Sample records for coarse aggregates

  1. Effect of fly ash on the strength of porous concrete using recycled coarse aggregate to replace low-quality natural coarse aggregate

    NASA Astrophysics Data System (ADS)

    Arifi, Eva; Cahya, Evi Nur; Christin Remayanti, N.

    2017-09-01

    The performance of porous concrete made of recycled coarse aggregate was investigated. Fly ash was used as cement partial replacement. In this study, the strength of recycled aggregate was coMPared to low quality natural coarse aggregate which has high water absorption. Compression strength and tensile splitting strength test were conducted to evaluate the performance of porous concrete using fly ash as cement replacement. Results have shown that the utilization of recycled coarse aggregate up to 75% to replace low quality natural coarse aggregate with high water absorption increases compressive strength and splitting tensile strength of porous concrete. Using fly ash up to 25% as cement replacement improves compressive strength and splitting tensile strength of porous concrete.

  2. Evaluation of various coarse aggregate concretes : final report.

    DOT National Transportation Integrated Search

    1983-10-01

    This study was initiated to determine the properties of concrete using three types of coarse aggregate. The coarse aggregates evaluated in this study included silicious gravel, the standard aggregate for concrete in the state, with sandstone and lime...

  3. An experimental study on the hazard assessment and mechanical properties of porous concrete utilizing coal bottom ash coarse aggregate in Korea.

    PubMed

    Park, Seung Bum; Jang, Young Il; Lee, Jun; Lee, Byung Jae

    2009-07-15

    This study evaluates quality properties and toxicity of coal bottom ash coarse aggregate and analyzes mechanical properties of porous concrete depending on mixing rates of coal bottom ash. As a result, soundness and resistance to abrasion of coal bottom ash coarse aggregate were satisfied according to the standard of coarse aggregate for concrete. To satisfy the standard pertaining to chloride content, the coarse aggregates have to be washed more than twice. In regards to the result of leaching test for coal bottom ash coarse aggregate and porous concrete produced with these coarse aggregates, it was satisfied with the environment criteria. As the mixing rate of coal bottom ash increased, influence of void ratio and permeability coefficient was very little, but compressive and flexural strength decreased. When coal bottom ash was mixed over 40%, strength decreased sharply (compressive strength: by 11.7-27.1%, flexural strength: by maximum 26.4%). Also, as the mixing rate of coal bottom ash increased, it was confirmed that test specimens were destroyed by aggregate fracture more than binder fracture and interface fracture. To utilize coal bottom ash in large quantities, it is thought that an improvement method in regards to strength has to be discussed such as incorporation of reinforcing materials and improvement of aggregate hardness.

  4. Separation and collection of coarse aggregate from waste concrete by electric pulsed power

    NASA Astrophysics Data System (ADS)

    Shigeishi, Mitsuhiro

    2017-09-01

    Waste concrete accounts for a substantial fraction of construction waste, and the recycling of waste concrete as concrete aggregate for construction is an important challenge associated with the rapid increase in the amount of waste concrete and the tight supply of natural aggregate. In this study, we propose a technique based on the use of high-voltage pulsed electric discharge into concrete underwater for separating and collecting aggregate from waste concrete with minimal deterioration of quality. By using this technique, the quality of the coarse aggregate separated and collected from concrete test specimens is comparable to that of coarse aggregate recycled by heating and grinding methods, thus satisfying the criteria in Japan Industrial Standard (JIS) A 5021 for the oven-dry density and the water absorption of coarse aggregate by advanced recycling.

  5. Effect of aggregate graining compositions on skid resistance of Exposed Aggregate Concrete pavement

    NASA Astrophysics Data System (ADS)

    Wasilewska, Marta; Gardziejczyk, Wladysław; Gierasimiuk, Pawel

    2018-05-01

    The paper presents the evaluation of skid resistance of EAC (Exposed Aggregate Concrete) pavements which differ in aggregate graining compositions. The tests were carried out on concrete mixes with a maximum aggregate size of 8 mm. Three types of coarse aggregates were selected depending on their resistance to polishing which was determined on the basis of the PSV (Polished Stone Value). Basalt (PSV 48), gabbro (PSV 50) and trachybasalt (PSV 52) aggregates were chosen. For each type of aggregate three graining compositions were designed, which differed in the content of coarse aggregate > 4mm. Their content for each series was as follows: A - 38%, B - 50% and C - 68%. Evaluation of the skid resistance has been performed using the FAP (Friction After Polishing) test equipment also known as the Wehner/Schulze machine. Laboratory method enables to compare the skid resistance of different types of wearing course under specified conditions simulating polishing processes. In addition, macrotexture measurements were made on the surface of each specimen using the Elatexure laser profile. Analysis of variance showed that at significance level α = 0.05, aggregate graining compositions as well as the PSV have a significant influence on the obtained values of the friction coefficient μm of the tested EAC pavements. The highest values of the μm have been obtained for EAC with the lowest amount of coarse aggregates (compositions A). In these cases the resistance to polishing of the aggregate does not significantly affect the friction coefficients. This is related to the large areas of cement mortar between the exposed coarse grains. Based on the analysis of microscope images, it was observed that the coarse aggregates were not sufficiently exposed. It has been proved that PSV significantly affected the coefficient of friction in the case of compositions B and C. This is caused by large areas of exposed coarse aggregate. The best parameters were achieved for the EAC pavements with graining composition B and C and trachybasalt aggregate.

  6. Effects of coarse aggregate on the physical properties of Florida concrete mixes.

    DOT National Transportation Integrated Search

    2015-10-01

    Portland cement concrete is a heterogeneous, composite material composed of coarse and fine granular material : embedded in a matrix of hardened paste. The coarse material is aggregate, which is primarily used as inexpensive filler : and comprises th...

  7. Mechanical Properties of Lightweight Concrete Using Recycled Cement-Sand Brick as Coarse Aggregates Replacement

    NASA Astrophysics Data System (ADS)

    Joohari, Ilya; Farhani Ishak, Nor; Amin, Norliyati Mohd

    2018-03-01

    This paper presents the result of replacing natural course aggregate with recycled cement-sand brick (CSB) towards the mechanical properties of concrete. Natural aggregates were used in this study as a control sample to compare with recycled coarse aggregates. This study was also carried to determine the optimum proportion of coarse aggregates replacement to produce lightweight concrete. Besides, this study was conducted to observe the crack and its behaviour development during the mechanical testing. Through this study, four types of concrete mixed were prepared, which were the control sample, 25%, 50% and 75% replacement of CSB. The test conducted to determine the effectiveness of recycled CSB as coarse aggregates replacement in this study were slump test, density measurement, compression test, and flexural test and. The strength of concrete was tested at 7 days and 28 days of curing. From the results obtained, the optimum proportion which produced the highest strength is 25% replacement of recycled CSB. The compressive and flexural strength has decreased by 10%-12% and 4%-34% respectively compared to the control sample. The presence of recycled coarse aggregates in sample has decreased the density of concrete by 0.8%-3% compared to the control sample.

  8. Recycled Coarse Aggregate Produced by Pulsed Discharge in Water

    NASA Astrophysics Data System (ADS)

    Namihira, Takao; Shigeishi, Mitsuhiro; Nakashima, Kazuyuki; Murakami, Akira; Kuroki, Kaori; Kiyan, Tsuyoshi; Tomoda, Yuichi; Sakugawa, Takashi; Katsuki, Sunao; Akiyama, Hidenori; Ohtsu, Masayasu

    In Japan, the recycling ratio of concrete scraps has been kept over 98 % after the Law for the Recycling of Construction Materials was enforced in 2000. In the present, most of concrete scraps were recycled as the Lower Subbase Course Material. On the other hand, it is predicted to be difficult to keep this higher recycling ratio in the near future because concrete scraps increase rapidly and would reach to over 3 times of present situation in 2010. In addition, the demand of concrete scraps as the Lower Subbase Course Material has been decreased. Therefore, new way to reuse concrete scraps must be developed. Concrete scraps normally consist of 70 % of coarse aggregate, 19 % of water and 11 % of cement. To obtain the higher recycling ratio, the higher recycling ratio of coarse aggregate is desired. In this paper, a new method for recycling coarse aggregate from concrete scraps has been developed and demonstrated. The system includes a Marx generator and a point to hemisphere mesh electrode immersed in water. In the demonstration, the test piece of concrete scrap was located between the electrodes and was treated by the pulsed discharge. After discharge treatment of test piece, the recycling coarse aggregates were evaluated under JIS and TS and had enough quality for utilization as the coarse aggregate.

  9. Development of new test procedures for measuring fine and coarse aggregates specific gravity.

    DOT National Transportation Integrated Search

    2009-09-01

    The objective of the research is to develop and evaluate new test methods at determining the specific gravity and absorption of both fine and coarse aggregates. Current methods at determining the specific gravity and absorption of fine and coarse agg...

  10. Use of Air-cooled Blast Furnace Slag as Coarse Aggregate in Concrete Pavements

    DOT National Transportation Integrated Search

    2012-03-01

    This report presents available information regarding the use of air-cooled blast furnace slag (ACBFS) as coarse aggregate in concrete pavements. The report discusses ACBFS aggregate production and properties, and the properties of concrete produced w...

  11. Durability assessment of coarse aggregates for HMA in Maine.

    DOT National Transportation Integrated Search

    2012-12-01

    In this study, Micro-Deval and L.A. Abrasion were used to evaluate the durability of 72 individual : coarse aggregates used for HMA in Maine. Aggregates used in hot-mix asphalt (HMA) must be : durable and resistant to abrasion and degradation. Materi...

  12. Mechanical Performance Evaluation of Self-Compacting Concrete with Fine and Coarse Recycled Aggregates from the Precast Industry.

    PubMed

    Santos, Sara A; da Silva, Pedro R; de Brito, Jorge

    2017-08-04

    This paper intends to evaluate the feasibility of reintroducing recycled concrete aggregates in the precast industry. The mechanical properties of self-compacting concrete (SCC) with incorporation of recycled aggregates (RA) (coarse recycled aggregates (CRA) and fine recycled aggregates (FRA)) from crushed precast elements were evaluated. The goal was to evaluate the ability of producing SCC with a minimum pre-established performance in terms of mechanical strength, incorporating variable ratios of RA (FRA/CRA%: 0/0%, 25/25%, 50/50%, 0/100% and 100/0%) produced from precast source concretes with similar target performances. This replication in SCC was made for two strength classes (45 MPa and 65 MPa), with the intention of obtaining as final result concrete with recycled aggregates whose characteristics are compatible with those of a SCC with natural aggregates in terms of workability and mechanical strength. The results enabled conclusions to be established regarding the SCC's produced with fine and coarse recycled aggregates from the precast industry, based on its mechanical properties. The properties studied are strongly affected by the type and content of recycled aggregates. The potential demonstrated, mainly in the hardened state, by the joint use of fine and coarse recycled aggregate is emphasized.

  13. Mechanical Performance Evaluation of Self-Compacting Concrete with Fine and Coarse Recycled Aggregates from the Precast Industry

    PubMed Central

    Santos, Sara A.; da Silva, Pedro R.; de Brito, Jorge

    2017-01-01

    This paper intends to evaluate the feasibility of reintroducing recycled concrete aggregates in the precast industry. The mechanical properties of self-compacting concrete (SCC) with incorporation of recycled aggregates (RA) (coarse recycled aggregates (CRA) and fine recycled aggregates (FRA)) from crushed precast elements were evaluated. The goal was to evaluate the ability of producing SCC with a minimum pre-established performance in terms of mechanical strength, incorporating variable ratios of RA (FRA/CRA%: 0/0%, 25/25%, 50/50%, 0/100% and 100/0%) produced from precast source concretes with similar target performances. This replication in SCC was made for two strength classes (45 MPa and 65 MPa), with the intention of obtaining as final result concrete with recycled aggregates whose characteristics are compatible with those of a SCC with natural aggregates in terms of workability and mechanical strength. The results enabled conclusions to be established regarding the SCC’s produced with fine and coarse recycled aggregates from the precast industry, based on its mechanical properties. The properties studied are strongly affected by the type and content of recycled aggregates. The potential demonstrated, mainly in the hardened state, by the joint use of fine and coarse recycled aggregate is emphasized. PMID:28777316

  14. Evaluation of steel slag coarse aggregate in hot mix asphalt concrete.

    PubMed

    Ahmedzade, Perviz; Sengoz, Burak

    2009-06-15

    This paper presents the influences of the utilization of steel slag as a coarse aggregate on the properties of hot mix asphalt. Four different asphalt mixtures containing two types of asphalt cement (AC-5; AC-10) and coarse aggregate (limestone; steel slag) were used to prepare Marshall specimens and to determine optimum bitumen content. Mechanical characteristics of all mixtures were evaluated by Marshall stability, indirect tensile stiffness modulus, creep stiffness, and indirect tensile strength tests. The electrical sensitivity of the specimens were also investigated in accordance with ASTM D257-91. It was observed that steel slag used as a coarse aggregate improved the mechanical properties of asphalt mixtures. Moreover, volume resistivity values demonstrated that the electrical conductivity of steel slag mixtures were better than that of limestone mixtures.

  15. Properties of Concrete with Tire Derived Aggregate Partially Replacing Coarse Aggregates.

    PubMed

    Siringi, Gideon; Abolmaali, Ali; Aswath, Pranesh B

    2015-01-01

    Tire derived aggregate (TDA) has been proposed as a possible lightweight replacement for mineral aggregate in concrete. The role played by the amount of TDA replacing coarse aggregate as well as different treatment and additives in concrete on its properties is examined. Conventional concrete (without TDA) and concrete containing TDA are compared by examining their compressive strength based on ASTM C39, workability based on ASTM C143, splitting tensile strength based on ASTM C496, modulus of rupture (flexural strength) based on ASTM C78, and bond stress based on ASTM C234. Results indicate that while replacement of coarse aggregates with TDA results in reduction in strength, it may be mitigated with addition of silica fume to obtain the desired strength. The greatest benefit of using TDA is in the development of a higher ductile product while utilizing recycled TDA.

  16. Properties of Concrete with Tire Derived Aggregate Partially Replacing Coarse Aggregates

    PubMed Central

    Siringi, Gideon; Abolmaali, Ali; Aswath, Pranesh B.

    2015-01-01

    Tire derived aggregate (TDA) has been proposed as a possible lightweight replacement for mineral aggregate in concrete. The role played by the amount of TDA replacing coarse aggregate as well as different treatment and additives in concrete on its properties is examined. Conventional concrete (without TDA) and concrete containing TDA are compared by examining their compressive strength based on ASTM C39, workability based on ASTM C143, splitting tensile strength based on ASTM C496, modulus of rupture (flexural strength) based on ASTM C78, and bond stress based on ASTM C234. Results indicate that while replacement of coarse aggregates with TDA results in reduction in strength, it may be mitigated with addition of silica fume to obtain the desired strength. The greatest benefit of using TDA is in the development of a higher ductile product while utilizing recycled TDA. PMID:26161440

  17. CAMELOT: A machine learning approach for coarse-grained simulations of aggregation of block-copolymeric protein sequences

    PubMed Central

    Ruff, Kiersten M.; Harmon, Tyler S.; Pappu, Rohit V.

    2015-01-01

    We report the development and deployment of a coarse-graining method that is well suited for computer simulations of aggregation and phase separation of protein sequences with block-copolymeric architectures. Our algorithm, named CAMELOT for Coarse-grained simulations Aided by MachinE Learning Optimization and Training, leverages information from converged all atom simulations that is used to determine a suitable resolution and parameterize the coarse-grained model. To parameterize a system-specific coarse-grained model, we use a combination of Boltzmann inversion, non-linear regression, and a Gaussian process Bayesian optimization approach. The accuracy of the coarse-grained model is demonstrated through direct comparisons to results from all atom simulations. We demonstrate the utility of our coarse-graining approach using the block-copolymeric sequence from the exon 1 encoded sequence of the huntingtin protein. This sequence comprises of 17 residues from the N-terminal end of huntingtin (N17) followed by a polyglutamine (polyQ) tract. Simulations based on the CAMELOT approach are used to show that the adsorption and unfolding of the wild type N17 and its sequence variants on the surface of polyQ tracts engender a patchy colloid like architecture that promotes the formation of linear aggregates. These results provide a plausible explanation for experimental observations, which show that N17 accelerates the formation of linear aggregates in block-copolymeric N17-polyQ sequences. The CAMELOT approach is versatile and is generalizable for simulating the aggregation and phase behavior of a range of block-copolymeric protein sequences. PMID:26723608

  18. Cyclic Behavior of Low Rise Concrete Shear Walls Containing Recycled Coarse and Fine Aggregates.

    PubMed

    Qiao, Qiyun; Cao, Wanlin; Qian, Zhiwei; Li, Xiangyu; Zhang, Wenwen; Liu, Wenchao

    2017-12-07

    In this study, the cyclic behaviors of low rise concrete shear walls using recycled coarse or fine aggregates were investigated. Eight low rise Recycled Aggregates Concrete (RAC) shear wall specimens were designed and tested under a cyclic loading. The following parameters were varied: replacement percentages of recycled coarse or fine aggregates, reinforcement ratio, axial force ratio and X-shaped rebars brace. The failure characteristics, hysteretic behavior, strength and deformation capacity, strain characteristics and stiffness were studied. Test results showed that the using of the Recycled Coarse Aggregates (RCA) and its replacement ratio had almost no influence on the mechanical behavior of the shear wall; however, the using of Recycled Fine Aggregates (RFA) had a certain influence on the ductility of the shear wall. When the reinforcement ratio increased, the strength and ductility also increased. By increasing the axial force ratio, the strength increased but the ductility decreased significantly. The encased brace had a significant effect on enhancing the RAC shear walls. The experimental maximum strengths were evaluated with existing design codes, it was indicated that the strength evaluation of the low rise RAC shear walls can follow the existing design codes of the conventional concrete shear walls.

  19. Recycled tires as coarse aggregate in concrete pavement mixtures.

    DOT National Transportation Integrated Search

    2013-07-01

    The reuse potential of tire chips as coarse aggregates in pavement concrete was examined in this research by : investigating the effects of low- and high-volume tire chips on fresh and hardened concrete properties. One concrete : control mixture was ...

  20. Design and evaluation of high strength concrete for girders : final report.

    DOT National Transportation Integrated Search

    1980-05-01

    The scope of the study was to make concrete mixes in the laboratory using a partial factorial, with three cement contents, two coarse aggregates and three fine-to-coarse aggregate ratios. The mixes showing the best properties and highest compressive ...

  1. A Factorial Design Approach to Analyse the Effect of Coarse Recycled Concrete Aggregates on the Properties of Hot Mix Asphalt

    NASA Astrophysics Data System (ADS)

    Tanty, Kiranbala; Mukharjee, Bibhuti Bhusan; Das, Sudhanshu Shekhar

    2018-06-01

    The present study investigates the effect of replacement of coarse fraction of natural aggregates by recycled concrete aggregates on the properties of hot mix asphalt (HMA) using general factorial design approach. For this two factors i.e. recycled coarse aggregates percentage [RCA (%)] and bitumen content percentage [BC (%)] are considered. Tests have been carried out on the HMA type bituminous concrete, prepared with varying RCA (%) and BC (%). Analysis of variance has been performed on the experimental data to determine the effect of the chosen factors on various parameters such as stability, flow, air void, void mineral aggregate, void filled with bitumen and bulk density. The study depicts that RCA (%) and BC (%) have significant effect on the selected responses as p value is less than the chosen significance level. In addition to above, the outcomes of the statistical analysis indicate that interaction between factors have significant effects on void mineral aggregate and bulk density of bituminous concrete.

  2. A Factorial Design Approach to Analyse the Effect of Coarse Recycled Concrete Aggregates on the Properties of Hot Mix Asphalt

    NASA Astrophysics Data System (ADS)

    Tanty, Kiranbala; Mukharjee, Bibhuti Bhusan; Das, Sudhanshu Shekhar

    2018-02-01

    The present study investigates the effect of replacement of coarse fraction of natural aggregates by recycled concrete aggregates on the properties of hot mix asphalt (HMA) using general factorial design approach. For this two factors i.e. recycled coarse aggregates percentage [RCA (%)] and bitumen content percentage [BC (%)] are considered. Tests have been carried out on the HMA type bituminous concrete, prepared with varying RCA (%) and BC (%). Analysis of variance has been performed on the experimental data to determine the effect of the chosen factors on various parameters such as stability, flow, air void, void mineral aggregate, void filled with bitumen and bulk density. The study depicts that RCA (%) and BC (%) have significant effect on the selected responses as p value is less than the chosen significance level. In addition to above, the outcomes of the statistical analysis indicate that interaction between factors have significant effects on void mineral aggregate and bulk density of bituminous concrete.

  3. Use of Air-cooled Blast Furnace Slag as Coarse Aggregate in Concrete Pavements : a Guide to Best Practice

    DOT National Transportation Integrated Search

    2012-02-01

    This document contains recommendations for best practices related to the use of air-cooled blast furnace slag (ACBFS) as coarse aggregate in concrete pavements. It is primarily based on the results of a review of available literature regarding the pr...

  4. Experimental investigation of photocatalytic effects of concrete in air purification adopting entire concrete waste reuse model.

    PubMed

    Xu, Yidong; Chen, Wei; Jin, Ruoyu; Shen, Jiansheng; Smallbone, Kirsty; Yan, Chunyang; Hu, Lei

    2018-07-05

    This research investigated the capacities of recycled aggregate concrete adopting entire concrete waste reuse model in degrading NO 2. Two major issues within environmental sustainability were addressed: concrete waste reuse rate and mitigation of hazards substances in the polluted air. The study consisted of two stages: identification of proper replacement rates of recycled concrete wastes in new concrete mixture design, and the evaluation of photocatalytic performance of recycled aggregate concrete in degrading NO 2 . It was found that replacement rates up to 3%, 30%, and 50% for recycled power, recycled fine aggregate, and recycled coarse aggregate respectively could be applied in concrete mixture design without deteriorating concrete strength. Recycled aggregates contained both positive attributes ("internal curing") and negative effects (e.g., lower hardness) to concrete properties. It was found that 30%-50% of natural coarse aggregate replaced by recycled coarse aggregates coated with TiO 2 would significantly improve the photocatalytic performance of concrete measured by degradation rate of NO 2 . Micro-structures of recycled aggregates observed under microscope indicated that soaking recycled aggregates in TiO 2 solution resulted in whiskers that filled the porosity within recycled aggregates which enhanced concrete strength. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Spectral Upscaling for Graph Laplacian Problems with Application to Reservoir Simulation

    DOE PAGES

    Barker, Andrew T.; Lee, Chak S.; Vassilevski, Panayot S.

    2017-10-26

    Here, we consider coarsening procedures for graph Laplacian problems written in a mixed saddle-point form. In that form, in addition to the original (vertex) degrees of freedom (dofs), we also have edge degrees of freedom. We extend previously developed aggregation-based coarsening procedures applied to both sets of dofs to now allow more than one coarse vertex dof per aggregate. Those dofs are selected as certain eigenvectors of local graph Laplacians associated with each aggregate. Additionally, we coarsen the edge dofs by using traces of the discrete gradients of the already constructed coarse vertex dofs. These traces are defined on themore » interface edges that connect any two adjacent aggregates. The overall procedure is a modification of the spectral upscaling procedure developed in for the mixed finite element discretization of diffusion type PDEs which has the important property of maintaining inf-sup stability on coarse levels and having provable approximation properties. We consider applications to partitioning a general graph and to a finite volume discretization interpreted as a graph Laplacian, developing consistent and accurate coarse-scale models of a fine-scale problem.« less

  6. Evaluation of the effect on aggregate properties of samples extracted using the ignition furnace.

    DOT National Transportation Integrated Search

    2000-04-01

    The Superpave mix design system includes four consensus aggregate properties to ensure aggregate quality: coarse aggregate angularity, flat and elongated particles, fine aggregate angularity, and sand equivalent. In addition to determining these cons...

  7. The Effects of Different Fine Recycled Concrete Aggregates on the Properties of Mortar

    PubMed Central

    Fan, Cheng-Chih; Huang, Ran; Hwang, Howard; Chao, Sao-Jeng

    2015-01-01

    The practical use of recycled concrete aggregate produced by crushing concrete waste reduces the consumption of natural aggregate and the amount of concrete waste that ends up in landfills. This study investigated two methods used in the production of fine recycled concrete aggregate: (1) a method that produces fine as well as coarse aggregate, and (2) a method that produces only fine aggregate. Mortar specimens were tested using a variety of mix proportions to determine how the characteristics of fine recycled concrete aggregate affect the physical and mechanical properties of the resulting mortars. Our results demonstrate the superiority of mortar produced using aggregate produced using the second of the two methods. Nonetheless, far more energy is required to render concrete into fine aggregate than is required to produce coarse as well as fine aggregate simultaneously. Thus, the performance benefits of using only fine recycled concrete aggregate must be balanced against the increased impact on the environment.

  8. Effects of Oil Palm Shell Coarse Aggregate Species on High Strength Lightweight Concrete

    PubMed Central

    Yew, Ming Kun; Bin Mahmud, Hilmi; Ang, Bee Chin; Yew, Ming Chian

    2014-01-01

    The objective of this study was to investigate the effects of different species of oil palm shell (OPS) coarse aggregates on the properties of high strength lightweight concrete (HSLWC). Original and crushed OPS coarse aggregates of different species and age categories were investigated in this study. The research focused on two OPS species (dura and tenera), in which the coarse aggregates were taken from oil palm trees of the following age categories (3–5, 6–9, and 10–15 years old). The results showed that the workability and dry density of the oil palm shell concrete (OPSC) increase with an increase in age category of OPS species. The compressive strength of specimen CD3 increases significantly compared to specimen CT3 by 21.8%. The maximum achievable 28-day and 90-day compressive strength is 54 and 56 MPa, respectively, which is within the range for 10–15-year-old crushed dura OPS. The water absorption was determined to be within the range for good concrete for the different species of OPSC. In addition, the ultrasonic pulse velocity (UPV) results showed that the OPS HSLWC attain good condition at the age of 3 days. PMID:24982946

  9. Enhancement of properties of recycled coarse aggregate concrete using bacteria

    NASA Astrophysics Data System (ADS)

    Sahoo; Arakha; Sarkar; P; Jha

    2016-01-01

    Due to rapid construction, necessity for raw materials of concrete, especially coarse aggregate, tends to increase the danger of early exhaustion of the natural resources. An alternative source of raw materials would perhaps delay the advent of this early exhaustion. Recycled coarse aggregate (RCA) plays a great role as an alternative raw material that can replace the natural coarse aggregate (NCA) for concrete. Previous studies show that the properties of RCA concrete are inferior in quality compared to NCA concrete. This article attempts to study the improvement of properties of RCA concrete with the addition of bacteria named as Bacillus subtilis. The experimental investigation was carried out to evaluate the improvement of the compressive strength, capillary water absorption, and drying shrinkage of RCA concrete incorporating bacteria. The compressive strength of RCA concrete is found to be increased by about 20% when the cell concentration of B. subtilis is 106 cells/ml. The capillary water absorption as well as drying shrinkage of RCA are reduced when bacteria is incorporated. The improvement of RCA concrete is confirmed to be due to the calcium carbonate precipitation as observed from the microstructure studies carried out on it such as EDX, SEM, and XRD.

  10. Sound absorption and morphology characteristic of porous concrete paving blocks

    NASA Astrophysics Data System (ADS)

    Halim, N. H. Abd; Nor, H. Md; Ramadhansyah, P. J.; Mohamed, A.; Hassan, N. Abdul; Ibrahim, M. H. Wan; Ramli, N. I.; Nazri, F. Mohamed

    2017-11-01

    In this study, sound absorption and morphology characteristic of Porous Concrete Paving Blocks (PCPB) at different sizes of coarse aggregate were presented. Three different sizes of coarse aggregate were used; passing 10 mm retained 5 mm (as Control), passing 8 mm retained 5 mm (8 - 5) and passing 10 mm retained 8 mm (10 - 8). The sound absorption test was conducted through the impedance tube at different frequency. It was found that the size of coarse aggregate affects the level of absorption of the specimens. It also shows that PCPB 10 - 8 resulted in high sound absorption compared to the other blocks. On the other hand, microstructure morphology of PCPB shows a clearer version of existing micro-cracks and voids inside the specimens which affecting the results of sound absorption.

  11. Experimental and modeling study of chloride ingress into concrete and reinforcement corrosion initiation

    NASA Astrophysics Data System (ADS)

    Yu, Hui

    Effects of reinforcement and coarse aggregate on chloride ingression into concrete and reinforcement corrosion initiation have been studied with experimental and modeling (finite element method) analyses. Once specimens were fabricated and exposed to a chloride solution, various experimental techniques were employed to determine the effect of reinforcement and coarse aggregate on time-to-corrosion and chloride ingress and concentration at corrosion locations. Model analyses were performed to verify and explain the experimental results. Based upon the results, it was determined that unexpectedly higher chloride concentrations were present on the top of the rebar trace than that to the side at the same depth and an inverse concentration gradient (increasing [ Cl-] with increasing depth) occurred near the top of rebars. Also, coarse aggregate volume profile in close proximity to the rebar and spatial distribution of these aggregates, in conjunction with the physical obstruction afforded by reinforcement to chloride flow, complicates concrete sampling for Cl- intended to define the critical concentration of this species to initiate corrosion. Modeling analyses that considered cover thickness, chloride threshold concentration, reinforcement size and shape, and coarse aggregate type and percolation confirmed the experimental findings. The results, at least in part, account for the relatively wide spread in chloride corrosion threshold values reported in the literature and illustrate that more consistent chloride threshold concentrations can be acquired from mortar or paste specimens than from concrete ones.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Enciso, Marta, E-mail: m.enciso@latrobe.edu.au; Schütte, Christof, E-mail: schuette@zib.de; Zuse Institute Berlin, Berlin

    We employ a recently developed coarse-grained model for peptides and proteins where the effect of pH is automatically included. We explore the effect of pH in the aggregation process of the amyloidogenic peptide KTVIIE and two related sequences, using three different pH environments. Simulations using large systems (24 peptides chains per box) allow us to describe the formation of realistic peptide aggregates. We evaluate the thermodynamic and kinetic implications of changes in sequence and pH upon peptide aggregation, and we discuss how a minimalistic coarse-grained model can account for these details.

  13. Use of wastes derived from earthquakes for the production of concrete masonry partition wall blocks.

    PubMed

    Xiao, Zhao; Ling, Tung-Chai; Kou, Shi-Cong; Wang, Qingyuan; Poon, Chi-Sun

    2011-08-01

    Utilization of construction and demolition (C&D) wastes as recycled aggregates in the production of concrete and concrete products have attracted much attention in recent years. However, the presence of large quantities of crushed clay brick in some the C&D waste streams (e.g. waste derived collapsed masonry buildings after an earthquake) renders the recycled aggregates unsuitable for high grade use. One possibility is to make use of the low grade recycled aggregates for concrete block production. In this paper, we report the results of a comprehensive study to assess the feasibility of using crushed clay brick as coarse and fine aggregates in concrete masonry block production. The effects of the content of crushed coarse and fine clay brick aggregates (CBA) on the mechanical properties of non-structural concrete block were quantified. From the experimental test results, it was observed that incorporating the crushed clay brick aggregates had a significant influence on the properties of blocks. The hardened density and drying shrinkage of the block specimens decreased with an increase in CBA content. The use of CBA increased the water absorption of block specimens. The results suggested that the amount of crushed clay brick to be used in concrete masonry blocks should be controlled at less than 25% (coarse aggregate) and within 50-75% for fine aggregates. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Effects of temperature segregation on the volumetric and mechanistic properties of asphalt mixtures : research project capsule.

    DOT National Transportation Integrated Search

    2015-02-01

    Material segregation in asphalt mixtures is a non-uniform distribution of coarse : and fine aggregates through its masses, i.e., concentration of coarse materials : in some area and fine materials in others. During construction, the coarse and : fine...

  15. The wearing characteristics of mineral aggregates in highway pavements.

    DOT National Transportation Integrated Search

    1970-01-01

    Fifteen asphaltic concrete and seventeen portland cement concrete pavements located in Virginia were chosen for studies of aggregate wear and related wet pavement friction. Coarse aggregates from thirteen different geologic formations and quarry sour...

  16. A Study on Suitability of EAF Oxidizing Slag in Concrete: An Eco-Friendly and Sustainable Replacement for Natural Coarse Aggregate

    PubMed Central

    Sekaran, Alan; Palaniswamy, Murthi; Balaraju, Sivagnanaprakash

    2015-01-01

    Environmental and economic factors increasingly encourage higher utility of industrial by-products. The basic objective of this study was to identify alternative source for good quality aggregates which is depleting very fast due to fast pace of construction activities in India. EAF oxidizing slag as a by-product obtained during the process in steel making industry provides great opportunity to utilize it as an alternative to normally available coarse aggregates. The primary aim of this research was to evaluate the physical, mechanical, and durability properties of concrete made with EAF oxidizing slag in addition to supplementary cementing material fly ash. This study presents the experimental investigations carried out on concrete grades of M20 and M30 with three mixes: (i) Mix A, conventional concrete mix with no material substitution, (ii) Mix B, 30% replacement of cement with fly ash, and (iii) Mix C, 30% replacement of cement with fly ash and 50% replacement of coarse aggregate with EAF oxidizing slag. Tests were conducted to determine mechanical and durability properties up to the age of 90 days. The test results concluded that concrete made with EAF oxidizing slag and fly ash (Mix C) had greater strength and durability characteristics when compared to Mix A and Mix B. Based on the overall observations, it could be recommended that EAF oxidizing slag and fly ash could be effectively utilized as coarse aggregate replacement and cement replacement in all concrete applications. PMID:26421315

  17. A Study on Suitability of EAF Oxidizing Slag in Concrete: An Eco-Friendly and Sustainable Replacement for Natural Coarse Aggregate.

    PubMed

    Sekaran, Alan; Palaniswamy, Murthi; Balaraju, Sivagnanaprakash

    2015-01-01

    Environmental and economic factors increasingly encourage higher utility of industrial by-products. The basic objective of this study was to identify alternative source for good quality aggregates which is depleting very fast due to fast pace of construction activities in India. EAF oxidizing slag as a by-product obtained during the process in steel making industry provides great opportunity to utilize it as an alternative to normally available coarse aggregates. The primary aim of this research was to evaluate the physical, mechanical, and durability properties of concrete made with EAF oxidizing slag in addition to supplementary cementing material fly ash. This study presents the experimental investigations carried out on concrete grades of M20 and M30 with three mixes: (i) Mix A, conventional concrete mix with no material substitution, (ii) Mix B, 30% replacement of cement with fly ash, and (iii) Mix C, 30% replacement of cement with fly ash and 50% replacement of coarse aggregate with EAF oxidizing slag. Tests were conducted to determine mechanical and durability properties up to the age of 90 days. The test results concluded that concrete made with EAF oxidizing slag and fly ash (Mix C) had greater strength and durability characteristics when compared to Mix A and Mix B. Based on the overall observations, it could be recommended that EAF oxidizing slag and fly ash could be effectively utilized as coarse aggregate replacement and cement replacement in all concrete applications.

  18. Evaluation of recycled concrete as aggregate in new concrete pavements.

    DOT National Transportation Integrated Search

    2014-04-01

    This study evaluated the use of recycled concrete as coarse aggregate in new concrete pavements. : Recycled concrete aggregate (RCA) produced from demolished pavements in three geographically dispersed locations in Washington state were used to perfo...

  19. Investigations on Fresh and Hardened Properties of Recycled Aggregate Self Compacting Concrete

    NASA Astrophysics Data System (ADS)

    Revathi, P.; Selvi, R. S.; Velin, S. S.

    2013-09-01

    In the recent years, construction and demolition waste management issues have attracted the attention from researchers around the world. In the present study, the potential usage of recycled aggregate obtained from crushed demolition waste for making self compacting concrete (SCC) was researched. The barriers in promoting the use of recycled material in new construction are also discussed. In addition, the results of an experimental study involving the use of recycled concrete aggregate as coarse aggregates for producing self-compacting concrete to study their flow and strength characteristics are also presented. Five series of mixture were prepared with 0, 25, 50, 75, and 100 % coarse recycled aggregate adopting Nan Su's mix proportioning method. The fresh concrete properties were evaluated through the slump flow, J-ring and V-funnel tests. Compressive and tensile strengths were also determined. The results obtained showed that SCC could be successfully developed by incorporating recycled aggregates.

  20. Mechanical properties of concrete containing recycled concrete aggregate (RCA) and ceramic waste as coarse aggregate replacement

    NASA Astrophysics Data System (ADS)

    Khalid, Faisal Sheikh; Azmi, Nurul Bazilah; Sumandi, Khairul Azwa Syafiq Mohd; Mazenan, Puteri Natasya

    2017-10-01

    Many construction and development activities today consume large amounts of concrete. The amount of construction waste is also increasing because of the demolition process. Much of this waste can be recycled to produce new products and increase the sustainability of construction projects. As recyclable construction wastes, concrete and ceramic can replace the natural aggregate in concrete because of their hard and strong physical properties. This research used 25%, 35%, and 45% recycled concrete aggregate (RCA) and ceramic waste as coarse aggregate in producing concrete. Several tests, such as concrete cube compression and splitting tensile tests, were also performed to determine and compare the mechanical properties of the recycled concrete with those of the normal concrete that contains 100% natural aggregate. The concrete containing 35% RCA and 35% ceramic waste showed the best properties compared with the normal concrete.

  1. Concrete pavement mixture design and analysis (MDA) : effect of aggregate systems on concrete mixture properties.

    DOT National Transportation Integrated Search

    2012-07-01

    For years, specifications have focused on the water to cement ratio (w/cm) and strength of concrete, despite the majority of the volume : of a concrete mixture consisting of aggregate. An aggregate distribution of roughly 60% coarse aggregate and 40%...

  2. Effect of some aggregate characteristics on the fatigue behavior of an asphaltic concrete mixture.

    DOT National Transportation Integrated Search

    1970-01-01

    The effect of aggregate characteristics on the fatigue behavior of asphaltic mixtures was investigated by utilizing a laboratory constant deflection, flexural fatigue test. Coarse aggregate characteristics such as surface texture, rugosity, and flaki...

  3. Impact of coarse aggregate gradation on PCC performance properties : final report.

    DOT National Transportation Integrated Search

    2013-10-15

    Increasingly, aggregates in South Carolina are failing to meet the standard requirements for gradation for use in : portland cement concrete. The effect of such failed aggregate gradations on concrete properties and the : consequent effect on short- ...

  4. Interplay Between Hydrophobic Effect and Dipole Interactions in Peptide Aggregation

    NASA Astrophysics Data System (ADS)

    Ganesan, Sai; Matysiak, Silvina

    In the past decade, the development of various coarse-grained models for proteins have provided key insights into the driving forces in folding and aggregation.We recently developed a low resolution Water Explicit Polarizable PROtein coarse-grained Model by adding oppositely charged dummy particles inside protein backbone beads.With this model,we were able to achieve significant α/ β secondary structure content,without any added bias.We now extend the model to study peptide aggregation at hydrophobic-hydrophilic interface using elastin-like octapeptides (GV)4 as a model system.A condensation-ordering mechanism of aggregation is observed in water.Our results suggest that backbone interpeptide dipolar interactions,not hydrophobicity,plays a more significant role in fibril-like peptide aggregation.We observe a cooperative effect in hydrogen bonding or dipolar interactions, with increase in aggregate size in water and interface.Based on this cooperative effect, we provide a potential explanation for the observed nucleus size in peptide aggregation pathways.Without dipolar particles,peptide aggregation is not observed at the hydrophilic-hydrophobic interface.Thus,the presence of dipoles,not hydrophobicity plays a key role in aggregation observed at hydrophobic interfaces.

  5. The influence of coarse aggregate size and volume on the fracture behavior and brittleness of self-compacting concrete

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beygi, Morteza H.A., E-mail: M.beygi@nit.ac.ir; Kazemi, Mohammad Taghi, E-mail: Kazemi@sharif.edu; Nikbin, Iman M., E-mail: nikbin@iaurasht.ac.ir

    2014-12-15

    This paper presents the results of an experimental investigation on fracture characteristics and brittleness of self-compacting concrete (SCC), involving the tests of 185 three point bending beams with different coarse aggregate size and content. Generally, the parameters were analyzed by the work of fracture method (WFM) and the size effect method (SEM). The results showed that with increase of size and content of coarse aggregate, (a) the fracture energy increases which is due to the change in fractal dimensions, (b) behavior of SCC beams approaches strength criterion, (c) characteristic length, which is deemed as an index of brittleness, increases linearly.more » It was found with decrease of w/c ratio that fracture energy increases which may be explained by the improvement in structure of aggregate-paste transition zone. Also, the results showed that there is a correlation between the fracture energy measured by WFM (G{sub F}) and the value measured through SEM (G{sub f}) (G{sub F} = 3.11G{sub f})« less

  6. US-23 aggregate test road long-term performance evaluation : final report.

    DOT National Transportation Integrated Search

    2017-03-24

    The US-23 Aggregate Test Road was constructed in 1992 with the main purpose to determine the influence of coarse : aggregate of varying frost susceptibility on long-term concrete durability. The pavement structure for the entire Test Road consists : ...

  7. Using recycled concrete as aggregate in concrete pavements to reduce materials cost.

    DOT National Transportation Integrated Search

    2013-08-01

    The main objective of this project was to evaluate the effects of using aggregate produced from crushed concrete pavement as a replacement for natural (virgin) coarse aggregate in pavement mixtures. A total of ten different concrete mixtures containi...

  8. Use of wastes derived from earthquakes for the production of concrete masonry partition wall blocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao Zhao; Faculty of Architecture, Civil Engineering and Environment Engineering and Mechanics, Sichuan University; Ling, Tung-Chai

    2011-08-15

    Highlights: > Solved the scientific and technological challenges impeding use of waste rubble derived from earthquake, by providing an alternative solution of recycling the waste in moulded concrete block products. > Significant requirements for optimum integration on the utilization of the waste aggregates in the production of concrete blocks are investigated. > A thorough understanding of the mechanical properties of concrete blocks made with waste derived from earthquake is reported. - Abstract: Utilization of construction and demolition (C and D) wastes as recycled aggregates in the production of concrete and concrete products have attracted much attention in recent years. However,more » the presence of large quantities of crushed clay brick in some the C and D waste streams (e.g. waste derived collapsed masonry buildings after an earthquake) renders the recycled aggregates unsuitable for high grade use. One possibility is to make use of the low grade recycled aggregates for concrete block production. In this paper, we report the results of a comprehensive study to assess the feasibility of using crushed clay brick as coarse and fine aggregates in concrete masonry block production. The effects of the content of crushed coarse and fine clay brick aggregates (CBA) on the mechanical properties of non-structural concrete block were quantified. From the experimental test results, it was observed that incorporating the crushed clay brick aggregates had a significant influence on the properties of blocks. The hardened density and drying shrinkage of the block specimens decreased with an increase in CBA content. The use of CBA increased the water absorption of block specimens. The results suggested that the amount of crushed clay brick to be used in concrete masonry blocks should be controlled at less than 25% (coarse aggregate) and within 50-75% for fine aggregates.« less

  9. Structural Design and Economic Evaluation of Roller Compacted Concrete Pavement with Recycled Aggregates

    NASA Astrophysics Data System (ADS)

    Abut, Yavuz; Taner Yildirim, Salih

    2017-10-01

    Using recycled aggregates in the concrete offers advantages in many areas such as waste management, energy save and natural resources, conservation of ecological balance, low CO2 emissions, and users are encouraged in this regard to use these materials. In this study, the profit / loss account arising in the structural design phase was investigated when Reclaimed Asphalt Pavement (RAP), which is limited to use in Roller Compacted Concrete (RCC) pavements, was used as coarse aggregate. RAP materials were used as coarse aggregates by the levels of 0%, 15% and 20% and mechanical properties such as compressive strength, flexural strength, splitting tensile strength and modulus of elasticity were investigated. In the last stage, the mechanical properties obtained from these experimental studies were entered into KENSLABS software as input, and the slab layer thicknesses were determined according to three different subgrade conditions and a certain fatigue criterion. According to the results, it has been determined that the use of RAP at a level of 20% is a serious reducing effect on mechanical properties and and the use of RAP at a level of 15% does not bring a great economic benefit but it is reasonable to use it as coarse aggregate in RCC mixes in consideration of environmental effects.

  10. Fundamental Study on the Development of Structural Lightweight Concrete by Using Normal Coarse Aggregate and Foaming Agent

    PubMed Central

    Lee, Han-Seung; Ismail, Mohamed A.; Woo, Young-Je; Min, Tae-Beom; Choi, Hyun-Kook

    2014-01-01

    Structural lightweight concrete (SLWC) has superior properties that allow the optimization of super tall structure systems for the process of design. Because of the limited supply of lightweight aggregates in Korea, the development of structural lightweight concrete without lightweight aggregates is needed. The physical and mechanical properties of specimens that were cast using normal coarse aggregates and different mixing ratios of foaming agent to evaluate the possibility of creating structural lightweight concrete were investigated. The results show that the density of SLWC decreases as the dosage of foaming agent increases up to a dosage of 0.6%, as observed by SEM. It was also observed that the foaming agent induced well separated pores, and that the size of the pores ranged from 50 to 100 μm. Based on the porosity of concrete specimens with foaming agent, compressive strength values of structural lightweight foam concrete (SLWFC) were obtained. It was also found that the estimated values from proposed equations for compressive strength and modulus of elasticity of SLWFC, and values obtained by actual measurements were in good agreement. Thus, this study confirms that new structural lightweight concrete using normal coarse aggregates and foaming agent can be developed successfully. PMID:28788691

  11. Waste tyre rubberized concrete: properties at fresh and hardened state.

    PubMed

    Aiello, M A; Leuzzi, F

    2010-01-01

    The main objective of this paper is to investigate the properties of various concrete mixtures at fresh and hardened state, obtained by a partial substitution of coarse and fine aggregate with different volume percentages of waste tyres rubber particles, having the same dimensions of the replaced aggregate. Workability, unit weight, compressive and flexural strength and post-cracking behaviour were evaluated and a comparison of the results for the different rubcrete mixtures were proposed in order to define the better mix proportions in terms of mechanical properties of the rubberized concrete. Results showed in this paper were also compared to data reported in literature. Moreover, a preliminary geometrical, physical and mechanical characterization on scrap tyre rubber shreds was made. The rubberized concrete mixtures showed lower unit weight compared to plain concrete and good workability. The results of compressive and flexural tests indicated a larger reduction of mechanical properties of rubcrete when replacing coarse aggregate rather than fine aggregate. On the other hand, the post-cracking behaviour of rubberized concrete was positively affected by the substitution of coarse aggregate with rubber shreds, showing a good energy absorption and ductility indexes in the range observed for fibrous concrete, as suggested by standard (ASTM C1018-97, 1997). 2010 Elsevier Ltd. All rights reserved.

  12. Evaluation of particle shape and texture of mineral aggregates and their blends

    DOT National Transportation Integrated Search

    1992-05-01

    Two important factors for minimizing rutting of hot mix asphalt (HMA) mixtures are: a) the fractured face count of aggregate when gravel is used as coarse aggregate, and b) the use of manufactured sand. Both these factors relate to the shape and text...

  13. Study on Mechanical Properties of Concrete Using Plastic Waste as an Aggregate

    NASA Astrophysics Data System (ADS)

    Jaivignesh, B.; Sofi, A.

    2017-07-01

    Disposal of large quantity of plastic causes land, water and air pollution etc.., so a study is conducted to recycle the plastic in concrete. This work investigates about the replacement of natural aggregate with non-biodegradable plastic aggregate made up of mixed plastic waste in concrete. Several tests are conducted such as compressive strength of cube, split tensile strength of cylinder, flexural strength test of prism to identify the properties and behavior of concrete using plastic aggregate. Replacement of fine aggregate weight by 10%, 15%, 20% with Plastic fine (PF) aggregate and for each replacement of fine aggregate 15%, 20%, 25% of coarse aggregate replacement also conducted with Plastic Coarse(PC) aggregate. In literatures reported that the addition of plastic aggregate in concrete causes the reduction of strength in concrete due to poor bonding between concrete and plastic aggregate, so addition of 0.3% of steel fiber by weight of cement in concrete is done to improve the concrete strength. Totally 60 cubes, 60 cylinders and 40 prisms are casted to identify the compressive strength, split tensile strength and flexural strength respectively. Casted specimens are tested at 7 and 28 days. The identified results from concrete using plastic aggregate are compared with conventional concrete. Result shows that reduction in mechanical properties of plastic aggregate added concrete. This reduction in strength is mainly due to poor bond strength between cement and plastic aggregate.

  14. Compressive Strength and Water Absorption of Pervious Concrete that Using the Fragments of Ceramics and Roof Tiles

    NASA Astrophysics Data System (ADS)

    Prahara, E.; Meilani

    2014-03-01

    Pervious concrete was introduced in America in 2003, popularized by Dan Brown and used as a rigid pavement in the open parking lot. Rigid pavement using pervious concrete can absorb water in the surface to go straight through the concrete to the ground below.This water flow is one of the benefit of using the pervious concrete. Using of wastes such as broken roof and ceramics tiles are not commonly used in Indonesia. Utilization these kind of wastes is predicted lower the compressive strength of pervious concrete as they are used as a substitute for coarse aggregate.In this research, pervious concrete is made using a mixture of the fragment of ceramics and roof tiles.This research using broken ceramics and roof tiles with a grain size that loose from 38 mm sieve, retained on 19 mm sieve and the coarse aggregate from crushed stone that loose 12.5 mm sieve, retained on 9.5 mm sieve. The water cement ratio is 0.3 and to assist the mixing process, the addition of addictive in pervious concrete is used.The size of coarse aggregate used in the mixture affects the strength of pervious concrete. The larger the size of aggregate, the obtained compressive strength becomes smaller. It also affects the density of pervious concrete. The using of mixture of ceramics and roof tiles only reduce 2 MPa of pervious concrete compressive strength so this mixture can be used as a substitute for coarse aggregate with a maximum portion of 30 %. The high porosity of the specimens causes the reduction of pervious concrete density that affect the compressive strength. This high level of porosity can be seen from the high level of water absorption that exceed the required limit of water infiltration.

  15. Applicability of recycled aggregates in concrete piles for soft soil improvement.

    PubMed

    Medeiros-Junior, Ronaldo A; Balestra, Carlos Et; Lima, Maryangela G

    2017-01-01

    The expressive generation of construction and demolition waste is stimulating several studies for reusing this material. The improvement of soft soils by concrete compaction piles has been widely applied for 40 years in some Brazilian cities. This technique is used to improve the bearing capacity of soft soils, allowing executing shallow foundations instead of deep foundations. The compaction piles use a high volume of material. This article explored the possibility of using recycled aggregates from construction waste to replace the natural aggregates in order to improve the bearing capacity of the soft soil, regarding its compressive strength. Construction wastes from different stages of a construction were used in order to make samples of concrete with recycled aggregates. The strength of concretes with natural aggregates was compared with the strength of concretes with recycled (fine and coarse) aggregates. Results show that all samples met the minimum compressive strength specified for compaction piles used to improve the bearing capacity of soft soils. The concrete with recycled aggregate from the structural stage had even higher resistances than the concrete with natural aggregates. This behaviour was attributed to the large amount of cementitious materials in the composition of this type of concrete. It was also observed that concrete with recycled fine aggregate has a superior resistance to concrete with recycled coarse aggregate.

  16. Flexural behavior of reinforced concrete beam with polymer coated pumice

    NASA Astrophysics Data System (ADS)

    Nainggolan, Christin Remayanti; Wijatmiko, Indradi; Wibowo, Ari

    2017-09-01

    Sustainable development has become an important issue due to the increasing consideration of preserving the nature. Many alternative for coarse aggregate replacement have been investigated ranging from natural and fabricated aggregates. In this study, natural aggregate pumice was investigated since it offers lower density that give paramount benefit in reducing total building weight and hence reducing the earthquake excitation effect and optimizing the structural dimension. However, the characteristic of porous surfaces of pumice causes excessive water absorption during concrete mixing process. Therefore, to reduce the additional water, the pumice aggregates were coated with polymer. The tested specimens consisted of normal concrete beams (NCB), uncoated pumice aggregate concrete beam (UPA) and polymer coated pumice aggregate concrete beam (PCP). The objective of the research was to obtain the effect of coating on the pumice aggregate to the flexural behavior of concrete beams. The lateral load-displacement behavior, ductility and collapse mechanism were studied. The results showed that there were only marginal drop on the load-carrying capacity of the pumice aggregate beam compared to those of normal beam. Additionally, the ductility coefficient of specimens UPA and PCP decreased of 11,97% and 14,03% respectively compared to NCB, and the ultimate load capacity decreased less than 1%. Overall, the pumice aggregate showed good characteristic for replacing normal coarse aggregate.

  17. Microbial activity promoted with organic carbon accumulation in macroaggregates of paddy soils under long-term rice cultivation

    NASA Astrophysics Data System (ADS)

    Liu, Yalong; Wang, Ping; Ding, Yuanjun; Lu, Haifei; Li, Lianqing; Cheng, Kun; Zheng, Jufeng; Filley, Timothy; Zhang, Xuhui; Zheng, Jinwei; Pan, Genxing

    2016-12-01

    While soil organic carbon (SOC) accumulation and stabilization has been increasingly the focus of ecosystem properties, how it could be linked to soil biological activity enhancement has been poorly assessed. In this study, topsoil samples were collected from a series of rice soils shifted from salt marshes for 0, 50, 100, 300 and 700 years from a coastal area of eastern China. Soil aggregates were fractioned into different sizes of coarse sand (200-2000 µm), fine sand (20-200 µm), silt (2-20 µm) and clay (< 2 µm), using separation with a low-energy dispersion protocol. Soil properties were determined to investigate niche specialization of different soil particle fractions in response to long-term rice cultivation, including recalcitrant and labile organic carbon, microbial diversity of bacterial, archaeal and fungal communities, soil respiration and enzyme activity. The results showed that the mass proportion both of coarse-sand (2000-200 µm) and clay (< 2 µm) fractions increased with prolonged rice cultivation, but the aggregate size fractions were dominated by fine-sand (200-20 µm) and silt (20-2 µm) fractions across the chronosequence. SOC was highly enriched in coarse-sand fractions (40-60 g kg-1) and moderately in clay fractions (20-25 g kg-1), but was depleted in silt fractions (˜ 10 g kg-1). The recalcitrant carbon pool was higher (33-40 % of SOC) in both coarse-sand and clay fractions than in fine-sand and silt fractions (20-29 % of SOC). However, the ratio of labile organic carbon (LOC) to SOC showed a weakly decreasing trend with decreasing size of aggregate fractions. Total soil DNA (deoxyribonucleic acid) content in the size fractions followed a similar trend to that of SOC. Despite the largely similar diversity between the fractions, 16S ribosomal gene abundance of bacteria and of archaeal were concentrated in both coarse-sand and clay fractions. Being the highest generally in coarse-sand fractions, 18S rRNA gene abundance of fungi decreased sharply but the diversity gently, with decreasing size of the aggregate fractions. The soil respiration quotient (ratio of respired CO2-C to SOC) was the highest in the silt fraction, followed by the fine-sand fraction, but the lowest in coarse-sand and clay fractions in the rice soils cultivated over 100 years, whereas the microbial metabolic quotient was lower in coarse-sand-sized fractions than in other fractions. Soil respiration was higher in the silt fraction than in other fractions for the rice soils. For the size fractions other than the clay fraction, enzyme activity was increased with prolonged rice cultivation, whereas soil respiration appeared to have a decreasing trend. Only in the coarse-sand fraction was both microbial gene abundance and enzyme activity well correlated to SOC and LOC content, although the chemical stability and respiratory of SOC were similar between coarse-sand and clay fractions. Thus, biological activity was generally promoted with LOC accumulation in the coarse-sand-sized macroaggregates of the rice soils, positively responding to prolonged rice cultivation management. The finding here provides a mechanistic understanding of soil organic carbon turnover and microbial community succession at fine scale of soil aggregates that have evolved along with anthropogenic activity of rice cultivation in the field.

  18. Voids characteristics of asphaltic concrete containing coconut shell

    NASA Astrophysics Data System (ADS)

    Ezree Abdullah, Mohd; Hannani Madzaili, Amirah; Putra Jaya, Ramadhansyah; Yaacob, Haryati; Hassan, Norhidayah Abdul; Nazri, Fadzli Mohamed

    2017-07-01

    Asphalt durability is often linked to the thickness of the asphalt coating on the aggregate particles. In order to have adequate film thickness in asphaltic concrete, there must be sufficient space between the aggregate particles in the compacted pavement. This void space is referred to as voids in total mix (VTM), voids with filled bitumen (VFB), and voids in mineral aggregate (VMA). Hence, this study investigates the performance of coconut shell (CS) as coarse aggregate replacement on voids characteristics of asphaltic concrete. Four CS were used as coarse aggregates replacement in asphalt mixture namely 0%, 10%, 20%, 30%, and 40% (by weight volume). The voids properties of asphalt mixture were determined based on Marshall Mix design test. Test results show that VTM and VMA values were decrease with the increasing bitumen content where VFB was increase with increasing bitumen content. Furthermore, increasing the percentage of coconut shell in asphalt mixture was found to increases the voids value up to a peak level and then decreases with further additions of CS.

  19. Fresh and mechanical properties of self-compacting concrete with coarse aggregate replacement using Waste of Oil Palm Shell

    NASA Astrophysics Data System (ADS)

    Prayuda, Hakas; Saleh, Fadillawaty; Ilham Maulana, Taufiq; Monika, Fanny

    2018-05-01

    Self-compacting Concrete (SCC) is a real innovation that can solidify itself without the help of tools to ease field practice. In its implementation, SCC can use alternative materials to reduce waste, such as Oil Palm Shell (OPS). In this research, OPS used as a replacement of crushed stone as the main coarse aggregate. The concrete mixture used consists of cement, sand, crushed stone, OPS as a variation of aggregate substitutes, palm oil fuel ash, and superplasticizer. OPS used were variated with 0%, 5%, 10%, 25% and 50% of crushed stone aggregate weight with age up to 28 days. Tests were conducted on fresh and mechanical properties. From the results, it is known that replacement of aggregate using OPS meets fresh properties criteria and although the compressive strength of OPS concrete mixture is lower than normal SCC, OPS still can be an alternative in making SCC and reducing palm oil industrial waste.

  20. Strength development of pervious concrete containing engineered biomass aggregate

    NASA Astrophysics Data System (ADS)

    Sharif, A. A. M.; Shahidan, S.; Koh, H. B.; Kandash, A.; Zuki, S. S. Mohd

    2017-11-01

    Pervious concrete with high porosity has good permeability and low mechanical strengths are commonly used in controlling storm water management. It is different from normal concrete. It is only containing single size of coarse aggregate and has lower density compared with normal concrete. This study was focused on the effect of Engineered Biomass Aggregate (EBA) on the compressive strength, void ratio and water permeability of pervious concrete. EBA was prepared by coating the biomass aggregate with epoxy resin. EBA was used to replace natural coarse aggregate ranging from 0% to 25%. 150 mm cube specimens were prepared and used to study the compressive strength, void ratio and water permeability. Compressive strength was tested at 7, 14 and 28 days. Meanwhile, void ratio and permeability tests were carried out on 28 days. The experimental results showed that pervious concrete containing EBA gained lower compressive strength. The compressive strength was reduced gradually by increasing the percentage of EBA. Overall, Pervious concrete containing EBA achieved higher void ratio and permeability.

  1. Pervious concrete mix optimization for sustainable pavement solution

    NASA Astrophysics Data System (ADS)

    Barišić, Ivana; Galić, Mario; Netinger Grubeša, Ivanka

    2017-10-01

    In order to fulfill requirements of sustainable road construction, new materials for pavement construction are investigated with the main goal to preserve natural resources and achieve energy savings. One of such sustainable pavement material is pervious concrete as a new solution for low volume pavements. To accommodate required strength and porosity as the measure of appropriate drainage capability, four mixtures of pervious concrete are investigated and results of laboratory tests of compressive and flexural strength and porosity are presented. For defining the optimal pervious concrete mixture in a view of aggregate and financial savings, optimization model is utilized and optimal mixtures defined according to required strength and porosity characteristics. Results of laboratory research showed that comparing single-sized aggregate pervious concrete mixtures, coarse aggregate mixture result in increased porosity but reduced strengths. The optimal share of the coarse aggregate turn to be 40.21%, the share of fine aggregate is 49.79% for achieving required compressive strength of 25 MPa, flexural strength of 4.31 MPa and porosity of 21.66%.

  2. Comparison of alternative devices to determine aggregate shape.

    DOT National Transportation Integrated Search

    2005-01-01

    This study compared devices (with corresponding procedures) that may be used to classify flat and elongated (F&E) particle content for coarse aggregate sources. The comparison involved the traditional (and manual) proportional caliper and two digital...

  3. Experimental Investigation on Damping Property of Coarse Aggregate Replaced Rubber Concrete

    NASA Astrophysics Data System (ADS)

    Sugapriya, P.; Ramkrishnan, R.; Keerthana, G.; Saravanamurugan, S.

    2018-02-01

    Rubber has good damping and vibrational characteristics and can reduce cracking significantly due to its elastic nature. This property of rubber can be incorporated in concrete to control vibrations and create better pavements. Crumb Rubber on being dumped in landfills has serious repercussions and causes soil and land pollution. An innovative use of waste tires is shredding them into small pieces and using them as a replacement for coarse aggregate. Crumb rubber is obtained by chopping scrap tires, and in this study it was added in two different sets named SET 1 - Treated Crumb Rubber and concrete, and SET 2 - Treated Crumb rubber with Ultra Fine GGBS as admixture in concrete. Coarse aggregate replaces Rubber in each of the 2 SET’s in proportions of 5, 10, 15 and 20%. Properties like Compressive Strength, Young’s Modulus, Direct and Semi direct Ultrasonic Pulse Velocity, Sorptivity, Damping ratio and Frequency were found out. Deformation and mode shape were studied with modal analysis and static analysis by applying a uniform pressure corresponding to the highest compressive strength of the slab, using ANSYS.

  4. Micro-deval coarse aggregate test evaluation

    DOT National Transportation Integrated Search

    2001-05-01

    Studded tire use in Oregon results in millions of dollars of pavement damage annually. Accurate tests are needed to qualify durable aggregate for pavements to resist studded tire damage. ODOT currently uses the Los Angeles abrasion test as one of the...

  5. Bottom ash as aggregate replacement in concrete.

    DOT National Transportation Integrated Search

    2013-06-01

    The objective of the proposed study is to evaluate bottom ash as a partial or total replacement of the fine and coarse aggregate in : concrete. This program will characterize and evaluate available bottom ash sources as potential replacement of both ...

  6. Compressive strength and resistance to chloride ion penetration and carbonation of recycled aggregate concrete with varying amount of fly ash and fine recycled aggregate.

    PubMed

    Sim, Jongsung; Park, Cheolwoo

    2011-11-01

    Construction and demolition waste has been dramatically increased in the last decade, and social and environmental concerns on the recycling have consequently been increased. Recent technology has greatly improved the recycling process for waste concrete. This study investigates the fundamental characteristics of concrete using recycled concrete aggregate (RCA) for its application to structural concrete members. The specimens used 100% coarse RCA, various replacement levels of natural aggregate with fine RCA, and several levels of fly ash addition. Compressive strength of mortar and concrete which used RCA gradually decreased as the amount of the recycled materials increased. Regardless of curing conditions and fly ash addition, the 28 days strength of the recycled aggregate concrete was greater than the design strength, 40 MPa, with a complete replacement of coarse aggregate and a replacement level of natural fine aggregate by fine RCA up to 60%. The recycled aggregate concrete achieved sufficient resistance to the chloride ion penetration. The measured carbonation depth did not indicate a clear relationship to the fine RCA replacement ratio but the recycled aggregate concrete could also attain adequate carbonation resistance. Based on the results from the experimental investigations, it is believed that the recycled aggregate concrete can be successfully applied to structural concrete members. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Optimizing the durability of the coarse fraction of porous asphalt RAP for effective recycling

    NASA Astrophysics Data System (ADS)

    Holleran, Irina; Wilson, Douglas J.; Black, Philippa; Holleran, Glynn; Walubita, Lubinda F.

    2017-09-01

    Porous asphalt (PA) durability depends not only on the binder used to manufacture the mix, but also on the aggregates chosen, particularly the coarse fraction component. Aggregates for PA should be of the highest quality and highly durable to withstand the effects of weather and traffic. To recycle PA into a new PA mix, without compromising the long-term performance, the durability of the recovered aggregates from PA-derived reclaimed asphalt pavement (RAP) should be assessed alongside the aged binder properties. In this study, the Micro-Deval (MD) Abrasion test, combined with water absorption, was found to be a good predictor of asphalt mix performance for PA. Minerology of the aggregates is an important factor when setting limits for MD loss. New Zealand (NZ) aggregates are significantly younger in geological terms, and chemically and physically less stable compared to the aggregates used in many other countries. This is especially true for greywacke, the most used aggregate in NZ for road construction. If the MD limits reported in some literature are applied to NZ PA-derived RAP aggregates, poor performing material can be erroneously incorporated in asphalt mixes. Findings from this study contributes in understanding how PA-derived RAP can be recycled into new value PA mixes.

  8. Utilisation of steel furnace slag coarse aggregate in a low calcium fly ash geopolymer concrete

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khan, M. S.H.,; Castel, Arnaud; Akbarnezhad, A.

    This paper evaluates the performance of steel furnace slag (SFS) coarse aggregate in blended slag and low calcium fly ash geopolymer concrete (GPC). The geopolymer binder is composed of 90% of low calcium fly ash and 10% of ground granulated blast furnace slag (GGBFS). Mechanical and physical properties, shrinkage, and detailed microstructure analysis were carried out. The results showed that geopolymer concrete with SFS aggregate offered higher compressive strength, surface resistivity and pulse velocity than that of GPC with traditional aggregate. The shrinkage results showed no expansion or swelling due to delayed calcium oxide (CaO) hydration after 320 days. Nomore » traditional porous interfacial transition zone (ITZ) was detected using scanning electron microscopy, indicating a better bond between SFS aggregate and geopolymer matrix. Energy dispersive spectroscopy results further revealed calcium (Ca) diffusion at the vicinity of ITZ. Raman spectroscopy results showed no new crystalline phase formed due to Ca diffusion. X-ray fluorescence result showed Mg diffusion from SFS aggregate towards geopolymer matrix. The incorporation of Ca and Mg into the geopolymer structure and better bond between SFS aggregate and geopolymer matrix are the most likely reasons for the higher compressive strength observed in GPC with SFS aggregate.« less

  9. Ceramic ware waste as coarse aggregate for structural concrete production.

    PubMed

    García-González, Julia; Rodríguez-Robles, Desirée; Juan-Valdés, Andrés; Morán-Del Pozo, Julia M; Guerra-Romero, M Ignacio

    2015-01-01

    The manufacture of any kind of product inevitably entails the production of waste. The quantity of waste generated by the ceramic industry, a very important sector in Spain, is between 5% and 8% of the final output and it is therefore necessary to find an effective waste recovery method. The aim of the study reported in the present article was to seek a sustainable means of managing waste from the ceramic industry through the incorporation of this type of waste in the total replacement of conventional aggregate (gravel) used in structural concrete. Having verified that the recycled ceramic aggregates met all the technical requirements imposed by current Spanish legislation, established in the Code on Structural Concrete (EHE-08), then it is prepared a control concrete mix and the recycled concrete mix using 100% recycled ceramic aggregate instead of coarse natural aggregate. The concretes obtained were subjected to the appropriate tests in order to conduct a comparison of their mechanical properties. The results show that the concretes made using ceramic sanitary ware aggregate possessed the same mechanical properties as those made with conventional aggregate. It is therefore possible to conclude that the reuse of recycled ceramic aggregate to produce recycled concrete is a feasible alternative for the sustainable management of this waste.

  10. The Optimum Production Method for Quality Improvement of Recycled Aggregates Using Sulfuric Acid and the Abrasion Method.

    PubMed

    Kim, Haseog; Park, Sangki; Kim, Hayong

    2016-07-29

    There has been increased deconstruction and demolition of reinforced concrete structures due to the aging of the structures and redevelopment of urban areas resulting in the generation of massive amounts of construction. The production volume of waste concrete is projected to increase rapidly over 100 million tons by 2020. However, due to the high cement paste content, recycled aggregates have low density and high absorption ratio. They are mostly used for land reclamation purposes with low added value instead of multiple approaches. This study was performed to determine an effective method to remove cement paste from recycled aggregates by using the abrasion and substituting the process water with acidic water. The aim of this study is to analyze the quality of the recycled fine aggregates produced by a complex method and investigate the optimum manufacturing conditions for recycled fine aggregates based on the design of experiment. The experimental parameters considered were water ratio, coarse aggregate ratio, and abrasion time and, as a result of the experiment, data concerning the properties of recycled sand were obtained. It was found that high-quality recycled fine aggregates can be obtained with 8.57 min of abrasion-crusher time and a recycled coarse aggregate ratio of over 1.5.

  11. Influence of rock salt impurities on limestone aggregate durability : final report.

    DOT National Transportation Integrated Search

    2016-08-01

    Non-durable coarse aggregate in concrete pavement can break down under repeated freeze-thaw cycles. : Application of rock salt may increase the severity of exposure conditions because of trace compounds, such as calcium : sulfate, in rock salt. Concr...

  12. Micro-Deval coarse aggregate test evaluation : final report.

    DOT National Transportation Integrated Search

    2001-05-01

    Studded tire use in Oregon results in millions of dollars of pavement damage annually. Accurate tests are needed to qualify durable aggregate for pavements to resist studded tire damage. ODOT currently uses the Los Angeles abrasion test as one of the...

  13. Installation and performance of lightweight aggregate asphaltic concrete test sections.

    DOT National Transportation Integrated Search

    1970-01-01

    In 1966 and 1968 test sections of asphaltic concrete overlays fabricated with coarse lightweight aggregate and fine limestone were installed in the Roanoke-Bedford area. The experimental mixes used were designed in an attempt to develop skid resistan...

  14. Influence of rock salt impurities on limestone aggregate durability : technical summary.

    DOT National Transportation Integrated Search

    2016-08-01

    Non-durable coarse aggregate in concrete pavement can break down under : repeated freeze-thaw cycles. Application of rock salt may increase the severity of : exposure conditions because of trace compounds, such as calcium sulfate, in rock : salt. Con...

  15. Electrical resisitivity of mechancially stablized earth wall backfill

    NASA Astrophysics Data System (ADS)

    Snapp, Michael; Tucker-Kulesza, Stacey; Koehn, Weston

    2017-06-01

    Mechanically stabilized earth (MSE) retaining walls utilized in transportation projects are typically backfilled with coarse aggregate. One of the current testing procedures to select backfill material for construction of MSE walls is the American Association of State Highway and Transportation Officials standard T 288: ;Standard Method of Test for Determining Minimum Laboratory Soil Resistivity.; T 288 is designed to test a soil sample's electrical resistivity which correlates to its corrosive potential. The test is run on soil material passing the No. 10 sieve and believed to be inappropriate for coarse aggregate. Therefore, researchers have proposed new methods to measure the electrical resistivity of coarse aggregate samples in the laboratory. There is a need to verify that the proposed methods yield results representative of the in situ conditions; however, no in situ measurement of the electrical resistivity of MSE wall backfill is established. Electrical resistivity tomography (ERT) provides a two-dimensional (2D) profile of the bulk resistivity of backfill material in situ. The objective of this study was to characterize bulk resistivity of in-place MSE wall backfill aggregate using ERT. Five MSE walls were tested via ERT to determine the bulk resistivity of the backfill. Three of the walls were reinforced with polymeric geogrid, one wall was reinforced with metallic strips, and one wall was a gravity retaining wall with no reinforcement. Variability of the measured resistivity distribution within the backfill may be a result of non-uniform particle sizes, thoroughness of compaction, and the presence of water. A quantitative post processing algorithm was developed to calculate mean bulk resistivity of in-situ backfill. Recommendations of the study were that the ERT data be used to verify proposed testing methods for coarse aggregate that are designed to yield data representative of in situ conditions. A preliminary analysis suggests that ERT may be utilized as construction quality assurance for thoroughness of compaction in MSE construction; however more data are needed at this time.

  16. Best practices for the use of siliceous river gravel in concrete paving.

    DOT National Transportation Integrated Search

    2009-02-01

    Fracture toughness (KIC) value at early ages of concrete was used to represent the interfacial bond between : aggregate and mortar of a variety of coarse aggregates types and concrete mixtures. A fractional factorial design based : on Taguchis ort...

  17. Detailed Aggregate Resources Study, Dry Lake Valley, Nevada.

    DTIC Science & Technology

    1981-05-29

    LOCAL SAND SOURCES IGENERALLY CYLINDERS. DRYING SHRINKAGE I COLLECTED WITHIN A FEW MILES OF CORRESPONDING LEDGE-ROCK SOURCES) SUPPLIED FINE MENS...COMPRESSIVE AND TENSILE STh LEDGE-ROCK SOURCES SUPPLIED COARSE AGGREGATES; LOCAL SAND SOURCES IGENERALLY CYLINDERS. DRYING SHRINKAGE COLLECTED WITHIN A FEW

  18. Feasibility of substituting #78 for #8 aggregate in S-5 mixes.

    DOT National Transportation Integrated Search

    1979-01-01

    The study investigated the feasibility of using a coarse aggregate in the S-5 asphalt mixes. Virginia Department of Highways and Transportation specifications were adhered to with the exception of incorporating into the mix a small percentage of +1/2...

  19. Coarse-Grained Molecular Simulation of the Hierarchical Self-Assembly of π-Conjugated Optoelectronic Peptides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mansbach, Rachael A.; Ferguson, Andrew L.

    Self-assembled aggregates of peptides containing aromatic groups possess optoelectronic properties that make them attractive targets for the fabrication of biocompatible electronics. Molecular-level understanding of how the microscopic peptide chemistry influences the properties of the aggregates is vital for rational peptide design. We construct a coarse-grained model of Asp-Phe-Ala-Gly-OPV3-Gly-Ala-Phe-Asp (DFAG-OPV3-GAFD) peptides containing OPV3 (distyrylbenzene) π-conjugated cores explicitly parameterized against all-atom calculations and perform molecular dynamics simulations of the self-assembly of hundreds of molecules over hundreds of nanoseconds. We observe a hierarchical assembly mechanism wherein ~2-8 peptides assemble into stacks with aligned aromatic cores that subsequently form elliptical aggregates and ultimately amore » branched network with a fractal dimensionality of ~1.5. The assembly dynamics are well described by a Smoluchowski coagulation process for which we extract rate constants from the molecular simulations to both furnish insight into the microscopic assembly kinetics and extrapolate our aggregation predictions to time and length scales beyond the reach of molecular simulation. Lastly, this study presents new molecular-level understanding of the morphology and dynamics of the spontaneous self-assembly of DFAG-OPV3-GAFD peptides and establishes a systematic protocol to develop coarse-grained models of optoelectronic peptides for the exploration and design of π-conjugated peptides with tunable optoelectronic properties.« less

  20. Coarse-Grained Molecular Simulation of the Hierarchical Self-Assembly of π-Conjugated Optoelectronic Peptides

    DOE PAGES

    Mansbach, Rachael A.; Ferguson, Andrew L.

    2017-02-10

    Self-assembled aggregates of peptides containing aromatic groups possess optoelectronic properties that make them attractive targets for the fabrication of biocompatible electronics. Molecular-level understanding of how the microscopic peptide chemistry influences the properties of the aggregates is vital for rational peptide design. We construct a coarse-grained model of Asp-Phe-Ala-Gly-OPV3-Gly-Ala-Phe-Asp (DFAG-OPV3-GAFD) peptides containing OPV3 (distyrylbenzene) π-conjugated cores explicitly parameterized against all-atom calculations and perform molecular dynamics simulations of the self-assembly of hundreds of molecules over hundreds of nanoseconds. We observe a hierarchical assembly mechanism wherein ~2-8 peptides assemble into stacks with aligned aromatic cores that subsequently form elliptical aggregates and ultimately amore » branched network with a fractal dimensionality of ~1.5. The assembly dynamics are well described by a Smoluchowski coagulation process for which we extract rate constants from the molecular simulations to both furnish insight into the microscopic assembly kinetics and extrapolate our aggregation predictions to time and length scales beyond the reach of molecular simulation. Lastly, this study presents new molecular-level understanding of the morphology and dynamics of the spontaneous self-assembly of DFAG-OPV3-GAFD peptides and establishes a systematic protocol to develop coarse-grained models of optoelectronic peptides for the exploration and design of π-conjugated peptides with tunable optoelectronic properties.« less

  1. Influences of cement source and sample of cement source on compressive strength variability of gravel aggregate concrete.

    DOT National Transportation Integrated Search

    2013-06-01

    The strength of concrete is influenced by each constituent material used in the concrete : mixture and the proportions of each ingredient. Water-cementitious ratio, cementitious materials, air : content, chemical admixtures, and type of coarse aggreg...

  2. Aggregate freeze-thaw testing and d-cracking field performance : 30 years later.

    DOT National Transportation Integrated Search

    2014-09-01

    Premature deterioration of concrete pavement due to D-cracking has been a problem in Kansas since the 1930s. Kansas : geology includes mineable limestone coarse aggregates with variable durability in the eastern portion of the state. Due : to this va...

  3. Utilising Fine and Coarse Recycled Aggregates from the Gulf Region in Concrete

    NASA Astrophysics Data System (ADS)

    Jones, M. Rod; Halliday, Judith E.; Csetenyi, Laszlo; Zheng, Li; Strompinis, N.

    This paper explores the feasibility in utilising materials generated from C&DW to produce a `green' concrete. The two materials that are considered here are, (i) up-sizing silt-size material generated from recycled aggregates to produce a synthetic silt-sand and (ii) processed recycled coarse aggregates (RA) sourced from a Gulf Region landfill site. The work has demonstrated that there is potential for utilising silt wastes into foamed concrete, which can then be crushed to a sand-sized material suitable for use in concrete, however the porous nature of the material has highlighted that the water demand of this RA is high. RAs were characterised to BS EN 12620 and found suitable for use in concrete. The effect of RA on concrete properties is minimal when used up to 35% replacement levels, provided that they are pre-soaked.

  4. Coarse-Grain Molecular Dynamics Simulations To Investigate the Bulk Viscosity and Critical Micelle Concentration of the Ionic Surfactant Sodium Dodecyl Sulfate (SDS) in Aqueous Solution.

    PubMed

    Ruiz-Morales, Yosadara; Romero-Martínez, Ascención

    2018-04-12

    The first critical micelle concentration (CMC) of the ionic surfactant sodium dodecyl sulfate (SDS) in diluted aqueous solution has been determined at room temperature from the investigation of the bulk viscosity, at several concentrations of SDS, by means of coarse-grain molecular dynamics simulations. The coarse-grained model molecules at the mesoscale level are adopted. The bulk viscosity of SDS was calculated at several millimolar concentrations of SDS in water using the MARTINI force field by means of NVT shear Mesocite molecular dynamics. The definition of each bead in the MARTINI force field is established, as well as their radius, volume, and mass. The effect of the size of the simulation box on the obtained CMC has been investigated, as well as the effect of the number of SDS molecules, in the simulations, on the formation of aggregates. The CMC, which was obtained from a graph of the calculated viscosities versus concentration, is in good agreement with the reported experimental data and does not depend on the size of the box used in the simulation. The formation of a spherical micelle-like aggregate is observed, where the dodecyl sulfate tails point inward and the heads point outward the aggregation micelle, in accordance with experimental observations. The advantage of using coarse-grain molecular dynamics is the possibility of treating explicitly charged beads, applying a shear flow for viscosity calculation, and processing much larger spatial and temporal scales than atomistic molecular dynamics can. Furthermore, the CMC of SDS obtained with the coarse-grained model is in much better agreement with the experimental value than the value obtained with atomistic simulations.

  5. The material from Lampung as coarse aggregate to substitute andesite for concrete-making

    NASA Astrophysics Data System (ADS)

    Amin, M.; Supriyatna, Y. I.; Sumardi, S.

    2018-01-01

    Andesite stone is usually used for split stone material in the concrete making. However, its availability is decreasing. Lampung province has natural resources that can be used for coarse aggregate materials to substitute andesite stone. These natural materials include limestone, feldspar stone, basalt, granite, and slags from iron processing waste. Therefore, a research on optimizing natural materials in Lampung to substitute andesite stone for concrete making is required. This research used laboratory experiment method. The research activities included making cubical object samples of 150 x 150 x 150 mm with material composition referring to a standard of K.200 and w/c 0.61. Concrete making by using varying types of aggregates (basalt, limestone, slag) and aggregate sizes (A = 5-15 mm, B = 15-25 mm, and 25-50 mm) was followed by compressive strength test. The results showed that the obtained optimal compressive strengths for basalt were 24.47 MPa for 50-150 mm aggregate sizes, 21.2 MPa for 15-25 mm aggregate sizes, and 20.7 MPa for 25-50 mm aggregate sizes. These results of basalt compressive strength values were higher than the same result for andesite (19.69 MPa for 50-150 mm aggregate sizes), slag (22.72 MPa for 50-150 mm aggregate sizes), and limestone (19.69 Mpa for 50-150 mm aggregate sizes). These results indicated that basalt, limestone, and slag aggregates were good enough to substitute andesite as materials for concrete making. Therefore, natural resources in Lampung can be optimized as construction materials in concrete making.

