emission are observed at each half voltage cycle.

  10. Vortex Thermometry for Turbulent Two-Dimensional Fluids.

    PubMed

    Groszek, Andrew J; Davis, Matthew J; Paganin, David M; Helmerson, Kristian; Simula, Tapio P

    2018-01-19

    We introduce a new method of statistical analysis to characterize the dynamics of turbulent fluids in two dimensions. We establish that, in equilibrium, the vortex distributions can be uniquely connected to the temperature of the vortex gas, and we apply this vortex thermometry to characterize simulations of decaying superfluid turbulence. We confirm the hypothesis of vortex evaporative heating leading to Onsager vortices proposed in Phys. Rev. Lett. 113, 165302 (2014)PRLTAO0031-900710.1103/PhysRevLett.113.165302, and we find previously unidentified vortex power-law distributions that emerge from the dynamics.

  11. Quasi-ideal dynamics of vortex solitons embedded in flattop nonlinear Bessel beams.

    PubMed

    Porras, Miguel A; Ramos, Francisco

    2017-09-01

    The applications of vortex solitons are severely limited by the diffraction and self-defocusing spreading of the background beam where they are nested. Nonlinear Bessel beams in self-defocusing media are nondiffracting, flattop beams where the nested vortex solitons can survive for propagation distances that are one order of magnitude larger than in the Gaussian or super-Gaussian beams. The dynamics of the vortex solitons is studied numerically and found to approach that in the ideal, uniform background, preventing vortex spiraling and decay, which eases vortex steering for applications.

  12. Evaluation of a Wake Vortex Upset Model Based on Simultaneous Measurements of Wake Velocities and Probe-Aircraft Accelerations

    NASA Technical Reports Server (NTRS)

    Short, B. J.; Jacobsen, R. A.

    1979-01-01

    Simultaneous measurements were made of the upset responses experienced and the wake velocities encountered by an instrumented Learjet probe aircraft behind a Boeing 747 vortex-generating aircraft. The vortex-induced angular accelerations experienced could be predicted within 30% by a mathematical upset response model when the characteristics of the wake were well represented by the vortex model. The vortex model used in the present study adequately represented the wake flow field when the vortices dissipated symmetrically and only one vortex pair existed in the wake.

  13. Spin Vortex Resonance in Non-planar Ferromagnetic Dots

    DOE PAGES

    Ding, Junjia; Lapa, Pavel; Jain, Shikha; ...

    2016-05-04

    In planar structures, the vortex resonance frequency changes little as a function of an in-plane magnetic field as long as the vortex state persists. Altering the topography of the element leads to a vastly different dynamic response that arises due to the local vortex core confinement effect. In this work, we studied the magnetic excitations in non-planar ferromagnetic dots using a broadband microwave spectroscopy technique. Two distinct regimes of vortex gyration were detected depending on the vortex core position. The experimental results are in qualitative agreement with micromagnetic simulations.

  14. Non-Coalescence Effects in Microgravity

    NASA Technical Reports Server (NTRS)

    Neitzel, G. Paul

    1997-01-01

    Non-coalescence of two bodies of the same liquid and the suppression of contact between liquid drops and solid surfaces is being studied through a pair of parallel investigations being conducted at the Georgia Institute of Technology and the Microgravity Research and Support (MARS) Center in Naples, Italy. Both non-coalescence and contact suppression are achieved by exploiting the mechanism of thermocapillary convection to drive a lubricating film of surrounding gas (air) into the space between the two liquid free surfaces (non-coalescence) or between the drop free surface and the solid (contact suppression). Experiments performed to date include flow visualization experiments in both axisymmetric and (nearly) two-dimensional geometries and quantitative measurements of film thickness in the contact-suppression case in both geometries.

  15. Phenotypic heterogeneity in the endothelium of the human vortex vein system.

    PubMed

    Yu, Paula K; Tan, Priscilla E Z; Cringle, Stephen J; McAllister, Ian L; Yu, Dao-Yi

    2013-10-01

    The vortex vein system is the drainage pathway for the choroidal circulation and serves an important function in the effective drainage of the exceptionally high blood flow from the choroidal circulation. As there are only 4-6 vortex veins, a large volume of blood must be drained from many choroidal veins into each individual vortex vein. The vortex vein system must also cope with passing through tissues of different rigidity and significant pressure gradient as it transverses from the intrao-cular to the extra-ocular compartments. However, little is known about how the vortex vein system works under such complex situations in both physiological and pathological condition. Endothelial cells play a vital role in other vascular systems, but they have not been studied in detail in the vortex vein system. The purpose of this study is to characterise the intracellular structures and morphology in both the intra-and extra-ocular regions of the human vortex vein system. We hypothesise the presence of endothelial phenotypic heterogeneity through the vortex vein system. The inferior temporal vortex vein system from human donor eyes were obtained and studied histologically using confocal microscopy. The f-actin cytoskeleton and nuclei were labelled using Alexa Fluor conjugated Phalloidin and YO-PRO-1. Eight regions of the vortex vein system were examined with the venous endothelium studied in detail with quantitative data obtained for endothelial cell and nuclei size and shape. Significant endothelial phenotypic heterogeneity was found throughout the vortex vein system with the most obvious differences observed between the ampulla and its downstream regions. Variation in the distribution pattern of smooth muscle cells, in particular the absence of smooth muscle cells around the ampulla, was noted. Our results suggest the presence of significantly different haemodynamic forces in different regions of the vortex vein system and indicate that the vortex vein system may play important roles in regulation of the choroidal circulation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Axisymmetric contour dynamics for buoyant vortex rings

    NASA Astrophysics Data System (ADS)

    Chang, Ching; Llewellyn Smith, Stefan

    2017-11-01

    Vortex rings are important in many fluid flows in engineering and environmental applications. A family of steady propagating vortex rings including thin-core rings and Hill's spherical vortex was obtained by Norbury (1973). However, the dynamics of vortex rings in the presence of buoyancy has not been investigated yet in detail. When the core of a ring is thin, we may formulate reduced equations using momentum balance for vortex filaments, but that is not the case for ``fat'' rings. In our study, we use contour dynamics to study the time evolution of axisymmetric vortex rings when the density of the fluid inside the ring differs from that of the ambient. Axisymmetry leads to an almost-conserved material variable when the Boussinesq approximation is made. A set of integro-differential equations is solved numerically for these buoyant vortex rings. The same physical settings are also used to run a DNS code and compare to the results from contour dynamics.

  17. Vortex equations: Singularities, numerical solution, and axisymmetric vortex breakdown

    NASA Technical Reports Server (NTRS)

    Bossel, H. H.

    1972-01-01

    A method of weighted residuals for the computation of rotationally symmetric quasi-cylindrical viscous incompressible vortex flow is presented and used to compute a wide variety of vortex flows. The method approximates the axial velocity and circulation profiles by series of exponentials having (N + 1) and N free parameters, respectively. Formal integration results in a set of (2N + 1) ordinary differential equations for the free parameters. The governing equations are shown to have an infinite number of discrete singularities corresponding to critical values of the swirl parameters. The computations point to the controlling influence of the inner core flow on vortex behavior. They also confirm the existence of two particular critical swirl parameter values: one separates vortex flow which decays smoothly from vortex flow which eventually breaks down, and the second is the first singularity of the quasi-cylindrical system, at which point physical vortex breakdown is thought to occur.

  18. A new look at sound generation by blade/vortex interaction

    NASA Technical Reports Server (NTRS)

    Hardin, J. C.; Mason, J. P.

    1985-01-01

    As a preliminary attempt to understand the dynamics of blade/vortex interaction, the two-dimensional problem of a rectilinear vortex filament interacting with a Joukowski airfoil is analyzed in both the lifting and nonlifting cases. The vortex velocity components could be obtained analytically and integrated to determine the vortex trajectory. With this information, the aeroacoustic low-frequency Green's function approach could then be employed to calculate the sound produced during the encounter. The results indicate that the vortex path deviates considerably from simple convection due to the presence of the airfoil and that a reasonably sharp sound pulse is radiated during the interaction whose fundamental frequency is critically dependent upon whether the vortex passes above or below the airfoil. Determination of this gross parameter of the interaction is shown to be highly nonlinearly dependent upon airfoil circulation, vortex circulation, and initial position.

  19. Interaction of a vortex and a premixed flame

    NASA Technical Reports Server (NTRS)

    Ferziger, Joel H.; Rutland, Christopher J.

    1989-01-01

    The interaction of a vortex structure and a premixed flame is studied. The presence of pressure gradients in the vortex and density gradients in the flame result in a complicated interaction. This interaction has been examined when the flame and vortex are fully coupled and in two special cases where they are decoupled: a frozen flame case and a frozen vortex case. In the frozen flame case the main effect of the flame on the vortex is through the barocline torque term. This has been modeled for high Damkoehler numbers. In the frozen vortex case the main effect, at moderate Damkoehler numbers, is to convect the flame around the vortex. At low Damkoehler numbers, depending on the length scales, pockets of unburned gas can form or the flame structure can be significantly changed. The two frozen cases provide a basis for understanding the full interaction.

  20. Middle-high latitude N2O distributions related to the arctic vortex breakup

    NASA Astrophysics Data System (ADS)

    Zhou, L. B.; Zou, H.; Gao, Y. Q.

    2006-03-01

    The relationship of N2O distributions with the Arctic vortex breakup is first analyzed with a probability distribution function (PDF) analysis. The N2O concentration shows different distributions between the early and late vortex breakup years. In the early breakup years, the N2O concentration shows low values and large dispersions after the vortex breakup, which is related to the inhomogeneity in the vertical advection in the middle and high latitude lower stratosphere. The horizontal diffusion coefficient (K,,) shows a larger value accordingly. In the late breakup years, the N2O concentration shows high values and more uniform distributions than in the early years after the vortex breakup, with a smaller vertical advection and K,, after the vortex breakup. It is found that the N2O distributions are largely affected by the Arctic vortex breakup time but the dynamically defined vortex breakup time is not the only factor.

  1. Influence of Initial Vorticity Distribution on Axisymmetric Vortex Breakdown and Reconnection

    NASA Technical Reports Server (NTRS)

    Young, Larry A.

    2007-01-01

    An analytical treatment has been developed to study some of the axisymmetric vortex breakdown and reconnection fluid dynamic processes underlying body-vortex interactions that are frequently manifested in rotorcraft and propeller-driven fixed-wing aircraft wakes. In particular, the presence of negative vorticity in the inner core of a vortex filament (one example of which is examined in this paper) subsequent to "cutting" by a solid body has a profound influence on the vortex reconnection, leading to analog flow behavior similar to vortex breakdown phenomena described in the literature. Initial vorticity distributions (three specific examples which are examined) without an inner core of negative vorticity do not exhibit vortex breakdown and instead manifest diffusion-like properties while undergoing vortex reconnection. Though this work focuses on laminar vortical flow, this work is anticipated to provide valuable insight into rotary-wing aerodynamics as well as other types of vortical flow phenomena.

  2. A vortex-filament and core model for wings with edge vortex separation

    NASA Technical Reports Server (NTRS)

    Pao, J. L.; Lan, C. E.

    1982-01-01

    A vortex filament-vortex core method for predicting aerodynamic characteristics of slender wings with edge vortex separation was developed. Semi-empirical but simple methods were used to determine the initial positions of the free sheet and vortex core. Comparison with available data indicates that: (1) the present method is generally accurate in predicting the lift and induced drag coefficients but the predicted pitching moment is too positive; (2) the spanwise lifting pressure distributions estimated by the one vortex core solution of the present method are significantly better than the results of Mehrotra's method relative to the pressure peak values for the flat delta; (3) the two vortex core system applied to the double delta and strake wings produce overall aerodynamic characteristics which have good agreement with data except for the pitching moment; and (4) the computer time for the present method is about two thirds of that of Mehrotra's method.

  3. Initialization and Simulation of Three-Dimensional Aircraft Wake Vortices

    NASA Technical Reports Server (NTRS)

    Ash, Robert L.; Zheng, Z. C.

    1997-01-01

    This paper studies the effects of axial velocity profiles on vortex decay, in order to properly initialize and simulate three-dimensional wake vortex flow. Analytical relationships are obtained based on a single vortex model and computational simulations are performed for a rather practical vortex wake, which show that the single vortex analytical relations can still be applicable at certain streamwise sections of three-dimensional wake vortices.

  4. Supersonic shock wave/vortex interaction

    NASA Technical Reports Server (NTRS)

    Settles, G. S.; Cattafesta, L.

    1993-01-01

    Although shock wave/vortex interaction is a basic and important fluid dynamics problem, very little research has been conducted on this topic. Therefore, a detailed experimental study of the interaction between a supersonic streamwise turbulent vortex and a shock wave was carried out at the Penn State Gas Dynamics Laboratory. A vortex is produced by replaceable swirl vanes located upstream of the throat of various converging-diverging nozzles. The supersonic vortex is then injected into either a coflowing supersonic stream or ambient air. The structure of the isolated vortex is investigated in a supersonic wind tunnel using miniature, fast-response, five-hole and total temperature probes and in a free jet using laser Doppler velocimetry. The cases tested have unit Reynolds numbers in excess of 25 million per meter, axial Mach numbers ranging from 2.5 to 4.0, and peak tangential Mach numbers from 0 (i.e., a pure jet) to about 0.7. The results show that the typical supersonic wake-like vortex consists of a non-isentropic, rotational core, where the reduced circulation distribution is self similar, and an outer isentropic, irrotational region. The vortex core is also a region of significant turbulent fluctuations. Radial profiles of turbulent kinetic energy and axial-tangential Reynolds stress are presented. The interactions between the vortex and both oblique and normal shock waves are investigated using nonintrusive optical diagnostics (i.e. schlieren, planar laser scattering, and laser Doppler velocimetry). Of the various types, two Mach 2.5 overexpanded-nozzle Mach disc interactions are examined in detail. Below a certain vortex strength, a 'weak' interaction exists in which the normal shock is perturbed locally into an unsteady 'bubble' shock near the vortex axis, but vortex breakdown (i.e., a stagnation point) does not occur. For stronger vortices, a random unsteady 'strong' interaction results that causes vortex breakdown. The vortex core reforms downstream of the rear stagnation point, and the reduced circulation distribution once again becomes self-similar in this region. A-new model of this interaction is proposed. Finally, a curve defining the approximate limits of supersonic vortex breakdown is presented.

  5. Heat transfer simulation of unsteady swirling flow in a vortex tube

    NASA Astrophysics Data System (ADS)

    Veretennikov, S. V.; Piralishvili, Sh A.; Evdokimov, O. A.; Guryanov, A. I.

    2018-03-01

    Effectiveness of not-adiabatic vortex tube application in the cooling systems of gas turbine blades depends on characteristics of swirling flows formed in the energy separation chamber. An analysis of the flow structure in the vortex tube channels has shown a presence of a complex three-dimensional spiral vortex, formed under relatively high turbulence intensity and vortex core precession. This indicates the presence of a significant unsteady flow in the energy separation chamber of the vortex tube that has a great influence on convective heat transfer of the swirling flow to the inner surface of tube. The paper contains the results of investigation of gas dynamics and heat transfer in the vortex tube taking into account the flow unsteadiness.

  6. Analytical model of the optical vortex microscope.

    PubMed

    Płocinniczak, Łukasz; Popiołek-Masajada, Agnieszka; Masajada, Jan; Szatkowski, Mateusz

    2016-04-20

    This paper presents an analytical model of the optical vortex scanning microscope. In this microscope the Gaussian beam with an embedded optical vortex is focused into the sample plane. Additionally, the optical vortex can be moved inside the beam, which allows fine scanning of the sample. We provide an analytical solution of the whole path of the beam in the system (within paraxial approximation)-from the vortex lens to the observation plane situated on the CCD camera. The calculations are performed step by step from one optical element to the next. We show that at each step, the expression for light complex amplitude has the same form with only four coefficients modified. We also derive a simple expression for the vortex trajectory of small vortex displacements.

  7. Birth and evolution of an optical vortex.

    PubMed

    Vallone, Giuseppe; Sponselli, Anna; D'Ambrosio, Vincenzo; Marrucci, Lorenzo; Sciarrino, Fabio; Villoresi, Paolo

    2016-07-25

    When a phase singularity is suddenly imprinted on the axis of an ordinary Gaussian beam, an optical vortex appears and starts to grow radially, by effect of diffraction. This radial growth and the subsequent evolution of the optical vortex under focusing or imaging can be well described in general within the recently introduced theory of circular beams, which generalize the hypergeometric-Gaussian beams and which obey novel kinds of ABCD rules. Here, we investigate experimentally these vortex propagation phenomena and test the validity of circular-beam theory. Moreover, we analyze the difference in radial structure between the newly generated optical vortex and the vortex obtained in the image plane, where perfect imaging would lead to complete closure of the vortex core.

  8. Calculation of wake vortex structures in the near-field wake behind cruising aircraft

    NASA Astrophysics Data System (ADS)

    Ehret, T.; Oertel, H.

    Wake flows behind cruising aircraft influence the distribution of the exhaust gases. A three-dimensional vortex filament method was developed to calculate the vortex structures and the velocity field of the vorticity dominated wake flows as an integration of the Biot-Savart law. For three-dimensional vortex filament calculations, self-induction singularities were prevented using a finite vortex core for each vortex filament. Numerical simulations show the vortex structures and the velocity field in the wake behind a cruising Boeing 747 as a result of the integration of the Biot-Savart law. It is further shown how the structures of the fully rolled-up trailing vortices depend on the wing span loading, i.e. the circulation distribution.

  9. Synthesis, Characterization, and Application of High Surface Area, Mesoporous, Stabilized Anatase TiO2 Catalyst Supports

    NASA Astrophysics Data System (ADS)

    Olsen, Rebecca Elizabeth

    Vortex rings constitute the main structure in the wakes of a wide class of swimming and flying animals, as well as in cardiac flows and in the jets generated by some moss and fungi. However, there is a physical limit, determined by an energy maximization principle called the Kelvin-Benjamin principle, to the size that axisymmetric vortex rings can achieve. The existence of this limit is known to lead to the separation of a growing vortex ring from the shear layer feeding it, a process known as `vortex pinch-off', and characterized by the dimensionless vortex formation number. The goal of this thesis is to improve our understanding of vortex pinch-off as it relates to biological propulsion, and to provide future researchers with tools to assist in identifying and predicting pinch-off in biological flows. To this end, we introduce a method for identifying pinch-off in starting jets using the Lagrangian coherent structures in the flow, and apply this criterion to an experimentally-generated starting jet. Since most naturally-occurring vortex rings are not circular, we extend the definition of the vortex formation number to include non-axisymmetric vortex rings, and find that the formation number for moderately non-axisymmetric vortices is similar to that of circular vortex rings. This suggests that naturally-occurring vortex rings may be modeled as axisymmetric vortex rings. Therefore, we consider the perturbation response of the Norbury family of axisymmetric vortex rings. This family is chosen to model vortex rings of increasing thickness and circulation, and their response to prolate shape perturbations is simulated using contour dynamics. Finally, the response of more realistic models for vortex rings, constructed from experimental data using nested contours, to perturbations which resemble those encountered by forming vortices more closely, is simulated using contour dynamics. In both families of models, a change in response analogous to pinch-off is found as members of the family with progressively thicker cores are considered. We posit that this analogy may be exploited to understand and predict pinch-off in complex biological flows, where current methods are not applicable in practice, and criteria based on the properties of vortex rings alone are necessary.

  10. Coalescent: an open-science framework for importance sampling in coalescent theory.

    PubMed

    Tewari, Susanta; Spouge, John L

    2015-01-01

    Background. In coalescent theory, computer programs often use importance sampling to calculate likelihoods and other statistical quantities. An importance sampling scheme can exploit human intuition to improve statistical efficiency of computations, but unfortunately, in the absence of general computer frameworks on importance sampling, researchers often struggle to translate new sampling schemes computationally or benchmark against different schemes, in a manner that is reliable and maintainable. Moreover, most studies use computer programs lacking a convenient user interface or the flexibility to meet the current demands of open science. In particular, current computer frameworks can only evaluate the efficiency of a single importance sampling scheme or compare the efficiencies of different schemes in an ad hoc manner. Results. We have designed a general framework (http://coalescent.sourceforge.net; language: Java; License: GPLv3) for importance sampling that computes likelihoods under the standard neutral coalescent model of a single, well-mixed population of constant size over time following infinite sites model of mutation. The framework models the necessary core concepts, comes integrated with several data sets of varying size, implements the standard competing proposals, and integrates tightly with our previous framework for calculating exact probabilities. For a given dataset, it computes the likelihood and provides the maximum likelihood estimate of the mutation parameter. Well-known benchmarks in the coalescent literature validate the accuracy of the framework. The framework provides an intuitive user interface with minimal clutter. For performance, the framework switches automatically to modern multicore hardware, if available. It runs on three major platforms (Windows, Mac and Linux). Extensive tests and coverage make the framework reliable and maintainable. Conclusions. In coalescent theory, many studies of computational efficiency consider only effective sample size. Here, we evaluate proposals in the coalescent literature, to discover that the order of efficiency among the three importance sampling schemes changes when one considers running time as well as effective sample size. We also describe a computational technique called "just-in-time delegation" available to improve the trade-off between running time and precision by constructing improved importance sampling schemes from existing ones. Thus, our systems approach is a potential solution to the "2(8) programs problem" highlighted by Felsenstein, because it provides the flexibility to include or exclude various features of similar coalescent models or importance sampling schemes.

  11. Maximum Likelihood Implementation of an Isolation-with-Migration Model for Three Species.

    PubMed

    Dalquen, Daniel A; Zhu, Tianqi; Yang, Ziheng

    2017-05-01

    We develop a maximum likelihood (ML) method for estimating migration rates between species using genomic sequence data. A species tree is used to accommodate the phylogenetic relationships among three species, allowing for migration between the two sister species, while the third species is used as an out-group. A Markov chain characterization of the genealogical process of coalescence and migration is used to integrate out the migration histories at each locus analytically, whereas Gaussian quadrature is used to integrate over the coalescent times on each genealogical tree numerically. This is an extension of our early implementation of the symmetrical isolation-with-migration model for three species to accommodate arbitrary loci with two or three sequences per locus and to allow asymmetrical migration rates. Our implementation can accommodate tens of thousands of loci, making it feasible to analyze genome-scale data sets to test for gene flow. We calculate the posterior probabilities of gene trees at individual loci to identify genomic regions that are likely to have been transferred between species due to gene flow. We conduct a simulation study to examine the statistical properties of the likelihood ratio test for gene flow between the two in-group species and of the ML estimates of model parameters such as the migration rate. Inclusion of data from a third out-group species is found to increase dramatically the power of the test and the precision of parameter estimation. We compiled and analyzed several genomic data sets from the Drosophila fruit flies. Our analyses suggest no migration from D. melanogaster to D. simulans, and a significant amount of gene flow from D. simulans to D. melanogaster, at the rate of ~0.02 migrant individuals per generation. We discuss the utility of the multispecies coalescent model for species tree estimation, accounting for incomplete lineage sorting and migration. © The Author(s) 2016. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Tip leakage vortex dynamics and inception

    NASA Astrophysics Data System (ADS)

    Oweis, Ghanem; Ceccio, Steven; Jessup, Stuart; Chesnakas, Christopher; Fry, David

    2002-11-01

    The McCormick rule for tip vortex cavitation scaling predicts that cavitation should take place in the vortex where the average core pressure deficit from the free stream is the largest along the vortex tube. The average core pressure deficit can be calculated from the vortex core size and circulation and these can be measured by LDV or hot wire, among other methods. The same rule applies to the tip vortex from a wall-bounded hydrofoil. Recent cavitation inception experiments on a ducted propeller in the NSWCCD 36 inch water tunnel combined with PIV and LDV measurements of the tip vortex flow are described. These tests reveal a disagreement between the actual inception location and that predicted by the McCormick rule. It is hypothesized that in this case the inception mechanism is related to local flow phenomena associated with local vortex unsteadiness, as opposed to the average vortex parameters (core size and circulation) used in the viscous scaling rule of McCormick. Discussion of the flow field measurements, bubble population, and the noise production from the inception events is given.

  13. Vortex coupling in trailing vortex-wing interactions

    NASA Astrophysics Data System (ADS)

    Chen, C.; Wang, Z.; Gursul, I.

    2018-03-01

    The interaction of trailing vortices of an upstream wing with rigid and flexible downstream wings has been investigated experimentally in a wind tunnel, using particle image velocimetry, hot-wire, force, and deformation measurements. Counter-rotating upstream vortices exhibit increased meandering when they are close to the tip of the downstream wing. The upstream vortex forms a pair with the vortex shed from the downstream wing and then exhibits large displacements around the wing tip. This coupled motion of the pair has been found to cause large lift fluctuations on the downstream wing. The meandering of the vortex pair occurs at the natural meandering frequency of the isolated vortex, with a low Strouhal number, and is not affected by the frequency of the large-amplitude wing oscillations if the downstream wing is flexible. The displacement of the leading vortex is larger than that of the trailing vortex; however, it causes highly correlated variations of the core radius, core vorticity, and circulation of the trailing vortex with the coupled meandering motion. In contrast, co-rotating vortices do not exhibit any increased meandering.

  14. Vortex reconnection in the K-type transitional channel flow

    NASA Astrophysics Data System (ADS)

    Zhao, Yaomin; Yang, Yue; Chen, Shiyi

    2016-11-01

    Vortex reconnection, as the topological change of vortex lines or surfaces, is a critical process in transitional flows, but is challenging to accurately characterize in shear flows. We apply the vortex-surface field (VSF), whose isosurface is the vortex surface consisting of vortex lines, to study vortex reconnection in the K-type temporal transition in channel flow. Based on the VSF, both qualitative visualization and quantitative analysis are used to investigate the reconnection between the hairpin-like vortical structures evolving from the opposite channel halves. The incipient vortex reconnection is characterized by the vanishing minimum distance between a pair of vortex surfaces and the reduction of vorticity flux through the region enclosed by the VSF isolines on the spanwise symmetric plane. In addition, we find that the surge of the wall friction coefficient begins at the identified reconnection time, which is discussed with the induced velocity during reconnection and the Biot-Sarvart law. This work has been supported in part by the National Natural Science Foundation of China (Grant Nos. 11522215 and 11521091), and the Thousand Young Talents Program of China.

  15. Vortex ring behavior provides the epigenetic blueprint for the human heart

    PubMed Central

    Arvidsson, Per M.; Kovács, Sándor J.; Töger, Johannes; Borgquist, Rasmus; Heiberg, Einar; Carlsson, Marcus; Arheden, Håkan

    2016-01-01

    The laws of fluid dynamics govern vortex ring formation and precede cardiac development by billions of years, suggesting that diastolic vortex ring formation is instrumental in defining the shape of the heart. Using novel and validated magnetic resonance imaging measurements, we show that the healthy left ventricle moves in tandem with the expanding vortex ring, indicating that cardiac form and function is epigenetically optimized to accommodate vortex ring formation for volume pumping. Healthy hearts demonstrate a strong coupling between vortex and cardiac volumes (R2 = 0.83), but this optimized phenotype is lost in heart failure, suggesting restoration of normal vortex ring dynamics as a new, and possibly important consideration for individualized heart failure treatment. Vortex ring volume was unrelated to early rapid filling (E-wave) velocity in patients and controls. Characteristics of vortex-wall interaction provide unique physiologic and mechanistic information about cardiac diastolic function that may be applied to guide the design and implantation of prosthetic valves, and have potential clinical utility as therapeutic targets for tailored medicine or measures of cardiac health. PMID:26915473

  16. Vortex ring behavior provides the epigenetic blueprint for the human heart.

    PubMed

    Arvidsson, Per M; Kovács, Sándor J; Töger, Johannes; Borgquist, Rasmus; Heiberg, Einar; Carlsson, Marcus; Arheden, Håkan

    2016-02-26

    The laws of fluid dynamics govern vortex ring formation and precede cardiac development by billions of years, suggesting that diastolic vortex ring formation is instrumental in defining the shape of the heart. Using novel and validated magnetic resonance imaging measurements, we show that the healthy left ventricle moves in tandem with the expanding vortex ring, indicating that cardiac form and function is epigenetically optimized to accommodate vortex ring formation for volume pumping. Healthy hearts demonstrate a strong coupling between vortex and cardiac volumes (R(2) = 0.83), but this optimized phenotype is lost in heart failure, suggesting restoration of normal vortex ring dynamics as a new, and possibly important consideration for individualized heart failure treatment. Vortex ring volume was unrelated to early rapid filling (E-wave) velocity in patients and controls. Characteristics of vortex-wall interaction provide unique physiologic and mechanistic information about cardiac diastolic function that may be applied to guide the design and implantation of prosthetic valves, and have potential clinical utility as therapeutic targets for tailored medicine or measures of cardiac health.

  17. Vortex phase-induced changes of the statistical properties of a partially coherent radially polarized beam.

    PubMed

    Guo, Lina; Chen, Yahong; Liu, Xianlong; Liu, Lin; Cai, Yangjian

    2016-06-27

    Partially coherent radially polarized (PCRP) beam was introduced and generated in recent years. In this paper, we investigate the statistical properties of a PCRP beam embedded with a vortex phase (i.e., PCRP vortex beam). We derive the analytical formula for the cross-spectral density matrix of a PCRP vortex beam propagating through a paraxial ABCD optical system and analyze the statistical properties of a PCRP vortex beam focused by a thin lens. It is found that the statistical properties of a PCRP vortex beam on propagation are much different from those of a PCRP beam. The vortex phase induces not only the rotation of the beam spot, but also the changes of the beam shape, the degree of polarization and the state of polarization. We also find that the vortex phase plays a role of resisting the coherence-induced degradation of the intensity distribution and the coherence-induced depolarization. Furthermore, we report experimental generation of a PCRP vortex beam for the first time. Our results will be useful for trapping and rotating particles, free-space optical communications and detection of phase object.

  18. Modeling Vortex Generators in a Navier-Stokes Code

    NASA Technical Reports Server (NTRS)

    Dudek, Julianne C.

    2011-01-01

    A source-term model that simulates the effects of vortex generators was implemented into the Wind-US Navier-Stokes code. The source term added to the Navier-Stokes equations simulates the lift force that would result from a vane-type vortex generator in the flowfield. The implementation is user-friendly, requiring the user to specify only three quantities for each desired vortex generator: the range of grid points over which the force is to be applied and the planform area and angle of incidence of the physical vane. The model behavior was evaluated for subsonic flow in a rectangular duct with a single vane vortex generator, subsonic flow in an S-duct with 22 corotating vortex generators, and supersonic flow in a rectangular duct with a counter-rotating vortex-generator pair. The model was also used to successfully simulate microramps in supersonic flow by treating each microramp as a pair of vanes with opposite angles of incidence. The validation results indicate that the source-term vortex-generator model provides a useful tool for screening vortex-generator configurations and gives comparable results to solutions computed using gridded vanes.

  19. Coalescence of repelling colloidal droplets: a route to monodisperse populations.

    PubMed

    Roger, Kevin; Botet, Robert; Cabane, Bernard

    2013-05-14

    Populations of droplets or particles dispersed in a liquid may evolve through Brownian collisions, aggregation, and coalescence. We have found a set of conditions under which these populations evolve spontaneously toward a narrow size distribution. The experimental system consists of poly(methyl methacrylate) (PMMA) nanodroplets dispersed in a solvent (acetone) + nonsolvent (water) mixture. These droplets carry electrical charges, located on the ionic end groups of the macromolecules. We used time-resolved small angle X-ray scattering to determine their size distribution. We find that the droplets grow through coalescence events: the average radius (R) increases logarithmically with elapsed time while the relative width σR/(R) of the distribution decreases as the inverse square root of (R). We interpret this evolution as resulting from coalescence events that are hindered by ionic repulsions between droplets. We generalize this evolution through a simulation of the Smoluchowski kinetic equation, with a kernel that takes into account the interactions between droplets. In the case of vanishing or attractive interactions, all droplet encounters lead to coalescence. The corresponding kernel leads to the well-known "self-preserving" particle distribution of the coalescence process, where σR/(R) increases to a plateau value. However, for droplets that interact through long-range ionic repulsions, "large + small" droplet encounters are more successful at coalescence than "large + large" encounters. We show that the corresponding kernel leads to a particular scaling of the droplet-size distribution-known as the "second-scaling law" in the theory of critical phenomena, where σR/(R) decreases as 1/√(R) and becomes independent of the initial distribution. We argue that this scaling explains the narrow size distributions of colloidal dispersions that have been synthesized through aggregation processes.

