Sample records for coarse bed material

  1. Sediment transport data and related information for selected coarse-bed streams and rivers in Idaho

    Treesearch

    John G. King; William W. Emmett; Peter J. Whiting; Robert P. Kenworthy; Jeffrey J. Barry

    2004-01-01

    This report and associated web site files provide sediment transport and related data for coarse-bed streams and rivers to potential users. Information on bedload and suspended sediment transport, streamflow, channel geometry, channel bed material, floodplain material, and large particle transport is provided for 33 study reaches in Idaho that represent a wide range of...

  2. Investigation of pier scour in coarse-bed streams in Montana, 2001 through 2007

    USGS Publications Warehouse

    Holnbeck, Stephen R.

    2011-01-01

    A primary goal of ongoing field research of bridge scour is improvement of scour-prediction equations so that pier-scour depth is predicted accurately-an important element of hydraulic analysis and design of highway bridges that cross streams, rivers, and other waterways. Scour depth for piers in streambeds with a mixture of sand, gravel, cobbles, and boulders (coarse-bed streams, which are common in Montana) generally is less than the scour depth in finer-grained (sandy) streambeds under similar conditions. That difference is attributed to an armor layer of coarser material. Pier-scour data from the U.S. Geological Survey were used in this study to develop a bed-material correction factor, which was incorporated into the Federal Highway Administration's recommended equation for computing pier scour. This report describes results of a study of pier scour in coarse-bed streams at 59 bridge sites during 2001-2007 in the mountain and foothill regions of western Montana. Respective drainage areas ranged from about 3 square miles (mi2) to almost 20,000 mi2. Data collected and analyzed for this study included 103 pier-scour measurements; the report further describes data collection, shows expansion of the national coarse pier-scour database, discusses use of the new data in evaluation of relative accuracy of various predictive equations, and demonstrates how differences in size and gradation between surface bed material and shallow-subsurface bed material might relate to pier scour. Nearly all measurements were made under clear-water conditions with no incoming sediment supply to the bridge opening. Half of the measurements showed approach velocities that equaled or surpassed the critical velocity for incipient motion of bed material, possibly indicating that measurements were made very near the threshold between clear-water and live-bed scour, where maximum scour was shown in laboratory studies. Data collected in this study were compared to selected pier-scour data from the nationwide Bridge Scour Data Management System (BSDMS), to show the effect of bed-material size and gradation on scour depth. Unsteady field flow conditions and armoring by coarser material reduced scour relative to the clear-water/sandy-bed laboratory results at steady flow. The new correction factor and the standard scour equation produced the most accurate estimates of scour depth in armored, coarse-bed conditions. Maximum relative scour occurred at similar velocity across variations in bed material and gradation. Pier scour decreased with increased variation in particle size and gradation.

  3. Bedload transport over run-of-river dams, Delaware, U.S.A.

    NASA Astrophysics Data System (ADS)

    Pearson, Adam J.; Pizzuto, Jim

    2015-11-01

    We document the detailed morphology and bed sediment size distribution of a stream channel upstream and downstream of a 200-year-old run-of-river dam on the Red Clay Creek, a fifth order stream in the Piedmont of northern Delaware, and combine these data with HEC-RAS modeling and bedload transport computations. We hypothesize that coarse bed material can be carried through run-of-river impoundments before they completely fill with sediment, and we explore mechanisms to facilitate this transport. Only 25% of the accommodation space in our study site is filled with sediment, and maximum water depths are approximately equal to the dam height. All grain-size fractions present upstream of the impoundment are also present throughout the impoundment. A characteristic coarse-grained sloping ramp leads from the floor of the impoundment to the crest of the dam. A 2.3-m-deep plunge pool has been excavated below the dam, followed immediately downstream by a mid-channel bar composed of coarse bed material similar in size distribution to the bed material of the impoundment. The mid-channel bar stores 1472 m3 of sediment, exceeding the volume excavated from the plunge pool by a factor of 2.8. These field observations are typical of five other sites nearby and suggest that all bed material grain-size fractions supplied from upstream can be transported through the impoundment, up the sloping ramp, and over the top of the dam. Sediment transport computations suggest that all grain sizes are in transport upstream and within the impoundment at all discharges with return periods from 1 to 50 years. Our computations suggest that transport of coarse bed material through the impoundment is facilitated by its smooth, sandy bed. Model results suggest that the impoundment is currently aggrading at 0.26 m/year, but bed elevations may be recovering after recent scour from a series of large floods during water year 2011-2012. We propose that impoundments upstream of these run-of-river dams behave as long pools that adjust their bed elevation and texture to transport the load supplied by the watershed, rather than as impounded reservoirs with little bed material transport capacity. Scour may only occur during episodic high flows, followed by aggradation during periods of low flow.

  4. A new hypothesis and exploratory model for the formation of large-scale inner-shelf sediment sorting and ``rippled scour depressions''

    NASA Astrophysics Data System (ADS)

    Murray, A. Brad; Thieler, E. Robert

    2004-02-01

    Recent observations of inner continental shelves in many regions show numerous collections of relatively coarse sediment, which extend kilometers in the cross-shore direction and are on the order of 100 m wide. These "rippled scour depressions" have been interpreted to indicate concentrated cross-shelf currents. However, recent observations strongly suggest that they are associated with sediment transport along-shore rather than cross-shore. A new hypothesis for the origin of these features involves the large wave-generated ripples that form in the coarse material. Wave motions interacting with these large roughness elements generate near-bed turbulence that is greatly enhanced relative to that in other areas. This enhances entrainment and inhibits settling of fine material in an area dominated by coarse sediment. The fine sediment is then carried by mean currents past the coarse accumulations, and deposited where the bed is finer. We hypothesize that these interactions constitute a feedback tending to produce accumulations of fine material separated by self-perpetuating patches of coarse sediments. As with many types of self-organized bedforms, small features would interact as they migrate, leading to a better-organized, larger-scale pattern. As an initial test of this hypothesis, we use a numerical model treating the transport of coarse and fine sediment fractions, treated as functions of the local bed composition—a proxy for the presence of large roughness elements in coarse areas. Large-scale sorted patterns exhibiting the main characteristics of the natural features result robustly in the model, indicating that this new hypothesis offers a plausible explanation for the phenomena.

  5. Evaluation of pier-scour equations for coarse-bed streams

    USGS Publications Warehouse

    Chase, Katherine J.; Holnbeck, Stephen R.

    2004-01-01

    Streambed scour at bridge piers is among the leading causes of bridge failure in the United States. Several pier-scour equations have been developed to calculate potential scour depths at existing and proposed bridges. Because many pier-scour equations are based on data from laboratory flumes and from cohesionless silt- and sand-bottomed streams, they tend to overestimate scour for piers in coarse-bed materials. Several equations have been developed to incorporate the mitigating effects of large particle sizes on pier scour, but further investigations are needed to evaluate how accurately pier-scour depths calculated by these equations match measured field data. This report, prepared in cooperation with the Montana Department of Transportation, describes the evaluation of five pier-scour equations for coarse-bed streams. Pier-scour and associated bridge-geometry, bed-material, and streamflow-measurement data at bridges over coarse-bed streams in Montana, Alaska, Maryland, Ohio, and Virginia were selected from the Bridge Scour Data Management System. Pier scour calculated using the Simplified Chinese equation, the Froehlich equation, the Froehlich design equation, the HEC-18/Jones equation and the HEC-18/Mueller equation for flood events with approximate recurrence intervals of less than 2 to 100 years were compared to 42 pier-scour measurements. Comparison of results showed that pier-scour depths calculated with the HEC-18/Mueller equation were seldom smaller than measured pier-scour depths. In addition, pier-scour depths calculated using the HEC-18/Mueller equation were closer to measured scour than for the other equations that did not underestimate pier scour. However, more data are needed from coarse-bed streams and from less frequent flood events to further evaluate pier-scour equations.

  6. A sorting mechanism for a riffle-pool sequence

    Treesearch

    Thomas Lisle

    1979-01-01

    Transport of coarse, heterogeneous debris in a natural stream under a wide range of flows usually results in a remarkably stable, undulatory bed profile, which manifests an in transit sorting process of the bed material. In general, finer material representative of the bulk of the normal bed load resides in the deep sections, or pools, below flood stages. At high...

  7. A new hypothesis and exploratory model for the formation of large-scale inner-shelf sediment sorting and "rippled scour depressions"

    USGS Publications Warehouse

    Murray, A.B.; Thieler, E.R.

    2004-01-01

    Recent observations of inner continental shelves in many regions show numerous collections of relatively coarse sediment, which extend kilometers in the cross-shore direction and are on the order of 100m wide. These "rippled scour depressions" have been interpreted to indicate concentrated cross-shelf currents. However, recent observations strongly suggest that they are associated with sediment transport along-shore rather than cross-shore. A new hypothesis for the origin of these features involves the large wave-generated ripples that form in the coarse material. Wave motions interacting with these large roughness elements generate near-bed turbulence that is greatly enhanced relative to that in other areas. This enhances entrainment and inhibits settling of fine material in an area dominated by coarse sediment. The fine sediment is then carried by mean currents past the coarse accumulations, and deposited where the bed is finer. We hypothesize that these interactions constitute a feedback tending to produce accumulations of fine material separated by self-perpetuating patches of coarse sediments. As with many types of self-organized bedforms, small features would interact as they migrate, leading to a better-organized, larger-scale pattern. As an initial test of this hypothesis, we use a numerical model treating the transport of coarse and fine sediment fractions, treated as functions of the local bed composition - a proxy for the presence of large roughness elements in coarse areas. Large-scale sorted patterns exhibiting the main characteristics of the natural features result robustly in the model, indicating that this new hypothesis offers a plausible explanation for the phenomena. ?? 2003 Elsevier Ltd. All rights reserved.

  8. Modeling the effect of dune sorting on the river long profile

    NASA Astrophysics Data System (ADS)

    Blom, A.

    2012-12-01

    River dunes, which occur in low slope sand bed and sand-gravel bed rivers, generally show a downward coarsening pattern due to grain flows down their avalanche lee faces. These grain flows cause coarse particles to preferentially deposit at lower elevations of the lee face, while fines show a preference for its upper elevations. Before considering the effect of this dune sorting mechanism on the river long profile, let us first have a look at some general trends along the river profile. Tributaries increasing the river's water discharge in streamwise direction also cause a streamwise increase in flow depth. As under subcritical conditions mean dune height generally increases with increasing flow depth, the dune height shows a streamwise increase, as well. This means that also the standard deviation of bedform height increases in streamwise direction, as in earlier work it was found that the standard deviation of bedform height linearly increases with an increasing mean value of bedform height. As a result of this streamwise increase in standard deviation of dune height, the above-mentioned dune sorting then results in a loss of coarse particles to the lower elevations of the bed that are less and even rarely exposed to the flow. This loss of coarse particles to lower elevations thus increases the rate of fining in streamwise direction. As finer material is more easily transported downstream than coarser material, a smaller bed slope is required to transport the same amount of sediment downstream. This means that dune sorting adds to river profile concavity, compared to the combined effect of abrasion, selective transport and tributaries. A Hirano-type mass conservation model is presented that deals with dune sorting. The model includes two active layers: a bedform layer representing the sediment in the bedforms and a coarse layer representing the coarse and less mobile sediment underneath migrating bedforms. The exposure of the coarse layer is governed by the rate of sediment supply from upstream. By definition the sum of the exposure of both layers equals unity. The model accounts for vertical sediment fluxes due to grain flows down the bedform lee face and the formation of a less mobile coarse layer. The model with its vertical sediment fluxes is validated against earlier flume experiments. It deals well with the transition between a plane bed and a bedform-dominated bed. Applying the model to field scale confirms that dune sorting increases river profile concavity.

  9. Can coarse surface layers in gravel-bedded rivers be mobilized by finer gravel bedload?

    NASA Astrophysics Data System (ADS)

    Venditti, J. G.; Dietrich, W. E.; Nelson, P. A.; Wydzga, M. A.; Fadde, J.; Sklar, L.

    2005-12-01

    In response to reductions in sediment supply, gravel-bed rivers undergo a coarsening of the sediments that comprise the river's bed and, over some longer time scale, a river's grade may also be reduced as sediments are depleted from upstream reaches. Coarse, degraded river reaches are commonly observed downstream of dams across the Western United States. Following dam closure, these riverbeds become immobile under the altered flow and sediment supply regimes, leading to a reduction in the available salmon spawning and rearing habitat. Gravel augmentation to these streams is now common practice. This augmentation is typically seen as resurfacing the static coarse bed. As an alternative, we propose that the addition of appropriately finer gravels to these channels may be capable of mobilizing an otherwise immobile coarse surface layer, creating the potential to release fine material trapped beneath the surface. A series of laboratory experiments are being undertaken to test this hypothesis in a 30 m long and 0.86 m wide gravel-bedded flume channel using a constant discharge and a unimodal bed sediment with a median grain size of 8 mm and no sand present. The channel width-to-depth ratio of ~4 suppresses the development of lateral topography and allows us to focus on grain-to-grain interactions. Experiments proceed by maintaining a constant sediment feed until an equilibrium grade and transport rate are established, starving the flume of sediment for at least 24 hours, and then adding narrowly graded gravel over a period of one to two hours at a rate that is ~4x the bedload rate observed prior to terminating the sediment supply. The bed prior to sediment addition has an armor median grain size that is typically twice that of the subsurface and feed size distribution. The volume and median grain size of the resulting pulses are varied. Pulses move downstream rapidly with well-defined fronts in the form of bedload sheets and cause peaks in the sediment flux approximately equal to the supply rate. Once the pulse has passed through the flume, bedload flux rapidly drops to background values, leaving few introduced grains on the bed. When the sediment feed is the median grain size of the subsurface bed material mixture, few armor grains are mobilized, although there is some exchange between the surface and bedload. Pulses composed of the fine tail of the surface grain size distribution are capable of mobilizing all grain sizes in the armor (including the largest grains) as finer bedload fills the interstices of the coarse surface layer. This suggests that gravel augmentation using fine gravel may provide an effective means of improving bed mobility conditions. Further experiments are underway to explore the effects of repeated fine gravel addition on bed state.

  10. Experimental study of the effect of grain sizes in a bimodal mixture on bed slope, bed texture, and the transition to washload

    NASA Astrophysics Data System (ADS)

    Hill, Kimberly M.; Gaffney, John; Baumgardner, Sarah; Wilcock, Peter; Paola, Chris

    2017-01-01

    When fine sediment is added to a coarse-grained system, the mobility and composition of the bed can change dramatically. We conducted a series of flume experiments to determine how the size of fine particles introduced to an active gravel bed influences the mobility and composition of the bed. We initiated our experiments using a constant water discharge and feed rate of gravel. After the system reached steady state, we doubled the feed rate by supplying a second sediment of equal or lesser size, creating size ratios from 1:1 to 1:150. As we decreased the relative size of the fine particles, the system transitioned among three regimes: (1) For particle size ratios close to one, the bed slope increased to transport the additional load of similar-sized particles. The bed surface remained planar and unchanged. (2) For intermediate particle size ratios, the bed slope decreased with the additional fines. The bed surface became patchy with regions of fine and coarse grains. (3) For the largest particle size ratios (the smallest fines), the bed slope remained relatively unchanged. The subsurface became clogged with fine sediment, but fine particles were not present in the surface layer. This third regime constitutes washload, defined by those fractions that do not affect bed-material transport conditions. Our results indicate washload should be defined in terms of three conditions: small grain size relative to that of the bed material, full suspension based on the Rouse number, and a small rate of fine sediment supply relative to transport capacity.

  11. How coarse is too coarse for salmon spawning substrates?

    NASA Astrophysics Data System (ADS)

    Wooster, J. K.; Riebe, C. S.; Ligon, F. K.; Overstreet, B. T.

    2009-12-01

    Populations of Pacific salmon species have declined sharply in many rivers of the western US. Reversing these declines is a top priority and expense of many river restoration projects. To help restore salmon populations, managers often inject gravel into rivers, to supplement spawning habitat that has been depleted by gravel mining and the effects of dams—which block sediment and thus impair habitat downstream by coarsening the bed where salmon historically spawned. However, there is little quantitative understanding nor a methodology for determining when a river bed has become too coarse for salmon spawning. Hence there is little scientific basis for selecting sites that would optimize the restoration benefits of gravel injection (e.g., sites where flow velocities are suitable but bed materials are too coarse for spawning). To develop a quantitative understanding of what makes river beds too coarse for salmon spawning, we studied redds and spawning use in a series of California and Washington rivers where salmon spawning ability appears to be affected by coarse bed material. Our working hypothesis is that for a given flow condition, there is a maximum “threshold” particle size that a salmon of a given size is able to excavate and/or move as she builds her redd. A second, related hypothesis is that spawning use should decrease and eventually become impossible with increasing percent coverage by immovable particles. To test these hypotheses, we quantified the sizes and spatial distributions of immovably coarse particles in a series of salmon redds in each river during the peak of spawning. We also quantified spawning use and how it relates to percent coverage by immovable particles. Results from our studies of fall-run chinook salmon (Oncorhynchus tshawytsha) in the Feather River suggest that immovable particle size varies as a function of flow velocity over the redd, implying that faster water helps fish move bigger particles. Our Feather River study also suggests that the immovable particle size varies as a function of particle shape. Results from our study of fall run chinook salmon in the Sacramento River suggest that spawning is not possible when the bed is more than 40% covered by immovable particles, consistent with our second hypotheses. We will explore these relationships further in fall 2009, when we collect data on threshold particle sizes and spawning use for both pink salmon (O. gorbuscha) in the Puyallup River, and chinook salmon in the Trinity River. Because pink salmon are significantly smaller than chinook salmon, we expect that their redd building success is constrained by a lower average threshold particle size. We expect that there will be a range of threshold sizes for each run, depending on intra-run variability in fish size and variations in flow velocity. Taken together we expect that our results will demonstrate the feasibility of a new methodology for determining when a bed has become too coarse, thus contributing to more effective management of rivers where monitoring of spawning suitability of natural gravels is a priority.

  12. Sand Waves That Impede Navigation of Coastal Inlet Navigation Channels

    DTIC Science & Technology

    2006-08-01

    Merrymeeting Bay. The bay collects coarse-grained sediment from unconsolidated ice-contact and periglacial deposits (Fenster and FitzGerald 1996). During...bed, which is a layer of denser or larger sized sediment left after finer material has been winnowed by a strong current, can inhibit bed form...Order Descriptors (important) • Superposition: simple or compound. • Sediment Characteristics (size, sorting). Third Order Descriptors (useful

  13. The balance between keystone clustering and bed roughness in experimental step-pool stabilization

    NASA Astrophysics Data System (ADS)

    Johnson, J. P.

    2016-12-01

    Predicting how mountain channels will respond to environmental perturbations such as floods requires an improved quantitative understanding of morphodynamic feedbacks among bed topography, surface grain size and sediment sorting. In boulder-rich gravel streams, transport and sorting often lead to the development of step pool morphologies, which are expressed both in bed topography and coarse grain clustering. Bed stability is difficult to measure, and is sometimes inferred from the presence of step pools. I use scaled flume experiments to explore feedbacks among surface grain sizes, coarse grain clustering, bed roughness and hydraulic roughness during progressive bed stabilization and over a range of sediment transport rates. While grain clusters are sometimes identified by subjective interpretation, I quantify the degree of coarse surface grain clustering using spatial statistics, including a novel normalization of Ripley's K function. This approach is objective and provides information on the strength of clustering over a range of length scales. Flume experiments start with an initial bed surface with a broad grain size distribution and spatially random positions. Flow causes the bed surface to progressively stabilize in response to erosion, surface coarsening, roughening and grain reorganization. At 95% confidence, many but not all beds stabilized with coarse grains becoming more clustered than complete spatial randomness (CSR). I observe a tradeoff between topographic roughness and clustering. Beds that stabilized with higher degrees of coarse-grain clustering were topographically smoother, and vice-versa. Initial conditions influenced the degree of clustering at stability: Beds that happened to have fewer initial coarse grains had more coarse grain reorganization during stabilization, leading to more clustering. Finally, regressions demonstrate that clustering statistics actually predict hydraulic roughness significantly better than does D84 (the size at which 84% of grains are smaller). In the experimental data, the spatial organization of surface grains is a stronger control on flow characteristics than the size of surface grains.

  14. Sedimentology of rocky shorelines: 1. A review of the problem, with analytical methods, and insights gained from the Hulopoe Gravel and the modern rocky shoreline of Lanai, Hawaii

    NASA Astrophysics Data System (ADS)

    Felton, E. Anne

    2002-10-01

    Hypotheses advanced concerning the origin of the Pleistocene Hulopoe Gravel on Lanai include mega-tsunami, abandoned beach, 'multiple event,' rocky shoreline, and for parts of the deposit, Native Hawaiian constructions and degraded lava flow fronts. Uplift of Lanai shorelines has been suggested for deposits occurring up to at least 190 m. These conflicting hypotheses highlight problems with the interpretation of coarse gravel deposits containing marine biotic remains. The geological records of the processes implied by these hypotheses should look very different. Discrimination among these or any other hypotheses for the origins of the Hulopoe Gravel will require careful study of vertical and lateral variations in litho- and biofacies, facies architecture, contact relationships and stratal geometries of this deposit. Observations of modern rocky shorelines, particularly on Lanai adjacent to Hulopoe Gravel outcrops, have shown that distinctive coarse gravel facies are present, several of which occur in specific geomorphic settings. Tectonic, isostatic and eustatic changes which cause rapid shoreline translations on steep slopes favour preservation of former rocky shorelines and associated sedimentary deposits both above and below sea level. The sedimentary record of those shorelines is likely to be complex. The modern rocky shoreline sedimentary environment is a hostile one, largely neglected by sedimentologists. A range of high-energy processes characterize these shorelines. Long-period swell, tsunami and storm waves can erode hard bedrock and generate coarse gravel. They also erode older deposits, depositing fresh ones containing mixtures of materials of different ages. Additional gravelly material may be contributed by rivers draining steep hinterlands. To fully evaluate rocky shoreline deposition in the broadest sense, for both the Hulopoe Gravel and other deposits, sedimentary facies models are needed for rocky shorelines occurring in a range of settings. Recognition and description of rocky shoreline deposits are crucial for correctly interpreting the geological history of oceanic and volcanic arc islands, for distinguishing between ancient tsunami and storm deposits, and for interpreting coarse-grained deposits preserved on high energy coasts of continents. Problems include not only the absence of appropriate sedimentary facies models linking rocky shoreline deposits and environments but also, until recently, lack of a systematic descriptive scheme applicable to coarse gravel deposits generally. Two complementary methods serve to integrate the wide range of bed and clast attributes and parameters which characterize complex coarse gravel deposits. The composition and fabric (CAF) method has a materials focus, providing detailed description of attributes of the constituent clasts, petrology, the proportions of gravel, sand and mud, and the ways in which these materials are organized. The sedimentary facies model building (FMB) method emphasizes the organization of a deposit on a bed-by-bed basis to identify facies and infer depositional processes. The systematic use of a comprehensive gravel fabric and petrography log (GFPL), in conjunction with detailed vertical profiles, provides visual representations of a range of deposit characteristics. Criteria useful for distinguishing sedimentary facies in the Hulopoe Gravel are: grain-size modes, amount of matrix, bed geometry, sedimentary structures, bed fabric and clast roundness.

  15. Effects of debris-flow composition on runout and erosion

    NASA Astrophysics Data System (ADS)

    Haas, T. D.; Kleinhans, M. G.

    2016-12-01

    Predicting debris-flow runout is of major importance for hazard mitigation. Apart from topography and volume, runout depends on debris-flow composition (i.e., particle-size distribution and water content), but how is poorly understood. Moreover, debris flows can grow greatly in size by entrainment of bed material, enhancing their volume and thereby runout and hazardous impact. Debris-flow erosion rates also depend on debris-flow composition, but the relation between the two is largely unexplored. Composition thus strongly affects the dynamics of debris flows. We experimentally investigate the effects of composition on debris-flow runout and erosion. We find a clear optimum in the relations of runout with coarse-material fraction and clay fraction. Increasing coarse material concentration leads to larger runout. However, excess coarse material results in a large accumulation of coarse debris at the flow front and enhances diffusivity, increasing frontal friction and decreasing runout. Increasing clay content initially enhances runout, but too much clay leads to very viscous flows, reducing runout. We further find that debris-flow runout depends at least as much on composition as on topography. In general, erosion depth increases with basal shear stress in our experiments, while there is no correlation with grain collisional stress. There are substantial differences in the scour caused by different types of debris flows. Mean and maximum erosion depths generally become larger with increasing water fraction and grain size and decrease with increasing clay content. However, the erodibility of the very coarse-grained experimental debris flows is unrelated to basal shear stress. This relates to the relatively large influence of grain-collisional stress to the total bed stress in these flows (30-50%). The relative effect of grain-collisional stress is low in the other experimental debris flows (<5%) causing erosion to be largely controlled by basal shear stress. These results show that the erosive behaviour of debris flows may change from basal-shear stress dominated to grain-collisional stress dominated in increasingly coarse-grained debris flows. In short, this study improves our understanding of the effects of debris-flow composition on runout and erosion.

  16. Method and apparatus for incinerating hazardous waste

    DOEpatents

    Korenberg, Jacob

    1990-01-01

    An incineration apparatus and method for disposal of infectious hazardous waste including a fluidized bed reactor containing a bed of granular material. The reactor includes a first chamber, a second chamber, and a vertical partition separating the first and second chambers. A pressurized stream of air is supplied to the reactor at a sufficient velocity to fluidize the granular material in both the first and second chambers. Waste materials to be incinerated are fed into the first chamber of the fluidized bed, the fine waste materials being initially incinerated in the first chamber and subsequently circulated over the partition to the second chamber wherein further incineration occurs. Coarse waste materials are removed from the first chamber, comminuted, and recirculated to the second chamber for further incineration. Any partially incinerated waste materials and ash from the bottom of the second chamber are removed and recirculated to the second chamber for further incineration. This process is repeated until all infectious hazardous waste has been completely incinerated.

  17. The influence of seagrass on shell layers and Florida Bay mudbanks

    USGS Publications Warehouse

    Prager, E.J.; Halley, R.B.

    1999-01-01

    Aerial photography indicates that sometime since the early 1970's, an emergent ridge of shell debris developed on a mudbank north of Calusa Key in Florida Bay. Coarse shell deposits on and within the Bay's shallow mudbanks are believed to be the product of transport during major storm events and subsequent winnowing. However, shell material from the ridge contains nuclear bomb 14C, supporting formation within the past 30 years and the last major hurricanes to influence Florida Bay were Donna and Betsy (1960 and 1965). Results from this study suggest that the Calusa ridge and other coarse shell deposits in Florida Bay can result from, 1) periodic seagrass mortality and wave-induced transport during frequent winter cold fronts and/or 2) mollusc blooms and subsequent burial. A survey of bottom types indicates that dense to intermediate beds of seagrass, mainly Thalassia testudinum (turtle grass), occur within the shallow basins of western Florida Bay and along the margins of Bay mudbanks. Wave measurements and modeling indicate that Thalassia along mudbank margins can reduce incoming wave-energy by over 80%. Seagrass beds also host particularly dense populations of molluscs from periodic 'blooms' and are believed to be the major source of coarse sediments in the Bay. Thus, if bank-edge seagrass dies, sediments, including shell debris, become exposed and subject to greatly increased wave energy. Modeling indicates that winds typical of winter cold fronts in South Florida can produce near-bottom velocities and shear stress at a grass-free bank edge which are sufficient to transport coarse carbonate grains. Shell layers found at depth in mudbank cores can also be explained by previous episodes of sediment accretion over mollusc-rich seagrass beds or grass bed mortality at the edge of a mudbank and shell transport during cold front passage. The latter implies that mortality of marginal seagrass beds has occurred throughout the history of Florida Bay and that the historical influence of hurricanes on sedimentation in the Bay may have been overestimated.

  18. Effects of Surface and Subsurface Bed Material Composition on Gravel Transport and Flow Competence Relations—Possibilities for Prediction

    NASA Astrophysics Data System (ADS)

    Bunte, K.; Abt, S. R.; Swingle, K. W.; Cenderelli, D. A.; Gaeuman, D. A.

    2014-12-01

    Bedload transport and flow competence relations are difficult to predict in coarse-bedded steep streams where widely differing sediment supply, bed stability, and complex flow hydraulics greatly affect amounts and sizes of transported gravel particles. This study explains how properties of bed material surface and subsurface size distributions are directly related to gravel transport and may be used for prediction of gravel transport and flow competence relations. Gravel transport, flow competence, and bed material size were measured in step-pool and plane-bed streams. Power functions were fitted to gravel transport QB=aQb and flow competence Dmax=cQd relations; Q is water discharge. Frequency distributions of surface FDsurf and subsurface FDsub bed material were likewise described by power functions FDsurf=hD j and FDsub=kDm fitted over six 0.5-phi size classes within 4 to 22.4 mm. Those gravel sizes are typically mobile even in moderate floods. Study results show that steeper subsurface bed material size distributions lead to steeper gravel transport and flow competence relations, whereas larger amounts of sediment contained in those 6 size bedmaterial classes (larger h and k) flatten the relations. Similarly, steeper surface size distributions decrease the coefficients of the gravel transport and flow competence relations, whereas larger amounts of sediment within the six bed material classes increase the intercepts of gravel transport and flow competence relations. Those relations are likely causative in streams where bedload stems almost entirely from the channel bed as opposed to direct (unworked) contributions from hillslopes and tributaries. The exponent of the subsurface bed material distribution m predicted the gravel transport exponent b with r2 near 0.7 and flow competence exponent d with r2 near 0.5. The intercept of bed surface distributions h increased the intercept a of gravel transport and c of the flow competence relations with r2 near 0.6.

  19. Coarse sediment transport dynamics at three spatial scales of bedrock channel bed complexity

    NASA Astrophysics Data System (ADS)

    Goode, J. R.; Wohl, E.

    2007-12-01

    Rivers incised into bedrock in fold-dominated terrain display a complex bed topography that strongly interacts with local hydraulics to produce spatial differences in bed sediment flux. We used painted tracer clasts to investigate how this complex bed topography influences coarse sediment transport at three spatial scales (reach, cross- section and grain). The study was conducted along the Ocoee River gorge, Tennessee between the TVA Ocoee #3 dam and the 1996 Olympic whitewater course. The bed topography consists of undulating bedrock ribs, which are formed at a consistent strike to the bedding and cleavage of the metagreywake and phyllite substrate. Ribs vary in their orientation to flow (from parallel to oblique) and amplitude among three study reaches. These bedrock ribs create a rough bed topography that substantially alters the local flow field and influences reach- scale roughness. In each reach, 300 tracer clasts were randomly selected from the existing bed material. Tracer clasts were surveyed and transport distances were calculated after five scheduled summer releases and a suite of slightly larger but sporadic winter releases. Transport distances were examined as a function of rib orientation and amplitude (reach scale), spatial proximity to bedrock ribs and standard deviation of the bed elevation (cross- section scale), and whether clasts were hydraulically shielded by surrounding clasts, incorporated in the armour layer, imbricated, and/or existed in a pothole, in addition to size and angularity. At the reach scale, where ribs are parallel to flow, lower reach-scale roughness leads to greater sediment transport capacity, sediment flux and transport distances because transport is uninhibited in the downstream direction. Preliminary results indicate that cross section scale characteristics of bed topography exert a greater control on transport distances than grain size.

  20. Stochastic analysis of particle movement over a dune bed

    USGS Publications Warehouse

    Lee, Baum K.; Jobson, Harvey E.

    1977-01-01

    Stochastic models are available that can be used to predict the transport and dispersion of bed-material sediment particles in an alluvial channel. These models are based on the proposition that the movement of a single bed-material sediment particle consists of a series of steps of random length separated by rest periods of random duration and, therefore, application of the models requires a knowledge of the probability distributions of the step lengths, the rest periods, the elevation of particle deposition, and the elevation of particle erosion. The procedure was tested by determining distributions from bed profiles formed in a large laboratory flume with a coarse sand as the bed material. The elevation of particle deposition and the elevation of particle erosion can be considered to be identically distributed, and their distribution can be described by either a ' truncated Gaussian ' or a ' triangular ' density function. The conditional probability distribution of the rest period given the elevation of particle deposition closely followed the two-parameter gamma distribution. The conditional probability distribution of the step length given the elevation of particle erosion and the elevation of particle deposition also closely followed the two-parameter gamma density function. For a given flow, the scale and shape parameters describing the gamma probability distributions can be expressed as functions of bed-elevation. (Woodard-USGS)

  1. The significance of sediment transport in arroyo development

    USGS Publications Warehouse

    Meyer, David F.

    1989-01-01

    Arroyo widening dominates postincisional arroyo development, and the manner of widening is dependent on the grain size of bed material transported by the channel. When bed material is predominantly gravel, subaqueous bars that alternate from one side of the channel to the other form during high flows in initially narrow, often straight, arroyos. These alternate bars grow and become coarse-grained point bars. Moderate and low flows cannot rework these coarse bars, and the channel meanders around them. Arroyo walls opposite the bars are undercut and eroded. With progressive arroyo widening by erosion of cut banks, high-flow channel width increases, and depth decreases, reducing channel competence. Gravel is deposited in midchannel bars, point bars are reworked, and the channel becomes braided. As braiding becomes dominant, both arroyo walls are eroded. This conceptual model of coarse-grained arroyo development is based on observations of arroyo development through time using physical models and interpretation of the channel and arroyo morphology and sedimentology during a short period along the San Simon, San Pedro, and Santa Cruz Rivers in southeast Arizona. When bed material is predominantly sand, the channel pattern within initial arroyos is typically braided, and both arroyo walls are actively eroded. Alternate bars may form within single-thread, high-flow channels, but they are reworked during recessional flows, and the .low-flow channel is again braided. With progressive arroyo widening, fine sand, silt, and clay carried in suspension are deposited across a flood plain within the wide arroyo, causing the channel to meander. This fine-grained arroyo development model is based on observations of arroyo development through time using physical models and interpretation of the channel and arroyo morphology and sedimentology during a short period along the Rio Puerco, New Mexico. Experimental investigations using physical models in which incised channels were monitored through time indicate that the rate of arroyo widening is dependent on the amount of bedload transported through a reach. This is documented by the relations between the rate of arroyo erosion and the observed sediment transport, the channel slope, the channel width and the channel width-to-depth ratio. When a small amount of bed material is being transported, arroyos do not widen whether they are narrow (arroyo width-to-depth ratios between 1.5 and 3.1), intermediate (between 2.5 and 4.8), or wide (greater than 4.9). Arroyo widening resumes when a larger supply of bed material is introduced. Arroyo widening decreases through time because with progressive increases of arroyo width, the frequency with which unstable channels within the arroyo impinge upon arroyo walls decreases. Arroyos become wider in a downstream direction in response to the cumulative effect of upstream sediment production.

  2. The non-layering of gravel streambeds under ephemeral flood regimes

    NASA Astrophysics Data System (ADS)

    Laronne, Jonathan B.; Reid, Ian; Yitshak, Yitshak; Frostick, Lynne E.

    1994-07-01

    The two-layer format common to perennial streambeds, in which a relatively coarse armour overlies a finer subarmour, develops as a function of both the ingress and subsequent near-surface winnowing of interstitial material and the selective non-entrainment or slower transport velocity of coarse clasts. Ephemeral streams appear to lack such vertical layering or are characterized by weak layer development. Some of this may be due to the degree of mixing associated with the scour-and-fill process. However, continuous monitoring of bedload discharge in the Nahal Yatir in the northern Negev Desert reveals that sediment transport rates are extremely high so that the chance of armour layer development through selective non-entrainment is much reduced. Indeed, a comparison of the bedload and bed material size-distributions confirms a high degree of similarity and hints at equal mobility regardless of clast size. The monitoring programme also indicates that the bed becomes highly mobile at comparatively modest fluid shear, so that practically all floods are associated with high transport rates. Consequently, the winnowing that might be brought about by low transport-rate events does not occur. Even within a single event, winnowing is precluded by the rapid nature of flow recession that is so characteristic of flash-floods. The high degree of bed material mobility is attributable, in part, to the lack of strength that would otherwise be a corollary of armour development. However, it also highlights the divergent nature of the feedback loops that govern the relationship between flow and channel deposit in ephemeral and perennial systems.

  3. Boulder-Faced Log Dams and other Alternatives for Gabion Check Dams in First-Order Ephemeral Streams with Coarse Bed Load in Ethiopia

    NASA Astrophysics Data System (ADS)

    Nyssen, Jan; Gebreslassie, Seifu; Assefa, Romha; Deckers, Jozef; Guyassa, Etefa; Poesen, Jean; Frankl, Amaury

    2017-04-01

    Many thousands of gabion check dams have been installed to control gully erosion in Ethiopia, but several challenges still remain, such as the issue of gabion failure in ephemeral streams with coarse bed load, that abrades at the chute step. As an alternative for gabion check dams in torrents with coarse bed load, boulder-faced log dams were conceived, installed transversally across torrents and tested (n = 30). For this, logs (22-35 cm across) were embedded in the banks of torrents, 0.5-1 m above the bed and their upstream sides were faced with boulders (0.3-0.7 m across). Similar to gabion check dams, boulder-faced log dams lead to temporary ponding, spreading of peak flow over the entire channel width and sediment deposition. Results of testing under extreme flow conditions (including two storms with return periods of 5.6 and 7 years) show that 18 dams resisted strong floods. Beyond certain flood thresholds, represented by proxies such as Strahler's stream order, catchment area, D95 or channel width), 11 log dams were completely destroyed. Smallholder farmers see much potential in this type of structure to control first-order torrents with coarse bed load, since the technique is cost-effective and can be easily installed.

  4. How Is Topographic Simplicity Maintained in Ephemeral, Dryland Channels?

    NASA Astrophysics Data System (ADS)

    Singer, M. B.; Michaelides, K.

    2014-12-01

    Topography in river channels reflects the time integral of streamflow-driven sediment flux mass balance. In dryland basins, infrequent and spatially heterogeneous rainfall generates a nonuniform sediment supply to ephemeral channels from hillslopes, and this sediment is subsequently sorted by spatially and temporally discontinuous channel flow. Paradoxically, the time integral of these interactions tends to produce simple topography, manifest in straight longitudinal profiles and symmetrical cross sections, which are distinct from bed morphology in perennial channels, but the controlling processes are unclear. We present a set of numerical modeling experiments based on field measurements and scenarios of uniform/nonuniform streamflow to investigate ephemeral channel bed-material flux and net sediment accumulation behavior in response to variations in channel hydrology, width, and grain size distribution. Coupled with variations in valley and channel width and frequent, yet discontinuous hillslope supply of coarse sediment, bed material becomes weakly sorted into coarse and fine sections that then affect rates of channel Qs. We identify three sediment transport thresholds relevant to poorly armored, dryland channels: 1) a low critical value required to entrain any grain sizes from the bed; 2) a value of ~4.5τ*c needed to move all grain sizes within a cross section with equal mobility; and 3) a value of ~50τ*c required to entrain gravel at nearly equivalent rates at all sections along a reach. The latter represents the 'geomorphically effective' event, which resets channel topography. We show that spatially variable flow below ~50τ*c creates and subsequently destroys incipient topography along ephemeral reaches and that large flood events above this threshold apparently dampen fluctuations in longitudinal sediment flux and thus smooth incipient channel bar forms. Both processes contribute to the maintenance of topographic simplicity in ephemeral dryland channels.

  5. Transport of fine sediment over a coarse, immobile riverbed

    USGS Publications Warehouse

    Grams, Paul E.; Wilcock, Peter R.

    2014-01-01

    Sediment transport in cobble-boulder rivers consists mostly of fine sediment moving over a coarse, immobile bed. Transport rate depends on several interrelated factors: boundary shear stress, the grain size and volume of fine sediment, and the configuration of fine sediment into interstitial deposits and bed forms. Existing models do not incorporate all of these factors. Approaches that partition stress face a daunting challenge because most of the boundary shear is exerted on immobile grains. We present an alternative approach that divides the bed into sand patches and interstitial deposits and is well constrained by two clear end-member cases: full sand cover and absence of sand. Entrainment from sand patches is a function of their aerial coverage. Entrainment from interstices among immobile grains is a function of sand elevation relative to the size of the immobile grains. The bed-sand coverage function is used to predict the ratio of the rate of entrainment from a partially covered bed to the rate of entrainment from a completely sand-covered bed, which is determined using a standard sand transport model. We implement the bed-sand coverage function in a morphodynamic routing model and test it against observations of sand bed elevation and suspended sand concentration for conditions of nonuniform fine sediment transport in a large flume with steady uniform flow over immobile hemispheres. The results suggest that this approach may provide a simple and robust method for predicting the transport and migration of fine sediment through rivers with coarse, immobile beds.

  6. Discrete Element Modeling of the Mobilization of Coarse Gravel Beds by Finer Gravel Particles

    NASA Astrophysics Data System (ADS)

    Hill, K. M.; Tan, D.

    2012-12-01

    Recent research has shown that the addition of fine gravel particles to a coarse bed will mobilize the coarser bed, and that the effect is sufficiently strong that a pulse of fine gravel particles can mobilize an impacted coarser bed. Recent flume experiments have demonstrated that the degree of bed mobilization by finer particles is primarily dependent on the particle size ratio of the coarse and fine particles, rather than absolute size of either particle, provided both particles are sufficiently large. However, the mechanism behind the mobilization is not understood. It has previously been proposed that the mechanism is driven by a combination of geometric effects and hydraulic effects. For example, it has been argued that smaller particles fill in gaps along the bed, resulting in a smoother bed over which the larger particles are less likely to be disentrained and a reduced near-bed flow velocity and subsequent increased drag on protruding particles. Altered near-bed turbulence has also been cited as playing an important role. We perform simulations using the discrete element method with one-way fluid-solid coupling to conduct simulations of mobilization of a gravel bed by fine gravel particles. By independently and artificially controlling average and fluctuating velocity profiles, we systematically investigate the relative role that may be played by particle-particle interactions, average near-bed velocity profiles, and near-bed turbulence statistics. The simulations indicate that the relative importance of these mechanisms changes with the degree of mobilization of the bed. For higher bed mobility similar to bed sheets, particle-particle interactions, plays a significant role in an apparent rheology in the bed sheets, not unlike that observed in a dense granular flow of particles of different sizes. For conditions closer to a critical shear stress for bedload transport, the near-bed velocity profiles and turbulence statistics become increasingly important.

  7. Influence of vegetation and gravel mesh on the tertiary treatment of wastewater from a cosmetics industry.

    PubMed

    Vlyssides, Apostolos G; Mai, Sofia T H; Barampouti, Elli Maria P; Loukakis, Haralampos N

    2009-07-01

    To estimate the influence of gravel mesh (fine and coarse) and vegetation (Phragmites and Arundo) on the efficiency of a reed bed, a pilot plant was included after the wastewater treatment plant of a cosmetic industry treatment system according to a 22 factorial experimental design. The maximum biochemical oxygen demand (BOD5), chemical oxygen demand (COD) and total phosphorous (TP) reduction was observed in the reactor, where Phragmites and fine gravel were used. In the reactor with Phragmites and coarse gravel, the maximum total Kjeldahl nitrogen (TKN) and total suspended solids (TSS) reduction was observed. The maximum total solids reduction was measured in the reed bed, which was filled with Arundo and coarse gravel. Conclusively, the treatment of a cosmetic industry's wastewater by reed beds as a tertiary treatment method is quite effective.

  8. Coastal dune facies, Permian Cutler Formation (White Rim Sandstone), Capitol Reef National Park area, southern Utah

    NASA Astrophysics Data System (ADS)

    Kamola, Diane L.; Chan, Marjorie A.

    1988-04-01

    The Permian Cutler Formation (White Rim Sandstone) in the Capitol Reef National Park area in southern Utah is an excellent example of a coastal dune complex subjected to periodic flooding by marine waters. Wind-ripple, grainfall and grainflow laminae compose the cross-sets deposited by eolian dunes. However, wave-reworked structures such as oscillation ripples, the occurrence of the characteristically marine trace fossils Thalassinoides and Chondrites, and interfingering marine carbonate beds of the Kaibab Formation collectively indicate marine interaction with the eolian environment. Four facies are distinguished: cross-stratified sandstone, burrowed to bioturbated sandstone, brecciated and deformed sandstone, and ripple-laminated sandstone and thin carbonate beds. One unusual aspect of the cross-stratified sandstone facies is the abundance of coarse-grained sand. Coarse-grained sand is atypical in many ancient eolian slipface deposits, but occurs here in large slipface foresets as both grainflow and wind-ripple deposits. No water-laid structures are found in these slipface deposits. Coarse-grained sand was probably transported to the Cutler shoreline by fluvial systems draining the Uncompahgre Uplift to the east, and then concentrated as coarse-grained ripples in interdune areas. Some of these coarse-grained ripples migrated up the stoss side of the dunes and accumulations of coarse-grained sand avalanched down the crest to form grainflow deposits. An extensive amount of soft-sediment deformation is indicated by the presence of convolute bedding and brecciation. These features occur near the zone of interfingering with marine carbonate beds of the Kaibab Formation. The water-saturated and moist conditions required for extensive deformation may have been controlled by the proximity of these sandstones to the shoreline, and fluctuations in the associated groundwater table.

  9. Investigating the influence of lithologic heterogeneity on gas hydrate formation and methane recycling at the base of the gas hydrate stability zone in channelized systems

    NASA Astrophysics Data System (ADS)

    Daigle, H.; Nole, M.; Cook, A.; Malinverno, A.

    2017-12-01

    In marine environments, gas hydrate preferentially accumulates in coarse-grained sediments. At the meso- to micro-scale, however, hydrate distribution in these coarse-grained units is often heterogeneous. We employ a methane hydrate reservoir simulator coupling heat and mass transfer as well as capillary effects to investigate how capillary controls on methane solubility affect gas and hydrate accumulations in reservoirs characterized by graded bedding and alternating sequences of coarse-grained sands and fine-grained silt and clay. Simulations bury a channelized reservoir unit encased in homogeneous, fine-grained material characterized by small pores (150 nm) and low permeability ( 1 md in the absence of hydrate). Pore sizes within each reservoir bed between vary between coarse sand and fine silt. Sands have a median pore size of 35 microns and a lognormal pore size distribution. We also investigate how the amount of labile organic carbon (LOC) affects hydrate growth due to microbial methanogenesis within the sediments. In a diffusion-dominated system, methane movies into reservoir layers along spatial gradients in dissolved methane concentration. Hydrate grows in such a way as to minimize these concentration gradients by accumulating slower in finer-grained reservoir layers and faster in coarser-grained layers. Channelized, fining-upwards sediment bodies accumulate hydrate first along their outer surfaces and thence inward from top to bottom. If LOC is present in thin beds within the channel, higher saturations of hydrate will be distributed more homogeneously throughout the unit. When buried beneath the GHSZ, gas recycling can occur only if enough hydrate is present to form a connected gas phase upon dissociation. Simulations indicate that this is difficult to achieve for diffusion-dominated systems, especially those with thick GHSZs and/or small amounts of LOC. However, capillary-driven fracturing behavior may be more prevalent in settings with thick GHSZs.

  10. Investigating the influence of lithologic heterogeneity on gas hydrate formation and methane recycling at the base of the gas hydrate stability zone in channelized systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daigle, Hugh; Nole, Michael; Cook, Ann

    In marine environments, gas hydrate preferentially accumulates in coarse-grained sediments. At the meso- to micro-scale, however, hydrate distribution in these coarse-grained units is often heterogeneous. We employ a methane hydrate reservoir simulator coupling heat and mass transfer as well as capillary effects to investigate how capillary controls on methane solubility affect gas and hydrate accumulations in reservoirs characterized by graded bedding and alternating sequences of coarse-grained sands and fine-grained silt and clay. Simulations bury a channelized reservoir unit encased in homogeneous, fine-grained material characterized by small pores (150 nm) and low permeability (~1 md in the absence of hydrate). Poremore » sizes within each reservoir bed between vary between coarse sand and fine silt. Sands have a median pore size of 35 microns and a lognormal pore size distribution. We also investigate how the amount of labile organic carbon (LOC) affects hydrate growth due to microbial methanogenesis within the sediments. In a diffusion-dominated system, methane movies into reservoir layers along spatial gradients in dissolved methane concentration. Hydrate grows in such a way as to minimize these concentration gradients by accumulating slower in finer-grained reservoir layers and faster in coarser-grained layers. Channelized, fining-upwards sediment bodies accumulate hydrate first along their outer surfaces and thence inward from top to bottom. If LOC is present in thin beds within the channel, higher saturations of hydrate will be distributed more homogeneously throughout the unit. When buried beneath the GHSZ, gas recycling can occur only if enough hydrate is present to form a connected gas phase upon dissociation. Simulations indicate that this is difficult to achieve for diffusion-dominated systems, especially those with thick GHSZs and/or small amounts of LOC. However, capillary-driven fracturing behavior may be more prevalent in settings with thick GHSZs.« less

  11. Verification of sub-grid filtered drag models for gas-particle fluidized beds with immersed cylinder arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarkar, Avik; Sun, Xin; Sundaresan, Sankaran

    2014-04-23

    The accuracy of coarse-grid multiphase CFD simulations of fluidized beds may be improved via the inclusion of filtered constitutive models. In our previous study (Sarkar et al., Chem. Eng. Sci., 104, 399-412), we developed such a set of filtered drag relationships for beds with immersed arrays of cooling tubes. Verification of these filtered drag models is addressed in this work. Predictions from coarse-grid simulations with the sub-grid filtered corrections are compared against accurate, highly-resolved simulations of full-scale turbulent and bubbling fluidized beds. The filtered drag models offer a computationally efficient yet accurate alternative for obtaining macroscopic predictions, but the spatialmore » resolution of meso-scale clustering heterogeneities is sacrificed.« less

  12. Wavelike movement of bedload sediment, East Fork River, Wyoming

    USGS Publications Warehouse

    Meade, R.H.

    1985-01-01

    Bedload is moved down the East Fork River in distinct wavelike pulses that have the form of composite dune fields The moving material consists mostly of coarse sand and fine gravel The wavelengths of the pulses are about 500-600 m, a distance that is predetermined by the pattern of stoage of bed sediment in the river during low water As the river discharge increases, the bed sediment is scoured from the storage areas, and it is moved onto and across the interventing riffles As the river discharge decreases, the bed sediment is scoured off the riffles and moved into the next storage area downstream Each successive pulse of water discharge sets into motion a wave of bedload that continues to move unitil it reaches the next storage area ?? 1985 Springer-Verlag New York Inc.

  13. Grain-size segregation and levee formation in geophysical mass flows

    USGS Publications Warehouse

    Johnson, C.G.; Kokelaar, B.P.; Iverson, Richard M.; Logan, M.; LaHusen, R.G.; Gray, J.M.N.T.

    2012-01-01

    Data from large-scale debris-flow experiments are combined with modeling of particle-size segregation to explain the formation of lateral levees enriched in coarse grains. The experimental flows consisted of 10 m3 of water-saturated sand and gravel, which traveled ∼80 m down a steeply inclined flume before forming an elongated leveed deposit 10 m long on a nearly horizontal runout surface. We measured the surface velocity field and observed the sequence of deposition by seeding tracers onto the flow surface and tracking them in video footage. Levees formed by progressive downslope accretion approximately 3.5 m behind the flow front, which advanced steadily at ∼2 m s−1during most of the runout. Segregation was measured by placing ∼600 coarse tracer pebbles on the bed, which, when entrained into the flow, segregated upwards at ∼6–7.5 cm s−1. When excavated from the deposit these were distributed in a horseshoe-shaped pattern that became increasingly elevated closer to the deposit termination. Although there was clear evidence for inverse grading during the flow, transect sampling revealed that the resulting leveed deposit was strongly graded laterally, with only weak vertical grading. We construct an empirical, three-dimensional velocity field resembling the experimental observations, and use this with a particle-size segregation model to predict the segregation and transport of material through the flow. We infer that coarse material segregates to the flow surface and is transported to the flow front by shear. Within the flow head, coarse material is overridden, then recirculates in spiral trajectories due to size-segregation, before being advected to the flow edges and deposited to form coarse-particle-enriched levees.

  14. Grain-size segregation and levee formation in geophysical mass flows

    USGS Publications Warehouse

    Johnson, C.G.; Kokelaar, B.P.; Iverson, R.M.; Logan, M.; LaHusen, R.G.; Gray, J.M.N.T.

    2012-01-01

    Data from large-scale debris-flow experiments are combined with modeling of particle-size segregation to explain the formation of lateral levees enriched in coarse grains. The experimental flows consisted of 10 m3 of water-saturated sand and gravel, which traveled ~80 m down a steeply inclined flume before forming an elongated leveed deposit 10 m long on a nearly horizontal runout surface. We measured the surface velocity field and observed the sequence of deposition by seeding tracers onto the flow surface and tracking them in video footage. Levees formed by progressive downslope accretion approximately 3.5 m behind the flow front, which advanced steadily at ~2 m s-1 during most of the runout. Segregation was measured by placing ~600 coarse tracer pebbles on the bed, which, when entrained into the flow, segregated upwards at ~6–7.5 cm s-1. When excavated from the deposit these were distributed in a horseshoe-shaped pattern that became increasingly elevated closer to the deposit termination. Although there was clear evidence for inverse grading during the flow, transect sampling revealed that the resulting leveed deposit was strongly graded laterally, with only weak vertical grading. We construct an empirical, three-dimensional velocity field resembling the experimental observations, and use this with a particle-size segregation model to predict the segregation and transport of material through the flow. We infer that coarse material segregates to the flow surface and is transported to the flow front by shear. Within the flow head, coarse material is overridden, then recirculates in spiral trajectories due to size-segregation, before being advected to the flow edges and deposited to form coarse-particle-enriched levees.

  15. Particle size distribution of main-channel-bed sediments along the upper Mississippi River, USA

    USGS Publications Warehouse

    Remo, Jonathan; Heine, Ruben A.; Ickes, Brian

    2016-01-01

    In this study, we compared pre-lock-and-dam (ca. 1925) with a modern longitudinal survey of main-channel-bed sediments along a 740-km segment of the upper Mississippi River (UMR) between Davenport, IA, and Cairo, IL. This comparison was undertaken to gain a better understanding of how bed sediments are distributed longitudinally and to assess change since the completion of the UMR lock and dam navigation system and Missouri River dams (i.e., mid-twentieth century). The comparison of the historic and modern longitudinal bed sediment surveys showed similar bed sediment sizes and distributions along the study segment with the majority (> 90%) of bed sediment samples having a median diameter (D50) of fine to coarse sand. The fine tail (≤ D10) of the sediment size distributions was very fine to medium sand, and the coarse tail (≥ D90) of sediment-size distribution was coarse sand to gravel. Coarsest sediments in both surveys were found within or immediately downstream of bedrock-floored reaches. Statistical analysis revealed that the particle-size distributions between the survey samples were statistically identical, suggesting no overall difference in main-channel-bed sediment-size distribution between 1925 and present. This was a surprising result given the magnitude of river engineering undertaken along the study segment over the past ~ 90 years. The absence of substantial differences in main-channel-bed-sediment size suggests that flow competencies within the highly engineered navigation channel today are similar to conditions within the less-engineered historic channel.

  16. Evaluation of Optimum Moisture Content for Composting of Beef Manure and Bedding Material Mixtures Using Oxygen Uptake Measurement

    PubMed Central

    Kim, Eunjong; Lee, Dong-Hyun; Won, Seunggun; Ahn, Heekwon

    2016-01-01

    Moisture content influences physiological characteristics of microbes and physical structure of solid matrices during composting of animal manure. If moisture content is maintained at a proper level, aerobic microorganisms show more active oxygen consumption during composting due to increased microbial activity. In this study, optimum moisture levels for composting of two bedding materials (sawdust, rice hull) and two different mixtures of bedding and beef manure (BS, Beef cattle manure+sawdust; BR, Beef cattle manure+rice hull) were determined based on oxygen uptake rate measured by a pressure sensor method. A broad range of oxygen uptake rates (0.3 to 33.3 mg O2/g VS d) were monitored as a function of moisture level and composting feedstock type. The maximum oxygen consumption of each material was observed near the saturated condition, which ranged from 75% to 98% of water holding capacity. The optimum moisture content of BS and BR were 70% and 57% on a wet basis, respectively. Although BS’s optimum moisture content was near saturated state, its free air space kept a favorable level (above 30%) for aerobic composting due to the sawdust’s coarse particle size and bulking effect. PMID:26954138

  17. Evaluation of Optimum Moisture Content for Composting of Beef Manure and Bedding Material Mixtures Using Oxygen Uptake Measurement.

    PubMed

    Kim, Eunjong; Lee, Dong-Hyun; Won, Seunggun; Ahn, Heekwon

    2016-05-01

    Moisture content influences physiological characteristics of microbes and physical structure of solid matrices during composting of animal manure. If moisture content is maintained at a proper level, aerobic microorganisms show more active oxygen consumption during composting due to increased microbial activity. In this study, optimum moisture levels for composting of two bedding materials (sawdust, rice hull) and two different mixtures of bedding and beef manure (BS, Beef cattle manure+sawdust; BR, Beef cattle manure+rice hull) were determined based on oxygen uptake rate measured by a pressure sensor method. A broad range of oxygen uptake rates (0.3 to 33.3 mg O2/g VS d) were monitored as a function of moisture level and composting feedstock type. The maximum oxygen consumption of each material was observed near the saturated condition, which ranged from 75% to 98% of water holding capacity. The optimum moisture content of BS and BR were 70% and 57% on a wet basis, respectively. Although BS's optimum moisture content was near saturated state, its free air space kept a favorable level (above 30%) for aerobic composting due to the sawdust's coarse particle size and bulking effect.

  18. Development of neuropathic pain is affected by bedding texture in two models of peripheral nerve injury in rats.

    PubMed

    Robinson, Ian; Dowdall, Tom; Meert, Theo F

    2004-09-16

    It has long been known that there are numerous genetic and environmental factors that affect the in vivo research of neuropathic pain. In this letter, we describe the impact that bedding material can have on the development of neuropathic pain behaviors in rodents. In two models of neuropathic pain, the Chronic Constriction Injury (CCI) and the partial axotomy, we demonstrated that features of the sawdust on which the animals are housed during experimentation have a clear effect on the development of mechanical hyperalgesia and chemical hypersensitivity. Rats housed on coarse sawdust presented with a much-reduced response to a pinprick and acetone test compared to counterparts housed on fine sawdust. It is therefore concluded that the development of specific stimulus modalities of neuropathic pain behavior following peripheral nerve injury can be influenced in part by environmental factors, in this case bedding texture.

  19. Sampling interval analysis and CDF generation for grain-scale gravel bed topography

    USDA-ARS?s Scientific Manuscript database

    In river hydraulics, there is a continuing need for characterizing bed elevations to arrive at quantitative roughness measures that can be used in predicting flow depth and for improved prediction of fine-sediment transport over and through coarse beds. Recently published prediction methods require...

  20. A Probabilistic Model for Sediment Entrainment: the Role of Bed Irregularity

    NASA Astrophysics Data System (ADS)

    Thanos Papanicolaou, A. N.

    2017-04-01

    A generalized probabilistic model is developed in this study to predict sediment entrainment under the incipient motion, rolling, and pickup modes. A novelty of the proposed model is that it incorporates in its formulation the probability density function of the bed shear stress, instead of the near-bed velocity fluctuations, to account for the effects of both flow turbulence and bed surface irregularity on sediment entrainment. The proposed model incorporates in its formulation the collective effects of three parameters describing bed surface irregularity, namely the relative roughness, the volumetric fraction and relative position of sediment particles within the active layer. Another key feature of the model is that it provides a criterion for estimating the lift and drag coefficients jointly based on the recognition that lift and drag forces acting on sediment particles are interdependent and vary with particle protrusion and packing density. The model was validated using laboratory data of both fine and coarse sediment and was compared with previously published models. The study results show that for the fine sediment data, where the sediment particles have more uniform gradation and relative roughness is not a factor, all the examined models perform adequately. The proposed model was particularly suited for the coarse sediment data, where the increased bed irregularity was captured by the new parameters introduced in the model formulations. As a result, the proposed model yielded smaller prediction errors and physically acceptable values for the lift coefficient compared to the other models in case of the coarse sediment data.

  1. Submarine fan facies of Upper Cretaceous Strata, Southern San Rafael Mountains, Santa Barbara County, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toyne, C.D.

    1986-04-01

    A 2900-m thick Campanian-Maestrichtian(.) turbidite sequence in Upper Mono Creek Canyon is interpreted to be a progradational submarine fan complex comprised of outer fan, middle fan, inner fan, and slope facies. The basal 600 m of the section consists of thinly bedded, laterally continuous fine sandstones, siltstones, and mudstones (mainly Mutti and Ricci Lucci facies D), interpreted to be outer fan interlobe and lobe-fringe deposits. These are punctuated by infrequent medium to very thickly bedded, flat-based, fine to coarse sandstones (facies C and B), which commonly coarsen and thicken upward, and are interpreted to be depositional lobes. Overlying these depositsmore » are approximately 1400 m of middle fan deposits composed of frequent lenticular, commonly channelized and amalgamated, thickly bedded, fine to very coarse sandstones (facies C and B) organized in fining- and thinning-upward sequences, interpreted to be braided-channel deposits. These alternate with less common nonchannelized coarsening- and thickening-upward sequences suggestive of lobe-apical cycles. These multistory sand deposits are nested within thick intervals of fine sandstones, siltstones, and mudstones (facies C and D), interpreted to be levee, crevasse-splay, and interchannel deposits. Interfingered with and overlying these deposits are approximately 500 m of fining- and thinning-upward or noncyclic, erosionally based, commonly amalgamated, very thickly bedded, medium to very coarse sandstones, pebbly sandstones, and conglomerates (facies A and B), interpreted to be inner fan deposits. Intercalated within this facies, infrequent, laterally discontinuous, thin to thickly bedded, fine to coarse sandstones, siltstones, and mudstones exist, interpreted to be interchannel, levee, and possibly channel-fill deposits.« less

  2. Assessment of bedload equations using data obtained with tracers in two coarse-bed mountain streams (Narcea River basin, NW Spain)

    NASA Astrophysics Data System (ADS)

    Vázquez-Tarrío, Daniel; Menéndez-Duarte, Rosana

    2015-06-01

    This paper evaluates the predictive power of nine bedload equations, comparing the results provided by the equations with the bedload rates obtained in a previous field-based tracer experiment accomplished in River Pigüeña and River Coto, two coarse bed streams from NW Spain. Rivers from NW Spain draining the northern watershed of the Cantabrian Mountain range flow into the Bay of Biscay in a short path (50-60 km). In this region, they are developed forested catchments featured by fluvial networks with relatively steep slopes, single-thread sinuous channels, and where bed sediment is typically coarse (cobble and gravel). Tagged stones were used to trace bed sediment movement during flood events in River Pigüeña and River Coto, the two main tributaries of the Narcea River basin. With the tracer results, bedload transport rates between 0.2 and 4.0 kg/s were estimated for six flood episodes. The tracer-based bedload discharges were compared with the bedload rates estimated with the bedload formulae (DuBoys-Straub, Schoklitsch, Meyer Peter-Müller, Bagbold, Einstein, Parker-Klingeman-McLean, Parker-Klingeman, Parker and Wilcock-Crowe). Our assessment shows that all of the bedload equations tend to overestimate when compared with the tracer-based results, with the Wilcock and Crowe (2003) equation the only exception in River Pigüeña. We linked these results to the particular geomorphology of coarse-bed rivers in humid and forested mountain environments. Within these rivers, armored textures and structural arrangements in the bed are ubiquitous; these features, together with a low sediment supply coming from upstream forested reaches, define a supply-limited condition for these channels limiting the potential use of bedload equations. The Wilcock and Crowe (2003) equation introduces complex corrections into the 'hiding function', and this could explain why it performs better.

  3. The effect of coarse gravel on cohesive sediment entrapment in an annular flume

    NASA Astrophysics Data System (ADS)

    Glasbergen, K.; Stone, M.; Krishnappan, B.; Dixon, J.; Silins, U.

    2015-03-01

    While cohesive sediment generally represents a small fraction (<0.5%) of the total sediment mass stored in gravel-bed rivers, it can strongly influence physical and biogeochemical processes in the hyporheic zone and alter aquatic habitat. This research was conducted to examine mechanisms governing the interaction of cohesive sediments with gravel beds in the Elbow River, Alberta, Canada. A series of erosion and deposition experiments with and without a gravel bed were conducted in a 5-m diameter annular flume. The critical shear stress for deposition and erosion of cohesive sediment without gravel was 0.115 Pa and 0.212 Pa, respectively. In experiments with a gravel bed, cohesive sediment moved from the water column into the gravel bed via the coupling of surface and pore water flow. Once in the gravel bed, cohesive sediments were not mobilized under the maximum applied shear stresses (1.11 Pa) used in the experiment. The gravel bed had an entrapment coefficient (ratio between the entrapment flux and the settling flux) of 0.2. Accordingly, when flow conditions are sufficient to produce a shear stress that will mobilize the armour layer of the gravel bed (>16 Pa), cohesive materials trapped within the gravel bed will be entrained and transported into the Glenmore Reservoir, where sediment-associated nutrients may pose treatment challenges to the drinking water supply.

  4. Grain velocity of bedload movement in an armored non-uniform mobile bed

    NASA Astrophysics Data System (ADS)

    Liu, C.

    2015-12-01

    The velocity of bedload particles, which directly reflects the interaction between flow and sediment, is one of the important parameters to predict sediment transport rate, is also one of the fundamental problems for sediment transport. Many excellent works have been accomplished in this filed. However, the existing researches are mostly based on the artificial fixed bed, few moveable bed studies are focus on uniform sediment bed, these boundary conditions are different from a real river. In this research, an experiment on non-uniform sediment with an armored, moveable bed were carried out in a flume, the range of bed material is from 0.2mm to 20mm. With a special hanging glass and illumination system, the motion particles in the bed were clearly shoot on top of the flume by a video camera, avoiding the interference of waves at the flow surface. The speed of the camera is 50 frames per second. About 7000 unique coordinates of moving particles were determined from 3000 frames of successive pictures, the particle velocity of longitudinal and crosswise directions were obtained from the coordinates. The results show that, the probability density distribution of grain velocities of both directions are similar to that in the uniform sediment, which have an exponent decay trend, whereas the value of cross velocity of particles is clearly greater than that in the uniform sediment condition. Negative particle velocity was recognized in the experiment, it is shown that these negative may occur at two conditions, one is the backflow of fine particles behind the coarser particles, and the other is a state of movement change, such as a particle from static state to motion or vice versa. Furthermore, the particle movement was strongly affected by the arrangement of local coarse particles. The influence of coarser particles to the movement of fine particles also identified by two opposite effects, one is the acceleration effects in a 'tunnel' between pair of series particles, the other is the deceleration effects out of the tunnel, or fine particles captured by the backwater flow just behind a coarse particle. In addition, ensemble particle velocity in the armored bed is distinctly less than which in the fixed bed and uniform bed condition with same particle Reynolds number and Shields parameter. (Supported by(2012BAB04B01;NSFC(11472310))

  5. An analysis of bedload and suspended load interactions

    NASA Astrophysics Data System (ADS)

    Recking, alain; Navratil, Oldrich

    2013-04-01

    Several approaches were used to develop suspension equations. It includes semi-theoretical equations based on the convection diffusion equation (Einstein 1950; Van Rijn 1984; Camenen and Larson 2008; Julien 2010), semi-empirical tools based on energy concept (Velikanov 1954; Bagnold 1966), empirical adjustments (Prosser and Rusttomji 2000). One essential characteristic of all these equations is that most of them were developed by considering continuity between bedload and suspended load, and that the partitioning between these two modes of transport evolves progressively with increasing shear stress, which is the case for fine bed materials. The use of these equations is thus likely to be welcome in estuaries or lowland sandy rivers, but may be questionable in gravel-bed rivers and headwater streams where the bed is usually structured vertically and fine sediments potentially contributing to suspension are stored under a poorly mobile surface armour comprising coarse sediments. Thus one question this work aimed to answer is does the presence of an armour at the bed surface influence suspended load? This was investigated through a large field data set comprising instantaneous measurements of both bedload and suspension. We also considered the river characteristics, distinguishing between lowland rivers, gravel bed rivers and headwater streams. The results showed that a correlation exist between bedload and suspension for lowland and gravel bed rivers. This suggests that in gravel bed rivers a large part of the suspended load is fed by subsurface material, and depends on the remobilization of the surface material. No correlation was observed for head water streams where the sediment production is more likely related to hillslope processes. These results were used with a bedload transport equation for proposing a method for suspended load estimate. The method is rough, but especially for gravel bed rivers, it predicts suspended load reasonably well when compared to standard convection diffusion equations.

  6. Channel change and bed-material transport in the Lower Chetco River, Oregon

    USGS Publications Warehouse

    Wallick, J. Rose; Anderson, Scott W.; Cannon, Charles; O'Connor, Jim E.

    2010-01-01

    The lower Chetco River is a wandering gravel-bed river flanked by abundant and large gravel bars formed of coarse bed-material sediment. Since the early twentieth century, the large gravel bars have been a source of commercial aggregate for which ongoing permitting and aquatic habitat concerns have motivated this assessment of historical channel change and sediment transport rates. Analysis of historical channel change and bed-material transport rates for the lower 18 kilometers shows that the upper reaches of the study area are primarily transport zones, with bar positions fixed by valley geometry and active bars mainly providing transient storage of bed material. Downstream reaches, especially near the confluence of the North Fork Chetco River, are zones of active sedimentation and channel migration.Multiple analyses, supported by direct measurements of bedload during winter 2008–09, indicate that since 1970 the mean annual flux of bed material into the study reach has been about 40,000–100,000 cubic meters per year. Downstream tributary input of bed-material sediment, probably averaging 5–30 percent of the influx coming into the study reach from upstream, is approximately balanced by bed-material attrition by abrasion. Probably little bed material leaves the lower river under natural conditions, with most net influx historically accumulating in wider and more dynamic reaches, especially near the North Fork Chetco River confluence, 8 kilometers upstream from the Pacific Ocean.The year-to-year flux, however, varies tremendously. Some years may have less than 3,000 cubic meters of bed material entering the study area; by contrast, some high-flow years, such as 1982 and 1997, likely have more than 150,000 cubic meters entering the reach. For comparison, the estimated annual volume of gravel extracted from the lower Chetco River for commercial aggregate during 2000–2008 has ranged from 32,000 to 90,000 cubic meters and averaged about 59,000 cubic meters per year. Mined volumes probably exceeded 140,000 cubic meters per year for several years in the late 1970s.Repeat surveys and map analyses indicate a reduction in bar area and sinuosity between 1939 and 2008, chiefly in the period 1965–95. Repeat topographic and bathymetric surveys show channel incision for substantial portions of the study reach, with local areas of bed lowering by as much as 2 meters. A specific gage analysis at the upstream end of the study reach indicates that incision and narrowing followed aggradation culminating in the late 1970s. These observations are all consistent with a reduction of sediment supply relative to transport capacity since channel surveys in the late 1970s, probably owing to a combination of (1) bed sediment removal and (2) transient river adjustments to large sediment volumes brought by floods such as those in 1964 and, to a lesser extent, 1996.

  7. Channel change and bed-material transport in the Lower Chetco River, Oregon

    USGS Publications Warehouse

    Wallick, J. Rose; Anderson, Scott W.; Cannon, Charles; O'Connor, Jim E.

    2009-01-01

    The lower Chetco River is a wandering gravel-bed river flanked by abundant and large gravel bars formed of coarse bed-material sediment. The large gravel bars have been a source of commercial aggregate since the early twentieth century for which ongoing permitting and aquatic habitat concerns have motivated this assessment of historical channel change and sediment transport rates. Analysis of historical channel change and bed-material transport rates for the lower 18 kilometers show that the upper reaches of the study area are primarily transport zones, with bar positions fixed by valley geometry and active bars mainly providing transient storage of bed material. Downstream reaches, especially near the confluence of the North Fork Chetco River, have been zones of active sedimentation and channel migration.Multiple analyses, supported by direct measurements of bedload during winter 2008–09, indicate that since 1970 the mean annual flux of bed material into the study reach has been about 40,000–100,000 cubic meters per year. Downstream tributary input of bed-material sediment, probably averaging 5–30 percent of the influx coming into the study reach from upstream, is approximately balanced by bed-material attrition by abrasion. Probably very little bed material leaves the lower river under natural conditions, with most of the net influx historically accumulating in wider and more dynamic reaches, especially near the North Fork Chetco River confluence, 8 kilometers upstream from the Pacific Ocean.The year-to-year flux, however, varies tremendously. Some years probably have less than 3,000 cubic meters of bed-material entering the study area; by contrast, some high-flow years, such as 1982 and 1997, likely have more than 150,000 cubic meters entering the reach. For comparison, the estimated annual volume of gravel extracted from the lower Chetco River for commercial aggregate during 2000–2008 has ranged from 32,000 to 90,000 cubic meters and averaged about 59,000 cubic meters per year. Mined volumes probably exceeded 140,000 cubic meters per year for several years in the late 1970s.Repeat surveys and map analyses indicate a reduction in bar area and sinuosity between 1939 and 2008, chiefly in the period 1965–95. Repeat topographic and bathymetric surveys show channel incision for substantial portions of the study reach, with local areas of bed lowering by as much as 2 meters. A specific gage analysis at the upstream end of the study reach indicates that incision and narrowing followed aggradation culminating in the late 1970s. These observations are all consistent with a reduction of sediment supply relative to transport capacity since channel surveys in the late 1970s, probably owing to a combination of (1) bed-sediment removal and (2) transient river adjustments to large sediment volumes brought by floods such as those in 1964, and to a lesser extent, 1996.

  8. Channel Change and Bed-Material Transport in the Lower Chetco River, Oregon

    NASA Astrophysics Data System (ADS)

    O'Connor, J. E.; Wallick, R.; Anderson, S.; Cannon, C.

    2009-12-01

    The Chetco River drains 914 square kilometers of the Klamath Mountains in far southwestern Oregon. For its lowermost 18 km, it is a wandering gravel-bed river flanked by abundant and large gravel bars formed of coarse bed-material sediment. The large gravel bars have been a source of commercial aggregate since the early twentieth century for which ongoing permitting and aquatic habitat concerns have motivated an assessment of historical channel change and sediment transport rates. Analysis of historical channel change and bed-material transport rates for the lower 18 kilometers show that the upper reaches of the study area are primarily transport zones, with bar positions fixed by valley geometry and active bars mainly providing transient storage of bed material. Downstream reaches, especially near the confluence of the North Fork Chetco River, have been zones of active sedimentation and channel migration. Multiple analyses, supported by direct measurements of bedload during winter 2008-09, indicate that since 1970 the mean annual flux of bed material into the study reach has been about 40,000-100,000 cubic meters per year. Downstream tributary input of bed-material sediment, probably averaging 5-30 percent of the influx coming into the study reach from upstream, is approximately balanced by bed-material attrition by abrasion. Probably very little bed material leaves the lower river under natural conditions, with most of the net influx historically accumulating in wider and more dynamic reaches, especially near the North Fork Chetco River confluence, 8 kilometers upstream from the Pacific Ocean. The year-to-year flux, however, varies tremendously. Some years probably have less than 3,000 cubic meters of bed-material entering the study area; by contrast, some high-flow years, such as 1982 and 1997, likely have more than 150,000 cubic meters entering the reach. For comparison, the estimated annual volume of gravel extracted from the lower Chetco River for commercial aggregate during 2000-2008 has ranged from 32,000 to 90,000 cubic meters and averaged about 59,000 cubic meters per year. Mined volumes probably exceeded 140,000 cubic meters per year for several years in the late 1970s. Repeat surveys and map analyses indicate a reduction in bar area and sinuosity between 1939 and 2008, chiefly in the period 1965-95. Repeat topographic and bathymetric surveys show channel incision for substantial portions of the study reach, with local areas of bed lowering by as much as 2 meters. A specific gage analysis at the upstream end of the study reach indicates that incision and narrowing followed aggradation culminating in the late 1970s. These observations are all consistent with a reduction of sediment supply relative to transport capacity since channel surveys in the late 1970s, probably owing to a combination of (1) bed-sediment removal and (2) transient river adjustments to large sediment volumes brought by floods such as those in 1964, and to a lesser extent, 1996.

  9. Preferential Flow Paths and Recirculation-Disrupting Jets in the Leeside of Self-Forming Coarse-Grained Laboratory Bedforms

    NASA Astrophysics Data System (ADS)

    Lichtner, D.; Christensen, K. T.; Best, J.; Blois, G.

    2014-12-01

    Exchange of fluid in the near-subsurface of a streambed is influenced by turbulence in the free flow, as well as by bed topography and permeability. Macro-roughness elements such as bedforms are known to produce pressure gradients that drive fluid into the streambed on their stoss sides and out of the bed on their lee sides. To study the modification of the near-bed flow field by self-forming permeable bedforms, laboratory experiments were conducted in a 5 mm wide flume filled with 1.3 mm glass beads. The narrow width of the flume permitted detailed examination of the fluid exiting the bed immediately downstream of a bedform. Dense 2-D velocity field measurements were gathered using particle image velocimetry (PIV). In up to 8% of instantaneous PIV realizations, the flow at the near-bed presented a component perpendicular to the streambed, indicating flow across the interface. At the downstream side of the bedform, such flow disrupted the mean recirculation pattern that is typically observed in finer sediment beds. It is hypothesized that the coarse grain size and the resulting high bed permeability promote such near-surface jet events. A qualitative analysis of raw image frames indicated that an in-place jostling of sediment is associated with these jets thus suggesting that subsurface flow may be characterized by impulsive events. These observations are relevant to hyporheic exchange rates in coarse sediments and can have strong morphodynamic implications as they can explain the lack of ripples and characteristics of dunes in high permeability gravels. Overall, further study of the flow structure over highly permeable streambeds is needed to understand subsurface exchange and bedform initiation.

  10. Extension of a coarse grained particle method to simulate heat transfer in fluidized beds

    DOE PAGES

    Lu, Liqiang; Morris, Aaron; Li, Tingwen; ...

    2017-04-18

    The heat transfer in a gas-solids fluidized bed is simulated with computational fluid dynamic-discrete element method (CFD-DEM) and coarse grained particle method (CGPM). In CGPM fewer numerical particles and their collisions are tracked by lumping several real particles into a computational parcel. Here, the assumption is that the real particles inside a coarse grained particle (CGP) are made from same species and share identical physical properties including density, diameter and temperature. The parcel-fluid convection term in CGPM is calculated using the same method as in DEM. For all other heat transfer mechanisms, we derive in this study mathematical expressions thatmore » relate the new heat transfer terms for CGPM to those traditionally derived in DEM. This newly derived CGPM model is verified and validated by comparing the results with CFD-DEM simulation results and experiment data. The numerical results compare well with experimental data for both hydrodynamics and temperature profiles. Finally, the proposed CGPM model can be used for fast and accurate simulations of heat transfer in large scale gas-solids fluidized beds.« less

  11. Extension of a coarse grained particle method to simulate heat transfer in fluidized beds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Liqiang; Morris, Aaron; Li, Tingwen

    The heat transfer in a gas-solids fluidized bed is simulated with computational fluid dynamic-discrete element method (CFD-DEM) and coarse grained particle method (CGPM). In CGPM fewer numerical particles and their collisions are tracked by lumping several real particles into a computational parcel. Here, the assumption is that the real particles inside a coarse grained particle (CGP) are made from same species and share identical physical properties including density, diameter and temperature. The parcel-fluid convection term in CGPM is calculated using the same method as in DEM. For all other heat transfer mechanisms, we derive in this study mathematical expressions thatmore » relate the new heat transfer terms for CGPM to those traditionally derived in DEM. This newly derived CGPM model is verified and validated by comparing the results with CFD-DEM simulation results and experiment data. The numerical results compare well with experimental data for both hydrodynamics and temperature profiles. Finally, the proposed CGPM model can be used for fast and accurate simulations of heat transfer in large scale gas-solids fluidized beds.« less

  12. Physical characteristics of the lower San Joaquin River, California, in relation to white sturgeon spawning habitat, 2011–14

    USGS Publications Warehouse

    Marineau, Mathieu D.; Wright, Scott A.; Whealdon-Haught, Daniel R.; Kinzel, Paul J.

    2017-07-19

    The U.S. Fish and Wildlife Service confirmed that white sturgeon (Acipenser transmontanus) recently spawned in the lower San Joaquin River, California. Decreases in the San Francisco Bay estuary white sturgeon population have led to an increased effort to understand their migration behavior and habitat preferences. The preferred spawning habitat of other white sturgeon (for example, those in the Columbia and Klamath Rivers) is thought to be areas that have high water velocity, deep pools, and coarse bed material. Coarse bed material (pebbles and cobbles), in particular, is important for the survival of white sturgeon eggs and larvae. Knowledge of the physical characteristics of the lower San Joaquin River can be used to preserve sturgeon spawning habitat and lead to management decisions that could help increase the San Francisco Bay estuary white sturgeon population.Between 2011 and 2014, the U.S. Geological Survey, in cooperation with the U.S. Fish and Wildlife Service, assessed selected reaches and tributaries of the lower river in relation to sturgeon spawning habitat by (1) describing selected spawning reaches in terms of habitat-related physical characteristics (such as water depth and velocity, channel slope, and bed material) of the lower San Joaquin River between its confluences with the Stanislaus and Merced Rivers, (2) describing variations in these physical characteristics during wet and dry years, and (3) identifying potential reasons for these variations.The lower San Joaquin River was divided into five study reaches. Although data were collected from all study reaches, three subreaches where the USFWS collected viable eggs at multiple sites in 2011–12 from Orestimba Creek to Sturgeon Bend were of special interest. Water depth and velocity were measured using two different approaches—channel cross sections and longitudinal profiles—and data were collected using an acoustic Doppler current profiler.During the first year of data collection (water year 2011), runoff was greatest, and gaged streamflow, measured as discharge, peaked at 875 cubic meters per second in the lower San Joaquin River. Also during that year, water velocity was generally between 0.6 and 0.9 meters per second, and depth was typically between 2.5 and 4.5 meters, but water depth exceeded 6 meters in several pools. Water year 2011 was classified as a “wet” year. Later water years were classified as either “dry” (water year 2012) or “critical” (water years 2013 and 2014). During the drier years, water was shallower, and velocities were slower. The streambed aggraded in several areas during the study. At Sturgeon Bend, for example, which had the deepest pool measured in 2011 (maximum depth was 14 meters), about 8 meters of sediment was deposited by 2014.The bed of the lower San Joaquin River was predominately sand, except in areas downstream from the mouth of Del Puerto Creek. A large amount of sand, gravel, and cobble was deposited at the mouth of Del Puerto Creek, and in the 9.5 kilometers downstream from the mouth of Del Puerto Creek, we encountered several gravel bars and patches of gravel-size (8–64 millimeters) bed material. Del Puerto and Orestimba Creeks drain from the Coast Ranges on the west side of the river. Only small quantities of gravel-size bed material were observed in the reach downstream from Orestimba Creek, indicating Orestimba Creek does not deliver much coarse sediment to the lower San Joaquin River. Del Puerto Creek appeared to be the primary source of gravels suitable for white sturgeon spawning in the lower San Joaquin River, and thus, it is important for the long-term spawning success of sturgeon in the San Joaquin River.

  13. Unsaturated hydraulic behaviour of a permeable pavement: Laboratory investigation and numerical analysis by using the HYDRUS-2D model

    NASA Astrophysics Data System (ADS)

    Turco, Michele; Kodešová, Radka; Brunetti, Giuseppe; Nikodem, Antonín; Fér, Miroslav; Piro, Patrizia

    2017-11-01

    An adequate hydrological description of water flow in permeable pavement systems relies heavily on the knowledge of the unsaturated hydraulic properties of the construction materials. Although several modeling tools and many laboratory methods already exist in the literature to determine the hydraulic properties of soils, the importance of an accurate materials hydraulic description of the permeable pavement system, is increasingly recognized in the fields of urban hydrology. Thus, the aim of this study is to propose techniques/procedures on how to interpret water flow through the construction system using the HYDRUS model. The overall analysis includes experimental and mathematical procedures for model calibration and validation to assess the suitability of the HYDRUS-2D model to interpret the hydraulic behaviour of a lab-scale permeable pavement system. The system consists of three porous materials: a wear layer of porous concrete blocks, a bedding layers of fine gravel, and a sub-base layer of coarse gravel. The water regime in this system, i.e. outflow at the bottom and water contents in the middle of the bedding layer, was monitored during ten irrigation events of various durations and intensities. The hydraulic properties of porous concrete blocks and fine gravel described by the van Genuchten functions were measured using the clay tank and the multistep outflow experiments, respectively. Coarse gravel properties were set at literature values. In addition, some of the parameters (Ks of the concrete blocks layer, and α, n and Ks of the bedding layer) were optimized with the HYDRUS-2D model from water fluxes and soil water contents measured during irrigation events. The measured and modeled hydrographs were compared using the Nash-Sutcliffe efficiency (NSE) index (varied between 0.95 and 0.99) while the coefficient of determination R2 was used to assess the measured water content versus the modelled water content in the bedding layer (R2 = 0.81 ÷ 0.87) . The parameters were validated using the remaining sets of measurements resulting in NSE values greater than 0.90 (0.91 ÷ 0.99) and R2 between 0.63 and 0.91. Results have confirmed the applicability of HYDRUS-2D to describe correctly the hydraulic behaviour of the lab-scale system.

  14. Coarse-grained discrete particle simulations of particle segregation in rotating fluidized beds in vortex chambers [Discrete particle simulations of particle segregation in rotating fluidized beds in vortex chambers

    DOE PAGES

    Verma, Vikrant; Li, Tingwen; De Wilde, Juray

    2017-05-26

    Vortex chambers allow the generation of rotating fluidized beds, offering high-G intensified gas-solid contact, gas-solids separation and solids-solids segregation. Focusing on binary particle mixtures and fixing the density and diameter of the heavy/large particles, transient batch CFD-coarse-grained DPM simulations were carried out with varying densities or sizes of the light/small particles to evaluate to what extent combining these three functionalities is possible within a vortex chamber of given design. Both the rate and quality of segregation were analyzed. Within a relatively wide density and size range, fast and efficient segregation takes place, with an inner and slower rotating bed ofmore » the lighter/small particles forming within the outer and faster rotating bed of the heavier/large particles. Simulations show that the contamination of the outer bed with lighter particles occurs more easily than contamination of the inner bed with heavier particles and increases with decreasing difference in size or density of the particles. Bubbling in the inner bed is observed with an inner bed of very low density or small particles. Porosity plots show that vortex chambers with a sufficient number of gas inlet slots have to be used to guarantee a uniform gas distribution and particle bed. Lastly, the flexibility of particle segregation in vortex chambers with respect to the gas flow rate is demonstrated.« less

  15. Coarse-grained discrete particle simulations of particle segregation in rotating fluidized beds in vortex chambers [Discrete particle simulations of particle segregation in rotating fluidized beds in vortex chambers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verma, Vikrant; Li, Tingwen; De Wilde, Juray

    Vortex chambers allow the generation of rotating fluidized beds, offering high-G intensified gas-solid contact, gas-solids separation and solids-solids segregation. Focusing on binary particle mixtures and fixing the density and diameter of the heavy/large particles, transient batch CFD-coarse-grained DPM simulations were carried out with varying densities or sizes of the light/small particles to evaluate to what extent combining these three functionalities is possible within a vortex chamber of given design. Both the rate and quality of segregation were analyzed. Within a relatively wide density and size range, fast and efficient segregation takes place, with an inner and slower rotating bed ofmore » the lighter/small particles forming within the outer and faster rotating bed of the heavier/large particles. Simulations show that the contamination of the outer bed with lighter particles occurs more easily than contamination of the inner bed with heavier particles and increases with decreasing difference in size or density of the particles. Bubbling in the inner bed is observed with an inner bed of very low density or small particles. Porosity plots show that vortex chambers with a sufficient number of gas inlet slots have to be used to guarantee a uniform gas distribution and particle bed. Lastly, the flexibility of particle segregation in vortex chambers with respect to the gas flow rate is demonstrated.« less

  16. Critical conditions for particle motion in coarse bed materials of nonuniform size distribution

    NASA Astrophysics Data System (ADS)

    Bathurst, James C.

    2013-09-01

    Initiation of particle motion in a bed material of nonuniform size distribution may be quantified by (qci/qcr) = (Di/Dr)b, where qci is the critical unit discharge at which particle size Di enters motion, qcr is the critical condition for a reference size Dr unaffected by the hiding/exposure effects associated with nonuniform size distributions, i and r refer to percentiles of the distribution and b varies from 0 (equal mobility in entrainment of all particle sizes) to 1.5-2.5 (full size selective transport). Currently there is no generally accepted method for predicting the value of b. Flume and field data are therefore combined to investigate the above relationship. Thirty-seven sets of flume data quantify the relationship between critical unit discharge and particle size for bed materials with uniform size distributions (used here to approximate full size selective transport). Field data quantify the relationship for bed materials of nonuniform size distribution at 24 sites, with b ranging from 0.15 to 1.3. Intersection of the two relationships clearly demonstrates the hiding/exposure effect; in some but not all cases, Dr is close to the median size D50. The exponent has two clusters of values: b > 1 for sites subject to episodic rain-fed floods and data collected by bedload pit trap and tracers; and b < 0.7 for sites with seasonal snowmelt/glacial melt flow regimes and data collected by bedload sampler and large aperture trap. Field technique appears unlikely to cause variations in b of more than about 0.25. However, the clustering is consistent with possible variations in bed structure distinguishing: for b > 1, sites with relatively infrequent bedload transport where particle embedding and consolidation could reduce the mobility of coarser particles; and, for b < 0.7, a looser bed structure with frequent transport events allowing hiding/exposure and size selection effects to achieve their balance. As yet there is no firm evidence for such a dependency on bed structure but variations in b could potentially be caused by factors outside those determining equal mobility or size selection but appearing to affect b in the same way.

  17. Energy, cost and design aspects of coarse- and fine-bubble aeration systems in the MBBR IFAS process.

    PubMed

    Sander, S; Behnisch, J; Wagner, M

    2017-02-01

    With the MBBR IFAS (moving bed biofilm reactor integrated fixed-film activated sludge) process, the biomass required for biological wastewater treatment is either suspended or fixed on free-moving plastic carriers in the reactor. Coarse- or fine-bubble aeration systems are used in the MBBR IFAS process. In this study, the oxygen transfer efficiency (OTE) of a coarse-bubble aeration system was improved significantly by the addition of the investigated carriers, even in-process (∼1% per vol-% of added carrier material). In a fine-bubble aeration system, the carriers had little or no effect on OTE. The effect of carriers on OTE strongly depends on the properties of the aeration system, the volumetric filling rate of the carriers, the properties of the carrier media, and the reactor geometry. This study shows that the effect of carriers on OTE is less pronounced in-process compared to clean water conditions. When designing new carriers in order to improve their effect on OTE further, suppliers should take this into account. Although the energy efficiency and cost effectiveness of coarse-bubble aeration systems can be improved significantly by the addition of carriers, fine-bubble aeration systems remain the more efficient and cost-effective alternative for aeration when applying the investigated MBBR IFAS process.