  6. Statistical physics approaches to Alzheimer's disease

    NASA Astrophysics Data System (ADS)

    Peng, Shouyong

    Alzheimer's disease (AD) is the most common cause of late life dementia. In the brain of an AD patient, neurons are lost and spatial neuronal organizations (microcolumns) are disrupted. An adequate quantitative analysis of microcolumns requires that we automate the neuron recognition stage in the analysis of microscopic images of human brain tissue. We propose a recognition method based on statistical physics. Specifically, Monte Carlo simulations of an inhomogeneous Potts model are applied for image segmentation. Unlike most traditional methods, this method improves the recognition of overlapped neurons, and thus improves the overall recognition percentage. Although the exact causes of AD are unknown, as experimental advances have revealed the molecular origin of AD, they have continued to support the amyloid cascade hypothesis, which states that early stages of aggregation of amyloid beta (Abeta) peptides lead to neurodegeneration and death. X-ray diffraction studies reveal the common cross-beta structural features of the final stable aggregates-amyloid fibrils. Solid-state NMR studies also reveal structural features for some well-ordered fibrils. But currently there is no feasible experimental technique that can reveal the exact structure or the precise dynamics of assembly and thus help us understand the aggregation mechanism. Computer simulation offers a way to understand the aggregation mechanism on the molecular level. Because traditional all-atom continuous molecular dynamics simulations are not fast enough to investigate the whole aggregation process, we apply coarse-grained models and discrete molecular dynamics methods to increase the simulation speed. First we use a coarse-grained two-bead (two beads per amino acid) model. Simulations show that peptides can aggregate into multilayer beta-sheet structures, which agree with X-ray diffraction experiments. To better represent the secondary structure transition happening during aggregation, we refine the model to four beads per amino acid. Typical essential interactions, such as backbone hydrogen bond, hydrophobic and electrostatic interactions, are incorporated into our model. We study the aggregation of Abeta16-22, a peptide that can aggregate into a well-ordered fibrillar structure in experiments. Our results show that randomly-oriented monomers can aggregate into fibrillar subunits, which agree not only with X-ray diffraction experiments but also with solid-state NMR studies. Our findings demonstrate that coarse-grained models and discrete molecular dynamics simulations can help researchers understand the aggregation mechanism of amyloid peptides.

  7. Comparative analysis of coarse surfacing aggregate using Micro-Deval, L.A. Abrasion and Sodium Sulfate Soundness Tests.

    DOT National Transportation Integrated Search

    2007-01-01

    "Aggregates used in the construction of roads must be durable, abrasion resistant, and freeze-thaw resistant in : order to perform well in pavement or as base course. The objective of this study was to investigate whether the : Micro-Deval test will ...

  8. Chondrule Pyroxene Embedded in Cores of Amoeboid Olivine Aggregates from Allende: Evidence of Overlapping Formation Times of AOAs and Chondrules

    NASA Astrophysics Data System (ADS)

    Fagan, T. J.; Komatsu, M.; Nishijima, E.; Fukushima, H.; Yasuda, T.

    2016-08-01

    Coarse low-Ca pyroxene has been identified in two amoeboid olivine aggregates in the CV3 Allende. The pyroxene crystals appear to be relict chondrule phenocrysts. If so, the texture indicates overlapping formation times of AOAs and chondrules.

  9. Methods for assessing the polishing characteristics of coarse aggregates for use in pavement surface layers.

    DOT National Transportation Integrated Search

    2010-06-01

    The predominant aggregate resources located in the western parts of Virginia are carbonate rocks. The mineral components of these rocks tend to be relatively soft and subject to abrasive wear under traffic that leads to a fairly rapid smoothing of th...

  10. Treatments for clays in aggregates used to produce cement concrete, bituminous materials, and chip seals : technical report.

    DOT National Transportation Integrated Search

    2013-07-01

    The clay contamination of coarse and fine aggregates and its effects on pavement performance of portland cement concrete, bituminous mixes and chip seals is a major concern for Texas Department of Transportation. We proposed (i) to determine what typ...

  11. The Portland cement aggregate bond : influence of surface area of the coarse aggregate as a function of lithology.

    DOT National Transportation Integrated Search

    1972-01-01

    Presented is a direct tensile test for measuring the bond of rock or mineral surfaces to portland cement paste, or for measuring the tensile strength of neat paste or of mortar specimens, devised using commercially available gripping devices and prep...

  12. Corrosion Behavior of Steel Reinforcement in Concrete with Recycled Aggregates, Fly Ash and Spent Cracking Catalyst.

    PubMed

    Gurdián, Hebé; García-Alcocel, Eva; Baeza-Brotons, Francisco; Garcés, Pedro; Zornoza, Emilio

    2014-04-21

    The main strategy to reduce the environmental impact of the concrete industry is to reuse the waste materials. This research has considered the combination of cement replacement by industrial by-products, and natural coarse aggregate substitution by recycled aggregate. The aim is to evaluate the behavior of concretes with a reduced impact on the environment by replacing a 50% of cement by industrial by-products (15% of spent fluid catalytic cracking catalyst and 35% of fly ash) and a 100% of natural coarse aggregate by recycled aggregate. The concretes prepared according to these considerations have been tested in terms of mechanical strengths and the protection offered against steel reinforcement corrosion under carbonation attack and chloride-contaminated environments. The proposed concrete combinations reduced the mechanical performance of concretes in terms of elastic modulus, compressive strength, and flexural strength. In addition, an increase in open porosity due to the presence of recycled aggregate was observed, which is coherent with the changes observed in mechanical tests. Regarding corrosion tests, no significant differences were observed in the case of the resistance of these types of concretes under a natural chloride attack. In the case of carbonation attack, although all concretes did not stand the highly aggressive conditions, those concretes with cement replacement behaved worse than Portland cement concretes.

  13. Effect of moisture on the physical and durability properties of methyl methacrylate polymer concrete

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fontana, J.J.; Reams, W.

    1983-01-01

    The compressive strength of methyl methacrylate PC composites decays very rapidly as the moisture content of the coarse aggregate is increased from 0 to 1 wt %. The durability of the PC also shows evidence of decay. Addition of silane coupling agent, such as A-1120, to the monomer component of a PC composite increases the compressive strength of such composites made with moist coarse aggregates. The compressive strengths of such PC composites are as high as a normal PCC used in highway applications. The durability of PC composites made with a silane additive seems to increase as the composite undergoesmore » freeze-thaw cycling which reinforces the justification that such materials can be used for PCC repairs without a sacrifice in use lifespans. However, for the convenience of using moist aggregates, one must endure the additional cost of the silane coupling agent. If it costs more than $0.02/lb to dry the aggregate, and one is willing to accept the reduced strengths associated with moist aggregates, then the use of a silane coupling agent can be cost effective. 3 figures, 4 tables.« less

  14. Considering the formation of hematite spherules on Mars by freezing aqueous hematite nanoparticle suspensions

    NASA Astrophysics Data System (ADS)

    Sexton, M. R.; Elwood Madden, M. E.; Swindle, A. L.; Hamilton, V. E.; Bickmore, B. R.; Elwood Madden, A. S.

    2017-04-01

    The enigmatic and unexpected occurrence of coarse crystalline (gray) hematite spherules at Terra Meridiani on Mars in association with deposits of jarosite-rich sediments fueled a variety of hypotheses to explain their origin. In this study, we tested the hypothesis that freezing of aqueous hematite nanoparticle suspensions, possibly produced from low-temperature weathering of jarosite-bearing deposits, could produce coarse-grained hematite aggregate spherules. We synthesized four hematite nanoparticle suspensions with a range of sizes and morphologies and performed freezing experiments. All sizes of hematite nanoparticles rapidly aggregate during freezing. Regardless of the size or shape of the initial starting material, they rapidly collect into aggregates that are then too big to push in front of a stable advancing ice front, leading to incohesive masses of particles, rather than solid spherules. We also explored the effects of "seed" silicates, a matrix of sand grains, various concentrations of NaCl and CaCl2, and varying the freezing temperature on hematite nanoparticle aggregation. However, none of these factors resulted in mm-scale spherical aggregates. By comparing our measured freezing rates with empirical and theoretical values from the literature, we conclude that the spherules on Mars could not have been produced through the freezing of aqueous hematite nanoparticle suspensions; ice crystallization front instability disrupts the aggregation process and prevents the formation of mm-scale continuous aggregates.

  15. On the Multilevel Solution Algorithm for Markov Chains

    NASA Technical Reports Server (NTRS)

    Horton, Graham

    1997-01-01

    We discuss the recently introduced multilevel algorithm for the steady-state solution of Markov chains. The method is based on an aggregation principle which is well established in the literature and features a multiplicative coarse-level correction. Recursive application of the aggregation principle, which uses an operator-dependent coarsening, yields a multi-level method which has been shown experimentally to give results significantly faster than the typical methods currently in use. When cast as a multigrid-like method, the algorithm is seen to be a Galerkin-Full Approximation Scheme with a solution-dependent prolongation operator. Special properties of this prolongation lead to the cancellation of the computationally intensive terms of the coarse-level equations.

  16. Estimating the carbon in coarse woody debris with perpendicular distance sampling. Chapter 6

    Treesearch

    Harry T. Valentine; Jeffrey H. Gove; Mark J. Ducey; Timothy G. Gregoire; Michael S. Williams

    2008-01-01

    Perpendicular distance sampling (PDS) is a design for sampling the population of pieces of coarse woody debris (logs) in a forested tract. In application, logs are selected at sample points with probability proportional to volume. Consequently, aggregate log volume per unit land area can be estimated from tallies of logs at sample points. In this chapter we provide...

  17. COIN Project: Towards a zero-waste technology for concrete aggregate production in Norway

    NASA Astrophysics Data System (ADS)

    Cepuritis, Rolands; Willy Danielsen, Svein

    2014-05-01

    COIN Project: Towards a zero-waste technology for concrete aggregate production in Norway Rolands Cepuritis, Norcem/NTNU and Svein Willy Danielsen, SINTEF Aggregate production is a mining operation where no purification of the "ore" is necessary. Still it is extremely rare that an aggregate production plant is operating on the basis of zero-waste concept. This is since historically the fine crushed aggregate (particles with a size of less than 2, 4 or sometimes 8 mm) has been regarded as a by-product or waste of the more valuable coarse aggregate production. The reason is that the crushed coarse aggregates can easily replace coarse rounded natural stones in almost any concrete composition; while, the situation with the sand is different. The production of coarse aggregate normally yields fine fractions with rough surface texture, flaky or elongated particles an inadequate gradation. When such a material replaces smooth and rounded natural sand grains in a concrete mix, the result is usually poor and much more water and cement has to be used to achieve adequate concrete flow. The consequences are huge stockpiles of the crushed fine fractions that can't be sold (mass balance problems) for the aggregate producers, sustainability problems for the whole industry and environmental issues for society due to dumping and storing of the fine co-generated material. There have been attempts of utilising the material in concrete before; however, they have mostly ended up in failure. There have been attempts to adjust the crushed sand to the properties of the natural sand, which would still give a lot of waste, especially if the grading would have to be adjusted and the high amounts of fines abundantly present in the crushed sand would have to be removed. Another fundamental reason for failure has been that historically such attempts have mainly ended up in a research carried out by people (both industrial and academic) with aggregate background (= parties willing to find market for their crusher fines) providing only conclusions already well known by the engineers involved in concrete production. Due to the pressing situation with the left resources of the natural sand and gravel in Scandinavia, a new and different development approach has been recently attempted with the Concrete Innovation Center (COIN) in Norway. The centre is a research based innovation project that has brought together and served as a source of funding to facilitate the crucial interaction between the professionals from the different involved industries (quarrying machinery supplier, aggregate producers, concrete producers and concrete contractors) and the academic people from universities and research institutions, in order come up with a better crushed sand solution for the future. The concept under development has been a zero-waste technology for aggregate production, where instead of reducing the amount of the crushed fines their properties are rather engineered to crucially increase the overall performance of the sand in concrete. The project also involves collaboration with a state-of-the-art aggregate production plant where the new technology has already been implemented. The production process there is based on the new engineered sand concepts successfully supplying 100% all of the produced fractions to concrete and asphalt producers.

  18. Generation, Validation, and Application of Abundance Map Reference Data for Spectral Unmixing

    NASA Astrophysics Data System (ADS)

    Williams, McKay D.

    Reference data ("ground truth") maps traditionally have been used to assess the accuracy of imaging spectrometer classification algorithms. However, these reference data can be prohibitively expensive to produce, often do not include sub-pixel abundance estimates necessary to assess spectral unmixing algorithms, and lack published validation reports. Our research proposes methodologies to efficiently generate, validate, and apply abundance map reference data (AMRD) to airborne remote sensing scenes. We generated scene-wide AMRD for three different remote sensing scenes using our remotely sensed reference data (RSRD) technique, which spatially aggregates unmixing results from fine scale imagery (e.g., 1-m Ground Sample Distance (GSD)) to co-located coarse scale imagery (e.g., 10-m GSD or larger). We validated the accuracy of this methodology by estimating AMRD in 51 randomly-selected 10 m x 10 m plots, using seven independent methods and observers, including field surveys by two observers, imagery analysis by two observers, and RSRD using three algorithms. Results indicated statistically-significant differences between all versions of AMRD, suggesting that all forms of reference data need to be validated. Given these significant differences between the independent versions of AMRD, we proposed that the mean of all (MOA) versions of reference data for each plot and class were most likely to represent true abundances. We then compared each version of AMRD to MOA. Best case accuracy was achieved by a version of imagery analysis, which had a mean coverage area error of 2.0%, with a standard deviation of 5.6%. One of the RSRD algorithms was nearly as accurate, achieving a mean error of 3.0%, with a standard deviation of 6.3%, showing the potential of RSRD-based AMRD generation. Application of validated AMRD to specific coarse scale imagery involved three main parts: 1) spatial alignment of coarse and fine scale imagery, 2) aggregation of fine scale abundances to produce coarse scale imagery-specific AMRD, and 3) demonstration of comparisons between coarse scale unmixing abundances and AMRD. Spatial alignment was performed using our scene-wide spectral comparison (SWSC) algorithm, which aligned imagery with accuracy approaching the distance of a single fine scale pixel. We compared simple rectangular aggregation to coarse sensor point spread function (PSF) aggregation, and found that the PSF approach returned lower error, but that rectangular aggregation more accurately estimated true abundances at ground level. We demonstrated various metrics for comparing unmixing results to AMRD, including mean absolute error (MAE) and linear regression (LR). We additionally introduced reference data mean adjusted MAE (MA-MAE), and reference data confidence interval adjusted MAE (CIA-MAE), which account for known error in the reference data itself. MA-MAE analysis indicated that fully constrained linear unmixing of coarse scale imagery across all three scenes returned an error of 10.83% per class and pixel, with regression analysis yielding a slope = 0.85, intercept = 0.04, and R2 = 0.81. Our reference data research has demonstrated a viable methodology to efficiently generate, validate, and apply AMRD to specific examples of airborne remote sensing imagery, thereby enabling direct quantitative assessment of spectral unmixing performance.

  19. Corrosion Behavior of Steel Reinforcement in Concrete with Recycled Aggregates, Fly Ash and Spent Cracking Catalyst

    PubMed Central

    Gurdián, Hebé; García-Alcocel, Eva; Baeza-Brotons, Francisco; Garcés, Pedro; Zornoza, Emilio

    2014-01-01

    The main strategy to reduce the environmental impact of the concrete industry is to reuse the waste materials. This research has considered the combination of cement replacement by industrial by-products, and natural coarse aggregate substitution by recycled aggregate. The aim is to evaluate the behavior of concretes with a reduced impact on the environment by replacing a 50% of cement by industrial by-products (15% of spent fluid catalytic cracking catalyst and 35% of fly ash) and a 100% of natural coarse aggregate by recycled aggregate. The concretes prepared according to these considerations have been tested in terms of mechanical strengths and the protection offered against steel reinforcement corrosion under carbonation attack and chloride-contaminated environments. The proposed concrete combinations reduced the mechanical performance of concretes in terms of elastic modulus, compressive strength, and flexural strength. In addition, an increase in open porosity due to the presence of recycled aggregate was observed, which is coherent with the changes observed in mechanical tests. Regarding corrosion tests, no significant differences were observed in the case of the resistance of these types of concretes under a natural chloride attack. In the case of carbonation attack, although all concretes did not stand the highly aggressive conditions, those concretes with cement replacement behaved worse than Portland cement concretes. PMID:28788613

  20. Evaluation of recycled concrete aggregates for their suitability in construction activities: An experimental study.

    PubMed

    Puthussery, Joseph V; Kumar, Rakesh; Garg, Anurag

    2017-02-01

    Construction and demolition waste disposal is a major challenge in developing nations due to its ever increasing quantities. In this study, the recycling potential of waste concrete as aggregates in construction activities was studied. The metal leaching from the recycled concrete aggregates (RCA) collected from the demolition site of a 50year old building, was evaluated by performing three different leaching tests (compliance, availability and Toxic Characteristic Leaching Procedure). The metal leaching was found mostly within the permissible limit except for Hg. Several tests were performed to determine the physical and mechanical properties of the fine and coarse aggregates produced from recycled concrete. The properties of recycled aggregates were found to be satisfactory for their utilization in road construction activities. The suitability of using recycled fine and coarse aggregates with Portland pozzolanic cement to make a sustainable and environmental friendly concrete mix design was also analyzed. No significant difference was observed in the compressive strength of various concrete mixes prepared by natural and recycled aggregates. However, only the tensile strength of the mix prepared with 25% recycled fine aggregates was comparable to that of the control concrete. For other mixes, the tensile strength of the concrete was found to drop significantly. In summary, RCA should be considered seriously as a building material for road construction, mass concrete works, lightly reinforced sections, etc. The present work will be useful for the waste managers and policy makers particularly in developing nations where proper guidelines are still lacking. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. α - synuclein under the magnifying glass. Insights from atomistic and coarse-grain simulations

    NASA Astrophysics Data System (ADS)

    Ilie, Ioana M.; Nayar, Divya; den Otter, Wouter K.; van der Vegt, Nico F. A.; Briels, Wim J.; University of Twente Collaboration; University of Darmstadt Collaboration

    Neurodegenerative diseases are linked to the accumulation of misfolded intrinsically disordered proteins in the brain. Here, we use both all-atom and coarse-grain simulations to explore the intricate dynamics and the aggregation of α-synuclein, the protein implicated in Parkinson's disease. We explore the free energy landscapes of α-synuclein by using Molecular Dynamics simulations and extract information on the structure of the protein as well as on its binding affinities. Next, to study the aggregation, we proceed with representing α-synuclein as a chain of deformable particles that can adapt their geometry, binding affinities and can rearrange into different disordered and ordered structures. We use Brownian Dynamics to simulate the translational and rotational motions of the particles, as well as their interaction properties. The simulations show valuable insight into the internal dynamics of α-synuclein and the formation of ordered and disordered aggregates. In addition, the study is extended to investigate the attachment and folding of a protein to a fiber.

  2. Optimizing the use of natural gravel Brantas river as normal concrete mixed with quality fc = 19.3 Mpa

    NASA Astrophysics Data System (ADS)

    Limantara, A. D.; Widodo, A.; Winarto, S.; Krisnawati, L. D.; Mudjanarko, S. W.

    2018-04-01

    The use of natural gravel (rivers) as concrete mixtures is rarely encountered after days of demands for a higher strength of concrete. Moreover, today people have found High-Performance Concrete which, when viewed from the rough aggregate consisted mostly of broken stone, although the fine grain material still used natural sand. Is it possible that a mixture of concrete using natural gravel as a coarse aggregate is capable of producing concrete with compressive strength equivalent to a concrete mixture using crushed stone? To obtain information on this, a series of tests on concrete mixes with crude aggregates of Kalitelu Crusher, Gondang, Tulungagung and natural stone (river gravel) from the Brantas River, Ngujang, Tulungagung in the Materials Testing Laboratory Tugu Dam Construction Project, Kab. Trenggalek. From concrete strength test results using coarse material obtained value 19.47 Mpa, while the compressive strength of concrete with a mixture of crushed stone obtained the value of 21.12 Mpa.

  3. Bacterial density and community structure associated with aggregate size fractions of soil-feeding termite mounds.

    PubMed

    Fall, S; Nazaret, S; Chotte, J L; Brauman, A

    2004-08-01

    The building and foraging activities of termites are known to modify soil characteristics such as the heterogeneity. In tropical savannas the impact of the activity of soil-feeding termites ( Cubitermes niokoloensis) has been shown to affect the properties of the soil at the aggregate level by creating new soil microenvironments (aggregate size fractions) [13]. These changes were investigated in greater depth by looking at the microbial density (AODC) and the genetic structure (automated rRNA intergenic spacer analysis: ARISA) of the communities in the different aggregate size fractions (i.e., coarse sand, fine sand, coarse silt, fine silt, and dispersible clays) separated from compartments (internal and external wall) of three Cubitermes niokoloensis mounds. The bacterial density of the mounds was significantly higher (1.5 to 3 times) than that of the surrounding soil. Within the aggregate size fractions, the termite building activity resulted in a significant increase in bacterial density within the coarser fractions (>20 mum). Multivariate analysis of the ARISA profiles revealed that the bacterial genetic structures of unfractionated soil and soil aggregate size fractions of the three mounds was noticeably different from the savanna soil used as a reference. Moreover, the microbial community associated with the different microenvironments in the three termite mounds revealed three distinct clusters formed by the aggregate size fractions of each mound. Except for the 2-20 mum fraction, these results suggest that the mound microbial genetic structure is more dependent upon microbial pool affiliation (the termite mound) than on the soil location (aggregate size fraction). The causes of the specificity of the microbial community structure of termite mound aggregate size fractions are discussed.

  4. Effects of Elevated Temperature on Concrete with Recycled Coarse Aggregates

    NASA Astrophysics Data System (ADS)

    Salau, M. A.; Oseafiana, O. J.; Oyegoke, T. O.

    2015-11-01

    This paper discusses the effects of heating temperatures of 200°C, 400°C and 600°C each for 2 hours at a heating rate of 2.5°C/min on concrete with the content of Natural Coarse Aggregates (NCA) partially replaced with Recycled Coarse Aggregates (RCA), obtained from demolished building in the ratio of 0%, 15% and 30%.There was an initial drop in strength from 100°C to 200°C which is suspected to be due to the relatively weak interfacial bond between the RCA and the hardened paste within the concrete matrix;a gradual increase in strength continued from 200°C to 450°C and steady drop occurred again as it approached 600°C.With replacement proportion of 0%, 15% and 30% of NCA and exposure to peak temperature of 600°C, a relative concrete strength of 23.6MPa, 25.3MPa and 22.2MPa respectively can be achieved for 28 days curing age. Furthermore, RAC with 15% NCA replacement when exposed to optimum temperature of 450°C yielded high compressive strength comparable to that of control specimen (normal concrete). In addition, for all concrete samples only slight surface hairline cracks were noticed as the temperature approached 400°C. Thus, the RAC demonstrated behavior just like normal concrete and may be considered fit for structural use.

  5. Upscaling the Use of Mixed Recycled Aggregates in Non-Structural Low Cement Concrete

    PubMed Central

    López-Uceda, Antonio; Ayuso, Jesús; Jiménez, José Ramón; Agrela, Francisco; Barbudo, Auxiliadora; De Brito, Jorge

    2016-01-01

    This research aims to produce non-structural concrete with mixed recycled aggregates (MRA) in upscaled applications with low-cement content. Four slabs were executed with concrete made with different ratios of coarse MRA (0%, 20%, 40% and 100%), using the mix design, the mixing procedures and the facilities from a nearby concrete production plant. The analysis of the long-term compressive and splitting tensile strengths in concrete cores, extracted from the slabs, allowed the highlighting of the long-term high strength development potential of MRA incorporation. The study of cast specimens produced in situ under the same conditions as the slabs showed, firstly, that the use of MRA has a great influence on the properties related to durability, secondly, that the loss of compressive strength for total MRA incorporation relative to control concrete increases proportionally with the class strength, and, thirdly, that the mechanical properties (including Schmidt hammer results) from the concrete slabs showed no significant differences relative to the control concrete for coarse aggregates replacements up to 40%. Therefore, this upscaled experimental study supports the application of concrete with 100% coarse MRA incorporation and low cement content in non-structural civil works such as bike lanes, gutters, ground slabs, leveling surfaces, and subgrades for foundations. To the best of the authors’ knowledge, there have not been any upscaled applications of concrete with MRA and low cement content. PMID:28787892

  6. Upscaling the Use of Mixed Recycled Aggregates in Non-Structural Low Cement Concrete.

    PubMed

    López-Uceda, Antonio; Ayuso, Jesús; Jiménez, José Ramón; Agrela, Francisco; Barbudo, Auxiliadora; De Brito, Jorge

    2016-02-02

    This research aims to produce non-structural concrete with mixed recycled aggregates (MRA) in upscaled applications with low-cement content. Four slabs were executed with concrete made with different ratios of coarse MRA (0%, 20%, 40% and 100%), using the mix design, the mixing procedures and the facilities from a nearby concrete production plant. The analysis of the long-term compressive and splitting tensile strengths in concrete cores, extracted from the slabs, allowed the highlighting of the long-term high strength development potential of MRA incorporation. The study of cast specimens produced in situ under the same conditions as the slabs showed, firstly, that the use of MRA has a great influence on the properties related to durability, secondly, that the loss of compressive strength for total MRA incorporation relative to control concrete increases proportionally with the class strength, and, thirdly, that the mechanical properties (including Schmidt hammer results) from the concrete slabs showed no significant differences relative to the control concrete for coarse aggregates replacements up to 40%. Therefore, this upscaled experimental study supports the application of concrete with 100% coarse MRA incorporation and low cement content in non-structural civil works such as bike lanes, gutters, ground slabs, leveling surfaces, and subgrades for foundations. To the best of the authors' knowledge, there have not been any upscaled applications of concrete with MRA and low cement content.

  7. Enhancement of durability properties of heat-treated oil palm shell species lightweight concrete

    NASA Astrophysics Data System (ADS)

    Yew, Ming Kun; Yew, Ming Chian; Saw, Lip Huat; Ang, Bee Chin; Lee, Min Lee; Lim, Siong Kang; Lim, Jee Hock

    2017-04-01

    Oil palm shell (OPS) are non-hazardous waste materials and can be used as alternative coarse aggregates to substitute depleting conventional raw materials. A study on preparing the OPS species (dura and tenera) lightweight concrete (LWC) using with and without heat-treated OPS aggregate has been investigated. Two different species of OPS coarse aggregate are subjected to heat treatment at 65 and 130 °C with duration of 1 hour. The results reveal that the slump value of the OPSC increases significantly with an increase in temperature of heat treatment of the tenera OPS aggregates. It is found that the maximum achievable 28-days and 180-days compressive strength is 45.6 and 47.5 MPa, respectively. Furthermore, rapid chloride penetration test (RCPT) and water absorption tests were performance to signify the effects of heat-treated on OPS species LWC. The use of heat-treated OPS LWC induced the advantageous of reducing the permeability and capillary porosity as well as water absorption. Hence, the findings of this study are of primary importance as they revealed the heat treatment on OPS species LWC can be used as a new environmentally friendly method to enhance the durability of OPSLWC.

  8. Development of Coarse Grained Models for Long Chain Alkanes

    NASA Astrophysics Data System (ADS)

    Gyawali, Gaurav; Sternfield, Samuel; Hwang, In Chul; Rick, Steven; Kumar, Revati; Rick Group Team; Kumar Group Team

    Modeling aggregation in aqueous solution is a challenge for molecular simulations as it involves long time scales, a range of length scales, and the correct balance of hydrophobic and hydrophilic interactions. We have developed a coarse-grained model fast enough for the rapid testing of molecular structures for their aggregation properties. This model, using the Stillinger-Weber potential, achieves efficiency through a reduction in the number of interaction sites and the use of short-ranged interactions. The model can be two to three orders of magnitude more efficient than conventional all atom simulations, yet through a careful parameterization process and the use of many-body interactions can be remarkably accurate. We have developed models for long chain alkanes in water that reproduce the thermodynamics and structure of water-alkane and liquid alkane systems.

  9. Use of steel slag as a new material for roads

    NASA Astrophysics Data System (ADS)

    Ochoa Díaz, R.; Romero Farfán, M.; Cardenas, J.; Forero, J.

    2017-12-01

    This research paper aims to analyse the behaviour of MDC-19 hot dense asphalt mixtures with steel slag as coarse aggregate, by using asphalt 80-100, in order to verify if this residue has suitable characteristics that allow its use. The physical and mechanical characterization was accomplished using phosphorous slag from the company Acerías Paz del Río S.A. The working formula was then determined for each mixture using the RAMCODES methodology, the briquettes were produced in the laboratory and then, the design verification was performed. Taking into account the results obtained, it is concluded that the use of phosphorous slag as coarse aggregate in asphalt mixtures is workable, since acceptable design parameters and verification are obtained that meet the specifications for use as a rolling layer.

  10. Thermodynamics of Protein Aggregation

    NASA Astrophysics Data System (ADS)

    Osborne, Kenneth L.; Barz, Bogdan; Bachmann, Michael; Strodel, Birgit

    Amyloid protein aggregation characterizes many neurodegenerative disorders, including Alzheimer's, Parkinson's, and Creutz- feldt-Jakob disease. Evidence suggests that amyloid aggregates may share similar aggregation pathways, implying simulation of full-length amyloid proteins is not necessary for understanding amyloid formation. In this study we simulate GNNQQNY, the N-terminal prion-determining domain of the yeast protein Sup35 to investigate the thermodynamics of structural transitions during aggregation. We use a coarse-grained model with replica-exchange molecular dynamics to investigate the association of 3-, 6-, and 12-chain GNNQQNY systems and we determine the aggregation pathway by studying aggregation states of GN- NQQNY. We find that the aggregation of the hydrophilic GNNQQNY sequence is mainly driven by H-bond formation, leading to the formation of /3-sheets from the very beginning of the assembly process. Condensation (aggregation) and ordering take place simultaneously, which is underpinned by the occurrence of a single heat capacity peak only.

  11. Forensic Investigation of AC and PCC Pavements with Extended Service Life : Volume 3 : Petrographic Examination of Blast Furnace Slag Aggregate Concrete Cores taken from PCC Pavements in Cuyahoga County , Ohio : Executive Summary Report

    DOT National Transportation Integrated Search

    2010-09-01

    Air-cooled blast furnace slag has been used as a coarse : aggregate in portland cement-based pavement concretes : since at least the early 1900s. Many of these concretes : have performed satisfactorily. In recent times a number : of PCC slag aggre...

  12. Evaluation of ternary cementitious combinations : tech summary.

    DOT National Transportation Integrated Search

    2012-02-01

    Portland cement concrete (PCC) is the worlds most versatile and utilized construction material. Modern concrete consists of six : main ingredients: coarse aggregate, sand, portland cement, supplementary cementitious materials (SCMs), chemical admi...

  13. Neutron attenuation characteristics of polyethylene, polyvinyl chloride, and heavy aggregate concrete and mortars.

    PubMed

    Abdul-Majid, S; Othman, F

    1994-03-01

    Polyethylene and polyvinyl chloride pellets were introduced into concrete to improve its neutron attenuation characteristics while several types of heavy coarse aggregates were used to improve its gamma ray attenuation properties. Neutron and gamma ray attenuation were studied in concrete samples containing coarse aggregates of barite, pyrite, basalt, hematite, and marble as well as polyethylene and polyvinyl chloride pellets in narrow-beam geometry. The highest neutron attenuation was shown by polyethylene mortar, followed by polyvinyl chloride mortar; barite and pyrite concrete showed higher gamma ray attenuation than ordinary concrete. Broad-beam and continuous (infinite) medium geometries were used to study the neutron attenuation of samples containing polymers at different concentrations with and without heavy aggregates, the fitting equations were established, and from these the neutron removal coefficients were deduced. In a radiation field of neutrons and gamma rays, the appropriate concentration of polymer and heavy aggregate can be selected to give the optimum total dose attenuation depending on the relative intensities of each type of radiation. This would give much better design flexibility over ordinary concrete. The compressive strength tests performed on mortar and concrete samples showed that their value, in general, decreases as polymer concentration increases and that the polyvinyl chloride mortar showed higher values than the polyethylene mortar. For general construction purposes, the compression strength was considered acceptable in these samples.

  14. Mechanical Properties of Steel Fiber Reinforced all Lightweight Aggregate Concrete

    NASA Astrophysics Data System (ADS)

    Yang, Y. M.; Li, J. Y.; Zhen, Y.; Nie, Y. N.; Dong, W. L.

    2018-05-01

    In order to study the basic mechanical properties and failure characteristics of all lightweight aggregate concrete with different volume of steel fiber (0%, 1%, 2%), shale ceramsite is used as light coarse aggregate. The shale sand is made of light fine aggregate and mixed with different volume of steel fiber, and the mix proportion design of all lightweight aggregate concrete is carried out. The cubic compressive strength, axial compressive strength, flexural strength, splitting strength and modulus of elasticity of steel fiber all lightweight aggregate concrete were studied. Test results show that the incorporation of steel fiber can restrict the cracking of concrete, improve crack resistance; at the same time, it shows good plastic deformation ability and failure morphology. It lays a theoretical foundation for further research on the application of all lightweight aggregate concrete in structural systems.

  15. Air void clustering.

    DOT National Transportation Integrated Search

    2015-06-01

    Air void clustering around coarse aggregate in concrete has been identified as a potential source of : low strengths in concrete mixes by several Departments of Transportation around the country. Research was : carried out to (1) develop a quantitati...

  16. Aggregation of alpha-synuclein by a coarse-grained Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Farmer, Barry; Pandey, Ras

    Alpha-synuclein, an intrinsic protein abundant in neurons, is believed to be a major cause of neurodegenerative diseases (e.g. Alzheimer, Parkinson's disease). Abnormal aggregation of ASN leads to Lewy bodies with specific morphologies. We investigate the self-organizing structures in a crowded environment of ASN proteins by a coarse-grained Monte Carlo simulation. ASN is a chain of 140 residues. Structure detail of residues is neglected but its specificity is captured via unique knowledge-based residue-residue interactions. Large-scale simulations are performed to analyze a number local and global physical quantities (e.g. mobility profile, contact map, radius of gyration, structure factor) as a function of temperature and protein concentration. Trend in multi-scale structural variations of the protein in a crowded environment is compared with that of a free protein chain.

  17. Strength and durability studies on concrete with partial replacement over burnt brick bat waste

    NASA Astrophysics Data System (ADS)

    Kanchidurai, S.; Bharani, G.; Saravana Raja Mohan, K.

    2017-07-01

    This paper presents the partial and complete replacement of over burnt brick bat (OBB) 20-30mm as coarse aggregate in the concrete. OBB are formed at extreme heating to a temperature not less than 1600 degree Celsius. The burnt bricks change from red to blue-black ceramics color. The series of tests are conducted to study the effect of 0%, 25%, 50%, 75% and 100% replacement of coarse aggregate with over burnt bricks. Totally 36numbers of 150mm concrete cube with 5 different percentage replacement mix are cast and tested and three numbers of the flexural beam. In durability aspects, water absorption and sorptivity were tested. Experimental results found 25-50% of overburnt brick bat wastes can be replaced with the normal and mass concrete without quality compromisation.

  18. A procedure for partitioning bulk sediments into distinct grain-size fractions for geochemical analysis

    USGS Publications Warehouse

    Barbanti, A.; Bothner, Michael H.

    1993-01-01

    A method to separate sediments into discrete size fractions for geochemical analysis has been tested. The procedures were chosen to minimize the destruction or formation of aggregates and involved gentle sieving and settling of wet samples. Freeze-drying and sonication pretreatments, known to influence aggregates, were used for comparison. Freeze-drying was found to increase the silt/clay ratio by an average of 180 percent compared to analysis of a wet sample that had been wet sieved only. Sonication of a wet sample decreased the silt/clay ratio by 51 percent. The concentrations of metals and organic carbon in the separated fractions changed depending on the pretreatment procedures in a manner consistent with the hypothesis that aggregates consist of fine-grained organic- and metal-rich particles. The coarse silt fraction of a freeze-dried sample contained 20–44 percent higher concentrations of Zn, Cu, and organic carbon than the coarse silt fraction of the wet sample. Sonication resulted in concentrations of these analytes that were 18–33 percent lower in the coarse silt fraction than found in the wet sample. Sonication increased the concentration of lead in the clay fraction by an average of 40 percent compared to an unsonicated sample. Understanding the magnitude of change caused by different analysis protocols is an aid in designing future studies that seek to interpret the spatial distribution of contaminated sediments and their transport mechanisms.

  19. Behaviour of Recycled Coarse Aggregate Concrete: Age and Successive Recycling

    NASA Astrophysics Data System (ADS)

    Sahoo, Kirtikanta; Pathappilly, Robin Davis; Sarkar, Pradip

    2016-06-01

    Recycled Coarse Aggregate (RCA) concrete construction technique can be called as `green concrete', as it minimizes the environmental hazard of the concrete waste disposal. Indian standard recommends target mean compressive strength of the conventional concrete in terms of water cement ratio ( w/ c). The present work is an attempt to study the behaviour of RCA concrete from two samples of parent concrete having different age group with regard to the relationship of compressive strength with water cement ratios. Number of recycling may influence the mechanical properties of RCA concrete. The influence of age and successive recycling on the properties such as capillary water absorption, drying shrinkage strain, air content, flexural strength and tensile splitting strength of the RCA concrete are examined. The relationship between compressive strength at different w/ c ratios obtained experimentally is investigated for the two parameters such as age of parent concrete and successive recycling. The recycled concrete using older recycled aggregate shows poor quality. While the compressive strength reduces with successive recycling gradually, the capillary water absorption increases abruptly, which leads to the conclusion that further recycling may not be advisable.

  20. Recycling ground granulated blast furnace slag as cold bonded artificial aggregate partially used in self-compacting concrete.

    PubMed

    Gesoğlu, Mehmet; Güneyisi, Erhan; Mahmood, Swara Fuad; Öz, Hatice Öznur; Mermerdaş, Kasım

    2012-10-15

    Ground granulated blast furnace slag (GGBFS), a by-product from iron industry, was recycled as artificial coarse aggregate through cold bonding pelletization process. The artificial slag aggregates (ASA) replaced partially the natural coarse aggregates in production of self-compacting concrete (SCC). Moreover, as being one of the most widely used mineral admixtures in concrete industry, fly ash (FA) was incorporated as a part of total binder content to impart desired fluidity to SCCs. A total of six concrete mixtures having various ASA replacement levels (0%, 20%, 40%, 60%, and 100%) were designed with a water-to-binder (w/b) ratio of 0.32. Fresh properties of self-compacting concretes (SCC) were observed through slump flow time, flow diameter, V-funnel flow time, and L-box filling height ratio. Compressive strength of hardened SCCs was also determined at 28 days of curing. It was observed that increasing the replacement level of ASA resulted in decrease in the amount of superplasticizer to achieve a constant slump flow diameter. Moreover, passing ability and viscosity of SCC's enhanced with increasing the amount of ASA in the concrete. The maximum compressive strength was achieved for the SCC having 60% ASA replacement. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Association of Soil Aggregation with the Distribution and Quality of Organic Carbon in Soil along an Elevation Gradient on Wuyi Mountain in China.

    PubMed

    Li, Liguang; Vogel, Jason; He, Zhenli; Zou, Xiaoming; Ruan, Honghua; Huang, Wei; Wang, Jiashe; Bianchi, Thomas S

    2016-01-01

    Forest soils play a critical role in the sequestration of atmospheric CO2 and subsequent attenuation of global warming. The nature and properties of organic matter in soils have an influence on the sequestration of carbon. In this study, soils were collected from representative forestlands, including a subtropical evergreen broad-leaved forest (EBF), a coniferous forest (CF), a subalpine dwarf forest (DF), and alpine meadow (AM) along an elevation gradient on Wuyi Mountain, which is located in a subtropical area of southeastern China. These soil samples were analyzed in the laboratory to examine the distribution and speciation of organic carbon (OC) within different size fractions of water-stable soil aggregates, and subsequently to determine effects on carbon sequestration. Soil aggregation rate increased with increasing elevation. Soil aggregation rate, rather than soil temperature, moisture or clay content, showed the strongest correlation with OC in bulk soil, indicating soil structure was the critical factor in carbon sequestration of Wuyi Mountain. The content of coarse particulate organic matter fraction, rather than the silt and clay particles, represented OC stock in bulk soil and different soil aggregate fractions. With increasing soil aggregation rate, more carbon was accumulated within the macroaggregates, particularly within the coarse particulate organic matter fraction (250-2000 μm), rather than within the microaggregates (53-250μm) or silt and clay particles (< 53μm). In consideration of the high instability of macroaggregates and the liability of SOC within them, further research is needed to verify whether highly-aggregated soils at higher altitudes are more likely to lose SOC under warmer conditions.

  2. Association of Soil Aggregation with the Distribution and Quality of Organic Carbon in Soil along an Elevation Gradient on Wuyi Mountain in China

    PubMed Central

    Li, Liguang; Vogel, Jason; He, Zhenli; Zou, Xiaoming; Ruan, Honghua; Huang, Wei; Wang, Jiashe; Bianchi, Thomas S.

    2016-01-01

    Forest soils play a critical role in the sequestration of atmospheric CO2 and subsequent attenuation of global warming. The nature and properties of organic matter in soils have an influence on the sequestration of carbon. In this study, soils were collected from representative forestlands, including a subtropical evergreen broad-leaved forest (EBF), a coniferous forest (CF), a subalpine dwarf forest (DF), and alpine meadow (AM) along an elevation gradient on Wuyi Mountain, which is located in a subtropical area of southeastern China. These soil samples were analyzed in the laboratory to examine the distribution and speciation of organic carbon (OC) within different size fractions of water-stable soil aggregates, and subsequently to determine effects on carbon sequestration. Soil aggregation rate increased with increasing elevation. Soil aggregation rate, rather than soil temperature, moisture or clay content, showed the strongest correlation with OC in bulk soil, indicating soil structure was the critical factor in carbon sequestration of Wuyi Mountain. The content of coarse particulate organic matter fraction, rather than the silt and clay particles, represented OC stock in bulk soil and different soil aggregate fractions. With increasing soil aggregation rate, more carbon was accumulated within the macroaggregates, particularly within the coarse particulate organic matter fraction (250–2000 μm), rather than within the microaggregates (53–250μm) or silt and clay particles (< 53μm). In consideration of the high instability of macroaggregates and the liability of SOC within them, further research is needed to verify whether highly-aggregated soils at higher altitudes are more likely to lose SOC under warmer conditions. PMID:26964101

  3. Properties of Non-Structural Concrete Made with Mixed Recycled Aggregates and Low Cement Content

    PubMed Central

    López-Uceda, Antonio; Ayuso, Jesús; López, Martin; Jimenez, José Ramón; Agrela, Francisco; Sierra, María José

    2016-01-01

    In spite of not being legally accepted in most countries, mixed recycled aggregates (MRA) could be a suitable raw material for concrete manufacturing. The aims of this research were as follows: (i) to analyze the effect of the replacement ratio of natural coarse aggregates with MRA, the amount of ceramic particles in MRA, and the amount of cement, on the mechanical and physical properties of a non-structural concrete made with a low cement content; and (ii) to verify if it is possible to achieve a low-strength concrete that replaces a greater amount of natural aggregate with MRA and that has a low cement content. Two series of concrete mixes were manufactured using 180 and 200 kg/m3 of CEM II/A-V 42.5 R type Portland cement. Each series included seven concrete mixes: one with natural aggregates; two MRA with different ceramic particle contents; and one for each coarse aggregate replacement ratio (20%, 40%, and 100%). To study their properties, compressive and splitting tensile strength, modulus of elasticity, density, porosity, water penetration, and sorptivity, tests were performed. The results confirmed that the main factors affecting the properties analyzed in this research are the amount of cement and the replacement ratio; the two MRAs used in this work presented a similar influence on the properties. A non-structural, low-strength concrete (15 MPa) with an MRA replacement ratio of up to 100% for 200 kg/m3 of cement was obtained. This type of concrete could be applied in the construction of ditches, sidewalks, and other similar civil works. PMID:28787874

  4. Properties of Non-Structural Concrete Made with Mixed Recycled Aggregates and Low Cement Content.

    PubMed

    López-Uceda, Antonio; Ayuso, Jesús; López, Martin; Jimenez, José Ramón; Agrela, Francisco; Sierra, María José

    2016-01-26

    In spite of not being legally accepted in most countries, mixed recycled aggregates (MRA) could be a suitable raw material for concrete manufacturing. The aims of this research were as follows: (i) to analyze the effect of the replacement ratio of natural coarse aggregates with MRA, the amount of ceramic particles in MRA, and the amount of cement, on the mechanical and physical properties of a non-structural concrete made with a low cement content; and (ii) to verify if it is possible to achieve a low-strength concrete that replaces a greater amount of natural aggregate with MRA and that has a low cement content. Two series of concrete mixes were manufactured using 180 and 200 kg/m³ of CEM II/A-V 42.5 R type Portland cement. Each series included seven concrete mixes: one with natural aggregates; two MRA with different ceramic particle contents; and one for each coarse aggregate replacement ratio (20%, 40%, and 100%). To study their properties, compressive and splitting tensile strength, modulus of elasticity, density, porosity, water penetration, and sorptivity, tests were performed. The results confirmed that the main factors affecting the properties analyzed in this research are the amount of cement and the replacement ratio; the two MRAs used in this work presented a similar influence on the properties. A non-structural, low-strength concrete (15 MPa) with an MRA replacement ratio of up to 100% for 200 kg/m³ of cement was obtained. This type of concrete could be applied in the construction of ditches, sidewalks, and other similar civil works.

  5. Development of surface friction guidelines for LADOTD : tech summary.

    DOT National Transportation Integrated Search

    2012-04-01

    The current Louisiana Department of Transportation and Development (LADOTD) surface friction guidelines deal with the polished : stone values (PSV) of coarse aggregates (which is a relative British Pendulum skid-resistance number measured on polished...

  6. Air void clustering : [technical summary].

    DOT National Transportation Integrated Search

    2015-06-01

    Air void clustering around coarse aggregate in concrete has been : identified as a potential source of low strengths in concrete mixes by : several Departments of Transportation around the country. Research : was carried out to (1) develop a quantita...

  7. Electrical resistivity measurement of mechanically stabilized Earth wall backfill : technical summary.

    DOT National Transportation Integrated Search

    2016-06-01

    In Kansas, mechanically stabilized earth (MSE) retaining walls are typically : backfilled with coarse aggregate. Current backfill material testing procedures used : by the Kansas Department of Transportation (KDOT) utilize on-site observations for : ...

  8. Study on performance of concrete with over-burnt bricks aggregates and micro-silica admixture

    NASA Astrophysics Data System (ADS)

    Praveen, K.; Sathyan, Dhanya; Mini, K. M.

    2016-09-01

    Concrete is made by mixing cement, sand, aggregates and water in required proportion, where aggregates occupy the major volume. Addition of aggregates in concrete improves properties of concrete. With the natural resources depleting rapidly, limiting the use of natural resources and enhancing the use of waste materials is very important for sustainable development. Over-burnt bricks are a waste material which cannot be used in construction directly because of their irregular shape and dark colour. Use of over-burnt bricks helps to preserve natural aggregate source. The present study focuses on the effects of microsilica at various percentages as a partial cement replacement in concrete with over-burnt bricks as coarse aggregates. The mechanical properties of hardened concrete such as splitting tensile strength, flexural strength and compressive strength are studied and analyzed.

  9. Electrical resistivity measurement of mechanically stabilized Earth wall backfill : final report.

    DOT National Transportation Integrated Search

    2016-06-01

    In Kansas, mechanically stabilized earth (MSE) retaining walls are typically backfilled with coarse aggregate. : Current backfill material testing procedures used by the Kansas Department of Transportation (KDOT) utilize on-site : observations for co...

  10. Fourier analysis of mitochondrial distribution in oocytes

    NASA Astrophysics Data System (ADS)

    Hollmann, Joseph L.; Brooks, Dana H.; Newmark, Judith A.; Warner, Carol M.; DiMarzio, Charles A.

    2011-03-01

    This paper describes a novel approach to quantifying mitochondrial patterns which are typically described using the qualitative terms "diffuse" "aggregated" and are potentially key indicators for an oocyte's health and survival potential post-implantation. An oocyte was isolated in a confocal image and a coarse grid was superimposed upon it. The spatial spectrum was calculated and an aggregation factor was generated. A classifier for healthy cells was developed and verified. The aggregation factor showed a clear distinction between the healthy and unhealthy oocytes. The ultimate goal is to screen oocytes for viability preimplantation, thus improving the outcome of in vitro fertilization (IVF) treatments.

  11. Performance and durability of concrete made with demolition waste and artificial fly ash-clay aggregates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zakaria, M.; Cabrera, J.G.

    1996-12-31

    Demolition aggregates and artificial aggregates made with waste materials are two alternatives being studied for replacement of natural aggregates in the production of concrete. Natural aggregate sources in Europe are increasingly scarce and subject to restrictions based on environmental regulations. In many areas of the developing world sources of good quality aggregates are very limited or practically not available and therefore it has become necessary to study alternative materials. This paper presents a laboratory study on the use of demolition bricks and artificial aggregates made from fly ash-clay as coarse aggregates to make concrete. The concretes made either with demolitionmore » bricks or artificial aggregates are compared with a control mix made with natural gravel aggregates. The strength and durability characteristics of these concretes are evaluated using as a criteria compressive strength and transport properties, such as gas and water permeability. The results show clearly that concretes of good performance and durability can be produced using aggregates from demolition rubble or using artificial aggregates made with wastes such as fly ash.« less

  12. Utilization of ferrochrome wastes such as ferrochrome ash and ferrochrome slag in concrete manufacturing.

    PubMed

    Acharya, Prasanna K; Patro, Sanjaya K

    2016-08-01

    Solid waste management is one of the subjects essentially addressing the current interest today. Due to the scarcity of land filling area, utilization of wastes in the construction sector has become an attractive proposition for disposal. Ferrochrome ash (FA) is a dust obtained as a waste material from the gas cleaning plant of Ferro alloy industries. It possesses the chemical requirements of granulated slag material used for the manufacture of Portland cement. Ferrochrome slag (FS) is another residue that is obtained as a solid waste by the smelting process during the production of stainless steel in Ferroalloy industries. FS possesses the required engineering properties of coarse aggregates. The possibility of using FA with lime for partial replacement of ordinary Portland cement (OPC) and FS for total replacement of natural coarse aggregates is explored in this research. The combined effect of FA with lime and FS-addition on the properties of concrete, such as workability, compressive strength, flexural strength, splitting tensile strength and sorptivity, were studied. Results of investigation revealed improvement in strength and durability properties of concrete on inclusion of FA and FS. Concrete mix containing 40% FA with 7% lime (replacing 47% OPC) and100% of FS (replacing 100% natural coarse aggregate) achieved the properties of normal concrete or even better properties at all ages. The results were confirmed by microscopic study such as X-ray diffraction and petrography examination. Environmental compatibility of concrete containing FA and FS was verified by the toxicity characteristic leaching procedure test. © The Author(s) 2016.

  13. PACSAB: Coarse-Grained Force Field for the Study of Protein-Protein Interactions and Conformational Sampling in Multiprotein Systems.

    PubMed

    Emperador, Agustí; Sfriso, Pedro; Villarreal, Marcos Ariel; Gelpí, Josep Lluis; Orozco, Modesto

    2015-12-08

    Molecular dynamics simulations of proteins are usually performed on a single molecule, and coarse-grained protein models are calibrated using single-molecule simulations, therefore ignoring intermolecular interactions. We present here a new coarse-grained force field for the study of many protein systems. The force field, which is implemented in the context of the discrete molecular dynamics algorithm, is able to reproduce the properties of folded and unfolded proteins, in both isolation, complexed forming well-defined quaternary structures, or aggregated, thanks to its proper evaluation of protein-protein interactions. The accuracy and computational efficiency of the method makes it a universal tool for the study of the structure, dynamics, and association/dissociation of proteins.

  14. Effect of different sintering temperature on fly ash based geopolymer artificial aggregate

    NASA Astrophysics Data System (ADS)

    Abdullah, Alida; Abdullah, Mohd Mustafa Al Bakri; Hussin, Kamarudin; Tahir, Muhammad Faheem Mohd

    2017-04-01

    This research was conducted to study the mechanical and morphology of fly ash based geopolymer as artificial aggregate at different sintering temperature. The raw material that are used is fly ash, sodium hydroxide, sodium silicate, geopolymer artificial aggregate, Ordinary Portland Cement (OPC), coarse aggregate and fine aggregate. The research starts with the preparation of geopolymer artificial aggregate. Then, geopolymer artificial aggregate will be sintered at six difference temperature that is 400°C, 500°C, 600°C, 700°C, 800°C and 900°C to known at which temperature the geopolymer artificial aggregate will become a lightweight aggregate. In order to characterize the geopolymer artificial aggregate the X-ray Diffraction (XRD) and X-Ray Fluorescence (XRF) was done. The testing and analyses involve for the artificial aggregate is aggregate impact test, specific gravity test and Scanning Electron Microscopy (SEM). After that the process will proceed to produce concrete with two type of different aggregate that is course aggregate and geopolymer artificial aggregate. The testing for concrete is compressive strength test, water absorption test and density test. The result obtained will be compared and analyse.

  15. Impact of low asphalt binder for coarse HMA mixes : final report.

    DOT National Transportation Integrated Search

    2017-06-01

    Asphalt mixtures are commonly specified using volumetric controls in combination with aggregate gradation limits, like most transportation agencies, MnDOT also uses this approach. Since 2010 onward, several asphalt paving projects for MnDOT have been...

  16. Evaluation of modified single seal surface treatments.

    DOT National Transportation Integrated Search

    1995-01-01

    This report describes a field study of a multicourse asphalt emulsion chip seal, designated as a modified single seal. The treatment, already used in North Carolina, consists of an application of emulsion and coarse aggregate followed by another appl...

  17. Curling and warping of concrete pavement: an investigation and proof of concept study : technical summary.

    DOT National Transportation Integrated Search

    2016-06-01

    In Kansas, mechanically stabilized earth (MSE) retaining walls are typically : backfilled with coarse aggregate. Current backfill material testing procedures used : by the Kansas Department of Transportation (KDOT) utilize on-site observations for : ...

  18. Development of surface friction guidelines for LADOTD : research project capsule.

    DOT National Transportation Integrated Search

    2011-02-01

    The current friction guideline of the Louisiana Department of : Transportation and Development (LADOTD) for a wearing course mixture : design deals with the polished stone value (PSV) of coarse aggregate : (which is a relative British Pendulum skid-r...

  19. Aggregation and network formation in self-assembly of protein (H3.1) by a coarse-grained Monte Carlo simulation.

    PubMed

    Pandey, R B; Farmer, B L

    2014-11-07

    Multi-scale aggregation to network formation of interacting proteins (H3.1) are examined by a knowledge-based coarse-grained Monte Carlo simulation as a function of temperature and the number of protein chains, i.e., the concentration of the protein. Self-assembly of corresponding homo-polymers of constitutive residues (Cys, Thr, and Glu) with extreme residue-residue interactions, i.e., attractive (Cys-Cys), neutral (Thr-Thr), and repulsive (Glu-Glu), are also studied for comparison with the native protein. Visual inspections show contrast and similarity in morphological evolutions of protein assembly, aggregation of small aggregates to a ramified network from low to high temperature with the aggregation of a Cys-polymer, and an entangled network of Glu and Thr polymers. Variations in mobility profiles of residues with the concentration of the protein suggest that the segmental characteristic of proteins is altered considerably by the self-assembly from that in its isolated state. The global motion of proteins and Cys polymer chains is enhanced by their interacting network at the low temperature where isolated chains remain quasi-static. Transition from globular to random coil transition, evidenced by the sharp variation in the radius of gyration, of an isolated protein is smeared due to self-assembly of interacting networks of many proteins. Scaling of the structure factor S(q) with the wave vector q provides estimates of effective dimension D of the mass distribution at multiple length scales in self-assembly. Crossover from solid aggregates (D ∼ 3) at low temperature to a ramified fibrous network (D ∼ 2) at high temperature is observed for the protein H3.1 and Cys polymers in contrast to little changes in mass distribution (D ∼ 1.6) of fibrous Glu- and Thr-chain configurations.

  20. Aggregation and network formation in self-assembly of protein (H3.1) by a coarse-grained Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Pandey, R. B.; Farmer, B. L.

    2014-11-01

    Multi-scale aggregation to network formation of interacting proteins (H3.1) are examined by a knowledge-based coarse-grained Monte Carlo simulation as a function of temperature and the number of protein chains, i.e., the concentration of the protein. Self-assembly of corresponding homo-polymers of constitutive residues (Cys, Thr, and Glu) with extreme residue-residue interactions, i.e., attractive (Cys-Cys), neutral (Thr-Thr), and repulsive (Glu-Glu), are also studied for comparison with the native protein. Visual inspections show contrast and similarity in morphological evolutions of protein assembly, aggregation of small aggregates to a ramified network from low to high temperature with the aggregation of a Cys-polymer, and an entangled network of Glu and Thr polymers. Variations in mobility profiles of residues with the concentration of the protein suggest that the segmental characteristic of proteins is altered considerably by the self-assembly from that in its isolated state. The global motion of proteins and Cys polymer chains is enhanced by their interacting network at the low temperature where isolated chains remain quasi-static. Transition from globular to random coil transition, evidenced by the sharp variation in the radius of gyration, of an isolated protein is smeared due to self-assembly of interacting networks of many proteins. Scaling of the structure factor S(q) with the wave vector q provides estimates of effective dimension D of the mass distribution at multiple length scales in self-assembly. Crossover from solid aggregates (D ˜ 3) at low temperature to a ramified fibrous network (D ˜ 2) at high temperature is observed for the protein H3.1 and Cys polymers in contrast to little changes in mass distribution (D ˜ 1.6) of fibrous Glu- and Thr-chain configurations.

  1. Arbuscular mycorrhizal fungi make a complex contribution to soil aggregation

    NASA Astrophysics Data System (ADS)

    McGee, Peter; Daynes, Cathal; Damien, Field

    2013-04-01

    Soil aggregates contain solid and fluid components. Aggregates develop as a consequence of the organic materials, plants and hyphae of arbuscular mycorrhizal (AM) fungi acting on the solid phase. Various correlative studies indicate hyphae of AM fungi enmesh soil particles, but their impact on the pore space is poorly understood. Hyphae may penetrate between particles, remove water from interstitial spaces, and otherwise re-arrange the solid phase. Thus we might predict that AM fungi also change the pore architecture of aggregates. Direct observations of pore architecture of soil, such as by computer-aided tomography (CT), is difficult. The refractive natures of solid and biological material are similar. The plant-available water in various treatments allows us to infer changes in pore architecture. Our experimental studies indicate AM fungi have a complex role in the formation and development of aggregates. Soils formed from compost and coarse subsoil materials were planted with mycorrhizal or non-mycorrhizal seedlings and the resultant soils compared after 6 or 14 months in separate experiments. As well as enmeshing particles, AM fungi were associated with the development of a complex pore space and greater pore volume. Even though AM fungi add organic matter to soil, the modification of pore space is not correlated with organic carbon. In a separate study, we visualised hyphae of AM fungi in a coarse material using CT. In this study, hyphae appeared to grow close to the surfaces of particles with limited ramification across the pore spaces. Hyphae of AM fungi appear to utilise soil moisture for their growth and development of mycelium. The strong correlation between moisture and hyphae has profound implications for soil aggregation, plant utilisation of soil water, and the distribution of water as water availability declines.

  2. Leaching assessment of concrete made of recycled coarse aggregate: physical and environmental characterisation of aggregates and hardened concrete.

    PubMed

    Galvín, A P; Agrela, F; Ayuso, J; Beltrán, M G; Barbudo, A

    2014-09-01

    Each year, millions of tonnes of waste are generated worldwide, partially through the construction and demolition of buildings. Recycling the resulting waste could reduce the amount of materials that need to be manufactured. Accordingly, the present work has analysed the potential reuse of construction waste in concrete manufacturing by replacing the natural aggregate with recycled concrete coarse aggregate. However, incorporating alternative materials in concrete manufacturing may increase the pollutant potential of the product, presenting an environmental risk via ground water contamination. The present work has tested two types of concrete batches that were manufactured with different replacement percentages. The experimental procedure analyses not only the effect of the portion of recycled aggregate on the physical properties of concrete but also on the leaching behaviour as indicative of the contamination degree. Thus, parameters such as slump, density, porosity and absorption of hardened concrete, were studied. Leaching behaviour was evaluated based on the availability test performed to three aggregates (raw materials of the concrete batches) and on the diffusion test performed to all concrete. From an environmental point of view, the question of whether the cumulative amount of heavy metals that are released by diffusion reaches the availability threshold was answered. The analysis of concentration levels allowed the establishment of different groups of metals according to the observed behaviour, the analysis of the role of pH and the identification of the main release mechanisms. Finally, through a statistical analysis, physical parameters and diffusion data were interrelated. It allowed estimating the relevance of porosity, density and absorption of hardened concrete on diffusion release of the metals in study. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. A coarse grained protein model with internal degrees of freedom. Application to α-synuclein aggregation

    NASA Astrophysics Data System (ADS)

    Ilie, Ioana M.; den Otter, Wouter K.; Briels, Wim J.

    2016-02-01

    Particles in simulations are traditionally endowed with fixed interactions. While this is appropriate for particles representing atoms or molecules, objects with significant internal dynamics—like sequences of amino acids or even an entire protein—are poorly modelled by invariable particles. We develop a highly coarse grained polymorph patchy particle with the ultimate aim of simulating proteins as chains of particles at the secondary structure level. Conformational changes, e.g., a transition between disordered and β-sheet states, are accommodated by internal coordinates that determine the shape and interaction characteristics of the particles. The internal coordinates, as well as the particle positions and orientations, are propagated by Brownian Dynamics in response to their local environment. As an example of the potential offered by polymorph particles, we model the amyloidogenic intrinsically disordered protein α-synuclein, involved in Parkinson's disease, as a single particle with two internal states. The simulations yield oligomers of particles in the disordered state and fibrils of particles in the "misfolded" cross-β-sheet state. The aggregation dynamics is complex, as aggregates can form by a direct nucleation-and-growth mechanism and by two-step-nucleation through conversions between the two cluster types. The aggregation dynamics is complex, with fibrils formed by direct nucleation-and-growth, by two-step-nucleation through the conversion of an oligomer and by auto-catalysis of this conversion.

  4. Effect of Soil Water Content on the Distribution of Diuron into Organomineral Aggregates of Highly Weathered Tropical Soils.

    PubMed

    Regitano, Jussara B; Rocha, Wadson S D; Bonfleur, Eloana J; Milori, Debora; Alleoni, Luís R F

    2016-05-25

    We evaluated the effects of soil water content on the retention of diuron and its residual distribution into organomineral aggregates in four Brazilian oxisols. (14)C-Diuron was incubated for days at 25, 50, and 75% of maximum water-holding capacity for each soil. After 42 days, the physical fractionation method was used to obtain >150, 53-150, 20-53, 2-20, and <2 μm aggregate sizes. Diuron retention increased with increasing soil water content for all soils. At lower soil water content, diuron's retention was higher in the sandier soil. It was mostly retained in the fine (<20 μm) aggregates of sandier soil, and for clayed soils, retention was higher in the coarse aggregates (>53 μm). The sorption coefficients (Kd and Koc) generated by batch studies should be carefully used because they do not provide information about aggregation and diffusion effects on pesticides soil sorption.

  5. Quantification of Shape, Angularity, and Surface texture of Base Course Materials

    DOT National Transportation Integrated Search

    1998-01-01

    A state-of-the-art review was conducted to determine existing test methods for characterizing the shape, angularity, and surface texture of coarse aggregates. The review found direct methods used by geologists to determine these characteristics. Thes...

  6. Calibrating the Iowa pore index with mercury intrusion porosimetry and petrography.

    DOT National Transportation Integrated Search

    2017-10-31

    The Iowa Pore Index (IPI) test is a fast, non-destructive, inexpensive, and environmentally friendly test used by several Midwestern state departments of transportation to determine the volume ratio of macropores to micropores in a coarse rock aggreg...

  7. Shell concrete pavement.

    DOT National Transportation Integrated Search

    1966-10-01

    This report describes the testing performed with reef shell, clam shell and a combination of reef and clam shell used as coarse aggregate to determine if a low modulus concrete could be developed for use as a base material as an alternate to the pres...

  8. Potential use and applications for reclaimed millings.

    DOT National Transportation Integrated Search

    2015-06-01

    The purpose of this project was to provide support to PennDOT District 1-0 in the effective use of milled asphalt material. Specifically, : District 1-0 has a shortage of high-quality available coarse aggregate and has developed the innovative proced...

  9. Curling and warping of concrete pavement: an investigation and proof of concept study : final report.

    DOT National Transportation Integrated Search

    2016-06-01

    In Kansas, mechanically stabilized earth (MSE) retaining walls are typically backfilled with coarse aggregate. : Current backfill material testing procedures used by the Kansas Department of Transportation (KDOT) utilize on-site : observations for co...

  10. Individual aerosol particles in ambient and updraft conditions below convective cloud bases in the Oman mountain region

    NASA Astrophysics Data System (ADS)

    Semeniuk, T. A.; Bruintjes, R. T.; Salazar, V.; Breed, D. W.; Jensen, T. L.; Buseck, P. R.

    2014-03-01

    An airborne study of cloud microphysics provided an opportunity to collect aerosol particles in ambient and updraft conditions of natural convection systems for transmission electron microscopy (TEM). Particles were collected simultaneously on lacey carbon and calcium-coated carbon (Ca-C) TEM grids, providing information on particle morphology and chemistry and a unique record of the particle's physical state on impact. In total, 22 particle categories were identified, including single, coated, aggregate, and droplet types. The fine fraction comprised up to 90% mixed cation sulfate (MCS) droplets, while the coarse fraction comprised up to 80% mineral-containing aggregates. Insoluble (dry), partially soluble (wet), and fully soluble particles (droplets) were recorded on Ca-C grids. Dry particles were typically silicate grains; wet particles were mineral aggregates with chloride, nitrate, or sulfate components; and droplets were mainly aqueous NaCl and MCS. Higher numbers of droplets were present in updrafts (80% relative humidity (RH)) compared with ambient conditions (60% RH), and almost all particles activated at cloud base (100% RH). Greatest changes in size and shape were observed in NaCl-containing aggregates (>0.3 µm diameter) along updraft trajectories. Their abundance was associated with high numbers of cloud condensation nuclei (CCN) and cloud droplets, as well as large droplet sizes in updrafts. Thus, compositional dependence was observed in activation behavior recorded for coarse and fine fractions. Soluble salts from local pollution and natural sources clearly affected aerosol-cloud interactions, enhancing the spectrum of particles forming CCN and by forming giant CCN from aggregates, thus, making cloud seeding with hygroscopic flares ineffective in this region.

  11. Compressive Strength and Modulus of Elasticity of Concrete with Cubed Waste Tire Rubbers as Coarse Aggregates

    NASA Astrophysics Data System (ADS)

    Haryanto, Y.; Hermanto, N. I. S.; Pamudji, G.; Wardana, K. P.

    2017-11-01

    One feasible solution to overcome the issue of tire disposal waste is the use of waste tire rubber to replace aggregate in concrete. We have conducted an experimental investigation on the effect of rubber tire waste aggregate in cuboid form on the compressive strength and modulus of elasticity of concrete. The test was performed on 72 cylindrical specimens with the height of 300 mm and diameter of 150 mm. We found that the workability of concrete with waste tire rubber aggregate has increased. The concrete density with waste tire rubber aggregate was decreased, and so was the compressive strength. The decrease of compressive strength is up to 64.34%. If the content of waste tire rubber aggregate is more than 40%, then the resulting concrete cannot be categorized as structural concrete. The modulus of elasticity decreased to 59.77%. The theoretical equation developed to determine the modulus of elasticity of concrete with rubber tire waste aggregate has an accuracy of 84.27%.

  12. Bond, transfer length, and development length of prestressing strand in self-consolidating concrete.

    DOT National Transportation Integrated Search

    2014-07-01

    Due to its economic advantages, the use of self-consolidating concrete (SCC) has increased rapidly in recent years. However, because : SCC mixes typically have decreased amounts of coarse aggregate and high amounts of admixtures, industry members hav...

  13. Evaluation of the Performance of Texas Pavements Made with Different Coarse Aggregates

    DOT National Transportation Integrated Search

    2000-10-01

    This report summarizes 23 years of work undertaken in Texas to understand the reasons for significant performance differences found in pavements placed around the state. To a significant degree, pavement performance can be predicted based on the conc...

  14. Mechanical Properties of Portland Cement Concrete With Recycled Asphalt Pavement as Partial Replacement for Coarse Aggregate

    DOT National Transportation Integrated Search

    2016-06-01

    Finding constructive uses for construction waste byproducts contributes to green engineering principles. One such plentiful material is recycled asphalt pavement (RAP). This report looks at the mechanical viability of including RAP in a high strength...

  15. Addressing safety through evaluation and optimization of permeable friction course mixtures.

    DOT National Transportation Integrated Search

    2010-01-01

    Permeable friction course (PFC) mixtures are a special type of hot mix asphalt characterized by a : high total air voids content to guarantee proper functionality and stone-on-stone contact of the coarse : aggregate fraction to ensure adequate mixtur...

  16. Laboratory data to determine impact of coarse aggregate type and cementitious materials on design thickness of PCC pavements.

    DOT National Transportation Integrated Search

    2016-12-01

    The Mississippi Department of Transportation (MDOT) needed mechanical and volume change properties of portland cement concrete (PCC) pavement in order to implement pavement thickness design procedures of the Mechanistic-Empirical Pavement Design Guid...

  17. Ground tire rubber (GTR) as a component material in concrete mixtures for paving concrete.

    DOT National Transportation Integrated Search

    2015-02-01

    This research was done to investigate if the problems associated with flexibility and temperature sensitivity (expansion and : contraction) in roadway concrete pavements can be addressed by replacing some of the fine or coarse aggregate component : w...

  18. Evaluation of Skid Resistance of Wearing Course Made Of Stone Mastic Asphalt Mixture in Laboratory Conditions

    NASA Astrophysics Data System (ADS)

    Wasilewska, Marta

    2017-10-01

    This paper presents the comparison of skid resistance of wearing course made of SMA (Stone Mastic Asphalt) mixtures which differ in resistance to polishing of coarse aggregate. Dolomite, limestone, granite and trachybasalt were taken for investigation. SMA mixtures have the same nominal size of aggregate (11 mm) and very similar aggregate particle-size distribution in mineral mixtures. Tested SMA11 mixtures were designed according to EN 13108-5 and Polish National Specification WT-2: 2014. Evaluation of the skid resistance has been performed using the FAP (Friction After Polishing) test equipment also known as the Wehner/Schulze machine. Laboratory method enables to compare the skid resistance of different types of mixtures under specified conditions simulating polishing processes. Tests were performed on both the specimens made of each coarse aggregate and SMA11 mixtures containing these aggregates. Measuring of friction coefficient μm was conducted before and during polishing process up to 180 0000 passes of polishing head. Comparison of the results showed differences in sensitivity to polishing among particular mixtures which depend on the petrographic properties of rock used to produce aggregate. Limestone and dolomite tend to have a fairly uniform texture with low hardness which makes these rock types susceptible to rapid polishing. This caused lower coefficient of friction for SMA11 mixtures with limestone and dolomite in comparison with other test mixtures. These significant differences were already registered at the beginning of the polishing process. Limestone aggregate had lower value of μm before starting the process than trachybasalt and granite aggregate after its completion. Despite the differences in structure and mineralogical composition between the granite and trachybasalt, slightly different values of the friction coefficient at the end of polishing were obtained. Images of the surface were taken with the optical microscope for better understanding of the phenomena occurring on the surface of specimen. Results may be valuable information when selecting aggregate to asphalt mixtures at the stage of its design and maintenance of existing road pavements.

  19. Evaluation of the Performance of Texas Pavements Made with Different Coarse Aggregates: Project Summary Report

    DOT National Transportation Integrated Search

    1998-09-01

    This report summarizes 23 years of work undertaken in Texas to understand the reasons for significant performance differences found in pavements placed around the state. To a significant degree, pavement performance can be predicted based on the conc...

  20. Accelerated Determination of ASR Susceptibility during Concrete Prism Testing through Nonlinear Resonance Ultrasonic Spectroscopy : TechBrief

    DOT National Transportation Integrated Search

    2013-10-01

    The research has been conducted on laboratory-cast concrete prism specimens containing both fine and coarse aggregates obtained from different sources to provide a spectrum of reactivity for assessment through the developed NIRAS technique. The NIRAS...

  1. The effects of coarse aggregate cleanliness and moisture content on asphalt concrete compactability and moisture susceptibility.

    DOT National Transportation Integrated Search

    2011-12-31

    Twelve field projects were studied where forty-four locations were evaluated to assess the cause or : causes of asphalt concrete that exhibits tender zone characteristics (i.e. instability during compaction) and to : investigate the tendency of...

  2. An evaluation of the cost effectiveness of D-cracking preventive measures : research implementation plan.

    DOT National Transportation Integrated Search

    2006-12-07

    Laboratory studies have found that reducing the particle size of D-cracking susceptible coarse aggregates will greatly : improve the durability of concrete exposed to freeze-thaw conditions. A test road located on State Route 2 near : Vermilion, Ohio...

  3. Coarse-grained molecular simulation of self-assembly for nonionic surfactants on graphene nanostructures.

    PubMed

    Wu, Dan; Yang, Xiaoning

    2012-10-04

    Self-assembly of amphiphilic molecules on the surfaces of nanoscale materials has an important application in a variety of nanotechnology. Here, we report a coarse-grained molecular dynamics simulation on the structure and morphology of the nonionic surfactant, n-alkyl poly(ethylene oxide) (PEO), adsorbed on planar graphene nanostructures. The effects of concentration, surfactant structure, and size of graphene sheet are explored. Because of the finite dimension effect, various morphological hemimicelles can be formed on nanoscale graphene surfaces, which is somewhat different from the self-assembly structures on infinite carbon surfaces. The aggregate morphology is highly dependent on the concentration, the chain lengths, and the size of graphene nanosheets. For the nonionic surfactant, the PEO headgroups show strong dispersion interaction with the carbon surface, leading to a side edge adsorption behavior. This simulation provides insight into the supramolecular self-assembly nanostructures and the adsorption mechanism for the nonionic surfactants aggregated on graphene nanostructures, which could be exploited to guide fabrication of graphene-based nanocomposites.

  4. Geochemical, Sulfur Isotopic Characteristics and Source Contributions of Size-Aggregated Aerosols Collected in Baring Head, New Zealand.

    NASA Astrophysics Data System (ADS)

    Li, J.; Michalski, G. M.; Davy, P.; Harvey, M.; Wilkins, B. P.; Katzman, T. L.

    2017-12-01

    Sulfate aerosols are critical to the climate, human health, and the hydrological cycle in the atmosphere, yet the sources of sulfate in aerosols are not completely understood. In this work, we evaluated the sources of sulfate in size-aggregated aerosols from the Southern Pacific Ocean and the land of New Zealand using geochemical and isotopic analyses. Aerosols were collected at Baring Head, New Zealand between 6/30/15 to 8/4/16 using two collectors, one only collects Southern Pacific Ocean derived aerosols (open-ocean collector), the other collects aerosols from both the ocean and the land (all-direction collector). Each collector is equipped with two filters to sample size-aggregated aerosols (fine aerosols: <0.5 um and coarse aerosols: 0.5-10 um). Our results show that fine and coarse aerosols show distinctive sulfate sources: sulfate in fine aerosols is a mixture of sea-salt sulfate ( 30%) and Non-Sea-Salt sulfate (NSS-SO42-, 70%), while coarse aerosols are dominated by sea-salt sulfate. However, some NSS-SO42- was also observed in coarse aerosols collected in summer, suggesting the presence of accumulation mode NSS-SO42- aerosols, which is possibly due to high summer biogenic DMS flux. The sources of sulfur in NSS-SO42- could be further determined by their d34S values. DMS emission is likely the sole sulfur source in the open-ocean collector as it shows constant DMS-like d34S signatures (15-18‰) throughout the year. Meanwhile, the d34S of NSS-SO42- in the all-direction collector display a seasonal trend: summer time d34S values are higher and DMS-like (15-18‰), indicating DMS emission is the dominant sulfur source; winter time d34S values are lower ( 6-12‰), therefore the sulfur is likely sourced from both DMS emission and terrestrial S input with low d34S values, such as volcanic activities, fossil fuel and wood burning.

  5. Transient β-hairpin formation in α-synuclein monomer revealed by coarse-grained molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Yu, Hang; Han, Wei; Ma, Wen; Schulten, Klaus

    2015-12-01

    Parkinson's disease, originating from the intrinsically disordered peptide α-synuclein, is a common neurodegenerative disorder that affects more than 5% of the population above age 85. It remains unclear how α-synuclein monomers undergo conformational changes leading to aggregation and formation of fibrils characteristic for the disease. In the present study, we perform molecular dynamics simulations (over 180 μs in aggregated time) using a hybrid-resolution model, Proteins with Atomic details in Coarse-grained Environment (PACE), to characterize in atomic detail structural ensembles of wild type and mutant monomeric α-synuclein in aqueous solution. The simulations reproduce structural properties of α-synuclein characterized in experiments, such as secondary structure content, long-range contacts, chemical shifts, and 3J(HNHCα)-coupling constants. Most notably, the simulations reveal that a short fragment encompassing region 38-53, adjacent to the non-amyloid-β component region, exhibits a high probability of forming a β-hairpin; this fragment, when isolated from the remainder of α-synuclein, fluctuates frequently into its β-hairpin conformation. Two disease-prone mutations, namely, A30P and A53T, significantly accelerate the formation of a β-hairpin in the stated fragment. We conclude that the formation of a β-hairpin in region 38-53 is a key event during α-synuclein aggregation. We predict further that the G47V mutation impedes the formation of a turn in the β-hairpin and slows down β-hairpin formation, thereby retarding α-synuclein aggregation.

  6. Aggregate-mediated charge transport in ionomeric electrolytes

    NASA Astrophysics Data System (ADS)

    Lu, Keran; Maranas, Janna; Milner, Scott

    Polymers such PEO can conduct ions, and have been studied as possible replacements for organic liquid electrolytes in rechargeable metal-ion batteries. More generally, fast room-temperature ionic conduction has been reported for a variety of materials, from liquids to crystalline solids. Unfortunately, polymer electrolytes generally have limited conductivity; these polymers are too viscous to have fast ion diffusion like liquids, and too unstructured to promote cooperative transport like crystalline solids. Ionomers are polymer electrolytes in which ionic groups are covalently bound to the polymer backbone, neutralized by free counterions. These materials also conduct ions, and can exhibit strong ionic aggregation. Using coarse-grained molecular dynamics, we explore the forces driving ionic aggregation, and describe the role ion aggregates have in mediating charge transport. The aggregates are string-like such that ions typically have two neighbors. We find ion aggregates self-assemble like worm-like micelles. Excess charge, or free ions, occasionally coordinate with aggregates and are transported along the chain in a Grotthuss-like mechanism. We propose that controlling ionomer aggregate structure through materials design can enhance cooperative ion transport.

  7. Effect of lightweight aggregates prepared from fly ash on lightweight concrete performances

    NASA Astrophysics Data System (ADS)

    Punlert, S.; Laoratanakul, P.; Kongdee, R.; Suntako, R.

    2017-09-01

    Lightweight aggregates were prepared from fly ash of by-products from the paper industry. The influence of the ratio of clay to fly ash and processing conditions on lightweight aggregates properties were investigated. It was found that the amount of fly ash directly affected to porosity of lightweight aggregates. Lightweight aggregates with the ratio of clay to fly ash at 80:20 wt% using the sintering temperature at 1210°C exhibits bulk density of 1.66 g cm-3, compressive strength of 25 MPa and water absorption of 0.55%. The replacement of coarse aggregates with lightweight aggregates at 100 wt% for concrete production showed the ultimate properties of concrete with density of 1780 g cm-3, water absorption of 3.55%, compressive strength of 40.94 MPa and thermal conductivity of 0.77 W m-1K-1. The concrete had more than 25% weight reduction while keeping a similar compressive strength to an ordinary concrete. This is revealed that lightweight aggregates could be applied into structural concrete because it was able to reduce work load and increase safety factor of construction.

  8. Block-accelerated aggregation multigrid for Markov chains with application to PageRank problems

    NASA Astrophysics Data System (ADS)

    Shen, Zhao-Li; Huang, Ting-Zhu; Carpentieri, Bruno; Wen, Chun; Gu, Xian-Ming

    2018-06-01

    Recently, the adaptive algebraic aggregation multigrid method has been proposed for computing stationary distributions of Markov chains. This method updates aggregates on every iterative cycle to keep high accuracies of coarse-level corrections. Accordingly, its fast convergence rate is well guaranteed, but often a large proportion of time is cost by aggregation processes. In this paper, we show that the aggregates on each level in this method can be utilized to transfer the probability equation of that level into a block linear system. Then we propose a Block-Jacobi relaxation that deals with the block system on each level to smooth error. Some theoretical analysis of this technique is presented, meanwhile it is also adapted to solve PageRank problems. The purpose of this technique is to accelerate the adaptive aggregation multigrid method and its variants for solving Markov chains and PageRank problems. It also attempts to shed some light on new solutions for making aggregation processes more cost-effective for aggregation multigrid methods. Numerical experiments are presented to illustrate the effectiveness of this technique.

  9. Self-Assembly Behavior of Amphiphilic Janus Dendrimers in Water: A Combined Experimental and Coarse-Grained Molecular Dynamics Simulation Approach.

    PubMed

    Elizondo-García, Mariana E; Márquez-Miranda, Valeria; Araya-Durán, Ingrid; Valencia-Gallegos, Jesús A; González-Nilo, Fernando D

    2018-04-21

    Amphiphilic Janus dendrimers (JDs) are repetitively branched molecules with hydrophilic and hydrophobic components that self-assemble in water to form a variety of morphologies, including vesicles analogous to liposomes with potential pharmaceutical and medical application. To date, the self-assembly of JDs has not been fully investigated thus it is important to gain insight into its mechanism and dependence on JDs’ molecular structure. In this study, the aggregation behavior in water of a second-generation bis-MPA JD was evaluated using experimental and computational methods. Dispersions of JDs in water were carried out using the thin-film hydration and ethanol injection methods. Resulting assemblies were characterized by dynamic light scattering, confocal microscopy, and atomic force microscopy. Furthermore, a coarse-grained molecular dynamics (CG-MD) simulation was performed to study the mechanism of JDs aggregation. The obtaining of assemblies in water with no interdigitated bilayers was confirmed by the experimental characterization and CG-MD simulation. Assemblies with dendrimersome characteristics were obtained using the ethanol injection method. The results of this study establish a relationship between the molecular structure of the JD and the properties of its aggregates in water. Thus, our findings could be relevant for the design of novel JDs with tailored assemblies suitable for drug delivery systems.

  10. Mesoscale Fracture Analysis of Multiphase Cementitious Composites Using Peridynamics

    PubMed Central

    Yaghoobi, Amin; Chorzepa, Mi G.; Kim, S. Sonny; Durham, Stephan A.