  20. Advanced pediatric mastoiditis with and without intracranial complications.

    PubMed

    Zevallos, Jose P; Vrabec, Jeffrey T; Williamson, Robert A; Giannoni, Carla; Larrier, Deidre; Sulek, Marcelle; Friedman, Ellen M; Oghalai, John S

    2009-08-01

    Recently, several groups have noticed an increase in cases of advanced pediatric mastoiditis and intracranial complications. The objective of this study was to review the bacteriology of advanced mastoiditis in pediatric patients, with the hypothesis that a difference in bacteriology might explain the development of an intracranial complication. Retrospective chart review. All pediatric patients with coalescent mastoiditis requiring surgery treated at a tertiary care children's hospital between 2002 and 2007 were reviewed. Every patient included was treated either with mastoidectomy alone (for coalescent mastoiditis without an intracranial complication) or with transtemporal craniotomy (for coalescent mastoiditis with an intracranial complication). All patients had surgical specimens sent for pathology, Gram stain, and aerobic and anaerobic cultures. One hundred eight pediatric patients with coalescent mastoiditis were identified: 58 (53%) presented with coalescent mastoiditis alone, 17 (16%) presented with coalescent mastoiditis and an intracranial complication, and 33 (31%) were excluded because they were treated with myringotomy and tubes alone, had incomplete data, or had an unclear diagnosis. Streptococcus pneumoniae was the most commonly cultured organism in patients with and without intracranial complications. Anaerobic isolates were present in 29.4% of patients with intracranial complications and 5.7% of patients without intracranial complications (P = .015). Nearly a quarter of pediatric patients with coalescent mastoiditis presented with a simultaneous intracranial complication. There was an increased incidence of anaerobic organisms in patients with intracranial complications compared to those without, indicating the importance of culture and antibiotic coverage appropriate for anaerobes. This series demonstrates the role of aggressive surgical management and close collaboration with the infectious disease service for long-term intravenous antibiotic therapy in treating pediatric patients with advanced mastoiditis.

  1. The merger of two giant anticyclones in the atmosphere of Jupiter

    NASA Astrophysics Data System (ADS)

    Sanchez-Lavega, A.; Orton, G. S.; Morales, R.; Lecacheux, J.; Colas, F.; Fisher, B.; Fukumura-Sawada, P.; Golisch, W.; Griep, D.; Kaminski, C.; Baines, K.; Rages, K.; West, R.

    2000-10-01

    Two giant ovals in Jupiter's southern atmosphere, vortices of counterclockwise-rotating winds, merged in a 3-week period, starting in March 2000. One of the ovals called FA was more than 60 years old; the other called BE was the product of two 60-year ovals (BC and DE) that merged in 1998 (Sanchez-Lavega et al., Icarus, Vol. 142, 116. 1999). Here we report the coordinated observations of the BE - FA merger obtained with different facilities: The 1 - m Pic-du-Midi telescope (visual wavelength range), the 3.5 m NASA - IRTF telescope (red and near infrared range) and the Hubble Space Telescope (visual range). The merger took place when the ovals were southeast of the Great Red Spot and after the disappearance of a smaller, clockwise-rotating oval midway between them. The interaction began when the high-altitude oval clouds showed counterclockwise rotation about each other, followed by coalescence and shrinking. The interaction in deeper clouds did not include mutual rotation, but there was evidence of complex cloud structure during the merger. After 60 years, these three vortices consolidate into a single vortex that could now either (1) merge with the large, axisymmetric high-albedo band from which the ovals were originally formed or (2) continue as a stable and long-lived vortex in Jupiter. If the new oval (BA) is long-lived, then it is tempting to speculate that the more than 300-year old Great Red Spot could have had a similar genesis. The Spanish team was supported by Gobierno Vasco PI 034/97. The French team was supported by the "Programme National de Planetologie." The US team was supported by NASA through grants to the Institute for Astronomy (U. Hawaii) and JPL. Some of the observations were made by the NASA-ESA Hubble Space Telescope, with support provided through grant GO-8148 from the Space Telescope Science Institute which is operated by the Association of Universities for Research in Astronmy under NASA contract NAS5-26555. RM acknowledges a fellowship from Universidad Pais Vasco.

  2. Coalescence Effects on Neutron Production in High Energy Nucleus-Nucleus Collisions

    DTIC Science & Technology

    2001-08-01

    25/Jun/2001 THESIS 1 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER COALESCENCE EFFECTS ON NEUTRON PRODUCTION IN HIGH- ENERGY NUCLEUS-NUCLEUS COLLISIONS 5b... Energy Nucleus-Nucleus Collisions." I have examined the final copy of this thesis for form and content and recommend that it be accepted in partial...School COALESCENCE EFFECTS ON NEUTRON PRODUCTION IN HIGH ENERGY NUCLEUS-NUCLEUS COLLISIONS A Thesis Presented for the Master of Science Degree The

  3. Phase segregation due to simultaneous migration and coalescence

    NASA Technical Reports Server (NTRS)

    Davis, Robert H.; Wang, Hua; Hawker, Debra

    1994-01-01

    Ground-based modeling and experiments have been performed on the interaction and coalescence of drops leading to macroscopic phase separation. The focus has been on gravity-induced motion, with research also initiated on thermocapillary motion of drops. The drop size distribution initially shifts toward larger drops with time due to coalescence, and then a back towards smaller drops due to the larger preferentially settling out. As a consequence, the phase separation rate initially increases with time and then decreases.

  4. Lattice-Boltzmann simulation of coalescence-driven island coarsening

    USGS Publications Warehouse

    Basagaoglu, H.; Green, C.T.; Meakin, P.; McCoy, B.J.

    2004-01-01

    The first-order phase separation in a thin fluid film was simulated using a two-dimensional lattice-Boltzman model (LBM) with fluid-fluid interactions. The effects of the domain size on the intermediate asymptotic island size distribution were also discussed. It was observed that the overall process is dominated by coalescence which is independent of island mass. The results show that the combined effects of growth, coalescence, and Ostwald ripening control the phase transition process in the LBM simulations.

  5. Viscosity Measurement Using Drop Coalescence in Microgravity

    NASA Technical Reports Server (NTRS)

    Antar, Basil N.; Ethridge, Edwin C.; Maxwell, Daniel; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    We present in here validation studies of a new method for application in microgravity environment which measures the viscosity of highly viscous undercooled liquids using drop coalescence. The method has the advantage of avoiding heterogeneous nucleation at container walls caused by crystallization of undercooled liquids during processing. Homogeneous nucleation can also be avoided due to the rapidity of the measurement using this method. The technique relies on measurements from experiments conducted in near zero gravity environment as well as highly accurate analytical formulation for the coalescence process. The viscosity of the liquid is determined by allowing the computed free surface shape relaxation time to be adjusted in response to the measured free surface velocity for two coalescing drops. Results are presented from two sets of validation experiments for the method which were conducted on board aircraft flying parabolic trajectories. In these tests the viscosity of a highly viscous liquid, namely glycerin, was determined at different temperatures using the drop coalescence method described in here. The experiments measured the free surface velocity of two glycerin drops coalescing under the action of surface tension alone in low gravity environment using high speed photography. The liquid viscosity was determined by adjusting the computed free surface velocity values to the measured experimental data. The results of these experiments were found to agree reasonably well with the known viscosity for the test liquid used.

  6. Investigation of Stable Atmospheric Stratification Effect on the Dynamics of Descending Vortex Pairs

    DOT National Transportation Integrated Search

    1979-02-01

    The physics of vortex flows in stratified fluids is studied with the objective of determining the influence of stable stratification on the descent of aircraft vortex pairs. Vortex rings descending into linear and discontinuous density stratification...

  7. Tunable magnetic vortex resonance in a potential well

    NASA Astrophysics Data System (ADS)

    Warnicke, P.; Wohlhüter, P.; Suszka, A. K.; Stevenson, S. E.; Heyderman, L. J.; Raabe, J.

    2017-11-01

    We use frequency-resolved x-ray microscopy to fully characterize the potential well of a magnetic vortex in a soft ferromagnetic permalloy square. The vortex core is excited with magnetic broadband pulses and simultaneously displaced with a static magnetic field. We observe a frequency increase (blueshift) in the gyrotropic mode of the vortex core with increasing bias field. Supported by micromagnetic simulations, we show that this frequency increase is accompanied by internal deformation of the vortex core. The ability to modify the inner structure of the vortex core provides a mechanism to control the dynamics of magnetic vortices.

  8. Interaction of Vortex Rings and Steady Jets with Permeable Screens of Varied Porosity

    NASA Astrophysics Data System (ADS)

    Musta, Mustafa

    2013-11-01

    Vortex ring and steady jet interaction with a porous matrix formed from several parallel, transparent permeable screens with the same grid geometry for open area ratios (φ) 49.5% - 83.8% was studied previously using digital particle image velocimetry (DPIV) at jet Reynolds number (Re) of 1000-3000. Vortex ring results showed that unlike the experiments with thin screens, a transmitted vortex ring, which has a similar diameter to the primary one, wasn't formed. Instead a centerline vortex ring like structure formed and its diameter, circulation, and dissipation time decreased as φ decreased. However, for the case of screens φ = 55.7% with large screen spacing, reformation of large scale weak vortex rings was observed downstream of the first screen. The present work experimentally investigates the interaction of vortex rings and steady jets with screens of decreasing φ (83.8%-49.5%) in the flow direction. A piston type vortex ring generator was used and measurements were made using DPIV. The vortex ring results show that the size and circulation of the vortex ring like flow structure was changed based on the screen φ within the permeable screen matrix. Similarly, steady jet flow structure and the local turbulent kinetic energy was changed based on the local screen φ.

  9. Numerical investigation of a vortex ring impinging on a coaxial aperture

    NASA Astrophysics Data System (ADS)

    Hu, Jiacheng; Peterson, Sean D.

    2017-11-01

    Recent advancements in smart materials have sparked an interest in the development of small scale fluidic energy harvesters for powering distributed applications in aquatic environments, where coherent vortex structures are prevalent. Thus, it is crucial to investigate the interaction of viscous vortices in the proximity of a thin plate (a common harvester configuration). Hence, the present study systematically examines the interaction of a vortex ring impinging on an infinitesimally thin wall with a coaxially aligned annular aperture. The rigid aperture serves as an axisymmetric counterpart of the thin plate, and the vortex ring represents a typical coherent vortex structure. The results indicate that the vortex dynamics can be categorized into two regimes based on the aperture to ring radius ratio (Rr). The rebound regime (Rr < 0.9) exhibits the classical unsteady boundary layer interaction in a vortex ring-wall collision. The vortex ring is able to slip past the aperture when Rr >= 0.9 , and an increase in the vortex ring impulse is observed for 1.0 <= Rr <= 1.3 due to fluid entrainment. Furthermore, pressure loadings are also compared to elucidate an optimal energy harvesting strategy in vortex impact configurations. This work was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant (RGPIN-05778) and Alexander Graham Bell Canada Graduate Scholarship (CGS-D).

  10. Development of a Josephson vortex two-state system based on a confocal annular Josephson junction

    NASA Astrophysics Data System (ADS)

    Monaco, Roberto; Mygind, Jesper; Koshelets, Valery P.

    2018-07-01

    We report theoretical and experimental work on the development of a Josephson vortex two-state system based on a confocal annular Josephson tunnel junction (CAJTJ). The key ingredient of this geometrical configuration is a periodically variable width that generates a spatial vortex potential with bistable states. This intrinsic vortex potential can be tuned by an externally applied magnetic field and tilted by a bias current. The two-state system is accurately modeled by a one-dimensional sine-Gordon like equation by means of which one can numerically calculate both the magnetic field needed to set the vortex in a given state as well as the vortex-depinning currents. Experimental data taken at 4.2 {{K}} on high-quality Nb/Al-AlOx/Nb CAJTJs with an individual trapped fluxon advocate the presence of a robust and finely tunable double-well potential for which reliable manipulation of the vortex state has been classically demonstrated. The vortex is prepared in a given potential by means of an externally applied magnetic field, while the state readout is accomplished by measuring the vortex-depinning current in a small magnetic field. Our proof of principle experiment convincingly demonstrates that the proposed vortex two-state system based on CAJTJs is robust and workable.

  11. Coalescent Times and Patterns of Genetic Diversity in Species with Facultative Sex: Effects of Gene Conversion, Population Structure, and Heterogeneity

    PubMed Central

    Hartfield, Matthew; Wright, Stephen I.; Agrawal, Aneil F.

    2016-01-01

    Many diploid organisms undergo facultative sexual reproduction. However, little is currently known concerning the distribution of neutral genetic variation among facultative sexual organisms except in very simple cases. Understanding this distribution is important when making inferences about rates of sexual reproduction, effective population size, and demographic history. Here we extend coalescent theory in diploids with facultative sex to consider gene conversion, selfing, population subdivision, and temporal and spatial heterogeneity in rates of sex. In addition to analytical results for two-sample coalescent times, we outline a coalescent algorithm that accommodates the complexities arising from partial sex; this algorithm can be used to generate multisample coalescent distributions. A key result is that when sex is rare, gene conversion becomes a significant force in reducing diversity within individuals. This can reduce genomic signatures of infrequent sex (i.e., elevated within-individual allelic sequence divergence) or entirely reverse the predicted patterns. These models offer improved methods for assessing null patterns of molecular variation in facultative sexual organisms. PMID:26584902

  12. Coalescent Times and Patterns of Genetic Diversity in Species with Facultative Sex: Effects of Gene Conversion, Population Structure, and Heterogeneity.

    PubMed

    Hartfield, Matthew; Wright, Stephen I; Agrawal, Aneil F

    2016-01-01

    Many diploid organisms undergo facultative sexual reproduction. However, little is currently known concerning the distribution of neutral genetic variation among facultative sexual organisms except in very simple cases. Understanding this distribution is important when making inferences about rates of sexual reproduction, effective population size, and demographic history. Here we extend coalescent theory in diploids with facultative sex to consider gene conversion, selfing, population subdivision, and temporal and spatial heterogeneity in rates of sex. In addition to analytical results for two-sample coalescent times, we outline a coalescent algorithm that accommodates the complexities arising from partial sex; this algorithm can be used to generate multisample coalescent distributions. A key result is that when sex is rare, gene conversion becomes a significant force in reducing diversity within individuals. This can reduce genomic signatures of infrequent sex (i.e., elevated within-individual allelic sequence divergence) or entirely reverse the predicted patterns. These models offer improved methods for assessing null patterns of molecular variation in facultative sexual organisms. Copyright © 2016 by the Genetics Society of America.

  13. Critical frequency for coalescence of emulsions in an AC electric field

    NASA Astrophysics Data System (ADS)

    Liu, Zhou; Ali, Faizi Hammad; Shum, Ho Cheung

    2017-11-01

    Applying an electric field to trigger the coalescence of emulsions has been applied in various applications which include crude oil recovery, emulsion stability characterization as well as pico-injection and droplet-based chemical reaction in microfluidics. In this work, we systematically investigated the responses of surfactant-stabilized emulsions to a controlled AC electric field using a customer-built chip. At a given amplitude of the AC voltage, we found a critical frequency beyond which the emulsions remain stable. When the frequency is decreased to below the critical value, emulsions coalesce immediately. Such critical frequency is found to be dependent of amplitude of the AC voltage, viscosity of the fluids, concentration and type of the surfactant as well as the electric conductivity of the droplet phase. Using a model based on the drainage of thin film, we have explored the mechanism behind and interpret this phenomenon systematically. Our work extends the understanding of the electro-coalescence of emulsions and can be beneficial for any applications involve the coalescence of droplets in an AC electric field.

  14. Flow structure of vortex-wing interaction

    NASA Astrophysics Data System (ADS)

    McKenna, Christopher K.

    Impingement of a streamwise-oriented vortex upon a fin, tail, blade or wing represents a fundamental class of flow-structure interaction that extends across a range of applications. This interaction can give rise to time-averaged loading, as well as unsteady loading known as buffeting. The loading is sensitive to parameters of the incident vortex as well as the location of vortex impingement on the downstream aerodynamic surface, generically designated as a wing. Particle image velocimetry is employed to determine patterns of velocity, vorticity, swirl ratio, and streamlines on successive cross-flow planes upstream of and along the wing, which lead to volume representations and thereby characterization of the interaction. At locations upstream of the leading edge of the wing, the evolution of the incident vortex is affected by the presence of the wing, and is highly dependent on the spanwise location of vortex impingement. Even at spanwise locations of impingement well outboard of the wing tip, a substantial influence on the structure of the incident vortex at locations significantly upstream of the leading edge of the wing was observed. For spanwise locations close to or intersecting the vortex core, the effects of upstream influence of the wing on the vortex are to: decrease the swirl ratio; increase the streamwise velocity deficit; decrease the streamwise vorticity; increase the azimuthal vorticity; increase the upwash; decrease the downwash; and increase the root-mean-square fluctuations of both streamwise velocity and vorticity. The interrelationship between these effects is addressed, including the rapid attenuation of axial vorticity in presence of an enhanced defect of axial velocity in the central region of the vortex. Moreover, when the incident vortex is aligned with, or inboard of, the tip of the wing, the swirl ratio decreases to values associated with instability of the vortex, giving rise to enhanced values of azimuthal vorticity relative to the streamwise (axial) vorticity, as well as relatively large root-mean-square values of streamwise velocity and vorticity. Along the chord of the wing, the vortex interaction gives rise to distinct modes, which may involve either enhancement or suppression of the vortex generated at the tip of the wing. These modes are classified and interpreted in conjunction with computed modes at the Air Force Research Laboratory. Occurrence of a given mode of interaction is predominantly determined by the dimensionless location of the incident vortex relative to the tip of the wing and is generally insensitive to the Reynolds number and dimensionless circulation of the incident vortex. The genesis of the basic modes of interaction is clarified using streamline topology with associated critical points. Whereas formation of an enhanced tip vortex involves a region of large upwash in conjunction with localized flow separation, complete suppression of the tip vortex is associated with a small-scale separation-attachment bubble bounded by downwash at the wing tip. Oscillation of the wing at an amplitude and velocity nearly two orders of magnitude smaller than the wing chord and free stream velocity respectively can give rise to distinctive patterns of upwash, downwash, and shed vorticity, which are dependent on the outboard displacement of the incident vortex relative to the wing tip. Moreover, these patterns are a strong function of the phase of the wing motion during its oscillation cycle. At a given value of phase, the wing oscillation induces upwash that is reinforced by the upwash of the incident vortex, giving a maximum value of net upwash. Conversely, when these two origins of upwash counteract, rather than reinforce, one another during the oscillation cycle, the net upwash has its minimum value. Analogous interpretations hold for regions of maximum and minimum net downwash located outboard of the regions of upwash. During the oscillation cycle of the wing, the magnitude and scale of the vorticity shed from the tip of the wing are directly correlated with the net upwash, which takes different forms related to the outboard displacement of the incident vortex. As the location of the incident vortex is displaced towards the wing tip, both the maximum upwash and the maximum vorticity of the tip vortex initially increase, then decrease. For the limiting case where the incident vortex impinges directly upon the tip of the wing, there is no tip vortex or induced region of upwash. Furthermore, at small values of vortex displacement from the wing tip, the position of the incident vortex varies significantly from its nominal position during the oscillation cycle. For all locations of the incident vortex, it is shown that, despite the small amplitude of the wing motion, the flow topology is fundamentally different at maximum positive and negative values of the wing velocity, that is, they are not symmetric.

  15. Quasi-horizontal transport and mixing in the Antarctic stratosphre

    NASA Technical Reports Server (NTRS)

    Chen, Ping; Holton, James R.; O'Neill, Alan; Swinbank, Richard

    1994-01-01

    The quasi-horizontal transport and mixing properties of the Antarctic stratosphere are investigated with a simi-Lagrangian transport model and a 'contour advection' technique for the winter and spring of 1992 using analyzed winds from the United Kingdom Meteorological Office data assimiliation system. Transport calculations show that passive tracers are well mixed inside the polar vortex as well as in the midlatitude 'surf zone.' A the vortex edge, strong radial gradients in the tracer fields are well preserved, and their evolutions follow that of the potential vorticity until some time after the breakdown of the polar vortex. In the middle stratosphere there is little tracer exchange across the vortex edge in August and September. Some vortex air is eroded into the surf zone in filamentary form in October, and very strong exchange of air occurs between high and middle latitudes in November. In the lower stratosphere the vortex is not so isolated from the midlatitudes as in the middle stratosphere, and there is more mass exchange across the vortex edge. Calculations of the lengthening of material contours using the contour advection technique show that in the middle stratosphere, strong stirring (i.e., stretching and folding of material elements) occurs in the inner vortex, while the strongest stirring occurs in the midlatitude surf zone and the weakest occurs at the vortex edge. In the lower strtosphere, strong stirring occurs in the inner vortex. Stirring is moderate at the vortex edge and in the midlatitudes.

  16. Presidential Green Chemistry Challenge: 2005 Designing Greener Chemicals Award

    EPA Pesticide Factsheets

    Presidential Green Chemistry Challenge 2005 award winner, Archer Daniels Midland, developed Archer RC, a nonvolatile, biobased, reactive coalescent that replaces volatile organic coalescents in architectural latex paints.

  17. Breath Figures under Electrowetting: Electrically Controlled Evolution of Drop Condensation Patterns

    NASA Astrophysics Data System (ADS)

    Baratian, Davood; Dey, Ranabir; Hoek, Harmen; van den Ende, Dirk; Mugele, Frieder

    2018-05-01

    We show that electrowetting (EW) with structured electrodes significantly modifies the distribution of drops condensing onto flat hydrophobic surfaces by aligning the drops and by enhancing coalescence. Numerical calculations demonstrate that drop alignment and coalescence are governed by the drop-size-dependent electrostatic energy landscape that is imposed by the electrode pattern and the applied voltage. Such EW-controlled migration and coalescence of condensate drops significantly alter the statistical characteristics of the ensemble of droplets. The evolution of the drop size distribution displays self-similar characteristics that significantly deviate from classical breath figures on homogeneous surfaces once the electrically induced coalescence cascades set in beyond a certain critical drop size. The resulting reduced surface coverage, coupled with earlier drop shedding under EW, enhances the net heat transfer.

  18. Coalescence of Nanoclusters Analyzed by Well-Tempered Metadynamics. Comparison with Straightforward Molecular Dynamics.

    PubMed

    Farigliano, Lucas M; Paz, Sergio A; Leiva, Ezequiel P M; Villarreal, Marcos A

    2017-08-08

    The coalescence process of two nanoparticles to yield a core-shell structure is analyzed by a well-tempered metadynamics procedure. This methodology has been shown to be useful in understanding the present phenomenon in terms of two collective variables: the distance between the center of mass of the coalescing particles and the gyration radius of the resulting core element. The free-energy contour plots clearly show that the coalescence process involves the deformation of the core material, which is manifested in the residence of the system in regions with a larger gyration radius. Results from molecular dynamics for the same system were found helpful to reach the definition of this second collective variable. The advantages and limitations of the latter approach are discussed.

  19. Three-dimensional thermocapillary flow regimes with evaporation

    NASA Astrophysics Data System (ADS)

    Bekezhanova, V. B.; Goncharova, O. N.

    2017-10-01

    A three-dimensional problem of evaporative convection in a system of the immiscible media with a common thermocapillary interface is studied. New exact solution, which is a generalization of the Ostroumov - Birikh solution of the Navier - Stokes equations in the Oberbeck - Boussinesq approximation, is presented in order to describe the joint flows of the liquid and gas - vapor mixture in an infinite channel with a rectangular cross-section. The motion occurs in the bulk force field under action of a constant longitudinal temperature gradient. The velocity components depend only on the transverse coordinates. The functions of pressure, temperature and concentration of vapor in the gas are characterized by the linear dependence on the longitudinal coordinate. In the framework of the problem statement, which takes into account diffusive mass flux through the interface and zero vapor flux at the upper boundary of the channel, the influence of the gravity and intensity of the thermal action on flow structure is studied. The original three-dimensional problem is reduced to a chain of two-dimensional problems which are solved numerically with help of modification of the method of alternating directions. Arising flows can be characterized as a translational-rotational motion, under that the symmetrical double, quadruple or sextuple vortex structures are formed. Quantity, shape and structure of the vortexes also depend on properties of the working media.

  20. Vortical flow management for improved configuration aerodynamics: Recent experiences

    NASA Technical Reports Server (NTRS)

    Rao, D. M.

    1983-01-01

    Recent progress in vortex-control applications for alleviating the adverse consequences of three dimensional separation and vortical interactions on slender body/swept wing configurations is reported. Examples include helical separation trip to alleviate the side force due to forebody vortex asymmetry; hinged strakes to avoid vortex breakdown effects; compartmentation of swept leading edge separation to delay the pitch-up instability; under wing vortex trip and vortex trip and vortex flaps for drag reduction at high lift; and an apex-flap trimmer to fully utilize the lift capability of trailing-edge flaps for take off and landing of delta wings. Experimental results on generic wind-tunnel models are presented to illustrate the vortex-management concepts involved and to indicate their potential for enhancing the subsonic aerodynamics of supersonic-cruise type vehicles.

  1. An experimental study of pressures on 60 deg Delta wings with leading edge vortex flaps

    NASA Technical Reports Server (NTRS)

    Marchman, J. F., III; Terry, J. E.; Donatelli, D. A.

    1983-01-01

    An experimental study was conducted in the Virginia Tech Stability Wind Tunnel to determine surface pressures over a 60 deg sweep delta wing with three vortex flap designs. Extensive pressure data was collected to provide a base data set for comparison with computational design codes and to allow a better understanding of the flow over vortex flaps. The results indicated that vortex flaps can be designed which will contain the leading edge vortex with no spillage onto the wing upper surface. However, the tests also showed that flaps designed without accounting for flap thickness will not be optimum and the result can be oversized flaps, early flap vortex reattachment and a second separation and vortex at the wing/flap hinge line.

  2. Direct observation of vortex structure in a high-{Tc} YBa{sub 2}Cu{sub 3}O{sub 7{minus}y} thin film by Bitter decoration method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sugimoto, Akira; Yamaguchi, Tetsuji; Iguchi, Ienari

    1999-12-01

    The Bitter decoration technique is one of the most powerful techniques to study the vortex structure of superconductor. The authors report the observation of vortex structure in a high {Tc} YBa{sub 2}Cu{sub 3}O{sub 7{minus}y} (YBCO) thin film by Bitter decoration method. The image of vortex structure was monitored by SEM, AFM and high resolution optical microscope. For magnetic field about 4--6mT, a vortex structure is seen. The vortex image varied with changing magnetic field. As compared with the vortex image of a Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+y} single crystal, the observed image appeared to be more randomly distributed.

  3. Vortex circulation and polarity patterns in closely packed cap arrays

    DOE PAGES

    Streubel, Robert; Kronast, Florian; Reiche, Christopher F.; ...

    2016-01-25

    For this work, we studied curvature-driven modifications to the magnetostatic coupling of vortex circulation and polarity in soft-magnetic closely packed cap arrays. A phase diagram for the magnetic remanent/transition states at room temperature as a function of diameter and thickness was assembled. For specimens with vortex remanent state (40 nm-thick Permalloy on 330 nm spherical nanoparticles), both vortex circulation and polarity were visualized. Intercap coupling upon vortex nucleation leads to the formation of vortex circulation patterns in closely packed arrays. The remanent circulation pattern can be tailored choosing the direction of the applied magnetic field with respect to the symmetrymore » axis of the hexagonal array. An even and random distribution of vortex polarity indicates the absence of any circulation-polarity coupling.« less

  4. Some observations of tip-vortex cavitation

    NASA Astrophysics Data System (ADS)

    Arndt, R. E. A.; Arakeri, V. H.; Higuchi, H.

    1991-08-01

    Cavitation has been observed in the trailing vortex system of an elliptic platform hydrofoil. A complex dependence on Reynolds number and gas content is noted at inception. Some of the observations can be related to tension effects associated with the lack of sufficiently large-sized nuclei. Inception measurements are compared with estimates of pressure in the vortex obtained from LDV measurements of velocity within the vortex. It is concluded that a complete correlation is not possible without knowledge of the fluctuating levels of pressure in tip-vortex flows. When cavitation is fully developed, the observed tip-vortex trajectory flows. When cavitation is fully developed, the observed tip-vortex trajectory shows a surprising lack of dependence on any of the physical parameters varied, such as angle of attack, Reynolds number, cavitation number, and dissolved gas content.

  5. Vortex rings

    NASA Technical Reports Server (NTRS)

    Shariff, Karim; Leonard, Anthony

    1992-01-01

    The vortex-ring problem in fluid mechanics is examined generally in terms of formation, the steady state, the duration of the rings, and vortex interactions. The formation is studied by examining the generation of laminar and turbulent vortex rings and their resulting structures with attention given to the three stages of laminar ring development. Inviscid dynamics is addressed to show how core dynamics affects overall ring motion, and laminar vortex structures are described in two dimensions. Viscous and inviscid structures are related in terms of 'leapfrogging', head-on collisions, and collisions with a no-slip wall. Linear instability theory is shown to successfully describe observational data, although late stages in the breakdown are not completely understood. This study of vortex rings has important implications for key aerodynamic issues including sound generation, transport and mixing, and vortex interactions.

  6. The interaction between a propagating coastal vortex and topographic waves

    NASA Astrophysics Data System (ADS)

    Parry, Simon Wyn

    This thesis investigates the motion of a point vortex near coastal topography in a rotating frame of reference at constant latitude (f-plane) in the linear and weakly nonlinear limits. Topography is considered in the form of an infinitely long escarpment running parallel to a wall. The vortex motion and topographic waves are governed by the conservation of quasi-geostrophic potential vorticity in shallow water, from which a nonlinear system of equations is derived. First the linear limit is studied for three cases; a weak vortex on- and off-shelf and a weak vortex close to the wall. For the first two cases it is shown that to leading order the vortex motion is stationary and a solution for the topographic waves at the escarpment can be found in terms of Fourier integrals. For a weak vortex close to a wall, the leading order solution is a steadily propagating vortex with a topographic wavetrain at the step. Numerical results for the higher order interactions are also presented and explained in terms of conservation of momentum in the along-shore direction. For the second case a resonant interaction between the vortex and the waves occurs when the vortex speed is equal to the maximum group velocity of the waves and the linear response becomes unbounded at large times. Thus it becomes necessary to examine the weakly nonlinear near-resonant case. Using a long wave approximation a nonlinear evolution equation for the interface separating the two regions of differing relative potential vorticity is derived and has similar form to the BDA (Benjamin, Davies, Acrivos 1967) equation. Results for the leading order steadily propagating vortex and for the vortex-wave feedback problem are calculated numerically using spectral multi-step Adams methods.

  7. On the formation modes in vortex interaction for multiple co-axial co-rotating vortex rings

    NASA Astrophysics Data System (ADS)

    Qin, Suyang; Liu, Hong; Xiang, Yang

    2018-01-01

    Interaction among multiple vortices is of particular importance to biological locomotion. It plays an essential role in the force and energy capture. This study examines the motion and dynamics of multiple co-axial co-rotating vortex rings. The vortex rings, which have the same formation time, are successively generated in a piston-cylinder apparatus by accurately controlling the interval time. The flow fields are visualized by the finite-time Lyapunov exponent and then repelling Lagrangian coherent structures (r-LCSs) are determined. Two types of vortex interactions ("strong" and "weak") are defined by investigating the r-LCSs: a strong interaction is indicated by connected r-LCSs showing a channel for fluid transport (termed as a "flux window"); a weak interaction is indicated by disconnected r-LCSs between the vortex rings. For strong interaction, leapfrogging and merger of vortex rings can happen in the later stage of the evolution process; however, the rings are separated for weak interaction. Two distinct formation modes, the formation enhancement mode (FEM) and formation restraint mode (FRM), refer to the effect of one or multiple vortex ring(s) on the initial circulation of the subsequently formed vortex ring. In the FEM, the circulation of a vortex ring is larger than that of an isolated (without interaction) vortex ring. On the other hand, the situation is opposite in the FRM. A dimensionless number reflecting the interaction mechanism, "structure stretching number" S*, is proposed, which evaluates the induced effect of the wake vortices on the formation of a vortex ring. A limiting S* (SL*=(2 ±0.4 ) ×1 0-4) is the bifurcation point of the two formation modes. The augmentation of circulation reaches up to 10% for the FEM when S*SL*), the circulation decreases for at most 20%. The newly defined formation modes and number could shed light on the understanding of the dynamics of multiple vortex ring flows.

  8. Heat transfer enhancement due to a longitudinal vortex produced by a single winglet in a pipe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oyakawa, Kenyu; Senaha, Izuru; Ishikawa, Shuji

    1999-07-01

    Longitudinal vortices were artificially generated by a single winglet vortex generator in a pipe. The purpose of this study is to analyze the motion of longitudinal vortices and their effects on heat transfer enhancement. The flow pattern was visualized by means of both fluorescein and rhodamine B as traces in a water flow. The main vortex was moved spirally along the circumference and the behavior of the other vortices was observed. Streamwise and circumferential heat transfer coefficients on the wall, wall static pressure, and velocity distribution in an overall cross section were also measured for the air flow in amore » range of Reynolds numbers from 18,800 to 62,400. The distributions of the streamwise heat transfer coefficient had a periodic pattern, and the peaks in the distribution were circumferentially moved due to the spiral motion of the main vortex. Lastly, the relationships between the iso-velocity distribution, wall static pressure, and heat transfer characteristics was shown. In the process of forming the vortex behind the winglet vortex generator, behaviors of both the main vortex and the corner vortex were observed as streak lines. The vortex being raised along the end of the winglet, and the vortex ring being rolled up to the main vortex were newly observed. Both patterns of the streamwise velocity on a cross-section and the static pressure on the wall show good correspondences to phenomena of the main vortex spirally flowing downstream. The increased ratio of the heat transfer is similar to that of the friction factor based on the shear stress on the wall surface of the pipe. The quantitative analogy between the heat transfer and the shear stress is confirmed except for some regions, where the effects of the down-wash or blow-away of the secondary flows is caused due to the main vortex.« less

  9. User's manual for interfacing a leading edge, vortex rollup program with two linear panel methods

    NASA Technical Reports Server (NTRS)

    Desilva, B. M. E.; Medan, R. T.