  18. Field characteristics of deposits from spatter-rich pyroclastic density currents at Summer Coon volcano, Colorado

    NASA Astrophysics Data System (ADS)

    Valentine, G. A.; Perry, F. V.; WoldeGabriel, G.

    2000-12-01

    The Oligocene, deeply eroded Summer Coon composite volcano contains mafic andesite deposits that are massive to poorly bedded, have abundant flattened and deformed spatter clasts, have varying proportions of dense lithic clasts, and are supported mostly by a coarse-ash matrix. Although superficially these deposits resemble typical facies from Strombolian eruptions (emplaced ballistically, by fallout, and by rolling and local grain-avalanches down steep cone slopes), there are several lines of evidence that lead to an interpretation that the deposits were emplaced by pyroclastic density currents. These include local coarse-tail grading, deformation of spatter clasts in a down-flow direction, incorporation of matrix ash and lapilli into flattened spatter clasts, imbrication of large clasts, plastering of spatter on stoss sides of large lithic blocks and lenses of lithic-rich material on lee sides, deposition on angles less than the angle of repose, and a paucity of clast shapes associated with Strombolian mechanisms. The deposit characteristics are consistent with rapid sedimentation from a low-particle-concentration, turbulent flow onto an aggrading bed. We infer two potential mechanisms for generating these density currents: (1) explosive magma-water interaction involving lithic debris and relatively unfragmented melt; and (2) collapse of oversteepened upper cone slopes due to rapid accumulation of spatter from voluminous Strombolian eruptions.

  19. Preferences of group-housed female mice regarding structure of softwood bedding.

    PubMed

    Kirchner, J; Hackbarth, H; Stelzer, H D; Tsai, P-P

    2012-04-01

    Bedding influences various parameters in the housing of laboratory mice, such as health, physiology and behaviour (often considered as being integral parts of welfare). Notwithstanding existent studies about bedding preferences of individually tested mice, data about group-housed mice are still lacking. The aim of this study was to find out the structure preference for softwood bedding of group-housed mice. One hundred and eight 8-week-old female mice (C57BL6/JOlaHsd and BALB/cOlaHsd) were housed in groups of three and were given one-week free access to two different bedding structures at a time. In three test combinations, softwood shaving bedding was tested versus softwood chip bedding products of three different particle sizes (fine/medium/coarse-grained). The preference test was performed in a DoubleCage system composed of two Makrolon type IIL cages, connected by a perspex tunnel. This validated system was able to detect the crossings of each individual animal with correct crossing time and direction. On the basis of these data, dwelling times on the particular bedding structures were statistically analysed as a parameter for bedding preferences. In all three test combinations, a highly significant shaving preference was detected. On average, mice spent 70% of their dwelling time on the shavings. This preference was more explicit during the light period and in C57BL/6J mice. The relative ranking of the bedding structures was: shavings > coarse-grained chips > medium chips = fine chips. By means of these results, a shaving structure as bedding can be recommended for laboratory mice, whereas fine chip structures should be avoided.

  20. Nonpoint Source Solute Transport Normal to Aquifer Bedding in Heterogeneous, Markov Chain Random Fields

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Harter, T.; Sivakumar, B.

    2005-12-01

    Facies-based geostatistical models have become important tools for the stochastic analysis of flow and transport processes in heterogeneous aquifers. However, little is known about the dependency of these processes on the parameters of facies- based geostatistical models. This study examines the nonpoint source solute transport normal to the major bedding plane in the presence of interconnected high conductivity (coarse- textured) facies in the aquifer medium and the dependence of the transport behavior upon the parameters of the constitutive facies model. A facies-based Markov chain geostatistical model is used to quantify the spatial variability of the aquifer system hydrostratigraphy. It is integrated with a groundwater flow model and a random walk particle transport model to estimate the solute travel time probability distribution functions (pdfs) for solute flux from the water table to the bottom boundary (production horizon) of the aquifer. The cases examined include, two-, three-, and four-facies models with horizontal to vertical facies mean length anisotropy ratios, ek, from 25:1 to 300:1, and with a wide range of facies volume proportions (e.g, from 5% to 95% coarse textured facies). Predictions of travel time pdfs are found to be significantly affected by the number of hydrostratigraphic facies identified in the aquifer, the proportions of coarse-textured sediments, the mean length of the facies (particularly the ratio of length to thickness of coarse materials), and - to a lesser degree - the juxtapositional preference among the hydrostratigraphic facies. In transport normal to the sedimentary bedding plane, travel time pdfs are not log- normally distributed as is often assumed. Also, macrodispersive behavior (variance of the travel time pdf) was found to not be a unique function of the conductivity variance. The skewness of the travel time pdf varied from negatively skewed to strongly positively skewed within the parameter range examined. We also show that the Markov chain approach may give significantly different travel time pdfs when compared to the more commonly used Gaussian random field approach even though the first and second order moments in the geostatistical distribution of the lnK field are identical. The choice of the appropriate geostatistical model is therefore critical in the assessment of nonpoint source transport.

  1. Nonpoint source solute transport normal to aquifer bedding in heterogeneous, Markov chain random fields

    NASA Astrophysics Data System (ADS)

    Zhang, Hua; Harter, Thomas; Sivakumar, Bellie

    2006-06-01

    Facies-based geostatistical models have become important tools for analyzing flow and mass transport processes in heterogeneous aquifers. Yet little is known about the relationship between these latter processes and the parameters of facies-based geostatistical models. In this study, we examine the transport of a nonpoint source solute normal (perpendicular) to the major bedding plane of an alluvial aquifer medium that contains multiple geologic facies, including interconnected, high-conductivity (coarse textured) facies. We also evaluate the dependence of the transport behavior on the parameters of the constitutive facies model. A facies-based Markov chain geostatistical model is used to quantify the spatial variability of the aquifer system's hydrostratigraphy. It is integrated with a groundwater flow model and a random walk particle transport model to estimate the solute traveltime probability density function (pdf) for solute flux from the water table to the bottom boundary (the production horizon) of the aquifer. The cases examined include two-, three-, and four-facies models, with mean length anisotropy ratios for horizontal to vertical facies, ek, from 25:1 to 300:1 and with a wide range of facies volume proportions (e.g., from 5 to 95% coarse-textured facies). Predictions of traveltime pdfs are found to be significantly affected by the number of hydrostratigraphic facies identified in the aquifer. Those predictions of traveltime pdfs also are affected by the proportions of coarse-textured sediments, the mean length of the facies (particularly the ratio of length to thickness of coarse materials), and, to a lesser degree, the juxtapositional preference among the hydrostratigraphic facies. In transport normal to the sedimentary bedding plane, traveltime is not lognormally distributed as is often assumed. Also, macrodispersive behavior (variance of the traveltime) is found not to be a unique function of the conductivity variance. For the parameter range examined, the third moment of the traveltime pdf varies from negatively skewed to strongly positively skewed. We also show that the Markov chain approach may give significantly different traveltime distributions when compared to the more commonly used Gaussian random field approach, even when the first- and second-order moments in the geostatistical distribution of the lnK field are identical. The choice of the appropriate geostatistical model is therefore critical in the assessment of nonpoint source transport, and uncertainty about that choice must be considered in evaluating the results.

  2. Characteristics of sedimentary structures in coarse-grained alluvial rivers

    NASA Astrophysics Data System (ADS)

    Ackerley, David; Powell, Mark

    2013-04-01

    The characteristics of coarse-grained alluvial surfaces have important implications for the estimation of flow resistance, entrainment thresholds and sediment transport rates in gravel-bed rivers. This area of research has, thus, demanded attention from geomorphologists, sedimentologists, and river engineers. The majority of research has focused towards understanding the characteristics and adjustments in surface grain size. Bed stability, however, is not ultimately defined by particle size but how grains are arranged within the bed surface. For example, by the organisation of particles into a variety of grain and form scale sedimentary structures and bedforms (e.g. imbrication; pebble clusters, stone nets, transverse ribs). While it is widely acknowledged sedimentary structuring must be considered within estimates of flow resistance and sediment transport, relatively little is known about the structural properties of water-worked river gravels. As a consequence, we remain woefully ignorant of this important aspect of gravel-bed river sedimentology. The aim of this poster is to present some preliminary results of a study designed to characterise the morphodynamics of sedimentary structures in coarse-grained alluvial rivers and their implications upon entrainment thresholds and sediment transport rates. The poster focuses on investigating the variability in grain and form scale sedimentary structuring across a number of field sites. Representative patches of three gravel bars on the Rivers Wharfe, Manifold and Afon Elan, UK, have been surveyed using a Leica HDS 3000 Terrestrial Laser Scanner. The resultant raw point-cloud data, recorded at a 4mm resolution, has been registered, filtered, and interpolated to produce highly detailed 2½D digital elevation models of gravel-bed surface topography. These surfaces have been analysed using a number of structural parameters including bed elevation probability distribution function statistics (standard deviation, skewness, kurtosis), semivariograms, and inclination indices. This research enhances our understanding of alluvial bed surface structures and lays the foundations for developing a more detailed understanding of their morphodynamics.

  3. Response of bed surface patchiness to reductions in sediment supply

    NASA Astrophysics Data System (ADS)

    Nelson, Peter A.; Venditti, Jeremy G.; Dietrich, William E.; Kirchner, James W.; Ikeda, Hiroshi; Iseya, Fujiko; Sklar, Leonard S.

    2009-06-01

    River beds are often arranged into patches of similar grain size and sorting. Patches can be distinguished into "free patches," which are zones of sorted material that move freely, such as bed load sheets; "forced patches," which are areas of sorting forced by topographic controls; and "fixed patches" of bed material rendered immobile through localized coarsening that remain fairly persistent through time. Two sets of flume experiments (one using bimodal, sand-rich sediment and the other using unimodal, sand-free sediment) are used to explore how fixed and free patches respond to stepwise reductions in sediment supply. At high sediment supply, migrating bed load sheets formed even in unimodal, sand-free sediment, yet grain interactions visibly played a central role in their formation. In both sets of experiments, reductions in supply led to the development of fixed coarse patches, which expanded at the expense of finer, more mobile patches, narrowing the zone of active bed load transport and leading to the eventual disappearance of migrating bed load sheets. Reductions in sediment supply decreased the migration rate of bed load sheets and increased the spacing between successive sheets. One-dimensional morphodynamic models of river channel beds generally are not designed to capture the observed variability, but should be capable of capturing the time-averaged character of the channel. When applied to our experiments, a 1-D morphodynamic model (RTe-bookAgDegNormGravMixPW.xls) predicted the bed load flux well, but overpredicted slope changes and was unable to predict the substantial variability in bed load flux (and load grain size) because of the migration of mobile patches. Our results suggest that (1) the distribution of free and fixed patches is primarily a function of sediment supply, (2) the dynamics of bed load sheets are primarily scaled by sediment supply, (3) channels with reduced sediment supply may inherently be unable to transport sediment uniformly across their width, and (4) cross-stream variability in shear stress and grain size can produce potentially large errors in width-averaged sediment flux calculations.

  4. Coarse-grained debris flow dynamics on erodible beds

    NASA Astrophysics Data System (ADS)

    Lanzoni, Stefano; Gregoretti, Carlo; Stancanelli, Laura Maria

    2017-03-01

    A systematic set of flume experiments is used to investigate the features of velocity profiles within the body of coarse-grained debris flows and the dependence of the transport sediment concentration on the relevant parameters (runoff discharge, bed slope, grain size, and form). The flows are generated in a 10 m long laboratory flume, initially filled with a layer consisting of loose debris. After saturation, a prescribed water discharge is suddenly supplied over the granular bed, and the runoff triggers a debris flow wave that reaches nearly steady conditions. Three types of material have been used in the tests: gravel with mean grain size of 3 and 5 mm, and 3 mm glass spheres. Measured parameters included: triggering water discharge, volumetric sediment discharge, sediment concentration, flow depth, and velocity profiles. The dynamic similarity with full-sized debris flows is discussed on the basis of the relevant dimensionless parameters. Concentration data highlight the dependence on the slope angle and the importance of the quasi-static friction angle. The effects of flow rheology on the shape of velocity profiles are analyzed with attention to the role of different stress-generating mechanisms. A remarkable collapse of the dimensionless profiles is obtained by scaling the debris flow velocity with the runoff velocity, and a power law characterization is proposed following a heuristic approach. The shape of the profiles suggests a smooth transition between the different rheological regimes (collisional and frictional) that establish in the upper and lower regions of the flow and is compatible with the presence of multiple length scales dictated by the type of contacts (instantaneous or long lasting) between grains.

  5. The Grain-size Patchiness of Braided Gravel-Bed Streams - example of the Urumqi River (northeast Tian Shan, China)

    NASA Astrophysics Data System (ADS)

    Guerit, L.; Barrier, L.; Narteau, C.; Métivier, F.; Liu, Y.; Lajeunesse, E.; Gayer, E.; Meunier, P.; Malverti, L.; Ye, B.

    2014-02-01

    In gravel-bed rivers, sediments are often sorted into patches of different grain-sizes, but in braided streams, the link between this sorting and the channel morpho-sedimentary elements is still unclear. In this study, the size of the bed sediment in the shallow braided gravel-bed Urumqi River is characterized by surface-count and volumetric sampling methods. Three morpho-sedimentary elements are identified in the active threads of the river: chutes at flow constrictions, which pass downstream to anabranches and bars at flow expansions. The surface and surface-layer grain-size distributions of these three elements show that they correspond to only two kinds of grain-size patches: (1) coarse-grained chutes, coarser than the bulk river bed, and (2) finer-grained anabranches and bars, consistent with the bulk river bed. In cross-section, the chute patches are composed of one coarse-grained top layer, which can be interpreted as a local armour layer overlying finer deposits. In contrast, the grain size of the bar-anabranch patches is finer and much more homogeneous in depth than the chute patches. Those patches, which are features of lateral and vertical sorting associated to the transport dynamics that build braided patterns, may be typical of active threads in shallow gravel-bed rivers and should be considered in future works on sorting processes and their geomorphologic and stratigraphic results.

  6. Fluidized bed combustion of high-volatile solid fuels: An assessment of char attrition and volatile matter segregation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chirone, R.; Marzocchella, A.; Salatino, P.

    1999-07-01

    A simple lumped-parameter model of a bubbling fluidized bed combustor fueled with high-volatile solid fuels is presented. The combustor is divided into three sections: the dense bed, the splashing region and the freeboard. Material balances on fixed carbon, volatile matter and oxygen are set up, taking into account fuel particle fragmentation and attrition, volatile matter segregation as well as postcombustion of both carbon fines and volatiles escaping the bed. A basic assumption of the model is that the combustion pathway that foes from the raw fuel to the combustion products proceeds via the formation of three phases: volatile matter, relativelymore » large non-elutriable char particles and fine char particles of elutriable size. The study is complemented by a simplified thermal balance on the splashing zone taking into account volatiles and elutriated fines postcombustion and radiative and convective heat fluxes to the bed and the freeboard. Results from calculations with either low- or high-volatile solid fuels indicate that low-volatile bituminous coal combustion takes place essentially in the bed mostly via coarse char particles combustion, while high-volatile biomass fuel combustion occurs to comparable extents both in the bed and in the splashing region of the combustor. Depending on the extent of volatile matter segregation with respect to the bed, a significant fraction of the heat is released into the splashing region of the combustor and this results into an increase of temperature in this region. Extensive bed solids recirculation associated to bubble bursting/solids ejection at the bed surface together with effective gas-solids heat transfer promotes thermal feedback from this region to the bed of as much as 90% of the heat release by volatile matter and elutriated fines afterburning.« less

  7. Comparisons of Derived Metrics from Computed Tomography (CT) Scanned Images of Fluvial Sediment from Gravel-Bed Flume Experiments

    NASA Astrophysics Data System (ADS)

    Voepel, Hal; Ahmed, Sharif; Hodge, Rebecca; Leyland, Julian; Sear, David

    2016-04-01

    Uncertainty in bedload estimates for gravel bed rivers is largely driven by our inability to characterize arrangement, orientation and resultant forces of fluvial sediment in river beds. Water working of grains leads to structural differences between areas of the bed through particle sorting, packing, imbrication, mortaring and degree of bed armoring. In this study, non-destructive, micro-focus X-ray computed tomography (CT) imaging in 3D is used to visualize, quantify and assess the internal geometry of sections of a flume bed that have been extracted keeping their fabric intact. Flume experiments were conducted at 1:1 scaling of our prototype river. From the volume, center of mass, points of contact, and protrusion of individual grains derived from 3D scan data we estimate 3D static force properties at the grain-scale such as pivoting angles, buoyancy and gravity forces, and local grain exposure. Here metrics are derived for images from two flume experiments: one with a bed of coarse grains (>4mm) and the other where sand and clay were incorporated into the coarse flume bed. In addition to deriving force networks, comparison of metrics such as critical shear stress, pivot angles, grain distributions, principle axis orientation, and pore space over depth are made. This is the first time bed stability has been studied in 3D using CT scanned images of sediment from the bed surface to depths well into the subsurface. The derived metrics, inter-granular relationships and characterization of bed structures will lead to improved bedload estimates with reduced uncertainty, as well as improved understanding of relationships between sediment structure, grain size distribution and channel topography.

  8. Geomorphic impacts of flash flooding in a forested headwater basin

    NASA Astrophysics Data System (ADS)

    Phillips, Jonathan D.

    2002-12-01

    Geomorphic impacts of a July 2001 flood in the Hungry Mother basin near Marion, Virginia, were examined to shed light on the relationships between channel characteristics and the frequency of channel-modifying discharges. Creeks in the study area have been observed for many years, with no significant channel changes since at least 1985. The 2001 flood had a recurrence interval of >200 years, and caused the only channel change, bank erosion, and transport of coarse channel material observed in recent decades. The paucity of fines in channels before or after the flood, and the absence of sub-sand sized material in the flood deposits, indicates that normal, frequent, well-below-bankfull flows are sufficient to transport the (apparently limited) supply of fines. The large particles transported during the 2001 flood after years of inactivity indicate that relatively rare floods are necessary to mobilize this material. This suggests the notion of a bimodal 'dominant' discharge. On the one hand frequent flows considerably below bankfull levels are sufficient to maintain the channel and prevent significant accumulation of fine sediments and organic matter. On the other hand, rare floods are necessary to transport the coarser bed material and erode channel banks. In the Hungry Mother area, bed material has no relationship to normal flows, or to flows with recurrence intervals on the order of 1-3 years. Bankfull discharge is apparently not related to either the maintenance or channel-changing dominant discharges. These results suggest that the use of channel dimensions and/or bed material as surrogate indicators of hydrologic regimes can be quite complicated, and that in some streams bankfull flow has no particular significance in terms of sediment transport and channel modifications.

  9. Temporal and spatial variability in thalweg profiles of a gravel-bed river

    USGS Publications Warehouse

    Madej, Mary Ann

    1999-01-01

    This study used successive longitudinal thalweg profiles in gravel-bed rivers to monitor changes in bed topography following floods and associated large sediment inputs. Variations in channel bed elevations, distributions of residual water depths, percentage of channel length occupied by riffles, and a spatial autocorrelation coefficient (Moran's I) were used to quantify changes in morphological diversity and spatial structure in Redwood Creek basin, northwestern California. Bed topography in Redwood Creek and its major tributaries consists primarily of a series of pools and riffles. The size, frequency and spatial distribution of the pools and riffles have changed significantly during the past 20 years. Following large floods and high sediment input in Redwood Creek and its tributaries in 1975, variation in channel bed elevations was low and the percentage of the channel length occupied by riffles was high. Over the next 20 years, variation in bed elevations increased while the length of channel occupied by riffles decreased. An index [(standard deviation of residual water depth/bankfull depth) × 100] was developed to compare variations in bed elevation over a range of stream sizes, with a higher index being indicative of greater morphological diversity. Spatial autocorrelation in the bed elevation data was apparent at both fine and coarse scales in many of the thalweg profiles and the observed spatial pattern of bed elevations was found to be related to the dominant channel material and the time since disturbance. River reaches in which forced pools dominated, and in which large woody debris and bed particles could not be easily mobilized, exhibited a random distribution of bed elevations. In contrast, in reaches where alternate bars dominated, and both wood and gravel were readily transported, regularly spaced bed topography developed at a spacing that increased with time since disturbance. This pattern of regularly spaced bed features was reversed following a 12-year flood when bed elevations became more randomly arranged.

  10. Architectural elements from Lower Proterozoic braid-delta and high-energy tidal flat deposits in the Magaliesberg Formation, Transvaal Supergroup, South Africa

    NASA Astrophysics Data System (ADS)

    Eriksson, Patrick G.; Reczko, Boris F. F.; Jaco Boshoff, A.; Schreiber, Ute M.; Van der Neut, Markus; Snyman, Carel P.

    1995-06-01

    Three architectural elements are identified in the Lower Proterozoic Magaliesberg Formation (Pretoria Group, Transvaal Supergroup) of the Kaapvaal craton, South Africa: (1) medium- to coarse-grained sandstone sheets; (2) fine- to medium-grained sandstone sheets; and (3) mudrock elements. Both sandstone sheet elements are characterised by horizontal lamination and planar cross-bedding, with lesser trough cross-bedding, channel-fills and wave ripples, as well as minor desiccated mudrock partings, double-crested and flat-topped ripples. Due to the local unimodal palaeocurrent patterns in the medium- to coarse-grained sandstone sheets, they are interpreted as ephemeral braid-delta deposits, which were subjected to minor marine reworking. The predominantly bimodal to polymodal palaeocurrent trends in the fine- to medium-grained sandstone sheets are inferred to reflect high-energy macrotidal processes and more complete reworking of braid-delta sands. The suspension deposits of mudrocks point to either braid-delta channel abandonment, or uppermost tidal flat sedimentation. The depositional model comprises ephemeral braid-delta systems which debouched into a high-energy peritidal environment, around the margins of a shallow epeiric sea on the Kaapvaal craton. Braid-delta and tidal channel dynamics are inferred to have been similar. Fine material in the Magaliesberg Formation peritidal complexes indicates that extensive aeolian removal of clay does not seem applicable to this example of the early Proterozoic.

  11. Changes to channel sediments resulting from complex human impacts in a gravel-bed river, Polish Carpathians

    NASA Astrophysics Data System (ADS)

    Zawiejska, Joanna; Wyżga, Bartłomiej; Hajdukiewicz, Hanna; Radecki-Pawlik, Artur; Mikuś, Paweł

    2016-04-01

    During the second half of the twentieth century, many sections of the Czarny Dunajec River, Polish Carpathians, were considerably modified by channelization as well as gravel-mining and the resultant channel incision (up to 3.5 m). This paper examines changes to the longitudinal pattern of grain size and sorting of bed material in an 18-km-long river reach. Surface bed-material grain size was established on 47 gravel bars and compared with a reference downstream fining trend of bar sediments derived from the sites with average river width and a vertically stable channel. Contrary to expectations, the extraction of cobbles from the channel bed in the upper part of the study reach, conducted in the past decades, has resulted in the marked coarsening of bed material in this river section. The extraction facilitated entrainment of exposed finer grains and has led to rapid bed degradation, whereas the concentration of flood flows in the increasingly deep and narrow channel has increased their competence and enabled a delivery of the coarse particles previously typical of the upstream reach. The middle section of the study reach, channelized to prevent sediment delivery to a downstream reservoir, now transfers the bed material flushed out from the incising upstream section. With considerably increased transport capacity of the river and with sediment delivery from bank erosion eliminated by bank reinforcements, bar sediments in the channelized section are typified by increased size of the finer fraction and better-than-average sorting. In the wide, multi-thread channel in the lower part of the reach, low unit stream power and high channel-form roughness facilitate sediment deposition and are reflected in relatively fine grades of bar gravels. The study showed that selective extraction of larger particles from the channel bed leads to channel incision at and upstream of the mining site. However, unlike bulk gravel mining, selective extraction does not result in sediment deficit downstream as large volumes of finer bed material are flushed out from the incising channel section. Grain-size analyses of bulk gravels and measurements of 100 coarsest particles within the channel sediment ranging in age from 5200 years BP to the present, performed in this deeply incised section, indicated that grain size of channel sediments changed relatively little since mid-Holocene to the 1960s, but has increased rapidly over the last half-century as a result of human interventions and rapidly progressing channel incision. This study was performed within the scope of the Research Project DEC-2013/09/B/ST10/00056 financed by the National Science Centre of Poland.

  12. Measurement of coarse gravel and cobble transport using portable bedload traps

    Treesearch

    Kristin Bunte; Steven R. Abt; John P. Potyondy; Sandra E. Ryan

    2004-01-01

    Portable bedload traps (0.3 by 0.2 m opening) were developed for sampling coarse bedload transport in mountain gravel-bed rivers during wadable high flows. The 0.9 m long trailing net can capture about 20 kg of gravel and cobbles. Traps are positioned on ground plates anchored in the streambed to minimize disturbance of the streambed during sampling. This design...

  13. A comparison of coarse bedload transport measured with bedload traps and Helley Smith samplers

    Treesearch

    Kristin Bunte; Steven R. Abt; John P. Potyondy; Kurt W. Swingle

    2008-01-01

    Gravel bedload transport rates were measured at eight study sites in coarse-bedded Rocky Mountain streams using 4-6 bedload traps deployed across the stream width and a 76 by 76 mm opening Helley Smith sampler. Transport rates obtained from bedload traps increased steeply with flow which resulted in steep and well-defined transport rating curves with exponents of 8 to...

  14. An efficient and reliable predictive method for fluidized bed simulation

    DOE PAGES

    Lu, Liqiang; Benyahia, Sofiane; Li, Tingwen

    2017-06-13

    In past decades, the continuum approach was the only practical technique to simulate large-scale fluidized bed reactors because discrete approaches suffer from the cost of tracking huge numbers of particles and their collisions. This study significantly improved the computation speed of discrete particle methods in two steps: First, the time-driven hard-sphere (TDHS) algorithm with a larger time-step is proposed allowing a speedup of 20-60 times; second, the number of tracked particles is reduced by adopting the coarse-graining technique gaining an additional 2-3 orders of magnitude speedup of the simulations. A new velocity correction term was introduced and validated in TDHSmore » to solve the over-packing issue in dense granular flow. The TDHS was then coupled with the coarse-graining technique to simulate a pilot-scale riser. The simulation results compared well with experiment data and proved that this new approach can be used for efficient and reliable simulations of large-scale fluidized bed systems.« less

  15. An efficient and reliable predictive method for fluidized bed simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Liqiang; Benyahia, Sofiane; Li, Tingwen

    2017-06-29

    In past decades, the continuum approach was the only practical technique to simulate large-scale fluidized bed reactors because discrete approaches suffer from the cost of tracking huge numbers of particles and their collisions. This study significantly improved the computation speed of discrete particle methods in two steps: First, the time-driven hard-sphere (TDHS) algorithm with a larger time-step is proposed allowing a speedup of 20-60 times; second, the number of tracked particles is reduced by adopting the coarse-graining technique gaining an additional 2-3 orders of magnitude speedup of the simulations. A new velocity correction term was introduced and validated in TDHSmore » to solve the over-packing issue in dense granular flow. The TDHS was then coupled with the coarse-graining technique to simulate a pilot-scale riser. The simulation results compared well with experiment data and proved that this new approach can be used for efficient and reliable simulations of large-scale fluidized bed systems.« less

  16. Hyporheic exchange in gravel bed rivers with pool-riffle morphology: Laboratory experiments and three-dimensional modeling

    Treesearch

    Daniele Tonina; John M. Buffington

    2007-01-01

    We report the first laboratory simulations of hyporheic exchange in gravel pool-riffle channels, which are characterized by coarse sediment, steep slopes, and three-dimensional bed forms that strongly influence surface flow. These channels are particularly important habitat for salmonids, many of which are currently at risk worldwide and which incubate their offspring...

  17. Grain-scale modeling and splash parametrization for aeolian sand transport.

    PubMed

    Lämmel, Marc; Dzikowski, Kamil; Kroy, Klaus; Oger, Luc; Valance, Alexandre

    2017-02-01

    The collision of a spherical grain with a granular bed is commonly parametrized by the splash function, which provides the velocity of the rebounding grain and the velocity distribution and number of ejected grains. Starting from elementary geometric considerations and physical principles, like momentum conservation and energy dissipation in inelastic pair collisions, we derive a rebound parametrization for the collision of a spherical grain with a granular bed. Combined with a recently proposed energy-splitting model [Ho et al., Phys. Rev. E 85, 052301 (2012)PLEEE81539-375510.1103/PhysRevE.85.052301] that predicts how the impact energy is distributed among the bed grains, this yields a coarse-grained but complete characterization of the splash as a function of the impact velocity and the impactor-bed grain-size ratio. The predicted mean values of the rebound angle, total and vertical restitution, ejection speed, and number of ejected grains are in excellent agreement with experimental literature data and with our own discrete-element computer simulations. We extract a set of analytical asymptotic relations for shallow impact geometries, which can readily be used in coarse-grained analytical modeling or computer simulations of geophysical particle-laden flows.

  18. Will river erosion below the Three Gorges Dam stop in the middle Yangtze?

    NASA Astrophysics Data System (ADS)

    Lai, X.; Yin, D.; Finlayson, B. L.; Wei, T.; Li, M.; Yuan, W.; Yang, S.; Dai, Z.; Gao, S.; Chen, Z.

    2017-11-01

    The environmental impact of the Three Gorges Dam has been a subject of vigorous academic, political and social debate since its inception. This includes the key issue of post-dam river channel erosion, which was predicted by the feasibility study to extend to the river mouth. In this paper we examine the geomorphic response of the channel of the middle Yangtze for 660 km downstream of the dam. Using data on channel characteristics, bed material and sediment transport, we show that in the decade following the dam closure, pre-dam seasonal erosion has been replaced by year-round erosion, a pattern most marked at the upstream end of the study area. The sediment carrying capacity of the river channel has been largely reduced below the dam. The locus of bed scour has moved progressively downstream, ceasing as the bed material became too coarse to be transported (e.g. D50: 0.29 mm pre-dam coarsened to 20 mm below the dam by 2008). About 400 km below the dam there is a reduction in channel slope that changes the sediment carrying capacity from 0.25 kg m-3 to only about 0.05 kg m-3, which is insufficient to move bed sediment. The new long-term hydro-morphological equilibrium that will be established in this section of the middle Yangtze will prevent the further incision downstream initiated by the Three Gorges Dam. The results suggest that the full extent of adverse environmental impact predicted by the pre-dam studies will not eventuate.

  19. Coevolution of bed surface patchiness and channel morphology: 1. Mechanisms of forced patch formation

    USGS Publications Warehouse

    Nelson, Peter A.; McDonald, Richard R.; Nelson, Jonathan M.; Dietrich, William E.

    2015-01-01

    Riverbeds frequently display a spatial structure where the sediment mixture composing the channel bed has been sorted into discrete patches of similar grain size. Even though patches are a fundamental feature in gravel bed rivers, we have little understanding of how patches form, evolve, and interact. Here we present a two-dimensional morphodynamic model that is used to examine in greater detail the mechanisms responsible for the development of forced bed surface patches and the coevolution of bed morphology and bed surface patchiness. The model computes the depth-averaged channel hydrodynamics, mixed-grain-size sediment transport, and bed evolution by coupling the river morphodynamic model Flow and Sediment Transport with Morphological Evolution of Channels (FaSTMECH) with a transport relation for gravel mixtures and the mixed-grain-size Exner equation using the active layer assumption. To test the model, we use it to simulate a flume experiment in which the bed developed a sequence of alternate bars and temporally and spatially persistent forced patches with a general pattern of coarse bar tops and fine pools. Cross-stream sediment flux causes sediment to be exported off of bars and imported into pools at a rate that balances downstream gradients in the streamwise sediment transport rate, allowing quasi-steady bar-pool topography to persist. The relative importance of lateral gravitational forces on the cross-stream component of sediment transport is a primary control on the amplitude of the bars. Because boundary shear stress declines as flow shoals over the bars, the lateral sediment transport is increasingly size selective and leads to the development of coarse bar tops and fine pools.

  20. Salmon Spawning Effects on Streambed Stability

    NASA Astrophysics Data System (ADS)

    Buxton, T. H.; Buffington, J. M.; Yager, E.; Fremier, A. K.; Hassan, M. A.

    2014-12-01

    Female salmon build nests ("redds") in streambeds to protect their eggs from predation and damage by bed scour. During spawning, streambed material is mixed, fine sediment is winnowed downstream, and sediment is moved into a tailspill mound resembling the shape of a dune. Redd surfaces are coarser and better sorted than unspawned beds, which is thought to increase redd stability because larger grains are heavier and harder to move and sorting leads to higher friction angles for grain mobility. However, spawning also loosens sediment and creates topography that accelerates flow, both of which may increase particle mobility. We address factors controlling the relative stability of redds and unspawned beds using simulated salmon redds and water worked ("unspawned") beds composed of mixed-grain surfaces in a laboratory flume. Results show that simulated spawning lowered packing resistance to particle mobility on redds by an average of 32-39% compared to unspawned beds. Reductions in packing were sufficient to counter the higher inherent stability of relatively coarse, well sorted grains on redds, overall reducing critical shear stress by 8-20% relative to unspawned beds. In addition, boundary shear stress was 13-41% higher on redds due to flow convergence over the tailspill structure. Finally, redd instability relative to unspawned beds was observed in visual measurements of grain mobility, where bed-averaged shear stress was 22% lower at incipient motion and 29% lower at the discharge that mobilized all grain sizes on redds. Results of these complementary observations, along with sediment mass transport rates being nearly five times higher on a redd than an unspawned bed, indicate that redds are unstable compared to unspawned beds. Given these findings, further research is needed to investigate linkages between spawning disturbance and streambed mobility that may affect salmon reproduction in streams, and to assess whether a certain level of bed disturbance from spawning is required to restore ecosystem functions in streams with threatened populations of salmon.

  1. Exploring the role of flood transience in coarse bed load sediment transport

    NASA Astrophysics Data System (ADS)

    Phillips, C. B.; Singer, M. B.; Hill, K. M.; Paola, C.

    2015-12-01

    The rate of bed load transport under steady flow is known to vary both spatially and temporally due to various hydrologic and granular phenomena. Grain size distributions and riverbed properties (packing, imbrication, etc.) are known to affect flux for a particular value of applied flow stress, while hydrology is mainly assumed to control the magnitude of the applied bed stress above the threshold for bed material entrainment. The prediction of bed load sediment transport in field settings is further complicated by the inherent transience in flood hydrology, but little is known about how such flood transience influences bed load flux over a range of applied bed stress. Here we investigate the role of flood transience for gravel bed load transport through controlled laboratory experiments in a 28 m long 0.5 meter wide flume. We explore transient flow as the combination of unsteady and intermittent flow, where unsteady flow varies in magnitude over a given duration, and intermittent flow is characterized by turning the flow on and off. We systematically vary these details of flood hydrographs from one experiment to the next, and monitor the bed load as it varies with water discharge in real time by measuring sediment flux and tracking particles. We find that even with a narrow unimodal grain size distribution and constant sediment supply we observe hysteresis in bed load flux, different thresholds for entrainment and distrainment for the rising and falling limbs of a flood, and a threshold of entrainment that can vary one flood hydrograph to the next. Despite these complex phenomena we find that the total bed load transported for each flood plots along a linear trend with the integrated excess stress, consistent with prior field results. These results suggest that while the effects of transient flow and the shape of the hydrograph are measurable, they are second-order compared to the integrated excess stress.

  2. Mid and Late Devonian arenites deposited by sheet-flood, braided streams and rivers in the northern Barrier Ranges, far western New South Wales, Australia

    NASA Astrophysics Data System (ADS)

    Neef, G.; Bottrill, R. S.; Cohen, D. R.

    1996-05-01

    Extensive and well exposed, fine-grained fluvial sandstone and less common pebbly coarse-grained fluvial sandstone of Devonian age, crop out in the northern Barrier Ranges of far west New South Wales, Australia. These strata were deposited largely on low-gradient alluvial fans in a basin and range landscape and contain common sedimentary structures (especially streaming lineations and tabular cross-beds). Around 400 of these sedimentary structures were measured to determine the palaeoflow trends of the sheet floods, streams or rivers which deposited the sandstone. The strata are mapped as the Mid Devonian Coco Range Sandstone and the Late Devonian Nundooka Sandstone, which together are around 2.7 km thick. They were deposited at the western margin of the large Emsian to Early Carboniferous Darling Basin. The Coco Range Sandstone is Emsian to Eifelian in age (based on fragments) of fossil fish) and it is separated from the Frasnian-Famennian (Late Devonian) Nundooka Sandstone by the north-trending Nundooka Creek Fault. The eastern boundary of the Nundooka Sandstone is formed by the Western Boundary Fault. Eastward of this fault is the north-trending and 40 km wide Bancannia Trough, which contains gently folded Late Silurian to Early Carboniferous strata up to 7.5 km thick. Most of the Coco Range Sandstone and all of the Nundooka Sandstone are non-graded, fine and very fine-grained, light brown sub-litharenites which are considered to have been deposited mainly on low-gradient alluvial fans. Sedimentary successions of 1.75 to 5.25 m thickness in the fine-grained arenite usually commence with Sm (massive or slumped) → Sh (laminated arenite) or St (trough cross-beds) → Sp (tabular cross-bedded sandstone). An erosional surface commonly underlies the sedimentary successions and they are interpreted to be the result of deposition from decelerating sheet floods. Units composed of tabular cross-bedded strata several metres thick are rarely channelised and are interpreted to represent deposition within braided streams flowing upon the fans or deposited at the margin of sheet floods. In the Coco Range Sandstone there are two sheet-like coarse pebbly arenite units (The Valley Tank and Copi Dam Members) which together total 200 m in thickness. Unimodal palaeocurrent trends and heavy mineral suites from within the coarse-grained arenite indicate a derivation from the south near Broken Hill. Sedimentary structures within the coarse-grained arenite indicate a Platte River style of deposition upon distal braid plains, whereas local interdigitation of coarse-grained arenite with fine arenite strata shows that deposition was essentially continuous (i.e. the coarse arenite do not overlie unconformities) and the two lithotypes represent interdigitation of alluvial fans and braid plain deposition. The northward progradation of the coarse arenite units was probably due to a sudden retardation of basement downwarping.

  3. Stratigraphy and depositional environment of unnamed (lower Miocene) submarine-fan sandstone unit in Sierra Madre and San Rafael Mountains, northeastern Santa Barbara County, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, G.D.; Fritsche, A.E.; Condon, M.W.

    1988-03-01

    A relatively thick and extensive, previously unnamed, lower Miocene sandstone unit occurs in the central Sierra Madre and in the Hurricane Deck area of the San Rafael Mountains of northeastern Santa Barbara County, California. It is underlain conformably and interfingers with a dark mudstone that correlates with the Soda Lake Shale Member of the Vaqueros Formation; it is overlain conformably and interfingers with a brown shale that correlates with the Saltos Member of the Monterey Shale. Northeastern exposures along the north flank of the Sierra Madre are almost exclusively medium to coarse-grained, structureless sandstone with scattered pebbly conglomerate beds. Thicknessmore » ranges from zero in the southeastern part of the Sierra Madre to 70 m in the northeast, 75 m in the northwest, and 600 m in the central part of the range. Toward the southwest in the Hurricane Deck area of the San Rafael Mountains, the unit becomes thicker and more extensively interbedded with mudstone. Lithology of the unit consists of 0.3-3.5 m thick beds of medium to coarse-grained, structureless to vaguely graded sandstone with scoured contacts at the base. Sandstone beds 0.3-3.0 m thick, which are more distinctly graded from coarse to very fine are also present. The interbedded mudstone commonly is bioturbated, so bedding is indistinct. Thickness ranges from 1020 m in the central part of the area to 750 m toward the southwest and 92 m toward the northwest. The unit most likely represents deposition in a submarine-canyon and fan complex that had its channel head in the northeast and spread southwestward into a thick sequence of submarine-fan sandstone lobes, which were confined in a narrow west-trending trough.« less

  4. Dune migration in a steep, coarse-bedded stream

    USGS Publications Warehouse

    Dinehart, Randy L.

    1989-01-01

    During 1986 and 1987, migrating bed forms composed of coarse sand and fine gravel (d50=1.8 to 9.1 mm) were documented in the North Fork Toutle River at Kid Valley, Washington, at flow velocities ranging from 1.6 to 3.4 m s−1 and depths of 0.8 to 2.2 m. The bed forms (predominantly lower regime dunes) were studied with a sonic depth sounder transducer suspended in the river at a stationary point. Twelve temporal depth-sounding records were collected during storm runoff and nearly steady, average streamflow, with record durations ranging from 37 to 261 min. Waveform height was defined by dune front heights, which ranged from 12 to 70 cm. A weak correlation between flow depth and the standard deviation of bed elevation was noted. Dune front counts and spectral analyses of the temporal records showed that dune crests passed the observation point every 2 to 5 min. Dunes were often superposed on larger bed forms with wave periods between 10 and 30 min. Gradual changes in waveform height and periodicity occurred over several hours during storm runoff. The processes of dune growth and decay were both time-dependent and affected by changes in streamflow. Rates of migration for typical dunes were estimated to be 3 cm s−1, and dune wavelengths were estimated to be 6 to 7 m.

  5. The volume of fine sediment in pools: An index of sediment supply in gravel-bed streams

    Treesearch

    Thomas E. Lisle; Sue Hilton

    1992-01-01

    Abstract - During waning flood flows in gravel-bed streams, fine-grained bedload sediment (sand and fine gravel) is commonly winnowed from zones of high shear stress, such as riffles, and deposited in pools, where it mantles an underlying coarse layer. As sediment load increases, more fine sediment becomes availabe to fill pools. The volume of fine sediment in pools...

  6. Laboratory data on coarse-sediment transport for bedload-sampler calibrations

    USGS Publications Warehouse

    Hubbell, David Wellington; Stevens, H.H.; Skinner, J.V.; Beverage, J.P.

    1987-01-01

    A unique facility capable of recirculating and continuously measuring the transport rates of sediment particles ranging in size from about 1 to 75 millimeters in diameter was designed and used in an extensive program involving the calibration of bedload samplers. The facility consisted of a 9-footwide by 6-foot-deep by 272-foot-long rectangular channel that incorporated seven automated collection pans and a sedimentreturn system. The collection pans accumulated, weighed, and periodically dumped bedload falling through a slot in the channel floor. Variations of the Helley-Smith bedload sampler, an Arnhem sampler, and two VUV-type samplers were used to obtain transport rates for comparison with rates measured at the bedload slot (trap). Tests were conducted under 20 different hydraulic and sedimentologic conditions (runs) with 3 uniform-size bed materials and a bed-material mixture. Hydraulic and sedimentologic data collected concurrently with the calibration measurements are described and, in part, summarized in tabular and graphic form. Tables indicate the extent of the data, which are available on magnetic media. The information includes sediment-transport rates; particle-size distributions; water discharges, depths, and slopes; longitudinal profiles of streambed-surface elevations; and temporal records of streambed-surface elevations at fixed locations.

  7. Sedimentology and tectonics of the collision complex in the east arm of Sulawesi Indonesia

    NASA Astrophysics Data System (ADS)

    Simandjuntak, Tohap Oculair

    An imbricated Mesozoic to Palaeogene continental margin sequence is juxtaposed with ophiolitic rocks in the East Arm of Sulawesi, Indonesia. The two tectonic terranes are bounded by the Batui Thrust and Balantak Fault System, which are considered to be the surface expression of the collision zone between the Banggai-Sula Platform and the Eastern Sulawesi Ophiolite Belt. The collision complex contains three distinctive sedimentary sequences : 1) Triassic-Palaeogene continental margin sediments, ii) Cretaceous pelagic sediments and iii) Neogene coarse clastic sediments and volcanogenic turbidites. (i) Late Triassic Lemo Beds consisting largely of carbonate-slope deposits and subsidiary clastics including quartz-rich lithic sandstones and lensoidal pebbly mudstone and conglomeratic breccia. The hemipelagic limestones are rich in micro-fossils. Some beds of the limestone contain bivalves and ammonites, including Misolia, which typifies the Triassic-Jurassic sequence of eastern Indonesia. The Jurassic Kapali Beds are dominated by quartzose arenites containing significant amounts of plant remains and lumps of coal. The Late Jurassic sediments consist of neritic carbonate deposits (Nambo Beds and Sinsidik Beds) containing ammonites and belemnites, including Belemnopsis uhligi Stevens, of Late Jurassic age. The Jurassic sediments are overlain unconformably by Late Cretaceous Luok Beds which are predominantly calcilutite with chert nodules rich in microfossils. The Luok Beds are unconformably overlain by the Palaeogene Salodik Limestones which consist of carbonate platform sediments rich in both benthic and planktonic foraminifera of Eocene to Early Miocene age. These sediments were deposited on the continental margin of the Banggai-Sula Platform. (ii) Deep-sea sediments (Boba Beds) consist largely of chert and subsidiary calcilutite rich in radiolaria of Cretaceous age. These rocks are part of an ophiolite suite. (iii) Coarse clastic sediments (Kolo Beds and Biak Conglomerates) are typical post-orogenic clastic rocks deposited on top of the collision complex. They are composed of material derived from both the continental margin sequence and ophiolite suite. Volcanogenic Lonsuit Turbidites occur in the northern part of the East Arm in Poh Head and unconformably overlie the ophiolite suite. Late Miocene to Pliocene planktonic foraminifera occur in the intercalated marlstone and marly sandstone beds within these rocks. The collision zone is marked by the occurrence of Kolokolo Melange, which contain exotic fragments detached from both the ophiolite suite and the continental margin sequence and a matrix of calcareous mudstone and marlstone rich in planktonic foraminifera of late Middle Miocene to Pliocene age. The melange is believed to have been formed during and after the collision of the Banggai-Sula Platform with the Eastern Sulawesi Ophiolite Belt. Hence, the collision event took place in Middle Miocene time. The occurrence of at least three terraces of Quaternary coraline reefs on the south coast of the East Arm of Sulawesi testifies to the rapid uplift of the region. Seismic data suggest that the collision might still be in progress at the present time.

  8. Channel Processes and Sedimentology of a Boulder-Bed Ephemeral Stream

    NASA Astrophysics Data System (ADS)

    Billi, Paolo

    2014-05-01

    Very few papers report about the geomorphology and sedimentology of modern very coarse-grained, ephemeral streams. Other than the relevance of shedding some light on fluvial processes in dryland, boulder-bed rivers, this paper aims to provide some insight on their sedimentological characteristics as a diagnostic tool in the interpretation of old deposits. A field study on such topics is carried out on the Golina River, a sandy boulder-bed ephemeral stream of the Kobo basin in northern Ethiopia, subjected to intermittent flow generated by isolated, high intensity rainfall. Though the main gemorphological characteristics of the braid bars and channels are apparently similar to those of perennial counterparts, field investigations show the general physiographic setting and the sedimentology of the study reach result from very different depositional/erosion processes. A model based on the superimposition of coarse-grained bedload sheets, with the characteristics described by Whiting et la. (1988), and subsequent dissection during the receding flood flow is considered. This model was found to well explain the morphological and sedimentological features of the study river reach.

  9. Feasibility Study of a Barge Mounted System for Treatment of Sewage from Army Watercraft Holding Tank

    DTIC Science & Technology

    1980-10-01

    coarse solids removal followed by a packed bed filter, activated carbon (for soluble organic removal ) and effluent chlorination prior to discharge...mounted blackwater treatment systems. 29. Comparison of four types of coarse solids removal methods........ 86 for barge mounted physical/chemical...then 904 BOOD,"’ ’ COD and T-PO4 removal ; efluent ollform densities’< ’l’MPN/ 100 ml. Additional Comments: Figure 1. Representative bibliographical

  10. Direct measurements of lift and drag on shallowly submerged cobbles in steep streams: Implications for flow resistance and sediment transport

    NASA Astrophysics Data System (ADS)

    Lamb, Michael P.; Brun, Fanny; Fuller, Brian M.

    2017-09-01

    Steep mountain streams have higher resistance to flow and lower sediment transport rates than expected by comparison with low gradient rivers, and often these differences are attributed to reduced near-bed flow velocities and stresses associated with form drag on channel forms and immobile boulders. However, few studies have directly measured drag and lift forces acting on bed sediment for shallow flows over coarse sediment, which ultimately control sediment transport rates and grain-scale flow resistance. Here we report on particle lift and drag force measurements in flume experiments using a planar, fixed cobble bed over a wide range of channel slopes (0.004 < S < 0.3) and water discharges. Drag coefficients are similar to previous findings for submerged particles (CD ˜ 0.7) but increase significantly for partially submerged particles. In contrast, lift coefficients decrease from near unity to zero as the flow shallows and are strongly negative for partially submerged particles, indicating a downward force that pulls particles toward the bed. Fluctuating forces in lift and drag decrease with increasing relative roughness, and they scale with the depth-averaged velocity squared rather than the bed shear stress. We find that, even in the absence of complex bed topography, shallow flows over coarse sediment are characterized by high flow resistance because of grain drag within a roughness layer that occupies a significant fraction of the total flow depth, and by heightened critical Shields numbers and reduced sediment fluxes because of reduced lift forces and reduced turbulent fluctuations.

  11. Using repeat lidar to estimate sediment transport in a steep stream

    NASA Astrophysics Data System (ADS)

    Anderson, Scott; Pitlick, John

    2014-03-01

    Sediment fluxes in steep mountain streams remain difficult to quantify, despite their importance in geomorphology, ecology, and hazard analysis. In this work, aerial lidar surveys, acquired in 2002, 2008, and 2012, are used to quantify such fluxes in Tahoma Creek, a proglacial stream on Mount Rainier, Washington. As these surveys encompass all coarse sediment sources in the basin, we are able to translate geomorphic change into total bed material transport volumes for the time steps between surveys. By assuming that the relationship between daily sediment transport and daily mean discharge is of the form Qs=a(Q-Qc)b, our two observed total loads and estimates of daily mean discharge allow us to numerically solve for values of a and b to create a bed material sediment rating curve. Comparisons of our transport estimates with sediment deposition in a downstream reservoir indicate that our transport estimates and derived rating curve are reasonable. The method we present thus represents a plausible means of estimating transport rates in energetic settings or during extreme events, applicable whenever at least two cumulative sediment loads and the driving hydrology are known. We use these results to assess the performance of several bed load transport equations. The equations generally overpredict transport at low to moderate flows but significantly underpredict transport rates during an extreme event. Using a critical shear stress value appropriate for steep streams improves agreement at lower flows, whereas a shear-partitioning technique accounting for form drag losses significantly underpredicts transport at all flows.

  12. Unconventional maar diatreme and associated intrusions in the soft sediment-hosted Mardoux structure (Gergovie, France)

    NASA Astrophysics Data System (ADS)

    Valentine, Greg A.; van Wyk de Vries, Benjamin

    2014-03-01

    A Miocene age volcanic-hypabyssal structure comprising volcaniclastic deposits and mafic intrusions is exposed with vertical relief of ˜110 m on the side of Gergovie Plateau (Auvergne, France). Three main volcaniclastic facies are: (1) Fluidal tuff breccia composed of juvenile basalt and sediment clasts with dominantly fluidal shapes, with several combinations of basalt and sediment within individual clasts. (2) Thickly bedded lapilli tuff composed of varying proportions of fine-grained sediment derived from Oligocene-Miocene lacustrine marls and mudstones and basaltic lapilli, blocks, and bombs. (3) Planar-bedded tuff forming thin beds of fine to coarse ash-size sedimentary material and basalt clasts. Intrusive bodies in the thickly bedded lapilli tuff range from irregularly shaped and anastomosing dikes and sills of meters to tens of meters in length, to a main feeder dike that is up to ˜20 m wide, and that flares into a spoon-shaped sill at ˜100 m in diameter and 10-20 m thick in the eastern part of the structure. Volcaniclastic deposits and structural features suggest that ascending magma entrained soft, saturated sediment host material into the feeder dike and erupted fluidal magma and wet sediment via weak, Strombolian-like explosions. Host sediment and erupted material subsided to replace the extracted sediments, producing the growth subsidence structure that is similar to upper diatreme facies in typical maar diatremes but lacks evidence for explosive disruption of diatreme fill. Irregularly shaped small intrusions extended from the main feeder dike into the diatreme, and many were disaggregated due to shifting and subsidence of diatreme fill and recycled via eruption. The Mardoux structure is an "unconventional" maar diatreme in that it was produced mainly by weak explosive activity rather than by violent phreatomagmatic explosions and is an example of complex coupling between soft sediment and ascending magma.

  13. Channel adjustment of an unstable coarse-grained stream: Opposing trends of boundary and critical shear stress, and the applicability of extremal hypotheses

    USGS Publications Warehouse

    Simon, Andrew; Thorne, Colin R.

    1996-01-01

    Channel adjustments in the North Fork Toutle River and the Toutle River main stem were initiated by deposition of a 2.5km3 debris avalanche and associated lahars that accompanied the catastrophic eruption of Mount St. Helens, Washington on 18 May 1980. Channel widening was the dominant process. In combination, adjustments caused average boundary shear stress to decrease non-linearly with time and critical shear stress to increase non-linearly with time. At the discharge that is equalled or exceeded 1 per cent of the time, these trends converged by 1991-1992 so that excess shear stress approached minimum values. Extremal hypotheses, such as minimization of unit stream power and minimization of the rate of energy dissipation (minimum stream power), are shown to be applicable to dynamic adjustments of the Toutle River system. Maximization of the Darcy-Weisbach friction factor did not occur, but increases in relative bed roughness, caused by the concomitant reduction in hydraulic depths and bed-material coarsening, were documented. Predictions of stable channel geometries using the minimum stream power approach were unsuccessful when compared to the 1991-1992 geometries and bed-material characteristics measured in the field. It is concluded that the predictions are not applicable because the study reaches are not truly stable and cannot become so until a new floodplain has been formed by renewed channel incision, retreat of stream-side hummocks, and establishment of riparian vegetation to limit the destabilizing effects of large floods. Further, prediction of energy slope (and consequently stream power) by the sediment transport equations is inaccurate because of the inability of the equations to account for significant contributions of finer grained (sand and gravel) bank materials (relative to the coarsened channel bed) from bank retreat and from upstream terrace erosion.

  14. The coevolution of bed roughness, grain clustering, surface armoring, hydraulic roughness, and sediment transport rate in experimental coarse alluvial channels: implications for long-term effects of gravel augmentation

    NASA Astrophysics Data System (ADS)

    Johnson, J. P.; Aronovitz, A. C.

    2012-12-01

    We conducted laboratory flume experiments to quantify changes in multiple factors leading to mountain river bed stability (i.e., minimal bed changes in space and time), and to understand how stable beds respond to perturbations in sediment supply. Experiments were run in a small flume 4 m long by 0.1 m wide. We imposed an initial well-graded size distribution of sediment (from coarse sand to up to 4 cm clasts), a steady water discharge (0.9 L/s), and initial bed surface slopes (8% and 12%). We measured outlet sediment flux and size distribution, bed topography and surface size distributions, and water depths; from these we calculated total shear stress, form drag and skin friction stress partitioning, and hydraulic roughness. The bed was initially allowed to stabilize with no imposed upstream sediment flux. This stabilization occurred due to significant changes in all of the factors listed in the title, and resulted in incipient step-pool like bed morphologies. In addition, this study was designed to explore possible long-term effects of gravel augmentation on mountain channel morphology and surface grain size. While the short-term goal of gravel augmentation is usually to cause fining of surface sediment patches, we find that the long-term effects may be opposite. We perturbed the stabilized channels by temporarily imposing an upstream sediment flux of the finest sediment size fraction (sand to granules). Median surface sizes initially decreased due to fine sediment deposition, although transport rates of intermediate-sized grains increased. When the fine sediment supply was stopped, beds evolved to be both rougher and coarser than they had been previously, because the largest grains remained on the bed but intermediate-sized grains were preferentially transported out, leaving higher fractions of larger grains on the surface. Existing models for mixed grain size transport actually predict changes in mobilization reasonably well, but do not explicity account for surface roughness evolution. Our results indicate a nonlinear relationship between surface median grain size and bed roughness.

  15. Effects of coarse aggregate on the physical properties of Florida concrete mixes.

    DOT National Transportation Integrated Search

    2015-10-01

    Portland cement concrete is a heterogeneous, composite material composed of coarse and fine granular material : embedded in a matrix of hardened paste. The coarse material is aggregate, which is primarily used as inexpensive filler : and comprises th...

  16. Predicting Coarse Sediment Transport from Patchy Beds in Ephemeral Channels

    DTIC Science & Technology

    2012-04-01

    ct u re s La b or at or y Brendan T. Yuill April 2012 Approved for public release; distribution is unlimited. ERDC/GSL TR-12-17 April...5  Figure 3. Photographic map of a section of the Lucky Hills channel bed without (A) and with ( B ) the...diagram of the Santa-Rita type flume looking upstream (A) and a close-up photograph of the slot-sampler looking downstream ( B

  17. Sedimentary and petrofacies analyses of the Amasiri Sandstone, southern Benue Trough, Nigeria: Implications for depositional environment and tectonic provenance

    NASA Astrophysics Data System (ADS)

    Okoro, A. U.; Igwe, E. O.; Nwajide, C. S.

    2016-11-01

    This study was undertaken to determine the depositional environment, provenance and tectonic setting for the Turonian Amasiri Sandstone, southern Benue Trough, Nigeria, using lithofacies analysis and re-appraisal of petrography of the sandstones. Local stratigraphy and field relationships show a thick succession of shales alternating with elongate/parallel sandstone ridges extending eastwards from Akpoha to Amasiri through Itigidi and Ugep to Apiapum areas. Lithofacies analysis reveals 9 lithofacies suggestive of storm (mass flow) and tidal shelf processes. These include dark grey to black laminated shale/silty mudstones, bioturbated mudstones, coquinoid limestones, very fine-grained bioturbated sandstones with shell hash/debris in places and limestone rip-up clasts, massive and chaotic sandy conglomerate with rip - up clasts, fine to medium-grained, parallel laminated sandstone, hummocky cross-stratified, massive, medium to coarse-grained sandstones, medium to very coarse-grained, planar cross-bedded sandstone, with clay-draped foresets and Ophiomorpha burrows, and coarse-grained trough cross-bedded sandstone. Petrofacies analysis identifies the sandstones as feldspathic and arkosic arenites. Ternary plot of framework mineralogy indicates derivation from an uplifted continental block related to the nearby Oban Massif and Cameroon Basement Complex.

  18. Comparing particle-size distributions in modern and ancient sand-bed rivers

    NASA Astrophysics Data System (ADS)

    Hajek, E. A.; Lynds, R. M.; Huzurbazar, S. V.

    2011-12-01

    Particle-size distributions yield valuable insight into processes controlling sediment supply, transport, and deposition in sedimentary systems. This is especially true in ancient deposits, where effects of changing boundary conditions and autogenic processes may be detected from deposited sediment. In order to improve interpretations in ancient deposits and constrain uncertainty associated with new methods for paleomorphodynamic reconstructions in ancient fluvial systems, we compare particle-size distributions in three active sand-bed rivers in central Nebraska (USA) to grain-size distributions from ancient sandy fluvial deposits. Within the modern rivers studied, particle-size distributions of active-layer, suspended-load, and slackwater deposits show consistent relationships despite some morphological and sediment-supply differences between the rivers. In particular, there is substantial and consistent overlap between bed-material and suspended-load distributions, and the coarsest material found in slackwater deposits is comparable to the coarse fraction of suspended-sediment samples. Proxy bed-load and slackwater-deposit samples from the Kayenta Formation (Lower Jurassic, Utah/Colorado, USA) show overlap similar to that seen in the modern rivers, suggesting that these deposits may be sampled for paleomorphodynamic reconstructions, including paleoslope estimation. We also compare grain-size distributions of channel, floodplain, and proximal-overbank deposits in the Willwood (Paleocene/Eocene, Bighorn Basin, Wyoming, USA), Wasatch (Paleocene/Eocene, Piceance Creek Basin, Colorado, USA), and Ferris (Cretaceous/Paleocene, Hanna Basin, Wyoming, USA) formations. Grain-size characteristics in these deposits reflect how suspended- and bed-load sediment is distributed across the floodplain during channel avulsion events. In order to constrain uncertainty inherent in such estimates, we evaluate uncertainty associated with sample collection, preparation, analytical particle-size analysis, and statistical characterization in both modern and ancient settings. We consider potential error contributions and evaluate the degree to which this uncertainty might be significant in modern sediment-transport studies and ancient paleomorphodynamic reconstructions.

  19. Large river bed sediment characterization with low-cost sidecan sonar: Case studies from two setting in the Colorado (Arizona) and Penobscot (Maine) Rivers

    USGS Publications Warehouse

    Buscombe, Daniel D.; Grams, Paul E.; Melis, Theodore S.; Smith, Sean

    2015-01-01

    Here we discuss considerations in the use of sidescan sonar for riverbed sediment classification using examples from two large rivers, the Colorado River below Glen Canyon Dam in Arizona and the Upper Penobscot River in northern Maine (Figure 3). These case studies represent two fluvial systems that differ in recent history, physiography, sediment transport, and fluvial morphologies. The bed of the Colorado River in Glen Canyon National Recreation Area is predominantly graveled with extensive mats of submerged vegetation, and ephemeral surficial sand deposits exist below major tributaries. The bed is imaged periodically to assess the importance of substrate type and variability on rainbow trout spawning and juvenile rearing habitats and controls on aquatic invertebrate population dynamics. The Colorado River bed further below the dam in Grand Canyon National Park is highly dynamic. Tributary inputs of sand, gravel and boulders are spatially variable, and hydraulics of individual pools and eddies vary considerably in space and in response to varying dam operations, including experimental controlled flood releases to rebuild eroding sandbars. The bed encompasses the full range of noncohesive sediments, deposited in complicated spatial patterns. The mobile portion of the Penobscot River is generally more uniform, and consists predominantly of embedded gravels interspersed between bedrock outcrops with small isolated sand patches in sections with modest or low gradients. Patches of large cobbles, boulders and bedrock outcrops are present in the lower reaches of the river near locations of two recent dam removal projects but are of limited extent below the "head of tide" on the river. Aggregations of coarse materials often correspond to locations with abrupt bed elevation drops in the Upper Penobscot River.

  20. Effects of temperature segregation on the volumetric and mechanistic properties of asphalt mixtures : research project capsule.

    DOT National Transportation Integrated Search

    2015-02-01

    Material segregation in asphalt mixtures is a non-uniform distribution of coarse : and fine aggregates through its masses, i.e., concentration of coarse materials : in some area and fine materials in others. During construction, the coarse and : fine...

  1. Development of channel organization and roughness following sediment pulses in single‐thread, gravel bed rivers

    USGS Publications Warehouse

    Madej, Mary Ann

    2001-01-01

    Large, episodic inputs of coarse sediment (sediment pulses) in forested, mountain streams may result in changes in the size and arrangement of bed forms and in channel roughness. A conceptual model of channel organization delineates trajectories of response to sediment pulses for many types of gravel bed channels. Channels exhibited self‐organizing behavior to various degrees based on channel gradient, presence of large in‐channel wood or other forcing elements, the size of the sediment pulse, and the number of bed‐mobilizing flows since disturbance. Typical channel changes following a sediment pulse were initial decreases in water depth, in variability of bed elevations, and in the regularity of bed form spacing. Trajectories of change subsequently showed increased average water depth, more variable and complex bed topography, and increased uniformity of bed form spacing. Bed form spacing in streams with abundant forcing elements developed at a shorter spatial scale (two to five channel widths) than in streams without such forcing mechanisms (five to 10 channel widths). Channel roughness increased as bed forms developed.

  2. Bed-material entrainment potential, Roaring Fork River at Basalt, Colorado

    USGS Publications Warehouse

    Elliott, John G.

    2002-01-01

    The Roaring Fork River at Basalt, Colorado, has a frequently mobile streambed composed of gravel, cobbles, and boulders. Recent urban and highway development on the flood plain, earlier attempts to realign and confine the channel, and flow obstructions such as bridge openings and piers have altered the hydrology, hydraulics, sediment transport, and sediment deposition areas of the Roaring Fork. Entrainment and deposition of coarse sediment on the streambed and in large alluvial bars have reduced the flood-conveying capacity of the river. Previous engineering studies have identified flood-prone areas and hazards related to inundation and high streamflow velocity, but those studies have not evaluated the potential response of the channel to discharges that entrain the coarse streambed. This study builds upon the results of earlier flood studies and identifies some potential areas of concern associated with bed-material entrainment. Cross-section surveys and simulated water-surface elevations from a previously run HEC?RAS model were used to calculate the boundary shear stress on the mean streambed, in the thalweg, and on the tops of adjacent alluvial bars for four reference streamflows. Sediment-size characteristics were determined for surficial material on the streambed, on large alluvial bars, and on a streambank. The median particle size (d50) for the streambed samples was 165 millimeters and for the alluvial bars and bank samples was 107 millimeters. Shear stresses generated by the 10-, 50-, and 100-year floods, and by a more common flow that just inundated most of the alluvial bars in the study reach were calculated at 14 of the cross sections used in the Roaring Fork River HEC?RAS model. The Shields equation was used with a Shields parameter of 0.030 to estimate the critical shear stress for entrainment of the median sediment particle size on the mean streambed, in the thalweg, and on adjacent alluvial bar surfaces at the 14 cross sections. Sediment-entrainment potential for a specific geomorphic surface was expressed as the ratio of the flood-generated boundary shear stress to the critical shear stress (to/tc) with respect to two threshold conditions. The partial entrainment threshold (to/tc=1) is the condition where the mean boundary shear stress (to) equals the critical shear stress for the median particle size (tc) at that cross section. At this threshold discharge, the d50 particle size becomes entrained, but movement of d50-size particles may be limited to a few individual particles or in a small area of the streambed surface. The complete entrainment threshold (to/tc=2) is the condition where to is twice the critical shear stress for the median particle size, the condition where complete or widespread mobilization of the d50 particle-size fraction is anticipated. Entrainment potential for a specific reference streamflow varied greatly in the downstream direction. At some cross sections, the bed or bar material was mobile, whereas at other cross sections, the bed or bar material was immobile for the same discharge. The significance of downstream variability is that sediment entrained at one cross section may be transported into, but not through, a cross section farther downstream, a situation resulting in sediment deposition and possibly progressive aggradation and loss of channel conveyance. Little or no sediment in the d50-size range is likely to be entrained or transported through much of the study reach by the bar-inundating streamflow. However, the entrainment potential at this discharge increases abruptly to more than twice the critical value, then decreases abruptly, at a series of cross sections located downstream from the Emma and Midland Avenue Bridges. Median particle-size sediment is mobile at most cross sections in the study reach during the 10-year flood; however, the bed material is immobile at cross sections just upstream from the Upper Bypass and Midland Avenue Bridges. A similar s

  3. Modeling bed load transport and step-pool morphology with a reduced-complexity approach

    NASA Astrophysics Data System (ADS)

    Saletti, Matteo; Molnar, Peter; Hassan, Marwan A.; Burlando, Paolo

    2016-04-01

    Steep mountain channels are complex fluvial systems, where classical methods developed for lowland streams fail to capture the dynamics of sediment transport and bed morphology. Estimations of sediment transport based on average conditions have more than one order of magnitude of uncertainty because of the wide grain-size distribution of the bed material, the small relative submergence of coarse grains, the episodic character of sediment supply, and the complex boundary conditions. Most notably, bed load transport is modulated by the structure of the bed, where grains are imbricated in steps and similar bedforms and, therefore, they are much more stable then predicted. In this work we propose a new model based on a reduced-complexity (RC) approach focused on the reproduction of the step-pool morphology. In our 2-D cellular-automaton model entrainment, transport and deposition of particles are considered via intuitive rules based on physical principles. A parsimonious set of parameters allows the control of the behavior of the system, and the basic processes can be considered in a deterministic or stochastic way. The probability of entrainment of grains (and, as a consequence, particle travel distances and resting times) is a function of flow conditions and bed topography. Sediment input is fed at the upper boundary of the channel at a constant or variable rate. Our model yields realistic results in terms of longitudinal bed profiles and sediment transport trends. Phases of aggradation and degradation can be observed in the channel even under a constant input and the memory of the morphology can be quantified with long-range persistence indicators. Sediment yield at the channel outlet shows intermittency as observed in natural streams. Steps are self-formed in the channel and their stability is tested against the model parameters. Our results show the potential of RC models as complementary tools to more sophisticated models. They provide a realistic description of complex morphological systems and help to better identify the key physical principles that rule their dynamics.

  4. Vent Processes and Deposits of a Hiatus in a Violent Eruption: Quilotoa Volcano, Ecuador

    NASA Astrophysics Data System (ADS)

    Best, J. A.; Bustillos, J.; Ort, M. H.; Cashman, K. V.; Mothes, P. A.; di Muro, A.; Rosi, M.

    2010-12-01

    The 800 BP eruption of Quilotoa volcano, Ecuador, produced two plinian eruptions separated by a short (days-weeks) hiatus. Units 1 and 3 (U1 and U3) of the eruption correspond to the first and second Plinian eruptions, respectively, and produced fallout and pyroclastic density currents. Unit 2 (U2) records processes during the hiatus and consists of three subunits: U2a, U2b, and U2c. 147 tephra samples of U1, U2, and U3 were collected from 25 sites from around the volcano. Thickness and grain-size features were described, with particular attention paid to U2, in order to characterize the processes that occurred during the eruptive hiatus. Grain-size and componentry analysis of a subset of these samples reveals a number of trends. The upper part of U1 is massive and normally graded at its top, 32-45 % dominantly vitric ash ≤ 3.0 φ, and likely represents the clearing of the air at the end of the first plinian eruption. U2a, present out to a maximum of 7 km from the vent, has a polymodal distribution with a large fraction of 4.0 φ and finer vitric material. Dune forms occur in this unit, which are interpreted to be the product of surges. The areal distribution of U2a is constrained by topography, whereas U2b is not. U2b is coarser overall with alternating fine- (2-3φ) and coarse- (1-2φ) grained layers. The beds, both coarse and fine, have a near-bimodal grain-size distribution and normal grading. U2b is interpreted as a fall deposit. The U2a/U2b contact is gradational in that 0-2 beds of U2b material occur within the uppermost U2a beds at proximal localities, indicating vent conditions for both briefly coexisted. U2c is a <2-cm-thick vitric ash bed with sparse dense juvenile vitric lapilli. These lapilli also occur in the overlying basal U3 fallout, which has a polymodal grain-size distribution. U2b is characteristically orange in color due to the dust that loosely covers the grains. Hydrothermal activity within the vent is likely the source of this staining, with the simultaneous milling of the weakened material producing the orange dust. We interpret the dense vitric lapilli ≥ -2.0 φ of U2c as being from an explosion through a lava dome, and thus they indicate that the eruption was continuous from U2c through U3. Our current hypothesis is that, as the U1 eruption ended, magma stalled deep in the conduit and degassed hot acidic gas that streamed through the material clogging the vent. This elutriated vitric material that eventually formed a cap on the system. As the U3 magma began its ascent, gas flux increased, leading to explosions that gradually removed the vitric cap and deposited the vitric U2a. Then, more continuous gas streaming led to the development of a pulsatory eruption column that carried hot crystals and vitric grains from the vent clog into a convecting column and eventual deposition as U2b fallout, which was then followed by the establishment of the U3 eruption column.

  5. Correlation chart of Pennsylvanian rocks in Alabama, Tennessee, Kentucky, Virginia, West Virginia, Ohio, Maryland, and Pennsylvania showing approximate position of coal beds, coal zones, and key stratigraphic units

    USGS Publications Warehouse

    Ruppert, Leslie F.; Trippi, Michael H.; Slucher, Ernie R.

    2010-01-01

    This report contains a simplified provisional correlation chart that was compiled from both published and unpublished data in order to fill a need to visualize the currently accepted stratigraphic relations between Appalachian basin formations, coal beds and coal zones, and key stratigraphic units in the northern, central, and southern Appalachian basin coal regions of Alabama, Tennessee, Kentucky, Virginia, West Virginia, Ohio, Maryland, and Pennsylvania. Appalachian basin coal beds and coal zones were deposited in a variety of geologic settings throughout the Lower, Middle, and Upper Pennsylvanian and Pennsylvanian formations were defined on the presence or absence of economic coal beds and coarse-grained sandstones that often are local or regionally discontinuous. The correlation chart illustrates how stratigraphic units (especially coal beds and coal zones) and their boundaries can differ between States and regions.

  6. Eruption processes and deposit characteristics at the monogenetic Mt. Gambier Volcanic Complex, SE Australia: implications for alternating magmatic and phreatomagmatic activity

    NASA Astrophysics Data System (ADS)

    van Otterloo, Jozua; Cas, Raymond A. F.; Sheard, Malcolm J.

    2013-08-01

    The ˜5 ka Mt. Gambier Volcanic Complex in the Newer Volcanics Province, Australia is an extremely complex monogenetic, volcanic system that preserves at least 14 eruption points aligned along a fissure system. The complex stratigraphy can be subdivided into six main facies that record alternations between magmatic and phreatomagmatic eruption styles in a random manner. The facies are (1) coherent to vesicular fragmental alkali basalt (effusive/Hawaiian spatter and lava flows); (2) massive scoriaceous fine lapilli with coarse ash (Strombolian fallout); (3) bedded scoriaceous fine lapilli tuff (violent Strombolian fallout); (4) thin-medium bedded, undulating very fine lapilli in coarse ash (dry phreatomagmatic surge-modified fallout); (5) palagonite-altered, cross-bedded, medium lapilli to fine ash (wet phreatomagmatic base surges); and (6) massive, palagonite-altered, very poorly sorted tuff breccia and lapilli tuff (phreato-Vulcanian pyroclastic flows). Since most deposits are lithified, to quantify the grain size distributions (GSDs), image analysis was performed. The facies are distinct based on their GSDs and the fine ash to coarse+fine ash ratios. These provide insights into the fragmentation intensities and water-magma interaction efficiencies for each facies. The eruption chronology indicates a random spatial and temporal sequence of occurrence of eruption styles, except for a "magmatic horizon" of effusive activity occurring at both ends of the volcanic complex simultaneously. The eruption foci are located along NW-SE trending lineaments, indicating that the complex was fed by multiple dykes following the subsurface structures related to the Tartwaup Fault System. Possible factors causing vent migration along these dykes and changes in eruption styles include differences in magma ascent rates, viscosity, crystallinity, degassing and magma discharge rate, as well as hydrological parameters.

  7. Preliminary assessment of channel stability and bed-material transport in the Tillamook Bay tributaries and Nehalem River basin, northwestern Oregon

    USGS Publications Warehouse

    Jones, Krista L.; Keith, Mackenzie K.; O'Connor, Jim E.; Mangano, Joseph F.; Wallick, J. Rose

    2012-01-01

    This report summarizes a preliminary study of bed-material transport, vertical and lateral channel changes, and existing datasets for the Tillamook (drainage area 156 square kilometers [km2]), Trask (451 km2), Wilson (500 km2), Kilchis (169 km2), Miami (94 km2), and Nehalem (2,207 km2) Rivers along the northwestern Oregon coast. This study, conducted in coopera-tion with the U.S. Army Corps of Engineers and Oregon Department of State Lands to inform permitting decisions regarding instream gravel mining, revealed that: * Study areas along the six rivers can be divided into reaches based on tidal influence and topography. The fluvial (nontidal or dominated by riverine processes) reaches vary in length (2.4-9.3 kilometer [km]), gradient (0.0011-0.0075 meter of elevation change per meter of channel length [m/m]), and bed-material composition (a mixture of alluvium and intermittent bedrock outcrops to predominately alluvium). In fluvial reaches, unit bar area (square meter of bar area per meter of channel length [m2/m]) as mapped from 2009 photographs ranged from 7.1 m2/m on the Tillamook River to 27.9 m2/m on the Miami River. * In tidal reaches, all six rivers flow over alluvial deposits, but have varying gradients (0.0001-0.0013 m/m) and lengths affected by tide (1.3-24.6 km). The Miami River has the steepest and shortest tidal reach and the Nehalem River has the flattest and longest tidal reach. Bars in the tidal reaches are generally composed of sand and mud. Unit bar area was greatest in the Tidal Nehalem Reach, where extensive mud flats flank the lower channel. * Background factors such as valley and channel confinement, basin geology, channel slope, and tidal extent control the spatial variation in the accumulation and texture of bed material. Presently, the Upper Fluvial Wilson and Miami Reaches and Fluvial Nehalem Reach have the greatest abundance of gravel bars, likely owing to local bed-material sources in combination with decreasing channel gradient and valley confinement. * Natural and human-caused disturbances such as mass movements, logging, fire, channel modifications for navigation and flood control, and gravel mining also have varying effects on channel condition, bed-material transport, and distribution and area of bars throughout the study areas and over time. * Existing datasets include at least 16 and 18 sets of aerial and orthophotographs that were taken of the study areas in the Tillamook Bay tributary basins and Nehalem River basin, respectively, from 1939 to 2011. These photographs are available for future assessments of long-term changes in channel condition, bar area, and vegetation establishment patterns. High resolution Light Detection And Ranging (LiDAR) surveys acquired in 2007-2009 could support future quantitative analyses of channel morphology and bed-material transport in all study areas. * A review of deposited and mined gravel volumes reported for instream gravel mining sites shows that bed-material deposition tends to rebuild mined bar surfaces in most years. Mean annual deposition volumes on individual bars exceeded 3,000 cubic meters (m3) on Donaldson Bar on the Wilson River, Dill Bar on the Kilchis River, and Plant and Winslow Bars on the Nehalem River. Cumulative reported volumes of bed-material deposition were greatest at Donaldson and Dill Bars, totaling over 25,000 m3 per site from 2004 to 2011. Within this period, reported cumulative mined volumes were greatest for the Donaldson, Plant, and Winslow Bars, ranging from 24,470 to 33,940 m3. * Analysis of historical stage-streamflow data collected by the U.S. Geological Survey on the Wilson River near Tillamook (14301500) and Nehalem River near Foss (14301000) shows that these rivers have episodically aggraded and incised, mostly following high flow events, but they do not exhibit systematic, long-term trends in bed elevation. * Multiple cross sections show that channels near bridge crossings in all six study areas are dynamic with many subject to incision and aggradation as well as lateral shifts in thalweg position and bank deposition and erosion. * In fluvial reaches, unit bar area declined a net 5.3-83.6 percent from 1939 to 2009. The documented reduction in bar area may be attributable to several factors, including vegetation establishment and stabilization of formerly active bar surfaces, lateral channel changes and resulting alterations in sediment deposition and erosion patterns, and streamflow and/or tide differences between photographs. Other factors that may be associated with the observed reduction in bar area but not assessed in this reconnaissance level study include changes in the sediment and hydrology regimes of these rivers over the analysis period. * In tidal reaches, unit bar area increased on the Tillamook and Nehalem Rivers (98.0 and 14.7 percent, respectively), but declined a net 24.2 to 83.1 percent in the other four tidal reaches. Net increases in bar area in the Tidal Tillamook and Nehalem Reaches were possibly attributable to tidal differences between the photographs as well as sediment deposition behind log booms and pile structures on the Tillamook River between 1939 and 1967. * The armoring ratio (ratio of the median grain sizes of a bar's surface and subsurface layers) was 1.6 at Lower Waldron Bar on the Miami River, tentatively indicating a relative balance between transport capacity and sediment supply at this location. Armoring ratios, however, ranged from 2.4 to 5.5 at sites on the Trask, Wilson, Kilchis, and Nehalem Rivers; these coarse armor layers probably reflect limited bed-material supply at these sites. * On the basis of mapping results, measured armoring ratios, and channel cross section surveys, preliminary conclusions are that the fluvial reaches on the Tillamook, Trask, Kilchis, and Nehalem Rivers are currently sediment supply-limited in terms of bed material - that is, the transport capacity of the channel generally exceeds the supply of bed material. The relation between transport capacity and sediment is more ambiguous for the fluvial reaches on the Wilson and Miami Rivers, but transport-limited conditions are likely for at least parts of these reaches. Some of these reaches have possibly evolved from sediment supply-limited to transport-limited over the last several decades in response to changing basin and climate conditions. * Because of exceedingly low gradients, all the tidal reaches are transport-limited. Bed material in these reaches, however, is primarily sand and finer grain-size material and probably transported as suspended load from upstream reaches. These reaches will be most susceptible to watershed conditions affecting the supply and transport of fine sediment. * Compared to basins on the southwestern Oregon coast, such as the Chetco and Rogue River basins, these six basins likely transport overall less gravel bed material. Although tentative in the absence of actual transport measurements, this conclusion is supported by the much lower area and frequency of bars and longer tidal reaches along all the northcoast rivers examined in this study. * Previous studies suggest that the expansive and largely unvegetated bars visible in the 1939 photographs are primarily associated with voluminous sedimentation starting soon after the first Tillamook Burn fire in 1933. However, USGS studies of temporal bar trends in other Oregon coastal rivers unaffected by the Tillamook Burn show similar declines in bar area over approximately the same analysis period. In the Umpqua and Chetco River basins, historical declines in bar area are associated with long-term decreases in flood magnitude. Other factors may include changes in the type and volume of large wood and riparian vegetation. Further characterization of hydrology patterns in these basins and possible linkages with climate factors related to flood peaks, such as the Pacific Decadal Oscillation, could support inferences of expected future changes in vegetation establishment and channel planform and profile. * More detailed investigations of bed-material transport rates and channel morphology would support assessments of lateral and vertical channel condition and longitudinal trends in bed material. Such assessments would be most practical for the fluvial study areas on the Wilson, Kilchis, Miami, and Nehalem Rivers and relevant to several ongoing management and ecological issues pertaining to sand and gravel transport. Tidal reaches may also be logical subjects for indepth analysis where studies would be more relevant to the deposition and transport of fine sediment (and associated channel and riparian conditions and processes) rather than coarse bed material.

  8. Investigation of Pier Scour in Coarse-Bed Streams in Montana, 2001 through 2007

    DOT National Transportation Integrated Search

    2011-01-01

    Determination of pier-scour potential is an important consideration in the hydraulic analysis and design of highway bridges that cross streams, rivers, and other waterways in the United States. A primary goal of ongoing research in the field of bridg...

  9. Industrial Application Study on New-Type Mixed-Flow Fluidized Bed Bottom Ash Cooler

    NASA Astrophysics Data System (ADS)

    Zeng, B.; Lu, X. F.; Liu, H. Z.

    As a key auxiliary device of CFB boiler, the bottom ash cooler (BAC) has a direct influence on secure and economic operation of the boiler. The operating situation of domestic CFB power plant is complex and changeable with a bad coal-fired condition. The principle for designing BAC suitable for the bad coal-fired condition and high parameter CFB boilers was summarized in this paper. Meanwhile, a new-type mixed-flow fluidized bed bottom ash cooler was successfully designed on the basis of the comprehensive investigation on the existing BAC s merits and drawbacks. Using coarse/fine slag separation technology and micro-bubbling fluidization are the significant characteristics of this new BAC. This paper also puts great emphasis on its industrial test in a 460t/h CFB boiler. The results indicate that it achieves significant separation of the coarse/fine slag, an obvious cooling effect, no slag block and coking phenomenon, and continuous stable operation. Figs 7, Tabs 4 and Refs 11.

  10. Assessment of Different Discrete Particle Methods Ability To Predict Gas-Particle Flow in a Small-Scale Fluidized Bed

    DOE PAGES

    Lu, Liqiang; Gopalan, Balaji; Benyahia, Sofiane

    2017-06-21

    Several discrete particle methods exist in the open literature to simulate fluidized bed systems, such as discrete element method (DEM), time driven hard sphere (TDHS), coarse-grained particle method (CGPM), coarse grained hard sphere (CGHS), and multi-phase particle-in-cell (MP-PIC). These different approaches usually solve the fluid phase in a Eulerian fixed frame of reference and the particle phase using the Lagrangian method. The first difference between these models lies in tracking either real particles or lumped parcels. The second difference is in the treatment of particle-particle interactions: by calculating collision forces (DEM and CGPM), using momentum conservation laws (TDHS and CGHS),more » or based on particle stress model (MP-PIC). These major model differences lead to a wide range of results accuracy and computation speed. However, these models have never been compared directly using the same experimental dataset. In this research, a small-scale fluidized bed is simulated with these methods using the same open-source code MFIX. The results indicate that modeling the particle-particle collision by TDHS increases the computation speed while maintaining good accuracy. Also, lumping few particles in a parcel increases the computation speed with little loss in accuracy. However, modeling particle-particle interactions with solids stress leads to a big loss in accuracy with a little increase in computation speed. The MP-PIC method predicts an unphysical particle-particle overlap, which results in incorrect voidage distribution and incorrect overall bed hydrodynamics. Based on this study, we recommend using the CGHS method for fluidized bed simulations due to its computational speed that rivals that of MPPIC while maintaining a much better accuracy.« less

  11. Assessment of Different Discrete Particle Methods Ability To Predict Gas-Particle Flow in a Small-Scale Fluidized Bed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Liqiang; Gopalan, Balaji; Benyahia, Sofiane

    Several discrete particle methods exist in the open literature to simulate fluidized bed systems, such as discrete element method (DEM), time driven hard sphere (TDHS), coarse-grained particle method (CGPM), coarse grained hard sphere (CGHS), and multi-phase particle-in-cell (MP-PIC). These different approaches usually solve the fluid phase in a Eulerian fixed frame of reference and the particle phase using the Lagrangian method. The first difference between these models lies in tracking either real particles or lumped parcels. The second difference is in the treatment of particle-particle interactions: by calculating collision forces (DEM and CGPM), using momentum conservation laws (TDHS and CGHS),more » or based on particle stress model (MP-PIC). These major model differences lead to a wide range of results accuracy and computation speed. However, these models have never been compared directly using the same experimental dataset. In this research, a small-scale fluidized bed is simulated with these methods using the same open-source code MFIX. The results indicate that modeling the particle-particle collision by TDHS increases the computation speed while maintaining good accuracy. Also, lumping few particles in a parcel increases the computation speed with little loss in accuracy. However, modeling particle-particle interactions with solids stress leads to a big loss in accuracy with a little increase in computation speed. The MP-PIC method predicts an unphysical particle-particle overlap, which results in incorrect voidage distribution and incorrect overall bed hydrodynamics. Based on this study, we recommend using the CGHS method for fluidized bed simulations due to its computational speed that rivals that of MPPIC while maintaining a much better accuracy.« less

  12. Supercritical-flow structures (backset-bedded sets and sediment waves) on high-gradient clinoform systems influenced by shallow-marine hydrodynamics

    NASA Astrophysics Data System (ADS)

    Massari, F.

    2017-10-01

    Inferred supercritical structures and bedforms, including sediment waves and backset-bedded sets, are identified as components of coarse-grained siliciclastic and bioclastic, high-gradient clinoform wedges (Plio-Pleistocene of southern Italy) and canyon head infills (Tortonian of Venetian pre-Alps), showing evidence of having been built out in a setting influenced by shallow-marine hydrodynamics. The facies identified are dominated by a range of traction carpets, formed after segregation of coarser particles in the lower part of bipartite density underflows. The generation of backset-bedded sets is thought to imply scouring due to impact of a submerged hydraulic jump on the bed, and upstream migration of the jump, concomitant with the deposition of backset beds on the stoss side of the developing bedform. Submerged hydraulic jumps apparently formed spontaneously and in any position on the foreset and toeset, without requiring any precursor bed defect. The mostly solitary, non-cyclical character of the bedforms prevents their attribution to cyclic steps. The sets of backset beds are locally underlain by chaotic infills of deep, steep-sided scours attributed to vigorous erosion at the hydraulic jump, accompanied by instantaneous loss in transport capacity which results in rapid plugging of the scour (hydraulic jump facies of Postma et al., 2014). Gravel waves have a distinct internal stratigraphy, and their length to amplitude ratios show lower mean values and higher variability when compared to sediment waves consisting of sand. The presence of supercritical bedforms on steep foreset slopes of the studied clinoform systems, even in proximity to the topset-foreset rollover, is believed to reflect high inefficiency of mud-poor and short run-out bipartite underflows episodically transporting relatively small volumes of coarse-grained sediment. This may also account for common solitary, non-cyclical bedforms. It is proposed that during intense oceanographic events, such as coastal storms, seaward sediment entrainment, assisted by gravity, was very effective on the gently sloping subaqueous topset, and that, beyond the topset-foreset rollover, the flows evolved to high-concentration turbidity underflows with supercritical Froude numbers. The flows are inferred to have been sustained, probably lasting for the duration of the meteorological events, and to have commonly been unsteady in discharge, fluctuating in concentration and size of transported sediments, and subject to peaks in velocity. The characteristics of the structures are regarded as typical of the systems fed by oceanographic processes, and may fall into the class of coarse-grained ;small sediment waves with mixed relief; of Symons et al. (2016), formed from a combination of erosion and deposition, and by the action of stratified flows depositing from denser basal layers, and typically restricted to small-scale shallow-marine slope systems.

  13. Clogging of an Alpine streambed by silt-sized particles - Insights from laboratory and field experiments.

    PubMed

    Fetzer, Jasmin; Holzner, Markus; Plötze, Michael; Furrer, Gerhard

    2017-12-01

    Clogging of streambeds by suspended particles (SP) can cause environmental problems, as it can negatively influence, e.g., habitats for macrozoobenthos, fish reproduction and groundwater recharge. This especially applies in the case of silt-sized SP. Until now, most research has dealt with coarse SP and was carried out in laboratory systems. The aims of this study are to examine (1) whether physical clogging by silt-sized SP exhibits the same dynamics and patterns as by sand-sized SP, and (2) the comparability of results between laboratory and field experiments. We carried out vertical column experiments with sand-sized bed material and silt-sized SP, which are rich in mica minerals. In laboratory experiments, we investigated the degree of clogging quantified by the reduction of porosity and hydraulic conductivity and the maximum clogging depth as a function of size and shape of bed material, size of SP, pore water flow velocity, and concentration of calcium cations. The SP were collected from an Alpine sedimentation basin, where our field experiments were carried out. To investigate the clogging process in the field, we buried columns filled with sand-sized quartz in the stream bed. We found that the maximal bed-to-grain ratio where clogging still occurs is larger for silt-sized SP than for sand-sized SP. The observed clogging depths and the reduction of flow rate through the column from our laboratory experiments were comparable to those from the field. However, our field results showed that the extent of clogging strongly depends on the naturally-occurring hydrological dynamics. The field location was characterized by a more polydisperse suspension, a strongly fluctuating water regime, and high SP concentrations at times, leading to more heterogeneous and more pronounced clogging when compared to laboratory results. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Factors controlling the size and shape of stream channels in coarse noncohesive sands

    USGS Publications Warehouse

    Wolman, M. Gordon; Brush, Lucien M.