    2017-01-01

    Concrete is a complex heterogeneous material, and thus, it is important to develop numerical modeling methods to enhance the prediction accuracy of the fracture mechanism. In this study, a two-dimensional mesoscale model is developed using a non-ordinary state-based peridynamic (NOSBPD) method. Fracture in a concrete cube specimen subjected to pure tension is studied. The presence of heterogeneous materials consisting of coarse aggregates, interfacial transition zones, air voids and cementitious matrix is characterized as particle points in a two-dimensional mesoscale model. Coarse aggregates and voids are generated using uniform probability distributions, while a statistical study is provided to comprise the effect of random distributions of constituent materials. In obtaining the steady-state response, an incremental and iterative solver is adopted for the dynamic relaxation method. Load-displacement curves and damage patterns are compared with available experimental and finite element analysis (FEA) results. Although the proposed model uses much simpler material damage models and discretization schemes, the load-displacement curves show no difference from the FEA results. Furthermore, no mesh refinement is necessary, as fracture is inherently characterized by bond breakages. Finally, a sensitivity study is conducted to understand the effect of aggregate volume fraction and porosity on the load capacity of the proposed mesoscale model. PMID:28772518

  11. Use of selected waste materials in concrete mixes.

    PubMed

    Batayneh, Malek; Marie, Iqbal; Asi, Ibrahim

    2007-01-01

    A modern lifestyle, alongside the advancement of technology has led to an increase in the amount and type of waste being generated, leading to a waste disposal crisis. This study tackles the problem of the waste that is generated from construction fields, such as demolished concrete, glass, and plastic. In order to dispose of or at least reduce the accumulation of certain kinds of waste, it has been suggested to reuse some of these waste materials to substitute a percentage of the primary materials used in the ordinary portland cement concrete (OPC). The waste materials considered to be recycled in this study consist of glass, plastics, and demolished concrete. Such recycling not only helps conserve natural resources, but also helps solve a growing waste disposal crisis. Ground plastics and glass were used to replace up to 20% of fine aggregates in concrete mixes, while crushed concrete was used to replace up to 20% of coarse aggregates. To evaluate these replacements on the properties of the OPC mixes, a number of laboratory tests were carried out. These tests included workability, unit weight, compressive strength, flexural strength, and indirect tensile strength (splitting). The main findings of this investigation revealed that the three types of waste materials could be reused successfully as partial substitutes for sand or coarse aggregates in concrete mixtures.

  12. Microcanonical thermostatistics of coarse-grained proteins with amyloidogenic propensity

    NASA Astrophysics Data System (ADS)

    Frigori, Rafael B.; Rizzi, Leandro G.; Alves, Nelson A.

    2013-01-01

    The formation of fibrillar aggregates seems to be a common characteristic of polypeptide chains, although the observation of these aggregates may depend on appropriate experimental conditions. Partially folded intermediates seem to have an important role in the generation of protein aggregates, and a mechanism for this fibril formation considers that these intermediates also correspond to metastable states with respect to the fibrillar ones. Here, using a coarse-grained (CG) off-lattice model, we carry out a comparative analysis of the thermodynamic aspects characterizing the folding transition with respect to the propensity for aggregation of four different systems: two isoforms of the amyloid β-protein, the Src SH3 domain, and the human prion proteins (hPrP). Microcanonical analysis of the data obtained from replica exchange method is conducted to evaluate the free-energy barrier and latent heat in these models. The simulations of the amyloid β isoforms and Src SH3 domain indicated that the folding process described by this CG model is related to a negative specific heat, a phenomenon that can only be verified in the microcanonical ensemble in first-order phase transitions. The CG simulation of the hPrP heteropolymer yielded a continuous folding transition. The absence of a free-energy barrier and latent heat favors the presence of partially unfolded conformations, and in this context, this thermodynamic aspect could explain the reason why the hPrP heteropolymer is more aggregation-prone than the other heteropolymers considered in this study. We introduced the hydrophobic radius of gyration as an order parameter and found that it can be used to obtain reliable information about the hydrophobic packing and the transition temperatures in the folding process.

  13. Nonequilibrium Simulations of Ion Dynamics in Ionomer Melts

    NASA Astrophysics Data System (ADS)

    Frischknecht, Amalie

    Ionomers, polymers containing a small fraction of covalently bound ionic groups, are of interest as possible electrolytes in batteries. However, to date ionomers do not have sufficiently high conductivities for practical application, most likely because the ions tend to form aggregates, leading to slow ion transport. To build a better understanding of the relationships among ionomer chemistry, morphology, and ion transport, we have performed a series of molecular dynamics simulations and connected aspects of these simulations with experiment. In previous work using both atomistic and coarse-grained models, we showed that precise ionomers (with a fixed spacing between ionic groups along the polymer backbone) exhibit a range of ionic aggregate morphologies, from discrete clusters to percolated aggregates. In this talk I will describe recent simulations of our coarse-grained ionomer melts in an applied electric field. From a constant applied field, we are able to extract the ion mobilities and hence conductivities. We find that ionomers with percolated ionic aggregate morphologies have higher ion mobilities and hence higher conductivities. Application of an oscillating electric field enables us to calculate the frequency-dependent conductivity of the model ionomer melts. The real part of the conductivity has a high frequency peak associated with plasma oscillations, and a very broad low frequency peak associated with ion motions in ionic aggregates. I will end with comments on the connections to atomistic simulations and to experimental probes of ion dynamics. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  14. The Feasibility of Palm Kernel Shell as a Replacement for Coarse Aggregate in Lightweight Concrete

    NASA Astrophysics Data System (ADS)

    Itam, Zarina; Beddu, Salmia; Liyana Mohd Kamal, Nur; Ashraful Alam, Md; Issa Ayash, Usama

    2016-03-01

    Implementing sustainable materials into the construction industry is fast becoming a trend nowadays. Palm Kernel Shell is a by-product of Malaysia’s palm oil industry, generating waste as much as 4 million tons per annum. As a means of producing a sustainable, environmental-friendly, and affordable alternative in the lightweight concrete industry, the exploration of the potential of Palm Kernel Shell to be used as an aggregate replacement was conducted which may give a positive impact to the Malaysian construction industry as well as worldwide concrete usage. This research investigates the feasibility of PKS as an aggregate replacement in lightweight concrete in terms of compressive strength, slump test, water absorption, and density. Results indicate that by using PKS for aggregate replacement, it increases the water absorption but decreases the concrete workability and strength. Results however, fall into the range acceptable for lightweight aggregates, hence it can be concluded that there is potential to use PKS as aggregate replacement for lightweight concrete.

  15. Impact load-induced micro-structural damage and micro-structure associated mechanical response of concrete made with different surface roughness and porosity aggregates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erdem, Savas, E-mail: evxse1@nottingham.ac.uk; Dawson, Andrew Robert; Thom, Nicholas Howard

    2012-02-15

    The relationship between the nature of micro damage under impact loading and changes in mechanical behavior associated with different microstructures is studied for concretes made with two different coarse aggregates having significant differences mainly in roughness and porosity - sintered fly ash and uncrushed gravel. A range of techniques including X-ray diffraction, digital image analysis, mercury porosimetry, X-ray computed tomography, laser surface profilometry and scanning electron microscopy were used to characterize the aggregates and micro-structures. The concrete prepared with lightweight aggregates was stronger in compression than the gravel aggregate concrete due to enhanced hydration as a result of internal curing.more » In the lightweight concrete, it was deduced that an inhomogeneous micro-structure led to strain incompatibilities and consequent localized stress concentrations in the mix, leading to accelerated failure. The pore structure, compressibility, and surface texture of the aggregates are of paramount importance for the micro-cracking growth.« less

  16. Acoustic emission monitoring of recycled aggregate concrete under bending

    NASA Astrophysics Data System (ADS)

    Tsoumani, A. A.; Barkoula, N.-M.; Matikas, T. E.

    2015-03-01

    The amount of construction and demolition waste has increased considerably over the last few years, making desirable the reuse of this waste in the concrete industry. In the present study concrete specimens are subjected at the age of 28 days to four-point bending with concurrent monitoring of their acoustic emission (AE) activity. Several concrete mixtures prepared using recycled aggregates at various percentages of the total coarse aggregate and also a reference mix using natural aggregates, were included to investigate their influence of the recycled aggregates on the load bearing capacity, as well as on the fracture mechanisms. The results reveal that for low levels of substitution the influence of using recycled aggregates on the flexural strength is negligible while higher levels of substitution lead into its deterioration. The total AE activity, as well as the AE signals emitted during failure, was related to flexural strength. The results obtained during test processing were found to be in agreement with visual observation.

  17. Learning To Fold Proteins Using Energy Landscape Theory

    PubMed Central

    Schafer, N.P.; Kim, B.L.; Zheng, W.; Wolynes, P.G.

    2014-01-01

    This review is a tutorial for scientists interested in the problem of protein structure prediction, particularly those interested in using coarse-grained molecular dynamics models that are optimized using lessons learned from the energy landscape theory of protein folding. We also present a review of the results of the AMH/AMC/AMW/AWSEM family of coarse-grained molecular dynamics protein folding models to illustrate the points covered in the first part of the article. Accurate coarse-grained structure prediction models can be used to investigate a wide range of conceptual and mechanistic issues outside of protein structure prediction; specifically, the paper concludes by reviewing how AWSEM has in recent years been able to elucidate questions related to the unusual kinetic behavior of artificially designed proteins, multidomain protein misfolding, and the initial stages of protein aggregation. PMID:25308991

  18. Aggregation of flexible polyelectrolytes: Phase diagram and dynamics.

    PubMed

    Tom, Anvy Moly; Rajesh, R; Vemparala, Satyavani

    2017-10-14

    Similarly charged polymers in solution, known as polyelectrolytes, are known to form aggregated structures in the presence of oppositely charged counterions. Understanding the dependence of the equilibrium phases and the dynamics of the process of aggregation on parameters such as backbone flexibility and charge density of such polymers is crucial for insights into various biological processes which involve biological polyelectrolytes such as protein, DNA, etc. Here, we use large-scale coarse-grained molecular dynamics simulations to obtain the phase diagram of the aggregated structures of flexible charged polymers and characterize the morphology of the aggregates as well as the aggregation dynamics, in the presence of trivalent counterions. Three different phases are observed depending on the charge density: no aggregation, a finite bundle phase where multiple small aggregates coexist with a large aggregate and a fully phase separated phase. We show that the flexibility of the polymer backbone causes strong entanglement between charged polymers leading to additional time scales in the aggregation process. Such slowing down of the aggregation dynamics results in the exponent, characterizing the power law decay of the number of aggregates with time, to be dependent on the charge density of the polymers. These results are contrary to those obtained for rigid polyelectrolytes, emphasizing the role of backbone flexibility.

  19. The Effects of Air-Cooled Blast Furnace Slag (ACBFS) Aggregate on the Chemistry of Pore Solution and the Interfacial Transition Zone

    NASA Astrophysics Data System (ADS)

    Panchmatia, Parth

    Numerous laboratory and field studies have demonstrated that concrete incorporating air cooled blast furnace slag (ACBFS) aggregate showed a higher degree of infilling of voids with ettringite as opposed to concrete prepared using naturally mined carbonate aggregates when exposed to similar environmental conditions. This observation prompted some to link the deterioration observed in the ACBFS aggregate concrete structures to the compromised freeze-thaw resistance due to infilling of air voids. Concerns about the release of sulfur from ACBFS aggregate into the pore solution of concrete had been presented as the reason for the observed ettringite deposits in the air voids. However, literature quantifying the influence of ACBFS aggregate on the chemistry of the pore solution of concrete is absent. Therefore, the main purpose of this research was to quantify the effects of ACBFS aggregate on the chemistry of the pore solution of mortars incorporating them. Coarse and crushed ACBFS aggregates were submerged in artificial pore solutions (APSs) representing pore solutions of 3-day, 7-day, and 28-day hydrated plain, binary, and ternary paste systems. The change in the chemistry of these artificial pore solutions was recorded to quantify the chemical contribution of ACBFS aggregate to the pore solution of concrete. It was observed that the sulfate concentration of all APSs increased once they were in contact with either coarse or crushed ACBFS aggregate. After 28 days of contact, the increase in sulfate concentration of the APSs ranged from 4.85 - 12.23 mmol/L and 14.21 - 16.87 mmol/L for contact with coarse and crushed ACBFS aggregate, respectively. More than 40% of the total sulfate that was released by the ACBFS aggregate occurred during the first 72 hours (3 days) of its contact with the APSs. There was little or no difference in the amount of sulfate released from ACBFS aggregate in the different types of APSs. In other words, the type of binder solution from which pore solution was extracted had no effect on the amount of sulfate that was released when it was in contact with ACBFS aggregate. The relatively quick release of sulfur from ACBFS aggregate into the APSs prompted investigation of the chemical composition of the pore solution of mortar (at early stages of hydration) incorporating ACBFS aggregate. The chemical composition of the pore solutions obtained from mortars prepared using ACBFS aggregate and plain and binary paste matrices was compared those of mortars prepared using Ottawa sand and plain and binary paste matrices. After 7 days of hydration, the sulfur (S) concentration of the pore solution extracted from mortars prepared using ACBFS aggregate was 3.4 - 5.6 times greater than that obtained from corresponding mortars (i.e. mortars with the same paste matrix) prepared using Ottawa sand. Binary mortars containing fly ash (FA) showed the lowest S content after 7 days of hydration amongst all mortars prepared using ACBFS aggregate. On the other hand, binary mortars prepared using slag cement (SC) and ACBFS aggregate had the highest S concentration after 7 days of hydration. These effects on the S concentration in the pore solutions can be explained by the difference in the chemical makeup of the binders, and not because of different rate of release of S from ACBFS into the pore solution. In addition, TGA analysis of 7-day hydrated mortars revealed that the ettringite, monosulfate, and calcium hydroxide content was lower in mortars prepared using ACBFS aggregate as opposed to those prepared using Ottawa sand. This could be because of the low degree of hydration in mortars with ACBFS aggregate because of the high sulfate concentration in its pore solution. The properties of the interfacial transition zone (ITZ), i.e. the zone in the vicinity of the aggregate surface, depends on the property of the aggregate such as its porosity and texture. Therefore, it is expected that the properties of ITZ around the ACBFS particle, which is porous and proven to contribute sulfate, be different from the ITZ around the naturally mined siliceous aggregate. Image analysis conducted on backscattered images obtained using scanning electron microscope revealed that the ITZ of naturally mined siliceous aggregate was more porous compared to the ITZ of ACBFS aggregate. In addition, calcium hydroxide deposits were more frequent and larger in size in the ITZ around siliceous sand than in the case of the ITZ around the ACBFS aggregate.

  20. D-cracking field performance of Portland cement concrete pavements containing limestone in Kansas : phase 1 report.

    DOT National Transportation Integrated Search

    2012-05-01

    Premature deterioration of concrete pavement due to D-Cracking has been a problem in Kansas since the 1930s. : Limestone is the major source of coarse aggregate in eastern Kansas where the majority of the concrete pavements are : constructed. D-Crack...

  1. Report B : self-consolidating concrete (SCC) for infrastructure elements - bond, transfer length, and development length of prestressing strand in SCC.

    DOT National Transportation Integrated Search

    2012-08-01

    Due to its economic advantages, the use of self-consolidating concrete (SCC) has : increased rapidly in recent years. However, because SCC mixes typically have decreased : amounts of coarse aggregate and high amounts of admixtures, industry members h...

  2. D-cracking field performance of portland cement concrete pavements containing limestone in Kansas : phase 1 report : technical summary.

    DOT National Transportation Integrated Search

    2012-05-01

    Introduction: Premature deterioration of concrete pavement due to D-cracking has been a problem in Kansas since the 1930s. Limestone is the major source of coarse aggregate in eastern Kansas where the majority of the concrete pavements are constructe...

  3. The Influence of Organic Material and Temperature on the Burial Tolerance of the Blue Mussel, Mytilus edulis: Considerations for the Management of Marine Aggregate Dredging

    PubMed Central

    Cottrell, Richard S.; Black, Kenny D.; Hutchison, Zoë L.; Last, Kim S.

    2016-01-01

    Rationale and Experimental Approach Aggregate dredging is a growing source of anthropogenic disturbance in coastal UK waters and has the potential to impact marine systems through the smothering of benthic fauna with organically loaded screening discards. This study investigates the tolerance of the blue mussel, Mytilus edulis to such episodic smothering events using a multi-factorial design, including organic matter concentration, temperature, sediment fraction size and duration of burial as important predictor variables. Results and Discussion Mussel mortality was significantly higher in organically loaded burials when compared to control sediments after just 2 days. Particularly, M. edulis specimens under burial in fine sediment with high (1%) concentrations of organic matter experienced a significantly higher mortality rate (p<0.01) than those under coarse control aggregates. Additionally, mussels exposed to the summer maximum temperature treatment (20°C) exhibited significantly increased mortality (p<0.01) compared to those in the ambient treatment group (15°C). Total Oxygen Uptake rates of experimental aggregates were greatest (112.7 mmol m-2 day-1) with 1% organic loadings in coarse sediment at 20°C. Elevated oxygen flux rates in porous coarse sediments are likely to be a function of increased vertical migration of anaerobically liberated sulphides to the sediment-water interface. However, survival of M. edulis under bacterial mats of Beggiatoa spp. indicates the species’ resilience to sulphides and so we propose that the presence of reactive organic matter within the burial medium may facilitate bacterial growth and increase mortality through pathogenic infection. This may be exacerbated under the stable interstitial conditions in fine sediment and increased bacterial metabolism under high temperatures. Furthermore, increased temperature may impose metabolic demands upon the mussel that cannot be met during burial-induced anaerobiosis. Summary Lack of consideration for the role of organic matter and temperature during sedimentation events may lead to an overestimation of the tolerance of benthic species to smothering from dredged material. PMID:26809153

  4. Rheology and microstructure of synthetic halite/calcite porphyritic aggregates in torsion

    NASA Astrophysics Data System (ADS)

    Marques, F. O.; Burlini, L.; Burg, J.-P.

    2010-03-01

    Polymer jacketed porphyritic samples of 70% halite + 30% coarse calcite were subjected to torsion deformation to investigate the effects of a mixture of coarse calcite on the microstructure and mechanical properties of a two-phase aggregate. The experiments were run at 100 and 200 °C, a confining pressure of 250 MPa, and a constant shear strain rate of 3E-4 s -1. Ultimate strengths of single-phase halite synthetic aggregates at 100 and 200 °C were ca. 32 and 8 Nm, respectively, and of the two-phase aggregate 39 and 18 Nm, respectively; this shows that the two-phase aggregate was much stronger, especially at 200 °C. Stepping strain rate tests show that the two-phase aggregate behaved as power-law viscous, with stress exponents of ca. 19 and 13 at 100 °C at 200 °C, respectively. From these high exponents, we infer that the active deformation mechanisms were not efficient enough to rapidly relax the applied stress. Halite stress exponents at 100 and 200 °C are typically much lower, in the order of 4-6, which means that the calcite porphyroclasts were obstacles to halite plastic flow and hampered stress relaxation. The drop of the stress exponent with temperature indicates that the main deformation mechanism(s) was temperature sensitive. Matrix halite deformed plastically, while calcite rotated rigidly or deformed in a brittle fashion, with grain size reduction by fracturing (e.g. bookshelf and boudinage). We conclude that halite was softer than calcite in the investigated temperature range. Strain was homogeneous at the sample scale but not at the grain scale where the foliation delineated by plastically flattened halite contoured the rigid calcite clasts. The microstructures experimentally produced at 100 and 200 °C are very similar and find their counterparts in natural mylonites: rolling structures, σ and δ porphyroclast systems, bookshelf and boudinage in brittle calcite porphyroclasts, and ductile y and c' micro shear bands in the halite matrix.

  5. Effects of maximum aggregate size on UPV of brick aggregate concrete.

    PubMed

    Mohammed, Tarek Uddin; Mahmood, Aziz Hasan

    2016-07-01

    Investigation was carried out to study the effects of maximum aggregate size (MAS) (12.5mm, 19.0mm, 25.0mm, 37.5mm, and 50.0mm) on ultrasonic pulse velocity (UPV) of concrete. For investigation, first class bricks were collected and broken to make coarse aggregate. The aggregates were tested for specific gravity, absorption capacity, unit weight, and abrasion resistance. Cylindrical concrete specimens were made with different sand to aggregate volume ratio (s/a) (0.40 and 0.45), W/C ratio (0.45, 0.50, and 0.55), and cement content (375kg/m(3) and 400kg/m(3)). The specimens were tested for compressive strength and Young's modulus. UPV through wet specimen was measured using Portable Ultrasonic Non-destructive Digital Indicating Tester (PUNDIT). Results indicate that the pulse velocity through concrete increases with an increase in MAS. Relationships between UPV and compressive strength; and UPV and Young's modulus of concrete are proposed for different maximum sizes of brick aggregate. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Sequence dependent aggregation of peptides and fibril formation

    NASA Astrophysics Data System (ADS)

    Hung, Nguyen Ba; Le, Duy-Manh; Hoang, Trinh X.

    2017-09-01

    Deciphering the links between amino acid sequence and amyloid fibril formation is key for understanding protein misfolding diseases. Here we use Monte Carlo simulations to study the aggregation of short peptides in a coarse-grained model with hydrophobic-polar (HP) amino acid sequences and correlated side chain orientations for hydrophobic contacts. A significant heterogeneity is observed in the aggregate structures and in the thermodynamics of aggregation for systems of different HP sequences and different numbers of peptides. Fibril-like ordered aggregates are found for several sequences that contain the common HPH pattern, while other sequences may form helix bundles or disordered aggregates. A wide variation of the aggregation transition temperatures among sequences, even among those of the same hydrophobic fraction, indicates that not all sequences undergo aggregation at a presumable physiological temperature. The transition is found to be the most cooperative for sequences forming fibril-like structures. For a fibril-prone sequence, it is shown that fibril formation follows the nucleation and growth mechanism. Interestingly, a binary mixture of peptides of an aggregation-prone and a non-aggregation-prone sequence shows the association and conversion of the latter to the fibrillar structure. Our study highlights the role of a sequence in selecting fibril-like aggregates and also the impact of a structural template on fibril formation by peptides of unrelated sequences.

  7. A two-level approach to large mixed-integer programs with application to cogeneration in energy-efficient buildings

    DOE PAGES

    Lin, Fu; Leyffer, Sven; Munson, Todd

    2016-04-12

    We study a two-stage mixed-integer linear program (MILP) with more than 1 million binary variables in the second stage. We develop a two-level approach by constructing a semi-coarse model that coarsens with respect to variables and a coarse model that coarsens with respect to both variables and constraints. We coarsen binary variables by selecting a small number of prespecified on/off profiles. We aggregate constraints by partitioning them into groups and taking convex combination over each group. With an appropriate choice of coarsened profiles, the semi-coarse model is guaranteed to find a feasible solution of the original problem and hence providesmore » an upper bound on the optimal solution. We show that solving a sequence of coarse models converges to the same upper bound with proven finite steps. This is achieved by adding violated constraints to coarse models until all constraints in the semi-coarse model are satisfied. We demonstrate the effectiveness of our approach in cogeneration for buildings. Here, the coarsened models allow us to obtain good approximate solutions at a fraction of the time required by solving the original problem. Extensive numerical experiments show that the two-level approach scales to large problems that are beyond the capacity of state-of-the-art commercial MILP solvers.« less

  8. A two-level approach to large mixed-integer programs with application to cogeneration in energy-efficient buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Fu; Leyffer, Sven; Munson, Todd

    We study a two-stage mixed-integer linear program (MILP) with more than 1 million binary variables in the second stage. We develop a two-level approach by constructing a semi-coarse model that coarsens with respect to variables and a coarse model that coarsens with respect to both variables and constraints. We coarsen binary variables by selecting a small number of prespecified on/off profiles. We aggregate constraints by partitioning them into groups and taking convex combination over each group. With an appropriate choice of coarsened profiles, the semi-coarse model is guaranteed to find a feasible solution of the original problem and hence providesmore » an upper bound on the optimal solution. We show that solving a sequence of coarse models converges to the same upper bound with proven finite steps. This is achieved by adding violated constraints to coarse models until all constraints in the semi-coarse model are satisfied. We demonstrate the effectiveness of our approach in cogeneration for buildings. Here, the coarsened models allow us to obtain good approximate solutions at a fraction of the time required by solving the original problem. Extensive numerical experiments show that the two-level approach scales to large problems that are beyond the capacity of state-of-the-art commercial MILP solvers.« less

  9. A probabilistic mechanical model for prediction of aggregates’ size distribution effect on concrete compressive strength

    NASA Astrophysics Data System (ADS)

    Miled, Karim; Limam, Oualid; Sab, Karam

    2012-06-01

    To predict aggregates' size distribution effect on the concrete compressive strength, a probabilistic mechanical model is proposed. Within this model, a Voronoi tessellation of a set of non-overlapping and rigid spherical aggregates is used to describe the concrete microstructure. Moreover, aggregates' diameters are defined as statistical variables and their size distribution function is identified to the experimental sieve curve. Then, an inter-aggregate failure criterion is proposed to describe the compressive-shear crushing of the hardened cement paste when concrete is subjected to uniaxial compression. Using a homogenization approach based on statistical homogenization and on geometrical simplifications, an analytical formula predicting the concrete compressive strength is obtained. This formula highlights the effects of cement paste strength and aggregates' size distribution and volume fraction on the concrete compressive strength. According to the proposed model, increasing the concrete strength for the same cement paste and the same aggregates' volume fraction is obtained by decreasing both aggregates' maximum size and the percentage of coarse aggregates. Finally, the validity of the model has been discussed through a comparison with experimental results (15 concrete compressive strengths ranging between 46 and 106 MPa) taken from literature and showing a good agreement with the model predictions.

  10. Recycled blocks with improved sound and fire insulation containing construction and demolition waste.

    PubMed

    Leiva, Carlos; Solís-Guzmán, Jaime; Marrero, Madelyn; García Arenas, Celia

    2013-03-01

    The environmental problem posed by construction and demolition waste (C&D waste) is derived not only from the high volume produced, but also from its treatment and disposal. Treatment plants receive C&D waste which is then transformed into a recycled mixed aggregate. The byproduct is mainly used for low-value-added applications such as land escape restoration, despite the high quality of the aggregate. In the present work, the chemical composition properties and grading curve properties of these aggregates are defined. Furthermore, the resulting recycled concrete with a high proportion of recycled composition, from 20% to 100% replacement of fine and coarse aggregate, is characterized physically and mechanically. An environmental study of the new construction material when all aggregates are substituted by C&D waste shows a low toxicity level, similar to that of other construction materials. The new material also has improved properties with respect to standard concrete such as high fire resistance, good heat insulation, and acoustic insulation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Effects of cholesterol on pore formation in lipid bilayers induced by human islet amyloid polypeptide fragments: A coarse-grained molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Xu, Weixin; Wei, Guanghong; Su, Haibin; Nordenskiöld, Lars; Mu, Yuguang

    2011-11-01

    Disruption of the cellular membrane by the amyloidogenic peptide, islet amyloid polypeptide (IAPP), has been considered as one of the mechanisms of β-cell death during type 2 diabetes. The N-terminal region (residues 1-19) of the human version of IAPP is suggested to be primarily responsible for the membrane-disrupting effect of the full-length hIAPP peptide. However, the detailed assembly mode of hIAPP1-19 with membrane remains unclear. To gain insight into the interactions of hIAPP1-19 oligomer with the model membrane, we have employed coarse-grained molecular dynamics self-assembly simulations to study the aggregation of hIAPP1-19 fragments in the binary lipid made of zwitterionic dipalmitoylphosphatidylcholine (DPPC) and anionic dipalmitoylphosphatidylserine (DPPS) in the presence and absence of different levels of cholesterol content. The membrane-destabilizing effect of hIAPP1-19 is found to be modulated by the presence of cholesterol. In the absence of cholesterol, hIAPP1-19 aggregates prefer to locate inside the bilayer, forming pore-like assemblies. While in the presence of cholesterol molecules, the lipid bilayer becomes more ordered and stiff, and the hIAPP1-19 aggregates are dominantly positioned at the bilayer-water interface. The action of cholesterol may suggest a possible way to maintain the membrane integrity by small molecule interference.

  12. Effects of oxidative modification on thermal aggregation and gel properties of soy protein by malondialdehyde.

    PubMed

    Wu, Wei; Hua, Yufei; Lin, Qinlu

    2014-03-01

    Malondialdehyde (MDA) was selected as a representative of lipid peroxidation products to investigate the effects of oxidative modification on thermal aggregation and gel properties of soy protein by lipid peroxidation products. Incubation of soy protein with increasing concentration of MDA resulted in gradual decrease of particle size and content of thermal aggregates during heat denaturation. Oxidative modification by MDA resulted in a decrease in water holding capacity, gel hardness, and gel strength of soy protein gel. An increase in coarseness and interstice of MDA modified protein gel network was accompanied by uneven distribution of interstice as MDA concentration increased. The results showed that degree of thermal aggregation of MDA-modified soy protein gradually decreased as MDA concentration increased, which contributed to a decrease in water holding capacity, gel hardness, and gel strength of MDA-modified soy protein gel.

  13. Concrete with onyx waste aggregate as aesthetically valued structural concrete

    NASA Astrophysics Data System (ADS)

    Setyowati E., W.; Soehardjono, A.; Wisnumurti

    2017-09-01

    The utillization of Tulungagung onyx stone waste as an aggregate of concrete mixture will improve the economic value of the concrete due to the brighter color and high aesthetic level of the products. We conducted the research of 75 samples as a test objects to measure the compression stress, splits tensile stress, flexural tensile stress, elasticity modulus, porosity modulus and also studied 15 test objects to identify the concrete micro structures using XRD test, EDAX test and SEM test. The test objects were made from mix designed concrete, having ratio cement : fine aggregate : coarse aggregate ratio = 1 : 1.5 : 2.1, and W/C ratio = 0.4. The 28 days examination results showed that the micro structure of Tulungagung onyx waste concrete is similar with normal concrete. Moreover, the mechanical test results proved that Tulungagung onyx waste concretes also have a qualified level of strength to be used as a structural concrete with higher aesthetic level.

  14. Geochemical studies of backfill aggregates, lake sediment cores and the Hueco Bolson Aquifer

    NASA Astrophysics Data System (ADS)

    Thapalia, Anita

    This dissertation comprises of three different researches that focuses on the application of geochemistry from aggregates, lake sediment cores and Hueco Bolson Aquifer. Each study is independent and presented in the publication format. The first chapter is already published and the second chapter is in revision phase. Overall, three studies measure the large scale (field) as well as bench scale (lab) water-rock interactions influenced by the climatic and anthropogenic factors spans from the field of environmental geology to civil engineering. The first chapter of this dissertation addresses the chemical evaluation of coarse aggregates from six different quarries in Texas. The goal of this work is to find out the best geochemical methods for assessing the corrosion potential of coarse aggregates prior to their use in mechanically stabilized earth walls. Electrochemical parameters help to define the corrosion potential of aggregates following two different leaching protocols. Testing the coarse and fine aggregates demonstrate the chemical difference due to size-related kinetic leaching effects. Field fines also show different chemistry than the bulk rock indicating the weathering impact on carbonate rocks. The second chapter investigates zinc (Zn) isotopic signatures from eight lake sediment cores collected both from pristine lakes and those impacted by urban anthropogenic contamination. Zinc from the natural weathering of rocks and anthropogenic atmospheric pollutants are transported to these lakes and the signatures are recorded in the sediments. Isotopic analysis of core samples provides the signature of anthropogenic contamination sources. Dated sediment core and isotopic analysis can identify Zn inputs that are correlated to the landuse and population change of the watersheds. Comparison of isotopic data from both pristine and urban lake sediment core also serves as an analog in other lake sediment cores in the world. The third chapter studies on Hueco Bolson Aquifer that an important sources of water in the El Paso/Cd. Juraez metroplex. To delineate the boundary between fresh and brackish water from the northern Hueco Bolson Aquifer, we utilize an integrative geochemical, geophysical, and sedimentological approach. The goal of this study is to use geophysical well-log analysis and the water chemical analysis for identifying the changes in the quality of the groundwater. A detailed microgravity survey is utilized to explore the subsurface geological structures that control the conduits and/or barriers of groundwater flow. A detailed geochemical analysis of aquifer samples provide salinity of groundwater that will complement to the subsurface structures obtained from the geophysical study. This fundamental research in developing methods from an integrated approach to estimate aquifer quality can be used as an analog for similar studies in other arid regions.

  15. Effect of Elevated Temperature on the Residual Properties of Quartzite, Granite and Basalt Aggregate Concrete

    NASA Astrophysics Data System (ADS)

    Masood, A.; Shariq, M.; Alam, M. Masroor; Ahmad, T.; Beg, A.

    2018-05-01

    In the present study, experimental investigations have been carried out to determine the effect of elevated temperature on the residual properties of quartzite, granite and basalt aggregate concrete mixes. Ultrasonic pulse velocity and unstressed residual compressive strength tests on cube specimens have been conducted at ambient and after single heating-cooling cycle of elevated temperature ranging from 200 to 600 °C. The relationship between ultrasonic pulse velocity and residual compressive strength of all concrete mixes have been developed. Scanning electron microscopy was also carried out to study micro structure of quartzite, granite and basalt aggregate concrete subjected to single heating-cooling cycle of elevated temperature. The results show that the residual compressive strength of quartzite aggregate concrete has been found higher than granite and basalt aggregate concrete at ambient and at all temperatures. It has also been found that the loss of strength in concrete is due to the development of micro-cracks result in failure of cement matrix and coarse aggregate bond. Further, the basalt aggregate concrete has been observed lower strength due to low affinity with Portland cements ascribed to its ferro-magnesium rich mineral composition.

  16. On the applicability of density dependent effective interactions in cluster-forming systems

    NASA Astrophysics Data System (ADS)

    Montes-Saralegui, Marta; Kahl, Gerhard; Nikoubashman, Arash

    2017-02-01

    We systematically studied the validity and transferability of the force-matching algorithm for computing effective pair potentials in a system of dendritic polymers, i.e., a particular class of ultrasoft colloids. We focused on amphiphilic dendrimers, macromolecules which can aggregate into clusters of overlapping particles to minimize the contact area with the surrounding implicit solvent. Simulations were performed for both the monomeric and coarse-grained models in the liquid phase at densities ranging from infinite dilution up to values close to the freezing point. The effective pair potentials for the coarse-grained simulations were computed from the monomeric simulations both in the zero-density limit (Φeff0) and at each investigated finite density (Φeff). Conducting the coarse-grained simulations with Φeff0 at higher densities is not appropriate as they failed at reproducing the structural properties of the monomeric simulations. In contrast, we found excellent agreement between the spatial dendrimer distributions obtained from the coarse-grained simulations with Φeff and the microscopically detailed simulations at low densities, where the macromolecules were distributed homogeneously in the system. However, the reliability of the coarse-grained simulations deteriorated significantly as the density was increased further and the cluster occupation became more polydisperse. Under these conditions, the effective pair potential of the coarse-grained model can no longer be computed by averaging over the whole system, but the local density needs to be taken into account instead.

  17. Monte Carlo approaches to sampling forested tracts with lines or points

    Treesearch

    Harry T. Valentine; Jeffrey H. Gove; Timothy G. Gregoire

    2001-01-01

    Several line- and point-based sampling methods can be employed to estimate the aggregate dimensions of trees standing on a forested tract or pieces of coarse woody debris lying on the forest floor. Line methods include line intersect sampling, horizontal line sampling, and transect relascope sampling; point methods include variable- and fixed-radius plot sampling, and...

  18. Field results for line intersect distance sampling of coarse woody debris

    Treesearch

    David L. R. Affleck

    2009-01-01

    A growing recognition of the importance of downed woody materials in forest ecosystem processes and global carbon budgets has sharpened the need for efficient sampling strategies that target this resource. Often the aggregate volume, biomass, or carbon content of the downed wood is of primary interest, making recently developed probability proportional-to-volume...

  19. The effect of steel slag as a coarse aggregate and Sinabung volcanic ash a filler on high strength concrete

    NASA Astrophysics Data System (ADS)

    Karolina, R.; Putra, A. L. A.

    2018-02-01

    The Development of concrete technology is continues to grow. The requisite for efficient constructions that are often viewed in terms of concrete mechanical behavior, application on the field, and cost estimation of implementation increasingly require engineers to optimize construction materials, especially for concrete materials. Various types of concrete have now been developed according to their needs, such as high strength concrete. On high strength concrete design, it is necessary to consider several factors that will affect the reach of the quality strength, Those are cement, water cement ratio (w/c), aggregates, and proper admixture. In the use of natural mineral, it is important for an engineer to keep an eye on the natural conditions that have been explored. So the selection of aggregates as possible is a material that is not causing nature destruction. On this experiment the use of steel slag from PT.Growth Sumatra Industry as a substitute of coarse and fine aggregate, and volcanic ash of mount Sinabung as microsilka in concrete mixture substituted to create high strength concrete that is harmless for the environment. The use of mount sinabung volcanic ash as microsilika coupled with the use of Master Glenium Sky 8614 superplasticizer. This experiment intend to compare high strength concrete based slag steel as the main constituent aggregates and high strength concrete with a conventional mixture. The research result for 28 days old concrete shows that conventional concrete compressive strength is 67.567 MPa, slag concrete 75.958 Mpa, conventional tensile strength 5.435 Mpa while slag concrete 5.053 Mpa, conventional concrete bending strength 44064.96 kgcm while concrete slag 51473.94 kgcm and modulus of conventional concrete fracture 124.978 kg / cm2 while slag concrete 145.956 kg / cm2. Both concrete slump values shows similar results due to the use of superplasticizer.

  20. Processing of aerosol particles within the Habshan pollution plume

    NASA Astrophysics Data System (ADS)

    Semeniuk, T. A.; Bruintjes, R.; Salazar, V.; Breed, D.; Jensen, T.; Buseck, P. R.

    2015-03-01

    The Habshan industrial site in the United Arab Emirates produces a regional-scale pollution plume associated with oil and gas processing, discharging high loadings of sulfates and chlorides into the atmosphere, which interact with the ambient aerosol population. Aerosol particles and trace gas chemistry at this site were studied on two flights in the summer of 2002. Measurements were collected along vertical plume profiles to show changes associated with atmospheric processing of particle and gas components. Close to the outlet stack, particle concentrations were over 10,000 cm-3, dropping to <2000 cm-3 in more dilute plume around 1500 m above the stack. Particles collected close to the stack and within the dilute plume were individually measured for size, morphology, composition, and mixing state using transmission electron microscopy coupled with energy-dispersive X-ray spectroscopy. Close to the stack, most coarse particles consisted of mineral dust and NaCl crystals from burning oil brines, while sulfate droplets dominated the fine mode. In more dilute plume, at least 1500 m above the stack, the particle spectrum was more diverse, with a significant increase in internally mixed particle types. Dilute plume samples consisted of coarse NaCl/silicate aggregates or NaCl-rich droplets, often with a sulfate component, while fine-fraction particles were of mixed cation sulfates, also internally mixed with nanospherical soot or silicates. Thus, both chloride and sulfate components of the pollution plume rapidly reacted with ambient mineral dust to form coated and aggregate particles, enhancing particle size, hygroscopicity, and reactivity of the coarse mode. The fine-fraction sulfate-bearing particles formed in the plume contribute to regional transport of sulfates, while coarse sulfate-bearing fractions locally reduced the SO2 loading through sedimentation. The chloride- and sulfate-bearing internally mixed particles formed in the plume markedly changed the reflectivity and scattering properties of the ambient aerosol population, as well as its hygroscopic and ice nucleation properties.

  1. Early stage aggregation of a coarse-grained model of polyglutamine

    NASA Astrophysics Data System (ADS)

    Haaga, Jason; Gunton, J. D.; Buckles, C. Nadia; Rickman, J. M.

    2018-01-01

    In this paper, we study the early stages of aggregation of a model of polyglutamine (polyQ) for different repeat lengths (number of glutamine amino acid groups in the chain). In particular, we use the Large-scale Atomic/Molecular Massively Parallel Simulator to study a generic coarse-grained model proposed by Bereau and Deserno. We focus on the primary nucleation mechanism involved and find that our results for the initial self-assembly process are consistent with the two-dimensional classical nucleation theory of Kashchiev and Auer. More specifically, we find that with decreasing supersaturation, the oligomer fibril (protofibril) transforms from a one-dimensional β sheet to two-, three-, and higher layer β sheets as the critical nucleus size increases. We also show that the results are consistent with several predictions of their theory, including the dependence of the critical nucleus size on the supersaturation. Our results for the time dependence of the mass aggregation are in reasonable agreement with an approximate analytical solution of the filament theory by Knowles and collaborators that corresponds to an additional secondary nucleation arising from filament fragmentation. Finally, we study the dependence of the critical nucleus size on the repeat length of polyQ. We find that for the larger length polyglutamine chain that we study, the critical nucleus is a monomer, in agreement with experiment and in contrast to the case for the smaller chain, for which the smallest critical nucleus size is four.

  2. Insights into DNA-mediated interparticle interactions from a coarse-grained model

    NASA Astrophysics Data System (ADS)

    Ding, Yajun; Mittal, Jeetain

    2014-11-01

    DNA-functionalized particles have great potential for the design of complex self-assembled materials. The major hurdle in realizing crystal structures from DNA-functionalized particles is expected to be kinetic barriers that trap the system in metastable amorphous states. Therefore, it is vital to explore the molecular details of particle assembly processes in order to understand the underlying mechanisms. Molecular simulations based on coarse-grained models can provide a convenient route to explore these details. Most of the currently available coarse-grained models of DNA-functionalized particles ignore key chemical and structural details of DNA behavior. These models therefore are limited in scope for studying experimental phenomena. In this paper, we present a new coarse-grained model of DNA-functionalized particles which incorporates some of the desired features of DNA behavior. The coarse-grained DNA model used here provides explicit DNA representation (at the nucleotide level) and complementary interactions between Watson-Crick base pairs, which lead to the formation of single-stranded hairpin and double-stranded DNA. Aggregation between multiple complementary strands is also prevented in our model. We study interactions between two DNA-functionalized particles as a function of DNA grafting density, lengths of the hybridizing and non-hybridizing parts of DNA, and temperature. The calculated free energies as a function of pair distance between particles qualitatively resemble experimental measurements of DNA-mediated pair interactions.

  3. Solid-state 13C NMR experiments reveal effects of aggregate size on the chemical composition of particulate organic matter in grazed steppe soils

    NASA Astrophysics Data System (ADS)

    Steffens, M.; Kölbl, A.; Kögel-Knabner, I.

    2009-04-01

    Grazing is one of the most important factors that may reduce soil organic matter (SOM) stocks and subsequently deteriorate aggregate stability in grassland topsoils. Land use management and grazing reduction are assumed to increase the input of OM, improve the soil aggregation and change species composition of vegetation (changes depth of OM input). Many studies have evaluated the impact of grazing cessation on SOM quantity. But until today little is known about the impact of grazing cessation on the chemical quality of SOM in density fractions, aggregate size classes and different horizons. The central aim of this study was to analyse the quality of SOM fractions in differently sized aggregates and horizons as affected by increased inputs of organic matter due to grazing exclusion. We applied a combined aggregate size, density and particle size fractionation procedure to sandy steppe topsoils with different organic matter inputs due to different grazing intensities (continuously grazed = Cg, winter grazing = Wg, ungrazed since 1999 = Ug99, ungrazed since 1979 = Ug79). Three different particulate organic matter (POM; free POM, in aggregate occluded POM and small in aggregate occluded POM) and seven mineral-associated organic matter fractions were separated for each of three aggregate size classes (coarse = 2000-6300 m, medium = 630-2000 m and fine =

  4. Rigidity of transmembrane proteins determines their cluster shape

    NASA Astrophysics Data System (ADS)

    Jafarinia, Hamidreza; Khoshnood, Atefeh; Jalali, Mir Abbas

    2016-01-01

    Protein aggregation in cell membrane is vital for the majority of biological functions. Recent experimental results suggest that transmembrane domains of proteins such as α -helices and β -sheets have different structural rigidities. We use molecular dynamics simulation of a coarse-grained model of protein-embedded lipid membranes to investigate the mechanisms of protein clustering. For a variety of protein concentrations, our simulations under thermal equilibrium conditions reveal that the structural rigidity of transmembrane domains dramatically affects interactions and changes the shape of the cluster. We have observed stable large aggregates even in the absence of hydrophobic mismatch, which has been previously proposed as the mechanism of protein aggregation. According to our results, semiflexible proteins aggregate to form two-dimensional clusters, while rigid proteins, by contrast, form one-dimensional string-like structures. By assuming two probable scenarios for the formation of a two-dimensional triangular structure, we calculate the lipid density around protein clusters and find that the difference in lipid distribution around rigid and semiflexible proteins determines the one- or two-dimensional nature of aggregates. It is found that lipids move faster around semiflexible proteins than rigid ones. The aggregation mechanism suggested in this paper can be tested by current state-of-the-art experimental facilities.

  5. Molecular dynamics analysis of the aggregation propensity of polyglutamine segments

    PubMed Central

    Wen, Jingran; Scoles, Daniel R.

    2017-01-01

    Protein misfolding and aggregation is a pathogenic feature shared among at least ten polyglutamine (polyQ) neurodegenerative diseases. While solvent-solution interaction is a key factor driving protein folding and aggregation, the solvation properties of expanded polyQ tracts are not well understood. By using GPU-enabled all-atom molecular dynamics simulations of polyQ monomers in an explicit solvent environment, this study shows that solvent-polyQ interaction propensity decreases as the lengths of polyQ tract increases. This study finds a predominance in long-distance interactions between residues far apart in polyQ sequences with longer polyQ segments, that leads to significant conformational differences. This study also indicates that large loops, comprised of parallel β-structures, appear in long polyQ tracts and present new aggregation building blocks with aggregation driven by long-distance intra-polyQ interactions. Finally, consistent with previous observations using coarse-grain simulations, this study demonstrates that there is a gain in the aggregation propensity with increased polyQ length, and that this gain is correlated with decreasing ability of solvent-polyQ interaction. These results suggest the modulation of solvent-polyQ interactions as a possible therapeutic strategy for treating polyQ diseases. PMID:28542401

  6. Effect of surrogate aggregates on the thermal conductivity of concrete at ambient and elevated temperatures.

    PubMed

    Yun, Tae Sup; Jeong, Yeon Jong; Youm, Kwang-Soo

    2014-01-01

    The accurate assessment of the thermal conductivity of concretes is an important part of building design in terms of thermal efficiency and thermal performance of materials at various temperatures. We present an experimental assessment of the thermal conductivity of five thermally insulated concrete specimens made using lightweight aggregates and glass bubbles in place of normal aggregates. Four different measurement methods are used to assess the reliability of the thermal data and to evaluate the effects of the various sensor types. The concrete specimens are also assessed at every 100 °C during heating to ~800 °C. Normal concrete is shown to have a thermal conductivity of ~2.25 W m(-1) K(-1). The surrogate aggregates effectively reduce the conductivity to ~1.25 W m(-1) K(-1) at room temperature. The aggregate size is shown not to affect thermal conduction: fine and coarse aggregates each lead to similar results. Surface contact methods of assessment tend to underestimate thermal conductivity, presumably owing to high thermal resistance between the transducers and the specimens. Thermogravimetric analysis shows that the stages of mass loss of the cement paste correspond to the evolution of thermal conductivity upon heating.

  7. Effect of Surrogate Aggregates on the Thermal Conductivity of Concrete at Ambient and Elevated Temperatures

    PubMed Central

    Yun, Tae Sup; Jeong, Yeon Jong; Youm, Kwang-Soo

    2014-01-01

    The accurate assessment of the thermal conductivity of concretes is an important part of building design in terms of thermal efficiency and thermal performance of materials at various temperatures. We present an experimental assessment of the thermal conductivity of five thermally insulated concrete specimens made using lightweight aggregates and glass bubbles in place of normal aggregates. Four different measurement methods are used to assess the reliability of the thermal data and to evaluate the effects of the various sensor types. The concrete specimens are also assessed at every 100°C during heating to ~800°C. Normal concrete is shown to have a thermal conductivity of ~2.25 W m−1 K−1. The surrogate aggregates effectively reduce the conductivity to ~1.25 W m−1 K−1 at room temperature. The aggregate size is shown not to affect thermal conduction: fine and coarse aggregates each lead to similar results. Surface contact methods of assessment tend to underestimate thermal conductivity, presumably owing to high thermal resistance between the transducers and the specimens. Thermogravimetric analysis shows that the stages of mass loss of the cement paste correspond to the evolution of thermal conductivity upon heating. PMID:24696666

  8. Mineralogy of the Almahata Sitta Ureilite

    NASA Technical Reports Server (NTRS)

    Zolensky, Michael E.; Herrin, J.; Friedrich, J. M.; Rumble, D.; Steele, A.; Jenniskens, P.; Shaddad, M. H.; Le, L.; Robinson, G. A.

    2009-01-01

    Mineralogy & Petrography: Almahata Sitta, deriving from the asteroid 2008 TC3, is a coarse-grained- to porous, fine-grained, fragmental breccia with subrounded mineral fragments and olivine aggregates embedded in a cataclastic matrix of ureilitic material. Mineral fragments include polycrystalline olivine, low-calcium, pigeonite, and augite. Abundant carbonaceous aggregates containing graphite, microdiamonds and aliphatics. Kamacite, Cr-rich troilite, silica and schreibersite are abundant. The compositional range of the silicates is characteristic of the ureilites as a group, but unusually broad for an individual ureilite. The dense lithology is typical for ureilites, but the porous lithology is anomalous. In the porous lithology pore walls are largely coated by crystals of olivine. Classification: Almahata Sitta is an anomalous, polymict eucrite. Anomalous features include large compositional range of silicates, high abundance and large size of pores, crystalline pore wall linings, and fine-grained texture. Tomography reveals that the pores define thin, discontinuous "sheets" connected in three dimensions, suggesting that they outline grains that have been incompletely welded together. The crystals lining the pore walls are probably vapor phase deposits. Therefore Almahata Sitta may represent an agglomeration of coarse- to fine-grained, incompletely reduced pellets formed during impact, and subsequently welded together at high temperature.

  9. Coarse grained study of pluronic F127: Comparison with shorter co-polymers in its interaction with lipid bilayers and self-aggregation in water

    NASA Astrophysics Data System (ADS)

    Wood, I.; Martini, M. F.; Albano, J. M. R.; Cuestas, M. L.; Mathet, V. L.; Pickholz, M.

    2016-04-01

    The aim of this work is to understand the interactions of the poloxamer Pluronic F127, with lipid bilayers and its ability to self-associate in an aqueous environment. Molecular dynamics simulations at the coarse-grain scale were performed to address the behavior of single Pluronic F127 and shorter poloxamers unimers in palmitoyl-oleoyl-phosphatidyl-choline model membranes. According to the initial conditions and the poly-ethylene oxide/poly-propylene oxide composition, in water phase the unimer chain collapses into a coil conformation or adopts an interphacial U-shaped - or membrane spanning - distribution. A combination of poly-propylene oxide length, and the poly-ethylene oxide ability to cover poly-propylene oxide, is determinant for the conformation adopted by the unimer in each phase. Results of the simulations showed molecular evidence of strong interaction between Pluronic F127 and model membranes both in stable U-shaped and span conformations. The knowledge of this interaction could contribute to improve drug permeation. Additionally, we investigated the aggregation of one hundred Pluronic F127 unimers in water forming a micelle-like structure, suitable to be used as drug delivery system models.

  10. Function evaluation of asphalt mixture with industrially produced BOF slag aggregate.

    PubMed

    Zhao, Meiling; Wu, Shaopeng; Chen, Zongwu; Li, Chao

    2016-07-04

    Laboratory research suggested that basic oxygen furnace (BOF) slag-based asphalt mixture was a functional material. However, the BOF slag aggregate's quality was difficult to control when it was heavily used in entity engineering. The primary objective of this research was to evaluate the functional performances of asphalt mixture containing BOF slag coarse aggregate (BSCA), which was from an industrialized production line. Limestone mixture was a control group. The Marshall method was first adopted to design asphalt mixtures. The performances of limestone asphalt mixture and BOF slag asphalt mixture including fatigue failure resistance and moisture stability were then evaluated and compared. Results showed that the asphalt mixture containing BSCA possessed better durability, which meant the quality of BSCA from industrialized production lines was well controlled and this BSCA can be heavily used in entity engineering.

  11. Aggregate stability, root length and root thickness influenced by a mycorrhizal inoculum? - Results from a three-year eco-engineering field experiment on an alpine slope.

    NASA Astrophysics Data System (ADS)

    Bast, Alexander; Wilcke, Wolfgang; Lüscher, Peter; Graf, Frank; Gärtner, Holger

    2014-05-01

    In mountain environments many slopes are covered by coarse grained, glacial-, periglacial- or/and denudation-derived substrate. These slopes show a high geomorphic activity and are susceptible for erosional processes, shallow landslides or debris flows, which can result in a high socio-economic hazard potential. This is especially true for steep slopes, lacking a protecting vegetation cover. Regarding hazard prevention, eco-engineering gained in importance because related techniques provide a sustainable measure to protect erosion-prone hillslopes. The idea of using plants for sustainable erosion control and protection against shallow landslides, demands some essential requirements, as e.g., a stable seedbed providing appropriate water and nutrient supply. However, degraded alpine slopes are often unstable and the coarse-grained material shows a low retention capacity of water and nutrients. Extreme conditions like this hamper a fast and sustainable development of a protecting vegetation cover even if pioneer plants are used to stabilize the slopes. Thus, the question arises what needs to be done to give planted saplings within eco-engineering projects maximum support developing their above- and belowground structures to promote slope stabilization. Laboratory experiments using potted plants have shown a positive impact of mycorrhizal fungi inoculation plant development and soil structure, i.e. the formation of (stable) aggregates within several months. Soil aggregate stability is an integrating parameter, reflecting several aspects of the plant-soil system and for this also an indicator of soil development and soil stability. Because of this and based on the promising laboratory results, we intended to apply this approach in a field-experiment We established (i) mycorrhizal and (ii) non-mycorrhizal treated eco-engineered research plots on a field experimental scale, covering a total area of approx. 1000 m2 on an ENE exposed slope (coarse morainic and denudation-derived substrate; inclination ~40 - 45 °; elevation 1220 - 1360 m a.s.l.) located in the Eastern Swiss Alps, where many environmental parameters can be seen as homogeneous. Soil aggregate stability, the formation of water stable aggregates and the fine-root development was quantified at the end of three consecutively vegetation periods. Our results show, that an impact of the mycorrhizal inoculum on aggregate stability was not traceable after one vegetation period, which contradicts our expectations and former laboratory experiments. At the mycorrhizal inoculated site, fine roots showed indeed a lower root length density compared to the non-mycorrhizal treated site, but the proportion of roots with thicker diameters tended to be higher. At the end of the third vegetation period this pattern changed. Aggregate stability is then highest at the inoculated site and root length density increased showing the highest values as well. The tendency to thicker root diameters at the mycorrhizal treated site can be confirmed. Our findings show that studies on a field experimental scale are inevitable. Laboratory experiments and field studies complement each other, and lead to a better understanding, having regard to a successful application of sustainable eco-engineering measures on erosion-prone slopes in alpine environments.

  12. Authigenic vivianite in Potomac River sediments: control by ferric oxy-hydroxides.

    USGS Publications Warehouse

    Hearn, P.P.; Parkhurst, D.L.; Callender, E.

    1983-01-01

    Sand-size aggregates of vivianite crystals occur in the uppermost sediments of the Potomac River estuary immediately downstream from the outfall of a sewage treatment plant at the southernmost boundary of the District of Columbia, USA. They are most abundant in a small area of coarse sand (dredge spoil) which contrasts with the adjacent, much finer sediments. The sewage outfall supplies both reducing conditions and abundant phosphate. Analyses and calculations indicate that the pore waters in all the adjacent sediments are supersaturated with respect to vivianite. Its concentration in the coarse sand is attributed to the absence there of amorphous ferric oxyhydroxides, which are present in the finer sediments and preferentially absorb the phosphate ion. -H.R.B.

  13. Pervious concrete using fly ash aggregate as coarse aggregate-an experimental study

    NASA Astrophysics Data System (ADS)

    Dash, Subhakanta; Kar, Biswabandita; Mukherjee, Partha Sarathi

    2018-05-01

    The present study deals with the fabrication of pervious concrete from fly ash aggregates. The pervious concrete were obtained by the mixture of three different size fly ash aggregates (4.75 mm,9.5 mm,12.5 mm), Portland cement, water with little amount of sand or without sand. Admixtures like Silica fume(SF) and Super plasticizer are added to the mixture to enhance the strength of concrete. Trial being taken on preparation of Fly ash based pervious concrete (FPC) with different w/c ratio i.e. 0.30, 0.35 and 0.40 respectively. Tests such as porosity, permeability and compressive, strength are studied for this concrete material and the result concluded that the concrete when cured for 28 days its compressive strength falls in between 7.15 - 15.74 MPa and permeability 9.38 - 16.07 mm/s with porosity 27.59 - 34.05% and these are suited to be used as for use as an environment friendly concrete.

  14. Mechanical properties of recycled concrete with demolished waste concrete aggregate and clay brick aggregate

    NASA Astrophysics Data System (ADS)

    Zheng, Chaocan; Lou, Cong; Du, Geng; Li, Xiaozhen; Liu, Zhiwu; Li, Liqin

    2018-06-01

    This paper presents an experimental investigation on the effect of the replacement of natural coarse aggregate (NCA) with either recycled concrete aggregate (RCA) or recycled clay brick aggregate (RBA) on the compressive strengths of the hardened concrete. Two grades (C25 and C50) of concrete were investigated, which were achieved by using different water-to-cement ratios. In each grade concrete five different replacement rates, 0%, 25%, 50%, 75% and 100% were considered. In order to improve the performance of the recycled aggregates in the concrete mixes, the RCA and RBA were carefully sieved by using the optimal degradation. In this way the largest reduction in the 28-day compressive strength was found to be only 7.2% and 9.6% for C25 and C50 recycled concrete when the NCA was replaced 100% by RCA, and 11% and 13% for C25 and C50 recycled concrete when the NCA was replaced 100% by RBA. In general, the concrete with RCA has better performance than the concrete with RBA. The comparison of the present experimental results with those reported in literature for hardened concrete with either RCA or RBA demonstrates the effectiveness in improving the compressive strength by using the optimal gradation of recycled aggregates.

  15. Effect of crumb rubber on the mechanical properties of crushed recycled pavement materials.

    PubMed

    Li, Jie; Saberian, Mohammad; Nguyen, Bao Thach

    2018-07-15

    The low-carbon footprint of using recycled construction and demolition (C&D) aggregates in civil engineering infrastructure applications has been considered to be a significant solution for the replacement of conventional pavement aggregates. Investigations regarding the use of crumb rubber in the base and subbase layers of pavement have been well documented. However, information on the effects of crumb rubber and its size within C&D aggregates as the base/subbase layers is still very limited. In this study, crumb rubber with particle sizes ranging from 400 to 600 μm (fine) to 10-15 mm (coarse), 20 mm recycled crushed concrete (RCC), and 20 mm crushed rock (CR) were used. The crumb rubber was added to the two groups of C&D aggregates at 0.5, 1 and 2% by weight percentages of the aggregates. The effect of crumb rubber on the mechanical properties (such as California bearing ratio, unconfined compressive strength, aggregate crushing value, dynamic lightweight cone penetrometer, Clegg impact value, Los Angeles abrasion values, and resilient modulus) of the C&D aggregates was then examined. Based on the experimental test results, it was found that crumb rubber can be recycled as a waste material for the base and subbase layers in the pavement. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Bead-Level Characterization of Early-Stage Amyloid β42 Aggregates: Nuclei and Ionic Concentration Effects.

    PubMed

    Hu, Dingkun; Zhao, Wei; Zhu, Yong; Ai, Hongqi; Kang, Baotao

    2017-11-16

    A growing body of evidence shows that soluble β-amyloid (Aβ) aggregates, oligomers, and even protofibrils, may be more neurotoxic than fibrils. Here, we employ a coarse grain model to investigate the aggregation of 75mer Aβ 42 oligomers and the salt effect, the cornerstone of fibril evolution. We find that the oligomer morphologies generated by seventy-five monomers or mixed by both fifty monomers and five preset pentameric nuclei are different (spherical vs. bar-/disk-shaped) and are characterize by a full of coil content (former) and >70 % β-turn content (latter), indicating a novel role of the nuclei played in the early aggregation stage. The aggregation for the former oligomer adopts a master-nucleus mechanism, whereas for the latter combination of monomers and pentamers a multi-nuclei one is found. The random salt ions will distribute around the aggregates to form several ion shells as the aggregation develops. A unique two-fold gap between the shells is observed in the system containing 100 mm NaCl, endowing the physiological salt concentration with special implications. Meanwhile, an accurate ion-solute cutoff distance (0.66 nm) is predicted, and recommended to apply to many other aggregated biomolecular systems. The present distribution scenario of ions can be generalized to other aggregated systems, although it is strictly dependent on the identity of a specific aggregate, such as its charge and composition. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Changes in carbon stability and microbial activity in size fractions of micro-aggregates in a rice soil chronosequence under long term rice cultivation

    NASA Astrophysics Data System (ADS)

    Pan, Genxing; Liu, Yalong; Wang, Ping; Li, Lianqinfg; Cheng, Kun; Zheng, Jufeng; Zhang, Xuhui; Zheng, Jinwei; Bian, Rongjun; Ding, Yuanjun; Ma, Chong

    2016-04-01

    Recent studies have shown soil carbon sequestration through physical protection of relative labile carbon intra micro-aggregates with formation of large sized macro-aggregates under good management of soil and agricultural systems. While carbon stabilization had been increasingly concerned as ecosystem properties, the mechanisms underspin bioactivity of soil carbon with increased carbon stability has been still poorly understood. In this study, topsoil samples were collected from rice soils derived from salt marsh under different length of rice cultivation up to 700 years from eastern China. Particle size fractions (PSF) of soil aggregates were separated using a low energy dispersion protocol. Carbon fractions in the PSFs were analyzed either with FTIR spectroscopy. Soil microbial community of bacterial, fungal and archaeal were analyzed with molecular fingerprinting using specific gene primers. Soil respiration and carbon gain from amended maize as well as enzyme activities were measured using lab incubation protocols. While the PSFs were dominated by the fine sand (200-20μm) and silt fraction (20-2μm), the mass proportion both of sand (2000-200μm) and clay (<2μm) fraction increased with prolonged rice cultivation, giving rise to an increasing trend of mean weight diameter of soil aggregates (also referred to aggregate stability). Soil organic carbon was found most enriched in coarse sand fraction (40-60g/kg), followed by the clay fraction (20-24.5g/kg), but depleted in the silt fraction (~10g/kg). Phenolic and aromatic carbon as recalcitrant pool were high (33-40% of total SOC) in both coarse sand and clay fractions than in both fine sand and silt fractions (20-29% of total SOC). However, the ratio of LOC/total SOC showed a weak decreasing trend with decreasing size of the aggregate fractions. Total gene content in the size fractions followed a similar trend to that of SOC. Bacterial and archaeal gene abundance was concentrated in both sand and clay fractions but that of fungi in sand fraction, and sharply decreased with the decreasing size of aggregate fraction. Gene abundance of archaeal followed a similar trend to that of bacterial but showing an increasing trend with prolonged rice cultivation in both sand and clay fractions. Change in community diversity with sizes of aggregate fractions was found of fungi and weakly of bacterial but not of archaeal. Soil respiration ratio (Respired CO2-C to SOC) was highest in silt fraction, followed by the fine sand fraction but lowest in sand and clay fractions in the rice soils cultivated over 100 years. Again, scaled by total gen concentration, respiration was higher in silt fraction than in other fractions for these rice soils. For the size fractions other than clay fraction, soil gene concentration, Archaeal gen abundance, normalized enzyme activity and carbon sequestration was seen increased but SOC- and gene- scaled soil respiration decreased, more or less with prolonged rice cultivation. As shown with regression analysis, SOC content was positively linearly correlated to recalcitrant carbon proportion but negatively linearly correlated to labile carbon, in both sand and clay fractions. However, soil respiration was found positively logarithmically correlated to total DNA contents and bacterial gen abundance in both sand and clay fractions. Total DNA content was found positively correlated to SOC and labile carbon content, recalcitrant carbon proportion and normalized enzyme activity but negatively to soil respiration, in sand fraction only. Our findings suggested that carbon accumulation and stabilization was prevalent in both sand and clay fraction, only the coarse sand fraction was found responsible for bioactivity dynamics in the rice soils. Thus, soil carbon sequestration was primarily by formation of the macro-aggregates, which again mediated carbon stability and bioactivity in the rice soils under long term rice cultivation.

  18. Calibration and validation of coarse-grained models of atomic systems: application to semiconductor manufacturing

    NASA Astrophysics Data System (ADS)

    Farrell, Kathryn; Oden, J. Tinsley

    2014-07-01

    Coarse-grained models of atomic systems, created by aggregating groups of atoms into molecules to reduce the number of degrees of freedom, have been used for decades in important scientific and technological applications. In recent years, interest in developing a more rigorous theory for coarse graining and in assessing the predictivity of coarse-grained models has arisen. In this work, Bayesian methods for the calibration and validation of coarse-grained models of atomistic systems in thermodynamic equilibrium are developed. For specificity, only configurational models of systems in canonical ensembles are considered. Among major challenges in validating coarse-grained models are (1) the development of validation processes that lead to information essential in establishing confidence in the model's ability predict key quantities of interest and (2), above all, the determination of the coarse-grained model itself; that is, the characterization of the molecular architecture, the choice of interaction potentials and thus parameters, which best fit available data. The all-atom model is treated as the "ground truth," and it provides the basis with respect to which properties of the coarse-grained model are compared. This base all-atom model is characterized by an appropriate statistical mechanics framework in this work by canonical ensembles involving only configurational energies. The all-atom model thus supplies data for Bayesian calibration and validation methods for the molecular model. To address the first challenge, we develop priors based on the maximum entropy principle and likelihood functions based on Gaussian approximations of the uncertainties in the parameter-to-observation error. To address challenge (2), we introduce the notion of model plausibilities as a means for model selection. This methodology provides a powerful approach toward constructing coarse-grained models which are most plausible for given all-atom data. We demonstrate the theory and methods through applications to representative atomic structures and we discuss extensions to the validation process for molecular models of polymer structures encountered in certain semiconductor nanomanufacturing processes. The powerful method of model plausibility as a means for selecting interaction potentials for coarse-grained models is discussed in connection with a coarse-grained hexane molecule. Discussions of how all-atom information is used to construct priors are contained in an appendix.

  19. Repair and Rehabilitation of Dams: Case Studies

    DTIC Science & Technology

    1999-09-01

    with fiber - reinforced , acrylic- polymer modi- fied concrete (FRAPMC) and eliminating leakage into the trunnion recesses. FRAPMC consists of mortar...coarse aggregate, and reinforcement fibers . It is mixed in a mortar mixer as a two-component system consisting of a liquid polymer emulsion of...seat was removed and replaced with fiber - reinforced , acrylic- polymer modified concrete (FRAPMC). New bridge seats were installed, allowing for more

  20. Discrete Molecular Dynamics Approach to the Study of Disordered and Aggregating Proteins.

    PubMed

    Emperador, Agustí; Orozco, Modesto

    2017-03-14

    We present a refinement of the Coarse Grained PACSAB force field for Discrete Molecular Dynamics (DMD) simulations of proteins in aqueous conditions. As the original version, the refined method provides good representation of the structure and dynamics of folded proteins but provides much better representations of a variety of unfolded proteins, including some very large, impossible to analyze by atomistic simulation methods. The PACSAB/DMD method also reproduces accurately aggregation properties, providing good pictures of the structural ensembles of proteins showing a folded core and an intrinsically disordered region. The combination of accuracy and speed makes the method presented here a good alternative for the exploration of unstructured protein systems.

  1. Automated thin-film analyses of anhydrous interplanetary dust particles in the analytical electron microscope

    NASA Technical Reports Server (NTRS)

    Bradley, J. P.; Germani, M. S.; Brownlee, D. E.

    1989-01-01

    An AEM apparatus equipped with digital beam control has obtained quantitative point-count analyses of thin sections taken from eight anhydrous chondritic interplanetary dust particles (IDPs); between 200 and 500 X-ray analyses were collected from each thin section and analyzed for Mg, Al, Si, S, Ca, Cr, Mn, Fe, and Ni. Two types of anhydrous chondritic aggregates were observed in the eight IDPs: one highly porous, the other less so. The eight anhydrous IDPs are characterizable as mixtures of fine- and coarse-grained aggregates, large mineral grains, glass, and carbonaceous materials. Their elemental concentrations follow those of solar abundances, suggesting that they are unperturbed by aqueous alteration.

  2. A general gridding, discretization, and coarsening methodology for modeling flow in porous formations with discrete geological features

    NASA Astrophysics Data System (ADS)

    Karimi-Fard, M.; Durlofsky, L. J.

    2016-10-01

    A comprehensive framework for modeling flow in porous media containing thin, discrete features, which could be high-permeability fractures or low-permeability deformation bands, is presented. The key steps of the methodology are mesh generation, fine-grid discretization, upscaling, and coarse-grid discretization. Our specialized gridding technique combines a set of intersecting triangulated surfaces by constructing approximate intersections using existing edges. This procedure creates a conforming mesh of all surfaces, which defines the internal boundaries for the volumetric mesh. The flow equations are discretized on this conforming fine mesh using an optimized two-point flux finite-volume approximation. The resulting discrete model is represented by a list of control-volumes with associated positions and pore-volumes, and a list of cell-to-cell connections with associated transmissibilities. Coarse models are then constructed by the aggregation of fine-grid cells, and the transmissibilities between adjacent coarse cells are obtained using flow-based upscaling procedures. Through appropriate computation of fracture-matrix transmissibilities, a dual-continuum representation is obtained on the coarse scale in regions with connected fracture networks. The fine and coarse discrete models generated within the framework are compatible with any connectivity-based simulator. The applicability of the methodology is illustrated for several two- and three-dimensional examples. In particular, we consider gas production from naturally fractured low-permeability formations, and transport through complex fracture networks. In all cases, highly accurate solutions are obtained with significant model reduction.

  3. The effect of magnetic nanoparticle concentration on the structure organisation of a microferrogel

    NASA Astrophysics Data System (ADS)

    Ryzhkov, A. V.; Melenev, P. V.; Balasoiu, M.; Raikher, Yu L.

    2018-03-01

    Coarse-grained molecular dynamics simulation is applied to study the structural response of micro-sized magnetopolymer objects – microferrogels (MFG). The results for MFGs with different magnetic properties and concentrations of magnetic filler nanoparticles are analysed to detect the transition between non-aggregated configurations and the states with pronounced chains. The nanoparticles are assumed to be either magnetically isotropic or to possess infinite magnetic anisotropy. It is shown that, depending on the type of the particle anisotropy, an applied field in rather different ways affects the MFG structure and shape. Diagrams describing the degree of aggregation as a function of the parameter of the interparticle magnetodipolar interaction and concentration are presented. In particular, it is found that in the case of infinitely anisotropic nanoparticles the aggregation transitions undergoes via a non-trivial scenario. The effect of the structure transformations on the volume change of the MFG objects is studied as well.

  4. Does mycorrhizal inoculation improve plant survival, aggregate stability, and fine root development on a coarse-grained soil in an alpine eco-engineering field experiment?

    NASA Astrophysics Data System (ADS)

    Bast, A.; Wilcke, W.; Graf, F.; Lüscher, P.; Gärtner, H.

    2016-08-01

    Steep vegetation-free talus slopes in high mountain environments are prone to superficial slope failures and surface erosion. Eco-engineering measures can reduce slope instabilities and thus contribute to risk mitigation. In a field experiment, we established mycorrhizal and nonmycorrhizal research plots and determined their biophysical contribution to small-scale soil fixation. Mycorrhizal inoculation impact on plant survival, aggregate stability, and fine root development was analyzed. Here we present plant survival (ntotal = 1248) and soil core (ntotal = 108) analyses of three consecutive years in the Swiss Alps. Soil cores were assayed for their aggregate stability coefficient (ASC), root length density (RLD), and mean root diameter (MRD). Inoculation improved plant survival significantly, but it delayed aggregate stabilization relative to the noninoculated site. Higher aggregate stability occurred only after three growing seasons. Then also RLD tended to be higher and MRD increased significantly at the mycorrhizal treated site. There was a positive correlation between RLD, ASC, and roots <0.5 mm, which had the strongest impact on soil aggregation. Our results revealed a temporal offset between inoculation effects tested in laboratory and field experiments. Consequently, we recommend to establish an intermediate to long-term field experimental monitoring before transferring laboratory results to the field.

  5. Heavy metal removal capacity of individual components of permeable reactive concrete

    NASA Astrophysics Data System (ADS)

    Holmes, Ryan R.; Hart, Megan L.; Kevern, John T.

    2017-01-01

    Permeable reactive barriers (PRBs) are a well-known technique for groundwater remediation using industrialized reactive media such as zero-valent iron and activated carbon. Permeable reactive concrete (PRC) is an alternative reactive medium composed of relatively inexpensive materials such as cement and aggregate. A variety of multimodal, simultaneous processes drive remediation of metals from contaminated groundwater within PRC systems due to the complex heterogeneous matrix formed during cement hydration. This research investigated the influence coarse aggregate, portland cement, fly ash, and various combinations had on the removal of lead, cadmium, and zinc in solution. Absorption, adsorption, precipitation, co-precipitation, and internal diffusion of the metals are common mechanisms of removal in the hydrated cement matrix and independent of the aggregate. Local aggregates can be used as the permeable structure also possessing high metal removal capabilities, however calcareous sources of aggregate are preferred due to improved removal with low leachability. Individual adsorption isotherms were linear or curvilinear up, indicating a preferred removal process. For PRC samples, metal saturation was not reached over the range of concentrations tested. Results were then used to compare removal against activated carbon and aggregate-based PRBs by estimating material costs for the remediation of an example heavy metal contaminated Superfund site located in the Midwestern United States, Joplin, Missouri.

  6. The Acoustical Properties of the Polyurethane Concrete Made of Oyster Shell Waste Comparing Other Concretes as Architectural Design Components

    NASA Astrophysics Data System (ADS)

    Setyowati, Erni; Hardiman, Gagoek; Purwanto

    2018-02-01

    This research aims to determine the acoustical properties of concrete material made of polyurethane and oyster shell waste as both fine aggregate and coarse aggregate comparing to other concrete mortar. Architecture needs aesthetics materials, so the innovation in architectural material should be driven through the efforts of research on materials for building designs. The DOE methods was used by mixing cement, oyster shell, sands, and polyurethane by composition of 160 ml:40 ml:100 ml: 120 ml respectively. Refer to the results of previous research, then cement consumption is reduced up to 20% to keep the concept of green material. This study compared three different compositions of mortars, namely portland cement concrete with gravel (PCG), polyurethane concrete of oyster shell (PCO) and concrete with plastics aggregate (PCP). The methods of acoustical tests were conducted refer to the ASTM E413-04 standard. The research results showed that polyurethane concrete with oyster shell waste aggregate has absorption coefficient 0.52 and STL 63 dB and has a more beautiful appearance when it was pressed into moulding. It can be concluded that polyurethane concrete with oyster shell aggregate (PCO) is well implemented in architectural acoustics-components.

  7. Research on the performance of sand-based environmental-friendly water permeable bricks

    NASA Astrophysics Data System (ADS)

    Cai, Runze; Mandula; Chai, Jinyi

    2018-02-01

    This paper examines the effects of the amount of admixture, the water cement ratio, the aggregate grading, and the cement aggregate ratio on the mechanical service properties and of porous concrete pavement bricks including strength, water permeability, frost resistance, and wear resistance. The admixture can enhance the performance of water permeable brick, and optimize the design mix. Experiments are conducted to determine the optimal mixing ratios which are given as; (1) the admixture (self-developed) within the content of 5% of the cement quality; (2) water-cement ratio equal to 0.34; (3) cement-aggregate ratio equal to 0.25; (4) fine aggregate of 70% (particle size 0.6-2.36mm); and coarse aggregate of 30% (particle size: 2.36-4.75mm). The experimental results that the sand-based permeable concrete pavement brick has a strength of 35.6MPa and that the water permeability coefficient is equal to 3.5×10-2cm/s. In addition, it was found that the concrete water permeable brick has good frost resistance and surface wear resistance, and that the its production costs are much lower than the similar sand-based water permeable bricks in China.

  8. Simulating Fiber Ordering and Aggregation In Shear Flow Using Dissipative Particle Dynamics

    NASA Astrophysics Data System (ADS)

    Stimatze, Justin T.

    We have developed a mesoscale simulation of fiber aggregation in shear flow using LAMMPS and its implementation of dissipative particle dynamics. Understanding fiber aggregation in shear flow and flow-induced microstructural fiber networks is critical to our interest in high-performance composite materials. Dissipative particle dynamics enables the consideration of hydrodynamic interactions between fibers through the coarse-grained simulation of the matrix fluid. Correctly simulating hydrodynamic interactions and accounting for fluid forces on the microstructure is required to correctly model the shear-induced aggregation process. We are able to determine stresses, viscosity, and fiber forces while simulating the evolution of a model fiber system undergoing shear flow. Fiber-fiber contact interactions are approximated by combinations of common pairwise forces, allowing the exploration of interaction-influenced fiber behaviors such as aggregation and bundling. We are then able to quantify aggregate structure and effective volume fraction for a range of relevant system and fiber-fiber interaction parameters. Our simulations have demonstrated several aggregate types dependent on system parameters such as shear rate, short-range attractive forces, and a resistance to relative rotation while in contact. A resistance to relative rotation at fiber-fiber contact points has been found to strongly contribute to an increased angle between neighboring aggregated fibers and therefore an increase in average aggregate volume fraction. This increase in aggregate volume fraction is strongly correlated with a significant enhancement of system viscosity, leading us to hypothesize that controlling the resistance to relative rotation during manufacturing processes is important when optimizing for desired composite material characteristics.

  9. Investigating Source Contributions of Size-Aggregated Aerosols Collected in Southern Ocean and Baring Head, New Zealand Using Sulfur Isotopes

    NASA Astrophysics Data System (ADS)

    Li, Jianghanyang; Michalski, Greg; Davy, Perry; Harvey, Mike; Katzman, Tanya; Wilkins, Benjamin

    2018-04-01

    Marine sulfate aerosols in the Southern Ocean are critical to the global radiation balance, yet the sources of sulfate and their seasonal variations are unclear. We separately sampled marine and ambient aerosols at Baring Head, New Zealand for 1 year using two collectors and evaluated the sources of sulfate in coarse (1-10 μm) and fine (0.05-1 μm) aerosols using sulfur isotopes (δ34S). In both collectors, sea-salt sulfate (SO42-SS) mainly existed in coarse aerosols and nonsea-salt sulfate (SO42-NSS) dominated the sulfate in fine aerosols, although some summer SO42-NSS appeared in coarse particles due to aerosol coagulation. SO42-NSS in the marine aerosols was mainly (88-100%) from marine biogenic dimethylsulfide (DMS) emission, while the SO42-NSS in the ambient aerosols was a combination of DMS (73-79%) and SO2 emissions from shipping activities ( 21-27%). The seasonal variations of SO42-NSS concentrations inferred from the δ34S values in both collectors were mainly controlled by the DMS flux.

  10. Effect of Silica Fume on two-stage Concrete Strength

    NASA Astrophysics Data System (ADS)

    Abdelgader, H. S.; El-Baden, A. S.

    2015-11-01

    Two-stage concrete (TSC) is an innovative concrete that does not require vibration for placing and compaction. TSC is a simple concept; it is made using the same basic constituents as traditional concrete: cement, coarse aggregate, sand and water as well as mineral and chemical admixtures. As its name suggests, it is produced through a two-stage process. Firstly washed coarse aggregate is placed into the formwork in-situ. Later a specifically designed self compacting grout is introduced into the form from the lowest point under gravity pressure to fill the voids, cementing the aggregate into a monolith. The hardened concrete is dense, homogeneous and has in general improved engineering properties and durability. This paper presents the results from a research work attempt to study the effect of silica fume (SF) and superplasticizers admixtures (SP) on compressive and tensile strength of TSC using various combinations of water to cement ratio (w/c) and cement to sand ratio (c/s). Thirty six concrete mixes with different grout constituents were tested. From each mix twenty four standard cylinder samples of size (150mm×300mm) of concrete containing crushed aggregate were produced. The tested samples were made from combinations of w/c equal to: 0.45, 0.55 and 0.85, and three c/s of values: 0.5, 1 and 1.5. Silica fume was added at a dosage of 6% of weight of cement, while superplasticizer was added at a dosage of 2% of cement weight. Results indicated that both tensile and compressive strength of TSC can be statistically derived as a function of w/c and c/s with good correlation coefficients. The basic principle of traditional concrete, which says that an increase in water/cement ratio will lead to a reduction in compressive strength, was shown to hold true for TSC specimens tested. Using a combination of both silica fume and superplasticisers caused a significant increase in strength relative to control mixes.

  11. A systematic coarse-graining strategy for semi-dilute copolymer solutions: from monomers to micelles.

    PubMed

    Capone, Barbara; Coluzza, Ivan; Hansen, Jean-Pierre

    2011-05-18

    A systematic coarse-graining procedure is proposed for the description and simulation of AB diblock copolymers in selective solvents. Each block is represented by a small number, n(A) or n(B), of effective segments or blobs, containing a large number of microscopic monomers. n(A) and n(B) are unequivocally determined by imposing that blobs do not, on average, overlap, even if complete copolymer coils interpenetrate (semi-dilute regime). Ultra-soft effective interactions between blobs are determined by a rigorous inversion procedure in the low concentration limit. The methodology is applied to an athermal copolymer model where A blocks are ideal (theta solvent), B blocks self-avoiding (good solvent), while A and B blocks are mutually avoiding. The model leads to aggregation into polydisperse spherical micelles beyond a critical micellar concentration determined by Monte Carlo simulations for several size ratios f of the two blocks. The simulations also provide accurate estimates of the osmotic pressure and of the free energy of the copolymer solutions over a wide range of concentrations. The mean micellar aggregation numbers are found to be significantly lower than those predicted by an earlier, minimal two-blob representation (Capone et al 2009 J. Phys. Chem. B 113 3629).