    1979-01-01

    Sufficient instructions are provided for interfacing the Mangler-Smith, leading edge vortex rollup program with a vortex lattice (POTFAN) method and an advanced higher order, singularity linear analysis for computing the vortex effects for simple canard wing combinations.

  10. Physical and Thermal Comfort Properties of Viscose Fabrics made from Vortex and Ring Spun Yarns

    NASA Astrophysics Data System (ADS)

    Thilagavathi, G.; Muthukumar, N.; Kumar, V. Kiran; Sadasivam, Sanjay; Sidharth, P. Mithun; Nikhil Jain, G.

    2017-06-01

    Viscose fiber is frequently preferred for various types of inner and outer knitwear products for its comfort and visual characteristics. In this study, the physical and thermal comfort properties of viscose fabrics made from ring and vortex yarns have been studied to explore the impact of spinning process on fabric properties. 100% viscose fibers were spun into yarns by ring and vortex spinning and the developed yarns were converted to single jersey fabrics. The results indicated that fabrics made from vortex spun yarns had better pilling resistance over that of those from ring spun yarns. There was no significant difference between bursting strength values of vortex and ring spun yarn fabrics. Fabrics made from ring yarn had better dimensional stability compared to fabrics made from vortex yarn. The air permeability and water vapour permeability of vortex yarn fabrics were higher than ring spun yarn fabrics. The vortex yarn fabrics had better thermal comfort properties compared to ring yarn fabrics.

  11. A counter-rotating vortex pair in inviscid fluid

    NASA Astrophysics Data System (ADS)

    Habibah, Ummu; Fukumoto, Yasuhide

    2017-12-01

    We study the motion of a counter-rotating vortex pair with the circulations ±Γ move in incompressible fluid. The assumption is made that the core is very thin, that is the core radius σ is much smaller than the vortex radius d such that ɛ = σ/d ≪ 1. With this condition, the method of matched asymptotic expansion is employed. The solutions of the Navier-Stokes equations and the Biot-Savart law, regarding the inner and outer solutions respectively, are constructed in the form of a small parameter. An asymptotic expansion of the Biot-Savart law near the vortex core provides with the matching condition for an asymptotic expansion for limiting the Navier-Stokes equations for large radius r. The general formula of an anti-parallel vortex pair is established. At leading order O(ɛ0), we apply the special case in inviscid fluid, the Rankine vortex, a circular vortex of uniform vorticity. Furthermore at leading order O(ɛ5) we show the traveling speed of a vortex pair.

  12. Hollow vortex Gaussian beams

    NASA Astrophysics Data System (ADS)

    Zhou, GuoQuan; Cai, YangJian; Dai, ChaoQing

    2013-05-01

    A kind of hollow vortex Gaussian beam is introduced. Based on the Collins integral, an analytical propagation formula of a hollow vortex Gaussian beam through a paraxial ABCD optical system is derived. Due to the special distribution of the optical field, which is caused by the initial vortex phase, the dark region of a hollow vortex Gaussian beam will not disappear upon propagation. The analytical expressions for the beam propagation factor, the kurtosis parameter, and the orbital angular momentum density of a hollow vortex Gaussian beam passing through a paraxial ABCD optical system are also derived, respectively. The beam propagation factor is determined by the beam order and the topological charge. The kurtosis parameter and the orbital angular momentum density depend on beam order n, topological charge m, parameter γ, and transfer matrix elements A and D. As a numerical example, the propagation properties of a hollow vortex Gaussian beam in free space are demonstrated. The hollow vortex Gaussian beam has eminent propagation stability and has crucial application prospects in optical micromanipulation.

  13. Microscale vortex laser with controlled topological charge

    NASA Astrophysics Data System (ADS)

    Wang, Xing-Yuan; Chen, Hua-Zhou; Li, Ying; Li, Bo; Ma, Ren-Min

    2016-12-01

    A microscale vortex laser is a new type of coherent light source with small footprint that can directly generate vector vortex beams. However, a microscale laser with controlled topological charge, which is crucial for virtually any of its application, is still unrevealed. Here we present a microscale vortex laser with controlled topological charge. The vortex laser eigenmode was synthesized in a metamaterial engineered non-Hermitian micro-ring cavity system at exceptional point. We also show that the vortex laser cavity can operate at exceptional point stably to lase under optical pumping. The microscale vortex laser with controlled topological charge can serve as a unique and general building block for next-generation photonic integrated circuits and coherent vortex beam sources. The method we used here can be employed to generate lasing eigenmode with other complex functionalities. Project supported by the “Youth 1000 Talent Plan” Fund, Ministry of Education of China (Grant No. 201421) and the National Natural Science Foundation of China (Grant Nos. 11574012 and 61521004).

  14. Mode coupling in vortex beams

    NASA Astrophysics Data System (ADS)

    Eyyuboğlu, Halil T.

    2018-05-01

    We examine the mode coupling in vortex beams. Mode coupling also known as the crosstalk takes place due to turbulent characteristics of the atmospheric communication medium. This way, the transmitted intrinsic mode of the vortex beam leaks power to other extrinsic modes, thus preventing the correct detection of the transmitted symbol which is usually encoded into the mode index or the orbital angular momentum state of the vortex beam. Here we investigate the normalized power mode coupling ratios of several types of vortex beams, namely, Gaussian vortex beam, Bessel Gaussian beam, hypergeometric Gaussian beam and Laguerre Gaussian beam. It is found that smaller mode numbers lead to less mode coupling. The same is partially observed for increasing source sizes. Comparing the vortex beams amongst themselves, it is seen that hypergeometric Gaussian beam is the one retaining the most power in intrinsic mode during propagation, but only at lowest mode index of unity. At higher mode indices this advantage passes over to the Gaussian vortex beam.

  15. Vortex Generators in a Two-Dimensional, External-Compression Supersonic Inlet

    NASA Technical Reports Server (NTRS)

    Baydar, Ezgihan; Lu, Frank K.; Slater, John W.

    2016-01-01

    Vortex generators within a two-dimensional, external-compression supersonic inlet for Mach 1.6 were investigated to determine their ability to increase total pressure recovery, reduce total pressure distortion, and improve the boundary layer. The vortex generators studied included vanes and ramps. The geometric factors of the vortex generators studied included height, length, spacing, and positions upstream and downstream of the inlet terminal shock. The flow through the inlet was simulated through the computational solution of the steady-state Reynolds-averaged Navier-Stokes equations on multi-block, structured grids. The vortex generators were simulated by either gridding the geometry of the vortex generators or modeling the vortices generated by the vortex generators. The inlet performance was characterized by the inlet total pressure recovery, total pressure distortion, and incompressible shape factor of the boundary-layer at the engine face. The results suggested that downstream vanes reduced the distortion and improved the boundary layer. The height of the vortex generators had the greatest effect of the geometric factors.

  16. Robust and adjustable C-shaped electron vortex beams

    NASA Astrophysics Data System (ADS)

    Mousley, M.; Thirunavukkarasu, G.; Babiker, M.; Yuan, J.

    2017-06-01

    Wavefront engineering is an important quantum technology, often applied to the production of states carrying orbital angular momentum (OAM). Here, we demonstrate the design and production of robust C-shaped beam states carrying OAM, in which the usual doughnut-shaped transverse intensity structure of the vortex beam contains an adjustable gap. We find that the presence of the vortex lines in the core of the beam is crucial for maintaining the stability of the C-shape structure during beam propagation. The topological charge of the vortex core controls mainly the size of the C-shape, while its opening angle is related to the presence of vortex-anti-vortex loops. We demonstrate the generation and characterisation of C-shaped electron vortex beams, although the result is equally applicable to other quantum waves. C-shaped electron vortex beams have potential applications in nanoscale fabrication of planar split-ring structures and three-dimensional chiral structures as well as depth sensing and magnetic field determination through rotation of the gap in the C-shape.

  17. On the combination of kinematics with flow visualization to compute total circulation - Application to vortex rings in a tube

    NASA Technical Reports Server (NTRS)

    Brasseur, J. G.; Chang, I.-D.

    1980-01-01

    To date the computation of the total circulation, or strength of a vortex has required detailed measurements of the velocity field within the vortex. In this paper a method is described in which the kinematics of the vortical flow field is exploited to calculate the strength of a vortex from relatively simple flow visualization measurements. There are several advantages in the technique, the most important being the newly acquired ability to calculate the transient changes in strength of a single vortex as it evolves. The method is applied to the study of vortex rings, although the development can be carried over directly to study vortex pairs, and it is expected that it can be generalized to other flows which contain regions of concentrated vorticity. The accuracy of the method as applied to vortex rings, assessed in part by comparing with the laser Doppler velocimeter (LDV) measurements of Sullivan et al., is shown to be excellent.

  18. Manipulation of upstream rotor leading edge vortex and its effects on counter rotating propeller noise

    NASA Technical Reports Server (NTRS)

    Squires, Becky

    1993-01-01

    The leading edge vortex of a counter rotating propeller (CRP) model was altered by using shrouds and by turning the upstream rotors to a forward sweep configuration. Performance, flow, and acoustic data were used to determine the effect of vortex impingement on the noise signature of the CRP system. Forward sweep was found to eliminate the leading edge vortex of the upstream blades. Removal of the vortex had little effect on the tone noise at the forward and rear blade passing frequencies (BPF's) but significantly altered both the sound pressure level and directivity of the interaction tone which occurs at the sum of the two BPF's. A separate manipulation of the leading edge vortex performed by installing shrouds of various inlet length on the CRP verified that diverting the vortex path increases the noise level of the interaction tone. An unexpected link has been established between the interaction tone and the leading edge vortex-blade interaction phenomenon.

  19. Documentation for Three Wake Vortex Model Data Sets from Simulation of Flight 587 Wake Vortex Encounter Accident Case

    NASA Technical Reports Server (NTRS)

    Switzer, George F.

    2008-01-01

    This document contains a general description for data sets of a wake vortex system in a turbulent environment. The turbulence and thermal stratification of the environment are representative of the conditions on November 12, 2001 near John F. Kennedy International Airport. The simulation assumes no ambient winds. The full three dimensional simulation of the wake vortex system from a Boeing 747 predicts vortex circulation levels at 80% of their initial value at the time of the proposed vortex encounter. The linked vortex oval orientation showed no twisting, and the oval elevations at the widest point were about 20 meters higher than where the vortex pair joined. Fred Proctor of NASA?s Langley Research Center presented the results from this work at the NTSB public hearing that started 29 October 2002. This document contains a description of each data set including: variables, coordinate system, data format, and sample plots. Also included are instructions on how to read the data.

  20. Giant moving vortex mass in thick magnetic nanodots

    PubMed Central

    Guslienko, K. Y.; Kakazei, G. N.; Ding, J.; Liu, X. M.; Adeyeye, A. O.

    2015-01-01

    Magnetic vortex is one of the simplest topologically non-trivial textures in condensed matter physics. It is the ground state of submicron magnetic elements (dots) of different shapes: cylindrical, square etc. So far, the vast majority of the vortex dynamics studies were focused on thin dots with thickness 5–50 nm and only uniform across the thickness vortex excitation modes were observed. Here we explore the fundamental vortex mode in relatively thick (50–100 nm) dots using broadband ferromagnetic resonance and show that dimensionality increase leads to qualitatively new excitation spectra. We demonstrate that the fundamental mode frequency cannot be explained without introducing a giant vortex mass, which is a result of the vortex distortion due to interaction with spin waves. The vortex mass depends on the system geometry and is non-local because of important role of the dipolar interaction. The mass is rather small for thin dots. However, its importance increases drastically with the dot thickness increasing. PMID:26355430

  1. Giant moving vortex mass in thick magnetic nanodots.

    PubMed

    Guslienko, K Y; Kakazei, G N; Ding, J; Liu, X M; Adeyeye, A O

    2015-09-10

    Magnetic vortex is one of the simplest topologically non-trivial textures in condensed matter physics. It is the ground state of submicron magnetic elements (dots) of different shapes: cylindrical, square etc. So far, the vast majority of the vortex dynamics studies were focused on thin dots with thickness 5-50 nm and only uniform across the thickness vortex excitation modes were observed. Here we explore the fundamental vortex mode in relatively thick (50-100 nm) dots using broadband ferromagnetic resonance and show that dimensionality increase leads to qualitatively new excitation spectra. We demonstrate that the fundamental mode frequency cannot be explained without introducing a giant vortex mass, which is a result of the vortex distortion due to interaction with spin waves. The vortex mass depends on the system geometry and is non-local because of important role of the dipolar interaction. The mass is rather small for thin dots. However, its importance increases drastically with the dot thickness increasing.

  2. Enhanced Amplification and Fan-Out Operation in an All-Magnetic Transistor

    PubMed Central

    Barman, Saswati; Saha, Susmita; Mondal, Sucheta; Kumar, Dheeraj; Barman, Anjan

    2016-01-01

    Development of all-magnetic transistor with favorable properties is an important step towards a new paradigm of all-magnetic computation. Recently, we showed such possibility in a Magnetic Vortex Transistor (MVT). Here, we demonstrate enhanced amplification in MVT achieved by introducing geometrical asymmetry in a three vortex sequence. The resulting asymmetry in core to core distance in the three vortex sequence led to enhanced amplification of the MVT output. A cascade of antivortices travelling in different trajectories including a nearly elliptical trajectory through the dynamic stray field is found to be responsible for this amplification. This asymmetric vortex transistor is further used for a successful fan-out operation, which gives large and nearly equal gains in two output branches. This large amplification in magnetic vortex gyration in magnetic vortex transistor is proposed to be maintained for a network of vortex transistor. The above observations promote the magnetic vortex transistors to be used in complex circuits and logic operations. PMID:27624662

  3. Vortex generation and wave-vortex interaction over a concave plate with roughness and suction

    NASA Technical Reports Server (NTRS)

    Bertolotti, Fabio

    1993-01-01

    The generation and amplification of vortices by surface homogeneities, both in the form of surface waviness and of wall-normal velocity, is investigated using the nonlinear parabolic stability equations. Transients and issues of algebraic growth are avoided through the use of a similarity solution as initial condition for the vortex. In the absence of curvature, the vortex decays as the square root of 1/x when flowing over streamwise aligned riblets of constant height, and grows as the square root of x when flowing over a corresponding streamwise aligned variation of blowing/suction transpiration velocity. However, in the presence of wall inhomogeneities having both streamwise and spanwise periodicity, the growth of the vortex can be much larger. In the presence of curvature, the vortex develops into a Gortler vortex. The 'direct' and 'indirect' interaction mechanisms possible in wave-vortex interaction are presented. The 'direct' interaction does not lead to strong resonance with the flow conditions investigated. The 'indirect' interaction leads to K-type transition.

  4. Excitation of high density surface plasmon polariton vortex array

    NASA Astrophysics Data System (ADS)

    Kuo, Chun-Fu; Chu, Shu-Chun

    2018-06-01

    This study proposes a method to excite surface plasmon polariton (SPP) vortex array of high spatial density on metal/air interface. A doughnut vector beam was incident at four rectangularly arranged slits to excite SPP vortex array. The doughnut vector beam used in this study has the same field intensity distribution as the regular doughnut laser mode, TEM01* mode, but a different polarization distribution. The SPP vortex array is achieved through the matching of both polarization state and phase state of the incident doughnut vector beam with the four slits. The SPP field distribution excited in this study contains stable array-distributed time-varying optical vortices. Theoretical derivation, analytical calculation and numerical simulation were used to discuss the characteristics of the induced SPP vortex array. The period of the SPP vortex array induced by the proposed method had only half SPPs wavelength. In addition, the vortex number in an excited SPP vortex array can be increased by enlarging the structure.

  5. Flow visualization study of a vortex-wing interaction

    NASA Technical Reports Server (NTRS)

    Mehta, R. D.; Lim, T. T.

    1984-01-01

    A flow visualization study in water was completed on the interaction of a streamwise vortex with a laminar boundary layer on a two-dimensional wing. The vortex was generated at the tip of a finite wing at incidence, mounted perpendicular to the main wing, and having the same chord as the main wing. The Reynolds number based on wing chord was about 5000. Two different visualization techniques were used. One involved the injection of two different colored dyes into the vortex and the boundary layer. The other technique utilized hydrogen bubbles as an indicator. The position of the vortex was varied in a directional normal to the wing. The angle of attack of the main wing was varied from -5 to +12.5 deg. The vortex induced noticeable cross flows in the wing boundary layer from a distance equivalent to 0.75 chords. When very close to the wing, the vortex entrained boundary layer fluid and caused a cross flow separation which resulted in a secondary vortex.

  6. Gravitational Waves from Coalescing Binary Black Holes: Theoretical and Experimental Challenges

    ScienceCinema

    Damour, Thibault

    2018-05-22

    A network of ground-based interferometric gravitational wave detectors (LIGO/VIRGO/GEO/...) is currently taking data near its planned sensitivity. Coalescing black hole binaries are among the most promising, and most exciting, gravitational wave sources for these detectors. The talk will review the theoretical and experimental challenges that must be met in order to successfully detect gravitational waves from coalescing black hole binaries, and to be able to reliably measure the physical parameters of the source (masses, spins, ...).

  7. Dynamics of vortex penetration, jumpwise instabilities, and nonlinear surface resistance of type-II superconductors in strong rf fields

    NASA Astrophysics Data System (ADS)

    Gurevich, A.; Ciovati, G.

    2008-03-01

    We consider the nonlinear dynamics of a single vortex in a superconductor in a strong rf magnetic field B0sinωt . Using the London theory, we calculate the dissipated power Q(B0,ω) and the transient time scales of vortex motion. For the linear Bardeen-Stephen viscous drag force, vortex velocities reach unphysically high values during vortex penetration through the oscillating surface barrier. It is shown that penetration of a single vortex through the ac surface barrier always involves penetration of an antivortex and the subsequent annihilation of the vortex-antivortex pairs. Using the nonlinear Larkin-Ovchinnikov (LO) viscous drag force at higher vortex velocities v(t) results in a jumpwise vortex penetration through the surface barrier and a significant increase of the dissipated power. We calculate the effect of dissipation on the nonlinear vortex viscosity η(v) and the rf vortex dynamics and show that it can also result in the LO-type behavior, instabilities, and thermal localization of penetrating vortex channels. We propose a thermal feedback model of η(v) , which not only results in the LO dependence of η(v) for a steady-state motion, but also takes into account retardation of the temperature field around a rapidly accelerating vortex and a long-range interaction with the surface. We also address the effect of pinning on the nonlinear rf vortex dynamics and the effect of trapped magnetic flux on the surface resistance Rs calculated as a function of rf frequency and field. It is shown that trapped flux can result in a temperature-independent residual resistance Ri at low T and a hysteretic low-field dependence of Ri(B0) , which can decrease as B0 is increased, reaching a minimum at B0 much smaller than the thermodynamic critical field Bc . We propose that cycling of the rf field can reduce Ri due to rf annealing of the magnetic flux which is pumped out by the rf field from a thin surface layer of the order of the London penetration depth.

  8. 3D vortex formation of drag-based propulsors

    NASA Astrophysics Data System (ADS)

    Kim, Daegyoum; Gharib, Morteza

    2008-11-01

    Three dimensional vortex formation mechanism of impulsively rotating plates is studied experimentally using defocusing digital particle image velocimetry. The plate face is normal to the moving direction to simulate drag-based propulsion and only one power stroke is considered. In order to compare the effect of shape on vortex generation, three different shapes of plate (rectangular, triangular and duck's webbed-foot shapes) are used. These three cases show striking differences in vortex formation process during power stroke. Axial flow is shown to play an important role in the tip vortex formation. Correlation between hydrodynamic forces acting on the plate and vortex formation processes is described.

  9. Flux Cloning in Josephson Transmission Lines

    NASA Astrophysics Data System (ADS)

    Gulevich, D. R.; Kusmartsev, F. V.

    2006-07-01

    We describe a novel effect related to the controlled birth of a single Josephson vortex. In this phenomenon, the vortex is created in a Josephson transmission line at a T-shaped junction. The “baby” vortex arises at the moment when a “mother” vortex propagating in the adjacent transmission line passes the T-shaped junction. In order to give birth to a new vortex, the mother vortex must have enough kinetic energy. Its motion can also be supported by an externally applied driving current. We determine the critical velocity and the critical driving current for the creation of the baby vortices and briefly discuss the potential applications of the found effect.

  10. Metamorphosis of a Hairpin Vortex into a Young Turbulent Spot

    NASA Technical Reports Server (NTRS)

    Singer, Bart A.; Joslin, Ronald D.

    1995-01-01

    Direct numerical simulation was used to study the formation and growth of a hairpin vortex in a flat-plate boundary layer and its later development into a young turbulent spot. Fluid injection through a slit in the wall triggered the initial vortex. The legs of the vortex were stretched into a hairpin shape as it traveled downstream. Multiple hairpin vortex heads developed between the stretched legs. New vortices formed beneath the streamwise-elongated vortex legs. The continued development of additional vortices resulted in the formation of a traveling region of highly disturbed ow with an arrowhead shape similar to that of a turbulent spot.

  11. Prediction and control of vortex-dominated and vortex-wake flows

    NASA Technical Reports Server (NTRS)

    Kandil, Osama

    1993-01-01

    This progress report documents the accomplishments achieved in the period from December 1, 1992 until November 30, 1993. These accomplishments include publications, national and international presentations, NASA presentations, and the research group supported under this grant. Topics covered by documents incorporated into this progress report include: active control of asymmetric conical flow using spinning and rotary oscillation; supersonic vortex breakdown over a delta wing in transonic flow; shock-vortex interaction over a 65-degree delta wing in transonic flow; three dimensional supersonic vortex breakdown; numerical simulation and physical aspects of supersonic vortex breakdown; and prediction of asymmetric vortical flows around slender bodies using Navier-Stokes equations.

  12. Leading-edge vortex research: Some nonplanar concepts and current challenges

    NASA Technical Reports Server (NTRS)

    Campbell, J. F.; Osborn, R. F.

    1986-01-01

    Some background information is provided for the Vortex Flow Aerodynamics Conference and that current slender wing airplanes do not use variable leading edge geometry to improve transonic drag polar is shown. Highlights of some of the initial studies combining wing camber, or flaps, with vortex flow are presented. Current vortex flap studies were reviewed to show that there is a large subsonic data base and that transonic and supersonic generic studies have begun. There is a need for validated flow field solvers to calculate vortex/shock interactions at transonic and supersonic speeds. Many important research opportunities exist for fundamental vortex flow investigations and for designing advanced fighter concepts.

  13. Beam shaping with vectorial vortex beams under low numerical aperture illumination condition

    NASA Astrophysics Data System (ADS)

    Dai, Jianning; Zhan, Qiwen

    2008-08-01

    In this paper we propose and demonstrate a novel beam shaping method using vectorial vortex beam. A vectorial vortex beam is laser beam with polarization singularity in the beam cross section. This type of beams can be decomposed into two orthogonally polarized components. Each of the polarized components could have different vortex characteristics, and consequently, different intensity distribution when focused by lens. Beam shaping in the far field can be achieved by adjusting the relative weighing of these two components. As one example, we study the vectorial vortex that consists of a linearly polarized Gaussian component and a vortex component polarized orthogonally. When such a vectorial vortex beam is focus by low NA lens, the Gaussian component gives rise to a focal intensity distribution with a solid centre while the vortex component gives rise to a donut distribution with hollow dark center. The shape of the focus can be continuously varied by continuously adjusting the relative weight of the two components. Under appropriate conditions, flat top focusing can be obtained. We experimentally demonstrate the creation of such beams with a liquid crystal spatial light modulator. Flattop focus obtained by vectorial vortex beams with topological charge of +1 has been obtained.

  14. Tracking Blade Tip Vortices for Numerical Flow Simulations of Hovering Rotorcraft

    NASA Technical Reports Server (NTRS)

    Kao, David L.

    2016-01-01

    Blade tip vortices generated by a helicopter rotor blade are a major source of rotor noise and airframe vibration. This occurs when a vortex passes closely by, and interacts with, a rotor blade. The accurate prediction of Blade Vortex Interaction (BVI) continues to be a challenge for Computational Fluid Dynamics (CFD). Though considerable research has been devoted to BVI noise reduction and experimental techniques for measuring the blade tip vortices in a wind tunnel, there are only a handful of post-processing tools available for extracting vortex core lines from CFD simulation data. In order to calculate the vortex core radius, most of these tools require the user to manually select a vortex core to perform the calculation. Furthermore, none of them provide the capability to track the growth of a vortex core, which is a measure of how quickly the vortex diffuses over time. This paper introduces an automated approach for tracking the core growth of a blade tip vortex from CFD simulations of rotorcraft in hover. The proposed approach offers an effective method for the quantification and visualization of blade tip vortices in helicopter rotor wakes. Keywords: vortex core, feature extraction, CFD, numerical flow visualization

  15. A water tunnel flow visualization study of the vortex flow structures on the F/A-18 aircraft

    NASA Technical Reports Server (NTRS)

    Sandlin, Doral R.; Ramirez, Edgar J.

    1991-01-01

    The vortex flow structures occurring on the F/A-18 aircraft at high angles of attack were studied. A water tunnel was used to gather flow visualization data on the forebody vortex and the wing leading edge extension vortex. The longitudinal location of breakdown of the leading edge vortex was found to be consistently dependent on the angle of attack. Other parameters such as Reynolds number, model scale, and model fidelity had little influence on the overall behavior of the flow structures studied. The lateral location of the forebody vortex system was greatly influenced by changes in the angle of sideslip. Strong interactions can occur between the leading edge extension vortex and the forebody vortex. Close attention was paid to vortex induced flows on various airframe components of the F/A-18. Reynolds number and angle of attack greatly affected the swirling intensity, and therefore the strength of the studied vortices. Water tunnel results on the F/A-18 correlated well with those obtained in similar studies at both full and sub scale levels. The water tunnel can provide, under certain conditions, good simulations of realistic flows in full scale configurations.

  16. Vortex Analysis of Intra-Aneurismal Flow in Cerebral Aneurysms

    PubMed Central

    Sunderland, Kevin; Haferman, Christopher; Chintalapani, Gouthami

    2016-01-01

    This study aims to develop an alternative vortex analysis method by measuring structure ofIntracranial aneurysm (IA) flow vortexes across the cardiac cycle, to quantify temporal stability of aneurismal flow. Hemodynamics were modeled in “patient-specific” geometries, using computational fluid dynamics (CFD) simulations. Modified versions of known λ 2 and Q-criterion methods identified vortex regions; then regions were segmented out using the classical marching cube algorithm. Temporal stability was measured by the degree of vortex overlap (DVO) at each step of a cardiac cycle against a cycle-averaged vortex and by the change in number of cores over the cycle. No statistical differences exist in DVO or number of vortex cores between 5 terminal IAs and 5 sidewall IAs. No strong correlation exists between vortex core characteristics and geometric or hemodynamic characteristics of IAs. Statistical independence suggests this proposed method may provide novel IA information. However, threshold values used to determine the vortex core regions and resolution of velocity data influenced analysis outcomes and have to be addressed in future studies. In conclusions, preliminary results show that the proposed methodology may help give novel insight toward aneurismal flow characteristic and help in future risk assessment given more developments. PMID:27891172

  17. Vortex Analysis of Intra-Aneurismal Flow in Cerebral Aneurysms.

    PubMed

    Sunderland, Kevin; Haferman, Christopher; Chintalapani, Gouthami; Jiang, Jingfeng

    2016-01-01

    This study aims to develop an alternative vortex analysis method by measuring structure ofIntracranial aneurysm (IA) flow vortexes across the cardiac cycle, to quantify temporal stability of aneurismal flow. Hemodynamics were modeled in "patient-specific" geometries, using computational fluid dynamics (CFD) simulations. Modified versions of known λ 2 and Q -criterion methods identified vortex regions; then regions were segmented out using the classical marching cube algorithm. Temporal stability was measured by the degree of vortex overlap (DVO) at each step of a cardiac cycle against a cycle-averaged vortex and by the change in number of cores over the cycle. No statistical differences exist in DVO or number of vortex cores between 5 terminal IAs and 5 sidewall IAs. No strong correlation exists between vortex core characteristics and geometric or hemodynamic characteristics of IAs. Statistical independence suggests this proposed method may provide novel IA information. However, threshold values used to determine the vortex core regions and resolution of velocity data influenced analysis outcomes and have to be addressed in future studies. In conclusions, preliminary results show that the proposed methodology may help give novel insight toward aneurismal flow characteristic and help in future risk assessment given more developments.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, M., E-mail: chengm@ihpc.a-star.edu.sg; Lou, J.; Lim, T. T.

    A recent theoretical study [Borisov, Kilin, and Mamaev, “The dynamics of vortex rings: Leapfrogging, choreographies and the stability problem,” Regular Chaotic Dyn. 18, 33 (2013); Borisov et al., “The dynamics of vortex rings: Leapfrogging in an ideal and viscous fluid,” Fluid Dyn. Res. 46, 031415 (2014)] shows that when three coaxial vortex rings travel in the same direction in an incompressible ideal fluid, each of the vortex rings alternately slips through (or leapfrogs) the other two ahead. Here, we use a lattice Boltzmann method to simulate viscous vortex rings with an identical initial circulation, radius, and separation distance with themore » aim of studying how viscous effect influences the outcomes of the leapfrogging process. For the case of two identical vortex rings, our computation shows that leapfrogging can be achieved only under certain favorable conditions, which depend on Reynolds number, vortex core size, and initial separation distance between the two rings. For the case of three coaxial vortex rings, the result differs from the inviscid model and shows that the second vortex ring always slips through the leading ring first, followed by the third ring slipping through the other two ahead. A simple physical model is proposed to explain the observed behavior.« less

  19. Large-scale vortex structures and local heat release in lean turbulent swirling jet-flames under vortex breakdown conditions

    NASA Astrophysics Data System (ADS)

    Chikishev, Leonid; Lobasov, Aleksei; Sharaborin, Dmitriy; Markovich, Dmitriy; Dulin, Vladimir; Hanjalic, Kemal

    2017-11-01

    We investigate flame-flow interactions in an atmospheric turbulent high-swirl methane/air lean jet-flame at Re from 5,000 to 10,000 and equivalence ratio below 0.75 at the conditions of vortex breakdown. The focus is on the spatial correlation between the propagation of large-scale vortex structures, including precessing vortex core, and the variations of the local heat release. The measurements are performed by planar laser-induced fluorescence of hydroxyl and formaldehyde, applied simultaneously with the stereoscopic particle image velocimetry technique. The data are processed by the proper orthogonal decomposition. The swirl rate exceeded critical value for the vortex breakdown resulting in the formation of a processing vortex core and secondary helical vortex filaments that dominate the unsteady flow dynamics both of the non-reacting and reacting jet flows. The flame front is located in the inner mixing layer between the recirculation zone and the annular swirling jet. A pair of helical vortex structures, surrounding the flame, stretch it and cause local flame extinction before the flame is blown away. This work is supported by Russian Science Foundation (Grant No 16-19-10566).

  20. Investigation of Vortex Flaps and Other Flow Control Devices on Generic High-Speed Civil Transport Planforms

    NASA Technical Reports Server (NTRS)

    Kjerstad, Kevin J.; Campbell, Bryan A.; Gile, Brenda E.; Kemmerly, Guy T.

    1999-01-01

    A parametric cranked delta planform study has been conducted in the Langley 14- by 22-Foot Subsonic Tunnel with the following objectives: (1) to evaluate the vortex flap design methodology for cranked delta wings, (2) to determine the influence of leading-edge sweep and the outboard wing on vortex flap effectiveness, (3) to evaluate novel flow control concepts, and (4) to validate unstructured grid Euler computer code predictions with modeled vortex and trailing-edge flaps. Two families of cranked delta planforms were investigated. One family had constant aspect ratio, while the other had a constant nondimensional semispan location of the leading-edge break. The inboard leading-edge sweep of the planforms was varied between 68 deg., 71 deg., and 74 deg., while outboard leading-edge sweep was varied between 48 deg. and 61 deg. Vortex flaps for the different planforms were designed by an analytical vortex flap design method. The results indicate that the effectiveness of the vortex flaps was only slightly influenced by the variations in the parametric planforms. The unstructured grid Euler computer code was successfully used to model the configurations with vortex flaps. The vortex trap concept was successfully demonstrated.

  1. The modelling of symmetric airfoil vortex generators

    NASA Technical Reports Server (NTRS)

    Reichert, B. A.; Wendt, B. J.

    1996-01-01

    An experimental study is conducted to determine the dependence of vortex generator geometry and impinging flow conditions on shed vortex circulation and crossplane peak vorticity for one type of vortex generator. The vortex generator is a symmetric airfoil having a NACA 0012 cross-sectional profile. The geometry and flow parameters varied include angle-of-attack alfa, chordlength c, span h, and Mach number M. The vortex generators are mounted either in isolation or in a symmetric counter-rotating array configuration on the inside surface of a straight pipe. The turbulent boundary layer thickness to pipe radius ratio is delta/R = 0. 17. Circulation and peak vorticity data are derived from crossplane velocity measurements conducted at or about 1 chord downstream of the vortex generator trailing edge. Shed vortex circulation is observed to be proportional to M, alfa, and h/delta. With these parameters held constant, circulation is observed to fall off in monotonic fashion with increasing airfoil aspect ratio AR. Shed vortex peak vorticity is also observed to be proportional to M, alfa, and h/delta. Unlike circulation, however, peak vorticity is observed to increase with increasing aspect ratio, reaching a peak value at AR approx. 2.0 before falling off.