    1961-01-01

    The size and shape of equilibrium channels in uniform, noncohesive sands, 0.67 mm and 2.0 mm in diameter, were studied experimentally in a laboratory flume 52 feet long in which discharge, slope, sediment load, and bed and bank material could be varied independently. For each run a straight trapezoidal channel was molded in the sand and the flume set at a predetermined slope. Introduction of the discharge was accompanied by widening and aggradation until a stable channel was established. By definition a stable equilibrium existed when channel width, water surface slope, and rate of transport became constant. The duration of individual runs ranged from 2 to 52 hours depending upon the time required for establishing equilibrium. Stability of the banks determined channel shape. In the 2.0 mm sand at a given slope and discharge, only one depth was stable. At this depth the flow was just competent to move particles along the bed of the channel. An increase in discharge produced a wider channel of the same depth and thus transport per unit width remained at a minimum. Channels in the 0.67 mm sand were somewhat more stable and permitted a 1.5 fold increase in depth above that required to start movement of the bed material. An increased transport was associated with the increase in depth. The rate of transport is adequately described in terms of the total shear or in terms of the difference between the total shear and the critical shear required to begin movement. In these experiments the finer, or 0.67 mm, sand, began to move along the bed of the channel at a constant shear stress. Incipient movement of the coarser, or 2.0 mm, sand, varied with the shear stress as well as the mean velocity. At the initiation of movement a lower shear was associated with a higher velocity and vice versa. Anabranches of braided rivers and some natural river channels formed in relatively noncohesive materials resemble the essential characteristics of the flume channels. For a given slope and size of bed material the discharge per unit width in the laboratory channels was similar to that computed for anabranches and river channels measured in the field. Unlike most natural channels, despite impressive bank erosion, the channels in the laboratory only meandered at supercritical flows associated with very steep slopes. These conditions involving shallow depths, high velocity, and steep slopes are uncommon in most natural rivers.

  15. Manupulation of microstructure, phase evolution and mechanical properties by devitrification of andesite for use as proppant

    NASA Astrophysics Data System (ADS)

    Koseski, Ryan P.

    Small, roughly spherical ceramic particles, approximately 1mm in size are used for a number of applications including casting sands, catalysts, and cement fillers. The oil and natural gas industry utilizes such materials in tonnage quantities yearly as extraction aids. Particles intended for this application are referred to as proppants. Proppants are composed of materials that differ by density, strength and cost, and are selected on a site by site basis. Recently, competing usage and depletion of reserves of one of the most popular category of proppant materials, sintered aluminosilicates (e.g. kaolinite, bauxite) have driven the need for alternative raw materials for proppant manufacturing. Andesite, a by-product of mining operations in the south-west United States was identified as an abundant, readily available, and low cost alternative proppant material that can be fused and net-shaped into a glass which when crystallized results in microstructures which may offer substantial toughening and fracture characteristics which may serve to their advantage for use as proppants that do not decrease the permeability ("blind") the particle bed. This study addressed the devitrification behavior and its role on the mechanical properties of andesite-based glass-ceramic spheres for use as proppants. Timetemperature- transformation studies were performed to evaluate the devitrification behavior of andesite glass. Crystalline phase evolution and microstructural development were evaluated using quantitative x-ray diffraction, scanning electron microscopy, differential thermal analysis, and spectrophotometry. The andesite glass devitrification commenced with the precipitation of iron oxides (magnetite) which served as seeds for the epitaxial growth of dendritic pyroxenes. Mechanical properties, such as diametral compressive strength, fracture toughness, hardness, and fracture morphology were correlated with crystalline phase evolution. Selected heat treatments resulting in the desired combination of high strength, toughness, and coarse fragmentation of crystallized spheres were performed for subsequent evaluation of performance as a proppant using American Petroleum Institute test methodologies. For nominally 1mm diameter devitrified proppants, diametral compressive strengths of 150MPa were observed, while results of indentation fracture resistance measurements showed values of 1.5-2.0MPa˙;m. Combinations of these mechanical properties resulted in nearly 80% incidence of coarse fragmentation compared with 40% incidence in amorphous andesite proppants. Results corroborated the hypothesis that controlled devitrification resulted in substantial improvement in toughness and fracture morphology which in turn contributed to enhanced permeability of packed particle beds relative to state of the art glass proppants, and comparable to the present state of the art sintered bauxite- and kaolinite-based proppants.

  16. Sedimentary earthquake records in the İzmit Gulf, Sea of Marmara, Turkey

    NASA Astrophysics Data System (ADS)

    Çağatay, M. N.; Erel, L.; Bellucci, L. G.; Polonia, A.; Gasperini, L.; Eriş, K. K.; Sancar, Ü.; Biltekin, D.; Uçarkuş, G.; Ülgen, U. B.; Damcı, E.

    2012-12-01

    Sedimentary earthquake records of the last 2400 a, including that of the devastating 17 August 1999 İzmit earthquake (Mw = 7.4), were studied in cores from the 210 m-deep central Karamürsel Basin of the İzmit Gulf in the eastern Sea of Marmara, using laser grain-size, physical properties, stable O and C isotopes and XRF Core Scanner analyses, and dated by radionuclide and radiocarbon methods. The earthquake records are represented by turbidite-homogenite mass-flow units (THU) that commonly contain a basal coarse layer, a middle laminated silt layer and an overlying homogeneous mud layer. The coarse basal part has a sharp and sometimes scoured lower boundary, and includes multiple coarse (sand/silt) layers or laminae showing normal size grading. Multiple coarse layers and occasional bi-directional cross-bedding suggest deposition from a bed-load during water column oscillations, or seiche effect. The grain-size characteristics of the overlaying laminated silt and the homogeneous mud units indicate deposition from weak oscillating currents and homogeneous suspension, respectively. High Mn value just below the base of THUs suggests diagenetic enrichment at oxic/anoxic redox boundary before the mass-flow event. Sharp decrease in Mn with very low values within the THUs suggests transient redox conditions following the mass-flow. Variable geochemical compositions of the basal coarse layers indicate different sediment sources for different THUs. Eight sedimentary earthquake records observed in the last 2400 a in the İzmit Gulf can be confidently correlated with the historical earthquakes of 1999, 1509 AD (Ms = 7.2), 1296 AD (I = VII), 865 AD (I = VIII), 740 AD (I = VIII), 268 AD (I = VIII), 358 AD (I = IX), and 427 BC. This gives an earthquake recurrence time of ca. 300 a, with the interval between consecutive events ranging from 90 to 695 a.

  17. Low temperature circulating fluidized bed gasification and co-gasification of municipal sewage sludge. Part 1: Process performance and gas product characterization.

    PubMed

    Thomsen, Tobias Pape; Sárossy, Zsuzsa; Gøbel, Benny; Stoholm, Peder; Ahrenfeldt, Jesper; Frandsen, Flemming Jappe; Henriksen, Ulrik Birk

    2017-08-01

    Results from five experimental campaigns with Low Temperature Circulating Fluidized Bed (LT-CFB) gasification of straw and/or municipal sewage sludge (MSS) from three different Danish municipal waste water treatment plants in pilot and demonstration scale are analyzed and compared. The gasification process is characterized with respect to process stability, process performance and gas product characteristics. All experimental campaigns were conducted at maximum temperatures below 750°C, with air equivalence ratios around 0.12 and with pure silica sand as start-up bed material. A total of 8600kg of MSS dry matter was gasified during 133h of operation. The average thermal loads during the five experiments were 62-100% of nominal capacity. The short term stability of all campaigns was excellent, but gasification of dry MSS lead to substantial accumulation of coarse and rigid, but un-sintered, ash particles in the system. Co-gasification of MSS with sufficient amounts of cereal straw was found to be an effective way to mitigate these issues as well as eliminate thermal MSS drying requirements. Characterization of gas products and process performance showed that even though gas composition varied substantially, hot gas efficiencies of around 90% could be achieved for all MSS fuel types. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Utilizing borehole electrical images to interpret lithofacies of fan-delta: A case study of Lower Triassic Baikouquan Formation in Mahu Depression, Junggar Basin, China

    NASA Astrophysics Data System (ADS)

    Yuan, Rui; Zhang, Changmin; Tang, Yong; Qu, Jianhua; Guo, Xudong; Sun, Yuqiu; Zhu, Rui; Zhou, Yuanquan (Nancy)

    2017-11-01

    Large-scale conglomerate fan-delta aprons were typical deposits on the slope of Mahu Depression during the Early Triassic. Without outcrops, it is difficult to study the lithofacies only by examining the limited cores from the main oil-bearing interval of the Baikouquan Formation. Borehole electrical imaging log provides abundant high-resolution geologic information that is obtainable only from real rocks previously. Referring to the lithology and sedimentary structure of cores, a case study of fan-deltas in the Lower Triassic Baikouquan Formation of the Mahu Depression presents a methodology for interpreting the complicated lithofacies utilizing borehole electrical images. Eleven types of lithologies and five types of sedimentary structures are summarized in borehole electrical images. The sediments are fining upward from gravel to silt and clay in the Baikouquan Formation. Fine-pebbles and granules are the main deposits in T1b1 and T1b2, but sandstones, siltstones and mudstones are more developed in T1b3. The main sedimentary textures are massive beddings, cross beddings and scour-and-fill structures. Parallel and horizontal beddings are more developed in T1b3 relatively. On integrated analysis of the lithology and sedimentary structure, eight lithofacies from electrical images, referred to as image lithofacies, is established for the fan-deltas. Granules to coarse-pebbles within massive beddings, granules to coarse-pebbles within cross and parallel beddings, siltstones within horizontal and massive beddings are the most developed lithofacies respectively in T1b1, T1b2 and T1b3. It indicates a gradual rise of the lake level of Mahu depression during the Early Triassic, with the fan-delta aprons retrograding towards to the margin of the basin. Therefore, the borehole electrical imaging log compensate for the limitation of cores of the Baikouquan Formation, providing an effective new approach to interpret the lithofacies of fan-delta.

  19. Flow and sand transport over an immobile gravel bed.

    USDA-ARS?s Scientific Manuscript database

    Many dams in the USA and elsewhere have exceeded their design life and are being considered for remediation or removal, which will result in the reintroduction of fine sediments, often into coarse grained armored substrates, downstream of dams. The deposition of sand in the interstices of the grave...

  20. Vegetative Propagation of Aspen by Greenwood Cuttings

    Treesearch

    Robert E. Farmer

    1963-01-01

    Greenwood stem cuttings taken from root suckers of Populus tremuloides and P. grandidentata were rooted in coarse sand under both intermittent mist and polyethylene sheeting in a greenhouse and under mist in an outdoor propagation bed. Prerooting treatment of cuttings with aqueous solutions of lBA (20-100 p.p.m. ) stimulated...

  1. The mass distribution of coarse particulate organic matter exported from an alpine headwater stream

    NASA Astrophysics Data System (ADS)

    Turowski, J. M.; Badoux, A.; Bunte, K.; Rickli, C.; Federspiel, N.; Jochner, M.

    2013-05-01

    Coarse particulate organic matter (CPOM) particles span sizes from 1 mm, with masses less than 1 mg, to large logs and whole trees, which may have masses of several hundred kilograms. Different size and mass classes play different roles in stream environments, from being the prime source of energy in stream ecosystems to macroscopically determining channel morphology and local hydraulics. We show that a single scaling exponent can describe the mass distribution of CPOM transported in the Erlenbach, a steep mountain stream in the Swiss Prealps. This exponent takes an average value of -1.8, is independent of discharge and valid for particle masses spanning almost seven orders of magnitude. Together with a rating curve of CPOM transport rates with discharge, we discuss the importance of the scaling exponent for measuring strategies and natural hazard mitigation. Similar to CPOM, the mass distribution of in-stream large woody debris can likewise be described by power law scaling distributions, with exponents varying between -1.8 and -2.0, if all in-stream material is considered, and between -1.4 and -1.8 for material locked in log jams. We expect that scaling exponents are determined by stream type, vegetation, climate, substrate properties, and the connectivity between channels and hillslopes. However, none of the descriptor variables tested here, including drainage area, channel bed slope and forested area, show a strong control on exponent value. The number of streams studied in this paper is too small to make final conclusions.

  2. Effects of Coarse Legacy Sediment on Rivers of the Ozark Plateaus and Implications for Native Mussel Fauna

    NASA Astrophysics Data System (ADS)

    Erwin, S. O.; Jacobson, R. B.; Eric, A. B.; Jones, J. C.; Anderson, B. W.

    2015-12-01

    Perturbations to sediment regimes due to anthropogenic activities may have long lasting effects, especially in systems dominated by coarse sediment where travel times are relatively long. Effectively evaluating management alternatives requires understanding the future trajectory of river response at both the river network and reach scales. The Ozark Plateaus physiographic province is a montane region in the interior US composed primarily of Paleozoic sedimentary rock. Historic land-use practices around the turn of the last century accelerated delivery of coarse sediment to river channels. Effects of this legacy sediment persist in two national parks, Ozark National Scenic Riverways, MO and Buffalo National River, AR, and are of special concern for management of native mussel fauna. These species require stable habitat, yet they occupy inherently dynamic environments: alluvial rivers. At the river-network scale, analysis of historical data reveals the signature of sediment waves moving through river networks in the Ozarks. Channel planform alternates between relatively stable, straight reaches, and wider, multithread reaches which have been more dynamic over the past several decades. These alternate planform configurations route and store sediment differently, and translate into different patterns of bed stability at the reach scale, which in turn affects the distribution and availability of habitat for native biota. Geomorphic mapping and hydrodynamic modeling reveal the complex relations between planform (in)stability, flow dynamics, bed mobility, and aquatic habitat in systems responding to increased sediment supply. Reaches that have a more dynamic planform may provide more hydraulic refugia and habitat heterogeneity compared to stable, homogeneous reaches. This research provides new insights that may inform management of sediment and mussel habitat in rivers subject to coarse legacy sediment.

  3. Wind-driven particle mobility on Mars: Insights from Mars Exploration Rover observations at "El Dorado" and surroundings at Gusev Crater

    USGS Publications Warehouse

    Sullivan, R.; Arvidson, R.; Bell, J.F.; Gellert, Ralf; Golombek, M.; Greeley, R.; Herkenhoff, K.; Johnson, J.; Thompson, S.; Whelley, P.; Wray, J.

    2008-01-01

    The ripple field known as 'El Dorado' was a unique stop on Spirit's traverse where dust-raising, active mafic sand ripples and larger inactive coarse-grained ripples interact, illuminating several long-standing issues of Martian dust mobility, sand mobility, and the origin of transverse aeolian ridges. Strong regional wind events endured by Spirit caused perceptible migration of ripple crests in deposits SSE of El Dorado, erasure of tracks in sandy areas, and changes to dust mantling the site. Localized thermal vortices swept across El Dorado, leaving paths of reduced dust but without perceptibly damaging nearly cohesionless sandy ripple crests. From orbit, winds responsible for frequently raising clay-sized dust into the atmosphere do not seem to significantly affect dunes composed of (more easily entrained) sand-sized particles, a long-standing paradox. This disparity between dust mobilization and sand mobilization on Mars is due largely to two factors: (1) dust occurs on the surface as fragile, low-density, sand-sized aggregates that are easily entrained and disrupted, compared with clay-sized air fall particles; and (2) induration of regolith is pervasive. Light-toned bed forms investigated at Gusev are coarse-grained ripples, an interpretation we propose for many of the smallest linear, light-toned bed forms of uncertain origin seen in high-resolution orbital images across Mars. On Earth, wind can organize bimodal or poorly sorted loose sediment into coarse-grained ripples. Coarse-grained ripples could be relatively common on Mars because development of durable, well-sorted sediments analogous to terrestrial aeolian quartz sand deposits is restricted by the lack of free quartz and limited hydraulic sediment processing. Copyright 2008 by the American Geophysical Union.

  4. Particle size variations between bed load and bed material in natural gravel bed channels

    Treesearch

    Thomas E. Lisle

    1995-01-01

    Abstract - Particle sizes of bed load and bed material that represent materials transported and stored over a period of years are used to investigate selective transport in 13 previously sampled, natural gravel bed channels. The ratio (D*) of median particle size of bed material to the transport- and frequency-weighted mean of median bed load size decreases to unity...

  5. Determination of predevelopment denudation rates of an agricultural watershed (Cayaguas River, Puerto Rico) using in-situ-produced 10Be in river-borne quartz

    USGS Publications Warehouse

    Brown, E.T.; Stallard, R.F.; Larsen, M.C.; Bourles, D.L.; Raisbeck, G.M.; Yiou, F.

    1998-01-01

    Accurate estimates of watershed denudation absent anthropogenic effects are required to develop strategies for mitigating accelerated physical erosion resulting from human activities, to model global geochemical cycles, and to examine interactions among climate, weathering, and uplift. We present a simple approach to estimate predevelopment denudation rates using in-situ-produced cosmogenic 10Be in fluvial sediments. Denudation processes in an agricultural watershed (Cayaguas River Basin, Puerto Rico) and a matched undisturbed watershed (Icacos River Basin) were compared using 10Be concentrations in quartz for various size fractions of bed material. The coarse fractions in both watersheds bear the imprint of long subsurface residence times. Fine material from old shallow soils contributes little, however, to the present-day sediment output of the Cayaguas. This confirms the recent and presumably anthropogenic origin of the modern high denudation rate in the Cayaguas Basin and suggests that pre-agricultural erosional conditions were comparable to those of the present-day Icacos.

  6. Isotopic age of the Black Forest Bed, Petrified Forest Member, Chinle Formation, Arizona: An example of dating a continental sandstone

    USGS Publications Warehouse

    Riggs, N.R.; Ash, S.R.; Barth, A.P.; Gehrels, G.E.; Wooden, J.L.

    2003-01-01

    Zircons from the Black Forest Bed, Petrified Forest Member, Chinle Formation, in Petrified Forest National Park, yield ages that range from Late Triassic to Late Archean. Grains were analyzed by multigrain TIMS (thermal-ionization mass spectrometry), single-crystal TIMS, and SHRIMP (sensitive, high-resolution ion-microprobe). Multiple-grain analysis yielded a discordia trajectory with a lower intercept of 207 ?? 2 Ma, which because of the nature of multiple-grain sampling of a detrital bed, is not considered conclusive. Analysis of 29 detrital-zircon grains by TIMS yielded U-PB ages of 2706 ?? 6 Ma to 206 ?? 6 Ma. Eleven of these ages lie between 211 and 216 ?? 6.8 Ma. Our statistical analysis of these grains indicates that the mean of the ages, 213 ?? 1.7 Ma, reflects more analytical error than geologic variability in sources of the grains. Grains with ages of ca. 1400 Ma were derived from the widespread plutons of that age exposed throughout the southwestern Cordillera and central United States. Twelve grains analyzed by SHRIMP provide 206Pb*/238U ages from 214 ?? 2 Ma to 200 ?? 4 Ma. We use these data to infer that cores of inherited material were present in many zircons and that single-crystal analysis provides an accurate estimation of the age of the bed. We further propose that, even if some degree of reworking has occurred, the very strong concentration of ages at ca. 213 Ma provides a maximum age for the Black Forest Bed of 213 ?? 1.7 Ma. The actual age of the bed may be closer to 209 Ma. Dating continental successions is very difficult when distinct ash beds are not clearly identified, as is the case in the Chinle Formation. Detrital zircons in the Black Forest Bed, however, are dominated by an acicular morphology with preserved delicate terminations. The shape of these crystals and their inferred environment of deposition in slow-water settings suggest that the crystals were not far removed from their site of deposition in space and likely not far in time. Plinian ash clouds derived from explosive eruptions along the early Mesozoic Cordilleran margin provided the crystals to the Chinle basin, where local conditions insured their preservation. In the case of the Black Forest Bed, the products of one major eruption may dominate the volcanic contribution to the unit. Volcanic detritus in the Chinle Formation was derived from multiple, distinct sources. Coarse pebble- to cobble-size material may have originated in eastern California and/or western Arizona, where Triassic plutons are exposed. Fine-grained detritus, in contrast, was carried in ash clouds that derived from caldera eruptions in east-central California or western Nevada.

  7. Generation of sedimentary fabrics and facies by repetitive excavation and storm infilling of burrow networks Holocene of south Florida and Caicos Platform, B. W. I

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tedesco, L.P.; Wanless, H.R.

    Excavation of deep, open burrow networks and subsequent infilling with sediment from the surface produces an entirely new sedimentary deposit and results in obliteration to severe diagenetic transformation of precursor depositional facies. Repetitive excavation and infilling is responsible for creating the preserved depositional facies of many marine deposits. Excavating burrowers occur from intertidal to abyssal depths, and are important throughout the Phanerozoic. The repetitive coupling of deep, open burrow excavation with subsequent storm sediment infilling of open burrow networks is a gradual process that ultimately results in the loss of the original deposit and the generation of new lithologies, fabricsmore » and facies. The new lithologies are produced in the subsurface and possess fabrics, textures and skeletal assemblages that are not a direct reflection of either precursor facies or the surficial depositional conditions. Sedimentary facies generated by repetitive burrow excavation and infilling commonly are massively bedded and generally are mottled skeletal packstones. Skeletal grains usually are well-preserved and coarser components are concentrated in burrow networks, pockets and patches. The coarse skeletal components of burrow-generated facies are a mixture of coarse bioclasts from the precursor facies and both the coarse and fine skeletal material introduced from the sediment surface. Many so-called bioturbated or massive facies may, in fact, be primary depositional facies generated in the subsurface and represent severe diagenetic transformation of originally deposited sequences. In addition, mudstones and wackestones mottled with packstone patches may record storm sedimentation.« less

  8. Pre-Restoration Geomorphic Characteristics of Minebank Run, Baltimore County, Maryland, 2002-04

    USGS Publications Warehouse

    Doheny, Edward J.; Starsoneck, Roger J.; Mayer, Paul M.; Striz, Elise A.

    2007-01-01

    Data collected from 2002 through 2004 were used to assess geomorphic characteristics and geomorphic changes over time in a selected reach of Minebank Run, a small urban watershed near Towson, Maryland, prior to its physical restoration in 2004 and 2005. Longitudinal profiles of the channel bed, water surface, and bank features were developed from field surveys. Changes in cross-section geometry between field surveys were documented. Grain-size distributions for the channel bed and banks were developed from pebble counts and laboratory analyses. Net changes in the elevation of the channel bed over time were documented at selected locations. Rosgen Stream Classification was used to classify the stream channel according to morphological measurements of slope, entrenchment ratio, width-to-depth ratio, sinuosity, and median-particle diameter of the channel materials. An analysis of boundary shear stress in the vicinity of the streamflow-gaging station was conducted by use of hydraulic variables computed from cross-section surveys and slope measurements derived from crest-stage gages in the study reach. Analysis of the longitudinal profiles indicated noticeable changes in the percentage and distribution of riffles, pools, and runs through the study reach between 2002 and 2004. Despite major changes to the channel profile as a result of storm runoff events, the overall slope of the channel bed, water surface, and bank features remained constant at about 1 percent. The cross-sectional surveys showed net increases in cross-sectional area, mean depth, and channel width at several locations between 2002 and 2004, which indicate channel degradation and widening. Two locations were identified where significant amounts of sediment were being stored in the study reach. Data from scour chains identified several locations where maximum scour ranged from 1.0-1.4 feet during storm events. Bank retreat varied widely throughout the study reach and ranged from 0.2 feet to as much as 7.9 feet. Sequential measurements of bed elevation in selected locations indicated as much as 2 feet of channel degradation in one location during a storm event in May 2004 and identified pulses of sediment that were gradually transported through the study reach during the monitoring period. Particle-size analyses of channel bed materials indicated a median particle diameter of 20.5 millimeters (coarse gravel) for the study reach, with more than 24 percent being sand particles (greater than 0.062 millimeters). Analyses of bank samples showed finer-grained material composing the channel banks, predominantly silt/clay or a mixture of silt/clay (less than 0.062 millimeters) and very fine to coarse sand. The Minebank Run stream channel was classified as a B4c channel, based on morphological descriptions from the Rosgen Stream Classification System. The B4c classification describes a single-thread stream channel with a moderate entrenchment ratio of 1.4 to 2.2; a width-to-depth ratio greater than 12; moderate sinuosity of 1.2 or greater; a water-surface slope of less than 2 percent; and a median-particle diameter in the gravel range of 2 to 64 millimeters. Analysis of boundary shear stress indicated larger mean velocities and boundary shear stress values for Minebank Run when compared to relations for non-urban B channel types developed by Rosgen. The slope of the regression line for mean velocity versus boundary shear stress at Minebank Run was considerably less than slopes developed by Rosgen for non-urban channel types. This indicates that relatively small increases in mean velocity can result in large increases in boundary shear stress in stream channels with highly developed watersheds, such as Minebank Run.

  9. Nuclear fuel element with axially aligned fuel pellets and fuel microspheres therein

    DOEpatents

    Sease, J.D.; Harrington, F.E.

    1973-12-11

    Elongated single- and multi-region fuel elements are prepared by replacing within a cladding container a coarse fraction of fuel material which includes plutonium and uranium in the appropriate regions of the fuel element and then infiltrating with vibration a fine-sized fraction of uranium-containing microspheres throughout all interstices in the coarse material in a single loading. The fine, rigid material defines a thin annular layer between the coarse fraction and the cladding to reduce adverse mechanical and chemical interactions. (Official Gazette)

  10. Field and laboratory calibration of impact plates for measuring coarse bed load transport

    USDA-ARS?s Scientific Manuscript database

    During 2008-2009, an array of impact plates instrumented with either accelerometers or geophones was installed over a channel spanning weir in the Elwha River in Washington, USA. The impact system is the first permanent installation of its kind in North America. The system was deployed to measure th...

  11. Neogene marine sedimentary record of the Gulf of Alaska: from the glaciers to the distal submarine fan systems

    NASA Astrophysics Data System (ADS)

    Ridgway, K. D.; Bahlburg, H.; Childress, L. B.; Cowan, E. A.; Forwick, M.; Moy, C. M.; Müller, J.; Ribeiro, F.; Gupta, S.; Gulick, S. P.; Jaeger, J. M.

    2013-12-01

    The marine sedimentary record of Miocene to Pleistocene tectonics and glaciation is well preserved along the southern Alaska convergent margin. This margin is well suited for linking proximal to distal sediment transport processes because sediment is being generated by glacial erosion in the highest coastal mountain range on earth and subsequently being transported to the Aleutian subduction zone. We will discuss the sedimentary record from two end members of this system: (1) the proximal marine record now exposed onshore in the high peaks of the coastal ranges, and (2) the offshore distal record preserved in the Surveyor submarine fan system that was cored during the 2013 IODP Expedition 341. Onshore the Miocene non-glacial strata are represented by the Poul Creek Fm. This unit is 2000 m thick and in its upper part consists of mudstone, thin sandstone beds (10-30 cm thick), and thick bedded (1-2 m) highly bioturbated green sandstone beds that contain hummocky stratification. We interpret this unit as being deposited mainly in marine shelf environments. A gradational contact between the Poul Creek and the overlying upper Miocene-Pleistocene Yakataga Formation is marked by a transition to mudstone, thick bedded sandstone and glacial diamictite. This transition to glacial dominated deposition is interpreted to have occurred around 5 Ma based on previous studies. The onshore glacimarine strata are 5 km thick and grade up section from submarine fan to marine shelf strata. In the distal submarine fan record at IODP Site U1417, the upper Miocene strata in the lower part of the Site consist of 340 m of highly bioturbated gray to green mud interbedded with coarse sand and sandy diamict. These coarse-grained units are lithic rich with mainly sedimentary, volcanic, and coal clasts. We interpret these units as being derived from coal-bearing sedimentary strata exposed in the onshore thrust belt. These facies are interbedded with diatom ooze; we interpret this combination of facies as representing deposition of coarse-grained detritus originating from sedimentary gravity flows followed by longer periods of hemipelagic deposition. The first clear record of glacial sediment input in the distal submarine fan environment is late Pliocene - early Pleistocene muddy diamict beds that probably are the products of ice-rafting. This unit is about 30 m in thickness. The overlying 260 m of the core are mainly dark gray mud with thin beds of volcanic ash and sand/silt beds. Lonestones are common and are mainly argillite and metasiltstone clasts suggesting at least a component of sediment derivation from onshore metamorphosed parts of the Mesozoic accretionary prism. In general, the overall Neogene sedimentary record in both the proximal and distal marine settings appears to be similar but requires a sediment link between the proximal strata deposited on the Yakutat microplate and the Surveyor fan system deposited on the Pacific Plate.

  12. Preferences for paper bedding material of the laboratory mice.

    PubMed

    Ago, Akio; Gonda, Tatuo; Takechi, Mayumi; Takeuchi, Takashi; Kawakami, Kohei

    2002-04-01

    In order to identify indicators of the preferences for bedding materials, the paper bedding material preferences of laboratory mice were investigated in the present study. Four cages, each containing a different structure of paper bedding material were connected to allow free access to each cage. The preferences for paper bedding materials of laboratory mice were judged by the differences in the length of stay and sleep in each cage. The mice preferred the bedding material that allowed them to easily hide and build nests and was soft. We conclude that the comfort and well-being of laboratory mice can be increased through the appropriate selection of bedding material.

  13. Exploring the persistence of sorted bedforms on the inner-shelf of Wrightsville Beach, North Carolina

    USGS Publications Warehouse

    Gutierrez, Ben; Voulgaris, George; Thieler, E. Robert

    2005-01-01

    Geological studies offshore of Wrightsville Beach, North Carolina reveal subtle large-scale regions of coarse sand with gravel and shell hash (widths between 100 and 200 m and negative relief of ∼1 m) that trend obliquely to the coast. It was previously suggested that these regions serve as conduits for sand exchange between the shoreface and inner shelf during storm-associated downwelling. Consequently they were classified as rippled scour depressions. More recently, the role of alongshore flows and self-organization as a result of inhibited settling of fine sand has been discussed. In this study, 45 days of near-bed current measurements were analyzed using benthic boundary layer and sediment transport models to examine the role of along- and cross-shore flows in driving sediment transport at this site. The wind climate was found to be a dominant influence on near-bed flows. Six distinct sediment transport events were recognized. During these events, sediment transport models show that bedload transport is directed mainly in the cross-shore direction, while suspended sediments are directed alongshore to the southwest. Current observations during these sediment transport events provide no evidence of cross-shore sediment transport caused by steady downwelling currents. Instead, benthic boundary layer model results are used to show that differences in bed roughness between the coarse areas of the seabed within the “rippled scour depressions” and the finer areas of the inner shelf are more pronounced during increasingly energetic wave and current conditions. The enhanced difference in roughness results in increased turbulence intensities over coarse regions inhibiting the deposition of the fine sand that is resuspended over the shelf during these events relative to finer areas over the shelf. Findings from this study contribute to explaining the observed long-term persistence of these features.

  14. Type, origin, and reservoir characteristics of dolostones of the Ordovician Majiagou Group, Ordos, North China Platform

    NASA Astrophysics Data System (ADS)

    Feng Zengzhao; Zhang Yongsheng; Jin Zhenkui

    1998-06-01

    Dolostones are well developed in the Ordovician Majiagou Group in the Ordos area, North China Platform. These dolostones can be divided into four types: mud-sized to silt-sized crystalline dolostones not associated with gypsum and halite beds (type I), mud-sized to silt-sized crystalline dolostones associated with gypsum and halite beds (type II), mottled silt-sized to very fine sand-sized crystalline dolostones (fine saccharoidal dolostones) (type III), and mottled coarse silt-sized to fine sand-sized crystalline dolostones (coarse saccharoidal dolostones) (type IV). Type I dolostones consist of mud-sized to silt-sized dolomite crystals. Laminar stromatolites, ripple marks, mud cracks and birdseyes are common. Such dolostones are not associated with gypsum and halite beds, but lath-shaped pseudomorphs after gypsum are common. The ordering of dolomites averages 0.59, and molar concentration of CaCO 3 averages 51.44%. δ13C averages -0.8‰ (PDB Standard), δ18O averages -2.9‰, δCe averages 0.83. The above characteristics suggest that type I dolostones result from penecontemporaneous dolomitization of lime mud on supratidal flat environments by hypersaline sea water. Type II dolostones mainly consist of mud-sized to silt-sized dolomite crystals. They are commonly well laminated but show no desiccation structures. Such dolostones are intercalated within laminated gypsum and halite beds or are intermixed with them. Such dolostones resulted from dolomitization of lime mud by hypersaline sea water in gypsum and halite precipitating lagoons. Type III dolostones consist of coarse silt-sized to very fine sand-sized dolomite crystals. They commonly underlie type I dolostones and grade downwards to dolomite-mottled limestones and pure limestones. The ordering of dolomites averages 0.63, and molar concentration of CaCO 3 averages 55.64%. δ13C averages -0.2‰, δ18O averages -3.3‰, δCe averages 1.24. Such dolostones resulted from reflux dolomitization by hypersaline sea water. Type IV dolostones consist of coarse-silt-sized to fine-sand-sized dolomite crystals. In such dolostones, stylolites are cut by dolomite crystals. Fluid inclusions are present, and the homogenization temperature commonly ranges from 104°C to 203°C. The ordering of dolomites averages 0.85, and molar concentration of CaCO 3 averages 50.65%. δ13C averages 0.6‰, δ18O averages -7.4‰, and δCe averages 1.16. Such dolostones resulted from deep burial dolomitization. In the Ordos area, type I and II dolostones modified by palaeokarstification are the major gas reservoir rocks of the Ordos Gas Field at present. Type IV dolostones show good reservoir characteristics and may also be potential reservoir rocks.

  15. Stratotype for the Mérida Glaciation at Pueblo Llano in the northern Venezuelan Andes

    NASA Astrophysics Data System (ADS)

    Mahaney, W. C.; Milner, M. W.; Voros, J.; Kalm, V.; Hütt, G.; Bezada, M.; Hancock, R. G. V.; Aufreiter, S.

    2000-12-01

    The Mérida Glaciation (cf. Wisconsinan, Weichselian) as proposed by Schubert (1974b) culminated at about 18 ka during the last glacial maximum (LGM) and ended at about 13 ka as indicated by 14C dating and correlation with the Cordillera Oriental of Colombia. Moraines of an early stade of Mérida Glaciation reached to 2800 m a.s.l. and were largely overrun or eradicated by the maximum Wisconsinan advance (LGM); where they outcrop, the older moraines are characterized by eroded, weathered glacial diamictons and outwash fans. At Pueblo Llano in the central Mérida Andes (Cordillera de Trujillo), older to younger beds of contorted glacitectonized diamict, overlying beds of bouldery till and indurated outwash, all belong to the early Mérida stade. Overlying the early Mérida stade, deposits of rhythmically bedded glaciolacustrine sediments are in turn overlain with contorted sand and silt beds capped with outwash. Above the outwash terrace a loop moraine of LGM age completely encircles the margins of the basin. A stream cut exposed by catastrophic (tectonic or surge?) release of meltwater displays a lithostratigraphic succession that is bereft of organic material for radiocarbon dating. Five optically-stimulated luminescence (OSL) dates place the maximum age of the lowest till at 81 ka. Particle size distributions allow clear distinctions between major lithic units. Heavy mineral analysis of the middle and lower coarse units in the section provide information on sediment sourcing and on major lithostratigraphic divisions. Trace element concentrations provide information on the relative homogeneity of the deposits. The HREE (heavy rare earth element) concentrations allow discrimination of the lower till from the rest of the section; the LREE (light rare earth element) concentrations highlight differences between the lower till, LGM till, and the rest of the section.

  16. Sorting it out: bedding particle size and nesting material processing method affect nest complexity.

    PubMed

    Robinson-Junker, Amy; Morin, Amelia; Pritchett-Corning, Kathleen; Gaskill, Brianna N

    2017-04-01

    As part of routine husbandry, an increasing number of laboratory mice receive nesting material in addition to standard bedding material in their cages. Nesting material improves health outcomes and physiological performance in mice that receive it. Providing usable nesting material uniformly and efficiently to various strains of mice remains a challenge. The aim of this study was to determine how bedding particle size, method of nesting material delivery, and processing of the nesting material before delivery affected nest building in mice of strong (BALB/cAnNCrl) and weak (C3H/HeNCrl) gathering abilities. Our data suggest that processing nesting material through a grinder in conjunction with bedding material, although convenient for provision of bedding with nesting material 'built-in', negatively affects the integrity of the nesting material and subsequent nest-building outcomes. We also found that C3H mice, previously thought to be poor nest builders, built similarly scored nests to those of BALB/c mice when provided with unprocessed nesting material. This was true even when nesting material was mixed into the bedding substrate. We also observed that when nesting material was mixed into the bedding substrate, mice of both strains would sort their bedding by particle size more often than if it were not mixed in. Our findings support the utility of the practice of distributing nesting material mixed in with bedding substrate, but not that of processing the nesting material with the bedding in order to mix them.

  17. Defining phases of bedload transport using piecewise regression

    Treesearch

    Sandra E. Ryan; Laurie S. Porth; C. A. Troendle

    2002-01-01

    Differences in the transport rate and size of bedload exist for varying levels of flow in coarse-grained channels. For gravel-bed rivers, at least two phases of bedload transport, with notably differing qualities, have been described in the literature. Phase I consists primarily of sand and small gravel moving at relatively low rates over a stable channel surface....

  18. The mass distribution of coarse particulate organic matter exported from an Alpine headwater stream

    NASA Astrophysics Data System (ADS)

    Turowski, J. M.; Badoux, A.; Bunte, K.; Rickli, C.; Federspiel, N.; Jochner, M.

    2013-09-01

    Coarse particulate organic matter (CPOM) particles span sizes from 1 mm, with a dry mass less than 1 mg, to large logs and entire trees, which can have a dry mass of several hundred kilograms. Pieces of different size and mass play different roles in stream environments, from being the prime source of energy in stream ecosystems to macroscopically determining channel morphology and local hydraulics. We show that a single scaling exponent can describe the mass distribution of CPOM heavier than 0.1 g transported in the Erlenbach, a steep mountain stream in the Swiss pre-Alps. This exponent takes an average value of -1.8, is independent of discharge and valid for particle masses spanning almost seven orders of magnitude. Similarly, the mass distribution of in-stream large woody debris (LWD) in several Swiss streams can be described by power law scaling distributions, with exponents varying between -1.8 and -2.0, if all in-stream LWD is considered, and between -1.3 and -1.8 for material locked in log jams. We found similar values for in-stream and transported material in the literature. We had expected that scaling exponents are determined by stream type, vegetation, climate, substrate properties, and the connectivity between channels and hillslopes. However, none of the descriptor variables tested here, including drainage area, channel bed slope and the percentage of forested area, show a strong control on exponent value. Together with a rating curve of CPOM transport rates with discharge, the scaling exponents can be used in the design of measuring strategies and in natural hazard mitigation.

  19. Bed Surface Adjustments to Spatially Variable Flow in Low Relative Submergence Regimes

    NASA Astrophysics Data System (ADS)

    Monsalve, A.; Yager, E. M.

    2017-11-01

    In mountainous rivers, large relatively immobile grains partly control the local and reach-averaged flow hydraulics and sediment fluxes. When the flow depth is similar to the size of these grains (low relative submergence), heterogeneous flow structures and plunging flow cause spatial distributions of bed surface elevations, textures, and sedimentation rates. To explore how the bed surface responds to these flow variations we conducted a set of experiments in which we varied the relative submergence of staggered hemispheres (simulated large boulders) between runs. All experiments had the same average sediment transport capacity, upstream sediment supply, and initial bed thickness and grain size distribution. We combined our laboratory measurements with a 3-D flow model to obtain the detailed flow structure around the hemispheres. The local bed shear stress field displayed substantial variability and controlled the bed load transport rates and direction in which sediment moved. The divergence in bed shear stress caused by the hemispheres promoted size-selective bed load deposition, which formed patches of coarse sediment upstream of the hemisphere. Sediment deposition caused a decrease in local bed shear stress, which combined with the coarser grain size, enhanced the stability of this patch. The region downstream of the hemispheres was largely controlled by a recirculation zone and had little to no change in grain size, bed elevation, and bed shear stress. The formation, development, and stability of sediment patches in mountain streams is controlled by the bed shear stress divergence and magnitude and direction of the local bed shear stress field.

  20. Channel morphology and patterns of bedload transport in fluvial, formerly-glaciated, forested headwater streams of the Columbia Mountains, Canada

    NASA Astrophysics Data System (ADS)

    Green, Kim; Brardinoni, Francesco; Alila, Younes

    2013-04-01

    This study examines channel-reach morphology and bedload transport dynamics in relation to landscape structure and snowmelt hydrology in Cotton and Elk Creek, two headwater streams of the southern Columbia Mountains, Canada. Data collection is based on field surveys and GIS analysis in conjunction with a nested monitoring network of water discharge and bed load transfer. The nested monitoring network is designed to examine the effects of channel bed texture, and the influence of free-formed (i.e., boulder cascades, step pools, and riffle pools) and forced-alluvial morphologies (i.e., forced step pools) on bedload entrainment and transport. The landscape is characterized by subdued glaciated topography in which sediment is primarily supplied by bank failures and fluvial transfer dominates the channelized sediment cascade. The spatial distribution of channel types is mainly controlled by glacially imposed local slope together with availability of wood and glacigenic materials. Interestingly, downstream hydraulic geometry as well as downstream patterns of the coarse channel bed fraction and stream power are all insensitive to systematic changes of local slope along the typically stepped longitudinal profiles. An indication that the study alluvial systems are adjusted to the contemporary hydrologic and sedimentary regimes, and as such through post-LGM times have been able to compensate for the glacially-imposed boundary conditions. Stepwise multiple regression indicates that annual bedload yield is chiefly controlled by the number of peak events over threshold discharge. During such high flows, repeated destabilization of channel bed armouring and re-mobilization of sediment stored behind logjams can ensure sediment supply for bedload transport across the entire snowmelt season. In particular, channel morphology affects distinctively the variability of bed load response to hydrologic forcing. The observed spatial variability in annual bedload yield appears to correlate with inter-basin differences in basic morphometric attributes, among which slope aspect plays a prominent role.

  1. Evaluating the use of side-scan sonar for detecting freshwater mussel beds in turbid river environments

    USGS Publications Warehouse

    Powers, Jarrod; Brewer, Shannon K.; Long, James M.; Campbell, Thomas

    2015-01-01

    Side-scan sonar is a valuable tool for mapping habitat features in many aquatic systems suggesting it may also be useful for locating sedentary biota. The objective of this study was to determine if side-scan sonar could be used to identify freshwater mussel (unionid) beds and the required environmental conditions. We used side-scan sonar to develop a series of mussel-bed reference images by placing mussel shells within homogenous areas of fine and coarse substrates. We then used side-scan sonar to map a 32-km river reach during spring and summer. Using our mussel-bed reference images, several river locations were identified where mussel beds appeared to exist in the scanned images and we chose a subset of sites (n = 17) for field validation. The validation confirmed that ~60% of the sites had mussel beds and ~80% had some mussels or shells present. Water depth was significantly related to our ability to predict mussel-bed locations: predictive ability was greatest at depths of 1–2 m, but decreased in water >2-m deep. We determined side-scan sonar is an effective tool for preliminary assessments of mussel presence during times when they are located at or above the substrate surface and in relatively fine substrates excluding fine silt.

  2. Aeolian processes in Proctor Crater on Mars: Sedimentary history as analyzed from multiple data sets

    USGS Publications Warehouse

    Fenton, L.K.; Bandfield, J.L.; Ward, A.W.

    2003-01-01

    Proctor Crater is a 150 km diameter crater in Noachis Terra, within the southern highlands of Mars. The analysis leading to the sedimentary history incorporates several data sets including imagery, elevation, composition, and thermal inertia, mostly from the Mars Global Surveyor mission. The resulting stratigraphy reveals that the sedimentary history of Proctor Crater has involved a complex interaction of accumulating and eroding sedimentation. Aeolian features spanning much of the history of the crater interior dominate its surface, including large erosional pits, stratified beds of aeolian sediment, sand dunes, erosional and depositional streaks, dust devil tracks, and small bright bed forms that are probably granule ripples. Long ago, up to 450 m of layered sediment filled the crater basin, now exposed in eroded pits on the crater floor. These sediments are probably part of an ancient deposit of aeolian volcaniclastic material. Since then, some quantity of this material has been eroded from the top layers of the strata. Small, bright dune forms lie stratigraphically beneath the large dark dune field. Relative to the large dark dunes, the bright bed forms are immobile, although in places, their orientations are clearly influenced by the presence of the larger dunes. Their prevalence in the crater and their lack of compositional and thermal distinctiveness relative to the crater floor suggests that these features were produced locally from the eroding basin fill. Dust devil tracks form during the spring and summer, following a west-southwesterly wind. Early in the spring the dust devils are largely restricted to dark patches of sand. As the summer approaches, dust devil tracks become more plentiful and spread to the rest of the crater floor, indicating that the entire region acquires an annual deposit of dust that is revealed by seasonal dust devils. The dark dunes contain few dust devil tracks, suggesting that accumulated dust is swept away directly by saltation, rather than by the passage of dust devils. Spectral deconvolution indicates that the dark dunes have infrared spectra consistent with basalt-like materials. The average thermal inertia calculated from Thermal Emission Spectrometer bolometric temperatures is 277 ?? 17 J m-2 s-0.5 K-1, leading to an effective grain size of 740 ?? 170 ??m, which is consistent with coarse sand and within the range expected for Martian sand. The coarse sand that composes the large dune field may have originated from outside the crater, saltating in from the southwest. Most of the transport pathway that delivered this sand to the dune field has since been eroded away or buried. The sand was transported to the east center of the crater floor, where beneath the present-day dunes a 50 m high mound of sand has accumulated. Dune slip faces indicate a wind regime consisting of three opposing winds. Some of these wind directions are correlated with the orientations of dust devil tracks and bright bed forms. The combination of a tall mound of sand and three opposing winds is consistent with a convergent wind regime, which produces the large reversing transverse and star dunes that dominate the dune field. The dark dunes have both active slip faces and seemingly inactive slip faces, suggesting that the dunes vary spatially in their relative activity. Nevertheless, the aeolian activity that has dominated the history of Proctor Crater still continues today. Copyright 2003 by the American Geophysical Union.

  3. The exceptional sediment load of fine-grained dispersal systems: Example of the Yellow River, China.

    PubMed

    Ma, Hongbo; Nittrouer, Jeffrey A; Naito, Kensuke; Fu, Xudong; Zhang, Yuanfeng; Moodie, Andrew J; Wang, Yuanjian; Wu, Baosheng; Parker, Gary

    2017-05-01

    Sedimentary dispersal systems with fine-grained beds are common, yet the physics of sediment movement within them remains poorly constrained. We analyze sediment transport data for the best-documented, fine-grained river worldwide, the Huanghe (Yellow River) of China, where sediment flux is underpredicted by an order of magnitude according to well-accepted sediment transport relations. Our theoretical framework, bolstered by field observations, demonstrates that the Huanghe tends toward upper-stage plane bed, yielding minimal form drag, thus markedly enhancing sediment transport efficiency. We present a sediment transport formulation applicable to all river systems with silt to coarse-sand beds. This formulation demonstrates a remarkably sensitive dependence on grain size within a certain narrow range and therefore has special relevance to silt-sand fluvial systems, particularly those affected by dams.

  4. The exceptional sediment load of fine-grained dispersal systems: Example of the Yellow River, China

    PubMed Central

    Ma, Hongbo; Nittrouer, Jeffrey A.; Naito, Kensuke; Fu, Xudong; Zhang, Yuanfeng; Moodie, Andrew J.; Wang, Yuanjian; Wu, Baosheng; Parker, Gary

    2017-01-01

    Sedimentary dispersal systems with fine-grained beds are common, yet the physics of sediment movement within them remains poorly constrained. We analyze sediment transport data for the best-documented, fine-grained river worldwide, the Huanghe (Yellow River) of China, where sediment flux is underpredicted by an order of magnitude according to well-accepted sediment transport relations. Our theoretical framework, bolstered by field observations, demonstrates that the Huanghe tends toward upper-stage plane bed, yielding minimal form drag, thus markedly enhancing sediment transport efficiency. We present a sediment transport formulation applicable to all river systems with silt to coarse-sand beds. This formulation demonstrates a remarkably sensitive dependence on grain size within a certain narrow range and therefore has special relevance to silt-sand fluvial systems, particularly those affected by dams. PMID:28508078

  5. Sediment heterogeneity and mobility in the morphodynamic modelling of gravel-bed braided rivers

    NASA Astrophysics Data System (ADS)

    Singh, Umesh; Crosato, Alessandra; Giri, Sanjay; Hicks, Murray

    2017-06-01

    The effects of sediment heterogeneity and sediment mobility on the morphology of braided rivers are still poorly studied, especially when the partial sediment mobility occurs. Nevertheless, increasing the bed sediment heterogeneity by coarse sediment supply is becoming a common practice in river restoration projects and habitat improvement all over the world. This research provides a step forward in the identification of the effects of sediment sorting on the evolution of sediment bars and braiding geometry of gravel-bed rivers. A two-dimensional morphodynamic model was used to simulate the long-term developments of a hypothetical braided system with discharge regime and morphodynamic parameters derived from the Waimakariri River, New Zealand. Several scenarios, differing in bed sediment heterogeneity and sediment mobility, were considered. The results agree with the tendencies already identified in linear analyses and experimental studies, showing that a larger sediment heterogeneity increases the braiding indes and reduces the bars length and height. The analyses allowed identifying the applicability limits of uniform sediment and variable discharge modelling approaches.

  6. Testing short-range migration of microbial methane as a hydrate formation mechanism: Results from Andaman Sea and Kumano Basin drill sites and global implications

    NASA Astrophysics Data System (ADS)

    Malinverno, Alberto; Goldberg, David S.

    2015-07-01

    Methane gas hydrates in marine sediments often concentrate in coarse-grained layers surrounded by fine-grained marine muds that are hydrate-free. Methane in these hydrate deposits is typically microbial, and must have migrated from its source as the coarse-grained sediments contain little or no organic matter. In "long-range" migration, fluid flow through permeable layers transports methane from deeper sources into the gas hydrate stability zone (GHSZ). In "short-range" migration, microbial methane is generated within the GHSZ in fine-grained sediments, where small pore sizes inhibit hydrate formation. Dissolved methane can then diffuse into adjacent sand layers, where pore size does not restrict hydrate formation and hydrates can accumulate. Short-range migration has been used to explain hydrate accumulations in sand layers observed in drill sites on the northern Cascadia margin and in the Gulf of Mexico. Here we test the feasibility of short-range migration in two additional locations, where gas hydrates have been found in coarse-grained volcanic ash layers (Site NGHP-01-17, Andaman Sea, Indian Ocean) and turbidite sand beds (Site IODP-C0002, Kumano forearc basin, Nankai Trough, western Pacific). We apply reaction-transport modeling to calculate dissolved methane concentration and gas hydrate amounts resulting from microbial methane generated within the GHSZ. Model results show that short-range migration of microbial methane can explain the overall amounts of methane hydrate observed at the two sites. Short-range migration has been shown to be feasible in diverse margin environments and is likely to be a widespread methane transport mechanism in gas hydrate systems. It only requires a small amount of organic carbon and sediment sequences consisting of thin coarse-grained layers that can concentrate microbial methane generated within thick fine-grained sediment beds; these conditions are common along continental margins around the globe.

  7. Controls on the size and occurrence of pools in coarse-grained forest rivers

    Treesearch

    John M. Buffington; Thomas E. Lisle; Richard D. Woodsmith; Sue Hilton

    2002-01-01

    Controls on pool formation are examined in gravel- and cobble-bed rivers in forest mountain drainage basins of northern California, southern Oregon, and southeastern Alaska. We demonstrate that the majority of pools at our study sites are formed by flow obstructions and that pool geometry and frequency largely depend on obstruction characteristics (size, type, and...

  8. Using airborne laser altimetry to determine fuel models for estimating fire behavior

    Treesearch

    Carl A. Seielstad; Lloyd P. Queen

    2003-01-01

    Airborne laser altimetry provides an unprecedented view of the forest floor in timber fuel types and is a promising new tool for fuels assessments. It can be used to resolve two fuel models under closed canopies and may be effective for estimating coarse woody debris loads. A simple metric - obstacle density - provides the necessary quantification of fuel bed roughness...

  9. Comparisons of single-row and twin-row soybean production in the Mid South

    USDA-ARS?s Scientific Manuscript database

    A Maturity Group (MG) IV and MG V soybean [Glycine max (L.) Merr] cultivar were planted in single-rows and twin-rows on 102 cm beds at 20, 30, 40, and 50 seeds m-2 in a Beulah fine sandy loam (coarse-loamy, mixed thermic Typic Dystrochrepts) in 2008, 2009, 2010 and Sharkey clay (Vertic Haplaquept) i...

  10. Filtered sub-grid constitutive models for fluidized gas-particle flows constructed from 3-D simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarkar, Avik; Milioli, Fernando E.; Ozarkar, Shailesh

    2016-10-01

    The accuracy of fluidized-bed CFD predictions using the two-fluid model can be improved significantly, even when using coarse grids, by replacing the microscopic kinetic-theory-based closures with coarse-grained constitutive models. These coarse-grained constitutive relationships, called filtered models, account for the unresolved gas-particle structures (clusters and bubbles) via sub-grid corrections. Following the previous 2-D approaches of Igci et al. [AIChE J., 54(6), 1431-1448, 2008] and Milioli et al. [AIChE J., 59(9), 3265-3275, 2013], new filtered models are constructed from highly-resolved 3-D simulations of gas-particle flows. Although qualitatively similar to the older 2-D models, the new 3-D relationships exhibit noticeable quantitative and functionalmore » differences. In particular, the filtered stresses are strongly dependent on the gas-particle slip velocity. Closures for the filtered inter-phase drag, gas- and solids-phase pressures and viscosities are reported. A new model for solids stress anisotropy is also presented. These new filtered 3-D constitutive relationships are better suited to practical coarse-grid 3-D simulations of large, commercial-scale devices.« less

  11. Application of CaO-Based Bed Material for Dual Fluidized Bed Steam Biomass Gasification

    NASA Astrophysics Data System (ADS)

    Koppatz, S.; Pfeifer, C.; Kreuzeder, A.; Soukup, G.; Hofbauer, H.

    Gasification of biomass is a suitable option for decentralized energy supply based on renewable sources in the range of up to 50 MW fuel input. The paper presents the dual fluidized bed (DFB) steam gasification process, which is applied to generate high quality and nitrogen-free product gas. Essential part of the DFB process is the bed material used in the fluidized reactors, which has significant impact on the product gas quality. By the use of catalytically active bed materials the performance of the overall process is increased, since the bed material favors reactions of the steam gasification. In particular, tar reforming reactions are favored. Within the paper, the pilot plant based on the DFB process with 100kW fuel input at Vienna University of Technology, Austria is presented. Actual investigations with focus on CaO-based bed materials (limestone) as well as with natural olivine as bed material were carried out at the pilot plant. The application of CaO-based bed material shows mainly decreased tar content in the product gas in contrast to experiments with olivine as bed material. The paper presents the results of steam gasification experiments with limestone and olivine, whereby the product gas composition as well as the tar content and the tar composition are outlined.

  12. Entrainment of coarse grains using a discrete particle model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valyrakis, Manousos, E-mail: Manousos.Valyrakis@glasgow.ac.uk; Arnold, Roger B. Jr.

    2014-10-06

    Conventional bedload transport models and incipient motion theories relying on a time-averaged boundary shear stress are incapable of accounting for the effects of fluctuating near-bed velocity in turbulent flow and are therefore prone to significant errors. Impulse, the product of an instantaneous force magnitude and its duration, has been recently proposed as an appropriate criterion for quantifying the effects of flow turbulence in removing coarse grains from the bed surface. Here, a discrete particle model (DPM) is used to examine the effects of impulse, representing a single idealized turbulent event, on particle entrainment. The results are classified according to themore » degree of grain movement into the following categories: motion prior to entrainment, initial dislodgement, and energetic displacement. The results indicate that in all three cases the degree of particle motion depends on both the force magnitude and the duration of its application and suggest that the effects of turbulence must be adequately accounted for in order to develop a more accurate method of determining incipient motion. DPM is capable of simulating the dynamics of grain entrainment and is an appropriate tool for further study of the fundamental mechanisms of sediment transport.« less

  13. Sub-grid drag models for horizontal cylinder arrays immersed in gas-particle multiphase flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarkar, Avik; Sun, Xin; Sundaresan, Sankaran

    2013-09-08

    Immersed cylindrical tube arrays often are used as heat exchangers in gas-particle fluidized beds. In multiphase computational fluid dynamics (CFD) simulations of large fluidized beds, explicit resolution of small cylinders is computationally infeasible. Instead, the cylinder array may be viewed as an effective porous medium in coarse-grid simulations. The cylinders' influence on the suspension as a whole, manifested as an effective drag force, and on the relative motion between gas and particles, manifested as a correction to the gas-particle drag, must be modeled via suitable sub-grid constitutive relationships. In this work, highly resolved unit-cell simulations of flow around an arraymore » of horizontal cylinders, arranged in a staggered configuration, are filtered to construct sub-grid, or `filtered', drag models, which can be implemented in coarse-grid simulations. The force on the suspension exerted by the cylinders is comprised of, as expected, a buoyancy contribution, and a kinetic component analogous to fluid drag on a single cylinder. Furthermore, the introduction of tubes also is found to enhance segregation at the scale of the cylinder size, which, in turn, leads to a reduction in the filtered gas-particle drag.« less

  14. Geologic and physiographic controls on bed-material yield, transport, and channel morphology for alluvial and bedrock rivers, western Oregon

    USGS Publications Warehouse

    O'Connor, James E.; Mangano, Joseph F.; Anderson, Scott A.; Wallick, J. Rose; Jones, Krista L.; Keith, Mackenzie K.

    2014-01-01

    The rivers of western Oregon have diverse forms and characteristics, with channel substrates ranging from continuous alluvial gravel to bare bedrock. Analysis of several measurable morphologic attributes of 24 valley reaches on 17 rivers provides a basis for comparing nonalluvial and alluvial channels. Key differences are that alluvial reaches have greater bar area, greater migration rates, and show systematic correlation among variables relating grain size to bed-material transport capacity. We relate these differences between channel types to bed-material transport rates as derived from a coupled regional analysis of empirical sediment yield measurements and physical experiments of clast attrition during transport. This sediment supply analysis shows that overall bed-material transport rates for western Oregon are chiefly controlled by (1) lithology and basin slope, which are the key factors for bed-material supply into the stream network, and (2) lithologic control of bed-material attrition from in-transport abrasion and disintegration. This bed-material comminution strongly affects bed-material transport in the study area, reducing transport rates by 50%–90% along the length of the larger rivers in the study area. A comparison of the bed-material transport estimates with the morphologic analyses shows that alluvial gravel-bed channels have systematic and bounding relations between bed-material transport rate and attributes such as bar area and local transport capacity. By contrast, few such relations are evident for nonalluvial rivers with bedrock or mixed-bed substrates, which are apparently more influenced by local controls on channel geometry and sediment supply. At the scale of western Oregon, the physiographic and lithologic controls on the balance between bed-material supply and transport capacity exert far-reaching influence on the distribution of alluvial and nonalluvial channels and their consequently distinctive morphologies and behaviors—differences germane for understanding river response to tectonics and environmental perturbations, as well as for implementing effective restoration and monitoring strategies.

  15. A computational investigation of the interstitial flow induced by a variably thick blanket of very fine sand covering a coarse sand bed

    NASA Astrophysics Data System (ADS)

    Bartzke, Gerhard; Huhn, Katrin; Bryan, Karin R.

    2017-10-01

    Blanketed sediment beds can have different bed mobility characteristics relative to those of beds composed of uniform grain-size distribution. Most of the processes that affect bed mobility act in the direct vicinity of the bed or even within the bed itself. To simulate the general conditions of analogue experiments, a high-resolution three-dimensional numerical `flume tank' model was developed using a coupled finite difference method flow model and a discrete element method particle model. The method was applied to investigate the physical processes within blanketed sediment beds under the influence of varying flow velocities. Four suites of simulations, in which a matrix of uniform large grains (600 μm) was blanketed by variably thick layers of small particles (80 μm; blanket layer thickness approx. 80, 350, 500 and 700 μm), were carried out. All beds were subjected to five predefined flow velocities ( U 1-5=10-30 cm/s). The fluid profiles, relative particle distances and porosity changes within the bed were determined for each configuration. The data show that, as the thickness of the blanket layer increases, increasingly more small particles accumulate in the indentations between the larger particles closest to the surface. This results in decreased porosity and reduced flow into the bed. In addition, with increasing blanket layer thickness, an increasingly larger number of smaller particles are forced into the pore spaces between the larger particles, causing further reduction in porosity. This ultimately causes the interstitial flow, which would normally allow entrainment of particles in the deeper parts of the bed, to decrease to such an extent that the bed is stabilized.

  16. Chemistry of the Materials Above and Below an Unconformity Between the Murray and Stimson Formations in Gale Crater, Mars

    NASA Astrophysics Data System (ADS)

    Newsom, H. E.; Belgacem, I.; Wiens, R. C.; Frydenvang, J.; Gasnault, O.; Maurice, S.; Gasda, P. J.; Clegg, S. M.; Cousin, A.; Rapin, W.; Jackson, R.; Vaci, Z.; Ha, B.; Blaney, D. L.; Bridges, N.; Francis, R.; Payré, V.; Gupta, S.; Banham, S.; Schroeder, J.; Calef, F. J., III; Edgett, K. S.; Fey, D.; Fisk, M. R.; Gellert, R.; Thompson, L. M.; Perrett, G. M.; Grotzinger, J. P.; Rubin, D. M.; Williams, A.; Kah, L. C.; Kronyak, R. E.

    2015-12-01

    MSL began investigating a contact between Murray formation, (fine grained lake deposits) and the younger Stimson formation at Marias Pass in May 2015, on the lower slopes of Mt. Sharp. Images show that the Murray formation, with numerous calcium sulfate veins compared to the Stimson, is truncated at an erosional contact. MAHLI images show a white layer a few mm thick at the contact that might be calcium sulfate. The lowermost beds of the Stimson unit in the Missoula area comprise horizontally laminated or cross-laminated sandstones. The sandstones are poorly sorted with floating granules and very coarse sand grains set in a fine- medium-grained sand 'matrix'. This material directly above the contact is a resistant, basal ledge-forming layer that also forms numerous blocks of float on top of the eroded Murray. This basal layer contains light toned fragments, possibly calcium sulfate, eroded from the Murray. The poor sorting and presence of sub-angular grains, together with the absence of preferential sorting into size sorted layers would seem to rule out eolian processes for the lowermost beds of the Stimson and suggest fluvial processes were responsible for deposition of these beds. For chemostratigraphy, the distance of each ChemCam or APXS observation above or below the contact was determined from images and the NavCam stereo mesh. The top of the Murray near the Missoula area is variable in composition, and additional analyses are planned to determine if weathering occurred at the eroded surface. Above the contact, the lowest 2 cm of the resistant slab is higher in SiO2, and lower in Al2O3, K2O and Na2O, relative to other Stimson analyses. In a few points with low totals, there is a correlation between Ca and missing components (presumed to be mostly S). These points could be connected to calcium sulfate in the form of cements and/or incorporation of eroded clasts of Murray vein materials.

  17. The dominance of dispersion in the evolution of bed material waves in gravel-bed rivers

    Treesearch

    Thomas E. Lisle; Yantao Cui; Gary Parker; James E. Pizzuto; Annjanette M. Dodd

    2001-01-01

    Abstract - Bed material waves are temporary zones of sediment accumulation created by large sediment inputs. Recent theoretical, experimental and field studies examine factors in fluencing dispersion and translation of bed material waves in quasi-uniform, gravel-bed channels. Exchanges of sediment between a channel and its floodplain are...

  18. Geologic and physiographic controls on bed-material yield, transport, and channel morphology for alluvial and bedrock rivers, western Oregon

    NASA Astrophysics Data System (ADS)

    O'Connor, J. E.; Wallick, R.; Mangano, J.; Anderson, S. W.; Jones, K. L.; Keith, M. K.

    2012-12-01

    The rivers of western Oregon have channel beds ranging from fully alluvial to bedrock. A local history of in-stream gravel mining in conjunction with ongoing permitting concerns with respect to future extraction have prompted a series of investigations of bed-material production, transport and channel morphology across this spectrum of channel types. In western Oregon, it appears that the distribution of alluvial and bedrock channels (and many aspects of river morphology and behavior) are largely controlled by regional lithologies and the downstream consequences of different rates of bed-material supply and clast comminution. In particular, the Klamath Terrane has elevated erosion rates, steep slopes, and rock types resistant to abrasion, resulting in gravel-bed alluvial channels with high bed-material transport rates. By contrast, Coast Range drainages underlain by large areas of soft sedimentary rocks have bedrock channels owing to exceptionally rapid rates of bed-material attrition during transport. The resulting spatially distributed network controls on the distribution of alluvial and non-alluvial channels likely complicate linkages between rock uplift, bedrock incision, bed-material grain size, and profile concavity. Additionally, the alluvial channels have distinct morphologic characteristics, some of which relate strongly to transport rates. In particular, bar area correlates with estimates of bed-material flux, and this correlation is an upper bound for bar-area observations for non-alluvial reaches. Similarly, an index for transport capacity scaled by bed-material grain size correlates with estimated bed-material flux for alluvial rivers, but not for the non-alluvial rivers. Bedrock and mixed-bed channels in western Oregon have few evident broad-scale patterns or relations among reach-scale morphologic measurements or with estimated transport rates, perhaps indicating that very local lithologic, hydraulic and bed-material supply conditions exert more control on channel morphology.

  19. Bed material transport in the Virgin River, Utah

    USGS Publications Warehouse

    Andrews, E.D.

    2000-01-01

    Detailed information concerning the rate and particle size distribution of bed material transport by streamflows can be very difficult and expensive to obtain, especially where peak streamflows are brief and bed material is poorly sorted, including some very large boulders. Such streams, however, are common in steep, arid watersheds. Any computational approach must consider that (1) only the smaller particle sizes present on the streambed move even during large floods and (2) the largest bed particles exert a significant form drag on the flow. Conventional methods that rely on a single particle size to estimate the skin friction shear stress acting on the mobile fraction of the bed material perform poorly. Instead, for this study, the skin friction shear stress was calculated for the observed range of streamflows by calculating the form drag exerted on the reach‐averaged flow field by all particle sizes. Suspended and bed load transported rates computed from reach‐averaged skin friction shear stress are in excellent agreement with measured transport rates. The computed mean annual bed material load, including both bed load and suspended load, of the East Fork Virgin River for the water years 1992‐1996 was approximately 1.3×10 5 t. A large portion of the bed material load consists of sand‐sized particles, 0.062–1.0 mm in diameter, that are transported in suspension. Such particles, however, constituted only 10% of the surface bed material and less than 25% of the subsurface bed material. The mean annual quantity of bed load transported was 1060 t/yr with a median size of 15 mm.

  20. Starting procedure for internal combustion vessels

    DOEpatents

    Harris, Harry A.

    1978-09-26

    A vertical vessel, having a low bed of broken material, having included combustible material, is initially ignited by a plurality of ignitors spaced over the surface of the bed, by adding fresh, broken material onto the bed to buildup the bed to its operating depth and then passing a combustible mixture of gas upwardly through the material, at a rate to prevent back-firing of the gas, while air and recycled gas is passed through the bed to thereby heat the material and commence the desired laterally uniform combustion in the bed. The procedure permits precise control of the air and gaseous fuel mixtures and material rates, and permits the use of the process equipment designed for continuous operation of the vessel.

  1. Fine bed material in pools of natural gravel bed channels

    Treesearch

    Thomas E. Lisle; Sue Hilton

    1999-01-01

    Abstract - Natural gravel bed channels commonly contain a fine mode of sand and fine gravel that fills voids of the bed framework of coarser gravel. If the supply of fine bed material exceeds the storage capacity of framework voids, excess fine material forms surficial patches, which can be voluminous in pools during low flow. Data collected in 34 natural channels in...

  2. Recycled Coarse Aggregate Produced by Pulsed Discharge in Water

    NASA Astrophysics Data System (ADS)

    Namihira, Takao; Shigeishi, Mitsuhiro; Nakashima, Kazuyuki; Murakami, Akira; Kuroki, Kaori; Kiyan, Tsuyoshi; Tomoda, Yuichi; Sakugawa, Takashi; Katsuki, Sunao; Akiyama, Hidenori; Ohtsu, Masayasu

    In Japan, the recycling ratio of concrete scraps has been kept over 98 % after the Law for the Recycling of Construction Materials was enforced in 2000. In the present, most of concrete scraps were recycled as the Lower Subbase Course Material. On the other hand, it is predicted to be difficult to keep this higher recycling ratio in the near future because concrete scraps increase rapidly and would reach to over 3 times of present situation in 2010. In addition, the demand of concrete scraps as the Lower Subbase Course Material has been decreased. Therefore, new way to reuse concrete scraps must be developed. Concrete scraps normally consist of 70 % of coarse aggregate, 19 % of water and 11 % of cement. To obtain the higher recycling ratio, the higher recycling ratio of coarse aggregate is desired. In this paper, a new method for recycling coarse aggregate from concrete scraps has been developed and demonstrated. The system includes a Marx generator and a point to hemisphere mesh electrode immersed in water. In the demonstration, the test piece of concrete scrap was located between the electrodes and was treated by the pulsed discharge. After discharge treatment of test piece, the recycling coarse aggregates were evaluated under JIS and TS and had enough quality for utilization as the coarse aggregate.

  3. Predicted sedimentary record of reflected bores

    USGS Publications Warehouse

    Higman, B.; Gelfenbaum, G.; Lynett, P.; Moore, A.; Jaffe, B.

    2007-01-01

    Where a steep slope blocks an inrushing tsunami, the tsunami commonly reverses direction as a reflected bore. A simple method for relating vertical and horizontal variation in sediment size to output from numerical models of depth-averaged tsunami flow yields predictions about the sedimentary record of reflected bores: 1. Near the reflector, a abrupt slowing of the flow as the reflected bore passes is recorded by a normally graded layer that drapes preexisting topography. 2. At intermediate distances from the reflector, the deposit consists of a single normally graded bed deposited preferentially in depressions, possibly including a sharp fine-over-coarse contact. This contact records a brief period of erosion as the front of the reflected bore passes. 3. Far seaward of the reflector, grading in the deposit includes two distinct normally graded beds deposited preferentially in depressions separated by an erosional unconformity. The second normally graded bed records the reflected bore.

  4. Determination of the manning coefficient from measured bed roughness in natural channels

    USGS Publications Warehouse

    Limerinos, John Thomas

    1970-01-01

    This report presents the results of a study to test the hypothesis that basic values of the Manning roughness coefficient of stream channels may be related to (1) some characteristic size of the streambed particles and to (2) the distribution of particle size. These two elements involving particle size can be combined into a single element by weighting characteristic particle sizes. The investigation was confined to channels with coarse bed material to avoid the complication of bed-form roughness that is associated with alluvial channels composed of fine bed material. Fifty current-meter measurements of discharge and appropriate field surveys were made at 11 sites on California streams for the purpose of computing the roughness coefficient, n, by the Manning formula. The test sites were selected to give a wide range in average size of bed material, and the discharge measurements and surveys were made at such times as to provide data covering a suitable range in stream depth. The sites selected were relatively free of the extraneous flow-retarding effects associated with irregular channel conformation and streambank vegetation. The characteristic bed-particle sizes used in the analyses were the 16,- 50,- and 84-percentile sizes as obtained from a cumulative frequency distribution of the diameters of randomly sampled surficial bed material. Separate distributions were computed for the minimum and intermediate values of the three diameters of a particle. The minimum diameters of the streambed particles were used in the study because a particle at rest on the bed invariably has its minimum diameter in the vertical position; this diameter is, therefore, the most representative measure of roughness height. The intermediate diameter was also studied because this is the diameter most easily measurable-either by sieve analysis or by photographic techniques--and--because it is the diameter that had been used in previous studies by other investigators. No significant difference in reliability was found between the results obtained using minimum diameters and those obtained using intermediate diameters. In analyzing the field data, the roughness parameter, n/R1/6 (where R is hydraulic radius), was related to relative smoothness, R/d (where d is a characteristic, or weighted characteristic, particle size). The parameter n/R1/6, rather than n, was used because it is directly proportional to the square root of the Darcy-Weisbach friction factor, f, which is more widely used in theoretical studies of hydraulic friction. If the transformation of n/R1/6 to vf is made, the relations obtained in this study are of a form that is identical with that of the theoretical friction equation obtained by several investigators and that derived from field data by Leopold and Wolman (1957). The constants in the equation vary, of course, with the characteristic particle size used. The relations best fitting the field data for this study were obtained by using either a characteristic particle diameter equal to the 84-percentile size (d84, the size equal to, or exceeding, that of 84 percent of the streambed particles), or a diameter obtained by weighting three characteristic particle sizes (dw, the size obtained by assigning a weight of 0.1 to d16 , a weight of 0.3 to d50 , and a weight of 0.6 to d84). The use of d84 alone gave slightly better results than the use of dw, and, in addition, the use of d84 alone is attractive from a standpoint of simplicity. It is difficult, however, to rationalize the use of d84 alone because of the implication that the distribution of sizes is irrelevant, and it matters not at all whether 84 percent of the bed material is sand or whether it is large cobbles, as long as 16 percent of the material is of greater size. Consequently, the author recommends the use of dw rather than d84 , although there was no unanimity of opinion on this recommendation among his colleagues who reviewed this paper. The reader is free to

  5. Thermal Analysis of Fluidized Bed and Fixed Bed Latent Heat Thermal Storage System

    NASA Astrophysics Data System (ADS)

    Beemkumar, N.; Karthikeyan, A.; Shiva Keshava Reddy, Kota; Rajesh, Kona; Anderson, A.

    2017-05-01

    Thermal energy storage technology is essential because its stores available energy at low cost. Objective of the work is to store the thermal energy in a most efficient method. This work is deal with thermal analysis of fluidized bed and fixed bed latent heat thermal storage (LHTS) system with different encapsulation materials (aluminium, brass and copper). D-Mannitol has been used as phase change material (PCM). Encapsulation material which is in orbicular shape with 4 inch diameter and 2 mm thickness orbicular shaped product is used. Therminol-66 is used as a heat transfer fluid (HTF). Arrangement of encapsulation material is done in two ways namely fluidized bed and fixed bed thermal storage system. Comparison was made between the performance of fixed bed and fluidized bed with different encapsulation material. It is observed that from the economical point of view aluminium in fluidized bed LHTS System has highest efficiency than copper and brass. The thermal energy storage system can be analyzed with fixed bed by varying mass flow rate of oil paves a way to find effective heat energy transfer.

  6. Sedimentary processes and architecture of Upper Cretaceous deep-sea channel deposits: a case from the Skole Nappe, Polish Outer Carpathians

    NASA Astrophysics Data System (ADS)

    Łapcik, Piotr

    2018-02-01

    Deep-sea channels are one of the architectonic elements, forming the main conduits for sand and gravel material in the turbidite depositional systems. Deep-sea channel facies are mostly represented by stacking of thick-bedded massive sandstones with abundant coarse-grained material, ripped-up clasts, amalgamation and large scale erosional structures. The Manasterz Quarry of the Ropianka Formation (Upper Cretaceous, Skole Nappe, Carpathians) contains a succession of at least 31 m of thick-bedded high-density turbidites alternated with clast-rich sandy debrites, which are interpreted as axial deposits of a deep-sea channel. The section studied includes 5 or 6 storeys with debrite basal lag deposits covered by amalgamated turbidite fills. The thickness of particular storeys varies from 2.5 to 13 m. Vertical stacking of similar facies through the whole thickness of the section suggest a hierarchically higher channel-fill or a channel complex set, with an aggradation rate higher than its lateral migration. Such channel axis facies cannot aggrade without simultaneous aggradation of levee confinement, which was distinguished in an associated section located to the NW from the Manasterz Quarry. Lateral offset of channel axis facies into channel margin or channel levee facies is estimated at less than 800 m. The Manasterz Quarry section represents mostly the filling and amalgamation stage of channel formation. The described channel architectural elements of the Ropianka Formation are located within the so-called Łańcut Channel Zone, which was previously thought to be Oligocene but may have been present already in the Late Cretaceous.

  7. Preliminary assessment of channel stability and bed-material transport along Hunter Creek, southwestern Oregon

    USGS Publications Warehouse

    Jones, Krista L.; Wallick, J. Rose; O'Connor, Jim E.; Keith, Mackenzie K.; Mangano, Joseph F.; Risley, John C.

    2011-01-01

    This preliminary assessment of (1) bed-material transport in the Hunter Creek basin, (2) historical changes in channel condition, and (3) supplementary data needed to inform permitting decisions regarding instream gravel extraction revealed the following: Along the lower 12.4 km (kilometers) of Hunter Creek from its confluence with the Little South Fork Hunter Creek to its mouth, the river has confined and unconfined segments and is predominately alluvial in its lowermost 11 km. This 12.4-km stretch of river can be divided into two geomorphically distinct study reaches based primarily on valley physiography. In the Upper Study Reach (river kilometer [RKM] 12.4-6), the active channel comprises a mixed bed of bedrock, boulders, and smaller grains. The stream is confined in the upper 1.4 km of the reach by a bedrock canyon and in the lower 2.4 km by its valley. In the Lower Study Reach (RKM 6-0), where the area of gravel bars historically was largest, the stream flows over bed material that is predominately alluvial sediments. The channel alternates between confined and unconfined segments. The primary human activities that likely have affected bed-material transport and the extent and area of gravel bars are (1) historical and ongoing aggregate extraction from gravel bars in the study area and (2) timber harvest and associated road construction throughout the basin. These anthropogenic activities likely have varying effects on sediment transport and deposition throughout the study area and over time. Although assessing the relative effects of these anthropogenic activities on sediment dynamics would be challenging, the Hunter Creek basin may serve as a case study for such an assessment because it is mostly free of other alterations to hydrologic and geomorphic processes such as flow regulation, dredging, and other navigation improvements that are common in many Oregon coastal basins. Several datasets are available that may support a more detailed physical assessment of Hunter Creek. The entire study area has been captured in aerial photographs at least once per decade since the 1940s. This temporally rich photograph dataset would support quantitative analyses of changes in channel planform as well as vegetation cover. Light Detection And Ranging (LiDAR) data collected in 2008 would facilitate hydraulic and sediment-transport modeling and characterization of bar elevations throughout most of the study area. Few studies describing channel morphology and sediment transport exist for the Hunter Creek basin. The most detailed study reported channel incision and bank instability as well as the loss of point bars and pools in the lower 3.9 km of Hunter Creek from slightly downstream of its confluence with Yorke Creek to its mouth (EA Engineering, Sci-ence, and Technology, 1998). Repeat channel cross-sections collected from 1994 to 2010 at four bridges indicate that Hunter Creek is dynamic and subject to channel shifting, aggradation, and incision. Despite this dynamism, the channel at three bridge crossings showed little net change in thalweg elevation during this period. However, the channel thalweg aggraded 0.55 m from 2004 to 2008 near the bridge at RKM 3.5. Systematic delineation of gravel bars from aerial photographs collected in 1940, 1965, 2005, and 2009 indicates a 52-percent reduction in the area of bed-material sediment throughout the study area from 1940 to 2009. Net bar loss was greatest in the Lower Study Reach from RKM 1-4 and mainly is associ-ated with the encroachment of vegetation onto upper-bar surfaces lacking apparent vegetation in 1940. Bar-surface material was approximately equal in size to bar-subsurface material at Conn Creek Bar, whereas it was distinctly coarser than the subsurface material at Menasha Bar. Armoring ratios, which indicate the coarseness of the bar surface relative to the bar subsurface, were calculated as 0.97 for Conn Creek Bar and 1.5 for Menasha Bar. These ratios tentatively show that

  8. Effects of hydraulic roughness on surface textures of gravel‐bed rivers

    USGS Publications Warehouse

    Buffington, John M.; Montgomery, David R.

    1999-01-01

    Field studies of forest gravel‐bed rivers in northwestern Washington and southeastern Alaska demonstrate that bed‐surface grain size is responsive to hydraulic roughness caused by bank irregularities, bars, and wood debris. We evaluate textural response by comparing reach‐average median grain size (D50) to that predicted from the total bank‐full boundary shear stress (т0bf), representing a hypothetical reference condition of low hydraulic roughness. For a given т0bf, channels with progressively greater hydraulic roughness have systematically finer bed surfaces, presumably due to reduced bed shear stress, resulting in lower channel competence and diminished bed load transport capacity, both of which promote textural fining. In channels with significant hydraulic roughness, observed values D50 can be up to 90% smaller than those predicted from т0bf. We find that wood debris plays an important role at our study sites, not only providing hydraulic roughness but also influencing pool spacing, frequency of textural patches, and the amplitude and wavelength of bank and bar topography and their consequent roughness. Our observations also have biological implications. We find that textural fining due to hydraulic roughness can create usable salmonid spawning gravels in channels that otherwise would be too coarse.

  9. Identification of discontinuous sand pulses on the bed of the Colorado River in Grand Canyon

    NASA Astrophysics Data System (ADS)

    Mueller, E. R.; Grams, P. E.; Buscombe, D.; Topping, D. J.

    2017-12-01

    Decades of research on alluvial sandbars and sand transport on the Colorado River in Grand Canyon has contributed to in-depth understanding of the sand budget and lead to management actions designed to rebuild eroded sandbars. However, some basic, but difficult to address, questions about the processes and rates of sand movement through the system still limit our ability to predict geomorphic responses. The coarse fraction of the bed is heterogeneous and varies among boulders, cobble, gravel, and bedrock. Sand covers these substrates in patches of variable size and thickness, fills interstices to varying degrees, and forms mixed sand/coarse bed configurations such as linear stripes. Understanding the locations of sand accumulation, the quantities of sand contained in those locations, and the processes by which sand is exchanged among depositional locations is needed to predict the morphological response of sandbars to management actions, such as the controlled flood releases, and to predict whether sandbars are likely to increase or decrease in size over long (i.e. decadal) time periods. Here, we present evidence for the downstream translation of the sand component of tributary sediment inputs as discontinuous sand pulses. The silt and clay (mud) fraction of sediment introduced episodically by seasonal floods from tributary streams is transported entirely in suspension and moves through the 400 km series of canyons in a few days. The sand fraction of this sediment, which is transported on the bed and in suspension, moves downstream in sand pulses that we estimate range in length from a few km to tens of km. Owing to the complex geomorphic organization, the sand pulses are not detectable as coherent bed features; each individual sand pulse is comprised of many isolated storage locations, separated by rapids and riffles where sand cover is sparse. The presence of the sand pulses is inferred by the existence of alternating segments of sand accumulation and depletion computed from repeat maps of the channel. Improved understanding of the behavior of these sand pulses may be used to adjust the timing, magnitude, and duration of controlled floods to maximize potential for deposition on sandbars in different segments of the 450 km-long Grand Canyon.

  10. Variations in Grain-Scale Sediment Structure in a Gravel-Bed Channel as a Function of Fine Sediment Content and Morphological Location

    NASA Astrophysics Data System (ADS)

    Voepel, H.; Ahmed, S. I.; Hodge, R. A.; Leyland, J.; Sear, D. A.

    2016-12-01

    One of the major causes of uncertainty in estimates of bedload transport rates in gravel bed rivers is a lack of understanding of grain-scale sediment structure, and the impact that this structure has on bed stability. Furthermore, grain-scale structure varies throughout a channel and over time in ways that have not been fully quantified. Our research aims to quantify variations in sediment structure caused by two key variables; morphological location within a riffle-pool sequence (reflecting variation in hydraulic conditions), and the fine sediment content of the gravel bed (sand and clay). We report results from a series of flume experiments in which we water-worked a gravel bed with a riffle-pool morphology. The fine sediment content of the bed was incrementally increased over a series of runs from gravel only, to coarse sand, fine sand and two concentrations of clay. After each experimental run intact samples of the bed at different locations were extracted and the internal structure of the bed was measured using non-destructive, micro-focus X-ray computed tomography (CT) imaging. The CT images were processed to measure the properties of individual grains, including volume, center of mass, dimension, and contact points. From these data we were able to quantify the sediment structure through metrics including measurement of grain pivot angles, grain exposure and protrusion, and vertical variation in bed porosity and fine sediment content. Metrics derived from the CT data were verified using data from grain counts and tilt-table measurements on co-located samples. Comparison of the metrics across different morphological locations and fine sediment content demonstrates how these factors affect the bed structure. These results have implications for the development of sediment entrainment models for gravel bed rivers.

  11. Chemical Characterization of Bed Material Coatingsby LA-ICP-MS and SEM-EDS

    NASA Astrophysics Data System (ADS)

    Piispanen, M. H.; Mustonen, A. J.; Tiainen, M. S.; Laitinen, R. S.

    Bed material coatings and the consequent agglomeration of bed material are main ash-related problems in FB-boilers. The bed agglomeration is a particular problem when combusting biofuels and waste materials. Whereas SEM-EDS together with automated image processing has proven to be a convenient method to study compositional distribution in coating layers and agglomerates, it is a relatively expensive technique and is not necessarily widely available. In this contribution, we explore the suitability of LA-ICP-MS to provide analogous information of the bed.

  12. Sequence stratigraphy of the lower Upper Cretaceous Elbtal Group (Saxony, Germany): new data from Middle Cenomanian-Upper Turonian outcrops and boreholes

    NASA Astrophysics Data System (ADS)

    Richardt, Nadine; Wilmsen, Markus

    2013-04-01

    The formations of the Saxonian Cretaceous have been combined in the so-called Elbtal Group. Their sedimentation took place in a terrestrial to neritic environment palaeogeographically located between the Mid-European Island (MEI) in the SW and the Lusatian Massif in the NE. The through extended from the narrow marine strait of Saxony into the broad Bohemian Cretaceous Basin (Czech Republic) further to the SE. Deposition has been dominated by marine siliciclastics that accumulated on a graded shelf with basically three main facies zones: the coarse-grained nearshore zone ("Küstensandsteinzone"), the transitional zone ("Faziesübergangszone") and the fine-grained marly offshore facies zone ("Plänerfazies"). In general, transgression proceeded in late Early Cenomanian times from the N. Relictic remains of these marine bioclastic conglomerates (Meißen Formation) only occur in the northwesternmost area of the basin around Meißen and are related to the highstand of the depositional sequence Cenomanian 3 (DS Ce 3). After a short stratigraphic gap, onlap continued in the Middle Cenomanian with the following Niederschöna Formation consisting of coarse-grained braided river deposits at the base grading via carbonaceous point-bar cycles of a meandering river system into bioturbated, partly cross-bedded estuarine sediments toward the top. These sediments record DS Ce 4 and are capped by a paleosol. Sedimentation of DS Ce 5 started with a renewed transgressional pulse initiating the Late Cenomanian. The strata consist of bioturbated, cross-bedded predominantly fine- to medium-grained quartz sandstones with some shell-rich horizons corresponding to the Oberhäslich Formation. The unconformably overlying DS Tu 1 comprises the uppermost Cenomanian Dölzschen Formation and the Lower Turonian part of the Schmilka Formation. The onset of this depositional sequence is marked by a major transgression ("plenus Transgression) drowning the remaining pre-transgression topography (onlap of Dölzschen Formation onto basement highs). The lowermost Turonian "Lohmgrund Marl" defines the base of the Schmilka Formation changing gradually into strongly bioturbated, silty Pläner and coarsening upward into moderately bioturbated, thick-bedded-massive, mainly fine-grained quartz sandstones with occasional clayey or silty layers, shell-rich horizons and sparse wood remains. After an interruption in sedimentation indicated by a root horizon or a conspicuous erosional surface, the Schmilka Formation continues with similar lithology into the early Middle Turonian. It is replaced up-section by the overlying Middle-Upper Turonian Postelwitz Formation, characterized by decreasing thickness of bedding and stronger sedimentary variability (grain size, bioturbation, glauconite and fossil content), including the intercalation of thick units of silty Pläner. The lithological variations of sandy and Pläner intervals nicely reflect the Middle-Late Turonian sea-level changes of DS Tu 2 (early Middle Turonian), DS Tu 3 (late Middle-earliest Late Turonian) and DS Tu 4 (early Late-mid-Late Turonian): Pläner units represent transgressive and highstand conditions, sand packages late highstand as well as falling and lowstand systems tracts. A major mid-Late Turonian sea-level fall is indicated in the upper Postelwitz Formation, initiating DS Tu 5 (Late Turonian) with a strongly basin-ward prograding unit of coarse-grained sandstone. The following transgression culminated in a prominent maximum flooding interval represented by the intercalation of a clayey-fine-grained regional marker bed, forming the base of the Schrammstein Formation (thick-bedded, unfossiliferous medium- to coarse-grained quartz sandstones). In conclusion, all depositional sequences of Middle Cenomanian-Late Turonian age and their bounding unconformities (sequence boundaries SB Ce 4 and 5, SB Tu 1-4) reported from coeval sections around the MEI (e. g., Münsterland Creatceous Basin, Lower Saxonian and Danubian Cretaceous) and other Cretaceous basins in the Tethyan region (e. g., Egypt) are also developed in the Saxonian Cretaceous, supporting eustatic sea-level changes as main triggers for the sequence stratigraphic architecture of the Elbtal Group.

  13. Sedimentary deposits study of the 2006 Java tsunami, in Pangandaran, West Java (preliminary result)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maemunah, Imun, E-mail: imun-m2001@yahoo.com; Institute Technology of Bandung; Suparka, Emmy, E-mail: emmy@gc.itb.ac.id

    The 2006 Java Earthquake (Mw 7.2) has generated a tsunami that reached Pangandaran coastal plain with 9.7 m above sea level height of wave. In 2014 we examined the tsunami deposit exposed in shallow trenches along a∼300 m at 5 transect from shoreline to inland on Karapyak and Madasari, Pangandaran. We documented stratigraphically and sedimentologically, the characteristics of Java Tsunami deposit on Karapyak and Madasari and compared both sediments. In local farmland a moderately-sorted, brown soil is buried by a poorly-sorted, grey, medium-grained sand-sheet. The tsunami deposit was distinguished from the underlying soil by a pronounced increase in grain size that becomesmore » finner upwards and landwards. Decreasing concentration of coarse size particles with distance toward inland are in agreement with grain size analysis. The thickest tsunami deposit is about 25 cm found at 84 m from shoreline in Madasari and about 15 cm found at 80 m from shoreline in Karapyak. The thickness of tsunami deposits in some transect become thinner landward but in some other transect lack a consistent suggested strongly affected by local topography. Tsunami deposits at Karapyak and Madasari show many similarities. Both deposits consist of coarse sand that sharply overlies a finer sandy soil. The presence mud drapes and other sedimentary structure like graded bedding, massive beds, mud clasts in many locations shows a dynamics process of tsunami waves. The imbrication coarse and shell fragments of the 2006 Java, tsunami deposits also provide information about the curent direction, allowing us to distinguish run up deposits from backwash deposits.« less

  14. Chemical, physical, and environmental properties of pelleted newspaper compared to wheat straw and wood shavings as bedding for horses.