  12. Optimization and influence of parameter affecting the compressive strength of geopolymer concrete containing recycled concrete aggregate: using full factorial design approach

    NASA Astrophysics Data System (ADS)

    Krishnan, Thulasirajan; Purushothaman, Revathi

    2017-07-01

    There are several parameters that influence the properties of geopolymer concrete, which contains recycled concrete aggregate as the coarse aggregate. In the present study, the vital parameters affecting the compressive strength of geopolymer concrete containing recycled concrete aggregate are analyzedby varying four parameters with two levels using full factorial design in statistical software Minitab® 17. The objective of the present work is to gain an idea on the optimization, main parameter effects, their interactions and the predicted response of the model generated using factorial design. The parameters such as molarity of sodium hydroxide (8M and 12M), curing time (6hrs and 24 hrs), curing temperature (60°C and 90°C) and percentage of recycled concrete aggregate (0% and 100%) are considered. The results show that the curing time, molarity of sodium hydroxide and curing temperature were the orderly significant parameters and the percentage of Recycled concrete aggregate (RCA) was statistically insignificant in the production of geopolymer concrete. Thus, it may be noticeable that the RCA content had negligible effect on the compressive strength of geopolymer concrete. The expected responses from the generated model showed a satisfactory and rational agreement to the experimental data with the R2 value of 97.70%. Thus, geopolymer concrete comprising recycled concrete aggregate can solve the major social and environmental concerns such as the depletion of the naturally available aggregate sources and disposal of construction and demolition waste into the landfill.

  13. Comparative environmental assessment of natural and recycled aggregate concrete.

    PubMed

    Marinković, S; Radonjanin, V; Malešev, M; Ignjatović, I

    2010-11-01

    Constant and rapid increase in construction and demolition (C&D) waste generation and consumption of natural aggregate for concrete production became one of the biggest environmental problems in the construction industry. Recycling of C&D waste represents one way to convert a waste product into a resource but the environment benefits through energy consumption, emissions and fallouts reductions are not certain. The main purpose of this study is to determine the potentials of recycled aggregate concrete (concrete made with recycled concrete aggregate) for structural applications and to compare the environmental impact of the production of two types of ready-mixed concrete: natural aggregate concrete (NAC) made entirely with river aggregate and recycled aggregate concrete (RAC) made with natural fine and recycled coarse aggregate. Based on the analysis of up-to-date experimental evidence, including own tests results, it is concluded that utilization of RAC for low-to-middle strength structural concrete and non-aggressive exposure conditions is technically feasible. The Life Cycle Assessment (LCA) is performed for raw material extraction and material production part of the concrete life cycle including transport. Assessment is based on local LCI data and on typical conditions in Serbia. Results of this specific case study show that impacts of aggregate and cement production phases are slightly larger for RAC than for NAC but the total environmental impacts depend on the natural and recycled aggregates transport distances and on transport types. Limit natural aggregate transport distances above which the environmental impacts of RAC can be equal or even lower than the impacts of NAC are calculated for the specific case study. Copyright © 2010 Elsevier Ltd. All rights reserved.

  14. Eco-friendly porous concrete using bottom ash aggregate for marine ranch application.

    PubMed

    Lee, Byung Jae; Prabhu, G Ganesh; Lee, Bong Chun; Kim, Yun Yong

    2016-03-01

    This article presents the test results of an investigation carried out on the reuse of coal bottom ash aggregate as a substitute material for coarse aggregate in porous concrete production for marine ranch applications. The experimental parameters were the rate of bottom ash aggregate substitution (30%, 50% and 100%) and the target void ratio (15%, 20% and 25%). The cement-coated granular fertiliser was substituted into a bottom ash aggregate concrete mixture to improve marine ranch applications. The results of leaching tests revealed that the bottom ash aggregate has only a negligible amount of the ten deleterious substances specified in the Ministry of Environment - Enforcement Regulation of the Waste Management Act of Republic Korea. The large amount of bubbles/air gaps in the bottom ash aggregate increased the voids of the concrete mixtures in all target void ratios, and decreased the compressive strength of the porous concrete mixture; however, the mixture substituted with 30% and 10% of bottom ash aggregate and granular fertiliser, respectively, showed an equal strength to the control mixture. The sea water resistibility of the bottom ash aggregate substituted mixture was relatively equal to that of the control mixture, and also showed a great deal of improvement in the degree of marine organism adhesion compared with the control mixture. No fatality of fish was observed in the fish toxicity test, which suggested that bottom ash aggregate was a harmless material and that the combination of bottom ash aggregate and granular fertiliser with substitution rates of 30% and 10%, respectively, can be effectively used in porous concrete production for marine ranch application. © The Author(s) 2015.

  15. The durability of concrete containing recycled tyres as a partial replacement of fine aggregate

    NASA Astrophysics Data System (ADS)

    Syamir Senin, Mohamad; Shahidan, Shahiron; Syazani Leman, Alif; Othman, Nurulain; Shamsuddin, Shamrul-mar; Ibrahim, M. H. W.; Zuki, S. S. Mohd

    2017-11-01

    Nowadays, uncontrolled disposal of waste materials such as tyres can affect the environment. Therefore, careful management of waste disposal must be done in order to conserve the environment. Waste tyres can be use as a replacement for both fine aggregate and coarse aggregate in the production of concrete. This research was conducted to assess the durability of concrete containing recycled tyres which have been crushed into fine fragments to replace fine aggregate in the concrete mix. This study presents an overview of the use of waste rubber as a partial replacement of natural fine aggregate in a concrete mix. 36 concrete cubes measuring 100mm × 100mm × 100mm and 12 concrete cubes measuring 150mm × 150mm × 150mm were prepared and added with different percentages of rubber from recycled tyres (0%, 3%, 5% and 7%) as fine aggregate replacement. The results obtained show that the replacement of fine aggregate with 7% of rubber recorded a compressive strength of 43.7MPa while the addition of 3% of rubber in the concrete sample recorded a high compressive strength of 50.8MPa. This shows that there is a decrease in the strength and workability of concrete as the amount of rubber used a replacement for fine aggregate in concrete increases. On the other hand, the water absorption test indicated that concrete which contains rubber has better water absorption ability. In this study, 3% of rubber was found to be the optimal percentage as a partial replacement for fine aggregate in the production of concrete.

  16. Nonequilibrium simulations of model ionomers in an oscillating electric field

    DOE PAGES

    Ting, Christina L.; Sorensen-Unruh, Karen E.; Stevens, Mark J.; ...

    2016-07-25

    Here, we perform molecular dynamics simulations of a coarse-grained model of ionomer melts in an applied oscillating electric field. The frequency-dependent conductivity and susceptibility are calculated directly from the current density and polarization density, respectively. At high frequencies, we find a peak in the real part of the conductivity due to plasma oscillations of the ions. At lower frequencies, the dynamic response of the ionomers depends on the ionic aggregate morphology in the system, which consists of either percolated or isolated aggregates. We show that the dynamic response of the model ionomers to the applied oscillating field can be understoodmore » by comparison with relevant time scales in the systems, obtained from independent calculations.« less

  17. Nonequilibrium simulations of model ionomers in an oscillating electric field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ting, Christina L.; Sorensen-Unruh, Karen E.; Stevens, Mark J.

    Here, we perform molecular dynamics simulations of a coarse-grained model of ionomer melts in an applied oscillating electric field. The frequency-dependent conductivity and susceptibility are calculated directly from the current density and polarization density, respectively. At high frequencies, we find a peak in the real part of the conductivity due to plasma oscillations of the ions. At lower frequencies, the dynamic response of the ionomers depends on the ionic aggregate morphology in the system, which consists of either percolated or isolated aggregates. We show that the dynamic response of the model ionomers to the applied oscillating field can be understoodmore » by comparison with relevant time scales in the systems, obtained from independent calculations.« less

  18. Characteristics of the Japanese sea cucumber Apostichopus japonicus's population in the Sea of Japan (Kievka Bay)

    NASA Astrophysics Data System (ADS)

    Gavrilova, G. S.; Sukhin, I. Yu.

    2011-06-01

    In Kievka Bay of the Sea of Japan, the population of the Japanese sea cucumber Apostichopus japonicus inhabits the areas of coarse sediments and complex bottom topography. These distributional patterns are closely related to the species' ecology, i.e., to the demand for protection against the wave turbulence. The aggregationing coverage of the sea cucumber population is about 80 hectares, where ˜200 thousand animals were accounted for in the last years. The aggregation's area varies during the year, which is closely related to the species' biological peculiarities, such as their behavioral patterns and the redistribution of their food resources. A significant increase of the juvenile population occurred after the farm-reared sea cucumber spat were released in 2003.

  19. Aggregate-associated carbon and nitrogen in reclaimed sandy loam soils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wick, A.F.; Stahl, P.D.; Ingram, L.J.

    2009-11-15

    Minimal research has been conducted on aggregate, C, and N in coarse-textured soils used to reclaim surface coal mine lands. Furthermore, little is known about the contribution different plant communities make to the recovery of aggregation in these soils. Two chronosequences of semiarid reclaimed sites with sandy loam soils were sampled under shrub- and grass-dominated communities. Aggregation, aggregate fractions, and associated C and N were measured. No definitive trends of increasing macroaggregates between sites were observed undershrubs; however, macro- and microaggregation was greater in the 16-yr-old (0.20 and 0.23 kg aggregate kg{sup -1} soil, respectively) than in the 5-yr-old soilsmore » (0.02 and 0.08 kg aggregate kg{sup -1} soil, respectively) under grasses. Although C and N concentrations were drastically reduced (50-75%) with mining activity between the <1-yr-old and native soils, aggregate C and N concentrations tinder shrubs and grasses were similar to each other and to the native soils in the 5-yr-old site. Sods under grass in the 16-yr-old site had lower available and aggregate-occluded C and N concentrations than the 5-yr-old site, while C and N concentrations did not change between 5- and 16-yr-old soils under shrubs. Conversely, aggregate C and N pool sizes under shrubs and grasses both increased with site age to conditions similar to those observed in the native soil. Reclaimed shrub site soils had consistently higher C concentrations in the older reclaimed sites (10 and 16 yr old) than the soils under grasses, indicating greater accumulation and retention of C and N in organic material under shrub than grass communities in semiarid reclaimed sites.« less

  20. Experimental study on the strength parameter of Quarry Dust mixed Coconut Shell Concrete adding Coconut Fibre

    NASA Astrophysics Data System (ADS)

    Matangulu Shrestha, Victor; Anandh, S.; Sindhu Nachiar, S.

    2017-07-01

    Concrete is a heterogeneous mixture constitute of cement as the main ingredient with a different mix of fine and coarse aggregate. The massive use of conventional concrete has a shortfall in its key ingredients, natural sand and coarse aggregate, due to increased industrialisation and globalisation. To overcome the shortage of material, an alternate material with similar mechanical properties and composition has to be studied, as replacement of conventional concrete. Coconut shell concrete is a prime option as replacement of key ingredients of conventional concrete as coconut is produced in massive quantity in south East Asia. Coconut shell concrete is lightweight concrete and different research is still ongoing concerning about its mix design and composition in the construction industry. Concrete is weak in tension as compared to compression, hence the fibre is used to refrain the crack in the concrete. Coconut fibre is one of many fibres which can be used in concrete. The main aim of this project is to analyse the use of natural by-products in the construction industry, make light weight concrete and eco-friendly construction. This project concerns with the comparison of the mechanical properties of coconut shell concrete and conventional concrete, replacing fine aggregate with quarry dust using coconut fibre. M25 grade of concrete was adopted and testing of concrete was done at the age of 3, 7 and 28 days. In this concrete mix, sand was replaced completely in volumetric measurement by quarry dust. The result was analysed and compared with addition of coconut fibre at varying percentage of 1%, 2%, 3%, 4% and 5%. From the test conducted, coconut shell concrete with quarry dust has the maximum value at 4% of coconut fibre while conventional concrete showed the maximum value at 2% of coconut fibre.

  1. Soft materials design via self assembly of functionalized icosahedral particles

    NASA Astrophysics Data System (ADS)

    Muthukumar, Vidyalakshmi Chockalingam

    In this work we simulate self assembly of icosahedral building blocks using a coarse grained model of the icosahedral capsid of virus 1m1c. With significant advancements in site-directed functionalization of these macromolecules [1], we propose possible application of such self-assembled materials for drug delivery. While there have been some reports on organization of viral particles in solution through functionalization, exploiting this behaviour for obtaining well-ordered stoichiometric structures has not yet been explored. Our work is in well agreement with the earlier simulation studies of icosahedral gold nanocrystals, giving chain like patterns [5] and also broadly in agreement with the wet lab works of Finn, M.G. et al., who have shown small predominantly chain-like aggregates with mannose-decorated Cowpea Mosaic Virus (CPMV) [22] and small two dimensional aggregates with oligonucleotide functionalization on the CPMV capsid [1]. To quantify the results of our Coarse Grained Molecular Dynamics Simulations I developed analysis routines in MATLAB using which we found the most preferable nearest neighbour distances (from the radial distribution function (RDF) calculations) for different lengths of the functional groups and under different implicit solvent conditions, and the most frequent coordination number for a virus particle (histogram plots further using the information from RDF). Visual inspection suggests that our results most likely span the low temperature limits explored in the works of Finn, M.G. et al., and show a good degree of agreement with the experimental results in [1] at an annealing temperature of 4°C. Our work also reveals the possibility of novel stoichiometric N-mer type aggregates which could be synthesized using these capsids with appropriate functionalization and solvent conditions.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wykes, M., E-mail: mikewykes@gmail.com; Parambil, R.; Gierschner, J.

    Here, we present a general approach to treating vibronic coupling in molecular crystals based on atomistic simulations of large clusters. Such clusters comprise model aggregates treated at the quantum chemical level embedded within a realistic environment treated at the molecular mechanics level. As we calculate ground and excited state equilibrium geometries and vibrational modes of model aggregates, our approach is able to capture effects arising from coupling to intermolecular degrees of freedom, absent from existing models relying on geometries and normal modes of single molecules. Using the geometries and vibrational modes of clusters, we are able to simulate the fluorescencemore » spectra of aggregates for which the lowest excited state bears negligible oscillator strength (as is the case, e.g., ideal H-aggregates) by including both Franck-Condon (FC) and Herzberg-Teller (HT) vibronic transitions. The latter terms allow the adiabatic excited state of the cluster to couple with vibrations in a perturbative fashion via derivatives of the transition dipole moment along nuclear coordinates. While vibronic coupling simulations employing FC and HT terms are well established for single-molecules, to our knowledge this is the first time they are applied to molecular aggregates. Here, we apply this approach to the simulation of the low-temperature fluorescence spectrum of para-distyrylbenzene single-crystal H-aggregates and draw comparisons with coarse-grained Frenkel-Holstein approaches previously extensively applied to such systems.« less

  3. Mechanisms and Kinetics of Amyloid Aggregation Investigated by a Phenomenological Coarse-Grained Model

    NASA Astrophysics Data System (ADS)

    Magno, Andrea; Pellarin, Riccardo; Caflisch, Amedeo

    Amyloid fibrils are ordered polypeptide aggregates that have been implicated in several neurodegenerative pathologies, such as Alzheimer's, Parkinson's, Huntington's, and prion diseases, [1, 2] and, more recently, also in biological functionalities. [3, 4, 5] These findings have paved the way for a wide range of experimental and computational studies aimed at understanding the details of the fibril-formation mechanism. Computer simulations using low-resolution models, which employ a simplified representation of protein geometry and energetics, have provided insights into the basic physical principles underlying protein aggregation in general [6, 7, 8] and ordered amyloid aggregation. [9, 10, 11, 12, 13, 14, 15] For example, Dokholyan and coworkers have used the Discrete Molecular Dynamics method [16, 17] to shed light on the mechanisms of protein oligomerization [18] and the conformational changes that take place in proteins before the aggregation onset. [19, 20] One challenging observation, which is difficult to observe by computer simulations, is the wide range of aggregation scenarios emerging from a variety of biophysical measurements. [21, 22] Atomistic models have been employed to study the conformational space of amyloidogenic polypeptides in the monomeric state, [23, 24, 25] the very initial steps of amyloid formation, [26, 27, 28, 29, 30, 31, 32] and the structural stability of fibril models. [33, 34, 35) However, all-atom simulations of the kinetics of fibril formation are beyond what can be done with modern computers.

  4. Comparison Pore Aggregate Levels After Extraction With Solvents Pertamax Plus And Gasoline

    NASA Astrophysics Data System (ADS)

    Anggraini, Muthia

    2017-12-01

    Loss of asphalt content extraction results become problems in Field Work For implementing parties. The use of solvents with high octane (pertamax plus) for the extraction, dissolving the asphalt more than gasoline. By comparing the levels of aggregate pores after using solvent extraction pertamax plus compared to gasoline could answer that pertamax plus more solvent dissolves the bitumen compared to gasoline. This study aims to obtain comparative levels of porous aggregate mix AC-WC after using solvent extraction pertamax plus compared to gasoline. This study uses the aggregate that has been extracted from the production of asphalt mixtures, when finisher and after compaction field. The method used is the assay of coarse and fine aggregate pores, extraction of bitumen content to separate the aggregate with bitumen. Results of testing the total absorption after extraction using a solvent preta max plus in the production of asphalt mixtures 0.80%, while gasoline solvent 0.67% deviation occurs 0.13%. In the finisher after the solvent extraction preta max plus 0.77%, while 0.67% gasoline solvent occurs deviation of 0.1%. At the core after extraction and solvent pertamax plus 0.71%, while gasoline solvent 0.60% 0.11% deviation occurs. The total water absorption after extraction using a solvent pertamax plus greater than gasoline. This proves that the solvent dissolves pertamax plus more asphalt than gasoline.

  5. Multi-regime transport model for leaching behavior of heterogeneous porous materials.

    PubMed

    Sanchez, F; Massry, I W; Eighmy, T; Kosson, D S

    2003-01-01

    Utilization of secondary materials in civil engineering applications (e.g. as substitutes for natural aggregates or binder constituents) requires assessment of the physical and environment properties of the product. Environmental assessment often necessitates evaluation of the potential for constituent release through leaching. Currently most leaching models used to estimate long-term field performance assume that the species of concern is uniformly dispersed in a homogeneous porous material. However, waste materials are often comprised of distinct components such as coarse or fine aggregates in a cement concrete or waste encapsulated in a stabilized matrix. The specific objectives of the research presented here were to (1) develop a one-dimensional, multi-regime transport model (i.e. MRT model) to describe the release of species from heterogeneous porous materials and, (2) evaluate simple limit cases using the model for species when release is not dependent on pH. Two different idealized model systems were considered: (1) a porous material contaminated with the species of interest and containing inert aggregates and, (2) a porous material containing the contaminant of interest only in the aggregates. The effect of three factors on constituent release were examined: (1) volume fraction of material occupied by the aggregates compared to a homogeneous porous material, (2) aggregate size and, (3) differences in mass transfer rates between the binder and the aggregates. Simulation results confirmed that assuming homogeneous materials to evaluate the release of contaminants from porous waste materials may result in erroneous long-term field performance assessment.

  6. Cathodoluminescence microscopy and petrographic image analysis of aggregates in concrete pavements affected by alkali-silica reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stastna, A., E-mail: astastna@gmail.com; Sachlova, S.; Pertold, Z.

    2012-03-15

    Various microscopic techniques (cathodoluminescence, polarizing and electron microscopy) were combined with image analysis with the aim to determine a) the modal composition and degradation features within concrete, and b) the petrographic characteristics and the geological types (rocks, and their provenance) of the aggregates. Concrete samples were taken from five different portions of Highway Nos. D1, D11, and D5 (the Czech Republic). Coarse and fine aggregates were found to be primarily composed of volcanic, plutonic, metamorphic and sedimentary rocks, as well as of quartz and feldspar aggregates of variable origins. The alkali-silica reaction was observed to be the main degradation mechanism,more » based upon the presence of microcracks and alkali-silica gels in the concrete. Use of cathodoluminescence enabled the identification of the source materials of the quartz aggregates, based upon their CL characteristics (i.e., color, intensity, microfractures, deformation, and zoning), which is difficult to distinguish only employing polarizing and electron microscopy. - Highlights: Black-Right-Pointing-Pointer ASR in concrete pavements on the Highways Nos. D1, D5 and D11 (Czech Republic). Black-Right-Pointing-Pointer Cathodoluminescence was combined with various microscopic techniques and image analysis. Black-Right-Pointing-Pointer ASR was attributed to aggregates. Black-Right-Pointing-Pointer Source materials of aggregates were identified based on cathodoluminescence characteristics. Black-Right-Pointing-Pointer Quartz comes from different volcanic, plutonic and metamorphic parent rocks.« less

  7. Properties of concrete blocks prepared with low grade recycled aggregates.

    PubMed

    Poon, Chi-Sun; Kou, Shi-cong; Wan, Hui-wen; Etxeberria, Miren

    2009-08-01

    Low grade recycled aggregates obtained from a construction waste sorting facility were tested to assess the feasibility of using these in the production of concrete blocks. The characteristics of the sorted construction waste are significantly different from that of crushed concrete rubbles that are mostly derived from demolition waste streams. This is due to the presence of higher percentages of non-concrete components (e.g. >10% soil, brick, tiles etc.) in the sorted construction waste. In the study reported in this paper, three series of concrete block mixtures were prepared by using the low grade recycled aggregates to replace (i) natural coarse granite (10mm), and (ii) 0, 25, 50, 75 and 100% replacement levels of crushed stone fine (crushed natural granite <5mm) in the concrete blocks. Test results on properties such as density, compressive strength, transverse strength and drying shrinkage as well as strength reduction after exposure to 800 degrees C are presented below. The results show that the soil content in the recycled fine aggregate was an important factor in affecting the properties of the blocks produced and the mechanical strength deceased with increasing low grade recycled fine aggregate content. But the higher soil content in the recycled aggregates reduced the reduction of compressive strength of the blocks after exposure to high temperature due probably to the formation of a new crystalline phase. The results show that the low grade recycled aggregates obtained from the construction waste sorting facility has potential to be used as aggregates for making non-structural pre-cast concrete blocks.

  8. Increased Durability of Concrete Made with Fine Recycled Concrete Aggregates Using Superplasticizers.

    PubMed

    Cartuxo, Francisco; de Brito, Jorge; Evangelista, Luis; Jiménez, José Ramón; Ledesma, Enrique F

    2016-02-08

    This paper evaluates the influence of two superplasticizers (SP) on the durability properties of concrete made with fine recycled concrete aggregate (FRCA). For this purpose, three families of concrete were tested: concrete without SP, concrete made with a regular superplasticizer and concrete made with a high-performance superplasticizer. Five volumetric replacement ratios of natural sand by FRCA were tested: 0%, 10%, 30%, 50% and 100%. Two natural gravels were used as coarse aggregates. All mixes had the same particle size distribution, cement content and amount of superplasticizer. The w/c ratio was calibrated to obtain similar slump. The results showed that the incorporation of FRCA increased the water absorption by immersion, the water absorption by capillary action, the carbonation depth and the chloride migration coefficient, while the use of superplasticizers highly improved these properties. The incorporation of FRCA jeopardized the SP's effectiveness. This research demonstrated that, from a durability point of view, the simultaneous incorporation of FRCA and high-performance SP is a viable sustainable solution for structural concrete production.

  9. Mineralogical and microscopic evaluation of coarse taconite tailings from Minnesota taconite operations.

    PubMed

    Zanko, Lawrence M; Niles, Harlan B; Oreskovich, Julie A

    2008-10-01

    Eighteen coarse taconite tailings samples were collected in 2000-2001 from five western Mesabi Range taconite (iron ore) operations located in northern Minnesota, i.e., EVTAC, Hibbing Taconite (Hibtac), USX Minntac, Ispat Inland (Minorca), and National Steel Pellet Company (NSPC), to test their physical, geological, chemical, and mineralogical properties [Zanko, L.M., Niles, H.B., Oreskovich, J.A., 2003. Properties and aggregate potential of coarse taconite tailings from five Minnesota taconite operations, Minnesota Department of Transportation, Local Road Research Board, St. Paul, MN, Report No. 2004-06 (also as Natural Resources Research Institute technical report, NRRI/TR-2003/44)]. The goal was to assemble a body of technical data that could be used to better assess the potential of using a crushed taconite mining byproduct like coarse tailings for more widespread construction aggregate purposes, primarily in roads and highways. An important part of the mineralogical assessment included X-ray diffraction (XRD) analyses and microscopic (polarized light microscopy, scanning electron microscopy, and transmission electron microscopy, i.e., PLM, SEM, and TEM, respectively) evaluation of the size and shape (morphological) characteristics of potentially respirable microscopic mineral particles and fragments. Quantitative mineralogy, based on XRD analyses, showed that the dominant mineral in all samples was quartz (55-60%), followed by much smaller amounts of iron oxides, carbonates, and silicates. Specialized microscopic analyses and testing performed by the RJ Lee Group, Monroeville, PA, on both pulverized (-200 mesh, or 0.075mm) and as-is sample composites showed that no regulated asbestos minerals or amphibole minerals were detected in the western Mesabi Range samples. A small number (26) of non-asbestos and non-amphibole mineral cleavage fragments/mineral fibers were detected by SEM out of 1000 fields analyzed, but most were identified as minnesotaite and talc, silicate minerals common to the Biwabik Iron Formation. Amphibole minerals, absent in coarse tailings samples from the five western Mesabi Range taconite operations, were present in a single eastern Biwabik Iron Formation sample collected in 2003 for Lake County from the Cliffs Northshore operation in Silver Bay, MN. Importantly, the Superfund Method for the Determination of Releasable Asbestos in Soils and Bulk Materials [United States Environmental Protection Agency (USEPA), 1997. Superfund method for the determination of releasable asbestos in soils and bulk materials, EPA 540-R-97-028, U.S. Environmental Protection Agency, Washington], as modified by Berman and Kolk [Berman, D.W., Kolk, A.J., 2000. Modified elutriator method for the determination of asbestos in soils and bulk materials, Revision 1: Submitted to the U.S. Environmental Protection Agency, Region 8, May 23, 2000] failed to generate any protocol fibers, i.e., fibers longer than 5mum and thinner than 0.5mum, from either the western coarse tailings samples or the single eastern Biwabik Iron Formation sample. The combined findings suggest coarse tailings and other taconite mining byproducts should be treated with the same common sense safety and industrial hygiene approach practiced for all mineral-based materials that have the potential to generate respirable dust.

  10. Effects of rumen-escape starch and coarseness of ingredients in pelleted concentrates on performance and rumen wall characteristics of rosé veal calves.

    PubMed

    Vestergaard, M; Jarltoft, T C; Kristensen, N B; Børsting, C F

    2013-08-01

    The objective was to study the effect of rumen-escape starch and coarseness of ingredients in pelleted concentrates on performance, carcass quality and rumen wall characteristics in rosé veal calf production. Two alternative concentrates (Coarse and Slow) were compared with a traditional (Control) concentrate. Control was based on finely ground ingredients, whereas in Coarse, the same ingredients were coarsely ground resulting in a mean particle size before pelleting of 1.5 in Coarse and 0.6 mm in Control. Slow compared with Control and Coarse contained finely ground sorghum and corn instead of barley and wheat which increased the amount of rumen-escape starch to 59 compared with 22 g/kg in Control and Coarse. All concentrates had the same total starch (362 g/kg), NDF (168 g/kg), CP (154 g/kg) and DE (15.5 MJ/kg DM) content and a pellet diameter of 3.5 to 4 mm. Use of an 'indicator of starch digestibility' method gave a value of 98.6% for Control and Coarse and 91.1% for Slow (P < 0.001). A total of 57 Holstein bull calves (n = 19 per treatment) were offered one of the three concentrates ad libitum from weaning (2½ months of age) to slaughter (<10 months of age). Concentrate intake was recorded individually. Barley straw was available ad libitum but intake was not recorded. Average daily gain (1.43 kg/day), concentrate conversion efficiency (3.7 kg DM concentrate/kg gain), LW at slaughter (386 kg), carcass weight (194 kg) and EUROP conformation (3.9) were not affected by type of concentrate (P > 0.05). Papillae length and shape evaluated in atrium ruminis and the cranial part of the ventral rumen sac at slaughter were not affected by type of concentrate (P > 0.05). Rumen wall characteristics showed degrees of plaque formation (i.e., papillary aggregation), hyperaemia and necrotic areas in all treatment groups, but with no general difference between type of concentrate (P > 0.05). Incidence of liver abscesses (LAs, 16%) was not affected by type of concentrate (P > 0.05). There were no differences in performance or rumen wall characteristics between liver-abscessed and non-abscessed calves. The results show a high level of production performance with the three types of pelleted concentrates and indicates that neither the more coarse ingredients nor the additional rumen-escape starch tested, when fed ad libitum, could improve rumen wall characteristics or reduce LAs of rosé veal calves.

  11. Physical subdivision and description of the water-bearing sediments of the Santa Clara Valley, California

    USGS Publications Warehouse

    Wentworth, Carl M.; Jachens, Robert C.; Williams, Robert A.; Tinsley, John C.; Hanson, Randall T.

    2015-01-01

    Maps and cross sections show the elevations of cycle boundaries and the underlying bedrock surface, the varying thicknesses of the cycles and of their fine tops and coarse bottoms, and the aggregate thickness of coarse layers in those bottom intervals. Coarse sediment is more abundant toward some parts of the basin margin and in the southern part of the basin. Cycle boundary surfaces are relatively smooth, and their shapes are consistent with having been intercycle topographic surfaces. The underlying bedrock surface has a relief of more than 1,200 feet and deepens toward the center of the basin and the west edge of the fault-bounded Evergreen Basin, which is concealed beneath the east side of the Quaternary basin. The absence of consistent abrupt changes in thicknesses or boundary elevations across the basin or in cross section indicates that the interior of the basin is largely unfaulted, with the Silver Creek strand of the San Andreas system at the west edge of the Evergreen Basin being the sole exception. The east and west margins of the Santa Clara Basin, in contrast, are marked by reverse and thrust fault systems.

  12. Adsorption and desorption of Cu2+ on paddy soil aggregates pretreated with different levels of phosphate.

    PubMed

    Dai, Jun; Wang, Wenqin; Wu, Wenchen; Gao, Jianbo; Dong, Changxun

    2017-05-01

    Interactions between anions and cations are important for understanding the behaviors of chemical pollutants and their potential risks in the environment. Here we prepared soil aggregates of a yellow paddy soil from the Taihu Lake region, and investigated the effects of phosphate (P) pretreatment on adsorption-desorption of Cu 2+ of soil aggregates, free iron oxyhydrates-removed soil aggregates, goethite, and kaolinite with batch adsorption method. The results showed that Cu 2+ adsorption was reduced on the aggregates pretreated with low concentrations of P, and promoted with high concentrations of P, showing a V-shaped change. Compared with the untreated aggregates, the adsorption capacity of Cu 2+ was reduced when P application rates were lower than 260, 220, 130 and 110mg/kg for coarse, clay, silt and fine sand fractions, respectively. On the contrary, the adsorption capacity of Cu 2+ was higher on P-pretreated soil aggregates than on the control ones when P application rates were greater than those values. However, the desorption of Cu 2+ was enhanced at low levels of P, but suppressed at high levels of P, displaying an inverted V-shaped change over P adsorption. The Cu 2+ adsorption by the aggregate particles with and without P pretreatments was well described by the Freundlich equation. Similar results were obtained on P-pretreated goethite. However, such P effects on Cu 2+ adsorption-desorption were not observed on kaolinite and free iron oxyhydrates-removed soil aggregates. The present results indicate that goethite is one of the main soil substances responsible for the P-induced promotion and inhibition of Cu 2+ adsorption. Copyright © 2016. Published by Elsevier B.V.

  13. β-sheet propensity controls the kinetic pathways and morphologies of seeded peptide aggregation

    NASA Astrophysics Data System (ADS)

    Morriss-Andrews, Alex; Bellesia, Giovanni; Shea, Joan-Emma

    2012-10-01

    The effect of seeds in templating the morphology of peptide aggregates is examined using molecular dynamics simulations and a coarse-grained peptide representation. Varying the nature of the aggregate seed between β-sheet, amorphous, and β-barrel seeds leads to different aggregation pathways and to morphologically different aggregates. Similar effects are seen by varying the β-sheet propensity of the free peptides. For a fibrillar seed and free peptides of high β-sheet propensity, fibrillar growth occurred by means of direct attachment (without structural rearrangement) of free individual peptides and small ordered oligomers onto the seed. For a fibrillar seed and free peptides of low β-sheet propensity, fibrillar growth occurred through a dock-lock mechanism, in which the free peptides first docked onto the seed, and then locked on, extending and aligning to join the fibril. Amorphous seeds absorbed free peptides into themselves indiscriminately, with any fibrillar rearrangement subsequent to this absorption by means of a condensation-ordering transition. Although the mechanisms observed by varying peptide β-sheet propensity are diverse, the initial pathways can always be broken down into the following steps: (i) the free peptides diffuse in the bulk and attach individually to the seed; (ii) the free peptides diffuse and aggregate among themselves; (iii) the free peptide oligomers collide with the seed; and (iv) the free oligomers merge with the seed and rearrange in a manner dependent on the backbone flexibility of both the free and seed peptides. Our simulations indicate that it is possible to sequester peptides from amorphous aggregates into fibrils, and also that aggregate morphology (and thus cytoxicity) can be controlled by introducing seeds of aggregate-compatible peptides with differing β-sheet propensities into the system.

  14. Importance of the ion-pair interactions in the OPEP coarse-grained force field: parametrization and validation.

    PubMed

    Sterpone, Fabio; Nguyen, Phuong H; Kalimeri, Maria; Derreumaux, Philippe

    2013-10-08

    We have derived new effective interactions that improve the description of ion-pairs in the OPEP coarse-grained force field without introducing explicit electrostatic terms. The iterative Boltzmann inversion method was used to extract these potentials from all atom simulations by targeting the radial distribution function of the distance between the center of mass of the side-chains. The new potentials have been tested on several systems that differ in structural properties, thermodynamic stabilities and number of ion-pairs. Our modeling, by refining the packing of the charged amino-acids, impacts the stability of secondary structure motifs and the population of intermediate states during temperature folding/unfolding; it also improves the aggregation propensity of peptides. The new version of the OPEP force field has the potentiality to describe more realistically a large spectrum of situations where salt-bridges are key interactions.

  15. Early stages of clathrin aggregation at a membrane in coarse-grained simulations

    NASA Astrophysics Data System (ADS)

    Giani, M.; den Otter, W. K.; Briels, W. J.

    2017-04-01

    The self-assembly process of clathrin coated pits during endocytosis has been simulated by combining and extending coarse grained models of the clathrin triskelion, the adaptor protein AP2, and a flexible network membrane. The AP2's core, upon binding to membrane and cargo, releases a motif that can bind clathrin. In conditions where the core-membrane-cargo binding is weak, the binding of this motif to clathrin can result in a stable complex. We characterize the conditions and mechanisms resulting in the formation of clathrin lattices that curve the membrane, i.e., clathrin coated pits. The mechanical properties of the AP2 β linker appear crucial to the orientation of the curved clathrin lattice relative to the membrane, with wild-type short linkers giving rise to the inward curving buds enabling endocytosis while long linkers produce upside-down cages and outward curving bulges.

  16. Fabrication, characterization and fracture study of a machinable hydroxyapatite ceramic.

    PubMed

    Shareef, M Y; Messer, P F; van Noort, R

    1993-01-01

    In this study the preparation of a machinable hydroxyapatite from mixtures of a fine, submicrometer powder and either a coarse powder composed of porous aggregates up to 50 microns or a medium powder composed of dense particles of 3 microns median size is described. These were characterized using X-ray diffraction, transmission and scanning electron microscopy and infra-red spectroscopy. Test-pieces were formed by powder pressing and slip casting mixtures of various combinations of the fine, medium and coarse powders. The fired test-pieces were subjected to measurements of firing shrinkage, porosity, bulk density, tensile strength and fracture toughness. The microstructure and composition were examined using scanning electron microscopy and X-ray diffraction. For both processing methods, a uniform interconnected microporous structure was produced of a high-purity hydroxyapatite. The maximum tensile strength and fracture toughness that could be attained while retaining machinability were 37 MPa and 0.8 MPa m1/2 respectively.

  17. Size distribution of chemical elements and their source apportionment in ambient coarse, fine, and ultrafine particles in Shanghai urban summer atmosphere.

    PubMed

    Lü, Senlin; Zhang, Rui; Yao, Zhenkun; Yi, Fei; Ren, Jingjing; Wu, Minghong; Feng, Man; Wang, Qingyue

    2012-01-01

    Ambient coarse particles (diameter 1.8-10 microm), fine particles (diameter 0.1-1.8 microm), and ultrafine particles (diameter < 0.1 microm) in the atmosphere of the city of Shanghai were sampled during the summer of 2008 (from Aug 27 to Sep 08). Microscopic characterization of the particles was investigated by scanning electron microscopy coupled with energy dispersive X-ray spectroscopy (SEM/EDX). Mass concentrations of Si, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, As, Se, Br, Rb, Sr, and Pb in the size-resolved particles were quantified by using synchrotron radiation X-ray fluorescence (SRXRF). Source apportionment of the chemical elements was analyzed by means of an enrichment factor method. Our results showed that the average mass concentrations of coarse particles, fine particles and ultrafine particles in the summer air were 9.38 +/- 2.18, 8.82 +/- 3.52, and 2.02 +/- 0.41 microg/m3, respectively. The mass percentage of the fine particles accounted for 51.47% in the total mass of PM10, indicating that fine particles are the major component in the Shanghai ambient particles. SEM/EDX results showed that the coarse particles were dominated by minerals, fine particles by soot aggregates and fly ashes, and ultrafine particles by soot particles and unidentified particles. SRXRF results demonstrated that crustal elements were mainly distributed in the coarse particles, while heavy metals were in higher proportions in the fine particles. Source apportionment revealed that Si, K, Ca, Fe, Mn, Rb, and Sr were from crustal sources, and S, Cl, Cu, Zn, As, Se, Br, and Pb from anthropogenic sources. Levels of P, V, Cr, and Ni in particles might be contributed from multi-sources, and need further investigation.

  18. Effect of Lipid Bilayer on Human Islet Amyloid Polypeptide Self Assembly

    NASA Astrophysics Data System (ADS)

    Chiu, Chi-Cheng; Singh, Sadanand; de Pablo, Juan J.

    2012-02-01

    Aggregates of human islet amyloid polypeptides (hIAPP, also known as human amylin) are commonly found in the pancreatic β-cells of type II diabetes patients. Experimental studies have shown that small aggregates of hIAPP, that arise during the assembly process, lead to membrane leakage and are highly cytotoxic. Due to the fast assembly kinetics, it is difficult to study the early aggregation of hIAPP experimentally. In this work, we use molecular simulation with a coarse grained (CG) model to investigate the oligomerization of hIAPP with and without the presence of lipid bilayers. We develop a CG protein model that reproduces the three thremodynamically stable structures of hIAPP, namely α-helix, β-hairpin, and unstructured coil, and the corresponding free energy differences calculated by atomistic molecular simulations. The aggregated structure of hIAPP also agrees with that proposed by NMR experiments. We further investigate the assembly of hIAPP in the presence of a lipid bilayer and its effect on the membrane leakage. Comparing our results with the mechanism proposed based on experimental data provides a better understanding of the origins of hIAPP self assembly and its toxicity.

  19. [Aluminum dissolution and changes of pH in soil solution during sorption of copper by aggregates of paddy soil].

    PubMed

    Xu, Hai-Bo; Zhao, Dao-Yuan; Qin, Chao; Li, Yu-Jiao; Dong, Chang-Xun

    2014-01-01

    Size fractions of soil aggregates in Lake Tai region were collected by the low-energy ultrasonic dispersion and the freeze-desiccation methods. The dissolution of aluminum and changes of pH in soil solution during sorption of Cu2+ and changes of the dissolution of aluminum at different pH in the solution of Cu2+ by aggregates were studied by the equilibrium sorption method. The results showed that in the process of Cu2+ sorption by aggregates, the aluminum was dissoluted and the pH decreased. The elution amount of aluminum and the decrease of pH changed with the sorption of Cu2+, both increasing with the increase of Cu2+ sorption. Under the same conditions, the dissolution of aluminum and the decrease of pH were in the order of coarse silt fraction > silt fraction > sand fraction > clay fraction, which was negatively correlated with the amount of iron oxide, aluminum and organic matter. It suggested that iron oxide, aluminum and organic matters had inhibitory and buffering effect on the aluminum dissolution and the decrease of pH during the sorption of Cu2+.

  20. Molecular Simulation Studies of Covalently and Ionically Grafted Nanoparticles

    NASA Astrophysics Data System (ADS)

    Hong, Bingbing

    Solvent-free covalently- or ionically-grafted nanoparticles (CGNs and IGNs) are a new class of organic-inorganic hybrid composite materials exhibiting fluid-like behaviors around room temperature. With similar structures to prior systems, e.g. nanocomposites, neutral or charged colloids, ionic liquids, etc, CGNs and IGNs inherit the functionality of inorganic nanopariticles, the facile processibility of polymers, as well as conductivity and nonvolatility from their constituent materials. In spite of the extensive prior experimental research having covered synthesis and measurements of thermal and dynamic properties, little progress in understanding of these new materials at the molecular level has been achieved, because of the lack of simulation work in this new area. Atomistic and coarse-grained molecular dynamics simulations have been performed in this thesis to investigate the thermodynamics, structure, and dynamics of these systems and to seek predictive methods predictable for their properties. Starting from poly(ethylene oxide) oligomers (PEO) melts, we established atomistic models based on united-atom representations of methylene. The Green-Kubo and Einstein-Helfand formulas were used to calculate the transport properties. The simulations generate densities, viscosities, diffusivities, in good agreement with experimental data. The chain-length dependence of the transport properties suggests that neither Rouse nor reptation models are applicable in the short-chain regime investigated. Coupled with thermodynamic integration methods, the models give good predictions of pressure-composition-density relations for CO 2 + PEO oligomers. Water effects on the Henry's constant of CO 2 in PEO have also been investigated. The dependence of the calculated Henry's constants on the weight percentage of water falls on a temperature-dependent master curve, irrespective of PEO chain length. CGNs are modeled by the inclusion of solid-sphere nanoparticles into the atomistic oligomers. The calculated viscosities from Green-Kubo relationships and temperature extrapolation are of the same order of magnitude as experimental values, but show a smaller activation energy relative to real CGNs systems. Grafted systems have higher viscosities, smaller diffusion coefficients, and slower chain dynamics than the ungrafted counterparts - nanocomposites - at high temperatures. At lower temperatures, grafted systems exhibit faster dynamics for both nanoparticles and chains relative to ungrafted systems, because of lower aggregation of nanoparticles and enhanced correlations between nanoparticles and chains. This agrees with the experimental observation that the new materials have liquid-like behavior in the absence of a solvent. To lower the simulated temperatures into the experimental range, we established a coarse-grained CGNs model by matching structural distribution functions to atomistic simulation data. In contrast with linear polymer systems, for which coarse-graining always accelerate dynamics, coarse-graining of grafted nanoparticles can either accelerate or slowdown the core motions, depending on the length of the grafted chains. This can be qualitatively predicted by a simple transition-state theory. Similar atomistic models to CGNs were developed for IGNs, with ammonium counterions described by an explicit-hydrogen way; these were in turn compared with "generic" coarse-grained IGNs. The elimination of chemical details in the coarse-grained models does not bring in qualitative changes to the radial distribution functions and diffusion of atomistic IGNs, but saves considerable simulation resources and make simulations near room temperatures affordable. The chain counterions in both atomistic and coarse-grained models are mobile, moving from site to site and from nanoparticle to nanoparticle. At the same temperature and the same core volume fractions, the nanoparticle diffusivities in coarse-grained IGNs are slower by a factor ten than the cores of CGNs. The coarse-grained IGNs models are later used to investigate the system dynamics through analysis of the dependence on temperature and structural parameters of the transport properties (self-diffusion coefficients, viscosities and conductivities). Further, migration kinetics of oligomeric counterions is analyzed in a manner analogous to unimer exchange between micellar aggregates. The counterion migrations follow the "double-core" mechanism and are kinetically controlled by neighboring-core collisions. (Abstract shortened by UMI.)

  1. Primary and Aggregate Size Distributions of PM in Tail Pipe Emissions form Diesel Engines

    NASA Astrophysics Data System (ADS)

    Arai, Masataka; Amagai, Kenji; Nakaji, Takayuki; Hayashi, Shinji

    Particulate matter (PM) emission exhausted from diesel engine should be reduced to keep the clean air environment. PM emission was considered that it consisted of coarse and aggregate particles, and nuclei-mode particles of which diameter was less than 50nm. However the detail characteristics about these particles of the PM were still unknown and they were needed for more physically accurate measurement and more effective reduction of exhaust PM emission. In this study, the size distributions of solid particles in PM emission were reported. PMs in the tail-pipe emission were sampled from three type diesel engines. Sampled PM was chemically treated to separate the solid carbon fraction from other fractions such as soluble organic fraction (SOF). The electron microscopic and optical-manual size measurement procedures were used to determine the size distribution of primary particles those were formed through coagulation process from nuclei-mode particles and consisted in aggregate particles. The centrifugal sedimentation method was applied to measure the Stokes diameter of dry-soot. Aerodynamic diameters of nano and aggregate particles were measured with scanning mobility particle sizer (SMPS). The peak aggregate diameters detected by SMPS were fallen in the same size regime as the Stokes diameter of dry-soot. Both of primary and Stokes diameters of dry-soot decreased with increases of engine speed and excess air ratio. Also, the effects of fuel properties and engine types on primary and aggregate particle diameters were discussed.

  2. The influence of polymer architecture on the assembly of poly(ethylene oxide) grafted C60 fullerene clusters in aqueous solution: a molecular dynamics simulation study.

    PubMed

    Hooper, Justin B; Bedrov, Dmitry; Smith, Grant D

    2009-03-28

    The effect of polymer architecture on the aggregation behavior of C60 fullerenes tethered with a single chain of poly(ethylene oxide) (PEO) in aqueous solution has been investigated using coarse-grained, implicit solvent molecular dynamics simulations. The PEO-grafted fullerenes were comprised of a single tether of 60 repeat units represented as a linear polymer, a three-arm star (20 repeat units/arm) or a six-arm star (10 repeat units/arm). Additionally, the influence of arm length on self-assembly of the PEO-fullerene conjugates was investigated for the three-arm stars. Self-assembly is driven by favorable fullerene-fullerene and fullerene-PEO interactions. Our simulations reveal that it should be possible to control the size and geometry of the self-assembled fullerene aggregates in water through variation of PEO architecture and PEO molecular weight. We found that aggregate size and shape could be understood qualitatively in terms of the packing parameter concept that has been employed for diblock polymer and surfactant self-assembly. Higher molecular weight PEO (longer arms) and more compact PEO (more arms for the same molecular weight) resulted in greater steric repulsion between fullerenes, engendering greater aggregate surface curvature and hence the formation of smaller, more spherically shaped aggregates. Finally, weak attractive interactions between PEO and the fullerenes were found to play an important role in determining aggregate shape, size and the dynamics of self-assembly.

  3. Hydrodynamic effects on β-amyloid (16-22) peptide aggregation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiricotto, Mara; Sterpone, Fabio, E-mail: fabio.sterpone@ibpc.fr; Melchionna, Simone

    Computer simulations based on simplified representations are routinely used to explore the early steps of amyloid aggregation. However, when protein models with implicit solvent are employed, these simulations miss the effect of solvent induced correlations on the aggregation kinetics and lifetimes of metastable states. In this work, we apply the multi-scale Lattice Boltzmann Molecular Dynamics technique (LBMD) to investigate the initial aggregation phases of the amyloid Aβ{sub 16−22} peptide. LBMD includes naturally hydrodynamic interactions (HIs) via a kinetic on-lattice representation of the fluid kinetics. The peptides are represented by the flexible OPEP coarse-grained force field. First, we have tuned themore » essential parameters that control the coupling between the molecular and fluid evolutions in order to reproduce the experimental diffusivity of elementary species. The method is then deployed to investigate the effect of HIs on the aggregation of 100 and 1000 Aβ{sub 16−22} peptides. We show that HIs clearly impact the aggregation process and the fluctuations of the oligomer sizes by favouring the fusion and exchange dynamics of oligomers between aggregates. HIs also guide the growth of the leading largest cluster. For the 100 Aβ{sub 16−22} peptide system, the simulation of ∼300 ns allowed us to observe the transition from ellipsoidal assemblies to an elongated and slightly twisted aggregate involving almost the totality of the peptides. For the 1000 Aβ{sub 16−22} peptides, a system of unprecedented size at quasi-atomistic resolution, we were able to explore a branched disordered fibril-like structure that has never been described by other computer simulations, but has been observed experimentally.« less

  4. Evaluation of Different Mineral Filler Aggregates for Asphalt Mixtures

    NASA Astrophysics Data System (ADS)

    Wasilewska, Marta; Małaszkiewicz, Dorota; Ignatiuk, Natalia

    2017-10-01

    Mineral filler aggregates play an important role in asphalt mixtures because they fill voids in paving mix and improve the cohesion of asphalt binder. Limestone powder containing over 90% of CaCO3 is the most frequently used type of filler. Waste material from the production of coarse aggregate can be successfully used as a mineral filler aggregate for hot asphalt concrete mixtures as the limestone powder replacement. This paper presents the experimental results of selected properties of filler aggregates which were obtained from rocks with different mineral composition and origin. Five types of rocks were used as a source of the mineral filler aggregate: granite, gabbro, trachybasalt, quartz sandstone and rocks from postglacial deposits. Limestone filler was used in this study as the reference material. The following tests were performed: grading (air jet sieving), quality of fines according to methylene blue test, water content by drying in a ventilated oven, particle density using pyknometer method, Delta ring and ball test, Bitumen Number, fineness determined as Blaine specific surface area. Mineral filler aggregates showed significant differences when they were mixed with bitumen and stiffening effect in Delta ring and ball test was evaluated. The highest values were achieved when gabbro and granite fillers were used. Additionally, Scanning Electron Microscopy (SEM) analysis of grain shape and size was carried out. Significant differences in grain size and shape were observed. The highest non-homogeneity in size was determined for quartz sandstone, gabbro and granite filler. Their Blaine specific surface area was lower than 2800 cm2/g, while for limestone and postglacial fillers with regular and round grains it exceeded 3000 cm2/g. All examined mineral filler aggregates met requirements of Polish National Specification WT-1: 2014 and could be used in asphalt mixtures.

  5. Separability studies of construction and demolition waste recycled sand.

    PubMed

    Ulsen, Carina; Kahn, Henrique; Hawlitschek, Gustav; Masini, Eldon A; Angulo, Sérgio C

    2013-03-01

    The quality of recycled aggregates from construction and demolition waste (CDW) is strictly related to the content of porous and low strength phases, and specifically to the patches of cement that remain attached to the surface of natural aggregates. This phase increases water absorption and compromises the consistency and strength of concrete made from recycled aggregates. Mineral processing has been applied to CDW recycling to remove the patches of adhered cement paste on coarse recycled aggregates. The recycled fine fraction is usually disregarded due to its high content of porous phases despite representing around 50% of the total waste. This paper focus on laboratory mineral separability studies for removing particles with a high content of cement paste from natural fine aggregate particles (quartz/feldspars). The procedure achieved processing of CDW by tertiary impact crushing to produce sand, followed by sieving and density and magnetic separability studies. The attained results confirmed that both methods were effective in reducing cement paste content and producing significant mass recovery (80% for density concentration and 60% for magnetic separation). The production of recycled sand contributes to the sustainability of the construction environment by reducing both the consumption of raw materials and disposal of CDW, particularly in large Brazilian centers with a low quantity of sand and increasing costs of this material due to long transportation distances. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Properties of coarse particles in suspended particulate matter of the North Yellow Sea during summer

    NASA Astrophysics Data System (ADS)

    Zhang, Kainan; Wang, Zhenyan; Li, Wenjian; Yan, Jun

    2018-01-01

    Fine particles in seawater commonly form large porous aggregates. Aggregate density and settling velocity determine the behavior of this suspended particulate matter (SPM) within the water column. However, few studies of aggregate particles over a continental shelf have been undertaken. In our case study, properties of aggregate particles, including size and composition, over the continental shelf of the North Yellow Sea were investigated. During a scientific cruise in July 2016, in situ effective particle size distributions of SPM at 10 stations were measured, while temperature and turbidity measurements and samples of water were obtained from surface, middle, and bottom layers. Dispersed and inorganic particle size distributions were determined in the laboratory. The in situ SPM was divided into (1) small particles (<32 μm), (2) medium particles (32-256 μm) and (3) large particles (>256 μm). Large particles and medium particles dominated the total volume concentrations (VCs) of in situ SPM. After dispersion, the VCs of medium particles decreased to low values (<0.1 μL/L). The VCs of large particles in the surface and middle layers also decreased markedly, although they had higher peak values (0.1-1 μL/L). This suggests that almost all in situ medium particles and some large particles were aggregated, while other large particles were single particles. Correlation analysis showed that primary particles <32 μm influenced the formation of these aggregates. Microscopic examination revealed that these aggregates consisted of both organic and inorganic fine particles, while large particles were mucus-bound organic aggregates or individual plankton. The vertical distribution of coarser particles was clearly related to water stratification. Generally, medium aggregate particles were dominant in SPM of the bottom layer. A thermocline blocked resuspension of fine material into upper layers, yielding low VCs of medium-sized aggregate particles in the surface layer. Abundant large biogenic particles were present in both surface and middle layers.

  7. Reusing recycled aggregates in structural concrete

    NASA Astrophysics Data System (ADS)

    Kou, Shicong

    The utilization of recycled aggregates in concrete can minimize environmental impact and reduce the consumption of natural resources in concrete applications. The aim of this thesis is to provide a scientific basis for the possible use of recycled aggregates in structure concrete by conducting a comprehensive programme of laboratory study to gain a better understanding of the mechanical, microstructure and durability properties of concrete produced with recycled aggregates. The study also explored possible techniques to of improve the properties of recycled aggregate concrete that is produced with high percentages (≧ 50%) of recycled aggregates. These techniques included: (a) using lower water-to-cement ratios in the concrete mix design; (b) using fly ash as a cement replacement or as an additional mineral admixture in the concrete mixes, and (c) precasting recycled aggregate concrete with steam curing regimes. The characteristics of the recycled aggregates produced both from laboratory and a commercially operated pilot construction and demolition (C&D) waste recycling plant were first studied. A mix proportioning procedure was then established to produce six series of concrete mixtures using different percentages of recycled coarse aggregates with and without the use of fly ash. The water-to-cement (binder) ratios of 0.55, 0.50, 0.45 and 0.40 were used. The fresh properties (including slump and bleeding) of recycled aggregate concrete (RAC) were then quantified. The effects of fly ash on the fresh and hardened properties of RAC were then studied and compared with those RAC prepared with no fly ash addition. Furthermore, the effects of steam curing on the hardened properties of RAC were investigated. For micro-structural properties, the interfacial transition zones of the aggregates and the mortar/cement paste were analyzed by SEM and EDX-mapping. Moreover, a detailed set of results on the fracture properties for RAC were obtained. Based on the experimental results, a number of recommendations were made on how to optimize the use of recycled aggregates for structural concrete production. The results demonstrate that one of the practical ways to utilize a higher percentage of recycled aggregates in concrete is "precasting" with the use of fly ash and an initial steam curing stage immediately after casting.

  8. Increased Durability of Concrete Made with Fine Recycled Concrete Aggregates Using Superplasticizers

    PubMed Central

    Cartuxo, Francisco; de Brito, Jorge; Evangelista, Luis; Jiménez, José Ramón; Ledesma, Enrique F.

    2016-01-01

    This paper evaluates the influence of two superplasticizers (SP) on the durability properties of concrete made with fine recycled concrete aggregate (FRCA). For this purpose, three families of concrete were tested: concrete without SP, concrete made with a regular superplasticizer and concrete made with a high-performance superplasticizer. Five volumetric replacement ratios of natural sand by FRCA were tested: 0%, 10%, 30%, 50% and 100%. Two natural gravels were used as coarse aggregates. All mixes had the same particle size distribution, cement content and amount of superplasticizer. The w/c ratio was calibrated to obtain similar slump. The results showed that the incorporation of FRCA increased the water absorption by immersion, the water absorption by capillary action, the carbonation depth and the chloride migration coefficient, while the use of superplasticizers highly improved these properties. The incorporation of FRCA jeopardized the SP’s effectiveness. This research demonstrated that, from a durability point of view, the simultaneous incorporation of FRCA and high-performance SP is a viable sustainable solution for structural concrete production. PMID:28787905

  9. Implementation of a generalized actuator line model for wind turbine parameterization in the Weather Research and Forecasting model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marjanovic, Nikola; Mirocha, Jeffrey D.; Kosović, Branko

    A generalized actuator line (GAL) wind turbine parameterization is implemented within the Weather Research and Forecasting model to enable high-fidelity large-eddy simulations of wind turbine interactions with boundary layer flows under realistic atmospheric forcing conditions. Numerical simulations using the GAL parameterization are evaluated against both an already implemented generalized actuator disk (GAD) wind turbine parameterization and two field campaigns that measured the inflow and near-wake regions of a single turbine. The representation of wake wind speed, variance, and vorticity distributions is examined by comparing fine-resolution GAL and GAD simulations and GAD simulations at both fine and coarse-resolutions. The higher-resolution simulationsmore » show slightly larger and more persistent velocity deficits in the wake and substantially increased variance and vorticity when compared to the coarse-resolution GAD. The GAL generates distinct tip and root vortices that maintain coherence as helical tubes for approximately one rotor diameter downstream. Coarse-resolution simulations using the GAD produce similar aggregated wake characteristics to both fine-scale GAD and GAL simulations at a fraction of the computational cost. The GAL parameterization provides the capability to resolve near wake physics, including vorticity shedding and wake expansion.« less

  10. Multiple time-scales and the developmental dynamics of social systems.

    PubMed

    Flack, Jessica C

    2012-07-05

    To build a theory of social complexity, we need to understand how aggregate social properties arise from individual interaction rules. Here, I review a body of work on the developmental dynamics of pigtailed macaque social organization and conflict management that provides insight into the mechanistic causes of multi-scale social systems. In this model system coarse-grained, statistical representations of collective dynamics are more predictive of the future state of the system than the constantly in-flux behavioural patterns at the individual level. The data suggest that individuals can perceive and use these representations for strategical decision-making. As an interaction history accumulates the coarse-grained representations consolidate. This constrains individual behaviour and provides the foundations for new levels of organization. The time-scales on which these representations change impact whether the consolidating higher-levels can be modified by individuals and collectively. The time-scales appear to be a function of the 'coarseness' of the representations and the character of the collective dynamics over which they are averages. The data suggest that an advantage of multiple timescales is that they allow social systems to balance tradeoffs between predictability and adaptability. I briefly discuss the implications of these findings for cognition, social niche construction and the evolution of new levels of organization in biological systems.

  11. Transport properties of olivine grain boundaries from electrical conductivity experiments

    NASA Astrophysics Data System (ADS)

    Pommier, Anne; Kohlstedt, David L.; Hansen, Lars N.; Mackwell, Stephen; Tasaka, Miki; Heidelbach, Florian; Leinenweber, Kurt

    2018-05-01

    Grain boundary processes contribute significantly to electronic and ionic transports in materials within Earth's interior. We report a novel experimental study of grain boundary conductivity in highly strained olivine aggregates that demonstrates the importance of misorientation angle between adjacent grains on aggregate transport properties. We performed electrical conductivity measurements of melt-free polycrystalline olivine (Fo90) samples that had been previously deformed at 1200 °C and 0.3 GPa to shear strains up to γ = 7.3. The electrical conductivity and anisotropy were measured at 2.8 GPa over the temperature range 700-1400 °C. We observed that (1) the electrical conductivity of samples with a small grain size (3-6 µm) and strong crystallographic preferred orientation produced by dynamic recrystallization during large-strain shear deformation is a factor of 10 or more larger than that measured on coarse-grained samples, (2) the sample deformed to the highest strain is the most conductive even though it does not have the smallest grain size, and (3) conductivity is up to a factor of 4 larger in the direction of shear than normal to the shear plane. Based on these results combined with electrical conductivity data for coarse-grained, polycrystalline olivine and for single crystals, we propose that the electrical conductivity of our fine-grained samples is dominated by grain boundary paths. In addition, the electrical anisotropy results from preferential alignment of higher-conductivity grain boundaries associated with the development of a strong crystallographic preferred orientation of the grains.

  12. A transferable coarse-grained model for diphenylalanine: How to represent an environment driven conformational transition

    NASA Astrophysics Data System (ADS)

    Dalgicdir, Cahit; Sensoy, Ozge; Peter, Christine; Sayar, Mehmet

    2013-12-01

    One of the major challenges in the development of coarse grained (CG) simulation models that aim at biomolecular structure formation processes is the correct representation of an environment-driven conformational change, for example, a folding/unfolding event upon interaction with an interface or upon aggregation. In the present study, we investigate this transferability challenge for a CG model using the example of diphenylalanine. This dipeptide displays a transition from a trans-like to a cis-like conformation upon aggregation as well as upon transfer from bulk water to the cyclohexane/water interface. Here, we show that one can construct a single CG model that can reproduce both the bulk and interface conformational behavior and the segregation between hydrophobic/hydrophilic medium. While the general strategy to obtain nonbonded interactions in the present CG model is to reproduce solvation free energies of small molecules representing the CG beads in the respective solvents, the success of the model strongly depends on nontrivial decisions one has to make to capture the delicate balance between the bonded and nonbonded interactions. In particular, we found that the peptide's conformational behavior is qualitatively affected by the cyclohexane/water interaction potential, an interaction that does not directly involve the peptide at all but merely influences the properties of the hydrophobic/hydrophilic interface. Furthermore, we show that a small modification to improve the structural/conformational properties of the CG model could dramatically alter the thermodynamic properties.

  13. Zwitterionic lipid assemblies: Molecular dynamics studies of monolayers, bilayers, and vesicles using a new coarse grain force field

    PubMed Central

    Shinoda, Wataru; DeVane, Russell; Klein, Michael L.

    2010-01-01

    A new coarse-grained (CG) intermolecular force field is presented for a series of zwitterionic lipids. The model is an extension of our previous work on nonionic surfactants and is designed to reproduce experimental surface/interfacial properties as well as distribution functions from all-atom molecular dynamics (MD) simulations. Using simple functional forms, the force field parameters are optimized for multiple lipid molecules, simultaneously. The resulting CG lipid bilayers have reasonable molecular areas, chain order parameters, and elastic properties. The computed surface pressure vs. area (π-A) curve for a DPPC monolayer demonstrates a significant improvement over the previous CG models. The DPPC monolayer has a longer persistence length than a PEG lipid monolayer, exhibiting a long-lived curved monolayer surface under negative tension. The bud ejected from an oversaturated DPPC monolayer has a large bicelle-like structure, which is different from the micellar bud formed from an oversaturated PEG lipid monolayer. We have successfully observed vesicle formation during CG-MD simulations, starting from an aggregate of DMPC molecules. Depending on the aggregate size, the lipid assembly spontaneously transforms into a closed vesicle or a bicelle. None of the various intermediate structures between these extremes seem to be stable. An attempt to observe fusion of two vesicles through the application of an external adhesion force was not successful. The present CG force field also supports stable multi-lamellar DMPC vesicles. PMID:20438090

  14. A Multiscale Approach to Characterize the Early Aggregation Steps of the Amyloid-Forming Peptide GNNQQNY from the Yeast Prion Sup-35

    PubMed Central

    Nasica-Labouze, Jessica; Meli, Massimiliano; Derreumaux, Philippe; Colombo, Giorgio; Mousseau, Normand

    2011-01-01

    The self-organization of peptides into amyloidogenic oligomers is one of the key events for a wide range of molecular and degenerative diseases. Atomic-resolution characterization of the mechanisms responsible for the aggregation process and the resulting structures is thus a necessary step to improve our understanding of the determinants of these pathologies. To address this issue, we combine the accelerated sampling properties of replica exchange molecular dynamics simulations based on the OPEP coarse-grained potential with the atomic resolution description of interactions provided by all-atom MD simulations, and investigate the oligomerization process of the GNNQQNY for three system sizes: 3-mers, 12-mers and 20-mers. Results for our integrated simulations show a rich variety of structural arrangements for aggregates of all sizes. Elongated fibril-like structures can form transiently in the 20-mer case, but they are not stable and easily interconvert in more globular and disordered forms. Our extensive characterization of the intermediate structures and their physico-chemical determinants points to a high degree of polymorphism for the GNNQQNY sequence that can be reflected at the macroscopic scale. Detailed mechanisms and structures that underlie amyloid aggregation are also provided. PMID:21625573

  15. Study on identically voided pervious concrete made with different sized aggregates

    NASA Astrophysics Data System (ADS)

    Kastro Kiran, V.; Anand, K. B.

    2018-02-01

    Pervious concrete (PC) is also known as no fines concrete and has been found to be a reliable stormwater management tool. As a substitution for conventional impervious pavement, PC usage has been increasing during recent years. PC made with different sized aggregate shows different void ratios and changed properties. As void ratio plays a notable role on strength and permeability of PC, this study aims to focus on properties of PC at identical void ratio of 20%, made using aggregates of three size ranges, viz., 4.75-6mm, 10-12.5mm, and 10-20mm. Appropriate alternatives were used to maintain the identical void ratio. As the permeation capacity of PC gets reduced due to the clogging tendency, the life of PC will also get reduced. Hence, to make the PC to sustain for a long time it is necessary to study the clogging behavior. This study investigates the tendency of PC for clogging and the potential for regaining the permeability through de-clogging methods. Clogging tendency of PC is studied by using two sizes (coarse and fine) of clog particles and the changes in permeability are observed. Efficiency of declogging methods like pressure washing and vacuum suction on PC with different sized aggregates are also evaluated.

  16. Use of recycled fine aggregate in concretes with durable requirements.

    PubMed

    Zega, Claudio Javier; Di Maio, Angel Antonio

    2011-11-01

    The use of construction waste materials as aggregates for concrete production is highly attractive compared to the use of non-renewable natural resources, promoting environmental protection and allowing the development of a new raw material. Several countries have recommendations for the use of recycled coarse aggregate in structural concrete, whereas the use of the fine fraction is limited because it may produce significant changes in some properties of concrete. However, during the last decade the use of recycled fine aggregates (RFA) has achieved a great international interest, mainly because of economic implications related to the shortage of natural sands suitable for the production of concrete, besides to allow an integral use of this type of waste. In this study, the durable behaviour of structural concretes made with different percentage of RFA (0%, 20%, and 30%) is evaluated. Different properties related to the durability of concretes such as absorption, sorptivity, water penetration under pressure, and carbonation are determined. In addition, the results of compressive strength, static modulus of elasticity and drying shrinkage are presented. The obtained results indicate that the recycled concretes have a suitable resistant and durable behaviour, according to the limits indicated by different international codes for structural concrete. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Investigation of Self Consolidating Concrete Containing High Volume of Supplementary Cementitious Materials and Recycled Asphalt Pavement Aggregates

    NASA Astrophysics Data System (ADS)

    Patibandla, Varun chowdary

    The use of sustainable technologies such as supplementary cementitiuous materials (SCMs), and/or recycled materials is expected to positively affect the performance of concrete mixtures. However, it is important to study and qualify such mixtures and check if the required specifications of their intended application are met before they can be implemented in practice. This study presents the results of a laboratory investigation of Self Consolidating concrete (SCC) containing sustainable technologies. A total of twelve concrete mixtures were prepared with various combinations of fly ash, slag, and recycled asphalt pavement (RAP). The mixtures were divided into three groups with constant water to cementitiuous materials ratio of 0.37, and based on the RAP content; 0, 25, and 50% of coarse aggregate replaced by RAP. All mixtures were prepared to achieve a target slump flow equal to or higher than 500 mm (24in). A control mixture for each group was prepared with 100% Portland cement whereas all other mixtures were designed to have up to 70% of portland cement replaced by a combination of supplementary cementitiuous materials (SCMs) such as class C fly ash and granulated blast furnace slag. The properties of fresh concrete investigated in this study include flowability, deformability; filling capacity, and resistance to segregation. In addition, the compressive strength at 3, 14, and 28 days, the tensile strength, and the unrestrained shrinkage up to 80 days was also investigated. As expected the inclusion of the sustainable technologies affected both fresh and hardened concrete properties. Analysis of the experimental data indicated that inclusion of RAP not only reduces the ultimate strength, but it also affected the compressive strength development rate. Moreover, several mixes satisfied compressive strength requirements for pavements and bridges; those mixes included relatively high percentages of SCMs and RAP. Based on the results obtained in this study, it is not recommended to replace the coarse aggregate in SCC by more than 25% RAP.

  18. Summer aerosol particle mixing in different climate and source regions of the United Arab Emirates (UAE)

    NASA Astrophysics Data System (ADS)

    Semeniuk, T. A.; Bruintjes, R. T.; Salazar, V.; Breed, D. W.; Jensen, T. L.; Buseck, P. R.

    2005-12-01

    The high aerosol loadings over the UAE reflect local to regional natural and anthropogenic pollution sources. To understand the impact of the high levels of pollution on both local and global climate systems, aerosol characterization flights in summer 2002 were used to sample major source areas, and to provide information on the interaction of aerosol particles within different geographic regions of the UAE. Atmospheric information and aerosol samples were collected from the marine/oil-industry region, NW coastal industries and cities, Oman Mountain Range, and NE coastal region. Aerosol samples were collected with multi-stage impactors and were analysed later using transmission electron microscopy. All samples are dominated by mineral grains or mineral aggregates in the coarse-mode fraction, and ammonium sulfate droplets in the fine-mode fraction. Differences in the types of mineral grains (different regional desert sources), inorganic salt and soot fractions, and types of internally mixed particles occur between regions. Oil-related industry sites have an abundance of coated and internally mixed particles, including sulfate-coated mineral grains, and mineral aggregates with chloride and sulfate. Cities have slightly elevated soot fractions, and typically have metal oxides. The NE coastal area is characterized by high soot fractions (local shipping) and mixed volatile droplets (regional Asian pollution). Particle populations within the convection zone over the Oman Mountain Range comprise an external mixture of particles from NW and NE sources, with many deliquesced particles. Both land-sea breezes in the NW regions and convection systems in the mountains mix aerosol particles from different local and regional sources, resulting in the formation of abundant internally mixed particles. The interaction between desert dust and anthropogenic pollution, and in particular the formation of mineral aggregates with chloride and sulfate, enhances the coarse-mode fraction and droplet fraction in industrial and mountainous regions.

  19. Study of the Technical Feasibility of Increasing the Amount of Recycled Concrete Waste Used in Ready-Mix Concrete Production

    PubMed Central

    Ferreiro-Cabello, Javier; López-González, Luis M.

    2017-01-01

    The construction industry generates a considerable amount of waste. Faced with this undesirable situation, the ready-mix concrete sector, in particular, has invested energy and resources into reusing its own waste in its production process as it works towards the goal of more sustainable construction. This study examines the feasibility of incorporating two types of concrete waste, which currently end up in landfill, into the production process of ready-mix concrete: the waste generated during the initial production stage (ready-mix concrete waste), and waste created when demolition waste is treated to obtain artificial aggregate. The first phase of the study’s methodology corroborates the suitability of the recycled aggregate through characterization tests. After this phase, the impact of incorporating different percentages of recycled coarse aggregate is evaluated by examining the performance of the produced concrete. The replacement rate varied between 15% and 50%. The results indicate that recycled aggregates are, indeed, suitable to be incorporated into ready-mix concrete production. The impact on the final product’s performance is different for the two cases examined herein. Incorporating aggregates from generic concrete blocks led to a 20% decrease in the produced concrete’s strength performance. On the other hand, using recycled aggregates made from the demolition waste led to a smaller decrease in the concrete’s performance: about 8%. The results indicate that with adequate management and prior treatment, the waste from these plants can be re-incorporated into their production processes. If concrete waste is re-used, concrete production, in general, becomes more sustainable for two reasons: less waste ends up as landfill and the consumption of natural aggregates is also reduced. PMID:28773183

  20. Study of the Technical Feasibility of Increasing the Amount of Recycled Concrete Waste Used in Ready-Mix Concrete Production.

    PubMed

    Fraile-Garcia, Esteban; Ferreiro-Cabello, Javier; López-Ochoa, Luis M; López-González, Luis M

    2017-07-18

    The construction industry generates a considerable amount of waste. Faced with this undesirable situation, the ready-mix concrete sector, in particular, has invested energy and resources into reusing its own waste in its production process as it works towards the goal of more sustainable construction. This study examines the feasibility of incorporating two types of concrete waste, which currently end up in landfill, into the production process of ready-mix concrete: the waste generated during the initial production stage (ready-mix concrete waste), and waste created when demolition waste is treated to obtain artificial aggregate. The first phase of the study's methodology corroborates the suitability of the recycled aggregate through characterization tests. After this phase, the impact of incorporating different percentages of recycled coarse aggregate is evaluated by examining the performance of the produced concrete. The replacement rate varied between 15% and 50%. The results indicate that recycled aggregates are, indeed, suitable to be incorporated into ready-mix concrete production. The impact on the final product's performance is different for the two cases examined herein. Incorporating aggregates from generic concrete blocks led to a 20% decrease in the produced concrete's strength performance. On the other hand, using recycled aggregates made from the demolition waste led to a smaller decrease in the concrete's performance: about 8%. The results indicate that with adequate management and prior treatment, the waste from these plants can be re-incorporated into their production processes. If concrete waste is re-used, concrete production, in general, becomes more sustainable for two reasons: less waste ends up as landfill and the consumption of natural aggregates is also reduced.

  1. Role of Grain Boundaries under Long-Time Radiation

    NASA Astrophysics Data System (ADS)

    Zhu, Yichao; Luo, Jing; Guo, Xu; Xiang, Yang; Chapman, Stephen Jonathan

    2018-06-01

    Materials containing a high proportion of grain boundaries offer significant potential for the development of radiation-resistant structural materials. However, a proper understanding of the connection between the radiation-induced microstructural behavior of a grain boundary and its impact at long natural time scales is still missing. In this Letter, point defect absorption at interfaces is summarized by a jump Robin-type condition at a coarse-grained level, wherein the role of interface microstructure is effectively taken into account. Then a concise formula linking the sink strength of a polycrystalline aggregate with its grain size is introduced and is well compared with experimental observation. Based on the derived model, a coarse-grained formulation incorporating the coupled evolution of grain boundaries and point defects is proposed, so as to underpin the study of long-time morphological evolution of grains induced by irradiation. Our simulation results suggest that the presence of point defect sources within a grain further accelerates its shrinking process, and radiation tends to trigger the extension of twin boundary sections.

  2. Wetting-Dewetting and Dispersion-Aggregation Transitions Are Distinct for Polymer Grafted Nanoparticles in Chemically Dissimilar Polymer Matrix.

    PubMed

    Martin, Tyler B; Mongcopa, Katrina Irene S; Ashkar, Rana; Butler, Paul; Krishnamoorti, Ramanan; Jayaraman, Arthi

    2015-08-26

    Simulations and experiments are conducted on mixtures containing polymer grafted nanoparticles in a chemically distinct polymer matrix, where the graft and matrix polymers exhibit attractive enthalpic interactions at low temperatures that become progressively repulsive as temperature is increased. Both coarse-grained molecular dynamics simulations, and X-ray scattering and neutron scattering experiments with deuterated polystyrene (dPS) grafted silica and poly(vinyl methyl ether) PVME matrix show that the sharp phase transition from (mixed) dispersed to (demixed) aggregated morphologies due to the increasingly repulsive effective interactions between the blend components is distinct from the continuous wetting-dewetting transition. Strikingly, this is unlike the extensively studied chemically identical graft-matrix composites, where the two transitions have been considered to be synonymous, and is also unlike the free (ungrafted) blends of the same graft and matrix homopolymers, where the wetting-dewetting is a sharp transition coinciding with the macrophase separation.

  3. Membrane tension controls the assembly of curvature-generating proteins

    PubMed Central

    Simunovic, Mijo; Voth, Gregory A.

    2015-01-01

    Proteins containing a Bin/Amphiphysin/Rvs (BAR) domain regulate membrane curvature in the cell. Recent simulations have revealed that BAR proteins assemble into linear aggregates, strongly affecting membrane curvature and its in-plane stress profile. Here, we explore the opposite question: do mechanical properties of the membrane impact protein association? By using coarse-grained molecular dynamics simulations, we show that increased surface tension significantly impacts the dynamics of protein assembly. While tensionless membranes promote a rapid formation of long-living linear aggregates of N-BAR proteins, increase in tension alters the geometry of protein association. At high tension, protein interactions are strongly inhibited. Increasing surface density of proteins leads to a wider range of protein association geometries, promoting the formation of meshes, which can be broken apart with membrane tension. Our work indicates that surface tension may play a key role in recruiting proteins to membrane-remodelling sites in the cell. PMID:26008710

  4. "EGM" (Electrostatics of Granular Matter): A Space Station Experiment to Examine Natural Particulate Systems

    NASA Astrophysics Data System (ADS)

    Marshall, J.; Sauke, T.; Buehler, M.; Farrell, W.; Green, R.; Birchenough, A.

    1999-09-01

    A granular-materials experiment is being developed for a 2002 launch for Space Station deployment. The experiment is funded by NASA HQ and managed through NASA Lewis Research Center. The experiment will examine electrostatic aggregation of coarse granular materials with the goals of (a) obtaining proof for an electrostatic dipole model of grain interactions, and (b) obtaining knowledge about the way aggregation affects the behavior of natural particulate masses: (1) in unconfined dispersions (clouds such as nebulae, aeolian dust palls, volcanic plumes), (2) in semi-confined, self-loaded masses as in fluidized flows (pyroclastic surges, avalanches) and compacted regolith, or (3) in semi-confined non-loaded masses as in dust layers adhering to solar cells or space suits on Mars. The experiment addresses both planetary/astrophysical issues as well as practical concerns for human exploration of Mars or other solar system bodies. Additional information is contained in the original.

  5. Comminution and sizing processes of concrete block waste as recycled aggregates.

    PubMed

    Gomes, P C C; Ulsen, C; Pereira, F A; Quattrone, M; Angulo, S C

    2015-11-01

    Due to the environmental impact of construction and demolition waste (CDW), recycling is mandatory. It is also important that recycled concrete aggregates (RCA) are used in concrete to meet market demands. In the literature, the influence of RCAs on concrete has been investigated, but very limited studies have been conducted on how the origin of concrete waste and comminution processes influence RCA characteristics. This paper aims to investigate the influence of three different comminution and sizing processes (simple screening, crushing and grinding) on the composition, shape and porosity characteristics of RCA obtained from concrete block waste. Crushing and grinding implies a reduction of RCA porosity. However, due to the presence of coarse quartz rounded river pebbles in the original concrete block mixtures, the shape characteristics deteriorated. A large amount of powder (<0.15 mm) without detectable anhydrous cement was also generated. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Rationally designed peptide nanosponges for cell-based cancer therapy.

    PubMed

    Wang, Hongwang; Yapa, Asanka S; Kariyawasam, Nilusha L; Shrestha, Tej B; Kalubowilage, Madumali; Wendel, Sebastian O; Yu, Jing; Pyle, Marla; Basel, Matthew T; Malalasekera, Aruni P; Toledo, Yubisela; Ortega, Raquel; Thapa, Prem S; Huang, Hongzhou; Sun, Susan X; Smith, Paul E; Troyer, Deryl L; Bossmann, Stefan H

    2017-11-01

    A novel type of supramolecular aggregate, named a "nanosponge" was synthesized through the interaction of novel supramolecular building blocks with trigonal geometry. The cholesterol-(K/D) n DEVDGC) 3 -trimaleimide unit consists of a trigonal maleimide linker to which homopeptides (either K or D) of variable lengths (n=5, 10, 15, 20) and a consensus sequence for executioner caspases (DEVDGC) are added via Michael addition. Upon mixing in aqueous buffer cholesterol-(K) n DEVDGC) 3 -trimaleimides and a 1:1 mixture of cholesterol-(K/D) n DEVDGC) 3 -trimaleimides form stable nanosponges, whereas cholesterol-(D) n DEVDGC) 3 -trimaleimide is unable to form supramolecular aggregates with itself. The structure of the novel nanosponges was investigated through explicit solvent and then coarse-grained molecular dynamics (MD) simulations. The nanosponges are between 80 nm and several micrometers in diameters and virtually non-toxic to monocyte/macrophage-like cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Molecular dynamics study of the structure and interparticle interactions of polyethylene glycol-conjugated PAMAM dendrimers.

    PubMed

    Lee, Hwankyu; Larson, Ronald G

    2009-10-08

    We performed molecular dynamics (MD) simulations of one or two copies of polyethylene glycol of molecular weight 550 (PEG550) and 5000 (PEG5000) daltons, conjugated to generation 3 (G3) to 5 (G5) polyamidoamine (PAMAM) dendrimers with explicit water using a coarse-grained model. We found the radii of gyration of these dendrimer-PEG molecules to be close to those measured in experiments by Hedden and Bauer (Hedden , R. C. ; Bauer , B. J. Macromolecules 2003 , 36 , 1829.). Densely grafted PEG ligands (>50% of the dendrimer surface) extend like brushes, with layer thickness in agreement with theory for starlike polymers. Two dendrimer-PEG complexes in the box drift away from each other, indicating that no aggregation is induced by either short or long PEG chains, conflicting with a recent view that the cytotoxicity of some PEGylated particles might be due to particle aggregation for long PEG lengths.

  8. Structural-functional integrated concrete with macro-encapsulated inorganic PCM

    NASA Astrophysics Data System (ADS)

    Mohseni, Ehsan; Tang, Waiching; Wang, Zhiyu

    2017-09-01

    Over the last few years the application of thermal energy storage system incorporating phase change materials (PCMs) to foster productivity and efficiency of buildings energy has grown rapidly. In this study, a structural-functional integrated concrete was developed using macro-encapsulated PCM-lightweight aggregate (LWA) as partial replacement (25 and 50% by volume) of coarse aggregate in control concrete. The PCM-LWA was prepared by incorporation of an inorganic PCM into porous LWAs through vacuum impregnation. The mechanical and thermal performance of PCM-LWA concrete were studied. The test results revealed that though the compressive strength of concrete with PCM-LWA was lower than the control concrete, but ranged from 22.02 MPa to 42.88 MPa which above the minimum strength requirement for structural application. The thermal performance test indicated that macro-encapsulated PCM-LWA has underwent the phase change transition reducing the indoor temperature.