  2. An algorithm for computing the gene tree probability under the multispecies coalescent and its application in the inference of population tree

    PubMed Central

    2016-01-01

    Motivation: Gene tree represents the evolutionary history of gene lineages that originate from multiple related populations. Under the multispecies coalescent model, lineages may coalesce outside the species (population) boundary. Given a species tree (with branch lengths), the gene tree probability is the probability of observing a specific gene tree topology under the multispecies coalescent model. There are two existing algorithms for computing the exact gene tree probability. The first algorithm is due to Degnan and Salter, where they enumerate all the so-called coalescent histories for the given species tree and the gene tree topology. Their algorithm runs in exponential time in the number of gene lineages in general. The second algorithm is the STELLS algorithm (2012), which is usually faster but also runs in exponential time in almost all the cases. Results: In this article, we present a new algorithm, called CompactCH, for computing the exact gene tree probability. This new algorithm is based on the notion of compact coalescent histories: multiple coalescent histories are represented by a single compact coalescent history. The key advantage of our new algorithm is that it runs in polynomial time in the number of gene lineages if the number of populations is fixed to be a constant. The new algorithm is more efficient than the STELLS algorithm both in theory and in practice when the number of populations is small and there are multiple gene lineages from each population. As an application, we show that CompactCH can be applied in the inference of population tree (i.e. the population divergence history) from population haplotypes. Simulation results show that the CompactCH algorithm enables efficient and accurate inference of population trees with much more haplotypes than a previous approach. Availability: The CompactCH algorithm is implemented in the STELLS software package, which is available for download at http://www.engr.uconn.edu/ywu/STELLS.html. Contact: ywu@engr.uconn.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27307621

  3. Aeroacoustic Duster

    NASA Technical Reports Server (NTRS)

    Wu, Jun-ru (Inventor); Hitt, Darren (Inventor); Vachon, Nicholas M. (Inventor); Chen, Di (Inventor); Marshall, Jeffrey S. (Inventor)

    2016-01-01

    The invention disclosed herein provides for high particle removal rate and/or heat transfer from surfaces. The device removes particulate matter from a surface using a bounded vortex generated over the surface, with suction in the vortex center and jets for blowing air along the periphery. The jets are tilted in the tangential direction to induce vortex motion within the suction region. The vortex is said to be bounded because streamlines originating in the downward jets are entrained back into the central vortex.

  4. Vortex Advisory System. Volume I. Effectiveness for Selected Airports.

    DTIC Science & Technology

    1980-05-01

    analysis of tens of thousands of vortex tracks. Wind velocity was found to be the primary determinant of vortex behavior. The VAS uses wind-velocity...and the correlation of vortex be- havior with the ambient winds. Analysis showed that a wind-rose criterion could be used to determine when interarrival...Washington DC. 2. Hallock, J.N., " Vortex Advisory System Safety Analysis , Vol. I: Analytical Model ," FAA-RD-78-68,1, Sep. 1978, DOT/ Transportation

  5. Cavitation and Wake Structure of Unsteady Tip Vortex Flows

    DTIC Science & Technology

    1992-12-10

    wake structure generated by three-dimensional lifting surfaces. No longer can the wake be modeled as a simple horseshoe vortex structure with the tip...first initiates. -13- Z Strtn vortex "~Bound vortex "’ ; b Wake 2 Figure 1.5 Far-Field Horseshoe Model of a Finite Wing This figure shows a finite wing...Figure 1.11 Simplified Illustration of Wake Structure Behind an Oscillating Wing This schematic shows a simplified model of the trailing vortex

  6. In-flight leading-edge extension vortex flow-field survey measurements on a F-18 aircraft at high angle of attack

    NASA Technical Reports Server (NTRS)

    Richwine, David M.; Fisher, David F.

    1992-01-01

    Flow-field measurements on the leading-edge extension (LEX) of the F-18 High Alpha Research Vehicle (HARV) were obtained using a rotating rake with 16 hemispherical-tipped five-hole probes. Detailed pressure, velocity, and flow direction data were obtained through the LEX vortex core. Data were gathered during 1-g quasi-stabilized flight conditions at angles of attack alpha from 10 degrees to 52 degrees and at Reynolds numbers based on mean aerodynamic cord up to 16 x 10(exp 6). Normalized dynamic pressures and crossflow velocities clearly showed the primary vortex above the LEX and formation of a secondary vortex at higher angles of attack. The vortex was characterized by a ring of high dynamic pressure surrounding a region of low dynamic pressure at the vortex core center. The vortex core, subcore diameter, and vertical location of the core above the LEX increased with angle of attack. Minimum values for static pressure were obtained in the vortex subcore and decreased nearly linearly with increasing angle of attack until vortex breakdown. Rake-measured static pressures were consistent with previously documented surface pressures and showed good agreement with flow visualization flight test results. Comparison of the LEX vortex flight test data to computational solutions at alpha approximately equals 19 degrees and 30 degrees showed fair correlation.

  7. Periodicity of the density wake past a vortex ring in a stratified liquid

    NASA Astrophysics Data System (ADS)

    Prokhorov, V.

    2009-04-01

    Spatial coherent structure of the density wake past a vortex ring moving horizontally in viscid stratified liquid is experimentally revealed. It follows from analysis that repetition period of the structure is determined by rotation radial frequency (or mean vorticity) of the vortex core and toward speed of the vortex ring. The wake formation of the ring is considered in respect to vorticity shedding which produces velocity disturbances in ambient medium. In case of stratified liquid velocity fluctuations, in their turn, cause density field distortion. This process is superimposed by vortex core oscillations, and, in result, vorticity shedding will be not monotonous but modulated at some frequency. So, the density wake is periodically structured, and the spatial period is defined by intrinsic frequency of the core and forward speed of the ring. To support analysis, experiments were conducted in which vortex rings excited by spring-piston generator were observed with high-sensitive Schlieren instrument and computer-controlled camera. Experimental tank was filled with salt-stratified water of constant buoyancy period, vortex ring velocities range from 3 to 16 cm/s. Spatial period is derived from schlieren image using two independent methods, both 2D spectral analysis and geometry calculations of the vortex core. Spatial periods and vortex intrinsic frequencies calculated by both algorithms are in good agreement; they vary in power lows depending on vortex speed

  8. Stability of barotropic vortex strip on a rotating sphere

    PubMed Central

    Sohn, Sung-Ik; Kim, Sun-Chul

    2018-01-01

    We study the stability of a barotropic vortex strip on a rotating sphere, as a simple model of jet streams. The flow is approximated by a piecewise-continuous vorticity distribution by zonal bands of uniform vorticity. The linear stability analysis shows that the vortex strip becomes stable as the strip widens or the rotation speed increases. When the vorticity constants in the upper and the lower regions of the vortex strip have the same positive value, the inner flow region of the vortex strip becomes the most unstable. However, when the upper and the lower vorticity constants in the polar regions have different signs, a complex pattern of instability is found, depending on the wavenumber of perturbations, and interestingly, a boundary far away from the vortex strip can be unstable. We also compute the nonlinear evolution of the vortex strip on the rotating sphere and compare with the linear stability analysis. When the width of the vortex strip is small, we observe a good agreement in the growth rate of perturbation at an early time, and the eigenvector corresponding to the unstable eigenvalue coincides with the most unstable part of the flow. We demonstrate that a large structure of rolling-up vortex cores appears in the vortex strip after a long-time evolution. Furthermore, the geophysical relevance of the model to jet streams of Jupiter, Saturn and Earth is examined. PMID:29507524

  9. Stability of barotropic vortex strip on a rotating sphere.

    PubMed

    Sohn, Sung-Ik; Sakajo, Takashi; Kim, Sun-Chul

    2018-02-01

    We study the stability of a barotropic vortex strip on a rotating sphere, as a simple model of jet streams. The flow is approximated by a piecewise-continuous vorticity distribution by zonal bands of uniform vorticity. The linear stability analysis shows that the vortex strip becomes stable as the strip widens or the rotation speed increases. When the vorticity constants in the upper and the lower regions of the vortex strip have the same positive value, the inner flow region of the vortex strip becomes the most unstable. However, when the upper and the lower vorticity constants in the polar regions have different signs, a complex pattern of instability is found, depending on the wavenumber of perturbations, and interestingly, a boundary far away from the vortex strip can be unstable. We also compute the nonlinear evolution of the vortex strip on the rotating sphere and compare with the linear stability analysis. When the width of the vortex strip is small, we observe a good agreement in the growth rate of perturbation at an early time, and the eigenvector corresponding to the unstable eigenvalue coincides with the most unstable part of the flow. We demonstrate that a large structure of rolling-up vortex cores appears in the vortex strip after a long-time evolution. Furthermore, the geophysical relevance of the model to jet streams of Jupiter, Saturn and Earth is examined.

  10. Model of random center vortex lines in continuous 2 +1 -dimensional spacetime

    NASA Astrophysics Data System (ADS)

    Altarawneh, Derar; Engelhardt, Michael; Höllwieser, Roman

    2016-12-01

    A picture of confinement in QCD based on a condensate of thick vortices with fluxes in the center of the gauge group (center vortices) is studied. Previous concrete model realizations of this picture utilized a hypercubic space-time scaffolding, which, together with many advantages, also has some disadvantages, e.g., in the treatment of vortex topological charge. In the present work, we explore a center vortex model which does not rely on such a scaffolding. Vortices are represented by closed random lines in continuous 2 +1 -dimensional space-time. These random lines are modeled as being piecewise linear, and an ensemble is generated by Monte Carlo methods. The physical space in which the vortex lines are defined is a torus with periodic boundary conditions. Besides moving, growing, and shrinking of the vortex configurations, also reconnections are allowed. Our ensemble therefore contains not a fixed but a variable number of closed vortex lines. This is expected to be important for realizing the deconfining phase transition. We study both vortex percolation and the potential V (R ) between the quark and antiquark as a function of distance R at different vortex densities, vortex segment lengths, reconnection conditions, and at different temperatures. We find three deconfinement phase transitions, as a function of density, as a function of vortex segment length, and as a function of temperature.

  11. Feasibility of wake vortex monitoring systems for air terminals

    NASA Technical Reports Server (NTRS)

    Wilson, D. J.; Shrider, K. R.; Lawrence, T. R.

    1972-01-01

    Wake vortex monitoring systems, especially those using laser Doppler sensors, were investigated. The initial phases of the effort involved talking with potential users (air traffic controllers, pilots, etc.) of a wake vortex monitoring system to determine system requirements from the user's viewpoint. These discussions involved the volumes of airspace to be monitored for vortices, and potential methods of using the monitored vortex data once the data are available. A subsequent task led to determining a suitable mathematical model of the vortex phenomena and developing a mathematical model of the laser Doppler sensor for monitoring the vortex flow field. The mathematical models were used in combination to help evaluate the capability of laser Doppler instrumentation in monitoring vortex flow fields both in the near vicinity of the sensor (within 1 kilometer and at long ranges(10 kilometers).

  12. Aeroacoustic interaction of a distributed vortex with a lifting Joukowski airfoil

    NASA Technical Reports Server (NTRS)

    Hardin, J. C.; Lamkin, S. L.

    1984-01-01

    A first principles computational aeroacoustics calculation of the flow and noise fields produced by the interaction of a distributed vortex with a lifting Joukowski airfoil is accomplished at the Reynolds number of 200. The case considered is that where the circulations of the vortex and the airfoil are of opposite sign, corresponding to blade vortex interaction on the retreating side of a single helicopter rotor. The results show that the flow is unsteady, even in the absence of the incoming vortex, resulting in trailing edge noise generation. After the vortex is input, it initially experiences a quite rapid apparent diffusion rate produced by stretching in the airfoil velocity gradients. Consideration of the effects of finite vortex size and viscosity causes the noise radiation during the encounter to be much less impulsive than predicted by previous analyses.

  13. Vortex tube can increase liquid hydrocarbon recovery at plant inlet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hajdik, B.; Lorey, M.; Steinle, J.

    1997-09-08

    Use of a vortex-tube device yields improved inlet gas-liquid separation, when compared with a Joule-Thomson system, but is less costly and complex than a true isentropic system, such as a turboexpander. Because the vortex-tube unit provides separation as well as pressure reduction, the capital cost of a Joule-Thomson system with valve and separator will be similar to that of the vortex-tube system. Future applications of vortex-tube units will be concentrated where performance improvements over Joule-Thomson units, at low capital cost, are required. The operating characteristics of a vortex tube permit gas, in part, to be reduced in temperature to lessmore » than that normally achievable through isenthalpic expansion. The following three examples show how vortex technology can be applied to achieve these aims.« less

  14. Vortex rings impinging on permeable boundaries

    NASA Astrophysics Data System (ADS)

    Mujal-Colilles, Anna; Dalziel, Stuart B.; Bateman, Allen

    2015-01-01

    Experiments with vortex rings impinging permeable and solid boundaries are presented in order to investigate the influence of permeability. Utilizing Particle Image Velocimetry, we compared the behaviour of a vortex ring impinging four different reticulated foams (with permeability k ˜ 26 - 85 × 10-8 m2) and a solid boundary. Results show how permeability affects the stretching phenomena of the vortex ring and the formation and evolution of the secondary vortex ring with opposite sign. Moreover, permeability also affects the macroscopic no-slip boundary condition found on the solid boundary, turning it into an apparent slip boundary condition for the most permeable boundary. The apparent slip-boundary condition and the flux exchange between the ambient fluid and the foam are jointly responsible for both the modified formation of the secondary vortex and changes on the vortex ring diameter increase.

  15. A novel form of β-strand assembly observed in Aβ33-42 adsorbed onto graphene

    NASA Astrophysics Data System (ADS)

    Wang, Xiaofeng; Weber, Jeffrey K.; Liu, Lei; Dong, Mingdong; Zhou, Ruhong; Li, Jingyuan

    2015-09-01

    Peptide assembly plays a seminal role in the fabrication of structural and functional architectures in cells. Characteristically, peptide assemblies are often dominated by β-sheet structures, wherein component molecules are connected by backbone hydrogen bonds in a parallel or an antiparallel fashion. While β-rich peptide scaffolds are implicated in an array of neurodegenerative diseases, the mechanisms by which toxic peptides assemble and mediate neuropathic effects are still poorly understood. In this work, we employ molecular dynamics simulations to study the adsorption and assembly of the fragment Aβ33-42 (taken from the Aβ-42 peptide widely associated with Alzheimer's disease) on a graphene surface. We observe that such Aβ33-42 fragments, which are largely hydrophobic in character, readily adsorb onto the graphitic surface and coalesce into a well-structured, β-strand-like assembly. Strikingly, the structure of such complex is quite unique: hydrophobic side-chains extend over the graphene surface and interact with adjacent peptides, yielding a well-defined mosaic of hydrophobic interaction patches. This ordered structure is markedly depleted of backbone hydrogen bonds. Hence, our simulation results reveal a distinct type of β-strand assembly, maintained by hydrophobic side-chain interactions. Our finding suggests the backbone hydrogen bond is no longer crucial to the peptide assembly. Further studies concerning whether such β-strand assembly can be realized in other peptide systems and in biologically-relevant contexts are certainly warranted.Peptide assembly plays a seminal role in the fabrication of structural and functional architectures in cells. Characteristically, peptide assemblies are often dominated by β-sheet structures, wherein component molecules are connected by backbone hydrogen bonds in a parallel or an antiparallel fashion. While β-rich peptide scaffolds are implicated in an array of neurodegenerative diseases, the mechanisms by which toxic peptides assemble and mediate neuropathic effects are still poorly understood. In this work, we employ molecular dynamics simulations to study the adsorption and assembly of the fragment Aβ33-42 (taken from the Aβ-42 peptide widely associated with Alzheimer's disease) on a graphene surface. We observe that such Aβ33-42 fragments, which are largely hydrophobic in character, readily adsorb onto the graphitic surface and coalesce into a well-structured, β-strand-like assembly. Strikingly, the structure of such complex is quite unique: hydrophobic side-chains extend over the graphene surface and interact with adjacent peptides, yielding a well-defined mosaic of hydrophobic interaction patches. This ordered structure is markedly depleted of backbone hydrogen bonds. Hence, our simulation results reveal a distinct type of β-strand assembly, maintained by hydrophobic side-chain interactions. Our finding suggests the backbone hydrogen bond is no longer crucial to the peptide assembly. Further studies concerning whether such β-strand assembly can be realized in other peptide systems and in biologically-relevant contexts are certainly warranted. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr00555h

  16. The Relation Between Dry Vortex Merger and Tropical Cyclone Genesis over the Atlantic Ocean

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Shu-Hua; Liu, Yi-Chin

    2014-10-27

    A strong, convective African tropical disturbance has a greater chance to develop into a Tropical 23 Depression (TD) if it merges with a shallow, dry vortex (D-vortex) from the north of the African 24 easterly jet (AEJ) after leaving the western coast. Using 11-year reanalysis data we found that the 25 western tip of a vortex strip at northwestern Africa can serve as dry vortices for the D-vortex 26 merger if it shifts southward. Another source of D-vortices is the westward propagating lows 27 along the southern edge of the Saharan air. The D-vortex merger process occurred for 63.5% ofmore » 28 tropical cyclones (TCs) or developing systems over the main development region of the Atlantic 29 Ocean, while it occurred for 54% of non-developing systems. TC genesis could be largely 30 controlled by the large-scale environment, but the differences in characteristics of vortices 31 associated with the D-vortex merger between developing and non-developing systems could 32 potentially help determine their destinies; in general, developing systems were dominated by a 33 more intense and moist south vortex, while non-developing systems were dominated by a north 34 vortex which was more intense, drier, and larger in size. Analysis also shows that 74% of intense 35 developing systems were involved with the D-vortex merger process. More attention needs to be 36 paid to the D-vortex merger and the characteristics of those vortices as they can play significant 37 roles or have a strong indication in Atlantic TC genesis.« less

  17. Inclined Jet in Crossflow Interacting with a Vortex Generator

    NASA Technical Reports Server (NTRS)

    Zaman, K. B. M. Q.; Rigby, D .L.; Heidmann, J. D.

    2011-01-01

    An experiment is conducted on the effectiveness of a vortex generator in preventing liftoff of a jet in crossflow, with possible relevance to film-cooling applications. The jet issues into the boundary layer at an angle of 20 degreees to the freestream. The effect of a triangular ramp-shaped vortex generator is studied while varying its geometry and location. Detailed flowfield properties are obtained for a case in which the height of the vortex generator and the diameter of the orifice are comparable with the approach boundary-layer thickness. The vortex generator produces a streamwise vortex pair with a vorticity magnitude 3 times larger (and of opposite sense) than that found in the jet in crossflow alone. Such a vortex generator appears to be most effective in keeping the jet attached to the wall. The effect of parametric variation is studied mostly from surveys 10 diameters downstream from the orifice. Results over a range of jet-to-freestream momentum flux ratio (1 < J < 11) show that the vortex generator has a significant effect even at the highest J covered in the experiment. When the vortex generator height is halved, there is a liftoff of the jet. On the other hand, when the height is doubled, the jet core is dissipated due to larger turbulence intensity. Varying the location of the vortex generator, over a distance of three diameters from the orifice, is found to have little impact. Rounding off the edges of the vortex generator with the increasing radius of curvature progressively diminishes its effect. However, allowing for a small radius of curvature may be quite tolerable in practice.

  18. The VOrtex Ring Transit EXperiment (VORTEX) GAS project

    NASA Technical Reports Server (NTRS)

    Bilen, Sven G.; Langenderfer, Lynn S.; Jardon, Rebecca D.; Cutlip, Hansford H.; Kazerooni, Alexander C.; Thweatt, Amber L.; Lester, Joseph L.; Bernal, Luis P.

    1995-01-01

    Get Away Special (GAS) payload G-093, also called VORTEX (VOrtex Ring Transit EXperiment), is an investigation of the propagation of a vortex ring through a liquid-gas interface in microgravity. This process results in the formation of one or more liquid droplets similar to earth based liquid atomization systems. In the absence of gravity, surface tension effects dominate the drop formation process. The Shuttle's microgravity environment allows the study of the same fluid atomization processes as using a larger drop size than is possible on Earth. This enables detailed experimental studies of the complex flow processes encountered in liquid atomization systems. With VORTEX, deformations in both the vortex ring and the fluid surface will be measured closely for the first time in a parameters range that accurately resembles liquid atomization. The experimental apparatus will record images of the interactions for analysis after the payload has been returned to earth. The current design of the VORTEX payload consists of a fluid test cell with a vortex ring generator, digital imaging system, laser illumination system, computer based controller, batteries for payload power, and an array of housekeeping and payload monitoring sensors. It is a self-contained experiment and will be flown on board the Space Shuttle in a 5 cubic feet GAS canister. The VORTEX Project is entirely run by students at the University of Michigan but is overseen by a faculty advisor acting as the payload customer and the contact person with NASA. This paper summarizes both the technical and programmatic aspects of the VORTEX Project.

  19. Biochemical separations by continuous-bed chromatography.

    PubMed

    Tisch, T L; Frost, R; Liao, J L; Lam, W K; Remy, A; Scheinpflug, E; Siebert, C; Song, H; Stapleton, A

    1998-08-07

    Innovations in column-packing media for biomolecule purification have progressed from large spherical, porous polysaccharide beads to advanced polymeric supports. Continuous-bed technology is a radical new technology for chromatography based on the polymerization of advanced monomers and ionomers directly in the chromatographic column. The polymer chains form aggregates which coalesce into a dense, homogeneous network of interconnected nodules consisting of microparticles with an average diameter of 3000 A. The voids or channels between the nodules are large enough to permit a high hydrodynamic flow. Due to the high cross-linking of the polymer matrix, the surface of each nodule is nonporous yet the polymeric microparticles provide a very large surface area for high binding capacity. This paper will demonstrate the properties and advantages of using a continuous bed support for high resolution biomolecule separations at high flow-rates without sacrificing capacity.

  20. Mapping the distribution of packing topologies within protein interiors shows predominant preference for specific packing motifs

    PubMed Central

    2011-01-01

    Background Mapping protein primary sequences to their three dimensional folds referred to as the 'second genetic code' remains an unsolved scientific problem. A crucial part of the problem concerns the geometrical specificity in side chain association leading to densely packed protein cores, a hallmark of correctly folded native structures. Thus, any model of packing within proteins should constitute an indispensable component of protein folding and design. Results In this study an attempt has been made to find, characterize and classify recurring patterns in the packing of side chain atoms within a protein which sustains its native fold. The interaction of side chain atoms within the protein core has been represented as a contact network based on the surface complementarity and overlap between associating side chain surfaces. Some network topologies definitely appear to be preferred and they have been termed 'packing motifs', analogous to super secondary structures in proteins. Study of the distribution of these motifs reveals the ubiquitous presence of typical smaller graphs, which appear to get linked or coalesce to give larger graphs, reminiscent of the nucleation-condensation model in protein folding. One such frequently occurring motif, also envisaged as the unit of clustering, the three residue clique was invariably found in regions of dense packing. Finally, topological measures based on surface contact networks appeared to be effective in discriminating sequences native to a specific fold amongst a set of decoys. Conclusions Out of innumerable topological possibilities, only a finite number of specific packing motifs are actually realized in proteins. This small number of motifs could serve as a basis set in the construction of larger networks. Of these, the triplet clique exhibits distinct preference both in terms of composition and geometry. PMID:21605466

  1. TOPICAL REVIEW: Predictions for the rates of compact binary coalescences observable by ground-based gravitational-wave detectors

    NASA Astrophysics Data System (ADS)

    Abadie, J.; Abbott, B. P.; Abbott, R.; Abernathy, M.; Accadia, T.; Acernese, F.; Adams, C.; Adhikari, R.; Ajith, P.; Allen, B.; Allen, G.; Amador Ceron, E.; Amin, R. S.; Anderson, S. B.; Anderson, W. G.; Antonucci, F.; Aoudia, S.; Arain, M. A.; Araya, M.; Aronsson, M.; Arun, K. G.; Aso, Y.; Aston, S.; Astone, P.; Atkinson, D. E.; Aufmuth, P.; Aulbert, C.; Babak, S.; Baker, P.; Ballardin, G.; Ballmer, S.; Barker, D.; Barnum, S.; Barone, F.; Barr, B.; Barriga, P.; Barsotti, L.; Barsuglia, M.; Barton, M. A.; Bartos, I.; Bassiri, R.; Bastarrika, M.; Bauchrowitz, J.; Bauer, Th S.; Behnke, B.; Beker, M. G.; Belczynski, K.; Benacquista, M.; Bertolini, A.; Betzwieser, J.; Beveridge, N.; Beyersdorf, P. T.; Bigotta, S.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birindelli, S.; Biswas, R.; Bitossi, M.; Bizouard, M. A.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Bland, B.; Blom, M.; Blomberg, A.; Boccara, C.; Bock, O.; Bodiya, T. P.; Bondarescu, R.; Bondu, F.; Bonelli, L.; Bork, R.; Born, M.; Bose, S.; Bosi, L.; Boyle, M.; Braccini, S.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Brau, J. E.; Breyer, J.; Bridges, D. O.; Brillet, A.; Brinkmann, M.; Brisson, V.; Britzger, M.; Brooks, A. F.; Brown, D. A.; Budzyński, R.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Burguet-Castell, J.; Burmeister, O.; Buskulic, D.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Calloni, E.; Camp, J. B.; Campagna, E.; Campsie, P.; Cannizzo, J.; Cannon, K. C.; Canuel, B.; Cao, J.; Capano, C.; Carbognani, F.; Caride, S.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C.; Cesarini, E.; Chalermsongsak, T.; Chalkley, E.; Charlton, P.; Chassande Mottin, E.; Chelkowski, S.; Chen, Y.; Chincarini, A.; Christensen, N.; Chua, S. S. Y.; Chung, C. T. Y.; Clark, D.; Clark, J.; Clayton, J. H.; Cleva, F.; Coccia, E.; Colacino, C. N.; Colas, J.; Colla, A.; Colombini, M.; Conte, R.; Cook, D.; Corbitt, T. R.; Corda, C.; Cornish, N.; Corsi, A.; Costa, C. A.; Coulon, J. P.; Coward, D.; Coyne, D. C.; Creighton, J. D. E.; Creighton, T. D.; Cruise, A. M.; Culter, R. M.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dahl, K.; Danilishin, S. L.; Dannenberg, R.; D'Antonio, S.; Danzmann, K.; Dari, A.; Das, K.; Dattilo, V.; Daudert, B.; Davier, M.; Davies, G.; Davis, A.; Daw, E. J.; Day, R.; Dayanga, T.; De Rosa, R.; DeBra, D.; Degallaix, J.; del Prete, M.; Dergachev, V.; DeRosa, R.; DeSalvo, R.; Devanka, P.; Dhurandhar, S.; Di Fiore, L.; Di Lieto, A.; Di Palma, I.; Emilio, M. Di Paolo; Di Virgilio, A.; Díaz, M.; Dietz, A.; Donovan, F.; Dooley, K. L.; Doomes, E. E.; Dorsher, S.; Douglas, E. S. D.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Dueck, J.; Dumas, J. C.; Eberle, T.; Edgar, M.; Edwards, M.; Effler, A.; Ehrens, P.; Engel, R.; Etzel, T.; Evans, M.; Evans, T.; Fafone, V.; Fairhurst, S.; Fan, Y.; Farr, B. F.; Fazi, D.; Fehrmann, H.; Feldbaum, D.; Ferrante, I.; Fidecaro, F.; Finn, L. S.; Fiori, I.; Flaminio, R.; Flanigan, M.; Flasch, K.; Foley, S.; Forrest, C.; Forsi, E.; Fotopoulos, N.; Fournier, J. D.; Franc, J.; Frasca, S.; Frasconi, F.; Frede, M.; Frei, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Friedrich, D.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gammaitoni, L.; Garofoli, J. A.; Garufi, F.; Gemme, G.; Genin, E.; Gennai, A.; Gholami, I.; Ghosh, S.; Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Giazotto, A.; Gill, C.; Goetz, E.; Goggin, L. M.; González, G.; Gorodetsky, M. L.; Goßler, S.; Gouaty, R.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Greverie, C.; Grosso, R.; Grote, H.; Grunewald, S.; Guidi, G. M.; Gustafson, E. K.; Gustafson, R.; Hage, B.; Hall, P.; Hallam, J. M.; Hammer, D.; Hammond, G.; Hanks, J.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.; Haughian, K.; Hayama, K.; Heefner, J.; Heitmann, H.; Hello, P.; Heng, I. S.; Heptonstall, A.; Hewitson, M.; Hild, S.; Hirose, E.; Hoak, D.; Hodge, K. A.; Holt, K.; Hosken, D. J.; Hough, J.; Howell, E.; Hoyland, D.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Ingram, D. R.; Inta, R.; Isogai, T.; Ivanov, A.; Jaranowski, P.; Johnson, W. W.; Jones, D. I.; Jones, G.; Jones, R.; Ju, L.; Kalmus, P.; Kalogera, V.; Kandhasamy, S.; Kanner, J.; Katsavounidis, E.; Kawabe, K.; Kawamura, S.; Kawazoe, F.; Kells, W.; Keppel, D. G.; Khalaidovski, A.; Khalili, F. Y.; Khazanov, E. A.; Kim, C.; Kim, H.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Klimenko, S.; Kondrashov, V.; Kopparapu, R.; Koranda, S.; Kowalska, I.; Kozak, D.; Krause, T.; Kringel, V.; Krishnamurthy, S.; Krishnan, B.; Królak, A.; Kuehn, G.; Kullman, J.; Kumar, R.; Kwee, P.; Landry, M.; Lang, M.; Lantz, B.; Lastzka, N.; Lazzarini, A.; Leaci, P.; Leong, J.; Leonor, I.; Leroy, N.; Letendre, N.; Li, J.; Li, T. G. F.; Lin, H.; Lindquist, P. E.; Lockerbie, N. A.; Lodhia, D.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lu, P.; Luan, J.; Lubiński, M.; Lucianetti, A.; Lück, H.; Lundgren, A.; Machenschalk, B.; MacInnis, M.; Mackowski, J. M.; Mageswaran, M.; Mailand, K.; Majorana, E.; Mak, C.; Man, N.; Mandel, I.; Mandic, V.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Maros, E.; Marque, J.; Martelli, F.; Martin, I. W.; Martin, R. M.; Marx, J. N.; Mason, K.; Masserot, A.; Matichard, F.; Matone, L.; Matzner, R. A.; Mavalvala, N.; McCarthy, R.; McClelland, D. E.; McGuire, S. C.; McIntyre, G.; McIvor, G.; McKechan, D. J. A.; Meadors, G.; Mehmet, M.; Meier, T.; Melatos, A.; Melissinos, A. C.; Mendell, G.; Menéndez, D. F.; Mercer, R. A.; Merill, L.; Meshkov, S.; Messenger, C.; Meyer, M. S.; Miao, H.; Michel, C.; Milano, L.; Miller, J.; Minenkov, Y.; Mino, Y.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moe, B.; Mohan, M.; Mohanty, S. D.; Mohapatra, S. R. P.; Moraru, D.; Moreau, J.; Moreno, G.; Morgado, N.; Morgia, A.; Morioka, T.; Mors, K.; Mosca, S.; Moscatelli, V.; Mossavi, K.; Mours, B.; MowLowry, C.; Mueller, G.; Mukherjee, S.; Mullavey, A.; Müller-Ebhardt, H.; Munch, J.; Murray, P. G.; Nash, T.; Nawrodt, R.; Nelson, J.; Neri, I.; Newton, G.; Nishizawa, A.; Nocera, F.; Nolting, D.; Ochsner, E.; O'Dell, J.; Ogin, G. H.; Oldenburg, R. G.; O'Reilly, B.; O'Shaughnessy, R.; Osthelder, C.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Page, A.; Pagliaroli, G.; Palladino, L.; Palomba, C.; Pan, Y.; Pankow, C.; Paoletti, F.; Papa, M. A.; Pardi, S.; Pareja, M.; Parisi, M.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patel, P.; Pedraza, M.; Pekowsky, L.; Penn, S.; Peralta, C.; Perreca, A.; Persichetti, G.; Pichot, M.; Pickenpack, M.; Piergiovanni, F.; Pietka, M.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Pletsch, H. J.; Plissi, M. V.; Poggiani, R.; Postiglione, F.; Prato, M.; Predoi, V.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Quetschke, V.; Raab, F. J.; Rabaste, O.; Rabeling, D. S.; Radke, T.; Radkins, H.; Raffai, P.; Rakhmanov, M.; Rankins, B.; Rapagnani, P.; Raymond, V.; Re, V.; Reed, C. M.; Reed, T.; Regimbau, T.; Reid, S.; Reitze, D. H.; Ricci, F.; Riesen, R.; Riles, K.; Roberts, P.; Robertson, N. A.; Robinet, F.; Robinson, C.; Robinson, E. L.; Rocchi, A.; Roddy, S.; Röver, C.; Rogstad, S.; Rolland, L.; Rollins, J.; Romano, J. D.; Romano, R.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sakata, S.; Sakosky, M.; Salemi, F.; Sammut, L.; Sancho de la Jordana, L.; Sandberg, V.; Sannibale, V.; Santamaría, L.; Santostasi, G.; Saraf, S.; Sassolas, B.; Sathyaprakash, B. S.; Sato, S.; Satterthwaite, M.; Saulson, P. R.; Savage, R.; Schilling, R.; Schnabel, R.; Schofield, R.; Schulz, B.; Schutz, B. F.; Schwinberg, P.; Scott, J.; Scott, S. M.; Searle, A. C.; Seifert, F.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sergeev, A.; Shaddock, D. A.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sibley, A.; Siemens, X.; Sigg, D.; Singer, A.; Sintes, A. M.; Skelton, G.; Slagmolen, B. J. J.; Slutsky, J.; Smith, J. R.; Smith, M. R.; Smith, N. D.; Somiya, K.; Sorazu, B.; Speirits, F. C.; Stein, A. J.; Stein, L. C.; Steinlechner, S.; Steplewski, S.; Stochino, A.; Stone, R.; Strain, K. A.; Strigin, S.; Stroeer, A.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sung, M.; Susmithan, S.; Sutton, P. J.; Swinkels, B.; Talukder, D.; Tanner, D. B.; Tarabrin, S. P.; Taylor, J. R.; Taylor, R.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Thüring, A.; Titsler, C.; Tokmakov, K. V.; Toncelli, A.; Tonelli, M.; Torres, C.; Torrie, C. I.; Tournefier, E.; Travasso, F.; Traylor, G.; Trias, M.; Trummer, J.; Tseng, K.; Ugolini, D.; Urbanek, K.; Vahlbruch, H.; Vaishnav, B.; Vajente, G.; Vallisneri, M.; van den Brand, J. F. J.; Van Den Broeck, C.; van der Putten, S.; van der Sluys, M. V.; van Veggel, A. A.; Vass, S.; Vaulin, R.; Vavoulidis, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Veltkamp, C.; Verkindt, D.; Vetrano, F.; Viceré, A.; Villar, A.; Vinet, J.-Y.; Vocca, H.; Vorvick, C.; Vyachanin, S. P.; Waldman, S. J.; Wallace, L.; Wanner, A.; Ward, R. L.; Was, M.; Wei, P.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wen, S.; Wessels, P.; West, M.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; White, D. J.; Whiting, B. F.; Wilkinson, C.; Willems, P. A.; Williams, L.; Willke, B.; Winkelmann, L.; Winkler, W.; Wipf, C. C.; Wiseman, A. G.; Woan, G.; Wooley, R.; Worden, J.; Yakushin, I.; Yamamoto, H.; Yamamoto, K.; Yeaton-Massey, D.; Yoshida, S.; Yu, P. P.; Yvert, M.; Zanolin, M.; Zhang, L.; Zhang, Z.; Zhao, C.; Zotov, N.; Zucker, M. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration

    2010-09-01

    We present an up-to-date, comprehensive summary of the rates for all types of compact binary coalescence sources detectable by the initial and advanced versions of the ground-based gravitational-wave detectors LIGO and Virgo. Astrophysical estimates for compact-binary coalescence rates depend on a number of assumptions and unknown model parameters and are still uncertain. The most confident among these estimates are the rate predictions for coalescing binary neutron stars which are based on extrapolations from observed binary pulsars in our galaxy. These yield a likely coalescence rate of 100 Myr-1 per Milky Way Equivalent Galaxy (MWEG), although the rate could plausibly range from 1 Myr-1 MWEG-1 to 1000 Myr-1 MWEG-1 (Kalogera et al 2004 Astrophys. J. 601 L179; Kalogera et al 2004 Astrophys. J. 614 L137 (erratum)). We convert coalescence rates into detection rates based on data from the LIGO S5 and Virgo VSR2 science runs and projected sensitivities for our advanced detectors. Using the detector sensitivities derived from these data, we find a likely detection rate of 0.02 per year for Initial LIGO-Virgo interferometers, with a plausible range between 2 × 10-4 and 0.2 per year. The likely binary neutron-star detection rate for the Advanced LIGO-Virgo network increases to 40 events per year, with a range between 0.4 and 400 per year.