    PubMed

    Ward, P L; Wohlt, J E; Katz, S E

    2001-06-01

    Two experiments were conducted comparing pelleted recycled newspaper (PN) to wheat straw (S) and kiln-dried pine wood shavings (WS) as an animal bedding material. Adult horses housed 20 to 21 h/d in boxstalls served as the animal model for comparisons. In Exp. 1 eight boxstalls, each housing one horse, were each bedded with two types of PN (0.32 and 0.64 x 2.54 cm), S, and WS over four 5-d periods (replicated 4 x 4 Latin square). Initial amounts of bedding materials surpassed most commercial conditions, but stalls were cleaned daily of feces only and additional clean bedding was added as needed to maintain animal cleanliness, thus challenging the bedding properties of each material. In Exp. 2 nine boxstalls were bedded with PN (0.32 x 2.54 cm), S, and WS over three 14-d periods (three 3 x 3 Latin squares) during summer and autumn. Feces and wet spots were removed daily and clean bedding was added to reestablish working volume and simulate commercial conditions. In Exp. 1 and 2 daily additions of clean bedding varied (P < 0.05) with material (S > WS > PN). The higher water-holding capacity of PN and WS contributed to fewer bedding replacements. Usage of each material was greater (P < 0.05) during the autumn; PN had the greatest increase. Type of material and season also influenced bedding environment. Bedding pH increased (P < 0.05) with use and was highest in PN and lowest in S. Higher concentrations of breathable NH3 N were present in stalls bedded with PN and during autumn. Higher pH of used PN and decreased ventilation due to closed doors and windows during autumn were contributing factors. Season, type of bedding, and duration of its use affected (P < 0.05) numbers as well as species of microorganisms present in the breathing zone, nasal cavity, and on the leg of the horse. Clean and used WS contained greater (P < 0.05) quantities of particle fines, but with 5 d of use, particle fines in PN also increased. Quantities of breathable dust during cleaning of stalls varied (P < 0.05) with material and duration of its use; dust peaked at d 7 with PN but continued to decrease with S and to increase with WS through d 14. These data indicate that management of bedding materials varies with type of material and season of year. Use of PN as a bedding material has high potential.

  15. Ability of organic and inorganic bedding materials to promote growth of environmental bacteria.

    PubMed

    Godden, S; Bey, R; Lorch, K; Farnsworth, R; Rapnicki, P

    2008-01-01

    The major objective of this study was to contrast the ability of 4 commonly utilized bedding materials to promote growth of environmental bacteria under controlled conditions. A second objective was to describe the relationship between bacterial growth and specific biochemical or nutritional properties of these bedding materials. Unused samples of clean sand (CS; n = 20), recycled sand (RS; n = 21), digested manure solids (DS; n = 15), and shavings (SH; n = 15) were collected from bedding storage areas on 49 commercial Minnesota and Wisconsin dairy farms. Sterilized bedding samples were inoculated with Klebsiella pneumoniae and Enterococcus faecium then incubated, in triplicate, for 72 h at 37 degrees C. Subsamples were collected after 0, 24, 48, and 72 h of incubation for culture and enumeration of bacteria. Subsamples of bedding were also tested for pH, total C content (%), and total N content (%). If bacterial growth occurred, peak levels were typically achieved within 24 h. Digested manure solids promoted the greatest amounts of growth of K. pneumoniae, followed by RS and then SH, whereas CS promoted the least. There would seem to be a tradeoff in selecting SH as a bedding material, because it supported moderate growth of K. pneumoniae but caused a rapid decline in the numbers of E. faecium. However, RS, CS, and DS each only supported relatively small amounts of growth of E. faecium, so the benefit of SH relative to other bedding materials is limited. High bedding pH may partially explain why some bedding materials supported growth of E. faecium (e.g., DS and RS). Both high bedding pH (e.g., as for DS or RS) and high total C (%) content (e.g., as for DS and SH) may partially explain why some bedding materials supported growth of K. pneumoniae.

  16. Effect of bedding materials on concentration of odorous compounds and Escherichia coli in beef cattle bedded manure packs

    USDA-ARS?s Scientific Manuscript database

    The objectives of this study were to determine the effect of bedding material (corn stover, soybean stover, wheat straw, switchgrass, wood chips, wood shavings, corn cobs, and shredded paper) on concentration of odorous volatile organic compounds (VOC) in bedded pack material, and to determine the e...

  17. The association between bedding material and the bacterial counts of Staphylococcus aureus, Streptococcus uberis and coliform bacteria on teat skin and in teat canals in lactating dairy cattle.

    PubMed

    Paduch, Jan-Hendrik; Mohr, Elmar; Krömker, Volker

    2013-05-01

    Several mastitis-causing pathogens are able to colonize the bovine teat canal. The objective of this study was to investigate the association between the treatment of sawdust bedding with a commercial alkaline conditioner and the bacterial counts on teat skin and in the teat canal. The study used a crossover design. Ten lactating Holstein cows that were free of udder infections and mastitis were included in the study. The animals were bedded on either untreated sawdust or sawdust that had been treated with a hydrated lime-based conditioner. Once a day, fresh bedding material was added. After 3 weeks, the bedding material was removed from the cubicles, fresh bedding material was provided, and the cows were rotated between the two bedding material groups. Teat skin and teat canals were sampled using the wet and dry swab technique after weeks 1, 2, 3, 4, 5 and 6. Staphylococcus aureus, Streptococcus uberis, Escherichia coli and other coliform bacteria were detected in the resulting agar plate cultures. The treatment of the bedding material was associated with the teat skin bacterial counts of Str. uberis, Esch. coli and other coliform bacteria. An association was also found between the bedding material and the teat canal bacterial counts of coliform bacteria other than Esch. coli. For Staph. aureus, no associations with the bedding material were found. In general, the addition of a hydrated lime-based conditioner to sawdust reduces the population sizes of environmental pathogens on teat skin and in teat canals.

  18. Reducing Respiratory Health Risks to Horses and Workers: A Comparison of Two Stall Bedding Materials

    PubMed Central

    Saastamoinen, Markku; Särkijärvi, Susanna; Hyyppä, Seppo

    2015-01-01

    Simple Summary In this study, the effect of wood shavings and peat was examined on stable air quality and health of horses and stable workers. The ammonia level in the boxes in which peat was used as bedding was non-existent or very low. The respiratory symptoms in horses increased regardless of the bedding material at the beginning of the study. The health status of the horses on peat bedding returned to the initial level in the end of the trial but horses in stalls bedded with wood shavings continued to be symptomatic. The hooves of the horses in stalls with peat bedding had a better moisture content. The results suggest that peat is a better bedding material for horses and people working or visiting horse stables than wood shavings. Abstract Stable air quality and the choice of bedding material are an important health issue both in horses and people working or visiting horse stables. Risks of impaired respiratory health are those that can especially be avoided by improving air quality in the stable. The choice of bedding material is particularly important in cold climate conditions; where horses are kept most of the day and year indoors throughout their life. This study examined the effect of two bedding materials; wood shavings and peat; on stable air quality and health of horses. Ammonia and dust levels were also measured to assess conditions in the stable. Ammonia was not detected or was at very low levels (<0.25 ppm) in the boxes in which peat was used as bedding; but its concentration was clearly higher (1.5–7.0 ppm) in stalls with wood shavings as bedding. Personal measurements of workers revealed quite high ammonia exposure (5.9 ppm8h) in the boxes in which wood shavings were used; but no exposure was observed in stalls bedded with peat. The respiratory symptoms in horses increased regardless of the bedding material at the beginning of the study. The health status of the horses in the peat bedding group returned to the initial level in the end of the trial but horses bedded with wood shavings continued to be symptomatic. The hooves of the horses with peat bedding had a better moisture content than those of the horses bedded with wood shavings. The results suggest that peat is a better bedding material for horses than wood shavings regarding the health of both horses and stable workers. PMID:26479479

  19. Effects of bedding type on compost quality of equine stall waste: implications for small horse farms.

    PubMed

    Komar, S; Miskewitz, R; Westendorf, M; Williams, C A

    2012-03-01

    Our objective in this study is to compare 4 of the most common bedding materials used by equine operations on the chemical and physical characteristics of composted equine stall waste. Twelve Standardbred horses were adapted to the barn and surrounding environment for 2 wk before the start of the study. Groups of 3 horses were bedded on 1 of 4 different bedding types (wood shavings, pelletized wood materials, long straw, and pelletized straw) for 16 h per day for 18 d. Stalls were cleaned by trained staff daily, and all contents removed were weighed and stored separately by bedding material on a level covered concrete pad for the duration of the study. Compost piles were constructed using 3 replicate piles of each bedding type in a randomized complete block design. Each pile was equipped with a temperature sensor and data logger. Water was added and piles were turned weekly throughout the 100-d compost process. Initial and final samples were taken, dried, and analyzed for DM mass, OM, inorganic nitrogen (nitrate-N and ammonium-N), electrical conductivity, and soluble (plant-available) nutrients. Data were analyzed using the GLM procedure, and means were separated using Fischer's protected LSD test (P < 0.05). No significant temperature differences were observed among the bedding materials. The composting process resulted in significant reductions (P < 0.05) in DM mass for each of the 4 bedding materials. The composting process resulted in significant reductions (P < 0.05) in OM and C:N ratio for all 4 bedding materials. The composted long straw material had greater concentrations of total Kjeldahl nitrogen (P < 0.05), nitrate-N (P < 0.05), and ammonium-N (P < 0.05) than the composted wood shavings. This study demonstrated that incorporating a simple aerobic composting system may greatly reduce the overall volume of manure and yield a material that is beneficial for land application in pasture-based systems. The straw-based materials may be better suited for composting and subsequent land application; however, factors such as suitability of the bedding material for equine use, material cost, labor, and availability must be considered when selecting a bedding material.

  20. Lightweight Exoatmospheric Projectile (LEAP) Test Program. Environment Assessment

    DTIC Science & Technology

    1991-07-01

    and Man-Made Environment Kwajalein Atoll is a coral reef containing approximately 100 islands surrounding the largest lagoon in the Nlorld. The Atoll is...entirely from the remains of marine organisms such as reef corals , coralline algae, foramnifera, and others. Soils are coarse, grain size, alkaline...Kwajalein Atoll include ocean reefs , lagoon reefs , lagoon floor and sand flats, harbors, piers, quarries, and sea grass beds. Several reef species are

  1. Effects of wind velocity and slope on fire behavior

    Treesearch

    D.R. Weise; G.S. Biging

    1994-01-01

    Effects of wind velocity and slope on fire spread rate and flame length were examined. Fuel beds of vertical sticks (13.97 cm x 0.455 cm x 0.1 10 cm) and coarse excelsior were burned in an open-topped tilting wind tunnel. Mean fuel moisture content of sticks and excelsior was 11% and 12%, respectively. Mean surface area to volume ratio was 23 cm-! Five slopes (negative...

  2. Preliminary assessment of channel stability and bed-material transport in the Rogue River basin, southwestern Oregon

    USGS Publications Warehouse

    Jones, Krista L.; O'Connor, Jim E.; Keith, Mackenzie K.; Mangano, Joseph F.; Wallick, J. Rose

    2012-01-01

    This report summarizes a preliminary assessment of bed-material transport, vertical and lateral channel changes, and existing datasets for the Rogue River basin, which encompasses 13,390 square kilometers (km2) along the southwestern Oregon coast. This study, conducted to inform permitting decisions regarding instream gravel mining, revealed that: * The Rogue River in its lowermost 178.5 kilometers (km) alternates between confined and unconfined segments, and is predominately alluvial along its lowermost 44 km. The study area on the mainstem Rogue River can be divided into five reaches based on topography, hydrology, and tidal influence. The largely confined, active channel flows over bedrock and coarse bed material composed chiefly of boulders and cobbles in the Grants Pass (river kilometers [RKM] 178.5-152.8), Merlin (RKM 152.8-132.7), and Galice Reaches (RKM 132.7-43.9). Within these confined reaches, the channel contains few bars and has stable planforms except for locally wider segments such as the Brushy Chutes area in the Merlin Reach. Conversely, the active channel flows over predominately alluvial material and contains nearly continuous gravel bars in the Lobster Creek Reach (RKM 43.9-6.7). The channel in the Tidal Reach (RKM 6.7-0) is also alluvial, but tidally affected and unconfined until RKM 2. The Lobster Creek and Tidal Reaches contain some of the most extensive bar deposits within the Rogue River study area. * For the 56.6-km-long segment of the Applegate River included in this study, the river was divided into two reaches based on topography. In the Upper Applegate River Reach (RKM 56.6-41.6), the confined, active channel flows over alluvium and bedrock and has few bars. In the Lower Applegate River Reach (RKM 41.6-0), the active channel alternates between confined and unconfined segments, flows predominantly over alluvium, shifts laterally in unconfined sections, and contains more numerous and larger bars. * The 6.5-km segment of the lower Illinois River included in this study was treated as one reach. This stretch of the Illinois River is fully alluvial, with nearly continuous gravel bars flanking the channel. The width of the active channel is confined by the narrow topography of the valley. * The primary human activities that have likely influenced channel condition, bed-material transport, and the extent and area of bars are (1) historical gold mining throughout the basin, (2) historical and ongoing gravel mining from instream sites in the Tidal Reach and floodplain sites such as those in the Lower Applegate River Reach, (3) hydropower and flow control structures, (4) forest management and fires throughout the basin, and (5) dredging. These anthropogenic activities likely have varying effects on channel condition and the transport and deposition of sediment throughout the study area and over time. * Several vertical (aspect) aerial photographs (including the complete coverages of the study area taken in 1995, 2000, 2005, and 2009 and the partial coverages taken in 1967, 1968, 1969, and 1990) are available for assessing long-term changes in attributes such as channel condition, bar area, and vegetation cover. A Light Detection And Ranging (LiDAR) survey performed in 2007-2008 provides 1-m resolution topographic data for sections of the Grants Pass (RKM 178.5-167.6) and Lobster Creek (RKM 17.8-12 and 10-6.7) Reaches and the entire Tidal Reach. * Previous studies provide information for specific locations, including (1) an estimated average annual bed-material load of 76,000 m3 at the former Savage Rapids Dam site (RKM 173.1, Grants Pass Reach), (2) over 490 m of channel shifting from 1965 to 1991 in the Brushy Chutes area (RKM 142-141, Merlin Reach), (3) active sediment transport and channel processes in the Lobster Creek Reach, (4) lateral channel migration in the Tidal Reach, and (5) up to 1.8 m of bar aggradation from the town of Agness (RKM 45.1) to the Rogue River mouth following the flood in water year 1997. * Review of the repeat surveys conducted at the instream gravel-mining sites on Elephant and Wedderburn Bars tentatively indicated that these bars (1) experience some bed-material deposition in most years and more substantial deposition following high flows such as those in water years 1997 and 2006, and (2) are dynamic and subject to local scour and deposition. * Results from the specific gage analyses completed for five long-term USGS streamflow-gaging stations showed that only the Grants Pass station on the Rogue River (RKM 164.4, Grants Pass Reach) experienced substantial changes in the stage-discharge relationship across a range of flows from 1938 to 2009. Observed changes indicate channel incision at this site. * The Rogue and Applegate Rivers are dynamic and subject to channel shifting, aggradation, and incision, as indicated by channel cross sections surveyed during 2000-2010 on the Rogue River and 1933-2010 on the Applegate River. The elevation of the riverbed changed substantially (defined here as more than a net 0.5 m of incision or aggradation) at three locations on the Rogue River (near RKM 164.5, 139.2, and 1.3) and two on the Applegate River (near RKM 42 and 13.5). * Systematic delineation of bar features from vertical photographs taken in 1967-69, 2005, and 2009 indicated that most of the repeat mapping sites had a net loss in bar area over the analysis period, ranging from 22 percent at the Oak Flat site (Illinois River Reach) to 69 percent at the Thompson Creek site (Upper Applegate River Reach). Bar area remained stable at the Williams Creek site (Lower Applegate River Reach), but increased 11 percent at the Elephant Rock site (Tidal Reach). The declines in bar area were associated primarily with the establishment of vegetation on upper bar surfaces lacking obvious vegetation in the 1960s. Some of the apparent changes in bar area may also owe to some differences in streamflow and tide levels between the vertical photographs. * On the mainstem Rogue River, the median diameter of surface particles varied from 21 mm at the Wedderburn Bar in the Tidal Reach to more than 100 millimeters (mm) at some of the coarsest bars in the Galice Reach. Low armoring ratios tentatively indicated that sediment supply likely exceeds transport capacity at Orchard (Lobster Creek Reach) and Wedderburn (Tidal Reach) Bars. Conversely, relatively higher armoring ratios indicated that transport capacity likely is in balance with sediment supply at Roberston Bridge Bar (Merlin Reach) and exceeds sediment supply at Rogue River City (Grants Pass Reach), Solitude Riffle (Galice Reach), and Hooks Gulch (Galice Reach) Bars. * Limited particle data were collected in the study areas on the Applegate and Illinois Rivers. Particle size measurements and armoring ratios tentatively show that sediment supply likely exceeds transport capacity at Bakery Bar in the Lower Applegate Reach. Also, the bed material exiting the Applegate River is likely finer than the bed material in the Rogue River, whereas bed material exiting the Illinois River is likely coarser than the bed material in the Rogue River. * Together, these observations and findings indicate that (1) the size, area, and overall position of bars in the Rogue River study area are determined largely by valley physiography, such that unconfined alluvial sections have large channel-flanking bars, whereas confined sections have fewer and smaller bars, (2) segments within the Grants Pass, Merlin, Tidal, Upper Applegate River, and Lower Applegate River Reaches are prone to vertical and/or lateral channel adjustments, and (3) the balance between transport capacity and sediment supply varies throughout the study area. * High winter flows and the steep, confined character of much of the Rogue River within the study area result in a river corridor with a high capacity to transport bed material. In the Grants Pass and Galice Reaches, the extensive in-channel bedrock as well as the sparse number and coarse texture of bars indicate that these reaches are likely supply-limited, meaning that the river's transport capacity exceeds the supply of bed material. In contrast, the Lobster Creek and Tidal Reaches and perhaps portions of the Merlin Reach receive bed-material inputs that more closely balance or even exceed the river's transport capacity. * The lowermost reaches on the Illinois and Applegate Rivers are fully alluvial segments that are likely transport limited, meaning sediment supply likely exceeds the river's transport capacity. However, the steeper Upper Applegate River Reach is likely supply-limited as indicated by the sparse number and area of bars mapped in this reach and the intermittent bedrock outcrops in the channel. The sediment loads derived from these large tributaries draining the Klamath Mountains are probably important contributions to the overall transport of bed material in the Rogue River basin. * Compared to the slightly smaller Umpqua River basin (drainage area 12,103 km2) to the north, the Rogue River (13,390 km2) likely transports more bed material. Although this conclusion of greater bed-material transport in the Rogue River is tentative in the absence of either actual transport measurements or transport capacity calculations, empirical evidence, including the much greater area and frequency of bars along most of the Rogue River as well as the much shorter tidal reach on the Rogue River (6.7 km) compared to the Umpqua River (40 km) supports this inference. * More detailed investigations of bed-material transport rates and channel morphology would support assessments of channel condition, longitudinal trends in particle size, the relation between sediment supply and transport capacity, and the potential causes of bar area loss (such as vegetation establishment and potential changes in peak flow patterns). The reaches most practical for such assessments and relevant to several management and ecological issues are (1) the lower Rogue River basin, including the Lobster Creek and Tidal Reaches of the Rogue River as well as the Illinois River Reach and (2) the Lower Applegate River Reach.

  3. Effect of Powder Size and Shape on the SLS Processability and Mechanical Properties of a TPU Elastomer

    NASA Astrophysics Data System (ADS)

    Dadbakhsh, Sasan; Verbelen, Leander; Vandeputte, Tom; Strobbe, Dieter; Van Puyvelde, Peter; Kruth, Jean-Pierre

    This work investigates the influence of powder size/shape on selective laser sintering (SLS) of a thermoplastic polyurethane (TPU) elastomer. It examines a TPU powder which had been cryogenically milled in two different sizes; coarse powder (D50∼200μm) with rough surfaces in comparison with a fine powder (D50∼63μm) with extremely fine flow additives. It is found that the coarse powder coalesces at lower temperatures and excessively smokes during the SLS processing. In comparison, the fine powder with flow additives is better processable at significantly higher powder bed temperatures, allowing a lower optimum laser energy input which minimizes smoking and degradation of the polymer. In terms of mechanical properties, good coalescence of both powders lead to parts with acceptable shear-punch strengths compared to injection molded parts. However, porosity and degradation from the optimum SLS parameters of the coarse powder drastically reduce the tensile properties to about one-third of the parts made from the fine powders as well as those made by injection molding (IM).

  4. Agglomerating combustor-gasifier method and apparatus for coal gasification

    DOEpatents

    Chen, Joseph L. P.; Archer, David H.

    1976-09-21

    A method and apparatus for gasifying coal wherein the gasification takes place in a spout fluid bed at a pressure of about 10 to 30 atmospheres and a temperature of about 1800.degree. to 2200.degree.F and wherein the configuration of the apparatus and the manner of introduction of gases for combustion and fluidization is such that agglomerated ash can be withdrawn from the bottom of the apparatus and gas containing very low dust loading is produced. The gasification reaction is self-sustaining through the burning of a stoichiometric amount of coal with air in the lower part of the apparatus to form the spout within the fluid bed. The method and apparatus are particularly suitable for gasifying coarse coal particles.

  5. Rats' preferences for corn versus wood-based bedding and nesting materials.

    PubMed

    Ras, T; van de Ven, M; Patterson-Kane, E G; Nelson, K

    2002-10-01

    Corn by-products can be used as bedding and nesting products. Corn-cob bedding resists ammonia build-up and corn-husk nesting material resists dampness. It is not clear whether these advantages are at the expense of animal comfort. Corn cob was compared to aspen chip bedding, and corn husk to paper strip nesting material. Data from 20 rats with differential early bedding experience suggested that they prefer aspen chip, but are also biased towards the bedding they were raised on. Data from 10 rats with no prior nesting material experience suggested that paper strip was preferred over cornhusk. Thus, corn-cob products are not recommended except in situations where air quality and/or flooding are significant problems.

  6. Size segregation in bedload sediment transport at the particle scale

    NASA Astrophysics Data System (ADS)

    Frey, P.; Martin, T.

    2011-12-01

    Bedload, the larger material that is transported in stream channels, has major consequences, for the management of water resources, for environmental sustainability, and for flooding alleviation. Most particularly, in mountains, steep slopes drive intense transport of a wide range of grain sizes. Our ability to compute local and even bulk quantities such as the sediment flux in rivers is poor. One important reason is that grain-grain interactions in stream channels may have been neglected. An arguably most important difficulty pertains to the very wide range of grain size leading to grain size sorting or segregation. This phenomenon largely modifies fluxes and results in patterns that can be seen ubiquitously in nature such as armoring or downstream fining. Most studies have concerned the spontaneous percolation of fine grains into immobile gravels, because of implications for salmonid spawning beds, or stratigraphical interpretation. However when the substrate is moving, the segregation process is different as statistically void openings permit downward percolation of larger particles. This process also named "kinetic sieving" has been studied in industrial contexts where segregation of granular or powder materials is often non-desirable. We present an experimental study of two-size mixtures of coarse spherical glass beads entrained by a shallow turbulent and supercritical water flow down a steep channel with a mobile bed. The particle diameters were 4 and 6mm, the channel width 6.5mm and the channel inclination ranged from 7.5 to 12.5%. The water flow rate and the particle rate were kept constant at the upstream entrance. First only the coarser particle rate was input and adjusted to obtain bed load equilibrium, that is, neither bed degradation nor aggradation over sufficiently long time intervals. Then a low rate of smaller particles (about 1% of the total sediment rate) was introduced to study the spatial and temporal evolution of segregating smaller particles. Flows were filmed from the side by a high-speed camera. Using image processing algorithms made it possible to determine the position, velocity and trajectory of both smaller and coarser particles. After a certain time, a quasi-continuous area of smaller beads developed under moving and above quasi-immobile coarser beads (see figure). Results include the time evolution of segregating smaller beads, assessment of percolation velocity and streamwise and vertical velocity depth profiles.

  7. Transport and concentration controls for chloride, strontium, potassium and lead in Uvas Creek, a small cobble-bed stream in Santa Clara County, California, U.S.A. 1. Conceptual model

    USGS Publications Warehouse

    Kennedy, V.C.; Jackman, A.P.; Zand, S.M.; Zellweger, G.W.; Avanzino, R.J.

    1984-01-01

    Stream sediments adsorb certain solutes from streams, thereby significantly changing the solute composition; but little is known about the details and rates of these adsorptive processes. To investigate such processes, a 24-hr. injection of a solution containing chloride, strontium, potassium, sodium and lead was made at the head of a 640-m reach of Uvas Creek in west-central Santa Clara County, California. Uvas Creek is a cobble-bed pool-and-riffle stream draining the eastern slopes of the Santa Cruz Mountains. By September 12, 1973, after a long dry season, Uvas Creek had a low (0.0215 m3s-1 average) flow which varied diurnally, from 0.018 to 0.025 m3s-1. Because stream discharge varied while the injection rate was constant, the concentration of tracers (injected solutes), after mixing in the stream, varied inversely with discharge. Chloride, a nonreactive solute, served as a tracer of water movement. Analysis of extensive chloride concentration data at five sites below the injection point during and after the injection demonstrated that there was considerable underflow of water through the stream gravels; however, the extent of underflow varied greatly within the study reach. Pre-injection water, displaced by tracer-laden water percolating through the gravels, diluted tracers in the stream channel, giving the mistaken impression of groundwater inflow at some points. Accurate measurement of total discharge in such streams requires prolonged tracer injection unless a reach can be found where underflow is negligible. Strontium and potassium were adsorbed by the bed sediments to a moderate extent and lead was strongly adsorbed. A high proportion of these metals could be removed by adsorption from percolating underflow because of extensive and intimate contact with bed sediments. After channel clearing following injection cutoff, 51% of the added strontium and 96% of the lead remained in the study reach, whereas only 19% of the chloride remained. Packets of sized sediment, placed in the stream before the experiment and withdrawn during and after the injection, indicated that the strontium absorbed on the 0.42-0.50-mm size sediment appeared to achieve near equilibrium with dissolved strontium within less than 2 hr. whereas 3.4-4.0-mm grains had not reached that stage after 24 hr. The cation-exchange capacity (CEC) of the sediments shows a "bimodal" distribution with grain size. Largest values are in the finest sizes, lower values in the fine-to-medium sand-size range, intermediate values in the coarse- to very coarse-grained sand, and decreasing values with size above very coarse-grained sand. This considerable exchange capacity in coarse-sand to granule-size particles means that a streambed, that has not been infilled with fines to reduce permeability, can be highly reactive and accessible throughout a rather thick sediment layer and hence have a large and available reactive capacity. As stream discharge increases from low flow, the ratio of underflow to channel flow should decrease rapidly with resultant diminution in percent of solutes sorbed within a particular stream reach. ?? 1984.

  8. The role of the hyporheic flow on sediment transport processes : an experimental approach using particle image velocimetry

    NASA Astrophysics Data System (ADS)

    Rousseau, Gauthier; Sklivaniti, Angeliki; Vito Papa, Daniel; Ancey, Christophe

    2017-04-01

    The study of river dynamics usually considers a turbulent stream on an impervious bed. However, it is known that part of the total discharge takes place through the erodible bed, especially for mountain rivers. This hyporheic flow (or subsurface flow) is likely to play an active role in the stability of the erodible bed. The question then arises: How does the hyporheic flow affect bed stability and thereby bed load transport? Monitoring hyporheic flow under natural conditions remains a key challenge. Laboratory experiments and new measurement techniques shed new light on this problem. Using PIV-LIF method (Particle Image Velocimetry - Laser Induced Fluorescence) we investigate hyporheic flows through erodible beds. The experiment is conducted in a 2-m-long and 6-cm-width flume with 2-mm-diameter glass beads and 4-mm-diameter natural pebbles under turbulent stream conditions. In parallel, we develop a simple analytical model that accounts for the interaction between the surface and subsurface flows at the bed interface. As the Reynolds number of the hyporheic flow is fairly high (10 to 100), inertia cannot be neglected. This leads us to use the Darcy-Forchheimer law instead of Darcy's law to model hyporheic flows. We show that this model is consistent with the PIV-LIF experimental results. Moreover, the PIV-LIF data show that hyporheic flows modify the velocity profile and turbulence. Our measurements and empirical model emphasize the exchange processes in coarse-grained river for incipient sediment motion.

  9. Origin of particulate organic matter exported during storm events in a forested headwater catchment.

    NASA Astrophysics Data System (ADS)

    Jeanneau, Laurent; Rowland, Richard D.; Inamdar, Shreeram P.

    2016-04-01

    Particulate organic matter (POM) plays an important biogeochemical role towards ecology, ecotoxicology and carbon cycle. Moreover POM within the fluvial suspended sediment load during infrequent high flows can comprise a larger portion of long-term flux than dissolved species. It is well documented that storm events that constituted only 10-20% of the year contributed to >80% of POC exports. But the origin and composition of POM transferred during those hot moments remained unclear. In order to improve our knowledge on this topic we explore the variability in storm event-transported sediments' POM content and source down a continuum of catchment drainage locations. Wetland, upland and forest O horizons, litter, river banks and bed sediments were analyzed for their content in organic C, isotopic (13C) and molecular (thermochemiolysis-gas chromatography-mass spectrometry) fingerprints. The isotopic and molecular fingerprints recorded in suspended and deposited (differentiated into fine, medium and coarse particles) sediments sampled during different storm events down a continuum of catchment drainage locations (12 and 79 ha). This study highlights compositional differences between the catchment size (12 versus 79 ha), the particle size of deposited sediment (fine versus medium versus coarse) and the sampling time during a storm event (rising limb versus peak flow versus falling limb). Two sampling strategies were used. Suspended sediments sampled at a specific time during flood events allow evaluating changes along the hydrograph, while deposited sediments that integrate the entire event allow making comparisons with drainage scale. For deposited sediments, the proportion of OM coming from the endmembers wetland, litter and Forest O horizon decreases from the 12ha to the 79ha catchment, which exhibited a higher proportion of OM coming from stream bed sediment and river banks. For both catchments, from fine to coarse particles, the influence of stream bed sediments and river banks decreases while the influence of Forest O horizon increases. For suspended sediments, the evolution during storm events were opposite in the 12ha and the 79ha catchments. In the 12ha catchment, during the rising limb of the hydrograph, POM seems to be inherited from stream bed sediments and river banks, while from the rising limb to the peak flow, the influence of litter and/or wetland increases. This influence decreases during the falling limb. The opposite trend was observed in the 79ha catchment, with an increasing contribution of stream bed sediments to the OM exported during a storm event. What is the information to take away? First POM transferred in headwater catchments has multiple sources. Secondly, the combination of those sources is different along the size continuum of particles. Then, down a continuum of catchment drainage locations, the combination of sources changes both along the size continuum and during storm events. This information is critical for identifying the various drivers and mechanisms behind POM transport and for understanding the impacts of POM on aquatic metabolism and downstream water quality.

  10. Methane production by attached film

    DOEpatents

    Jewell, William J.

    1981-01-01

    A method for purifying wastewater of biodegradable organics by converting the organics to methane and carbon dioxide gases is disclosed, characterized by the use of an anaerobic attached film expanded bed reactor for the reaction process. Dilute organic waste material is initially seeded with a heterogeneous anaerobic bacteria population including a methane-producing bacteria. The seeded organic waste material is introduced into the bottom of the expanded bed reactor which includes a particulate support media coated with a polysaccharide film. A low-velocity upward flow of the organic waste material is established through the bed during which the attached bacterial film reacts with the organic material to produce methane and carbon dioxide gases, purified water, and a small amount of residual effluent material. The residual effluent material is filtered by the film as it flows upwardly through the reactor bed. In a preferred embodiment, partially treated effluent material is recycled from the top of the bed to the bottom of the bed for further treatment. The methane and carbon dioxide gases are then separated from the residual effluent material and purified water.

  11. Solid fuel feed system for a fluidized bed

    DOEpatents

    Jones, Brian C.

    1982-01-01

    A fluidized bed for the combustion of coal, with limestone, is replenished with crushed coal from a system discharging the coal laterally from a station below the surface level of the bed. A compartment, or feed box, is mounted at one side of the bed and its interior separated from the bed by a weir plate beneath which the coal flows laterally into the bed while bed material is received into the compartment above the plate to maintain a predetermined minimum level of material in the compartment.

  12. The partitioning of heavy metals in incineration of sludges and waste in a bubbling fluidized bed 2. Interpretation of results with a conceptual model.

    PubMed

    Toledo, José M; Corella, José; Corella, Luis M

    2005-11-11

    This work addresses the behavior, fate and/or partitioning of six targeted (Cd, Pb, Cr, Cu, Zn and Ni) heavy metals (HMs) in the incineration of sludges and waste in a bubbling fluidized bed (BFB) of 15 cm i.d. and 5.2m high followed by a filter chamber operated at 750-760 degrees C with a commercial ceramic filter. This paper presents three different things: (1) an in depth review of the published work relating to the problem of partitioning of the HMs in BFBs, (2) some more experimental incineration tests regarding the influence of the temperature of the bed of the BFB and the effect of the chlorine content in the feedstock on the partitioning of the HMs, and (3) the modelling of the partitioning of the HMs in the exit flows: bottom ash, coarse fly ashes, fine fly ash and vapour phase. The partitioning of the HMs is governed by fluid dynamic principles together with the kinetics of the diffusion of the HMs inside the ash particles and the kinetics of the reactions between the HMs and the components of the matrix of the ash. Some thermodynamic predictions do not fit the results from the BFB incinerator well enough because equilibria are not reached in at least three exit ash flows: coarse fly ash, fine fly ash and submicron particles. The residence time of these ash particles in these type of incinerators is very short and most of the HMs have no time to diffuse out of the ash particle. Finally, an examination was made on how in the ceramic hot filter the partition coefficients for the HMs increased, mainly for Cd and Pb, when the Cl-content in the feedstock was increased.

  13. Depositional environments and sedimentology of Vinita Beds, Richmond basin, Virginia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kornfeld, I.E.

    The Carnian (middle to late Middle Triassic Age) Richmond basin of northeast Virginia is the oldest of the exposed Newark rift basins of the eastern seaboard. These basins formed during the Mesozoic divergence of the continents. As presently defined, the Richmond basin is a large synclinal feature measuring 32 mi (53 km) long by 8 mi (13 km) wide, and is located west of Richmond, Virginia, and east of Amelia, Virginia. Sediments of the Richmond basin have been assigned to the Richmond Group and have been stratigraphically subdivided into the following informal units, oldest to youngest: coarse boulder breccias, coalmore » measures, Vinita Beds, and Otterdale Sandstone. The Vinita Beds are composed of arkosic sandstones, shales, siltstones, and minor amounts of coal, and are mineralogically immature. They are composed to angular to subrounded rock fragments, quartz, and feldspars, and are high micaceous and kaolinitic. In places, feldspars make up as much as 50% of the rock. Sandstones and conglomerates are cross-bedded and channeled, and shales and siltstones are thinly laminated. The Vinita Beds are rich in fossil fish, branchiopods, and plant fragments. These rocks were deposited in braided streams as well as in paludal and possible lacustrine environments in a humid and heavily vegetated setting.« less

  14. Stratigraphy of the 1902 and 1929 nuée-ardente deposits, Mt. Pelée, Martinique

    NASA Astrophysics Data System (ADS)

    Bourdier, J. L.; Boudon, G.; Gourgaud, A.

    1989-08-01

    Mild nuée ardentes in 1902-1903 and 1929-1930 at Mt. Pelée formed high-aspect ratio (H.A.R.) deposits (i.e. deposits with a high thickness/extent ratio) in the Rivière Blanche channel. Several violent nuées ardentes from May to August, 1902, yielded low aspect ratio (L.A.R.) deposits unevenly blanketing an area of 58 km 2 on the southwestern flank of the volcano. Three closely spaced nuées ardentes on August 30 additionally affected 56 km 2 on the southeastern flank. The L.A.R. deposits are divided into eight stratigraphic units (U1-U8), either compound or consisting of a single flow unit. The deposits of the largest nuées ardentes, on May 8, 20 and August 30, 1902 are identified as U1, U3 and U8, respectively, and can be traced over most of the area. Individual L.A.R. flow units are lenticular and show large, erratic lateral variations of thickness and grain-size. Most flow units consist of three distinct beds: Bed 1 is a few centimeters thick, lenticular, fines-depleted layer. Bed 2 is the thickest layer and contains more silt-sized ash than bed 1. It is normally graded as a whole, though reverse grading may occur in the lower part. Bed 2 generally consists of two parts: bed 2a, nonbedded, and bed 2b, finer-grained and laminated with cross-bedding and duned structures. Bed 3 is a thin, silty, capping layer which contains accretionary lapilli. The distribution of the L.A.R. flow units, especially of the coarse-grained facies, suggests that they were formed from overpressured blast-flows expanding radially from the vent at a high rate, in the same manner as the laterally directed blast of Mount St. Helens on May 18, 1980. The transport system of the major 1902 nuées ardentes was an inflated, relatively low-concentration, turbulent cloud as suggested by several lines of evidence: (1) the transported material was able to cross ridges up to 300 m high; (2) many scour-and-fill and other erosional features can be observed in the deposits at any distance from the vent; (3) survivors within the devastated area on May 8 did not experience a dense, low-profile cloud but instead a choking, hot ash-laden cloud; (4) many human corpses in St. Pierre remained where they fell instead of having floated away. If the current flow-surge terminology were to be used, the 1902 blast-flows would be better considered as pyroclastic surges. The normally graded, multi-layered structure of the flow units is also consistent with deposits primarily formed from relatively low-concentration flows.

  15. Results of geophysical surveys of glacial deposits near a former waste-disposal site, Nashua, New Hampshire

    USGS Publications Warehouse

    Ayotte, Joseph D.; Dorgan, Tracy H.

    1995-01-01

    Geophysical investigations were done near a former waste-disposal site in Nashua, New Hampshire to determine the thickness and infer hydraulic characteristics of the glacial sediments that underlie the area. Approximately 5 miles of ground- penetrating radar (GPR) data were collected in the study area by use of dual-80 Megahertz antennas. Three distinct radar-reflection signatures were evident from the data and are interpreted to represent (1) glacial lake-bottom sediments, (2) coarse sand and gravel and (or) sandy glacial till, and (3) bedrock. The GPR signal penetrated as much as 70 feet of sediment in coarse-grained areas, but penetration depth was generally less than 40 feet in extensive areas of fine-grained deposits. Geologic features were evident in many of the profiles. Glacial-lake-bottom sediments were the most common features identified. Other features include deltas deposited in glacial Lake Nashua and lobate fans of sediment deposited subaqueously at the distal end of deltaic sediments. Cross-bedded sands were often identifiable in the deltaic sediments. Seismic-refraction data were also collected at five of the GPR data sites. In most cases, depths to the water table and to the till and (or) bedrock surface indicated by the seismic-refraction data compared favorably with depths calculated from the GPR data. Test holes were drilled at three locations to determine the true depths to radar reflectors and to determine the types of geologic material represented by the various reflectors.

  16. Granular controls on the dispersion of bed load tracers

    NASA Astrophysics Data System (ADS)

    Jerolmack, D. J.; Martin, R. L.; Phillips, C. B.

    2014-12-01

    Coarse particles are transported in a river as bed load, i.e., they move in frequent contact with and are supported by the granular bed. This movement is typically intermittent and may be described by a series of steps are rests, the distributions of which determine particle dispersion. Laboratory and field studies of bed load tracer dispersion have reported sub- and super-diffusive behavior, both of which have been successfully reproduced with stochastic transport models. Although researchers have invoked heavy-tailed step lengths as the cause of anomalous dispersion, most observations report thin-tailed distributions. Little attention has been paid to rest periods, and stochastic transport models have not been connected to the underlying mechanics of particle motion. Based on theoretical and experimental evidence, we argue that step lengths are thin-tailed and do not control the longterm dispersion of bed load tracers; they are determined by momentum balance between the fluid and solid. Using laboratory experiments with both marbles and natural sediments, we demonstrate that the rest time distribution is power law, and argue that this distribution controls asymptotic dispersion. Observed rest times far exceed any hydrodynamic timescale. Experiments reveal that rest times of deposited particles are governed by fluctuations in river bed elevation; in particular, the return time for the bed to scour to the base of a deposited particle. Stochastic fluctuations in bed elevation are describable by an Ornstein-Uhlenbeck (mean-reverting random walk) model that contains two parameters, which we show are directly related to the granular shear rate and range of bed elevation fluctuations, respectively. Combining these results with the theory of asymmetric random walks (particles only move downstream), we predict superdiffusive behavior that is in quantitative agreement with our observations of tracer dispersion in a natural river.

  17. Experimental attrition rates of bed-material sediment from geologic provinces of Western Oregon and their application to regional sediment models

    NASA Astrophysics Data System (ADS)

    Mangano, J.; O'Connor, J. E.; Jones, K. L.; Wallick, R.

    2011-12-01

    Many topographic, hydrologic, and land use variables affect the supply and transport of bed-material in rivers, but the underlying geology is a key factor controlling both the volume of introduced material and the attrition of bed-material as it moves downstream. Recent and ongoing USGS river studies in Western Oregon document strong links between geologic province and bed-material transport. Rivers originating in the Mesozoic metamorphic and intrusive igneous rocks of the Klamath terranes of southwestern Oregon have the greatest gravel transport rates (and channel and valley-bottom morphologies reflecting high bed-material fluxes), whereas the generally lesser amounts of gravel in streams that drain Oregon's Coast Range and western Cascade Range owes in large part to Tertiary sedimentary and volcanic units underlying most of these basins. Aspects of these differences are controlled by supply as well as clast attrition. Here we aim to quantify bed-material attrition rates associated with the five main geologic provinces of Western Oregon: the Klamath terranes, Western Cascades, High Cascades, Coast Range sedimentary rocks, and Coast Range volcanic rocks. Bed-material samples were collected throughout the region from streams that drain a single geologic province and tumbled with a lapidary tumbler to determine relative attrition rates. Two kilograms of each sample were sorted into an initial distribution of clast sizes (from 16 to 64mm) and tumbled, with periodic breaks to reweigh and sieve the sample. Results show marked differences in attrition rates, with the sedimentary rocks of the Coast Range having weight loss coefficients between 1.206 and 0.211/km, orders of magnitude greater than all of the other sampled provinces. For comparison, bed material from the Klamath terranes have weight loss coefficients ranging from 0.013 to 0.005/km, and a control sample of quartzite clasts (from the Klamath terranes) has a weight loss coefficient of 0.001/km. These results confirm that bed-material attrition is an important process affecting bed-material supply and transport, and will allow for more complete development of regional bed-material sediment budgets in ongoing efforts to understand patterns of gravel abundance and channel morphology in rivers of Western Oregon.

  18. Thermal and chemical remediation of mixed waste

    DOEpatents

    Nelson, P.A.; Swift, W.M.

    1994-08-09

    A process and system for treating organic waste materials without venting gaseous emissions to the atmosphere. A fluidized bed including lime particles is operated at a temperature of at least 500 C by blowing gas having 20%/70% oxygen upwardly through the bed particles at a rate sufficient to fluidize same. A toxic organic waste material is fed into the fluidized bed where the organic waste material reacts with the lime forming CaCO[sub 3]. The off gases are filtered and cooled to condense water which is separated. A portion of the calcium carbonate formed during operation of the fluidized bed is replaced with lime particles. The off gases from the fluidized bed after drying are recirculated until the toxic organic waste material in the bed is destroyed. 3 figs.

  19. Thermal and chemical remediation of mixed waste

    DOEpatents

    Nelson, Paul A.; Swift, William M.

    1994-01-01

    A process and system for treating organic waste materials without venting gaseous emissions to the atmosphere. A fluidized bed including lime particles is operated at a temperature of at least 500.degree. C. by blowing gas having 20%/70% oxygen upwardly through the bed particles at a rate sufficient to fluidize same. A toxic organic waste material is fed into the fluidized bed where the organic waste material reacts with the lime forming CaCO.sub.3. The off gases are filtered and cooled to condense water which is separated. A portion of the calcium carbonate formed during operation of the fluidized bed is replaced with lime particles. The off gases from the fluidized bed after drying are recirculated until the toxic organic waste material in the bed is destroyed.

  20. The Manufacture, Shipping and Receiving and Quality Control of Rodent Bedding Materials

    NASA Technical Reports Server (NTRS)

    Kraft, Lisbeth M.

    1980-01-01

    The criteria for rodent bedding and nesting materials are discussed. The literature is reviewed regarding sources of bedding materials, manufacturing methods, quality control, procedures (microbiological, physical and chemical), storage, methods, shipment, methods of use and disposal, current knowledge concerning bedding effects on animals as related to research and testing and legal aspects. Future needs, especially with respect to the promulgation of standards, also are addressed.

  1. Potential for bed-material entrainment in selected streams of the Edwards Plateau - Edwards, Kimble, and Real Counties, Texas, and vicinity

    USGS Publications Warehouse

    Heitmuller, Franklin T.; Asquith, William H.

    2008-01-01

    The Texas Department of Transportation spends considerable money for maintenance and replacement of low-water crossings of streams in the Edwards Plateau in Central Texas as a result of damages caused in part by the transport of cobble- and gravel-sized bed material. An investigation of the problem at low-water crossings was made by the U.S. Geological Survey in cooperation with the Texas Department of Transportation, and in collaboration with Texas Tech University, Lamar University, and the University of Houston. The bed-material entrainment problem for low-water crossings occurs at two spatial scales - watershed scale and channel-reach scale. First, the relative abundance and activity of cobble- and gravel-sized bed material along a given channel reach becomes greater with increasingly steeper watershed slopes. Second, the stresses required to mobilize bed material at a location can be attributed to reach-scale hydraulic factors, including channel geometry and particle size. The frequency of entrainment generally increases with downstream distance, as a result of decreasing particle size and increased flood magnitudes. An average of 1 year occurs between flows that initially entrain bed material as large as the median particle size, and an average of 1.5 years occurs between flows that completely entrain bed material as large as the median particle size. The Froude numbers associated with initial and complete entrainment of bed material up to the median particle size approximately are 0.40 and 0.45, respectively.

  2. Influence of grid resolution, parcel size and drag models on bubbling fluidized bed simulation

    DOE PAGES

    Lu, Liqiang; Konan, Arthur; Benyahia, Sofiane

    2017-06-02

    Here in this paper, a bubbling fluidized bed is simulated with different numerical parameters, such as grid resolution and parcel size. We examined also the effect of using two homogeneous drag correlations and a heterogeneous drag based on the energy minimization method. A fast and reliable bubble detection algorithm was developed based on the connected component labeling. The radial and axial solids volume fraction profiles are compared with experiment data and previous simulation results. These results show a significant influence of drag models on bubble size and voidage distributions and a much less dependence on numerical parameters. With a heterogeneousmore » drag model that accounts for sub-scale structures, the void fraction in the bubbling fluidized bed can be well captured with coarse grid and large computation parcels. Refining the CFD grid and reducing the parcel size can improve the simulation results but with a large increase in computation cost.« less

  3. Emplacement of a silicic lava dome through a crater glacier: Mount St Helens, 2004-06

    USGS Publications Warehouse

    Walder, J.S.; LaHusen, R.G.; Vallance, J.W.; Schilling, S.P.

    2007-01-01

    The process of lava-dome emplacement through a glacier was observed for the first time after Mount St Helens reawakened in September 2004. The glacier that had grown in the crater since the cataclysmic 1980 eruption was split in two by the new lava dome. The two parts of the glacier were successively squeezed against the crater wall. Photography, photogrammetry and geodetic measurements document glacier deformation of an extreme variety, with strain rates of extraordinary magnitude as compared to normal alpine glaciers. Unlike normal temperate glaciers, the crater glacier shows no evidence of either speed-up at the beginning of the ablation season or diurnal speed fluctuations during the ablation season. Thus there is evidently no slip of the glacier over its bed. The most reasonable explanation for this anomaly is that meltwater penetrating the glacier is captured by a thick layer of coarse rubble at the bed and then enters the volcano's groundwater system rather than flowing through a drainage network along the bed.

  4. A field test of point relascope sampling of down coarse woody material in managed stands in the Acadian Forest

    Treesearch

    John C. Brissette; Mark J. Ducey; Jeffrey H. Gove

    2003-01-01

    We field tested a new method for sampling down coarse woody material (CWM) using an angle gauge and compared it with the more traditional line intersect sampling (LIS) method. Permanent sample locations in stands managed with different silvicultural treatments within the Penobscot Experimental Forest (Maine, USA) were used as the sampling locations. Point relascope...

  5. Sediment delivery after a wildfire

    USGS Publications Warehouse

    Reneau, Steven L.; Katzman, D.; Kuyumjian, G.A.; Lavine, A.; Malmon, D.V.

    2007-01-01

    We use a record of sedimentation a small reservoir within the Cerro Grande burn area, New Mexico, to document postfire delivery of ash, other fine-grained sediment carried in suspension within floods, and coarse-grained sediment transported as bedload over a five-year period. Ash content of sediment layers is estimated using fallout 137Cs as a tracer, and ash concentrations are shown to rapidly decrease through a series of moderate-intensity convective storms in the first rainy season after the fire. Over 90% of the ash was delivered to the reservoir in the first year, and ash concentrations in suspended sediment were negligible after the second year. Delivery of the remainder of the fine sediment also declined rapidly after the first year despite the occurrence of higher-intensity storms in the second year. Fine sediment loads after five years remained significantly above prefire averages. Deposition of coarse-grained sediment was irregular in time and was associated with transport by snowmelt runoff of sediment stored along the upstream channel during short-duration summer floods. Coarse sediment delivery in the first four years was strongly correlated with snowmelt volume, suggesting a transport-limited system with abundant available sediment. Transport rates of coarse sediment declined in the fifth year, consistent with a transition to a more stable channel as the accessible sediment supply was depleted and the channel bed coarsened. Maximum impacts from ash and other fine-grained sediment therefore occurred soon after the fire, whereas the downstream impacts from coarse-grained sediment were attenuated by the more gradual process of bedload sediment transport. ?? 2007 Geological Society of America.

  6. The impact of periglacial cover beds on runoff generation in a small spring catchment, Ore Mountains

    NASA Astrophysics Data System (ADS)

    Heller, Katja; Hübner, Rico; Kleber, Arno

    2010-05-01

    The knowledge of hillslope processes is essential to improve pollutant research and flood prediction. Relic periglacial covers are widespread on slopes of the central European low mountain ranges. Cover beds are assumed to be an important control factor for subcutaneous water flow paths. Periglacial cover beds originated by solifluction, kryoturbation and accumulation of loess during Pleistocene times. Differences in bulk density, sediment type, as well as structure and rate of coarse clasts in the layers result in vertical disparity in hydraulic conductivity (anisotropy), leading to interflow. This hypothesis has been testing in an ongoing study in a small spring catchment (6 ha) in the eastern Ore Mountains, south-eastern Germany, since November 2007. The study area is underlain by gneiss and is formed as a slope hollow. The cover beds consist of a 3-layer complex with upper layer, intermediate layer and basal layer. Soil water tension within the layers is measured with 76 recording tensiometers. Electrical resistivity tomography was used to monitor the spatial dispersal of soil moisture. Results of hydrometrical measurements and of electrical resistivity surveys will be described and new findings on slope water dynamics will be presented.

  7. Toward a New Brewing Control Chart for the 21st Century.

    PubMed

    Melrose, John; Roman-Corrochano, Borja; Montoya-Guerra, Marcela; Bakalis, Serafim

    2018-04-23

    This paper describes new results from a base model of brewing from a bed of packed coffee grains. The model solves for the diffusion of soluble species out of a distribution of particles into the flow through the bed pore space. It requires a limited set of input parameters. It gives a simple picture of the basic physics of coffee brewing and sets out a set of reduced variables for this process. The importance of bed extraction efficiency is elucidated. A coffee brewing control chart has been widely used to describe the region of ideal coffee brewing for some 50 years. A new chart is needed, however, one that connects actual brewing conditions (weight, flow rate, brew time, grind, etc.) to the yield and strength of brews. The paper shows a new approach to brewing control charts, including brew time and bed extraction efficiency as control parameters. Using the base model, an example chart will be given for a particular grind ratio of coarse to fine particles, and an "espresso regime" will be picked out. From such a chart yield, volume and strength of a brew can be read off at will.

  8. Geomorphic Effects of Boulder Placement on Gravel Capture and Retention in a Regulated Reach of the North Umpqua River, OR.

    NASA Astrophysics Data System (ADS)

    Stallman, J.; Braudrick, C.; Pedersen, D.; Cui, Y.; Sklar, L.; Dietrich, B.; Real de Asua, R.

    2004-12-01

    Hydroelectric projects in the mountainous western Cascades often occur in steep, confined channels where salmonid spawning habitat is limited to gravel deposits forced by planform curvature, channel width changes, and flow separation associated with large bedrock and boulder obstructions. The paucity of gravel deposition in steepland channels may be exacerbated in regulated rivers where sediment trapping by impoundments reduces coarse sediment supply to downstream reaches. Placing boulders to capture and retain gravel may be an effective approach to enhancing spawning habitat in these settings. To better understand the potential use of boulders as a tool for enhancing spawning habitat, three experimental designs were tested in a 0.6-mile bypass reach of the North Umpqua River, OR. The bedrock-confined study reach has an average slope of 0.013 and plane-bed morphology with coarse cobble substrate, abundant marginal boulders, and small associated patches of sand and gravel. Experiments involved (1) placement of boulder clusters, (2) gravel augmentation and placement of boulder clusters, and (3) gravel augmentation alone. Boulder clusters were designed to promote scour and deposition during floods with a 5-10 year recurrence interval. Boulders were typically placed obliquely upstream at locations where existing hydraulics favored gravel deposition. Monitoring from 2002 to 2004 occurred prior to implementation, immediately following implementation, and following winter high flows. Sites were monitored using high-density topographic surveys, low-altitude aerial photography, facies mapping, pebble counts, scour cores and chains, and marked rocks. Stage heights were monitored using pressure transducers at the upstream and downstream ends of the study reach, and flood recurrence interval was assessed using a nearby USGS gauge. The arrangement of boulder clusters was modified after the first year of monitoring to improve gravel capture and retention. Peak flow during the two-year monitoring period had a recurrence interval of less than 1.5 years. Flows were insufficient to mobilize the bed as a whole, but did adjust bed surface texture and topography adjacent to boulder accumulations. Select sites captured and retained modest amounts of gravel even at the relatively low peaks experienced during 2003 and 2004. The effects of increasing coarse sediment supply will be tested in 2005 through the introduction of a large gravel pulse at the upstream end of the study reach.

  9. Influence of various alternative bedding materials on pododermatitis in broilers raised in a built-up litter system

    USDA-ARS?s Scientific Manuscript database

    Broilers in the United States are frequently raised on built-up litter systems, primarily bedded with pine wood chips (shavings) or sawdust. There is continuing interest in alternative bedding materials as pine products are often in short supply and prices rise accordingly. Alternative bedding mat...

  10. Technical Note: Bed conduction impact on fiber optic DTS water temperature measurements

    NASA Astrophysics Data System (ADS)

    O'Donnell Meininger, T.; Selker, J. S.

    2014-07-01

    Error in Distributed Temperature Sensor (DTS) water temperature measurements may be introduced by contact of the fiber optic cable sensor with bed materials (e.g., seafloor, lakebed, stream bed). Heat conduction from the bed materials can affect cable temperature and the resulting DTS measurements. In the Middle Fork John Day River, apparent water temperature measurements were influenced by cable sensor contact with aquatic vegetation and fine sediment bed materials. Affected cable segments measured a diurnal temperature range reduced by 10% and lagged by 20-40 min relative to that of ambient stream temperature. The diurnal temperature range deeper within the vegetation-sediment bed material was reduced 70% and lagged 240 min relative to ambient stream temperature. These site-specific results illustrate the potential magnitude of bed-conduction impacts with buried DTS measurements. Researchers who deploy DTS for water temperature monitoring should understand the importance of the environment into which the cable is placed on the range and phase of temperature measurements.

  11. Comparing line-intersect, fixed-area, and point relascope sampling for dead and downed coarse woody material in a managed northern hardwood forest

    Treesearch

    G. J. Jordan; M. J. Ducey; J. H. Gove

    2004-01-01

    We present the results of a timed field trial comparing the bias characteristics and relative sampling efficiency of line-intersect, fixed-area, and point relascope sampling for downed coarse woody material. Seven stands in a managed northern hardwood forest in New Hampshire were inventoried. Significant differences were found among estimates in some stands, indicating...

  12. Material exchange and food web of seagrass beds in the Sylt-Rømø Bight: how significant are community changes at the ecosystem level?

    NASA Astrophysics Data System (ADS)

    Asmus, H.; Asmus, R.

    2000-07-01

    Material exchange, biodiversity and trophic transfer within the food web were investigated in two different types of intertidal seagrass beds: a sheltered, dense Zostera marina bed and a more exposed, sparse Z. noltii bed, in the Northern Wadden Sea. Both types of Zostera beds show a seasonal development of above-ground biomass, and therefore measurements were carried out during the vegetation period in summer. The exchange of particles and nutrients between seagrass beds and the overlying water was measured directly using an in situ flume. Particle sedimentation [carbon (C), nitrogen (N) and phosphorus (P) constituents] from the water column prevailed in dense seagrass beds. In the sheltered, dense seagrass bed, a net particle uptake was found even on windy days (7-8 Beaufort). Dissolved inorganic N and orthophosphate were mainly taken up by the dense seagrass bed. At times of strong winds, nutrients were released from the benthic community to tidal waters. In a budget calculation of total N and total P, the dense seagrass beds were characterised as a material sink. The seagrass beds with sparse Z. noltii were a source of particles even during calm weather. The uptake of dissolved inorganic N in the sparse seagrass bed was low but significant, while the uptake of inorganic phosphate and silicate by seagrasses and their epiphytes was exceeded by release processes from the sediment into the overlying water. Estimates at the ecosystem level showed that material fluxes of seagrass beds in the Sylt-Rømø Bight are dominated by the dense type of Zostera beds. Therefore, seagrass beds act as a sink for particles and for dissolved inorganic nutrients. During storms, seagrass beds are distinct sources for inorganic nutrients. The total intertidal area of the Sylt-Rømø Bight could be described as a sink for particles and a source for dissolved nutrients. This balance of the material budget was estimated by either including or excluding seagrass beds. Including the subtidal part, the function of the ecosystem as a source for particles increased, supposing that all seagrass beds were lost from the area. During the vegetation period, seagrass beds act as a storage compartment for material accumulated in the living biomass of the community. There was great biodiversity among the plant and animal groups found in intertidal seagrass beds of the Sylt-Rømø Bay, representing 50-86% of the total number of species investigated, depending on the particular group. Since most species are not exclusively seagrass residents, the loss of intertidal seagrass beds would be of minor importance for biodiversity at the ecosystem level. Food web structure in seagrass beds is different from other intertidal communities. Primary production and detritus input is high, but secondary production is similar to that of unvegetated areas, although the relative importance of the trophic guilds is different. The loss of seagrass beds leads to profound alterations in the food web of the total ecosystem. Historical as well as recent changes in material fluxes and energy flow due to man-made alterations to the ecosystem are discussed.

  13. Sub-grid drag model for immersed vertical cylinders in fluidized beds

    DOE PAGES

    Verma, Vikrant; Li, Tingwen; Dietiker, Jean -Francois; ...

    2017-01-03

    Immersed vertical cylinders are often used as heat exchanger in gas-solid fluidized beds. Computational Fluid Dynamics (CFD) simulations are computationally expensive for large scale systems with bundles of cylinders. Therefore sub-grid models are required to facilitate simulations on a coarse grid, where internal cylinders are treated as a porous medium. The influence of cylinders on the gas-solid flow tends to enhance segregation and affect the gas-solid drag. A correction to gas-solid drag must be modeled using a suitable sub-grid constitutive relationship. In the past, Sarkar et al. have developed a sub-grid drag model for horizontal cylinder arrays based on 2Dmore » simulations. However, the effect of a vertical cylinder arrangement was not considered due to computational complexities. In this study, highly resolved 3D simulations with vertical cylinders were performed in small periodic domains. These simulations were filtered to construct a sub-grid drag model which can then be implemented in coarse-grid simulations. Gas-solid drag was filtered for different solids fractions and a significant reduction in drag was identified when compared with simulation without cylinders and simulation with horizontal cylinders. Slip velocities significantly increase when vertical cylinders are present. Lastly, vertical suspension drag due to vertical cylinders is insignificant however substantial horizontal suspension drag is observed which is consistent to the finding for horizontal cylinders.« less

  14. New Location of Chicxulub's Impact Ejecta in Central Belize.

    NASA Astrophysics Data System (ADS)

    Ocampo, A.; Ames, D.; Pope, K.; Smit, J.

    2003-04-01

    Chicxulub ejecta composed of altered glass, accretionary lapilli, and pebble to cobble sized carbonate clasts are found in the Cayo District of central Belize, about 500 km southeast of the Chicxulub impact crater centre. The ejecta layer, found near the town of Armenia, in central Belize, is about 4 m thick, and rests unconformably on a deeply weathered Cretaceous land surface, of the Barton Creek Formation dolomite. There are similarities between these ejecta and the basal bed (spheroid bed) of the continuous ejecta blanket deposits (Albion Formation) found in northern Belize and southern Quintana Roo, Mexico, 340-360 km from Chicxulub. Although, the spheroid bed in the Armenia location exhibits an exceptional state of impact glass preservation, than that found in Northern Belize. Overlying the bed with glass and lapilli is a 5-m-thick layer of limestone pebbles and cobbles, which contain altered glass and shocked quartz in the matrix. The well-rounded limestone pebbles and cobbles show striated and amygdaloidal textures. We interpret the central Belize spheroid bed deposit with accretionary lapilli as ejecta deposited by the rapidly expanding vapour plume, and may contain carbonate condensates. The altered glass component consists of an inter-stratified illite-smectite mixed layer clay dominated by illite. The overlying pebble and cobble bed may be a later deposit containing re-worked ejecta, or a lateral extension of the coarse ejecta beds found in northern Belize. This new impact ejecta deposit, found in central Belize ~500 km from Chicxulub, emphasizes the importance of volatile-rich target rock and the dispersal of ejecta by the expanding vapour plume.

  15. The Impact of Urbanization on Temporal Changes in Sediment Transport in a Gravel Bed Channel in Southern Ontario, Canada

    NASA Astrophysics Data System (ADS)

    Plumb, B. D.; Annable, W. K.; Thompson, P. J.; Hassan, M. A.

    2017-10-01

    A field investigation has been undertaken to characterize the event-based bed load transport dynamics of a highly urbanized gravel bed stream. A combination of direct bed load and tracer particle measurements were taken over a 3 year period during which time approximately 30 sediment mobilizing events occurred. Sediment transport measurements were used to calibrate a fractional bed load transport model and combined with hydrometric data which represent four different land use conditions (ranging from rural to highly urbanized) to analyze the differences in discharge magnitude and frequency and its impact on sediment transport. Fractional transport analysis of the bed load measurements indicates that frequent intermediate discharge events can mobilize sand and fine gravel to an approximate equally mobile condition, however, the transport rates at these discharges exhibit greater variability than at discharges above the bankfull discharge. Path lengths of the coarse fraction, measured using tracer clasts, are insensitive to peak discharge, and instead transport at distances less than those reported in other gravel bed channels, which is attributed to the shorter duration discharge events common to urban streams. The magnitude-frequency analysis reveals that the frequency, time, and volume of competent sediment mobilizing events are increasing with urbanization. Variability in effective discharges suggests that a range of discharges, spanning between frequent, low magnitude events to less frequent, high magnitude events are geomorphically significant. However, trends in the different land use scenarios suggest that urbanization is shifting the geomorphic significance toward more frequent, lower magnitude events.

  16. Controls on Middle Pennsylvanian peat-forming floras in the Eastern United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eble, C.F.

    1992-01-01

    Middle Pennsylvanian strata in the Central Appalachian Basin contain numerous coal beds that provide an opportunity to study changes in coal-spore floras on an intra- and inter-bed scale. Vertical spore abundance patterns within individual coal beds record the ecological dynamics, both biologic and edaphic, of peat-forming systems in this interval. Coal palynofloras of this interval show a stratigraphic change in composition. Early to Middle Pennsylvanian spore floras are largely dominated by Lycospora. Species of Densosporites, a small lycopsid genus, Granulatisporites, a fern/pteridosperm( )-allied genus, and Laevigatosporites, a calamite-related genus, commonly displace Lycospora vertically within these beds, reflecting patterns of ecologicalmore » succession. Spore floras from stratigraphically younger coal beds in this sequence exhibit similar intra-bed spore variation, but contain increased percentages of tree-fern spores, and tend to be more florally heterogeneous overall. Areas of clastic deposition within the swamps are also marked by changes in spore composition. These changes in coal palynology are paralleled by stratigraphic changes in coal appearance and associated strata composition. The proportion of dull'' coal lithotypes, frequency of clastic partings, and amount of coarse clastics in the enclosing strata all increase toward the top of this sequence. Climate may have been more important in determining the floral composition of Early through mid-Middle Pennsylvanian peat swamps, whereas climate, tectonics, and eustasy interacted to determine sediment volume and type in this interval.« less

  17. Numerical comparison of hydrogen desorption behaviors of metal hydride beds based on uranium and on zirconium-cobalt

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kyoung, S.; Yoo, H.; Ju, H.

    2015-03-15

    In this paper, the hydrogen delivery capabilities of uranium (U) and zirconium-cobalt (ZrCo) are compared quantitatively in order to find the optimum getter materials for tritium storage. A three-dimensional hydrogen desorption model is applied to two identically designed cylindrical beds with the different materials, and hydrogen desorption simulations are then conducted. The simulation results show superior hydrogen delivery performance and easier thermal management capability for the U bed. This detailed analysis of the hydrogen desorption behaviors of beds with U and ZrCo will help to identify the optimal bed material, bed design, and operating conditions for the storage and deliverymore » system in ITER. (authors)« less

  18. Distribution features and controls of heavy metals in surface sediments from the riverbed of the Ningxia-Inner Mongolian reaches, Yellow River, China.

    PubMed

    Guan, Qingyu; Wang, Lei; Pan, Baotian; Guan, Wenqian; Sun, Xiazhong; Cai, Ao

    2016-02-01

    Fifty-six riverbed surface sediment (RSS) samples were collected along the Ningxia-Inner Mongolian reaches of the Yellow River (NIMYR). These samples were analyzed to determine their heavy metal concentrations (Co, Cr, Ni, Cu, V and Zn), grain sizes, sediment sources and the causes of their heavy metal contamination. The cumulative distribution functions of the heavy metals in RSS of these reaches are plotted to identify the geochemical baseline level (GBL) of each element and determine the average background concentration of each heavy metal. Principal component analysis and hierarchical cluster analysis are conducted based on the grain sizes of RSS, and the samples are classified into two groups: coarse grained samples (CGS) and fine grained samples (FGS). The degree of heavy metal contamination for each sample is identified by its enrichment factor (EF). The results reveal that the coarse particle component (medium sand and coarse sand) in the bed materials is chiefly from the bordering deserts along the Yellow River. The clay and silt in the bed materials chiefly originate from the upper reaches of the Yellow River, and the fine sand is identified as a hybrid sediment derived from the upper reaches of the Yellow River and the bordering deserts. The CGS primarily appear in the reaches bordering deserts, and the sites are near the confluence of gullies and the Yellow River. The FGS are located adjacent to cities with especially strong industrial activity such as Wuhai, Bayan Nur, Baotou and Togtoh. The Cr, Ni, Cu, V and Zn concentrations (mg kg(-1)) are 84.34 ± 49.46, 30.21 ± 7.90, 25.01 ± 7.61, 73.17 ± 18.92 and 55.62 ± 18.93 in the FGS and 65.07 ± 19.51, 23.86 ± 6.84, 18.04 ± 3.8, 53.47 ± 10.57 and 34.89 ± 9.19 in the CGS respectively, and the concentrations of Co in the CGS (213.40 ± 69.71) are notably higher than in the FGS (112.02 ± 48.87) and greater than the Co GBL (210). The most contaminated samples in the NIMYR are adjacent to the cities of Wuhai (EF(Cr) = 5.19; EF(Ni) = 1.96), Bayan Nur (EF(Cr) = 5.88; EF(Ni )= 2.08) and Baotou (EF(Cu) = 1.55; EF(Zn) = 1.68) where the Cr, Ni, Cu, V and Zn concentrations are above the correlated GBLs (85, 34, 27, 75 and 62 mg kg(-1), respectively), which are mostly affected by industrial processes, and samples that are only moderately contaminated by heavy metals are found in the reaches bordering desert (Wuhai-Baotou) because contaminated sediments are diluted by uncontaminated desert sand. In contrast, all of the Cu, Cr, Ni, V and Zn concentrations in RSS of the Qingtongxia-Wuhai reach are lower than the correlated GBLs of elements. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Repellency of selected chemicals against the bed bug (Hemiptera: Cimicidae).

    PubMed

    Wang, Changlu; Lü, Lihua; Zhang, Aijun; Liu, Chaofeng

    2013-12-01

    In recent years, the common bed bug, Cimex lectularius L. (Hemiptera: Cimicidae), became a major public health concern in urban communities. Bed bugs are notoriously difficult to control, and their bites are not tolerated by most people. The public has an urgent need for materials and methods to reduce bed bug introduction and bites during work, travel, or sleep. A repellent product will help achieve these goals by discouraging and preventing bed bugs from moving to a protected area. We evaluated the repellency of three commercially available insect repellent or control materials and five nonregistered materials with the goal of identifying safe and effective bed bug repellents. The two commercial repellent products that contained 7% picaridin or 0.5% permethrin had little repellency against bed bugs. N,N-diethyl-m-toluamide (DEET), the most commonly used insect repellent, provided a high level of repellency against bed bugs. When a host cue (carbon dioxide) was present, the minimum DEET concentration to repel > or = 94% of the bed bugs for a9-h period was 10%. The longevity of repellency of DEET was concentration dependent. At 25% concentration, DEET-treated fabric surface remained highly repellent to bed bugs for a 14-d period. However, DEET has a strong smell and dissolves certain plastic materials. Therefore, we evaluated several odorless, noncorrosive, and potentially effective repellents. Isolongifolenone and isolongifolanone, two natural products and recently reported insect repellents, exhibited strong repellent property against bed bugs but at significantly lower levels than DEET. Three novel potential repellent compounds discovered by Bedoukian Research Inc. (Danbury, CT) exhibited similar level of repellency and longevity as DEET for repelling bed bugs. These nonirritant and odorless compounds are promising candidates as alternatives to DEET for reducing the spread of bed bugs and bed bug bites.

  20. Ammonia, Total Reduced Sulfides, and Greenhouse Gases of Pine Chip and Corn Stover Bedding Packs.

    PubMed

    Spiehs, Mindy J; Brown-Brandl, Tami M; Parker, David B; Miller, Daniel N; Berry, Elaine D; Wells, James E

    2016-03-01

    Bedding materials may affect air quality in livestock facilities. Our objective in this study was to compare headspace concentrations of ammonia (NH), total reduced sulfides (TRS), carbon dioxide (CO), methane (CH), and nitrous oxide (NO) when pine wood chips ( spp.) and corn stover ( L.) were mixed in various ratios (0, 10, 20, 30, 40, 60, 80, and 100% pine chips) and used as bedding with manure. Air samples were collected from the headspace of laboratory-scaled bedded manure packs weekly for 42 d. Ammonia concentrations were highest for bedded packs containing 0, 10, and 20% pine chips (equivalent to 501.7, 502.3, and 502.3 mg m, respectively) in the bedding mixture and were lowest when at least 80% pine chips were used as bedding (447.3 and 431.0 mg m, respectively for 80 and 100% pine chip bedding). The highest NH concentrations were observed at Day 28. The highest concentration of TRS was observed when 100% pine chips were used as bedding (11.4 µg m), with high concentrations occurring between Days 7 and 14, and again at Day 35. Greenhouse gases were largely unaffected by bedding material but CH and CO concentrations increased as the bedded packs aged and NO concentrations were highly variable throughout the incubation. We conclude that a mixture of bedding material that contains 30 to 40% pine chips may be the ideal combination to reduce both NH and TRS emissions. All gas concentrations increased as the bedded packs aged, suggesting that frequent cleaning of facilities would improve air quality in the barn, regardless of bedding materials used. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  1. Gas stream clean-up filter and method for forming same

    DOEpatents

    Mei, Joseph S.; DeVault, James; Halow, John S.

    1993-01-01

    A gas cleaning filter is formed in-situ within a vessel containing a fluidizable bed of granular material of a relatively large size fraction. A filter membrane provided by a porous metal or ceramic body or such a body supported a perforated screen on one side thereof is coated in-situ with a layer of the granular material from the fluidized bed by serially passing a bed-fluidizing gas stream through the bed of granular material and the membrane. The layer of granular material provides the filtering medium for the combined membrane-granular layer filter. The filter is not blinded by the granular material and provides for the removal of virtually all of the particulates from a process gas stream. The granular material can be at least partially provided by a material capable of chemically reacting with and removing sulfur compounds from the process gas stream. Low level radioactive waste containing organic material may be incinerated in a fluidized bed in communication with the described filter for removing particulates from the gaseous combustion products.

  2. Reproductive Potential of Salmon Spawning Substrates Inferred from Grain Size and Fish Length

    NASA Astrophysics Data System (ADS)

    Riebe, C. S.; Sklar, L. S.; Overstreet, B. T.; Wooster, J. K.; Bellugi, D. G.

    2014-12-01

    The river restoration industry spends millions of dollars every year on improving salmon spawning in riverbeds where sediment is too big for fish to move and thus use during redd building. However, few studies have addressed the question of how big is too big in salmon spawning substrates. Hence managers have had little quantitative basis for gauging the amount of spawning habitat in coarse-bedded rivers. Moreover, the scientific framework has remained weak for restoration projects that seek to improve spawning conditions. To overcome these limitations, we developed a physically based, field-calibrated model for the fraction of the bed that is fine-grained enough to support spawning by fish of a given size. Model inputs are fish length and easy-to-measure indices of bed-surface grain size. Model outputs include the number of redds and eggs the substrate can accommodate when flow depth, temperature, and other environmental factors are not limiting. The mechanistic framework of the model captures the biophysical limits on sediment movement and the space limitations on redd building and egg deposition in riverbeds. We explored the parameter space of the model and found a previously unrecognized tradeoff in salmon size: bigger fish can move larger sediment and thus use more riverbed area for spawning; they also tend to have higher fecundity, and so can deposit more eggs per redd; however, because redd area increases with fish length, the number of eggs a substrate can accommodate is highest for moderate-sized fish. One implication of this tradeoff is that differences in grain size may help regulate river-to-river differences in salmon size. Thus, our model suggests that population diversity and, by extension, species resilience are linked to lithologic, geomorphic, and climatic factors that determine grain size in rivers. We cast the model into easy-to-use look-up tables, charts, and computer applications, including a JavaScript app that works on tablets and mobile phones. We explain how these tools can be used in a new, mechanistic approach to assessing spawning substrates and optimizing gravel augmentation projects in coarse-bedded rivers.

  3. Sediment sorting at a side channel bifurcation

    NASA Astrophysics Data System (ADS)

    van Denderen, Pepijn; Schielen, Ralph; Hulscher, Suzanne

    2017-04-01

    Side channels have been constructed to reduce the flood risk and to increase the ecological value of the river. In various Dutch side channels large aggradation in these channels occurred after construction. Measurements show that the grain size of the deposited sediment in the side channel is smaller than the grain size found on the bed of the main channel. This suggest that sorting occurs at the bifurcation of the side channel. The objective is to reproduce with a 2D morphological model the fining of the bed in the side channel and to study the effect of the sediment sorting on morphodynamic development of the side channel. We use a 2D Delft3D model with two sediment fractions. The first fraction corresponds with the grain size that can be found on the bed of the main channel and the second fraction corresponds with the grain size found in the side channel. With the numerical model we compute several side channel configurations in which we vary the length and the width of the side channel, and the curvature of the upstream channel. From these computations we can derive the equilibrium state and the time scale of the morphodynamic development of the side channel. Preliminary results show that even when a simple sediment transport relation is used, like Engelund & Hansen, more fine sediment enters the side channel than coarse sediment. This is as expected, and is probably related to the bed slope effects which are a function of the Shields parameter. It is expected that by adding a sill at the entrance of the side channel the slope effect increases. This might reduce the amount of coarse sediment which enters the side channel even more. It is unclear whether the model used is able to reproduce the effect of such a sill correctly as modelling a sill and reproducing the correct hydrodynamic and morphodynamic behaviour is not straightforward in a 2D model. Acknowledgements: This research is funded by STW, part of the Dutch Organization for Scientific Research under grant number P12-P14 (RiverCare Perspective Programme) project number 13516.

  4. Low shear stress gravel-bed river

    USGS Publications Warehouse

    Milhous, Robert T.

    1997-01-01

    A low stress gravel bed river is a river where the cross-sectional average dimensionless shear stress (??*) rarely exceeds 0.047. That is the case for the Gunnison River below Delta in Western Colorado. The cross-sectional average ??* in the Gunnison River has not exceeded 0.047, except at one cross section during one year, in the 87 years of record. A ??* of 0.047 is the critical ??* in the bed-load equation considered to be most applicable to gravel/cobble bed rivers (the Meyer-Peter, Mueller equation). According to this equation, there has been no bed-material movement in the Gunnison River since 1920; in fact there has been bed-material movement and this movement is biologically important. Bed-material is moved when the ??* is 0.016 or larger. Streamflows that cause a ??* of at least 0.016 maintain the aquatic habitat in a low shear stress river.

  5. Durability assessment of coarse aggregates for HMA in Maine.

    DOT National Transportation Integrated Search

    2012-12-01

    In this study, Micro-Deval and L.A. Abrasion were used to evaluate the durability of 72 individual : coarse aggregates used for HMA in Maine. Aggregates used in hot-mix asphalt (HMA) must be : durable and resistant to abrasion and degradation. Materi...

  6. Coarse gaining of molecular crystals: limitations imposed by molecular flexibility

    NASA Astrophysics Data System (ADS)

    Picu, Catalin; Pal, Anirban

    Molecular crystals include molecular electronics, energetic materials, pharmaceuticals and some food components. In many of these applications the small scale mechanical behavior of the crystal is important such as for example in energetic materials where detonation is induced by the formation of hot spots which are induced thermomechanically, and in pharmaceuticals where phase stability is critical for the biochemical activity of the drug. Accurate modeling of these processes requires resolving the atomistic scale details of the material. However, the cost of these models is very large due to the complexity of the molecules forming the crystal, and some form of coarse graning is necessary. In this study we identify the limitations imposed by the need to accurately capture molecular flexibility on the development of coarse grained models for the energetic molecular crystal RDX. We define guidelines for the definition of coarse grained models that target elastic and plastic crystal scale properties such as elastic constants, thermal expansion, compressibility, the critical stress for the motion of dislocations (Peierls stress) and the stacking fault energy This work was supported by the ARO through Grant W911NF-09-1-0330 and AFRL through Grant FA8651-16-1-0004.

  7. Enhancement of properties of recycled coarse aggregate concrete using bacteria

    NASA Astrophysics Data System (ADS)

    Sahoo; Arakha; Sarkar; P; Jha

    2016-01-01

    Due to rapid construction, necessity for raw materials of concrete, especially coarse aggregate, tends to increase the danger of early exhaustion of the natural resources. An alternative source of raw materials would perhaps delay the advent of this early exhaustion. Recycled coarse aggregate (RCA) plays a great role as an alternative raw material that can replace the natural coarse aggregate (NCA) for concrete. Previous studies show that the properties of RCA concrete are inferior in quality compared to NCA concrete. This article attempts to study the improvement of properties of RCA concrete with the addition of bacteria named as Bacillus subtilis. The experimental investigation was carried out to evaluate the improvement of the compressive strength, capillary water absorption, and drying shrinkage of RCA concrete incorporating bacteria. The compressive strength of RCA concrete is found to be increased by about 20% when the cell concentration of B. subtilis is 106 cells/ml. The capillary water absorption as well as drying shrinkage of RCA are reduced when bacteria is incorporated. The improvement of RCA concrete is confirmed to be due to the calcium carbonate precipitation as observed from the microstructure studies carried out on it such as EDX, SEM, and XRD.

  8. Improved lignin pyrolysis for phenolics production in a bubbling bed reactor--Effect of bed materials.

    PubMed

    Li, Dongbing; Briens, Cedric; Berruti, Franco

    2015-01-01

    Lignin pyrolysis was studied in a bubbling fluidized bed reactor equipped with a fractional condensation train, using nitrogen as the fluidization gas. The effect of different bed materials (silica sand, lignin char, activated lignin char, birch bark char, and foamed glass beads) on bio-oil yield and quality was investigated for a pyrolysis temperature of 550 °C. Results how that a bed of activated lignin char is preferable to the commonly used silica sand: pyrolysis of Kraft lignin with a bed of activated lignin char not only provides a pure char product, but also a higher dry bio-oil yield (with a relative increase of 43%), lower pyrolytic water production, and better bio-oil quality. The bio-oil obtained from Kraft lignin pyrolysis with a bed of activated lignin char has a lower average molecular weight, less tar, more phenolics, and less acidity than when sand is used as bed material. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Geomorphic and vegetative recovery processes along modified stream channels of West Tennessee

    USGS Publications Warehouse

    Simon, Andrew; Hupp, C.R. Tennessee

    1992-01-01

    Hundreds of miles of streams in West Tennessee have been channelized or otherwise modt@ed since the turn of century. After all or parts of a stream are straightened, dredged, or cleared, systematic hydrologic, geomorphic, and ecologic processes collectively begin to reduce energy conditions towards the premodified state. One hundred and five sites along 15 streams were studied in the Obion, Forked Deer, Hatchie, and Wolf River basins. All studied streams, except the Hatchie River, have had major channel modi@cation along all or parts of their courses. Bank material shear-strength properties were determined through drained borehole-shear testing (168 tests) and used to interpret present critical bank conditions and factors of safety, and to estimate future channel-bank stability. Mean values of cohesive strength and angle of internal friction were 1.26 pounds per square inch and 30.1 degrees, respectively. Dendrogeomorphic analyses were made using botanical evidence of channel-bank failures to determine rates of channel widening; buried riparian stems were analyzed to determine rates of bank accretion. Channel bed-level changes through time and space were represented by a power equation. Plant ecological analyses were ma& to infer relative bank stability, to identify indicator species of the stage of bank recovery, and to determine patterns of vegetation development through the course of channel evolution. Quantitative data on morphologic changes were used with previously developed six-stage models of channel evolution and bank-slope development to estimate trends of geomorphic and ecologic processes and forms through time. Immediately after channel modr@cations, a 10- to 1%yearperiod of channel-bed degradation ensues at and upstream from the most recent modifications (area of maximum disturbance). Channel-bed lowering by &gradation was as much as 20 feet along some stream reaches. Downstream from the area of maximum disturbance, the bed was aggraded by the deposition of sediment supplied by knickpoint migration upstream; aggradation also occurred in initially degraded sites with time. Additionally, if degradation caused an increase in bank height beyond the critical limits of the bank material, a period of channel widening by mass wasting followed. Degradation knickpoints migrated upstream at rates greater than 1 mile per year; the rates attenuated with distance above the area of maximum disturbance. Channel widening rates of up to 16 feet per year were documented along some severely degraded reaches. Planar failures were generally more frequent but rotational failures dominated the most rapidly widening reaches. Total volumes of bank erosion may represent 75percent or more of the total material eroded from the channel, but this material generally exits the drainage basin. Mean factors of safety vary with the stage of channel evolution with the lowest values for planar and rotational failures occurring during the threshold stage (stage IV) 1.00 and 1.15, respectively. As channel gradients decrease, degradation ceases and then a period of ?secondary aggradation ? (at lesser rates than degradation) and bank accretion begins that may fill the channel to near floodplain level. This shift@ in process represents an oscillation in channel bed-level adjustment. Streams in basins underlain by loess may require an order of magnitude more time than sand-bed streams to stabilize due to a lack of coarse-grained material (sand) for aggradation. A systematic progression of riparian species that reflects the six-stage model of channel evolution has been identified. This progression can be used to infer ambient channel stability and hydrogeomorphic conditions. Woody vegetation establishes on low- and mid-bank surfaces (the slough line, initially) at about the same time that bank accretion begins. This slough line forms at a mean temporary stability angle of 24 degrees and expands upslope with time by the accretion of sediments. Species involve

  10. Arsenic methylation by micro-organisms isolated from sheepskin bedding materials.

    PubMed

    Lehr, Corinne R; Polishchuk, Elena; Delisle, Marie-Chantal; Franz, Catherine; Cullen, William R

    2003-06-01

    Sudden infant death syndrome (SIDS) has been associated with the volatilization of arsenic, antimony or phosphorus compounds from infants' bedding material by micro-organisms, the so-called 'toxic gas hypothesis'. The volatilization of arsenic by aerobic micro-organisms isolated from new sheepskin bedding material, as well as on material used by a healthy infant and by an infant who perished of SIDS, was examined. Three fungi were isolated from a piece of sheepskin bedding material on which an infant perished of SIDS, which methylated arsenic to form trimethylarsenic(V) species, precursors to volatile trimethylarsine. These three fungi were identified as Scopulariopsis koningii, Fomitopsis pinicola and Penicillium gladioli by their 26S-ribosomal RNA polymerase chain reaction products. These fungi were not previously known to methylate arsenic. The volatilization of arsenic by these three fungi was then examined. Only P. gladioli volatilized arsenic and only under conditions such that the production of sufficient trimethylarsine to be acutely toxic to an infant is unlikely. S. brevicaulis grew on the sheepskin bedding material and evolved a trace amount of trimethylarsine. Known human pathogens such as Mycobacterium neoaurum and Acinetobacter junii were isolated from used bedding.

  11. Effects of turbulent hyporheic mixing on reach-scale solute transport

    NASA Astrophysics Data System (ADS)

    Roche, K. R.; Li, A.; Packman, A. I.

    2017-12-01

    Turbulence rapidly mixes solutes and fine particles into coarse-grained streambeds. Both hyporheic exchange rates and spatial variability of hyporheic mixing are known to be controlled by turbulence, but it is unclear how turbulent mixing influences mass transport at the scale of stream reaches. We used a process-based particle-tracking model to simulate local- and reach-scale solute transport for a coarse-bed stream. Two vertical mixing profiles, one with a smooth transition from in-stream to hyporheic transport conditions and a second with enhanced turbulent transport at the sediment-water interface, were fit to steady-state subsurface concentration profiles observed in laboratory experiments. The mixing profile with enhanced interfacial transport better matched the observed concentration profiles and overall mass retention in the streambed. The best-fit mixing profiles were then used to simulate upscaled solute transport in a stream. Enhanced mixing coupled in-stream and hyporheic solute transport, causing solutes exchanged into the shallow subsurface to have travel times similar to the water column. This extended the exponential region of the in-stream solute breakthrough curve, and delayed the onset of the heavy power-law tailing induced by deeper and slower hyporheic porewater velocities. Slopes of observed power-law tails were greater than those predicted from stochastic transport theory, and also changed in time. In addition, rapid hyporheic transport velocities truncated the hyporheic residence time distribution by causing mass to exit the stream reach via subsurface advection, yielding strong exponential tempering in the in-stream breakthrough curves at the timescale of advective hyporheic transport through the reach. These results show that strong turbulent mixing across the sediment-water interface violates the conventional separation of surface and subsurface flows used in current models for solute transport in rivers. Instead, the full distribution of flow and mixing over the surface-subsurface continuum must be explicitly considered to properly interpret solute transport in coarse-bed streams.

  12. Using an extreme bony prominence anatomical model to examine the influence of bed sheet materials and bed making methods on the distribution of pressure on the support surface.

    PubMed

    Iuchi, Terumi; Nakajima, Yukari; Fukuda, Moriyoshi; Matsuo, Junko; Okamoto, Hiroyuki; Sanada, Hiromi; Sugama, Junko

    2014-05-01

    Bed sheets generate high surface tension across the support surface and increase pressure to the body through a process known as the hammock effect. Using an anatomical model and a loading device characterized by extreme bony prominences, the present study compared pressure distributions on support surfaces across different bed making methods and bed sheet materials to determine the factors that influence pressure distribution. The model was placed on a pressure mapping system (CONFORMat; NITTA Corp., Osaka, Japan), and interface pressure was measured. Bed sheet elasticity and friction between the support surface and the bed sheets were also measured. For maximum interface pressure, the relative values of the following methods were higher than those of the control method, which did not use any bed sheets: cotton sheets with hospital corners (1.28, p = 0.02), polyester with no corners (1.29, p = 0.01), cotton with no corners (1.31, p = 0.003), and fitted polyester sheets (1.35, p = 0.002). Stepwise multiple regression analysis indicated that maximum interface pressure was negatively correlated with bed sheet elasticity (R(2) = 0.74). A statistically significant negative correlation was observed between maximum interface pressure and immersion depth, which was measured using the loading device (r = -0.40 and p = 0.04). We found that several combinations of bed making methods and bed sheet materials induced maximum interface pressures greater than those observed for the control method. Bed sheet materials influenced maximum interface pressure, and bed sheet elasticity was particularly important in reducing maximum interface pressure. Copyright © 2014 Tissue Viability Society. Published by Elsevier Ltd. All rights reserved.

  13. Tracing the Origins of Coarse Sediment in Steep Mountain Catchments

    NASA Astrophysics Data System (ADS)

    Lukens, C. E.; Riebe, C. S.; Shuster, D. L.; Sklar, L. S.; Beyeler, J. D.