  9. Mesoscale Simulation and Machine Learning of Asphaltene Aggregation Phase Behavior and Molecular Assembly Landscapes.

    PubMed

    Wang, Jiang; Gayatri, Mohit A; Ferguson, Andrew L

    2017-05-11

    Asphaltenes constitute the heaviest fraction of the aromatic group in crude oil. Aggregation and precipitation of asphaltenes during petroleum processing costs the petroleum industry billions of dollars each year due to downtime and production inefficiencies. Asphaltene aggregation proceeds via a hierarchical self-assembly process that is well-described by the Yen-Mullins model. Nevertheless, the microscopic details of the emergent cluster morphologies and their relative stability under different processing conditions remain poorly understood. We perform coarse-grained molecular dynamics simulations of a prototypical asphaltene molecule to establish a phase diagram mapping the self-assembled morphologies as a function of temperature, pressure, and n-heptane:toluene solvent ratio informing how to control asphaltene aggregation by regulating external processing conditions. We then combine our simulations with graph matching and nonlinear manifold learning to determine low-dimensional free energy surfaces governing asphaltene self-assembly. In doing so, we introduce a variant of diffusion maps designed to handle data sets with large local density variations, and report the first application of many-body diffusion maps to molecular self-assembly to recover a pseudo-1D free energy landscape. Increasing pressure only weakly affects the landscape, serving only to destabilize the largest aggregates. Increasing temperature and toluene solvent fraction stabilizes small cluster sizes and loose bonding arrangements. Although the underlying molecular mechanisms differ, the strikingly similar effect of these variables on the free energy landscape suggests that toluene acts upon asphaltene self-assembly as an effective temperature.

  10. Experimental testing of hot mix asphalt mixture made of recycled aggregates.

    PubMed

    Rafi, Muhammad Masood; Qadir, Adnan; Siddiqui, Salman Hameed

    2011-12-01

    The migration of population towards big cities generates rapid construction activities. These activities not only put pressure on natural resources but also produce construction, renovation and demolition waste. There is an urgent need to find out ways to handle this waste owing to growing environmental concerns. This can reduce pressure on natural resources as well. This paper presents the results of experimental studies which were carried out on hot mix asphalt mixture samples. These samples were manufactured by adding recycled aggregates (RA) with natural crushed stone aggregates (CSA). Three levels of addition of RA were considered in the presented studies. RA were obtained from both the concrete waste of construction, renovation and demolition activities and reclaimed asphalt pavement. Separate samples were manufactured with the coarse and fine aggregate fractions of both types of RA. Samples made with CSA were used as control specimens. The samples were prepared and tested using the Marshall method. The performance of the samples was investigated in terms of density-void and stability/flow analysis and was compared with the performance criteria as given by National Highway Authority for wearing course material in Pakistan. Based on this data optimum asphalt contents were determined. All the samples made by adding up to 50% RA conform to the specification requirements of wearing course material as given by National Highway Authority in terms of optimum asphalt contents, voids in mineral aggregates and stability/flow. A statistical analysis of variation of these samples confirmed that addition is also possible statistically.

  11. Free energy landscapes for initiation and branching of protein aggregation.

    PubMed

    Zheng, Weihua; Schafer, Nicholas P; Wolynes, Peter G

    2013-12-17

    Experiments on artificial multidomain protein constructs have probed the early stages of aggregation processes, but structural details of the species that initiate aggregation remain elusive. Using the associative-memory, water-mediated, structure and energy model known as AWSEM, a transferable coarse-grained protein model, we performed simulations of fused constructs composed of up to four copies of the Titin I27 domain or its mutant I27* (I59E). Free energy calculations enable us to quantify the conditions under which such multidomain constructs will spontaneously misfold. Consistent with experimental results, the dimer of I27 is found to be the smallest spontaneously misfolding construct. Our results show how structurally distinct misfolded states can be stabilized under different thermodynamic conditions, and this result provides a plausible link between the single-molecule misfolding experiments under native conditions and aggregation experiments under denaturing conditions. The conditions for spontaneous misfolding are determined by the interplay among temperature, effective local protein concentration, and the strength of the interdomain interactions. Above the folding temperature, fusing additional domains to the monomer destabilizes the native state, and the entropically stabilized amyloid-like state is favored. Because it is primarily energetically stabilized, the domain-swapped state is more likely to be important under native conditions. Both protofibril-like and branching structures are found in annealing simulations starting from extended structures, and these structures suggest a possible connection between the existence of multiple amyloidogenic segments in each domain and the formation of branched, amorphous aggregates as opposed to linear fibrillar structures.

  12. The behavior of self-compacting concrete (SCC) with bagasse ash

    NASA Astrophysics Data System (ADS)

    Hanafiah, Saloma, Whardani, Putri Nurul Kusuma

    2017-11-01

    Self-Compacting Concrete (SCC) has the ability to flow and self-compacting. One of the benefit of SCC can reduced the construction time and labor cost. The materials to be used for see slightly different with the conventional concrete. Less coarse aggregate to be used up to 50%. The maximum size of coarse aggregate was also limited e.g. 10 mm. Other material was quartz sand with grain size of 50-650 µm. For reducing the around of cement, bagasse ash was used as partial replacement of cement. In this research, the variations of w/c to be used, e.g. 0.275, 0.300, 0.325 and the percentage of bagasse ash substitution were 10%, 15%, and 20%. EFNARC standard was conducted for slump flow test following the V-funnel test and L-box shape test. The maximum value of slump flow test was 75.75 cm, V-funnel test was 4.95 second, and L-box test was 1.000 yielded by mixture with w/c = 0.325 and 0% of bagasse ash. The minimum value of slump flow test was 61.50 cm, V-funnel test is 21.05 second, and L-box test was 0.743 yielded by mixture with w/c = 0.275 and 20% of bagasse ash. The maximum value of compressive strength was 67.239 MPa yielded by mixture with w/c = 0.275 and 15% of bagasse ash. And the minimum value of compressive strength was 41.813 MPa yielded by mixture with w/c = 0.325 and 20% bagasse ash.

  13. Computational Modeling of Hydroxypropyl-Methylcellulose Acetate Succinate (HPMCAS) and Phenytoin Interactions: A Systematic Coarse-Graining Approach.

    PubMed

    Huang, Wenjun; Mandal, Taraknath; Larson, Ronald G

    2017-03-06

    We present coarse-grained (CG) force fields for hydroxypropyl-methylcellulose acetate succinate (HPMCAS) polymers and the drug molecule phenytoin using a bead/stiff spring model, with each bead representing a HPMCAS monomer or monomer side group (hydroxypropyl acetyl, acetyl, or succinyl) or a single phenytoin ring. We obtain the bonded and nonbonded interaction parameters in our CG model using the RDFs from atomistic simulations of short HPMCAS model oligomers (20-mer) and atomistic simulations of phenytoin molecules. The nonbonded interactions are modeled using a LJ 12-6 potential, with separate parameters for each monomer substitution type, which allows heterogeneous polymer chains to be modeled. The cross interaction terms between the polymer and phenytoin CG beads are obtained explicitly from atomistic level polymer-phenytoin simulations, rather than from mixing rules. We study the solvation behavior of 50-mer and 100-mer polymer chains and find chain-length-dependent aggregation. We also compare the phenytoin CG force field developed in this work with that in Mandal et al. (Soft Matter, 2016, 12, 8246-8255) and conclude both are suitable for studying the interaction between polymer and drug in solvated solid dispersion formulation, in the absence of drug crystallization. Finally, we present simulations of heterogeneous HPMCAS model polymer chains and phenytoin molecules. Polymer and drug form a complex in a short period of simulation time due to strong intermolecular interactions. Moreover, the protonated polymer chains are more effective than deprotonated ones in inhibiting the drug aggregation in the polymer-drug complex.

  14. The optical properties of absorbing aerosols with fractal soot aggregates: Implications for aerosol remote sensing

    NASA Astrophysics Data System (ADS)

    Cheng, Tianhai; Gu, Xingfa; Wu, Yu; Chen, Hao; Yu, Tao

    2013-08-01

    Applying sphere aerosol models to replace the absorbing fine-sized dominated aerosols can potentially result in significant errors in the climate models and aerosol remote sensing retrieval. In this paper, the optical properties of absorbing fine-sized dominated aerosol were modeled, which are taking into account the fresh emitted soot particles (agglomerates of primary spherules), aged soot particles (semi-externally mixed with other weakly absorbing aerosols), and coarse aerosol particles (dust particles). The optical properties of the individual fresh and aged soot aggregates are calculated using the superposition T-matrix method. In order to quantify the morphology effect of absorbing aerosol models on the aerosol remote sensing retrieval, the ensemble averaged optical properties of absorbing fine-sized dominated aerosols are calculated based on the size distribution of fine aerosols (fresh and aged soot) and coarse aerosols. The corresponding optical properties of sphere absorbing aerosol models using Lorenz-Mie solutions were presented for comparison. The comparison study demonstrates that the sphere absorbing aerosol models underestimate the absorption ability of the fine-sized dominated aerosol particles. The morphology effect of absorbing fine-sized dominated aerosols on the TOA radiances and polarized radiances is also investigated. It is found that the sphere aerosol models overestimate the TOA reflectance and polarized reflectance by approximately a factor of 3 at wavelength of 0.865 μm. In other words, the fine-sized dominated aerosol models can cause large errors in the retrieved aerosol properties if satellite reflectance measurements are analyzed using the conventional Mie theory for spherical particles.

  15. Probing Sub-atomistic Free-Volume Imperfections in Dry-Milled Nanoarsenicals with PAL Spectroscopy.

    PubMed

    Shpotyuk, Oleh; Ingram, Adam; Bujňáková, Zdenka; Baláž, Peter; Shpotyuk, Yaroslav

    2016-12-01

    Structural transformations caused by coarse-grained powdering and fine-grained mechanochemical milling in a dry mode were probed in high-temperature modification of tetra-arsenic tetra-sulfide known as β-As4S4. In respect to X-ray diffraction analysis, the characteristic sizes of β-As4S4 crystallites in these coarse- and fine-grained powdered pellets were 90 and 40 nm, respectively. Positron annihilation lifetime spectroscopy was employed to characterize transformations occurred in free-volume structure of these nanoarsenicals. Experimentally measured positron lifetime spectra were parameterized in respect to three- or two-term fitting procedures and respectively compared with those accumulated for single crystalline realgar α-As4S4 polymorph. The effect of coarse-grained powdering was found to result in generation of large amount of positron and positronium Ps trapping sites inside arsenicals in addition to existing ones. In fine-grained powdered β-As4S4 pellets, the positron trapping sites with characteristic free volumes close to bi- and tri-atomic vacancies were evidently dominated. These defects were supposed to originate from grain boundary regions and interfacial free volumes near aggregated β-As4S4 crystallites. Thus, the cumulative production of different positron traps with lifetimes close to defect-related lifetimes in realgar α-As4S4 polymorph was detected in fine-grained milled samples.

  16. Multi-Decadal Pathfinder Data Sets of Global Land Biophysical Variables from AVHRR and MODIS and their Use in GCM Studies of Biogeophysics and Biogeochemistry

    NASA Technical Reports Server (NTRS)

    Myneni, Ranga

    2003-01-01

    The problem of how the scale, or spatial resolution, of reflectance data impacts retrievals of vegetation leaf area index (LAI) and fraction absorbed photosynthetically active radiation (PAR) has been investigated. We define the goal of scaling as the process by which it is established that LAI and FPAR values derived from coarse resolution sensor data equal the arithmetic average of values derived independently from fine resolution sensor data. The increasing probability of land cover mixtures with decreasing resolution is defined as heterogeneity, which is a key concept in scaling studies. The effect of pixel heterogeneity on spectral reflectances and LAI/FPAR retrievals is investigated with 1 km Advanced Very High Resolution Radiometer (AVHRR) data aggregated to different coarse spatial resolutions. It is shown that LAI retrieval errors at coarse resolution are inversely related to the proportion of the dominant land cover in such pixel. Further, large errors in LAI retrievals are incurred when forests are minority biomes in non-forest pixels compared to when forest biomes are mixed with one another, and vice-versa. A physically based technique for scaling with explicit spatial resolution dependent radiative transfer formulation is developed. The successful application of this theory to scaling LAI retrievals from AVHRR data of different resolutions is demonstrated

  17. Wind-driven particle mobility on Mars: Insights from Mars Exploration Rover observations at "El Dorado" and surroundings at Gusev Crater

    USGS Publications Warehouse

    Sullivan, R.; Arvidson, R.; Bell, J.F.; Gellert, Ralf; Golombek, M.; Greeley, R.; Herkenhoff, K.; Johnson, J.; Thompson, S.; Whelley, P.; Wray, J.

    2008-01-01

    The ripple field known as 'El Dorado' was a unique stop on Spirit's traverse where dust-raising, active mafic sand ripples and larger inactive coarse-grained ripples interact, illuminating several long-standing issues of Martian dust mobility, sand mobility, and the origin of transverse aeolian ridges. Strong regional wind events endured by Spirit caused perceptible migration of ripple crests in deposits SSE of El Dorado, erasure of tracks in sandy areas, and changes to dust mantling the site. Localized thermal vortices swept across El Dorado, leaving paths of reduced dust but without perceptibly damaging nearly cohesionless sandy ripple crests. From orbit, winds responsible for frequently raising clay-sized dust into the atmosphere do not seem to significantly affect dunes composed of (more easily entrained) sand-sized particles, a long-standing paradox. This disparity between dust mobilization and sand mobilization on Mars is due largely to two factors: (1) dust occurs on the surface as fragile, low-density, sand-sized aggregates that are easily entrained and disrupted, compared with clay-sized air fall particles; and (2) induration of regolith is pervasive. Light-toned bed forms investigated at Gusev are coarse-grained ripples, an interpretation we propose for many of the smallest linear, light-toned bed forms of uncertain origin seen in high-resolution orbital images across Mars. On Earth, wind can organize bimodal or poorly sorted loose sediment into coarse-grained ripples. Coarse-grained ripples could be relatively common on Mars because development of durable, well-sorted sediments analogous to terrestrial aeolian quartz sand deposits is restricted by the lack of free quartz and limited hydraulic sediment processing. Copyright 2008 by the American Geophysical Union.

  18. Simulation of Ionic Aggregation and Ion Dynamics in Model Ionomers

    NASA Astrophysics Data System (ADS)

    Frischknecht, Amalie L.

    2012-02-01

    Ionomers, polymers containing a small fraction of covalently bound ionic groups, are of interest as possible electrolytes in batteries. A single-ion conducting polymer electrolyte would be safer and have higher efficiency than the currently-used liquid electrolytes. However, to date ionomeric materials do not have sufficiently high conductivities for practical application. This is most likely because the ions tend to form aggregates, leading to slow ion transport. A key question is therefore how molecular structure affects the ionic aggregation and ion dynamics. To probe these structure-property relationships, we have performed molecular simulations of a set of recently synthesized poly(ethylene-co-acrylic acid) copolymers and ionomers, with a focus on the morphology of the ionic aggregates. The ionomers have a precise, constant spacing of charged groups, making them ideal for direct comparisons with simulations. Ab initio calculations give insight into the expected coordination of cations with fragments of the ionomers. All-atom molecular dynamics (MD) simulations of the ionomer melt show aggregation of the ionic groups into extended string-like clusters. An extensive set of coarse-grained molecular dynamics simulations extend the results to longer times and larger length scales. The structure factors calculated from the MD simulations compare favorably with x-ray scattering data. Furthermore, the simulations give a detailed picture of the sizes, shapes, and composition of the ionic aggregates, and how they depend on polymer architecture. Implications for ion transport will be discussed. [Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  19. Development of k-300 concrete mix for earthquake-resistant Housing infrastructure in indonesia

    NASA Astrophysics Data System (ADS)

    Zulkarnain, Fahrizal

    2018-03-01

    In determining the strength of K-300 concrete mix that is suitable for earthquake-resistant housing infrastructure, it is necessary to research the materials to be used for proper quality and quantity so that the mixture can be directly applied to the resident’s housing, in the quake zone. In the first stage, the examination/sieve analysis of the fine aggregate or sand, and the sieve analysis of the coarse aggregate or gravel will be carried out on the provided sample weighing approximately 40 kilograms. Furthermore, the specific gravity and absorbance of aggregates, the examination of the sludge content of aggregates passing the sieve no. 200, and finally, examination of the weight of the aggregate content. In the second stage, the planned concrete mix by means of the Mix Design K-300 is suitable for use in Indonesia, with implementation steps: Planning of the cement water factor (CWF), Planning of concrete free water (Liters / m3), Planning of cement quantity, Planning of minimum cement content, Planning of adjusted cement water factor, Planning of estimated aggregate composition, Planning of estimated weight of concrete content, Calculation of composition of concrete mixture, Calculation of mixed correction for various water content. Implementation of the above tests also estimates the correction of moisture content and the need for materials of mixture in kilograms for the K-300 mixture, so that the slump inspection result will be achieved in planned 8-12 cm. In the final stage, a compressive strength test of the K-300 experimental mixture is carried out, and subsequently the composition of the K-300 concrete mixture suitable for one sack of cement of 50 kg is obtained for the foundation of the proper dwelling. The composition is consists of use of Cement, Sand, Gravel, and Water.

  20. Competition between protein folding and aggregation: A three-dimensional lattice-model simulation

    NASA Astrophysics Data System (ADS)

    Bratko, D.; Blanch, H. W.

    2001-01-01

    Aggregation of protein molecules resulting in the loss of biological activity and the formation of insoluble deposits represents a serious problem for the biotechnology and pharmaceutical industries and in medicine. Considerable experimental and theoretical efforts are being made in order to improve our understanding of, and ability to control, the process. In the present work, we describe a Monte Carlo study of a multichain system of coarse-grained model proteins akin to lattice models developed for simulations of protein folding. The model is designed to examine the competition between intramolecular interactions leading to the native protein structure, and intermolecular association, resulting in the formation of aggregates of misfolded chains. Interactions between the segments are described by a variation of the Go potential [N. Go and H. Abe, Biopolymers 20, 1013 (1981)] that extends the recognition between attracting types of segments to pairs on distinct chains. For the particular model we adopt, the global free energy minimum of a pair of protein molecules corresponds to a dimer of native proteins. When three or more molecules interact, clusters of misfolded chains can be more stable than aggregates of native folds. A considerable fraction of native structure, however, is preserved in these cases. Rates of conformational changes rapidly decrease with the size of the protein cluster. Within the timescale accessible to computer simulations, the folding-aggregation balance is strongly affected by kinetic considerations. Both the native form and aggregates can persist in metastable states, even if conditions such as temperature or concentration favor a transition to an alternative form. Refolding yield can be affected by the presence of an additional polymer species mimicking the function of a molecular chaperone.

  1. [Distribution of soil organic carbon, total nitrogen, total phosphorus and water stable aggregates of cropland with different soil textures on the Loess Plateau, Northwest China].

    PubMed

    Ge, Nan Nan; Shi, Yun; Yang, Xian Long; Zhang, Qing Yin; Li, Xue Zhang; Jia, Xiao Xu; Shao, Ming An; Wei, Xiao Rong

    2017-05-18

    In this study, combined with field investigation and laboratory analyses, we assessed the distribution of soil organic carbon, nitrogen, phosphorous contents and their stoichiometric ratios, and the distribution of soil water stable aggregates along a soil texture gradient in the cropland of the Loess Plateau to understand the effect of soil texture and the regulation of soil aggregates on soil fertility in cropland. The results showed that, with the change from fine soils to coarse soils along the texture gradient (loam clay→ clay loam→ sandy loam), the contents of macroaggregates, organic carbon, nitrogen, phosphorous and their stoichiometric ratios decreased, while pH value and microaggregates content showed an opposite changing pattern. The contents of macroaggregates, organic carbon, nitrogen, phosphorous, and C/P and N/P were significantly increased, but pH value and microaggregates content were significantly decreased with increasing the soil clay content. Furthermore, the contents of organic carbon, nitrogen, phosphorous, and C/P and N/P increased with the increase of macroaggregates content. These results indicated that soil fertility in croplands at a regional scale was mainly determined by soil texture, and was regulated by soil macroaggregates.

  2. Modeling phase separation in mixtures of intrinsically-disordered proteins

    NASA Astrophysics Data System (ADS)

    Gu, Chad; Zilman, Anton

    Phase separation in a pure or mixed solution of intrinsically-disordered proteins (IDPs) and its role in various biological processes has generated interest from the theoretical biophysics community. Phase separation of IDPs has been implicated in the formation of membrane-less organelles such as nucleoli, as well as in a mechanism of selectivity in transport through the nuclear pore complex. Based on a lattice model of polymers, we study the phase diagram of IDPs in a mixture and describe the selective exclusion of soluble proteins from the dense-phase IDP aggregates. The model captures the essential behaviour of phase separation by a minimal set of coarse-grained parameters, corresponding to the average monomer-monomer and monomer-protein attraction strength, as well as the protein-to-monomer size ratio. Contrary to the intuition that strong monomer-monomer interaction increases exclusion of soluble proteins from the dense IDP aggregates, our model predicts that the concentration of soluble proteins in the aggregate phase as a function of monomer-monomer attraction is non-monotonic. We corroborate the predictions of the lattice model using Langevin dynamics simulations of grafted polymers in planar and cylindrical geometries, mimicking various in-vivo and in-vitro conditions.

  3. Evaluation of mix ingredients on the performance of rubber-modified asphalt mixtures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takallou, H.B.

    1987-01-01

    In rubber-modified asphalt pavements ground recycled tire particles are added to a gap-graded aggregate and then mixed with hot asphalt cement. In view of the significant reductions in wintertime stopping distances under icy or frosty road surface conditions, the use of coarse rubber in asphalt pavements should be seriously considered. This research project consisted of a laboratory study of mix properties as a function of variables such as rubber gradation and content, void content, aggregate graduation, mix process, temperature, and asphalt content. Twenty different mix combinations were evaluated for diametral modulus and fatigue at two different temperatures. Also, five differentmore » mix combinations were evaluated for static creep and permanent deformation. The findings of the laboratory study indicate that the rubber gradation and content, aggregate gradation, and use of surcharge during sample preparation have considerable effect on modulus and fatigue life of the mix. The results of static creep and permanent deformation tests indicate that the rubber asphalt mixes had low stability and high elasticity. Also, due to greater allowable tensile strain in rubber-modified mixtures, the thickness of the modified mixture can be reduced, using a layer equivalency of 1.4 to 1.0« less

  4. Reuse potential of low-calcium bottom ash as aggregate through pelletization.

    PubMed

    Geetha, S; Ramamurthy, K

    2010-01-01

    Coal combustion residues which include fly ash, bottom ash and boiler slag is one of the major pollutants as these residues require large land area for their disposal. Among these residues, utilization of bottom ash in the construction industry is very low. This paper explains the use of bottom ash through pelletization. Raw bottom ash could not be pelletized as such due to its coarseness. Though pulverized bottom ash could be pelletized, the pelletization efficiency was low, and the aggregates were too weak to withstand the handling stresses. To improve the pelletization efficiency, different clay and cementitious binders were used with bottom ash. The influence of different factors and their interaction effects were studied on the duration of pelletization process and the pelletization efficiency through fractional factorial design. Addition of binders facilitated conversion of low-calcium bottom ash into aggregates. To achieve maximum pelletization efficiency, the binder content and moisture requirements vary with type of binder. Addition of Ca(OH)(2) improved the (i) pelletization efficiency, (ii) reduced the duration of pelletization process from an average of 14-7 min, and (iii) reduced the binder dosage for a given pelletization efficiency. For aggregate with clay binders and cementitious binder, Ca(OH)(2) and binder dosage have significant effect in reducing the duration of pelletization process. 2010 Elsevier Ltd. All rights reserved.

  5. Modifying the Cold Gelation Properties of Quinoa Protein Isolate: Influence of Heat-Denaturation pH in the Alkaline Range.

    PubMed

    Mäkinen, Outi E; Zannini, Emanuele; Arendt, Elke K

    2015-09-01

    Heat-denaturation of quinoa protein isolate (QPI) at alkali pH and its influence on the physicochemical and cold gelation properties was investigated. Heating QPI at pH 8.5 led to increased surface hydrophobicity and decreases in free and bound sulfhydryl group contents. Heating at pH 10.5 caused a lesser degree of changes in sulfhydryl groups and surface hydrophobicity, and the resulting solutions showed drastically increased solubility. SDS PAGE revealed the presence of large aggregates only in the sample heated at pH 8.5, suggesting that any aggregates present in the sample heated at pH 10.5 were non-covalently bound and disintegrated in the presence of SDS. Reducing conditions partially dissolved the aggregates in the pH 8.5 heated sample indicating the occurrence of disulphide bonding, but caused no major alterations in the separation pattern of the pH 10.5 heated sample. Denaturation pH influenced the cold gelation properties greatly. Solutions heated at pH 8.5 formed a coarse coagulum with maximum G' of 5 Pa. Heat-denaturation at 10.5 enabled the proteins to form a finer and regularly structured gel with a maximum G' of 1140 Pa. Particle size analysis showed that the pH 10.5 heated sample contained a higher level of very small particles (0.1-2 μm), and these readily aggregated into large particles (30-200 μm) when pH was lowered to 5.5. Differences in the nature of aggregates formed during heating may explain the large variation in gelation properties.

  6. Effects on the Physical and Mechanical Properties of Porous Concrete for Plant Growth of Blast Furnace Slag, Natural Jute Fiber, and Styrene Butadiene Latex Using a Dry Mixing Manufacturing Process.

    PubMed

    Kim, Hwang-Hee; Kim, Chun-Soo; Jeon, Ji-Hong; Park, Chan-Gi

    2016-01-29

    To evaluate the effects of industrial by-products materials on the performance of porous concrete for plant growth, this study investigated the physical, strength, and freeze/thaw resistances of porous concrete for plant growth, prepared by replacing cement with blast furnace slag powder at 60% by weight, and replacing natural stone aggregates with coarse blast furnace slag aggregates at rates of 0%, 20%, 40%, 60% and 100% by weight. In addition, the effects of adding natural jute fiber and styrene butadiene ( SB) latex to these concrete mixtures were evaluated. The void ratio, compressive strength, and freeze/thaw resistance of the samples were measured. With increasing replacement rate of blast furnace aggregates, addition of latex, and mixing of natural jute fiber the void ratio of the concrete was increased. Compressive strength decreased as the replacement rate of blast-furnace slag aggregates increased. The compressive strength decreased after 100 freeze/thaw cycles, regardless of the replacement rate of blast furnace slag aggregates or of the addition of natural jute fiber and latex. The addition of natural jute fiber and latex decreased the compressive strength after 100 freeze/thaw cycles. The test results indicate that the control mixture satisfied the target compressive strength of 10 MPa and the target void ratio of 25% at replacement rates of 0% and 20% for blast furnace aggregates, and that the mixtures containing latex satisfied the criteria up to an aggregate replacement rate of 60%. However, the mixtures containing natural jute fiber did not satisfy these criteria. The relationship between void ratio and residual compressive strength after 100 freeze/thaw cycles indicates that the control mixture and the mixtures containing jute fiber at aggregate replacement rates of 20% and 40% satisfied the target void ratio of 25% and the target residual compressive strength of over 80% after 100 freeze/thaw cycles. The mixtures containing latex and aggregate replacement rates up to 60% satisfied the target void ratio and compressive strength.

  7. Effects on the Physical and Mechanical Properties of Porous Concrete for Plant Growth of Blast Furnace Slag, Natural Jute Fiber, and Styrene Butadiene Latex Using a Dry Mixing Manufacturing Process

    PubMed Central

    Kim, Hwang-Hee; Kim, Chun-Soo; Jeon, Ji-Hong; Park, Chan-Gi

    2016-01-01

    To evaluate the effects of industrial by-products materials on the performance of porous concrete for plant growth, this study investigated the physical, strength, and freeze/thaw resistances of porous concrete for plant growth, prepared by replacing cement with blast furnace slag powder at 60% by weight, and replacing natural stone aggregates with coarse blast furnace slag aggregates at rates of 0%, 20%, 40%, 60% and 100% by weight. In addition, the effects of adding natural jute fiber and styrene butadiene (SB) latex to these concrete mixtures were evaluated. The void ratio, compressive strength, and freeze/thaw resistance of the samples were measured. With increasing replacement rate of blast furnace aggregates, addition of latex, and mixing of natural jute fiber the void ratio of the concrete was increased. Compressive strength decreased as the replacement rate of blast-furnace slag aggregates increased. The compressive strength decreased after 100 freeze/thaw cycles, regardless of the replacement rate of blast furnace slag aggregates or of the addition of natural jute fiber and latex. The addition of natural jute fiber and latex decreased the compressive strength after 100 freeze/thaw cycles. The test results indicate that the control mixture satisfied the target compressive strength of 10 MPa and the target void ratio of 25% at replacement rates of 0% and 20% for blast furnace aggregates, and that the mixtures containing latex satisfied the criteria up to an aggregate replacement rate of 60%. However, the mixtures containing natural jute fiber did not satisfy these criteria. The relationship between void ratio and residual compressive strength after 100 freeze/thaw cycles indicates that the control mixture and the mixtures containing jute fiber at aggregate replacement rates of 20% and 40% satisfied the target void ratio of 25% and the target residual compressive strength of over 80% after 100 freeze/thaw cycles. The mixtures containing latex and aggregate replacement rates up to 60% satisfied the target void ratio and compressive strength. PMID:28787883

  8. Investigations of subsurface flow constructed wetlands and associated geomaterial resources in the Akumal and Reforma regions, Quintana Roo, Mexico

    NASA Astrophysics Data System (ADS)

    Krekeler, Mark P. S.; Probst, Pete; Samsonov, Misha; Tselepis, Cynthia M.; Bates, William; Kearns, Lance E.; Maynard, J. Barry

    2007-12-01

    Subsurface flow constructed wetlands in the village of Akumal, Quintana Roo, Mexico were surveyed to determine the general status of the wetland systems and provide baseline information for long term monitoring and further study. Twenty subsurface flow wetlands were surveyed and common problems observed in the systems were overloading, poor plant cover, odor, and no secondary containment. Bulk mineral composition of aggregate from two subsurface flow constructed wetlands was determined to consist solely of calcite using bulk powder X-ray diffraction. Some soil structure is developed in the aggregate and aggregate levels in wetlands drop at an estimated rate between 3 and 10 cm/year for overloaded wetlands owing to dissolution. Mineral composition from fresh aggregate samples commonly is a mixture of calcite and aragonite. Trace amounts of Pb, Zn, Co, and Cr were observed in fresh aggregate. Coefficients of permeability ( k) varied from 0.006 to 0.027 cm/s with an average values being 0.016 cm/s. Grain size analysis of fresh aggregate samples indicates there are unimodal and multimodal size distributions in the samples with modes in the coarse and fine sand being common. Investigations of other geologic media from the Reforma region indicate that a dolomite with minor amounts of Fe-oxide and palygorskite is abundant and may be a better aggregate source that the current materials used. A Ca-montmorillonite bed was identified in the Reforma region as well and this unit is suitable to serve as a clay liner to prevent leaks for new and existing wetland systems. These newly discovered geologic resources should aid in the improvement of subsurface flow constructed wetlands in the region. Although problems do exist in these wetlands with respect to design, these systems represent a successful implementation of constructed wetlands at a community level in developing regions.

  9. Molecular dynamics studies of protein folding and aggregation

    NASA Astrophysics Data System (ADS)

    Ding, Feng

    This thesis applies molecular dynamics simulations and statistical mechanics to study: (i) protein folding; and (ii) protein aggregation. Most small proteins fold into their native states via a first-order-like phase transition with a major free energy barrier between the folded and unfolded states. A set of protein conformations corresponding to the free energy barrier, Delta G >> kBT, are the folding transition state ensemble (TSE). Due to their evasive nature, TSE conformations are hard to capture (probability ∝ exp(-DeltaG/k BT)) and characterize. A coarse-grained discrete molecular dynamics model with realistic steric constraints is constructed to reproduce the experimentally observed two-state folding thermodynamics. A kinetic approach is proposed to identify the folding TSE. A specific set of contacts, common to the TSE conformations, is identified as the folding nuclei which are necessary to be formed in order for the protein to fold. Interestingly, the amino acids at the site of the identified folding nuclei are highly conserved for homologous proteins sharing the same structures. Such conservation suggests that amino acids that are important for folding kinetics are under selective pressure to be preserved during the course of molecular evolution. In addition, studies of the conformations close to the transition states uncover the importance of topology in the construction of order parameter for protein folding transition. Misfolded proteins often form insoluble aggregates, amyloid fibrils, that deposit in the extracellular space and lead to a type of disease known as amyloidosis. Due to its insoluble and non-crystalline nature, the aggregation structure and, thus the aggregation mechanism, has yet to be uncovered. Discrete molecular dynamics studies reveal an aggregate structure with the same structural signatures as in experimental observations and show a nucleation aggregation scenario. The simulations also suggest a generic aggregation mechanism that globular proteins under a denaturing environment partially unfold and aggregate by forming stabilizing hydrogen bonds between the backbones of the partial folded substructures. Proteins or peptides rich in alpha-helices also aggregate into beta-rich amyloid fibrils. Upon aggregation, the protein or peptide undergoes a conformational transition from alpha-helices to beta-sheets. The transition of alpha-helix to beta-hairpin (two-stranded beta-sheet) is studied in an all-heavy-atom discrete molecular dynamics model of a polyalanine chain. An entropical driving scenario for the alpha-helix to beta-hairpin transition is discovered.

  10. Predicting unfolding thermodynamics and stable intermediates for alanine-rich helical peptides with the aid of coarse-grained molecular simulation.

    PubMed

    Calero-Rubio, Cesar; Paik, Bradford; Jia, Xinqiao; Kiick, Kristi L; Roberts, Christopher J

    2016-10-01

    This report focuses on the molecular-level processes and thermodynamics of unfolding of a series of helical peptides using a coarse-grained (CG) molecular model. The CG model was refined to capture thermodynamics and structural changes as a function of temperature for a set of published peptide sequences. Circular dichroism spectroscopy (CD) was used to experimentally monitor the temperature-dependent conformational changes and stability of published peptides and new sequences introduced here. The model predictions were quantitatively or semi-quantitatively accurate in all cases. The simulations and CD results showed that, as expected, in most cases the unfolding of helical peptides is well described by a simply 2-state model, and conformational stability increased with increased length of the helices. A notable exception in a 19-residue helix was when two Ala residues were each replaced with Phe. This stabilized a partly unfolded intermediate state via hydrophobic contacts, and also promoted aggregates at higher peptide concentrations. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Interaction of lysozyme with a tear film lipid layer model: A molecular dynamics simulation study.

    PubMed

    Wizert, Alicja; Iskander, D Robert; Cwiklik, Lukasz

    2017-12-01

    The tear film is a thin multilayered structure covering the cornea. Its outermost layer is a lipid film underneath of which resides on an aqueous layer. This tear film lipid layer (TFLL) is itself a complex structure, formed by both polar and nonpolar lipids. It was recently suggested that due to tear film dynamics, TFLL contains inhomogeneities in the form of polar lipid aggregates. The aqueous phase of tear film contains lachrymal-origin proteins, whereby lysozyme is the most abundant. These proteins can alter TFLL properties, mainly by reducing its surface tension. However, a detailed nature of protein-lipid interactions in tear film is not known. We investigate the interactions of lysozyme with TFLL in molecular details by employing coarse-grained molecular dynamics simulations. We demonstrate that lysozyme, due to lateral restructuring of TFLL, is able to penetrate the tear lipid film embedded in inverse micellar aggregates. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Chain architecture and micellization: A mean-field coarse-grained model for poly(ethylene oxide) alkyl ether surfactants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    García Daza, Fabián A.; Mackie, Allan D., E-mail: allan.mackie@urv.cat; Colville, Alexander J.

    2015-03-21

    Microscopic modeling of surfactant systems is expected to be an important tool to describe, understand, and take full advantage of the micellization process for different molecular architectures. Here, we implement a single chain mean field theory to study the relevant equilibrium properties such as the critical micelle concentration (CMC) and aggregation number for three sets of surfactants with different geometries maintaining constant the number of hydrophobic and hydrophilic monomers. The results demonstrate the direct effect of the block organization for the surfactants under study by means of an analysis of the excess energy and entropy which can be accurately determinedmore » from the mean-field scheme. Our analysis reveals that the CMC values are sensitive to branching in the hydrophilic head part of the surfactant and can be observed in the entropy-enthalpy balance, while aggregation numbers are also affected by splitting the hydrophobic tail of the surfactant and are manifested by slight changes in the packing entropy.« less

  13. Matches, Mismatches, and Methods: Multiple-View Workflows for Energy Portfolio Analysis.

    PubMed

    Brehmer, Matthew; Ng, Jocelyn; Tate, Kevin; Munzner, Tamara

    2016-01-01

    The energy performance of large building portfolios is challenging to analyze and monitor, as current analysis tools are not scalable or they present derived and aggregated data at too coarse of a level. We conducted a visualization design study, beginning with a thorough work domain analysis and a characterization of data and task abstractions. We describe generalizable visual encoding design choices for time-oriented data framed in terms of matches and mismatches, as well as considerations for workflow design. Our designs address several research questions pertaining to scalability, view coordination, and the inappropriateness of line charts for derived and aggregated data due to a combination of data semantics and domain convention. We also present guidelines relating to familiarity and trust, as well as methodological considerations for visualization design studies. Our designs were adopted by our collaborators and incorporated into the design of an energy analysis software application that will be deployed to tens of thousands of energy workers in their client base.

  14. Chain architecture and micellization: A mean-field coarse-grained model for poly(ethylene oxide) alkyl ether surfactants

    NASA Astrophysics Data System (ADS)

    García Daza, Fabián A.; Colville, Alexander J.; Mackie, Allan D.

    2015-03-01

    Microscopic modeling of surfactant systems is expected to be an important tool to describe, understand, and take full advantage of the micellization process for different molecular architectures. Here, we implement a single chain mean field theory to study the relevant equilibrium properties such as the critical micelle concentration (CMC) and aggregation number for three sets of surfactants with different geometries maintaining constant the number of hydrophobic and hydrophilic monomers. The results demonstrate the direct effect of the block organization for the surfactants under study by means of an analysis of the excess energy and entropy which can be accurately determined from the mean-field scheme. Our analysis reveals that the CMC values are sensitive to branching in the hydrophilic head part of the surfactant and can be observed in the entropy-enthalpy balance, while aggregation numbers are also affected by splitting the hydrophobic tail of the surfactant and are manifested by slight changes in the packing entropy.

  15. Ash aggregation during the 11 February 2010 partial dome collapse of the Soufrière Hills Volcano, Montserrat

    NASA Astrophysics Data System (ADS)

    Burns, F. A.; Bonadonna, C.; Pioli, L.; Cole, P. D.; Stinton, A.

    2017-04-01

    On 11 February 2010, Soufrière Hills Volcano, Montserrat, underwent a partial dome collapse ( 50 × 106 m3) and a short-lived Vulcanian explosion towards the end. Three main pyroclastic units were identified N and NE of the volcano: dome-collapse pyroclastic density current (PDC) deposits, fountain-collapse PDC deposits formed by the Vulcanian explosion, and tephra-fallout deposits associated with elutriation from the dome-collapse and fountain-collapse PDCs (i.e. co-PDC fallout deposit). The fallout associated with the Vulcanian explosion was mostly dispersed E and SE by high altitude winds. All units N and NE of the volcano contain variable amounts and types of particle aggregates, although the co-PDC fallout deposit is associated with the largest abundance (i.e. up to 24 wt%). The size of aggregates found in the co-PDC fallout deposit increases with distance from the volcano and proximity to the sea, reaching a maximum diameter of 12 mm about 500 m from the coast. The internal grain size of all aggregates have nearly identical distributions (with Mdϕ ≈ 4-5), with particles in the size categories > 3 ϕ (i.e. < 250 μm) being distributed in similar proportions within the aggregates but in different proportions within distinct internal layers. In fact, most aggregates are characterized by a coarse grained central core occupying the main part of the aggregate, coated by a thin layer of finer ash (single-layer aggregates), while others have one or two additional layers accreted over the core (multiple-layer aggregates). Calculated aggregate porosity and settling velocity vary between 0.3 and 0.5 and 11-21 m s- 1, respectively. The aggregate size shows a clear correlation with both the core size and the size of the largest particles found in the core. The large abundance of aggregates in the co-PDC fallout deposits suggests that the buoyant plumes elutriated above PDCs represent an optimal environment for the formation (particle collision) and development (aggregate layering) of particle aggregates. However, specific conditions are required, including i) a large availability of water (in this case provided by the steam plumes associated with the entrance of PDCs into the ocean), ii) presence of plume regions with different grain-size features (i.e. both median size and sorting) that allows for the development of multiple layers, iii) strong turbulence that permits both particle collision and the transition of the aggregates through different plume regions, iv) presence of hot regions (e.g. PDCs) that promote aggregate preservation (in this case also facilitated by the presence of sea salt).

  16. Characteristics and origin of coarse gold in Late Pleistocene sediments of the Cariboo placer mining district, British Columbia, Canada

    NASA Astrophysics Data System (ADS)

    Eyles, N.

    1995-02-01

    The Cariboo placer mining district (1000 km 2) sited in the Interior Plateau of central British Columbia, Canada, is the premier placer gold mining district of the Province. Gold is recovered from three Late Pleistocene sedimentary facies: postglacial fluvial gravels (< 10 Ka), Late Wisconsin till (ca. 25-10 Ka), and "older" fluvial gravels (>25 Ka). This study reports the morphology (size, roundness, sphericity) of 1636 gold grains, ranging in size from 0.25 to 17 mm, recovered from 19 placer mines. Older gravels contain the smallest gold grains (mean grani size 1.53 mm), grains of intermediate size occur in till (2.23 mm) and the coarsest gold occurs in postglacial gravels (2.34 mm) with a mean of 1.93 mm for the mining district as a whole. The most common grain shapes are sub-rounded, discoidal (14.73% of the grain population), sub-angular, discoidal (10.88%), and sub-rounded, sub-discoidal (9.59%); the most angular grains occur in postglacial gravels. In-situ growth of coarse, angular grains is indicated by a "composite" grain structure, consisting of aggregates of gold particles welded together by high-grade (Ag = < 2%) filamentous gold; in-situ coarsening may be reliant on organic complexing agents produced below a dense forest cover. An evolutionary sequence of grain form, from angular aggregates to rounded "pumpkin seed" grains, is suggested. Rounded grains commonly show a crystalline structure which may result from the cold hammering of gold during transport; fracturing along crystal boundaries is common. Gold grains may undergo cycles of coarsening, rounding, diagenesis and breakup in response to repeated recycling through Pleistocene sedimentary environments.

  17. Temporal pattern and memory in sediment transport in an experimental step-pool channel

    NASA Astrophysics Data System (ADS)

    Saletti, Matteo; Molnar, Peter; Zimmermann, André; Hassan, Marwan A.; Church, Michael; Burlando, Paolo

    2015-04-01

    In this work we study the complex dynamics of sediment transport and bed morphology in steep streams, using a dataset of experiments performed in a steep flume with natural sediment. High-resolution (1 sec) time series of sediment transport were measured for individual size classes at the outlet of the flume for different combinations of sediment input rates, discharges, and flume slopes. The data show that the relation between instantaneous discharge and sediment transport exhibits large variability on different levels. After dividing the time series into segments of constant water discharge, we quantify the statistical properties of transport rates by fitting the data with a Generalized Extreme Value distribution, whose 3 parameters are related to the average sediment flux. We analyze separately extreme events of transport rate in terms of their fractional composition; if only events of high magnitude are considered, coarse grains become the predominant component of the total sediment yield. We quantify the memory in grain size dependent sediment transport with variance scaling and autocorrelation analyses; more specifically, we study how the variance changes with different aggregation scales and how the autocorrelation coefficient changes with different time lags. Our results show that there is a tendency to an infinite memory regime in transport rate signals, which is limited by the intermittency of the largest fractions. Moreover, the structure of memory is both grain size-dependent and magnitude-dependent: temporal autocorrelation is stronger for small grain size fractions and when the average sediment transport rate is large. The short-term memory in coarse grain transport increases with temporal aggregation and this reveals the importance of the sampling frequency of bedload transport rates in natural streams, especially for large fractions.

  18. Effects of TiB2 Particle and Short Fiber Sizes on the Microstructure and Properties of TiB2-Reinforced Composite Coatings

    NASA Astrophysics Data System (ADS)

    Lin, Yinghua; Yao, Jianhua; Wang, Liang; Zhang, Qunli; Li, Xueqiao; Lei, Yongping; Fu, Hanguang

    2018-03-01

    In this study, particle and short fiber-reinforced titanium matrix composite coatings are prepared via laser in situ technique using (0.5 and 50 μm) TiB2 and Ti powder as cladding materials. The microstructure and properties of the composite coatings are studied, and the changing mechanism of the microstructure is discussed. The results reveal that particle agglomeration is prone to appear with using fine TiB2 particles. Decomposition of the particles preferentially occurs with using coarse TiB2 particles. The cracks and pores on the surface of the coating are formed at a lower laser energy density. With the increase in the laser energy density, cracking on the surface of the coating diminishes, but the coating exhibits depression behavior. The depression extent of the coating using fine TiB2 particle as the reinforcement is much less than that of the coating using coarse TiB2 particle. Moreover, the size of the aggregate and the tendency of cracking can be reduced with the increase in Ti addition. Meanwhile, short TiB fiber bundles are formed by the diffusion mechanism of rod aggregate, and randomly oriented TiB short fibers are formed mainly by the dissolution-precipitation mechanism of fine TiB2 particles. Moreover, the growth of short TiB fibers can be in an alternating manner between B27 and Bf structures. The micro-hardness and wear resistance of the coatings are evidently higher than that of the titanium alloy substrate. The wear resistance of the large size TiB2 coating is higher than that of the small size TiB2 coating under the condition of low load.

  19. Numerical simulations of mechanical properties of innovative pothole patching materials featuring high toughness, low viscosity nano-molecular resins

    NASA Astrophysics Data System (ADS)

    Yuan, K. Y.; Yuan, W.; Ju, J. W.; Yang, J. M.; Kao, W.; Carlson, L.

    2012-04-01

    As asphalt pavements age and deteriorate, recurring pothole repair failures and propagating alligator cracks in the asphalt pavements have become a serious issue to our daily life and resulted in high repairing costs for pavement and vehicles. To solve this urgent issue, pothole repair materials with superior durability and long service life are needed. In the present work, revolutionary pothole patching materials with high toughness, high fatigue resistance that are reinforced with nano-molecular resins have been developed to enhance their resistance to traffic loads and service life of repaired potholes. In particular, DCPD resin (dicyclopentadiene, C10H12) with a Rhuthinium-based catalyst is employed to develop controlled properties that are compatible with aggregates and asphalt binders. In this paper, a multi-level numerical micromechanics-based model is developed to predict the mechanical properties of these innovative nanomolecular resin reinforced pothole patching materials. Coarse aggregates in the finite element analysis are modeled as irregular shapes through image processing techniques and randomly-dispersed coated particles. The overall properties of asphalt mastic, which consists of fine aggregates, asphalt binder, cured DCPD and air voids are theoretically estimated by the homogenization technique of micromechanics. Numerical predictions are compared with suitably designed experimental laboratory results.

  20. A combined Settling Tube-Photometer for rapid measurement of effective sediment particle size

    NASA Astrophysics Data System (ADS)

    Kuhn, Nikolaus J.; Kuhn, Brigitte; Rüegg, Hans-Rudolf; Zimmermann, Lukas

    2017-04-01

    Sediment and its movement in water is commonly described based on the size distribution of the mineral particles forming the sediment. While this approach works for coarse sand, pebbles and gravel, smaller particles often form aggregates, creating material of larger diameters than the mineral grain size distribution indicates, but lower densities than often assumed 2.65 g cm-3 of quartz. The measurement of the actual size and density of such aggregated sediment is difficult. For the assessment of sediment movement an effective particle size for the use in mathematical can be derived based on the settling velocity of sediment. Settling velocity of commonly measured in settling tubes which fractionate the sample in settling velocity classes by sampling material at the base in selected time intervals. This process takes up to several hours, requires a laboratory setting and carries the risk of either destruction of aggregates during transport or coagulation while sitting in rather still water. Measuring the velocity of settling particles in situ, or at least a rapidly after collection, could avoids these problems. In this study, a settling tube equipped with four photometers used to measure the darkening of a settling particle cloud is presented and the potential to improve the measurement of settling velocities are discussed.

  1. Sustainable High Quality Recycling of Aggregates from Waste-to-Energy, Treated in a Wet Bottom Ash Processing Installation, for Use in Concrete Products

    PubMed Central

    Van den Heede, Philip; Ringoot, Niels; Beirnaert, Arno; Van Brecht, Andres; Van den Brande, Erwin; De Schutter, Geert; De Belie, Nele

    2015-01-01

    Nowadays, more efforts towards sustainability are required from the concrete industry. Replacing traditional aggregates by recycled bottom ash (BA) from municipal solid waste incineration can contribute to this goal. Until now, only partial replacement has been considered to keep the concrete workability, strength and durability under control. In this research, the feasibility of a full aggregate replacement was investigated for producing prefabricated Lego bricks. It was found that the required compressive strength class for this purpose (C20/25) could be achieved. Nevertheless, a thorough understanding of the BA properties is needed to overcome other issues. As BA is highly absorptive, the concrete’s water demand is high. This workability issue can be dealt with by subjecting the fine BA fraction to a crushing operation to eliminate the porous elements and by pre-wetting the fine and coarse BA fractions in a controlled manner. In addition, a reactive NaOH washing is needed to avoid formation of longitudinal voids and the resulting expansion due to the metallic aluminum present in the BA. Regarding the long-term behavior, heavy metal leaching and freeze-thaw exposure are not problematic, though there is susceptibility to acetic and lactic acid attack and maybe increased sensitivity to alkali-silica reaction. PMID:28787809

  2. Sustainable High Quality Recycling of Aggregates from Waste-to-Energy, Treated in a Wet Bottom Ash Processing Installation, for Use in Concrete Products.

    PubMed

    Van den Heede, Philip; Ringoot, Niels; Beirnaert, Arno; Van Brecht, Andres; Van den Brande, Erwin; De Schutter, Geert; De Belie, Nele

    2015-12-25

    Nowadays, more efforts towards sustainability are required from the concrete industry. Replacing traditional aggregates by recycled bottom ash (BA) from municipal solid waste incineration can contribute to this goal. Until now, only partial replacement has been considered to keep the concrete workability, strength and durability under control. In this research, the feasibility of a full aggregate replacement was investigated for producing prefabricated Lego bricks. It was found that the required compressive strength class for this purpose (C20/25) could be achieved. Nevertheless, a thorough understanding of the BA properties is needed to overcome other issues. As BA is highly absorptive, the concrete's water demand is high. This workability issue can be dealt with by subjecting the fine BA fraction to a crushing operation to eliminate the porous elements and by pre-wetting the fine and coarse BA fractions in a controlled manner. In addition, a reactive NaOH washing is needed to avoid formation of longitudinal voids and the resulting expansion due to the metallic aluminum present in the BA. Regarding the long-term behavior, heavy metal leaching and freeze-thaw exposure are not problematic, though there is susceptibility to acetic and lactic acid attack and maybe increased sensitivity to alkali-silica reaction.

  3. Jamming and liquidity in 3D cancer cell aggregates

    NASA Astrophysics Data System (ADS)

    Oswald, Linda; Grosser, Steffen; Lippoldt, Jürgen; Pawlizak, Steve; Fritsch, Anatol; KäS, Josef A.

    Traditionally, tissues are treated as simple liquids, which holds for example for embryonic tissue. However, recent experiments have shown that this picture is insufficient for other tissue types, suggesting possible transitions to solid-like behavior induced by cellular jamming. The coarse-grained self-propelled Voronoi (SPV) model predicts such a transition depending on cell shape which is thought to arise from an interplay of cell-cell adhesion and cortical tension. We observe non-liquid behavior in 3D breast cancer spheroids of varying metastatic potential and correlate single cell shapes, single cell dynamics and collective dynamic behavior of fusion and segregation experiments via the SPV model.

  4. Predicted electric-field-induced hexatic structure in an ionomer membrane

    NASA Astrophysics Data System (ADS)

    Allahyarov, Elshad; Taylor, Philip L.

    2009-08-01

    Coarse-grained molecular-dynamics simulations were used to study the morphological changes induced in a Nafion®-like ionomer by the imposition of a strong electric field. We observe the formation of structures aligned along the direction of the applied field. The polar head groups of the ionomer sidechains aggregate into clusters, which then form rodlike formations which assemble into a hexatic array aligned with the direction of the field. Occasionally these lines of sulfonates and protons form a helical structure. Upon removal of the electric field, the hexatic array of rodlike structures persists and has a lower calculated free energy than the original isotropic morphology.

  5. Physical and chemical characterization of fly ashes from Swiss waste incineration plants and determination of the ash fraction in the nanometer range.

    PubMed

    Buha, Jelena; Mueller, Nicole; Nowack, Bernd; Ulrich, Andrea; Losert, Sabrina; Wang, Jing

    2014-05-06

    Waste incineration had been identified as an important source of ultrafine air pollutants resulting in elaborated treatment systems for exhaust air. Nowadays, these systems are able to remove almost all ultrafine particles. However, the fate of ultrafine particles caught in the filters has received little attention so far. Based on the use of engineered nano-objects (ENO) and their transfer into the waste stream, it can be expected that not only combustion generated nanoparticles are found in fly ashes but that many ENO finally end up in this matrix. A more detailed characterization of the nanoparticulate fraction of fly ashes is therefore needed. Physical and chemical characterizations were performed for fly ashes from five selected waste incineration plants (WIPs) with different input materials such as municipal waste, wood and sewage sludge. The intrinsic densities of the fly ashes were in the range of 2.7-3.2 g/cm(3). When the fly ash particle became airborne, the effective density depended on the particle size, increasing from 0.7-0.8 g/cm(3) for 100-150 nm to 2 g/cm(3) for 350-500 nm. The fly ash samples were fractionated at 2 μm, yielding fine fractions (<2 μm) and coarse fractions (>2 μm). The size distributions of the fine fractions in the airborne form were further characterized, which allowed calculation of the percentage of the fly ash particles below 100 nm. We found the highest mass-based percentage was about 0.07%; the number percentage in the fine fraction was in the range of 4.8% to 22%. Comparison with modeling results showed that ENO may constitute a considerable part of the fly ash particles below 100 nm. Chemical analyses showed that for the municipal waste samples Ca and Al were present in higher concentrations in the coarse fraction; for the mixed wood and sludge sample the P concentration was higher in the coarse fraction; for most other samples and elements they were enriched in the fine fraction. Electron microscopic images of fly ashes showed a wide range of particle sizes, from nanometer range to micrometer range. Many aggregated particles were observed, demonstrating that ENO, bulk-derived nano-objects and combustion-generated nano-objects can form aggregates in the incineration process.

  6. Modelling tephra dispersal and ash aggregation: The 26th April 1979 eruption, La Soufrière St. Vincent

    NASA Astrophysics Data System (ADS)

    Poret, M.; Costa, A.; Folch, A.; Martí, A.

    2017-11-01

    On the 26th April 1979, La Soufrière St. Vincent volcano (West Indies) erupted producing a tephra fallout that blanketed the main island and the neighboring Bequia Island, located southwards. Using deposit measurements and the available observations reported in Brazier et al. (1982), we estimated the optimal Eruption Source Parameters, such as the Mass Eruption Rate (MER), the Total Erupted Mass (TEM) and the Total Grain-Size Distribution (TGSD) by means of a computational inversion method. Tephra transport and deposition were simulated using the 3D Eulerian model FALL3D. The field-based TGSD reconstructed by Brazier et al. (1982) shows a bi-modal pattern having a coarse and a fine population with modes around 0.5 and 0.06 mm, respectively. A significant amount of aggregates was observed during the eruption. To quantify the relevance of aggregation processes on the bulk tephra deposit, we performed a comparative study in which we accounted for aggregation using three different schemes, computing ash aggregation within the plume under wet conditions, i.e. considering both the effects of air moisture and magmatic water, consistently with the eruptive phreatomagmatic eruption features. The sensitivity to the driving meteorological model (WRF/ARW) was also investigated by considering two different spatial resolutions (5 and 1 km) and model output frequencies. Results show that, for such short-lived explosive eruptions, high-resolution meteorological data are critical. Optimal results best-fitting all available observations indicate a column height of 12 km above the vent, a MER of 7.8 × 106 kg/s which, for an eruption duration of 370 s, gives a TEM of 2.8 × 109 kg. The optimal aggregate mean diameter obtained is 1.5Φ with a density of 350 kg/m3, contributing to 22% of the deposit mass.

  7. Field Test of a Hybrid Finite-Difference and Analytic Element Regional Model.

    PubMed

    Abrams, D B; Haitjema, H M; Feinstein, D T; Hunt, R J

    2016-01-01

    Regional finite-difference models often have cell sizes that are too large to sufficiently model well-stream interactions. Here, a steady-state hybrid model is applied whereby the upper layer or layers of a coarse MODFLOW model are replaced by the analytic element model GFLOW, which represents surface waters and wells as line and point sinks. The two models are coupled by transferring cell-by-cell leakage obtained from the original MODFLOW model to the bottom of the GFLOW model. A real-world test of the hybrid model approach is applied on a subdomain of an existing model of the Lake Michigan Basin. The original (coarse) MODFLOW model consists of six layers, the top four of which are aggregated into GFLOW as a single layer, while the bottom two layers remain part of MODFLOW in the hybrid model. The hybrid model and a refined "benchmark" MODFLOW model simulate similar baseflows. The hybrid and benchmark models also simulate similar baseflow reductions due to nearby pumping when the well is located within the layers represented by GFLOW. However, the benchmark model requires refinement of the model grid in the local area of interest, while the hybrid approach uses a gridless top layer and is thus unaffected by grid discretization errors. The hybrid approach is well suited to facilitate cost-effective retrofitting of existing coarse grid MODFLOW models commonly used for regional studies because it leverages the strengths of both finite-difference and analytic element methods for predictions in mildly heterogeneous systems that can be simulated with steady-state conditions. © 2015, National Ground Water Association.

  8. Recent sediment remolding on a deep shelf, Ross Sea: implications for radiocarbon dating of Antarctic marine sediments

    NASA Astrophysics Data System (ADS)

    Domack, Eugene W.; Taviani, Marco; Rodriguez, Anthonio

    1999-11-01

    Coarse, bioclastic rich sands have been widely reported from the banks of the Antarctic continental shelf but their origin is still poorly known. We report on a suite of coarse sediments recovered from the top of the Mawson Bank in the northwestern Ross Sea. Radiocarbon ages of biogenic calcite, for modern and apparently late Pleistocene deposits, range from 1085±45 to 20,895±250 yr B.P.. Discovery of soft tissue (Ascidian) preserved as an incrustation on a pebble at 2 m depth indicates aggregation of the sediment within several months or a year of core recovery. Radiocarbon ages of acid insoluble organic matter (aiom) are less than those of the foraminifera calcite. The aiom ages are also reversed in sequence, indicating reworking of the sediment during deposition. These observations and a review of recently published literature suggest that much of the bank top sediment in Antarctica is presently undergoing remobilization, under the influence of strong currents and/or icebergs even under interglacical (high-stand) sea levels. These observations point out the need for careful, integrated studies on high latitude marine sediment cores before resultant "ages" alone are used as the foundation for paleoglacial reconstructions.

  9. Spatial Downscaling of TRMM Precipitation using MODIS product in the Korean Peninsula

    NASA Astrophysics Data System (ADS)

    Cho, H.; Choi, M.

    2013-12-01

    Precipitation is a major driving force in the water cycle. But, it is difficult to provide spatially distributed precipitation data from isolated individual in situ. The Tropical Rainfall Monitoring Mission (TRMM) satellite can provide precipitation data with relatively coarse spatial resolution (0.25° scale) at daily basis. In order to overcome the coarse spatial resolution of TRMM precipitation products, we conducted a downscaling technique using a scaling parameter from the Moderate Resolution Imaging Spectroradiometers (MODIS) sensor. In this study, statistical relations between precipitation estimates derived from the TRMM satellite and the normalized difference vegetation index (NDVI) which is obtained from the MODIS sensor in TERRA satellite are found for different spatial scales on the Korean peninsula in northeast Asia. We obtain the downscaled precipitation mapping by regression equation between yearly TRMM precipitations values and annual average NDVI aggregating 1km to 25 degree. The downscaled precipitation is validated using time series of the ground measurements precipitation dataset provided by Korea Meteorological Organization (KMO) from 2002 to 2005. To improve the spatial downscaling of precipitation, we will conduct a study about correlation between precipitation and land surface temperature, perceptible water and other hydrological parameters.

  10. Multiscale Molecular Dynamics Simulations of Model Hydrophobically Modified Ethylene Oxide Urethane Micelles.

    PubMed

    Yuan, Fang; Larson, Ronald G

    2015-09-24

    The flower-like micelles of various aggregation numbers of a model hydrophobically modified ethylene oxide urethane (HEUR) molecule, C16E45C16, and their corresponding starlike micelles, containing the surfactants C16E22 and C16E23, were studied by atomistic and coarse-grained molecular dynamic (MD) simulations. We used free energies from umbrella sampling to calculate the size distribution of micelle sizes and the average time for escape of a hydrophobic group from the micelle. Using the coarse-grained MARTINI force field, the most probable size of the model HEUR molecule was thereby determined to be about 80 hydrophobes per micelle and the average hydrophobe escape time to be about 0.1 s, both of which are consistent with previous experimental studies. Atomistic simulations reveal that hydrogen bond formation and the mean lifetime of hydration waters of the poly(ethylene oxide) (or PEO) groups are location-dependent in the HEUR micelle, with PEO groups immediately adjacent to the C16 groups forming the fewest hydrogen bonds with water and having hydration waters with longer lifetimes than those of the PEO groups located further away from the C16 groups.

  11. Chapter G: Tentative Correlation Between CIPW Normin pl (Total Plagioclase) and Los Angeles Wear in Precambrian Midcontinental Granites-Examples from Missouri and Oklahoma, with Applications and Limitations for Use

    USGS Publications Warehouse

    Davis, George H.

    2004-01-01

    The normative chemical classification of Cross, Iddings, Pirsson, and Washington (CIPW) is commonly used in igneous petrology to distinguish igneous rocks by comparing their magmatic chemistries for similar and dissimilar components. A potential use for this classification other than in petrologic studies is in the rapid assessment of aggregate sources, possibly leading to an economic advantage for an aggregate producer or user, by providing the opportunity to determine whether further physical testing of an aggregate is warranted before its use in asphalt or concrete pavement. However, the CIPW classification currently should not be substituted for the physical testing required in specifications by State departments of transportation. Demands for physical testing of aggregates have increased nationally as users seek to maximize the quality of the aggregate they purchase for their pavements. Concrete pavements are being laid with increased thicknesses to withstand increasing highway loads. New pavement mixes, most notably Superior Performance Asphalt Pavement ('Superpave'), are designed for additional service life. For both concrete and asphalt, the intent is to generate a durable pavement with a longer service life that should decrease overall life-cycle costs. Numerous aggregate producers possess chemical-composition data available for examination to answer questions from the potential user. State geological surveys also possess chemical-composition data for stone sources. Paired with the results of physical testing, chemical- composition data provide indicative information about stone durability and aggregate strength. The Missouri Department of Transportation has noted a possible relation among coarse-grained Precambrian granites of the midcontinental region, correlating the results of abrasion testing with the contents of normative minerals, also known as normins, calculated from chemical composition data. Thus, normin pl ( total plagioclase) can predict, by way of simple regression, the Los Angeles wear for granite samples collected in Missouri. The results of this abrasion testing were extended to another granite in Oklahoma where normin pl predicted Los Angeles wear to within 0.6 percent. This relation may also exist for granitic rocks outside the Oklahoma-Missouri region, as well as for other igneous-rock types.

  12. Influence of ultrasonic energy on dispersion of aggregates and released amounts of organic matter and polyvalent cations

    NASA Astrophysics Data System (ADS)

    Kaiser, M.; Kleber, M.; Berhe, A. A.

    2010-12-01

    Aggregates play important roles in soil carbon storage and stabilization. Identification of scale-dependent mechanisms of soil aggregate formation and stability is necessary to predict and eventually manage the flow of carbon through terrestrial ecosystems. Application of ultrasonic energy is a common tool to disperse soil aggregates. In this study, we used ultra sonic energy (100 to 2000 J cm-3) to determine the amount of polyvalent cations and organic matter involved in aggregation processes in three arable and three forest soils that varied in soil mineral composition. To determine the amount of organic matter and cations released after application of different amount of ultrasonic energy, we removed the coarse fraction (>250 µm). The remaining residue (<250 µm) was mixed with water and ultrasonically dispersed by application of 100, 200, 400, 500, 1000, 1500 and 2000 J cm-3 energy. After centrifugation the supernatant was filtered and the solid residue freeze dried before we analyzed the amounts of water-extracted organic carbon (OC), Fe, Al, Ca, Mn, and Mg in the filtrates. The extracted OM and solid residues were further characterized by Fourier Transformed Infra Red spectroscopy and Scanning Electron Microscopy. Our results show a linear increase in amount of dissolved OC with increasing amounts of ultra sonic energy up to 1500 J cm-3 indicating maximum dispersion of soil aggregates at this energy level independent from soil type or land use. In contrast to Mn, and Mg, the amounts of dissolved Ca, Fe, and Al increase with increasing ultra sonic energy up to 1500 J cm-3. At 1500 J cm-3, the absolute amounts of OC, Ca, Fe, and Al released were specific for each soil type, likely indicating differences in type of OM-mineral interactions involved in micro-scaled aggregation processes. The amounts of dissolved Fe, and Al released after an application of 1500 J cm-3 are not related to oxalate- and dithionite- extractable, or total Al content indicating less disintegration of pedogenic oxides or clay minerals due to high levels of ultrasonic energy.

  13. Determination of the critical micelle concentration in simulations of surfactant systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santos, Andrew P.; Panagiotopoulos, Athanassios Z., E-mail: azp@princeton.edu

    Alternative methods for determining the critical micelle concentration (cmc) are investigated using canonical and grand canonical Monte Carlo simulations of a lattice surfactant model. A common measure of the cmc is the “free” (unassociated) surfactant concentration in the presence of micellar aggregates. Many prior simulations of micellizing systems have observed a decrease in the free surfactant concentration with overall surfactant loading for both ionic and nonionic surfactants, contrary to theoretical expectations from mass-action models of aggregation. In the present study, we investigate a simple lattice nonionic surfactant model in implicit solvent, for which highly reproducible simulations are possible in bothmore » the canonical (NVT) and grand canonical (μVT) ensembles. We confirm the previously observed decrease of free surfactant concentration at higher overall loadings and propose an algorithm for the precise calculation of the excluded volume and effective concentration of unassociated surfactant molecules in the accessible volume of the solution. We find that the cmc can be obtained by correcting the free surfactant concentration for volume exclusion effects resulting from the presence of micellar aggregates. We also develop an improved method for determination of the cmc based on the maximum in curvature for the osmotic pressure curve determined from μVT simulations. Excellent agreement in cmc and other micellar properties between NVT and μVT simulations of different system sizes is observed. The methodological developments in this work are broadly applicable to simulations of aggregating systems using any type of surfactant model (atomistic/coarse grained) or solvent description (explicit/implicit)« less

  14. THERMAL PROPERTIES AND HEATING AND COOLING DURABILITY OF REACTOR SHIELDING CONCRETE (in Japanese)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hosoi, J.; Chujo, K.; Saji, K.

    1959-01-01

    A study was made of the thermal properties of various concretes made of domestic raw materials for radiation shields of a power reactor and of a high- flux research reactor. The results of measurements of thermal expansion coefficient, specific heat, thermal diffusivity, thermal conductivity, cyclical heating, and cooling durability are described. Relationships between thermal properties and durability are discussed and several photographs of the concretes are given. It is shown that the heating and cooling durability of such a concrete which has a large thermal expansion coefficient or a considerable difference between the thermal expansion of coarse aggregate and themore » one of cement mortar part or aggregates of lower strength is very poor. The decreasing rates of bending strength and dynamical modulus of elasticity and the residual elongation of the concrete tested show interesting relations with the modified thermal stress resistance factor containing a ratio of bending strength and thermal expansion coefficient. The thermal stress resistance factor seems to depend on the conditions of heat transfer on the surface and on heat release in the concrete. (auth)« less

  15. High stenghth concrete with high cement substitution by adding fly ash, CaCO3, silica sand, and superplasticizer

    NASA Astrophysics Data System (ADS)

    Wicaksono, Muchammad Ridho Sigit; Qoly, Amelia; Hidayah, Annisaul; Pangestuti, Endah Kanti

    2017-03-01

    Concrete is a mixture of cement, fine aggregate, coarse aggregate and water with or without additives. Concrete can be made with substitution of cement with materials like Fly Ash, CaCO3 and silica sand that can increase the binding on pasta and also increase the compressive strength of concrete. The Superplasticizer on a mixture is used to reduce the high water content, improve concrete durability, low permeability concrete by making it more resilient, and improve the quality of concrete. The combination between Fly Ash (30% of cement required), CaCO3 (10% of cement required) and silica sand (5% of cement required) with added MasterGlenium ACE 8595 as much as 1,2% from total cement will produces compressive strength of up to 1080 kN/cm2 or 73,34 Mpa when the concrete is aged at 28 day. By using this technique and innovation, it proves that the cost reduction is calculated at 27%, which is much more efficient. While the strength of the concrete is increased at 5% compared with normal mixture.

  16. Simulation Studies of LCST-like Phase Transitions in Elastin-like Polypeptides (ELPs) and Conjugates of ELP with Rigid Macromolecules

    NASA Astrophysics Data System (ADS)

    Condon, Joshua; Martin, Tyler; Jayaraman, Arthi

    We use atomistic (AA) and coarse-grained (CG) molecular dynamics simulations to elucidate the thermodynamic driving forces governing lower critical solution temperature (LCST)-like phase transition exhibited by elastin-like peptides (ELPs) and conjugates of ELP with other macromolecules. In the AA simulations, we study ELP oligomers in explicit water, and mark the transition as the temperature at which they undergo a change in ``hydration'' state. While AA simulations are restricted to small systems of short ELPs and do not capture the chain aggregation observed in experiments of ELPs, they guide the phenomenological CG model development by highlighting the solvent induced polymer-polymer effective interactions with changing temperature. In the CG simulations, we capture the LCST polymer aggregation by increasing polymer-polymer effective attractive interactions in an implicit solvent. We examine the impact of conjugating a block of LCST polymer to another rigid unresponsive macromolecular block on the LCST-like transition. We find that when multiple LCST polymers are conjugated to a rigid polymer block, increased crowding of the LCST polymers shifts the onset of chain aggregation to smaller effective polymer-polymer attraction compared to the free LCST polymers. These simulation results provide guidance on the design of conjugated bio-mimetic thermoresponsive materials, and shape the fundamental understanding of the impact of polymer crowding on phase behavior in thermoresponsive LCST polymer systems.

  17. Petro-chemical features and source areas of volcanic aggregates used in ancient Roman maritime concretes

    NASA Astrophysics Data System (ADS)

    Marra, F.; Anzidei, M.; Benini, A.; D'Ambrosio, E.; Gaeta, M.; Ventura, G.; Cavallo, A.

    2016-12-01

    We present and discuss data from petrographic observation at the optical microscope, electron microprobe analyses on selected glass shards, and trace-element analyses on 14 mortar aggregates collected at the ancient harbors and other maritime structures of Latium and Campania, spanning the third century BCE through the second CE, aimed at identify the volcanic products employed in the concretes and their area of exploitation. According to Latin author Vitruvius assertion about the ubiquitous use of Campanian pozzolan in the ancient Roman sea-water concretes, results of this study show a very selective and homogeneous choice in the material employed to produce the concretes for the different investigated maritime structures, evidencing three main pumice compositions, all corresponding to those of the products of the post-Neapolitan Yellow Tuff activity of the Phlegraean Fields, and a systematic use of the local Neapolitan Yellow Tuff to produce the coarse aggregate of these concretes. However, mixing with local products of the Colli Albani volcanic district, located 20 km east of Rome, has been evidenced at two fishponds of Latium, in Punta della Vipera and Torre Astura. Based on these petrographic and geochemical data, we conclude that the selective use of pozzolan from Campania, rather than of unproved different chemical properties, was the consequence of a series of logistic, economic, industrial and historical reasons.

  18. The Fire Resistance Performance of Recycled Aggregate Concrete Columns with Different Concrete Compressive Strengths

    PubMed Central

    Dong, Hongying; Cao, Wanlin; Bian, Jianhui; Zhang, Jianwei

    2014-01-01

    In order to ascertain the fire resistance performance of recycled aggregate concrete (RAC) components with different concrete compressive strengths, four full-scaled concrete columns were designed and tested under high temperature. Two of the four specimens were constructed by normal concrete with compressive strength ratings of C20 and C30, respectively, while the others were made from recycled coarse aggregate (RCA) concrete of C30 and C40, respectively. Identical constant axial forces were applied to specimens while being subjected to simulated building fire conditions in a laboratory furnace. Several parameters from the experimental results were comparatively analyzed, including the temperature change, vertical displacement, lateral deflection, fire endurance, and failure characteristics of specimens. The temperature field of specimens was simulated with ABAQUS Software (ABAQUS Inc., Provindence, RI, USA) and the results agreed quite well with those from the experiments. Results show that the rate of heat transfer from the surface to the interior of the column increases with the increase of the concrete’s compressive strength for both RAC columns and normal concrete columns. Under the same initial axial force ratio, for columns with the same cross section, those with lower concrete compressive strengths demonstrate better fire resistance performance. The fire resistance performance of RAC columns is better than that of normal concrete columns, with the same concrete compressive strength. PMID:28788279

  19. The Fire Resistance Performance of Recycled Aggregate Concrete Columns with Different Concrete Compressive Strengths.

    PubMed

    Dong, Hongying; Cao, Wanlin; Bian, Jianhui; Zhang, Jianwei

    2014-12-08

    In order to ascertain the fire resistance performance of recycled aggregate concrete (RAC) components with different concrete compressive strengths, four full-scaled concrete columns were designed and tested under high temperature. Two of the four specimens were constructed by normal concrete with compressive strength ratings of C20 and C30, respectively, while the others were made from recycled coarse aggregate (RCA) concrete of C30 and C40, respectively. Identical constant axial forces were applied to specimens while being subjected to simulated building fire conditions in a laboratory furnace. Several parameters from the experimental results were comparatively analyzed, including the temperature change, vertical displacement, lateral deflection, fire endurance, and failure characteristics of specimens. The temperature field of specimens was simulated with ABAQUS Software (ABAQUS Inc., Provindence, RI, USA) and the results agreed quite well with those from the experiments. Results show that the rate of heat transfer from the surface to the interior of the column increases with the increase of the concrete's compressive strength for both RAC columns and normal concrete columns. Under the same initial axial force ratio, for columns with the same cross section, those with lower concrete compressive strengths demonstrate better fire resistance performance. The fire resistance performance of RAC columns is better than that of normal concrete columns, with the same concrete compressive strength.

  20. Electrostatically Tuned Self-Assembly of Branched Amphiphilic Peptides

    DOE PAGES

    Ting, Christina L.; Frischknecht, Amalie L.; Stevens, Mark J.; ...

    2014-06-19

    Electrostatics plays an important role in the self-assembly of amphiphilic peptides. To develop a molecular understanding of the role of the electrostatic interactions, we develop a coarse-grained model peptide and apply self-consistent field theory to investigate the peptide assembly into a variety of aggregate nanostructures. We find that the presence and distribution of charged groups on the hydrophilic branches of the peptide can modify the molecular configuration from extended to collapsed. This change in molecular configuration influences the packing into spherical micelles, cylindrical micelles (nanofibers), or planar bilayers. The effects of charge distribution therefore has important implications for the designmore » and utility of functional materials based on peptides.« less

  1. Design of SMA - 13 asphalt mixture ratio on Z3and Z18 of the capital airport

    NASA Astrophysics Data System (ADS)

    Tian, Shuaituan; Ye, Song; Kong, Fandong

    2017-12-01

    According to the demand of T2 terminal airlines to operate A380 models, to meet the smooth running of the A380 airliner at the west end of the Capital Airport, So Z3 and Z18 taxiway area of the transformation is imperative. According to the design, the upper layer of this project adopts SMA - 13 modified asphalt mastic macadam mixture. We design the SMA-13 modified asphalt mixture on Z3 and Z18 of the capital airport from any respects, including coarse and fine aggregate, filler, asphalt, fiber and anti-rutting agent, and we hope we can find the best SMA-13 modified asphalt mixture.

  2. Crystallized alkali-silica gel in concrete from the late 1890s

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peterson, Karl; Gress, David; Van Dam, Tom

    The Elon Farnsworth Battery, a concrete structure completed in 1898, is in an advanced state of disrepair. To investigate the potential for rehabilitation, cores were extracted from the battery. Petrographic examination revealed abundant deposits of alkali silica reaction products in cracks associated with the quartz rich metasedimentary coarse aggregate. The products of the alkali silica reaction are variable in composition and morphology, including both amorphous and crystalline phases. The crystalline alkali silica reaction products are characterized by quantitative X-ray energy dispersive spectrometry (EDX) and X-ray diffraction (XRD). The broad extent of the reactivity is likely due to elevated alkali levelsmore » in the cements used.« less

  3. Theoretical Insight into Dispersion of Silica Nanoparticles in Polymer Melts.

    PubMed

    Wei, Zhaoyang; Hou, Yaqi; Ning, Nanying; Zhang, Liqun; Tian, Ming; Mi, Jianguo

    2015-07-30

    Silica nanoparticles dispersed in polystyrene, poly(methyl methacrylate), and poly(ethylene oxide) melts have been investigated using a density functional approach. The polymers are regarded as coarse-grained semiflexible chains, and the segment sizes are represented by their Kuhn lengths. The particle-particle and particle-polymer interactions are calculated with the Hamaker theory to reflect the relationship between particles and polymer melts. The effects of particle volume fraction and size on the particle dispersion have been quantitatively determined to evaluate their dispersion/aggregation behavior in these polymer melts. It is shown that theoretical predictions are generally in good agreement with the corresponding experimental results, providing the reasonable verification of particle dispersion/agglomeration and polymer depletion.

  4. Soil aggregate stability and rainfall-induced sediment transport on field plots as affected by amendment with organic matter inputs

    NASA Astrophysics Data System (ADS)

    Shi, Pu; Arter, Christian; Liu, Xingyu; Keller, Martin; Schulin, Rainer

    2017-04-01

    Aggregate stability is an important factor in soil resistance against erosion, and, by influencing the extent of sediment transport associated with surface runoff, it is thus also one of the key factors which determine on- and off-site effects of water erosion. As it strongly depends on soil organic matter, many studies have explored how aggregate stability can be improved by organic matter inputs into the soil. However, the focus of these studies has been on the relationship between aggregate stability and soil organic matter dynamics. How the effects of organic matter inputs on aggregate stability translate into soil erodibility under rainfall impacts has received much less attention. In this study, we performed field plot experiments to examine how organic matter inputs affect aggregate breakdown and surface sediment transport under field conditions in artificial rainfall events. Three pairs of plots were prepared by adding a mixture of grass and wheat straw to one of plots in each pair but not to the other, while all plots were treated in the same way otherwise. The rainfall events were applied some weeks later so that the applied organic residues had sufficient time for decomposition and incorporation into the soil. Surface runoff rate and sediment concentration showed substantial differences between the treatments with and without organic matter inputs. The plots with organic inputs had coarser and more stable aggregates and a rougher surface than the control plots without organic inputs, resulting in a higher infiltration rate and lower transport capacity of the surface runoff. Consequently, sediments exported from the amended plots were less concentrated but more enriched in suspended particles (<20 µm) than from the un-amended plots, indicating a more size-selective sediment transport. In contrast to the amended plots, there was an increase in the coarse particle fraction (> 250 µm) in the runoff from the plots with no organic matter inputs towards the end of the rainfall events due to emerging bed-load transport. The results show that a single application of organic matter can already cause a large difference in aggregate breakdown, surface sealing, and lateral sediment-associated matter transfer under rainfall impact. Furthermore, we will present terrestrial laser scanning data showing the treatment effects on soil surface structure, as well as data on carbon, phosphorus and heavy metal export associated with the translocation of the sediments.

  5. Coarse-grained model for colloidal protein interactions, B(22), and protein cluster formation.

    PubMed

    Blanco, Marco A; Sahin, Erinc; Robinson, Anne S; Roberts, Christopher J

    2013-12-19

    Reversible protein cluster formation is an important initial step in the processes of native and non-native protein aggregation, but involves relatively long time and length scales for detailed atomistic simulations and extensive mapping of free energy landscapes. A coarse-grained (CG) model is presented to semiquantitatively characterize the thermodynamics and key configurations involved in the landscape for protein oligomerization, as well as experimental measures of interactions such as the osmotic second virial coefficient (B22). Based on earlier work (Grüenberger et al., J. Phys. Chem. B 2013, 117, 763), this CG model treats proteins as rigid bodies composed of one bead per amino acid, with each amino acid having specific parameters for its size, hydrophobicity, and charge. The net interactions are a combination of steric repulsions, short-range attractions, and screened long-range charge-charge interactions. Model parametrization was done by fitting simulation results against experimental value of B22 as a function of solution ionic strength for α-chymotrypsinogen A and γD-Crystallin (gD-Crys). The CG model is applied to characterize the pairwise interactions and dimerization of gD-Crys and the dependence on temperature, protein concentration, and ionic strength. The results illustrate that at experimentally relevant conditions where stable dimers do not form, the entropic contributions are predominant in the free-energy of protein cluster formation and colloidal protein interactions, arguing against interpretations that treat B22 primarily from energetic considerations alone. Additionally, the results suggest that electrostatic interactions help to modulate the population of the different stable configurations for protein nearest-neighbor pairs, while short-range attractions determine the relative orientations of proteins within these configurations. Finally, simulation results are combined with Principal Component Analysis to identify those amino-acids/surface patches that form interprotein contacts at conditions that favor dimerization of gD-Crys. The resulting regions agree with previously found aggregation-prone sites, as well as suggesting new ones that may be important.