  2. Results of the Fluid Merging Viscosity Measurement International Space Station Experiment

    NASA Technical Reports Server (NTRS)

    Ethridge, Edwin C.; Kaukler, William; Antar, Basil

    2009-01-01

    The purpose of FMVM is to measure the rate of coalescence of two highly viscous liquid drops and correlate the results with the liquid viscosity and surface tension. The experiment takes advantage of the low gravitational free floating conditions in space to permit the unconstrained coalescence of two nearly spherical drops. The merging of the drops is accomplished by deploying them from a syringe and suspending them on Nomex threads followed by the astronaut s manipulation of one of the drops toward a stationary droplet till contact is achieved. Coalescence and merging occurs due to shape relaxation and reduction of surface energy, being resisted by the viscous drag within the liquid. Experiments were conducted onboard the International Space Station in July of 2004 and subsequently in May of 2005. The coalescence was recorded on video and down-linked near real-time. When the coefficient of surface tension for the liquid is known, the increase in contact radius can be used to determine the coefficient of viscosity for that liquid. The viscosity is determined by fitting the experimental speed to theoretically calculated contact radius speed for the same experimental parameters. Recent fluid dynamical numerical simulations of the coalescence process will be presented. The results are important for a better understanding of the coalescence process. The experiment is also relevant to liquid phase sintering, free form in-situ fabrication, and as a potential new method for measuring the viscosity of viscous glass formers at low shear rates.

  3. Chicago Monostatic Acoustic Vortex Sensing System. Volume II. Decay of B-707 and DC-8 Vortices.

    DTIC Science & Technology

    1981-09-01

    wake vortex strength measured with the Monostatic Acoustic Vortex Sensing System (MAVSS). The data might be used to refine the wake ... analysis . The correlation of vortex strength with aircraft weight is examined statist icalIy. A primary issue addressed is whether there are any differences ...of the vortices at the antenna positions. The velocity profiles (v(r’), where r’ is the vortex radius) are used to determine the average vort

  4. ASRS Reports on Wake Vortex Encounters

    NASA Technical Reports Server (NTRS)

    Connell, Linda J.; Taube, Elisa Ann; Drew, Charles Robert; Barclay, Tommy Earl

    2010-01-01

    ASRS is conducting a structured callback research project of wake vortex incidents reported to the ASRS at all US airports, as well as wake encounters in the enroute environment. This study has three objectives: (1) Utilize the established ASRS supplemental data collection methodology and provide ongoing analysis of wake vortex encounter reports; (2) Document event dynamics and contributing factors underlying wake vortex encounter events; and (3) Support ongoing FAA efforts to address pre-emptive wake vortex risk reduction by utilizing ASRS reporting contributions.

  5. Einstein–Bose condensation of Onsager vortices

    NASA Astrophysics Data System (ADS)

    Valani, Rahil N.; Groszek, Andrew J.; Simula, Tapio P.

    2018-05-01

    We have studied statistical mechanics of a gas of vortices in two dimensions. We introduce a new observable—a condensate fraction of Onsager vortices—to quantify the emergence of the vortex condensate. The condensation of Onsager vortices is most transparently observed in a single vortex species system and occurs due to a competition between solid body rotation (see vortex lattice) and potential flow (see multiple quantum vortex state). We propose an experiment to observe the condensation transition of the vortices in such a single vortex species system.

  6. Flight test investigation of the vortex wake characteristics behind a Boeing 727 during two-segment and normal ILS approaches (A joint NASA/FAA report)

    NASA Technical Reports Server (NTRS)

    Barber, M. R.; Kurkowski, R. L.; Garodz, L. J.; Robinson, G. H.; Smith, H. J.; Jacobsen, R. A.; Stinnett, G. W., Jr.; Mcmurtry, T. C.; Tymczyszyn, J. J.; Devereaux, R. L.

    1975-01-01

    Flight tests were performed to evaluate the vortex wake characteristics of a Boeing 727 aircraft during conventional and two-segment instrument landing approaches. Smoke generators were used for vortex marking. The vortex was intentionally intercepted by a Lear Jet and a Piper Comanche aircraft. The vortex location during landing approach was measured using a system of phototheodolites. The tests showed that at a given separation distance there are no readily apparent differences in the upsets resulting from deliberate vortex encounters during the two types of approaches. The effect of the aircraft configuration on the extent and severity of the vortices is discussed.

  7. Modification of vortex ring formation using dilute polymer solution

    NASA Astrophysics Data System (ADS)

    Jordan, Daniel; Krane, Michael; Peltier, Joel; Patterson, Eric; Fontaine, Arnold

    2006-11-01

    This talk will present the results of an experimental study to determine the effect of dilute polymer solution on the formation of a vortex ring. Experiments were conducted in a large, glass tank, filled with water. Vortex rings were produced by injecting a slug of dilute polymer solution into the tank through a nozzle. The injection was controlled by a prescribed piston motion in the nozzle. For the same piston motion, vortex rings were produced for 3 concentrations of the polymer solution, including one with no polymer. The vortex ring flowfield was measured using DPIV. Differences between the 3 cases of polymer concentration in vortex ring formation time, circulation, size, and convection speed are presented.

  8. Review of vortex tube expansion in vapour compression refrigeration system

    NASA Astrophysics Data System (ADS)

    Liu, Yefeng; Yu, Jun

    2018-05-01

    A vortex tube expansion device replacing the throttle valve is proposed to improve the efficiency of vapour compression refrigeration cycle by reducing the loss of irreversibility in expansion process. The vortex tube is well-suited for these applications because it is simple, compact, light, quiet. Thus, this paper presents an overview of the thermodynamic analysis of vapour compression refrigeration cycle with vortex tube expansion device using different refrigerants. The paper also reviews the experiments and the calculations presented in previous studies on temperature separation in the vortex tube. The temperature separation mechanism and the flow-field inside the vortex tubes is explored by measuring the pressure, velocity, and temperature fields.

  9. Propagation of partially coherent Lorentz-Gauss vortex beam through oceanic turbulence.

    PubMed

    Liu, Dajun; Yin, Hongming; Wang, Guiqiu; Wang, Yaochuan

    2017-11-01

    The partially coherent Lorentz-Gauss vortex beam generated by a Schell-model source has been introduced. Based on the extended Huygens-Fresnel principle, the cross-spectral density function of a partially coherent Lorentz-Gauss vortex beam propagating in oceanic turbulence is derived. The influences of coherence length, topological charge M, and oceanic turbulence on the spreading properties and position of the coherence vortex for a partially coherent Lorentz-Gauss vortex beam are analyzed in detail. The results show that a partially coherent Lorentz-Gauss vortex beam propagating in stronger oceanic turbulence will evolve into a Gaussian-like beam more rapidly as the propagation distance increases, and the number of coherent vortices will change.

  10. Vortex matter stabilized by many-body interactions

    NASA Astrophysics Data System (ADS)

    Wolf, S.; Vagov, A.; Shanenko, A. A.; Axt, V. M.; Aguiar, J. Albino

    2017-10-01

    This work investigates interactions of vortices in superconducting materials between standard types I and II, in the domain of the so-called intertype (IT) superconductivity. Contrary to common expectations, the many-body (many-vortex) contribution is not a correction to the pair-vortex interaction here but plays a crucial role in the formation of the IT vortex matter. In particular, the many-body interactions stabilize vortex clusters that otherwise could not exist. Furthermore, clusters with large numbers of vortices become more stable when approaching the boundary between the intertype domain and type I. This indicates that IT superconductors develop a peculiar unconventional type of the vortex matter governed by the many-body interactions of vortices.

  11. A Computational-Experimental Development of Vortex Generator Use for a Transitioning S-Diffuser

    NASA Technical Reports Server (NTRS)

    Wendt, Bruce J.; Dudek, Julianne C.

    1996-01-01

    The development of an effective design strategy for surface-mounted vortex generator arrays in a subsonic diffuser is described in this report. This strategy uses the strengths of both computational and experimental analyses to determine beneficial vortex generator locations and sizes. A parabolized Navier-Stokes solver, RNS3D, was used to establish proper placement of the vortex generators for reduction in circumferential total pressure distortion. Experimental measurements were used to determine proper vortex generator sizing to minimize total pressure recovery losses associated with vortex generator device drag. The best result achieved a 59% reduction in the distortion index DC60, with a 0.3% reduction in total pressure recovery.

  12. Numerical simulation of a plane turbulent mixing layer, with applications to isothermal, rapid reactions

    NASA Technical Reports Server (NTRS)

    Lin, P.; Pratt, D. T.

    1987-01-01

    A hybrid method has been developed for the numerical prediction of turbulent mixing in a spatially-developing, free shear layer. Most significantly, the computation incorporates the effects of large-scale structures, Schmidt number and Reynolds number on mixing, which have been overlooked in the past. In flow field prediction, large-eddy simulation was conducted by a modified 2-D vortex method with subgrid-scale modeling. The predicted mean velocities, shear layer growth rates, Reynolds stresses, and the RMS of longitudinal velocity fluctuations were found to be in good agreement with experiments, although the lateral velocity fluctuations were overpredicted. In scalar transport, the Monte Carlo method was extended to the simulation of the time-dependent pdf transport equation. For the first time, the mixing frequency in Curl's coalescence/dispersion model was estimated by using Broadwell and Breidenthal's theory of micromixing, which involves Schmidt number, Reynolds number and the local vorticity. Numerical tests were performed for a gaseous case and an aqueous case. Evidence that pure freestream fluids are entrained into the layer by large-scale motions was found in the predicted pdf. Mean concentration profiles were found to be insensitive to Schmidt number, while the unmixedness was higher for higher Schmidt number. Applications were made to mixing layers with isothermal, fast reactions. The predicted difference in product thickness of the two cases was in reasonable quantitative agreement with experimental measurements.

  13. Wingtip vortex turbine investigation for vortex energy recovery

    NASA Technical Reports Server (NTRS)

    Abeyounis, William K.; Patterson, James C., Jr.; Stough, H. P., III; Wunschel, Alfred J.; Curran, Patrick D.

    1990-01-01

    A flight test investigation has been conducted to determine the performance of wingtip vortex turbines and their effect on aircraft performance. The turbines were designed to recover part of the large energy loss (induced drag) caused by the wingtip vortex. The turbine, driven by the vortex flow, reduces the strength of the vortex, resulting in an associated induced drag reduction. A four-blade turbine was mounted on each wingtip of a single-engine, T-tail, general aviation airplane. Two sets of turbine blades were tested, one with a 15' twist (washin) and one with no twist. Th power recovered by the turbine and the installed drag increment were measured. A trade-off between turbine power and induced drag reduction was found to be a function of turbine blade incidence angle. This test has demonstrated that the wingtip vortex turbine is an attractive alternate, as well as an emergency, power source.

  14. Origin and dynamics of vortex rings in drop splashing

    DOE PAGES

    Lee, Ji San; Park, Su Ji; Lee, Jun Ho; ...

    2015-09-04

    A vortex is a flow phenomenon that is very commonly observed in nature. More than a century, a vortex ring that forms during drop splashing has caught the attention of many scientists due to its importance in understanding fluid mixing and mass transport processes. However, the origin of the vortices and their dynamics remain unclear, mostly due to the lack of appropriate visualization methods. Here, with ultrafast X-ray phase-contrast imaging, we show that the formation of vortex rings originates from the energy transfer by capillary waves generated at the moment of the drop impact. Interestingly, we find a row ofmore » vortex rings along the drop wall, as demonstrated by a phase diagram established here, with different power-law dependencies of the angular velocities on the Reynolds number. These results provide important insight that allows understanding and modelling any type of vortex rings in nature, beyond just vortex rings during drop splashing.« less

  15. High-speed schlieren videography of vortex-ring impact on a wall

    NASA Astrophysics Data System (ADS)

    Kissner, Benjamin; Hargather, Michael; Settles, Gary

    2011-11-01

    Ring vortices of approximately 20 cm diameter are generated through the use of an Airzooka toy. To make the vortex visible, it is seeded with difluoroethane gas, producing a refractive-index difference with the air. A 1-meter-diameter, single-mirror, double-pass schlieren system is used to visualize the ring-vortex motion, and also to provide the wall with which the vortex collides. High-speed imaging is provided by a Photron SA-1 digital video camera. The Airzooka is fired toward the mirror almost along the optical axis of the schlieren system, so that the view of the vortex-mirror collision is normal to the path of vortex motion. Vortex-wall interactions similar to those first observed by Walker et al. (JFM 181, 1987) are recorded at high speed. The presentation will consist of a screening and discussion of these video results.

  16. Vortex Domain Structure in Ferroelectric Nanoplatelets and Control of its Transformation by Mechanical Load

    PubMed Central

    Chen, W. J.; Zheng, Yue; Wang, Biao

    2012-01-01

    Vortex domain patterns in low-dimensional ferroelectrics and multiferroics have been extensively studied with the aim of developing nanoscale functional devices. However, control of the vortex domain structure has not been investigated systematically. Taking into account effects of inhomogeneous electromechanical fields, ambient temperature, surface and size, we demonstrate significant influence of mechanical load on the vortex domain structure in ferroelectric nanoplatelets. Our analysis shows that the size and number of dipole vortices can be controlled by mechanical load, and yields rich temperature-stress (T-S) phase diagrams. Simulations also reveal that transformations between “vortex states” induced by the mechanical load are possible, which is totally different from the conventional way controlled on the vortex domain by the electric field. These results are relevant to application of vortex domain structures in ferroelectric nanodevices, and suggest a novel route to applications including memories, mechanical sensors and transducers. PMID:23150769

  17. The Complex Dynamics of the Precessing Vortex Rope in a Straight Diffuser

    NASA Astrophysics Data System (ADS)

    Stuparu, Adrian; Susan-Resiga, Romeo

    2016-11-01

    The decelerated swirling flow in the discharge cone of Francis turbines operated at partial discharge develops a self-induced instability with a precessing helical vortex (vortex rope). In an axisymmetric geometry, this phenomenon is expected to generate asynchronous pressure fluctuations as a result of the precessing motion. However, numerical and experimental data indicate that synchronous (plunging) fluctuations, with a frequency lower than the precessing frequency, also develops as a result of helical vortex filament dynamics. This paper presents a quantitative approach to describe the precessing vortex rope by properly fitting a three-dimensional logarithmic spiral model with the vortex filament computed from the velocity gradient tensor. We show that the slope coefficient of either curvature or torsion radii of the helix is a good indicator for the vortex rope dynamics, and it supports the stretching - breaking up - bouncing back mechanism that may explain the plunging oscillations.

  18. An Empirical Model for Vane-Type Vortex Generators in a Navier-Stokes Code

    NASA Technical Reports Server (NTRS)

    Dudek, Julianne C.

    2005-01-01

    An empirical model which simulates the effects of vane-type vortex generators in ducts was incorporated into the Wind-US Navier-Stokes computational fluid dynamics code. The model enables the effects of the vortex generators to be simulated without defining the details of the geometry within the grid, and makes it practical for researchers to evaluate multiple combinations of vortex generator arrangements. The model determines the strength of each vortex based on the generator geometry and the local flow conditions. Validation results are presented for flow in a straight pipe with a counter-rotating vortex generator arrangement, and the results are compared with experimental data and computational simulations using a gridded vane generator. Results are also presented for vortex generator arrays in two S-duct diffusers, along with accompanying experimental data. The effects of grid resolution and turbulence model are also examined.

  19. Andreev reflection, a tool to investigate vortex dynamics and quantum turbulence in 3He-B.

    PubMed

    Fisher, Shaun Neil; Jackson, Martin James; Sergeev, Yuri A; Tsepelin, Viktor

    2014-03-25

    Andreev reflection of quasiparticle excitations provides a sensitive and passive probe of flow in superfluid (3)He-B. It is particularly useful for studying complex flows generated by vortex rings and vortex tangles (quantum turbulence). We describe the reflection process and discuss the results of numerical simulations of Andreev reflection from vortex rings and from quantum turbulence. We present measurements of vortices generated by a vibrating grid resonator at very low temperatures. The Andreev reflection is measured using an array of vibrating wire sensors. At low grid velocities, ballistic vortex rings are produced. At higher grid velocities, the rings collide and reconnect to produce quantum turbulence. We discuss spatial correlations of the fluctuating vortex signals measured by the different sensor wires. These reveal detailed information about the formation of quantum turbulence and about the underlying vortex dynamics.

  20. Origin and dynamics of vortex rings in drop splashing.

    PubMed

    Lee, Ji San; Park, Su Ji; Lee, Jun Ho; Weon, Byung Mook; Fezzaa, Kamel; Je, Jung Ho

    2015-09-04

    A vortex is a flow phenomenon that is very commonly observed in nature. More than a century, a vortex ring that forms during drop splashing has caught the attention of many scientists due to its importance in understanding fluid mixing and mass transport processes. However, the origin of the vortices and their dynamics remain unclear, mostly due to the lack of appropriate visualization methods. Here, with ultrafast X-ray phase-contrast imaging, we show that the formation of vortex rings originates from the energy transfer by capillary waves generated at the moment of the drop impact. Interestingly, we find a row of vortex rings along the drop wall, as demonstrated by a phase diagram established here, with different power-law dependencies of the angular velocities on the Reynolds number. These results provide important insight that allows understanding and modelling any type of vortex rings in nature, beyond just vortex rings during drop splashing.

  1. Origin and dynamics of vortex rings in drop splashing

    PubMed Central

    Lee, Ji San; Park, Su Ji; Lee, Jun Ho; Weon, Byung Mook; Fezzaa, Kamel; Je, Jung Ho

    2015-01-01

    A vortex is a flow phenomenon that is very commonly observed in nature. More than a century, a vortex ring that forms during drop splashing has caught the attention of many scientists due to its importance in understanding fluid mixing and mass transport processes. However, the origin of the vortices and their dynamics remain unclear, mostly due to the lack of appropriate visualization methods. Here, with ultrafast X-ray phase-contrast imaging, we show that the formation of vortex rings originates from the energy transfer by capillary waves generated at the moment of the drop impact. Interestingly, we find a row of vortex rings along the drop wall, as demonstrated by a phase diagram established here, with different power-law dependencies of the angular velocities on the Reynolds number. These results provide important insight that allows understanding and modelling any type of vortex rings in nature, beyond just vortex rings during drop splashing. PMID:26337704

  2. The motion of a vortex on a closed surface of constant negative curvature.

    PubMed

    Ragazzo, C Grotta

    2017-10-01

    The purpose of this work is to present an algorithm to determine the motion of a single hydrodynamic vortex on a closed surface of constant curvature and of genus greater than one. The algorithm is based on a relation between the Laplace-Beltrami Green function and the heat kernel. The algorithm is used to compute the motion of a vortex on the Bolza surface. This is the first determination of the orbits of a vortex on a closed surface of genus greater than one. The numerical results show that all the 46 vortex equilibria can be explicitly computed using the symmetries of the Bolza surface. Some of these equilibria allow for the construction of the first two examples of infinite vortex crystals on the hyperbolic disc. The following theorem is proved: 'a Weierstrass point of a hyperellitic surface of constant curvature is always a vortex equilibrium'.

  3. Broadband and high-efficiency vortex beam generator based on a hybrid helix array.

    PubMed

    Fang, Chaoqun; Wu, Chao; Gong, Zhijie; Zhao, Song; Sun, Anqi; Wei, Zeyong; Li, Hongqiang

    2018-04-01

    The vortex beam which carries the orbital angular momentum has versatile applications, such as high-resolution imaging, optical communications, and particle manipulation. Generating vortex beams with the Pancharatnam-Berry (PB) phase has drawn considerable attention for its unique spin-to-orbital conversion features. Despite the PB phase being frequency independent, an optical element with broadband high-efficiency circular polarization conversion feature is still needed for the broadband high-efficiency vortex beam generation. In this work, a broadband and high-efficiency vortex beam generator based on the PB phase is built with a hybrid helix array. Such devices can generate vortex beams with arbitrary topological charge. Moreover, vortex beams with opposite topological charge can be generated with an opposite handedness incident beam that propagates backward. The measured efficiency of our device is above 65% for a wide frequency range, with the relative bandwidth of 46.5%.

  4. Vortex Lattices in the Bose-Fermi Superfluid Mixture.

    PubMed

    Jiang, Yuzhu; Qi, Ran; Shi, Zhe-Yu; Zhai, Hui

    2017-02-24

    In this Letter we show that the vortex lattice structure in the Bose-Fermi superfluid mixture can undergo a sequence of structure transitions when the Fermi superfluid is tuned from the BCS regime to the BEC regime. This is due to the difference in the vortex core structure of a Fermi superfluid in the BCS regime and in the BEC regime. In the BCS regime the vortex core is nearly filled, while the density at the vortex core gradually decreases until it empties out in the BEC regime. Therefore, with the density-density interaction between the Bose and the Fermi superfluids, interaction between the two sets of vortex lattices gets stronger in the BEC regime, which yields the structure transition of vortex lattices. In view of the recent realization of this superfluid mixture and vortices therein, our theoretical predication can be verified experimentally in the near future.

  5. Numerical Study of Wake Vortex Interaction with the Ground Using the Terminal Area Simulation System

    NASA Technical Reports Server (NTRS)

    Proctor, Fred H.; Han, Jongil

    1999-01-01

    A sensitivity study for the in-ground effect on aircraft wake vortices has been conducted using a validated large eddy simulation model. The numerical results are compared with observed data and show good agreement for vortex decay and lateral vortex transport. The vortex decay rate is strongly influenced by the ground, but appears somewhat insensitive to ambient turbulence. In addition, the results show that the ground can affect the trajectory and descent-rate of a wake vortex pair at elevations up to about 3 b(sub o) (where b(sub o) is the initial vortex separation). However, the ground does not influence the average circulation of the vortices until the cores descend to within about 0.6 b(sub o), after which time the ground greatly enhances their rate of demise. Vortex rebound occurs in the simulations, but is more subtle than shown in previous numerical studies.

  6. Coherence of the vortex Bessel-Gaussian beam in turbulent atmosphere

    NASA Astrophysics Data System (ADS)

    Lukin, Igor P.

    2017-11-01

    In this paper the theoretical research of coherent properties of the vortex Bessel-Gaussian optical beams propagating in turbulent atmosphere are developed. The approach to the analysis of this problem is based on the analytical solution of the equation for the transverse second-order mutual coherence function of a field of optical radiation. The behavior of integral scale of coherence degree of vortex Bessel-Gaussian optical beams depending on parameters of an optical beam and characteristics of turbulent atmosphere is particularly considered. It is shown that the integral scale of coherence degree of a vortex Bessel-Gaussian optical beam essentially depends on value of a topological charge of a vortex optical beam. With increase in a topological charge of a vortex Bessel-Gaussian optical beam the value of integral scale of coherence degree of a vortex Bessel-Gaussian optical beam are decreased.

  7. An experimental study of the nonlinear dynamic phenomenon known as wing rock

    NASA Technical Reports Server (NTRS)

    Arena, A. S., Jr.; Nelson, R. C.; Schiff, L. B.

    1990-01-01

    An experimental investigation into the physical phenomena associated with limit cycle wing rock on slender delta wings has been conducted. The model used was a slender flat plate delta wing with 80-deg leading edge sweep. The investigation concentrated on three main areas: motion characteristics obtained from time history plots, static and dynamic flow visualization of vortex position, and static and dynamic flow visualization of vortex breakdown. The flow visualization studies are correlated with model motion to determine the relationship between vortex position and vortex breakdown with the dynamic rolling moments. Dynamic roll moment coefficient curves reveal rate-dependent hysteresis, which drives the motion. Vortex position correlated with time and model motion show a time lag in the normal position of the upward moving wing vortex. This time lag may be the mechanism responsible for the hysteresis. Vortex breakdown is shown to have a damping effect on the motion.

  8. Evolution of hairpin vortices in a shear flow

    NASA Technical Reports Server (NTRS)

    Hon, T.-L.; Walker, J. D. A.

    1988-01-01

    Recent experimental studies suggest that the hairpin vortex plays an important (and perhaps dominant) role in the dynamics of turbulent flows near walls. In this study a numerical procedure is developed to allow the accurate computation of the trajectory of a 3-D vortex having a small core radius. For hairpin vortices which are convected in a shear flow above a wall, the calculated results show that a 2-D vortex containing a small 3-D disturbance distorts into a complex shape with subsidiary hairpin vortices forming outboard of the original hairpin vortex. As the vortex moves above the wall, it induces unsteady motion in the viscous flow near the wall: numerical solutions suggest that the boundary-layer flow near the wall will ultimately erupt in response to the motion of the hairpin vortex and in the process a secondary hairpin vortex will be created. The computer results agree with recent experimental investigations.

  9. Andreev reflection, a tool to investigate vortex dynamics and quantum turbulence in 3He-B

    PubMed Central

    Fisher, Shaun Neil; Jackson, Martin James; Sergeev, Yuri A.; Tsepelin, Viktor

    2014-01-01

    Andreev reflection of quasiparticle excitations provides a sensitive and passive probe of flow in superfluid 3He-B. It is particularly useful for studying complex flows generated by vortex rings and vortex tangles (quantum turbulence). We describe the reflection process and discuss the results of numerical simulations of Andreev reflection from vortex rings and from quantum turbulence. We present measurements of vortices generated by a vibrating grid resonator at very low temperatures. The Andreev reflection is measured using an array of vibrating wire sensors. At low grid velocities, ballistic vortex rings are produced. At higher grid velocities, the rings collide and reconnect to produce quantum turbulence. We discuss spatial correlations of the fluctuating vortex signals measured by the different sensor wires. These reveal detailed information about the formation of quantum turbulence and about the underlying vortex dynamics. PMID:24704872

  10. Discrete-vortex model for the symmetric-vortex flow on cones

    NASA Technical Reports Server (NTRS)

    Gainer, Thomas G.

    1990-01-01

    A relatively simple but accurate potential flow model was developed for studying the symmetric vortex flow on cones. The model is a modified version of the model first developed by Bryson, in which discrete vortices and straight-line feeding sheets were used to represent the flow field. It differs, however, in the zero-force condition used to position the vortices and determine their circulation strengths. The Bryson model imposed the condition that the net force on the feeding sheets and discrete vortices must be zero. The proposed model satisfies this zero-force condition by having the vortices move as free vortices, at a velocity equal to at the local crossflow velocity at their centers. When the free-vortex assumption is made, a solution is obtained in the form of two nonlinear algebraic equations that relate the vortex center coordinates and vortex strengths to the cone angle and angle of attack. The vortex center locations calculated using the model are in good agreement with experimental values. The cone normal forces as well as center locations are in good agreement with the vortex cloud method of calculating symmetric flow fields.

  11. Vortex Ring Interaction with a Heated Screen

    NASA Astrophysics Data System (ADS)

    Smith, Jason; Krueger, Paul S.

    2008-11-01

    Previous examinations of vortex rings impinging on porous screens has shown the reformation of the vortex ring with a lower velocity after passing through the screen, the creation of secondary vortices, and mixing. A heated screen could, in principle, alter the vortex-screen interaction by changing the local liquid viscosity and density. In the present investigation, a mechanical piston-cylinder vortex ring generator was used to create vortex rings in an aqueous sucrose solution. The rings impinged on a screen of horizontal wires that were heated using electrical current. The flow was visualized with food color and video imaging. Tests with and without heat were conducted at a piston stroke-to-jet diameter ratio of 4 and a jet Reynolds number (Re) of 1000. The vortex rings slowed after passing through the screen, but in tests with heat, they maintained a higher fraction of their before-screen velocity due to reduction in fluid viscosity near the wires. In addition, small ``fingers'' that developed on the front of the vortex rings as they passed through the screen exhibited positive buoyancy effects in the heated case.

  12. Random center vortex lines in continuous 3D space-time

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Höllwieser, Roman; Institute of Atomic and Subatomic Physics, Vienna University of Technology, Operngasse 9, 1040 Vienna; Altarawneh, Derar

    2016-01-22

    We present a model of center vortices, represented by closed random lines in continuous 2+1-dimensional space-time. These random lines are modeled as being piece-wise linear and an ensemble is generated by Monte Carlo methods. The physical space in which the vortex lines are defined is a cuboid with periodic boundary conditions. Besides moving, growing and shrinking of the vortex configuration, also reconnections are allowed. Our ensemble therefore contains not a fixed, but a variable number of closed vortex lines. This is expected to be important for realizing the deconfining phase transition. Using the model, we study both vortex percolation andmore » the potential V(R) between quark and anti-quark as a function of distance R at different vortex densities, vortex segment lengths, reconnection conditions and at different temperatures. We have found three deconfinement phase transitions, as a function of density, as a function of vortex segment length, and as a function of temperature. The model reproduces the qualitative features of confinement physics seen in SU(2) Yang-Mills theory.« less

  13. Structure of vortices in superfluid 3He A-like phase in uniaxially stretched aerogel

    NASA Astrophysics Data System (ADS)

    Aoyama, Kazushi; Ikeda, Ryusuke

    2009-02-01

    Possible vortex-core transitions in A-like phase of superfluid 3He in uniaxially stretched aerogel are investigated. Since the global anisotropy in this system induces the polar pairing state in a narrow range close to the superfluid transition in addition to the A-like and B-like phases, the polar state may occur in the core of a vortex in the A-like phase identified with the ABM pairing state, like in the case of the bulk B phase where a core including the ABM state is realized at higher pressures. We examine the core structure of a single vortex under the boundary condition compatible with the Mermin-Ho vortex in the presence of the dipole interaction. Following Salomaa and Volovik's approach, we numerically solve the Ginzburg-Landau equation for an axially symmetric vortex and, by examining its stability against nonaxisymmetric perturbations, discuss possible vortex core states. It is found that a first order transition on core states may occur on warming from an axisymmetric vortex with a nonunitary core to a singular vortex with the polar core.