    2011-12-01

    Where does coarse sediment come from? How long does it persist in channels? What can the origins of sediment tell us about erosional processes and particle comminution in hillslope soils and mountain streams? To address these questions, we present new apatite-helium (AHe) ages from coarse sediment in steep streams of the Sierra Nevada, California. The evolution of grain size in sediment reflects both the physical and chemical breakdown of particles as they travel downstream. It also should reflect the dominant mechanisms of landscape evolution within a watershed. Previous studies have exploited detrital thermochronology in tracing the origins of sand-sized particles; the approach uses AHe age distributions in the sand as a geochemical fingerprint that can be compared with age-elevation relationships in bedrock as an indicator of provenance. In steep catchments, however, sand-sized particles comprise only a fraction of the sediment on the bed, and therefore tell only part of the erosional story. Much can be learned by examining age distributions of coarser grain sizes. Source elevations of coarse particles, for instance, may help reveal the relative importance of erosional mechanisms. For example, if boulders are sourced at high elevations, rock fall and debris flows likely dominate their transport. Conversely, if boulders are sourced only at lower elevations (nearer the sample location), they are more likely produced locally, and thus break down in place. We show how hypotheses such as these can be tested using detrital thermochronology on coarse sediment. We show how our analysis of detrital apatite can be coupled with a numerical model of the evolution of grain-size distributions by particle breakdown and input from slopes. We elaborate on how this approach can shed new quantitative light on processes of sediment production, transport, and breakdown in mountainous settings.

  14. Guidelines for using bedload traps in coarse-bedded mountain streams: Construction, installation, operation, and sample processing

    Treesearch

    Kristin Bunte; Kurt W. Swingle; Steven R. Abt

    2007-01-01

    A bedload trap is a portable sampler designed specifically for collecting gravel and cobble bedload (4 to 180 mm in diameter) in wadeable streams. Bedload traps consist of an aluminum frame with a 12 by 8 inch (0.3 by 0.2 m) opening to which a 3- to 5.5-ft (0.9 to 1.65 m) long trailing net is attached. Bedload traps are installed on ground plates that are anchored to...

  15. Characterizing Sediment Supply to Rivers: Effects of Lithology, Climate, Weathering and Erosion on Rock-fragment Abundance in Granitic, Hillslope Soils

    NASA Astrophysics Data System (ADS)

    Riebe, C. S.; Marshall, J. A.; Sklar, L. S.; Granger, D. E.

    2008-12-01

    River incision sets the pace of landscape evolution and so is crucial to linkages among climate, tectonics and topography. Theoretical and experimental studies indicate that bedrock river incision should be regulated by both the quantity and caliber of sediment supply, which together affect the availability and persistence of bed-scouring tools in the channel. Rates of sediment supply are now quantified routinely using cosmogenic- radionuclide-based (CRN) measurements of hillslope erosion rates. Although grain-size data are also measured routinely (e.g., as part of state and federal soil surveys), they are not widely available for soils with well-constrained rates of erosion and weathering. As a result, there is much to learn about how weathering and erosion interrelate to regulate grain-size distributions in hillslope soils. Moreover, we lack a strong empirical basis for investigating how the rate and caliber of sediment supply affect bedrock river incision in natural systems. Here we compare new grain-size data with existing CRN-based rates of erosion and weathering for a series of granitic soils at two climatically diverse sites in the Sierra Nevada, California. Our results indicate that the percentage of coarse material---which presumably becomes the bedload that abrades and lowers channels---varies significantly across each site. At the colder, wetter site, differences in grain size and soil depth are substantial, despite little variability in erosion rates; coarse material abundance appears to increase with the density of bedrock outcrops, which increases with hillslope gradients, according to previous work. At the hotter, drier site, where rates of erosion and weathering vary by 10-fold, soil thickness and texture and the abundance of outcrops do not vary systematically across the landscape. We speculate that the differences in soil development across our two sites partly reflect effects of small differences in the ratio of biotite to hornblende in the parent rock. We discuss implications for constraining the rate and caliber of sediment supply to rivers.

  16. Thrust-ridge paleodepositional model for the Upper Freeport coal bed and associated clastic facies, Upper Potomac coal field, Appalachian Basin, U.S.A.

    USGS Publications Warehouse

    Belt, Edward S.; Lyons, P.C.

    1990-01-01

    Two differential depositional sequences are recognized within a 37-m-thick lowermost section of the Conemaugh Group of Late Pennsylvanian (Westphalian D) age in the southern part of the Upper Potomac coal field (panhandle of Maryland and adjacent West Virginia). The first sequence is dominated by the Upper Freeport coal bed and zone (UF); the UF consists of a complex of interfingered thick coal beds and mudrocks. The UF underlies the entire 500 km2 study area (approximately 40 km in a NE-SW direction). The second sequence is dominated by medium- to coarse-grained sandstone and pebbly sandstone. They were deposited in channel belts that cut into and interfingered laterally with mudrock and fine- to medium-grained sandstone facies of floodbasin and crevasse-lobe origin. Thin lenticular coals occur in the second sequence. Nowhere in the study area does coarse-grained sandstone similar to the sandstone of the channel belts of the second sequence occur within the UF. However, 20 km north of the study area, coarse channel belts are found that are apparently synchronous with the UF (Lyons et al., 1984). The southeastern margin of the study are is bounded by the Allegheny Front. Between it and the North Mountain thrust (75 km to the southeast), lie at least eight other thrusts of unknown extent (Wilson, 1887). All these thrusts are oriented northwest; Devonian and older strata are exposed at the surface between the Allegheny Front and the North Mountain thrust. A blind-thrust ridge model is proposed to explain the relation of the two markedly depositional sequences to the thrusts that lie to the southeast of the Upper Potomac coal field. This model indicates that thrust ridges diverted coarse clastics from entering the swamp during a period when the thick Upper Freeport peat accumulated. Anticlinal thrust ridges and associated depressions are envisioned to have developed parallel to the Appalachian orogen during Middle and early Late Pennsylvanian time. A blind thrust developed from one of the outboard ridges, and it was thrust farther outboard ahead of the main body of the orogen. Sediment derived from the orogen was diverted into a sediment trap inboard of the ridge (Fig. 1). The ridge prevented sediment from entering the main peat-forming swamp. Sediment shed from the orogen accumulated in the sediment trap was carried out of the ends of the trap by steams that occupied the shear zone at the ends of the blind-thrust ridge (Fig. 1). Remnants of blind-thrust ridges occurs in the Sequatchie Valley thrust and the Pine Mountain thrust of the southern Appalachians. The extent, parallel to the orogen, of the thick areally extensive UF coal is related to the length of the blind-thrust ridge that, in turn, controlled the spacing of the river-derived coarse clastics that entered the main basin from the east. Further tectonism caused the thrust plane to emerge to the surface of the blind-thrust ridge. Peat accumulation was then terminated by the rapid erosion of the blind-thrust ridge and by the release of trapped sediment behind it. The peat was buried by sediments from streams from closely spaced channel belts] with intervening floodbasins. The model was implications for widespread peat (coal) deposits that developed in tropical regions, a few hundred kilometers inland from the sea during Pennsylvanian time (Belt and Lyons, 1989). ?? 1990.

  17. Bed conduction impact on fiber optic distributed temperature sensing water temperature measurements

    NASA Astrophysics Data System (ADS)

    O'Donnell Meininger, T.; Selker, J. S.

    2015-02-01

    Error in distributed temperature sensing (DTS) water temperature measurements may be introduced by contact of the fiber optic cable sensor with bed materials (e.g., seafloor, lakebed, streambed). Heat conduction from the bed materials can affect cable temperature and the resulting DTS measurements. In the Middle Fork John Day River, apparent water temperature measurements were influenced by cable sensor contact with aquatic vegetation and fine sediment bed materials. Affected cable segments measured a diurnal temperature range reduced by 10% and lagged by 20-40 min relative to that of ambient stream temperature. The diurnal temperature range deeper within the vegetation-sediment bed material was reduced 70% and lagged 240 min relative to ambient stream temperature. These site-specific results illustrate the potential magnitude of bed-conduction impacts with buried DTS measurements. Researchers who deploy DTS for water temperature monitoring should understand the importance of the environment into which the cable is placed on the range and phase of temperature measurements.

  18. Deep-sea tsunami deposits in the Miocene Nishizaki Formation of Boso Peninsula, Central Japan

    NASA Astrophysics Data System (ADS)

    Lee, I. T.; Ogawa, Y.

    2003-12-01

    Many sets of deep-sea deposits considered to be formed by return flow of tsunami were found from the middle Miocene Nishizaki Formation of Boso Peninsula, Central Japan, which is located near the convergent plate boundary at present as well as in the past, and has been frequently attacked by tsunami. The characteristics of the tsunami deposits in the Nishizaki Formation are as follows. Each set consists of 10-20 beds with parallel laminations formed under upper plane regime composed of alternated pumiceous beds in white and black colors. The white bed comprises coarse sands and pebbles with thickness of 5-10 cm. In contrast, the black bed is made of silts with thickness less than 1 cm. Among the 10-20 beds, the grain size is coarsest in the middle part of the set in general. The uppermost bed of each set shows cross-lamination formed by lower plane regime, gradually changing into finer graded bed on top. Sometimes, the lower part of the parallel laminated bed is associated with an underlying debrite or turbidite bed. Each set of these parallel-laminated beds is lenticular in shape thinning to the east in consistent with the generally eastward paleocurrent of the cross-lamination at the top. Such sedimentary characteristics are different from any event deposits reported in deep-sea but similar to the deep-sea K/T boundary deposits in the Caribbean region. Statistically, tsunami waves occur totally 12-13 times. Among them the height of 5-6th wave is known to be strongest. Interval time of each return flow is known to be 30-40 minutes, enough to settle the finer clastics at each bed top. The parallel-laminated parts have common dish structure and never trace fossils, indicating rather rapid deposition for the whole parts of the set. Consequently, the sedimentary characteristics shown from the parallel-laminated beds of the Nishizaki Formation are attributed to the return flow of tsunami to the deep-sea. We considered that such deep-sea parallel-laminated deposits of pumiceous clastics occur just after a large earthquake which forms the debrite or turbidite at the lowermost part.

  19. Pressure regulator

    DOEpatents

    Ebeling, Jr., Robert W.; Weaver, Robert B.

    1979-01-01

    The pressure within a pressurized flow reactor operated under harsh environmental conditions is controlled by establishing and maintaining a fluidized bed of uniformly sized granular material of selected density by passing the gas from the reactor upwardly therethrough at a rate sufficient to fluidize the bed and varying the height of the bed by adding granular material thereto or removing granular material therefrom to adjust the backpressure on the flow reactor.

  20. Use of wood-based materials in beef bedded manure packs: 2. Effect on odorous volatile organic compounds, odor activity value, Escherichia coli, and nutrient concentrations

    USDA-ARS?s Scientific Manuscript database

    The objectives of this study were to determine the effects of three types of wood-based bedding materials (kiln-dried pine wood chips, dry cedar chips, and green cedar chips) and corn stover on concentration of odorous volatile organic compounds (VOC) and total Escherichia coli in bedded pack materi...

  1. Erosional origin of drumlins and megaridges

    NASA Astrophysics Data System (ADS)

    Eyles, Nick; Putkinen, Niko; Sookhan, Shane; Arbelaez-Moreno, Lina

    2016-06-01

    The erodent layer hypothesis (ELH) proposes that drumlinization leaves no substantial stratigraphic record because it is primarily an erosional process that cuts an unconformity across pre-existing bed materials. Drumlins most commonly have autochthonous cores of antecedent till(s), other stiff and coarse-grained sediment and rock or any combination thereof, and are also found closely juxtaposed with rock drumlins within the same flow sets ('mixed beds'). This is at odds with the suggested growth of drumlins by vertical accretion ('emergence') from deforming subglacial till ('soft beds'). ELH argues that drumlins 'grow down' by erosional carving of pre-existing stiff till, sediment and/or rock by a thin (< 1 m) layer of deforming subglacial debris which abrades its substrate. This process is well known to the science of tribology (the study of wearing surfaces) where remnant micro-drumlins, ridges and grooves comparable to drumlins and megaridges are cut by debris ('erodent layers') between surfaces in relative motion. In the subglacial setting the erodent layer comprises deforming diamict containing harder 'erodents' such as boulders, clast-rich zones or frozen rafts. Similar, till-like erodent layers (cataclasites) cut streamlined surfaces below gravity-driven mass flows such as rock avalanches, landslides and slumps, pyroclastic flows and debris flows; streamlined surfaces including drumlin-like 'ellipsoidal bumps' and ridges are also common on the surfaces of faults. Megadrumlins, drumlins and megaridges comprise an erosional continuum in many flow sets. This records the progressive dissection of large streamlined bedforms to form successively more elongate daughter drumlins and megaridges ('clones') as the bed is lowered to create a low-slip surface that allows fast ice flow and ice streaming. Clones are the 'missing links' in the continuum. ELH predicts preservation within drumlins of antecedent remnant tills and stratigraphies deposited earlier in the glacial cycle under sluggish or steady-state ice flows that were then streamlined by erosion under streaming ice flows. The erodent layer may be preserved as a relatively thin, loosely-consolidated surficial till that drapes the streamlined bedform (the 'upper till', 'cap till', 'till veneer', 'till mantle', 'retreat till', or 'englacial debris' of many previous reports). ELH suggests that there is a fundamental commonality of all forms of erosional wear and streamlining on sliding interfaces from the microscopic scale to the macroscopic scale of ice sheet beds.

  2. Evaluation of sludge from paper recycling as bedding material for broilers.

    PubMed

    Villagrá, A; Olivas, I; Benitez, V; Lainez, M

    2011-05-01

    Several materials have been used as bedding substrates in broiler production. In this work, the sludge from paper recycling was tested for its potential use as litter material and was compared with wood shavings. Moisture content, apparent density, and water-holding capacity were measured and characterized in both materials. Later, 192 male broiler chickens were distributed among 16 experimental pens, 8 of which contained wood shavings as bedding material and 8 of which contained the sludge. Growth rate, consumption, tonic immobility, gait score, breast lesions, foot pad dermatitis, hock burn, tibial dyschondroplasia, and metatarsal thickness were determined in the birds. Although the moisture content of the sludge was high, it decreased strongly after 7 d of drying, reaching lower values than those of wood shavings. In general, few differences were found between the materials in terms of bird performance and welfare and only the incidence of hock burn was higher in the sludge than in the wood shavings. Although further research is needed, sludge from paper recycling is a possible alternative to traditional bedding materials because it achieves most of the requirements for broiler bedding materials and does not show negative effects on the birds.

  3. Effects of wave shape on sheet flow sediment transport

    USGS Publications Warehouse

    Hsu, T.-J.; Hanes, D.M.

    2004-01-01

    A two-phase model is implemented to study the effects of wave shape on the transport of coarse-grained sediment in the sheet flow regime. The model is based on balance equations for the average mass, momentum, and fluctuation energy for both the fluid and sediment phases. Model simulations indicate that the responses of the sheet flow, such as the velocity profiles, the instantaneous bed shear stress, the sediment flux, and the total amount of the mobilized sediment, cannot be fully parameterized by quasi-steady free-stream velocity and may be correlated with the magnitude of local horizontal pressure gradient (or free-stream acceleration). A net sediment flux in the direction of wave advance is obtained for both skewed and saw-tooth wave shapes typical of shoaled and breaking waves. The model further suggests that at critical values of the horizontal pressure gradient, there is a failure event within the bed that mobilizes more sediment into the mobile sheet and enhances the sediment flux. Preliminary attempts to parameterize the total bed shear stress and the total sediment flux appear promising. Copyright 2004 by the American Geophysical Union.

  4. Subglacial Depositional Processes in the Port Askaig Formation (Neoproterozoic) of Ireland

    NASA Astrophysics Data System (ADS)

    Knight, J.

    2004-12-01

    The Port Askaig Formation was deposited during the Vendian glaciation (c. 650 Ma) and is a range of tillites that outcrop discontinuously from Banffshire (Scotland) to Connemara (Ireland). Sedimentary structures commonly observed include dropstones and sediment drapes, interpreted as deposition from a floating glacial ice shelf in a shallow marginal sea. Other structures, such as intersecting clastic dikes, have been interpreted as evidence for subaerial exposure of the tillite surface. Exposures of the Port Askaig Formation were examined at its Irish type area at Kiltyfanned Lough, County Donegal. Here, homogeneous sandy beds with internal planar bedding structures are separated by laminated fine sand beds which have erosional upper surfaces. The laminated beds are clast-free and individual laminae are laterally continuous and undisturbed. Larger clasts lie bed-parallel and are draped by overlying beds. Occasionally drapes are asymmetric with a thickened sediment prow, suggestive of flow direction. The clastic dikes are polygonal in plan view, may be isolated or interconnected, and are often arranged in parallel sheets which pinch out laterally. Internally, the clastic dikes are infilled with coarse sand to gravel. Infills are often aligned parallel to dike margins. The presence of draped and deformed sediments suggest a subglacial environment with free water availability. The flat-lying morphology of clasts also favours a subglacial rather than a full marine environment. The morphology and disposition of clastic dikes is interpreted as due to subglacial hydrofracturing of a till sheet and upward passage of sediment-charged water through the fracture zone, which is known from late Pleistocene and Precambrian tillites elsewhere. Variations in water availability can be reconciled by a sub-ice shelf depositional model with spatial and temporal changes in tidally-induced ice-bed coupling.

  5. Flow, Sediment Supply, and Channel Width Controls on Gravel Bedform Dynamics

    NASA Astrophysics Data System (ADS)

    Nelson, P. A.; Morgan, J. A.

    2017-12-01

    Heterogeneous, coarse-grained riverbeds often self-organize into migrating bedforms such as gravel dunes or bedload sheets. It has recently been suggested that sediment supply and the relative mobility of the bed surface sediment affects the type of bedforms that may be present in gravel-bed rivers; however, our understanding of gravel bedform dynamics remains well behind that of bedforms in sandy channels. Here, we present results from flume experiments in which we investigate how the formation and dynamics of gravel bedforms is affected by changes in discharge, sediment supply, and channel geometry. Experiments were conducted in a 1.1-m wide, 18-m long, sediment-feed flume. The initial bed material and the sediment feed mixture was composed of a sediment mixture ranging in size from 0.5-4 mm, with a median value of 3.6 mm. We used two channel geometries (a straight channel and a channel with sinusoidal width variations) and conducted three experimental runs for each geometry: 1) equilibrium sediment supply and steady flow, 2) equilibrium sediment supply and repeated hydrographs, and 3) doubled sediment supply and repeated hydrographs. During the experiments, low-amplitude, migrating bedforms developed and their dynamics were tracked both visually and via collection of repeated structure-from-motion topographic datasets. In the constant-width geometry, bedform amplitudes and migration rates were relatively constant under steady flow, but when subjected to repeated hydrographs the average bedform celerity decreased by about 50% and the amplitude of the bedforms increased and decreased with the changing flow rate. At twice the equilibrium sediment supply, the bedforms organized into an alternating pattern. This pattern was most pronounced at the lower flow rates, and became less stable at the higher discharges of the repeat hydrographs. Preliminary results suggest bedform celerity in the variable width geometry under steady flow and equilibrium sediment supply was half the celerity of the bedforms for the same conditions in the straight-walled geometry. These experiments suggest that variations in discharge, sediment supply, and channel geometry play an important role in the formation and dynamics of bedforms in gravel-bed rivers.

  6. Cacao bean husk: an applicable bedding material in dairy free-stall barns.

    PubMed

    Yajima, Akira; Owada, Hisashi; Kobayashi, Suguru; Komatsu, Natsumi; Takehara, Kazuaki; Ito, Maria; Matsuda, Kazuhide; Sato, Kan; Itabashi, Hisao; Sugimura, Satoshi; Kanda, Shuhei

    2017-07-01

    The objectives of the study were to assess the effect of cacao bean husk as bedding material in free-stall barn on the behavior, productivity, and udder health of dairy cattle, and on the ammonia concentrations in the barn. Four different stall surfaces (no bedding, cacao bean husk, sawdust, and chopped wheat straw) were each continuously tested for a period of 1 week to determine their effects on nine lactating Holstein cows housed in the free-stall barn with rubber matting. The lying time and the milk yield were measured between d 4 and d 7. Blood samples for plasma cortisol concentration and teat swabs for bacterial counts were obtained prior to morning milking on d 7. The time-averaged gas-phase ammonia concentrations in the barn were measured between d 2 and d 7. The cows spent approximately 2 h more per day lying in the stalls when bedding was available than without bedding. The milk yield increased in the experimental periods when cows had access to bedding materials as compared to the period without bedding. The lying time was positively correlated with the milk yield. Bacterial counts on the teat ends recorded for cows housed on cacao bean husk were significantly lower than those recorded for cows housed without bedding. Ammonia concentration under cacao bean husk bedding decreased by 6%, 15%, and 21% as compared to no bedding, sawdust, and chopped wheat straw, respectively. The cortisol concentration was lowest in the period when cacao bean husk bedding was used. We observed a positive correlation between the ammonia concentrations in the barn and the plasma cortisol concentrations. Cacao bean husk is a potential alternative of conventional bedding material, such as sawdust or chopped wheat straw, with beneficial effects on udder health and ammonia concentrations in the barns.

  7. Crystallization process

    DOEpatents

    Adler, Robert J.; Brown, William R.; Auyang, Lun; Liu, Yin-Chang; Cook, W. Jeffrey

    1986-01-01

    An improved crystallization process is disclosed for separating a crystallizable material and an excluded material which is at least partially excluded from the solid phase of the crystallizable material obtained upon freezing a liquid phase of the materials. The solid phase is more dense than the liquid phase, and it is separated therefrom by relative movement with the formation of a packed bed of solid phase. The packed bed is continuously formed adjacent its lower end and passed from the liquid phase into a countercurrent flow of backwash liquid. The packed bed extends through the level of the backwash liquid to provide a drained bed of solid phase adjacent its upper end which is melted by a condensing vapor.

  8. Capture of a recombinant protein from unclarified canola extract using streamline expanded bed anion exchange.

    PubMed

    Bai, Yun; Glatz, Charles E

    2003-03-30

    The feasibility of applying expanded bed adsorption technology to recombinant protein recovery from extracts of transgenic canola (rapeseed) was assessed. The extraction step results in a suspension of high solids content that is difficult to clarify. The coarse portion of the solids can be removed easily, and our aim was to operate the expanded bed in the presence of the recalcitrant particulates. Recombinant beta-glucuronidase (rGUS) produced in transgenic canola seed was the model system. Diethylaminoethyl (DEAE) and Streamline DEAE resin exhibited similar binding and elution properties for both rGUS and native canola proteins. More than 95% of native canola proteins did not bind to DEAE resins at pH 7.5, whereas the bound proteins were fractionated by two-step salt elution into two groups with the first peak, containing 70% of total bound proteins, at 20 mS/cm, followed by elution of rGUS at 50 mS/cm. The adsorption isotherm was only slightly influenced by the presence of up to 14 mg solids/mL extract; C(m) and K(d) changed by -1% and +39%, respectively. Bed expansion was semiquantitatively predictable from physical properties of the fluid together with Stokes's law and the Richardson-Zaki correlation for both clarified and partially clarified extracts. The presence of 1.4% solids did not change rGUS breakthrough behavior of the expanded bed; however, a small difference between expanded bed and packed bed was observed early in the sample loading stage, during which bed expansion adjusts. Canola solids moved through the column in approximately plug flow with no detriment to bed stability. Seventy-two percent recovery of 34-fold purified rGUS was obtained after initial loading of 1.4% (w/w) solids extract to 25% breakthrough. Copyright 2003 Wiley Periodicals, Inc. Biotechnol Bioeng 81: 855-864, 2003.

  9. Drainage basins, channels, and flow characteristics of selected streams in central Pennsylvania

    USGS Publications Warehouse

    Brush, Lucien M.

    1961-01-01

    The hydraulic, basin, and geologic characteristics of 16 selected streams in central Pennsylvania were measured for the purpose of studying the relations among these general characteristics and their process of development. The basic parameters which were measured include bankfull width and depth, channel slope, bed material size and shape, length of stream from drainage divide, and size of drainage area. The kinds of bedrock over which the streams flow were noted. In these streams the bankfull channel is filled by flows approximating the 2.3-year flood. By measuring the breadth and mean depth of the channel, it was possible to compute the bankfull mean velocity for each of the 119 sampling stations. These data were then used to compute the downstream changes in hydraulic geometry of the streams studied. This method has been called an indirect computation of the hydraulic geometry. The results obtained by the indirect method are similar to those of the direct method of other workers. The basins were studied by examining the relations of drainage area, discharge, and length of stream from drainage divide. For the streams investigated, excellent correlations were found to exist between drainage area and the 2.3-year flood, as well as between length of stream from the basin divide and drainage area. From these correlations it is possible to predict the discharge for the 2.3-year flood at any arbitrary point along the length of the stream. The long, intermediate, and short axes of pebbles sampled from the bed of the stream were recorded to study both size and sphericity changes along individual streams and among the streams studied. No systematic downstream changes in sphericity were found. Particle size changes are erratic and show no consistent relation to channel slope. Particle size decreases downstream in many streams but remains constant or increases in others. Addition of material by tributaries is one factor affecting particle size and another is the parent material. Wear does not appear to account for some of the changes noted in particle size in a downstream direction. Comparison with laboratory studies indicates that at least in some streams the downstream decrease in size is much greater than would be expected from wear alone. The type of bedrock underlying the channels included in this study appears to affect both channel slope and particle size. For a given length of stream, a stream channel underlain by sandstone tends to have a steeper slope and larger bed material than channels underlain by shale or limestone. Hence, a stream which heads in sandstone and ends in limestone tends to have a more rapid decrease in slope and particle size than a stream heading in limestone and ending in sandstone. The association of steep slopes and small particles for limestone channels implies that slope and particle size may show a vague correlation between lithologic groups although no correlation may exist within a given lithologic type. In addition to the effect of bedrock on slope and particle size, there is some evidence that channels in limestone or dolomite have a slightly smaller cross section at bankfull stage than channels in shale or sandstone. Near the headwaters of many of these streams, a deposit of periglacial rubble affects the slope and bed material size. Some of the debris contains residual boulders which are too large to be moved by ordinary floods and, therefore, impose larger particle sizes in the bed of the stream. The addition of this very coarse debris to the bed material is another example of the influence of geologic factors on stream channels even though the channel consists of unconsolidated debris instead of bedrock. The influence of geologic factors noted in selected streams in central Pennsylvania may not be directly applicable to areas other than the Appalachian Mountains, but the general process is no doubt similar in most areas. In large alluvial valleys bedrock cannot be much of an influencing factor; yet large, thick alluvial deposits and terraces are in a sense "bedrock" materials upon which the stream works to form the landscape.

  10. Sediment-transport characteristics of Cane Creek, Lauderdale County, Tennessee

    USGS Publications Warehouse

    Carey, W.P.

    1993-01-01

    An investigation of the sediment-transport characteristics of Cane Creek in Lauderdale County, Tennessee, was conducted from 1985-88 to evaluate the potential for channel erosion induced by modifications (realignment and enlargement) and the potential ability of different flows to move bed and bank stabilizing material. Frequently occurring flows in Cane Creek are capable of moving sand-size material (0.0625 - 4.0 millimeters). During floods that equal or exceed the 2-year flood, Cane Creek is capable of moving very coarse gravel (32 - 64 millimeters). Boundary-shear values at bridges, where flow contractions occur, correspond to critical diameters in excess of 100 millimeters. Thus, the areas near bridges, where channel stability is most critical, are the areas where erosive power is greatest. Deepening and widening of Cane Creek has exposed large areas of channel boundary that are a significant source of raindrop-detached sediment during the early stages of a storm before stream flow increases signifi- cantly. This causes suspended-sediment concentration to peak while the flow hydrograph is just beginning to rise. For basins like Cane Creek, where runoff events commonly last less than a day and where variation in discharge and sediment concentrations are large, an estimate of sediment yield based on periodic observations of instantaneous values is subject to considerable uncertainty.

  11. Odorous Volatile Organic Compounds, Escherichia coli, and Nutrient Concentrations when Kiln-Dried Pine Chips and Corn Stover Bedding Are Used in Beef Bedded Manure Packs.

    PubMed

    Spiehs, Mindy J; Berry, Elaine D; Wells, James E; Parker, David B; Brown-Brandl, Tami M

    2017-07-01

    Pine ( spp.) bedding has been shown to lower the concentration of odorous volatile organic compounds (VOCs) and pathogenic bacteria compared with corn ( L.) stover bedding, but availability and cost limit the use of pine bedding in cattle confinement facilities. The objectives of this study were to determine if the addition of pine wood chips to laboratory-scaled bedded packs containing corn stover (i) reduced odorous VOC emissions; (ii) reduced total ; and (iii) changed the nutrient composition of the resulting manure-bedded packs. Bedding treatments included 0, 10, 20, 30, 40, 60, 80, and 100% pine chips, with the balance being corn stover. Four bedded packs for each mixture were maintained for 42 d ( = 4 observations per bedding material). The production of total sulfur compounds increased significantly when 100% pine chips were used (44.72 ng L) compared with bedding mixture containing corn stover (18.0-24.56 ng L). The carbon-to-nitrogen ratio exceeded the ideal ratio of 24:1 for the optimum activity of soil microorganisms when ≥60% pine chips (25.3-27.5 ng L) were included in the mixture. The use of 100% pine chips as bedding increased sulfide concentration in the facility 1.8 to 2.4 times over the use of corn stover bedding. was not influenced by the addition of pine chips to the corn stover bedding material but did decrease as the bedded pack aged. Bedding material mixtures containing 30 to 60% pine and 40 to 70% corn stover may be the ideal combination to mitigate odors from livestock facilities using deep bedded systems. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  12. Use of stable isotopes of carbon and nitrogen to identify sources of organic matter to bed sediments of the Tualatin River, Oregon

    USGS Publications Warehouse

    Bonn, Bernadine A.; Rounds, Stewart A.

    2010-01-01

    The potential sources of organic matter to bed sediment of the Tualatin River in northwestern Oregon were investigated by comparing the isotopic fractionation of carbon and nitrogen and the carbon/nitrogen ratios of potential sources and bed sediments. Samples of bed sediment, suspended sediment, and seston, as well as potential source materials, such as soil, plant litter, duckweed, and wastewater treatment facility effluent particulate were collected in 1998-2000. Based on the isotopic data, terrestrial plants and soils were determined to be the most likely sources of organic material to Tualatin River bed sediments. The delta 13C fractionation matched well, and although the delta 15N and carbon/nitrogen ratio of fresh plant litter did not match those of bed sediments, the changes expected with decomposition would result in a good match. The fact that the isotopic composition of decomposed terrestrial plant material closely resembled that of soils and bed sediments supports this conclusion. Phytoplankton probably was not a major source of organic matter to bed sediments. Compared to the values for bed sediments, the delta 13C values and carbon/nitrogen ratios of phytoplankton were too low and the delta 15N values were too high. Decomposition would only exacerbate these differences. Although phytoplankton cannot be considered a major source of organic material to bed sediment, a few bed sediment samples in the lower reach of the river showed a small influence from phytoplankton as evidenced by lower delta 13C values than in other bed sediment samples. Isotopic data and carbon/nitrogen ratios for bed sediments generally were similar throughout the basin, supporting the idea of a widespread source such as terrestrial material. The delta 15N was slightly lower in tributaries and in the upper reaches of the river. Higher rates of sediment oxygen demand have been measured in the tributaries in previous studies and coupled with the isotopic data may indicate the presence of more labile organic matter in these areas. Results from this study indicate that strategies to improve oxygen conditions in the Tualatin River are likely to be more successful if they target sources of soil, leaf litter, and other terrestrially derived organic materials to the river rather than the instream growth of algae.

  13. Predicting the distribution of bed material accumulation using river network sediment budgets

    NASA Astrophysics Data System (ADS)

    Wilkinson, Scott N.; Prosser, Ian P.; Hughes, Andrew O.

    2006-10-01

    Assessing the spatial distribution of bed material accumulation in river networks is important for determining the impacts of erosion on downstream channel form and habitat and for planning erosion and sediment management. A model that constructs spatially distributed budgets of bed material sediment is developed to predict the locations of accumulation following land use change. For each link in the river network, GIS algorithms are used to predict bed material supply from gullies, river banks, and upstream tributaries and to compare total supply with transport capacity. The model is tested in the 29,000 km2 Murrumbidgee River catchment in southeast Australia. It correctly predicts the presence or absence of accumulation in 71% of river links, which is significantly better performance than previous models, which do not account for spatial variability in sediment supply and transport capacity. Representing transient sediment storage is important for predicting smaller accumulations. Bed material accumulation is predicted in 25% of the river network, indicating its importance as an environmental problem in Australia.

  14. Gypsum as a bedding source for broiler chickens

    USDA-ARS?s Scientific Manuscript database

    Three trials examined the feasibility of flue gas desulfurization gypsum as a bedding material for raising broilers. Gypsum was used alone, under or on top of pine shavings and pine bark. Test materials were placed as bedding in pens to simulate commercial broiler production through three growout cy...

  15. Water holding capacity and evaporative loss from organic bedding materials used in livestock facilities

    USDA-ARS?s Scientific Manuscript database

    Physical and chemical characteristics of organic bedding materials determine how well they will absorb and retain moisture and may influence the environment in livestock facilities where bedding is used. The objective of this study was to determine water holding capacity (WHC) and rate of evaporativ...

  16. Dynamic transport capacity in gravel-bed river systems

    Treesearch

    T. E. Lisle; B. Smith

    2003-01-01

    Abstract - Sediment transport capacity mediates the transfer and storage of bed material between alluvial reservoirs in a drainage system. At intermediate time scales corresponding to the evolution of sediment pulses, conditions governing bed-material transport capacity under the hydrologic regime respond to variations in storage and sediment flux as pulses extend,...

  17. Bed roughness of palaeo-ice streams: insights and implications for contemporary ice sheet dynamics

    NASA Astrophysics Data System (ADS)

    Falcini, Francesca; Rippin, David; Selby, Katherine; Krabbendam, Maarten

    2017-04-01

    Bed roughness is the vertical variation of elevation along a horizontal transect. It is an important control on ice stream location and dynamics, with a correspondingly important role in determining the behaviour of ice sheets. Previous studies of bed roughness have been limited to insights derived from Radio Echo Sounding (RES) profiles across parts of Antarctica and Greenland. Such an approach has been necessary due to the inaccessibility of the underlying bed. This approach has led to important insights, such as identifying a general link between smooth beds and fast ice flow, as well as rough beds and slow ice flow. However, these insights are mainly derived from relatively coarse datasets, so that links between roughness and flow are generalised and rather simplistic. Here, we explore the use of DTMs from the well-preserved footprints of palaeo-ice streams, coupled with high resolution models of palaeo-ice flow, as a tool for investigating basal controls on the behaviour of contemporary, active ice streams in much greater detail. Initially, artificial transects were set up across the Minch palaeo-ice stream (NW Scotland) to mimic RES flight lines from past studies in Antarctica. We then explored how increasing data-resolution impacted upon the roughness measurements that were derived. Our work on the Minch palaeo-ice stream indicates that different roughness signatures are associated with different glacial landforms, and we discuss the potential for using these insights to infer, from RES-based roughness measurements, the occurrence of particular landform assemblages that may exist beneath contemporary ice sheets.

  18. Chemical-quality reconnaissance of the water and surficial bed material in the Delaware River estuary and adjacent New Jersey tributaries, 1980-81

    USGS Publications Warehouse

    Hochreiter, Joseph J.

    1982-01-01

    This report presents chemical-quality data collected from May 1980 to January 1981 at several locations within the Delaware River estuary and selected New Jersey tributaries. Samples of surface water were analyzed Environmental Protection Agency ' priority pollutants, ' including acid extractable, base/neutral extractable and volatile organic compounds, in addition to selected dissolved inorganic constituents. Surficial bed material at selected locations was examined for trace metals, insecticides, polychlorinated biphenyls, and base/neutral extractable organic compounds. Trace levels (1-50 micrograms per liter) of purgeable organic compounds, particularly those associated with the occurrence of hydrocarbons, were found in about 60% of the water samples taken. DDT, DDD, DDE, PCB 's and chlordane are present in most surficial bed material samples. Diazinon was the only organophosphorous insecticide detected in the study (1.6 micrograms per kilogram at one location). High values for select trace metals in bed material were discovered at two locations. Of the 10 sites sampled, the surficial bed material containing the most contamination was found along one cross section of Raccoon Creek at Bridgeport. An additional analysis of Raccoon Creek revealed bed material containing toluene, oil and grease, and trace quantities of 15 base/neutral extractable organic compounds, including polynuclear aromatic hydrocarbons, phthalate esters, and chlorinated benzenes.

  19. Quality of water and bed material in streams of Logan Township, Gloucester County, New Jersey, 1984

    USGS Publications Warehouse

    Hochreiter, J.J.; Kozinski, Jane

    1985-01-01

    The surface water and surficial-bed material at seven stations on three streams in Logan Township, Gloucester County, New Jersey, were sampled in the fall of 1984. Samples of water were analyzed for volatile organic compounds, trace metals, and organochlorine and organophosphorous compounds. Surficial-bed material was analyzed for extractable trace metals and organochlorine compounds. Water samples from two closely spaced sampling locations along Raccoon Creek contained elevated concentrations of methylene chloride (455 and 1800 micrograms/L, respectively), a volatile organic solvent. Bed-material samples taken from Little Timber and Birch Creeks contained elevated levels of trace metals and organochlorine compounds, including polychlorinated biphenyls (PCB's). Contaminant concentrations in bed-material samples taken from Raccoon Creek were much lower than those found previously by the U.S. Geological Survey in 1980. Only a trace of PCB 's was detected in any bed material sample taken from Racoon Creek. Gas chromatographic flame-ionization detector scans, performed on solvent extracts of all water and sediment samples, were useful in characterizing the presence or absence of organic contaminants in those samples. Changes in the character of organic contamination along the reaches of two streams were apparent when the fingerprints of chromatograms representing upstream sites were compared to those representing downstream sites. (Author 's abstract)

  20. Fluidized bed deposition of diamond

    DOEpatents

    Laia, Jr., Joseph R.; Carroll, David W.; Trkula, Mitchell; Anderson, Wallace E.; Valone, Steven M.

    1998-01-01

    A process for coating a substrate with diamond or diamond-like material including maintaining a substrate within a bed of particles capable of being fluidized, the particles having substantially uniform dimensions and the substrate characterized as having different dimensions than the bed particles, fluidizing the bed of particles, and depositing a coating of diamond or diamond-like material upon the substrate by chemical vapor deposition of a carbon-containing precursor gas mixture, the precursor gas mixture introduced into the fluidized bed under conditions resulting in excitation mechanisms sufficient to form the diamond coating.

  1. Sedimentological and Stratigraphic Controls on Natural Fracture Distribution in Wajid Group, SW Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Benaafi, Mohammed; Hariri, Mustafa; Abdullatif, Osman; Makkawi, Mohammed; Korvin, Gabor

    2016-04-01

    The Cambro-Permian Wajid Group, SW Saudi Arabia, is the main groundwater aquifer in Wadi Al-Dawasir and Najran areas. In addition, it has a reservoir potentiality for oil and natural gas in Rub' Al-Khali Basin. Wajid Group divided into four formations, ascending Dibsiyah, Sanamah, Khussyayan and Juwayl. They are mainly sandstone and exposed in an area extend from Wadi Al-Dawasir southward to Najran city and deposited within fluvial, shallow marine and glacial environments. This study aims to investigate the sedimentological and stratigraphic controls on the distribution of natural fractures within Wajid Group outcrops. A scanline sampling method was used to study the natural fracture network within Wajid Group outcrops, where the natural fractures were measured and characterized in 12 locations. Four regional natural fracture sets were observed with mean strikes of 050o, 075o, 345o, and 320o. Seven lithofacies characterized the Wajid Group at these locations and include fine-grained sandstone, coarse to pebbly sandstone, cross-bedded sandstone, massive sandstone, bioturbated sandstone, conglomerate sandstone, and conglomerate lithofacies. We found that the fine-grained and small scale cross-bedded sandstones lithofacies are characterized by high fracture intensity. In contrast, the coarse-grained sandstone and conglomerate lithofacies have low fracture intensity. Therefore, the relative fracture intensity and spacing of natural fractures within Wajid Group in the subsurface can be predicted by using the lithofacies and their depositional environments. In terms of stratigraphy, we found that the bed thickness and the stratigraphic architecture are the main controls on fractures intensity. The outcomes of this study can help to understand and predict the natural fracture distribution within the subsurface fractured sandstone hosting groundwater and hydrocarbon in Wajid and Rub' Al-Khali Basins. Hence, the finding of this study might help to explore and develop the groundwater and hydrocarbon resources in the subsurface.

  2. Sorted bedform pattern evolution: Persistence, destruction and self-organized intermittency

    NASA Astrophysics Data System (ADS)

    Goldstein, Evan B.; Murray, A. Brad; Coco, Giovanni

    2011-12-01

    We investigate the long-term evolution of inner continental shelf sorted bedform patterns. Numerical modeling suggests that a range of behaviors are possible, from pattern persistence to spatial-temporal intermittency. Sorted bedform persistence results from a robust sorting feedback that operates when the seabed features a sufficient concentration of coarse material. In the absence of storm events, pattern maturation processes such as defect dynamics and pattern migration tend to cause the burial of coarse material and excavation of fine material, leading to the fining of the active layer. Vertical sorting occurs until a critical state of active layer coarseness is reached. This critical state results in the local cessation of the sorting feedback, leading to a self-organized spatially intermittent pattern, a hallmark of observed sorted bedforms. Bedforms in shallow conditions and those subject to high wave climates may be temporally intermittent features as a result of increased wave orbital velocity during storms. Erosion, or deposition of bimodal sediment, similarly leads to a spatially intermittent pattern, with individual coarse domains exhibiting temporal intermittence. Recurring storm events cause coarsening of the seabed (strengthening the sorting feedback) and the development of large wavelength patterns. Cessation of storm events leads to the superposition of storm (large wavelength) and inter-storm (small wavelength) patterns and spatial heterogeneity of pattern modes.

  3. Advanced Turbine Technology Applications Project (ATTAP)

    NASA Technical Reports Server (NTRS)

    1989-01-01

    ATTAP activities during the past year were highlighted by an extensive materials assessment, execution of a reference powertrain design, test-bed engine design and development, ceramic component design, materials and component characterization, ceramic component process development and fabrication, component rig design and fabrication, test-bed engine fabrication, and hot gasifier rig and engine testing. Materials assessment activities entailed engine environment evaluation of domestically supplied radial gasifier turbine rotors that were available at the conclusion of the Advanced Gas Turbine (AGT) Technology Development Project as well as an extensive survey of both domestic and foreign ceramic suppliers and Government laboratories performing ceramic materials research applicable to advanced heat engines. A reference powertrain design was executed to reflect the selection of the AGT-5 as the ceramic component test-bed engine for the ATTAP. Test-bed engine development activity focused on upgrading the AGT-5 from a 1038 C (1900 F) metal engine to a durable 1371 C (2500 F) structural ceramic component test-bed engine. Ceramic component design activities included the combustor, gasifier turbine static structure, and gasifier turbine rotor. The materials and component characterization efforts have included the testing and evaluation of several candidate ceramic materials and components being developed for use in the ATTAP. Ceramic component process development and fabrication activities were initiated for the gasifier turbine rotor, gasifier turbine vanes, gasifier turbine scroll, extruded regenerator disks, and thermal insulation. Component rig development activities included combustor, hot gasifier, and regenerator rigs. Test-bed engine fabrication activities consisted of the fabrication of an all-new AGT-5 durability test-bed engine and support of all engine test activities through instrumentation/build/repair. Hot gasifier rig and test-bed engine testing activities were performed.

  4. Aeolian Sand Transport in the Planetary Context: Respective Roles of Aerodynamic and Bed-Dilatancy Thresholds

    NASA Technical Reports Server (NTRS)

    Marshall, J. R.; Borucki, J.; Bratton, C.

    1999-01-01

    The traditional view of aeolian sand transport generally estimates flux from the perspective of aerodynamic forces creating the airborne grain population, although it has been recognized that "reptation" causes a significant part of the total airborne flux; reptation involves both ballistic injection of grains into the air stream by the impact of saltating grains as well as the "nudging" of surface grains into a creeping motion. Whilst aerodynamic forces may initiate sand motion, it is proposed here that within a fully-matured grain cloud, flux is actually governed by two thresholds: an aerodynamic threshold, and a bed-dilatancy threshold. It is the latter which controls the reptation population, and its significance increases proportionally with transport energy. Because we only have experience with terrestrial sand transport, extrapolations of aeolian theory to Mars and Venus have adjusted only the aerodynamic factor, taking gravitational forces and atmospheric density as the prime variables in the aerodynamic equations, but neglecting reptation. The basis for our perspective on the importance of reptation and bed dilatancy is a set of experiments that were designed to simulate sand transport across the surface of a martian dune. Using a modified sporting crossbow in which a sand-impelling sabot replaced the bolt-firing mechanism, individual grains of sand were fired at loose sand targets with glancing angles typical of saltation impact; grains were projected at about 80 m/s to simulate velocities commensurate with those predicted for extreme martian aeolian conditions. The sabot impelling method permitted study of individual impacts without the masking effect of bed mobilization encountered in wind-tunnel studies. At these martian impact velocities, grains produced small craters formed by the ejection of several hundred grains from the bed. Unexpectedly, the craters were not elongated, despite glancing impact; the craters were very close to circular in planform. High-speed photography showed them to grow in both diameter and depth after the impactor had ricochetted from the crater site. The delayed response of the bed was "explosive" in nature, and created a miniature ejecta curtain spreading upward and outward for many centimeters for impact of 100-300 micron-diameter grains into similar material. Elastic energy deposited in the bed by the impacting grain creates a subsurface stress regime or "quasi-Boussinesq" compression field. Elastic recovery of the bed occurs by dilatancy; shear stresses suddenly convert the grains from closed to open packing, and grains are consequently able to eject themselves forcefully from the impact site. Random jostling of the grains causes radial homogenization of stress vectors and a resulting circular crater. There is a great temptation to draw parallels with cratering produced by meteorite impacts, but a rigorous search for common modelling ground between the two phenomena has not been conducted at this time. For every impact of an aerodynamically energized grain, there are several hundred grains ejected into the wind for the high-energy transport that might occur on Mars. Many of these grains will themselves become subject to the boundary layer's aerodynamic lift forces (their motion will not immediately die and add to the creep population), and these grains will become indistinguishable from those lifted entirely by aerodynamic forces. As each grain impacts the bed, it will eject even more grains into the flow. A cascading effect will take place, but because it must be finite in its growth, damping will occur as the number of grains set in motion causes mid-air collisions that prevent much of the impact energy from reaching the surface of the bed -thus creating a dynamic equilibrium in a high-density saltation cloud. It is apparent that for a given impact energy, the stress field permits a smaller volume of grains to convert to open packing as the size of the bed grains increases, or as the energy of the "percussive" grain decreases (by decrease in velocity or mass). Thus, the mass of the "repercussive" grain population that is ejected from the impact site becomes a function of the scale of the stress field in relation to the scale of the bed material (self-similarity being applicable if both bed size and energy are simultaneously adjusted). In other words, in a very high energy aeolian system where an aerodynamically raised grain can ballistically raise many more grains, the amount of material lifted into the wind becomes largely a function of a dilatancy threshold. If this threshold is exceeded, grains are repercussively injected into the saltation cloud. The "dilatancy threshold" may be defined in terms of the saltation percussive force required to convert the bed, through elastic response, from a closed to an open packing system. If open packing cannot be created, the grains cannot escape from the impact site, even though the elastic deformation and percussive force may be able to reorganize the grains with respect to one another. As the crossbow experiments showed, for an ever-increasing bed grain size, a point is reached when no material can be moved because the energy of the percussive grain is insufficient to dilate the relatively coarse bed. Although this seems to be stating the obvious -- that too little energy will not cause the bed to splash -- the consequences of exceeding the "splash threshold" by dilatancy are not so obvious for high-energy aeolian transport. It is noted that the force required to elastically dilate the bed has to overcome Coulombic grain attractions such as dipole-dipole coupling, dielectric, monopole, contact-induced dipole attractions, van der Waals forces, molecular monolayer capillary forces, as well as the mechanical interlocking frictional resistance of the grains. On Mars, it is predicted that the dilatancy threshold may be the prime control of grain flux. Additional information is contained in the original.

  5. Aeolian Sand Transport in the Planetary Context: Respective Roles of Aerodynamic and Bed-Dilatancy Thresholds

    NASA Astrophysics Data System (ADS)

    Marshall, J. R.; Borucki, J.; Bratton, C.

    1999-09-01

    The traditional view of aeolian sand transport generally estimates flux from the perspective of aerodynamic forces creating the airborne grain population, although it has been recognized that "reptation" causes a significant part of the total airborne flux; reptation involves both ballistic injection of grains into the air stream by the impact of saltating grains as well as the "nudging" of surface grains into a creeping motion. Whilst aerodynamic forces may initiate sand motion, it is proposed here that within a fully-matured grain cloud, flux is actually governed by two thresholds: an aerodynamic threshold, and a bed-dilatancy threshold. It is the latter which controls the reptation population, and its significance increases proportionally with transport energy. Because we only have experience with terrestrial sand transport, extrapolations of aeolian theory to Mars and Venus have adjusted only the aerodynamic factor, taking gravitational forces and atmospheric density as the prime variables in the aerodynamic equations, but neglecting reptation. The basis for our perspective on the importance of reptation and bed dilatancy is a set of experiments that were designed to simulate sand transport across the surface of a martian dune. Using a modified sporting crossbow in which a sand-impelling sabot replaced the bolt-firing mechanism, individual grains of sand were fired at loose sand targets with glancing angles typical of saltation impact; grains were projected at about 80 m/s to simulate velocities commensurate with those predicted for extreme martian aeolian conditions. The sabot impelling method permitted study of individual impacts without the masking effect of bed mobilization encountered in wind-tunnel studies. At these martian impact velocities, grains produced small craters formed by the ejection of several hundred grains from the bed. Unexpectedly, the craters were not elongated, despite glancing impact; the craters were very close to circular in planform. High-speed photography showed them to grow in both diameter and depth after the impactor had ricochetted from the crater site. The delayed response of the bed was "explosive" in nature, and created a miniature ejecta curtain spreading upward and outward for many centimeters for impact of 100-300 micron-diameter grains into similar material. Elastic energy deposited in the bed by the impacting grain creates a subsurface stress regime or "quasi-Boussinesq" compression field. Elastic recovery of the bed occurs by dilatancy; shear stresses suddenly convert the grains from closed to open packing, and grains are consequently able to eject themselves forcefully from the impact site. Random jostling of the grains causes radial homogenization of stress vectors and a resulting circular crater. There is a great temptation to draw parallels with cratering produced by meteorite impacts, but a rigorous search for common modelling ground between the two phenomena has not been conducted at this time. For every impact of an aerodynamically energized grain, there are several hundred grains ejected into the wind for the high-energy transport that might occur on Mars. Many of these grains will themselves become subject to the boundary layer's aerodynamic lift forces (their motion will not immediately die and add to the creep population), and these grains will become indistinguishable from those lifted entirely by aerodynamic forces. As each grain impacts the bed, it will eject even more grains into the flow. A cascading effect will take place, but because it must be finite in its growth, damping will occur as the number of grains set in motion causes mid-air collisions that prevent much of the impact energy from reaching the surface of the bed -thus creating a dynamic equilibrium in a high-density saltation cloud. It is apparent that for a given impact energy, the stress field permits a smaller volume of grains to convert to open packing as the size of the bed grains increases, or as the energy of the "percussive" grain decreases (by decrease in velocity or mass). Thus, the mass of the "repercussive" grain population that is ejected from the impact site becomes a function of the scale of the stress field in relation to the scale of the bed material (self-similarity being applicable if both bed size and energy are simultaneously adjusted). In other words, in a very high energy aeolian system where an aerodynamically raised grain can ballistically raise many more grains, the amount of material lifted into the wind becomes largely a function of a dilatancy threshold. If this threshold is exceeded, grains are repercussively injected into the saltation cloud. The "dilatancy threshold" may be defined in terms of the saltation percussive force required to convert the bed, through elastic response, from a closed to an open packing system. If open packing cannot be created, the grains cannot escape from the impact site, even though the elastic deformation and percussive force may be able to reorganize the grains with respect to one another. As the crossbow experiments showed, for an ever-increasing bed grain size, a point is reached when no material can be moved because the energy of the percussive grain is insufficient to dilate the relatively coarse bed. Although this seems to be stating the obvious -- that too little energy will not cause the bed to splash -- the consequences of exceeding the "splash threshold" by dilatancy are not so obvious for high-energy aeolian transport. It is noted that the force required to elastically dilate the bed has to overcome Coulombic grain attractions such as dipole-dipole coupling, dielectric, monopole, contact-induced dipole attractions, van der Waals forces, molecular monolayer capillary forces, as well as the mechanical interlocking frictional resistance of the grains. On Mars, it is predicted that the dilatancy threshold may be the prime control of grain flux. Additional information is contained in the original.

  6. Flame retardants in UK furniture increase smoke toxicity more than they reduce fire growth rate.

    PubMed

    McKenna, Sean T; Birtles, Robert; Dickens, Kathryn; Walker, Richard G; Spearpoint, Michael J; Stec, Anna A; Hull, T Richard

    2018-04-01

    This paper uses fire statistics to show the importance of fire toxicity on fire deaths and injuries, and the importance of upholstered furniture and bedding on fatalities from unwanted fires. The aim was to compare the fire hazards (fire growth and smoke toxicity) using different upholstery materials. Four compositions of sofa-bed were compared: three meeting UK Furniture Flammability Regulations (FFR), and one using materials without flame retardants intended for the mainland European market. Two of the UK sofa-beds relied on chemical flame retardants to meet the FFR, the third used natural materials and a technical weave in order to pass the test. Each composition was tested in the bench-scale cone calorimeter (ISO 5660) and burnt as a whole sofa-bed in a sofa configuration in a 3.4 × 2.25 × 2.4 m 3 test room. All of the sofas were ignited with a No. 7 wood crib; the temperatures and yields of toxic products are reported. The sofa-beds containing flame retardants burnt somewhat more slowly than the non-flame retarded EU sofa-bed, but in doing so produced significantly greater quantities of the main fire toxicants, carbon monoxide and hydrogen cyanide. Assessment of the effluents' potential to incapacitate and kill is provided showing the two UK flame retardant sofa-beds to be the most dangerous, followed by the sofa-bed made with European materials. The UK sofa-bed made only from natural materials (Cottonsafe ® ) burnt very slowly and produced very low concentrations of toxic gases. Including fire toxicity in the FFR would reduce the chemical flame retardants and improve fire safety. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  7. Field Comparisons of the Elwha Bedload Sampler and an Acoustic Gravel-transport Sensor: Middle Fork of the Piedra River, Colorado, USA

    NASA Astrophysics Data System (ADS)

    Downing, J.; Ryan, S. E.

    2001-12-01

    Ten simultaneous bedload measurements were made with an Elhwa sampler and an acoustic-gravel-transport sensor (GTS) on the Middle Fork of the Piedra River in southwestern Colorado near the end of the spring freshet in water year 2001. The purpose was to compare bedload samples with acoustic measurements acquired under field conditions. Upstream of the measurement site, the river drains 86 km2 of andesite, ash flows, tuffs, and breccias in the San Juan Mountains, contributing a relatively high sediment load to the river system. The channel transitions from step-pools at high elevations to a plane bed with a slope of 0.018 in the study reach. Channel width, mean depth and bank-full velocity at the site are: 13.6 m, 0.52, and 1.5 m s-1. The D50 of the riverbed surface is 0.08 m which is 6 to 40 times larger than the D50s of the bedload samples. D16 and D84 of the bed = 0.02 and 0.21 m respectively. Water discharges from 7.3 to 9.3 m3 s-1 transported about 0.01 kg of gravel m-1 s-1 in the channel. Transport of coarse gravel (8-64 mm) ranged from 0.00063 to 0.024 kg m-1 s-1. The Elwha sampler is a portable, pressure-differential trap with a 0.2 m wide by 0.1 m high opening. The acoustic sensor is a 0.025-m wide by 0.1 m high strip of PVDF piezoelectric film connected to a signal processor and bonded to an aluminum pressure plate. When the plate is struck by stones, the GTS produces signal peaks with areas that are accurate measures of stone momentum. The GTS was calibrated with steels balls dropped on the pressure plate in still water to develop a curve of ball momentum as a function of peak areas. Based on these calibrations, the standard error of the GTS momentum estimates is 0.0017 kg m s-1. Five transects with 30 verticals, each occupied for 60 s, were completed with the sampler and GTS separated by < 1 m. Five additional verticals were occupied for about 1800 s each with the instruments separated by < 0.5 m. The trapped material was sieved and weighed and the water slope and local depth were used to calculate the velocity and momentum for each size fraction. The total momentum of coarse gravel trapped during 273 minutes of sampling per meter of bed was 16.4 kg m s-1. During the same time, the GTS measured total momentum of 14.9 kg m s-1 per meter of bed. Paired Elwha and GTS measurements for transects and single verticals are poorly correlated (r2 = 0.1 to 0.4), however, suggesting that additional samples and longer sampling times will be required to resolve cross-channel and temporal variations in transport.

  8. Optical properties of aerosols at Grand Canyon National Park

    NASA Astrophysics Data System (ADS)

    Malm, William C.; Day, Derek E.

    Visibility in the United States is expected to improve over the next few decades because of reduced emissions, especially sulfur dioxide. In the eastern United States, sulfates make up about 60-70% of aerosol extinction, while in the inner mountain west that fraction is only about 30%. In the inner mountain west, carbon aerosols make up about 35% of extinction, while coarse mass contributes between 15 and 25% depending on how absorption is estimated. Although sulfur dioxide emissions are projected to decrease, carbon emissions due to prescribed fire activity will increase by factors of 5-10, and while optical properties of sulfates have been extensively studied, similar properties of carbon and coarse particles are less well understood. The inability to conclusively apportion about 50% of the extinction budget motivated a study to examine aerosol physio-chemical-optical properties at Grand Canyon, Arizona during the months of July and August. Coarse particle mass has usually been assumed to consist primarily of wind-blown dust, with a mass-scattering efficiency between about 0.4 and 0.6 m 2 g -1. Although there were episodes where crustal material made up most of the coarse mass, on the average, organics and crustal material mass were about equal. Furthermore, about one-half of the sampling periods had coarse-mass-scattering efficiencies greater than 0.6 m 2 g -1 and at times coarse-mass-scattering efficiencies were near 1.0 m 2 g -1. It was shown that absorption by coarse- and fine-particle absorption were about equal and that both fine organic and sulfate mass-scattering efficiencies were substantially less than the nominal values of 4.0 and 3.0 m 2 g -1 that have typically been used.

  9. Resistance to airflow through bedding materials used in infancy.

    PubMed Central

    Hatch, D J; Helms, P; Matthew, D J; Skinner, D

    1982-01-01

    Various bedding materials used in infancy, including duvets (or continental quilts), were tested for airflow using the British Standards Institution tests for pillows or fabrics. Resistance was also measured when the items were placed on a dummy infant face. Measurements were made on washed and unwashed garments, which were tested both dry and wet. Results suggest that all the bedding materials tested are safe for use even in the newborn period. The duvets produced slightly lower resistance to breathing than conventional blankets and sheets. In view of the wide variety of infant bedding fabrics it seems desirable for standard airflow performance requirements to be introduced. PMID:7092309

  10. Evidence from the northwestern Venezuelan Andes for extraterrestrial impact: The black mat enigma

    NASA Astrophysics Data System (ADS)

    Mahaney, W. C.; Kalm, V.; Krinsley, D. H.; Tricart, P.; Schwartz, S.; Dohm, J.; Kim, K. J.; Kapran, B.; Milner, M. W.; Beukens, R.; Boccia, S.; Hancock, R. G. V.; Hart, K. M.; Kelleher, B.

    2010-03-01

    A carbon-rich black layer encrusted on a sandy pebbly bed of outwash in the northern Venezuelan Andes, previously considered the result of an alpine grass fire, is now recognized as a 'black mat' candidate correlative with Clovis Age sites in North America, falling within the range of 'black mat' dated sites (~ 12.9 ka cal BP). As such, the bed at site MUM7B, which dates to < 11.8 ka 14C years BP (raw dates) and appears to be contemporaneous with the Younger Dryas (YD) cooling event, marks a possibly much more extensive occurrence than previously identified. No fossils (megafauna) or tool assemblages were observed at this newly identified candidate site (3800 a.m.s.l.), as in the case of the North American sites. Here, evidence is presented for an extraterrestrial impact event at ~ 12.9 ka. The impact-related Andean bed, located ~ 20 cm above 13.7-13.3 ka cal BP alluvial and glaciolacustrine deposits, falls within the sediment characteristics and age range of 'black mat' dated sites (~ 12.9 ka cal BP) in North America. Site sediment characteristics include: carbon, glassy spherules, magnetic microspherules, carbon mat 'welded' onto coarse granular material, occasional presence of platinum group metals (Rh and Ru), planar deformation features (pdfs) in fine silt-size fragmental grains of quartz, as well as orthoclase, and monazite (with an abundance of Rare Earth Elements—REEs). If the candidate site is 'black mat', correlative with the 'black mat' sites of North America, such an extensive occurrence may support the hypothesized airburst/impact over the Laurentide Glacier, which led to a reversal of Allerød warming and the onset of YD cooling and readvance of glaciers. While this finding does not confirm such, it merits further investigation, which includes the reconnaissance for additional sites in South America. Furthermore, if confirmed, such an extensive occurrence may corroborate an impact origin.

  11. The hydrogeologic framework for the southeastern Coastal Plain aquifer system of the United States

    USGS Publications Warehouse

    Renken, R.A.

    1984-01-01

    Tertiary and Cretaceous age sand aquifers of the southeastern United States Coastal Plain constitute a distinct multistate hydrogeologic regime informally defined as the southeastern sand aquifer. Seven regional hydrogeologic units are defined; four regional aquifer units and three regional confining beds. Sand aquifers of this system consist of quartzose, feldspathic, and coarse to fine sand and sandstone and minor limestone; confining beds are composed of clay, shale, chalk, and marl. Three hydrogeologic units of Cretaceous to Holocene age overlie the sand system: the surficial aquifer, upper confining unit, and Floridan aquifer system. These three units are not part of the southeastern sand aquifer, but are an integral element of the total hydrogeologic system, and some act as a source of recharge to, or discharge from the underlying clastic sediments. Low-permeability strata of Paleozoic to early Mesozoic age form the base off the total system. (USGS)

  12. Bed-material characteristics of the Sacramento–San Joaquin Delta, California, 2010–13

    USGS Publications Warehouse

    Marineau, Mathieu D.; Wright, Scott A.

    2017-02-10

    The characteristics of bed material at selected sites within the Sacramento–San Joaquin Delta, California, during 2010–13 are described in a study conducted by the U.S. Geological Survey in cooperation with the Bureau of Reclamation. During 2010‒13, six complete sets of samples were collected. Samples were initially collected at 30 sites; however, starting in 2012, samples were collected at 7 additional sites. These sites are generally collocated with an active streamgage. At all but one site, a separate bed-material sample was collected at three locations within the channel (left, right, and center). Bed-material samples were collected using either a US BMH–60 or a US BM–54 (for sites with higher stream velocity) cable-suspended, scoop sampler. Samples from each location were oven-dried and sieved. Bed material finer than 2 millimeters was subsampled using a sieving riffler and processed using a Beckman Coulter LS 13–320 laser diffraction particle-size analyzer. To determine the organic content of the bed material, the loss on ignition method was used for one subsample from each location. Particle-size distributions are presented as cumulative percent finer than a given size. Median and 90th-percentile particle size, and the percentage of subsample mass lost using the loss on ignition method for each sample are also presented in this report.

  13. Fast fluidized bed steam generator

    DOEpatents

    Bryers, Richard W.; Taylor, Thomas E.

    1980-01-01

    A steam generator in which a high-velocity, combustion-supporting gas is passed through a bed of particulate material to provide a fluidized bed having a dense-phase portion and an entrained-phase portion for the combustion of fuel material. A first set of heat transfer elements connected to a steam drum is vertically disposed above the dense-phase fluidized bed to form a first flow circuit for heat transfer fluid which is heated primarily by the entrained-phase fluidized bed. A second set of heat transfer elements connected to the steam drum and forming the wall structure of the furnace provides a second flow circuit for the heat transfer fluid, the lower portion of which is heated by the dense-phase fluidized bed and the upper portion by the entrained-phase fluidized bed.

  14. Use of Computer-Aided Tomography (CT) Imaging for Quantifying Coarse Roots, Rhizomes, Peat, and Particle Densities in Marsh Soils

    EPA Science Inventory

    Computer-aided Tomography (CT) imaging was utilized to quantify wet mass of coarse roots, rhizomes, and peat in cores collected from organic-rich (Jamaica Bay, NY) and mineral (North Inlet, SC) Spartina alterniflora soils. Calibration rods composed of materials with standard dens...

  15. Multi-microbial compound eliminates Salmonella Typhimurium from one-third of poultry litter samples within eight days

    USDA-ARS?s Scientific Manuscript database

    Broiler litter is composed of bedding material mixed with chicken manure, feathers, and feed. The bedding material is typically composed of wood shavings; peanut or rice hulls depending on the area of the country where the broilers are being raised. Due to the increasing price of fresh bedding mat...

  16. System and method for producing metallic iron nodules

    DOEpatents

    Bleifuss, Rodney L [Grand Rapids, MN; Englund, David J [Bovey, MN; Iwasaki, Iwao [Grand Rapids, MN; Lindgren, Andrew J [Grand Rapids, MN; Kiesel, Richard F [Hibbing, MN

    2011-09-20

    A method for producing metallic iron nodules by assembling a shielding entry system to introduce coarse carbonaceous material greater than 6 mesh in to the furnace atmosphere at location(s) where the temperature of the furnace atmosphere adjacent at least partially reduced reducible iron bearing material is between about 2200 and 2650.degree. F. (1200 and 1450.degree. C.), the shielding entry system adapted to inhibit emission of infrared radiation from the furnace atmosphere and seal the furnace atmosphere from exterior atmosphere while introducing coarse carbonaceous material greater than 6 mesh into the furnace to be distributed over the at least partially reduced reducible iron bearing material, and heating the covered at least partially reduced reducible iron bearing material in a fusion atmosphere to assist in fusion and inhibit reoxidation of the reduced material during fusion to assist in fusion and inhibit reoxidation of the reduced material in forming metallic iron nodules.

  17. Discrete element modelling of bedload transport

    NASA Astrophysics Data System (ADS)

    Loyer, A.; Frey, P.

    2011-12-01

    Discrete element modelling (DEM) has been widely used in solid mechanics and in granular physics. In this type of modelling, each individual particle is taken into account and intergranular interactions are modelled with simple laws (e.g. Coulomb friction). Gravity and contact forces permit to solve the dynamical behaviour of the system. DEM is interesting to model configurations and access to parameters not directly available in laboratory experimentation, hence the term "numerical experimentations" sometimes used to describe DEM. DEM was used to model bedload transport experiments performed at the particle scale with spherical glass beads in a steep and narrow flume. Bedload is the larger material that is transported on the bed on stream channels. It has a great geomorphic impact. Physical processes ruling bedload transport and more generally coarse-particle/fluid systems are poorly known, arguably because granular interactions have been somewhat neglected. An existing DEM code (PFC3D) already computing granular interactions was used. We implemented basic hydrodynamic forces to model the fluid interactions (buoyancy, drag, lift). The idea was to use the minimum number of ingredients to match the experimental results. Experiments were performed with one-size and two-size mixtures of coarse spherical glass beads entrained by a shallow turbulent and supercritical water flow down a steep channel with a mobile bed. The particle diameters were 4 and 6mm, the channel width 6.5mm (about the same width as the coarser particles) and the channel inclination was typically 10%. The water flow rate and the particle rate were kept constant at the upstream entrance and adjusted to obtain bedload transport equilibrium. Flows were filmed from the side by a high-speed camera. Using image processing algorithms made it possible to determine the position, velocity and trajectory of both smaller and coarser particles. Modelled and experimental particle velocity and concentration depth profiles were compared in the case of the one-size mixture. The turbulent fluid velocity profile was prescribed and attached to the variable upper bedline. Provided the upper bedline was calculated with a refined space and time resolution, a fair agreement between DEM and experiments was reached. Experiments with two-size mixtures were designed to study vertical grain size sorting or segregation patterns. Sorting is arguably the reason why the predictive capacity of bedload formulations remains so poor. Modelling of the two-size mixture was also performed and gave promising qualitative results.

  18. Cacao bean husk: an applicable bedding material in dairy free-stall barns

    PubMed Central

    Yajima, Akira; Owada, Hisashi; Kobayashi, Suguru; Komatsu, Natsumi; Takehara, Kazuaki; Ito, Maria; Matsuda, Kazuhide; Sato, Kan; Itabashi, Hisao; Sugimura, Satoshi; Kanda, Shuhei

    2017-01-01

    Objective The objectives of the study were to assess the effect of cacao bean husk as bedding material in free-stall barn on the behavior, productivity, and udder health of dairy cattle, and on the ammonia concentrations in the barn. Methods Four different stall surfaces (no bedding, cacao bean husk, sawdust, and chopped wheat straw) were each continuously tested for a period of 1 week to determine their effects on nine lactating Holstein cows housed in the free-stall barn with rubber matting. The lying time and the milk yield were measured between d 4 and d 7. Blood samples for plasma cortisol concentration and teat swabs for bacterial counts were obtained prior to morning milking on d 7. The time-averaged gas-phase ammonia concentrations in the barn were measured between d 2 and d 7. Results The cows spent approximately 2 h more per day lying in the stalls when bedding was available than without bedding. The milk yield increased in the experimental periods when cows had access to bedding materials as compared to the period without bedding. The lying time was positively correlated with the milk yield. Bacterial counts on the teat ends recorded for cows housed on cacao bean husk were significantly lower than those recorded for cows housed without bedding. Ammonia concentration under cacao bean husk bedding decreased by 6%, 15%, and 21% as compared to no bedding, sawdust, and chopped wheat straw, respectively. The cortisol concentration was lowest in the period when cacao bean husk bedding was used. We observed a positive correlation between the ammonia concentrations in the barn and the plasma cortisol concentrations. Conclusion Cacao bean husk is a potential alternative of conventional bedding material, such as sawdust or chopped wheat straw, with beneficial effects on udder health and ammonia concentrations in the barns. PMID:28002931

  19. ELECTROSTATIC AIR CLEANING DEVICE AND METHOD

    DOEpatents

    Silverman, L.; Anderson, D.M.

    1961-07-18

    A method and apparatus for utilizing friction-charged particulate material from an aerosol are described. A bed of the plastic spheres is prepared, and the aerosol is passed upwardly through the bed at a rate just large enough to maintain the bed in a fluidized state wim over-all circulation of the balls. Wire members criss-crossing through the bed rub against the balls and maintain their surfaces with electrostatic charges. The particulate material in the aerosol adheres to the surfaces of the balls.

  20. Positive feedback and momentum growth during debris-flow entrainment of wet bed sediment

    USGS Publications Warehouse

    Iverson, R.M.; Reid, M.E.; Logan, M.; LaHusen, R.G.; Godt, J.W.; Griswold, J.P.

    2011-01-01

    Debris flows typically occur when intense rainfall or snowmelt triggers landslides or extensive erosion on steep, debris-mantled slopes. The flows can then grow dramatically in size and speed as they entrain material from their beds and banks, but the mechanism of this growth is unclear. Indeed, momentum conservation implies that entrainment of static material should retard the motion of the flows if friction remains unchanged. Here we use data from large-scale experiments to assess the entrainment of bed material by debris flows. We find that entrainment is accompanied by increased flow momentum and speed only if large positive pore pressures develop in wet bed sediments as the sediments are overridden by debris flows. The increased pore pressure facilitates progressive scour of the bed, reduces basal friction and instigates positive feedback that causes flow speed, mass and momentum to increase. If dryer bed sediment is entrained, however, the feedback becomes negative and flow momentum declines. We infer that analogous feedbacks could operate in other types of gravity-driven mass flow that interact with erodible beds. ?? 2011 Macmillan Publishers Limited. All rights reserved.

  1. Shaping of parabolic cylindrical membrane reflectors for the Dart Precision Test Bed

    NASA Technical Reports Server (NTRS)

    Morgan, R.; Agnes, Gregory S.; Dragovan, M.; Barber, D.; Marcin, M.; White, C.; Dooley, J.; Hatheway, A.

    2004-01-01

    The DART is a new telescope architecture consisting of a single aperture formed from two cylindrical parabolic reflectors. The system is ideally suited to using tensioned membranes for the reflective surfaces, owing to the zero Gaussian curvature of a cylindrical parabola. In this paper, we present experimental measurements for shaping the membranes by using curved boundary elements to achieve coarse shaping, and a pair of precision rails shaped by moments and forces at the ends, and lightly pushed into the surface, to provide fine shape control.

  2. MX Siting Investigation. Geotechnical Evaluation. Verification Study - Ralston Valley, Nevada. Volume II. Geotechnical Data.

    DTIC Science & Technology

    1980-06-15

    A3d). A4 Playa and Lacustrine Deposits - Deposits occurring in modern, active playas (A4) or in either inactive playas or older lake beds and abandoned...some f ine gravel 2 1 3403 3 4 vertical Smedium usal 2 10 de tnse GRAVELLY SAND,* brown *f ins to coarse, mell graded ,slightly moist ,sub- 12 o... lima 11𔄀-1 5 of ? - nRm NATIONAL, INS. 47 AFV-O1 -3 FN-TR-27-RV PERCENT FINER BY WEIGHT SAMPLE INTERVAL STANDARD SIEVE OPENING U S STAIIOA

  3. Discharge and sediment loads in the Boise River drainage basin, Idaho 1939-40

    USGS Publications Warehouse

    Love, S.K.; Benedict, Paul Charles

    1948-01-01

    The Boise River project is a highly developed agricultural area comprising some 520 square miles of valley and bench lands in southwestern Idaho. Water for irrigation is obtained from the Boise River and its tributaries which are regulated by storage in Arrow Rock and Deer Flat reservoirs. Distribution of water to the farms is effected by 27 principal canals and several small farm laterals which divert directly from the river. The- New York Canal, which is the largest, not only supplies water to smaller canals and farm laterals, but also is used to fill Deer Flat Reservoir near Nampa from which water is furnished to farms in the lower valley. During the past 15 years maintenance costs in a number of those canals have increased due to deposition of sediment in them and in the river channel itself below the mouth of Moore Creek. Interest in determining the runoff and sediment loads from certain areas in the Boise River drainage basin led to an investigation by the Flood Control Coordinating Committee of the Department of Agriculture. Measurements of daily discharge and sediments loads were made by the Geological Survey at 13 stations in the drainage basin during the 18-month period ended June 30, 1940. The stations were on streams in areas having different kinds of vegetative cover and subjected to different kinds of land-use practice. Data obtained during the investigation furnish a basis for certain comparisons of runoff and sediment loads from several areas arid for several periods of time. Runoff measured at stations on the. Boise River near Twin Springs and on Moore Creek near Arrow Rock was smaller during 1939 than during 1940 and was below the average annual runoff for the period of available record. Runoff measured at the other stations on the project also was smaller during 1939 than during 1940 and probably did not exceed the average for the previous 25 years. The sediment loads measured during the spring runoff in 1939 were smaller at most stations than those measured during the spring runoff in 1940. At those stations where the flow was not affected, or only slightly affected, by upstream diversions or by placer-mining operations, the largest sadiment loads per unit of drainage area were measured in Grouse Creek during both 1939 and 1940, amounting to 3,460 and 2,490 tons per square mile, respectively, and the smallest loads per unit of drainage area were measured in Bannock Creek during 1939 and in the Boise River near Twin Springs during 1940, amounting to 14 and 83 tons per square mile, respectively. Size anaylses of a large number of samples of suspended and deposited sediments give an indication of the origin of sediments carried past some of the stations. The analyses show that most of the sediment measured at the five stations in the Moore Creek drainages basin above Idaho City consisted largely of coarse material. They show, also, that the sediment measured at the station on Moore Creek above Thorn Creek consisted almost entirely of fine material during practically the entire period of the investigation. Most of the coarse material passing the stations above Idaho City probably was retained behind the dikes or in the pools usually formed by tailings from dredging operations in the placer-mining area below Idaho City, and much of the fine material measured at the station on Moore Creek above Thorn Creek probably was contributed by placer-mining activity. During the years when the spring runoff is greater than that measured during 1939 and 1940, it is probable that the dikes and pools will be less effective in retaining coarse sediments within the placered area. Records of sediment loads measured in the New York Canal indicate that a negligible amount of sediment was deposited there during 1939, but that in 1940 from 10 to 15 percent of the total load at the gaging station consisted of coarse sediment which was later deposited on the canal bottom. Most of the fine material was doubtless carried through the canal and eventually deposited in diversion ditches and on farm land. Because the sediment carried past the station on Moore Creek above Thorn Creek consisted almost entirely of fine material, it is probable, that a considerable part of the coarse sediment carried in the New York Canal during the 1940 spring runoff period was scoured from the large bed of deposited material in the Boise River above Diversion- Dam, and that the remainder came from Grimes Creek. Arrow Rock Reservoir was not sluiced during the investigation, and it is therefore unlikely that any of the coarse sediment in the New York Canal came from the Boise River above Moore Creek during 1939 and 1940. The average dry weight of 71 samples of deposited sediments collected from several parts of the Boise River drainage basin is about 90 pounds per cubic foot. The average specific gravity of 77 samples of deposited sediments is 2.57.

  4. Flood magnitude-frequency analysis and sediment transport capacity rate assessment in a mixed alluvial-bedrock channel at Val Lumnezia, Eastern Switzerland, (Graubünden)

    NASA Astrophysics Data System (ADS)

    Bekaddour, T.

    2012-04-01

    There is growing evidence in the literature that flood frequency has a large impact on the effective time scale of hillslope-derived sediment transport. Here, we present quantitative data on sediment transport in the mountainous Glenner River that drains the 120 km2-large Val Lumnezia basin, eastern Swiss Alps. The longitudinal profile of this stream is characterized by the presence of three ca. 500 m-long knickzones where channel gradients range from 0.02 to 0.2 mm-1 and the stream narrows to < 2 m wide gorges. Upstream and downstream of these knickzone reaches, the stream is flat with gradients < 0.01 mm-1, and cross-sectional widths ≥ 30 m. Measurements of the grain size distribution along the stream yield d84 values that range from ca. 10 to 28 cm, whereas the d50 values scatter around 10 cm. We explore the consequences of the channel morphology and the grain size distribution for the time scales of sediment transport by using a 1-D step-back water hydraulic model (HEC-RAS), to estimate hydraulic conditions at number of flood events and to predict hydraulic parameters and the boundary shear stress. The results reveal that along the knickzone reaches, a 2 years return period flood event Q2 is capable of mobilizing the d84 fraction where boundary critical shear stress exceeds the Shields critical shear stress value at incipient motion. In all other flat stream segments, the d84 fraction is barely attaining incipient motion where the critical boundary shear stress is approximately equal to the Shields critical shear stress at incipient motion. The results differ for smaller grain sizes , where Q2 is capable of mobilizing the d50 fraction along the entire stream. We anticipate that the overall effect of Q2 floods is the enrichment of coarse-grained sediment in the flat channel reaches by the entrainment of the d50 fraction, shifting to a better sorting of the bed particles. As a result, the degree of interlocking of coarse grain material may increases, which ultimately leads to enhanced stabilization of the channel bed and thus to a higher threshold of critical stress of incipient motion. Q10 floods, in contrast, are capable of moving both the d50 and d84 fractions, which implies that Q10 represents an effective flood that is results in the evacuation of hillslope-derived material over longer distances. Our results thus support the idea that the mechanisms and timescales of sediment transport in high mountain streams strongly depend on stream geometry and flood magnitude-frequency.

  5. Channel Bank Cohesion and the Maintenance of Suspension Rivers

    NASA Astrophysics Data System (ADS)

    Dunne, K. B. J.; Jerolmack, D. J.

    2017-12-01

    Gravel-bedded rivers organize their channel geometry and grain size such that transport is close to the threshold of motion at bankfull. Sand-bedded rivers, however, typically maintain bankfull fluid shear (or Shields) stresses far in excess of threshold; there is no widely accepted explanation for these "suspension rivers". We propose that all alluvial rivers are at the threshold of motion for their erosion-limiting material, i.e., the structural component of the river cross-section that is most difficult to mobilize. The entrainment threshold of gravel is large enough that bank cohesion has little influence on gravel-bed rivers. Sand, however, is the most easily entrained material; silt and clay can raise the entrainment threshold of sand by orders of magnitude. We examine a global dataset of river channel geometry and show that the shear stress range for sand-bedded channels is entirely within the range of entrainment thresholds for sand-mud mixtures - suggesting that rivers that suspend their sandy bed material are still threshold rivers in terms of bank material. We then present new findings from a New Jersey coastal-plain river examining if and how river-bank toe composition controls hydraulic geometry. We consider the toe because it is the foundation of the river bank, and its erosion leads to channel widening. Along a 20-km profile of the river we measure cross-section geometry, bed slope, and bed and bank composition, and we explore multiple methods of measuring the threshold shear stress of the the river-bank toe in-situ. As the composition of the river bed transitions from gravel to sand, we see preliminary evidence of a shift from bed-threshold to bank-threshold control on hydraulic geometry. We also observe that sub-bankfull flows are insufficient to erode (cohesive) bank materials, even though transport of sand is active at nearly all flows. Our findings highlight the importance of focusing on river-bank toe material, which in the studied stream is always submerged. The toe is more compacted and more resistant to erosion than the subaerially-exposed upper bank. We find mounting evidence that sand-bedded rivers are much like gravel-bedded river; they are near-threshold channels in which the suspended load does not play a controlling role in the determination of equilibrium hydraulic geometry.

  6. Sediment Transport and Deposition Resulting from a Dam-Removal Sediment Pulse: Milltown Dam, Clark Fork River, MT

    NASA Astrophysics Data System (ADS)

    Wilcox, A. C.

    2010-12-01

    The removal of Milltown Dam in 2008 from the Clark Fork River, Montana, USA, lowered base level at the dam site by 9 m and triggered erosion of nearly 600,000 metric tons of predominantly fine reservoir sediment. Bedload and bed-material sampling, repeat topographic surveys, sediment transport modeling, geochemical fingerprinting of downstream sediments, and Lidar analysis have all been applied to study the upstream and downstream effects of the dam removal. In the years since dam breaching, successive years with similar peak flows (3-year recurrence interval) were followed by a third year with below-average runoff. Nearly all of the documented reservoir erosion occurred in the first year, when sand and silt was eroded and transported downstream. In subsequent years, minimal reservoir erosion occurred, in part as a result of active management to prevent further reservoir erosion, but coarse material eroded from the reservoir has dispersed downstream. Upstream responses in this system have been strongly mediated by Superfund remediation activities in Milltown Reservoir, in which over two million metric tons of contaminated sediments have been mechanically excavated. Downstream aggradation has been limited in the main channel but was initially substantial in bars and side channels of a multi-thread reach 21 to 25 km downstream of the dam site, suggesting that channel change has been influenced far more by the antecedent depositional environment than by proximity to the source of the sediment pulse. Comparison of observed erosion with pre-removal modeling shows that reservoir erosion exceeded model predictions by two orders of magnitude in the unconfined Clark Fork arm of the reservoir. In addition, fine reservoir sediments predicted to move exclusively in suspension traveled as bedload at lower transport stages. The resulting fine sediment deposition in substrate interstices, on bars, and in side channels of the gravel- and cobble-bed Clark Fork River is the most significant and lasting change to downstream geomorphic and ecological systems.

  7. The optimal design of the bed structure of bedstand based on ABAQUS

    NASA Astrophysics Data System (ADS)

    Yang, Xudong; Dong, Yu; Ge, Qingkuan; Wang, Song

    2017-12-01

    Hydraulic transmission bedstand is one kind of the most commonly used in engineering machinery companies, and the bed structure is the most important part. Based on the original hydraulic transmission bedstand bed structure and the CAE technology, the original bed structure is improved. The optimized bed greatly saves the material of the production bed and improves the seismic performance of the bed. In the end, the performance of the optimized bed was compared with the original bed.

  8. Quantifying the uncertainty introduced by discretization and time-averaging in two-fluid model predictions

    DOE PAGES

    Syamlal, Madhava; Celik, Ismail B.; Benyahia, Sofiane

    2017-07-12

    The two-fluid model (TFM) has become a tool for the design and troubleshooting of industrial fluidized bed reactors. To use TFM for scale up with confidence, the uncertainty in its predictions must be quantified. Here, we study two sources of uncertainty: discretization and time-averaging. First, we show that successive grid refinement may not yield grid-independent transient quantities, including cross-section–averaged quantities. Successive grid refinement would yield grid-independent time-averaged quantities on sufficiently fine grids. A Richardson extrapolation can then be used to estimate the discretization error, and the grid convergence index gives an estimate of the uncertainty. Richardson extrapolation may not workmore » for industrial-scale simulations that use coarse grids. We present an alternative method for coarse grids and assess its ability to estimate the discretization error. Second, we assess two methods (autocorrelation and binning) and find that the autocorrelation method is more reliable for estimating the uncertainty introduced by time-averaging TFM data.« less

  9. Evaluation of dermal symptoms in hypothyroidism and hyperthyroidism.

    PubMed

    Razi, Ahad; Golforoushan, Farideh; Nejad, Amir Bahrami Shahla Babaee; Goldust, Mohamad

    2013-06-01

    Many symptoms arise in thyroid diseases. The aim of this study was to evaluate the dermal symptoms in hypothyroidism and hyperthyroidism. In this cross sectional study, 120 patients with hyperthyroidism and 50 patients suffering from hypothyroidism were studied. Cutaneous, hair and nail clinical symptoms were studied and registered in a special questionnaire. Mean age of patients suffering from hypothyroidism and hyperthyroidism were 38.24 +/- 14.45 and 25.86 +/- 14.69 years old. Dry and Coarse/rough skin were the most prevalent manifestations in the skin involvement in hypothyroidism since softness was the most prevalent ones in hyperthyroidism. Fragileness was the most prevalent symptom in patients with nail involvement in hypothyroidism since soft skin was the most prevalent ones in hyperthyroidism. Coarse/rough skin was observed more in patients with hair involvement in hypothyroidism since the most prevalent ones was separation of nail from its bed in hyperthyroidism. High prevalence of skin, hair and nail symptoms in thyroid patients, early diagnosis of the signs may be helpful in premature diagnosis and treatment of thyroid diseases.

  10. 76 FR 19914 - Safety Standard for Portable Bed Rails: Notice of Proposed Rulemaking

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-11

    ... constructed primarily of nonrigid materials, such as fabric or foam. An ``inflatable bed rail'' is defined as..., such as fabric or foam; Inflatable bed rail is a portable bed rail constructed primarily of nonrigid...

  11. A low tritium hydride bed inventory estimation technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klein, J.E.; Shanahan, K.L.; Baker, R.A.

    2015-03-15

    Low tritium hydride beds were developed and deployed into tritium service in Savannah River Site. Process beds to be used for low concentration tritium gas were not fitted with instrumentation to perform the steady-state, flowing gas calorimetric inventory measurement method. Low tritium beds contain less than the detection limit of the IBA (In-Bed Accountability) technique used for tritium inventory. This paper describes two techniques for estimating tritium content and uncertainty for low tritium content beds to be used in the facility's physical inventory (PI). PI are performed periodically to assess the quantity of nuclear material used in a facility. Themore » first approach (Mid-point approximation method - MPA) assumes the bed is half-full and uses a gas composition measurement to estimate the tritium inventory and uncertainty. The second approach utilizes the bed's hydride material pressure-composition-temperature (PCT) properties and a gas composition measurement to reduce the uncertainty in the calculated bed inventory.« less

  12. Grain Size Distribution in Mudstones: A Question of Nature vs. Nurture

    NASA Astrophysics Data System (ADS)

    Schieber, J.

    2011-12-01

    Grain size distribution in mudstones is affected by the composition of the source material, the processes of transport and deposition, and post-depositional diagenetic modification. With regard to source, it does make a difference whether for example a slate belt is eroded vs a stable craton. The former setting tends to provide a broad range of detrital quartz in the sub 62 micron size range in addition to clays and greenschist grade rock fragments, whereas the latter may be biased towards coarser quartz silt (30-60 microns), in addition to clays and mica flakes. In flume experiments, when fine grained materials are transported in turbulent flows at velocities that allow floccules to transfer to bedload, a systematic shift of grain size distribution towards an increasingly finer grained suspended load is observed as velocity is lowered. This implies that the bedload floccules are initially constructed of only the coarsest clay particles at high velocities, and that finer clay particles become incorporated into floccules as velocity is lowered. Implications for the rock record are that clay beds deposited from decelerating flows should show subtle internal grading of coarser clay particles; and that clay beds deposited from continuous fast flows should show a uniform distribution of coarse clays. Still water settled clays should show a well developed lower (coarser) and upper (finer) subdivision. A final complication arises when diagenetic processes, such as the dissolution of biogenic silica, give rise to diagenetic quartz grains in the silt to sand size range. This diagenetic silica precipitates in fossil cavities and pore spaces of uncompacted muds, and on casual inspection can be mistaken for detrital quartz. In distal mudstone successions close to 100 % of "apparent" quartz silt can be of that origin, and reworking by bottom currents can further enhance a detrital perception by producing rippled and laminated silt beds. Although understanding how size distributions in mudstones evolve is considered central to problems in hillslope, fluvial, aeolian, coastal, and submarine systems, one can not simply measure distributions and hope to arrive at an answer. The complex origins of mudstones are reflected in their very broad compositional range, and multiple overprinted processes have to be considered in order to make sense out of observed grain size distributions.