  6. Coarse-Grained Model for Colloidal Protein Interactions, B22, and Protein Cluster Formation

    PubMed Central

    Blanco, Marco A.; Sahin, Eric; Robinson, Anne S.; Roberts, Christopher J.

    2014-01-01

    Reversible protein cluster formation is an important initial step in the processes of native and non-native protein aggregation, but involves relatively long time and length scales for detailed atomistic simulations and extensive mapping of free energy landscapes. A coarse-grained (CG) model is presented to semi-quantitatively characterize the thermodynamics and key configurations involved in the landscape for protein oligomerization, as well as experimental measures of interactions such as the osmotic second virial coefficient (B22). Based on earlier work, this CG model treats proteins as rigid bodies composed of one bead per amino acid, with each amino acid having specific parameters for its size, hydrophobicity, and charge. The net interactions are a combination of steric repulsions, short-range attractions, and screened long-range charge-charge interactions. Model parametrization was done by fitting simulation results against experimental values of the B22 as a function of solution ionic strength for α-chymotrypsinogen A and γD-crystallin (gD-Crys). The CG model is applied to characterize the pairwise interactions and dimerization of gD-Crys and the dependance on temperature, protein concentration, and ionic strength. The results illustrate that at experimentally relevant conditions where stable dimers do not form, the entropic contributions are predominant in the free-energy of protein cluster formation and colloidal protein interactions, arguing against interpretations that treat B22 primarily from energetic considerations alone. Additionally, the results suggest that electrostatic interactions help to modulate the population of the different stable configurations for protein nearest-neighbor pairs, while short-range attractions determine the relative orientations of proteins within these configurations. Finally, simulation results are combined with Principal Component Analysis to identify those amino-acids / surface patches that form inter-protein contacts at conditions that favor dimerization of gD-Crys. The resulting regions agree with previously found aggregation-prone sites, as well as suggesting new ones that may be important. PMID:24289039

  7. Computational study of deformation mechanisms and grain size evolution in granulites - Implications for the rheology of the lower crust

    NASA Astrophysics Data System (ADS)

    Maierová, Petra; Lexa, Ondrej; Jeřábek, Petr; Schulmann, Karel; Franěk, Jan

    2017-05-01

    Most of granulite terrains worldwide are characterized by large mean grain sizes of 1 mm or more. An important exception are the high-pressure felsic granulites in the Bohemian Massif, the European Variscan belt. There, recrystallization of original coarse-grained ternary feldspar led to formation of a fine-grained (∼100 μm) mixed matrix dominated by plagioclase and K-feldspar. This change occurred at temperatures of ∼850 °C and was probably caused by chemically induced decomposition related to slight cooling and enhanced by deformation during continental collision. The resulting microstructure shows indications of diffusion creep assisted by melt-enhanced grain-boundary sliding. Further on, minor coarsening occurred associated with deformation by dislocation creep and aggregation of mineral phases. Using a thermodynamics-based model of grain size evolution we show that stability of the fine-grained microstructure crucially depends on Zener pinning in the two-phase mineral matrix. Pinning efficiently hinders grain growth, and the small grain size that resulted from the ternary feldspar decomposition can be stable even at high temperatures. The late switch from the grain-size-sensitive creep to dislocation creep is rather difficult to explain by temperature and strain rate (or stress) changes only. However, a simple incorporation of melt solidification can successfully simulate this behavior. Alternatively, the switch and the associated grain size growth can be related to mineral phase aggregation at lower pressure-temperature conditions resulting into a decrease of pinning efficiency. This study suggests that the fine grain size of the Bohemian granulites, in contrast to the common coarse-grained type, stems from abrupt recrystallization during the high-pressure high-temperature conditions, and pinning in the fine-grained matrix. Such a process may in some cases significantly and suddenly reduce the strength of the lower continental crust and allow for its efficient redistribution.

  8. Ganglioside-Lipid and Ganglioside-Protein Interactions Revealed by Coarse-Grained and Atomistic Molecular Dynamics Simulations.

    PubMed

    Gu, Ruo-Xu; Ingólfsson, Helgi I; de Vries, Alex H; Marrink, Siewert J; Tieleman, D Peter

    2017-04-20

    Gangliosides are glycolipids in which an oligosaccharide headgroup containing one or more sialic acids is connected to a ceramide. Gangliosides reside in the outer leaflet of the plasma membrane and play a crucial role in various physiological processes such as cell signal transduction and neuronal differentiation by modulating structures and functions of membrane proteins. Because the detailed behavior of gangliosides and protein-ganglioside interactions are poorly known, we investigated the interactions between the gangliosides GM1 and GM3 and the proteins aquaporin (AQP1) and WALP23 using equilibrium molecular dynamics simulations and potential of mean force calculations at both coarse-grained (CG) and atomistic levels. In atomistic simulations, on the basis of the GROMOS force field, ganglioside aggregation appears to be a result of the balance between hydrogen bond interactions and steric hindrance of the headgroups. GM3 clusters are slightly larger and more ordered than GM1 clusters due to the smaller headgroup of GM3. The different structures of GM1 and GM3 clusters from atomistic simulations are not observed at the CG level based on the Martini model, implying a difference in driving forces for ganglioside interactions in atomistic and CG simulations. For protein-ganglioside interactions, in the atomistic simulations, GM1 lipids bind to specific sites on the AQP1 surface, whereas they are depleted from WALP23. In the CG simulations, the ganglioside binding sites on the AQP1 surface are similar, but ganglioside aggregation and protein-ganglioside interactions are more prevalent than in the atomistic simulations. Using the polarizable Martini water model, results were closer to the atomistic simulations. Although experimental data for validation is lacking, we proposed modified Martini parameters for gangliosides to more closely mimic the sizes and structures of ganglioside clusters observed at the atomistic level.

  9. Ganglioside-Lipid and Ganglioside-Protein Interactions Revealed by Coarse-Grained and Atomistic Molecular Dynamics Simulations

    PubMed Central

    2016-01-01

    Gangliosides are glycolipids in which an oligosaccharide headgroup containing one or more sialic acids is connected to a ceramide. Gangliosides reside in the outer leaflet of the plasma membrane and play a crucial role in various physiological processes such as cell signal transduction and neuronal differentiation by modulating structures and functions of membrane proteins. Because the detailed behavior of gangliosides and protein-ganglioside interactions are poorly known, we investigated the interactions between the gangliosides GM1 and GM3 and the proteins aquaporin (AQP1) and WALP23 using equilibrium molecular dynamics simulations and potential of mean force calculations at both coarse-grained (CG) and atomistic levels. In atomistic simulations, on the basis of the GROMOS force field, ganglioside aggregation appears to be a result of the balance between hydrogen bond interactions and steric hindrance of the headgroups. GM3 clusters are slightly larger and more ordered than GM1 clusters due to the smaller headgroup of GM3. The different structures of GM1 and GM3 clusters from atomistic simulations are not observed at the CG level based on the Martini model, implying a difference in driving forces for ganglioside interactions in atomistic and CG simulations. For protein-ganglioside interactions, in the atomistic simulations, GM1 lipids bind to specific sites on the AQP1 surface, whereas they are depleted from WALP23. In the CG simulations, the ganglioside binding sites on the AQP1 surface are similar, but ganglioside aggregation and protein-ganglioside interactions are more prevalent than in the atomistic simulations. Using the polarizable Martini water model, results were closer to the atomistic simulations. Although experimental data for validation is lacking, we proposed modified Martini parameters for gangliosides to more closely mimic the sizes and structures of ganglioside clusters observed at the atomistic level. PMID:27610460

  10. Soil aggregate stability and size-selective sediment transport with surface runoff as affected by organic residue amendment.

    PubMed

    Shi, Pu; Arter, Christian; Liu, Xingyu; Keller, Martin; Schulin, Rainer

    2017-12-31

    Aggregate breakdown influences the availability of soil particles for size-selective sediment transport with surface runoff during erosive rainfall events. Organic matter management is known to affect aggregate stability against breakdown, but little is known about how this translates into rainfall-induced aggregate fragmentation and sediment transport under field conditions. In this study, we performed field experiments in which artificial rainfall was applied after pre-wetting on three pairs of arable soil plots (1.5×0.75m) six weeks after incorporating a mixture of grass and wheat straw into the topsoil of one plot in each pair (OI treatment) but not on the other plot (NI treatment). Artificial rainfall was applied for approximately 2h on each pair at an intensity of 49.1mmh -1 . In both treatments, discharge and sediment concentration in the discharge were correlated and followed a similar temporal pattern after the onset of surface runoff: After a sharp increase at the beginning both approached a steady state. But the onset of runoff was more delayed on the OI plots, and the discharge and sediment concentration were in average only roughly half as high on the OI as on the NI plots. With increasing discharge the fraction of coarse sediment increased. This relationship did not differ between the two treatments. Thus, due to the lower discharge, the fraction of fine particles in the exported sediment was larger in the runoff from the OI plots than from the NI plots. The later runoff onset and lower discharge rate was related to a higher initial aggregate stability on the OI plots. Terrestrial laser scanning proved to be a very valuable method to map changes in the micro-topography of the soil surfaces. It revealed a much less profound decrease in surface roughness on the OI than on the NI plots. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Aggregation in complex triacylglycerol oils: coarse-grained models, nanophase separation, and predicted x-ray intensities.

    PubMed

    Quinn, Bonnie; Peyronel, Fernanda; Gordon, Tyler; Marangoni, Alejandro; Hanna, Charles B; Pink, David A

    2014-11-19

    Triacylglycerols (TAGs) are biologically important molecules which form crystalline nanoplatelets (CNPs) and, ultimately, fat crystal networks in edible oils. Characterizing the self-assembled hierarchies of these networks is important to understanding their functionality and oil binding capacity. We have modelled CNPs in multicomponent oils and studied their aggregation. The oil comprises (a) a liquid component, and (b) components which phase separately on a nano-scale (nano-phase separation) to coat the surfaces of the CNPs impenetrably, either isotropically or anisotropically, with either liquid-like coatings or crystallites, forming a coating of thickness ?. We modelled three cases: (i) liquid?liquid nano-phase separation, (ii) solid?liquid nano-phase separation, with CNPs coated isotropically, and (iii) CNPs coated anisotropically. The models were applied to mixes of tristearin and triolein with fully hydrogenated canola oil, shea butter with high oleic sunflower oil, and cotton seed oil. We performed Monte Carlo simulations, computed structure functions and concluded: (1) three regimes arose: (a) thin coating regime, Δ < 0.0701 u (b) transition regime, 0.0701 u ≤ Δ ≤ 0.0916 u and (c) thick coating regime, Δ > 0.0916 u. (arbitrary units, u) (2) The thin coating regime exhibits 1D TAGwoods, which aggregate, via DLCA/RLCA, into fractal structures which are uniformly distributed in space. (3) In the thick coating regime, for an isotropic coating, TAGwoods are not formed and coated CNPs will not aggregate but will be uniformly distributed in space. For anisotropic coating, TAGwoods can be formed and might form 1D strings but will not form DLCA/RLCA clusters. (4) The regimes are, approximately: thin coating, 0 < Δ < 7.0 nm transition regime, 7.0 < Δ < 9.2 nm and thick coating, Δ > 9.2 nm (5) The minimum minority TAG concentration required to undergo nano-phase separation is, approximately, 0.29% (thin coatings) and 0.94% (thick coatings). Minority components can have substantial effects upon aggregation for concentrations less than 1%.

  12. Web-Based Computational Chemistry Education with CHARMMing II: Coarse-Grained Protein Folding

    PubMed Central

    Schalk, Vinushka; Lerner, Michael G.; Woodcock, H. Lee; Brooks, Bernard R.

    2014-01-01

    A lesson utilizing a coarse-grained (CG) G-like model has been implemented into the CHARMM INterface and Graphics (CHARMMing) web portal (www.charmming.org) to the Chemistry at HARvard Macromolecular Mechanics (CHARMM) molecular simulation package. While widely used to model various biophysical processes, such as protein folding and aggregation, CG models can also serve as an educational tool because they can provide qualitative descriptions of complex biophysical phenomena for a relatively cheap computational cost. As a proof of concept, this lesson demonstrates the construction of a CG model of a small globular protein, its simulation via Langevin dynamics, and the analysis of the resulting data. This lesson makes connections between modern molecular simulation techniques and topics commonly presented in an advanced undergraduate lecture on physical chemistry. It culminates in a straightforward analysis of a short dynamics trajectory of a small fast folding globular protein; we briefly describe the thermodynamic properties that can be calculated from this analysis. The assumptions inherent in the model and the data analysis are laid out in a clear, concise manner, and the techniques used are consistent with those employed by specialists in the field of CG modeling. One of the major tasks in building the G-like model is determining the relative strength of the nonbonded interactions between coarse-grained sites. New functionality has been added to CHARMMing to facilitate this process. The implementation of these features into CHARMMing helps automate many of the tedious aspects of constructing a CG G model. The CG model builder and its accompanying lesson should be a valuable tool to chemistry students, teachers, and modelers in the field. PMID:25058338

  13. Web-based computational chemistry education with CHARMMing II: Coarse-grained protein folding.

    PubMed

    Pickard, Frank C; Miller, Benjamin T; Schalk, Vinushka; Lerner, Michael G; Woodcock, H Lee; Brooks, Bernard R

    2014-07-01

    A lesson utilizing a coarse-grained (CG) Gō-like model has been implemented into the CHARMM INterface and Graphics (CHARMMing) web portal (www.charmming.org) to the Chemistry at HARvard Macromolecular Mechanics (CHARMM) molecular simulation package. While widely used to model various biophysical processes, such as protein folding and aggregation, CG models can also serve as an educational tool because they can provide qualitative descriptions of complex biophysical phenomena for a relatively cheap computational cost. As a proof of concept, this lesson demonstrates the construction of a CG model of a small globular protein, its simulation via Langevin dynamics, and the analysis of the resulting data. This lesson makes connections between modern molecular simulation techniques and topics commonly presented in an advanced undergraduate lecture on physical chemistry. It culminates in a straightforward analysis of a short dynamics trajectory of a small fast folding globular protein; we briefly describe the thermodynamic properties that can be calculated from this analysis. The assumptions inherent in the model and the data analysis are laid out in a clear, concise manner, and the techniques used are consistent with those employed by specialists in the field of CG modeling. One of the major tasks in building the Gō-like model is determining the relative strength of the nonbonded interactions between coarse-grained sites. New functionality has been added to CHARMMing to facilitate this process. The implementation of these features into CHARMMing helps automate many of the tedious aspects of constructing a CG Gō model. The CG model builder and its accompanying lesson should be a valuable tool to chemistry students, teachers, and modelers in the field.

  14. A large coaxial reflection cell for broadband dielectric characterization of coarse-grained materials

    NASA Astrophysics Data System (ADS)

    Bore, Thierry; Bhuyan, Habibullah; Bittner, Tilman; Murgan, Vignesh; Wagner, Norman; Scheuermann, Alexander

    2018-01-01

    Knowledge of the frequency-dependent electromagnetic properties of coarse-grained materials is imperative for the successful application of high frequency electromagnetic measurement techniques for near and subsurface monitoring. This paper reports the design, calibration and application of a novel one-port large coaxial cell for broadband complex permittivity measurements of civil engineering materials. It was designed to allow the characterization of heterogeneous material with large aggregate dimensions (up to 28 mm) over a frequency range from 1 MHz-860 MHz. In the first step, the system parameters were calibrated using the measured scattering function in a perfectly known dielectric material in an optimization scheme. In the second step, the method was validated with measurements made on standard liquids. Then the performance of the cell was evaluated on a compacted coarse-grained soil. The dielectric spectra were obtained by means of fitting the measured scattering function using a transverse electromagnetic mode propagation model considering the frequency-dependent complex permittivity. Two scenarios were systematically analyzed and compared. The first scenario consisted of a broadband generalized dielectric relaxation model with two Cole-Cole type relaxation processes related to the interaction of the aqueous phase and the solid phase, a constant high frequency contribution as well as an apparent direct current conductivity term. The second scenario relied on a three-phase theoretical mixture equation which was used in a forward approach in order to calibrate the model. Both scenarios provide almost identical results for the broadband effective complex relative permittivity. The combination of both scenarios suggests the simultaneous estimation of water content, density, bulk and pore water conductivity for road base materials for in situ applications.

  15. Physicochemical properties and ability to generate free radicals of ambient coarse, fine, and ultrafine particles in the atmosphere of Xuanwei, China, an area of high lung cancer incidence

    NASA Astrophysics Data System (ADS)

    Lu, Senlin; Yi, Fei; Hao, Xiaojie; Yu, Shang; Ren, Jingjing; Wu, Minghong; Jialiang, Feng; Yonemochi, Shinich; Wang, Qingyue

    2014-11-01

    The link between the high incidence of lung cancer and harmful pollutants emitted by local coal combustion in Xuanwei, Yunnan province, China, has been a focus of study since the 1980s. However, the mechanisms responsible for the high lung cancer rate remain unclear, necessitating further study. Since a close relationship between ambient air particle pollution and respiratory diseases exists, we sampled size-resolved ambient particles from the atmosphere of Xuanwei. In our indoor experiment, cutting-edge methods, including scanning electron microscopy coupled with energy dispersive X-ray detection (SEM/EDX), particle-induced X-ray emission (PIXE), electronic paramagnetic resonance (EPR) and the cell-free DCFH-DA assay, were employed to investigate the physicochemical properties, the potential to generate free radicals and the oxidative potential of ambient coarse (diameter, 1.8-10 μm), fine (diameter, 0.1-1.8 μm), and ultrafine (diameter, <0.1 μm) particles. We found the total mass concentrations of the size-resolved particles collected in spring were higher than that in early winter. Mass percentage of fine particles accounted for 68% and 61% of the total particulate mass in spring and in early winter samples, respectively, indicating that fine particles were the major component of the Xuanwei ambient particulate matters. On the other hand, the results of SEM/EDX analysis showed that the coarse particles were dominated by minerals, the fine particles by soot aggregates and fly ashes, and the ultrafine particles by soot particles and unidentified particles. Our PIXE results revealed that crustal elements (Ca, Ti Si, Fe) were mainly distributed in coarse particles, while trace metals (Cr, Mn, Ni, Cu, Zn, Pb) dominated in the fine particle fraction, and S, a typical element emitted by coal combustion, mainly resided in fine particles collected from the winter atmosphere. EPR results indicated that the magnitude of free radical intensity caused by size-resolved particles followed these patterns: fine particles > coarse particles > ultrafine particles for spring samples and ultrafine particles > fine particles > coarse particles for winter samples. Cell-free DCFH assay results conclusively showed that all of the measured particle suspensions displayed a higher oxidative potential than the negative control. The correlation coefficient (R2) between free radical intensity and fluorescent intensity generated by the size-resolved particles was 0.535 and 0.507 for the spring and winter seasons, respectively, implying that ambient air particles in the Xuanwei atmosphere have the ability to generate free radicals, and fine and ultrafine particles could be hazardous to local residents.

  16. In-silico analysis on biofabricating vascular networks using kinetic Monte Carlo simulations.

    PubMed

    Sun, Yi; Yang, Xiaofeng; Wang, Qi

    2014-03-01

    We present a computational modeling approach to study the fusion of multicellular aggregate systems in a novel scaffold-less biofabrication process, known as 'bioprinting'. In this novel technology, live multicellular aggregates are used as fundamental building blocks to make tissues or organs (collectively known as the bio-constructs,) via the layer-by-layer deposition technique or other methods; the printed bio-constructs embedded in maturogens, consisting of nutrient-rich bio-compatible hydrogels, are then placed in bioreactors to undergo the cellular aggregate fusion process to form the desired functional bio-structures. Our approach reported here is an agent-based modeling method, which uses the kinetic Monte Carlo (KMC) algorithm to evolve the cellular system on a lattice. In this method, the cells and the hydrogel media, in which cells are embedded, are coarse-grained to material's points on a three-dimensional (3D) lattice, where the cell-cell and cell-medium interactions are quantified by adhesion and cohesion energies. In a multicellular aggregate system with a fixed number of cells and fixed amount of hydrogel media, where the effect of cell differentiation, proliferation and death are tactically neglected, the interaction energy is primarily dictated by the interfacial energy between cell and cell as well as between cell and medium particles on the lattice, respectively, based on the differential adhesion hypothesis. By using the transition state theory to track the time evolution of the multicellular system while minimizing the interfacial energy, KMC is shown to be an efficient time-dependent simulation tool to study the evolution of the multicellular aggregate system. In this study, numerical experiments are presented to simulate fusion and cell sorting during the biofabrication process of vascular networks, in which the bio-constructs are fabricated via engineering designs. The results predict the feasibility of fabricating the vascular structures via the bioprinting technology and demonstrate the morphological development process during cellular aggregate fusion in various engineering designed structures. The study also reveals that cell sorting will perhaps not significantly impact the final fabricated products, should the maturation process be well-controlled in bioprinting.

  17. Multiple time-scales and the developmental dynamics of social systems

    PubMed Central

    Flack, Jessica C.

    2012-01-01

    To build a theory of social complexity, we need to understand how aggregate social properties arise from individual interaction rules. Here, I review a body of work on the developmental dynamics of pigtailed macaque social organization and conflict management that provides insight into the mechanistic causes of multi-scale social systems. In this model system coarse-grained, statistical representations of collective dynamics are more predictive of the future state of the system than the constantly in-flux behavioural patterns at the individual level. The data suggest that individuals can perceive and use these representations for strategical decision-making. As an interaction history accumulates the coarse-grained representations consolidate. This constrains individual behaviour and provides the foundations for new levels of organization. The time-scales on which these representations change impact whether the consolidating higher-levels can be modified by individuals and collectively. The time-scales appear to be a function of the ‘coarseness’ of the representations and the character of the collective dynamics over which they are averages. The data suggest that an advantage of multiple timescales is that they allow social systems to balance tradeoffs between predictability and adaptability. I briefly discuss the implications of these findings for cognition, social niche construction and the evolution of new levels of organization in biological systems. PMID:22641819

  18. On neutral metacommunity patterns of river basins at different scales of aggregation

    NASA Astrophysics Data System (ADS)

    Convertino, Matteo; Muneepeerakul, Rachata; Azaele, Sandro; Bertuzzo, Enrico; Rinaldo, Andrea; Rodriguez-Iturbe, Ignacio

    2009-08-01

    Neutral metacommunity models for spatial biodiversity patterns are implemented on river networks acting as ecological corridors at different resolution. Coarse-graining elevation fields (under the constraint of preserving the basin mean elevation) produce a set of reconfigured drainage networks. The hydrologic assumption made implies uniform runoff production such that each link has the same habitat capacity. Despite the universal scaling properties shown by river basins regardless of size, climate, vegetation, or exposed lithology, we find that species richness at local and regional scales exhibits resolution-dependent behavior. In addition, we investigate species-area relationships and rank-abundance patterns. The slopes of the species-area relationships, which are consistent over coarse-graining resolutions, match those found in real landscapes in the case of long-distance dispersal. The rank-abundance patterns are independent of the resolution over a broad range of dispersal length. Our results confirm that strong interactions occur between network structure and the dispersal of species and that under the assumption of neutral dynamics, these interactions produce resolution-dependent biodiversity patterns that diverge from expectations following from universal geomorphic scaling laws. Both in theoretical and in applied ecology studying how patterns change in resolution is relevant for understanding how ecological dynamics work in fragmented landscape and for sampling and biodiversity management campaigns, especially in consideration of climate change.

  19. Structure and thermodynamics of core-softened models for alcohols

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Munaò, Gianmarco, E-mail: gmunao@unime.it; Urbic, Tomaz

    The phase behavior and the fluid structure of coarse-grain models for alcohols are studied by means of reference interaction site model (RISM) theory and Monte Carlo simulations. Specifically, we model ethanol and 1-propanol as linear rigid chains constituted by three (trimers) and four (tetramers) partially fused spheres, respectively. Thermodynamic properties of these models are examined in the RISM context, by employing closed formulæ for the calculation of free energy and pressure. Gas-liquid coexistence curves for trimers and tetramers are reported and compared with already existing data for a dimer model of methanol. Critical temperatures slightly increase with the number ofmore » CH{sub 2} groups in the chain, while critical pressures and densities decrease. Such a behavior qualitatively reproduces the trend observed in experiments on methanol, ethanol, and 1-propanol and suggests that our coarse-grain models, despite their simplicity, can reproduce the essential features of the phase behavior of such alcohols. The fluid structure of these models is investigated by computing radial distribution function g{sub ij}(r) and static structure factor S{sub ij}(k); the latter shows the presence of a low−k peak at intermediate-high packing fractions and low temperatures, suggesting the presence of aggregates for both trimers and tetramers.« less

  20. Structure formation of lipid membranes: Membrane self-assembly and vesicle opening-up to octopus-like micelles

    NASA Astrophysics Data System (ADS)

    Noguchi, Hiroshi

    2013-02-01

    We briefly review our recent studies on self-assembly and vesicle rupture of lipid membranes using coarse-grained molecular simulations. For single component membranes, lipid molecules self-assemble from random gas states to vesicles via disk-shaped clusters. Clusters aggregate into larger clusters, and subsequently the large disks close into vesicles. The size of vesicles are determined by kinetics than by thermodynamics. When a vesicle composed of lipid and detergent types of molecules is ruptured, a disk-shaped micelle called bicelle can be formed. When both surfactants have negligibly low critical micelle concentration, it is found that bicelles connected with worm-like micelles are also formed depending on the surfactant ratio and spontaneous curvature of the membrane monolayer.

  1. Text Line Detection from Rectangle Traffic Panels of Natural Scene

    NASA Astrophysics Data System (ADS)

    Wang, Shiyuan; Huang, Linlin; Hu, Jian

    2018-01-01

    Traffic sign detection and recognition is very important for Intelligent Transportation. Among traffic signs, traffic panel contains rich information. However, due to low resolution and blur in the rectangular traffic panel, it is difficult to extract the character and symbols. In this paper, we propose a coarse-to-fine method to detect the Chinese character on traffic panels from natural scenes. Given a traffic panel Color Quantization is applied to extract candidate regions of Chinese characters. Second, a multi-stage filter based on learning is applied to discard the non-character regions. Third, we aggregate the characters for text lines by Distance Metric Learning method. Experimental results on real traffic images from Baidu Street View demonstrate the effectiveness of the proposed method.

  2. Bloedite sedimentation in a seasonally dry saline lake (Salada Mediana, Spain)

    NASA Astrophysics Data System (ADS)

    Mees, Florias; Castañeda, Carmen; Herrero, Juan; Van Ranst, Eric

    2011-06-01

    Salt crusts covering the surface of the Salada Mediana, a seasonally dry saline lake in northern Spain, consist predominantly of bloedite (Na 2Mg(SO 4) 2.4H 2O). Microscopic features of the crust were investigated to understand processes of bloedite sedimentation. This study was combined with satellite and airborne observations, revealing asymmetrical concentric and parallel-linear patterns, related to wind action. Gypsum (CaSO 4.H 2O) and glauberite (Na 2Ca(SO 4) 2) in the calcareous sediments below the crust, and abundant eugsterite (Na 4Ca(SO 4) 3.2H 2O) along the base of the crust, largely formed at a different stage than bloedite. The main part of the crust consists predominantly of coarse-crystalline xenotopic-hypidiotopic bloedite, but fan-like aggregates with downward widening, radial aggregates, surface layers with vertically aligned elongated crystals, and partially epitaxial coatings occur as well. The upper part of the crust is marked by a bloedite-thenardite (Na 2SO 4) association, recording a change in brine composition that is not in agreement with results of modelling of local brine evolution. A thin fine-grained thenardite-dominated surface formed in part by subaqueous settling of crystals, but there are also indications for development by transformation of bloedite. Surface features include fan-like bloedite aggregates with upward widening, formed by bottom growth. Overall, the Salada Mediana crusts record a complex history of bloedite and thenardite precipitation by various processes.

  3. Exploring the aggregation free energy landscape of the amyloid-β protein (1–40)

    PubMed Central

    Zheng, Weihua; Tsai, Min-Yeh; Chen, Mingchen; Wolynes, Peter G.

    2016-01-01

    A predictive coarse-grained protein force field [associative memory, water-mediated, structure, and energy model for molecular dynamics (AWSEM)-MD] is used to study the energy landscapes and relative stabilities of amyloid-β protein (1–40) in the monomer and all of its oligomeric forms up to an octamer. We find that an isolated monomer is mainly disordered with a short α-helix formed at the central hydrophobic core region (L17-D23). A less stable hairpin structure, however, becomes increasingly more stable in oligomers, where hydrogen bonds can form between neighboring monomers. We explore the structure and stability of both prefibrillar oligomers that consist of mainly antiparallel β-sheets and fibrillar oligomers with only parallel β-sheets. Prefibrillar oligomers are polymorphic but typically take on a cylindrin-like shape composed of mostly antiparallel β-strands. At the concentration of the simulation, the aggregation free energy landscape is nearly downhill. We use umbrella sampling along a structural progress coordinate for interconversion between prefibrillar and fibrillar forms to identify a conversion pathway between these forms. The fibrillar oligomer only becomes favored over its prefibrillar counterpart in the pentamer where an interconversion bottleneck appears. The structural characterization of the pathway along with statistical mechanical perturbation theory allow us to evaluate the effects of concentration on the free energy landscape of aggregation as well as the effects of the Dutch and Arctic mutations associated with early onset of Alzheimer’s disease. PMID:27698130

  4. Pilot-scale steam aging of steel slags.

    PubMed

    Kumar, Praveen; Satish Kumar, D; Marutiram, K; Prasad, Smr

    2017-06-01

    Solid waste management has gained importance in the steel industry in view of rising environmental concerns and scarcity of raw materials. In spite of significant developments in reducing waste generation and development of recycling technologies, steel slag is still a concern for the industry as most of it is dumped. Steel slag is similar to stone aggregates in strength, but its volumetric instability in contact with water hinders its application as aggregates in construction. A part of steel slag is normally exposed to rain and sun for natural aging and stabilization for months before use. The natural aging process is slow and time-consuming, and thus restricts its usage. The steelmaking slag can be put to effective use as coarse aggregates if quickly aged and stabilized by pre-reacting the free expansive phases. In the present work, a new process has been developed to accelerate the steel slag aging process using steam in a 30 T pilot scale facility. The setup has controlled steam injection, distribution, and process control system for steam, temperature, flow, and pressure. Steam percolates through the minute pores in the slag lumps and hydrates the expansive free lime and MgO phases, making it stable. The aged slag expansion properties were tested using an in-house developed expansion testing apparatus. The process is capable of reducing the expansion of steel slag from 3.5% to <1.5% (standard requirement) in 7 days. The aged steel slag is currently being used in roads at JSW Steel, Vijayanagar Works.

  5. Intranuclear inclusions of meningioma associated with abnormal cytoskeletal protein expression.

    PubMed

    Yoshida, T; Hirato, J; Sasaki, A; Yokoo, H; Nakazato, Y; Kurachi, H

    1999-01-01

    We describe a case of meningothelial meningioma with a large number of intranuclear inclusions. Morphologically, these are divided into cytoplasmic inclusions and nuclear vacuoles. The cytoplasmic inclusion has a limiting membrane with cell organelles and filaments. Inclusions of this type are generally eosinophilic, like the cytoplasm. However, there are many inclusions that are more eosinophilic than the cytoplasm or that have a ground-glass appearance. Some of them may contain fine or coarse granules. On the other hand, the nuclear vacuole lacks a limiting membrane and appears empty. In most of the inclusions of this type, there is a faintly basophilic substance in the margin. Generally, the cytoplasmic inclusions are as immunopositive as cytoplasm with vimentin, but some of these cytoplasmic inclusions are more reactive. Under the electron microscope, abnormal aggregation of intermediate filaments is recognized in the cytoplasmic inclusions. It is considered that a strong reaction of cytoplasmic inclusions with vimentin immunostaining is due to abnormal aggregation of intermediate filaments. The present study distinctly demonstrates abnormal localization of intermediate filaments in the cytoplasmic inclusions, and it is suggested that the cytoskeleton participates in the evolution of the cytoplasmic inclusions.

  6. Particle engineering using sonocrystallization: salbutamol sulphate for pulmonary delivery.

    PubMed

    Dhumal, Ravindra S; Biradar, Shailesh V; Paradkar, Anant R; York, Peter

    2009-02-23

    The aim of present work was to produce fine elongated crystals of salbutamol sulphate (SS) by sonocrystallization for pulmonary delivery and compare with micronized and spray dried SS (SDSS) for in vitro aerosolization behavior. Application of ultrasound during anti-solvent crystallization resulted in fine elongated crystals (sonocrystallized SS; SCSS) compared to aggregates of large irregular crystals obtained without sonication. Higher sonication amplitude, time, concentration and lower processing temperatures favored formation of smaller crystals with narrow particle size distribution (PSD). SCSS was separated from dispersion by spray drying in the form of loose aggregates (SD-SCSS). The fine particle fraction (FPF) of formulations with coarse lactose carrier in cascade impactor increased from 16.66% for micronized SS to 31.12% for SDSS (obtained by spray drying aqueous SS solution) and 44.21% for SD-SCSS, due to reduced cohesive/adhesive forces and aerodynamic size by virtue of elongated shape of crystals. SD-SCSS was stable without any change in crystallinity and aerodynamic behavior for 3 months at 40 degrees C/75% RH, but amorphous SDSS showed recrystallization with poor aerosolization performance on storage. Sonocrystallization, a rapid and simple technique is reported for production of SS crystals suitable for inhalation delivery.

  7. Agent Based Modeling: Fine-Scale Spatio-Temporal Analysis of Pertussis

    NASA Astrophysics Data System (ADS)

    Mills, D. A.

    2017-10-01

    In epidemiology, spatial and temporal variables are used to compute vaccination efficacy and effectiveness. The chosen resolution and scale of a spatial or spatio-temporal analysis will affect the results. When calculating vaccination efficacy, for example, a simple environment that offers various ideal outcomes is often modeled using coarse scale data aggregated on an annual basis. In contrast to the inadequacy of this aggregated method, this research uses agent based modeling of fine-scale neighborhood data centered around the interactions of infants in daycare and their families to demonstrate an accurate reflection of vaccination capabilities. Despite being able to prevent major symptoms, recent studies suggest that acellular Pertussis does not prevent the colonization and transmission of Bordetella Pertussis bacteria. After vaccination, a treated individual becomes a potential asymptomatic carrier of the Pertussis bacteria, rather than an immune individual. Agent based modeling enables the measurable depiction of asymptomatic carriers that are otherwise unaccounted for when calculating vaccination efficacy and effectiveness. Using empirical data from a Florida Pertussis outbreak case study, the results of this model demonstrate that asymptomatic carriers bias the calculated vaccination efficacy and reveal a need for reconsidering current methods that are widely used for calculating vaccination efficacy and effectiveness.

  8. New insights about flocculation process in sodium caseinate-stabilized emulsions.

    PubMed

    Huck-Iriart, Cristián; Montes-de-Oca-Ávalos, Juan; Herrera, María Lidia; Candal, Roberto Jorge; Pinto-de-Oliveira, Cristiano Luis; Linares-Torriani, Iris

    2016-11-01

    Flocculation process was studied in emulsions formulated with 10wt.% sunflower oil, 2, 5 or 7.5wt.% NaCas, and with or without addition of sucrose (0, 5, 10, 15, 20 or 30wt.%). Two different processing conditions were used to prepare emulsions: ultraturrax homogenization or further homogenization by ultrasound. Emulsions with droplets with diameters above (coarse) or below (fine) 1μm were obtained. Emulsions were analyzed for droplet size distribution by static light scattering (SLS), stability by Turbiscan, and structure by confocal laser scanning microscopy (CLSM) and small angle X-ray scattering (SAXS). SAXS data were fitted by a theoretical model that considered a system composed of poly dispersed spheres with repulsive interaction and presence of aggregates. Flocculation behavior was caused by the self-assembly properties of NaCas, but the process was more closely related to interfacial protein content than micelles concentration in the aqueous phase. The results indicated that casein aggregation was strongly affected by disaccharide addition, hydrophobic interaction of the emulsion droplets, and interactions among interfacial protein molecules. The structural changes detected in the protein micelles in different environments allowed understanding the macroscopic physical behavior observed in concentrated NaCas emulsions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Dynamics of aggregate stability and soil organic C distribution as affected by climatic aggressiveness: a mesocosm approach

    NASA Astrophysics Data System (ADS)

    Pellegrini, Sergio; Elio Agnelli, Alessandro; Costanza Andrenelli, Maria; Barbetti, Roberto; Castelli, Fabio; Costantini, Edoardo A. C.; Lagomarsino, Alessandra; Pasqui, Massimiliano; Tomozeiu, Rodica; Razzaghi, Somayyeh; Vignozzi, Nadia

    2014-05-01

    In the framework of a research project aimed at evaluating the adaptation scenarios of the Italian agriculture to the current climate change, a mesocosm experiment under controlled conditions was set up for studying the dynamics of soil aggregate stability and organic C in different size fractions. Three alluvial loamy soils (BOV - Typic Haplustalfs coarse-loamy; CAS - Typic Haplustalfs fine-loamy; MED - Typic Hapludalfs fine-loamy) along a climatic gradient (from dryer to moister pedoclimatic conditions) in the river Po valley (northern Italy), under crop rotation for animal husbandry from more than 40 years, were selected. The Ap horizons (0-30cm) were taken and placed in 9 climatic chambers under controlled temperature and rainfall. Each soil was subjected to three different climate scenarios in terms of erosivity index obtained by combining Modified Fournier and Bagnouls-Gaussen indexes: i) typical (TYP), the median year of each site related to the 1961-1990 reference period; ii) maximum aggressive year (MAX) observed in the same period, and iii) the simulated climate (SIM), obtained by projections of climate change precipitation and temperature for the period 2021-2050 as provided by the IPCC-A1B emission scenario. In the climatic chambers the year climate was reduced to six months. The soils were analyzed for particle size distribution, aggregate stability by wet and dry sieving, and organic C content at the beginning and at the end of the trial. The soils showed different behaviour in terms of aggregate stability and dynamics of organic C in the diverse size fractions. The soils significantly differed in terms of initial mean weight diameter (MWD) (CAS>MED>BOV). A general reduction of MWD in all sites was observed at the end of the experiment, with the increase of the smallest aggregate fractions (0.250-0.05 mm). In particular, BOV showed the maximum decrease of the aggregate stability and MED the lowest. C distribution in aggregate fractions significantly changed at the end of the trial, depending of soil types. In CAS and MED a decrease of C content was observed in fractions larger than 0.250 mm, while an accumulation occurred only in CAS microaggregates. BOV showed a singular pattern, with an increase of organic C in all fractions. In this site an improvement of aggregation, involving the coarser fractions, seems to have been favoured during the experiment. Overall, the imposed climate did not affect significantly these trends, except in CAS, where TYP and SIM climates showed an increase of macroaggregates and their C concentration. Soil pedoclimatic characteristics showed to be the main factors affecting C and aggregates dynamics in this mesocosm experiment.

  10. PHAST: Protein-like heteropolymer analysis by statistical thermodynamics

    NASA Astrophysics Data System (ADS)

    Frigori, Rafael B.

    2017-06-01

    PHAST is a software package written in standard Fortran, with MPI and CUDA extensions, able to efficiently perform parallel multicanonical Monte Carlo simulations of single or multiple heteropolymeric chains, as coarse-grained models for proteins. The outcome data can be straightforwardly analyzed within its microcanonical Statistical Thermodynamics module, which allows for computing the entropy, caloric curve, specific heat and free energies. As a case study, we investigate the aggregation of heteropolymers bioinspired on Aβ25-33 fragments and their cross-seeding with IAPP20-29 isoforms. Excellent parallel scaling is observed, even under numerically difficult first-order like phase transitions, which are properly described by the built-in fully reconfigurable force fields. Still, the package is free and open source, this shall motivate users to readily adapt it to specific purposes.

  11. Effect of low-melting point phases on the microstructure and properties of spark plasma sintered and hot deformed Nd-Fe-B alloys

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Wang, Meiyu; Yan, Xueliang; Lin, Ye; Shield, Jeffrey

    2018-04-01

    The effect of adding a low melting point Pr-Cu-Al alloy during spark plasma sintering of melt-spun Nd-Fe-B ribbons is investigated. Regions of coarse grains were reduced and overall grain refinement was observed after the addition of Pr68Cu25Al7, leading to an enhancement of coercivity from 12.7 kOe to 20.4 kOe. Hot deformation of the samples in the spark plasma sintering system resulted in the formation of platelet-like grains, producing crystallographic alignment and magnetic anisotropy. The hot deformation process improved the remanence and energy product but reduced the coercivity. The decrease of coercivity resulted from grain growth and aggregation of Pr and Nd elements at triple-junction phases.

  12. The perfect debris flow? Aggregated results from 28 large-scale experiments

    USGS Publications Warehouse

    Iverson, Richard M.; Logan, Matthew; LaHusen, Richard G.; Berti, Matteo

    2010-01-01

    Aggregation of data collected in 28 controlled experiments reveals reproducible debris-flow behavior that provides a clear target for model tests. In each experiment ∼10 m3 of unsorted, water-saturated sediment composed mostly of sand and gravel discharged from behind a gate, descended a steep, 95-m flume, and formed a deposit on a nearly horizontal runout surface. Experiment subsets were distinguished by differing basal boundary conditions (1 versus 16 mm roughness heights) and sediment mud contents (1 versus 7 percent dry weight). Sensor measurements of evolving flow thicknesses, basal normal stresses, and basal pore fluid pressures demonstrate that debris flows in all subsets developed dilated, coarse-grained, high-friction snouts, followed by bodies of nearly liquefied, finer-grained debris. Mud enhanced flow mobility by maintaining high pore pressures in flow bodies, and bed roughness reduced flow speeds but not distances of flow runout. Roughness had these effects because it promoted debris agitation and grain-size segregation, and thereby aided growth of lateral levees that channelized flow. Grain-size segregation also contributed to development of ubiquitous roll waves, which had diverse amplitudes exhibiting fractal number-size distributions. Despite the influence of these waves and other sources of dispersion, the aggregated data have well-defined patterns that help constrain individual terms in a depth-averaged debris-flow model. The patterns imply that local flow resistance evolved together with global flow dynamics, contradicting the hypothesis that any consistent rheology applied. We infer that new evolution equations, not new rheologies, are needed to explain how characteristic debris-flow behavior emerges from the interactions of debris constituents.

  13. Assembly of Triblock Amphiphilic Peptides into One-Dimensional Aggregates and Network Formation.

    PubMed

    Ozgur, Beytullah; Sayar, Mehmet

    2016-10-06

    Peptide assembly plays a key role in both neurological diseases and development of novel biomaterials with well-defined nanostructures. Synthetic model peptides provide a unique platform to explore the role of intermolecular interactions in the assembly process. A triblock peptide architecture designed by the Hartgerink group is a versatile system which relies on Coulomb interactions, hydrogen bonding, and hydrophobicity to guide these peptides' assembly at three different length scales: β-sheets, double-wall ribbon-like aggregates, and finally a highly porous network structure which can support gels with ≤1% by weight peptide concentration. In this study, by using molecular dynamics simulations of a structure based implicit solvent coarse grained model, we analyzed this hierarchical assembly process. Parametrization of our CG model is based on multiple-state points from atomistic simulations, which enables this model to represent the conformational adaptability of the triblock peptide molecule based on the surrounding medium. Our results indicate that emergence of the double-wall β-sheet packing mechanism, proposed in light of the experimental evidence, strongly depends on the subtle balance of the intermolecular forces. We demonstrate that, even though backbone hydrogen bonding dominates the early nucleation stages, depending on the strength of the hydrophobic and Coulomb forces, alternative structures such as zero-dimensional aggregates with two β-sheets oriented orthogonally (which we refer to as a cross-packed structure) and β-sheets with misoriented hydrophobic side chains are also feasible. We discuss the implications of these competing structures for the three different length scales of assembly by systematically investigating the influence of density, counterion valency, and hydrophobicity.

  14. In silico assembly and nanomechanical characterization of carbon nanotube buckypaper.

    PubMed

    Cranford, Steven W; Buehler, Markus J

    2010-07-02

    Carbon nanotube sheets or films, also known as 'buckypaper', have been proposed for use in actuating, structural and filtration systems, based in part on their unique and robust mechanical properties. Computational modeling of such a fibrous nanostructure is hindered by both the random arrangement of the constituent elements as well as the time- and length-scales accessible to atomistic level molecular dynamics modeling. Here we present a novel in silico assembly procedure based on a coarse-grain model of carbon nanotubes, used to attain a representative mesoscopic buckypaper model that circumvents the need for probabilistic approaches. By variation in assembly parameters, including the initial nanotube density and ratio of nanotube type (single- and double-walled), the porosity of the resulting buckypaper can be varied threefold, from approximately 0.3 to 0.9. Further, through simulation of nanoindentation, the Young's modulus is shown to be tunable through manipulation of nanotube type and density over a range of approximately 0.2-3.1 GPa, in good agreement with experimental findings of the modulus of assembled carbon nanotube films. In addition to carbon nanotubes, the coarse-grain model and assembly process can be adapted for other fibrous nanostructures such as electrospun polymeric composites, high performance nonwoven ballistic materials, or fibrous protein aggregates, facilitating the development and characterization of novel nanomaterials and composites as well as the analysis of biological materials such as protein fiber films and bulk structures.

  15. A multi-state coarse grained modeling approach for an intrinsically disordered peptide

    NASA Astrophysics Data System (ADS)

    Ramezanghorbani, Farhad; Dalgicdir, Cahit; Sayar, Mehmet

    2017-09-01

    Many proteins display a marginally stable tertiary structure, which can be altered via external stimuli. Since a majority of coarse grained (CG) models are aimed at structure prediction, their success for an intrinsically disordered peptide's conformational space with marginal stability and sensitivity to external stimuli cannot be taken for granted. In this study, by using the LKα 14 peptide as a test system, we demonstrate a bottom-up approach for constructing a multi-state CG model, which can capture the conformational behavior of this peptide in three distinct environments with a unique set of interaction parameters. LKα 14 is disordered in dilute solutions; however, it strictly adopts the α -helix conformation upon aggregation or when in contact with a hydrophobic/hydrophilic interface. Our bottom-up approach combines a generic base model, that is unbiased for any particular secondary structure, with nonbonded interactions which represent hydrogen bonds, electrostatics, and hydrophobic forces. We demonstrate that by using carefully designed all atom potential of mean force calculations from all three states of interest, one can get a balanced representation of the nonbonded interactions. Our CG model behaves intrinsically disordered in bulk water, folds into an α -helix in the presence of an interface or a neighboring peptide, and is stable as a tetrameric unit, successfully reproducing the all atom molecular dynamics simulations and experimental results.

  16. Thermodynamic stability and structural properties of cluster crystals formed by amphiphilic dendrimers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lenz, Dominic A.; Likos, Christos N.; Blaak, Ronald

    We pursue the goal of finding real-world examples of macromolecular aggregates that form cluster crystals, which have been predicted on the basis of coarse-grained, ultrasoft pair potentials belonging to a particular mathematical class [B. M. Mladek et al., Phys. Rev. Lett. 46, 045701 (2006)]. For this purpose, we examine in detail the phase behavior and structural properties of model amphiphilic dendrimers of the second generation by means of monomer-resolved computer simulations. On augmenting the density of these systems, a fluid comprised of clusters that contain several overlapping and penetrating macromolecules is spontaneously formed. Upon further compression of the system, amore » transition to multi-occupancy crystals takes place, the thermodynamic stability of which is demonstrated by means of free-energy calculations, and where the FCC is preferred over the BCC-phase. Contrary to predictions for coarse-grained theoretical models in which the particles interact exclusively by effective pair potentials, the internal degrees of freedom of these molecules cause the lattice constant to be density-dependent. Furthermore, the mechanical stability of monodisperse BCC and FCC cluster crystals is restricted to a bounded region in the plane of cluster occupation number versus density. The structural properties of the dendrimers in the dense crystals, including their overall sizes and the distribution of monomers are also thoroughly analyzed.« less

  17. A multi-state coarse grained modeling approach for an intrinsically disordered peptide.

    PubMed

    Ramezanghorbani, Farhad; Dalgicdir, Cahit; Sayar, Mehmet

    2017-09-07

    Many proteins display a marginally stable tertiary structure, which can be altered via external stimuli. Since a majority of coarse grained (CG) models are aimed at structure prediction, their success for an intrinsically disordered peptide's conformational space with marginal stability and sensitivity to external stimuli cannot be taken for granted. In this study, by using the LKα14 peptide as a test system, we demonstrate a bottom-up approach for constructing a multi-state CG model, which can capture the conformational behavior of this peptide in three distinct environments with a unique set of interaction parameters. LKα14 is disordered in dilute solutions; however, it strictly adopts the α-helix conformation upon aggregation or when in contact with a hydrophobic/hydrophilic interface. Our bottom-up approach combines a generic base model, that is unbiased for any particular secondary structure, with nonbonded interactions which represent hydrogen bonds, electrostatics, and hydrophobic forces. We demonstrate that by using carefully designed all atom potential of mean force calculations from all three states of interest, one can get a balanced representation of the nonbonded interactions. Our CG model behaves intrinsically disordered in bulk water, folds into an α-helix in the presence of an interface or a neighboring peptide, and is stable as a tetrameric unit, successfully reproducing the all atom molecular dynamics simulations and experimental results.

  18. In silico assembly and nanomechanical characterization of carbon nanotube buckypaper

    NASA Astrophysics Data System (ADS)

    Cranford, Steven W.; Buehler, Markus J.

    2010-07-01

    Carbon nanotube sheets or films, also known as 'buckypaper', have been proposed for use in actuating, structural and filtration systems, based in part on their unique and robust mechanical properties. Computational modeling of such a fibrous nanostructure is hindered by both the random arrangement of the constituent elements as well as the time- and length-scales accessible to atomistic level molecular dynamics modeling. Here we present a novel in silico assembly procedure based on a coarse-grain model of carbon nanotubes, used to attain a representative mesoscopic buckypaper model that circumvents the need for probabilistic approaches. By variation in assembly parameters, including the initial nanotube density and ratio of nanotube type (single- and double-walled), the porosity of the resulting buckypaper can be varied threefold, from approximately 0.3 to 0.9. Further, through simulation of nanoindentation, the Young's modulus is shown to be tunable through manipulation of nanotube type and density over a range of approximately 0.2-3.1 GPa, in good agreement with experimental findings of the modulus of assembled carbon nanotube films. In addition to carbon nanotubes, the coarse-grain model and assembly process can be adapted for other fibrous nanostructures such as electrospun polymeric composites, high performance nonwoven ballistic materials, or fibrous protein aggregates, facilitating the development and characterization of novel nanomaterials and composites as well as the analysis of biological materials such as protein fiber films and bulk structures.

  19. Aggregation in complex triacylglycerol oils: coarse-grained models, nanophase separation, and predicted x-ray intensities

    NASA Astrophysics Data System (ADS)

    Quinn, Bonnie; Peyronel, Fernanda; Gordon, Tyler; Marangoni, Alejandro; Hanna, Charles B.; Pink, David A.

    2014-11-01

    Triacylglycerols (TAGs) are biologically important molecules which form crystalline nanoplatelets (CNPs) and, ultimately, fat crystal networks in edible oils. Characterizing the self-assembled hierarchies of these networks is important to understanding their functionality and oil binding capacity. We have modelled CNPs in multicomponent oils and studied their aggregation. The oil comprises (a) a liquid componentt, and (b) components which phase separately on a nano-scale (nano-phase separation) to coat the surfaces of the CNPs impenetrably, either isotropically or anisotropically, with either liquid-like coatings or crystallites, forming a coating of thickness Δ. We modelled three cases: (i) liquid-liquid nano-phase separation, (ii) solid-liquid nano-phase separation, with CNPs coated isotropically, and (iii) CNPs coated anisotropically. The models were applied to mixes of tristearin and triolein with fully hydrogenated canola oil, shea butter with high oleic sunflower oil, and cotton seed oil. We performed Monte Carlo simulations, computed structure functions and concluded: (1) three regimes arose: (a) thin coating regime, Δ \\lt 0.0701 u (b) transition regime, 0.0701 u≤slant Δ ≤slant 0.0916 u and (c) thick coating regime, Δ \\gt 0.0916 u . (arbitrary units, u) (2) The thin coating regime exhibits 1D TAGwoods, which aggregate, via DLCA/RLCA, into fractal structures which are uniformly distributed in space. (3) In the thick coating regime, for an isotropic coating, TAGwoods are not formed and coated CNPs will not aggregate but will be uniformly distributed in space. For anisotropic coating, TAGwoods can be formed and might form 1D strings but will not form DLCA/RLCA clusters. (4) The regimes are, approximately: thin coating, 0\\lt Δ \\lt 7.0 \\text{nm} transition regime, 7.0\\ltΔ \\lt 9.2 \\text{nm} and thick coating, Δ \\gt 9.2 \\text{nm} (5) The minimum minority TAG concentration required to undergo nano-phase separation is, approximately, 0.29% (thin coatings) and 0.94% (thick coatings). Minority components can have substantial effects upon aggregation for concentrations less than 1%.

  20. On the ability of PAMAM dendrimers and dendrimer/DNA aggregates to penetrate POPC model biomembranes.

    PubMed

    Ainalem, Marie-Louise; Campbell, Richard A; Khalid, Syma; Gillams, Richard J; Rennie, Adrian R; Nylander, Tommy

    2010-06-03

    Poly(amido amine) (PAMAM) dendrimers have previously been shown, as cationic condensing agents of DNA, to have high potential for nonviral gene delivery. This study addresses two key issues for gene delivery: the interaction of the biomembrane with (i) the condensing agent (the cationic PAMAM dendrimer) and (ii) the corresponding dendrimer/DNA aggregate. Using in situ null ellipsometry and neutron reflection, parallel experiments were carried out involving dendrimers of generations 2 (G2), 4 (G4), and 6 (G6). The study demonstrates that free dendrimers of all three generations were able to traverse supported palmitoyloleoylphosphatidylcholine (POPC) bilayers deposited on silica surfaces. The model biomembranes were elevated from the solid surfaces upon dendrimer penetration, which offers a promising new way to generate more realistic model biomembranes where the contact with the supporting surface is reduced and where aqueous cavities are present beneath the bilayer. The largest dendrimer (G6) induced partial bilayer destruction directly upon penetration, whereas the smaller dendrimers (G2 and G4) leave the bilayer intact, so we propose that lower generation dendrimers have greater potential as transfection mediators. In addition to the experimental observations, coarse-grained simulations on the interaction between generation 3 (G3) dendrimers and POPC bilayers were performed in the absence and presence of a bilayer-supporting negatively charged surface that emulates the support. The simulations demonstrate that G3 is transported across free-standing POPC bilayers by direct penetration and not by endocytosis. The penetrability was, however, reduced in the presence of a surface, indicating that the membrane transport observed experimentally was not driven solely by the surface. The experimental reflection techniques were also applied to dendrimer/DNA aggregates of charge ratio = 0.5, and while G2/DNA and G4/DNA aggregates interact with POPC bilayers, G6/DNA displays no such interaction. These results indicate that, in contrast to free dendrimer molecules, dendrimer/DNA aggregates of low charge ratios are not able to traverse a membrane by direct penetration.

  1. Self-folding and aggregation of amyloid nanofibrils

    NASA Astrophysics Data System (ADS)

    Paparcone, Raffaella; Cranford, Steven W.; Buehler, Markus J.

    2011-04-01

    Amyloids are highly organized protein filaments, rich in β-sheet secondary structures that self-assemble to form dense plaques in brain tissues affected by severe neurodegenerative disorders (e.g. Alzheimer's Disease). Identified as natural functional materials in bacteria, in addition to their remarkable mechanical properties, amyloids have also been proposed as a platform for novel biomaterials in nanotechnology applications including nanowires, liquid crystals, scaffolds and thin films. Despite recent progress in understanding amyloid structure and behavior, the latent self-assembly mechanism and the underlying adhesion forces that drive the aggregation process remain poorly understood. On the basis of previous full atomistic simulations, here we report a simple coarse-grain model to analyze the competition between adhesive forces and elastic deformation of amyloid fibrils. We use simple model system to investigate self-assembly mechanisms of fibrils, focused on the formation of self-folded nanorackets and nanorings, and thereby address a critical issue in linking the biochemical (Angstrom) to micrometre scales relevant for larger-scale states of functional amyloid materials. We investigate the effect of varying the interfibril adhesion energy on the structure and stability of self-folded nanorackets and nanorings and demonstrate that these aggregated amyloid fibrils are stable in such states even when the fibril-fibril interaction is relatively weak, given that the constituting amyloid fibril length exceeds a critical fibril length-scale of several hundred nanometres. We further present a simple approach to directly determine the interfibril adhesion strength from geometric measures. In addition to providing insight into the physics of aggregation of amyloid fibrils our model enables the analysis of large-scale amyloid plaques and presents a new method for the estimation and engineering of the adhesive forces responsible of the self-assembly process of amyloidnanostructures, filling a gap that previously existed between full atomistic simulations of primarily ultra-short fibrils and much larger micrometre-scale amyloid aggregates. Via direct simulation of large-scale amyloid aggregates consisting of hundreds of fibrils we demonstrate that the fibril length has a profound impact on their structure and mechanical properties, where the critical fibril length-scale derived from our analysis of self-folded nanorackets and nanorings defines the structure of amyloid aggregates. A multi-scale modeling approach as used here, bridging the scales from Angstroms to micrometres, opens a wide range of possible nanotechnology applications by presenting a holistic framework that balances mechanical properties of individual fibrils, hierarchical self-assembly, and the adhesive forces determining their stability to facilitate the design of de novoamyloid materials.

  2. Environmentally-mediated ash aggregate formation: example from Tungurahua volcano, Ecuador

    NASA Astrophysics Data System (ADS)

    Kueppers, Ulrich; Ayris, Paul M.; Bernard, Benjamin; Delmelle, Pierre; Douillet, Guilhem A.; Lavallée, Yan; Mueller, Sebastian B.; Dingwell, Donald B.; Dobson, Kate J.

    2016-04-01

    Volcanic ash is generated during explosive eruptions through an array of different processes; it can be produced in large quantities and can, in some circumstances, have the potential for far-reaching impacts beyond the flanks of the volcano. Aggregation of ash particles can significantly impact the dispersal within the atmosphere, and its subsequent deposition into terrestrial or aquatic environments. However, our understanding of the complex interplay of the boundary conditions which permit aggregation to occur remain incomplete. Tungurahua volcano, Ecuador, has been intermittently active since 1999. In August 2006, a series of pyroclastic density currents (PDC) were generated during a series of dry, Vulcanian explosions and travelled down the western and northern flanks of the volcano. In some locations, the related PDC deposits temporarily dammed the Chambo river, and the residual heat within those deposits produced vigorous steam plumes. During several field campaigns (2009-2015), we mapped, sampled, and analysed the related deposits. At the base of the Rea ravine, a large delta fan of PDC deposits had dammed the river over a length of several hundred metres. In several outcrops adjacent to the river and in small erosional gullies we found a peculiar stratigraphic layer (up to ten centimetres thick) at the top of the PDC deposits. As this layer is capped by a thin fall unit of coarse ash that we also find elsewhere at the top of the August 2006 deposits, the primary nature is without doubt. In this unit, we observed abundant ash aggregates up to eight millimetres in diameter within a poorly sorted, ash-depleted lapilli tuff, primarily comprised of rounded pumiceous and scoriaceous clasts of similar size. Leaching experiments have shown that these aggregates contain several hundred ppm of soluble sulphate and chloride salts. Recent laboratory experiments (Mueller et al. 2015) have suggested that in order for accretionary lapilli to be preserved within ash deposits likely requires a combination of sufficient humidity and a pre-existing soluble salt load on aggregating ash particles. We suggest that steam pluming from the dammed Chambo river, coupled with soluble salts emplaced by gas-ash interactions between ejection and deposition, provided a unique opportunity for the formation of accretionary lapilli with sufficient mechanical strength to survive deposition, accounting for their presence in a deposit otherwise absent of such aggregates. This possibility provides an important reminder of the role played by external environmental triggers in shaping the properties volcanic ash deposits.

  3. Enrichment of Mineral Dust Storm Particles with Sea Salt Elements - Using bulk and Single Particle Analyses

    NASA Astrophysics Data System (ADS)

    Mamane, Y.; Perrino, C.; Yossef, O.

    2009-12-01

    Mineral aerosol emitted from African and Asian deserts plays an important role in the atmosphere. During their long-range transport, the physical and chemical properties of mineral dust particles change due to heterogeneous reactions with trace gases, coagulation with other particles, and in-cloud processing. These processes affect the optical and hygroscopic properties of dust particles, and in general influencing the physics and chemistry of the atmosphere. Four African and Arabian dust storm episodes affecting the East Mediterranean Coast in the spring of 2006 have been characterized, to determine if atmospheric natural dust particles are enriched with sea salt and anthropogenic pollution. Particle samplers included PM10 and manual dichotomous sampler that collected fine and coarse particles. Three sets of filters were used: Teflon filters for gravimetric, elemental and ionic analyses; Pre-fired Quartz-fiber filters for elemental and organic carbon; and Nuclepore filters for scanning electron microscopy analysis. Computer-controlled scanning electron microscopy (Philips XL 30 ESEM) was used to analyze single particle, for morphology, size and chemistry of selected filter samples. A detailed chemical and microscopical characterization has been performed for the particles collected during dust event days and during clear days. The Saharan and Arabian air masses increased significantly the daily mass concentrations of the coarse and the fine particle fractions. Carbonates, mostly as soil calcites mixed with dolomites, and silicates are the major components of the coarse fraction, followed by sea salt particles. In addition, the levels of anthropogenic heavy metals and sea salt elements registered during the dust episode were considerably higher than levels recorded during clear days. Sea salt elements contain Na and Cl, and smaller amounts of Mg, K, S and Br. Cl ranges from 300 to 5500 ng/m3 and Na from 100 to almost 2400 ng/m3. The Cl to Na ratio on dusty days in the coarse fraction is 2.94 versus 1.88 on clear days, quite different from the value of 1.8 found in sea water. It is rather clear that dust events are enriched with Cl. Those findings are to be investigated. The computer controlled SEM-EDX observations of the coarse fraction of PM10 confirmed the results obtained by XRF. The majority of the African dust particles are made up of mixed minerals, mostly carbonates and alumino - silicates. The EDX analysis coupled to CCSEM showed that minerals are mixed often with sea salt particles. Although some of it may be artifact (a sea salt particle is pile up on a mineral particle), it is believed that the results present reality: sea salt particles were often found on the surfaces of the aggregate minerals. Pollen and spores of diameters were not identified. Those results may have implication on the atmospheric chemistry. High concentrations of sulfates were also observed in the coarse fraction of dust episodes, and were not correlated with sea salt particles. They could be part of the soil matrix and may also form by the reaction of sulfur oxides with the natural aerosols. These reactions may be affected by the high concentration of coarse mineral particles during the Saharan and Arabian episodes.

  4. Tephra Sedimentation from a Short-term Wind-affected Volcanic Plume of the 8 October 2016 Aso Nakadake Eruption, Japan

    NASA Astrophysics Data System (ADS)

    Tsuji, T.; Nishizaka, N.; Onishi, K.

    2017-12-01

    Sedimentation processes during explosive volcanic eruptions can be constrained based on detailed analysis of grain-size variation of tephra deposits. Especially, an accurate description of the amount of fine particles has also significant implications for the assessment of specific tephra hazards. Grain size studies for single short-term eruption has advantage to contribute understanding the sedimentation processes because it is simple compared to long-lasting eruption. The 2016 Aso Nakadake eruption, Japan represents an ideal for the study of short-term eruptions thanks to an accurate investigation. Then, we investigate the grain size variation with distance from the vent and sedimentological features of the deposit to discuss the sedimentation processes of the tephra fragments. The eruption provided pyroclastic flow deposit and fallout tephra which distributed NE to ENE direction from the vent. The deposits between 4 and 20 km from vent consist of fine-coated lapilli to coarse ash, ash pellet and mud droplet in ascending degree. The samples are lapilli-bearing within 20 km from vent and those outside of 20 km mainly consist of ash particles. Detailed analyses of individual samples highlight a rapid decay of maximum and mean grain size for the deposit from proximal to distal. The decay trend of maximum grain-size is approximated by three segments of exponential curves with two breaks-in-slope at 10 and 40 km from vent. Most of the sampled deposits are characterized by bimodal grain-size distributions, with the modes of the coarse subpopulation decreasing with distance from vent and those of the fine subpopulation being mostly stable. The fine subpopulation has been interpreted as being mostly associated with size-selective sedimentation processes (e.g., particle aggregation) confirmed by the existence of fine-coated particles, ash pellet and mud droplet. As the fine-coated particles generally have a higher terminal velocity than the individual constituent particles, those could be related with the rapid decrease of maximum grain-size with distance from vent at proximal area. Further detail grain-size analyses and theoretical studies can be contributed to understand the effect of fine ash aggregation on sedimentation processes quantitatively.

  5. Bottom-up assessment of the Net Ecosystem Carbon Balance of Russian forests in 2010 for comparison to Top-down estimates.

    NASA Astrophysics Data System (ADS)

    Maksyutov, S. S.; Shvidenko, A.; Shchepashchenko, D.

    2014-12-01

    The verified full carbon assessment of Russian forests (FCA) is based on an Integrated Land Information System (ILIS) that includes a multi-layer and multi-scale GIS with basic resolution of 1 km and corresponding attributive databases. The ILIS aggregates all available information about ecosystems and landscapes, sets of empirical and semi-empirical data and aggregations, data of different inventories and surveys, and multi-sensor remote sensing data. The ILIS serves as an information base for application of the landscape-ecosystem approach (LEA) of the FCA and as a systems design for comparison and mutual constraints with other methods of study of carbon cycling of forest ecosystems (eddy covariance; process models; inverse modeling; and multi-sensor application of remote sensing). The LEA is based on a complimentary use of the flux-based method with some elements of the pool-based method. Introduction of climatic parameters of individual years in the LEA, as well as some process-based elements, allows providing a substantial decrease of the uncertainties of carbon cycling yearly indicators of forest ecosystems. Major carbon pools (live biomass, coarse woody debris, soil organic carbon) are estimated based on data on areas, distribution and major biometric characteristics of Russian forests presented in form of the ILIS for the country. The major fluxes accounted for include Net Primary Production (NPP), Soil Heterotrophic Respiration (SHR), as well as fluxes caused by decomposition of Coarse Woody Debris (CWD), harvest and use of forest products, fluxes caused by natural disturbances (fire, insect outbreaks, impacts of unfavorable environment) and lateral fluxes to hydrosphere and lithosphere. Use of landscape-ecosystem approach resulted in the NECB at 573±140 Tg C yr-1 (CI 0.9). While the total carbon sink is high, large forest areas, particularly on permafrost, serve as a carbon source. The ratio between net primary production and soil heterotrophic respiration, together with natural and human-induced disturbances are major drivers of the magnitude and spatial distribution of the NECB of forest ecosystems. We also present comparison to the recent top-down estimates of the Siberian carbon sink.

  6. An ellipsoid-chain model for conjugated polymer solutions

    NASA Astrophysics Data System (ADS)

    Lee, Cheng K.; Hua, Chi C.; Chen, Show A.

    2012-02-01

    We propose an ellipsoid-chain model which may be routinely parameterized to capture large-scale properties of semiflexible, amphiphilic conjugated polymers in various solvent media. The model naturally utilizes the defect locations as pivotal centers connecting adjacent ellipsoids (each currently representing ten monomer units), and a variant umbrella-sampling scheme is employed to construct the potentials of mean force (PMF) for specific solvent media using atomistic dynamics data and simplex optimization. The performances, both efficacy and efficiency, of the model are thoroughly evaluated by comparing the simulation results on long, single-chain (i.e., 300-mer) structures with those from two existing, finer-grained models for a standard conjugated polymer (i.e., poly(2-methoxy-5-(2'-ethylhexyloxy)-1,4-phenylenevinylene) or MEH-PPV) in two distinct solvents (i.e., chloroform or toluene) as well as a hybrid, binary-solvent medium (i.e., chloroform/toluene = 1:1 in number density). The coarse-grained Monte Carlo (CGMC) simulation of the ellipsoid-chain model is shown to be the most efficient—about 300 times faster than the coarse-grained molecular dynamics (CGMD) simulation of the finest CG model that employs explicit solvents—in capturing elementary single-chain structures for both single-solvent media, and is a few times faster than the coarse-grained Langevin dynamics (CGLD) simulation of another implicit-solvent polymer model with a slightly greater coarse-graining level than in the CGMD simulation. For the binary-solvent system considered, however, both of the two implicit-solvent schemes (i.e., CGMC and CGLD) fail to capture the effects of conspicuous concentration fluctuations near the polymer-solvent interface, arising from a pronounced coupling between the solvent molecules and different parts of the polymer. Essential physical implications are elaborated on the success as well as the failure of the two implicit-solvent CG schemes under varying solvent conditions. Within the ellipsoid-chain model, the impact of synthesized defects on local segmental ordering as well as bulk chain conformation is also scrutinized, and essential consequences in practical applications discussed. In future perspectives, we remark on strategy that takes advantage of the coordination among various CG models and simulation schemes to warrant computational efficiency and accuracy, with the anticipated capability of simulating larger-scale, many-chain aggregate systems.

  7. Unconstrained Structure Formation in Coarse-Grained Protein Simulations

    NASA Astrophysics Data System (ADS)

    Bereau, Tristan

    The ability of proteins to fold into well-defined structures forms the basis of a wide variety of biochemical functions in and out of the cell membrane. Many of these processes, however, operate at time- and length-scales that are currently unattainable by all-atom computer simulations. To cope with this difficulty, increasingly more accurate and sophisticated coarse-grained models are currently being developed. In the present thesis, we introduce a solvent-free coarse-grained model for proteins. Proteins are modeled by four beads per amino acid, providing enough backbone resolution to allow for accurate sampling of local conformations. It relies on simple interactions that emphasize structure, such as hydrogen bonds and hydrophobicity. Realistic alpha/beta content is achieved by including an effective nearest-neighbor dipolar interaction. Parameters are tuned to reproduce both local conformations and tertiary structures. By studying both helical and extended conformations we make sure the force field is not biased towards any particular secondary structure. Without any further adjustments or bias a realistic oligopeptide aggregation scenario is observed. The model is subsequently applied to various biophysical problems: (i) kinetics of folding of two model peptides, (ii) large-scale amyloid-beta oligomerization, and (iii) protein folding cooperativity. The last topic---defined by the nature of the finite-size thermodynamic transition exhibited upon folding---was investigated from a microcanonical perspective: the accurate evaluation of the density of states can unambiguously characterize the nature of the transition, unlike its corresponding canonical analysis. Extending the results of lattice simulations and theoretical models, we find that it is the interplay between secondary structure and the loss of non-native tertiary contacts which determines the nature of the transition. Finally, we combine the peptide model with a high-resolution, solvent-free, lipid model. The lipid force field was systematically tuned to reproduce the structural and mechanical properties of phosphatidylcholine bilayers. The two models were cross-parametrized against atomistic potential of mean force curves for the insertion of single amino acid side chains into a bilayer. Coarse-grained transmembrane protein simulations were then compared with experiments and atomistic simulations to validate the force field. The transferability of the two models across amino acid sequences and lipid species permits the investigation of a wide variety of scenarios, while the absence of explicit solvent allows for studies of large-scale phenomena.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pau, G. S. H.; Bisht, G.; Riley, W. J.

    Existing land surface models (LSMs) describe physical and biological processes that occur over a wide range of spatial and temporal scales. For example, biogeochemical and hydrological processes responsible for carbon (CO 2, CH 4) exchanges with the atmosphere range from the molecular scale (pore-scale O 2 consumption) to tens of kilometers (vegetation distribution, river networks). Additionally, many processes within LSMs are nonlinearly coupled (e.g., methane production and soil moisture dynamics), and therefore simple linear upscaling techniques can result in large prediction error. In this paper we applied a reduced-order modeling (ROM) technique known as "proper orthogonal decomposition mapping method" thatmore » reconstructs temporally resolved fine-resolution solutions based on coarse-resolution solutions. We developed four different methods and applied them to four study sites in a polygonal tundra landscape near Barrow, Alaska. Coupled surface–subsurface isothermal simulations were performed for summer months (June–September) at fine (0.25 m) and coarse (8 m) horizontal resolutions. We used simulation results from three summer seasons (1998–2000) to build ROMs of the 4-D soil moisture field for the study sites individually (single-site) and aggregated (multi-site). The results indicate that the ROM produced a significant computational speedup (> 10 3) with very small relative approximation error (< 0.1%) for 2 validation years not used in training the ROM. We also demonstrate that our approach: (1) efficiently corrects for coarse-resolution model bias and (2) can be used for polygonal tundra sites not included in the training data set with relatively good accuracy (< 1.7% relative error), thereby allowing for the possibility of applying these ROMs across a much larger landscape. By coupling the ROMs constructed at different scales together hierarchically, this method has the potential to efficiently increase the resolution of land models for coupled climate simulations to spatial scales consistent with mechanistic physical process representation.« less

  9. A reduced-order modeling approach to represent subgrid-scale hydrological dynamics for land-surface simulations: application in a polygonal tundra landscape

    DOE PAGES

    Pau, G. S. H.; Bisht, G.; Riley, W. J.

    2014-09-17

    Existing land surface models (LSMs) describe physical and biological processes that occur over a wide range of spatial and temporal scales. For example, biogeochemical and hydrological processes responsible for carbon (CO 2, CH 4) exchanges with the atmosphere range from the molecular scale (pore-scale O 2 consumption) to tens of kilometers (vegetation distribution, river networks). Additionally, many processes within LSMs are nonlinearly coupled (e.g., methane production and soil moisture dynamics), and therefore simple linear upscaling techniques can result in large prediction error. In this paper we applied a reduced-order modeling (ROM) technique known as "proper orthogonal decomposition mapping method" thatmore » reconstructs temporally resolved fine-resolution solutions based on coarse-resolution solutions. We developed four different methods and applied them to four study sites in a polygonal tundra landscape near Barrow, Alaska. Coupled surface–subsurface isothermal simulations were performed for summer months (June–September) at fine (0.25 m) and coarse (8 m) horizontal resolutions. We used simulation results from three summer seasons (1998–2000) to build ROMs of the 4-D soil moisture field for the study sites individually (single-site) and aggregated (multi-site). The results indicate that the ROM produced a significant computational speedup (> 10 3) with very small relative approximation error (< 0.1%) for 2 validation years not used in training the ROM. We also demonstrate that our approach: (1) efficiently corrects for coarse-resolution model bias and (2) can be used for polygonal tundra sites not included in the training data set with relatively good accuracy (< 1.7% relative error), thereby allowing for the possibility of applying these ROMs across a much larger landscape. By coupling the ROMs constructed at different scales together hierarchically, this method has the potential to efficiently increase the resolution of land models for coupled climate simulations to spatial scales consistent with mechanistic physical process representation.« less

  10. Simulations of hydrologic response in the Apalachicola-Chattahoochee-Flint River Basin, Southeastern United States

    USGS Publications Warehouse

    LaFontaine, Jacob H.; Jones, L. Elliott; Painter, Jaime A.

    2017-12-29

    A suite of hydrologic models has been developed for the Apalachicola-Chattahoochee-Flint River Basin (ACFB) as part of the National Water Census, a U.S. Geological Survey research program that focuses on developing new water accounting tools and assessing water availability and use at the regional and national scales. Seven hydrologic models were developed using the Precipitation-Runoff Modeling System (PRMS), a deterministic, distributed-parameter, process-based system that simulates the effects of precipitation, temperature, land cover, and water use on basin hydrology. A coarse-resolution PRMS model was developed for the entire ACFB, and six fine-resolution PRMS models were developed for six subbasins of the ACFB. The coarse-resolution model was loosely coupled with a groundwater model to better assess the effects of water use on streamflow in the lower ACFB, a complex geologic setting with karst features. The PRMS coarse-resolution model was used to provide inputs of recharge to the groundwater model, which in turn provide simulations of groundwater flow that were aggregated with PRMS-based simulations of surface runoff and shallow-subsurface flow. Simulations without the effects of water use were developed for each model for at least the calendar years 1982–2012 with longer periods for the Potato Creek subbasin (1942–2012) and the Spring Creek subbasin (1952–2012). Water-use-affected flows were simulated for 2008–12. Water budget simulations showed heterogeneous distributions of precipitation, actual evapotranspiration, recharge, runoff, and storage change across the ACFB. Streamflow volume differences between no-water-use and water-use simulations were largest along the main stem of the Apalachicola and Chattahoochee River Basins, with streamflow percentage differences largest in the upper Chattahoochee and Flint River Basins and Spring Creek in the lower Flint River Basin. Water-use information at a shorter time step and a fully coupled simulation in the lower ACFB may further improve water availability estimates and hydrologic simulations in the basin.

  11. Multiscale Simulation and Modeling of Multilayer Heteroepitactic Growth of C60 on Pentacene.

    PubMed

    Acevedo, Yaset M; Cantrell, Rebecca A; Berard, Philip G; Koch, Donald L; Clancy, Paulette

    2016-03-29

    We apply multiscale methods to describe the strained growth of multiple layers of C60 on a thin film of pentacene. We study this growth in the presence of a monolayer pentacene step to compare our simulations to recent experimental studies by Breuer and Witte of submonolayer growth in the presence of monolayer steps. The molecular-level details of this organic semiconductor interface have ramifications on the macroscale structural and electronic behavior of this system and allow us to describe several unexplained experimental observations for this system. The growth of a C60 thin film on a pentacene surface is complicated by the differing crystal habits of the two component species, leading to heteroepitactical growth. In order to probe this growth, we use three computational methods that offer different approaches to coarse-graining the system and differing degrees of computational efficiency. We present a new, efficient reaction-diffusion continuum model for 2D systems whose results compare well with mesoscale kinetic Monte Carlo (KMC) results for submonolayer growth. KMC extends our ability to simulate multiple layers but requires a library of predefined rates for event transitions. Coarse-grained molecular dynamics (CGMD) circumvents KMC's need for predefined lattices, allowing defects and grain boundaries to provide a more realistic thin film morphology. For multilayer growth, in this particularly suitable candidate for coarse-graining, CGMD is a preferable approach to KMC. Combining the results from these three methods, we show that the lattice strain induced by heteroepitactical growth promotes 3D growth and the creation of defects in the first monolayer. The CGMD results are consistent with experimental results on the same system by Conrad et al. and by Breuer and Witte in which C60 aggregates change from a 2D structure at low temperature to 3D clusters along the pentacene step edges at higher temperatures.

  12. Calculations of critical micelle concentration by dissipative particle dynamics simulations: the role of chain rigidity.

    PubMed

    Lee, Ming-Tsung; Vishnyakov, Aleksey; Neimark, Alexander V

    2013-09-05

    Micelle formation in surfactant solutions is a self-assembly process governed by complex interplay of solvent-mediated interactions between hydrophilic and hydrophobic groups, which are commonly called heads and tails. However, the head-tail repulsion is not the only factor affecting the micelle formation. For the first time, we present a systematic study of the effect of chain rigidity on critical micelle concentration and micelle size, which is performed with the dissipative particle dynamics simulation method. Rigidity of the coarse-grained surfactant molecule was controlled by the harmonic bonds set between the second-neighbor beads. Compared to flexible molecules with the nearest-neighbor bonds being the only type of bonded interactions, rigid molecules exhibited a lower critical micelle concentration and formed larger and better-defined micelles. By varying the strength of head-tail repulsion and the chain rigidity, we constructed two-dimensional diagrams presenting how the critical micelle concentration and aggregation number depend on these parameters. We found that the solutions of flexible and rigid molecules that exhibited approximately the same critical micelle concentration could differ substantially in the micelle size and shape depending on the chain rigidity. With the increase of surfactant concentration, primary micelles of more rigid molecules were found less keen to agglomeration and formation of nonspherical aggregates characteristic of flexible molecules.

  13. Experimental Study on Full-Scale Beams Made by Reinforced Alkali Activated Concrete Undergoing Flexure.

    PubMed

    Monfardini, Linda; Minelli, Fausto

    2016-08-30

    Alkali Activated Concrete (AAC) is an alternative kind of concrete that uses fly ash as a total replacement of Portland cement. Fly ash combined with alkaline solution and cured at high temperature reacts to form a binder. Four point bending tests on two full scale beams made with AAC are described in this paper. Companion small material specimens were also casted with the aim of properly characterizing this new tailored material. The beam's length was 5000 mm and the cross section was 200 mm × 300 mm. The AAC consisted of fly ash, water, sand 0-4 mm and coarse aggregate 6-10 mm; and the alkaline solution consisted of sodium hydroxide mixed with sodium silicate. No cement was utilized. The maximum aggregate size was 10 mm; fly ash was type F, containing a maximum calcium content of 2%. After a rest period of two days, the beam was cured at 60 °C for 24 h. Data collected and critically discussed included beam deflection, crack patterns, compressive and flexural strength and elastic modulus. Results show how AAC behavior is comparable with Ordinary Portland Cement (OPC) based materials. Nonlinear numerical analyses are finally reported, promoting a better understanding of the structural response.

  14. Visualizing Rhizosphere Soil Structure Around Living Roots

    NASA Astrophysics Data System (ADS)

    Menon, M.; Berli, M.; Ghezzehei, T. A.; Nico, P.; Young, M. H.; Tyler, S. W.

    2008-12-01

    The rhizosphere, a thin layer of soil (0 to 2 mm) surrounding a living root, is an important interface between bulk soil and plant root and plays a critical role in root water and nutrient uptake. In this study, we used X-ray Computerized Microtomography (microCT) to visualize soil structure around living roots non-destructively and with high spatial resolution. Four different plant species (Helianthus annuus, Lupinus hartwegii, Vigna radiata and Phaseolus lunatus), grown in four different porous materials (glass beads, medium and coarse sand, loam aggregates), were scanned with 10 ìm spatial resolution, using the microtomography beamline 8.3.2 at the Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA. Sample cross section images clearly show contacts between roots and soil particles, connecting water films, air-water interfaces as well as some cellular features of the plants taproots. We found with a simulation experiment, inflating a cylindrical micro-balloon in a pack of air-dry loam aggregates, that soil fracturing rather than compaction might occur around a taproot growing in dry soil. Form these preliminary experiments, we concluded that microCT has potential as a tool for a more process-based understanding of the role of rhizosphere soil structure on soil fertility, plant growth and the water balance at the earth-atmosphere interface.