  14. Structured caustic vector vortex optical field: manipulating optical angular momentum flux and polarization rotation.

    PubMed

    Chen, Rui-Pin; Chen, Zhaozhong; Chew, Khian-Hooi; Li, Pei-Gang; Yu, Zhongliang; Ding, Jianping; He, Sailing

    2015-05-29

    A caustic vector vortex optical field is experimentally generated and demonstrated by a caustic-based approach. The desired caustic with arbitrary acceleration trajectories, as well as the structured states of polarization (SoP) and vortex orders located in different positions in the field cross-section, is generated by imposing the corresponding spatial phase function in a vector vortex optical field. Our study reveals that different spin and orbital angular momentum flux distributions (including opposite directions) in different positions in the cross-section of a caustic vector vortex optical field can be dynamically managed during propagation by intentionally choosing the initial polarization and vortex topological charges, as a result of the modulation of the caustic phase. We find that the SoP in the field cross-section rotates during propagation due to the existence of the vortex. The unique structured feature of the caustic vector vortex optical field opens the possibility of multi-manipulation of optical angular momentum fluxes and SoP, leading to more complex manipulation of the optical field scenarios. Thus this approach further expands the functionality of an optical system.

  15. Interplay between topological phase and self-acceleration in a vortex symmetric Airy beam.

    PubMed

    Fang, Zhao-Xiang; Chen, Yue; Ren, Yu-Xuan; Gong, Lei; Lu, Rong-De; Zhang, An-Qi; Zhao, Hong-Ze; Wang, Pei

    2018-03-19

    Photons in an optical vortex usually carry orbital angular momentum, which boosts the application of the micro-rotation of absorbing particles and quantum information encoding. Such photons propagate along a straight line in free space or follow a curved trace once guided by an optical fiber. Teleportation of an optical vortex using a beam with non-diffraction and self-healing is quite challenging. We demonstrate the manipulation of the propagation trace of an optical vortex with a symmetric Airy beam (SAB) and found that the SAB experiences self-rotation with the implementation of a topological phase structure of coaxial vortex. Slight misalignment of the vortex and the SAB enables the guiding of the vortex into one of the self-accelerating channels. Multiple off-axis vortices embedded in SAB are also demonstrated to follow the trajectory of the major lobe for the SAB beam. The Poynting vector for the beams proves the direction of the energy flow corresponding to the intensity distribution. Hence, we anticipate that the proposed vortex symmetric Airy beam (VSAB) will provide new possibilities for optical manipulation and optical communication.

  16. Measurement of vortex velocities over a wide range of vortex age, downstream distance and free stream velocity

    NASA Technical Reports Server (NTRS)

    Rorke, J. B.; Moffett, R. C.

    1977-01-01

    A wind tunnel test was conducted to obtain vortex velocity signatures over a wide parameter range encompassing the data conditions of several previous researchers while maintaining a common instrumentation and test facility. The generating wing panel was configured with both a revolved airfoil tip shape and a square tip shape and had a semispan aspect of 4.05/1.0 with a 121.9 cm span. Free stream velocity was varied from 6.1 m/sec to 76.2 m/sec and the vortex core velocities were measured at locations 3, 6, 12, 24 and 48 chordlengths downstream of the wing trailing edge, yielding vortex ages up to 2.0 seconds. Wing pitch angles of 6, 8, 9 and 12 deg were investigated. Detailed surface pressure distributions and wing force measurements were obtained for each wing tip configuration. Correlation with vortex velocity data taken in previous experiments is good. During the rollup process, vortex core parameters appear to be dependent primarily on vortex age. Trending in the plateau and decay regions is more complex and the machanisms appear to be more unstable.

  17. Study on the generation of a vortex laser beam by using phase-only liquid crystal spatial light modulator

    NASA Astrophysics Data System (ADS)

    Ma, Haotong; Hu, Haojun; Xie, Wenke; Xu, Xiaojun

    2013-09-01

    The generation of vortex laser beam by using phase-only liquid crystal spatial light modulator (LC-SLM) combined with the spiral phase screen is experimentally and theoretically studied. Results show that Gaussian and dark hollow vortex laser beams can be generated by using this method successfully. Differing with the Gaussian and dark hollow beams, far field intensities of the generated vortex laser beams still exhibit dark hollow distributions. The comparisons between the ideal generation and experimental generation of vortex laser beams with different optical topological charges by using phase only LC-SLM is investigated in detail. Compared with the ideal generated vortex laser beam, phase distribution of the experimental generated vortex laser beam contains many phase singularities, the number of which is the same as that of the optical topological charges. The corresponding near field and far field dark hollow intensity distributions of the generated vortex laser beams exhibit discontinuous in rotational direction. Detailed theoretical analysis show that the main reason for the physical phenomenon mentioned above is the response error of phase only LC-SLM. These studies can provide effective guide for the generation of vortex laser beam by using phase only LC-SLM for optical tweezers and free space optical communication.

  18. Fast vortex oscillations in a ferrimagnetic disk near the angular momentum compensation point

    NASA Astrophysics Data System (ADS)

    Kim, Se Kwon; Tserkovnyak, Yaroslav

    2017-07-01

    We theoretically study the oscillatory dynamics of a vortex core in a ferrimagnetic disk near its angular momentum compensation point, where the spin density vanishes but the magnetization is finite. Due to the finite magnetostatic energy, a ferrimagnetic disk of suitable geometry can support a vortex as a ground state similar to a ferromagnetic disk. In the vicinity of the angular momentum compensation point, the dynamics of the vortex resemble those of an antiferromagnetic vortex, which is described by equations of motion analogous to Newton's second law for the motion of particles. Owing to the antiferromagnetic nature of the dynamics, the vortex oscillation frequency can be an order of magnitude larger than the frequency of a ferromagnetic vortex, amounting to tens of GHz in common transition-metal based alloys. We show that the frequency can be controlled either by applying an external field or by changing the temperature. In particular, the latter property allows us to detect the angular momentum compensation temperature, at which the lowest eigenfrequency attains its maximum, by performing ferromagnetic resonance measurements on the vortex disk. Our work proposes a ferrimagnetic vortex disk as a tunable source of fast magnetic oscillations and a useful platform to study the properties of ferrimagnets.

  19. Experimental Investigation of Inter-Blade Vortices in a Model Francis Turbine

    NASA Astrophysics Data System (ADS)

    LIU, Demin; LIU, Xiaobing; ZHAO, Yongzhi

    2017-07-01

    The inter-blade vortex in a Francis turbine becomes one of the main hydraulic factors that are likely to cause blade erosion at deep part load operating conditions. However, the causes and the mechanism of inter-blade vortex are still under investigation according to present researches. Thus the causes of inter-blade vortex and the effect of different hydraulic parameters on the inter-blade vortex are investigated experimentally. The whole life cycle of the inter-blade vortex is observed by a high speed camera. The test results illustrate the whole life cycle of the inter-blade vortex from generation to separation and even to fading. It is observed that the inter-blade vortex becomes stronger with the decreasing of flow and head, which leads to pressure fluctuation. Meanwhile, the pressure fluctuations in the vane-less area and the draft tube section become stronger when inter-blade vortices exist in the blade channel. The turbine will be damaged if operating in the inter-blade vortex zone, so its operating range must be far away from that zone. This paper reveals the main cause of the inter-blade vortex which is the larger incidence angle between the inflow angle and the blade angle on the leading edge of the runner at deep part load operating conditions.

  20. Observation of superconducting vortex clusters in S/F hybrids

    DOE PAGES

    Di Giorgio, C.; Bobba, F.; Cucolo, A. M.; ...

    2016-12-09

    While Abrikosov vortices repel each other and form a uniform vortex lattice in bulk type-II superconductors, strong confinement potential profoundly affects their spatial distribution eventually leading to vortex cluster formation. The confinement could be induced by the geometric boundaries in mesoscopic-size superconductors or by the spatial modulation of the magnetic field in superconductor/ ferromagnet (S/F) hybrids. Here we study the vortex confinement in S/F thin film heterostructures and we observe that vortex clusters appear near magnetization inhomogeneities in the ferromagnet, called bifurcations. We use magnetic force microscopy to image magnetic bifurcations and superconducting vortices, while high resolution scanning tunneling microscopymore » is used to obtain detailed information of the local electronic density of states outside and inside the vortex cluster. We find an intervortex spacing at the bifurcation shorter than the one predicted for the same superconductor in a uniform magnetic field equal to the thermodynamical upper critical field H c2. This result is due to a local enhanced stray field and a competition between vortex-vortex repulsion and Lorentz force. Here, our findings suggest that special magnetic topologies could result in S/F hybrids that support superconductivity even when locally the vortex density exceeds the thermodynamic critical threshold value beyond which the superconductivity is destroyed.« less

  1. Spontaneous symmetry breaking in vortex systems with two repulsive lengthscales.

    PubMed

    Curran, P J; Desoky, W M; Milosević, M V; Chaves, A; Laloë, J-B; Moodera, J S; Bending, S J

    2015-10-23

    Scanning Hall probe microscopy (SHPM) has been used to study vortex structures in thin epitaxial films of the superconductor MgB2. Unusual vortex patterns observed in MgB2 single crystals have previously been attributed to a competition between short-range repulsive and long-range attractive vortex-vortex interactions in this two band superconductor; the type 1.5 superconductivity scenario. Our films have much higher levels of disorder than bulk single crystals and therefore both superconducting condensates are expected to be pushed deep into the type 2 regime with purely repulsive vortex interactions. We observe broken symmetry vortex patterns at low fields in all samples after field-cooling from above Tc. These are consistent with those seen in systems with competing repulsions on disparate length scales, and remarkably similar structures are reproduced in dirty two band Ginzburg-Landau calculations, where the simulation parameters have been defined by experimental observations. This suggests that in our dirty MgB2 films, the symmetry of the vortex structures is broken by the presence of vortex repulsions with two different lengthscales, originating from the two distinct superconducting condensates. This represents an entirely new mechanism for spontaneous symmetry breaking in systems of superconducting vortices, with important implications for pinning phenomena and high current density applications.

  2. Observation of superconducting vortex clusters in S/F hybrids.

    PubMed

    Di Giorgio, C; Bobba, F; Cucolo, A M; Scarfato, A; Moore, S A; Karapetrov, G; D'Agostino, D; Novosad, V; Yefremenko, V; Iavarone, M

    2016-12-09

    While Abrikosov vortices repel each other and form a uniform vortex lattice in bulk type-II superconductors, strong confinement potential profoundly affects their spatial distribution eventually leading to vortex cluster formation. The confinement could be induced by the geometric boundaries in mesoscopic-size superconductors or by the spatial modulation of the magnetic field in superconductor/ferromagnet (S/F) hybrids. Here we study the vortex confinement in S/F thin film heterostructures and we observe that vortex clusters appear near magnetization inhomogeneities in the ferromagnet, called bifurcations. We use magnetic force microscopy to image magnetic bifurcations and superconducting vortices, while high resolution scanning tunneling microscopy is used to obtain detailed information of the local electronic density of states outside and inside the vortex cluster. We find an intervortex spacing at the bifurcation shorter than the one predicted for the same superconductor in a uniform magnetic field equal to the thermodynamical upper critical field H c2 . This result is due to a local enhanced stray field and a competition between vortex-vortex repulsion and Lorentz force. Our findings suggest that special magnetic topologies could result in S/F hybrids that support superconductivity even when locally the vortex density exceeds the thermodynamic critical threshold value beyond which the superconductivity is destroyed.

  3. Observation of superconducting vortex clusters in S/F hybrids

    PubMed Central

    Di Giorgio, C.; Bobba, F.; Cucolo, A. M.; Scarfato, A.; Moore, S. A.; Karapetrov, G.; D’Agostino, D.; Novosad, V.; Yefremenko, V.; Iavarone, M.

    2016-01-01

    While Abrikosov vortices repel each other and form a uniform vortex lattice in bulk type-II superconductors, strong confinement potential profoundly affects their spatial distribution eventually leading to vortex cluster formation. The confinement could be induced by the geometric boundaries in mesoscopic-size superconductors or by the spatial modulation of the magnetic field in superconductor/ferromagnet (S/F) hybrids. Here we study the vortex confinement in S/F thin film heterostructures and we observe that vortex clusters appear near magnetization inhomogeneities in the ferromagnet, called bifurcations. We use magnetic force microscopy to image magnetic bifurcations and superconducting vortices, while high resolution scanning tunneling microscopy is used to obtain detailed information of the local electronic density of states outside and inside the vortex cluster. We find an intervortex spacing at the bifurcation shorter than the one predicted for the same superconductor in a uniform magnetic field equal to the thermodynamical upper critical field Hc2. This result is due to a local enhanced stray field and a competition between vortex-vortex repulsion and Lorentz force. Our findings suggest that special magnetic topologies could result in S/F hybrids that support superconductivity even when locally the vortex density exceeds the thermodynamic critical threshold value beyond which the superconductivity is destroyed. PMID:27934898

  4. A new methodology for free wake analysis using curved vortex elements

    NASA Technical Reports Server (NTRS)

    Bliss, Donald B.; Teske, Milton E.; Quackenbush, Todd R.

    1987-01-01

    A method using curved vortex elements was developed for helicopter rotor free wake calculations. The Basic Curve Vortex Element (BCVE) is derived from the approximate Biot-Savart integration for a parabolic arc filament. When used in conjunction with a scheme to fit the elements along a vortex filament contour, this method has a significant advantage in overall accuracy and efficiency when compared to the traditional straight-line element approach. A theoretical and numerical analysis shows that free wake flows involving close interactions between filaments should utilize curved vortex elements in order to guarantee a consistent level of accuracy. The curved element method was implemented into a forward flight free wake analysis, featuring an adaptive far wake model that utilizes free wake information to extend the vortex filaments beyond the free wake regions. The curved vortex element free wake, coupled with this far wake model, exhibited rapid convergence, even in regions where the free wake and far wake turns are interlaced. Sample calculations are presented for tip vortex motion at various advance ratios for single and multiple blade rotors. Cross-flow plots reveal that the overall downstream wake flow resembles a trailing vortex pair. A preliminary assessment shows that the rotor downwash field is insensitive to element size, even for relatively large curved elements.

  5. Investigate the shock focusing under a single vortex disturbance using 2D Saint-Venant equations with a shock-capturing scheme

    NASA Astrophysics Data System (ADS)

    Zhao, Jiaquan; Li, Renfu; Wu, Haiyan

    2018-02-01

    In order to characterize the flow structure and the effect of acoustic waves caused by the shock-vortex interaction on the performance of the shock focusing, the incident plane shock wave with a single disturbance vortex focusing in a parabolic cavity is simulated systematically through solving the two-dimensional, unsteady Saint-Venant equations with the two order HLL scheme of Riemann solvers. The simulations show that the dilatation effect to be dominant in the net vorticity generation, while the baroclinic effect is dominate in the absence of initial vortex disturbance. Moreover, the simulations show that the time evolution of maximum focusing pressure with initial vortex is more complicate than that without initial vortex, which has a lot of relevance with the presence of quadrupolar acoustic wave structure induced by shock-vortex interaction and its propagation in the cavity. Among shock and other disturbance parameters, the shock Mach number, vortex Mach number and the shape of parabolic reflector proved to play a critical role in the focusing of shock waves and the strength of viscous dissipation, which in turn govern the evolution of maximum focusing pressure due to the gas dynamic focus, the change in dissipation rate and the coincidence of motion disturbance vortex with aerodynamic focus point.

  6. Sampling through time and phylodynamic inference with coalescent and birth–death models

    PubMed Central

    Volz, Erik M.; Frost, Simon D. W.

    2014-01-01

    Many population genetic models have been developed for the purpose of inferring population size and growth rates from random samples of genetic data. We examine two popular approaches to this problem, the coalescent and the birth–death-sampling model (BDM), in the context of estimating population size and birth rates in a population growing exponentially according to the birth–death branching process. For sequences sampled at a single time, we found the coalescent and the BDM gave virtually indistinguishable results in terms of the growth rates and fraction of the population sampled, even when sampling from a small population. For sequences sampled at multiple time points, we find that the birth–death model estimators are subject to large bias if the sampling process is misspecified. Since BDMs incorporate a model of the sampling process, we show how much of the statistical power of BDMs arises from the sequence of sample times and not from the genealogical tree. This motivates the development of a new coalescent estimator, which is augmented with a model of the known sampling process and is potentially more precise than the coalescent that does not use sample time information. PMID:25401173

  7. Pore-level mechanics of foam generation and coalescence in the presence of oil.

    PubMed

    Almajid, Muhammad M; Kovscek, Anthony R

    2016-07-01

    The stability of foam in porous media is extremely important for realizing the advantages of foamed gas on gas mobility reduction. Foam texture (i.e., bubbles per volume of gas) achieved is dictated by foam generation and coalescence processes occurring at the pore-level. For foam injection to be widely applied during gas injection projects, we need to understand these pore-scale events that lead to foam stability/instability so that they are modeled accurately. Foam flow has been studied for decades, but most efforts focused on studying foam generation and coalescence in the absence of oil. Here, the extensive existing literature is reviewed and analyzed to identify open questions. Then, we use etched-silicon micromodels to observe foam generation and coalescence processes at the pore-level. Special emphasis is placed on foam coalescence in the presence of oil. For the first time, lamella pinch-off as described by Myers and Radke [40] is observed in porous media and documented. Additionally, a new mechanism coined "hindered generation" is found. Hindered generation refers to the role oil plays in preventing the successful formation of a lamella following snap-off near a pore throat. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Partial coalescence of drops at liquid interfaces

    NASA Astrophysics Data System (ADS)

    Blanchette, François; Bigioni, Terry P.

    2006-04-01

    When two separate masses of the same fluid are brought gently into contact, they are expected to fully merge into a single larger mass to minimize surface energy. However, when a stationary drop coalesces with an underlying reservoir of identical fluid, merging does not always proceed to completion. Occasionally, a drop in the process of merging apparently defies surface tension by `pinching off' before total coalescence occurs, leaving behind a smaller daughter droplet. Moreover, this process can repeat itself for subsequent generations of daughter droplets, resulting in a cascade of self-similar events. Such partial coalescence behaviour has implications for the dynamics of a variety of systems, including the droplets in clouds, ocean mist and airborne salt particles, emulsions, and the generation of vortices near an interface. Although it was first observed almost half a century ago, little is known about its precise mechanism. Here, we combine high-speed video imaging with numerical simulations to determine the conditions under which partial coalescence occurs, and to reveal a dynamic pinch-off mechanism. This mechanism is critically dependent on the ability of capillary waves to vertically stretch the drop by focusing energy on its summit.

  9. Magneto-optical observation of twisted vortices in type-II superconductors

    NASA Astrophysics Data System (ADS)

    Indenbom, M. V.; van der Beek, C. J.; Berseth, V.; Benoit, W.; D'Anna, G.; Erb, A.; Walker, E.; Flükiger, R.

    1997-02-01

    When magnetic flux penetrates a type-II superconductor, it does so as quantized flux lines or vortex lines, so called because each is surrounded by a supercurrent vortex. Interactions between such vortices lead to a very rich and well characterized phenomenology for this 'mixed state'. But an outstanding question remains: are individual vortex lines 'strong', or can they easily be cut and made to pass through one another? The concept of vortex cutting was originally proposed to account for dissipation observed in superconducting wires oriented parallel to an applied magnetic field, where the vortex lines and transport current should be in a force-free configuration1-6. Previous experiments, however, have been unable to establish the vortex topology in the force-free configuration or the size of the energy barrier for vortex cutting. Here we report magneto-optical images of YBa2Cu3O7-δ samples in the force-free configuration which show that thousands of vortex lines can twist together to form highly stable structures. In some cases, these 'vortex twisters' interact with one another to produce wave-like dynamics. Our measurements also determine directly the current required to initiate vortex cutting, and show that it is much higher than that needed to overcome the pinning of vortices by material defects. This implies that thermodynamic phases of entangled vortices7-10 are intrinsically stable and may occupy a significant portion of the mixed-state phase diagram for type-II superconductors.

  10. Technical Evaluation Report, Part A - Vortex Flow and High Angle of Attack

    NASA Technical Reports Server (NTRS)

    Luckring, James M.

    2003-01-01

    A symposium entitled Vortex Flow and High Angle of Attack was held in Loen, Norway, from May 7 through May 11, 2001. The Applied Vehicle Technology (AVT) panel, under the auspices of the Research and Technology Organization (RTO), sponsored this symposium. Forty-eight papers, organized into nine sessions, addressed computational and experimental studies of vortex flows pertinent to both aircraft and maritime applications. The studies also ranged from fundamental fluids investigations to flight test results, and significant results were contributed from a broad range of countries. The principal emphasis of this symposium was on "the understanding and prediction of separation-induced vortex flows and their effects on military vehicle performance, stability, control, and structural design loads." It was further observed by the program committee that "separation- induced vortex flows are an important part of the design and off-design performance of conventional fighter aircraft and new conventional or unconventional manned or unmanned advanced vehicle designs (UAVs, manned aircraft, missiles, space planes, ground-based vehicles, and ships)." The nine sessions addressed the following topics: vortical flows on wings and bodies, experimental techniques for vortical flows, numerical simulations of vortical flows, vortex stability and breakdown, vortex flows in maritime applications, vortex interactions and control, vortex dynamics, flight testing, and vehicle design. The purpose of this paper is to provide brief reviews of these papers along with some synthesizing perspectives toward future vortex flow research opportunities. The paper includes the symposium program. (15 refs.)

  11. Interpreting Brightness Asymmetries in Transition Disks: Vortex at Dead Zone or Planet-carved Gap Edges?

    NASA Astrophysics Data System (ADS)

    Regály, Zs.; Juhász, A.; Nehéz, D.

    2017-12-01

    Recent submillimeter observations show nonaxisymmetric brightness distributions with a horseshoe-like morphology for more than a dozen transition disks. The most-accepted explanation for the observed asymmetries is the accumulation of dust in large-scale vortices. Protoplanetary disks’ vortices can form by the excitation of Rossby wave instability in the vicinity of a steep pressure gradient, which can develop at the edges of a giant planet–carved gap or at the edges of an accretionally inactive zone. We studied the formation and evolution of vortices formed in these two distinct scenarios by means of two-dimensional locally isothermal hydrodynamic simulations. We found that the vortex formed at the edge of a planetary gap is short-lived, unless the disk is nearly inviscid. In contrast, the vortex formed at the outer edge of a dead zone is long-lived. The vortex morphology can be significantly different in the two scenarios: the vortex radial and azimuthal extensions are ∼1.5 and ∼3.5 times larger for the dead-zone edge compared to gap models. In some particular cases, the vortex aspect ratios can be similar in the two scenarios; however, the vortex azimuthal extensions can be used to distinguish the vortex formation mechanisms. We calculated predictions for vortex observability in the submillimeter continuum with ALMA. We found that the azimuthal and radial extent of the brightness asymmetry correlates with the vortex formation process within the limitations of α-viscosity prescription.

  12. Spectrum study on unsteadiness of shock wave-vortex ring interaction

    NASA Astrophysics Data System (ADS)

    Dong, Xiangrui; Yan, Yonghua; Yang, Yong; Dong, Gang; Liu, Chaoqun

    2018-05-01

    Shock oscillation with low-frequency unsteadiness commonly occurs in supersonic flows and is a top priority for the control of flow separation caused by shock wave and boundary layer interaction. In this paper, the interaction of the shock caused by the compression ramp and the vortex rings generated by a micro-vortex generator (MVG) in a supersonic flow at Ma = 2.5 is simulated by the implicit large eddy simulation method. The analysis of observation and the frequency of both the vortex ring motion and the shock oscillation is carried out. The results show that the shock produced by a compression ramp flow at Ma = 2.5 has a dominant non-dimensional low frequency, which is around St = 0.002, while the vortex rings behind the MVG have a dominant high frequency which is around St = 0.038. The dominant low frequency of the shock, which is harmful, can be removed or weakened through the shock-vortex ring interaction by the vortex rings which generate high frequency fluctuations. In the shock and vortex ring interaction region, a dominant high frequency St = 0.037-0.038 has been detected rather than the low frequency St = 0.002, which indicates that the vortex ring is stiff enough to break or weaken the shock. This analysis could provide an effective tool to remove or weaken the low frequency pressure fluctuation below 500 Hz, which has a negative effect on the flight vehicle structures and the environmental protection, through the high frequency vortex generation.

  13. On the formation of vortex rings in coaxial tubes

    NASA Astrophysics Data System (ADS)

    Gan, Lian

    2011-11-01

    The formation of vortex rings within coaxial tubes of different diameter is investigated experimentally and numerically. PIV measurements were carried out in a water tank equipped with a piston-cylinder apparatus used to generate vortex rings inside a series of coaxial tubes with tube to piston diameter ratios, DT / D , ranging from 4 to 1.5. In order to distinguish between the effect confinement has on the formation of isolated vortex rings from those formed with a trailing jet flow, non- dimensional stroke ratios below and above the formation number were investigated, L / D = 2 . 5 and 10 respectively. For DT / D > 2 and L / D s below the formation number the kinematics of the vortex rings follow classical inviscid theory in so much as their self-induced velocity decreases linearly with decreasing tube diameter in accordance with the image theorem. For DT / D <= 2 boundary layer separation along the tube wall begins to interfere with the vortex during its roll-up phase. For vortex rings below the formation number, the vortex core is briefly arrested upon completion of the piston stroke. On the other hand, long L / D s give rise to even more complex dynamics. When DT / D = 2 the interaction between boundary layer and the starting jet acts to suppress vortex ring formation altogether. However, as confinement is increased further to DT / D = 1 . 5 the formation of a lead vortex ring re-appears but with a circulation lower than the formation number before rapidly decaying.

  14. Flow visualizations of perpendicular blade vortex interactions

    NASA Technical Reports Server (NTRS)

    Rife, Michael C.; Davenport, William J.

    1992-01-01

    Helium bubble flow visualizations have been performed to study perpendicular interaction of a turbulent trailing vortex and a rectangular wing in the Virginia Tech Stability Tunnel. Many combinations of vortex strength, vortex-blade separation (Z(sub s)) and blade angle of attack were studied. Photographs of representative cases are presented. A range of phenomena were observed. For Z(sub s) greater than a few percent chord the vortex is deflected as it passes the blade under the influence of the local streamline curvature and its image in the blade. Initially the interaction appears to have no influence on the core. Downstream, however, the vortex core begins to diffuse and grow, presumably as a consequence of its interaction with the blade wake. The magnitude of these effects increases with reduction in Z(sub s). For Z(sub s) near zero the form of the interaction changes and becomes dependent on the vortex strength. For lower strengths the vortex appears to split into two filaments on the leading edge of the blade, one passing on the pressure and one passing on the suction side. At higher strengths the vortex bursts in the vicinity of the leading edge. In either case the core of its remnants then rapidly diffuse with distance downstream. Increase in Reynolds number did not qualitatively affect the flow apart from decreasing the amplitude of the small low-frequency wandering motions of the vortex. Changes in wing tip geometry and boundary layer trip had very little effect.

  15. Flow structure generated by perpendicular blade-vortex interaction and implications for helicopter noise prediction. Volume 1: Measurements

    NASA Technical Reports Server (NTRS)

    Wittmer, Kenneth S.; Devenport, William J.

    1996-01-01

    The perpendicular interaction of a streamwise vortex with an infinite span helicopter blade was modeled experimentally in incompressible flow. Three-component velocity and turbulence measurements were made using a sub-miniature four sensor hot-wire probe. Vortex core parameters (radius, peak tangential velocity, circulation, and centerline axial velocity deficit) were determined as functions of blade-vortex separation, streamwise position, blade angle of attack, vortex strength, and vortex size. The downstream development of the flow shows that the interaction of the vortex with the blade wake is the primary cause of the changes in the core parameters. The blade sheds negative vorticity into its wake as a result of the induced angle of attack generated by the passing vortex. Instability in the vortex core due to its interaction with this negative vorticity region appears to be the catalyst for the magnification of the size and intensity of the turbulent flowfield downstream of the interaction. In general, the core radius increases while peak tangential velocity decreases with the effect being greater for smaller separations. These effects are largely independent of blade angle of attack; and if these parameters are normalized on their undisturbed values, then the effects of the vortex strength appear much weaker. Two theoretical models were developed to aid in extending the results to other flow conditions. An empirical model was developed for core parameter prediction which has some rudimentary physical basis, implying usefulness beyond a simple curve fit. An inviscid flow model was also created to estimate the vorticity shed by the interaction blade, and to predict the early stages of its incorporation into the interacting vortex.

  16. Non-equilibrium effects of diatomic and polyatomic gases on the shock-vortex interaction based on the second-order constitutive model of the Boltzmann-Curtiss equation

    NASA Astrophysics Data System (ADS)

    Singh, S.; Karchani, A.; Myong, R. S.

    2018-01-01

    The rotational mode of molecules plays a critical role in the behavior of diatomic and polyatomic gases away from equilibrium. In order to investigate the essence of the non-equilibrium effects, the shock-vortex interaction problem was investigated by employing an explicit modal discontinuous Galerkin method. In particular, the first- and second-order constitutive models for diatomic and polyatomic gases derived rigorously from the Boltzmann-Curtiss kinetic equation were solved in conjunction with the physical conservation laws. As compared with a monatomic gas, the non-equilibrium effects result in a substantial change in flow fields in both macroscale and microscale shock-vortex interactions. Specifically, the computational results showed three major effects of diatomic and polyatomic gases on the shock-vortex interaction: (i) the generation of the third sound waves and additional reflected shock waves with strong and enlarged expansion, (ii) the dominance of viscous vorticity generation, and (iii) an increase in enstrophy with increasing bulk viscosity, related to the rotational mode of gas molecules. Moreover, it was shown that there is a significant discrepancy in flow fields between the microscale and macroscale shock-vortex interactions in diatomic and polyatomic gases. The quadrupolar acoustic wave source structures, which are typically observed in macroscale shock-vortex interactions, were not found in any microscale shock-vortex interactions. The physics of the shock-vortex interaction was also investigated in detail to examine vortex deformation and evolution dynamics over an incident shock wave. A comparative study of first- and second-order constitutive models was also conducted for the enstrophy and dissipation rate. Finally, the study was extended to the shock-vortex pair interaction case to examine the effects of pair interaction on vortex deformation and evolution dynamics.

  17. Altered left ventricular vortex ring formation by 4-dimensional flow magnetic resonance imaging after repair of atrioventricular septal defects.

    PubMed

    Calkoen, Emmeline E; Elbaz, Mohammed S M; Westenberg, Jos J M; Kroft, Lucia J M; Hazekamp, Mark G; Roest, Arno A W; van der Geest, Rob J

    2015-11-01

    During normal left ventricular (LV) filling, a vortex ring structure is formed distal to the left atrioventricular valve (LAVV). Vortex structures contribute to efficient flow organization. We aimed to investigate whether LAVV abnormality in patients with a corrected atrioventricular septal defect (AVSD) has an impact on vortex ring formation. Whole-heart 4D flow MRI was performed in 32 patients (age: 26 ± 12 years), and 30 healthy subjects (age: 25 ± 14 years). Vortex ring cores were detected at peak early (E-peak) and peak late filling (A-peak). When present, the 3-dimensional position and orientation of the vortex ring was defined, and the circularity index was calculated. Through-plane flow over the LAVV, and the vortex formation time (VFT), were quantified to analyze the relationship of vortex flow with the inflow jet. Absence of a vortex ring during E-peak (healthy subjects 0%, vs patients 19%; P = .015), and A-peak (healthy subjects 10% vs patients 44%; P = .008) was more frequent in patients. In 4 patients, this was accompanied by a high VFT (5.1-7.8 vs 2.4 ± 0.6 in healthy subjects), and in another 2 patients with abnormal valve anatomy. In patients compared with controls, the vortex cores had a more-anterior and apical position, closer to the ventricular wall, with a more-elliptical shape and oblique orientation. The shape of the vortex core closely resembled the valve shape, and its orientation was related to the LV inflow direction. This study quantitatively shows the influence of abnormal LAVV and LV inflow on 3D vortex ring formation during LV inflow in patients with corrected AVSD, compared with healthy subjects. Copyright © 2015. Published by Elsevier Inc.

  18. Clinical impact of quantitative left atrial vortex flow analysis in patients with atrial fibrillation: a comparison with invasive left atrial voltage mapping.