  13. Origin of lacustrine carbonate-dominated clinoforms in the lower- Permian Lucaogou low-order cycle, southern Bogda Mountains, NW China

    NASA Astrophysics Data System (ADS)

    Lu, Yiran

    Lacustrine carbonate clinoforms deposit can reflect ancient lake condition like paleoclimate and lake type. Complex lithofacies of a carbonate-dominated clinoform package in lower Permian Lucaogou low order cycle, Bogda Mountains, NW China, provide clues on clinoform-forming processes in a half-graben lake. The clinoform package is 5.2 m thick, prograding from S to N for 200 m with a maximum 15o dip angle, and spans 4 km laterally. A clinoform consists of a lower siliciclastic-rich and an upper carbonate-rich beds, forming a clinoform cycle. Results of petrographic study of 30 thin sections suggest that the clinoform package is composed of mixed siliciclasticcarbonate rocks. Carbonate-rich bed is composed of diagenetically-altered lithic packstone and wackestone, and siliciclastic-rich clinoform of micritic sandstone. The foundation rock is mainly microbial boundstone, indicating a shallow littoral environment. The carbonate-rich beds mainly consist of coarse peloids, rip-up intraclasts, aggregate grains, and volcanic lithics. The siliciclastic-rich clinoform is rich in coarse volcanic lithics. Both types of clinoforms contain abundant current laminations, indicating frequent strong current activities. The lack of evidence of unidirectional current flow suggests that the carbonate-dominated clinoform package was probably primarily formed by wave and longshore current processes. Unlike grains in wave-built terrace in the Glenns Ferry Formation (Swirydczuk et al., 1979, 1980), few ooids were observed in the studied strata, which do not have local sediments as nucleus and are often broken. This indicates that the wave was not facing the lake margin directly but was more oblique to the lake margin. The carbonate-dominated clinoform package is thus interpreted as a bar or spit, controlled primarily by lake shoreline morphology and strong wave and current activities. The shift between carbonate and siliciclastic rich clinoform beds within a clinoform cycle suggests high-frequency changes in climatic conditions. Detrital lithics were mainly derived from northern Tianshan suture zone to the south. The carbonate clasts were transported from a nearby carbonate factory at the lake margin. The Lucaogou lake was a balanced-filled lake in a semiarid, seasonal climate and had persistent longshore currents caused by strong wind and wave activities.

  14. Liquefaction features interpreted as seismites in the Pleistocene fluvio-lacustrine deposits of the Neuquén Basin (Northern Patagonia)

    NASA Astrophysics Data System (ADS)

    Moretti, M.; Ronchi, A.

    2011-04-01

    Superbly exposed soft-sediment deformation structures in Pleistocene fluvio-lacustrine deposits along the southern border of the depression area called Bajo de Añelo (Departamento de Añelo, Neuquén Basin) have been analysed. In the study area, five stratigraphic sections were measured in detail: facies distributions and stacking patterns show that these sediments result from the interaction between fluvial and lacustrine systems, represented by cross-bedded and rippled strata, and varved deposits. The lateral extent of the deformation is some hundred metres and the deformed bed involves the lower-mid part of the 30-metre-thick succession. Deformation affects about 1.5 m of coarse-grained sand, fine-grained sand and rare gravel alternations. The base and top of the deformed layer are defined by planar surfaces: undeformed beds of similar thickness, lithology and facies to the deformed layer occur above and below. Deformation is represented by a complex vertical succession of disturbed layers: each layer shows a general load-structure morphology. It can be described as a multilayered unstable density gradient system: in each bed a partial gravitational re-adjustment occurred after liquefaction. Unequal loading related to lateral variation of both bed thickness and grain packing and porosity is a probable additional driving force that can be described in the undeformed beds. Trigger mechanism recognition for the observed liquefaction features can be based on the study of the geometry of deformed beds and on facies analysis results. Two key factors drive our interpretation: (1) the occurrence of undeformed beds below and above the deformed bed; (2) deformed and undeformed beds showing the same sedimentological features. These field data allow us to exclude the action of internal erosive and/or sedimentary processes (such as overloading, wave action, etc.) as possible trigger agents for liquefaction since deformation is totally absent in beds with similar sedimentary features. Furthermore, each internal erosive and/or sedimentary process can be discussed and easily excluded by analysing its specific signature in the geological record. Having excluded every possible internal trigger (autokinetic processes), the observed liquefaction effects can reasonably be interpreted as seismically induced (allokinetic trigger). From this point of view, this deformed bed is an important record of seismic activity in this sector of the Neuquén Basin during the Pleistocene.

  15. Combined fluidized bed retort and combustor

    DOEpatents

    Shang, Jer-Yu; Notestein, John E.; Mei, Joseph S.; Zeng, Li-Wen

    1984-01-01

    The present invention is directed to a combined fluidized bed retorting and combustion system particularly useful for extracting energy values from oil shale. The oil-shale retort and combustor are disposed side-by-side and in registry with one another through passageways in a partition therebetween. The passageways in the partition are submerged below the top of the respective fluid beds to preclude admixing or the product gases from the two chambers. The solid oil shale or bed material is transported through the chambers by inclining or slanting the fluidizing medium distributor so that the solid bed material, when fluidized, moves in the direction of the downward slope of the distributor.

  16. Effects of Bedding Material on the Lying Behavior in Stabled Horses

    PubMed Central

    NINOMIYA, Shigeru; AOYAMA, Masato; UJIIE, Yumiko; KUSUNOSE, Ryo; KUWANO, Atsutoshi

    2008-01-01

    The objective of this study was to investigate the effect of straw, sawdust, coconut husk (husk), and coconut fiber (fiber) on the welfare of stable horses by observing their resting behavior. Twenty horses with ages ranging from 3 to 21 years were used at the Equine Research Institute of the Japan Racing Association, Utsunomiya, Japan. Five horses were allocated to each bedding condition. The behavior of each horse was recorded by video camera for 3 days and was continuously sampled from 17:00 to 05:00. The total duration, the number of bouts, and the mean and the maximum duration of bouts in standing rest, sternal lying, and lateral lying were calculated and analysed by the Kruskal-Wallis test and post hoc Steel-Dwass test. There was no difference in the standing rest and the sternal lying among beddings. Significant differences were observed in these values in the lateral lying among the different beddings (P<0.05). The values of the means of the total duration, the number of bouts, and the mean and the maximum duration of bout in the lateral lying were greater when husk was used as the bedding material than when sawdust were used (P<0.05). The results of the observations show that the new bedding materials would be as usable as straw. However, lateral lying was observed less frequently when sawdust were used as bedding; this indicates that use of sawdust as bedding material will decrease the welfare of stabled horses. PMID:24833955

  17. Preferences of dairy cows for three stall surface materials with small amounts of bedding.

    PubMed

    Norring, M; Manninen, E; de Passillé, A M; Rushen, J; Saloniemi, H

    2010-01-01

    Farmers' concerns about the economy, cost of labor, and hygiene have resulted in reduced use of organic bedding in stalls for dairy cows; however, the reduced use of organic bedding possibly impairs cow comfort. The effects of different stall surface materials were evaluated in an unheated building in which only a small amount of bedding was used. The lying time and preferences of 18 cows using 3 stall surface materials (concrete, soft rubber mat, and sand) were compared. All materials were lightly bedded with a small amount of straw, and the amount of straw added to each stall was measured. The cows only had access to stalls of one surface type while their lying time was observed. Lying times were longest on the rubber mats compared with other surfaces (rubber mat 768; concrete 727; sand 707+/-16 min/d). In a preference test, cows had access to 2 of the 3 types of stalls for 10 d and their stall preference was measured. Cows preferred stalls with rubber mats to stalls with a concrete floor (median 73 vs. 18 from a total of 160 observations per day; interquartile range was 27 and 12, respectively), but showed no preference for sand stalls compared with stalls with a concrete floor or with rubber mats. More straw was needed on sand stalls compared with concrete or mat (638+/-13 g/d on sand, 468+/-10 g/d on concrete, and 464+/-8 g/d on rubber mats). Lying times on bedded mats indicated that mats were comfortable for the cows. If availability or cost of bedding material requires limiting the amount of bedding used, rubber mats may help maintain cow comfort. Copyright 2010 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  18. A cost-effective laser scanning method for mapping stream channel geometry and roughness

    NASA Astrophysics Data System (ADS)

    Lam, Norris; Nathanson, Marcus; Lundgren, Niclas; Rehnström, Robin; Lyon, Steve

    2015-04-01

    In this pilot project, we combine an Arduino Uno and SICK LMS111 outdoor laser ranging camera to acquire high resolution topographic area scans for a stream channel. The microprocessor and imaging system was installed in a custom gondola and suspended from a wire cable system. To demonstrate the systems capabilities for capturing stream channel topography, a small stream (< 2m wide) in the Krycklan Catchment Study was temporarily diverted and scanned. Area scans along the stream channel resulted in a point spacing of 4mm and a point cloud density of 5600 points/m2 for the 5m by 2m area. A grain size distribution of the streambed material was extracted from the point cloud using a moving window, local maxima search algorithm. The median, 84th and 90th percentiles (common metrics to describe channel roughness) of this distribution were found to be within the range of measured values while the largest modelled element was approximately 35% smaller than its measured counterpart. The laser scanning system captured grain sizes between 30mm and 255mm (coarse gravel/pebbles and boulders based on the Wentworth (1922) scale). This demonstrates that our system was capable of resolving both large-scale geometry (e.g. bed slope and stream channel width) and small-scale channel roughness elements (e.g. coarse gravel/pebbles and boulders) for the study area. We further show that the point cloud resolution is suitable for estimating ecohydraulic parameters such as Manning's n and hydraulic radius. Although more work is needed to fine-tune our system's design, these preliminary results are encouraging, specifically for those with a limited operational budget.

  19. Theory of wavelet-based coarse-graining hierarchies for molecular dynamics.

    PubMed

    Rinderspacher, Berend Christopher; Bardhan, Jaydeep P; Ismail, Ahmed E

    2017-07-01

    We present a multiresolution approach to compressing the degrees of freedom and potentials associated with molecular dynamics, such as the bond potentials. The approach suggests a systematic way to accelerate large-scale molecular simulations with more than two levels of coarse graining, particularly applications of polymeric materials. In particular, we derive explicit models for (arbitrarily large) linear (homo)polymers and iterative methods to compute large-scale wavelet decompositions from fragment solutions. This approach does not require explicit preparation of atomistic-to-coarse-grained mappings, but instead uses the theory of diffusion wavelets for graph Laplacians to develop system-specific mappings. Our methodology leads to a hierarchy of system-specific coarse-grained degrees of freedom that provides a conceptually clear and mathematically rigorous framework for modeling chemical systems at relevant model scales. The approach is capable of automatically generating as many coarse-grained model scales as necessary, that is, to go beyond the two scales in conventional coarse-grained strategies; furthermore, the wavelet-based coarse-grained models explicitly link time and length scales. Furthermore, a straightforward method for the reintroduction of omitted degrees of freedom is presented, which plays a major role in maintaining model fidelity in long-time simulations and in capturing emergent behaviors.

  20. Sedimentary Petrography and Facies Analysis at the Shaler Outcrop, Gale Crater, Mars

    NASA Astrophysics Data System (ADS)

    Edgar, L. A.; Gupta, S.; Rubin, D. M.; Lewis, K. W.; Kocurek, G.; Anderson, R. B.; Bell, J. F.; Dromart, G.; Edgett, K. S.; Grotzinger, J. P.; Hardgrove, C. J.; Kah, L. C.; Leveille, R. J.; Malin, M.; Mangold, N.; Milliken, R.; Minitti, M. E.; Rice, M. S.; Rowland, S. K.; Schieber, J.; Stack, K.; Sumner, D. Y.; Team, M.

    2013-12-01

    The Mars Science Laboratory Curiosity rover has recently completed an investigation of a large fluvial deposit known informally as the Shaler outcrop (~1 m thick). Curiosity acquired data at the Shaler outcrop during sols 120-121 and 309-324. The Shaler outcrop is comprised of cross-bedded coarse-grained sandstones and recessive finer-grained intervals. Shaler is distinguished from the surrounding units by the presence of resistant beds exhibiting decimeter scale trough cross-bedding. Observations using the Mast Cameras, Mars Hand Lens Imager (MAHLI) and ChemCam Remote Micro Imager (RMI) enable the recognition of several distinct facies. MAHLI images were acquired on five distinct rock targets, and RMI images were acquired at 33 different locations. On the basis of grain size, erosional resistance, color, and sedimentary structures, we identify four facies: 1) resistant cross-stratified facies, 2) smooth, fine-grained cross-stratified facies, 3) dark gray, pitted facies, and 4) recessive, vertically fractured facies. Panoramic Mastcam observations reveal facies distributions and associations, and show cross-bedded facies that are similar to those observed at the Rocknest and Bathurst_Inlet locations. MAHLI and RMI images are used to determine the grain size, sorting, rounding and sedimentary fabric of the different facies. High-resolution images also reveal small-scale diagenetic features and sedimentary structures that are used to reconstruct the depositional and diagenetic history.

  1. Utilising Fine and Coarse Recycled Aggregates from the Gulf Region in Concrete

    NASA Astrophysics Data System (ADS)

    Jones, M. Rod; Halliday, Judith E.; Csetenyi, Laszlo; Zheng, Li; Strompinis, N.

    This paper explores the feasibility in utilising materials generated from C&DW to produce a `green' concrete. The two materials that are considered here are, (i) up-sizing silt-size material generated from recycled aggregates to produce a synthetic silt-sand and (ii) processed recycled coarse aggregates (RA) sourced from a Gulf Region landfill site. The work has demonstrated that there is potential for utilising silt wastes into foamed concrete, which can then be crushed to a sand-sized material suitable for use in concrete, however the porous nature of the material has highlighted that the water demand of this RA is high. RAs were characterised to BS EN 12620 and found suitable for use in concrete. The effect of RA on concrete properties is minimal when used up to 35% replacement levels, provided that they are pre-soaked.

  2. The effect of stable bedding materials on dust levels, microbial air contamination and equine respiratory health.

    PubMed

    Kwiatkowska-Stenzel, Agnieszka; Witkowska, Dorota; Sowińska, Janina; Stopyra, Artur

    2017-12-01

    The choice of bedding material affects the quality of air in a stable and, consequently, the respiratory health of horses and humans. The risk of respiratory problems can be mitigated by improving the quality of air in the stable. The choice of bedding material is particularly important in cold climate conditions where horses are kept indoors throughout the year. This study examined the impact of three bedding materials: straw (S), peat with shavings (PS), and crushed wood pellets (CWP). The investigated factors were air contamination, including dust contamination and microbial (bacterial and fungal) contamination, and the condition of the equine respiratory tract. The condition of the respiratory tract was evaluated based on the results of arterial blood biochemistry tests and endoscopic evaluations of the upper respiratory tract. Mechanical dust contamination was lowest for PS (1.09mg/m 3 ) and highest for CWP (4.07mg/m 3 ). Bacterial contamination (in CFU - colony forming units) was highest for PS (5.14log 10 CFU/m 3 ) and lowest for CWP (4.81log 10 CFU/m 3 ). Fungal air contamination was lowest for CWP (4.54log 10 CFU/m 3 ) and highest for S (4.82log 10 CFU/m 3 ) and PS (4.88log 10 CFU/m 3 ). An analysis of physiological indicators revealed that all horses were clinically healthy regardless of the type of applied bedding. The type of bedding material did not exert a clear influence on arterial blood biochemistry or the results of endoscopic evaluations of the respiratory tract; however, the use of alternative for straw bedding materials improved endoscopy results. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Piroxicam/2-hydroxypropyl-beta-cyclodextrin inclusion complex prepared by a new fluid-bed coating technique.

    PubMed

    Zhang, Xingwang; Wu, Danni; Lai, Jie; Lu, Yi; Yin, Zongning; Wu, Wei

    2009-02-01

    This work was aimed at investigating the feasibility of fluid-bed coating as a new method to prepare cyclodextrin inclusion complex. The inclusion complex of the model drug piroxicam (PIX) and 2-hydroxypropyl-beta-cyclodextrin (HPCD) in aqueous ethanol solution was sprayed and deposited onto the surface of the pellet substrate upon removal of the solvent. The coating process was fluent with high coating efficiency. Scanning electron microscopy revealed a coarse pellet surface, and a loosely packed coating structure. Significantly enhanced dissolution, over 90% at 5 min, was observed at stoichiometric PIX/HPCD molar ratio (1/1) and at a ratio with excessive HPCD (1/2). Differential scanning calorimetry and powder X-ray diffractometry confirmed absence of crystallinity of PIX at PIX/HPCD molar ratio of 1/1 and 1/2. Fourier transform-infrared spectrometry and Raman spectrometry revealed interaction between PIX and HPCD adding evidence on inclusion of PIX moieties into HPCD cavities. Solid-state (13)C NMR spectrometry indicated possible inclusion of PIX through the pyridine ring. It is concluded that fluid-bed coating has potential to be used as a new technique to prepare cyclodextrin inclusion complex.

  4. Fluidized bed calciner apparatus

    DOEpatents

    Owen, Thomas J.; Klem, Jr., Michael J.; Cash, Robert J.

    1988-01-01

    An apparatus for remotely calcining a slurry or solution feed stream of toxic or hazardous material, such as ammonium diurante slurry or uranyl nitrate solution, is disclosed. The calcining apparatus includes a vertical substantially cylindrical inner shell disposed in a vertical substantially cylindrical outer shell, in which inner shell is disposed a fluidized bed comprising the feed stream material to be calcined and spherical beads to aid in heat transfer. Extending through the outer and inner shells is a feed nozzle for delivering feed material or a cleaning chemical to the beads. Disposed in and extending across the lower portion of the inner shell and upstream of the fluidized bed is a support member for supporting the fluidized bed, the support member having uniform slots for directing uniform gas flow to the fluidized bed from a fluidizing gas orifice disposed upstream of the support member. Disposed in the lower portion of the inner shell are a plurality of internal electric resistance heaters for heating the fluidized bed. Disposed circumferentially about the outside length of the inner shell are a plurality of external heaters for heating the inner shell thereby heating the fluidized bed. Further, connected to the internal and external heaters is a means for maintaining the fluidized bed temperature to within plus or minus approximately 25.degree. C. of a predetermined bed temperature. Disposed about the external heaters is the outer shell for providing radiative heat reflection back to the inner shell.

  5. The Influence of Roughness and Pyrethroid Formulations on Bed Bug (Cimex lectularius L.) Resting Preferences.

    PubMed

    Hottel, Benjamin A; Pereira, Roberto M; Koehler, Philip G

    2015-05-12

    Two-choice tests were conducted to examine the effect of surface roughness on the resting preference of bed bugs, Cimex lectularius L., on copper, basswood, and acrylic materials. The influence of pyrethroid formulation applications on resting preferences was also evaluated. Bed bugs were given the choice of resting between two sanded halves of each material tested. One half was sanded with a P60 grit sandpaper and the other with a less rough P600 grit sandpaper. A significantly higher proportion of bed bugs chose to rest on the rougher P60 grit sanded half of all materials tested. Pyrethroid applications were made to either the P60 grit half or both halves of acrylic arenas and resting preferences were again assessed. Behavioral responses of bed bugs to pyrethroid formulation applications varied depending on the bed bug strain used and the formulation applied. Bed bugs would still rest on the P60 grit half when Suspend SC formulation (0.06% deltamethrin) was applied; however, an avoidance response was observed from a bed bug strain susceptible to D-Force aerosol formulations (0.06% deltamethrin). The avoidance behavior is likely attributed to one, more than one, or even an interaction of multiple spray constituents and not the active ingredient.

  6. 77 FR 12182 - Safety Standard for Portable Bed Rails: Final Rule

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-29

    ... of ASTM F2085- 10a, comply with the following: (i) 1.4.1 Foam and inflatable bed rails need meet only...--portable bed rail constructed primarily of nonrigid materials such as fabric or foam. 3.1.11 inflatable bed..., inflatable bed rail, are terms that are now incorporated as non-rigid bed rail under new section 3.1.12 in...

  7. Momentum conserving Brownian dynamics propagator for complex soft matter fluids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Padding, J. T.; Briels, W. J.

    2014-12-28

    We present a Galilean invariant, momentum conserving first order Brownian dynamics scheme for coarse-grained simulations of highly frictional soft matter systems. Friction forces are taken to be with respect to moving background material. The motion of the background material is described by locally averaged velocities in the neighborhood of the dissolved coarse coordinates. The velocity variables are updated by a momentum conserving scheme. The properties of the stochastic updates are derived through the Chapman-Kolmogorov and Fokker-Planck equations for the evolution of the probability distribution of coarse-grained position and velocity variables, by requiring the equilibrium distribution to be a stationary solution.more » We test our new scheme on concentrated star polymer solutions and find that the transverse current and velocity time auto-correlation functions behave as expected from hydrodynamics. In particular, the velocity auto-correlation functions display a long time tail in complete agreement with hydrodynamics.« less

  8. Disentangling the drivers of coarse woody debris behavior and carbon gas emissions during fire

    NASA Astrophysics Data System (ADS)

    Zhao, Weiwei; van der Werf, Guido R.; van Logtestijn, Richard S. P.; van Hal, Jurgen R.; Cornelissen, Johannes H. C.

    2016-04-01

    The turnover of coarse woody debris, a key terrestrial carbon pool, plays fundamental roles in global carbon cycling. Biological decomposition and fire are two main fates for dead wood turnover. Compared to slow decomposition, fire rapidly transfers organic carbon from the earth surface to the atmosphere. Both a-biotic environmental factors and biotic wood properties determine coarse wood combustion and thereby its carbon gas emissions during fire. Moisture is a key inhibitory environmental factor for fire. The properties of dead wood strongly affect how it burns either directly or indirectly through interacting with moisture. Coarse wood properties vary between plant species and between various decay stages. Moreover, if we put a piece of dead wood in the context of a forest fuel bed, the soil and wood contact might also greatly affect their fire behavior. Using controlled laboratory burns, we disentangled the effects of all these driving factors: tree species (one gymnosperms needle-leaf species, three angiosperms broad-leaf species), wood decay stages (freshly dead, middle decayed, very strongly decayed), moisture content (air-dried, 30% moisture content in mass), and soil-wood contact (on versus 3cm above the ground surface) on dead wood flammability and carbon gas efflux (CO2 and CO released in grams) during fire. Wood density was measured for all coarse wood samples used in our experiment. We found that compared to other drivers, wood decay stages have predominant positive effects on coarse wood combustion (for wood mass burned, R2=0.72 when air-dried and R2=0.52 at 30% moisture content) and associated carbon gas emissions (for CO2andCO (g) released, R2=0.55 when air-dried and R2=0.42 at 30% moisture content) during fire. Thus, wood decay accelerates wood combustion and its CO2 and CO emissions during fire, which can be mainly attributed to the decreasing wood density (for wood mass burned, R2=0.91 when air-dried and R2=0.63 at 30% moisture content) as wood becomes more decomposed. Our results provide quantitative experimental evidence for how several key abiotic and biotic factors, especially moisture content and the key underlying trait wood density, as well as their interactions, together drive coarse wood carbon turnover through fire. Our experimental data on coarse wood behavior and gas efflux during fire will help to improve the predictive power of global vegetation climate models on dead wood turnover and its feedback to climate.

  9. Ultrasonic Sound Field Mapping Through Coarse Grained Cast Austenitic Stainless Steel Components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crawford, Susan L.; Prowant, Matthew S.; Cinson, Anthony D.

    2014-08-01

    The Pacific Northwest National Laboratory (PNNL) has been involved with nondestructive examination (NDE) of coarse-grained cast austenitic stainless steel (CASS) components for over 30 years. More recent work has focused on mapping the ultrasonic sound fields generated by low-frequency phased array probes that are typically used for the evaluation of CASS materials for flaw detection and characterization. The casting process results in the formation of large grained material microstructures that are nonhomogeneous and anisotropic. The propagation of ultrasonic energy for examination of these materials results in scattering, partitioning and redirection of these sound fields. The work reported here provides anmore » assessment of sound field formation in these materials and provides recommendations on ultrasonic inspection parameters for flaw detection in CASS components.« less

  10. Educational Brief: Using Space for a Better Foundation on Earth Mechanics of Granular Materials

    NASA Technical Reports Server (NTRS)

    Dooling, Dave (Editor)

    2002-01-01

    Soils are three-phase composite materials that consist of soil, solid particles, and voids filled with water and/or air. Based on the particle-size distribution, they are generally classified as fine-grained (clays and plastic silts) and coarse-grained soils (nonplastic silts, sand, and gravel). Soil's resistance to external loadings is mainly derived from friction between particles and cohesion. Friction resistance is due to particles' surface-to-surface friction, interlocking, crushing, rearrangement, and dilation (or expansion) during shearing. Cohesion can be due to chemical cementation between particles, electrostatic and electromagnetic forces, and soil-water reaction and equilibrium. The basic factor responsible for the strength of coarse-grained soils is friction. Cohesion can be ignored. This educational brief focuses on measuring shear strength of sands (typical example of coarse-grained soils) where, for the same material, packing density is a main factor to be considered when one asks about the shear strength value. As the external load is applied, the soil's resistance is attained through shearing resistance, which causes the soil volume to increase (expand) or decrease (compress) depending on the initial packing density.

  11. Tapered bed bioreactor

    DOEpatents

    Scott, Charles D.; Hancher, Charles W.

    1977-01-01

    A vertically oriented conically shaped column is used as a fluidized bed bioreactor wherein biologically catalyzed reactions are conducted in a continuous manner. The column utilizes a packing material a support having attached thereto a biologically active catalytic material.

  12. Beach cusp destruction, formation, and evolution during and subsequent to an extratropical storm, Duck, North Carolina

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, J.R.; Miller, S.M.O.; Torzynski, C.A.

    Many studies have debated whether beach cusps are erosional or depositional features. The April 12-14, 1988, extratropical storm provided an opportunity to view the direct effects of one of the largest storms of the past decade upon beach sedimentology and morphology on barrier islands near Duck, North Carolina. Prior to the storm, the beach at Duck was characterized by a well-defined pattern of beach cusps with horn-to-horn spacings averaging 35 m. Storm-induced alterations were dominated by an initial period of beach erosion that remobilized the upper 30 to 50 cm of beach sediment, followed by aggradation. Net aggradation was mostmore » prominent along the middle beachface and within the pre-storm cusp bays. These morphologic adjustments resulted in the destruction of cusps, which were replaced with a post-storm planar beachface composed of horizontally bedded fine- to coarse-grained sediments. Within 24 hrs of storm subsidence, new beach cusps formed sequentially along the coast in the direction of longshore transport. Initial cusp formation resulted from beach erosion and the creation of bays in the planar storm-beach surface at positions of preferential post-storm runup. The initial cusp horns were composed of truncated horizontal beds of the planar beach accreted during the storm. After their formation, the cusps sequentially migrated downdrift. Migrating horns were composed of a coarse-grained sediment wedge that thickened toward horn crests, suggesting formation by deposition. It is concluded from these observations that beach cusps are both erosional and depositional in nature.« less

  13. Sediment transport simulation in an armoured stream

    USGS Publications Warehouse

    Milhous, Robert T.; Bradley, Jeffrey B.; Loeffler, Cindy L.

    1986-01-01

    Improved methods of calculating bed material stability and transport must be developed for a gravel bed stream having an armoured surface in order to use the HEC-6 model to examine channel change. Good possibilities exist for use of a two layer model based on the Schoklitsch and the Einstein-Brown transport equations. In Einstein-Brown the D35 of the armour is used for stabilities and the D50 of the bed (sub-surface) is used for transport. Data on the armour and sub-surface size distribution needs to be obtained as part of a bed material study in a gravel bed river; a "shovel" sample is not adequate. The Meyer-Peter, Muller equation should not be applied to a gravel bed stream with an armoured surface to estimate the initiation of transport or for calculation of transport at low effective bed shear stress.

  14. Tektite-bearing, deep-water clastic unit at the Cretaceous-Tertiary boundary in northeastern Mexico

    NASA Technical Reports Server (NTRS)

    Smit, J.; Montanari, A.; Swinburne, N. H.; Alvarez, W.; Hildebrand, A. R.; Margolis, S. V.; Claeys, P.; Lowrie, W.; Asaro, F.

    1992-01-01

    The hypothesis of Cretaceous-Tertiary (K-T) boundary impact on Yucatan, Mexico, predicts that nearby sites should show evidence of proximal impact ejecta and disturbance by giant waves. An outcrop along the Arroyo el Mimbral in northeastern Mexico contains a layered clastic unit up to 3 m thick that interrupts a biostratigraphically complete pelagic-marl sequence deposited at more than 400 m water depth. The marls were found to be unsuitable for determining magnetostratigraphy, but foraminiferal biostratigraphy places the clastic unit precisely at the K-T boundary. We interpret this clastic unit as the deposit of a megawave or tsunami produced by an extraterrestrial impact. The clastic unit comprises three main subunits. (1) The basal "spherule bed" contains glass in the form of tektites and microtektites, glass spherules replaced by chlorite-smectite and calcite, and quartz grains showing probable shock features. This bed is interpreted as a channelized deposit of proximal ejecta. (2) A set of lenticular, massive, graded "laminated beds" contains intraclasts and abundant plant debris, and may be the result of megawave backwash that carried coarse debris from shallow parts of the continental margin into deeper water. (3) At the top, several thin "ripple beds" composed of fine sand are separated by clay drapes; they are interpreted as deposits of oscillating currents, perhaps a seiche. An iridium anomaly (921 +/- 23 pg/g) is observed at the top of the ripple beds. Our observations at the Mimbral locality support the hypothesis of a K-T impact on nearby Yucatan.

  15. Provenance of Conglomerates within a Late Cretaceous Turbidite Channel System on the North American Margin: the Rosario Formation, Baja California, Mexico

    NASA Astrophysics Data System (ADS)

    Dos Santos, Thisiane; Kneller, Benjamin; Morton, Andrew; Armelenti, Garibaldi; Pantopoulos, George; De Ros, Luiz Fernando

    2017-04-01

    The Rosario Formation forms part of the Peninsular Ranges forearc basin complex, which crops out discontinuously along the Pacific coast of the Baja California Peninsula, Mexico. This study concerns the upper, deep marine part of the Rosario Formation , which includes several slope channel systems, one of these, the San Fernando channel systems consists of five channel complex sets (CCS1 to CCS5), each characterized by three filling stages. Stage I consists of predominantly clast­ and matrix-supported conglomerates, with subordinate medium to coarse grained sandstones. Stage II consists of units of clast-supported conglomerates with subordinate medium to coarse-grained sandstones, separated by mainly thinly-bedded turbidites (intercalation of thin beds of fine-grained sandstones and mudstones). Stage III consists mainly of hemipelagic mudstones. The main objective of this research is to determine source area and to compare the coarse fraction and finer fraction (fragments <2 cm) from conglomerates of each channel set, combining provenance methodology such as heavy minerals, clast counting, geochemistry, bulk petrography and U/Pb in detrital zircons by LA-ICPMS and SHRIMP. The heavy minerals assembly identified were Ca amphibole, epidote, clinozoisite, titanite, garnet, tourmaline, apatite, rutile and zircon, among them amphiboles are by far the most abundant detrital mineral. Clast counting and petrographic characterization showed that the pebble fraction of the conglomerates is constituted at least 18 different, and the majority being composed by pyroclastic, porphyritic volcanic and sandstone rocks. Bulk quantification indicates that the main provenance tectonic mode of the fine fraction of the conglomerates can be interpreted as dissected magmatic arc, with subordinate uplifted basement and recycled orogenic contributions. The preliminary conclusion is that the sedimentary supply to the Rosario Formation was mostly derived from volcanic and plutonic rocks of the Upper Peninsular Ranges Arc complex known as the Alisitos Arc, which follows the western margin of the Peninsular Ranges batholith, as well as from older magmatic arc, and from recycling of sedimentary/metasedimentary terrains.

  16. Modern sedimentary environments in a large tidal estuary, Delaware Bay

    USGS Publications Warehouse

    Knebel, H.J.

    1989-01-01

    Data from an extensive grid of sidescan-sonar records reveal the distribution of sedimentary environments in the large, tidally dominated Delaware Bay estuary. Bathymetric features of the estuary include large tidal channels under the relatively deep (> 10 m water depth) central part of the bay, linear sand shoals (2-8 m relief) that parallel the sides of the tidal channels, and broad, low-relief plains that form the shallow bay margins. The two sedimentary environments that were identified are characterized by either (1) bedload transport and/or erosion or (2) sediment reworking and/or deposition. Sand waves and sand ribbons, composed of medium to coarse sands, define sites of active bedload transport within the tidal channels and in gaps between the linear shoals. The sand waves have spacings that vary from 1 to 70 m, amplitudes of 2 m or less, and crestlines that are usually straight. The orientations of the sand waves and ribbons indicate that bottom sediment movement may be toward either the northwest or southeast along the trends of the tidal channels, although sand-wave asymmetry indicates that the net bottom transport is directed northwestward toward the head of the bay. Gravelly, coarse-grained sediments, which appear as strongly reflective patterns on the sonographs, are also present along the axes and flanks of the tidal channels. These coarse sediments are lag deposits that have developed primarily where older strata were eroded at the bay floor. Conversely, fine sands that compose the linear shoals and muddy sands that cover the shallow bay margins appear mainly on the sonographs either as smooth featureless beds that have uniform light to moderate shading or as mosaics of light and dark patches produced by variations in grain size. These acoustic and textural characteristics are the result of sediment deposition and reworking. Data from this study (1) support the hypothesis that bed configurations under deep tidal flows are functions of current velocity, sediment size, and depth; (2) suggest criteria that could be used to distinguish between open estuarine tidal deposits in the geologic record; and (3) provide a guide to future utilization of the bay floor. ?? 1989.

  17. Heat-transfer characteristics of flowing and stationary particle-bed-type fusion-reactor blankets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nietert, R.E.

    1983-02-01

    The following five appendices are included: (1) physical properties of materials, (2) thermal entrance length Nusselt number variations, (3) stationary particle bed temperature variations, (4) falling bed experimental data and calculations, and (5) stationary bed experimental data and calculations. (MOW)

  18. Spatially Explicit Estimates of Suspended Sediment and Bedload Transport Rates for Western Oregon and Northwestern California

    NASA Astrophysics Data System (ADS)

    O'Connor, J. E.; Wise, D. R.; Mangano, J.; Jones, K.

    2015-12-01

    Empirical analyses of suspended sediment and bedload transport gives estimates of sediment flux for western Oregon and northwestern California. The estimates of both bedload and suspended load are from regression models relating measured annual sediment yield to geologic, physiographic, and climatic properties of contributing basins. The best models include generalized geology and either slope or precipitation. The best-fit suspended-sediment model is based on basin geology, precipitation, and area of recent wildfire. It explains 65% of the variance for 68 suspended sediment measurement sites within the model area. Predicted suspended sediment yields range from no yield from the High Cascades geologic province to 200 tonnes/ km2-yr in the northern Oregon Coast Range and 1000 tonnes/km2-yr in recently burned areas of the northern Klamath terrain. Bed-material yield is similarly estimated from a regression model based on 22 sites of measured bed-material transport, mostly from reservoir accumulation analyses but also from several bedload measurement programs. The resulting best-fit regression is based on basin slope and the presence/absence of the Klamath geologic terrane. For the Klamath terrane, bed-material yield is twice that of the other geologic provinces. This model explains more than 80% of the variance of the better-quality measurements. Predicted bed-material yields range up to 350 tonnes/ km2-yr in steep areas of the Klamath terrane. Applying these regressions to small individual watersheds (mean size; 66 km2 for bed-material; 3 km2 for suspended sediment) and cumulating totals down the hydrologic network (but also decreasing the bed-material flux by experimentally determined attrition rates) gives spatially explicit estimates of both bed-material and suspended sediment flux. This enables assessment of several management issues, including the effects of dams on bedload transport, instream gravel mining, habitat formation processes, and water-quality. The combined fluxes can also be compared to long-term rock uplift and cosmogenically determined landscape erosion rates.

  19. Computational Modeling of Sinkage of Objects into Porous Bed under Cyclic Loading

    NASA Astrophysics Data System (ADS)

    Sheikh, B.; Qiu, T.; Liu, X.

    2017-12-01

    This work is a companion of another abstract submitted to this session on the computational modeling for the prediction of underwater munitions. In the other abstract, the focus is the hydrodynamics and sediment transport. In this work, the focus is on the geotechnical aspect and granular material behavior when the munitions interact with the porous bed. The final goal of the project is to create and utilize a comprehensive modeling framework, which integrates the flow and granular material models, to simulate and investigate the motion of the munitions. In this work, we present the computational modeling of one important process: the sinkage of rigid-body objects into porous bed under cyclic loading. To model the large deformation of granular bed materials around sinking objects under cyclic loading, a rate-independent elasto-plastic constitutive model is implemented into a Smoothed Particle Hydrodynamics (SPH) model. The effect of loading conditions (e.g., amplitude and frequency of shaking), object properties (e.g., geometry and density), and granular bed material properties (e.g., density) on object singkage is discussed.

  20. Reed beds receiving industrial sludge containing nitroaromatic compounds. Effects of outgoing water and bed material extracts in the umu-c genotoxicity assay, DR-CALUX assay and on early life stage development in zebrafish (Danio rerio).

    PubMed

    Gustavsson, Lillemor; Hollert, Henner; Jonsson, Sofie; van Bavel, Bert; Engwall, Magnus

    2007-05-01

    Sweden has prohibited the deposition of organic waste since January, 2005. Since 1 million tons of sludge is produced every year in Sweden and the capacity for incineration does not fill the demands, other methods of sludge management have to be introduced to a larger degree. One common method in the USA and parts of Europe is the use of wetlands to treat wastewater and sewage sludge. The capacity of reed beds to affect the toxicity of a complex mixture of nitroaromatics in sludge, however, is not fully elucidated. In this study, an industrial sludge containing explosives and pharmaceutical residues was therefore treated in artificial reed beds and the change in toxicity was studied. Nitroaromatic compounds, which are the main ingredients of many pharmaceuticals and explosives, are well known to cause cytotoxicity and genotoxicity. Recently performed studies have also showed that embryos of zebrafish (Danio rerio) are sensitive to nitroaromatic compounds. Therefore, we tested the sludge passing through constructed wetlands in order to detect any changes in levels of embryotoxicity, genotoxicity and dioxin-like activity (AhR-agonists). We also compared unplanted and planted systems in order to examine the impact of the root system on the fate of the toxicants. An industrial sludge containing a complex mixture of nitroaromatics was added daily to small-scale constructed wetlands (vertical flow), both unplanted and planted with Phragmites australis. Sludge with an average dry weight of 1.25%, was added with an average hydraulic loading rate of 1.2 L/day. Outgoing water was collected daily and stored at -20 degrees C. The artificial wetland sediment was Soxhlet extracted, followed by clean-up with multi-layer silica, or extracted by ultrasonic treatment, yielding one organic extract and one water extract of the same sample. Genotoxicity of the extracts was measured according to the ISO protocol for the umu-C genotoxicity assay (ISO/TC 147/SC 5/ WG9 N8), using Salmonella typhimurium TA1535/pSK1002 as test organism. Embryotoxicity and teratogenicity were studied using the fish egg assay with zebrafish (Danio rerio) and the dioxin-like activity was measured using the DR-CALUX assay. Chemical analyses of nitroaromatic compounds were performed using Solid Phase Micro Extraction (SPME) and GC-MS. Organic extracts of the bed material showed toxic potential in all three toxicity tests after two years of sludge loading. There was a difference between the planted and the unplanted beds, where the toxicity of organic extracts overall was higher in the bed material from the planted beds. The higher toxicity of the planted beds could have been caused by the higher levels of total carbon in the planted beds, which binds organic toxicants, and by enrichment caused by lower volumes of outgoing water from the planted beds. Developmental disorders were observed in zebrafish exposed directly in contact to bed material from unplanted beds, but not in fish exposed to bed material from planted beds. Hatching rates were slightly lower in zebrafish exposed to outgoing water from unplanted beds than in embryos exposed to outgoing water from planted beds. Genotoxicity in the outgoing water was below detection limit for both planted and unplanted beds. Most of the added toxicants via the sludge were unaccounted for in the outgoing water, suggesting that the beds had toxicant removal potential, although the mechanisms behind this remain unknown. During the experimental period, the beds received a sludge volume (dry weight) of around three times their own volume. In spite of this, the toxicity in the bed material was lower than in the sludge. Thus, the beds were probably able to actually decrease the toxicity of the added, sludge-associated toxicants. When testing the acetone extracts of the bed material, the planted bed showed a higher toxicity than the unplanted beds in all three toxicity tests. The toxicity of water extracts from the unplanted beds, detected by the fish egg assay, were higher than the water extracts from the planted beds. No genotoxicity was detected in outgoing water from either planted or unplanted beds. All this together indicates that the planted reed beds retained semi-lipophilic acetone-soluble toxic compounds from the sludge better than the unplanted beds, which tended to leak out more of the water soluble toxic compounds in the outgoing water. The compounds identified by SPME/GC in the outgoing water were not in sufficient concentrations to have caused induction in the genotoxicity test. This study has pointed out the benefits of using constructed wetlands receiving an industrial sludge containing a complex mixture of nitroaromatics to reduce toxicity in the outgoing water. The water from planted, constructed wetlands could therefore be directed to a recipient without further cleaning. The bed material should be investigated over a longer period of time in order to evaluate potential accumulation and leakage prior to proper usage or storage. The plants should be investigated in order to examine uptake and possible release when the plant biomass is degraded.

  1. High capacitance of coarse-grained carbide derived carbon electrodes

    DOE PAGES

    Dyatkin, Boris; Gogotsi, Oleksiy; Malinovskiy, Bohdan; ...

    2016-01-01

    Here, we report exceptional electrochemical properties of supercapacitor electrodes composed of large, granular carbide-derived carbon (CDC) particles. We synthesized 70–250 μm sized particles with high surface area and a narrow pore size distribution, using a titanium carbide (TiC) precursor. Electrochemical cycling of these coarse-grained powders defied conventional wisdom that a small particle size is strictly required for supercapacitor electrodes and allowed high charge storage densities, rapid transport, and good rate handling ability. Moreover, the material showcased capacitance above 100 F g -1 at sweep rates as high as 250 mV s -1 in organic electrolyte. 250–1000 micron thick dense CDCmore » films with up to 80 mg cm -2 loading showed superior areal capacitances. The material significantly outperformed its activated carbon counterpart in organic electrolytes and ionic liquids. Furthermore, large internal/external surface ratio of coarse-grained carbons allowed the resulting electrodes to maintain high electrochemical stability up to 3.1 V in ionic liquid electrolyte. In addition to presenting novel insights into the electrosorption process, these coarse-grained carbons offer a pathway to low-cost, high-performance implementation of supercapacitors in automotive and grid-storage applications.« less

  2. High capacitance of coarse-grained carbide derived carbon electrodes

    NASA Astrophysics Data System (ADS)

    Dyatkin, Boris; Gogotsi, Oleksiy; Malinovskiy, Bohdan; Zozulya, Yuliya; Simon, Patrice; Gogotsi, Yury

    2016-02-01

    We report exceptional electrochemical properties of supercapacitor electrodes composed of large, granular carbide-derived carbon (CDC) particles. Using a titanium carbide (TiC) precursor, we synthesized 70-250 μm sized particles with high surface area and a narrow pore size distribution. Electrochemical cycling of these coarse-grained powders defied conventional wisdom that a small particle size is strictly required for supercapacitor electrodes and allowed high charge storage densities, rapid transport, and good rate handling ability. The material showcased capacitance above 100 F g-1 at sweep rates as high as 250 mV s-1 in organic electrolyte. 250-1000 micron thick dense CDC films with up to 80 mg cm-2 loading showed superior areal capacitances. The material significantly outperformed its activated carbon counterpart in organic electrolytes and ionic liquids. Furthermore, large internal/external surface ratio of coarse-grained carbons allowed the resulting electrodes to maintain high electrochemical stability up to 3.1 V in ionic liquid electrolyte. In addition to presenting novel insights into the electrosorption process, these coarse-grained carbons offer a pathway to low-cost, high-performance implementation of supercapacitors in automotive and grid-storage applications.

  3. Litho-kinematic facies model for large landslide deposits in arid settings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yarnold, J.C.; Lombard, J.P.

    1989-04-01

    Reconnaissance field studies of six large landslide deposits in the S. Basin and Range suggest that a set of characteristic features is common to the deposits of large landslides in an arid setting. These include a coarse boulder cap, an upper massive zone, a lower disrupted zone, and a mixed zone overlying disturbed substrate. The upper massive zone is dominated by crackel breccia. This grades downward into a lower disrupted zone composed of a more matrix-rich breccia that is internally sheared, intruded by clastic dikes, and often contains a cataclasite layer at its base. An underlying discontinuous mixed zone ismore » composed of material from the overlying breccia mixed with material entrained from the underlying substrate. Bedding in the substrate sometimes displays folding and contortion that die out downward. The authors work suggests a spatial zonation of these characteristic features within many landslide deposits. In general, clastic dikes, the basal cataclasite, and folding in the substrate are observed mainly in distal parts of landslides. In most cases, total thickness, thickness of the basal disturbed and mixed zones, and the degree of internal shearing increase distally, whereas maximum clast size commonly decreases distally. Zonation of these features is interpreted to result from kinematics of emplacement that cause generally increased deformation in the distal regions of the landslide.« less

  4. Bed-material entrainment and associated transportation infrastructure problems in streams of the Edwards Plateau, central Texas

    USGS Publications Warehouse

    Heitmuller, Franklin T.; Asquith, William H.

    2008-01-01

    The Texas Department of Transportation commonly builds and maintains low-water crossings (LWCs) over streams in the Edwards Plateau in Central Texas. LWCs are low-height structures, typically constructed of concrete and asphalt, that provide acceptable passage over seasonal rivers or streams with relatively low normal-depth flow. They are designed to accommodate flow by roadway overtopping during high-flow events. The streams of the Edwards Plateau are characterized by cobble- and gravel-sized bed material and highly variable flow regimes. Low base flows that occur most of the time occasionally are interrupted by severe floods. The floods entrain and transport substantial loads of bed material in the stream channels. As a result, LWCs over streams in the Edwards Plateau are bombarded and abraded by bed material during floods and periodically must be maintained or even replaced.

  5. In situ quantification of spatial and temporal variability of hyporheic exchange in static and mobile gravel-bed rivers

    USGS Publications Warehouse

    Rosenberry, Donald O.; Klos, P. Zion; Neal, Andrew

    2012-01-01

    Seepage meters modified for use in flowing water were used to directly measure rates of exchange between surface and subsurface water in a gravel- and cobble bed river in western Pennsylvania, USA (Allegheny River, Q mean = 190 m 3/s) and a sand- and gravel-bed river in Colorado, USA (South Platte River, Q mean = 9??7 m 3/s). Study reaches at the Allegheny River were located downstream from a dam. The bed was stable with moss, algae, and river grass present in many locations. Median seepage was + 0??28 m/d and seepage was highly variable among measurement locations. Upward and downward seepage greatly exceeded the median seepage rate, ranging from + 2??26 (upward) to - 3??76 (downward) m/d. At the South Platte River site, substantial local-scale bed topography as well as mobile bedforms resulted in spatial and temporal variability in seepage greatly in exceedence of the median groundwater discharge rate of 0??24 m/d. Both upward and downward seepage were recorded along every transect across the river with rates ranging from + 2??37 to - 3??40 m/d. Despite a stable bed, which commonly facilitates clogging by fine-grained or organic sediments, seepage rates at the Allegheny River were not reduced relative to those at the South Platte River. Seepage rate and direction depended primarily on measurement position relative to local- and meso-scale bed topography at both rivers. Hydraulic gradients were small at nearly all seepage-measurement locations and commonly were not a good indicator of seepage rate or direction. Therefore, measuring hydraulic gradient and hydraulic conductivity at in-stream piezometers may be misleading if used to determine seepage flux across the sediment-water interface. Such a method assumes that flow between the well screen and sediment-water interface is vertical, which appears to be a poor assumption in coarse-grained hyporheic settings.

  6. Evaluation of ternary cementitious combinations : tech summary.

    DOT National Transportation Integrated Search

    2012-02-01

    Portland cement concrete (PCC) is the worlds most versatile and utilized construction material. Modern concrete consists of six : main ingredients: coarse aggregate, sand, portland cement, supplementary cementitious materials (SCMs), chemical admi...

  7. Meat and bone meal as secondary fuel in fluidized bed combustion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    L. Fryda; K. Panopoulos; P. Vourliotis

    2007-07-01

    Meat and Bone Meal (MBM) was co-fired in a laboratory scale fluidized bed combustion (FBC) apparatus with two coals. Several fuel blends were combusted under different conditions to study how primary fuel substitution by MBM affects flue gas emissions as well as fluidized bed (FB) agglomeration tendency. MBM, being a highly volatile fuel, caused significant increase of CO emissions and secondary air should be used in industrial scale applications to conform to regulations. The high N-content of MBM is moderately reflected on the increase of nitrogen oxides emissions which are reduced by MBM derived volatiles. The MBM ash, mainly containingmore » bone material rich in Ca, did not create any noteworthy desulphurization effect. The observed slight decrease in SO{sub 2} emissions is predominantly attributed to the lower sulphur content in the coal/MBM fuel mixtures. The SEM/EDS analysis of bed material samples from the coal/MBM tests revealed the formation of agglomerates of bed material debris and ash with sizes that do not greatly exceed the original bed inventory and thus not problematic. 37 refs., 9 figs., 3 tabs.« less

  8. Numerical Model of Turbulence, Sediment Transport, and Sediment Cover in a Large Canyon-Bound River

    NASA Astrophysics Data System (ADS)

    Alvarez, L. V.; Schmeeckle, M. W.

    2013-12-01

    The Colorado River in Grand Canyon is confined by bedrock and coarse-grained sediments. Finer grain sizes are supply limited, and sandbars primarily occur in lateral separation eddies downstream of coarse-grained tributary debris fans. These sandbars are important resources for native fish, recreational boaters, and as a source of aeolian transport preventing the erosion of archaeological resources by gully extension. Relatively accurate prediction of deposition and, especially, erosion of these sandbar beaches has proven difficult using two- and three-dimensional, time-averaged morphodynamic models. We present a parallelized, three-dimensional, turbulence-resolving model using the Detached-Eddy Simulation (DES) technique. DES is a hybrid large eddy simulation (LES) and Reynolds-averaged Navier Stokes (RANS). RANS is applied to the near-bed grid cells, where grid resolution is not sufficient to fully resolve wall turbulence. LES is applied further from the bed and banks. We utilize the Spalart-Allmaras one equation turbulence closure with a rough wall extension. The model resolves large-scale turbulence using DES and simultaneously integrates the suspended sediment advection-diffusion equation. The Smith and McLean suspended sediment boundary condition is used to calculate the upward and downward settling of sediment fluxes in the grid cells attached to the bed. The model calculates the entrainment of five grain sizes at every time step using a mixing layer model. Where the mixing layer depth becomes zero, the net entrainment is zero or negative. As such, the model is able to predict the exposure and burial of bedrock and coarse-grained surfaces by fine-grained sediments. A separate program was written to automatically construct the computational domain between the water surface and a triangulated surface of a digital elevation model of the given river reach. Model results compare favorably with ADCP measurements of flow taken on the Colorado River in Grand Canyon during the High Flow Experiment (HFE) of 2008. The model accurately reproduces the size and position of the major recirculation currents, and the error in velocity magnitude was found to be less than 17% or 0.22 m/s absolute error. The mean deviation of the direction of velocity with respect to the measured velocity was found to be 20 degrees. Large-scale turbulence structures with vorticity predominantly in the vertical direction are produced at the shear layer between the main channel and the separation zone. However, these structures rapidly become three-dimensional with no preferred orientation of vorticity. Surprisingly, cross-stream velocities, into the main recirculation zone just upstream of the point of reattachment and out of the main recirculation region just downstream of the point of separation, are highest near the bed. Lateral separation eddies are more efficient at storing and exporting sediment than previously modeled. The input of sediment to the eddy recirculation zone occurs near the reattachment zone and is relatively continuous in time. While, the export of sediment to the main channel by the return current occurs in pulses. Pulsation of the strength of the return current becomes a key factor to determine the rates of erosion and deposition in the main recirculation zone.

  9. Evolution of Channels Draining Mount St. Helens: Linking Non-Linear and Rapid, Threshold Responses

    NASA Astrophysics Data System (ADS)

    Simon, A.

    2010-12-01

    The catastrophic eruption of Mount St. Helens buried the valley of the North Fork Toutle River (NFT) to a depth of up to 140 m. Initial integration of a new drainage network took place episodically by the “filling and spilling” (from precipitation and seepage) of depressions formed during emplacement of the debris avalanche deposit. Channel incision to depths of 20-30 m occurred in the debris avalanche and extensive pyroclastic flow deposits, and headward migration of the channel network followed, with complete integration taking place within 2.5 years. Downstream reaches were converted from gravel-cobble streams with step-pool sequences to smoothed, infilled channels dominated by sand-sized materials. Subsequent channel evolution was dominated by channel widening with the ratio of changes in channel width to changes in channel depth ranging from about 60 to 100. Widening resulted in significant adjustment of hydraulic variables that control sediment-transport rates. For a given discharge over time, flow depths were reduced, relative roughness increased and flow velocity and boundary shear stress decreased non-linearly. These changes, in combination with coarsening of the channel bed with time resulted in systematically reduced rates of degradation (in upstream reaches), aggradation (in downstream reaches) and sediment-transport rates through much of the 1990s. Vertical adjustments were, therefore, easy to characterize with non-linear decay functions with bed-elevation attenuating with time. An empirical model of bed-level response was then created by plotting the total dimensionless change in elevation against river kilometer for both initial and secondary vertical adjustments. High magnitude events generated from the generated from upper part of the mountain, however, can cause rapid (threshold) morphologic changes. For example, a rain-on-snow event in November 2006 caused up to 9 m of incision along a 6.5 km reach of Loowit Creek and the upper NFT. The event triggered a debris flow which cutoff tributary channels to Glacier Creek and redirected Step and Loowit Creeks thereby forcing enhanced flow volumes through the main channel. Very coarse, armored bed materials were mobilized allowing for deep incision into the substrate. Incision continues today at slower rates but it is again the lateral shifting and widening of the channels that is dominant. Low and moderate flows undercut the toe of 30 m-high pyroclastic flow deposits causing significant erosion. As the channel continues to widen incision will attenuate non-linearly. Channels such as the multiple Step Creek channels will coalesce as narrow ridges erode by undercutting and mass failure much as reaches of lower Loowit Creek did in the late 1980’s. The resulting enlarged and over-widened sections will then again (as in downstream reaches) have lowered transporting power.

  10. Modeling the influence of river rehabilitation scenarios on bed material sediment flux in a large river over decadal timescales

    USGS Publications Warehouse

    Singer, Michael B.; Dunne, Thomas

    2006-01-01

    A stochastic flood generator and calibrated sediment transport formulae were used to assess the decadal impact of major river rehabilitation strategies on two fraction bed material sediment flux and net storage, first‐order indicators of aquatic riverine habitat, in a large river system. Model boundary conditions were modified to reflect the implementation of three major river rehabilitation strategies being considered in the Sacramento River Valley: gravel augmentation, setting back of levees, and flow alteration. Fifty 30‐year model simulations were used to compute probabilities of the response in sediment flux and net storage to these strategies. Total annual average bed material sediment flux estimates were made at six gauged river cross sections, and ∼60 km reach‐scale sediment budgets were evaluated between them. Gravel augmentation to improve spawning habitat induced gravel accumulation locally and/or downstream, depending on the added mixture. Levee setbacks to recreate the river corridor reduced flow stages for most flows and hence lowered sediment flux. Flow alteration to mimic natural flow regimes systematically decreased total annual average flux, suggesting that high‐magnitude low‐frequency transport events do not affect long‐term trends in bed material flux. The results indicate that each rehabilitation strategy reduces sediment transport in its target reaches and modulates imbalances in total annual bed material sediment budgets at the reach scale. Additional risk analysis is necessary to identify extreme conditions associated with variable hydrology that could affect rehabilitation over decades. Sensitivity analysis suggests that sorting of bed material sediment is the most important determinant of modeled transport and storage patterns.

  11. Bacillus cereus in free-stall bedding.

    PubMed

    Magnusson, M; Svensson, B; Kolstrup, C; Christiansson, A

    2007-12-01

    To increase the understanding of how different factors affect the bacterial growth in deep sawdust beds for dairy cattle, the microbiological status of Bacillus cereus and coliforms in deep sawdust-bedded free stalls was investigated over two 14-d periods on one farm. High counts of B. cereus and coliforms were found in the entire beds. On average, 4.1 log(10) B. cereus spores, 5.5 log(10) B. cereus, and 6.7 log(10) coliforms per gram of bedding could be found in the upper layers of the sawdust likely to be in contact with the cows' udders. The highest counts of B. cereus spores, B. cereus, and coliforms were found in the bedding before fresh bedding was added, and the lowest immediately afterwards. Different factors of importance for the growth of B. cereus in the bedding material were explored in laboratory tests. These were found to be the type of bedding, pH, and the type and availability of nutrients. Alternative bedding material such as peat and mixtures of peat and sawdust inhibited the bacterial growth of B. cereus. The extent of growth of B. cereus in the sawdust was increased in a dose-dependent manner by the availability of feces. Urine added to different bedding material raised the pH and also led to bacterial growth of B. cereus in the peat. In sawdust, a dry matter content greater than 70% was needed to lower the water activity to 0.95, which is needed to inhibit the growth of B. cereus. In an attempt to reduce the bacterial growth of B. cereus and coliforms in deep sawdust beds on the farm, the effect of giving bedding daily or a full replacement of the beds was studied. The spore count of B. cereus in the back part of the free stalls before fresh bedding was added was 0.9 log units lower in stalls given daily bedding than in stalls given bedding twice weekly. No effect on coliform counts was found. Replacement of the entire sawdust bedding had an effect for a short period, but by 1 to 2 mo after replacement, the counts of B. cereus spores in the beds had increased about 2 log units and were as high as they were before bed replacement. Therefore, free-stall management could, to a limited extent, reduce the content of B. cereus spores in the beds by daily bedding and entire bed replacement.

  12. Management and characteristics of recycled manure solids used for bedding in Midwest freestall dairy herds.

    PubMed

    Husfeldt, A W; Endres, M I; Salfer, J A; Janni, K A

    2012-04-01

    Interest in using recycled manure solids (RMS) as a bedding material for dairy cows has grown in the US Midwest. Cost of common bedding materials has increased in recent years and availability has decreased. Information regarding the composition of RMS and its use as a bedding material for dairy cows in the Midwest is very limited. The objectives of this study were to characterize RMS as a bedding material, observe bedding management practices, document methods of obtaining RMS, and describe housing facilities. We visited 38 Midwest dairy operations bedding freestalls with RMS to collect data. Methods of obtaining RMS for bedding included separation of anaerobic digested manure, separation of raw manure, and separation of raw manure followed by mechanical drum-composting for 18 to 24 h. Average bedding moisture of unused RMS was 72.4% with a pH of 9.16. Unused samples contained (on a dry basis) 1.4% N, 44.9% C, 32.7C:N ratio, 0.44% P, 0.70% K, 76.5% neutral detergent fiber, 9.4% ash, 4.4% nonfiber carbohydrates, and 1.1% fat. Moisture was lowest for drum-composted solids before and after use as freestall bedding. After use in the stalls, digested solids had lower neutral detergent fiber content (70.5%) than drum-composted (75.0%) and separated raw (73.1%) solids. Total N content was greater in digested solids (2.0%) than in separated raw (1.7%) solids. Total bacterial populations in unused bedding were greatest in separated raw manure solids but were similar between digested and drum-composted manure solids. Drum-composted manure solids had no coliform bacteria before use as freestall bedding. After use as bedding, digested manure solids had lower total bacteria counts compared with drum-composted and separated raw manure solids, which had similar counts. Used bedding samples of digested solids contained fewer environmental streptococci than drum-composted and separated raw solids and had reduced Bacillus counts compared with separated raw solids. Coliform counts were similar for all 3 bedding sources. Addition of a mechanical blower post-separation and use of a shelter for storage were associated with reduced fresh-bedding moisture but not associated with bacterial counts. This was the first survey of herds using RMS for bedding in the Midwest. We learned that RMS was being used successfully as a source of bedding for dairy cows. For most farms in the study, somatic cell count was comparable to the average in the region and not excessively high. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  13. Fluid bed material transfer method

    DOEpatents

    Pinske, Jr., Edward E.

    1994-01-01

    A fluidized bed apparatus comprising a pair of separated fluid bed enclosures, each enclosing a fluid bed carried on an air distributor plate supplied with fluidizing air from below the plate. At least one equalizing duct extending through sidewalls of both fluid bed enclosures and flexibly engaged therewith to communicate the fluid beds with each other. The equalizing duct being surrounded by insulation which is in turn encased by an outer duct having expansion means and being fixed between the sidewalls of the fluid bed enclosures.

  14. Possibilities for preservation of coarse particles in pelleting process to improve feed quality characteristics.

    PubMed

    Vukmirović, D; Fišteš, A; Lević, J; Čolović, R; Rakić, D; Brlek, T; Banjac, V

    2017-10-01

    Poultry diets are mainly used in pelleted form because pellets have many advantages compared to mash feed. On the other hand, pelleting causes reduction of feed particle size. The aim of this research was to investigate the possibility of increasing the content of coarse particles in pellets, and, at the same time, to produce pellets with satisfactory quality. In this research, the three grinding treatments of corn were applied using hammer mill with three sieve openings diameter: 3 mm (HM-3), 6 mm (HM-6) and 9 mm (HM-9). These grinding treatments were combined in pelleting process with three gaps between rollers and the die of pellet press (roller-die gap, RDG) (0.30, 1.15 and 2.00 mm) and three moisture contents of the pelleted material (14.5, 16.0 and 17.5%). The increased coarseness of grinding by the hammer mill resulted in the increased amount of coarse particles in pellets, especially when the smallest RDG was applied (0.30 mm), but pellet quality was greatly reduced. Increasing of RDG improved the quality of pellets produced from coarsely ground corn, but reduced the content of coarse particles in pellets and increased specific energy consumption of the pellet press. Increasing the moisture content of material to be pelleted (MC) significantly reduced energy consumption of the pellet press, but there was no significant influence of MC on particle size after pelleting and on the pellet quality. The optimal values of the pelleting process parameters were determined using desirability function method. The results of optimization process showed that to achieve the highest possible quantity of coarse particles in the pellets, and to produce pellets of satisfactory quality, with the lowest possible energy consumption of the pellet press, the coarsest grinding on hammer mill (HM-9), the largest RDG (2 mm) and the highest MC (17.5%) should be applied. Journal of Animal Physiology and Animal Nutrition © 2016 Blackwell Verlag GmbH.

  15. Bed material agglomeration during fluidized bed combustion. Technical progress report, 1 July, 1993--30 September, 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, R.C.; Dawson, M.R.; Noble, S.D.

    Agglomerates formed in laboratory coal combustion tests were analyzed to determine the chemical and mineral reactions which lead to the cohesion of bed particles. Combustion tests were conducted at 75, 90, 100, and 120% theoretical air values. The test at 75% theoretical air resulted in the formation of bed agglomerates within 30 minutes. Agglomerates which formed at the lower theoretical air values were compared to unagglomerated bed samples by X-ray diffraction analyses. Polished thin sections of the agglomerates were made for optical and scanning electron microscopy. The results of these analyses indicate there were, in a broad sense, two typesmore » of mineralogic reactions which lead to the cohesion of bed particles in the agglomerates. One mechanism of cohesion resulted from the melting of bed particles to form a viscous material which bridged other bed particles. Based on the chemical composition of the glass (which resulted from the melt), this material was probably derived from aluminosilicate minerals in the sand bed or from clays within the coal. Because of the high iron content in these glasses (4 to 5 wt%), it is likely that iron pyrites in the coal were involved in fluxing reactions. In addition, MgO appears to be relatively high in the glasses. It is suspected that Ca-Mg carbonates (dolomite) from the bed sand are also involved in mineralogic reactions with the aluminosilicate melt. The second type of mineralogic reaction appears to be a reaction involving calcium and magnesium with other bed particles and with the aluminosilicate melt to form new mineral phases. Although the composition of these phases is somewhat variable, some resemble single-chain silicates or pyroxenes.« less

  16. Lab-scaled model to evaluate odor and gas production from cattle confinement facilities with deep bedded packs

    USDA-ARS?s Scientific Manuscript database

    A lab-scaled simulated bedded pack model was developed to study air quality and nutrient composition of deep-bedded packs found in cattle monoslope facilities. This protocol has been used to effectively evaluate many different bedding materials, environmental variables (temperature, humidity), and ...

  17. Molecular modeling of polycarbonate materials: Glass transition and mechanical properties

    NASA Astrophysics Data System (ADS)

    Palczynski, Karol; Wilke, Andreas; Paeschke, Manfred; Dzubiella, Joachim

    2017-09-01

    Linking the experimentally accessible macroscopic properties of thermoplastic polymers to their microscopic static and dynamic properties is a key requirement for targeted material design. Classical molecular dynamics simulations enable us to study the structural and dynamic behavior of molecules on microscopic scales, and statistical physics provides a framework for relating these properties to the macroscopic properties. We take a first step toward creating an automated workflow for the theoretical prediction of thermoplastic material properties by developing an expeditious method for parameterizing a simple yet surprisingly powerful coarse-grained bisphenol-A polycarbonate model which goes beyond previous coarse-grained models and successfully reproduces the thermal expansion behavior, the glass transition temperature as a function of the molecular weight, and several elastic properties.

  18. Lewis Pressurized, Fluidized-Bed Combustion Program. Data and Calculated Results

    NASA Technical Reports Server (NTRS)

    Rollbuhler, R. J.

    1982-01-01

    A 200 kilowatt (thermal), pressurized, fluidized bed (PFB) reactor and research test facility were designed, constructed, and operated. The facility was established to assess and evaluate the effect of PFB hot gas effluent on aircraft turbine engine materials that may have applications in stationary powerplant turbogenerators. The facility was intended for research and development work and was designed to operate over a wide range of conditions. These conditions included the type and rate of consumption of fuel (e.g., coal) and sulfur reacting sorbent material: the ratio of feed fuel to sorbent material; the ratio of feed fuel to combustion airflow; the depth of the fluidized reaction bed; the temperature and pressure in the reaction bed; and the type of test unit that was exposed to the combustion exhaust gases.

  19. Lewis pressurized, fluidized-bed combustion program. Data and calculated results

    NASA Astrophysics Data System (ADS)

    Rollbuhler, R. J.

    1982-03-01

    A 200 kilowatt (thermal), pressurized, fluidized bed (PFB) reactor and research test facility were designed, constructed, and operated. The facility was established to assess and evaluate the effect of PFB hot gas effluent on aircraft turbine engine materials that may have applications in stationary powerplant turbogenerators. The facility was intended for research and development work and was designed to operate over a wide range of conditions. These conditions included the type and rate of consumption of fuel (e.g., coal) and sulfur reacting sorbent material: the ratio of feed fuel to sorbent material; the ratio of feed fuel to combustion airflow; the depth of the fluidized reaction bed; the temperature and pressure in the reaction bed; and the type of test unit that was exposed to the combustion exhaust gases.

  20. Effects of debris flow composition on runout, depositional mechanisms, and deposit morphology in laboratory experiments

    NASA Astrophysics Data System (ADS)

    Haas, Tjalling; Braat, Lisanne; Leuven, Jasper R. F. W.; Lokhorst, Ivar R.; Kleinhans, Maarten G.

    2015-09-01

    Predicting debris flow runout is of major importance for hazard mitigation. Apart from topography and volume, runout distance and area depends on debris flow composition and rheology, but how is poorly understood. We experimentally investigated effects of composition on debris flow runout, depositional mechanisms, and deposit geometry. The small-scale experimental debris flows were largely similar to natural debris flows in terms of flow behavior, deposit morphology, grain size sorting, channel width-depth ratio, and runout. Deposit geometry (lobe thickness and width) in our experimental debris flows is largely determined by composition, while the effects of initial conditions of topography (i.e., outflow plain slope and channel slope and width) and volume are negligible. We find a clear optimum in the relations of runout with coarse-material fraction and clay fraction. Increasing coarse-material concentration leads to larger runout. However, excess coarse material results in a large accumulation of coarse debris at the flow front and enhances diffusivity, increasing frontal friction and decreasing runout. Increasing clay content initially enhances runout, but too much clay leads to very viscous flows, reducing runout. Runout increases with channel slope and width, outflow plain slope, debris flow volume, and water fraction. These results imply that debris flow runout depends at least as much on composition as on topography. This study improves understanding of the effects of debris flow composition on runout and may aid future debris flow hazard assessments.

  1. Progradational sequences in Miocene shoreline deposits, southeastern Caliente Range, California

    USGS Publications Warehouse

    Clifton, H. Edward

    1981-01-01

    An exceptionally well exposed marine-nonmarine transition in middle Miocene strata exists in the southeastern Caliente Range, California. About 50 individual progradational sequences form a succession that ranges in thickness from approximately 1000 m (where predominantly nonmarine) to more than 2500 m (where predominantly marine). Paleogreographic evidence in basalt flows near the top of the succession and in overlying fluvial deposists indicates that these middle Miocene strata were deposited across a north-northwest trending shoreline.A complete progradational sequence typically is several meters to a few tens of meters thick and includes strata that represent three intertonguing stratigraphic units. Individual sequences generally rest on a thin gravel deposit interpreted as a transgressive lag on an erosional surface. The gravel is overlain by structureless siltstone or fine-grained sandstone deposited at water depths where the rate of faunal mixing exceeded that of production of structures by physical processes. These rocks grade upward into bedded fine sandstone deposited closer to shore where physical processes exceeded bioturbation. Crossbedded lenses of coarse sand or fine gravel in the upper part of this facies suggest the presence of failry long-period surface waves. The bedded fine sandstone is sharply overlain by a crossbedded coarse sandstone facies that is interpreted as a combined offshore bar-rip channel-surf zone assemblage. Cross-strata dip dominantly offshore, suggesting substantial deposition from rip currents. A secondary, shore=parallel mode of cross-strata direction suggests longshore currents produced by surface waves from the northwest. The crossbedded coarse-grained sandstone grades upward into planar-bedded medium-grained sandstone that is interpreted as a beach foreshore. This facies grades upward through structureless medium-grained sandstone into nonmarine or lagoonal red and green mudstone of the Caliente Formation.The middle Miocene succession was deposited in a subsiding basin that was otherwise remarkably stable tectonically; the position of the strand line differed no more than a few kilometers through a period of 1 to 3 m.y. The average duration of the transgressive-regressive cycles, a few tens of thousands of years, together with their distribution in groups of three or four in the lower two-thirds of the succession, is consistent with the pattern of long-term climatic cycles produced by periodicity of the earth's solar orbit and may be related to eustatic sea level changes attendant to the development of the Antarctic ice cap. Changes in the pattern of progradation in the upper part of the succession and nearby basaltic eruptions may hav been precursors to the onset of movement along the San Andreas fault in this area 12-14 m.y. ago.

  2. Investigating coarse sediment particles transport using PTV and "smart-pebbles" instrumented with inertial sensors

    NASA Astrophysics Data System (ADS)

    Valyrakis, Manousos; Farhadi, Hamed

    2017-04-01

    This study, reports on the analysis of appropriately designed fluvial experiments investigating the transport of coarse bed material using two approaches: particle tracking velocimetry (PTV) to extract bulk transport parameters and inertia sensor data (via the use of "smart-pebbles") to obtain refined statistics for the transport of the particle. The purpose of this study is to provide further insight on the use of technologies (optical techniques and inertial sensors) that are complementary one to another, towards producing improved estimates of bedload transport in natural rivers. The experiments are conducted in the Water Engineering Lab at the University of Glasgow on a tilting recirculating flume with 90 cm width. Ten different discharges have been implemented in this study. A couple of fake beds, made of well-packed beads of three different sizes have been set up in the flume. The particle motion is captured by two high-speed commercial cameras, responsible for recording the top view covering the full length of the fake beds over which the "smart-pebble" is allowed to be transported. "Smart-pebbles" of four different densities are initially located at the upstream end of the configuration, fully exposed to the instream flow. These are instrumented with appropriate inertial sensors that allow recording the particle's motion, in the Langrangian frame, in high resolution. Specifically, the "smart-pebble" employ a tri-axial gyroscope, magnetometer and accelerometer, which are utilized to obtain minute linear and angular displacements in high frequency (up to 200Hz). However, these are not enough to accurately reconstruct the full trajectory of the particles rolling downstream. To that goal optical methods are used. In particular, by using particle tracking velocimetry data and image processing techniques, the location, orientation and velocities of the "smart-pebble" are derived. Specific consideration is given to appropriately preprocess the obtained video, as the captured frames need to be flatted and calibrated due to lens distortion. Special effort is made to ensure the center of mass of the "smart-pebble" in each frame is well identified (using image thresholding techniques to improve colour contrast), so that its trajectory comprising of concequtive displacements is accurately defined. It is sensible to follow a probabilistic analytical approach, considering the stochastic nature of particle transport at low transport rates. By using the output data from the camera and inertial sensor, particle transport velocity and acceleration time-series, are produced for each fluvial transport experiment. To that goal empirical probability distribution functions (PDFs) are derived for the particle's motion features from both techniques and best fits for these are estimated. The parameters of the probability distribution functions are plotted against the Reynolds particle number for all the transport experiments, to identify any trends. Such information can help calibrate the "smart-pebble" for sediment transport studies and can also offer novel insights on the mechanisms of particle transport, from a Lagnrangian perspective.

  3. Comparison of erosion and channel characteristics

    USGS Publications Warehouse

    Parker, Gene W.

    1998-01-01

    Erosion was observed at 33 percent of 22,495 bridge sites in nine States. Among sites with erosion, 56 percent were associated with skewed flows, curved channels, or a combination of these two conditions, and at 18 percent of the sites, channels were straight with steep bank angles. The remaining 26 percent are sites with observable erosion at piers or abutments on straight channels. Comparison of the sites with erosion to channel bed-material indicate that 44 percent of the single-span sites had gravel-size or smaller bed material and 70 percent of the multiple-span sites had gravel-size or smaller bed material.

  4. Geochemical evidence for the provenance of aeolian deposits in the Qaidam Basin, Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Du, Shisong; Wu, Yongqiu; Tan, Lihua

    2018-06-01

    The main purpose of this study is to analyse the material source of different grain-size components of dune sand in the Qaidam Basin. We determined the trace and rare earth element (REE) compositions and Sr-Nd isotopic compositions of the coarse (75-500 μm) and fine (<75 μm) fractions of surface sediment samples. The comparison of the immobile trace element and REE compositions, Sr-Nd isotopic compositions and multidimensional scaling (MDS) results of the dune sands with those of different types of sediments in potential source areas revealed the following information. (1) The fine- and coarse-grained fractions of dune sands in the Qaidam Basin exhibit distinctly different elemental concentrations, elemental patterns and characteristic parameters of REE. Moreover, Sr-Nd isotopic differences also exist between different grain-size fractions of aeolian sand, which means that different grain-size fractions of these dune sands have different source areas. (2) The geochemical characteristics of the coarse particles of dune sand exhibit obvious regional heterogeneity and generally record a local origin derived from local fluvial sediments and alluvial/proluvial sediments. The coarse- and fine-grained dune sand in the southern Qaidam Basin mainly came from Kunlun Mountains, whereas the coarse- and fine-grained dune sand in the northeastern Qaidam Basin mainly came from Qilian Mountains. (3) The fine-grained fractions of sediments throughout the entire Qaidam Basin may have been affected by the input of foreign materials from the Tarim Basin.

  5. Diesel NO{sub x} reduction by plasma-regenerated absorbent beds

    DOEpatents

    Wallman, P.H.; Vogtlin, G.E.

    1998-02-10

    Reduction of NO{sub x} from diesel engine exhaust by use of plasma-regenerated absorbent beds is described. This involves a process for the reduction of NO{sub x} and particulates from diesel engines by first absorbing NO{sub x} onto a solid absorbent bed that simultaneously acts as a physical trap for the particulate matter, and second regenerating said solid absorbent by pulsed plasma decomposition of absorbed NO{sub x} followed by air oxidation of trapped particulate matter. The absorbent bed may utilize all metal oxides, but the capacity and the kinetics of absorption and desorption vary between different materials, and thus the composition of the absorbent bed is preferably a material which enables the combination of NO{sub x} absorption capability with catalytic activity for oxidation of hydrocarbons. Thus, naturally occurring or synthetically prepared materials may be utilized, particularly those having NO{sub x} absorption properties up to temperatures around 400 C which is in the area of diesel engine exhaust temperatures. 1 fig.

  6. Diesel NO.sub.x reduction by plasma-regenerated absorbend beds

    DOEpatents

    Wallman, P. Henrik; Vogtlin, George E.

    1998-01-01

    Reduction of NO.sub.x from diesel engine exhaust by use of plasma-regenerated absorbent beds. This involves a process for the reduction of NO.sub.x and particulates from diesel engines by first absorbing NO.sub.x onto a solid absorbent bed that simultaneously acts as a physical trap for the particulate matter, and second regenerating said solid absorbent by pulsed plasma decomposition of absorbed NO.sub.x followed by air oxidation of trapped particulate matter. The absorbent bed may utilize all metal oxides, but the capacity and the kinetics of absorption and desorption vary between different materials, and thus the composition of the absorbent bed is preferably a material which enables the combination of NO.sub.x absorption capability with catalytic activity for oxidation of hydrocarbons. Thus, naturally occurring or synthetically prepared materials may be utilized, particularly those having NO.sub.x absorption properties up to temperatures around 400.degree. C. which is in the area of diesel engine exhaust temperatures.

  7. [Design of plant leaf bionic camouflage materials based on spectral analysis].

    PubMed

    Yang, Yu-Jie; Liu, Zhi-Ming; Hu, Bi-Ru; Wu, Wen-Jian

    2011-06-01

    The influence of structure parameters and contents of plant leaves on their reflectance spectra was analyzed using the PROSPECT model. The result showed that the bionic camouflage materials should be provided with coarse surface and spongy inner structure, the refractive index of main content must be close to that of plant leaves, the contents of materials should contain chlorophyll and water, and the content of C-H bond must be strictly controlled. Based on the analysis above, a novel camouflage material, which was constituted by coarse transparent waterproof surface, chlorophyll, water and spongy material, was designed. The result of verifiable experiment showed that the reflectance spectra of camouflage material exhibited the same characteristics as those of plant leaves. The similarity coefficient of reflectance spectrum of the camouflage material and camphor leaves was 0.988 1, and the characteristics of camouflage material did not change after sunlight treatment for three months. The bionic camouflage material, who exhibited a high spectral similarity with plant leaves and a good weather resistance, will be an available method for reconnaissance of hyperspectral imaging hopefully.

  8. Particulate fuel bed tests

    NASA Astrophysics Data System (ADS)

    Horn, F. L.; Powell, J. R.; Savino, J. M.

    Gas-cooled reactors using packed beds of small-diameter, coated fuel particles have been proposed for compact, high-power systems. To test the thermal-hydraulic performance of the particulate reactor fuel under simulated reactor conditions, a bed of 800-micrometer diameter particles was heated by its electrical resistance current and cooled by flowing helium gas. The specific resistance of the bed composed of pyrocarbon-coated particles was measured at several temperatures, and found to be 0.09 ohm-cm at 1273 K and 0.06 ohm-cm at 1600 K. The maximum bed power density reached was 1500 W/cu cm at 1500 K. The pressure drop followed the packed-bed correlation, typically 100,000 Pa/cm. The various frit materials used to contain the bed were also tested to 2000 K in helium and hydrogen to determine their properties and reactions with the fuel. Rhenium metal, zirconium carbide, and zirconium oxide appeared to be the best candidate materials, while tungsten and tungsten-rhenium lost mass and strength.

  9. Reaction and relaxation in a coarse-grained fluvial system following catchment-wide disturbance

    NASA Astrophysics Data System (ADS)

    Tunnicliffe, Jon; Brierley, Gary; Fuller, Ian C.; Leenman, Anya; Marden, Mike; Peacock, Dave

    2018-04-01

    The Waiapu River catchment (drainage area of 1734-km2) is one of the most prolific conveyors of sediment in the world, annually delivering roughly 35 Mt of fine material to the ocean from eroding gullies, hillslopes, and reworked sediment on valley floors. Tectonic and geologic influences, in combination with a dynamic climate influenced by tropical cyclones and clearance of vegetation from steep hillslopes, predisposes this region to high rates of erosion. The bedload sediment regime of the river is strongly influenced by several exceptionally large gullies and gully complexes that produce a coarse-grained, poorly sorted sediment mixture. Rapid abrasion and breakdown leads to high rates of suspended sediment yield. A wave of bedload material, manifesting as elevated bed levels and significant widening of active alluvial fills, has been triggered by large inputs of hillslope material from a few key tributary catchments following Cyclone Bola in 1988. We review the evidence for the relaxation process of the sedimentary system in the subsequent 29 years, appraising some of the legacy effects that may endure, as associated with reworking of the considerable alluvial stores within the Waiapu system. We use Structure-from-Motion (SfM) techniques and archival aerial photos to quantify changes in sediment storage at the base of two major gully systems in recent decades. A record of over 850 cross section surveys at 62 sites on 10 rivers throughout the catchment (1958-2017) indicates recent transition from a trend of continuous accumulation to downcutting and remobilisation of valley-bottom deposits. The channel cross sections provide a minimum estimate of sediment flux from source areas to the lower reaches of the river, giving a rudimentary but spatially extensive picture of the wave of material cascading through the drainage network. The largest impacts occur in the upper steepland rivers, closest to the landslide-derived sediment supply. Transport rates here, as inferred from cross section change, are at a maximum during an aggradational phase following Cyclone Bola then taper off, despite the large sediment accumulations remaining in the system. As of 2017, the river is in the process of incising the upper extents of this deposit on a trajectory of recovery toward pre-Bola conditions. The compilation of cross section data provides us with new insights into the sensitivity of particular sites in the landscape, as well as the changing relationship between reach sediment storage and transport rates during the response and relaxation phase of a major disturbance in a large catchment.

  10. Second stage gasifier in staged gasification and integrated process

    DOEpatents

    Liu, Guohai; Vimalchand, Pannalal; Peng, Wan Wang

    2015-10-06

    A second stage gasification unit in a staged gasification integrated process flow scheme and operating methods are disclosed to gasify a wide range of low reactivity fuels. The inclusion of second stage gasification unit operating at high temperatures closer to ash fusion temperatures in the bed provides sufficient flexibility in unit configurations, operating conditions and methods to achieve an overall carbon conversion of over 95% for low reactivity materials such as bituminous and anthracite coals, petroleum residues and coke. The second stage gasification unit includes a stationary fluidized bed gasifier operating with a sufficiently turbulent bed of predefined inert bed material with lean char carbon content. The second stage gasifier fluidized bed is operated at relatively high temperatures up to 1400.degree. C. Steam and oxidant mixture can be injected to further increase the freeboard region operating temperature in the range of approximately from 50 to 100.degree. C. above the bed temperature.

  11. Coarse graining atomistic simulations of plastically deforming amorphous solids

    NASA Astrophysics Data System (ADS)

    Hinkle, Adam R.; Rycroft, Chris H.; Shields, Michael D.; Falk, Michael L.

    2017-05-01

    The primary mode of failure in disordered solids results from the formation and persistence of highly localized regions of large plastic strains known as shear bands. Continuum-level field theories capable of predicting this mechanical response rely upon an accurate representation of the initial and evolving states of the amorphous structure. We perform molecular dynamics simulations of a metallic glass and propose a methodology for coarse graining discrete, atomistic quantities, such as the potential energies of the elemental constituents. A strain criterion is established and used to distinguish the coarse-grained degrees-of-freedom inside the emerging shear band from those of the surrounding material. A signal-to-noise ratio provides a means of evaluating the strength of the signal of the shear band as a function of the coarse graining. Finally, we investigate the effect of different coarse graining length scales by comparing a two-dimensional, numerical implementation of the effective-temperature description in the shear transformation zone (STZ) theory with direct molecular dynamics simulations. These comparisons indicate the coarse graining length scale has a lower bound, above which there is a high level of agreement between the atomistics and the STZ theory, and below which the concept of effective temperature breaks down.

  12. Effect of Sand and Sawdust Bedding Materials on the Fecal Prevalence of Escherichia coli O157:H7 in Dairy Cows

    PubMed Central

    LeJeune, Jeffrey T.; Kauffman, Michael D.

    2005-01-01

    Farm management practices that reduce the prevalence of food-borne pathogens in live animals are predicted to enhance food safety. To ascertain the potential role of livestock bedding in the ecology and epidemiology of Escherichia coli O157:H7 on farms, the survival of this pathogen in used-sand and used-sawdust dairy cow bedding was determined. Additionally, a longitudinal study of mature dairy cattle housed on 20 commercial dairy farms was conducted to compare the prevalence of E. coli O157:H7 in cattle bedded on sand to that in cattle bedded on sawdust. E. coli O157:H7 persisted at higher concentrations in used-sawdust bedding than in used-sand bedding. The overall average herd level prevalence (3.1 versus 1.4%) and the number of sample days yielding any tests of feces positive for E. coli O157:H7 (22 of 60 days versus 13 of 60 days) were higher in sawdust-bedded herds. The choice of bedding material used to house mature dairy cows may impact the prevalence of E. coli O157:H7 on dairy farms. PMID:15640205

  13. Stormwater infiltration and surface runoff pollution reduction performance of permeable pavement layers.

    PubMed

    Niu, Zhi-Guang; Lv, Zhi-Wei; Zhang, Ying; Cui, Zhen-Zhen

    2016-02-01

    In this paper, the laboratory-scale permeable pavement layers, including a surface permeable brick layer, coarse sand bedding layers (thicknesses = 2, 3.5, and 5 cm), and single-graded gravel sub-base layers (thicknesses = 15, 20, 25, and 30 cm), were built to evaluate stormwater infiltration and surface runoff pollution reduction performance. And, the infiltration rate (I) and concentrations of suspended solids (SS), total phosphorus (TP), chemical oxygen demand (COD), ammonia nitrogen, and total nitrogen (TN) were measured under the simulated rainfall intensity of 72.4 mm/h over duration of 60 min. The results indicate that the thickness factor primarily influences the infiltration rate and pollutant removal rate. The highest steady infiltration rate was for surface brick layer 51.0 mm/h, for 5-cm sand bedding layer 32.3 mm/h, and for 30-cm gravel sub-base layer 42.3 mm/h, respectively. The SS average removal rate was relative higher (79.8 ∼ 98.6 %) for all layers due to the interception and filtration. The average removal rates of TP and COD were for surface layer 71.2 and 24.1 %, for 5-cm bedding layer 54.8 and 9.0 %, and for 20-cm sub-base layer 72.2 and 26.1 %. Ammonia nitrogen and TN cannot steadily be removed by layers according to the experiment results. The optimal thickness of bedding sands was 5 cm, and that of sub-base gravels was 20 ∼ 30 cm.

  14. Mixed fluvial systems of Messak Sandstone, a deposit of Nubian lithofacies, southwestern Libya

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lorenz, J.C.

    1987-05-01

    The Messak Sandstone is a coarse to pebbly, tabular cross-bedded, Lower Cretaceous deposit of the widespread Nubian lithofacies. It was deposited at the northern edge of the Murzuq basin in southwestern Libya. Although the sedimentary record is predominantly one of braided fluvial systems, a common subfacies within the formation is interpreted to record the passage of straight-crested sand waves across laterally migrating point bars in sinuous rivers, similar to the pattern documented by Singh and Kumar on the modern Ganga and Yamuna Rivers. Because the sand waves were larger on the lower parts of the point bars, lateral migration createdmore » diagnostic thinning-upward, unidirectional cosets of tabular cross-beds as well as fining-upward, grain-size trends. Common, thick, interbedded claystones, deposited in associated paludal and lacustrine environments, and high variance in cross-bed dispersion patterns also suggest the local presence of sinuous fluvial systems within the overall braided regime. The Messak Sandstone contains some of the features that led Harms et al to propose an unconventional low-sinuosity fluvial environment for the Nubian lithofacies in Egypt, and the continuously high water levels of this model may explain channel-scale clay drapes and overturned cross-beds in the Messak. However, most of the Messak characteristics are incompatible with the low-sinuosity model, suggesting instead that the fluvial channels in the Murzuq basin alternated between braided and high-sinuosity patterns.« less

  15. Discussion: Numerical study on the entrainment of bed material into rapid landslides

    USGS Publications Warehouse

    Iverson, Richard M.

    2013-01-01

    A paper recently published in this journal (Pirulli & Pastor, 2012) uses numerical modelling to study the important problem of entrainment of bed material by landslides. Unfortunately, some of the basic equations employed in the study are flawed, because they violate the principle of linear momentum conservation. Similar errors exist in some other studies of entrainment, and the errors appear to stem from confusion about the role of bed-sediment inertia in differing frames of reference.

  16. Partial entrainment of gravel bars during floods

    USGS Publications Warehouse

    Konrad, Christopher P.; Booth, Derek B.; Burges, Stephen J.; Montgomery, David R.

    2002-01-01

    Spatial patterns of bed material entrainment by floods were documented at seven gravel bars using arrays of metal washers (bed tags) placed in the streambed. The observed patterns were used to test a general stochastic model that bed material entrainment is a spatially independent, random process where the probability of entrainment is uniform over a gravel bar and a function of the peak dimensionless shear stress τ0* of the flood. The fraction of tags missing from a gravel bar during a flood, or partial entrainment, had an approximately normal distribution with respect to τ0* with a mean value (50% of the tags entrained) of 0.085 and standard deviation of 0.022 (root‐mean‐square error of 0.09). Variation in partial entrainment for a given τ0* demonstrated the effects of flow conditioning on bed strength, with lower values of partial entrainment after intermediate magnitude floods (0.065 < τ0*< 0.08) than after higher magnitude floods. Although the probability of bed material entrainment was approximately uniform over a gravel bar during individual floods and independent from flood to flood, regions of preferential stability and instability emerged at some bars over the course of a wet season. Deviations from spatially uniform and independent bed material entrainment were most pronounced for reaches with varied flow and in consecutive floods with small to intermediate magnitudes.

  17. The impact of dairy cows' bedding material and its microbial content on the quality and safety of milk - A cross sectional study of UK farms.