  15. Visualizing the impact of living roots on rhizosphere soil structure using X-ray microtomography

    NASA Astrophysics Data System (ADS)

    Menon, M.; Berli, M.; Ghezzehei, T. A.; Nico, P.; Young, M. H.; Tyler, S. W.

    2009-04-01

    The rhizosphere is an interface between bulk soil and plant root and plays a critical role in root water and nutrient uptake. In this study, we used X-ray Computerized Microtomography (microCT) to visualize soil structure around living roots non-destructively and with high spatial resolution. Four different plant species (Helianthus annuus, Lupinus hartwegii, Vigna radiata and Phaseolus lunatus), grown in four different porous materials (glass beads, medium and coarse sand, loam aggregates), were scanned with 10 μm spatial resolution, using the microtomography beamline 8.3.2 at the Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA. Sample cross section images clearly show contacts between roots and soil particles, connecting water films, air-water interfaces as well as some cellular features of the plants taproots. We found with a simulation experiment, inflating a cylindrical micro-balloon in a pack of air-dry loam aggregates, that soil fracturing rather than compaction might occur around a taproot growing in dry soil. Form these preliminary experiments, we concluded that microCT has potential as a tool for a more process-based understanding of the role of rhizosphere soil structure on soil fertility, plant growth and the water balance at the earth-atmosphere interface.

  16. Experimental Study on Full-Scale Beams Made by Reinforced Alkali Activated Concrete Undergoing Flexure

    PubMed Central

    Monfardini, Linda; Minelli, Fausto

    2016-01-01

    Alkali Activated Concrete (AAC) is an alternative kind of concrete that uses fly ash as a total replacement of Portland cement. Fly ash combined with alkaline solution and cured at high temperature reacts to form a binder. Four point bending tests on two full scale beams made with AAC are described in this paper. Companion small material specimens were also casted with the aim of properly characterizing this new tailored material. The beam’s length was 5000 mm and the cross section was 200 mm × 300 mm. The AAC consisted of fly ash, water, sand 0–4 mm and coarse aggregate 6–10 mm; and the alkaline solution consisted of sodium hydroxide mixed with sodium silicate. No cement was utilized. The maximum aggregate size was 10 mm; fly ash was type F, containing a maximum calcium content of 2%. After a rest period of two days, the beam was cured at 60 °C for 24 h. Data collected and critically discussed included beam deflection, crack patterns, compressive and flexural strength and elastic modulus. Results show how AAC behavior is comparable with Ordinary Portland Cement (OPC) based materials. Nonlinear numerical analyses are finally reported, promoting a better understanding of the structural response. PMID:28773861

  17. Evaluation of concrete incorporating bottom ash as a natural aggregates replacement.

    PubMed

    Andrade, L B; Rocha, J C; Cheriaf, M

    2007-01-01

    A study on the incorporation of coal bottom ash from thermoelectric power stations as a substitute material for natural sand in the production of concrete is here presented. The normally coarse, fused, glassy texture of bottom ash makes it an ideal substitute for natural aggregates. The use of bottom ash in concrete presents several technical challenges: the physical and mineralogical characteristics of the bottom ash; the effect on water demand and the participation on cements hydratation. In the production of the concrete, substitutions in volume were used. Two different ways to employ bottom ash were used to make up the mix proportions: one considering the natural humidity present in the porous particles and the other not considering it, seeking to maintain the same strength. These considerations are fundamental given that the process of bottom ash extraction is carried out through moisture. Mechanical tests by compressive strength were performed and the elastic modulus was determined. An analysis of the influence of bottom ash in the formation of pores was carried out through tests for the water loss by air drying and water uptake by capillary absorption. The results show that the higher the bottom ash contents in the concrete, the worse the performance regarding moisture transport. However, for one bottom ash concrete type, the mechanical properties were maintained.

  18. Evaluation of morphology and size of cracks of the Interfacial Transition Zone (ITZ) in concrete containing fly ash (FA).

    PubMed

    Golewski, Grzegorz Ludwik

    2018-06-07

    Interfacial Transition Zone (ITZ) of coarse aggregate cement matrix is commonly regarded as the weakest element of concrete. In this phase - the first cracks in the material are initiated, and the process of destruction of the composite begins. An improvement of the ITZ properties are positively influenced by the mineral additives used for the composite. One of such a substitute for a binder is, potentially hazardous industrial waste, siliceous fly ash (FA). In this paper the ITZ between aggregate and cement paste in concretes containing FA is considered. The paper presents the results of tests on the effect of the addition of FA in the amount of: 0, 20 and 30% by weight of cement on morphology and size of cracks of the ITZ in composites. In matured concretes the smallest cracks occur in composite with the 20% FA additive. It can be concluded that composites with 20% addition of FA are characterized by low permeability and therefore high durability. The results of tests carried out can be helpful in obtaining concrete with the highest possible: strength, durability and reliability of operation. Moreover, such procedures also cause a restriction storage of hazardous materials, i.e. FA - by 160 million tons per year. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Rheology of magnesite

    NASA Astrophysics Data System (ADS)

    Holyoke, C. W.; Kronenberg, A. K.; Newman, J.; Ulrich, C. A.

    2012-12-01

    Magnesite (MgCO3) may be incorporated in the mantle either by the subduction of weathered oceanic crust or by reaction of lithospheric mantle with CO2, and it is commonly found within serpentinized peridotite bodies. Once magnesite is formed in subducting slabs, it is likely to remain as an important carbon-bearing phase, given that its stability extends to conditions of the mantle transition zone and possibly the lower mantle. Magnesite is a common mineral in kimberlites and it has been found as inclusions in diamonds, trapped at transition zone pressures. Our experimental results suggest that occurrences of magnesite in the mantle will lead to low strength and anomalous mantle rheology. In order to quantify the rheology of polycrystalline magnesite, we performed a series of triaxial compression experiments on cylinders of natural fine- (d~1 μm) and coarse-grained (d~100 μm) magnesite aggregates at temperatures of 400-1000°C and strain rates of 10-4/s - 10-7/s, at effective pressures of 300 and 900 MPa. Flow strengths of the fine-grained magnesite are only weakly dependent on temperature from 400 to 600°C at 1*10-5/s and decrease significantly at greater temperature, from 500 MPa (at T = 600°C) to 5 MPa (at T = 775°C). Strain rate stepping experiments performed at 650 to 750°C indicate that creep of the fine-grained magnesite in the strongly temperature dependent regime is nearly linear-viscous. Flow strengths of the coarse-grained magnesite are weakly dependent on temperature from 400 to 600°C at 1*10-5/s, gradually increase in temperature dependence from 600°C to 800°C, and become strongly temperature dependent from 800 to 1000°C (strengths decrease from 230 MPa to 30 MPa over this range). Strain rate stepping experiments performed at 500°C and 950°C indicate that the strain rate sensitivity of the strength of coarse-grained magnesite increases as the temperature sensitivity increases. The mechanical data of experiments on fine- and coarse-grained magnesite constrain the rheologies in three distinct deformation regimes governed by the predominant deformation mechanisms: 1) limited plasticity mechanisms (twinning and dislocation glide) that operate at low temperatures or high strain rates, 2) dislocation creep of coarse-grained magnesite deformed at high temperatures, and 3) diffusion creep of fine-grained magnesite deformed at high temperatures. The strength of magnesite is intermediate between those of dolomite (CaMg(CO3)2) and calcite (CaCO3), until high temperatures where magnesite becomes weaker than calcite. Magnesite is weaker than olivine at all temperatures. These results indicate that magnesite may play a significant role as a weak phase that could cause strain localization in subducting slabs.

  20. Morphology and ecology of the kalyptorhynch Typhlopolycystis rubra (Plathelminthes), an inmate of lugworm burrows in the Wadden Sea

    NASA Astrophysics Data System (ADS)

    Noldt, U.; Reise, K.

    1987-06-01

    Typhlopolycystis rubra, a new species of the taxon Polycystididae (Plathelminthes, Kalyptorhynchia), is described. The red species is characterized by copulatory hard structures which consist of a proximal girdle and 2 similar sized stylets. T. rubra occurs in intertidal sand near the island of Sylt in the North Sea. Here, it is virtually confined to the lowest parts of lugworm ( Arenicola marina) burrows, where it aggregates in the coarse grained sand around the feeding pocket areas. This is an extremely narrow spatial niche within the sulfide layer of sediment. Population size over a period of 7 years is the most constant one among all species of Plathelminthes living on the tidal flat. The ability of T. rubra to endure unsuitable conditions inside a cyst may contribute to this remarkably low population variability.

  1. Linking plants, fungi and soil mechanics

    NASA Astrophysics Data System (ADS)

    Yildiz, Anil; Graf, Frank

    2017-04-01

    Plants provide important functions in respect soil strength and are increasingly considered for slope stabilisation within eco-engineering methods, particularly to prevent superficial soil failure. The protective functions include hydrological regulation through interception and evapo-transpiration as well as mechanical stabilisation through root reinforcement and, to a certain extent, chemical stabilisation through sticky metabolites. The ever-growing application of plants in slope stabilisation demanded more precise information of the vegetation effects and, concomitant, led the models for quantifying the reinforcement shoot up like mushrooms. However, so far, the framework and interrelationships for both the role of plants and the quantification concepts have not been thoroughly analysed and comprehensively considered, respectively, often resulting in unsatisfactory results. Although it seems obvious and is implicitly presupposed that the plant specific functions related to slope stability require growth and development, this is anything but given, particularly under the often hostile conditions dominating on bare and steep slopes. There, the superficial soil layer is often characterised by a lack of fines and missing medium-sized and fine pores due to an unstable soil matrix, predominantly formed by coarse grains. Low water retention capacity and substantial leaching of nutrients are the adverse consequences. Given this general set-up, sustainable plant growth and, particularly, root development is virtually unachievable. At exactly this point mycorrhizal fungi, the symbiotic partners of almost all plants used in eco-engineering, come into play. Though, they are probably well-known within the eco-engineering community, mycorrhizal fungi lead a humble existence. This is in spite of the fact that they supply their hosts with water and nutrients, improving the plant's ability to master otherwise unbridgeable environmental conditions. However, in order to support their plant partners, the fungi themselves need to have access to water and nutrients. For this purpose, a resilient soil matrix consisting of stable micro- and macro-aggregates is an indispensable prerequisite. Luckily, the fungi are among the pioneers in assembling stable aggregates. The fungal hyphae intensively penetrate the unstructured soil body, enmeshing small organic and inorganic soil particles and form and cement them to micro- and macro-aggregates. On the one hand, growing hyphae are able to align primary particles and, on the other hand, exert pressure on surrounding particles and compounds forcing them together, such as clay and organic matter. Under physiological (or neutral) pH values, the fungal mycelia have a net negative charge. It is suggested that negatively charged fungal polysaccharides are bound to negatively charged clay minerals by bridges of polyvalent cations which have been proven to be stronger than some direct bonds between clay and organic matter. The formation of aggregates up to a size of 2 mm is associated with hyphal length of fungi. With regard to the assemblage of aggregates >2 mm both fungal mycelia and roots are involved. Indirectly, the mycorrhizal fungi affect the aggregate establishment through their host plants, particularly by accelerating the development of their root network and by serving as a distribution vector for associated micro-organisms, mainly bacteria and archaea, additionally contributing to cementation. Therefore, root-reinforcement as addressed for quantification of vegetation effects on slope stability almost ever is a combined contribution of fungal mycelia and root networks. With soil aggregates as the "bricks" for building a stable soil matrix and pore structure, root-reinforcement strongly depends on aggregate strength controlling potential, efficiency, and sustainability of growth and development of the protective vegetation. From a geotechnical point of view, aggregation of fines may be such pronounced that characteristics of coarse-grained soils are adopted, often mirrored by higher values of the shear strength parameters, particularly the angle of internal friction Φ'. Consequently, neither the positive relationship between the strength of soil aggregates and slope stability is astonishing nor is the positive correlation between root characteristics - architecture represented by 3D-complexity, specific length and its density - and factor of safety calculations related to superficial soil failure. As far as the latter is concerned, however, so far almost exclusively the common shear strength parameters have been considered, namely angle of internal friction Φ' and root cohesion c'. However, similarly to the way fungi were ignored in biological slope stabilisation, the soil mechanically relevant parameter dilatancy (Ψ) was not in the concepts and modelling approaches for quantifying root-reinforcement. Nevertheless, dilatancy (Ψ) is an important mechanism and a contributing factor to the shearing behaviour of root-permeated soil that definitively cannot be ignored. Such evidence is soundly based on the fact that specific root characteristics combined with the maximum dilatancy angle (Ψmax) can explain the most variation in peak shear strength parameters. Therefore, a combined approach including soil, fungi, and roots under consideration of dilatancy is a promising way towards better understanding and more reliably quantifying the shear strength of root-permeated soil. Since sound quantification of biological stabilisation effects is the key for both sustainable slope stabilisation and wide acceptance of eco-engineering measures within the scope of risk and hazard prevention.

  2. On the Role of Entropy in the Protein Folding Process

    NASA Astrophysics Data System (ADS)

    Hoppe, Travis

    2011-12-01

    A protein's ultimate function and activity is determined by the unique three-dimensional structure taken by the folding process. Protein malfunction due to misfolding is the culprit of many clinical disorders, such as abnormal protein aggregations. This leads to neurodegenerative disorders like Huntington's and Alzheimer's disease. We focus on a subset of the folding problem, exploring the role and effects of entropy on the process of protein folding. Four major concepts and models are developed and each pertains to a specific aspect of the folding process: entropic forces, conformational states under crowding, aggregation, and macrostate kinetics from microstate trajectories. The exclusive focus on entropy is well-suited for crowding studies, as many interactions are nonspecific. We show how a stabilizing entropic force can arise purely from the motion of crowders in solution. In addition we are able to make a a quantitative prediction of the crowding effect with an implicit crowding approximation using an aspherical scaled-particle theory. In order to investigate the effects of aggregation, we derive a new operator expansion method to solve the Ising/Potts model with external fields over an arbitrary graph. Here the external fields are representative of the entropic forces. We show that this method reduces the problem of calculating the partition function to the solution of recursion relations. Many of the methods employed are coarse-grained approximations. As such, it is useful to have a viable method for extracting macrostate information from time series data. We develop a method to cluster the microstates into physically meaningful macrostates by grouping similar relaxation times from a transition matrix. Overall, the studied topics allow us to understand deeper the complicated process involving proteins.

  3. Nanoporous poly(3-hexylthiophene) thin film structures from self-organization of a tunable molecular bottlebrush scaffold

    DOE PAGES

    Ahn, Suk-kyun; Carrillo, Jan-Michael Y.; Keum, Jong K.; ...

    2017-04-07

    The ability to widely tune the design of macromolecular bottlebrushes provides access to self-assembled nanostructures formed by microphase segregation in melt, thin film and solution that depart from structures adopted by simple linear copolymers. A series of random bottlebrush copolymers containing poly(3-hexylthiophene) (P3HT) and poly(D,L-lactide) (PLA) side chains grafted on a poly(norbornene) backbone were synthesized via ring-opening metathesis polymerization (ROMP) using the grafting through approach. P3HT side chains induce a physical aggregation of the bottlebrush copolymers upon solvent removal by vacuum drying, primarily driven by attractive π–π interactions; however, the amount of aggregation can be controlled by adjusting side chainmore » composition or by adding linear P3HT chains to the bottlebrush copolymers. Coarse-grained molecular dynamics simulations reveal that linear P3HT chains preferentially associate with P3HT side chains of bottlebrush copolymers, which tends to reduce the aggregation. The nanoscale morphology of microphase segregated thin films created by casting P3HT–PLA random bottlebrush copolymers is highly dependent on the composition of P3HT and PLA side chains, while domain spacing of nanostructures is mainly determined by the length of the side chains. The selective removal of PLA side chains under alkaline conditions generates nanoporous P3HT structures that can be tuned by manipulating molecular design of the bottlebrush scaffold, which is affected by molecular weight and grafting density of the side chains, and their sequence. Furthermore, the ability to exploit the unusual architecture of bottlebrushes to fabricate tunable nanoporous P3HT thin film structures may be a useful way to design templates for optoelectronic applications or membranes for separations.« less

  4. Nanoporous poly(3-hexylthiophene) thin film structures from self-organization of a tunable molecular bottlebrush scaffold

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahn, Suk-kyun; Carrillo, Jan-Michael Y.; Keum, Jong K.

    The ability to widely tune the design of macromolecular bottlebrushes provides access to self-assembled nanostructures formed by microphase segregation in melt, thin film and solution that depart from structures adopted by simple linear copolymers. A series of random bottlebrush copolymers containing poly(3-hexylthiophene) (P3HT) and poly(D,L-lactide) (PLA) side chains grafted on a poly(norbornene) backbone were synthesized via ring-opening metathesis polymerization (ROMP) using the grafting through approach. P3HT side chains induce a physical aggregation of the bottlebrush copolymers upon solvent removal by vacuum drying, primarily driven by attractive π–π interactions; however, the amount of aggregation can be controlled by adjusting side chainmore » composition or by adding linear P3HT chains to the bottlebrush copolymers. Coarse-grained molecular dynamics simulations reveal that linear P3HT chains preferentially associate with P3HT side chains of bottlebrush copolymers, which tends to reduce the aggregation. The nanoscale morphology of microphase segregated thin films created by casting P3HT–PLA random bottlebrush copolymers is highly dependent on the composition of P3HT and PLA side chains, while domain spacing of nanostructures is mainly determined by the length of the side chains. The selective removal of PLA side chains under alkaline conditions generates nanoporous P3HT structures that can be tuned by manipulating molecular design of the bottlebrush scaffold, which is affected by molecular weight and grafting density of the side chains, and their sequence. Furthermore, the ability to exploit the unusual architecture of bottlebrushes to fabricate tunable nanoporous P3HT thin film structures may be a useful way to design templates for optoelectronic applications or membranes for separations.« less

  5. Numerical Investigation on Absorption Enhancement of Black Carbon Aerosols Partially Coated With Nonabsorbing Organics

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaolin; Mao, Mao; Yin, Yan; Wang, Bin

    2018-01-01

    This study numerically evaluates the effects of aerosol microphysics, including coated volume fraction of black carbon (BC), shell/core ratio, and size distribution, on the absorption enhancement (Eab) of polydisperse BC aggregates partially coated by organics, which is calculated by the exact multiple-sphere T-matrix method. The coated volume fraction of BC plays a substantial role in determining the absorption enhancement of partially coated BC aggregates, which typically have an Eab in the range of 1.0-2.0 with a larger value for larger coated volume fraction of BC as the shell/core ratio, BC geometry, and size distribution are fixed. The shell/core ratio, BC geometry, and size distribution have little impact on the Eab of coated BC with small coated volume fraction of BC, while they become significant for large coated volume fraction of BC. The Eab of partially coated BC particles can be slightly less than 1.0 for the large BC in the accumulation mode exhibiting large shell/core ratio and small coated volume fraction of BC, indicating that the absorption shows even slight decrease relative to uncoated BC particles. For partially coated BC aggregates in the accumulation and coarse modes, the refractive index uncertainties of BC result in the Eab differences of less than 9% and 2%, respectively, while those of organics can induce larger variations with the maximum differences up to 22% and 18%, respectively. Our study indicates that accounting for particle coating microphysics, particularly the coated volume fraction of BC, can potentially help to understand the differences in observations of largely variable absorption enhancements over various regions.

  6. Peculiar Traits of Coarse AP (Briefing Charts)

    DTIC Science & Technology

    2014-12-01

    coarse AP Bircumshaw, Newman Active centers are sources of AP decomposition gases AP low temperature decomposition (LTD) Most unstable AP particles ...delay before coarse AP ejection *Coarse AP particle flame retardancy 19 Air Force Research Laboratory Distribution A: Approved for public release...distribution unlimited. PA clearance #. Combustion bomb trials 2 AP phase change may enable coarse particle breakage Fractured coarse AP ejection agrees

  7. Distinguishing black carbon from biogenic humic substances in soil clay fractions

    USGS Publications Warehouse

    Laird, D.A.; Chappell, M.A.; Martens, D.A.; Wershaw, R. L.; Thompson, M.

    2008-01-01

    Most models of soil humic substances include a substantial component of aromatic C either as the backbone of humic heteropolymers or as a significant component of supramolecular aggregates of degraded biopolymers. We physically separated coarse (0.2-2.0????m e.s.d.), medium (0.02-0.2????m e.s.d.), and fine (> 0.02????m e.s.d.) clay subfractions from three Midwestern soils and characterized the organic material associated with these subfractions using 13C-CPMAS-NMR, DTG, SEM-EDX, incubations, and radiocarbon age. Most of the C in the coarse clay subfraction was present as discrete particles (0.2-5????m as seen in SEM images) of black carbon (BC) and consisted of approximately 60% aromatic C, with the remainder being a mixture of aliphatic, anomeric and carboxylic C. We hypothesize that BC particles were originally charcoal formed during prairie fires. As the BC particles aged in soil their surfaces were oxidized to form carboxylic groups and anomeric and aliphatic C accumulated in the BC particles either by adsorption of dissolved biogenic compounds from the soil solution or by direct deposition of biogenic materials from microbes living within the BC particles. The biogenic soil organic matter was physically separated with the medium and fine clay subfractions and was dominated by aliphatic, anomeric, and carboxylic C. The results indicate that the biogenic humic materials in our soils have little aromatic C, which is inconsistent with the traditional heteropolymer model of humic substances.

  8. Differential Interaction of Antimicrobial Peptides with Lipid Structures Studied by Coarse-Grained Molecular Dynamics Simulations.

    PubMed

    Balatti, Galo E; Ambroggio, Ernesto E; Fidelio, Gerardo D; Martini, M Florencia; Pickholz, Mónica

    2017-10-20

    In this work; we investigated the differential interaction of amphiphilic antimicrobial peptides with 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) lipid structures by means of extensive molecular dynamics simulations. By using a coarse-grained (CG) model within the MARTINI force field; we simulated the peptide-lipid system from three different initial configurations: (a) peptides in water in the presence of a pre-equilibrated lipid bilayer; (b) peptides inside the hydrophobic core of the membrane; and (c) random configurations that allow self-assembled molecular structures. This last approach allowed us to sample the structural space of the systems and consider cooperative effects. The peptides used in our simulations are aurein 1.2 and maculatin 1.1; two well-known antimicrobial peptides from the Australian tree frogs; and molecules that present different membrane-perturbing behaviors. Our results showed differential behaviors for each type of peptide seen in a different organization that could guide a molecular interpretation of the experimental data. While both peptides are capable of forming membrane aggregates; the aurein 1.2 ones have a pore-like structure and exhibit a higher level of organization than those conformed by maculatin 1.1. Furthermore; maculatin 1.1 has a strong tendency to form clusters and induce curvature at low peptide-lipid ratios. The exploration of the possible lipid-peptide structures; as the one carried out here; could be a good tool for recognizing specific configurations that should be further studied with more sophisticated methodologies.

  9. Magnetic, geochemical characterization and health risk assessment of road dust in Xuanwei and Fuyuan, China.

    PubMed

    Tan, Zhengying; Lu, Senlin; Zhao, Hui; Kai, Xiao; Jiaxian, Peng; Win, Myat Sandar; Yu, Shang; Yonemochi, Shinich; Wang, Qingyue

    2018-01-19

    As an accumulation of solid organic and inorganic pollutant particles on outdoor ground surfaces, road dust is an important carrier of heavy metal contaminants and can be a valuable medium for characterizing urban environmental quality. Because the dusts can be an important source of atmospheric particles and take impact on human health, the aim of this study described in detail the mineralogical characteristics, morphology, and heavy metal content of road dust from Xuanwei and Fuyuan, locations with high lung cancer incidence. Our results show that the average concentrations of heavy metals in road dust were higher than their background values. Higher concentrations of heavy metals were found in the magnetic fractions (MFs) than in the non-magnetic fractions (NMFs). Magnetic measurements revealed high magnetic susceptibility values in the road dust samples, and the dominant magnetic carrier was magnetite. The magnetic grains were predominantly pseudo-single domain, multi-domain, and coarse-grained stable single domains (coarse SSD) in size. SEM/XRD analysis identified two groups of magnetic particles: spherules and angular/aggregate particles. Hazard index (HI) values for adults exposure to road dust samples, including MF, Bulk, and NMF, in both areas were lower or close to safe levels, while HI values for childhood exposure to magnetic fractions in both areas were very close or higher than safe levels. Cancer risks from road dust exposure in both areas were in the acceptable value range.

  10. The Impact of Spatial and Temporal Resolutions in Tropical Summer Rainfall Distribution: Preliminary Results

    NASA Astrophysics Data System (ADS)

    Liu, Q.; Chiu, L. S.; Hao, X.

    2017-10-01

    The abundance or lack of rainfall affects peoples' life and activities. As a major component of the global hydrological cycle (Chokngamwong & Chiu, 2007), accurate representations at various spatial and temporal scales are crucial for a lot of decision making processes. Climate models show a warmer and wetter climate due to increases of Greenhouse Gases (GHG). However, the models' resolutions are often too coarse to be directly applicable to local scales that are useful for mitigation purposes. Hence disaggregation (downscaling) procedures are needed to transfer the coarse scale products to higher spatial and temporal resolutions. The aim of this paper is to examine the changes in the statistical parameters of rainfall at various spatial and temporal resolutions. The TRMM Multi-satellite Precipitation Analysis (TMPA) at 0.25 degree, 3 hourly grid rainfall data for a summer is aggregated to 0.5,1.0, 2.0 and 2.5 degree and at 6, 12, 24 hourly, pentad (five days) and monthly resolutions. The probability distributions (PDF) and cumulative distribution functions(CDF) of rain amount at these resolutions are computed and modeled as a mixed distribution. Parameters of the PDFs are compared using the Kolmogrov-Smironov (KS) test, both for the mixed and the marginal distribution. These distributions are shown to be distinct. The marginal distributions are fitted with Lognormal and Gamma distributions and it is found that the Gamma distributions fit much better than the Lognormal.

  11. Properties of concrete with tire derived aggregate and crumb rubber as a lighthweight substitute for mineral aggregates in the concrete mix

    NASA Astrophysics Data System (ADS)

    Siringi, Gideon Momanyi

    Scrap tires continue to be a nuisance to the environment and this research proposes one way of recycling them as a lightweight aggregate which can substitute for mineral aggregates in concrete. Aggregates derived from scrap tires are often referred to as Tire Derived Aggregate (TDA). First, the focus is how much mineral aggregate can be replaced by these waste tires and how the properties of concrete are affected with the introduction of rubber. This is being mindful of the fact that for a new material to be acceptable as an engineering material, its properties and behavior has to be well understood, the materials must perform properly and be acceptable to the regulating agencies. The role played by the quantity of TDA and Crumb Rubber replacing coarse aggregate and fine aggregate respectively as well as different treatment and additives in concrete on its properties are examined. Conventional concrete (without TDA) and concrete containing TDA are compared by examining their compressive strength based on ASTM C39, workability based on ASTM C143, Splitting Tensile Strength based on ASTM C496, Modulus of Rupture (flexural strength) based on ASTM C78 and Bond strength of concrete developed with reinforcing steel based on ASTM C234.Through stress-strain plots, the rubberized concrete is compared in terms of change in ductility, toughness and Elastic Modulus. Results indicate that while replacement of mineral aggregates with TDA results in reduction in compressive strength, this may be mitigated by addition of silica fume or using a smaller size of TDA to obtain the desired strength. The greatest benefit of using TDA is in the development of a higher ductile product with lower density while utilizing recycled TDA. From the results, it is observed that 7-10% of weight of mineral aggregates can be replaced by an equal volume of TDA to produce concrete with compressive strength of up to 4000 psi (27.5 MPa). Rubberized concrete would have higher ductility and toughness with better damage tolerance but the Elastic Modulus would be reduced. After evaluation of rubberized concrete at elevated temperatures, it has been found that very high temperature would have adverse effects to the concrete like excessive spalling, pop-outs and cracking on the surface and therefore it is proposed to use this kind of concrete where temperature would not exceed 100°C (212°F) for extended periods. Observation of concrete at microscopic level showed that it consists of three phases; interfacial transition zone (ITZ), bulk hydrated cement paste and aggregate. The ITZ was seen to contain micro pores and microcracks and was considered the weakest phase in concrete therefore exercises a far greater influence on the mechanical behavior of concrete than is reflected by its size. Existence of the ITZ explains why concrete strength is lower and behaves inelastically while the aggregate and cement paste if tested separately behave elastically and have higher strength than concrete. A 3-Dimensional nonlinear Finite Element Model (FEM) for a concrete beam is proposed and developed using ABAQUS. Smeared crack model in ABAQUS is used to define material properties. The developed FEM is capable of predicting the ultimate load, deflections, Stress-deflection/strain curves and crack initiation which are all verified against the experimental tests. ABAQUS was found to be a useful tool for modeling of concrete. In conclusion, this research provides a clear understanding on the effects of using scrap tires as an aggregate in concrete. The pros and cons of TDA are explored, ways of overcoming the shortcomings suggested and a way of predicting concrete properties when using TDA provided.

  12. Organic carbon, water repellency and soil stability to slaking at aggregate and intra-aggregate scales

    NASA Astrophysics Data System (ADS)

    Jordán López, Antonio; García-Moreno, Jorge; Gordillo-Rivero, Ángel J.; Zavala, Lorena M.; Cerdà, Artemi; Alanís, Nancy; Jiménez-Compán, Elizabeth

    2015-04-01

    Water repellency (WR) is a property of some soils that inhibits or delays water infiltration between a few seconds and days or weeks. Inhibited or delayed infiltration contributes to ponding and increases runoff flow generation, often increasing soil erosion risk. In water-repellent soils, water infiltrates preferentially through cracks or macropores, causing irregular soil wetting patterns, the development of preferential flow paths and accelerated leaching of nutrients. Although low inputs of hydrophobic organic substances and high mineralization rates lead to low degrees of WR in cropped soils, it has been reported that conservative agricultural practices may induce soil WR. Although there are many studies at catchment, slope or plot scales very few studies have been carried out at particle or aggregate scale. Intra-aggregate heterogeneity of physical, biological and chemical properties conditions the transport of substances, microbial activity and biochemical processes, including changes in the amount, distribution and chemical properties of organic matter. Some authors have reported positive relationships between soil WR and aggregate stability, since it may delay the entry of water into aggregates, increase structural stability and contribute to reduce soil erosion risk. Organic C (OC) content, aggregate stability and WR are therefore strongly related parameters. In the case of agricultural soils, where both the type of management as crops can influence all these parameters, it is important to evaluate the interactions among them and their consequences. Studies focused on the intra-aggregate distribution of OC and WR are necessary to shed light on the soil processes at a detailed scale. It is extremely important to understand how the spatial distribution of OC in soil aggregates can protect against rapid water entry and help stabilize larger structural units or lead to preferential flow. The objectives of this research are to study [i] the OC content and the intensity of WR in aggregates of different sizes. [ii] the intra-aggregate distribution of OC and the intensity of WR and [iii] the structural stability of soil aggregates relative to the OC content and the intensity of WR in soils under different crops (apricot, citrus and wheat) and different treatments (conventional tilling and mulching). Soil samples were collected from an experimental area (Luvic Calcisols and Calcic Luvisols) in the province of Sevilla (Southern Spain) under different crops (apricot, citrus and wheat) and different management types (conventional tillage with moldboard plow) and mulching (no-tilling and addition of wheat residues at rates varying between 5 and 8 Mg/ha/year). At each sampling site, soil blocks (50 cm long × 50 cm wide × 10 cm deep) were carefully collected to avoid disturbance of aggregates as much as possible and transported to the laboratory. At field moist condition, undisturbed soil aggregates were separated by hand. In order to avoid possible interferences due to disturbance by handling, aggregates broken during this process were discarded. Individual aggregates were arranged in paper trays and air-dried during 7 days under laboratory standard conditions. After air-drying, part of each sample was carefully divided for different analyses: [i] part of the original samples was sieved (2 mm) to eliminate coarse soil particles and homogenized for characterization of OC and N contents, C/N ratio and texture; [ii] part of the aggregates were dry-sieved (0.25-0.5, 0.5-1 and 1-2 mm) or measured with a caliper (2-5, 5-10 and 10-15 mm) and separated in different sieve-size classes for determination of WR and OC content; [iii] aggregates 10-15 mm in size were selected for obtaining aggregate layers using a soil aggregate erosion (SAE) apparatus and WR and OC content were determined at each layer; finally, [iv] in order to study the relation between stability to slaking, WR and OC, these properties were determined in 90 air-dried aggregates (about 10 mm in size) selected per treatment (mulched or conventional tillage) and crop (apricot, citrus and wheat). In this case, every set of aggregates was randomly divided in three groups (n = 30) for assessing stability to slaking, WR and OC, respectively. OC content in the fine earth fraction of soils under different crops did not show important variations, although it increased significantly from conventionally tilled to mulched soils. The distribution of OC content in aggregates with different size varied among soils under different crops, generally increasing with decreasing size. At the intra-aggregate level, OC concentrated preferably in the exterior layer of differently sized aggregates and of aggregate coatings and interior from conventionally tilled soils, probably because of recent organic inputs or leachates. In the case of mulched soils, higher concentrations were observed, but no significant differences among aggregate regions were found. The intensity of water repellency, determined by the ethanol method, did not show great variations among differently sized aggregates under different crops in the 0-10 cm layer, but increased significantly from conventionally tilled to mulched soils. Coarser aggregates were generally wettable, while finer aggregates showed slight water repellency. Regardless of variations in the distribution of OC in different layers of aggregate from conventionally tilled soils, great or significant differences in the distribution of water repellency at the intra-aggregate level were not found. In case of mulched soils such differences were not significant. Finally, the intensity of water repellency was much more important than the concentration of OC in the stability to slaking of aggregates.

  13. Effect of spatial averaging on multifractal properties of meteorological time series

    NASA Astrophysics Data System (ADS)

    Hoffmann, Holger; Baranowski, Piotr; Krzyszczak, Jaromir; Zubik, Monika

    2016-04-01

    Introduction The process-based models for large-scale simulations require input of agro-meteorological quantities that are often in the form of time series of coarse spatial resolution. Therefore, the knowledge about their scaling properties is fundamental for transferring locally measured fluctuations to larger scales and vice-versa. However, the scaling analysis of these quantities is complicated due to the presence of localized trends and non-stationarities. Here we assess how spatially aggregating meteorological data to coarser resolutions affects the data's temporal scaling properties. While it is known that spatial aggregation may affect spatial data properties (Hoffmann et al., 2015), it is unknown how it affects temporal data properties. Therefore, the objective of this study was to characterize the aggregation effect (AE) with regard to both temporal and spatial input data properties considering scaling properties (i.e. statistical self-similarity) of the chosen agro-meteorological time series through multifractal detrended fluctuation analysis (MFDFA). Materials and Methods Time series coming from years 1982-2011 were spatially averaged from 1 to 10, 25, 50 and 100 km resolution to assess the impact of spatial aggregation. Daily minimum, mean and maximum air temperature (2 m), precipitation, global radiation, wind speed and relative humidity (Zhao et al., 2015) were used. To reveal the multifractal structure of the time series, we used the procedure described in Baranowski et al. (2015). The diversity of the studied multifractals was evaluated by the parameters of time series spectra. In order to analyse differences in multifractal properties to 1 km resolution grids, data of coarser resolutions was disaggregated to 1 km. Results and Conclusions Analysing the spatial averaging on multifractal properties we observed that spatial patterns of the multifractal spectrum (MS) of all meteorological variables differed from 1 km grids and MS-parameters were biased by -29.1 % (precipitation; width of MS) up to >4 % (min. Temperature, Radiation; asymmetry of MS). Also, the spatial variability of MS parameters was strongly affected at the highest aggregation (100 km). Obtained results confirm that spatial data aggregation may strongly affect temporal scaling properties. This should be taken into account when upscaling for large-scale studies. Acknowledgements The study was conducted within FACCE MACSUR. Please see Baranowski et al. (2015) for details on funding. References Baranowski, P., Krzyszczak, J., Sławiński, C. et al. (2015). Climate Research 65, 39-52. Hoffman, H., G. Zhao, L.G.J. Van Bussel et al. (2015). Climate Research 65, 53-69. Zhao, G., Siebert, S., Rezaei E. et al. (2015). Agricultural and Forest Meteorology 200, 156-171.

  14. Utilization of ethyl cellulose polymer and waste materials for roofing tile production

    NASA Astrophysics Data System (ADS)

    Sam, Suubitaa Spencer; Ng, ChoonAun; Chee, Swee Yong; Habib, NoorZainab; Nadeem, Humayon; Teoh, Wei Ping

    2017-05-01

    The aim of this study was to utilize ethyl cellulose, mixture of waste engine oil and waste vegetable oil as a binder in the environmental friendly roofing tile production. The waste engine-vegetable oil wasmix together with ethyl cellulose, fly ash, coarse aggregates, fine aggregatesand a catalyst. The Fourier Transform Infrared (FTIR) analysis showed that the oil mixture added with ethyl cellulose has the relatively high binding effect due to the presence of strong carbonyl group especially after being heat cured at 1900C for 24 hours. The mixed proportion of materials with different amount of ethyl cellulose used was studied in the production of tile specimen. The results showed that the ethyl cellulose composed roofing tile specimens passed the transverse breaking strength, durability, permeabilityand the ultraviolet accelerated test. The shrinkage on the tile can be overcome by adding temperature resistance polymer on the exterior of the tile.

  15. Latent volcanic heat and further unique aspects of early diagenetic stratiform copper mineralization in the White Pine-Presque Isle District, northern Michigan

    NASA Astrophysics Data System (ADS)

    Brown, Alex C.

    2018-06-01

    The curious occurrence of copper-rich early diagenetic sediment-hosted stratiform copper mineralization in the finest-grained facies of Nonesuch greybeds in northern Michigan has been previously attributed to the warming of cupriferous brines in the footwall Copper Harbor Conglomerate by latent volcanic heat from the subjacent Porcupine Volcanics shield volcano. That anomalous footwall warming is employed here to explain other unique aspects of the White Pine-Presque Isle mineralization: the abrupt downward sulfide zoning from disseminated pyrite to chalcocite across the top of the cupriferous zone; the absence of bornite and chalcopyrite in the cupriferous zone proper; and the essential absence of pseudomorphs after pyrite euhedra and framboidal aggregates within the cupriferous zone proper, as well as the relatively coarse-grained character of disseminated chalcocite in the cupriferous zone.

  16. Seismic performance of recycled concrete-filled square steel tube columns

    NASA Astrophysics Data System (ADS)

    Chen, Zongping; Jing, Chenggui; Xu, Jinjun; Zhang, Xianggang

    2017-01-01

    An experimental study on the seismic performance of recycled concrete-filled square steel tube (RCFST) columns is carried out. Six specimens were designed and tested under constant axial compression and cyclic lateral loading. Two parameters, replacement percentage of recycled coarse aggregate (RCA) and axial compression level, were considered in the test. Based on the experimental data, the hysteretic loops, skeleton curves, ductility, energy dissipation capacity and stiffness degradation of RCFST columns were analyzed. The test results indicate that the failure modes of RCFST columns are the local buckling of the steel tube at the bottom of the columns, and the hysteretic loops are full and their shapes are similar to normal CFST columns. Furthermore, the ductility coefficient of all specimens are close to 3.0, and the equivalent viscous damping coefficient corresponding to the ultimate lateral load ranges from 0.323 to 0.360, which demonstrates that RCFST columns exhibit remarkable seismic performance.

  17. Self-assembly kinetics of DNA functionalised liposomes

    NASA Astrophysics Data System (ADS)

    Mognetti, B. M.; Bachmann, S. J.; Kotar, J.; Parolini, L.; Petitzon, M.; Cicuta, P.; di Michele, L.

    DNA has been largely used to program state-dependent interactions between functionalised Brownian units resulting in responsive systems featuring complex phase behaviours. In this talk I will show how DNA can also be used to control aggregation kinetics in systems of liposomes functionalised by three types of linkers that can simultaneously bind. In doing so, I will present a general coarse-graining strategy that allows calculating the adhesion free energy between pairs of compliant units functionalised by mobile binders. I will highlight the important role played by bilayer deformability and will calculate the free energy contribution due to the presence of complexes made by more than two binders. Finally we will demonstrate the importance of explicitly accounting for the kinetics underlying ligand-receptor reactions when studying large-scale self-assembly. We acknowledge support from ULB, the Oppenheimer Fund, and the EPSRC Programme Grant CAPITALS No. EP/J017566/1.

  18. Orientation of Steel Fibers in Magnetically Driven Concrete and Mortar.

    PubMed

    Xue, Wen; Chen, Ju; Xie, Fang; Feng, Bing

    2018-01-22

    The orientation of steel fibers in magnetically driven concrete and magnetically driven mortar was experimentally studied in this paper using a magnetic method. In the magnetically driven concrete, a steel slag was used to replace the coarse aggregate. In the magnetically driven mortar, steel slag and iron sand were used to replace the fine aggregate. A device was established to provide the magnetic force. The magnetic force was used to rotate the steel fibers. In addition, the magnetic force was also used to vibrate the concrete and mortar. The effect of magnetic force on the orientation of steel fibers was examined by comparing the direction of fibers before and after vibration. The effect of magnetically driven concrete and mortar on the orientation of steel fibers was also examined by comparing specimens to normal concrete and mortar. It is shown that the fibers could rotate about 90° in magnetically driven concrete. It is also shown that the number of fibers rotated in magnetically driven mortar was much more than in mortar vibrated using a shaking table. A splitting test was performed on concrete specimens to investigate the effect of fiber orientation. In addition, a flexural test was also performed on mortar test specimens. It is shown that the orientation of the steel fibers in magnetically driven concrete and mortar affects the strength of the concrete and mortar specimens.

  19. The Effects of Substitution of The Natural Sand by Steel Slag in The Properties of Eco-Friendly Concrete with The 1:2:3 Ratio Mixing Method

    NASA Astrophysics Data System (ADS)

    Rahmawati, A.; Saputro, I. N.

    2018-03-01

    This study was motivated by the need for the development of eco-friendly concrete, and the use of large quantities of steel slag as an industrial waste which is generated from the steel manufacturers. This eco-friendly concrete was developed with steel slag as a substitute for natural sand. Properties of concrete which used waste slag as the fine aggregate with the 1 cement: 2 sand : 3 coarse aggregate ratio mixing method were examined. That ratio was in volume. Then a part of natural sand replaced with steel slag sand in six variations percentages that were 0 %, 20 %, 40 %, 60 %, 80 % and 100 %. The compressive strength, tensile strength, and flexural strength of concrete specimens were determined after curing for 28 days. The research results demonstrate that waste steel slag can increase the performance of concrete. The optimal percentage substitution natural sand by steel slag sand reached of slag on the percentage of 20 % which reached strength ratios of steel slag concrete to the strength of conventional concrete with natural sandstone were 1.37 for compressive strength and 1.13 for flexural strength. While the tensile strength reached a higher ratio of concrete with steel slag sand to the concrete with natural sand on the 80% substitution of natural sand with steel slag sand.

  20. Carbon sequestration in soil by in situ catalyzed photo-oxidative polymerization of soil organic matter.

    PubMed

    Piccolo, Alessandro; Spaccini, Riccardo; Nebbioso, Antonio; Mazzei, Pierluigi

    2011-08-01

    Here we describe an innovative mechanism for carbon sequestration in soil by in situ photopolymerization of soil organic matter under biomimetic catalysis. Three different Mediterranean soils were added with a synthetic water-soluble iron-porphyrin, irradiated by solar light, and subjected first to 5 days incubation and, then, 15, and 30 wetting and drying (w/d) cycles. The in situ catalyst-assisted photopolymerization of soil organic carbon (SOC) increased water stability of soil aggregates both after 5 days incubation and 15 w/d cycles, but not after 30 w/d cycles. Particle-size distribution of all treated soils confirmed the induced soil physical improvement, by showing a concomitant lower yield of the clay-sized fraction and larger yields of either coarse sand- or fine sand-size fractions, depending on soil texture, though only after 5 days incubation. The gain in soil physical quality was reflected by the shift of OC content from small to large soil aggregates, thereby suggesting that photopolymerization stabilized OC by both chemical and physical processes. A further evidence of the carbon sequestration capacity of the photocatalytic treatment was provided by the significant reduction of CO(2) respired by all soils after both incubation and w/d cycles. Our findings suggest that "green" catalytic technologies may potentially be the bases for future practices to increase soil carbon stabilization and mitigate CO(2) emissions from arable soils.

  1. Orientation of Steel Fibers in Magnetically Driven Concrete and Mortar

    PubMed Central

    Xue, Wen; Chen, Ju; Xie, Fang; Feng, Bing

    2018-01-01

    The orientation of steel fibers in magnetically driven concrete and magnetically driven mortar was experimentally studied in this paper using a magnetic method. In the magnetically driven concrete, a steel slag was used to replace the coarse aggregate. In the magnetically driven mortar, steel slag and iron sand were used to replace the fine aggregate. A device was established to provide the magnetic force. The magnetic force was used to rotate the steel fibers. In addition, the magnetic force was also used to vibrate the concrete and mortar. The effect of magnetic force on the orientation of steel fibers was examined by comparing the direction of fibers before and after vibration. The effect of magnetically driven concrete and mortar on the orientation of steel fibers was also examined by comparing specimens to normal concrete and mortar. It is shown that the fibers could rotate about 90° in magnetically driven concrete. It is also shown that the number of fibers rotated in magnetically driven mortar was much more than in mortar vibrated using a shaking table. A splitting test was performed on concrete specimens to investigate the effect of fiber orientation. In addition, a flexural test was also performed on mortar test specimens. It is shown that the orientation of the steel fibers in magnetically driven concrete and mortar affects the strength of the concrete and mortar specimens. PMID:29361798

  2. Modelling soil properties in a crop field located in Croatia

    NASA Astrophysics Data System (ADS)

    Bogunovic, Igor; Pereira, Paulo; Millan, Mesic; Percin, Aleksandra; Zgorelec, Zeljka

    2016-04-01

    Development of tillage activities had negative effects on soil quality as destruction of soil horizons, compacting and aggregates destruction, increasing soil erosion and loss of organic matter. For a better management in order to mitigate the effects of intensive soil management in land degradation it is fundamental to map the spatial distribution of soil properties (Brevik et al., 2016). The understanding the distribution of the variables in space is very important for a sustainable management, in order to identify areas that need a potential intervention and decrease the economic losses (Galiati et al., 2016). The objective of this work is study the spatial distribution of some topsoil properties as clay, fine silt, coarse silt, fine sand, coarse sand, penetration resistance, moisture and organic matter in a crop field located in Croatia. A grid with 275x25 (625 m2) was designed and a total of 48 samples were collected. Previous to data modelling, data normality was checked using the Shapiro wilk-test. As in previous cases (Pereira et al., 2015), data did not followed the normal distribution, even after a logarithmic (Log), square-root, and box cox transformation. Thus, for modeling proposes, we used the log transformed data, since was the closest to the normality. In order to identify groups among the variables we applied a principal component analysis (PCA), based on the correlation matrix. On average clay content was 15.47% (±3.23), fine silt 24.24% (±4.08), coarse silt 35.34% (±3.12), fine sand 20.93% (±4.68), coarse sand 4.02% (±1.69), penetration resistance 0.66 MPa (±0.28), organic matter 1.51% (±0.25) and soil moisture 32.04% (±3.27). The results showed that the PCA identified three factors explained at least one of the variables. The first factor had high positive loadings in soil clay, fine silt and organic matter and a high negative loading in fine sand. The second factor had high positive loadings in coarse sand and moisture and a high negative loading in coarse silt. Finally, the factor 3 had a positive loading in penetration resistance. The loadings of these three factors were mapped using ordinary kriging method. The analysis of incremental spatial correlation identified that the highest spatial correlation in the factor 1 was identified at 41.87 m, in factor 2 at 75.61 m and factor 3 at 143.9 m. In the case of factor 2, the maximum peak of spatial autocorrelation was significant at a p<0.05. This showed that the variable has a random distribution, as confirmed with the Moran's I spatial correlation analysis. In relation to the other factors the maximum peaks were significantly clustered at a p<0.001. These results suggested that the each factor has a different spatial pattern and the studied soil properties explained by each factor had a different spatial distribution. References Breivik, E., Baumgarten, A., Calzolari, C., Miller, B., Pereira, P., Kabala, C., Jordán, A. Soil mapping, classification, and modelling: history and future directions. Geoderma, 264, Part B, 256-274. Galiati, A., Gristina, L., Crescimanno, Barone, E., Novara, A. (2016) Towards more efficient incentives for agri-environment measures in degraded and eroded vineyards. Land Degradation and Development, DOI: 10.1002/ldr.2389 Pereira, P., Cerdà, A., Úbeda, X., Mataix-Solera, J. Arcenegui, V., Zavala, L. (2015) Modelling the impacts of wildfire on ash thickness in a short-term period, Land Degradation and Development, 26, 180-192.

  3. Patterns in woody vegetation structure across African savannas

    NASA Astrophysics Data System (ADS)

    Axelsson, Christoffer R.; Hanan, Niall P.

    2017-07-01

    Vegetation structure in water-limited systems is to a large degree controlled by ecohydrological processes, including mean annual precipitation (MAP) modulated by the characteristics of precipitation and geomorphology that collectively determine how rainfall is distributed vertically into soils or horizontally in the landscape. We anticipate that woody canopy cover, crown density, crown size, and the level of spatial aggregation among woody plants in the landscape will vary across environmental gradients. A high level of woody plant aggregation is most distinct in periodic vegetation patterns (PVPs), which emerge as a result of ecohydrological processes such as runoff generation and increased infiltration close to plants. Similar, albeit weaker, forces may influence the spatial distribution of woody plants elsewhere in savannas. Exploring these trends can extend our knowledge of how semi-arid vegetation structure is constrained by rainfall regime, soil type, topography, and disturbance processes such as fire. Using high-spatial-resolution imagery, a flexible classification framework, and a crown delineation method, we extracted woody vegetation properties from 876 sites spread over African savannas. At each site, we estimated woody cover, mean crown size, crown density, and the degree of aggregation among woody plants. This enabled us to elucidate the effects of rainfall regimes (MAP and seasonality), soil texture, slope, and fire frequency on woody vegetation properties. We found that previously documented increases in woody cover with rainfall is more consistently a result of increasing crown size than increasing density of woody plants. Along a gradient of mean annual precipitation from the driest (< 200 mm yr-1) to the wettest (1200-1400 mm yr-1) end, mean estimates of crown size, crown density, and woody cover increased by 233, 73, and 491 % respectively. We also found a unimodal relationship between mean crown size and sand content suggesting that maximal savanna tree sizes do not occur in either coarse sands or heavy clays. When examining the occurrence of PVPs, we found that the same factors that contribute to the formation of PVPs also correlate with higher levels of woody plant aggregation elsewhere in savannas and that rainfall seasonality plays a key role for the underlying processes.

  4. Characterizing and contrasting instream and riparian coarse wood in western Montana basins

    Treesearch

    Michael K. Young; Ethan A. Mace; Eric T. Ziegler; Elaine K. Sutherland

    2006-01-01

    The importance of coarse wood to aquatic biota and stream channel structure is widely recognized, yet characterizations of large-scale patterns in coarse wood dimensions and loads are rare. To address these issues, we censused instream coarse wood ( 2 m long and 10 cm minimum diameter) and sampled riparian coarse wood and channel characteristics in and along 13 streams...

  5. Scaling uncertainties in estimating canopy foliar maintenance respiration for black spruce ecosystems in Alaska

    USGS Publications Warehouse

    Zhang, X.; McGuire, A.D.; Ruess, Roger W.

    2006-01-01

    A major challenge confronting the scientific community is to understand both patterns of and controls over spatial and temporal variability of carbon exchange between boreal forest ecosystems and the atmosphere. An understanding of the sources of variability of carbon processes at fine scales and how these contribute to uncertainties in estimating carbon fluxes is relevant to representing these processes at coarse scales. To explore some of the challenges and uncertainties in estimating carbon fluxes at fine to coarse scales, we conducted a modeling analysis of canopy foliar maintenance respiration for black spruce ecosystems of Alaska by scaling empirical hourly models of foliar maintenance respiration (Rm) to estimate canopy foliar Rm for individual stands. We used variation in foliar N concentration among stands to develop hourly stand-specific models and then developed an hourly pooled model. An uncertainty analysis identified that the most important parameter affecting estimates of canopy foliar Rm was one that describes R m at 0??C per g N, which explained more than 55% of variance in annual estimates of canopy foliar Rm. The comparison of simulated annual canopy foliar Rm identified significant differences between stand-specific and pooled models for each stand. This result indicates that control over foliar N concentration should be considered in models that estimate canopy foliar Rm of black spruce stands across the landscape. In this study, we also temporally scaled the hourly stand-level models to estimate canopy foliar Rm of black spruce stands using mean monthly temperature data. Comparisons of monthly Rm between the hourly and monthly versions of the models indicated that there was very little difference between the estimates of hourly and monthly models, suggesting that hourly models can be aggregated to use monthly input data with little loss of precision. We conclude that uncertainties in the use of a coarse-scale model for estimating canopy foliar Rm at regional scales depend on uncertainties in representing needle-level respiration and on uncertainties in representing the spatial variability of canopy foliar N across a region. The development of spatial data sets of canopy foliar N represents a major challenge in estimating canopy foliar maintenance respiration at regional scales. ?? Springer 2006.

  6. Systematic and simulation-free coarse graining of homopolymer melts: a relative-entropy-based study.

    PubMed

    Yang, Delian; Wang, Qiang

    2015-09-28

    We applied the systematic and simulation-free strategy proposed in our previous work (D. Yang and Q. Wang, J. Chem. Phys., 2015, 142, 054905) to the relative-entropy-based (RE-based) coarse graining of homopolymer melts. RE-based coarse graining provides a quantitative measure of the coarse-graining performance and can be used to select the appropriate analytic functional forms of the pair potentials between coarse-grained (CG) segments, which are more convenient to use than the tabulated (numerical) CG potentials obtained from structure-based coarse graining. In our general coarse-graining strategy for homopolymer melts using the RE framework proposed here, the bonding and non-bonded CG potentials are coupled and need to be solved simultaneously. Taking the hard-core Gaussian thread model (K. S. Schweizer and J. G. Curro, Chem. Phys., 1990, 149, 105) as the original system, we performed RE-based coarse graining using the polymer reference interaction site model theory under the assumption that the intrachain segment pair correlation functions of CG systems are the same as those in the original system, which de-couples the bonding and non-bonded CG potentials and simplifies our calculations (that is, we only calculated the latter). We compared the performance of various analytic functional forms of non-bonded CG pair potential and closures for CG systems in RE-based coarse graining, as well as the structural and thermodynamic properties of original and CG systems at various coarse-graining levels. Our results obtained from RE-based coarse graining are also compared with those from structure-based coarse graining.

  7. Genetic particle filter application to land surface temperature downscaling

    NASA Astrophysics Data System (ADS)

    Mechri, Rihab; Ottlé, Catherine; Pannekoucke, Olivier; Kallel, Abdelaziz

    2014-03-01

    Thermal infrared data are widely used for surface flux estimation giving the possibility to assess water and energy budgets through land surface temperature (LST). Many applications require both high spatial resolution (HSR) and high temporal resolution (HTR), which are not presently available from space. It is therefore necessary to develop methodologies to use the coarse spatial/high temporal resolutions LST remote-sensing products for a better monitoring of fluxes at appropriate scales. For that purpose, a data assimilation method was developed to downscale LST based on particle filtering. The basic tenet of our approach is to constrain LST dynamics simulated at both HSR and HTR, through the optimization of aggregated temperatures at the coarse observation scale. Thus, a genetic particle filter (GPF) data assimilation scheme was implemented and applied to a land surface model which simulates prior subpixel temperatures. First, the GPF downscaling scheme was tested on pseudoobservations generated in the framework of the study area landscape (Crau-Camargue, France) and climate for the year 2006. The GPF performances were evaluated against observation errors and temporal sampling. Results show that GPF outperforms prior model estimations. Finally, the GPF method was applied on Spinning Enhanced Visible and InfraRed Imager time series and evaluated against HSR data provided by an Advanced Spaceborne Thermal Emission and Reflection Radiometer image acquired on 26 July 2006. The temperatures of seven land cover classes present in the study area were estimated with root-mean-square errors less than 2.4 K which is a very promising result for downscaling LST satellite products.

  8. Microstructural and petrophysical characterization of a "structurally oversimplified" fault zone in poorly lithified sands: evidence for a coseismic rupture?

    NASA Astrophysics Data System (ADS)

    Balsamo, Fabrizio; Storti, Fabrizio

    2010-05-01

    We studied an extensional fault zone developed in poorly lithified, quartz-rich high porosity sandy sediments of the seismically active Crotone basin (southern Italy). The fault zone cuts across interlayered fine- to coarse-grained sands and consists of a cm-thick, discrete fault core embedded in virtually undeformed wall sediments. Consequently, it can be described as "structurally oversimplified" due to the lack of footwall and hanging wall damage zones. We acquired microstructural, grain size, grain shape, porosity, mineralogical and permeability data to investigate the influence of initial sedimentological characteristics of sands on the final faulted granular products and related hydrologic properties. Faulting evolves by a general grain size and porosity reduction with a combination of intragranular fracturing, spalling, and flaking of grain edges, irrespective of grain mineralogy. The dominance of cataclasis, also confirmed by fractal dimensions >2.6, is generally not expected at a deformation depth <1 km. Coarse-grained sand shows a much higher comminution intensity, grain shape variations and permeability drop than fine-grained sands. This is because coarser aggregates have (i) fewer grain-to-grain contacts for a given area, which results in higher stress concentration at contact points, and (ii) a higher probability of pre-existing intragranular microstructural defects that result in a lower grain strength. The peculiar structural architecture, the dominance of cataclasis over non-destructive particulate flow, and the compositional variations of clay minerals in the fault core, strongly suggest that the studied fault zone developed by a coseismic rupture.

  9. Sandy Soil Microaggregates: Rethinking Our Understanding of Hydraulic Function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paradiś, Ashley; Brueck, Christopher; Meisenheimer, Douglas

    2017-01-01

    This study investigated the peculiar structure of microaggregates in coarse sandy soils that exhibit only external porosity and investigated their control on soil hydrology. The microstructure underpins a hydrologic existence that differs from finer textured soils where aggregates have internal porosity. Understanding the impact of these microaggregates on soil hydrology will permit improved agricultural irrigation management and estimates associated with ecosystem capacity and resiliency. Microstructure was investigated using a digital microscope, and aspects of the structure were quantified by sedimentation and computed microtomography. Sandy soil microaggregates were observed to be comprised of a solid sand-grain core that is coated withmore » fines, presumably cemented by organic media. This microstructure leads to three distinct water pools during drainage: capillary water, followed by thick films (1–20 μm) enveloping the outer surfaces of the crusted microaggregates, followed by adsorbed thin films (<1 μm). The characteristics of the thick films were investigated using an analytical model. These films may provide as much as 10 to 40% saturation in the range of plant-available water. Using lubrication theory, it was predicted that thick film drainage follows a power law function with an exponent of 2. Thick films may also have a role in the geochemical evolution of soils and in ecosystem function because they provide contiguous water and gas phases at relatively high moisture contents. And, because the rough outer crust of these microaggregates can provide good niches for microbial activity, biofilm physics will dominate thick film processes, and consequently hydrologic, biologic, and geochemical functions for coarse sandy soils.« less

  10. The 1845 Hekla eruption: Grain-size characteristics of a tephra layer

    NASA Astrophysics Data System (ADS)

    Gudnason, Jonas; Thordarson, Thor; Houghton, Bruce F.; Larsen, Gudrun

    2018-01-01

    The 1845 eruption is commonly viewed as a typical Hekla eruption. It is a key event in the eruptive history of the volcano, as it is one of the best documented Hekla eruptions, in terms of contemporary accounts and observations. The eruption started on 2 September 1845 with an intense, hour long explosive Plinian phase that passed into effusive activity, ending on the 16 March 1846. The amount of tephra produced in the opening phase was 0.13 km3/7.5 × 1010 kg. The total grain-size distribution of the deposit is bimodal with a dominant coarse mode at - 2.5 φ (5.6 mm) and a broad finer mode at 3 to 4.5 φ (0.125 to 0.045 mm). At individual sites, the grain-size distribution of the tephra from the Plinian opening phase is also commonly (not always) bimodal. Deconvolved grain-size distributions exhibit distinctly different sedimentation patterns of the coarse and fine subpopulations. The lapilli-dominated subpopulation fines rapidly with transport, while the ash-dominated subpopulation shows less changes with distance, indicating premature sedimentation of fines by aggregation from the 1845 volcanic plume. Tephra deposition was to the ESE of the volcano from a 19 km (a.s.l.) high eruption plume. The plume front travelled at speeds of 16-19 m s- 1. Reports of ash deposition onto ships near the Faroe and Shetland Islands, 700 to 1100 km away from Hekla, demonstrate that even moderate-sized Hekla eruptions can affect very large parts of European air-space.

  11. The Aerosol Coarse Mode Initiative

    NASA Astrophysics Data System (ADS)

    Arnott, W. P.; Adhikari, N.; Air, D.; Kassianov, E.; Barnard, J.

    2014-12-01

    Many areas of the world show an aerosol volume distribution with a significant coarse mode and sometimes a dominant coarse mode. The large coarse mode is usually due to dust, but sea salt aerosol can also play an important role. However, in many field campaigns, the coarse mode tends to be ignored, because it is difficult to measure. This lack of measurements leads directly to a concomitant "lack of analysis" of this mode. Because, coarse mode aerosols can have significant effects on radiative forcing, both in the shortwave and longwave spectrum, the coarse mode -- and these forcings -- should be accounted for in atmospheric models. Forcings based only on fine mode aerosols have the potential to be misleading. In this paper we describe examples of large coarse modes that occur in areas of large aerosol loading (Mexico City, Barnard et al., 2010) as well as small loadings (Sacramento, CA; Kassianov et al., 2012; and Reno, NV). We then demonstrate that: (1) the coarse mode can contribute significantly to radiative forcing, relative to the fine mode, and (2) neglecting the coarse mode may result in poor comparisons between measurements and models. Next we describe -- in general terms -- the limitations of instrumentation to measure the coarse mode. Finally, we suggest a new initiative aimed at examining coarse mode aerosol generation mechanisms; transport and deposition; chemical composition; visible and thermal IR refractive indices; morphology; microphysical behavior when deposited on snow and ice; and specific instrumentation needs. Barnard, J. C., J. D. Fast, G. Paredes-Miranda, W. P. Arnott, and A. Laskin, 2010: Technical Note: Evaluation of the WRF-Chem "Aerosol Chemical to Aerosol Optical Properties" Module using data from the MILAGRO campaign, Atmospheric Chemistry and Physics, 10, 7325-7340. Kassianov, E. I., M. S. Pekour, and J. C. Barnard, 2012: Aerosols in Central California: Unexpectedly large contribution of coarse mode to aerosol radiative forcing, Geophys. Res. Lett., 39, L20806, doi:10.1029/2012GL053469.

  12. Texture coarseness responsive neurons and their mapping in layer 2–3 of the rat barrel cortex in vivo

    PubMed Central

    Garion, Liora; Dubin, Uri; Rubin, Yoav; Khateb, Mohamed; Schiller, Yitzhak; Azouz, Rony; Schiller, Jackie

    2014-01-01

    Texture discrimination is a fundamental function of somatosensory systems, yet the manner by which texture is coded and spatially represented in the barrel cortex are largely unknown. Using in vivo two-photon calcium imaging in the rat barrel cortex during artificial whisking against different surface coarseness or controlled passive whisker vibrations simulating different coarseness, we show that layer 2–3 neurons within barrel boundaries differentially respond to specific texture coarsenesses, while only a minority of neurons responded monotonically with increased or decreased surface coarseness. Neurons with similar preferred texture coarseness were spatially clustered. Multi-contact single unit recordings showed a vertical columnar organization of texture coarseness preference in layer 2–3. These findings indicate that layer 2–3 neurons perform high hierarchical processing of tactile information, with surface coarseness embodied by distinct neuronal subpopulations that are spatially mapped onto the barrel cortex. DOI: http://dx.doi.org/10.7554/eLife.03405.001 PMID:25233151

  13. The decomposition of fine and coarse roots: their global patterns and controlling factors

    PubMed Central

    Zhang, Xinyue; Wang, Wei

    2015-01-01

    Fine root decomposition represents a large carbon (C) cost to plants, and serves as a potential soil C source, as well as a substantial proportion of net primary productivity. Coarse roots differ markedly from fine roots in morphology, nutrient concentrations, functions, and decomposition mechanisms. Still poorly understood is whether a consistent global pattern exists between the decomposition of fine (<2 mm root diameter) and coarse (≥2 mm) roots. A comprehensive terrestrial root decomposition dataset, including 530 observations from 71 sampling sites, was thus used to compare global patterns of decomposition of fine and coarse roots. Fine roots decomposed significantly faster than coarse roots in middle latitude areas, but their decomposition in low latitude regions was not significantly different from that of coarse roots. Coarse root decomposition showed more dependence on climate, especially mean annual temperature (MAT), than did fine roots. Initial litter lignin content was the most important predictor of fine root decomposition, while lignin to nitrogen ratios, MAT, and mean annual precipitation were the most important predictors of coarse root decomposition. Our study emphasizes the necessity of separating fine roots and coarse roots when predicting the response of belowground C release to future climate changes. PMID:25942391

  14. Pyrosequencing of microbial community of typical chernozem in contrast land use conditions

    NASA Astrophysics Data System (ADS)

    Ivanova, Ekaterina; Olga, Kutovaya; Azida, Tkhakakhova

    2015-04-01

    Chernozems are the principal soil resourse of Russia, so the sustainable use of these fertile soils in the intensive agriculturural production is of great importance, especially in terms of agro-ecological security of the country. The increase in agricultural inputs - intensive cropping, soil fallowing application accompanied with high frequency of mechanical treatment, result in decrease in soil organic matter content as well as soil structure degradation and, finally, lead to the loss of soil fertility. Soil microorganisms can serve as bioindicators of anthropogenic stress experienced by the soil during its agricultural use, so they may be universal indicators of soil quality (soil health) used for optimization and biologization of agricultural systems. The way to study the relationship between the structural status of the soil, its microbial communities and the organic matter content is the comparative analysis of soil aggregates in conditions of different land use practices. The objects of our research were soil samples of soil with permanent wheat cropping (50 years), continuous dead fallow (50 years) soil, and recovering soil (for 18 years under native steppe vegetation, fallowed in previous). The analysis of 16 S rRNA gene amplicon libraries of typical chernozem in conditions of different land use systems revealed that the way of agricultural use is a strong determinant of soil microbiome taxonomic composition. It was shown that the continuous «dead fallowing» application (for 50 years) lead to the establishment of olygothrophic components of microbial community, including spore-forming members of phylum Firmicutes. The increase of Acidobacteria lineages in this variant may be an indicator of some acidification of soil during long-time fallowing application. The variant of continuous wheat cropping lead to increasing in Proteobacteria lineages. The variant of soil under native steppe vegetation was characterized by the highest values of biodiversity indices - species richness and eveness, which can indicate the occurrence of soil recovering. This variant was also characterized by the maximum content of agricultural valuable aggregate fraction of 2-5 mm size. In soil samples from different aggregate fractions the presence of accessory components was revealed. It was determined that Actinobacteria lineages preferred microaggregates (less than 0.25 mm) rather than coarse aggregate fractions (more than 7 mm). The opposite trend was determined for Proteobacteria: the amount was maximum in aggregates more than 7 mm in diameter. The occurrence of specific components in the taxonomic structure of micro-and macro-aggregates may indicate the presence of a certain size fraction in the structure of the investigated soil. The study of soils' metagenome is promising for the development of both soil microbiology, and for the soil processes trends in soils of anthropogenic origin. The study was supported by Russian Scientific Fund (14-26-00079 and 14-26-00094)

  15. [Intervention of coarse cereals on lipid metabolism in rats].

    PubMed

    Guo, Yanbo; Zhai, Chengkai; Wang, Yanli; Zhang, Qun; Ding, Zhoubo; Jin, Xin

    2010-03-01

    To observe the effect of coarse cereals on improving the disorder of lipid metabolism and the expression of PPARgamma mRNA in white adipose tissue in rats to investigate the mechanism of coarse cereals on lipid metabolism disorder. Forty four SPF rats were randomly divided into 4 groups: the negative control group was fed with normal diet and 3 experimental groups were fed with high-fat modeling diet for 6 weeks for model building. The 3 experimental groups, the coarse cereals group,rice-flour group and the hyperlipemia model group, were then fed with coarse cereals high-fat diet,rice-flour high-diet and high-fat modeling diet respectively for another 15 weeks. Compared with the hyperlipemia modeling group, serum TG, TC, IL-6 and TNF-alpha in the coarse cereals group were declined significantly (P < 0.05), serum HDL-C in coarse cereals group was higher than that in rice-flour group and hyperlipemia model group (P < 0.05), LPL, HL and TNF-alpha in coarse cereal group were close to the negative control group. Moreover, the expression of PPAR-gamma mRNA in white adipose tissue of the coarse cereals group was higher than other groups. The coarse cereals could activate PPARgamma and enhance the activity of key enzymes in lipids metabolism, so as to reduce the level of TG relieve inflammation and improve lipid dysmetabolism eventually.

  16. Coarse-graining using the relative entropy and simplex-based optimization methods in VOTCA

    NASA Astrophysics Data System (ADS)

    Rühle, Victor; Jochum, Mara; Koschke, Konstantin; Aluru, N. R.; Kremer, Kurt; Mashayak, S. Y.; Junghans, Christoph

    2014-03-01

    Coarse-grained (CG) simulations are an important tool to investigate systems on larger time and length scales. Several methods for systematic coarse-graining were developed, varying in complexity and the property of interest. Thus, the question arises which method best suits a specific class of system and desired application. The Versatile Object-oriented Toolkit for Coarse-graining Applications (VOTCA) provides a uniform platform for coarse-graining methods and allows for their direct comparison. We present recent advances of VOTCA, namely the implementation of the relative entropy method and downhill simplex optimization for coarse-graining. The methods are illustrated by coarse-graining SPC/E bulk water and a water-methanol mixture. Both CG models reproduce the pair distributions accurately. SYM is supported by AFOSR under grant 11157642 and by NSF under grant 1264282. CJ was supported in part by the NSF PHY11-25915 at KITP. K. Koschke acknowledges funding by the Nestle Research Center.

  17. Potential of scrap tire rubber as lightweight aggregate in flowable fill.

    PubMed

    Pierce, C E; Blackwell, M C

    2003-01-01

    Flowable fill is a self-leveling and self-compacting material that is rapidly gaining acceptance and application in construction, particularly in transportation and utility earthworks. When mixed with concrete sand, standard flowable fill produces a mass density ranging from 1.8 to 2.3 g/cm(3) (115-145 pcf). Scrap tires can be granulated to produce crumb rubber, which has a granular texture and ranges in size from very fine powder to coarse sand-sized particles. Due to its low specific gravity, crumb rubber can be considered a lightweight aggregate. This paper describes an experimental study on replacing sand with crumb rubber in flowable fill to produce a lightweight material. To assess the technical feasibility of using crumb rubber, the fluid- and hardened-state properties of nine flowable fill mixtures were measured. Mixture proportions were varied to investigate the effects of water-to-cement ratio and crumb rubber content on fill properties. Experimental results indicate that crumb rubber can be successfully used to produce a lightweight flowable fill (1.2-1.6 g/cm(3) [73-98 pcf]) with excavatable 28-day compressive strengths ranging from 269 to 1194 kPa (39-173 psi). Using a lightweight fill reduces the applied stress on underlying soils, thereby reducing the potential for bearing capacity failure and minimizing soil settlement. Based on these results, a crumb rubber-based flowable fill can be used in a substantial number of construction applications, such as bridge abutment fills, trench fills, and foundation support fills.

  18. The influence of different processing stages on particle size, microstructure, and appearance of dark chocolate.

    PubMed

    Glicerina, Virginia; Balestra, Federica; Dalla Rosa, Marco; Bergenhstål, Bjorn; Tornberg, Eva; Romani, Santina

    2014-07-01

    The effect of different process stages on microstructural and visual properties of dark chocolate was studied. Samples were obtained at each phase of the manufacture process: mixing, prerefining, refining, conching, and tempering. A laser light diffraction technique and environmental scanning electron microscopy (ESEM) were used to study the particle size distribution (PSD) and to analyze modifications in the network structure. Moreover, colorimetric analyses (L*, h°, and C*) were performed on all samples. Each stage influenced in stronger way the microstructural characteristic of products and above all the PSD. Sauter diameter (D [3.2]) decreased from 5.44 μm of mixed chocolate sample to 3.83 μm, of the refined one. ESEM analysis also revealed wide variations in the network structure of samples during the process, with an increase of the aggregation and contact point between particles from mixing to refining stage. Samples obtained from the conching and tempering were characterized by small PS, and a less dense aggregate structure. From color results, samples with the finest particles, having larger specific surface area and the smallest diameter, appeared lighter and more saturated than those with coarse particles. Final quality of food dispersions is affected by network and particles characteristics. The deep knowledge of the influence of single processing stage on chocolate microstructural properties is useful in order to improve or modify final product characteristics. ESEM and laser diffraction are suitable techniques to study changes in chocolate microstructure. © 2014 Institute of Food Technologists®

  19. Effect of elevation resolution on evapotranspiration simulations using MODFLOW.

    PubMed

    Kambhammettu, B V N P; Schmid, Wolfgang; King, James P; Creel, Bobby J

    2012-01-01

    Surface elevations represented in MODFLOW head-dependent packages are usually derived from digital elevation models (DEMs) that are available at much high resolution. Conventional grid refinement techniques to simulate the model at DEM resolution increases computational time, input file size, and in many cases are not feasible for regional applications. This research aims at utilizing the increasingly available high resolution DEMs for effective simulation of evapotranspiration (ET) in MODFLOW as an alternative to grid refinement techniques. The source code of the evapotranspiration package is modified by considering for a fixed MODFLOW grid resolution and for different DEM resolutions, the effect of variability in elevation data on ET estimates. Piezometric head at each DEM cell location is corrected by considering the gradient along row and column directions. Applicability of the research is tested for the lower Rio Grande (LRG) Basin in southern New Mexico. The DEM at 10 m resolution is aggregated to resampled DEM grid resolutions which are integer multiples of MODFLOW grid resolution. Cumulative outflows and ET rates are compared at different coarse resolution grids. Results of the analysis conclude that variability in depth-to-groundwater within the MODFLOW cell is a major contributing parameter to ET outflows in shallow groundwater regions. DEM aggregation methods for the LRG Basin have resulted in decreased volumetric outflow due to the formation of a smoothing error, which lowered the position of water table to a level below the extinction depth. © 2011, The Author(s). Ground Water © 2011, National Ground Water Association.

  20. Structure organization and magnetic properties of microscale ferrogels: The effect of particle magnetic anisotropy

    NASA Astrophysics Data System (ADS)

    Ryzhkov, Aleksandr V.; Melenev, Petr V.; Balasoiu, Maria; Raikher, Yuriy L.

    2016-08-01

    The equilibrium structure and magnetic properties of a ferrogel object of small size (microferrogel(MFG)) are investigated by coarse-grained molecular dynamics. As a generic model of a microferrogel (MFG), a sample with a lattice-like mesh is taken. The solid phase of the MFG consists of magnetic (e.g., ferrite) nanoparticles which are mechanically linked to the mesh making some part of its nodes. Unlike previous models, the finite uniaxial magnetic anisotropy of the particles, as it is the case for real ferrogels, is taken into account. For comparison, two types of MFGs are considered: MFG-1, which dwells in virtually non-aggregated state independently of the presence of an external magnetic field, and MFG-2, which displays aggregation yet under zero field. The structure states of the samples are analyzed with the aid of angle-resolved radial distribution functions and cluster counts. The results reveal the crucial role of the matrix elasticity on the structure organization as well as on magnetization of both MFGs. The particle anisotropy, which plays insignificant role in MFG-1 (moderate interparticle magnetodipole interaction), becomes an important factor in MFG-2 (strong interaction). There, the restrictions imposed on the particle angular freedom by the elastic matrix result in notable diminution of the particle chain lengths as well as the magnetization of the sample. The approach proposed enables one to investigate a large variety of MFGs, including those of capsule type and to purposefully choose the combination of their magnetoelastic parameters.

  1. Coarse woody debris: Managing benefits and fire hazard in the recovering forest

    Treesearch

    James K. Brown; Elizabeth D. Reinhardt; Kylie A. Kramer

    2003-01-01

    Management of coarse woody debris following fire requires consideration of its positive and negative values. The ecological benefits of coarse woody debris and fire hazard considerations are summarized. This paper presents recommendations for desired ranges of coarse woody debris. Example simulations illustrate changes in debris over time and with varying management....

  2. Coarse-graining errors and numerical optimization using a relative entropy framework

    NASA Astrophysics Data System (ADS)

    Chaimovich, Aviel; Shell, M. Scott

    2011-03-01

    The ability to generate accurate coarse-grained models from reference fully atomic (or otherwise "first-principles") ones has become an important component in modeling the behavior of complex molecular systems with large length and time scales. We recently proposed a novel coarse-graining approach based upon variational minimization of a configuration-space functional called the relative entropy, Srel, that measures the information lost upon coarse-graining. Here, we develop a broad theoretical framework for this methodology and numerical strategies for its use in practical coarse-graining settings. In particular, we show that the relative entropy offers tight control over the errors due to coarse-graining in arbitrary microscopic properties, and suggests a systematic approach to reducing them. We also describe fundamental connections between this optimization methodology and other coarse-graining strategies like inverse Monte Carlo, force matching, energy matching, and variational mean-field theory. We suggest several new numerical approaches to its minimization that provide new coarse-graining strategies. Finally, we demonstrate the application of these theoretical considerations and algorithms to a simple, instructive system and characterize convergence and errors within the relative entropy framework.

  3. Transitional grain-size-sensitive flow of milky quartz aggregates

    NASA Astrophysics Data System (ADS)

    Fukuda, J. I.; Holyoke, C. W., III; Kronenberg, A. K.

    2014-12-01

    Fine-grained (~15 μm) milky quartz aggregates exhibit reversible flow strengths in triaxial compression experiments conducted at T = 800-900oC, Pc = 1.5 GPa when strain rates are sequentially decreased (typically from 10-3.5 to 10-4.5 and 10-5.5 s-1), and then returned to the original rate (10-3.5 s-1), while samples that experience grain growth at 1000oC (to 35 μm) over the same sequence of strain rates exhibit an irreversible increase in strength. Polycrystalline quartz aggregates have been synthesized from natural milky quartz powders (ground to 5 μm) by HIP methods at T = 1000oC, Pc = 1.5 GPa and t = 24 hours, resulting in dense, fine-grained aggregates of uniform water content of ~4000 ppm (H/106Si), as indicated by a broad OH absorption band at 3400 cm-1. In experiments performed at 800o and 900oC, grain sizes of the samples are essentially constant over the duration of each experiment, though grain shapes change significantly, and undulatory extinction and deformation lamellae indicate that much of the sample shortening (to 50%) is accomplished, over the four strain-rate steps, by dislocation creep. Differential stresses measured at T = 800oC decrease from 160 to 30 MPa as strain rate is reduced from 10-4.6 to 10-5.5 s-1, and a stress of 140 MPa is measured when strain rate is returned to 10-4.5 s-1. Samples deformed at 1000o and 1100oC experience normal grain growth, with grain boundary energy-driven grain-coarsening textures superposed by undulatory extinction and deformation lamellae. Differential stresses measured at 1000oC and strain rates of 10-3.6, 10-4.6, and 10-5.5 s-1 are 185, 80, and 80 MPa, respectively, while an increased flow stress of 260 MPa is measured (following ~28 hours of prior high temperature deformation and grain growth) when strain rate is returned to 10-3.6 s-1. While all samples exhibit lattice preferred orientations, the stress exponent n inferred for the fine-grained 800oC sample is 1.5 and the stress exponent of the coarse-grained 1000oC sample is between ~3 and 4. Our value for n of fine-grained quartz samples (and previously reported values of n < 3 for quartz aggregates with added water) may attest to a component of diffusion creep and grain boundary sliding that accompanies dislocation creep.

  4. Coarse-sediment bands on the inner shelf of southern Monterey Bay, California

    USGS Publications Warehouse

    Hunter, R.E.; Dingler, J.R.; Anima, R.J.; Richmond, B.M.

    1988-01-01

    Bands of coarse sand that trend parallel to the shore, unlike the approximately shore-normal bands found in many inner shelf areas, occur in southern Monterey Bay at water depths of 10-20 m, less than 1 km from the shore. The bands are 20-100 m wide and alternate with bands of fine sand that are of similar width. The coarse-sand bands are as much as 1 m lower than the adjacent fine-sand bands, which have margins inclined at angles of about 20??. The mean grain sizes of the coarse and fine sand are in the range of 0.354-1.0 mm and 0.125-0.354 mm, respectively. Wave ripples that average about 1 m in spacing always occur in the coarse-sand bands. Over a period of 3 yrs, the individual bands moved irregularly and changed in shape, as demonstrated by repeated sidescan sonar surveys and by the monitoring of rods jetted into the sea floor. However, the overall pattern and distribution of the bands remained essentially unchanged. Cores, 0.5-1.0 m long, taken in coarse-sand bands contain 0.2-0.5 m of coarse sand overlying fine sand or interbedded fine and coarse sand. Cores from fine-sand bands have at least one thin coarse sand layer at about the depth of the adjacent coarse-sand band. None of the cores revealed a thick deposit of coarse sand. The shore-parallel bands are of unknown origin. Their origin is especially puzzling because approximately shore-normal bands are present in parts of the study area and immediately to the north. ?? 1988.