    PubMed

    Lee, Jung Myung; Hong, Geu-Ru; Pak, Hui-Nam; Shim, Chi Young; Houle, Helene; Vannan, Mani A; Kim, Minji; Chung, Namsik

    2015-08-01

    Recently, left atrial (LA) vortex flow analysis using contrast transesophageal echocardiography (TEE) has been shown to be feasible and has demonstrated significant differences in vortex flow morphology and pulsatility between normal subjects and patients with atrial fibrillation (AF). However, the relationship between LA vortex flow and electrophysiological properties and the clinical significance of LA vortex flow are unknown. The aims of this study were (1) to compare LA vortex flow parameters with LA voltage and (2) to assess the predictive value of LA vortex flow parameters for the recurrence of AF after radiofrequency catheter ablation (RFCA). Thirty-nine patients with symptomatic non-valvular AF underwent contrast TEE before undergoing RFCA for AF. Quantitative LA vortex flow parameters were analyzed by Omega flow (Siemens Medical Solution, Mountain View, CA, USA). The morphology and pulsatility of LA vortex flow were compared with electrophysiologic parameters that were measured invasively. Hemodynamic, electrophysiological, and vortex flow parameters were compared between patients with and without early recurrence of AF after RFCA. Morphologic parameters, including LA vortex depth, length, width, and sphericity index were not associated with LA voltage or hemodynamic parameters. The relative strength (RS), which represents the pulsatility power of LA, was positively correlated with LA voltage (R = 0.53, p = 0.01) and LA appendage flow velocity (R = 0.73, p < 0.001) and negatively correlated with LA volume index (R = -0.56, p < 0.001). Patients with recurrent AF after RFCA showed significantly lower RS (1.7 ± 0.2 vs 1.9 ± 0.4, p = 0.048) and LA voltage (0.9 ± 0.7 vs 1.7 ± 0.8, p = 0.004) than patients without AF recurrence. In the relatively small LA dimension group (LA volume index ≤ 33 ml/m(2)), RS was significantly lower (2.1 ± 0.3 vs 1.7 ± 0.1, p = 0.029) in patients with the recurrent AF. Quantitative LA vortex flow analysis, especially RS, correlated well with LA voltage. Decreased pulsatility strength in the LA was associated with recurrent AF. LA vortex may have incremental value in predicting the recurrence of AF.

  19. Effects of Double-Leakage Tip Clearance Flow on the Performance of a Compressor Stage with a Large Rotor Tip Gap

    NASA Technical Reports Server (NTRS)

    Hah, Chunill

    2016-01-01

    Effects of a large rotor tip gap on the performance of a one and half stage axial compressor are investigated in detail with a numerical simulation based on LES and available PIV data. The current paper studies the main flow physics, including why and how the loss generation is increased with the large rotor tip gap. The present study reveals that when the tip gap becomes large, tip clearance fluid goes over the tip clearance core vortex and enters into the next blade's tip gap, which is called double-leakage tip clearance flow. As the tip clearance flow enters into the adjacent blade's tip gap, a vortex rope with a lower pressure core is generated. This vortex rope breaks up the tip clearance core vortex of the adjacent blade, resulting in a large additional mixing. This double-leakage tip clearance flow occurs at all operating conditions, from design flow to near stall condition, with the large tip gap for the current compressor stage. The double-leakage tip clearance flow, its interaction with the tip clearance core vortex of the adjacent blade, and the resulting large mixing loss are the main flow mechanism of the large rotor tip gap in the compressor. When the tip clearance is smaller, flow near the end wall follows more closely with the main passage flow and this double-leakage tip clearance flow does not happen near the design flow condition for the current compressor stage. When the compressor with a large tip gap operates at near stall operation, a strong vortex rope is generated near the leading edge due to the double-leakage flow. Part of this vortex separates from the path of the tip clearance core vortex and travels from the suction side of the blade toward the pressure side of the blade. This vortex is generated periodically at near stall operation with a large tip gap. As the vortex travels from the suction side to the pressure side of the blade, a large fluctuation of local pressure forces blade vibration. Nonsynchronous blade vibration occurs due to this vortex as the frequency of this vortex generation is not the same as the rotor. The present investigation confirms that this vortex is a part of separated tip clearance vortex, which is caused by the double-leakage tip clearance flow.

  20. Ring Bubbles of Dolphins

    NASA Technical Reports Server (NTRS)

    Shariff, Karim; Marten, Ken; Psarakos, Suchi; White, Don J.; Merriam, Marshal (Technical Monitor)

    1996-01-01

    The article discusses how dolphins create and play with three types of air-filled vortices. The underlying physics is discussed. Photographs and sketches illustrating the dolphin's actions and physics are presented. The dolphins engage in this behavior on their own initiative without food reward. These behaviors are done repeatedly and with singleminded effort. The first type is the ejection of bubbles which, after some practice on the part of the dolphin, turn into toroidal vortex ring bubbles by the mechanism of baroclinic torque. These bubbles grow in radius and become thinner as they rise vertically to the surface. One dolphin would blow two in succession and guide them to fuse into one. Physicists call this a vortex reconnection. In the second type, the dolphins first create an invisible vortex ring in the water by swimming on their side and waving their tail fin (also called flukes) vigorously. This vortex ring travels horizontally in the water. The dolphin then turns around, finds the vortex and injects a stream of air into it from its blowhole. The air "fills-out" the core of the vortex ring. Often, the dolphin would knock-off a smaller ring bubble from the larger ring (this also involves vortex reconnection) and steer the smaller ring around the tank. One other dolphin employed a few other techniques for planting air into the fluke vortex. One technique included standing vertically in the water with tail-up, head-down and tail piercing the free surface. As the fluke is waved to create the vortex ring, air is entrained from above the surface. Another technique was gulping air in the mouth, diving down, releasing air bubbles from the mouth and curling them into a ring when they rose to the level of the fluke. In the third type, demonstrated by only one dolphin, the longitudinal vortex created by the dorsal fin on the back is used to produce 10-15 foot long helical bubbles. In one technique she swims in a curved path. This creates a dorsal fin vortex since centrifugal force has to be balanced by a lift-like force. She then re-traces her path and injects air into the vortex from her blowhole. She can even make a ring reconnect from the helix. In the second technique, demonstrated a few times, she again swims in a curved path, releases a cloud or group of bubbles from her blowhole and turns sharply away (Which presumably strengthens the vortex). As the bubbles encounter the vortex, they travel to the center of the vortex, merge and, in a flash, elongate along the core of the vortex. In all the three types, the air-water interface is shiny smooth and stable because the pressure gradient in the vortex flow around the bubble stabilizes it. A lot of the interesting physics still remains to be explored.

  1. Ultrafine particle and fiber production in micro-gravity

    NASA Technical Reports Server (NTRS)

    Webb, George W.

    1987-01-01

    The technique of evaporation and condensation of material in an inert gas is investigated for the purpose of preparing ultrafine particles (of order 10 nm in diameter) with a narrow distribution of sizes. Gravity-driven convection increases the rate of coalescence of the particles, leading to larger sizes and a broader distribution. Analysis and experimental efforts to investigate coalescence of particles are presented. The possibility of reducing coalescence in microgravity is discussed. An experimental test in reduced gravity to be performed in a KC135 aircraft is described briefly.

  2. Note: a simple experimental arrangement to generate optical vortex beams.

    PubMed

    Kumar, Dhirendra; Das, Abhijit; Boruah, Bosanta R

    2013-02-01

    In this Note, we present a simple experimental arrangement to generate optical vortex beams. We have demonstrated how by taking print of an interferogram on a transparent sheet, vortex beams with various topological charges can be generated. Experimental results show that the vortex beam indeed carries the topological charge that is used to compute the interferograms. In addition to being simple and inexpensive, one major advantage of the arrangement is that it makes it possible to generate different vortex beams quickly, unlike using the photographic process to create the holograms.

  3. Vortex rope instabilities in a model of conical draft tube

    NASA Astrophysics Data System (ADS)

    Skripkin, Sergey; Tsoy, Mikhail; Kuibin, Pavel; Shtork, Sergey

    2017-10-01

    We report on experimental studies of the formation of vortex ropes in a laboratory simplified model of hydroturbine draft tube. Work is focused on the observation of various flow patterns at the different rotational speed of turbine runner at fixed flow rate. The measurements involve high-speed visualization and pressure pulsations recordings. Draft tube wall pressure pulsations are registered by pressure transducer for different flow regimes. Vortex rope precession frequency were calculated using FFT transform. The experiments showed interesting features of precessing vortex rope like twin spiral and formation of vortex ring.

  4. Vortex sheet modeling with higher order curved panels. Ph.D Thesis Final Technical Report

    NASA Technical Reports Server (NTRS)

    Nagati, M. G.

    1985-01-01

    A numerical technique is presented for modeling the vortex sheet with a deformable surface definition, along which a continuous vortex strength distribution in the spanwise direction is applied, so that by repeatedly modifying its shape, its true configuration is approached, in the proximity of its generating wing. Design problems requiring the inclusion of a realistic configuration of the vortex sheet are numerous. Examples discussed include: control effectiveness and stability derivatives, longitudinal stability, lateral stability, canards, propellers and helicopter rotors, and trailing vortex hazards.

  5. Method and apparatus for enhancing vortex pinning by conformal crystal arrays

    DOEpatents

    Janko, Boldizsar; Reichhardt, Cynthia; Reichhardt, Charles; Ray, Dipanjan

    2015-07-14

    Disclosed is a method and apparatus for strongly enhancing vortex pinning by conformal crystal arrays. The conformal crystal array is constructed by a conformal transformation of a hexagonal lattice, producing a non-uniform structure with a gradient where the local six-fold coordination of the pinning sites is preserved, and with an arching effect. The conformal pinning arrays produce significantly enhanced vortex pinning over a much wider range of field than that found for other vortex pinning geometries with an equivalent number of vortex pinning sites, such as random, square, and triangular.

  6. Farfield structure of an aircraft trailing vortex, including effects of mass injection

    NASA Technical Reports Server (NTRS)

    Mason, W. H.; Marchman, J. F., III

    1972-01-01

    Wind tunnel tests to predict the aircraft wake turbulence due to the tip trailing vortex are discussed. A yawhead pressure probe was used in a subsonic wind tunnel to obtain detailed mean flow measurements at stations up to 30 chordlengths downstream in an aircraft trailing vortex. Mass injection at the wingtip was shown to hasten the decay of the trailing vortex. A theoretical method is presented to show the effect which the circulation distribution on the wing has on the structure of the outer portion of the vortex.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Streubel, Robert; Kronast, Florian; Reiche, Christopher F.

    For this work, we studied curvature-driven modifications to the magnetostatic coupling of vortex circulation and polarity in soft-magnetic closely packed cap arrays. A phase diagram for the magnetic remanent/transition states at room temperature as a function of diameter and thickness was assembled. For specimens with vortex remanent state (40 nm-thick Permalloy on 330 nm spherical nanoparticles), both vortex circulation and polarity were visualized. Intercap coupling upon vortex nucleation leads to the formation of vortex circulation patterns in closely packed arrays. The remanent circulation pattern can be tailored choosing the direction of the applied magnetic field with respect to the symmetrymore » axis of the hexagonal array. An even and random distribution of vortex polarity indicates the absence of any circulation-polarity coupling.« less

  8. Determining the vortex tilt relative to a superconductor surface

    DOE PAGES

    Kogan, V. G.; Kirtley, J. R.

    2017-11-20

    Here, it is of interest to determine the exit angle of a vortex from a superconductor surface, since this affects the intervortex interactions and their consequences. Two ways to determine this angle are to image the vortex magnetic fields above the surface, or the vortex core shape at the surface. In this work we evaluate the field h(x,y,z) above a flat superconducting surface x,y and the currents J(x,y) at that surface for a straight vortex tilted relative to the normal to the surface, for both the isotropic and anisotropic cases. In principle, these results can be used to determine themore » vortex exit tilt angle from analyses of magnetic field imaging or density of states data.« less

  9. Investigation of propagation dynamics of truncated vector vortex beams.

    PubMed

    Srinivas, P; Perumangatt, C; Lal, Nijil; Singh, R P; Srinivasan, B

    2018-06-01

    In this Letter, we experimentally investigate the propagation dynamics of truncated vector vortex beams generated using a Sagnac interferometer. Upon focusing, the truncated vector vortex beam is found to regain its original intensity structure within the Rayleigh range. In order to explain such behavior, the propagation dynamics of a truncated vector vortex beam is simulated by decomposing it into the sum of integral charge beams with associated complex weights. We also show that the polarization of the truncated composite vector vortex beam is preserved all along the propagation axis. The experimental observations are consistent with theoretical predictions based on previous literature and are in good agreement with our simulation results. The results hold importance as vector vortex modes are eigenmodes of the optical fiber.

  10. High-charge and multiple-star vortex coronagraphy from stacked vector vortex phase masks.

    PubMed

    Aleksanyan, Artur; Brasselet, Etienne

    2018-02-01

    Optical vortex phase masks are now installed at many ground-based large telescopes for high-contrast astronomical imaging. To date, such instrumental advances have been restricted to the use of helical phase masks of the lowest even order, while future giant telescopes will require high-order masks. Here we propose a single-stage on-axis scheme to create high-order vortex coronagraphs based on second-order vortex phase masks. By extending our approach to an off-axis design, we also explore the implementation of multiple-star vortex coronagraphy. An experimental laboratory demonstration is reported and supported by numerical simulations. These results offer a practical roadmap to the development of future coronagraphic tools with enhanced performances.

  11. A vortex wake capturing method for potential flow calculations

    NASA Technical Reports Server (NTRS)

    Murman, E. M.; Stremel, P. M.

    1982-01-01

    A method is presented for modifying finite difference solutions of the potential equation to include the calculation of non-planar vortex wake features. The approach is an adaptation of Baker's 'cloud in cell' algorithm developed for the stream function-vorticity equations. The vortex wake is tracked in a Lagrangian frame of reference as a group of discrete vortex filaments. These are distributed to the Eulerian mesh system on which the velocity is calculated by a finite difference solution of the potential equation. An artificial viscosity introduced by the finite difference equations removes the singular nature of the vortex filaments. Computed examples are given for the two-dimensional time dependent roll-up of vortex wakes generated by wings with different spanwise loading distributions.

  12. Kinematics and dynamics of vortex rings in a tube

    NASA Technical Reports Server (NTRS)

    Brasseur, J. G.

    1979-01-01

    Kinematic theory and flow visualization experiments were combined to examine the dynamic processes which control the evolution of vortex rings from very low to very high Reynolds numbers, and to assess the effects of the wall as a vortex ring travels up a tube. The kinematic relationships among the size, shape, speed, and strength of vortex rings in a tube were computed from the theory. Relatively simple flow visualization measurements were used to calculate the total circulation of a vortex rings at a given time. Using this method, the strength was computated and plotted as a function of time for experimentally produced vortex rings. Reynolds number relationships are established and quantitative differences among the three Reynolds number groups are discussed.

  13. Vortex energy landscape from real space imaging analysis of YBa2Cu3O7 with different defect structures

    NASA Astrophysics Data System (ADS)

    Luccas, R. F.; Granados, X.; Obradors, X.; Puig, T.

    2014-10-01

    A methodology based on real space vortex image analysis is presented able to estimate semi-quantitatively the relevant energy densities of an arbitrary array of vortices, map the interaction energy distributions and evaluate the pinning energy associated to particular defects. The combined study using nanostructuration tools, a vortex visualization technique and the energy method is seen as an opportunity to estimate vortex pinning potentials strengths. Particularly, spatial distributions of vortex energy densities induced by surface nanoindented scratches are evaluated and compared to those of twin boundaries. This comparative study underlines the remarkable role of surface nanoscratches in pinning vortices and its potentiality in the design of novel devices for pinning and guiding vortex motion.

  14. Visualization of vortex structures and analysis of frequency of PVC

    NASA Astrophysics Data System (ADS)

    Gesheva, E. S.; Shtork, S. I.; Alekseenko, S. V.

    2018-03-01

    The paper presents the results of the study of large-scale vortex structures in a model chamber. Methods of forming quasi-stationary vortices of various shapes by changing the geometric parameters of the chamber have been proposed. In the model chamber with a tangential swirl of the flow, a rectilinear vortex, single helical and double helical vortices were obtained. The double helical structure of the vortex is unique due to its immovability around the axis of the chamber. The resulting structures slowly oscillate around their own axes, which is called the vortex core precession; while the oscillation frequency depends linearly on the liquid flow rate. The use of stationary vortex structures in power plants will increase the efficiency of combustion chambers and reduce slagging.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silva, R. M. da; Milošević, M. V.; Peeters, F. M.

    Vortices carrying fractions of a flux quantum are predicted to exist in multiband superconductors, where vortex core can split between multiple band-specific components of the superconducting condensate. Using the two-component Ginzburg-Landau model, we examine such vortex configurations in a two-band superconducting slab in parallel magnetic field. The fractional vortices appear due to the band-selective vortex penetration caused by different thresholds for vortex entry within each band-condensate, and stabilize near the edges of the sample. We show that the resulting fractional vortex configurations leave distinct fingerprints in the static measurements of the magnetization, as well as in ac dynamic measurements ofmore » the magnetic susceptibility, both of which can be readily used for the detection of these fascinating vortex states in several existing multiband superconductors.« less

  16. Sedimentary depositional environments in the Gulf of Alaska from GLORIA Imagery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlson, P.R.; Bruns, T.R.; Stevenson, A.J.

    1990-05-01

    GLORIA side-scan images provide new insight to the morphology and sedimentology of the Gulf of Alaska and show that tectonism strongly influences downslope and abyssal plain sediment transport. Along the Fairweather-Queen Charlotte transform margin south of Cross Sound short, chute-like canyons cross the slope to submarine-fan channels. At least one canyon is offset by strike-slip motion along the fault Fan channels coalesce to form two deep-sea turbidite channels (Mukluk and Horizon) that extend 1,000 km southward to the Tufts Abyssal Plain. From Cross Sound to Pamplona Spur, dendritic gulley systems and short chutes cross the slope into tributary channels thatmore » merge into major channels. Tributary channels from Cross Sound to Alsek Valley form the Chirikov channel system which bends westward and ends in turbidite fans south of the Kodiak-Bowie Seamount chain. A probable ancestral Chirikov channel carried sediment westward to the Aleutian Trench, Channels from Alsek Valley to Pamplona Spur coalesce 280 km seaward of the slope to form the Surveyor Channel which meanders across the abyssal plain 500 km to the Aleutian trench. Between Pamplona Spur and Middleton Island, dendritic slope canyons reach the eastern end of the Aleutian Trench sediment moves southwestward along the trench. Southwest of Middleton Island, discontinuous trench-parallel subduction ridges change slope drainage from a dendritic to trellised pattern as sediment is forced to flow around the ridges to the Aleutian Trench. At least two small fans have been constructed on the trench floor. Southwest of Kodiak Island, subduction ridges create mid-slope basins that trap modern sediment.« less

  17. Evolution of the human immunodeficiency virus envelope gene is dominated by purifying selection.

    PubMed

    Edwards, C T T; Holmes, E C; Pybus, O G; Wilson, D J; Viscidi, R P; Abrams, E J; Phillips, R E; Drummond, A J

    2006-11-01

    The evolution of the human immunodeficiency virus (HIV-1) during chronic infection involves the rapid, continuous turnover of genetic diversity. However, the role of natural selection, relative to random genetic drift, in governing this process is unclear. We tested a stochastic model of genetic drift using partial envelope sequences sampled longitudinally in 28 infected children. In each case the Bayesian posterior (empirical) distribution of coalescent genealogies was estimated using Markov chain Monte Carlo methods. Posterior predictive simulation was then used to generate a null distribution of genealogies assuming neutrality, with the null and empirical distributions compared using four genealogy-based summary statistics sensitive to nonneutral evolution. Because both null and empirical distributions were generated within a coalescent framework, we were able to explicitly account for the confounding influence of demography. From the distribution of corrected P-values across patients, we conclude that empirical genealogies are more asymmetric than expected if evolution is driven by mutation and genetic drift only, with an excess of low-frequency polymorphisms in the population. This indicates that although drift may still play an important role, natural selection has a strong influence on the evolution of HIV-1 envelope. A negative relationship between effective population size and substitution rate indicates that as the efficacy of selection increases, a smaller proportion of mutations approach fixation in the population. This suggests the presence of deleterious mutations. We therefore conclude that intrahost HIV-1 evolution in envelope is dominated by purifying selection against low-frequency deleterious mutations that do not reach fixation.

  18. How coalescing droplets jump.

    PubMed

    Enright, Ryan; Miljkovic, Nenad; Sprittles, James; Nolan, Kevin; Mitchell, Robert; Wang, Evelyn N

    2014-10-28

    Surface engineering at the nanoscale is a rapidly developing field that promises to impact a range of applications including energy production, water desalination, self-cleaning and anti-icing surfaces, thermal management of electronics, microfluidic platforms, and environmental pollution control. As the area advances, more detailed insights of dynamic wetting interactions on these surfaces are needed. In particular, the coalescence of two or more droplets on ultra-low adhesion surfaces leads to droplet jumping. Here we show, through detailed measurements of jumping droplets during water condensation coupled with numerical simulations of binary droplet coalescence, that this process is fundamentally inefficient with only a small fraction of the available excess surface energy (≲ 6%) convertible into translational kinetic energy. These findings clarify the role of internal fluid dynamics during the jumping droplet coalescence process and underpin the development of systems that can harness jumping droplets for a wide range of applications.

  19. Simulations of surfactant effects on the dynamics of coalescing drops and bubbles

    NASA Astrophysics Data System (ADS)

    Martin, David W.; Blanchette, François

    2015-01-01

    We present simulations of coalescence in the presence of surfactant. We consider a fluid-fluid interface where we track surfactant concentration. Our model is applicable to a soap bubble merging with a suspended soap film and to a surfactant covered liquid drop merging with a reservoir. In both cases, we determine the regime in which coalescence is only partial. Along with viscous effects, represented by the Ohnesorge number, the elasticity of the surface tension relative to the surfactant concentration is seen to play a key role and exhibits a surprising nonmonotonic influence, for which we present a physical mechanism. The effects of gravity are also simulated, along with effects of differing initial conditions, as well as those of uneven initial surfactant concentration, as are likely to arise in physical applications. We describe how the presence of surfactants can influence a coalescence cascade.

  20. Rate of Bubble Coalescence following Quasi-Static Approach: Screening and Neutralization of the Electric Double Layer

    PubMed Central

    Katsir, Yael; Marmur, Abraham

    2014-01-01

    Air-bubble coalescence in aqueous electrolytic solutions, following quasi-static approach, was studied in order to understand its slow rate in purified water and high rate in electrolytic solutions. The former is found to be due to surface charges, originating from the speciation of dissolved CO2, which sustain the electric double layer repulsion. Rapid coalescence in electrolytic solutions is shown to occur via two different mechanisms: (1) neutralization of the carbonaceous, charged species by acids; or (2) screening of the repulsive charge effects by salts and bases. The results do not indicate any ion specificity. They can be explained within the DLVO theory for the van der Waals and electric double layer interactions between particles, in contrast to observations of coalescence following dynamic approach. The present conclusions should serve as a reference point to understanding the dynamic behavior. PMID:24589528

  1. Viscosity Measurement via Drop Coalescence: A Space Station Experiment

    NASA Technical Reports Server (NTRS)

    Antar, Basil; Ethridge, Edwin C.

    2010-01-01

    The concept of using low gravity experimental data together with CFD simulations for measuring the viscosity of highly viscous liquids was recently validated on onboard the International Space Station (ISS). A series of microgravity tests were conducted for this purpose on the ISS in July, 2004 and in May of 2005. In these experiments two liquid drops were brought manually together until they touched and were allowed to coalesce under the action of the capillary force alone. The coalescence process was recorded photographically from which the contact radius speed of the merging drops was measured. The liquid viscosity was determined by fitting the measured data with accurate numerical simulation of the coalescence process. Several liquids were tested and for each liquid several drop diameters were employed. Experimental and numerical results will be presented in which the viscosity of several highly viscous liquids were determined using this technique.

  2. The effect of vortex formation on left ventricular filling and mitral valve efficiency.

    PubMed

    Pierrakos, Olga; Vlachos, Pavlos P

    2006-08-01

    A new mechanism for quantifying the filling energetics in the left ventricle (LV) and past mechanical heart valves (MHV) is identified and presented. This mechanism is attributed to vortex formation dynamics past MHV leaflets. Recent studies support the conjecture that the natural healthy left ventricle (LV) performs in an optimum, energy-preserving manner by redirecting the flow with high efficiency. Yet to date, no quantitative proof has been presented. The present work provides quantitative results and validation of a theory based on the dynamics of vortex ring formation, which is governed by a critical formation number (FN) that corresponds to the dimensionless time at which the vortex ring has reached its maximum circulation content, in support of this hypothesis. Herein, several parameters (vortex ring circulation, vortex ring energy, critical FN, hydrodynamic efficiencies, vortex ring propagation speed) have been quantified and presented as a means of bridging the physics of vortex formation in the LV. In fact, the diastolic hydrodynamic efficiencies were found to be 60, 41, and 29%, respectively, for the porcine, anti-anatomical, and anatomical valve configurations. This assessment provides quantitative proof of vortex formation, which is dependent of valve design and orientation, being an important flow characteristic and associated to LV energetics. Time resolved digital particle image velocimetry with kilohertz sampling rate was used to study the ejection of fluid into the LV and resolve the spatiotemporal evolution of the flow. The clinical significance of this study is quantifying vortex formation and the critical FN that can potentially serve as a parameter to quantify the LV filling process and the performance of heart valves.

  3. A universal time scale for vortex ring formation

    NASA Astrophysics Data System (ADS)

    Gharib, Morteza; Rambod, Edmond; Shariff, Karim

    1998-04-01

    The formation of vortex rings generated through impulsively started jets is studied experimentally. Utilizing a piston/cylinder arrangement in a water tank, the velocity and vorticity fields of vortex rings are obtained using digital particle image velocimetry (DPIV) for a wide range of piston stroke to diameter (L/D) ratios. The results indicate that the flow field generated by large L/D consists of a leading vortex ring followed by a trailing jet. The vorticity field of the leading vortex ring formed is disconnected from that of the trailing jet. On the other hand, flow fields generated by small stroke ratios show only a single vortex ring. The transition between these two distinct states is observed to occur at a stroke ratio of approximately 4, which, in this paper, is referred to as the ‘formation number’. In all cases, the maximum circulation that a vortex ring can attain during its formation is reached at this non-dimensional time or formation number. The universality of this number was tested by generating vortex rings with different jet exit diameters and boundaries, as well as with various non-impulsive piston velocities. It is shown that the ‘formation number’ lies in the range of 3.6 4.5 for a broad range of flow conditions. An explanation is provided for the existence of the formation number based on the Kelvin Benjamin variational principle for steady axis-touching vortex rings. It is shown that based on the measured impulse, circulation and energy of the observed vortex rings, the Kelvin Benjamin principle correctly predicts the range of observed formation numbers.

  4. Computational study of the interaction between a shock and a near-wall vortex using a weighted compact nonlinear scheme

    NASA Astrophysics Data System (ADS)

    Zuo, Zhifeng; Maekawa, Hiroshi

    2014-02-01

    The interaction between a moderate-strength shock wave and a near-wall vortex is studied numerically by solving the two-dimensional, unsteady compressible Navier-Stokes equations using a weighted compact nonlinear scheme with a simple low-dissipation advection upstream splitting method for flux splitting. Our main purpose is to clarify the development of the flow field and the generation of sound waves resulting from the interaction. The effects of the vortex-wall distance on the sound generation associated with variations in the flow structures are also examined. The computational results show that three sound sources are involved in this problem: (i) a quadrupolar sound source due to the shock-vortex interaction; (ii) a dipolar sound source due to the vortex-wall interaction; and (iii) a dipolar sound source due to unsteady wall shear stress. The sound field is the combination of the sound waves produced by all three sound sources. In addition to the interaction of the incident shock with the vortex, a secondary shock-vortex interaction is caused by the reflection of the reflected shock (MR2) from the wall. The flow field is dominated by the primary and secondary shock-vortex interactions. The generation mechanism of the third sound, which is newly discovered, due to the MR2-vortex interaction is presented. The pressure variations generated by (ii) become significant with decreasing vortex-wall distance. The sound waves caused by (iii) are extremely weak compared with those caused by (i) and (ii) and are negligible in the computed sound field.

  5. Coalescence of two current loops with a kink instability simulated by a three-dimensional electromagnetic particle code

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Sakai, J.-I.; Zhao, Jie; Neubert, T.; Buneman, Oscar

    1994-01-01

    We have studied the dynamics of a coalescence of current loops using three-dimensional electromagnetic (EM) particle simulation code. Our focus is the investigation of such kinetic processes as energy trasnfer, heating particles, and electromagnetic emissions associated with a current loop coalescence which cannot be studied by MHD simulations. First, the two loops undergo a pinching oscillation due to a pressure imbalance between the inside and outside of the current loop. During the pinching oscillation, a kinetic kink instability is excited and electrons in the loops are heated perpendicularly to an ambient magnetic field. Next, the two current loops collide and coalesce, while at the same time a helical structure grows further. Subsequently, the perturbed current, which is due to these helically bunched electrons, can drive a whistler instability. It should be noted in this case that the whistler wave is excited by the kinetic kink instability and not a beam instability. After the coalescence of two helical loops, tilting motions can be observed in the direction of left-hand rotation, and the helical structure will relax resulting in strong plasma heating mostly in the direction perpendicular to the ambient magnetic field. It is also shown that high-frequency electromagnetic waves can be emitted from the region where the two loops coalesce and propagate strongly in the direction of the electron drift velocity. These processes may be important in understanding heating mechansims for coronal loops as well as radio wave emission mechanisms from active regions of solar plasmas.

  6. Updated Results for the Wake Vortex Inverse Model

    NASA Technical Reports Server (NTRS)

    Robins, Robert E.; Lai, David Y.; Delisi, Donald P.; Mellman, George R.

    2008-01-01

    NorthWest Research Associates (NWRA) has developed an Inverse Model for inverting aircraft wake vortex data. The objective of the inverse modeling is to obtain estimates of the vortex circulation decay and crosswind vertical profiles, using time history measurements of the lateral and vertical position of aircraft vortices. The Inverse Model performs iterative forward model runs using estimates of vortex parameters, vertical crosswind profiles, and vortex circulation as a function of wake age. Iterations are performed until a user-defined criterion is satisfied. Outputs from an Inverse Model run are the best estimates of the time history of the vortex circulation derived from the observed data, the vertical crosswind profile, and several vortex parameters. The forward model, named SHRAPA, used in this inverse modeling is a modified version of the Shear-APA model, and it is described in Section 2 of this document. Details of the Inverse Model are presented in Section 3. The Inverse Model was applied to lidar-observed vortex data at three airports: FAA acquired data from San Francisco International Airport (SFO) and Denver International Airport (DEN), and NASA acquired data from Memphis International Airport (MEM). The results are compared with observed data. This Inverse Model validation is documented in Section 4. A summary is given in Section 5. A user's guide for the inverse wake vortex model is presented in a separate NorthWest Research Associates technical report (Lai and Delisi, 2007a).

  7. Magnetization reversal in circular vortex dots of small radius.

    PubMed

    Goiriena-Goikoetxea, M; Guslienko, K Y; Rouco, M; Orue, I; Berganza, E; Jaafar, M; Asenjo, A; Fernández-Gubieda, M L; Fernández Barquín, L; García-Arribas, A

    2017-08-10

    We present a detailed study of the magnetic behavior of Permalloy (Ni 80 Fe 20 alloy) circular nanodots with small radii (30 nm and 70 nm) and different thicknesses (30 nm or 50 nm). Despite the small size of the dots, the measured hysteresis loops manifestly display the features of classical vortex behavior with zero remanence and lobes at high magnetic fields. This is remarkable because the size of the magnetic vortex core is comparable to the dot diameter, as revealed by magnetic force microscopy and micromagnetic simulations. The dot ground states are close to the border of the vortex stability and, depending on the dot size, the magnetization distribution combines attributes of the typical vortex, single domain states or even presents features resembling magnetic skyrmions. An analytical model of the dot magnetization reversal, accounting for the large vortex core size, is developed to explain the observed behavior, providing a rather good agreement with the experimental results. The study extends the understanding of magnetic nanodots beyond the classical vortex concept (where the vortex core spins have a negligible influence on the magnetic behavior) and can therefore be useful for improving emerging spintronic applications, such as spin-torque nano-oscillators. It also delimits the feasibility of producing a well-defined vortex configuration in sub-100 nm dots, enabling the intracellular magneto-mechanical actuation for biomedical applications.

  8. An investigation of the vortex method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pryor, Jr., Duaine Wright

    The vortex method is a numerical scheme for solving the vorticity transport equation. Chorin introduced modern vortex methods. The vortex method is a Lagrangian, grid free method which has less intrinsic diffusion than many grid schemes. It is adaptive in the sense that elements are needed only where the vorticity is non-zero. Our description of vortex methods begins with the point vortex method of Rosenhead for two dimensional inviscid flow, and builds upon it to eventually cover the case of three dimensional slightly viscous flow with boundaries. This section gives an introduction to the fundamentals of the vortex method. Thismore » is done in order to give a basic impression of the previous work and its line of development, as well as develop some notation and concepts which will be used later. The purpose here is not to give a full review of vortex methods or the contributions made by all the researchers in the field. Please refer to the excellent review papers in Sethian and Gustafson, chapters 1 Sethian, 2 Hald, 3 Sethian, 8 Chorin provide a solid introduction to vortex methods, including convergence theory, application in two dimensions and connection to statistical mechanics and polymers. Much of the information in this review is taken from those chapters, Chorin and Marsden and Batchelor, the chapters are also useful for their extensive bibliographies.« less

  9. Frequency-feature based antistrong-disturbance signal processing method and system for vortex flowmeter with single sensor

    NASA Astrophysics Data System (ADS)

    Xu, Ke-Jun; Luo, Qing-Lin; Wang, Gang; Liu, San-Shan; Kang, Yi-Bo

    2010-07-01

    Digital signal processing methods have been applied to vortex flowmeter for extracting the useful information from noisy output of the vortex flow sensor. But these approaches are unavailable when the power of the mechanical vibration noise is larger than that of the vortex flow signal. In order to solve this problem, an antistrong-disturbance signal processing method is proposed based on frequency features of the vortex flow signal and mechanical vibration noise for the vortex flowmeter with single sensor. The frequency bandwidth of the vortex flow signal is different from that of the mechanical vibration noise. The autocorrelation function can represent bandwidth features of the signal and noise. The output of the vortex flow sensor is processed by the spectrum analysis, filtered by bandpass filters, and calculated by autocorrelation function at the fixed delaying time and at τ =0 to obtain ratios. The frequency corresponding to the minimal ratio is regarded as the vortex flow frequency. With an ultralow-power microcontroller, a digital signal processing system is developed to implement the antistrong-disturbance algorithm, and at the same time to ensure low-power and two-wire mode for meeting the requirement of process instrumentation. The water flow-rate calibration and vibration test experiments are conducted, and the experimental results show that both the algorithm and system are effective.