    PubMed

    Bradley, Andrew J; Leach, Katharine A; Green, Martin J; Gibbons, Jenny; Ohnstad, Ian C; Black, David H; Payne, Barbara; Prout, Victoria E; Breen, James E

    2018-03-23

    The introduction of bedding dairy cows on recycled manure solids (RMS) in the UK led to concern by competent authorities that there could be an increased, unacceptable risk to animal and human health. A cross-sectional study was designed to evaluate the microbial content of different bedding materials, when used by dairy cows, and its impact on the microbial content of milk. Data were collected from farms bedding lactating cows on sand (n=41), sawdust (n=44) and RMS (n=40). The mean duration of RMS use prior to sampling was 13months. Total bacterial count, and counts of Streptococcus/Enterococcus spp., Staphylococcus spp., Bacillus cereus, thermophilic, thermoduric and psychrotrophic bacteria were determined in used bedding and milk. Samples were evaluated for the presence/absence of Listeria monocytogenes, Salmonella spp. and Yersinia enterocolitica. Data on milking practices were collected to investigate their potential to reduce microbial transfer from bedding to milk. There were substantial differences in bacterial counts both within and between bedding materials. However, there were no significant differences between bedding groups in counts in milk for any of the organisms studied, and no significant correlations between bacterial load in used bedding and milk. Fore-milking was associated with a reduced total bacterial count in milk. Dipping teats with disinfectant and drying, prior to milking, was associated with lower numbers of Streptococcus/Enterococcus spp. in milk. Disinfecting clusters between milking different cows was associated with a reduction in thermophilic and psychrotrophic counts in milk. This study did not provide evidence that use of RMS bedding increased the risk of presence of Y. enterocolitica, Salmonella spp. or L. monocytogenes in milk. However, the strength of this conclusion should be tempered by the relatively small number of farms on which Y. enterocolitica and Salmonella spp. were isolated. It is concluded that, despite the higher bacterial load of RMS, its use as bedding for lactating dairy cows need not be associated with a higher bacterial load in milk than the use of sand or sawdust. However, this finding must be interpreted in the light of the relatively recent introduction of RMS as a bedding material on the farms studied. Teat preparation provides a control point for the potential transfer of microorganisms from bedding to milk. The detection of zoonotic pathogens in a small proportion of milk samples, independent of bedding type, indicates that pasteurisation of milk prior to human consumption remains an important control measure. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Nonideal detonation regimes in low density explosives

    NASA Astrophysics Data System (ADS)

    Ershov, A. P.; Kashkarov, A. O.; Pruuel, E. R.; Satonkina, N. P.; Sil'vestrov, V. V.; Yunoshev, A. S.; Plastinin, A. V.

    2016-02-01

    Measurements using Velocity Interferometer System for Any Reflector (VISAR) were performed for three high explosives at densities slightly above the natural loose-packed densities. The velocity histories at the explosive/window interface demonstrate that the grain size of the explosives plays an important role. Fine-grained materials produced rather smooth records with reduced von Neumann spike amplitudes. For commercial coarse-grained specimens, the chemical spike (if detectable) was more pronounced. This difference can be explained as a manifestation of partial burn up. In fine-grained explosives, which are more sensitive, the reaction can proceed partly within the compression front, which leads to a lower initial shock amplitude. The reaction zone was shorter in fine-grained materials because of higher density of hot spots. The noise level was generally higher for the coarse-grained explosives, which is a natural stochastic effect of the highly non-uniform flow of the heterogeneous medium. These results correlate with our previous data of electrical conductivity diagnostics. Instead of the classical Zel'dovich-von Neumann-Döring profiles, violent oscillations around the Chapman-Jouguet level were observed in about half of the shots using coarse-grained materials. We suggest that these unusual records may point to a different detonation wave propagation mechanism.

  19. Specific yield - laboratory experiments showing the effect of time on column drainage

    USGS Publications Warehouse

    Prill, Robert C.; Johnson, A.I.; Morris, Donald Arthur

    1965-01-01

    The increasing use of ground water from many major aquifers in the United States has required a more thorough understanding of gravity drainage, or specific yield. This report describes one phase of specific yield research by the U.S. Geological Survey's Hydrologic Laboratory in cooperation with the California Department of Water Resources. An earlier phase of the research concentrated on the final distribution of moisture retained after drainage of saturated columns of porous media. This report presents the phase that concentrated on the distribution of moisture retained in similar columns after drainage for various periods of time. Five columns, about 4 cm in diameter by 170 cm long, were packed with homogenous sand of very fine, medium, and coarse sizes, and one column was packed with alternating layers of coarse and medium sand. The very fine materials were more uniform in size range than were the medium materials. As the saturated columns drained, tensiometers installed throughout the length recorded changes in moisture tension. The relation of tension to moisture content, determined for each of the materials, was then used to convert the tension readings to moisture content. Data were then available on the distribution of retained moisture for different periods of drainage from 1 to 148 hours. Data also are presented on the final distribution of moisture content by weight and volume and on the degree of saturation. The final zone of capillary saturation was approximately 12 cm for coarse sand, 13 cm for medium sand, and 52 cm for very fine sand. The data showed these zones were 92 to 100 percent saturated. Most of the outflow from the columns occurred in the earlier hours of drainage--90 percent in 1 hour for the coarse materials, 50 percent for the medium, and 60 percent for the very fine. Although the largest percentage of the specific yield was reached during the early hours of .drainage, this study amply demonstrates that a very long time would be required to reach drainage equilibrium. In the layered columns the middle (medium sand) layer functioned as a hanging water column accelerating the drainage of the overlying coarse-sand layer. After the middle layer started to drain, the moisture distribution as retained in all three layers showed trends similar to that obtained when the same materials were tested in homogenous columns.

  20. Research on the relationship between the structural properties of bedding layer in spring mattress and sleep quality.

    PubMed

    Shen, Liming; Chen, Yu-xia; Guo, Yong; Zhong, ShiLu; Fang, Fei; Zhao, Jing; Hu, Tian-Yi

    2012-01-01

    Mattress, as a sleep platform, its types and physical properties has an important effect on sleep quality and rest efficiency. In this paper, by subjective evaluations, analysis of sleeping behaviors and tests of depth of sleep, the relationship between characteristics of the bedding materials, the structure of mattress, sleep quality and sleep behaviors were studied. The results showed that: (1) Characteristics of the bedding materials and structure of spring mattress had a remarkable effect on sleep behaviors and sleep quality. An optimum combination of the bedding materials, the structure of mattress and its core could improve the overall comfort of mattress, thereby improving the depth of sleep and sleep quality. (2) Sleep behaviors had a close relationship with sleeping postures and sleep habits. The characteristics of sleep behaviors vary from person to person.

  1. Sediment investigations of the Platte River near Overton, Nebraska

    USGS Publications Warehouse

    Albert, C.D.; Guy, H.P.

    1955-01-01

    This report contains results of sediment-transport investigations on the Platte River near Overton,. Nebr. from January 1950 to September 1953. The basic data of suspended-sediment studies, results of bed-material analyses, and determinations of water-surface slopes from staff readings are given. The data indicate that a reliable determination of suspended sediment, hence total load, is difficult. Because of the nature of the river at the station and the limited scope of the investigations, the suspended-sediment data may not be representative. The Platte River is characterized by a wide braided channel, a small hydraulic radius, low banks, and a wide flood plain. (See figs. 1 and 2.,) The river bed is composed of coarse to fine sands. Near Overton, natural flow of the river is controlled or modified by diversions, storage reservoirs, power development, return flow from irrigation, and withdrawals of ground water. A temporary jetty was extended into the river below the bridge during the summer of 1952 as part of commercial sand pumping operations. Beavers carry on active construction in the narrows and shallows, particularly upstream from the sampling section. Daily fluctuations in water discharge at the gaging station at the bridge are caused by regulation of the flow, mainly from the generation of power by release of water from a reservoir The water discharge at the station begins increasing about 9:30 a.m., reaches a crest about 2:00 p.m and then immediately recede. Weekly water-discharge measurements of alternate high and low stages indicate a daily variation from 200 to more than 1,000 cfs. During spring summer, and fall increases in water dis charge are also caused by thunderstorm activity in the area.

  2. Size distribution of Amazon River bed sediment

    USGS Publications Warehouse

    Nordin, C.F.; Meade, R.H.; Curtis, W.F.; Bosio, N.J.; Landim, P.M.B.

    1980-01-01

    The first recorded observations of bed material of the Amazon River were made in 1843 by Lt William Lewis Herndon of the US Navy, when he travelled the river from its headwaters to its mouth, sounding its depths, and noting the nature of particles caught in a heavy grease smeared to the bottom of his sounding weight1. He reported the bed material of the river to be mostly sand and fine gravel. Oltman and Ames took samples at a few locations in 1963 and 1964, and reported the bed material at O??bidos, Brazil, to be fine sands, with median diameters ranging from 0.15 to 0.25 mm (ref. 2). We present here a summary of particle-size analyses of samples of streambed material collected from the Amazon River and its major tributaries along a reach of the river from Iquitos in Peru, ???3,500 km above Macapa?? Brazil, to a point 220 km above Macapa??3. ?? 1980 Nature Publishing Group.

  3. Recovery of valuable materials from spent NIMH batteries using spouted bed elutriation.

    PubMed

    Tanabe, Eduardo H; Schlemmer, Diego F; Aguiar, Mônica L; Dotto, Guilherme L; Bertuol, Daniel A

    2016-04-15

    In recent years, a great increase in the generation of spent batteries occurred. Then, efficient recycling ways and correct disposal of hazardous wastes are necessary. An alternative to recover the valuable materials from spent NiMH batteries is the spouted bed elutriation. The aim of this study was to apply the mechanical processing (grinding and sieving) followed by spouted bed elutriation to separate the valuable materials present in spent NiMH batteries. The results of the manual characterization showed that about 62 wt.% of the batteries are composed by positive and negative electrodes. After the mechanical separation processes (grinding, sieving and spouted bed elutriation), three different fractions were obtained: 24.21 wt.% of metals, 28.20 wt.% of polymers and 42.00 wt.% of powder (the positive and negative electrodes). It was demonstrated that the different materials present in the spent NiMH batteries can be efficiently separated using a simple and inexpensive mechanical processing. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Dakota sandstone facies, western Oklahoma panhandle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Atalik, E.; Mansfield, C.F.

    The Cretaceous Dakota Sandstone in Cimarron County comprised three sandstone units and intervening mudrocks; it overlies the Kiowa Shale Member of the Purgatoire Formation. Deposits include shoreface, beach (foreshore) and dune, estuarine and tidal channel, marine marginal bay and swamp/marsh in a generally progradational sequences associated with marine regression in the Western Interior. The shoreface sand, characterized by ripple lamination, bioturbation and the trace fossils Teichichnus and Thalassinoides, is fine-grained, 5-10 m (15-30 ft) thick and grades into the underlying Kiowa Shale. Beach and associated dune deposits are 2-5 m (6-16 ft) thick, medium to fine-grained, medium to thick-bedded, tabular-planarmore » cross-bedded, and lenticular; cross-bed paleocurrent headings are northeasterly and northwesterly. Estuarine channel deposits are 3-5 m (10 to 16 ft) thick, trough to tabular-planar cross-bedded, and medium to coarse-grained with local conglomerate overlying the scoured base which commonly cuts into the Kiowa Shale or overlying shoreface sandstone; rip-up clasts and wood pieces are common but trace fossils are rare; southeasterly and southwesterly paleocurrents predominate. Tidal channel deposits are thinner (up to 2 m of 6 ft) and finer grained (medium to fine-grained) that the estuarine channel deposits; they occur within fine-grained sandstone and mudrock sequences, are trough cross-bedded, and commonly contain trace fossils (e.g., Skolithos) and wood fragments. Marine marginal (tidal flat or bay.) deposits comprise fine-grained sandstone, siltstone and interbedded shale, that are 1-3m (3-10 ft) thick with abundant burrows, small ripple marks, and parallel lamination. These grade into the fine to very fine-grained sandstones, siltstones, shales, and coals of the swamp/marsh deposits that are 1-5m (3-16 ft) thick and contain ripple marks, burrows, other trace fossils, and parallel lamination.« less

  5. Depositional environment and sedimentary of the basinal sediments in the Eibiswalder Bucht (Radl Formation and Lower Eibiswald Beds), Miocene Western Styrian Basin, Austria

    NASA Astrophysics Data System (ADS)

    Stingl, K.

    1994-12-01

    The Eibiswald Bucht is a small subbasin of the Western Styrian Basin exposing sediments of Lower Miocene age. In the past the entire sequence exposed in the Eibiswalder Bucht has been interpreted as being of fluvial/lacustrine origin; here, results are presented of detailed sedimentological investigations that lead to a revision of this concept. The lowermost siliciclastic sedimentary unit of the Eibiswalder Bucht sequence is the Radl Formation. It is overlain by the Eibiswald Beds, which are subdivided into the Lower, Middle and Upper Eibiswald Beds. The Radl Formation and the Lower Eibiswald Beds are interpreted as a fan delta complex deposited along NNW-SSE striking faults. Based on the sedimentary facies this fan delta can be subdivided into a subaerial alluvial fan facies group, a proximal delta facies group and a distal delta/prodelta facies group. The Radl Formation comprises the alluvial fan and proximal delta facies groups, the Lower Eibiswald Beds the distal delta/prodelta facies group. The alluvial fan and the proximal delta consist of diverse deposits of gravelly flows. The distal delta/prodelta consists of wave-reworked, bioturbated, low density turbidites intercalated with minor gravelly mass flows. The prodelta can be regarded as as the basin facies of the small and shallow Eibiswalder Bucht, where marine conditions prevailed. The basin was probably in part connected with the Eastern Styrian Basin, the contemporary depositional environment of the Styrian Schlier (mainly turbiditic marine offshore sediments in the Eastern Styrian Basin). Analysis of the clast composition, in conjunction with the paleotransport direction of the coarse delta mass flows of the Radl Formation, shows that the source rocks were exclusively crystalline rocks ranging from greenschists to eclogites.

  6. Assessing patterns of bed-material storage and flux on a mixed bedrock-alluvium river: Umpqua River Oregon, USA

    NASA Astrophysics Data System (ADS)

    Wallick, R.; Anderson, S.; Keith, M.; Cannon, C.; O'Connor, J. E.

    2010-12-01

    Gravel bed rivers in the Pacific Northwest and elsewhere provide an important source of commercial aggregate. Mining in-stream gravel, however, can alter channel and bar morphology, resulting in habitat degradation for aquatic species. In order to sustainably manage rivers subject to in-stream gravel extraction, regulatory agencies in Oregon have requested that the USGS complete a series of comprehensive geomorphic and sediment transport studies to provide context for regulatory-agency management of in-stream gravel extraction in Oregon streams. The Umpqua River in western Oregon poses special challenges to this type of assessment. Whereas most rivers subject to gravel extraction are relatively rich in bed-material sediment, the Umpqua River is a mixed bedrock-alluvium system draining a large (1,804 km2) basin; hence typical bed-material transport analyses and ecologic and geomorphic lessons of in-stream gravel extraction on more gravel-rich rivers have limited applicability. Consequently, we have relied upon multiple analyses, including comprehensive historical mapping, bedload transport modeling, and a GIS-based sediment yield analysis to assess patterns of bed-material transport and annual rates of bed-material flux. These analyses, combined with numerous historical accounts, indicate that since at least the 1840’s, the Umpqua River planform has been stable, as bar geometry is largely fixed by valley physiography and the channel itself is underlain mainly by bedrock. Preliminary estimates of annual bedload transport rates calculated for the period 1951-2008 from bed-material transport capacity relations at 42 bars along the South Umpqua and mainstem Umpqua Rivers vary from 0 to 600,000 metric tons per year, with this large spread reflecting variability in bar geometry and grainsize. Large stable bars are activated only during exceptionally large floods and have negligible transport during most years whereas smaller, low elevation bars serve as transient storage for gravel transported during typical flood events. A more plausible range of average annual transport rates, based on bedload transport capacity estimates for bars with reasonable values for reference shear stress, is 500-50,000 metric tons/year. Our sediment yield and mapping analyses support these more conservative estimates, providing annual transport rates of 13,000-50,000 metric tons per year for the South Umpqua River and mainstem Umpqua River through the Coast Range. Downstream, predicted flux rates decrease as attrition exceeds input of bed material, gradually diminishing to 30,000-40,000 metric tons at the head of tide. Because bed-material transport along the supply-limited Umpqua River is highly variable in time and space, the range of predicted flux values is thought to characterize the upper bounds of annual gravel transport.

  7. Effects of lava-dome growth on the crater glacier of Mount St. Helens, Washington: Chapter 13 in A volcano rekindled: the renewed eruption of Mount St. Helens, 2004-2006

    USGS Publications Warehouse

    Walder, Joseph S.; Schilling, Steve P.; Vallance, James W.; LaHusen, Richard G.; Sherrod, David R.; Scott, William E.; Stauffer, Peter H.

    2008-01-01

    The process of lava-dome emplacement through a glacier was observed for the first time as the 2004-6 eruption of Mount St. Helens proceeded. The glacier that had grown in the crater since the cataclysmic 1980 eruption was split in two by the new lava dome. The two parts of the glacier were successively squeezed against the crater wall. Photography, photogrammetry, and geodetic measurements document glacier deformation of an extreme variety, with strain rates of extraordinary magnitude as compared to normal temperate alpine glaciers. Unlike such glaciers, the Mount St. Helens crater glacier shows no evidence of either speed-up at the beginning of the ablation season or diurnal speed fluctuations during the ablation season. Thus there is evidently no slip of the glacier over its bed. The most reasonable explanation for this anomaly is that meltwater penetrating the glacier is captured by a thick layer of coarse rubble at the bed and then enters the volcano’s groundwater system rather than flowing through a drainage network along the bed. Mechanical consideration of the glacier-squeeze process also leads to an estimate for the driving pressure applied by the growing lava dome.

  8. Determining in-situ thermal conductivity of coarse textured materials through numerical analysis of thermal

    NASA Astrophysics Data System (ADS)

    Saito, H.; Hamamoto, S.; Moldrup, P.; Komatsu, T.

    2013-12-01

    Ground source heat pump (GSHP) systems use ground or groundwater as a heat/cooling source, typically by circulating anti-freezing solution inside a vertically installed closed-loop tube known as a U-tube to transfer heat to/from the ground. Since GSHP systems are based on renewable energy and can achieve much higher coefficient of performance (COP) than conventional air source heat pump systems, use of GSHP systems has been rapidly increasing worldwide. However, environmental impacts by GSHP systems including thermal effects on subsurface physical-chemical and microbiological properties have not been fully investigated. To rigorously assess GSHP impact on the subsurface environment, ground thermal properties including thermal conductivity and heat capacity need to be accurately characterized. Ground thermal properties were investigated at two experimental sites at Tokyo University of Agriculture and Technology (TAT) and Saitama University (SA), both located in the Kanto area of Japan. Thermal properties were evaluated both by thermal probe measurements on boring core samples and by performing in-situ Thermal Response Tests (TRT) in 50-80 m deep U-tubes. At both TAT and SU sites, heat-pulse probe measurements gave unrealistic low thermal conductivities for coarse textured materials (dominated by particles > 75 micrometers). Such underestimation can be partly due to poor contact between probe and porous material and partly to markedly decreasing sample water content during drilling, carrying, and storing sandy/gravelly samples. A more reliable approach for estimating in-situ thermal conductivity of coarse textured materials is therefore needed, and may be based on the commonly used TRT test. However, analyses of TRT data is typically based on Kelvin's line source model and provides an average (effective) thermal property for the whole soil profile around the U-tube but not for each geological layer. The main objective of this study was therefore to develop a method for estimating thermal conductivity values of coarse textured layers by numerically analyzing TRT data. A numerical technique combining three-dimensional conductive heat transport and one-dimensional convective heat transport to simulate heat exchange processes between the U-tube and the ground was used. In the numerical simulations, the thermal conductivities for the fine textured layers were kept at the probe-measured values, while the thermal conductivity for the coarse textured layers (constituting around half of the profile depth at both sites) was calibrated. The numerically-based method yielded more reasonable thermal conductivity values for the coarse-textured materials at both TAT and SU sites as compared to the heat pulse probe measurements, while the temperature changes of the heat carry fluid inside the U-tubes were also well simulated.

  9. Source characterization of fine and coarse particles at the East Mediterranean coast

    NASA Astrophysics Data System (ADS)

    Mamane, Yaacov; Perrino, Cinzia; Yossef, Osnat; Catrambone, Maria

    Fine and coarse atmospheric particles were collected in Ashdod—a midsize industrial city on the southeastern Mediterranean coast, and in Gedera—a rural site, to characterize ambient particles and to determine their long-range transport during two major seasons—winter and summer. Manual PM2.5 and PM10 samplers, dichotomous samplers, continuous automated PM10 samplers, and denuders were used to sample particulate and gaseous pollutants. Fine and coarse concentrations in Ashdod were 21.2 and 39.6 μg m -3, and 23.9 and 30.5 μg m -3 in the fall-winter and summer campaigns, respectively. Crustal material, as calcites or dolomites mixed with silicates, dominated the coarse fraction and also the fine fraction on dusty days. In the fall-winter, S, P, and Ni were coupled with minerals. Coarse Ni was associated with crustal material during dust storms, while P originated from shipping and deposition of phosphates in the urban area around. Sulfates dominated the fine fractions in the summer season averaging 12 μg m -3. Multivariate analysis indicated that S was associated with As and Se, V and Ni, both associated with heavy fuel combustion, and Zn and Pb. In winter, those mixed sources were local, but in summer they were part of long-range transport. In the fall-winter, Zn and Pb were strongly associated with Mn, Ga, and Cu—elements emitted from either traffic or metal processing plants. Although the influence of crustal material on both size fractions was significant, most heavy metals were associated with PM2.5. Higher concentrations were linked to a larger number of particles in this fraction, to a larger surface area available for biochemical reaction [Harrison, R., Shi, J., Xi, S., Khan, A., Mark, D., Kinnersley, R., Yin, J., Philos, T., 2000. Measurement of number, mass and size distribution of particles in the atmosphere. Philosophical Transactions of the Royal Society 358, 2567-2579], and finally to a larger concern in regards to health effects.

  10. Temperature dependence of the radiation tolerance of nanocrystalline pyrochlores A 2Ti 2O 7 (A = Gd, Ho and Lu)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wen, J.; Sun, C.; Dholabhai, P. P.

    A potentially enhanced radiation resistance of nanocrystalline materials, as a consequence of the high density of interfaces and surfaces, has attracted much attention both to understand the fundamental role of these defect sinks and to develop them for high-radiation environments. Here, irradiation response of nanocrystalline A 2Ti 2O 7 (A = Gd, Ho and Lu) pyrochlore powders with grain sizes of 20–30 nm was investigated by 1-MeV Kr 2+ ion bombardment. In situ transmission electron microscopy (TEM) revealed that the critical amorphization fluence for each nanocrystalline compound at room temperature was greater than that for their coarse-grained counterparts, indicating anmore » enhanced amorphization resistance. The effect of temperature on the irradiation response of one of these compounds, nanocrystalline Lu 2Ti 2O 7, was further examined by performing ion irradiation at an elevated temperature range of 480–600 K. The critical amorphization temperature (T c) was found to be noticeably higher in nanocrystalline Lu 2Ti 2O 7 (610 K) than its coarse-grained counterpart (480 K), revealing that nanocrystalline Lu 2Ti 2O 7 is less resistant to amorphization compared to its coarse-grained phase under high temperatures. We interpret these results with the aid of atomistic simulations. Molecular statics calculations find that cation antisite defects are less energetically costly to form near surfaces than in the bulk, suggesting that the nanocrystalline form of these materials is generally less susceptible to amorphization than coarse-grained counterparts at low temperatures where defect kinetics are negligible. In contrast, at high temperatures, the annealing efficiency of antisite defects by cation interstitials is significantly reduced due to the sink properties of the surfaces in the nanocrystalline pyrochlore, which contributes to the observed higher amorphization temperature in the nano-grained phase than in coarse-grained counterpart. Altogether, these results provide new insight into the behavior of nanocrystalline materials under irradiation.« less

  11. Temperature dependence of the radiation tolerance of nanocrystalline pyrochlores A 2Ti 2O 7 (A = Gd, Ho and Lu)

    DOE PAGES

    Wen, J.; Sun, C.; Dholabhai, P. P.; ...

    2016-03-21

    A potentially enhanced radiation resistance of nanocrystalline materials, as a consequence of the high density of interfaces and surfaces, has attracted much attention both to understand the fundamental role of these defect sinks and to develop them for high-radiation environments. Here, irradiation response of nanocrystalline A 2Ti 2O 7 (A = Gd, Ho and Lu) pyrochlore powders with grain sizes of 20–30 nm was investigated by 1-MeV Kr 2+ ion bombardment. In situ transmission electron microscopy (TEM) revealed that the critical amorphization fluence for each nanocrystalline compound at room temperature was greater than that for their coarse-grained counterparts, indicating anmore » enhanced amorphization resistance. The effect of temperature on the irradiation response of one of these compounds, nanocrystalline Lu 2Ti 2O 7, was further examined by performing ion irradiation at an elevated temperature range of 480–600 K. The critical amorphization temperature (T c) was found to be noticeably higher in nanocrystalline Lu 2Ti 2O 7 (610 K) than its coarse-grained counterpart (480 K), revealing that nanocrystalline Lu 2Ti 2O 7 is less resistant to amorphization compared to its coarse-grained phase under high temperatures. We interpret these results with the aid of atomistic simulations. Molecular statics calculations find that cation antisite defects are less energetically costly to form near surfaces than in the bulk, suggesting that the nanocrystalline form of these materials is generally less susceptible to amorphization than coarse-grained counterparts at low temperatures where defect kinetics are negligible. In contrast, at high temperatures, the annealing efficiency of antisite defects by cation interstitials is significantly reduced due to the sink properties of the surfaces in the nanocrystalline pyrochlore, which contributes to the observed higher amorphization temperature in the nano-grained phase than in coarse-grained counterpart. Altogether, these results provide new insight into the behavior of nanocrystalline materials under irradiation.« less

  12. Feed gas contaminant removal in ion transport membrane systems

    DOEpatents

    Carolan, Michael Francis [Allentown, PA; Miller, Christopher Francis [Macungie, PA

    2008-09-16

    Method for gas purification comprising (a) obtaining a feed gas stream containing one or more contaminants selected from the group consisting of volatile metal oxy-hydroxides, volatile metal oxides, and volatile silicon hydroxide; (b) contacting the feed gas stream with a reactive solid material in a guard bed and reacting at least a portion of the contaminants with the reactive solid material to form a solid reaction product in the guard bed; and (c) withdrawing from the guard bed a purified gas stream.

  13. An experimental study on the hazard assessment and mechanical properties of porous concrete utilizing coal bottom ash coarse aggregate in Korea.

    PubMed

    Park, Seung Bum; Jang, Young Il; Lee, Jun; Lee, Byung Jae

    2009-07-15

    This study evaluates quality properties and toxicity of coal bottom ash coarse aggregate and analyzes mechanical properties of porous concrete depending on mixing rates of coal bottom ash. As a result, soundness and resistance to abrasion of coal bottom ash coarse aggregate were satisfied according to the standard of coarse aggregate for concrete. To satisfy the standard pertaining to chloride content, the coarse aggregates have to be washed more than twice. In regards to the result of leaching test for coal bottom ash coarse aggregate and porous concrete produced with these coarse aggregates, it was satisfied with the environment criteria. As the mixing rate of coal bottom ash increased, influence of void ratio and permeability coefficient was very little, but compressive and flexural strength decreased. When coal bottom ash was mixed over 40%, strength decreased sharply (compressive strength: by 11.7-27.1%, flexural strength: by maximum 26.4%). Also, as the mixing rate of coal bottom ash increased, it was confirmed that test specimens were destroyed by aggregate fracture more than binder fracture and interface fracture. To utilize coal bottom ash in large quantities, it is thought that an improvement method in regards to strength has to be discussed such as incorporation of reinforcing materials and improvement of aggregate hardness.

  14. Contrasting environmental memories by ancient soils on different parent rocks in the South-western Italian Alps

    NASA Astrophysics Data System (ADS)

    D'Amico, Michele; Catoni, Marcella; Bonifacio, Eleonora; Zanini, Ermanno

    2014-05-01

    Ancient soils (pre-Holocenic paleosols and vetusols) are uncommon on the Alps, because of the extensive Pleistocenic glaciations which erased most of the previously existing soils, the slope steepness and climatic conditions favoring soil erosion. However, in few sites, particularly in the outermost sections of the Alpine range, Pleistocene glaciers covered only small and scattered surfaces because of the low altitude reached in the basins, and ancient soils could be preserved for long periods of time on particularly stable surfaces. We described and sampled soils on 11 stable surfaces in the Upper Tanaro valley, Ligurian Alps (Southwestern Piemonte, Italy). The sampling sites were characterized by low steepness and elevation between 600 to 1600 m, under present day lower montane Castanea sativa/Ostrya carpinifolia forests, montane Fagus sylvatica and Pinus uncinata forests or montane heath/grazed grassland, on different substrata. In particular, we sampled soils developed on dolomite, limestone, quartzite, gneiss and shales. The soils were always well representative of the pedogenic trends active on the respective parent materials, i.e. the skeletal fraction in each soil was always composed of just one rock type, despite the proximity of lithological boundaries and the small dimensions of the different outcrops, often coexisting on the same stable surface. All the considered profiles showed signs of extremely long pedogenesis and/or different phases of intense pedogenesis interrupted by the deposition of periglacial cover beds in the steepest sites. Up to four phases of intense pedogenesis were recognized where cover beds were developed, presumably during cold Pleistocene phases, as present-day climate is not cold enough to create such periglacial morphologies. In such cases, each cover bed underwent similar pedogenesis, strongly dependent on the parent material: on quartzite, podzols with thick E horizons and well developed placic ones were formed in all phases except the most superficial one (i.e., Holocene phase), where non cemented spodic horizons or weakly cemented ortstein were formed; placic horizons were never found in Holocene soils. On limestone, each cover bed separated soils with extremely hard petrocalcic horizons overlaid by argillic ones. Where no cover beds were observed, podzols with extremely thick E horizons (up to more than 2 m thick) and a very hard, very thick ortstein were formed on quartzite. Red Nitisols-like or reddish brown Luvisols were formed on limestone and dolomite, while red, extremely acidic Alisols, with or without fragipan horizons were formed on shales. Very large stone circles and other large patterned ground features, which can be interpreted as evidence of past permafrost conditions, were preserved on coarse quartzitic conglomerate. These soils represent excellent pedo-signatures of different specific past climatic or environmental conditions, as a response of different lithologies to specific soil-forming environments, which range from warm and humid climates typical of red Luvisols and Nitisols, to cool and wet climates leading to the formation of Podzols with placic or ortstein horizons, to extremely cold and dry ones characterizing permafrost sites and often associated with fragipan formation, to warm and dry leading to the cementation of petrocalcic horizons. The precise dating and interpretation of these soils are intriguing.

  15. A stochastic thermostat algorithm for coarse-grained thermomechanical modeling of large-scale soft matters: Theory and application to microfilaments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Tong; Gu, YuanTong, E-mail: yuantong.gu@qut.edu.au

    As all-atom molecular dynamics method is limited by its enormous computational cost, various coarse-grained strategies have been developed to extend the length scale of soft matters in the modeling of mechanical behaviors. However, the classical thermostat algorithm in highly coarse-grained molecular dynamics method would underestimate the thermodynamic behaviors of soft matters (e.g. microfilaments in cells), which can weaken the ability of materials to overcome local energy traps in granular modeling. Based on all-atom molecular dynamics modeling of microfilament fragments (G-actin clusters), a new stochastic thermostat algorithm is developed to retain the representation of thermodynamic properties of microfilaments at extra coarse-grainedmore » level. The accuracy of this stochastic thermostat algorithm is validated by all-atom MD simulation. This new stochastic thermostat algorithm provides an efficient way to investigate the thermomechanical properties of large-scale soft matters.« less

  16. Method of feeding particulate material to a fluidized bed

    DOEpatents

    Borio, Richard W.; Goodstine, Stephen L.

    1984-01-01

    A centrifugal spreader type feeder that supplies a mixture of particulate limestone and coal to the top of a fluidized bed reactor having a flow of air upward therethrough. Large particles of particulate matter are distributed over the upper surface of the bed to utilize the natural mixing within the bed, while fine particles are adapted to utilize an independent feeder that separates them from the large particles and injects them into the bed.

  17. Progress report on the Happy Jack mine, Which Canyon area, San Juan county, Utah

    USGS Publications Warehouse

    Trites, Albert F.; Chew, Randall T.

    1954-01-01

    The Happy Jack mine is in the White Canyon area, San Juan county, Utah. Production is from high-grade uranium deposits in the Shinarump conglomerate of the Triassic age. In this area the Shinarump beds range from about 16 to 40 feet in thickness and the lower part of these beds fills an east-trending channel this is note than 750 feet wide and 10 feet deep. The Shinarump conglomerate consists of beds of coarse- to fine-grained quartzose sandstone, conglomerate, siltstone, and claystone. Carbonized wood is abundant in these beds, and in the field it was classified as mineral charcoal and coal. Intra-Shinarump channels, cross-stratification, current lineation, and slumping and compaction structures have been recognized in the mine. Steeply dipping fractures have dominant trends in four directions -- N 65°W, N 60°E, N 85°E, and due north. Uranium occurs as bedded deposits, as replacement bodies in accumulations of "trash", and as replacements of larger fragments of wood. An "ore shoot" is formed where the three types of uranium deposits occur together; these ore shoots appear to be elongate masses with sharp boundaries. Uranium minerals include uraninite, sooty pitchblende(?), and the sulfate--betazippeite, johannite, and uranopilite. Associated with the uraninite are the sulfide minerals covellite, bornite, chalcopyritw, and pyrite. Galena and sphalerite have been found in close association with uranium minerals. The gaunge minerals include: limonite and hematite present in most of the sandstone beds throughout the deposit, jarosite that impregnates much of the sandstone in the outer parts of the mine workings, gypsum that fills many of the fractures, and barite that impregnates the sandstone in at least one part of the mine. Secondary copper minerals, mainly copper sulfates, occur throughout the mine, but most abundant near the adits in the outermost 30 feet of the workings. The minerals comprising the bulk of the country rock include quartz, feldspar, and clay minerals. The amount of uranium minerals deposited in a sandstone bed is believed to have been determined by the position of the bed in the channel, the permeability of the sandstone in the bed, and the amount of carbonized wood and plant remains within the bed. The beds considered most favorable for uranium deposition contain an abundance of claystone and siltstone both as matrix filling and as fragments and pebbles. Suggested exploration guides from uranium ore bodies include the following: (1) interbedded siltstone lenses, (2) claystone and siltstone cement and pabbles, (3) concentrations of "trash", (4) covelllite and bornite, (5) chalcopyrite, and (6) carbonized wood.

  18. Experimental Exploration of Scale Effects and Factors Controlling Bed Load Sediment Entrainment

    NASA Astrophysics Data System (ADS)

    Fathel, S. L.; Furbish, D. J.; Schmeeckle, M. W.

    2015-12-01

    Detailed measurements of individual sand grains moving on a streambed allow us to obtain a deeper understanding of the characteristics of incipient motion and evaluate spatial and temporal trends in particle entrainment. We use bed load particle motions measured from high-speed imaging (250 Hz) of uniform, coarse grained sand from two flume experiments, which have different mean fluid velocities near the bed. Particle tracking reveals more than 6,000 entrainment events in 5 seconds (Run 1) and over 5,000 events in 2 seconds (Run 2). We manually track particles, at sub-pixel resolution, from entrainment to either disentrainment or until the particle leaves the frame. Within these experiments we find that over 90% of all initial motions contain a cross-stream component of motion where approximately a third of the motions may be cross-stream dominated, and furthermore, up to 7% of the motions may be negative (i.e. move backwards). We propose that the variability in the direction of initial motion is, in part, a product of the bed topography, where we find that with increasing mean fluid velocity, the initial motion of the sand particles are less sensitive to bed topography, and are more likely to be dominated by the fluid. The high resolution of this data set, containing positions of particles measured start-to-stop, allows us to calculate the characteristic timescale required for a particle to become streamwise, or fluid, dominated in these systems. We also evaluate these data to further show whether the nature of entrainment is a memoryless, uncorrelated process, a correlated process related to the number of particles already in motion (i.e., possibly reflecting collective entrainment), or some combination of the two. This work suggests that the probability of entrainment depends on physical factors such as bed microtopography and the magnitude of the fluid velocity, in addition to varying with space and time scales.

  19. Effects of bedding material on ammonia volatilization in a broiler house

    USDA-ARS?s Scientific Manuscript database

    Ammonia volatilization from poultry house bedding material is a major production issues because the buildup of ammonia within the facilities is a human health issue and can negatively impact the performance of the birds. Major operational cost is associated with the ventilation of poultry houses to ...

  20. Flue gas desulfurization gypsum: Its effectiveness as an alternative bedding material for broiler production

    USDA-ARS?s Scientific Manuscript database

    Flue gas desulfurization gypsum (FGDG) may be a viable low-cost alternative bedding material for broiler production. In order to evaluate FGD gypsum’s viability, three consecutive trials were conducted to determine its influence on live performance (body weight, feed consumption, feed efficiency, an...

  1. Optical characteristics of fine and coarse particulates at Grand Canyon, Arizona

    NASA Astrophysics Data System (ADS)

    Malm, William C.; Johnson, Christopher E.

    The relationship between airborne particulate matter and atmospheric light extinction was examined using the multivariate techniques of principal component analysis and multiple linear regression on data gathered at the Grand Canyon, Arizona, from December 1979 to November 1981. Results showed that, on the average, fine sulfates were most strongly associated with light attenuation in the atmosphere. Other fine mass (nitrates, organics, soot and carbonaceous material) and coarse mass (primarily windblown dust) were much less associated with atmospheric extinction. Fine sulfate mass at the Grand Canyon was responsible for 63% of atmospheric light extinction while other fine mass and coarse mass were responsible for 17 and 20% of atmospheric extinction, respectively.

  2. Observations of large-amplitude cross-shore internal bores near the shelf break, Santa Monica Bay, CA

    USGS Publications Warehouse

    Noble, M.A.; Xu, J. P.

    2003-01-01

    Two sets of moorings were deployed along a cross-shelf transect in central Santa Monica bay for four months in the winter of 1998-1999. Both sites had an array of instruments attached to tripods set on the seafloor to monitor currents over the entire water column, surface waves, near-bed temperature, water clarity and suspended sediment. A companion mooring had temperature sensors spaced approximately 10 m apart to measure temperature profiles between the surface and the seafloor. One array was deployed in 70 m of water at a site adjacent to the shelf break, just northwest of a major ocean outfall. The other was deployed on the mid shelf in 35 m of water approximately 6 km from the shelf break site. The subtidal currents in the region flowed parallel to the isobaths with fluctuating time scales around 10 days, a typical coastal-ocean pattern. However, during the falling phase of the barotropic spring tide, sets of large-amplitude, sheared cross-shore current pulses with a duration of 2-5 h were observed at the shelf break site. Currents in these pulses flowed exclusively offshore in a thin layer near the bed with amplitudes reaching 30-40 cm/s. Simultaneously, currents with amplitudes around 15-20 cm/s flowed exclusively onshore in the thicker layer between the offshore flow layer and the sea surface. The net offshore transport was about half the onshore transport. Near-surface isotherms were depressed 30-40 m. These pulses were likely internal bores generated by tidal currents. Bed stresses associated with these events exceeded 3 dynes/cm2. These amplitudes are large enough to resuspend and transport not only fine-grained material, but also medium to coarse sands from the shelf toward the slope. Consequently, the seafloor over the shelf break was swept clear of fine sediments. The data suggest that the internal bores dissipate and are reduced in amplitude as they propagate across this relatively narrow shelf. There is evidence that they reach the 35 m site, but other coastal ocean processes obscure their distinctive characteristics.

  3. Fine-Grained Turbidites: Facies, Attributes and Process Implications

    NASA Astrophysics Data System (ADS)

    Stow, Dorrik; Omoniyi, Bayonle

    2016-04-01

    Within turbidite systems, fine-grained sediments are still the poor relation and sport several contrasting facies models linked to process of deposition. These are volumetrically the dominant facies in deepwater and, from a resource perspective, they form important marginal and tight reservoirs, and have great potential for unconventional shale gas, source rocks and seals. They are also significant hosts of metals and rare earth elements. Based on a large number of studies of modern, ancient and subsurface systems, including 1000s of metres of section logging, we define the principal genetic elements of fine-grained deepwater facies, present a new synthesis of facies models and their sedimentary attributes. The principal architectural elements include: non-channelised slope-aprons, channel-fill, channel levee and overbank, turbidite lobes, mass-transport deposits, contourite drifts, basin sheets and drapes. These comprise a variable intercalation of fine-grained facies - thin-bedded and very thin-bedded turbidites, contourites, hemipelagites and pelagites - and associated coarse-grained facies. Characteristic attributes used to discriminate between these different elements are: facies and facies associations; sand-shale ratio, sand and shale geometry and dimensions, sand connectivity; sediment texture and small-scale sedimentary structures; sediment fabric and microfabric; and small-scale vertical sequences of bed thickness. To some extent, we can relate facies and attribute characteristics to different depositional environments. We identify four distinct facies models: (a) silt-laminated mud turbidites, (b) siliciclastic mud turbidites, (c) carbonate mud turbidites, (d) disorganized silty-mud turbidites, and (e) hemiturbidites. Within the grainsize-velocity matrix turbidite plot, these all fall within the region of mean size < 0.063mm, maximum grainsize (one percentile) <0.2mm, and depositional velocity 0.1-0.5 m/s. Silt-laminated turbidites and many mud turbidites reflect uniform, steady flow characteristics and a depositional sorting mechanism for silt-clay separation; whereas disorganized turbidites reflect an unsteady flow type, either as a short-lived surge or as a mud-contaminated mid-flow. Fine-grained carbonate turbidites show certain distinctive characteristics linked to the different dynamic behaviour of fine carbonate material. Hemiturbidites are the result of long-distance transport and an upward buoyancy mechanism during deposition.

  4. Insights on landscape dynamics from tiny spheres in oil, or: How I learned to stop worrying and love the lab

    NASA Astrophysics Data System (ADS)

    Jerolmack, D. J.; Durian, D. J.; Ferdowsi, B.; Houssais, M.; Ortiz, C. P.

    2016-12-01

    As in most of Earth science, there is a tension in the design of sediment transport experiments between simplicity and the ability to isolate variables, and realism so that results maybe extrapolated to the field. This leads to tradeoffs in data acquisition, as "simple" experiments may be designed around the goal of maximizing observation of fundamental dynamics, while the dynamics of "realistic" experiments are typically more opaque. Here we present results from a series of "simple" sediment transport experiments involving a laminar shear flow over spherical plastic grains, where refractive-index matched scanning techniques are used to perform tomographic imaging of the sediment bed. This setup allows us to measure particle velocities over seven orders of magnitude - encompassing much of the range of natural flows from creeping soil to suspended load - and these measurements reveal new phenomena relevant for geomorphology and granular physics. We show that the onset of sediment transport is actually a continuous transition from creeping to bed load, and that sub-threshold creep in this laboratory "river" is similar to creep observed on hillslopes and in glassy materials. We also show that the transition from bed load to suspension can be modeled as a continuous transition from a dense to dilute granular flow, uniting sediment transport with granular rheology. We then perform experiments with bi-modal grains, which undergo granular segregation that delivers coarse grains from the subsurface to the surface. This results in armoring that is entirely consistent with observations of more realistic systems, but by a completely different mechanism from surface-transport based theories. Although these phenomena may likely be quantitatively or even qualitatively different in natural settings, they cannot be dismissed out of hand because experiments are "too simple". Indeed, most of our findings can be mapped to observations from more complicated experiments and also field studies. By embracing the control and resolution afforded by "simple" experiments, we allow the possibility to both determine the mechanistic underpinnings of transport, and to reveal fundamentally new dynamics that may change our perspective on how landscapes work.

  5. Fluidized bed gasification of industrial solid recovered fuels.

    PubMed

    Arena, Umberto; Di Gregorio, Fabrizio

    2016-04-01

    The study evaluates the technical feasibility of the fluidized bed gasification of three solid recovered fuels (SRFs), obtained as co-products of a recycling process. The SRFs were pelletized and fed to a pilot scale bubbling fluidized bed reactor, operated in gasification and co-gasification mode. The tests were carried out under conditions of thermal and chemical steady state, with a bed of olivine particles and at different values of equivalence ratio. The results provide a complete syngas characterization, in terms of its heating value and composition (including tars, particulates, and acid/basic pollutants) and of the chemical and physical characterization of bed material and entrained fines collected at the cyclone outlet. The feasibility of the fluidized bed gasification process of the different SRFs was evaluated with the support of a material and substance flow analysis, and a feedstock energy analysis. The results confirm the flexibility of fluidized bed reactor, which makes it one of the preferable technologies for the gasification of different kind of wastes, even in co-gasification mode. The fluidized bed gasification process of the tested SRFs appears technically feasible, yielding a syngas of valuable quality for energy applications in an appropriate plant configuration. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Decontamination of combustion gases in fluidized bed incinerators

    DOEpatents

    Leon, Albert M.

    1982-01-01

    Sulfur-containing atmospheric pollutants are effectively removed from exit gas streams produced in a fluidized bed combustion system by providing a fluidized bed of particulate material, i.e. limestone and/or dolomite wherein a concentration gradient is maintained in the vertical direction. Countercurrent contacting between upwardly directed sulfur containing combustion gases and descending sorbent particulate material creates a concentration gradient across the vertical extent of the bed characterized in progressively decreasing concentration of sulfur, sulfur dioxide and like contaminants upwardly and decreasing concentration of e.g. calcium oxide, downwardly. In this manner, gases having progressively decreasing sulfur contents contact correspondingly atmospheres having progressively increasing concentrations of calcium oxide thus assuring optimum sulfur removal.

  7. Fluvial sediments a summary of source, transportation, deposition, and measurement of sediment discharge

    USGS Publications Warehouse

    Colby, B.R.

    1963-01-01

    This paper presents a broad but undetailed picture of fluvial sediments in streams, reservoirs, and lakes and includes a discussion of the processes involved in the movement of sediment by flowing water. Sediment is fragmental material that originates from the chemical or physical disintegration of rocks. The disintegration products may have many different shapes and may range in size from large boulders to colloidal particles. In general, they retain about the same mineral composition as the parent rocks. Rock fragments become fluvial sediment when they are entrained in a stream of water. The entrainment may occur as sheet erosion from land surfaces, particularly for the fine particles, or as channel erosion after the surface runoff has accumulated in streams. Fluvial sediments move in streams as bedload (particles moving within a few particle diameters of the streambed) or as suspended sediment in the turbulent flow. The discharge of bedload varies with several factors, which may include particle size and a type of effective shear on the surface of the streambed. The discharge of suspended sediment depends partly on concentration of moving sediment near the streambed and hence on discharge of bedload. However, the concentration of fine sediment near the streambed varies widely, even for equal flows, and, therefore, the discharge of fine sediment normally cannot be computed theoretically. The discharge of suspended sediment also depends on velocity, turbulence, depth of flow, and fall velocity of the particles. In general, the coarse sediment transported by a stream moves intermittently and is discharged at a rate that depends on properties of the flow and of the sediment. If an ample supply of coarse sediment is available at the surface of the streambed, the discharge of the coarse sediment, such as sand, can be roughly computed from properties of the available sediment and of the flow. On the other hand, much of the fine sediment in a stream usually moves nearly continuously at about the velocity of the flow, and even low flows can transport large amounts of fine sediment. Hence, the discharge of fine sediments, being largely dependent on the availability of fine sediment upstream rather than on the properties of the sediment and of the flow at a cross section, can seldom be computed from properties, other than concentrations based directly on samples, that can be observed at the cross section. Sediment particles continually change their positions in the flow; some fall to the streambed, and others are removed from the bed. Sediment deposits form locally or over large areas if the volume rate at which particles settle to the bed exceeds the volume rate at which particles are removed from the bed. In general, large particles are deposited more readily than small particles, whether the point of deposition is behind a rock, on a flood plain, within a stream channel, or at the entrance to a reservoir, a lake, or the ocean. Most samplers used for sediment observations collect a water-sediment mixture from the water surface to within a few tenths of a foot of the streambed. They thus sample most of the suspended sediment, especially if the flow is deep or if the sediment is mostly fine; but they exclude the bedload and some of the suspended sediment in a layer near the streambed where the suspended-sediment concentrations are highest. Measured sediment discharges are usually based on concentrations that are averages of several individual sediment samples for a cross section. If enough average concentrations for a cross section have been determined, the measured sediment discharge can be computed by interpolating sediment concentrations between sampling times. If only occasional samples were collected, an average relation between sediment discharge and flow can be used with a flow-duration curve to compute roughly the average or the total sediment discharges for any periods of time for which the flow-duration c

  8. A study of flow in alluvial channels: the effect of large concentrations of fine sediment on the mechanics of flow in a small flume

    USGS Publications Warehouse

    Haushild, William Leland; Simons, Daryl Baldwin; Richadrson, Everett V.

    1961-01-01

    concentration with the dune bed form and was increased by as much as 550 percent for the transition, standing wave, and antidune forms of bed roughness. Resistance to flow was less (C/√ g increased by 45 percent) with fine sediment-laden flow than with clear-water flow for the dune, and transition bed forms; and was greater (C/√ g   reduced by 25 percent) for the standing waves and the antidunes. A narrow range of bentonite concentration for each form of bed roughness was established as a limit below which only minor changes in bed form, bed material transport, and resistance to flow occurred. The variation of the liquid properties, specific weight and viscosity, for water-bentonite dispersions were studied and their effect on the properties of the bed material particles measured. The fall velocity of the particles in a dispersion of 100, 000 parts per million fine sediment in water was reduced to about one-half their fall velocity in clear water.

  9. The Forgotten Legacy: Sediment From Historical Gold Mining Greatly Exceeds all Other Anthropogenic Sources in SE Australian Rivers

    NASA Astrophysics Data System (ADS)

    Rutherfurd, I.; Davies, P.; Macklin, M. G.; Grove, J. R.

    2016-12-01

    Coarse and fine sediment has been a major pollutant of Australian rivers and receiving waters since European settlement in 1788. Anthropogenic sediment budget models demonstrate that catchment and channel erosion has increased background sediment delivery by 10 to 20 times across SE Australia, but these estimates ignore the contribution of historical gold mining. Detailed historical records allow us to reconstruct the delivery of coarse and fine sediment (including contaminated sediment) to the fluvial system. Between 1851 and 1900 alluvial gold mining in the state of Victoria liberated between 1.2 billion and 1.4 billion m3 of coarse and fine sediment into streams. Catchment scale modelling demonstrates that this volume is at least twice the volume of all anthropogenic (post-European) erosion from hillslopes, river banks, and gullies. We map the deposition and remobilization of these contaminated legacy mining sediments down selected valleys, and find that many contemporary floodplains are blanketed with mining sediments (although mercury contamination is present but low), and discrete sediment-slugs can be recognized migrating down river beds. Overall, the impact of gold mining is one of the strongest indicators of the Anthropocene in the Australian landscape, and the level of impact on rivers is substantially greater than recognized in the past. Perhaps of most interest is the rapid recovery of many river systems from the substantial impacts of gold mining. The result is that these major changes to the landscape are largely forgotten.

  10. Direct measurements of mean Reynolds stress and ripple roughness in the presence of energetic forcing by surface waves

    USGS Publications Warehouse

    Scully, Malcolm; Trowbridge, John; Sherwood, Christopher R.; Jones, Katie R.; Traykovski, Peter A.

    2018-01-01

    Direct covariance observations of the mean flow Reynolds stress and sonar images of the seafloor collected on a wave‐exposed inner continental shelf demonstrate that the drag exerted by the seabed on the overlying flow is consistent with boundary layer models for wave‐current interaction, provided that the orientation and anisotropy of the bed roughness are appropriately quantified. Large spatial and temporal variations in drag result from nonequilibrium ripple dynamics, ripple anisotropy, and the orientation of the ripples relative to the current. At a location in coarse sand characterized by large two‐dimensional orbital ripples, the observed drag shows a strong dependence on the relative orientation of the mean current to the ripple crests. At a contrasting location in fine sand, where more isotropic sub‐orbital ripples are observed, the sensitivity of the current to the orientation of the ripples is reduced. Further, at the coarse site under conditions when the currents are parallel to the ripple crests and the wave orbital diameter is smaller than the wavelength of the relic orbital ripples, the flow becomes hydraulically smooth. This transition is not observed at the fine site, where the observed wave orbital diameter is always greater than the wavelength of the observed sub‐orbital ripples. Paradoxically, the dominant along‐shelf flows often experience lower drag at the coarse site than at the fine site, despite the larger ripples, highlighting the complex dynamics controlling drag in wave‐exposed environments with heterogeneous roughness.

  11. Application of ground-penetrating-radar methods in hydrogeologic studies

    USGS Publications Warehouse

    Beres, Milan; Haeni, F.P.

    1991-01-01

    A ground-penetrating-radar system was used to study selected stratified-drift deposits in Connecticut. Ground-penetrating radar is a surface-geophysical method that depends on the emission, transmission, reflection, and reception of an electromagnetic pulse and can produce continuous high-resolution profiles of the subsurface rapidly and efficiently. Traverse locations on land included a well field in the town of Mansfield, a sand and gravel pit and a farm overlying a potential aquifer in the town of Coventry, and Haddam Meadows State Park in the town of Haddam. Traverse locations on water included the Willimantic River in Coventry and Mansfield Hollow Lake in Mansfield. The penetration depth of the radar signal ranged from about 20 feet in fine-grained glaciolacustrine sediments to about 70 feet in coarse sand and gravel. Some land records in coarse-grained sediments show a distinct, continuous reflection from the water table about 5 to 11 feet below land surface. Parallel reflectors on the records are interpreted as fine-grained sediments. Hummocky or chaotic reflectors are interpreted as cross-bedded or coarse-grained sediments. Other features observed on some of the radar records include the till and bedrock surface. Records collected on water had distinct water-bottom multiples (more than one reflection) and diffraction patterns from boulders. The interpretation of the radar records, which required little or no processing, was verified by using lithologic logs from test holes located along some of the land traverses and near the water traverses.

  12. Direct Measurements of Mean Reynolds Stress and Ripple Roughness in the Presence of Energetic Forcing by Surface Waves

    NASA Astrophysics Data System (ADS)

    Scully, Malcolm E.; Trowbridge, John H.; Sherwood, Christopher R.; Jones, Katie R.; Traykovski, Peter

    2018-04-01

    Direct covariance observations of the mean flow Reynolds stress and sonar images of the seafloor collected on a wave-exposed inner continental shelf demonstrate that the drag exerted by the seabed on the overlying flow is consistent with boundary layer models for wave-current interaction, provided that the orientation and anisotropy of the bed roughness are appropriately quantified. Large spatial and temporal variations in drag result from nonequilibrium ripple dynamics, ripple anisotropy, and the orientation of the ripples relative to the current. At a location in coarse sand characterized by large two-dimensional orbital ripples, the observed drag shows a strong dependence on the relative orientation of the mean current to the ripple crests. At a contrasting location in fine sand, where more isotropic sub-orbital ripples are observed, the sensitivity of the current to the orientation of the ripples is reduced. Further, at the coarse site under conditions when the currents are parallel to the ripple crests and the wave orbital diameter is smaller than the wavelength of the relic orbital ripples, the flow becomes hydraulically smooth. This transition is not observed at the fine site, where the observed wave orbital diameter is always greater than the wavelength of the observed sub-orbital ripples. Paradoxically, the dominant along-shelf flows often experience lower drag at the coarse site than at the fine site, despite the larger ripples, highlighting the complex dynamics controlling drag in wave-exposed environments with heterogeneous roughness.

  13. Evaluation of cage micro-environment of mice housed on various types of bedding materials

    USGS Publications Warehouse

    Smith, E.; Stockwell, J.D.; Schweitzer, I.; Langley, S.H.; Smith, A.L.

    2004-01-01

    A variety of environmental factors can affect the outcomes of studies using laboratory rodents. One such factor is bedding. Several new bedding materials and processing methods have been introduced to the market in recent years, but there are few reports of their performance. In the studies reported here, we have assessed the cage micro-environment (in-cage ammonia levels, temperature, and humidity) of mice housed on various kinds of bedding and their combinations. We also compared results for bedding supplied as Nestpaks versus loose bedding. We studied C57BL/6J mice (commonly used) and NOD/LtJ mice (heavy soilers) that were maintained, except in one study, in static duplex cages. In general, we observed little effect of bedding type on in-cage temperature or humidity; however, there was considerable variation in ammonia concentrations. The lowest ammonia concentrations occurred in cages housing mice on hardwood bedding or a mixture of corncob and alpha cellulose. In one experiment comparing the micro-environments of NOD/LtJ male mice housed on woodpulp fiber bedding in static versus ventilated caging, we showed a statistically significant decrease in ammonia concentrations in ventilated cages. Therefore, our data show that bedding type affects the micro-environment in static cages and that effects may differ for ventilated cages, which are being used in vivaria with increasing frequency.

  14. Assessing the performance of multi-purpose channel management measures at increasing scales

    NASA Astrophysics Data System (ADS)

    Wilkinson, Mark; Addy, Steve

    2016-04-01

    In addition to hydroclimatic drivers, sediment deposition from high energy river systems can reduce channel conveyance capacity and lead to significant increases in flood risk. There is an increasing recognition that we need to work with the interplay of natural hydrological and morphological processes in order to attenuate flood flows and manage sediment (both coarse and fine). This typically includes both catchment (e.g. woodland planting, wetlands) and river (e.g. wood placement, floodplain reconnection) restoration approaches. The aim of this work was to assess at which scales channel management measures (notably wood placement and flood embankment removal) are most appropriate for flood and sediment management in high energy upland river systems. We present research findings from two densely instrumented research sites in Scotland which regularly experience flood events and have associated coarse sediment problems. We assessed the performance of a range of novel trial measures for three different scales: wooded flow restrictors and gully tree planting at the small scale (<1 km2), floodplain tree planting and engineered log jams at the intermediate scale (5-60 km2), and flood embankment lowering at the large scale (350 km2). Our results suggest that at the smallest scale, care is needed in the installation of flow restrictors. It was found for some restrictors that vertical erosion can occur if the tributary channel bed is disturbed. Preliminary model evidence suggested they have a very limited impact on channel discharge and flood peak delay owing to the small storage areas behind the structures. At intermediate scales, the ability to trap sediment by engineered log jams was limited. Of the 45 engineered log jams installed, around half created a small geomorphic response and only 5 captured a significant amount of coarse material (during one large flood event). As scale increases, the chance of damage or loss of wood placement is greatest. Monitoring highlights the importance of structure design (porosity and degree of channel blockage) and placement in zones of high sediment transport to optimise performance. At the large scale, well designed flood embankment lowering can improve connectivity to the floodplain during low to medium return period events. However, ancillary works to stabilise the bank failed thus emphasising the importance of letting natural processes readjust channel morphology and hydrological connections to the floodplain. Although these trial measures demonstrated limited effects, this may be in part owing to restrictions in the range of hydroclimatological conditions during the study period and further work is needed to assess the performance under more extreme conditions. This work will contribute to refining guidance for managing channel coarse sediment problems in the future which in turn could help mitigate flooding using natural approaches.

  15. Stratigraphy and Melt Compositions of the 3.6 and 6.7 ka Plinian Eruptions of Hudson Volcano, Chile.

    NASA Astrophysics Data System (ADS)

    Carey, S.; Scasso, R.; Kratzmann, D.; Naranjo, J.; Bande, A.

    2005-12-01

    Fallout deposits from two major Holocene eruptions of Hudson Volcano in southern Chile (3.6 ka and 6.7 ka BP, Naranjo and Stern, 1998) provide new evidence for multiple phases, including subplinian to plinian discharges and episodes of phreatomagmatic activity. Four phases have been identified for the 3.6 ka eruption. The melt was trachydacitic and did not exhibit any significant variation throughout the fall sequence. Phase one (P1) produced a commonly reverse graded, lapilli fall deposit. Phase two (P2) also produced a reverse graded, coarse lapilli fall layer. Phase three (P3) deposited a massive, poorly-sorted, silty-ash layer with pumice and minor accretionary lapilli. The final phase of the eruption (P4) laid down a commonly normal graded, coarse lapilli fall deposit. Phases P1, P2 and P4 represent fallout from high altitude plumes with minor intensity fluctuations, whereas P3 resulted from magma/water interactions and a lower eruption column. Isopach maps show a shift in the main dispersal axis for the 3.6 ka phreatomagmatic ashfall (P3), relative to the lapilli deposits. Phases 1, 2 and 4 trend generally to the east, whereas the axis for the P3 fallout trends northeast. This is likely caused by dispersal of material at different altitudes during the eruption and not a general change in the predominant wind direction. Three major phases (P1 to P3) were identified for the 6.7 ka eruption. The initial phase (P1) produced a commonly reverse graded, coarse lapilli fall deposit. The second phase (P2) produced a thick, distinctive accretionary lapilli-rich, silty-ash layer with accretionary lapilli diameters up to 2.3 cm at 35 kms from the volcano. The final phase (P3) laid down an often normal graded, coarse lapilli fall unit. The melt phase was also trachydacitic in composition and relatively uniform during the eruption, but less evolved than the magma erupted during the 3.6 ka event. The accretionary lapilli layer (P2) has been correlated with a widespread tephra in southern Patagonia, 900km to the south of Hudson volcano with an estimated bulk volume more than 18 km3 making this one of the largest Holocene eruptions in southern South America (Naranjo et al. 2001). The occurrence of extensive, fine grained accretionary lapilli-bearing beds within these two plinian eruption sequences may be related to magma/meltwater interactions triggered by eruption discharge through the summit glacier of Hudson volcano, probably related to the formation of its last superimposed or partially nested caldera (Orihashi et al., 2004).

  16. Electrokinetic removal of charged contaminant species from soil and other media using moderately conductive adsorptive materials

    DOEpatents

    Lindgren, Eric R.; Mattson, Earl D.

    2001-01-01

    Method for collecting and concentrating charged species, specifically, contaminant species in a medium, preferably soil. The method utilizes electrokinesis to drive contaminant species into and through a bed adjacent to a drive electrode. The bed comprises a moderately electrically conductive adsorbent material which is porous and is infused with water or other solvent capable of conducting electrical current. The bed material, preferably activated carbon, is easily removed and disposed of. Preferably, where activated carbon is used, after contaminant species are collected and concentrated, the mixture of activated carbon and contaminant species is removed and burned to form a stable and easily disposable waste product.

  17. Tsunami deposits at MIS Stages 5e and 9 on Oahu, Hawaii: implications for sea level at interglacial stages

    NASA Astrophysics Data System (ADS)

    McMurtry, G. M.; Campbell, J. F.; Fryer, G. J.; Tappin, D. R.; Fietzke, J.

    2010-12-01

    Sandy, basalt-coral conglomerates associated with both beachrock and coral reefs are found at high elevations on Oahu, Hawaii. They have been attributed to either brief, sea level high-stands or storms. The Kahe Point conglomerates are at 12.5 m elevation, whereas the main stage MIS-5e reef at this location has a maximum elevation of 8.2 m. They are loosely consolidated and poorly cemented, graded, poorly sorted, and with varying amounts of basalt and coral clasts ranging from cobble to boulder size. Coral in these deposits has been U-series dated by us at between 120-125 ka (n=5). Four distinct beds, with a gently seaward tilt, are recognized in a road cut section, with each bed composed of a few cm-thick topset bed of fine-grained, shelly, calcareous sand to silt. Similar high elevation conglomerates and 5e reefs are also described at Mokapu and Kaena Points on Oahu, indicating an island-wide deposit. Older coral clasts, dated at 130 to 142 ka (n=6; oldest by alpha spectrometry) found in association with the stage 5e corals suggest reworking and incorporation of older low-stand reef material. The coarse grain size of the conglomerates indicates deposition from a high-energy event; thus a high-stand source is ruled out. We also consider that the overall lithology and up to 0.5 m bed thickness not to be the result of storms; a series of high frequency storm events is considered unlikely. The weight of the evidence in our opinion clearly indicates deposition by a series of tsunami waves. If correct, this has implications for “probabilistic” models of sea level peaks at least 6.6 m higher than present at stage 5e that use such data in their models (e. g., Kopp et al., 2009), at least for Oahu. Within about 2 km of the Kahe deposit, in a road cut at Ko Olina, there is another markedly similar high-energy, sandy basalt-bearing coral conglomerate sequence at 21 to 25 m elevation. There are at least two distinct beds about one meter in thickness, both gently seaward tilting and with bed layer containing a few cm-thick topset of fine, shelly, calcareous sand to silt. The sediments are loosely consolidated and poorly cemented, graded, moderately sorted, with coral clasts ranging from pebble to boulder size, predominately cobble. Compared to the deposits at Kahe, those at Ko Olina are more heavily dominated by rounded coral clasts that are U-series dated at between 302-363 ka (n=5); broadly correlative with MIS stage 9. Previously described as a high-stand reef deposit, we suggest it is more likely to be a tsunami deposit too; perhaps considering its’ elevation, laid down from a mega-tsunami, if it was deposited prior to the MIS stage 9 high-stand at approximately 325 ka.

  18. Efficacy of pine leaves as an alternative bedding material for broiler chicks during summer season

    PubMed Central

    Sharma, Gourav; Khan, Asma; Singh, Surender; Anand, Ashok Kumar

    2015-01-01

    Aim: The aim was to assess the efficacy of pine leaves as an alternative bedding material on the performance of broiler chicks. Materials and Methods: The present study was conducted in summer. Total 120, day old Vencobb straight run chicks were procured, and after 5 days of brooding, chicks were randomly distributed into four treatment groups viz. paddy husk (Group I), paddy straw (Group II), pine leaves (Group III), and combination of paddy straw and pine leaves (Group IV), each having 30 chicks with 3 replicates of 10 chicks each. Chicks were reared under intensive conditions in houses that have a semi-controlled environment, with optimum temperature and adequate ventilation. Food and water were provided as per NRC (1994) requirement. Results: The average body weight after 6 weeks of the experiment was 2018.83±31.11, 1983.80±33.27, 2007.36±35.73, and 1938.43±36.35 g. The bedding type had no significant effect on the carcass characteristics viz. evisceration rate and proportion of cut-up parts of the carcass except giblet yield. The experiment suggested that performance of broiler chicks reared on paddy straw and pine leaves as litter material, had improved body weight and feed conversion ratio as compared to rearing on paddy husk as bedding material. Bacterial count, parasitic load and the N, P, K value of manure of different bedding material shows no significant difference. Conclusion: Pine leaves have a potential to be used as an alternative source of litter material to economize poultry production in a sustainable way, so as to make poultry farming as a profitable entrepreneur. PMID:27047021

  19. Method for removing particulate matter from a gas stream

    DOEpatents

    Postma, Arlin K.

    1984-01-01

    Particulate matter is removed from a stream of pressurized gas by directing the stream of gas upwardly through a bed of porous material, the porous bed being held in an open ended container and at least partially submerged in liquid. The passage of the gas through the porous bed sets up a circulation in the liquid which cleans the particulate matter from the bed.

  20. The Grain-size Patchiness of Braided Gravel-Bed Streams: Example of the Urumqi River (northeast Tian Shan, China)

    NASA Astrophysics Data System (ADS)

    Guerit, L.; Barrier, L.; Narteau, C.; Métivier, F.; Liu, Y.; Lajeunesse, E.; Gayer, E.; Malverti, L.; Meunier, P.; Ye, B.

    2012-04-01

    In gravel-beds rivers, sediments are sorted into patches of different grain-sizes. For single-thread streams, it has long been shown that this local granulometric sorting is closely linked to the channel morpho-sedimentary elements. For braided streams, this relation is still unclear. In such rivers, many observations of vertical sediment sorting has led to the definition of a surface and a subsurface layers. Because of this common stratification, methods for sampling gravel-bed rivers have been divided in two families. The surface layer is generally sampled by surface methods and the subsurface layer by volumetric methods. Yet, the equivalency between the two kind of techniques is still a key question. In this study, we characterized the grain-size distribution of the surface layer of the Urumqi River, a shallow braided gravel-bed river in China, by surface-count (Wolman grid-by-number) and volumetric (sieve-by-weight) sampling methods. An analysis of two large samples (212 grains and 3226 kg) show that these two methods are equivalent to characterize the river-bed surface layer. Then, we looked at the grain-size distributions of the river-bed morpho-sedimentary elements: (1) chutes at flow constrictions, which pass downstream to (2) anabranches and (3) bars at flow expansions. Using both sampling methods, we measured the diameter of more than 2300 grains and weight more than 6000 kg of grains larger than 4 mm. Our results show that the three morpho-sedimentary elements correspond only to two kinds of grain-size patches: (1) chutes composed of one coarse-grained top layer lying on finer deposits, and (2) anabranches and bars made up of finer-grained deposits more homogeneous in depth. On the basis of these quantitative observations, together with the concave or convex morphology of the different elements, we propose that chute patches form by erosion and transit with size-selective entrainment, whereas anabranch and bar patches rather develop and migrate by transit and deposition. These patch features may be typical of shallow braided gravel-bed rivers and should be considered in future works about on bedload transport processes and their geomorphologic and stratigraphic results.

  1. Sediment mobility and bed armoring in the St Clair River: insights from hydrodynamic modeling

    USGS Publications Warehouse

    Liu, Xiaofeng; Parker, Gary; Czuba, Jonathan A.; Oberg, Kevin; Mier, Jose M.; Best, James L.; Parsons, Daniel R.; Ashmore, Peter; Krishnappan, Bommanna G.; Garcia, Marcelo H.

    2012-01-01

    The lake levels in Lake Michigan-Huron have recently fallen to near historical lows, as has the elevation difference between Lake Michigan-Huron compared to Lake Erie. This decline in lake levels has the potential to cause detrimental impacts on the lake ecosystems, together with social and economic impacts on communities in the entire Great Lakes region. Results from past work suggest that morphological changes in the St Clair River, which is the only natural outlet for Lake Michigan-Huron, could be an appreciable factor in the recent trends of lake level decline. A key research question is whether bed erosion within the river has caused an increase in water conveyance, therefore, contributed to the falling lake level. In this paper, a numerical modeling approach with field data is used to investigate the possibility of sediment movement in the St Clair River and assess the likelihood of morphological change under the current flow regime. A two-dimensional numerical model was used to study flow structure, bed shear stress, and sediment mobility/armoring over a range of flow discharges. Boundary conditions for the numerical model were provided by detailed field measurements that included high-resolution bathymetry and three-dimensional flow velocities. The results indicate that, without considering other effects, under the current range of flow conditions, the shear stresses produced by the river flow are too low to transport most of the coarse bed sediment within the reach and are too low to cause substantial bed erosion or bed scour. However, the detailed maps of the bed show mobile bedforms in the upper St Clair River that are indicative of sediment transport. Relatively high shear stresses near a constriction at the upstream end of the river and at channel bends could cause local scour and deposition. Ship-induced propeller wake erosion also is a likely cause of sediment movement in the entire reach. Other factors that may promote sediment movement, such as ice cover and dredging in the lower river, require further investigation.

  2. How does sediment affect the hydraulics of bedrock-alluvial rivers?

    NASA Astrophysics Data System (ADS)

    Hodge, Rebecca; Hoey, Trevor; Maniatis, George; Leprêtre, Emilie

    2016-04-01

    Relationships between flow, sediment transport and channel morphology are relatively well established in coarse-grained alluvial channels. Developing equivalent relationships for bedrock-alluvial channels is complicated by the two different components that comprise the channel morphology: bedrock and sediment. These two components usually have very different response times to hydraulic forcing, meaning that the bedrock morphology may be inherited from previous conditions. The influence of changing sediment cover on channel morphology and roughness will depend on the relative magnitudes of the sediment size and the spatial variations in bedrock elevation. We report results from experiments in a 0.9m wide flume designed to quantify the interactions between flow and sediment patch morphology using two contrasting bedrock topographies. The first topography is a plane bed with sand-scale roughness, and the second is a 1:10 scale, 3D printed, model of a bedrock channel with spatially variable roughness (standard deviation of elevations = 12 mm in the flume). In all experiments, a sediment pulse was added to the flume (D50 between 7 and 15 mm) and sediment patches were allowed to stabilise under constant flow conditions. The flow was then incrementally increased in order to identify the discharges at which sediment patches and isolated grains were eroded. In the plane bed experiments ˜20% sediment cover is sufficient to alter the channel hydraulics through the increased roughness of the bed; this impact is expressed as the increased discharge at which isolated grains are entrained. In the scaled bed experiments, partial sediment cover decreased local flow velocities on a relatively smooth area of the bed. At the scale of the entire channel, the bed morphology, and the hydraulics induced by it, was a primary control on sediment cover stability at lower sediment inputs. At higher inputs, where sediment infilled the local bed topography, patches were relatively more stable, suggesting an increased impact on the hydraulics and the role of grain-grain interactions. We draw together these experiments using a theoretical framework to express the impact of sediment cover on channel roughness and hence hydraulics.

  3. Soil Chemistry Still Affected 23 Years After Large Application of Fluidized Bed Material

    USDA-ARS?s Scientific Manuscript database

    This study was conducted to assess the movement of arsenic, aluminum, calcium, copper, iron, lead, magnesium, manganese, mercury and zinc in an old apple (Malus domestica Borkh) orchard that received a one time application of 36 kg/ m2 of fluidized bed combustion material (FBCM) 23 years earlier. S...

  4. Fluidized bed heat exchanger utilizing angularly extending heat exchange tubes

    DOEpatents

    Talmud, Fred M.; Garcia-Mallol, Juan-Antonio

    1980-01-01

    A fluidized bed heat exchanger in which air is passed through a bed of particulate material containing fuel disposed in a housing. A steam/water natural circulation system is provided and includes a steam drum disposed adjacent the fluidized bed and a series of tubes connected at one end to the steam drum. A portion of the tubes are connected to a water drum and in the path of the air and the gaseous products of combustion exiting from the bed. Another portion of the tubes pass through the bed and extend at an angle to the upper surface of the bed.

  5. Internal dust recirculation system for a fluidized bed heat exchanger

    DOEpatents

    Gamble, Robert L.; Garcia-Mallol, Juan A.

    1981-01-01

    A fluidized bed heat exchanger in which air is passed through a bed of particulate material containing fuel disposed in a housing. A steam/water natural circulation system is provided in a heat exchange relation to the bed and includes a steam drum disposed adjacent the bed and a tube bank extending between the steam drum and a water drum. The tube bank is located in the path of the effluent gases exiting from the bed and a baffle system is provided to separate the solid particulate matter from the effluent gases. The particulate matter is collected and injected back into the fluidized bed.

  6. Sedimentological controls on gold in a late Pleistocene glacial placer deposit, Cariboo Mining District, British Columbia, Canada

    NASA Astrophysics Data System (ADS)

    Eyles, Nicholas; Kocsis, Stephen P.

    1989-11-01

    It is a widely perceived notion that glaciation results in dispersal of mineralized bedrock and that sedimentary concentrates of economic minerals (placers) rarely occur in glaciated basins. This paper describes economic gold placers within late Pleistocene glacial and related fluvial sediments of the Cariboo Mining District in central British Columbia, Canada. The area has been defined as a "giant" gold placer; total production since 1858 is over 93,000 kg. The oldest and volumetrically largest placers occur in fluvial gravels and valley-side fan deposits deposited during a long non-glacial interval from as early as 125,000 to 30,000years B.P. The richest placers are found along bedrock "gutters" in the deepest parts of valleys, indicating repeated fluvial reworking of the valley infills. Braided and "wandering gravel bed" fluvial facies can be identified. Glacial placers, that overlie the fluvial placers, occur within lodgement till complexes deposited below the late Wisconsin Cordilleran ice sheet after 30,000 years B.P. The basal portions of lodgement tills are commonly enriched in gold as a result of incorporation from older gravels. Subglacial meltwaters created a highly effective sluicing system and left lucrative pay zones along meltwater-cut channels on bedrock benches, within intraformational gravels in lodgement till and within "lee-side" deposits down-ice of bedrock highs. "Lee-side" deposits are essentially water-worked talus slopes that accumulated in subglacial cavities. Finally, postglacial "wandering gravel-bed rivers" have repeatedly reworked older placers resulting in rich pay zones at the base of extensive bar platform deposits. Similar sedimentological controls on gold distribution can be identified in other glacial placers of late Cenozoic and Paleozoic age in North America, southern Africa and Australia. A distinction is drawn between these placers, all characterized by coarse-grained, nuggety gold, and the more well-known Precambrian and Paleozoic placers where finely-comminuted gold is dispersed through large thicknesses of rock. Episodes of glaciation typically occur after long periods of tropical and subtropical weathering when supergene processes were active and glaciers were able to remove and concentrate coarse gold. In contrast, gold in non-glacial placers of Precambrian and Paleozoic age has been through many cycles of erosion and transport and coarse gold is uncommon.

  7. Pyrethroid sorption to Sacramento River suspended solids and bed sediments

    PubMed Central

    Fojut, Tessa L.; Young, Thomas M.

    2011-01-01

    Sorption of pyrethroid insecticides to solid materials will typically dominate the fate and transport of these hydrophobic compounds in aquatic environments. Batch reactor isotherm experiments were performed with bifenthrin and λ-cyhalothrin with suspended material and bed sediment collected from the Sacramento River, CA. These batch reactor experiments were performed with low spiking concentrations and a long equilibration time (28 d) to be more relevant to environmental conditions. Sorption to suspended material and bed sediment was compared to examine the role of differential sorption between these phases in the environmental transport of pyrethroids. The equilibrium sorption data were fit to the Freundlich isotherm model and fit with r2 > 0.87 for all experiments. Freundlich exponents ranged from 0.72 ± 0.19 to 1.07 ± 0.050, indicating sorption nonlinearity for some of the experimental conditions and linearity for others over the concentration range tested. The Freundlich capacity factors were larger for the suspended solids than for the bed sediments and the suspended material had a higher specific surface area and higher organic carbon content compared to the bed sediment. Calculated organic carbon-normalized distribution coefficients were larger than those previously reported in the literature by approximately an order of magnitude and ranged from 106.16 to 106.68 at an equilibrium aqueous concentration of 0.1 µg/L. Higher than expected sorption of pyrethroids to the tested materials may be explained by sorption to black carbon and/or mineral surfaces. PMID:21191877

  8. Petrological, Magnetic and Geochemical Characterization of Cretaceous-Paleogene Boundary El Mimbral and La Lajilla Sections, Northeastern Mexico

    NASA Astrophysics Data System (ADS)

    Ortega Nieto, A.; Fucugauchi, J. U.; Perez-Cruz, L. L.

    2009-12-01

    We present initial results of a petrological, magnetic and geochemical study of El Mimbral and La Lajilla sections that span the Cretaceous-Paleogene (K-Pg) boundary. K-Pg sections in northeastern Mexico have been intensively studied in past years, mainly because of their relationship to the Chicxulub crater in the Yucatan platform and for investigating the nature, origin, stratigraphic relations and age of the impact ejecta deposits. The K-Pg boundary is preserved in between hemipelagic marls and limestones of the Mendez (Maastrichtian) and Velasco (Paleocene) formations. The two sections are situated about 1000 km away from Chicxulub and K-Pg deposits are part of the proximal ejecta and the complex channelized siliciclastic units. We had separated the siliciclastic units into two parts, with a basal coarse poorly graded spherulitic bed some 0.2 to 1 m thick and a second part with several sandstone siltstone beds that have been grouped in various ways in previous studies. In the field, samples were collected across stratigraphic profiles for rock magnetic, petrological and geochemical analyses. Using field observations and analytical data, detailed columns for the two localities are prepared. Rock magnetic measurements include susceptibility, remanent and isothermal magnetization and remanent coercivity. Magnetic hysteresis loops and IRM and back-field demagnetization were measured for samples of spherulitic bed. X-ray fluorescence analyses on whole rock were complemented with previous data obtained for the Mimbral section by atomic absorption spectrometry and inductively coupled plasma mass spectrometry (including platinum group elements). Further detailed analysis concentrated in the ejecta material. The spherulitic bed is characterized by Fe-Mg rich chlorite and Si-Al-K rich glass spherules and carbonate accretionary lapilli spherules. The silicic component spherules are altered to calcite or chlorite-smectite, with some retaining glass cores. Spherules have been shown to contain Fe-Mg bubbly spherules, Fe-Ti-K schlieren and micrometer size metallic inclusions documenting a compositional range of mafic to intermediate rocks, which relate to the target stratigraphy in Yucatan with the thick surface carbonate platform sediments and the granitic and metamorphic basement. To further characterize the spherules and analyze the within- and between-sites diversity, some 60 individual spherules were separated from the two section beds. The spherules display different morphologies, surface colors and sizes, with vesiculated globular spherules, tear drop-like and ribbon and angular fragments. They show varying degrees of alteration and spherules often form aggregates, with welding and amalgamation. Fractured and deformed spherules appear almost altered. Results are discussed in terms of the K-Pg stratigraphy, nature and emplacement mechanism of ejecta deposits, alteration processes and implications/relationship with the Chicxulub impact.

  9. In-pile test of Li 2TiO 3 pebble bed with neutron pulse operation

    NASA Astrophysics Data System (ADS)

    Tsuchiya, K.; Nakamichi, M.; Kikukawa, A.; Nagao, Y.; Enoeda, M.; Osaki, T.; Ioki, K.; Kawamura, H.

    2002-12-01

    Lithium titanate (Li 2TiO 3) is one of the candidate materials as tritium breeder in the breeding blanket of fusion reactors, and it is necessary to show the tritium release behavior of Li 2TiO 3 pebble beds. Therefore, a blanket in-pile mockup was developed and in situ tritium release experiments with the Li 2TiO 3 pebble bed were carried out in the Japan Materials Testing Reactor. In this study, the relationship between tritium release behavior from Li 2TiO 3 pebble beds and effects of various parameters were evaluated. The ( R/ G) ratio of tritium release ( R) and tritium generation ( G) was saturated when the temperature at the outside edge of the Li 2TiO 3 pebble bed became 300 °C. The tritium release amount increased cycle by cycle and saturated after about 20 pulse operations.

  10. Using phase information to enhance speckle noise reduction in the ultrasonic NDE of coarse grain materials

    NASA Astrophysics Data System (ADS)

    Lardner, Timothy; Li, Minghui; Gachagan, Anthony

    2014-02-01

    Materials with a coarse grain structure are becoming increasingly prevalent in industry due to their resilience to stress and corrosion. These materials are difficult to inspect with ultrasound because reflections from the grains lead to high noise levels which hinder the echoes of interest. Spatially Averaged Sub-Aperture Correlation Imaging (SASACI) is an advanced array beamforming technique that uses the cross-correlation between images from array sub-apertures to generate an image weighting matrix, in order to reduce noise levels. This paper presents a method inspired by SASACI to further improve imaging using phase information to refine focusing and reduce noise. A-scans from adjacent array elements are cross-correlated using both signal amplitude and phase to refine delay laws and minimize phase aberration. The phase-based and amplitude-based corrected images are used as inputs to a two-dimensional cross-correlation algorithm that will output a weighting matrix that can be applied to any conventional image. This approach was validated experimentally using a 5MHz array a coarse grained Inconel 625 step wedge, and compared to the Total Focusing Method (TFM). Initial results have seen SNR improvements of over 20dB compared to TFM, and a resolution that is much higher.

  11. Constraints on the Dynamics of Seabed Pockmarks: an Integrated Sedimentological, Biostratigraphic, Geophysical, Oceanographic and Experimental Approach

    NASA Astrophysics Data System (ADS)

    Pau, M.; Hammer, Ø.; Chand, S.; Gisler, G. R.

    2015-12-01

    Pockmarks are crater-like seabed depressions commonly resulting from focused fluid escape from soft, fine-grained sediments. Typically measuring 20-50 m across with depths of 2-10 m, these features often occur in extensive fields containing hundreds of them per square kilometre. They are prominent hazards for offshore installations such as oil rigs and pipelines, affecting vast areas worldwide. Besides, they represent a major geological source of methane, and their importance has been pointed out as contributors to the global climate variability.Sedimentological and biostratigraphic analyses of sediment cores were coupled with shallow seismic images to investigate the origin and evolution of a pockmark field in the southwestern Barents Sea, an epicontinental sea part of the Arctic Ocean. The pockmarks formed as a result of reduced sedimentation above active gas seeps near the retreating edge of the Barents Sea ice sheet about 15,000 years ago. The seepage is ascribed to climate change-induced dissociation of methane hydrates. These findings strengthen the case that pockmarks, worldwide, recorded the release of massive quantities of methane from the seafloor into the ocean during the last deglaciation. No evidence was found for current upward methane flux, so the pockmarks in the study area appear as inactive seabed features. Field measurements of currents and sediment fluxes in pockmarks in the Oslofjord, Norway, along with an experimental hydrodynamics study, provide insight into the mechanisms responsible for the long-term maintenance of inactive pockmarks. Near-bed currents may control the net sedimentation rate in these depressions by inhibiting the sedimentation from suspended transport. Enhanced turbulence and more intense biological activity suggest that the suspended fines are supported in the water column more easily in the pockmarks than on the surrounding bed, and can be transported away before settling. Moreover, upwelling generated by flow deflection over the pockmark morphology may winnow out the settling fine material. These mechanisms are proposed to be responsible for the lack of sediment infill that is often reported in inactive pockmarks, as well as for the frequently observed lag deposit of coarse material.

  12. Tracking channel bed resiliency in forested mountain catchments using high temporal resolution channel bed movement

    NASA Astrophysics Data System (ADS)

    Conklin, M. H.; Martin, S.

    2017-12-01

    This study uses continuous-recording load cell pressure sensors in four, high-elevation (1500-1800 m), Sierra Nevada, headwater streams, to collect high temporal resolution, bedload-movement data for investigating the channel bed movement patterns within these streams for water years 2012-2014. Data show an annual pattern where channel bed material in the thalweg starts to build up in early fall, peaks around peak snow melt, and scours back to baseline levels during hydrograph drawdown and baseflow. This pattern is punctuated by disturbance and recovery of channel bed material associated with short-term, storm events. We propose conceptual model, linking sediment sources at the channel margins to patterns of channel bed fill and scour in the thalweg, based on this and earlier work showing in-stream sources for bedload material. The material in the thalweg represents a balance between sediment supply from the channel margins and sporadic, conveyor-belt-like, downstream transport in the thalweg. The conceptual model highlights not only the importance of production and transport rates but also that seasonal connectedness between the margins and thalweg is a key sediment control, determining both the accumulation rate of sediment stores at the margins, and the redistribution of sediment from margins to thalweg that "feeds" the conveyor-belt. Disturbance and recovery cycles are observed at multiple temporal scales, but long term, the channel beds are stable, suggesting the beds act as short-term storage for sediment, but are in equilibrium interannually. The feasibility of use for these sensors in forested mountain stream environments is tested. Despite a high failure rate (50%), load cell pressure sensors show potential for high-temporal-resolution bedload measurements, allowing for the collection of channel bed movement data to move beyond time-integrated change measurements - where many of the subtleties of bedload movement patterns may be missed - to continuous and/or real-time measurements. This type of high-temporal-resolution data provides insight into short term cycles of bedload movement in high gradient, forested, mountain streams.

  13. Evaluation of Uncertainty in Bedload Transport Estimates in a Southern Appalachian Stream

    NASA Astrophysics Data System (ADS)

    Schwartz, J. S.

    2016-12-01

    Capacity estimates of bed-material transport rates are generally derived using empirical formulae as a function of bed material gradation and composition, and hydraulic shear stress. Various field techniques may be used to sample and characterize bed material gradation; some techniques assume the existing bar material is representative of that in transport. Other methods use Helly-Smith samplers, pit traps, and net traps. Very few large, complete cross-section pit traps fully instrumented to collect continuous bedload transport have been constructed, and none in the eastern United States to our knowledge. A fully-instrumented bedload collection station was constructed on Little Turkey Creek (LTC) in Farragut, Tennessee. The aim of the research was to characterize bed material transport during stormflows for a southern Appalachian stream in the Ridge and Valley Providence. Bedload transport data from LTC was compared with classic datasets including Oak Creek (Oregon), East Fork River (Wyoming), and Clearwater and Snake rivers (Idaho). In addition, data were evaluated to assess the potential accuracy of both calibrated and uncalibrated bedload transport models using bedload transport data from LTC. Uncalibrated models were assessed with regard to their estimated range of uncertainty according to Monte Carlo uncertainty analyses. Models calibrated using reference shear values determined according to station measurements are evaluated in the same manner. Finally, models calibrated using the small scale, short-term, low rate bedload sampling techniques promoted in the literature for the spreadsheet based Bedload Assessment in Gravel-bedded Streams (BAGS) software for determining the reference shear stress are compared to results of both uncalibrated models and those calibrated using data from the bedload station. This research supports design and construction of dynamically stable alluvial stream restoration projects where stream channels are largely dependent on reach-scale hydraulic geometry that provides a long-term balance between bed-material sediment supply and transport capacity.

  14. Sediment transport in the presence of large reef bottom roughness

    USGS Publications Warehouse

    Pomeroy, Andrew; Lowe, Ryan J.; Ghisalberti, Marco; Storlazzi, Curt; Symonds, Graham; Roelvink, Dano

    2017-01-01

    The presence of large bottom roughness, such as that formed by benthic organisms on coral reef flats, has important implications for the size, concentration, and transport of suspended sediment in coastal environments. A 3 week field study was conducted in approximately 1.5 m water depth on the reef flat at Ningaloo Reef, Western Australia, to quantify the cross-reef hydrodynamics and suspended sediment dynamics over the large bottom roughness (∼20–40 cm) at the site. A logarithmic mean current profile consistently developed above the height of the roughness; however, the flow was substantially reduced below the height of the roughness (canopy region). Shear velocities inferred from the logarithmic profile and Reynolds stresses measured at the top of the roughness, which are traditionally used in predictive sediment transport formulations, were similar but much larger than that required to suspend the relatively coarse sediment present at the bed. Importantly, these stresses did not represent the stresses imparted on the sediment measured in suspension and are therefore not relevant to the description of suspended sediment transport in systems with large bottom roughness. Estimates of the bed shear stresses that accounted for the reduced near-bed flow in the presence of large roughness vastly improved the relationship between the predicted and observed grain sizes that were in suspension. Thus, the impact of roughness, not only on the overlying flow but also on bed stresses, must be accounted for to accurately estimate suspended sediment transport in regions with large bottom roughness, a common feature of many shallow coastal ecosystems.

  15. Surface-subsurface turbulent interaction at the interface of a permeable bed: influence of the wall permeability

    NASA Astrophysics Data System (ADS)

    Kim, T.; Blois, G.; Best, J.; Christensen, K. T.

    2017-12-01

    Coarse-gravel river beds possess a high degree of permeability. Flow interactions between surface and subsurface flow across the bed interface is key to a number of natural processes occurring in the hyporheic zone. In fact, it is increasingly recognized that these interactions drive mass, momentum and energy transport across the interface, and consequently control biochemical processes as well as stability of sediments. The current study explores the role of the wall permeability in surface and subsurface flow interaction under controlled experimental conditions on a physical model of a gravel bed. The present wall model was constructed by five layers of cubically arranged spheres (d=25.4mm, where d is a diameter) providing 48% of porosity. Surface topography was removed by cutting half of a diameter on the top layer of spheres to render the flow surface smooth and highlight the impact of the permeability on the overlying flow. An impermeable smooth wall was also considered as a baseline of comparison for the permeable wall flow. To obtain basic flow statistics, low-frame-rate high-resolution PIV measurements were performed first in the streamwise-wall-normal (x-y) plane and refractive-index matching was employed to optically access the flow within the permeable wall. Time-resolved PIV experiments in the same facility were followed to investigate the flow interaction across the wall interface in sptaio-temporal domain. In this paper, a detailed analysis of the first and second order velocity statistics as well as the amplitude modulation for the flow overlying the permeable smooth wall will be presented.