  5. Dominance of debonding defect of CFST on PZT sensor response considering the meso-scale structure of concrete with multi-scale simulation

    NASA Astrophysics Data System (ADS)

    Xu, Bin; Chen, Hongbing; Mo, Y.-L.; Zhou, Tianmin

    2018-07-01

    Piezoelectric-lead-zirconate-titanate(PZT)-based interface debonding defects detection for concrete filled steel tubulars (CFSTs) has been proposed and validated through experiments, and numerical study on its mechanism has been carried out recently by assuming that concrete material is homogenous. However, concrete is composed of coarse and fine aggregates, mortar and interface transition zones (ITZs) and even initial defects and is a typical nonhomogeneous material and its mesoscale structure might affect the wave propagation in the concrete core of CFST members. Therefore, it is significantly important to further investigate the influence of mesoscale structure of concrete on the stress wave propagation and the response of embedded PZT sensor for the interface debonding detection. In this study, multi-physical numerical simulation on the wave propagation and embedded PZT sensor response of rectangular CFST members with numerical concrete core considering the randomness in circular aggregate distribution, and coupled with surface-mounted PZT actuator and embedded PZT sensor is carried out. The effect of randomness in the circular aggregates distribution and the existence of ITZs are discussed. Both a local stress wave propagation behavior including transmission, reflection, and diffraction at the interface between concrete core and steel tube under a pulse signal excitation and a global wave field in the cross-section of the rectangular CFST models without and with interface debonding defects under sweep frequency excitation are simulated. The sensitivity of an evaluation index based on wavelet packet analysis on the embedded PZT sensor response on the variation of mesoscale parameters of concrete core without and with different interface debonding defects under sweep frequency voltage signal is investigated in details. The results show that the effect of the interface debondings on the embedded PZT measurement is dominant when compared to the meso-scale structures of concrete core. This study verified the feasibility of the PZT based debonding detection for rectangular CFST members even the meso-scale structure of concrete core is considered.

  6. Utilize Cementitious High Carbon Fly Ash (CHCFA) to Stabilize Cold In-Place Recycled (CIR) Asphalt Pavement as Base Coarse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wen, Haifang; Li, Xiaojun; Edil, Tuncer

    The purpose of this study was to evaluate the performance of cementitious high carbon fly ash (CHCFA) stabilized recycled asphalt pavement as a base course material in a real world setting. Three test road cells were built at MnROAD facility in Minnesota. These cells have the same asphalt surface layers, subbases, and subgrades, but three different base courses: conventional crushed aggregates, untreated recycled pavement materials (RPM), and CHCFA stabilized RPM materials. During and after the construction of the three cells, laboratory and field tests were carried out to characterize the material properties. The test results were used in the mechanistic-empiricalmore » pavement design guide (MEPDG) to predict the pavement performance. Based on the performance prediction, the life cycle analyses of cost, energy consumption, and greenhouse gasses were performed. The leaching impacts of these three types of base materials were compared. The laboratory and field tests showed that fly ash stabilized RPM had higher modulus than crushed aggregate and RPM did. Based on the MEPDG performance prediction, the service life of the Cell 79 containing fly ash stabilized RPM, is 23.5 years, which is about twice the service life (11 years) of the Cell 77 with RPM base, and about three times the service life (7.5 years) of the Cell 78 with crushed aggregate base. The life cycle analysis indicated that the usage of the fly ash stabilized RPM as the base of the flexible pavement can significantly reduce the life cycle cost, the energy consumption, the greenhouse gases emission. Concentrations of many trace elements, particularly those with relatively low water quality standards, diminish over time as water flows through the pavement profile. For many elements, concentrations below US water drinking water quality standards are attained at the bottom of the pavement profile within 2-4 pore volumes of flow.« less

  7. Tillage and crop residue management methods had minor effects on the stock and stabilization of topsoil carbon in a 30-year field experiment.

    PubMed

    Singh, Pooja; Heikkinen, Jaakko; Ketoja, Elise; Nuutinen, Visa; Palojärvi, Ansa; Sheehy, Jatta; Esala, Martti; Mitra, Sudip; Alakukku, Laura; Regina, Kristiina

    2015-06-15

    We studied the effects of tillage and straw management on soil aggregation and soil carbon sequestration in a 30-year split-plot experiment on clay soil in southern Finland. The experimental plots were under conventional or reduced tillage with straw retained, removed or burnt. Wet sieving was done to study organic carbon and soil composition divided in four fractions: 1) large macroaggregates, 2) small macroaggregates, 3) microaggregates and 4) silt and clay. To further estimate the stability of carbon in the soil, coarse particulate organic matter, microaggregates and silt and clay were isolated from the macroaggregates. Total carbon stock in the topsoil (equivalent to 200 kg m(-2)) was slightly lower under reduced tillage (5.0 kg m(-2)) than under conventional tillage (5.2 kg m(-2)). Reduced tillage changed the soil composition by increasing the percentage of macroaggregates and decreasing the percentage of microaggregates. There was no evidence of differences in the composition of the macroaggregates or carbon content in the macroaggregate-occluded fractions. However, due to the higher total amount of macroaggregates in the soil, more carbon was bound to the macroaggregate-occluded microaggregates in reduced tillage. Compared with plowed soil, the density of deep burrowing earthworms (Lumbricus terrestris) was considerably higher under reduced tillage and positively associated with the percentage of large macroaggregates. The total amount of microbial biomass carbon did not differ between the treatments. Straw management did not have discernible effects either on soil aggregation or soil carbon stock. We conclude that although reduced tillage can improve clay soil structure, generally the chances to increase topsoil carbon sequestration by reduced tillage or straw management practices appear limited in cereal monoculture systems of the boreal region. This may be related to the already high C content of soils, the precipitation level favoring decomposition and aggregate turnover in the winter with topsoil frost. Copyright © 2015. Published by Elsevier B.V.

  8. Seeing through the Canopy: Relationship between Coarse Woody Debris and Forest Structure measured by Airborne Lidar in the Brazilian Amazon

    NASA Astrophysics Data System (ADS)

    Scaranello, M. A., Sr.; Keller, M. M.; dos-Santos, M. N.; Longo, M.; Pinagé, E. R.; Leitold, V.

    2016-12-01

    Coarse woody debris is an important but infrequently quantified carbon pool in tropical forests. Based on studies at 12 sites spread across the Brazilian Amazon, we quantified coarse woody debris stocks in intact forests and forests affected by different intensities of degradation by logging and/or fire. Measurement were made in-situ and for the first time field measurements of coarse woody debris were related to structural metrics derived from airborne lidar. Using the line-intercept method we established 84 transects for sampling fallen coarse woody debris and associated inventory plots for sampling standing dead wood in intact, conventional logging, reduced impact logging, burned and burned after logging forests. Overall mean and standard deviation of total coarse woody debris were 50.0 Mg ha-1 and 26.4 Mg ha-1 respectively. Forest degradation increased coarse woody debris stocks compared to intact forests by a factor of 1.7 in reduced impact logging forests and up to 3-fold in burned forests, in a side-by-side comparison of nearby areas. The ratio between coarse woody debris and biomass increased linearly with number of degradation events (R²: 0.67, p<0.01). Individual lidar-derived structural variables strongly correlated with coarse woody debris in intact and reduced impact logging forests: the 5th percentile of last returns for in intact forests (R²: 0.78, p<0.01) and forest gap area, mapped using lidar-derived canopy height model, for reduced impact logging forests (R²: 0.63, p<0.01). Individual gap area also played a weak but significant role in determining coarse woody debris in burned forests (R2: 0.21, p<0.05), but with contrasting trend. Both degradation-specific and general multiple models using lidar-derived variables were good predictor of coarse woody debris stocks in different degradation levels in the Brazilian Amazon. The strong relation of coarse woody debris with lidar derived structural variables suggests an approach for quantifying infrequently measured coarse woody debris over large areas.

  9. Relative entropy and optimization-driven coarse-graining methods in VOTCA

    DOE PAGES

    Mashayak, S. Y.; Jochum, Mara N.; Koschke, Konstantin; ...

    2015-07-20

    We discuss recent advances of the VOTCA package for systematic coarse-graining. Two methods have been implemented, namely the downhill simplex optimization and the relative entropy minimization. We illustrate the new methods by coarse-graining SPC/E bulk water and more complex water-methanol mixture systems. The CG potentials obtained from both methods are then evaluated by comparing the pair distributions from the coarse-grained to the reference atomistic simulations.We have also added a parallel analysis framework to improve the computational efficiency of the coarse-graining process.

  10. Role of translational entropy in spatially inhomogeneous, coarse-grained models

    NASA Astrophysics Data System (ADS)

    Langenberg, Marcel; Jackson, Nicholas E.; de Pablo, Juan J.; Müller, Marcus

    2018-03-01

    Coarse-grained models of polymer and biomolecular systems have enabled the computational study of cooperative phenomena, e.g., self-assembly, by lumping multiple atomistic degrees of freedom along the backbone of a polymer, lipid, or DNA molecule into one effective coarse-grained interaction center. Such a coarse-graining strategy leaves the number of molecules unaltered. In order to treat the surrounding solvent or counterions on the same coarse-grained level of description, one can also stochastically group several of those small molecules into an effective, coarse-grained solvent bead or "fluid element." Such a procedure reduces the number of molecules, and we discuss how to compensate the concomitant loss of translational entropy by density-dependent interactions in spatially inhomogeneous systems.

  11. Coarse graining for synchronization in directed networks

    NASA Astrophysics Data System (ADS)

    Zeng, An; Lü, Linyuan

    2011-05-01

    Coarse-graining model is a promising way to analyze and visualize large-scale networks. The coarse-grained networks are required to preserve statistical properties as well as the dynamic behaviors of the initial networks. Some methods have been proposed and found effective in undirected networks, while the study on coarse-graining directed networks lacks of consideration. In this paper we proposed a path-based coarse-graining (PCG) method to coarse grain the directed networks. Performing the linear stability analysis of synchronization and numerical simulation of the Kuramoto model on four kinds of directed networks, including tree networks and variants of Barabási-Albert networks, Watts-Strogatz networks, and Erdös-Rényi networks, we find our method can effectively preserve the network synchronizability.

  12. Effects of coarse chalk dust particles (2.5-10 μm) on respiratory burst and oxidative stress in alveolar macrophages.

    PubMed

    Zhang, Yuexia; Yang, Zhenhua; Feng, Yan; Li, Ruijin; Zhang, Quanxi; Geng, Hong; Dong, Chuan

    2015-08-01

    The main aim of the present study was to examine in vitro responses of rat alveolar macrophages (AMs) exposed to coarse chalk dust particles (particulate matter in the size range 2.5-10 μm, PM(coarse)) by respiratory burst and oxidative stress. Chalk PM(coarse)-induced respiratory burst in AMs was measured by using a luminol-dependent chemiluminescence (CL) method. Also, the cell viability; lactate dehydrogenase (LDH) release; levels of cellular superoxide dismutase (SOD), catalase (CAT), glutathione (GSH), malondialdehyde (MDA), and acid phosphatase (ACP); plasma membrane ATPase; and extracellular nitric oxide (NO) level were determined 4 h following the treatment with the different dosages of chalk PM(coarse). The results showed that chalk PM(coarse) initiated the respiratory burst of AMs as indicated by strong CL, which was inhibited by diphenyleneiodonium chloride and L-N-nitro-L-arginine methyl ester hydrochloride. It suggested that chalk PM(coarse) induced the production of reactive oxygen species (ROS) and reactive nitrogen species (RNS) in AMs. This hypothesis was confirmed by the fact that chalk PM(coarse) resulted in a significant decrease of intracellular SOD, GSH, ACP, and ATPase levels and a notable increase of intracellular CAT, MDA content, and extracellular NO level, consequently leading to a decrease of the cell viability and a increase of LDH release. It was concluded that AMs exposed to chalk PM(coarse) can suffer from cytotoxicity which may be mediated by generation of excessive ROS/RNS. Graphical Abstract The possible mechanism of coarse chalk particles-induced adverse effects in AMs.

  13. Water ordering controls the dynamic equilibrium of micelle-fibre formation in self-assembly of peptide amphiphiles.

    PubMed

    Deshmukh, Sanket A; Solomon, Lee A; Kamath, Ganesh; Fry, H Christopher; Sankaranarayanan, Subramanian K R S

    2016-08-24

    Understanding the role of water in governing the kinetics of the self-assembly processes of amphiphilic peptides remains elusive. Here, we use a multistage atomistic-coarse-grained approach, complemented by circular dichroism/infrared spectroscopy and dynamic light scattering experiments to highlight the dual nature of water in driving the self-assembly of peptide amphiphiles (PAs). We show computationally that water cage formation and breakage near the hydrophobic groups control the fusion dynamics and aggregation of PAs in the micellar stage. Simulations also suggest that enhanced structural ordering of vicinal water near the hydrophilic amino acids shifts the equilibrium towards the fibre phase and stimulates structure and order during the PA assembly into nanofibres. Experiments validate our simulation findings; the measured infrared O-H bond stretching frequency is reminiscent of an ice-like bond which suggests that the solvated water becomes increasingly ordered with time in the assembled peptide network, thus shedding light on the role of water in a self-assembly process.

  14. Concrete alteration due to 55 years of exposure to river water: Chemical and mineralogical characterisation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosenqvist, Martin; Bertron, Alexandra; Fridh, Katja

    This article presents a study on concrete alteration mechanisms due to 55 years of exposure to river water. Many hydro power structures in cold regions suffer from concrete deterioration at the waterline. Progressive disintegration of the concrete surface leads to exposure of the coarse aggregate and eventually the reinforcing steel. Concrete cylinders drilled out at four vertically different locations on the upstream face of a concrete dam were analysed by electron microprobe analysis, X-ray diffraction, thermogravimetry and scanning electron microscopy. Long-term exposure to the river water, which is regarded as soft water, has led to chemical and mineralogical zonation ofmore » the cement paste. Up to five zones with different chemical and mineralogical composition, parallel to the upstream face, were observed in the outermost 8–9 mm of the concrete. Decalcification, precipitation of secondary ettringite and the formation of a magnesium-rich silica gel constitute the major changes that define the zones.« less

  15. A Stochastic Dynamic Programming Model With Fuzzy Storage States Applied to Reservoir Operation Optimization

    NASA Astrophysics Data System (ADS)

    Mousavi, Seyed Jamshid; Mahdizadeh, Kourosh; Afshar, Abbas

    2004-08-01

    Application of stochastic dynamic programming (SDP) models to reservoir optimization calls for state variables discretization. As an important variable discretization of reservoir storage volume has a pronounced effect on the computational efforts. The error caused by storage volume discretization is examined by considering it as a fuzzy state variable. In this approach, the point-to-point transitions between storage volumes at the beginning and end of each period are replaced by transitions between storage intervals. This is achieved by using fuzzy arithmetic operations with fuzzy numbers. In this approach, instead of aggregating single-valued crisp numbers, the membership functions of fuzzy numbers are combined. Running a simulated model with optimal release policies derived from fuzzy and non-fuzzy SDP models shows that a fuzzy SDP with a coarse discretization scheme performs as well as a classical SDP having much finer discretized space. It is believed that this advantage in the fuzzy SDP model is due to the smooth transitions between storage intervals which benefit from soft boundaries.

  16. The maximum percentage of fly ash to replace part of original Portland cement (OPC) in producing high strength concrete

    NASA Astrophysics Data System (ADS)

    Mallisa, Harun; Turuallo, Gidion

    2017-11-01

    This research investigates the maximum percent of fly ash to replace part of Orginal Portland Cement (OPC) in producing high strength concrete. Many researchers have found that the incorporation of industrial by-products such as fly ash as in producing concrete can improve properties in both fresh and hardened state of concrete. The water-binder ratio was used 0.30. The used sand was medium sand with the maximum size of coarse aggregate was 20 mm. The cement was Type I, which was Bosowa Cement produced by PT Bosowa. The percentages of fly ash to the total of a binder, which were used in this research, were 0, 10, 15, 20, 25 and 30%; while the super platicizer used was typed Naptha 511P. The results showed that the replacement cement up to 25 % of the total weight of binder resulted compressive strength higher than the minimum strength at one day of high-strength concrete.

  17. Changes in the microstructure and properties of aspen chemithermomechanical pulp fibres during recycling.

    PubMed

    Fu, Yingjuan; Wang, Rongrong; Li, Dejuan; Wang, Zhaojiang; Zhang, Fengshan; Meng, Qinglin; Qin, Menghua

    2015-03-06

    The effects of recycling on the microstructure and properties of bleached aspen chemithermomechanical pulp (CTMP) fibres were systematically investigated. The low-temperature nitrogen adsorption and atomic force microscopy results showed that a substantial amount of large pores and most of the very small pores in the fibre wall closed and the fibre surface became less coarse and porous during recycling. The partial cocrystallisation of cellulose microfibrils took place, as reflected in the increment of the cellulose crystallinity and the width of the crystallite in the 0 0 2 lattice plane. These irreversible structural changes caused significant hornification of the recycled fibres, leading to the loss of swelling and bonding capability. The decrease of the tensile index, burst index, and tear index further demonstrated the deterioration of the fibre properties. However, the single-fibre strength considerably increased after recycling, which was mainly due to the enlarged cellulose aggregates in the fibre wall. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Robust, Efficient Depth Reconstruction With Hierarchical Confidence-Based Matching.

    PubMed

    Sun, Li; Chen, Ke; Song, Mingli; Tao, Dacheng; Chen, Gang; Chen, Chun

    2017-07-01

    In recent years, taking photos and capturing videos with mobile devices have become increasingly popular. Emerging applications based on the depth reconstruction technique have been developed, such as Google lens blur. However, depth reconstruction is difficult due to occlusions, non-diffuse surfaces, repetitive patterns, and textureless surfaces, and it has become more difficult due to the unstable image quality and uncontrolled scene condition in the mobile setting. In this paper, we present a novel hierarchical framework with multi-view confidence-based matching for robust, efficient depth reconstruction in uncontrolled scenes. Particularly, the proposed framework combines local cost aggregation with global cost optimization in a complementary manner that increases efficiency and accuracy. A depth map is efficiently obtained in a coarse-to-fine manner by using an image pyramid. Moreover, confidence maps are computed to robustly fuse multi-view matching cues, and to constrain the stereo matching on a finer scale. The proposed framework has been evaluated with challenging indoor and outdoor scenes, and has achieved robust and efficient depth reconstruction.

  19. Upscaling of Mixed Finite Element Discretization Problems by the Spectral AMGe Method

    DOE PAGES

    Kalchev, Delyan Z.; Lee, C. S.; Villa, U.; ...

    2016-09-22

    Here, we propose two multilevel spectral techniques for constructing coarse discretization spaces for saddle-point problems corresponding to PDEs involving a divergence constraint, with a focus on mixed finite element discretizations of scalar self-adjoint second order elliptic equations on general unstructured grids. We use element agglomeration algebraic multigrid (AMGe), which employs coarse elements that can have nonstandard shape since they are agglomerates of fine-grid elements. The coarse basis associated with each agglomerated coarse element is constructed by solving local eigenvalue problems and local mixed finite element problems. This construction leads to stable upscaled coarse spaces and guarantees the inf-sup compatibility ofmore » the upscaled discretization. Also, the approximation properties of these upscaled spaces improve by adding more local eigenfunctions to the coarse spaces. The higher accuracy comes at the cost of additional computational effort, as the sparsity of the resulting upscaled coarse discretization (referred to as operator complexity) deteriorates when we introduce additional functions in the coarse space. We also provide an efficient solver for the coarse (upscaled) saddle-point system by employing hybridization, which leads to a symmetric positive definite (s.p.d.) reduced system for the Lagrange multipliers, and to solve the latter s.p.d. system, we use our previously developed spectral AMGe solver. Numerical experiments, in both two and three dimensions, are provided to illustrate the efficiency of the proposed upscaling technique.« less

  20. Upscaling of Mixed Finite Element Discretization Problems by the Spectral AMGe Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalchev, Delyan Z.; Lee, C. S.; Villa, U.

    Here, we propose two multilevel spectral techniques for constructing coarse discretization spaces for saddle-point problems corresponding to PDEs involving a divergence constraint, with a focus on mixed finite element discretizations of scalar self-adjoint second order elliptic equations on general unstructured grids. We use element agglomeration algebraic multigrid (AMGe), which employs coarse elements that can have nonstandard shape since they are agglomerates of fine-grid elements. The coarse basis associated with each agglomerated coarse element is constructed by solving local eigenvalue problems and local mixed finite element problems. This construction leads to stable upscaled coarse spaces and guarantees the inf-sup compatibility ofmore » the upscaled discretization. Also, the approximation properties of these upscaled spaces improve by adding more local eigenfunctions to the coarse spaces. The higher accuracy comes at the cost of additional computational effort, as the sparsity of the resulting upscaled coarse discretization (referred to as operator complexity) deteriorates when we introduce additional functions in the coarse space. We also provide an efficient solver for the coarse (upscaled) saddle-point system by employing hybridization, which leads to a symmetric positive definite (s.p.d.) reduced system for the Lagrange multipliers, and to solve the latter s.p.d. system, we use our previously developed spectral AMGe solver. Numerical experiments, in both two and three dimensions, are provided to illustrate the efficiency of the proposed upscaling technique.« less

  1. Quantifying the coarse-root biomass of intensively managed loblolly pine plantations

    Treesearch

    Ashley T. Miller; H. Lee Allen; Chris A. Maier

    2006-01-01

    Most of the carbon accumulation during a forest rotation is in plant biomass and the forest floor. Most of the belowground biomass in older loblolly pine (Pinus taeda L.) forests is in coarse roots, and coarse roots persist longer after harvest than aboveground biomass and fine roots. The main objective was to assess the carbon accumulation in coarse...

  2. Quantifying the coarse-root biomass of intensively managed loblolly pine plantations

    Treesearch

    Ashley T. Miller; H. Lee Allen; Chris A. Maier

    2006-01-01

    Most of the carbon accumulation during a forest rotation is in plant biomass and the forest floor. Most of the belowground biomass in older loblolly pine (Pinus taeda L.) forests is in coarse roots, and coarse roots ersist longer after harvest than aboveground biomass and fine oots. The main objective was to assess the carbon accumulation in coarse...

  3. Coarse-graining and self-dissimilarity of complex networks

    NASA Astrophysics Data System (ADS)

    Itzkovitz, Shalev; Levitt, Reuven; Kashtan, Nadav; Milo, Ron; Itzkovitz, Michael; Alon, Uri

    2005-01-01

    Can complex engineered and biological networks be coarse-grained into smaller and more understandable versions in which each node represents an entire pattern in the original network? To address this, we define coarse-graining units as connectivity patterns which can serve as the nodes of a coarse-grained network and present algorithms to detect them. We use this approach to systematically reverse-engineer electronic circuits, forming understandable high-level maps from incomprehensible transistor wiring: first, a coarse-grained version in which each node is a gate made of several transistors is established. Then the coarse-grained network is itself coarse-grained, resulting in a high-level blueprint in which each node is a circuit module made of many gates. We apply our approach also to a mammalian protein signal-transduction network, to find a simplified coarse-grained network with three main signaling channels that resemble multi-layered perceptrons made of cross-interacting MAP-kinase cascades. We find that both biological and electronic networks are “self-dissimilar,” with different network motifs at each level. The present approach may be used to simplify a variety of directed and nondirected, natural and designed networks.

  4. Coarse-graining errors and numerical optimization using a relative entropy framework.

    PubMed

    Chaimovich, Aviel; Shell, M Scott

    2011-03-07

    The ability to generate accurate coarse-grained models from reference fully atomic (or otherwise "first-principles") ones has become an important component in modeling the behavior of complex molecular systems with large length and time scales. We recently proposed a novel coarse-graining approach based upon variational minimization of a configuration-space functional called the relative entropy, S(rel), that measures the information lost upon coarse-graining. Here, we develop a broad theoretical framework for this methodology and numerical strategies for its use in practical coarse-graining settings. In particular, we show that the relative entropy offers tight control over the errors due to coarse-graining in arbitrary microscopic properties, and suggests a systematic approach to reducing them. We also describe fundamental connections between this optimization methodology and other coarse-graining strategies like inverse Monte Carlo, force matching, energy matching, and variational mean-field theory. We suggest several new numerical approaches to its minimization that provide new coarse-graining strategies. Finally, we demonstrate the application of these theoretical considerations and algorithms to a simple, instructive system and characterize convergence and errors within the relative entropy framework. © 2011 American Institute of Physics.

  5. STOCK: Structure mapper and online coarse-graining kit for molecular simulations

    DOE PAGES

    Bevc, Staš; Junghans, Christoph; Praprotnik, Matej

    2015-03-15

    We present a web toolkit STructure mapper and Online Coarse-graining Kit for setting up coarse-grained molecular simulations. The kit consists of two tools: structure mapping and Boltzmann inversion tools. The aim of the first tool is to define a molecular mapping from high, e.g. all-atom, to low, i.e. coarse-grained, resolution. Using a graphical user interface it generates input files, which are compatible with standard coarse-graining packages, e.g. VOTCA and DL_CGMAP. Our second tool generates effective potentials for coarse-grained simulations preserving the structural properties, e.g. radial distribution functions, of the underlying higher resolution model. The required distribution functions can be providedmore » by any simulation package. Simulations are performed on a local machine and only the distributions are uploaded to the server. The applicability of the toolkit is validated by mapping atomistic pentane and polyalanine molecules to a coarse-grained representation. Effective potentials are derived for systems of TIP3P (transferable intermolecular potential 3 point) water molecules and salt solution. The presented coarse-graining web toolkit is available at http://stock.cmm.ki.si.« less

  6. Source identification of coarse particles in the Desert ...

    EPA Pesticide Factsheets

    The Desert Southwest Coarse Particulate Matter Study was undertaken to further our understanding of the spatial and temporal variability and sources of fine and coarse particulate matter (PM) in rural, arid, desert environments. Sampling was conducted between February 2009 and February 2010 in Pinal County, AZ near the town of Casa Grande where PM concentrations routinely exceed the U.S. National Ambient Air Quality Standards (NAAQS) for both PM10 and PM2.5. In this desert region, exceedances of the PM10 NAAQS are dominated by high coarse particle concentrations, a common occurrence in this region of the United States. This work expands on previously published measurements of PM mass and chemistry by examining the sources of fine and coarse particles and the relative contribution of each to ambient PM mass concentrations using the Positive Matrix Factorization receptor model (Clements et al., 2014). Highlights • Isolation of coarse particles from fine particle sources. • Unique chemical composition of coarse particles. • Role of primary biological particles on aerosol loadings.

  7. Simulation study of entropy production in the one-dimensional Vlasov system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dai, Zongliang, E-mail: liangliang1223@gmail.com; Wang, Shaojie

    2016-07-15

    The coarse-grain averaged distribution function of the one-dimensional Vlasov system is obtained by numerical simulation. The entropy productions in cases of the random field, the linear Landau damping, and the bump-on-tail instability are computed with the coarse-grain averaged distribution function. The computed entropy production is converged with increasing length of coarse-grain average. When the distribution function differs slightly from a Maxwellian distribution, the converged value agrees with the result computed by using the definition of thermodynamic entropy. The length of the coarse-grain average to compute the coarse-grain averaged distribution function is discussed.

  8. Structural changes in the ageing periosteum using collagen III immuno-staining and chromium labelling as indicators.

    PubMed

    Al-Qtaitat, A; Shore, R C; Aaron, J E

    2010-03-01

    The periosteum and Sharpey's fibre extensions occupy the musculoskeletal interface and may be strategic in age-related deterioration. Because of its exceptionally powerful insertions the porcine mandible is an ideal model and its periosteal system was compared in 4 separate regions of adult young (1 year) and older (3 year) animals. These were examined by undecalcified histology, collagen immunohistochemistry and mineral histochemistry using polarization, epifluorescence and laser confocal microscopy; mineral ultrastructure was facilitated by chromium labelling with EDX microanalysis. Birefringent Sharpey's fibres were coarse (>8 microm) or fine and classified as horizontal (more common with age), oblique (most common in youth) or vertical (least common); in addition they were designated "superficial", "transcortical" and "intertrabecular" (the latter being deep, coarse and vertical). Their specific affinity for collagen type III FITC-labelled antibody demonstrated 3-dimensional arrays of bone-permeating fibres. With age at each region the cortical thickness rose (e.g. 4.9 mm to 9.3 mm), the periosteum thinned (e.g. 180-/+7 microm to 129-/+8 microm; p<0.001), and the periosteum: bone ratio diminished (e.g. 3.65-/+0.36 to 1.40-/+0.14; p<0.001) while Sharpey's fibres became fewer, fragmented, superficial and shortened (e.g. 226-/+27 microm to 55-/+6 microm; p<0.001). Accompanying was the sporadic encroachment of calcified particles, 1 microm diameter, in irregular periosteal aggregates or interlinked around Sharpey bundles (resembling calcifying turkey leg tendon). EDX microanalysis confirmed prominent chromium spectral peaks in the older periosteum only, coincident with chromium-labelled mineral "ghosts". It was concluded that the periosteum and Sharpey's fibres, deep-penetrating and complex in youth, partially hardens and regresses with age with implications for its functional properties.

  9. Quantum Mechanics/Molecular Mechanics Method Combined with Hybrid All-Atom and Coarse-Grained Model: Theory and Application on Redox Potential Calculations.

    PubMed

    Shen, Lin; Yang, Weitao

    2016-04-12

    We developed a new multiresolution method that spans three levels of resolution with quantum mechanical, atomistic molecular mechanical, and coarse-grained models. The resolution-adapted all-atom and coarse-grained water model, in which an all-atom structural description of the entire system is maintained during the simulations, is combined with the ab initio quantum mechanics and molecular mechanics method. We apply this model to calculate the redox potentials of the aqueous ruthenium and iron complexes by using the fractional number of electrons approach and thermodynamic integration simulations. The redox potentials are recovered in excellent accordance with the experimental data. The speed-up of the hybrid all-atom and coarse-grained water model renders it computationally more attractive. The accuracy depends on the hybrid all-atom and coarse-grained water model used in the combined quantum mechanical and molecular mechanical method. We have used another multiresolution model, in which an atomic-level layer of water molecules around redox center is solvated in supramolecular coarse-grained waters for the redox potential calculations. Compared with the experimental data, this alternative multilayer model leads to less accurate results when used with the coarse-grained polarizable MARTINI water or big multipole water model for the coarse-grained layer.

  10. Mimicking coarse-grained simulations without coarse-graining: enhanced sampling by damping short-range interactions.

    PubMed

    Wei, Dongshan; Wang, Feng

    2010-08-28

    The damped-short-range-interaction (DSRI) method is proposed to mimic coarse-grained simulations by propagating an atomistic scale system on a smoothed potential energy surface. The DSRI method has the benefit of enhanced sampling provided by a typical coarse-grained simulation without the need to perform coarse-graining. Our method was used to simulate liquid water, alanine dipeptide folding, and the self-assembly of dimyristoylphosphatidylcholine lipid. In each case, our method appreciably accelerated the dynamics without significantly changing the free energy surface. Additional insights from DSRI simulations and the promise of coupling our DSRI method with Hamiltonian replica-exchange molecular dynamics are discussed.

  11. Mimicking coarse-grained simulations without coarse-graining: Enhanced sampling by damping short-range interactions

    NASA Astrophysics Data System (ADS)

    Wei, Dongshan; Wang, Feng

    2010-08-01

    The damped-short-range-interaction (DSRI) method is proposed to mimic coarse-grained simulations by propagating an atomistic scale system on a smoothed potential energy surface. The DSRI method has the benefit of enhanced sampling provided by a typical coarse-grained simulation without the need to perform coarse-graining. Our method was used to simulate liquid water, alanine dipeptide folding, and the self-assembly of dimyristoylphosphatidylcholine lipid. In each case, our method appreciably accelerated the dynamics without significantly changing the free energy surface. Additional insights from DSRI simulations and the promise of coupling our DSRI method with Hamiltonian replica-exchange molecular dynamics are discussed.

  12. Sensitivity of aerosol radiative forcing efficiency to the coarse mode contributions across aerosol regimes

    NASA Astrophysics Data System (ADS)

    McComiskey, A. C.; Telg, H.; Sheridan, P. J.; Kassianov, E.

    2017-12-01

    The coarse mode contribution to the aerosol radiative effect in a range of clean and turbid aerosol regimes has not been well quantified. While the coarse-mode radiative effect in turbid conditions is generally assumed to be consequential, the effect in clean conditions has likely been underestimated. We survey ground-based in situ measurements of the coarse mode fraction of aerosol optical properties measured around the globe over the past 20 years by the DOE Atmospheric Radiation Measurement Facility and the NOAA Global Monitoring Division. The aerosol forcing efficiency is presented, allowing an evaluation of where the aerosol coarse mode might be climatologically significant.

  13. Sedimentary Biosignatures of Social Organization in Cone-Forming Filamentous Bacteria

    NASA Astrophysics Data System (ADS)

    Tice, M. M.; Gong, J.; Zeng, Z.; Sneed, J.; Wehner, M.; Sparks, D. W.

    2013-12-01

    Conical mats consisting of centimeter-scale steep-sided cones growing above flat basal films form some of the most distinctive fossil microbial communities in the geologic record. Cones have been hypothesized to form by the initially random motion of filamentous bacteria into small tangled clumps followed by the phototactic motion of the same bacteria up resulting slopes. More recent models of cone development suggest that they form in response to growth in stagnant fluids where diffusion limits exchange of nutrients and wastes with the environment. Determining the biological and environmental factors that promote cone formation will be important for interpreting the geological record of fossil mats and stromatolites, on Earth and potentially on Mars. Here we report the results of new experiments demonstrating complex social organization of cone-forming communities and a novel biosignature of the growth of such communities on sandy sediments, as well as detection of that biosignature in 3.2 Ga fossil mats of the Moodies Group (Barberton greenstone belt, South Africa). In order to investigate the processes involved in cone formation, we grew cultures of a filamentous cyanobacterium originally isolated from tufted cones in Yellowstone National Park, Montana, U.S.A. (Leptolyngbya sp. Y-WT-2000 Cl 1). During early mat development, filaments coat sand grain surfaces and aggregate into ~100-μm-long tufts, or mutually aligned bundles of filaments. Tufts are highly motile, bridging sand grains and merging to form larger tufts. After 10-14 days of growth, tufts aggregate during the early morning into centers composed of many tufts that wave vertically and along the sand surface. Centers move across the sediment surface during the middle of the day and merge along bridging tufts. These bridges transmit force to the underlying sediment and are capable of rolling sand grains. At this stage, mats are composed of small mobile centers that disperse along streams of co-moving bacteria during the evening. This diel cycle, together with preferential movement of relatively coarse sand grains that protrude above surrounding finer grains, efficiently sorts the underlying sediment such that mature mats are composed of large stabilized centers resting on small piles of coarser sand. Because these cone-forming mats sort sand grains by applying a shear stress at the sediment surface, growth of similar bacteria on sand surfaces should result in the preferential aggregation of equant coarse light mineral grains into cones and the formation of finer heavy mineral lags in interconical spaces. We observe these patterns of sorting by grain size, aspect ratio, and density around cones in Moodies Group fossil mats. These patterns could not have been produced by hydraulic sorting alone, and instead suggest the following conclusions. Cone-constructing Moodies microorganisms were 1) filamentous, 2) moved by gliding motility, and 3) moved as socially organized groups. In addition, it seems probable that these organisms 4) periodically reversed the direction of their movement on a time scale much more rapid than the time between deposition of sand beds, possibly as part of a diel cycle.

  14. Microbial association with the dynamics of particulate organic carbon in response to the amendment of elevated CO2-derived wheat residue into a Mollisol.

    PubMed

    Wang, Yanhong; Yu, Zhenhua; Li, Yansheng; Wang, Guanghua; Liu, Junjie; Liu, Judong; Liu, Xiaobing; Jin, Jian

    2017-12-31

    As the chemical quality of crop residue is likely to be affected by elevated CO 2 (eCO 2 ), residue amendments may influence soil organic carbon (SOC) sequestration. However, in Mollisols, the dynamics of the SOC fractions in response to amendment with wheat residue produced under eCO 2 and the corresponding microbial community composition remain unknown. Such investigation is essential to residue management, which affects the soil quality and productivity of future farming systems. To narrow this knowledge gap, 13 C-labeled shoot and root residue derived from ambient CO 2 (aCO 2 ) or eCO 2 were amended into Mollisols and incubated for 200days. The soil was sampled during the incubation period to determine the residue-C retained in the three SOC fractions, i.e., coarse intra-aggregate particulate organic C (coarse iPOC), fine iPOC and mineral-associated organic C (MOC). The soil bacterial community was assessed using a MiSeq sequencing instrument. The results showed that the increase in SOC concentrations attributable to the application of the wheat residue primarily occurred in the coarse iPOC fraction. Compared with the aCO 2 -derived shoot residue, the amendment of eCO 2 -derived shoot residue resulted in greater SOC concentrations, whereas no significant differences (P>0.05) were observed between the aCO 2 - and eCO 2 -derived roots. Principal coordinates analysis (PCoA) showed that the residue amendment significantly (P≤0.05) altered the bacterial community composition compared with the non-residue amendment. Additionally, the bacterial community in the aCO 2 -derived shoot treatment differed from those in the other residue treatments until day 200 of the incubation period. The eCO 2 -derived shoot treatment significantly increased (P≤0.05) the relative abundances of the genera Acidobacteriaceae_(Subgroup_1)_uncultured, Bryobacter, Candidatus_Solibacter, Gemmatimonas and Nitrosomonadaceae_uncultured, whereas the opposite trend was observed in Nonomuraea, Actinomadura, Streptomyces and Arthrobacter (P≤0.05). These results imply that the response of the microbial community to the eCO 2 -derived shoot treatment is associated with its contribution to the POC fractions. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Results of Characterization and Retrieval Testing on Tank 241-C-109 Heel Solids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Callaway, William S.

    Eight samples of heel solids from tank 241-C-109 were delivered to the 222-S Laboratory for characterization and dissolution testing. After being drained thoroughly, one-half to two-thirds of the solids were off-white to tan solids that, visually, were fairly evenly graded in size from coarse silt (30-60 μm) to medium pebbles (8-16 mm). The remaining solids were mostly strongly cemented aggregates ranging from coarse pebbles (16-32 mm) to fine cobbles (6-15 cm) in size. Solid phase characterization and chemical analysis indicated that the air-dry heel solids contained ≈58 wt% gibbsite [Al(OH){sub 3}] and ≈37 wt% natrophosphate [Na{sub 7}F(PO{sub 4}){sub 2}·19H{sub 2}O].more » The strongly cemented aggregates were mostly fine-grained gibbsite cemented with additional gibbsite. Dissolution testing was performed on two test samples. One set of tests was performed on large pieces of aggregate solids removed from the heel solids samples. The other set of dissolution tests was performed on a composite sample prepared from well-drained, air-dry heel solids that were crushed to pass a 1/4-in. sieve. The bulk density of the composite sample was 2.04 g/mL. The dissolution tests included water dissolution followed by caustic dissolution testing. In each step of the three-step water dissolution tests, a volume of water approximately equal to 3 times the initial volume of the test solids was added. In each step, the test samples were gently but thoroughly mixed for approximately 2 days at an average ambient temperature of 25 °C. The caustic dissolution tests began with the addition of sufficient 49.6 wt% NaOH to the water dissolution residues to provide ≈3.1 moles of OH for each mole of Al estimated to have been present in the starting composite sample and ≈2.6 moles of OH for each mole of Al potentially present in the starting aggregate sample. Metathesis of gibbsite to sodium aluminate was then allowed to proceed over 10 days of gentle mixing of the test samples at temperatures ranging from 26-30 °C. The metathesized sodium aluminate was then dissolved by addition of volumes of water approximately equal to 1.3 times the volumes of caustic added to the test slurries. Aluminate dissolution was allowed to proceed for 2 days at ambient temperatures of ≈29 °C. Overall, the sequential water and caustic dissolution tests dissolved and removed 80.0 wt% of the tank 241-C-109 crushed heel solids composite test sample. The 20 wt% of solids remaining after the dissolution tests were 85-88 wt% gibbsite. If the density of the residual solids was approximately equal to that of gibbsite, they represented ≈17 vol% of the initial crushed solids composite test sample. In the water dissolution tests, addition of a volume of water ≈6.9 times the initial volume of the crushed solids composite was sufficient to dissolve and recover essentially all of the natrophosphate present. The ratio of the weight of water required to dissolve the natrophosphate solids to the estimated weight of natrophosphate present was 8.51. The Environmental Simulation Program (OLI Systems, Inc., Morris Plains, New Jersey) predicts that an 8.36 w/w ratio would be required to dissolve the estimated weight of natrophosphate present in the absence of other components of the heel solids. Only minor amounts of Al-bearing solids were removed from the composite solids in the water dissolution tests. The caustic metathesis/aluminate dissolution test sequence, executed at temperatures ranging from 27-30 °C, dissolved and recovered ≈69 wt% of the gibbsite estimated to have been present in the initial crushed heel solids composite. This level of gibbsite recovery is consistent with that measured in previous scoping tests on the dissolution of gibbsite in strong caustic solutions. Overall, the sequential water and caustic dissolution tests dissolved and removed 80.3 wt% of the tank 241-C-109 aggregate solids test sample. The residual solids were 92-95 wt% gibbsite. Only a minor portion (≈4.5 wt%) of the aggregate solids was dissolved and recovered in the water dissolution test. Other than some smoothing caused by continuous mixing, the aggregates were essentially unaffected by the water dissolution tests. During the caustic metathesis/aluminate dissolution test sequence, ≈81 wt% of the gibbsite estimated to have been present in the aggregate solids was dissolved and recovered. The pieces of aggregate were significantly reduced in size but persisted as distinct pieces of solids. The increased level of gibbsite recovery, as compared to that for the crushed heel solids composite, suggests that the way the gibbsite solids and caustic solution are mixed is a key determinant of the overall efficiency of gibbsite dissolution and recovery. The liquids recovered after the caustic dissolution tests on the crushed solids composite and the aggregate solids were observed for 170 days. No precipitation of gibbsite was observed. The distribution of particle sizes in the residual solids recovered following the dissolution tests on the crushed heel solids composite was characterized. Wet sieving indicated that 21.4 wt% of the residual solids were >710 μm in size, and laser light scattering indicated that the median equivalent spherical diameter in the <710-μm solids was 35 μm. The settling behavior of the residual solids following the large-scale dissolution tests was also studied. When dispersed at a concentration of ≈1 vol% in water, ≈24 wt% of the residual solids settled at a rate >0.43 in./s; ≈68 wt% settled at rates between 0.02 and 0.43 in./s; and ≈7 wt% settled slower than 0.02 in./s.« less

  16. Resolving Properties of Polymers and Nanoparticle Assembly through Coarse-Grained Computational Studies.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grest, Gary S.

    2017-09-01

    Coupled length and time scales determine the dynamic behavior of polymers and polymer nanocomposites and underlie their unique properties. To resolve the properties over large time and length scales it is imperative to develop coarse grained models which retain the atomistic specificity. Here we probe the degree of coarse graining required to simultaneously retain significant atomistic details a nd access large length and time scales. The degree of coarse graining in turn sets the minimum length scale instrumental in defining polymer properties and dynamics. Using polyethylene as a model system, we probe how the coarse - graining scale affects themore » measured dynamics with different number methylene group s per coarse - grained beads. Using these models we simulate polyethylene melts for times over 500 ms to study the viscoelastic properties of well - entangled polymer melts and large nanoparticle assembly as the nanoparticles are driven close enough to form nanostructures.« less

  17. Improving Thermal Insulation Properties for Prefabricated Wall Components Made Of Lightweight Aggregate Concrete with Open Structure

    NASA Astrophysics Data System (ADS)

    Abramski, Marcin

    2017-10-01

    Porous concrete is commonly used in civil engineering due to its good thermal insulation properties in comparison with normal concrete and high compression strength in comparison with other building materials. Reducing of the concrete density can be obviously obtained by using lightweight aggregate (e.g. pumice). The concrete density can be further minimized by using specially graded coarse aggregate and little-to-no fine aggregates. In this way a large number of air voids arise. The aggregate particles are coated by a cement paste and bonded together with it just in contact points. Such an extremely porous concrete, called ‘lightweight aggregate concrete with open structure’ (LAC), is used in some German plants to produce prefabricated wall components. They are used mainly in hall buildings, e.g. supermarkets. The need of improving thermal insulation properties was an inspiration for the prefabrication plant managers, engineers and a scientific staff of the Technical University of Kaiserslautern / Germany to realise an interesting project. Its aim was to reduce the heat transfer coefficient for the wall components. Three different wall structure types were designed and compared in full-scale laboratory tests with originally produced wall components in terms of load-carrying capacity and stiffness. The load was applied perpendicularly to the wall plane. As the components are not originally used for load-bearing walls, but for curtain walls only, the wind load is the main load for them. The wall components were tested in horizontal position and the load was applied vertically. Totally twelve wall components 8.00 × 2.00 × 0.25m (three for every series) were produced in the prefabrication plant and tested in the University of Kaiserslautern laboratory. The designed and tested components differed from each other in the amount of expanded polystyrene (EPS), which was placed in the plant inside the wall structure. The minimal amount of it was designed in the original wall component type. Besides, two improved types of prefabricated wall had built-in steel lattice girders. The failure mode was the same for all the tested components: diagonal cracks occurred on the sides of each component due to their insufficient shear-force-capacity. The span deflection was measured during all the tests by means of LVDTs. Load-carrying capacities obtained in the tests were for all wall structure types similar and much higher (many times) than internal forces (i.e. bending moments and shear forces) calculated for a wind load acting on a typical hall building according to the German codes. An increased amount of EPS (up to 30 per cent in volume) did not influence significantly the wall structural strength. The use of the steel lattice girders caused some technological problems and led to a quality loss of the produced components. The future use of the lattice girders would require a change in the production process: it would have to be more labour consuming.

  18. Effects of coarse-graining on the scaling behavior of long-range correlated and anti-correlated signals.

    PubMed

    Xu, Yinlin; Ma, Qianli D Y; Schmitt, Daniel T; Bernaola-Galván, Pedro; Ivanov, Plamen Ch

    2011-11-01

    We investigate how various coarse-graining (signal quantization) methods affect the scaling properties of long-range power-law correlated and anti-correlated signals, quantified by the detrended fluctuation analysis. Specifically, for coarse-graining in the magnitude of a signal, we consider (i) the Floor, (ii) the Symmetry and (iii) the Centro-Symmetry coarse-graining methods. We find that for anti-correlated signals coarse-graining in the magnitude leads to a crossover to random behavior at large scales, and that with increasing the width of the coarse-graining partition interval Δ, this crossover moves to intermediate and small scales. In contrast, the scaling of positively correlated signals is less affected by the coarse-graining, with no observable changes when Δ < 1, while for Δ > 1 a crossover appears at small scales and moves to intermediate and large scales with increasing Δ. For very rough coarse-graining (Δ > 3) based on the Floor and Symmetry methods, the position of the crossover stabilizes, in contrast to the Centro-Symmetry method where the crossover continuously moves across scales and leads to a random behavior at all scales; thus indicating a much stronger effect of the Centro-Symmetry compared to the Floor and the Symmetry method. For coarse-graining in time, where data points are averaged in non-overlapping time windows, we find that the scaling for both anti-correlated and positively correlated signals is practically preserved. The results of our simulations are useful for the correct interpretation of the correlation and scaling properties of symbolic sequences.

  19. Effects of coarse-graining on the scaling behavior of long-range correlated and anti-correlated signals

    PubMed Central

    Xu, Yinlin; Ma, Qianli D.Y.; Schmitt, Daniel T.; Bernaola-Galván, Pedro; Ivanov, Plamen Ch.

    2014-01-01

    We investigate how various coarse-graining (signal quantization) methods affect the scaling properties of long-range power-law correlated and anti-correlated signals, quantified by the detrended fluctuation analysis. Specifically, for coarse-graining in the magnitude of a signal, we consider (i) the Floor, (ii) the Symmetry and (iii) the Centro-Symmetry coarse-graining methods. We find that for anti-correlated signals coarse-graining in the magnitude leads to a crossover to random behavior at large scales, and that with increasing the width of the coarse-graining partition interval Δ, this crossover moves to intermediate and small scales. In contrast, the scaling of positively correlated signals is less affected by the coarse-graining, with no observable changes when Δ < 1, while for Δ > 1 a crossover appears at small scales and moves to intermediate and large scales with increasing Δ. For very rough coarse-graining (Δ > 3) based on the Floor and Symmetry methods, the position of the crossover stabilizes, in contrast to the Centro-Symmetry method where the crossover continuously moves across scales and leads to a random behavior at all scales; thus indicating a much stronger effect of the Centro-Symmetry compared to the Floor and the Symmetry method. For coarse-graining in time, where data points are averaged in non-overlapping time windows, we find that the scaling for both anti-correlated and positively correlated signals is practically preserved. The results of our simulations are useful for the correct interpretation of the correlation and scaling properties of symbolic sequences. PMID:25392599

  20. The optimization of concrete mixtures for use in highway applications

    NASA Astrophysics Data System (ADS)

    Moini, Mohamadreza

    Portland cement concrete is most used commodity in the world after water. Major part of civil and transportation infrastructure including bridges, roadway pavements, dams, and buildings is made of concrete. In addition to this, concrete durability is often of major concerns. In 2013 American Society of Civil Engineers (ASCE) estimated that an annual investment of 170 billion on roads and 20.5 billion for bridges is needed on an annual basis to substantially improve the condition of infrastructure. Same article reports that one-third of America's major roads are in poor or mediocre condition [1]. However, portland cement production is recognized with approximately one cubic meter of carbon dioxide emission. Indeed, the proper and systematic design of concrete mixtures for highway applications is essential as concrete pavements represent up to 60% of interstate highway systems with heavier traffic loads. Combined principles of material science and engineering can provide adequate methods and tools to facilitate the concrete design and improve the existing specifications. In the same manner, the durability must be addressed in the design and enhancement of long-term performance. Concrete used for highway pavement applications has low cement content and can be placed at low slump. However, further reduction of cement content (e.g., versus current specifications of Wisconsin Department of Transportation to 315-338 kg/m 3 (530-570 lb/yd3) for mainstream concrete pavements and 335 kg/m3 (565 lb/yd3) for bridge substructure and superstructures) requires delicate design of the mixture to maintain the expected workability, overall performance, and long-term durability in the field. The design includes, but not limited to optimization of aggregates, supplementary cementitious materials (SCMs), chemical and air-entraining admixtures. This research investigated various theoretical and experimental methods of aggregate optimization applicable for the reduction of cement content. Conducted research enabled further reduction of cement contents to 250 kg/m3 (420 lb/yd3) as required for the design of sustainable concrete pavements. This research demonstrated that aggregate packing can be used in multiple ways as a tool to optimize the aggregates assemblies and achieve the optimal particle size distribution of aggregate blends. The SCMs, and air-entraining admixtures were selected to comply with existing WisDOT performance requirements and chemical admixtures were selected using the separate optimization study excluded from this thesis. The performance of different concrete mixtures was evaluated for fresh properties, strength development, and compressive and flexural strength ranging from 1 to 360 days. The methods and tools discussed in this research are applicable, but not limited to concrete pavement applications. The current concrete proportioning standards such as ACI 211 or current WisDOT roadway standard specifications (Part 5: Structures, Section 501: Concrete) for concrete have limited or no recommendations, methods or guidelines on aggregate optimization, the use of ternary aggregate blends (e.g., such as those used in asphalt industry), the optimization of SCMs (e.g., class F and C fly ash, slag, metakaolin, silica fume), modern superplasticizers (such as polycarboxylate ether, PCE) and air-entraining admixtures. This research has demonstrated that the optimization of concrete mixture proportions can be achieved by the use and proper selection of optimal aggregate blends and result in 12% to 35% reduction of cement content and also more than 50% enhancement of performance. To prove the proposed concrete proportioning method the following steps were performed: • The experimental aggregate packing was investigated using northern and southern source of aggregates from Wisconsin; • The theoretical aggregate packing models were utilized and results were compared with experiments; • Multiple aggregate optimization methods (e.g., optimal grading, coarseness chart) were studied and compared to aggregate packing results and performance of experimented concrete mixtures; • Optimal aggregate blends were selected and used for concrete mixtures; • The optimal dosage of admixtures were selected for three types of plasticizing and superplasticizing admixtures based on a separately conducted study; • The SCM dosages were selected based on current WisDOT specifications; • The optimal air-entraining admixture dosage was investigated based on performance of preliminary concrete mixtures; • Finally, optimal concrete mixtures were tested for fresh properties, compressive strength development, modulus of rupture, at early ages (1day) and ultimate ages (360 days). • Durability performance indicators for optimal concrete mixtures were also tested for resistance of concrete to rapid chloride permeability (RCP) at 30 days and 90 days and resistance to rapid freezing and thawing at 56 days.

  1. A comparative study of coarse-graining methods for polymeric fluids: Mori-Zwanzig vs. iterative Boltzmann inversion vs. stochastic parametric optimization

    NASA Astrophysics Data System (ADS)

    Li, Zhen; Bian, Xin; Yang, Xiu; Karniadakis, George Em

    2016-07-01

    We construct effective coarse-grained (CG) models for polymeric fluids by employing two coarse-graining strategies. The first one is a forward-coarse-graining procedure by the Mori-Zwanzig (MZ) projection while the other one applies a reverse-coarse-graining procedure, such as the iterative Boltzmann inversion (IBI) and the stochastic parametric optimization (SPO). More specifically, we perform molecular dynamics (MD) simulations of star polymer melts to provide the atomistic fields to be coarse-grained. Each molecule of a star polymer with internal degrees of freedom is coarsened into a single CG particle and the effective interactions between CG particles can be either evaluated directly from microscopic dynamics based on the MZ formalism, or obtained by the reverse methods, i.e., IBI and SPO. The forward procedure has no free parameters to tune and recovers the MD system faithfully. For the reverse procedure, we find that the parameters in CG models cannot be selected arbitrarily. If the free parameters are properly defined, the reverse CG procedure also yields an accurate effective potential. Moreover, we explain how an aggressive coarse-graining procedure introduces the many-body effect, which makes the pairwise potential invalid for the same system at densities away from the training point. From this work, general guidelines for coarse-graining of polymeric fluids can be drawn.

  2. Conservative and dissipative force field for simulation of coarse-grained alkane molecules: A bottom-up approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trément, Sébastien; Rousseau, Bernard, E-mail: bernard.rousseau@u-psud.fr; Schnell, Benoît

    2014-04-07

    We apply operational procedures available in the literature to the construction of coarse-grained conservative and friction forces for use in dissipative particle dynamics (DPD) simulations. The full procedure rely on a bottom-up approach: large molecular dynamics trajectories of n-pentane and n-decane modeled with an anisotropic united atom model serve as input for the force field generation. As a consequence, the coarse-grained model is expected to reproduce at least semi-quantitatively structural and dynamical properties of the underlying atomistic model. Two different coarse-graining levels are studied, corresponding to five and ten carbon atoms per DPD bead. The influence of the coarse-graining levelmore » on the generated force fields contributions, namely, the conservative and the friction part, is discussed. It is shown that the coarse-grained model of n-pentane correctly reproduces self-diffusion and viscosity coefficients of real n-pentane, while the fully coarse-grained model for n-decane at ambient temperature over-predicts diffusion by a factor of 2. However, when the n-pentane coarse-grained model is used as a building block for larger molecule (e.g., n-decane as a two blobs model), a much better agreement with experimental data is obtained, suggesting that the force field constructed is transferable to large macro-molecular systems.« less

  3. A comparative study of coarse-graining methods for polymeric fluids: Mori-Zwanzig vs. iterative Boltzmann inversion vs. stochastic parametric optimization.

    PubMed

    Li, Zhen; Bian, Xin; Yang, Xiu; Karniadakis, George Em

    2016-07-28

    We construct effective coarse-grained (CG) models for polymeric fluids by employing two coarse-graining strategies. The first one is a forward-coarse-graining procedure by the Mori-Zwanzig (MZ) projection while the other one applies a reverse-coarse-graining procedure, such as the iterative Boltzmann inversion (IBI) and the stochastic parametric optimization (SPO). More specifically, we perform molecular dynamics (MD) simulations of star polymer melts to provide the atomistic fields to be coarse-grained. Each molecule of a star polymer with internal degrees of freedom is coarsened into a single CG particle and the effective interactions between CG particles can be either evaluated directly from microscopic dynamics based on the MZ formalism, or obtained by the reverse methods, i.e., IBI and SPO. The forward procedure has no free parameters to tune and recovers the MD system faithfully. For the reverse procedure, we find that the parameters in CG models cannot be selected arbitrarily. If the free parameters are properly defined, the reverse CG procedure also yields an accurate effective potential. Moreover, we explain how an aggressive coarse-graining procedure introduces the many-body effect, which makes the pairwise potential invalid for the same system at densities away from the training point. From this work, general guidelines for coarse-graining of polymeric fluids can be drawn.

  4. Correlations between the Signal Complexity of Cerebral and Cardiac Electrical Activity: A Multiscale Entropy Analysis

    PubMed Central

    Lin, Pei-Feng; Lo, Men-Tzung; Tsao, Jenho; Chang, Yi-Chung; Lin, Chen; Ho, Yi-Lwun

    2014-01-01

    The heart begins to beat before the brain is formed. Whether conventional hierarchical central commands sent by the brain to the heart alone explain all the interplay between these two organs should be reconsidered. Here, we demonstrate correlations between the signal complexity of brain and cardiac activity. Eighty-seven geriatric outpatients with healthy hearts and varied cognitive abilities each provided a 24-hour electrocardiography (ECG) and a 19-channel eye-closed routine electroencephalography (EEG). Multiscale entropy (MSE) analysis was applied to three epochs (resting-awake state, photic stimulation of fast frequencies (fast-PS), and photic stimulation of slow frequencies (slow-PS)) of EEG in the 1–58 Hz frequency range, and three RR interval (RRI) time series (awake-state, sleep and that concomitant with the EEG) for each subject. The low-to-high frequency power (LF/HF) ratio of RRI was calculated to represent sympatho-vagal balance. With statistics after Bonferroni corrections, we found that: (a) the summed MSE value on coarse scales of the awake RRI (scales 11–20, RRI-MSE-coarse) were inversely correlated with the summed MSE value on coarse scales of the resting-awake EEG (scales 6–20, EEG-MSE-coarse) at Fp2, C4, T6 and T4; (b) the awake RRI-MSE-coarse was inversely correlated with the fast-PS EEG-MSE-coarse at O1, O2 and C4; (c) the sleep RRI-MSE-coarse was inversely correlated with the slow-PS EEG-MSE-coarse at Fp2; (d) the RRI-MSE-coarse and LF/HF ratio of the awake RRI were correlated positively to each other; (e) the EEG-MSE-coarse at F8 was proportional to the cognitive test score; (f) the results conform to the cholinergic hypothesis which states that cognitive impairment causes reduction in vagal cardiac modulation; (g) fast-PS significantly lowered the EEG-MSE-coarse globally. Whether these heart-brain correlations could be fully explained by the central autonomic network is unknown and needs further exploration. PMID:24498375

  5. Control of the hierarchical assembly of π-conjugated optoelectronic peptides by pH and flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mansbach, Rachael A.; Ferguson, Andrew L.

    Self-assembled nanoaggregates of p-conjugated peptides possess optoelectronic properties due to electron delocalization over the conjugated peptide groups that make them attractive candidates for the fabrication of bioelectronic materials. We present a computational and theoretical study to resolve the microscopic effects of pH and flow on the non-equilibrium morphology and kinetics of early-stage assembly of an experimentally-realizable optoelectronic peptide that displays pH triggerable assembly. Employing coarse-grained molecular dynamics simulations, we probe the effects of pH on growth kinetics and aggregate morphology to show that control of the peptide protonation state by pH can be used to modulate the assembly rates, degreemore » of molecular alignment, and resulting morphologies within the self-assembling nanoaggregates. We also quantify the time and length scales at which convective flows employed in directed assembly compete with microscopic diffusion to show that flow influences cluster alignment and assembly rate during early-stage assembly only at extremely high shear rates. This suggests that observed improvements in optoelectronic properties at experimentally-accessible shear rates are due to the alignment of large aggregates of hundreds of monomers on time scales in excess of hundreds of nanoseconds. Lastly, our work provides new fundamental understanding of the effects of pH and flow to control the morphology and kinetics of early-stage assembly of p-conjugated peptides and lays the groundwork for the rational manipulation of environmental conditions to direct assembly and the attendant emergent optoelectronic properties.« less

  6. Deploying digital health data to optimize influenza surveillance at national and local scales

    PubMed Central

    Arab, Ali; Viboud, Cécile; Grenfell, Bryan T.; Bansal, Shweta

    2018-01-01

    The surveillance of influenza activity is critical to early detection of epidemics and pandemics and the design of disease control strategies. Case reporting through a voluntary network of sentinel physicians is a commonly used method of passive surveillance for monitoring rates of influenza-like illness (ILI) worldwide. Despite its ubiquity, little attention has been given to the processes underlying the observation, collection, and spatial aggregation of sentinel surveillance data, and its subsequent effects on epidemiological understanding. We harnessed the high specificity of diagnosis codes in medical claims from a database that represented 2.5 billion visits from upwards of 120,000 United States healthcare providers each year. Among influenza seasons from 2002-2009 and the 2009 pandemic, we simulated limitations of sentinel surveillance systems such as low coverage and coarse spatial resolution, and performed Bayesian inference to probe the robustness of ecological inference and spatial prediction of disease burden. Our models suggest that a number of socio-environmental factors, in addition to local population interactions, state-specific health policies, as well as sampling effort may be responsible for the spatial patterns in U.S. sentinel ILI surveillance. In addition, we find that biases related to spatial aggregation were accentuated among areas with more heterogeneous disease risk, and sentinel systems designed with fixed reporting locations across seasons provided robust inference and prediction. With the growing availability of health-associated big data worldwide, our results suggest mechanisms for optimizing digital data streams to complement traditional surveillance in developed settings and enhance surveillance opportunities in developing countries. PMID:29513661

  7. Comparison of ANN and RKS approaches to model SCC strength

    NASA Astrophysics Data System (ADS)

    Prakash, Aravind J.; Sathyan, Dhanya; Anand, K. B.; Aravind, N. R.

    2018-02-01

    Self compacting concrete (SCC) is a high performance concrete that has high flowability and can be used in heavily reinforced concrete members with minimal compaction segregation and bleeding. The mix proportioning of SCC is highly complex and large number of trials are required to get the mix with the desired properties resulting in the wastage of materials and time. The research on SCC has been highly empirical and no theoretical relationships have been developed between the mixture proportioning and engineering properties of SCC. In this work effectiveness of artificial neural network (ANN) and random kitchen sink algorithm(RKS) with regularized least square algorithm(RLS) in predicting the split tensile strength of the SCC is analysed. Random kitchen sink algorithm is used for mapping data to higher dimension and classification of this data is done using Regularized least square algorithm. The training and testing data for the algorithm was obtained experimentally using standard test procedures and materials available. Total of 40 trials were done which were used as the training and testing data. Trials were performed by varying the amount of fine aggregate, coarse aggregate, dosage and type of super plasticizer and water. Prediction accuracy of the ANN and RKS model is checked by comparing the RMSE value of both ANN and RKS. Analysis shows that eventhough the RKS model is good for large data set, its prediction accuracy is as good as conventional prediction method like ANN so the split tensile strength model developed by RKS can be used in industries for the proportioning of SCC with tailor made property.

  8. Control of the hierarchical assembly of π-conjugated optoelectronic peptides by pH and flow

    DOE PAGES

    Mansbach, Rachael A.; Ferguson, Andrew L.

    2017-01-01

    Self-assembled nanoaggregates of p-conjugated peptides possess optoelectronic properties due to electron delocalization over the conjugated peptide groups that make them attractive candidates for the fabrication of bioelectronic materials. We present a computational and theoretical study to resolve the microscopic effects of pH and flow on the non-equilibrium morphology and kinetics of early-stage assembly of an experimentally-realizable optoelectronic peptide that displays pH triggerable assembly. Employing coarse-grained molecular dynamics simulations, we probe the effects of pH on growth kinetics and aggregate morphology to show that control of the peptide protonation state by pH can be used to modulate the assembly rates, degreemore » of molecular alignment, and resulting morphologies within the self-assembling nanoaggregates. We also quantify the time and length scales at which convective flows employed in directed assembly compete with microscopic diffusion to show that flow influences cluster alignment and assembly rate during early-stage assembly only at extremely high shear rates. This suggests that observed improvements in optoelectronic properties at experimentally-accessible shear rates are due to the alignment of large aggregates of hundreds of monomers on time scales in excess of hundreds of nanoseconds. Lastly, our work provides new fundamental understanding of the effects of pH and flow to control the morphology and kinetics of early-stage assembly of p-conjugated peptides and lays the groundwork for the rational manipulation of environmental conditions to direct assembly and the attendant emergent optoelectronic properties.« less

  9. Effect of hydrocolloid on rheology and microstructure of high-protein soy desserts.

    PubMed

    Arancibia, Carla; Bayarri, Sara; Costell, Elvira

    2015-10-01

    Due to the rheological and structural basis of texture perceived in semisolid foods, the aim of this work was to study the effects of two thickening agents, on rheology and microstructure of soy protein desserts. As rheological parameter values may not be enough to explain the possible perceived texture differences, the effect of composition on two instrumental indexes of oral consistency (apparent viscosity at 50 s(-1) and complex dynamic viscosity at 8 Hz) was also studied. Samples were prepared at two soy protein isolate (SPI) concentrations (6 and 8 % w/w), each with four modified starch concentrations (2, 2.5, 3 and 3.5 % w/w) or four Carboxymethyl cellulose (CMC) concentrations (0.3, 0.5, 0.7 and 0.9 % w/w). Two more samples without added thickener were prepared as control samples. The flow curves of all systems showed a typical shear-thinning behaviour and observable hysteresis loops. Control sample flow fitted well with the Ostwald-de Waele model and the flow of samples with thickener to the Herschel-Bulkley model. Viscoelastic properties of samples ranged from fluid-like to weak gel, depending on thickener and SPI concentrations. Starch-based samples exhibited a globular structure with SPI aggregates distributed among starch granules. In CMC-based samples, a coarse stranded structure with SPI aggregates partially embedded was observed. Variation of the two thickness index values with composition showed a similar trend with good correlation between them (R(2) = 0.92). Soy desserts with different composition but with similar rheological behaviour or instrumental thickness index values can be obtained.

  10. Residential indoor and outdoor coarse particles and associated endotoxin exposures

    NASA Astrophysics Data System (ADS)

    Wheeler, Amanda J.; Dobbin, Nina A.; Lyrette, Ninon; Wallace, Lance; Foto, Mark; Mallick, Ranjeeta; Kearney, Jill; Van Ryswyk, Keith; Gilbert, Nicolas L.; Harrison, Ian; Rispler, Kathleen; Héroux, Marie-Eve

    2011-12-01

    There is a growing body of evidence demonstrating that coarse particles (PM 10-2.5) have detrimental impacts upon health, especially for respiratory effects. There are limited data available for indoor residential exposures. Some data exist regarding the composition of this PM size fraction with emphasis on crustal elements and biological components. This study includes data from 146 homes sampled in Regina, Saskatchewan (SK) where 5-day integrated concurrent monitoring of indoor and outdoor coarse particles was conducted during the winter and summer of 2007. The coarse particle filters were subsequently analysed for endotoxin content to determine the contribution of this compound. Winter indoor geometric mean concentrations of coarse particles exceeded outdoor concentrations (3.73 μg m -3 vs 2.49 μg m -3; paired t-test p < 0.0001); however the reverse was found in summer (4.34 μg m -3 vs 8.82 μg m -3; paired t-test p < 0.0001). Linear regression indicated that winter predictors of indoor coarse particles were outdoor coarse particles, ventilation and presence of at least two or more occupants. During the summer, increased use of central air conditioning was associated with reduced coarse particles, while smoking and the presence of two or more occupants resulted in increased coarse particles. Endotoxin concentrations (EU μg -1) were lower indoors than outdoors in both seasons. Spatial variability of ambient coarse particles was assessed to determine the suitability of using a single monitoring station within a city to estimate exposure. The coefficients of variation between homes sampled simultaneously and the central monitoring station were calculated (median COV in summer = 15% and winter = 24%) and showed significant variability by week, especially during the summer months, suggesting a single site may be insufficient for characterizing exposure. Future studies should consider daily measurements per home to understand shorter term exposures and day to day variability of these pollutants.

  11. Theory of wavelet-based coarse-graining hierarchies for molecular dynamics.

    PubMed

    Rinderspacher, Berend Christopher; Bardhan, Jaydeep P; Ismail, Ahmed E

    2017-07-01

    We present a multiresolution approach to compressing the degrees of freedom and potentials associated with molecular dynamics, such as the bond potentials. The approach suggests a systematic way to accelerate large-scale molecular simulations with more than two levels of coarse graining, particularly applications of polymeric materials. In particular, we derive explicit models for (arbitrarily large) linear (homo)polymers and iterative methods to compute large-scale wavelet decompositions from fragment solutions. This approach does not require explicit preparation of atomistic-to-coarse-grained mappings, but instead uses the theory of diffusion wavelets for graph Laplacians to develop system-specific mappings. Our methodology leads to a hierarchy of system-specific coarse-grained degrees of freedom that provides a conceptually clear and mathematically rigorous framework for modeling chemical systems at relevant model scales. The approach is capable of automatically generating as many coarse-grained model scales as necessary, that is, to go beyond the two scales in conventional coarse-grained strategies; furthermore, the wavelet-based coarse-grained models explicitly link time and length scales. Furthermore, a straightforward method for the reintroduction of omitted degrees of freedom is presented, which plays a major role in maintaining model fidelity in long-time simulations and in capturing emergent behaviors.

  12. Mechanical response of two polyimides through coarse-grained molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Sudarkodi, V.; Sooraj, K.; Nair, Nisanth N.; Basu, Sumit; Parandekar, Priya V.; Sinha, Nishant K.; Prakash, Om; Tsotsis, Tom

    2018-03-01

    Coarse-grained molecular dynamics (MD) simulations allow us to predict the mechanical responses of polymers, starting merely with a description of their molecular architectures. It is interesting to ask whether, given two competing molecular architectures, coarse-grained MD simulations can predict the differences that can be expected in their mechanical responses. We have studied two crosslinked polyimides PMR15 and HFPE52—both used in high- temperature applications—to assess whether the subtle differences in their uniaxial stress-strain responses, revealed by experiments, can be reproduced by carefully coarse-grained MD models. The coarse graining procedure for PMR15 is outlined in this work, while the coarse grain forcefields for HFPE52 are borrowed from an earlier one (Pandiyan et al 2015 Macromol. Theory Simul. 24 513-20). We show that the stress-strain responses of both these polyimides are qualitatively reproduced, and important insights into their deformation and failure mechanisms are obtained. More importantly, the differences in the molecular architecture between the polyimides carry over to the differences in the stress-strain responses in a manner that parallels the experimental results. A critical assessment of the successes and shortcomings of predicting mechanical responses through coarse-grained MD simulations has been made.

  13. Modeling disease transmission near eradication: An equation free approach

    NASA Astrophysics Data System (ADS)

    Williams, Matthew O.; Proctor, Joshua L.; Kutz, J. Nathan

    2015-01-01

    Although disease transmission in the near eradication regime is inherently stochastic, deterministic quantities such as the probability of eradication are of interest to policy makers and researchers. Rather than running large ensembles of discrete stochastic simulations over long intervals in time to compute these deterministic quantities, we create a data-driven and deterministic "coarse" model for them using the Equation Free (EF) framework. In lieu of deriving an explicit coarse model, the EF framework approximates any needed information, such as coarse time derivatives, by running short computational experiments. However, the choice of the coarse variables (i.e., the state of the coarse system) is critical if the resulting model is to be accurate. In this manuscript, we propose a set of coarse variables that result in an accurate model in the endemic and near eradication regimes, and demonstrate this on a compartmental model representing the spread of Poliomyelitis. When combined with adaptive time-stepping coarse projective integrators, this approach can yield over a factor of two speedup compared to direct simulation, and due to its lower dimensionality, could be beneficial when conducting systems level tasks such as designing eradication or monitoring campaigns.

  14. COARSEMAP: synthesis of observations and models for coarse-mode aerosols

    NASA Astrophysics Data System (ADS)

    Wiedinmyer, C.; Lihavainen, H.; Mahowald, N. M.; Alastuey, A.; Albani, S.; Artaxo, P.; Bergametti, G.; Batterman, S.; Brahney, J.; Duce, R. A.; Feng, Y.; Buck, C.; Ginoux, P. A.; Chen, Y.; Guieu, C.; Cohen, D.; Hand, J. L.; Harrison, R. M.; Herut, B.; Ito, A.; Losno, R.; Gomez, D.; Kanakidou, M.; Landing, W. M.; Laurent, B.; Mihalopoulos, N.; Mackey, K.; Maenhaut, W.; Hueglin, C.; Milando, C.; Miller, R. L.; Myriokefaitakis, S.; Neff, J. C.; Pandolfi, M.; Paytan, A.; Perez Garcia-Pando, C.; Prank, M.; Prospero, J. M.; Tamburo, E.; Varrica, D.; Wong, M.; Zhang, Y.

    2017-12-01

    Coarse mode aerosols influence Earth's climate and biogeochemistry by interacting with long-wave radiation, promoting ice nucleation, and contributing important elements to biogeochemical cycles during deposition. Yet coarse mode aerosols have received less emphasis in the scientific literature. Here we present first efforts to globally synthesize available mass concentration, composition and optical depth data and modeling for the coarse mode aerosols (<10 µm) in a new project called "COARSEMAP" (http://www.geo.cornell.edu/eas/PeoplePlaces/Faculty/mahowald/COARSEMAP/). We seek more collaborators who have observational data, especially including elemental or composition data, and/or who are interested in detailed modeling of the coarse mode. The goal will be publications synthesizing data with models, as well as providing synthesized results to the wider community.

  15. Coarse-Grained Models for Automated Fragmentation and Parametrization of Molecular Databases.

    PubMed

    Fraaije, Johannes G E M; van Male, Jan; Becherer, Paul; Serral Gracià, Rubèn

    2016-12-27

    We calibrate coarse-grained interaction potentials suitable for screening large data sets in top-down fashion. Three new algorithms are introduced: (i) automated decomposition of molecules into coarse-grained units (fragmentation); (ii) Coarse-Grained Reference Interaction Site Model-Hypernetted Chain (CG RISM-HNC) as an intermediate proxy for dissipative particle dynamics (DPD); and (iii) a simple top-down coarse-grained interaction potential/model based on activity coefficient theories from engineering (using COSMO-RS). We find that the fragment distribution follows Zipf and Heaps scaling laws. The accuracy in Gibbs energy of mixing calculations is a few tenths of a kilocalorie per mole. As a final proof of principle, we use full coarse-grained sampling through DPD thermodynamics integration to calculate log P OW for 4627 compounds with an average error of 0.84 log unit. The computational speeds per calculation are a few seconds for CG RISM-HNC and a few minutes for DPD thermodynamic integration.

  16. Resolving Dynamic Properties of Polymers through Coarse-Grained Computational Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salerno, K. Michael; Agrawal, Anupriya; Perahia, Dvora

    2016-02-05

    Coupled length and time scales determine the dynamic behavior of polymers and underlie their unique viscoelastic properties. To resolve the long-time dynamics it is imperative to determine which time and length scales must be correctly modeled. In this paper, we probe the degree of coarse graining required to simultaneously retain significant atomistic details and access large length and time scales. The degree of coarse graining in turn sets the minimum length scale instrumental in defining polymer properties and dynamics. Using linear polyethylene as a model system, we probe how the coarse-graining scale affects the measured dynamics. Iterative Boltzmann inversion ismore » used to derive coarse-grained potentials with 2–6 methylene groups per coarse-grained bead from a fully atomistic melt simulation. We show that atomistic detail is critical to capturing large-scale dynamics. Finally, using these models we simulate polyethylene melts for times over 500 μs to study the viscoelastic properties of well-entangled polymer melts.« less

  17. Coarse and fine sediment transportation patterns and causes downstream of the Three Gorges Dam

    NASA Astrophysics Data System (ADS)

    Li, Songzhe; Yang, Yunping; Zhang, Mingjin; Sun, Zhaohua; Zhu, Lingling; You, Xingying; Li, Kanyu

    2017-11-01

    Reservoir construction within a basin affects the process of water and sediment transport downstream of the dam. The Three Gorges Reservoir (TGR) affects the sediment transport downstream of the dam. The impoundment of the TGR reduced total downstream sediment. The sediment group d≤0.125 mm (fine particle) increased along the path, but the average was still below what existed before the reservoir impoundment. The sediments group d>0.125 mm (coarse particle) was recharged in the Yichang to Jianli reach, but showed a deposition trend downstream of Jianli. The coarse sediment in the Yichang to Jianli section in 2003 to 2007 was above the value before the TGR impoundment. However, the increase of both coarse and fine sediments in 2008 to 2014 was less than that in 2003 to 2007. The sediment retained in the dam is the major reason for the sediment reduction downstream. However, the retention in different river reaches is affected by riverbed coarsening, discharge, flow process, and conditions of lake functioning and recharging from the tributaries. The main conclusions derived from our study are as follows: 1) The riverbed in the Yichang to Shashi section was relatively coarse, thereby limiting the supply of fine and coarse sediments. The fine sediment supply was mainly controlled by TGR discharge, whereas the coarse sediment supply was controlled by the duration of high flow and its magnitude. 2) The supply of both coarse and fine sediments in the Shashi to Jianli section was controlled by the amount of total discharge. The sediment supply from the riverbed was higher in flood years than that in the dry years. The coarse sediment tended to deposit, and the deposition in the dry years was larger than that in the flood years. 3) The feeding of the fine sediment in the Luoshan to Hankou section was mainly from the riverbed. The supply in 2008 to 2014 was more than that in 2003 to 2007. Around 2010, the coarse sediments transited from depositing to scouring that was probably caused by the increased duration of high flow days. 4) Fine sediments appeared to be deposited in large amounts in the Hankou to Jiujiang section. The coarse sediment was fed by the riverbed scouring, and much more coarse sediments were recharged from the riverbed in the flood years than in the dry years. 5) In the Jiujiang to Datong section, the ratio of fine sediments from the Poyang Lake and that from the riverbed was 1: 2.82. The sediment from the riverbed scouring contributed more to the coarse sediment transportation. The contribution was mainly affected by the input by magnitude and duration of high flows.

  18. Predictive coarse-graining

    NASA Astrophysics Data System (ADS)

    Schöberl, Markus; Zabaras, Nicholas; Koutsourelakis, Phaedon-Stelios

    2017-03-01

    We propose a data-driven, coarse-graining formulation in the context of equilibrium statistical mechanics. In contrast to existing techniques which are based on a fine-to-coarse map, we adopt the opposite strategy by prescribing a probabilistic coarse-to-fine map. This corresponds to a directed probabilistic model where the coarse variables play the role of latent generators of the fine scale (all-atom) data. From an information-theoretic perspective, the framework proposed provides an improvement upon the relative entropy method [1] and is capable of quantifying the uncertainty due to the information loss that unavoidably takes place during the coarse-graining process. Furthermore, it can be readily extended to a fully Bayesian model where various sources of uncertainties are reflected in the posterior of the model parameters. The latter can be used to produce not only point estimates of fine-scale reconstructions or macroscopic observables, but more importantly, predictive posterior distributions on these quantities. Predictive posterior distributions reflect the confidence of the model as a function of the amount of data and the level of coarse-graining. The issues of model complexity and model selection are seamlessly addressed by employing a hierarchical prior that favors the discovery of sparse solutions, revealing the most prominent features in the coarse-grained model. A flexible and parallelizable Monte Carlo - Expectation-Maximization (MC-EM) scheme is proposed for carrying out inference and learning tasks. A comparative assessment of the proposed methodology is presented for a lattice spin system and the SPC/E water model.

  19. Predictive coarse-graining

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schöberl, Markus, E-mail: m.schoeberl@tum.de; Zabaras, Nicholas; Department of Aerospace and Mechanical Engineering, University of Notre Dame, 365 Fitzpatrick Hall, Notre Dame, IN 46556

    We propose a data-driven, coarse-graining formulation in the context of equilibrium statistical mechanics. In contrast to existing techniques which are based on a fine-to-coarse map, we adopt the opposite strategy by prescribing a probabilistic coarse-to-fine map. This corresponds to a directed probabilistic model where the coarse variables play the role of latent generators of the fine scale (all-atom) data. From an information-theoretic perspective, the framework proposed provides an improvement upon the relative entropy method and is capable of quantifying the uncertainty due to the information loss that unavoidably takes place during the coarse-graining process. Furthermore, it can be readily extendedmore » to a fully Bayesian model where various sources of uncertainties are reflected in the posterior of the model parameters. The latter can be used to produce not only point estimates of fine-scale reconstructions or macroscopic observables, but more importantly, predictive posterior distributions on these quantities. Predictive posterior distributions reflect the confidence of the model as a function of the amount of data and the level of coarse-graining. The issues of model complexity and model selection are seamlessly addressed by employing a hierarchical prior that favors the discovery of sparse solutions, revealing the most prominent features in the coarse-grained model. A flexible and parallelizable Monte Carlo – Expectation–Maximization (MC-EM) scheme is proposed for carrying out inference and learning tasks. A comparative assessment of the proposed methodology is presented for a lattice spin system and the SPC/E water model.« less

  20. Coarse-grained stochastic processes and kinetic Monte Carlo simulators for the diffusion of interacting particles

    NASA Astrophysics Data System (ADS)

    Katsoulakis, Markos A.; Vlachos, Dionisios G.

    2003-11-01

    We derive a hierarchy of successively coarse-grained stochastic processes and associated coarse-grained Monte Carlo (CGMC) algorithms directly from the microscopic processes as approximations in larger length scales for the case of diffusion of interacting particles on a lattice. This hierarchy of models spans length scales between microscopic and mesoscopic, satisfies a detailed balance, and gives self-consistent fluctuation mechanisms whose noise is asymptotically identical to the microscopic MC. Rigorous, detailed asymptotics justify and clarify these connections. Gradient continuous time microscopic MC and CGMC simulations are compared under far from equilibrium conditions to illustrate the validity of our theory and delineate the errors obtained by rigorous asymptotics. Information theory estimates are employed for the first time to provide rigorous error estimates between the solutions of microscopic MC and CGMC, describing the loss of information during the coarse-graining process. Simulations under periodic boundary conditions are used to verify the information theory error estimates. It is shown that coarse-graining in space leads also to coarse-graining in time by q2, where q is the level of coarse-graining, and overcomes in part the hydrodynamic slowdown. Operation counting and CGMC simulations demonstrate significant CPU savings in continuous time MC simulations that vary from q3 for short potentials to q4 for long potentials. Finally, connections of the new coarse-grained stochastic processes to stochastic mesoscopic and Cahn-Hilliard-Cook models are made.

Top