  10. Frequency-feature based antistrong-disturbance signal processing method and system for vortex flowmeter with single sensor.

    PubMed

    Xu, Ke-Jun; Luo, Qing-Lin; Wang, Gang; Liu, San-Shan; Kang, Yi-Bo

    2010-07-01

    Digital signal processing methods have been applied to vortex flowmeter for extracting the useful information from noisy output of the vortex flow sensor. But these approaches are unavailable when the power of the mechanical vibration noise is larger than that of the vortex flow signal. In order to solve this problem, an antistrong-disturbance signal processing method is proposed based on frequency features of the vortex flow signal and mechanical vibration noise for the vortex flowmeter with single sensor. The frequency bandwidth of the vortex flow signal is different from that of the mechanical vibration noise. The autocorrelation function can represent bandwidth features of the signal and noise. The output of the vortex flow sensor is processed by the spectrum analysis, filtered by bandpass filters, and calculated by autocorrelation function at the fixed delaying time and at tau=0 to obtain ratios. The frequency corresponding to the minimal ratio is regarded as the vortex flow frequency. With an ultralow-power microcontroller, a digital signal processing system is developed to implement the antistrong-disturbance algorithm, and at the same time to ensure low-power and two-wire mode for meeting the requirement of process instrumentation. The water flow-rate calibration and vibration test experiments are conducted, and the experimental results show that both the algorithm and system are effective.

  11. Development of a nonlinear vortex method. [steady and unsteady aerodynamic loads of highly sweptback wings

    NASA Technical Reports Server (NTRS)

    Kandil, O. A.

    1981-01-01

    Progress is reported in the development of reliable nonlinear vortex methods for predicting the steady and unsteady aerodynamic loads of highly sweptback wings at large angles of attack. Abstracts of the papers, talks, and theses produced through this research are included. The modified nonlinear discrete vortex method and the nonlinear hybrid vortex method are highlighted.

  12. Geostrophic Vortex Dynamics

    DTIC Science & Technology

    1988-10-01

    Generalized Kirchhoff Vortices 176 B. The 2-Level Rankine Vortex: Critical Points & Stability 181 C. Tripolar Coherent Euler Vortices 186 7...spontaneously in spectral simulations. One such example is provided by the tripolar vortex structureE which will be examined in detail in Chapter 6. It...of the tripolar coherent vortex structures that have recently been observed in very high resolution numerical simulations of two- dimensional

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sasaki, Kazuki; Suzuki, Naoya; Saito, Hiroki

    Vortex shedding from an obstacle potential moving in a Bose-Einstein condensate is investigated. Long-lived alternately aligned vortex pairs are found to form in the wake, which is similar to the Benard-von Karman vortex street in classical viscous fluids. Various patterns of vortex shedding are systematically studied and the drag force on the obstacle is calculated. It is shown that the phenomenon can be observed in a trapped system.

  14. Measuring Orbital Angular Momentum (OAM) States of Vortex Beams with Annular Gratings

    PubMed Central

    Zheng, Shuang; Wang, Jian

    2017-01-01

    Measuring orbital angular momentum (OAM) states of vortex beams is of great importance in diverse applications employing OAM-carrying vortex beams. We present a simple and efficient scheme to measure OAM states (i.e. topological charge values) of vortex beams with annular gratings. The magnitude of the topological charge value is determined by the number of dark fringes after diffraction, and the sign of the topological charge value is distinguished by the orientation of the diffraction pattern. We first theoretically study the diffraction patterns using both annular amplitude and phase gratings. The annular phase grating shows almost 10-dB better diffraction efficiency compared to the annular amplitude grating. We then experimentally demonstrate the OAM states measurement of vortex beams using annular phase grating. The scheme works well even for high-order vortex beams with topological charge value as high as ± 25. We also experimentally show the evolution of diffraction patterns when slightly changing the fractional topological charge value of vortex beam from 0.1 to 1.0. In addition, the proposed scheme shows potential large tolerance of beam alignment during the OAM states measurement of vortex beams. PMID:28094325

  15. Wake Vortex Transport and Decay in Ground Effect: Vortex Linking with the Ground

    NASA Technical Reports Server (NTRS)

    Proctor, Fred H.; Hamilton, David W.; Han, Jongil

    2000-01-01

    Numerical simulations are carried out with a three-dimensional Large-Eddy Simulation (LES) model to explore the sensitivity of vortex decay and transport in ground effect (IGE). The vortex decay rates are found to be strongly enhanced following maximum descent into ground effect. The nondimensional decay rate is found to be insensitive to the initial values of circulation, height, and vortex separation. The information gained from these simulations is used to construct a simple decay relationship. This relationship compares well with observed data from an IGE case study. Similarly, a relationship for lateral drift due to ground effect is constructed from the LES data. In the second part of this paper, vortex linking with the ground is investigated. Our numerical simulations of wake vortices for IGE show that a vortex may link with its image beneath the ground, if the intensity of the ambient turbulence is moderate to high. This linking with the ground (which is observed in real cases)gives the appearance of a vortex tube that bends to become vertically oriented and which terminates at the ground. From the simulations conducted, the linking time for vortices in the free atmosphere; i.e., a function of ambient turbulence intensity.

  16. Reconfigurable superconducting vortex pinning potential for magnetic disks in hybrid structures

    NASA Astrophysics Data System (ADS)

    Marchiori, Estefani; Curran, Peter J.; Kim, Jangyong; Satchell, Nathan; Burnell, Gavin; Bending, Simon J.

    2017-03-01

    High resolution scanning Hall probe microscopy has been used to directly visualise the superconducting vortex behavior in hybrid structures consisting of a square array of micrometer-sized Py ferromagnetic disks covered by a superconducting Nb thin film. At remanence the disks exist in almost fully flux-closed magnetic vortex states, but the observed cloverleaf-like stray fields indicate the presence of weak in-plane anisotropy. Micromagnetic simulations suggest that the most likely origin is an unintentional shape anisotropy. We have studied the pinning of added free superconducting vortices as a function of the magnetisation state of the disks, and identified a range of different phenomena arising from competing energy contributions. We have also observed clear differences in the pinning landscape when the superconductor and the ferromagnet are electron ically coupled or insulated by a thin dielectric layer, with an indication of non-trivial vortex-vortex interactions. We demonstrate a complete reconfiguration of the vortex pinning potential when the magnetisation of the disks evolves from the vortex-like state to an onion-like one under an in-plane magnetic field. Our results are in good qualitative agreement with theoretical predictions and could form the basis of novel superconducting devices based on reconfigurable vortex pinning sites.

  17. Reconfigurable superconducting vortex pinning potential for magnetic disks in hybrid structures.

    PubMed

    Marchiori, Estefani; Curran, Peter J; Kim, Jangyong; Satchell, Nathan; Burnell, Gavin; Bending, Simon J

    2017-03-24

    High resolution scanning Hall probe microscopy has been used to directly visualise the superconducting vortex behavior in hybrid structures consisting of a square array of micrometer-sized Py ferromagnetic disks covered by a superconducting Nb thin film. At remanence the disks exist in almost fully flux-closed magnetic vortex states, but the observed cloverleaf-like stray fields indicate the presence of weak in-plane anisotropy. Micromagnetic simulations suggest that the most likely origin is an unintentional shape anisotropy. We have studied the pinning of added free superconducting vortices as a function of the magnetisation state of the disks, and identified a range of different phenomena arising from competing energy contributions. We have also observed clear differences in the pinning landscape when the superconductor and the ferromagnet are electron ically coupled or insulated by a thin dielectric layer, with an indication of non-trivial vortex-vortex interactions. We demonstrate a complete reconfiguration of the vortex pinning potential when the magnetisation of the disks evolves from the vortex-like state to an onion-like one under an in-plane magnetic field. Our results are in good qualitative agreement with theoretical predictions and could form the basis of novel superconducting devices based on reconfigurable vortex pinning sites.

  18. Helicity within the vortex filament model.

    PubMed

    Hänninen, R; Hietala, N; Salman, H

    2016-11-24

    Kinetic helicity is one of the invariants of the Euler equations that is associated with the topology of vortex lines within the fluid. In superfluids, the vorticity is concentrated along vortex filaments. In this setting, helicity would be expected to acquire its simplest form. However, the lack of a core structure for vortex filaments appears to result in a helicity that does not retain its key attribute as a quadratic invariant. By defining a spanwise vector to the vortex through the use of a Seifert framing, we are able to introduce twist and henceforth recover the key properties of helicity. We present several examples for calculating internal twist to illustrate why the centreline helicity alone will lead to ambiguous results if a twist contribution is not introduced. Our choice of the spanwise vector can be expressed in terms of the tangential component of velocity along the filament. Since the tangential velocity does not alter the configuration of the vortex at later times, we are able to recover a similar equation for the internal twist angle to that of classical vortex tubes. Our results allow us to explain how a quasi-classical limit of helicity emerges from helicity considerations for individual superfluid vortex filaments.

  19. Measuring Orbital Angular Momentum (OAM) States of Vortex Beams with Annular Gratings.

    PubMed

    Zheng, Shuang; Wang, Jian

    2017-01-17

    Measuring orbital angular momentum (OAM) states of vortex beams is of great importance in diverse applications employing OAM-carrying vortex beams. We present a simple and efficient scheme to measure OAM states (i.e. topological charge values) of vortex beams with annular gratings. The magnitude of the topological charge value is determined by the number of dark fringes after diffraction, and the sign of the topological charge value is distinguished by the orientation of the diffraction pattern. We first theoretically study the diffraction patterns using both annular amplitude and phase gratings. The annular phase grating shows almost 10-dB better diffraction efficiency compared to the annular amplitude grating. We then experimentally demonstrate the OAM states measurement of vortex beams using annular phase grating. The scheme works well even for high-order vortex beams with topological charge value as high as ± 25. We also experimentally show the evolution of diffraction patterns when slightly changing the fractional topological charge value of vortex beam from 0.1 to 1.0. In addition, the proposed scheme shows potential large tolerance of beam alignment during the OAM states measurement of vortex beams.

  20. Influence of non-Kolmogorov atmospheric turbulence on the beam quality of vortex beams.

    PubMed

    Li, Jinhong; Wang, Weiwei; Duan, Meiling; Wei, Jinlin

    2016-09-05

    Based on the extended Huygens-Fresnel principle and the definition of second-order moments of the Wigner distribution function (WDF), the analytical expressions for the propagation factors (M2-factors) and Strehl ratio SR of the Gaussian Schell-model (GSM) vortex beams and GSM non-vortex beams propagation through non-Kolmogorov atmospheric turbulence are derived, and used to study the influence of non-Kolmogorov atmospheric turbulence on beam quality of the GSM vortex beams. It is shown that the smaller the generalized structure constant and the outer scale of turbulence are, and the bigger the inner scale of turbulence is, the smaller the normalized propagation factor is, the bigger the Strehl ratio is, and the better the beam quality of GSM vortex beams in atmospheric turbulence is. The variation of beam quality with the generalized exponent α is nonmonotonic, when α = 3.11, the beam quality of the GSM vortex beams is the poorest through non-Kolmogorov atmospheric turbulence. GSM vortex beams is less affected by turbulence than GSM non-vortex beams under certain condition, and will be useful in long-distance free-space optical communications.

  1. Helicity within the vortex filament model

    PubMed Central

    Hänninen, R.; Hietala, N.; Salman, H.

    2016-01-01

    Kinetic helicity is one of the invariants of the Euler equations that is associated with the topology of vortex lines within the fluid. In superfluids, the vorticity is concentrated along vortex filaments. In this setting, helicity would be expected to acquire its simplest form. However, the lack of a core structure for vortex filaments appears to result in a helicity that does not retain its key attribute as a quadratic invariant. By defining a spanwise vector to the vortex through the use of a Seifert framing, we are able to introduce twist and henceforth recover the key properties of helicity. We present several examples for calculating internal twist to illustrate why the centreline helicity alone will lead to ambiguous results if a twist contribution is not introduced. Our choice of the spanwise vector can be expressed in terms of the tangential component of velocity along the filament. Since the tangential velocity does not alter the configuration of the vortex at later times, we are able to recover a similar equation for the internal twist angle to that of classical vortex tubes. Our results allow us to explain how a quasi-classical limit of helicity emerges from helicity considerations for individual superfluid vortex filaments. PMID:27883029

  2. COLLECTIVE VORTEX BEHAVIORS: DIVERSITY, PROXIMATE, AND ULTIMATE CAUSES OF CIRCULAR ANIMAL GROUP MOVEMENTS.

    PubMed

    Delcourt, Johann; Bode, Nikolai W F; Denoël, Mathieu

    2016-03-01

    Ant mill, caterpillar circle, bat doughnut, amphibian vortex, duck swirl, and fish torus are different names for rotating circular animal formations, where individuals turn around a common center. These "collective vortex behaviors" occur at different group sizes from pairs to several million individuals and have been reported in a large number of organisms, from bacteria to vertebrates, including humans. However, to date, no comprehensive review and synthesis of the literature on vortex behaviors has been conducted. Here, we review the state of the art of the proximate and ultimate causes of vortex behaviors. The ubiquity of this behavioral phenomenon could suggest common causes or fundamental underlying principles across contexts. However, we find that a variety of proximate mechanisms give rise to vortex behaviors. We highlight the potential benefits of collective vortex behaviors to individuals involved in them. For example, in some species, vortices increase feeding efficiency and could give protection against predators. It has also been argued that vortices could improve collective decision-making and information transfer. We highlight gaps in our understanding of these ubiquitous behavioral phenomena and discuss future directions for research in vortex studies.

  3. Generation and characterization of a perfect vortex beam with a large topological charge through a digital micromirror device.

    PubMed

    Chen, Yue; Fang, Zhao-Xiang; Ren, Yu-Xuan; Gong, Lei; Lu, Rong-De

    2015-09-20

    Optical vortices are associated with a spatial phase singularity. Such a beam with a vortex is valuable in optical microscopy, hyper-entanglement, and optical levitation. In these applications, vortex beams with a perfect circle shape and a large topological charge are highly desirable. But the generation of perfect vortices with high topological charges is challenging. We present a novel method to create perfect vortex beams with large topological charges using a digital micromirror device (DMD) through binary amplitude modulation and a narrow Gaussian approximation. The DMD with binary holograms encoding both the spatial amplitude and the phase could generate fast switchable, reconfigurable optical vortex beams with significantly high quality and fidelity. With either the binary Lee hologram or the superpixel binary encoding technique, we were able to generate the corresponding hologram with high fidelity and create a perfect vortex with topological charge as large as 90. The physical properties of the perfect vortex beam produced were characterized through measurements of propagation dynamics and the focusing fields. The measurements show good consistency with the theoretical simulation. The perfect vortex beam produced satisfies high-demand utilization in optical manipulation and control, momentum transfer, quantum computing, and biophotonics.

  4. On the scaling and dynamics of periodically generated vortex rings

    NASA Astrophysics Data System (ADS)

    Asadi, Hossein; Asgharzadeh, Hafez; Borazjani, Iman; Scientific Computing; Biofluids Team

    2017-11-01

    Periodically generated vortex rings are observed in nature, e.g., left ventricle or jellyfish, but their scaling and dynamics is not completely well understood. We are interested in identifying the main parameters governing the propagation and dynamics of periodically generated vortex rings. Therefore, vortex rings, generated periodically through a circular cylinder into a tank, is numerically investigated for a range of Reynolds numbers (Re), non-dimensional periods (T), and stroke ratios (stroke time to period) for a simple square wave. Based on the results, by using the averaged inflow velocity in definition of Reynolds number and non-dimensional period, vortex ring velocity becomes approximately independent of the stroke ratio. The results also show that reducing Reynolds number or increasing non-dimensional period increases the translational velocity of vortex ring. Based on our test cases, an empirical relation is proposed to predict the location of vortex cores propagating into domain which shows good agreement with other experimental data. The vortex instabilities and interactions are also visualized and discussed. This work was supported by AHA Grant 13SDG17220022, NIH Grant R03EB014860, and the Center of Computational Research (CCR) of University at Buffalo.

  5. Transfer of Orbital and Spin angular momentum from non-paraxial optical vortex to atomic BEC

    NASA Astrophysics Data System (ADS)

    Bhowmik, Anal; Mondal, Pradip Kumar; Majumder, Sonjoy; Deb, Bimalendu

    2017-04-01

    Allen and co-workers first brought up the realization that optical vortex can carry well defined orbital angular momentum (OAM) associated with its spatial mode. Spin angular momentum (SAM) of the light, associated with the polarization, interacts with the internal electronic motion of the atom. The exchange of orbital angular momentum (OAM) between optical vortex and the center-of-mass (CM) motion of an atom or molecule is well known in paraxial approximation. We show that, how the total angular momentum (TAM) of non-paraxial optical vortex is shared with atom, in terms of OAM and SAM. Both the angular momenta are now possible to be transferred to the internal electronic and external CM motion of atom. Here we have studied how the Rabi frequencies of the excitations of two-photon Raman transitions with respect to focusing angles. Also, we investigate the properties of the vortex superposed state for a Bose-Einstein condensate condensate by a single non-paraxial vortex beam. The density distribution of the vortex-antivortex superposed state has a petal structure which is determined by the quantum circulations and proportion of the vortex and antivortex.

  6. The migration and growth of nuclei in an ideal vortex flow

    NASA Astrophysics Data System (ADS)

    Zhang, Lingxin; Chen, Linya; Shao, Xueming

    2016-12-01

    Tip vortex cavitation occurs on ship propellers which can cause significant noise compared to the wet flow. In order to predict the inception of tip vortex cavitation, numerous researches have been investigated about the detailed flow field around the tip. According to informed studies, the inception of tip vortex cavitation is affected by many factors. To understand the effect of water quality on cavitation inception, the motion of nuclei in an ideal vortex flow, i.e., the Rankine vortex flow, was investigated. The one-way coupling point-particle tracking model was employed to simulate the trajectory of nuclei. Meanwhile, Rayleigh-Plesset equation was introduced to describe the growth of nuclei. The results show that the nucleus size has a significant effect on nucleus' trajectory. The capture time of a nucleus is approximately inversely proportional to its radius. The growth of nucleus accelerates its migration in the vortex flow and shortens its capture time, especially for the case of explosive growth.

  7. Research of the Electron Cyclotron Emission with Vortex Property excited by high power high frequency Gyrotron

    NASA Astrophysics Data System (ADS)

    Goto, Yuki; Kubo, Shin; Tsujimura, Tohru; Takubo, Hidenori

    2017-10-01

    Recently, it has been shown that the radiation from a single electron in cyclotron motion has vortex property. Although the cyclotron emission exists universally in nature, the vortex property has not been featured because this property is normally cancelled out due to the randomness in gyro-phase of electrons and the development of detection of the vortex property has not been well motivated. In this research, we are developing a method to generate the vortex radiation from electrons in cyclotron motion with controlled gyro-phase. Electron that rotates around the uniform static magnetic field is accelerated by right-hand circular polarized (RHCP) radiation resonantly when the cyclotron frequency coincides with the applied RHCP radiation frequency. A large number of electrons can be coherently accelerated in gyro-phase by a RHCP high power radiation so that these electrons can radiate coherent emission with vortex feature. We will show that vortex radiation created by purely rotating electrons for the first time.

  8. A generalized vortex lattice method for subsonic and supersonic flow applications

    NASA Technical Reports Server (NTRS)

    Miranda, L. R.; Elliot, R. D.; Baker, W. M.

    1977-01-01

    If the discrete vortex lattice is considered as an approximation to the surface-distributed vorticity, then the concept of the generalized principal part of an integral yields a residual term to the vorticity-induced velocity field. The proper incorporation of this term to the velocity field generated by the discrete vortex lines renders the present vortex lattice method valid for supersonic flow. Special techniques for simulating nonzero thickness lifting surfaces and fusiform bodies with vortex lattice elements are included. Thickness effects of wing-like components are simulated by a double (biplanar) vortex lattice layer, and fusiform bodies are represented by a vortex grid arranged on a series of concentrical cylindrical surfaces. The analysis of sideslip effects by the subject method is described. Numerical considerations peculiar to the application of these techniques are also discussed. The method has been implemented in a digital computer code. A users manual is included along with a complete FORTRAN compilation, an executed case, and conversion programs for transforming input for the NASA wave drag program.

  9. Magnetic vortex nucleation modes in static magnetic fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vanatka, Marek; Urbanek, Michal; Jira, Roman

    The magnetic vortex nucleation process in nanometer- and micrometer-sized magnetic disks undergoes several phases with distinct spin configurations called the nucleation states. Before formation of the final vortex state, small submicron disks typically proceed through the so-called C-state while the larger micron-sized disks proceed through the more complicated vortex-pair state or the buckling state. This work classifies the nucleation states using micromagnetic simulations and provides evidence for the stability of vortex-pair and buckling states in static magnetic fields using magnetic imaging techniques and electrical transport measurements. Lorentz Transmission Electron Microscopy and Magnetic Transmission X-ray Microscopy are employed to reveal themore » details of spin configuration in each of the nucleation states. We further show that it is possible to unambiguously identify these states by electrical measurements via the anisotropic magnetoresistance effect. Combination of the electrical transport and magnetic imaging techniques confirms stability of a vortex-antivortex-vortex spin configuration which emerges from the buckling state in static magnetic fields.« less

  10. Investigation of the Relationship of Vortex-Generated Sound and Airframe Noise

    NASA Technical Reports Server (NTRS)

    Smith, Sonya T.

    1998-01-01

    Airframe noise contributes the most to the environmental contamination from airports during take-off and landing. Two sources of noise are from the vortex-system associated with the slat and flap of multi-element wing designs. The flap-side edge vortex experiences bursting, known as vortex breakdown, at a critical deflection angle and experimental results show that this event may be one source of increased noise levels. Understanding of the edge roll-up phenomenon has increased but further focused studies on the role of the growth and bursting of the vortex structure are needed. The goal of the research is to plan a research program that will contribute to the understanding of the fluid physics of vortex breakdown and its relationship to noise production. The success of this program will lead to a priori predictions of when vortex breakdown will occur on the flap side-edge and accurate calculations of its effect on the noise level experienced by an observer near the aircraft during take-off and landing.

  11. A Method for Computing the Core Flow in Three-Dimensional Leading-Edge Vortices. Ph.D. Thesis - North Carolina State Univ.

    NASA Technical Reports Server (NTRS)

    Luckring, J. M.

    1985-01-01

    A theory is presented for calculating the flow in the core of a separation-induced leading-edge vortex. The method is based on matching inner and outer representations of the vortex. The inner model of the vortex is based on the quasicylindrical Navier-Stokes equations; the flow is assumed to be steady, axially symmetric, and incompressible and in addition, gradients in the radial direction are assumed to be much larger then gradients in the axial direction. The outer model is based on the three-dimensional free-vortex-sheet theory, a higher-order panel method which solves the Prandtl-Glauert equation including nonlinear boundary conditions pertinent to the concentrated vorticity representation of the leading edge vortex. The resultant flow is evaluated a posteriori for evidence of incipient vortex breakdown and the critical helix angle concept, in conjunction with an adverse longitudinal pressure gradient, is found to correlate well with the occurrence of vortex breakdown at the trailing edge of delta, arrow, and diamond wings.

  12. An experimental investigation of the chopping of helicopter main rotor tip vortices by the tail rotor. Part 2: High speed photographic study

    NASA Technical Reports Server (NTRS)

    Cary, Charles M.

    1987-01-01

    The interaction of a free vortex and a rotor was recorded photographically using oil smoke and stroboscopic illumination. The incident vortex is normal to the plane of the rotor and crosses the rotor plane. This idealized aerodynamic experiment most nearly corresponds to helicopter flight conditions in which a tip vortex from the main rotor is incident upon the tail rotor while hovering. The high speed photographs reveal important features not observed using conventional photography where the image is the time average of varying instantaneous images. Most prominent is the strong interaction between the rotor tip vortex system and the incident vortex, resulting in the roll-up of the incident vortex around the (stronger) tip vortices and the resulting rapid destabilization of the deformed incident vortex. The viscous interaction is clearly shown also. Other forms of instabilities or wave-like behavior may be apparent from further analysis of the photographs.

  13. Development of a perturbation generator for vortex stability studies

    NASA Technical Reports Server (NTRS)

    Riester, J. E.; Ash, Robert L.

    1991-01-01

    Theory predicts vortex instability when subjected to certain types of disturbances. It was desired to build a device which could introduce controlled velocity perturbations into a trailing line vortex in order to study the effects on stability. A perturbation generator was designed and manufactured which can be attached to the centerbody of an airfoil type vortex generator. Details of design tests and manufacturing of the perturbation generator are presented. The device produced controlled perturbation with frequencies in excess of 250 Hz. Preliminary testing and evaluation of the perturbation generator performance was conducted in a 4 inch cylindrical pipe. Observations of vortex shedding frequencies from a centerbody were measured. Further evaluation with the perturbation generator attached to the vortex generator in a 2 x 3 foot wind tunnel were also conducted. Hot-wire anemometry was used to confirm the perturbation generator's ability to introduce controlled frequency fluctuations. Comparison of the energy levels of the disturbances in the vortex core was made between locations 42 chord lengths and 15 chord lengths downstream.

  14. Magnetic vortex nucleation modes in static magnetic fields

    DOE PAGES

    Vanatka, Marek; Urbanek, Michal; Jira, Roman; ...

    2017-10-03

    The magnetic vortex nucleation process in nanometer- and micrometer-sized magnetic disks undergoes several phases with distinct spin configurations called the nucleation states. Before formation of the final vortex state, small submicron disks typically proceed through the so-called C-state while the larger micron-sized disks proceed through the more complicated vortex-pair state or the buckling state. This work classifies the nucleation states using micromagnetic simulations and provides evidence for the stability of vortex-pair and buckling states in static magnetic fields using magnetic imaging techniques and electrical transport measurements. Lorentz Transmission Electron Microscopy and Magnetic Transmission X-ray Microscopy are employed to reveal themore » details of spin configuration in each of the nucleation states. We further show that it is possible to unambiguously identify these states by electrical measurements via the anisotropic magnetoresistance effect. Combination of the electrical transport and magnetic imaging techniques confirms stability of a vortex-antivortex-vortex spin configuration which emerges from the buckling state in static magnetic fields.« less

  15. On hairpin vortex generation from near-wall streamwise vortices

    NASA Astrophysics Data System (ADS)

    Wang, Yinshan; Huang, Weixi; Xu, Chunxiao

    2015-04-01

    The generation of a hairpin vortex from near-wall streamwise vortices is studied via the direct numerical simulation (DNS) of the streak transient growth in the minimal channel flow at . The streak profile is obtained by conditionally averaging the DNS data of the fully developed turbulent channel flow at the same Reynolds number. The near-wall streamwise vortices are produced by the transient growth of the streak which is initially subjected to the sinuous perturbation of the spanwise velocity. It is shown that the arch head of the hairpin vortex first grows from the downstream end of the stronger streamwise vortex and then connects with the weaker, opposite-signed streamwise vortex in their overlap region, forming a complete individual hairpin structure. The vorticity transport along the vortex lines indicates that the strength increase and the spatial expansion of the arch head are due to the stretching and the turning of the vorticity vector, respectively. The hairpin packets could be further produced from the generated individual hairpin vortex following the parent-offspring process.

  16. Aperiodicity Correction for Rotor Tip Vortex Measurements

    NASA Technical Reports Server (NTRS)

    Ramasamy, Manikandan; Paetzel, Ryan; Bhagwat, Mahendra J.

    2011-01-01

    The initial roll-up of a tip vortex trailing from a model-scale, hovering rotor was measured using particle image velocimetry. The unique feature of the measurements was that a microscope was attached to the camera to allow much higher spatial resolution than hitherto possible. This also posed some unique challenges. In particular, the existing methodologies to correct for aperiodicity in the tip vortex locations could not be easily extended to the present measurements. The difficulty stemmed from the inability to accurately determine the vortex center, which is a prerequisite for the correction procedure. A new method is proposed for determining the vortex center, as well as the vortex core properties, using a least-squares fit approach. This approach has the obvious advantage that the properties are derived from not just a few points near the vortex core, but from a much larger area of flow measurements. Results clearly demonstrate the advantage in the form of reduced variation in the estimated core properties, and also the self-consistent results obtained using three different aperiodicity correction methods.

  17. Counterexamples to Moffatt's statements on vortex knots.

    PubMed

    Bogoyavlenskij, Oleg

    2017-04-01

    One of the well-known problems of hydrodynamics is studied: the problem of classification of vortex knots for ideal fluid flows. In the literature there are known Moffatt statements that all torus knots K_{m,n} for all rational numbers m/n (0

  18. Stable dissipative optical vortex clusters by inhomogeneous effective diffusion.

    PubMed

    Li, Huishan; Lai, Shiquan; Qui, Yunli; Zhu, Xing; Xie, Jianing; Mihalache, Dumitru; He, Yingji

    2017-10-30

    We numerically show the generation of robust vortex clusters embedded in a two-dimensional beam propagating in a dissipative medium described by the generic cubic-quintic complex Ginzburg-Landau equation with an inhomogeneous effective diffusion term, which is asymmetrical in the two transverse directions and periodically modulated in the longitudinal direction. We show the generation of stable optical vortex clusters for different values of the winding number (topological charge) of the input optical beam. We have found that the number of individual vortex solitons that form the robust vortex cluster is equal to the winding number of the input beam. We have obtained the relationships between the amplitudes and oscillation periods of the inhomogeneous effective diffusion and the cubic gain and diffusion (viscosity) parameters, which depict the regions of existence and stability of vortex clusters. The obtained results offer a method to form robust vortex clusters embedded in two-dimensional optical beams, and we envisage potential applications in the area of structured light.

  19. Vectorial diffraction properties of THz vortex Bessel beams.

    PubMed

    Wu, Zhen; Wang, Xinke; Sun, Wenfeng; Feng, Shengfei; Han, Peng; Ye, Jiasheng; Yu, Yue; Zhang, Yan

    2018-01-22

    A vortex Bessel beam combines the merits of an optical vortex and a Bessel beam, including a spiral wave front and a non-diffractive feature, which has immense application potentials in optical trapping, optical fabrication, optical communications, and so on. Here, linearly and circularly polarized vortex Bessel beams in the terahertz (THz) frequency range are generated by utilizing a THz quarter wave plate, a spiral phase plate, and Teflon axicons with different opening angles. Taking advantage of a THz focal-plane imaging system, vectorial diffraction properties of the THz vortex Bessel beams are comprehensively characterized and discussed, including the transverse (Ex, Ey) and longitudinal (Ez) polarization components. The experimental phenomena are accurately simulated by adopting the vectorial Rayleigh diffraction integral. By varying the opening angle of the axicon, the characteristic parameters of these THz vortex Bessel beams are exhibited and compared, including the light spot size, the diffraction-free range, and the phase evolution process. This work provides the precise experimental and theoretical bases for the comprehension and application of a THz vortex Bessel beam.

  20. Magnetic Radial Vortex Stabilization and Efficient Manipulation Driven by the Dzyaloshinskii-Moriya Interaction and Spin-Transfer Torque.

    PubMed

    Siracusano, G; Tomasello, R; Giordano, A; Puliafito, V; Azzerboni, B; Ozatay, O; Carpentieri, M; Finocchio, G

    2016-08-19

    Solitons are very promising for the design of the next generation of ultralow power devices for storage and computation. The key ingredient to achieving this goal is the fundamental understanding of their stabilization and manipulation. Here, we show how the interfacial Dzyaloshinskii-Moriya Interaction (IDMI) is able to lift the energy degeneracy of a magnetic vortex state by stabilizing a topological soliton with radial chirality, hereafter called radial vortex. It has a noninteger Skyrmion number S (0.5<|S|<1) due to both the vortex core polarity and the magnetization tilting induced by the IDMI boundary conditions. Micromagnetic simulations predict that a magnetoresistive memory based on the radial vortex state in both free and polarizer layers can be efficiently switched by a threshold current density smaller than 10^{6}  A/cm^{2}. The switching processes occur via the nucleation of topologically connected vortices and vortex-antivortex pairs, followed by spin-wave emissions due to vortex-antivortex annihilations.

Top