  16. Repellency of selected chemicals against the bed bug, (hemiptra: Cimicidae)

    USDA-ARS?s Scientific Manuscript database

    In recent years, the common bed bug, Cimex lectularius L. (Hemiptera: Cimicidae), became a major public health concern in urban communities. Bed bugs are notoriously difficult to control and their painful bites are not tolerated by most people. The public has a strong need for materials and methods ...

  17. Material handling systems for the fluidized-bed combustion boiler at Rivesville, West Virginia

    NASA Technical Reports Server (NTRS)

    Branam, J. G.; Rosborough, W. W.

    1977-01-01

    The 300,000 lbs/hr steam capacity multicell fluidized-bed boiler (MFB) utilizes complex material handling systems. The material handling systems can be divided into the following areas: (1) coal preparation; transfer and delivery, (2) limestone handling system, (3) fly-ash removal and (4) bed material handling system. Each of the above systems are described in detail and some of the potential problem areas are discussed. A major potential problem that exists is the coal drying system. The coal dryer is designed to use 600 F preheated combustion air as drying medium and the dryer effluent is designed to enter a hot electrostatic precipitator (730 F) after passage through a cyclone. Other problem areas to be discussed include the steam generator coal and limestone feed system which may have operating difficulties with wet coal and/or coal fines.

  18. Mechanical Behavior of Nanostructured and Ultrafine Grained Materials under Shock Wave Loadings. Experimental Data and Results of Computer Simulation.

    NASA Astrophysics Data System (ADS)

    Skripnyak, Vladimir

    2011-06-01

    Features of mechanical behavior of nanostructured (NS) and ultrafine grained (UFG) metal and ceramic materials under quasistatic and shock wave loadings are discussed in this report. Multilevel models developed within the approach of computational mechanics of materials were used for simulation mechanical behavior of UFG and NS metals and ceramics. Comparisons of simulation results with experimental data are presented. Models of mechanical behavior of nanostructured metal alloys takes into account a several structural factors influencing on the mechanical behavior of materials (type of a crystal lattice, density of dislocations, a size of dislocation substructures, concentration and size of phase precipitation, and distribution of grains sizes). Results show the strain rate sensitivity of the yield stress of UFG and polycrystalline alloys is various in a range from 103 up to 106 1/s. But the difference of the Hugoniot elastic limits of a UFG and coarse-grained alloys may be not considerable. The spall strength, the yield stress of UFG and NS alloys are depend not only on grains size, but a number of factors such as a distribution of grains sizes, a concentration and sizes of voids and cracks, a concentration and sizes of phase precipitation. Some titanium alloys with grain sizes from 300 to 500 nm have the quasi-static yield strength and the tensile strength twice higher than that of coarse grained counterparts. But the spall strength of the UFG titanium alloys is only 10 percents above than that of coarse grained alloys. At the same time it was found the spall strength of the bulk UFG aluminium and magnesium alloys with precipitation strengthening is essentially higher in comparison of coarse-grained counterparts. The considerable decreasing of the strain before failure of UFG alloys was predicted at high strain rates. The Hugoniot elastic limits of oxide nanoceramics depend not only on the porosity, but also on sizes and volume distribution of voids.

  19. Mediterranean undercurrent sandy contourites, Gulf of Cadiz, Spain

    USGS Publications Warehouse

    Hans, Nelson C.; Baraza, J.; Maldonado, A.

    1993-01-01

    The Pliocene-Quaternary pattern of contourite deposits on the eastern Gulf of Cadiz continental slope results from an interaction between linear diapiric ridges that are perpendicular to slope contours and the Mediterranean undercurrent that has flowed northwestward parallel to the slope contours and down valleys between the ridges since the late Miocene opening of the Strait of Gibraltar. Coincident with the northwestward decrease in undercurrent speeds from the Strait there is the following northwestward gradation of sediment facies associations: (1) upper slope facies, (2) sand dune facies on the upstream mid-slope terrace, (3) large mud wave facies on the lower slope, (4) sediment drift facies banked against the diapiric ridges, and (5) valley facies between the ridges. The southeastern sediment drift facies closest to Gibraltar contains medium-fine sand beds interbedded with mud. The adjacent valley floor facies is composed of gravelly, shelly coarse to medium sand lags and large sand dunes on the valley margins. Compared to this, the northwestern drift contains coarse silt interbeds and the adjacent valley floors exhibit small to medium sand dunes of fine sand. Further northwestward, sediment drift grades to biogenous silt near the Faro Drift at the Portuguese border. Because of the complex pattern of contour-parallel and valley-perpendicular flow paths of the Mediterranean undercurrent, the larger-scale bedforms and coarser-grained sediment of valley facies trend perpendicular to the smaller-scale bedforms and finer-grained contourite deposits of adjacent sediment drift facies. The bottom-current deposits of valleys and the contourites of the Cadiz slope intervalley areas are distinct from turbidite systems. The valley sequences are not aggradational like turbidite channel-levee complexes, but typically exhibit bedrock walls against ridges, extensive scour and fill into adjacent contourites, transverse bedform fields and bioclastic lag deposits. Both valley and contourite deposits exhibit reverse graded bedding and sharp upper bed contacts in coarse-grained layers, low deposition rates, and a regional pattern of bedform zones, textural variation, and compositional gradation. The surface sandy contourite layer of 0.2-1.2 m thickness that covers the Gulf of Cadiz slope has formed during the present Holocene high sea level because high sea level results in maximum water depth over the Gibraltar sill and full development of the Mediterranean undercurrent. The late Pleistocene age of the mud underlying the surface sand sheet correlates with the age of the last sea-level lowstand and apparent weak Mediterranean undercurrent development. Thus, the cyclic deposition of sand or mud layers and contourite or drape sequences appear to be related to late Pliocene and Quaternary sea-level changes and Mediterranean water circulation patterns. Since its Pliocene origin, the contourite sequence has had low deposition rates of < 5 cm/1000y on the upper slope and < 13 cm/1000y in the middle slope sediment drift. ?? 1993.

  20. A large coaxial reflection cell for broadband dielectric characterization of coarse-grained materials

    NASA Astrophysics Data System (ADS)

    Bore, Thierry; Bhuyan, Habibullah; Bittner, Tilman; Murgan, Vignesh; Wagner, Norman; Scheuermann, Alexander

    2018-01-01

    Knowledge of the frequency-dependent electromagnetic properties of coarse-grained materials is imperative for the successful application of high frequency electromagnetic measurement techniques for near and subsurface monitoring. This paper reports the design, calibration and application of a novel one-port large coaxial cell for broadband complex permittivity measurements of civil engineering materials. It was designed to allow the characterization of heterogeneous material with large aggregate dimensions (up to 28 mm) over a frequency range from 1 MHz-860 MHz. In the first step, the system parameters were calibrated using the measured scattering function in a perfectly known dielectric material in an optimization scheme. In the second step, the method was validated with measurements made on standard liquids. Then the performance of the cell was evaluated on a compacted coarse-grained soil. The dielectric spectra were obtained by means of fitting the measured scattering function using a transverse electromagnetic mode propagation model considering the frequency-dependent complex permittivity. Two scenarios were systematically analyzed and compared. The first scenario consisted of a broadband generalized dielectric relaxation model with two Cole-Cole type relaxation processes related to the interaction of the aqueous phase and the solid phase, a constant high frequency contribution as well as an apparent direct current conductivity term. The second scenario relied on a three-phase theoretical mixture equation which was used in a forward approach in order to calibrate the model. Both scenarios provide almost identical results for the broadband effective complex relative permittivity. The combination of both scenarios suggests the simultaneous estimation of water content, density, bulk and pore water conductivity for road base materials for in situ applications.

  1. Continuous Probabilistic Modeling of Tracer Stone Dispersal in Upper Regime

    NASA Astrophysics Data System (ADS)

    Hernandez Moreira, R. R.; Viparelli, E.

    2017-12-01

    Morphodynamic models that specifically account for the non-uniformity of the bed material are generally based on some form of the active layer approximation. These models have proven to be useful tools in the study of transport, erosion and deposition of non-uniform bed material in the case of channel bed aggradation and degradation. However, when local spatial effects over short time scales compared to those characterizing the changes in mean bed elevation dominate the vertical sediment fluxes, as is the presence of bedforms, active layer models cannot capture key details of the sediment transport process. To overcome the limitations of active layer based models, Parker, Paola and Leclair (PPL) proposed a continuous probabilistic modeling frameworks in which the sediment exchange between the bedload transport and the mobile bed is described in terms of probability density functions of bed elevation, entrainment and deposition. Here we present the implementation of a modified version of the PPL modeling framework for the study of tracer stones dispsersal in upper regime bedload transport conditions (i.e. upper regime plane bed at the transition between dunes and antidunes, downstream migrating antidunes and upper regime plane bed with bedload transport in sheet flow mode) in which the probability functions are based on measured time series of bed elevation fluctuations. The extension to the more general case of mixtures of sediments differing in size is the future development of the proposed work.

  2. Coarse-Graining of Polymer Dynamics via Energy Renormalization

    NASA Astrophysics Data System (ADS)

    Xia, Wenjie; Song, Jake; Phelan, Frederick; Douglas, Jack; Keten, Sinan

    The computational prediction of the properties of polymeric materials to serve the needs of materials design and prediction of their performance is a grand challenge due to the prohibitive computational times of all-atomistic (AA) simulations. Coarse-grained (CG) modeling is an essential strategy for making progress on this problem. While there has been intense activity in this area, effective methods of coarse-graining have been slow to develop. Our approach to this fundamental problem starts from the observation that integrating out degrees of freedom of the AA model leads to a strong modification of the configurational entropy and cohesive interaction. Based on this observation, we propose a temperature-dependent systematic renormalization of the cohesive interaction in the CG modeling to recover the thermodynamic modifications in the system and the dynamics of the AA model. Here, we show that this energy renormalization approach to CG can faithfully estimate the diffusive, segmental and glassy dynamics of the AA model over a large temperature range spanning from the Arrhenius melt to the non-equilibrium glassy states. Our proposed CG strategy offers a promising strategy for developing thermodynamically consistent CG models with temperature transferability.

  3. Short communication: Dairy bedding type affects survival of Prototheca in vitro.

    PubMed

    Adhikari, N; Bonaiuto, H E; Lichtenwalner, A B

    2013-01-01

    Protothecae are algal pathogens, capable of causing bovine mastitis, that are unresponsive to treatment; they are believed to have an environmental reservoir. The role of bedding management in control of protothecal mastitis has not been studied. The purpose of this study was to evaluate the growth of either environmental or mastitis-associated Prototheca genotypes in dairy bedding materials that are commonly used in Maine. Prototheca zopfii genotypes 1 and 2 (gt1 and gt2) were inoculated into sterile broth only (control ), kiln-dried spruce shavings, "green" hemlock sawdust, sand, or processed manure-pack beddings with broth, and incubated for 2 d. Fifty microliters of each isolate was then cultured onto plates and the resulting colonies counted at 24 and 48 h postinoculation. Shavings were associated with significantly less total Prototheca growth than other bedding types. Growth of P. zopfii gt1 was significantly higher than that of gt2 in the manure-pack bedding material. Spruce shavings, compared with manure, sand, or sawdust, may be a good bedding type to prevent growth of Prototheca. Based on these in vitro findings, bedding type may affect Prototheca infection of cattle in vivo. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  4. Statistical description of flume experiments on mixed-size bed-load transport and bed armoring processes

    NASA Astrophysics Data System (ADS)

    Chen, D.; Zhang, Y.

    2008-12-01

    The objective of this paper is to describe the statistical properties of experiments on non-uniform bed-load transport as well as the mechanism of bed armoring processes. Despite substantial effort made over the last two decades, the ability to compute the bed-load flux in a turbulent system remains poor. The major obstacles include the poor understanding of the formation of armor lays on bed surfaces. Such a layer is much flow-resistible than the underlying material and therefore significantly inhibits sediment transport from the reach. To study the problem, we conducted a flume study for mixed sand/gravel sediments. We observed that aggregated sediment blocks were the most common characters in armor layers - the largest sizes resist hydraulic forces, while the smaller sizes add interlocking support and prevent loss of fine material through gaps between the larger particles. Fractional transport rates with the existing of armor layers were measured with time by sediment trapping method at the end of flume. To address the intermittent and time-varying behavior of bed-load transport during bed armoring processes, we investigated the probability distribution of the fractional bed-load transport rates, and the underlying dynamic model derived from the continuous time random walk framework. Results indicate that it is critical to consider the impact of armor layers when a flow is sufficient to move some of the finer particles and yet insufficient to move all the larger particles on a channel bed.

  5. Preliminary assessment of channel stability and bed-material transport in the Coquille River basin, southwestern Oregon

    USGS Publications Warehouse

    Jones, Krista L.; O'Connor, Jim E.; Keith, Mackenzie K.; Mangano, Joseph F.; Wallick, J. Rose

    2012-01-01

    This report summarizes a preliminary study of bed-material transport, vertical and lateral channel changes, and existing datasets for the Coquille River basin, which encompasses 2,745 km2 (square kilometers) of the southwestern Oregon coast. This study, conducted to inform permitting decisions regarding instream gravel mining, revealed that:

  6. 40 CFR 122.23 - Concentrated animal feeding operations (applicable to State NPDES programs, see § 123.25).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... with any raw materials, products, or byproducts including manure, litter, feed, milk, eggs or bedding... manure handling system). (5) The term manure is defined to include manure, bedding, compost and raw... storage area, the raw materials storage area, and the waste containment areas. The animal confinement area...

  7. 40 CFR 122.23 - Concentrated animal feeding operations (applicable to State NPDES programs, see § 123.25).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... with any raw materials, products, or byproducts including manure, litter, feed, milk, eggs or bedding... manure handling system). (5) The term manure is defined to include manure, bedding, compost and raw... storage area, the raw materials storage area, and the waste containment areas. The animal confinement area...

  8. 40 CFR 122.23 - Concentrated animal feeding operations (applicable to State NPDES programs, see § 123.25).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... with any raw materials, products, or byproducts including manure, litter, feed, milk, eggs or bedding... manure handling system). (5) The term manure is defined to include manure, bedding, compost and raw... storage area, the raw materials storage area, and the waste containment areas. The animal confinement area...

  9. 40 CFR 122.23 - Concentrated animal feeding operations (applicable to State NPDES programs, see § 123.25).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... with any raw materials, products, or byproducts including manure, litter, feed, milk, eggs or bedding... manure handling system). (5) The term manure is defined to include manure, bedding, compost and raw... storage area, the raw materials storage area, and the waste containment areas. The animal confinement area...

  10. Submicron and Nanoparticulate Matter Removal by HEPA-Rated Media Filters and Packed Beds of Granular Materials

    NASA Technical Reports Server (NTRS)

    Perry, J. L.; Agui, J. H.; Vijayakimar, R

    2016-01-01

    Contaminants generated aboard crewed spacecraft by diverse sources consist of both gaseous chemical contaminants and particulate matter. Both HEPA media filters and packed beds of granular material, such as activated carbon, which are both commonly employed for cabin atmosphere purification purposes have efficacy for removing nanoparticulate contaminants from the cabin atmosphere. The phenomena associated with particulate matter removal by HEPA media filters and packed beds of granular material are reviewed relative to their efficacy for removing fine (less than 2.5 micrometers) and ultrafine (less than 0.01 micrometers) sized particulate matter. Considerations are discussed for using these methods in an appropriate configuration to provide the most effective performance for a broad range of particle sizes including nanoparticulates.

  11. Bed Agglomeration During the Steam Gasification of a High Lignin Corn Stover Simultaneous Saccharification and Fermentation (SSF) Digester Residue

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howe, Daniel T.; Taasevigen, Danny J.; Gerber, Mark A.

    This research investigates the bed agglomeration phenomena during the steam gasification of a high lignin residue produced from the simultaneous saccharification and fermentation (SSF) of corn stover in a bubbling fluidized bed. The studies were conducted at 895°C using alumina as bed material. Biomass was fed at 1.5 kg/hr, while steam was fed to give a velocity equal to 2.5 times the minimum fluidization velocity, with a steam/carbon ratio of 0.9. The pelletized feedstock was co-fed with a cooling nitrogen stream to mitigate feed line plugging issues. Tar production was high at 50.3 g/Nm3, and the fraction of C10+ compoundsmore » was greater than that seen in the gasification of traditional lignocellulosic feedstocks. Carbon closures over 94 % were achieved for all experiments. Bed agglomeration was found to be problematic, indicated by pressure drop increases observed below the bed and upstream of the feed line. Two size categories of solids were recovered from the reactor, +60 mesh and -60 mesh. After a 2.75-hour experiment, 61.7 wt % was recovered as -60 mesh particles and 38.2 wt% of the recovered reactor solids were +60 mesh. A sizeable percentage, 31.8 wt%, was +20 mesh. The -60 mesh particles were mainly formed by the initial bed material (Al2O3). Almost 50 wt. % of the + 20 mesh particles was found to be formed by organics. The unreacted carbon remaining in the reactor resulted in a low conversion rate to product gas. ICP-AES, SEM, SEM-EDS, and XRD confirmed that the large agglomerates (+ 20 mesh) were not encapsulated bed material but rather un-gasified feedstock pellets with sand particles attached to it.« less

  12. [Factors affecting biological removal of iron and manganese in groundwater].

    PubMed

    Xue, Gang; He, Sheng-Bing; Wang, Xin-Ze

    2006-01-01

    Factors affecting biological process for removing iron and manganese in groundwater were analyzed. When DO and pH in groundwater after aeration were 7.0 - 7.5 mg/L and 6.8 - 7.0 respectively, not only can the activation of Mn2+ oxidizing bacteria be maintained, but also the demand of iron and manganese removal can be satisfied. A novel inoculating approach of grafting mature filter material into filter bed, which is easier to handle than selective culture media, was employed in this research. However, this approach was only suitable to the filter material of high-quality manganese sand with strong Mn2+ adsorption capacity. For the filter material of quartz sand with weak adsorption capacity, only culturing and domesticating Mn2+ oxidizing bacteria by selective culture media can be adopted as inoculation in filter bed. The optimal backwashing rate of biological filter bed filled with manganese sand and quartz sand should be kept at a relatively low level of 6 - 9 L/(m2 x s) and 7 -11 L/( m2 x s), respectively. Then the stability of microbial phase in filter bed was not disturbed, and iron and manganese removal efficiency recovered in less than 5h. Moreover, by using filter material with uniform particle size of 1.0 - 1.2 mm in filter bed, the filtration cycle reached as long as 35 - 38h.

  13. Influences of cement source and sample of cement source on compressive strength variability of gravel aggregate concrete.

    DOT National Transportation Integrated Search

    2013-06-01

    The strength of concrete is influenced by each constituent material used in the concrete : mixture and the proportions of each ingredient. Water-cementitious ratio, cementitious materials, air : content, chemical admixtures, and type of coarse aggreg...

  14. Materials characterization studies on LANA75/85 materials for replacement beds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shanahan, Kirk L.

    2016-12-30

    During FY15 and FY16, a purchase order (PO) was placed with Japan Metals and Chemicals, USA after an open bidding procurement process for 282 kg of LaNi 4.25Al 0.75 and 226 kg. of LaNi 4.15Al 0.85. These materials were to be used in Tritium Facility replacement beds for existing beds that have reached the end of their useful life. As part of the PO, a 100 g. sample of each material was delivered to the SRNL Hydrogen Processing Group for characterization studies as is typically done for all newly acquired hydride materials. The PO actually employed a “trust but verify”more » approach where JMCUSA was allowed to ship materials it felt met specifications without SRS confirmation, as long as the data used to do so was delivered to SRS as part of the PO documentation package. Subsequent SRNL analysis revealed that the material met all specifications and was of very high quality. This report documents those findings.« less

  15. Mechanical model testing of rebreathing potential in infant bedding materials

    PubMed Central

    Carleton, J.; Donoghue, A.; Porter, W.

    1998-01-01

    Rebreathing of expired air may be a lethal hazard for prone sleeping infants. This paper describes a mechanical model to simulate infant breathing, and examines the effects of bedding on exhaled air retention. Under simulated rebreathing conditions, the model allows the monitoring of raised carbon dioxide (CO2) inside an artificial lung-trachea system. Resulting levels of CO2 (although probably exaggerated in the mechanical model compared with an infant, due to the model's fixed breathing rate and volume) suggest that common bedding materials vary widely in inherent rebreathing potential. In face down tests, maximum airway CO2 ranged from less than 5% on sheets and waterproof mattresses to over 25% on sheepskins, bean bag cushions, and some pillows and comforters. Concentrations of CO2 decreased with increasing head angle of the doll, away from the face down position. Recreations of 29infant death scenes also showed large CO2 increases on some bedding materials, suggesting these infants could have died while rebreathing.

 PMID:9623394

  16. Numerical experiments on breaking waves on contrasting beaches using a two-phase flow approach

    NASA Astrophysics Data System (ADS)

    Bakhtyar, R.; Barry, D. A.; Kees, C. E.

    2012-11-01

    A mechanistic understanding of beach environments needs to account for interactions of oceanic forcing and beach materials, in particular the role of waves on the evolution of the beach profile. A fully coupled two-phase flow model was used to simulate nearshore fluid-sediment turbulent flow in the cross-shore direction. It includes the Reynolds-Averaged Navier-Stokes equations and turbulent stress closures for each phase, and accounts for inter-granular stresses. The model has previously been validated using laboratory-scale data, so the results are likely more reliable for that scale. It was used to simulate wave breaking and the ensuing hydrodynamics and sediment transport processes in the surf/swash zones. Numerical experiments were conducted to investigate the effects of varying beach and wave characteristics (e.g., beach slope, sediment grain size, wave periods and heights) on the foreshore profile changes. Spilling and plunging breakers occur on dissipative and intermediate beaches, respectively. The impact of these wave/beach types on nearshore zone hydrodynamics and beach morphology was determined. The numerical results showed that turbulent kinetic energy, sediment concentrations and transport rate are greater on intermediate than on dissipative beaches. The results confirmed that wave energy, beach grain size and bed slope are main factors for sediment transport and beach morphodynamics. The location of the maximum sediment transport is near the breaking point for both beach types. Coarse- and fine-sand beaches differ significantly in their erosive characteristics (e.g., foreshore profile evolutions are erosive and accretionary on the fine and coarse sand beaches, respectively). In addition, a new parameter (based on main driving factors) is proposed that can characterize the sediment transport in the surf and swash zones. The results are consistent with existing physical observations, suggesting that the two-phase flow model is suitable for the simulation of hyper-concentrated mixed water-sediment flows in the nearshore. The model thus has potential as a useful tool for investigating interactions between nearshore hydrodynamics and beach morphology.

  17. A Composite Medium Approximation for Moisture Tension-Dependent Anisotropy in Unsaturated Layered Sediments

    NASA Astrophysics Data System (ADS)

    Pruess, K.

    2001-12-01

    Sedimentary formations often have a layered structure in which hydrogeologic properties have substantially larger correlation length in the bedding plane than perpendicular to it. Laboratory and field experiments and observations have shown that even small-scale layering, down to millimeter-size laminations, can substantially alter and impede the downward migration of infiltrating liquids, while enhancing lateral flow. The fundamental mechanism is that of a capillary barrier: at increasingly negative moisture tension (capillary suction pressure), coarse-grained layers with large pores desaturate more quickly than finer-grained media. This strongly reduces the hydraulic conductivity of the coarser (higher saturated hydraulic conductivity) layers, which then act as barriers to downward flow, forcing water to accumulate and spread near the bottom of the overlying finer-grained material. We present a "composite medium approximation" (COMA) for anisotropic flow behavior on a typical grid block scale (0.1 - 1 m or larger) in finite-difference models. On this scale the medium is conceptualized as consisting of homogeneous horizontal layers with uniform thickness, and capillary equilibrium is assumed to prevail locally. Directionally-dependent relative permeabilities are obtained by considering horizontal flow to proceed via "conductors in parallel," while vertical flow involves "resistors in series." The model is formulated for the general case of N layers, and implementation of a simplified two-layer (fine-coarse) approximation in the multiphase flow simulator TOUGH2 is described. The accuracy of COMA is evaluated by comparing numerical simulations of plume migration in 1-D and 2-D unsaturated flow with results of fine-grid simulations in which all layers are discretized explicitly. Applications to water seepage and solute transport at the Hanford site are also described. This work was supported by the U.S. Department of Energy under Contract No. DE-AC03-76SF00098 through Memorandum Purchase Order 248861-A-B2 between Pacific Northwest National Laboratory and Lawrence Berkeley National Laboratory.

  18. Experimental investigation of the strength and failure behavior of layered sandstone under uniaxial compression and Brazilian testing

    NASA Astrophysics Data System (ADS)

    Yin, Peng-Fei; Yang, Sheng-Qi

    2018-05-01

    As a typical inherently anisotropic rock, layered sandstones can differ from each other in several aspects, including grain size, type of material, type of cementation, and degree of compaction. An experimental study is essential to obtain and convictive evidence to characterize the mechanical behavior of such rock. In this paper, the mechanical behavior of a layered sandstone from Xuzhou, China, is investigated under uniaxial compression and Brazilian test conditions. The loading tests are conducted on 7 sets of bedding inclinations, which are defined as the angle between the bedding plane and horizontal direction. The uniaxial compression strength (UCS) and elastic modulus values show an undulatory variation when the bedding inclination increases. The overall trend of the UCS and elastic modulus values with bedding inclination is decreasing. The BTS value decreases with respect to the bedding inclination and the overall trend of it is approximating a linear variation. The 3D digital high-speed camera images reveal that the failure and fracture of a specimen are related to the surface deformation. Layered sandstone tested under uniaxial compression does not show a typical failure mode, although shear slip along the bedding plane occurs at high bedding inclinations. Strain gauge readings during the Brazilian tests indicate that the normal stress on the bedding plane transforms from compression to tension as the bedding inclination increases. The stress parallel to the bedding plane in a rock material transforms from tension to compression and agrees well with the fracture patterns; "central fractures" occur at bedding inclinations of 0°-75°, "layer activation" occurs at high bedding inclinations of 75°-90°, and a combination of the two occurs at 75°.

  19. Optical techniques: using coarse and detailed scans for the preventive acquisition of fingerprints with chromatic white-light sensors

    NASA Astrophysics Data System (ADS)

    Hildebrandt, Mario; Dittmann, Jana; Vielhauer, Claus; Leich, Marcus

    2011-11-01

    The preventive application of automated latent fingerprint acquisition devices can enhance the Homeland Defence, e.g. by improving the border security. Here, contact-less optical acquisition techniques for the capture of traces are subject to research; chromatic white light sensors allow for multi-mode operation using coarse or detailed scans. The presence of potential fingerprints could be detected using fast coarse scans. Those Regions-of- Interest can be acquired afterwards with high-resolution detailed scans to allow for a verification or identification of individuals. An acquisition and analysis of fingerprint traces on different objects that are imported or pass borders might be a great enhancement for security. Additionally, if suspicious objects require a further investigation, an initial securing of potential fingerprints could be very useful. In this paper we show current research results for the coarse detection of fingerprints to prepare the detailed acquisition from various surface materials that are relevant for preventive applications.

  20. Tensile fracture of coarse-Grained cast austenitic manganese steels

    NASA Astrophysics Data System (ADS)

    Rittel, D.; Roman, I.

    1988-09-01

    Tensile fracture of coarse-grained (0.25 to 1 mm) cast austenitic manganese (Hadfield) steels has been investigated. Numerous surface discontinuities nucleate in coarse slip bands, on the heavily deformed surface of tensile specimens. These discontinuities do not propagate radially and final fracture results from central specimen cracking at higher strains. On the microscopic scale, bulk voids nucleate during the entire plastic deformation and they do not coalesce by shear localization (e.g., void-sheet) mechanism. Close voids coalesce by internal necking, whereas distant voids are bridged by means of small voids which nucleate at later stages of the plastic deformation. The high toughness of Hadfield steels is due to their high strain-hardening capacity which stabilizes the plastic deformation, and avoids shear localization and loss of load-bearing capacity. The observed dependence of measured mechanical properties on the specimen’s geometry results from the development of a surface layer which charac-terizes the deformation of this coarse-grained material.

  1. Method of removing sulfur emissions from a fluidized-bed combustion process

    DOEpatents

    Vogel, Gerhard John; Jonke, Albert A.; Snyder, Robert B.

    1978-01-01

    Alkali metal or alkaline earth metal oxides are impregnated within refractory support material such as alumina and introduced into a fluidized-bed process for the combustion of coal. Sulfur dioxide produced during combustion reacts with the metal oxide to form metal sulfates within the porous support material. The support material is removed from the process and the metal sulfate regenerated to metal oxide by chemical reduction. Suitable pore sizes are originally developed within the support material by heat-treating to accommodate both the sulfation and regeneration while still maintaining good particle strength.

  2. Characteristics of Sawdust and Cocopeat Beddings, and Their Usefulness According to the Fan and Pen Location for Rearing Hanwoo Cattle.

    PubMed

    Ahn, Gyu Chul; Jang, Sun Sik; Lee, Kang Yeon; Kwak, Wan Sup; Oh, Young Kyun; Park, Keun Kyu

    2016-03-01

    This study was designed to examine the characteristics of sawdust and cocopeat bedding materials, including physicochemical properties (Exp. I) and on-farm trial (Exp. II). In Exp. I, the proportion of particle size was in the order of sawdust> cocopeat India>cocopeat Vietnam (p<0.05), and cocopeat contained higher proportion of small particles (250 μm+below 250 μm) than sawdust, causing a dust production problem. Bulk density was cocopeat India>cocopeat Vietnam>sawdust (p<0.05), thus cocopeat treatments showed 4.4 times higher bedding cost than sawdust. The water absorption rates were 702.0% in cocopeat India, 678.3% in cocopeat Vietnam, and 444.0% in sawdust, showing cocopeat had approximately 1.5 times higher water absorption rate than sawdust. Moisture evaporation rates after 12 h of air blowing (2.00 m/s) were higher (p<0.05) in cocopeat Vietnam (80.4%) than sawdust (71.2%) and cocopeat India (72.8%). In vitro ammonia emissions were higher (p<0.05) in sawdust (2.71 mg/m(2)/h) than cocopeat India (1.59 mg/m(2)/h) and Vietnam (1.22 mg/m(2)/h), and total ammonia emissions were higher (p<0.05) in sawdust (37.02 mg/m(2)) than cocopeat India (22.51 mg/m(2)) and Vietnam (13.60 mg/m(2)). In Exp. II, an on-farm trial was conducted with 48 Hanwoo cattle in 16 pens using the same bedding materials as in Exp. I, with fan (blowing 2.00 m/s) and no fan treatments, and feed bunk side (FB) and water supply side (WS) within a pen (4.5 m, width×9.0 m, length). Beddings were replaced with fresh bedding materials when moisture concentrations were over 65%. No interactions among treatments were detected for moisture concentration and increment rates, and ammonia concentrations, but a significant effect was observed (p<0.01) for each of the treatments. Both concentrations and increment rate of moisture were higher (p<0.01) in the beddings without fan than with fan. Moisture concentrations and increment rate within a pen were also higher (p<0.01) in FB than WS. Thus, the whole no-fan-FB and sawdust-fan-FB were replaced with fresh bedding material between 4 to 5 experimental weeks. The ammonia concentrations and pH of beddings were not significantly different among treatments. Therefore, using cocopeat bedding with a blowing fan can extend twice the bedding utilization period, and WS within a pen showed twice the bedding-life compared to FB. Despite the outstanding characteristics of cocopeat compared with sawdust, using cocopeat as an alternative for sawdust bedding is not recommended for cattle management, considering it has 4.4 times higher bedding cost and a dust production problem.

  3. Relationships between forest fine and coarse woody debris carbon stocks across latitudinal gradients in the United States as an indicator of climate change effects

    Treesearch

    C.W. Woodall; G.C. Liknes

    2008-01-01

    Coarse and fine woody materials (CWD and FWD) are substantial forest ecosystem carbon (C) stocks. There is a lack of understanding how these detritus C stocks may respond to climate change. This study used a nation-wide inventory of CWD and FWD in the United States to examine how these C stocks vary by latitude. Results indicate that the highest CWD and FWD C stocks...

  4. Process for the production of fuel gas from coal

    DOEpatents

    Patel, Jitendra G.; Sandstrom, William A.; Tarman, Paul B.

    1982-01-01

    An improved apparatus and process for the conversion of hydrocarbonaceous materials, such as coal, to more valuable gaseous products in a fluidized bed gasification reaction and efficient withdrawal of agglomerated ash from the fluidized bed is disclosed. The improvements are obtained by introducing an oxygen containing gas into the bottom of the fluidized bed through a separate conduit positioned within the center of a nozzle adapted to agglomerate and withdraw the ash from the bottom of the fluidized bed. The conduit extends above the constricted center portion of the nozzle and preferably terminates within and does not extend from the nozzle. In addition to improving ash agglomeration and withdrawal, the present invention prevents sintering and clinkering of the ash in the fluidized bed and permits the efficient recycle of fine material recovered from the product gases by contacting the fines in the fluidized bed with the oxygen as it emanates from the conduit positioned within the withdrawal nozzle. Finally, the present method of oxygen introduction permits the efficient recycle of a portion of the product gases to the reaction zone to increase the reducing properties of the hot product gas.

  5. Sediment sources in the Lake Tahoe Basin, California-Nevada; preliminary results of a four-year study, August 1983-September 1987

    USGS Publications Warehouse

    Hill, B.R.; Hill, J.R.; Nolan, K.M.

    1988-01-01

    Data were collected during a 4-yr study of sediment sources in four drainage basins tributary to Lake Tahoe, California-Nevada. The study areas include the Blackwood, General, Edgewood, and Logan House Creek basins. Data include changes in bank and bed positions at channel cross sections; results of stream-channel mapping; analyses of bank and bed material samples; tabulations of bed material point counts; measured rates of hillslope erosion; dimensions of gullies; suspended-sediment data collected during synoptic snowmelt sampling; and physiographic data for the four study basins. (USGS)

  6. Sediment-source data for four basins tributary to Lake Tahoe, California and Nevada; August 1983-June 1988

    USGS Publications Warehouse

    Hill, B.R.; Hill, J.R.; Nolan, K.M.

    1990-01-01

    Data were collected during a 5-year study of sediment sources in four drainage basins tributary to Lake Tahoe, California-Nevada. The study areas include the Blackwood Creek, General Creek, Edgewood Creek, and Logan House Creek basins. Data include changes in bank and bed positions at channel cross sections; results of stream-channel inventories; analyses of bank and bed material samples; tabulations of bed-material pebble counts; measured rates of hillslope erosion; dimensions of gullies; suspended-sediment data collected during synoptic snowmelt sampling; and physiographic data for the four study basins. (USGS)

  7. Paleoenvironmental interpretation of section of Rosario Formation in Ensenada, Baja California, Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tellez-Duarte, M.A.; Ferman-Almada, J.L.

    In contrast to previous interpretations of the Rosario Formation in other parts of Baja California, a stratigraphic section 6 km north of Ensenada, Baja California, Mexico, contains evidences for deposition in shallow waters during a regressive event in a steep slope basin. Among the sedimentary evidence, the section shows a coarse, shoaling-upward sequence, with high-angle cross-stratification and planar bed lamination. Load structures with a westward orientation were found only at the base. The fossils assemblages support the same shoaling-upward interpretation as the sedimentary evidence, with ammonoids and deposit feeder trace fossils (such as Chondrites) at the bottom to mollusks andmore » suspension feeder trace fossils (such as Scolicia and Ophiomorpha, characteristic of shallower waters) at the top. This sedimentologic and paleontologic evidence suggests nearshore to beach coastal deposits. The contact between the section and a discontinuous thin limestone bed at the top of the section shows an unconformity. The absence of well-preserved fossils makes this limestone difficult to date, but the lithology is similar to that of Paleocene Sepultura Formation limestones.« less

  8. Development of metal hydride composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Congdon, J.W.

    1992-12-01

    Most of current hydride technology at Savannah River Site is based on beds of metal hydride powders; the expansion upon hydridation and the cycling results in continued breakdown into finer particles. Goal is to develop a composite which will contain the fines in a dimensionally stable matrix, for use in processes which require a stable gas flow through a hydride bed. Metal hydride composites would benefit the advanced Thermal Cycling Absorption process (hydrogen isotope separation), and the Replacement Tritium Facility (storage, pumping, compression, purification of hydrogen isotopes). These composites were fabricated by cold compaction of a mixture of metal hydridemore » granules and coarse copper powder; the porosity in the granules was introduced by means of ammonium carbonate. The composite pellets were cycled 138 times in hydrogen with the loss of LANA0.75 (LaNi{sub 4.25}Al{sub 0.75}) limited to the surface. Vacuum sintering can provide additional strength at the edges. Without a coating, the metal hydride particles exposed at the pellet surface can be removed by cycling several times in hydrogen.« less

  9. Effect of particle size distribution on the hydrodynamics of dense CFB risers

    NASA Astrophysics Data System (ADS)

    Bakshi, Akhilesh; Khanna, Samir; Venuturumilli, Raj; Altantzis, Christos; Ghoniem, Ahmed

    2015-11-01

    Circulating Fluidized Beds (CFB) are favorable in the energy and chemical industries, due to their high efficiency. While accurate hydrodynamic modeling is essential for optimizing performance, most CFB riser simulations are performed assuming equally-sized solid particles, owing to limited computational resources. Even though this approach yields reasonable predictions, it neglects commonly observed experimental findings suggesting the strong effect of particle size distribution (psd) on the hydrodynamics and chemical conversion. Thus, this study is focused on the inclusion of discrete particle sizes to represent the psd and its effect on fluidization via 2D numerical simulations. The particle sizes and corresponding mass fluxes are obtained using experimental data in dense CFB riser while the modeling framework is described in Bakshi et al 2015. Simulations are conducted at two scales: (a) fine grid to resolve heterogeneous structures and (b) coarse grid using EMMS sub-grid modifications. Using suitable metrics which capture bed dynamics, this study provides insights into segregation and mixing of particles as well as highlights need for improved sub-grid models.

  10. Two examples of subaqueously welded ash-flow tuffs: the Visean of southern Vosges (France) and the Upper Cretaceous of northern Anatolia (Turkey)

    NASA Astrophysics Data System (ADS)

    Schneider, Jean-Luc; Fourquin, Claude; Paicheler, Jean-Claude

    1992-02-01

    Pyroclastic deposits interpreted as subaqueous ash-flow tuff have been recognized within Archean to Recent marine and lacustrine sequences. Several authors proposed a high-temperature emplacement for some of these tuffs. However, the subaqueous welding of pyroclastic deposits remains controversial. The Visean marine volcaniclastic formations of southern Vosges (France) contain several layers of rhyolitic and rhyodacitic ash-flow tuff. These deposits include, from proximal to distal settings, breccia, lapilli and fine-ash tuff. The breccia and lapilli tuff are partly welded, as indicated by the presence of fiamme, fluidal and axiolitic structures. The lapilli tuff form idealized sections with a lower, coarse and welded unit and an upper, bedded and unwelded fine-ash tuff. Sedimentary structures suggest that the fine-ash tuff units were deposited by turbidity currents. Welded breccias, interbedded in a thick submarine volcanic complex, indicate the close proximity of the volcanic source. The lapilli and fine-ash tuff are interbedded in a thick marine sequence composed of alternating sandstones and shales. Presence of a marine stenohaline fauna and sedimentary structures attest to a marine depositional environment below storm-wave base. In northern Anatolia, thick massive sequences of rhyodacitic crystal tuff are interbedded with the Upper Cretaceous marine turbidites of the Mudurnu basin. Some of these tuffs are welded. As in southern Vosges, partial welding is attested by the presence of fiamme and fluidal structures. The latter are frequent in the fresh vitric matrix. These tuff units contain a high proportion of vitroclasis, and were emplaced by ash flows. Welded tuff units are associated with non-welded crystal tuff, and contain abundant bioclasts which indicate mixing with water during flowage. At the base, basaltic breccia beds are associated with micritic beds containing a marine fauna. The welded and non-welded tuff sequences are interbedded in an alternation of limestones and marls. These limestones are rich in pelagic microfossils. The evidence above strongly suggest that in both examples, tuff beds are partly welded and were emplaced at high temperature by subaqueous ash flows in a permanent marine environment. The sources of the pyroclastic material are unknown in both cases. We propose that the ash flows were produced during submarine fissure eruptions. Such eruptions could produce non-turbulent flows which were insulated by a steam carapace before deposition and welding. The welded ash-flow tuff deposits of southern Vosges and northern Anatolia give strong evidence for existence of subaqueous welding.

  11. Selected chemical characteristics and acute toxicity of urban stormwater, streamflow, and bed material, Maricopa County, Arizona

    USGS Publications Warehouse

    Lopes, T.J.; Fossum, K.D.

    1995-01-01

    Statistical analyses indicated that urban stormwater could degrade the quality of streamflow because of oil and grease, pesticides, dissolved trace metals, and ammonia in stormwater. Ammonia, lead, cadmium, and zinc are released by urban activities and accumulate in bed material. Ammonia could be from fertilizers, fecal matter, and other sources. Lead is probably from vehicles that use leaded gasoline. Cadmium and zinc could be from particulate metal in oil, brake pads, and other sources. Samples of the initial runoff from urban drainage basins appeared to be more toxic than flow-weighted composite samples, and stormwater was more harmful to fathead minnows than to Ceriodaphnia dubia. Streamflow samples from the Salt River were not toxic to either species. The sensitivity of fathead minnows to urban stormwater from most urban drainage basins indicated that the toxicants were detrimental to fish and could be present in stormwater throughout Phoenix. Results of toxicity identification evaluations indicated the toxicity was mostly due to organic constituents. Mortality, however, did not correlate with organophosphate pesticide concentrations. Surfactants and (or) other constituents leached from asphalt could be toxic. The most toxic bed-material samples were collected from an undeveloped drainage basin. Within urban-drainage basins, bed-material samples collected where stormwater accumulates appeared to be more toxic than samples collected from areas unaffected by stormwater. Mortality rates correlated with recoverable concentrations of zinc, copper, and cadmium; however these rates correlated poorly with pesticide concentrations. The bioavailability of trace metals appeared to be controlled by the adsorption properties of bed material.

  12. Pyrethroid sorption to Sacramento River suspended solids and bed sediments.

    PubMed

    Fojut, Tessa L; Young, Thomas M

    2011-04-01

    Sorption of pyrethroid insecticides to solid materials will typically dominate the fate and transport of these hydrophobic compounds in aquatic environments. Batch reactor isotherm experiments were performed with bifenthrin and λ-cyhalothrin with suspended material and bed sediment collected from the Sacramento River, California, USA. These batch reactor experiments were performed with low spiking concentrations and a long equilibration time (28 d) to be more relevant to environmental conditions. Sorption to suspended material and bed sediment was compared to examine the role of differential sorption between these phases in the environmental transport of pyrethroids. The equilibrium sorption data were fit to the Freundlich isotherm model and fit with r(2)  > 0.87 for all experiments. Freundlich exponents ranged from 0.72 ± 0.19 to 1.07 ± 0.050, indicating sorption nonlinearity for some of the experimental conditions and linearity for others over the concentration range tested. The Freundlich capacity factors were larger for the suspended solids than for the bed sediments, and the suspended material had a higher specific surface area and higher organic carbon content compared to the bed sediment. Calculated organic carbon-normalized distribution coefficients were larger than those previously reported in the literature, by approximately an order of magnitude, and ranged from 10(6.16) to 10(6.68) at an equilibrium aqueous concentration of 0.1 µg/L. Higher than expected sorption of pyrethroids to the tested materials may be explained by sorption to black carbon and/or mineral surfaces. Copyright © 2011 SETAC.

  13. Bed material agglomeration during fluidized bed combustion. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, R.C.; Dawson, M.R.; Smeenk, J.L.

    The purpose of this project is to determine the physical and chemical reactions which lead to the undesired agglomeration of bed material during fluidized bed combustion of coal and to relate these reactions to specific causes. A survey of agglomeration and deposit formation in industrial fluidized bed combustors (FBCs) indicate that at least five boilers were experiencing some form of bed material agglomeration. Deposit formation was reported at nine sites with deposits most commonly at coal feed locations and in cyclones. Other deposit locations included side walls and return loops. Three general types of mineralogic reactions were observed to occurmore » in the agglomerates and deposits. Although alkalies may play a role with some {open_quotes}high alkali{close_quotes} lignites, we found agglomeration was initiated due to fluxing reactions between iron (II) from pyrites and aluminosilicates from clays. This is indicated by the high amounts of iron, silica, and alumina in the agglomerates and the mineralogy of the agglomerates. Agglomeration likely originated in the dense phase of the FBC bed within the volatile plume which forms when coal is introduced to the boiler. Secondary mineral reactions appear to occur after the agglomerates have formed and tend to strengthen the agglomerates. When calcium is present in high amounts, most of the minerals in the resulting deposits are in the melilite group (gehlenite, melilite, and akermanite) and pyroxene group (diopside and augite). During these solid-phase reactions, the temperature of formation of the melilite minerals can be lowered by a reduction of the partial pressure of CO{sub 2} (Diopside + Calcite {r_arrow}Akermanite).« less

  14. Bed failure induced by internal solitary waves

    NASA Astrophysics Data System (ADS)

    Rivera-Rosario, Gustavo A.; Diamessis, Peter J.; Jenkins, James T.

    2017-07-01

    The pressure field inside a porous bed induced by the passage of an Internal Solitary Wave (ISW) of depression is examined using high-accuracy numerical simulations. The velocity and density fields are obtained by solving the Dubreil-Jacotin-Long Equation, for a two-layer, continuously stratified water column. The total wave-induced pressure across the surface of the bed is computed by vertically integrating for the hydrostatic and nonhydrostatic contributions. The bed is assumed to be a continuum composed of either sand or silt, with a small amount of trapped gas. Results show variations in pore-water pressure penetrating deeper into more conductive materials and remaining for a prolonged period after the wave has passed. In order to quantify the potential for failure, the vertical pressure gradient is compared against the buoyant weight of the bed. The pressure gradient exceeds this weight for weakly conductive materials. Failure is further enhanced by a decrease in bed saturation, consistent with studies in surface-wave induced failure. In deeper water, the ISW-induced pressure is stronger, causing failure only for weakly conductive materials. The pressure associated with the free-surface displacement that accompanies ISWs is significant, when the water depth is less than 100 m, but has little influence when it is greater than 100 m, where the hydrostatic pressure due to the pycnocline displacement is much larger. Since the pore-pressure gradient reduces the specific weight of the bed, results show that particles are easier for the flow to suspend, suggesting that pressure contributes to the powerful resuspension events observed in the field.

  15. Development of a Test for Evaluation of the Hydrothermal Stability of Sorbents Used in Closed-Loop CO2 Removal Systems

    NASA Technical Reports Server (NTRS)

    Knox, James C.; Gauto, Hernando; Miller, Lee A.

    2015-01-01

    The International Space Station Carbon Dioxide Removal Assembly uses zeolite 5A molecular sieve material packed into beds for the capture of cabin CO2. The beds are cyclically heated to drive off the CO2 and restore the removal capacity. Over time, the sorbent material has been found to break down resulting in dust that restricts flow through the beds. Humidity adsorbed in the 5A zeolite when it is heated is a suspected cause of this sorbent degradation. To evaluate the impact of adsorbed water during thermal cycling, the Hydrothermal Stability Test was developed. The test configuration provides comparative side-by-side flow restriction data for two sorbent materials at specifically controlled humidity levels. While the initial focus of the testing is on 5A zeolite materials currently used on the ISS, the system will also be used to evaluate future candidate materials. This paper describes the approach, the test system, current results, and future testing.

  16. Agriculture--Agricultural Production 1, Seed Bed. Kit No. 6. Instructor's Manual [and] Student Learning Activity Guide.

    ERIC Educational Resources Information Center

    Sloan, Lee

    An instructor's manual and student activity guide on the seed bed are provided in this set of prevocational education materials which focuses on the vocational area of agriculture. (This set of materials is one of ninety-two prevocational education sets arranged around a cluster of seven vocational offerings: agriculture, home economics,…

  17. Use of wood-based materials in beef bedded manure packs: 1. Effect on ammonia, total reduced sulfide, and greenhouse gas concentrations

    USDA-ARS?s Scientific Manuscript database

    The objectives of this study were to determine the effect of using corn stover or three different wood-based bedding materials (kiln-dried pine wood chips, dry cedar chips, or green cedar chips) on airborne concentrations of ammonia (NH3), total reduced sulfur (TRS), carbon dioxide (CO2), methane (C...

  18. Reversed flow fluidized-bed combustion apparatus

    DOEpatents

    Shang, Jer-Yu; Mei, Joseph S.; Wilson, John S.

    1984-01-01

    The present invention is directed to a fluidized-bed combustion apparatus provided with a U-shaped combustion zone. A cyclone is disposed in the combustion zone for recycling solid particulate material. The combustion zone configuration and the recycling feature provide relatively long residence times and low freeboard heights to maximize combustion of combustible material, reduce nitrogen oxides, and enhance sulfur oxide reduction.

  19. Morphology of single inhalable particle inside public transit biodiesel fueled bus.

    PubMed

    Shandilya, Kaushik K; Kumar, Ashok

    2010-01-01

    In an urban-transit bus, fueled by biodiesel in Toledo, Ohio, single inhalable particle samples in October 2008 were collected and detected by scanning electron microscopy and energy dispersive X-ray spectrometry (SEM/EDS). Particle size analysis found bimodal distribution at 0.2 and 0.5 microm. The particle morphology was characterized by 14 different shape clusters: square, pentagon, hexagon, heptagon, octagon, nonagon, decagon, agglomerate, sphere, triangle, oblong, strip, line or stick, and unknown, by quantitative order. The square particles were common in the samples. Round and triangle particles are more, and pentagon, hexagon, heptagon, octagon, nonagon, decagon, strip, line or sticks are less. Agglomerate particles were found in abundance. The surface of most particles was coarse with a fractal edge that can provide a suitable chemical reaction bed in the polluted atmospheric environment. The three sorts of surface patterns of squares were smooth, semi-smooth, and coarse. The three sorts of square surface patterns represented the morphological characteristics of single inhalable particles in the air inside the bus in Toledo. The size and shape distribution results were compared to those obtained for a bus using ultra low sulfur diesel.

  20. Sedimentary structures and textures of Rio Orinoco channel sands, Venezuela and Colombia

    USGS Publications Warehouse

    McKee, Edwin Dinwiddie

    1989-01-01

    Most sedimentary structures represented in sand bodies of the Rio Orinoco are tabular-planar cross-strata which, together with some wedge-planar cross-strata, are the products of sand-wave deposition. Locally, in areas of river meander where point bars characteristically form, trough structures forming festoon patterns are numerous. At a few localities, sets of nearly horizontal strata occur between tabular-planar sets and are interpreted to be the deposits of very fast currents of the upper flow regime; elsewhere, uncommon lenses and beds of silt, clay, or organic matter consisting of leaves and twigs, seem to be the result of quiet-water settling through gravity. By far the most common grain size represented in the tabular-planar and wedge-planar cross-strata of the sandwave deposits is medium sand (? - ? millimeter) as determined by screen analyses. Many samples, however, also contain moderate quantities of coarse or very coarse sand. Eolian dunes on top of the sand-wave deposits are dominantly fine grained. The river channel sands were determined to be largely moderately well sorted, although in some places they were mostly well sorted, and in others, mostly moderately sorted.

  1. Changes in nitrogen isotopic compositions during composting of cattle feedlot manure: effects of bedding material type.

    PubMed

    Kim, Young-Joo; Choi, Woo-Jung; Lim, Sang-Sun; Kwak, Jin-Hyeob; Chang, Scott X; Kim, Han-Yong; Yoon, Kwang-Sik; Ro, Hee-Myong

    2008-09-01

    Temporal changes in delta(15)N of cattle feedlot manure during its composting with either rice hull (RHM) or sawdust (SDM) as bedding materials were investigated. Regardless of the bedding material used, the delta(15)N of total N in the manure increased sharply from +7.6 per thousand to +9.9 per thousand and from +11.4 per thousand to +14.3 per thousand, respectively, in RHM or SDM, within 10 days from the commencement of composting. Such increases could be attributed primarily to N loss via NH(3) volatilization and denitrification based on the very high delta(15)N values (greater than +20 per thousand) of NH(4)(+) and NO(3)(-) in the co-composted manure. The delta(15)N of total N in RHM was substantially lower (by more than 3 per thousand) than that in SDM, suggesting that the delta(15)N of the composted manure was affected not only by N loss but also by the type of bedding material used. Specifically, the higher N concentration in the rice hull than in the saw dust could lead to a greater (15)N isotope dilution.

  2. Bed Bug Information Clearinghouse

    EPA Pesticide Factsheets

    Its purpose is to help states, communities, and consumers in efforts to prevent and control bed bug infestations. Currently includes only reviewed material from federal/state/local government agencies, extension services, and universities.

  3. Molecular Simulation Studies of Covalently and Ionically Grafted Nanoparticles

    NASA Astrophysics Data System (ADS)

    Hong, Bingbing

    Solvent-free covalently- or ionically-grafted nanoparticles (CGNs and IGNs) are a new class of organic-inorganic hybrid composite materials exhibiting fluid-like behaviors around room temperature. With similar structures to prior systems, e.g. nanocomposites, neutral or charged colloids, ionic liquids, etc, CGNs and IGNs inherit the functionality of inorganic nanopariticles, the facile processibility of polymers, as well as conductivity and nonvolatility from their constituent materials. In spite of the extensive prior experimental research having covered synthesis and measurements of thermal and dynamic properties, little progress in understanding of these new materials at the molecular level has been achieved, because of the lack of simulation work in this new area. Atomistic and coarse-grained molecular dynamics simulations have been performed in this thesis to investigate the thermodynamics, structure, and dynamics of these systems and to seek predictive methods predictable for their properties. Starting from poly(ethylene oxide) oligomers (PEO) melts, we established atomistic models based on united-atom representations of methylene. The Green-Kubo and Einstein-Helfand formulas were used to calculate the transport properties. The simulations generate densities, viscosities, diffusivities, in good agreement with experimental data. The chain-length dependence of the transport properties suggests that neither Rouse nor reptation models are applicable in the short-chain regime investigated. Coupled with thermodynamic integration methods, the models give good predictions of pressure-composition-density relations for CO 2 + PEO oligomers. Water effects on the Henry's constant of CO 2 in PEO have also been investigated. The dependence of the calculated Henry's constants on the weight percentage of water falls on a temperature-dependent master curve, irrespective of PEO chain length. CGNs are modeled by the inclusion of solid-sphere nanoparticles into the atomistic oligomers. The calculated viscosities from Green-Kubo relationships and temperature extrapolation are of the same order of magnitude as experimental values, but show a smaller activation energy relative to real CGNs systems. Grafted systems have higher viscosities, smaller diffusion coefficients, and slower chain dynamics than the ungrafted counterparts - nanocomposites - at high temperatures. At lower temperatures, grafted systems exhibit faster dynamics for both nanoparticles and chains relative to ungrafted systems, because of lower aggregation of nanoparticles and enhanced correlations between nanoparticles and chains. This agrees with the experimental observation that the new materials have liquid-like behavior in the absence of a solvent. To lower the simulated temperatures into the experimental range, we established a coarse-grained CGNs model by matching structural distribution functions to atomistic simulation data. In contrast with linear polymer systems, for which coarse-graining always accelerate dynamics, coarse-graining of grafted nanoparticles can either accelerate or slowdown the core motions, depending on the length of the grafted chains. This can be qualitatively predicted by a simple transition-state theory. Similar atomistic models to CGNs were developed for IGNs, with ammonium counterions described by an explicit-hydrogen way; these were in turn compared with "generic" coarse-grained IGNs. The elimination of chemical details in the coarse-grained models does not bring in qualitative changes to the radial distribution functions and diffusion of atomistic IGNs, but saves considerable simulation resources and make simulations near room temperatures affordable. The chain counterions in both atomistic and coarse-grained models are mobile, moving from site to site and from nanoparticle to nanoparticle. At the same temperature and the same core volume fractions, the nanoparticle diffusivities in coarse-grained IGNs are slower by a factor ten than the cores of CGNs. The coarse-grained IGNs models are later used to investigate the system dynamics through analysis of the dependence on temperature and structural parameters of the transport properties (self-diffusion coefficients, viscosities and conductivities). Further, migration kinetics of oligomeric counterions is analyzed in a manner analogous to unimer exchange between micellar aggregates. The counterion migrations follow the "double-core" mechanism and are kinetically controlled by neighboring-core collisions. (Abstract shortened by UMI.)

  4. Depositional environments during the Late Palaeozoic ice age (LPIA) in northern Ethiopia, NE Africa

    NASA Astrophysics Data System (ADS)

    Bussert, Robert

    2014-11-01

    The Late Palaeozoic sediments in northern Ethiopia record a series of depositional environments during and after the Late Paleozoic ice age (LPIA). These sediments are up to 200 m thick and exceptionally heterogeneous in lithofacies composition. A differentiation of numerous types of lithofacies associations forms the basis for the interpretation of a large range of depositional processes. Major glacigenic lithofacies associations include: (1) sheets of diamictite, either overlying glacially eroded basement surfaces or intercalated into the sediment successions, and representing subglacial tillites, (2) thick massive to weakly stratified muddy clast-poor diamictites to lonestone-bearing laminated mudstones originating from a combination of suspension settling of fines and iceberg rainout, (3) lensoidal or thin-bedded diamictites deposited from debris flows, (4) wedges of traction and gravity transported coarse-grained sediments deposited in outwash fans, (5) irregular wedges or sheets of mudstones deformed primarily by extension and incorporating deformed beds or rafts of other lithofacies formed by slumping, and (6) irregular bodies of sandstone, conglomerate and diamictite deformed by glacial pushing. The dominance of laminated or massive clast-bearing mudstones in most successions indicates ice-contact water bodies as the major depositional environment. Into this environment, coarse-grained sediments were transported by various gravity driven transport processes, including dropstone activity of ice-bergs, slumping, cohesive debris flow, hyperconcentrated to concentrated flow, hyperpycnal flow, and by turbidity flow. Close to glacier termini, wedge-shaped bodies of conglomerate, sandstone, diamictite and mudstone were deposited primarily in subaqueous outwash-fans. Soft-sediment deformation of these sediments either records ice push during glacier advance or re-sedimentation by slumping. Apart from an initial glacier advance when thick ice of temperate or polythermal glaciers covered the whole basin, many sections document at least a second major phase of ice advance and retreat, and some sections additional minor advance-retreat cycles. Whether most of the LPIA sediments in northern Ethiopia were deposited in lakes or in fjords is not yet clear. Although univocal evidence of marine conditions is missing, the presence of carbonate-rich beds and the trace fossil assemblage are compatible with a restricted marine environment such as broad palaeofjords affected by strong freshwater discharge during deglaciation. A restricted marine environment for most of the sediments in northern Ethiopia could challenge models of the LPIA sediments in Arabia as primarily glaciolacustrine and glaciofluviatile deposits.

  5. Tephra Blanket Record of a Violent Strombolian Eruption, Sunset Crater, Arizona

    NASA Astrophysics Data System (ADS)

    Wagner, K. D.; Ort, M. H.

    2015-12-01

    New fieldwork provides a detailed description of the widespread tephra of the ~1085 CE Sunset Crater eruption in the San Francisco Volcanic Field, Arizona, and refines interpretation of the eruptive sequence. The basal fine-lapilli tephra-fall-units I-IV are considered in detail. Units I and II are massive, with Unit I composed of angular to spiny clasts and II composed of more equant, oxidized clasts. Units III and IV have inversely graded bases and massive tops and are composed of angular to spiny iridescent and mixed iridescent and oxidized angular clasts, respectively. Xenoliths are rare in all units (<0.1%): sedimentary xenoliths are consistent with the known shallow country rock (Moenkopi and Kaibab Fms); magmatic xenoliths are pumiceous rhyolite mingled with basalt. Unit II is less sideromelane rich (20%) than Units I, III, and IV (60-80%). Above these units are at least two more coarse tephra-fall units. Variably preserved ash and fine-lapilli laminae cap the tephra blanket. This deposit is highly susceptible to reworking, and likely experienced both syn- and post-eruptive aeolian redistribution. It appears as either well sorted, alternating planar-parallel beds of ash and fine lapilli with rare wavy beds, or as cross- or planar-bedded ash. The tephra blanket as a whole is stratigraphically underlain by a fissure-fed lava flow and lapilli-fall units are intercalated with two larger flows. Mean grain size is coarsest in Unit I but coarsens in Units II-IV. Units I, III, and IV are moderately to poorly sorted with no skew. Unit II is better sorted and more coarse-skewed. Units I and III are slightly more platykurtic than II and IV. Without considering possible spatial effects introduced by dispersion patterns, bootstrap ANOVA confidence intervals suggest at least Unit II sorting and skewness are from distinct populations. Isopachs indicate Units I and II were associated with a 10-km-long fissure source. After or during Unit II's deposition, activity localized to Sunset Crater. Units III and IV were emplaced with waxing to sustained activity, and followed by at least two more sustained episodes. Two lava flows began effusing from the cone during this period and remained active after explosive activity ceased. Primary tephra deposition ended with a period of small discrete explosions.

  6. Toward 3D Printing of Medical Implants: Reduced Lateral Droplet Spreading of Silicone Rubber under Intense IR Curing.

    PubMed

    Stieghorst, Jan; Majaura, Daniel; Wevering, Hendrik; Doll, Theodor

    2016-03-01

    The direct fabrication of silicone-rubber-based individually shaped active neural implants requires high-speed-curing systems in order to prevent extensive spreading of the viscous silicone rubber materials during vulcanization. Therefore, an infrared-laser-based test setup was developed to cure the silicone rubber materials rapidly and to evaluate the resulting spreading in relation to its initial viscosity, the absorbed infrared radiation, and the surface tensions of the fabrication bed's material. Different low-adhesion materials (polyimide, Parylene-C, polytetrafluoroethylene, and fluorinated ethylenepropylene) were used as bed materials to reduce the spreading of the silicone rubber materials by means of their well-known weak surface tensions. Further, O2-plasma treatment was performed on the bed materials to reduce the surface tensions. To calculate the absorbed radiation, the emittance of the laser was measured, and the absorptances of the materials were investigated with Fourier transform infrared spectroscopy in attenuated total reflection mode. A minimum silicone rubber spreading of 3.24% was achieved after 2 s curing time, indicating the potential usability of the presented high-speed-curing process for the direct fabrication of thermal-curing silicone rubbers.

  7. A geomorphic explanation for a meander cutoff following channel relocation of a coarse-bedded river.

    PubMed

    Thompson, Douglas M

    2003-03-01

    The Veteran's Fishing section of the Blackledge River in central Connecticut was relocated in the late 1950s. The relocation resulted in an unstable channel despite extensive efforts to prevent erosion. Overbank erosion and meander cutoffs were investigated using detailed survey data, characterizations of sediment deposits, flow modeling, and a moment-stability analysis. Limited reworking of revetment boulders indicate that riprap bank material was immobile during a 1979 flood event responsible for the formation of the cutoff channel. A moment-stability analysis factor-of-safety value of 1.1 supports the conclusion that riprap was not directly eroded from the banks. Alluvial particles with d(95) values ranging up to 120 mm were deposited along a bar downstream from the cutoff channel at flows estimated to be below a 1.5-year recurrence interval flow. Development of the bar deposit resulted in locally elevated water surfaces at high flow. The resulting overbank flow across the meander neck to the adjacent downstream bend led to the creation of an upstream migrating knickpoint, the erosion of approximately 16,000-year-old sediments, and the subsequent meander cutoff. The results of the study indicate that traditional erosion-control measures cannot prevent extreme channel adjustments if the geomorphic processes that control sediment continuity also are not considered.

  8. Production of thermal insulation blocks from bottom ash of fluidized bed combustion system.

    PubMed

    Mandal, A K; Sinha, O P

    2017-08-01

    The issues of disposal and environmental problems are increased by the generation of bottom ash from the thermal power plants day by day; hence, its recycling is required. The present study aimed to make thermal insulation blocks using as raw material bottom ash and iron ore slime as a binder and to characterize their engineering properties. Two different fineness values of bottom ash were considered with varying amounts of iron ore slime (0-10%) to make the blocks. Blocks were dried followed by firing at 1000, 1100 and 1200°C, respectively. Cold crushing strength, density and thermal conductivity of these fired blocks showed increasing behaviour with firing temperature, fineness of bottom ash and iron ore slime content. In contrast, a reverse trend was observed in the case of porosity. With increasing firing temperature, the formation of lower melting phases like iron silicate followed by iron aluminium silicate was observed, which imparts the strength inside the blocks. The coarser particles of bottom ash increase the interparticle spaces, which enhances the apparent porosity, resulting in higher thermal insulation property in the blocks. Blocks having better thermal insulation property could be possible to make effectively from coarse bottom ash by adding iron ore slime as a binder.

  9. Internal wave deposits in Jurassic Kermanshah pelagic carbonates and radiolarites (Kermanshah area, West Iran)

    NASA Astrophysics Data System (ADS)

    Abdi, Asad; Gharaie, Mohamad Hosein Mahmudy; Bádenas, Beatriz

    2014-12-01

    We report eventites generated by turbulence events triggered by breaking internal waves in Jurassic pelagic muds deposited in a graben area located between the Arabian and Bisotoun carbonate platforms, at the Kermanshah basin (West Iran). The 43 m-thick studied Pliensbachian-Aalenian succession at Kermanshah includes sponge spicule-radiolarian limestones and cherts with cm- to dm-thick intercalations of pyroclastic beds and coarse-grained deposits formed by neritic-derived grains and reworked pelagic material. Breaking of internal waves in localized areas reworked the available sediment on sea floor, including the erosion of cohesive pelagic muds and the resuspension of neritic-derived grains, which were resedimented from the Bisotoun platform most probably by storms or turbidity currents. The generated internal wave deposits include: flat- and round pebble limestone conglomerates, formed by deposition of pelagic clasts and neritic-derived grains near the breaker zone; laminated packstone-grainstones deposited by high-energy, upslope (swash) and downslope (backswash) flows; cm-thick packstone-grainstones with asymmetrical starved ripples and hummocy crossstratification, generated downdip by waning of backwash flows and internal wave oscillatory flows. These internal wave deposits predominate in the Pliensbachian-early Toarcian, and were related to internal waves developed along a thermocline linked to climate warming and excited by submarine volcanic eruptions, storms or tectonic shaking.

  10. Soils on exposed Sunda Shelf shaped biogeographic patterns in the equatorial forests of Southeast Asia

    PubMed Central

    Slik, J. W. Ferry; Aiba, Shin-Ichiro; Bastian, Meredith; Brearley, Francis Q.; Cannon, Charles H.; Eichhorn, Karl A. O.; Fredriksson, Gabriella; Kartawinata, Kuswata; Laumonier, Yves; Mansor, Asyraf; Marjokorpi, Antti; Meijaard, Erik; Morley, Robert J.; Nagamasu, Hidetoshi; Nilus, Reuben; Nurtjahya, Eddy; Payne, John; Permana, Andrea; Poulsen, Axel D.; Raes, Niels; Riswan, Soedarsono; van Schaik, Carel P.; Sheil, Douglas; Sidiyasa, Kade; Suzuki, Eizi; van Valkenburg, Johan L. C. H.; Webb, Campbell O.; Wich, Serge; Yoneda, Tsuyoshi; Zakaria, Rahmad; Zweifel, Nicole

    2011-01-01

    The marked biogeographic difference between western (Malay Peninsula and Sumatra) and eastern (Borneo) Sundaland is surprising given the long time that these areas have formed a single landmass. A dispersal barrier in the form of a dry savanna corridor during glacial maxima has been proposed to explain this disparity. However, the short duration of these dry savanna conditions make it an unlikely sole cause for the biogeographic pattern. An additional explanation might be related to the coarse sandy soils of central Sundaland. To test these two nonexclusive hypotheses, we performed a floristic cluster analysis based on 111 tree inventories from Peninsular Malaysia, Sumatra, and Borneo. We then identified the indicator genera for clusters that crossed the central Sundaland biogeographic boundary and those that did not cross and tested whether drought and coarse-soil tolerance of the indicator genera differed between them. We found 11 terminal floristic clusters, 10 occurring in Borneo, 5 in Sumatra, and 3 in Peninsular Malaysia. Indicator taxa of clusters that occurred across Sundaland had significantly higher coarse-soil tolerance than did those from clusters that occurred east or west of central Sundaland. For drought tolerance, no such pattern was detected. These results strongly suggest that exposed sandy sea-bed soils acted as a dispersal barrier in central Sundaland. However, we could not confirm the presence of a savanna corridor. This finding makes it clear that proposed biogeographic explanations for plant and animal distributions within Sundaland, including possible migration routes for early humans, need to be reevaluated. PMID:21746913

  11. Mineralogical and microscopic evaluation of coarse taconite tailings from Minnesota taconite operations.

    PubMed

    Zanko, Lawrence M; Niles, Harlan B; Oreskovich, Julie A

    2008-10-01

    Eighteen coarse taconite tailings samples were collected in 2000-2001 from five western Mesabi Range taconite (iron ore) operations located in northern Minnesota, i.e., EVTAC, Hibbing Taconite (Hibtac), USX Minntac, Ispat Inland (Minorca), and National Steel Pellet Company (NSPC), to test their physical, geological, chemical, and mineralogical properties [Zanko, L.M., Niles, H.B., Oreskovich, J.A., 2003. Properties and aggregate potential of coarse taconite tailings from five Minnesota taconite operations, Minnesota Department of Transportation, Local Road Research Board, St. Paul, MN, Report No. 2004-06 (also as Natural Resources Research Institute technical report, NRRI/TR-2003/44)]. The goal was to assemble a body of technical data that could be used to better assess the potential of using a crushed taconite mining byproduct like coarse tailings for more widespread construction aggregate purposes, primarily in roads and highways. An important part of the mineralogical assessment included X-ray diffraction (XRD) analyses and microscopic (polarized light microscopy, scanning electron microscopy, and transmission electron microscopy, i.e., PLM, SEM, and TEM, respectively) evaluation of the size and shape (morphological) characteristics of potentially respirable microscopic mineral particles and fragments. Quantitative mineralogy, based on XRD analyses, showed that the dominant mineral in all samples was quartz (55-60%), followed by much smaller amounts of iron oxides, carbonates, and silicates. Specialized microscopic analyses and testing performed by the RJ Lee Group, Monroeville, PA, on both pulverized (-200 mesh, or 0.075mm) and as-is sample composites showed that no regulated asbestos minerals or amphibole minerals were detected in the western Mesabi Range samples. A small number (26) of non-asbestos and non-amphibole mineral cleavage fragments/mineral fibers were detected by SEM out of 1000 fields analyzed, but most were identified as minnesotaite and talc, silicate minerals common to the Biwabik Iron Formation. Amphibole minerals, absent in coarse tailings samples from the five western Mesabi Range taconite operations, were present in a single eastern Biwabik Iron Formation sample collected in 2003 for Lake County from the Cliffs Northshore operation in Silver Bay, MN. Importantly, the Superfund Method for the Determination of Releasable Asbestos in Soils and Bulk Materials [United States Environmental Protection Agency (USEPA), 1997. Superfund method for the determination of releasable asbestos in soils and bulk materials, EPA 540-R-97-028, U.S. Environmental Protection Agency, Washington], as modified by Berman and Kolk [Berman, D.W., Kolk, A.J., 2000. Modified elutriator method for the determination of asbestos in soils and bulk materials, Revision 1: Submitted to the U.S. Environmental Protection Agency, Region 8, May 23, 2000] failed to generate any protocol fibers, i.e., fibers longer than 5mum and thinner than 0.5mum, from either the western coarse tailings samples or the single eastern Biwabik Iron Formation sample. The combined findings suggest coarse tailings and other taconite mining byproducts should be treated with the same common sense safety and industrial hygiene approach practiced for all mineral-based materials that have the potential to generate respirable dust.

  12. Model simulation and experiments of flow and mass transport through a nano-material gas filter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Xiaofan; Zheng, Zhongquan C.; Winecki, Slawomir

    2013-11-01

    A computational model for evaluating the performance of nano-material packed-bed filters was developed. The porous effects of the momentum and mass transport within the filter bed were simulated. For the momentum transport, an extended Ergun-type model was employed and the energy loss (pressure drop) along the packed-bed was simulated and compared with measurement. For the mass transport, a bulk dsorption model was developed to study the adsorption process (breakthrough behavior). Various types of porous materials and gas flows were tested in the filter system where the mathematical models used in the porous substrate were implemented and validated by comparing withmore » experimental data and analytical solutions under similar conditions. Good agreements were obtained between experiments and model predictions.« less

  13. Numerical and Experimental Study of Ti6Al4V Components Manufactured Using Powder Bed Fusion Additive Manufacturing

    NASA Astrophysics Data System (ADS)

    Zielinski, Jonas; Mindt, Hans-Wilfried; Düchting, Jan; Schleifenbaum, Johannes Henrich; Megahed, Mustafa

    2017-12-01

    Powder bed fusion additive manufacturing of titanium alloys is an interesting manufacturing route for many applications requiring high material strength combined with geometric complexity. Managing powder bed fusion challenges, including porosity, surface finish, distortions and residual stresses of as-built material, is the key to bringing the advantages of this process to production main stream. This paper discusses the application of experimental and numerical analysis towards optimizing the manufacturing process of a demonstration component. Powder characterization including assessment of the reusability, assessment of material consolidation and process window optimization is pursued prior to applying the identified optima to study the distortion and residual stresses of the demonstrator. Comparisons of numerical predictions with measurements show good correlations along the complete numerical chain.

  14. Bed Bug Clearinghouse by Audience

    EPA Pesticide Factsheets

    This information is intended to help states, communities, and consumers prevent and control bed bug infestations. Find materials for emergency and health facilities, hotels, housing authorities, landlords, schools, pest management professionals, and more.

  15. Tar removal during the fluidized bed gasification of plastic waste.

    PubMed

    Arena, Umberto; Zaccariello, Lucio; Mastellone, Maria Laura

    2009-02-01

    A recycled polyethylene was fed in a pilot plant bubbling fluidized bed gasifier, having an internal diameter of 0.381 m and a maximum feeding capacity of 90 kg/h. The experimental runs were carried out under various operating conditions: the bed temperature was kept at about 850 degrees C, the equivalence ratio varied between 0.2 and 0.35, the amount of bed material was between 131 and 215 kg, the fluidizing velocity was between 0.5 and 0.7 m/s, quartz sand and olivine were used as bed material, and air and steam were used as fluidizing reactants. The results confirm that the tar removal treatments applied inside the gasifier (primary methods) can eliminate or strongly reduce the need for a further downstream cleanup of the syngas. In particular, the utilization of a natural olivine as an in situ tar reduction agent remarkably improves the quality of the product gas, in terms of both high hydrogen volumetric fraction and larger syngas yield.

  16. Effect of Bedding Material on Performance, Health, and Hide Contamination of Calves Reared in Hutches

    USDA-ARS?s Scientific Manuscript database

    Dairy calf hutches are often bedded with straw (STR), but sand (SND) and wood shavings (SHV) are becoming more common. This study compared 3 different beddings for growth and health of calves and microbial presence on their hides. Hutches were blocked by location and each of 3 hutches in a block w...

  17. Catalytic fast pyrolysis of white oak wood in-situ using a bubbling fluidized bed reactor

    USDA-ARS?s Scientific Manuscript database

    Catalytic fast pyrolysis was performed on white oak wood using two zeolite-type catalysts as bed material in a bubbling fluidized bed reactor. The two catalysts chosen, based on a previous screening study, were Ca2+ exchanged Y54 (Ca-Y54) and a proprietary ß-zeolite type catalyst (catalyst M) both ...

  18. Sediment transport primer: estimating bed-material transport in gravel-bed rivers

    Treesearch

    Peter Wilcock; John Pitlick; Yantao Cui

    2009-01-01

    This primer accompanies the release of BAGS, software developed to calculate sediment transport rate in gravel-bed rivers. BAGS and other programs facilitate calculation and can reduce some errors, but cannot ensure that calculations are accurate or relevant. This primer was written to help the software user define relevant and tractable problems, select appropriate...

  19. A Study on Suitability of EAF Oxidizing Slag in Concrete: An Eco-Friendly and Sustainable Replacement for Natural Coarse Aggregate

    PubMed Central

    Sekaran, Alan; Palaniswamy, Murthi; Balaraju, Sivagnanaprakash

    2015-01-01

    Environmental and economic factors increasingly encourage higher utility of industrial by-products. The basic objective of this study was to identify alternative source for good quality aggregates which is depleting very fast due to fast pace of construction activities in India. EAF oxidizing slag as a by-product obtained during the process in steel making industry provides great opportunity to utilize it as an alternative to normally available coarse aggregates. The primary aim of this research was to evaluate the physical, mechanical, and durability properties of concrete made with EAF oxidizing slag in addition to supplementary cementing material fly ash. This study presents the experimental investigations carried out on concrete grades of M20 and M30 with three mixes: (i) Mix A, conventional concrete mix with no material substitution, (ii) Mix B, 30% replacement of cement with fly ash, and (iii) Mix C, 30% replacement of cement with fly ash and 50% replacement of coarse aggregate with EAF oxidizing slag. Tests were conducted to determine mechanical and durability properties up to the age of 90 days. The test results concluded that concrete made with EAF oxidizing slag and fly ash (Mix C) had greater strength and durability characteristics when compared to Mix A and Mix B. Based on the overall observations, it could be recommended that EAF oxidizing slag and fly ash could be effectively utilized as coarse aggregate replacement and cement replacement in all concrete applications. PMID:26421315

  20. A Study on Suitability of EAF Oxidizing Slag in Concrete: An Eco-Friendly and Sustainable Replacement for Natural Coarse Aggregate.

    PubMed

    Sekaran, Alan; Palaniswamy, Murthi; Balaraju, Sivagnanaprakash

    2015-01-01

    Environmental and economic factors increasingly encourage higher utility of industrial by-products. The basic objective of this study was to identify alternative source for good quality aggregates which is depleting very fast due to fast pace of construction activities in India. EAF oxidizing slag as a by-product obtained during the process in steel making industry provides great opportunity to utilize it as an alternative to normally available coarse aggregates. The primary aim of this research was to evaluate the physical, mechanical, and durability properties of concrete made with EAF oxidizing slag in addition to supplementary cementing material fly ash. This study presents the experimental investigations carried out on concrete grades of M20 and M30 with three mixes: (i) Mix A, conventional concrete mix with no material substitution, (ii) Mix B, 30% replacement of cement with fly ash, and (iii) Mix C, 30% replacement of cement with fly ash and 50% replacement of coarse aggregate with EAF oxidizing slag. Tests were conducted to determine mechanical and durability properties up to the age of 90 days. The test results concluded that concrete made with EAF oxidizing slag and fly ash (Mix C) had greater strength and durability characteristics when compared to Mix A and Mix B. Based on the overall observations, it could be recommended that EAF oxidizing slag and fly ash could be effectively utilized as coarse aggregate replacement and cement replacement in all concrete applications.

  1. Characterization of gas hydrate reservoirs by integration of core and log data in the Ulleung Basin, East Sea

    USGS Publications Warehouse

    Bahk, J.-J.; Kim, G.-Y.; Chun, J.-H.; Kim, J.-H.; Lee, J.Y.; Ryu, B.-J.; Lee, J.-H.; Son, B.-K.; Collett, Timothy S.

    2013-01-01

    Examinations of core and well-log data from the Second Ulleung Basin Gas Hydrate Drilling Expedition (UBGH2) drill sites suggest that Sites UBGH2-2_2 and UBGH2-6 have relatively good gas hydrate reservoir quality in terms of individual and total cumulative thicknesses of gas-hydrate-bearing sand (HYBS) beds. In both of the sites, core sediments are generally dominated by hemipelagic muds which are intercalated with turbidite sands. The turbidite sands are usually thin-to-medium bedded and mainly consist of well sorted coarse silt to fine sand. Anomalies in infrared core temperatures and porewater chlorinity data and pressure core measurements indicate that “gas hydrate occurrence zones” (GHOZ) are present about 68–155 mbsf at Site UBGH2-2_2 and 110–155 mbsf at Site UBGH2-6. In both the GHOZ, gas hydrates are preferentially associated with many of the turbidite sands as “pore-filling” type hydrates. The HYBS identified in the cores from Site UBGH2-6 are medium-to-thick bedded particularly in the lower part of the GHOZ and well coincident with significant high excursions in all of the resistivity, density, and velocity logs. Gas-hydrate saturations in the HYBS range from 12% to 79% with an average of 52% based on pore-water chlorinity. In contrast, the HYBS from Site UBGH2-2_2 are usually thin-bedded and show poor correlations with both of the resistivity and velocity logs owing to volume averaging effects of the logging tools on the thin HYBS beds. Gas-hydrate saturations in the HYBS range from 15% to 65% with an average of 37% based on pore-water chlorinity. In both of the sites, large fluctuations in biogenic opal contents have significant effects on the sediment physical properties, resulting in limited usage of gamma ray and density logs in discriminating sand reservoirs.

  2. Mohawk Lake or Mohawk meadow Sedimentary facies and stratigraphy of Quaternary deposits in Mohawk Valley, upper Middle Fork of the Feather River, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yount, J.C.; Harwood, D.S.; Bradbury, J.P.

    1993-04-01

    Mohawk Valley (MV) contain thick, well-exposed sections of Quaternary basin-fill sediments, with abundant interbedded tephra and a diverse assemblage of sedimentary facies. The eastern arm of MV, extending from Clio to Portola, contains as much as 100 m of trough cross-bedded cobble to pebble gravel and planar and trough cross-bedded coarse and medium sand, interpreted as braided stream deposits. Sections exposed in the western arm of MV consist in their lower parts of massive organic-rich silt and clay interbedded with blocky to fissile peat beds up to 1 m thick. Diatom assemblages are dominated by benthic species indicating fresh marshmore » environments with very shallow water depths of one meter or less. Proglacial lacustrine deposits of limited lateral extent are present within the outwash complexes as evidenced by varved fine sand and silt couplets, poorly sorted quartz-rich silt beds containing dropstones, and contorted beds of diamict grading laterally into slump blocks surrounded by wood-bearing silt and silty sand. The Rockland Ash (400 ka) is a prominent marker in the middle or lower part of many sections throughout MV, indicating that at least half of the basin-fill sequence is Late Quaternary in age. A log buried in diamict slumped into a proglacial lake lying approximately 3 km downstream from the Tioga Stage ice termini in Jamison and Gray Eagle Creeks yields an age of 18,715 [+-]235 C[sup 14] years BP. Previous interpretations of MV deposits originating in a large, deep lake with water depths in excess of 150 m are untenable given the sedimentary facies and diatom floras that dominate the valley. Unexhumed valleys such as Sierra Valley to the east and Long Valley to the northwest which contain large meadows traversed by braided streams are probably good analogs for the conditions that existed during the accumulation of the Mohawk Valley deposits.« less

  3. Synthetic aggregate compositions derived from spent bed materials from fluidized bed combustion and fly ash

    DOEpatents

    Boyle, Michael J.

    1994-01-01

    Cementitious compositions useful as lightweight aggregates are formed from a blend of spent bed material from fluidized bed combustion and fly ash. The proportions of the blend are chosen so that ensuing reactions eliminate undesirable constituents. The blend is then mixed with water and formed into a shaped article. The shaped article is preferably either a pellet or a "brick" shape that is later crushed. The shaped articles are cured at ambient temperature while saturated with water. It has been found that if used sufficiently, the resulting aggregate will exhibit minimal dimensional change over time. The aggregate can be certified by also forming standardized test shapes, e.g., cylinders while forming the shaped articles and measuring the properties of the test shapes using standardized techniques including X-ray diffraction.

  4. Method for packing chromatographic beds

    DOEpatents

    Freeman, David H.; Angeles, Rosalie M.; Keller, Suzanne

    1991-01-01

    Column chromatography beds are packed through the application of static force. A slurry of the chromatography bed material and a non-viscous liquid is filled into the column plugged at one end, and allowed to settle. The column is transferred to a centrifuge, and centrifuged for a brief period of time to achieve a predetermined packing level, at a range generally of 100-5,000 gravities. Thereafter, the plug is removed, other fixtures may be secured, and the liquid is allowed to flow out through the bed. This results in an evenly packed bed, with no channeling or preferential flow characteristics.

  5. Determination of Electrical Resistivity of Dry Coke Beds

    NASA Astrophysics Data System (ADS)

    Eidem, P. A.; Tangstad, M.; Bakken, J. A.

    2008-02-01

    The electrical resistivity of the coke bed is of great importance when producing FeMn, SiMn, and FeCr in a submerged arc furnace. In these processes, a coke bed is situated below and around the electrode tip and consists of metallurgical coke, slag, gas, and metal droplets. Since the basic mechanisms determining the electrical resistivity of a coke bed is not yet fully understood, this investigation is focused on the resistivity of dry coke beds consisting of different carbonaceous materials, i.e., coke beds containing no slag or metal. A method that reliably compares the electrical bulk resistivity of different metallurgical cokes at 1500 °C to 1600 °C is developed. The apparatus is dimensioned for industrial sized materials, and the electrical resistivity of anthracite, charcoal, petroleum coke, and metallurgical coke has been measured. The resistivity at high temperatures of the Magnitogorsk coke, which has the highest resistivity of the metallurgical cokes investigated, is twice the resistivity of the Corus coke, which has the lowest electrical resistivity. Zdzieszowice and SSAB coke sort in between with decreasing resistivities in the respective order. The electrical resistivity of anthracite, charcoal, and petroleum coke is generally higher than the resistivity of the metallurgical cokes, ranging from about two to about eight times the resistivity of the Corus coke at 1450 °C. The general trend is that the bulk resistivity of carbon materials decreases with increasing temperature and increasing particle size.

  6. Laboratory investigation of the distribution of travel distance and rest period of sediment particles from PTV data

    NASA Astrophysics Data System (ADS)

    Ferreira, Rui M. L.; Antico, Federica

    2016-04-01

    We analyze paths of sediment particles on cohesionless granular bet subjected to a turbulent open-channel flow. The key objective is to provide further insights on particle dispersion including resting times. Hence, we focus on the spatial and temporal scale identified by Nikora et al. (2002) as the global range, defined as the particle path composed of many intermediate range paths, i.e with several "starts" and "stops". This requires the calculation of the probability distribution functions of particle travel distances and of rest periods. The experimental work was performed at the Hydraulics Laboratory of IST-UL in a 12.5 m long, 0.405 m wide glass-walled flume recirculating water and sediment through independent circuits. The granular bed was a 4.0 m long and 2.5 cm deep reach filled with 5 mm diameter glass beads packed (with some vibration) to a void fraction of 0.356, typical of random packing. Upstream the mobile bed reach the bed was composed of glued particles to ensure the development of a boundary layer with the same roughness. Laboratory tests were run under conditions of weak beadload transport with Shields parameter (θ) in the range 0.007 to 0.030, Froude numbers (Fr) between 0.630 and 0.950 and boundary Reynolds number (Re_ast) in the range 130 to 300. White-coated particles with 5.0 mm diameter were introduced in the flow 3 m upstream the mobile bed reach. Particle motion was registered from above using a high-speed camera AVT Bonito CL-400 with resolution set to 2320 × 1000 px2 and frame rate of 170 fps. The field of view recorded was 77.0 cm long and 38.0 cm wide, covering almost all the width of the flume. The maximum duration of the runs was 20 min, during which more than 500 particle paths, including resting times, were registered. The video footage was subjected to a PTV (Particle Tracking Velocimetry) developed for the problem at hand. The algorithm includes the application of Gaussian filters and thresholding operations to identify the particle. The centre of mass of the particles was determined with sub-pixel accuracy from 1D+1D Gaussian interpolation. Once particles and their centres of mass were detected, particle trajectories were reconstructed with a correlation algorithm. The stability of this algorithm limits camera framerate. Particle velocities were obtained as displacement over time interval between two consecutive frames (1/170 s). We computed the variance of the particle positions in both directions x (longitudinal) and y (cross-stream). We determined the exceedance distribution function of the travel distance X, defined as P(X>x), and of resting times, T, P(T>t). These distributions are said to be heavy-tailed if their tails have a slope, in log-log coordinates, larger than 2. Hill's estimator was used to compute this slope following the arguments of Hassan et al. (2013). It is known that these distributions depend on flow conditions, bed material and composition and existence/type of bed forms (McNamara and Borden, 2004; Ferreira et al., 2015), which may bring about strong deviations from the gamma probability function. Our results confirm the existence of a subdiffusive range of scales, even for the limited time-spaced window of observation. The distribution of the travel distance does not seem to be heavy-tailed. This may be an artifact of the short observation window but can also be explained by the relatively simple bed morphology associated to artificial sediment with one single diameter. In this case, the explanation for heavy-tailed distribution of travel distances should lie essentially effects of channel morphology (Lamarre and Roy 2008). Conclusions about the distribution of resting times are conditioned by the time window employed for particle tracking and number of stops detected. Preliminary results indicate that the distribution is not always heavy-tailed. Acknowledgements This work was partially funded by FEDER, program COMPETE, and by national funds through Portuguese Foundation for Science and Technology (FCT) project RECI/ECM-HID/0371/2012 and by Project SediTrans funded by the European Commission under the 7th Framework Programme. References Ferreira, R.M.L; Hassan, M.A. and Ferrer-Boix, C. (2015) Principles of bedload transport of non-cohesive sediment in open-channels. In Pawel Rowinsky and Artur Radecki-Pawlick (Eds) "Rivers-physical, fluvial and environmental processes", Chapter 13, pp: 323-372, Springer. ISBN: 978-3-319-17718-2. Doi: 10.1007/978-3-319-17719-9_13 Hassan, M.A., Voepel, H., Schumer, R., Parker, G., and Fraccarollo, L. (2013). Displacement characteristics of coarse fluvial bed sediment, Journal of Geophysical Research - Earth Surface, 118, 155-165. Lamarre, H., and Roy, A.G. (2008). The role of morphology on the displacement of particles in a step-pool river system. Geomorphology, 99, 270-279. McNamara, J. P. and Borden, C. (2004). Observations on the movement of coarse gravel using implanted motion-sensing radio transmitters. Hydrological Processes 18(10), 1871-1884.

  7. Process for converting cellulosic materials into fuels and chemicals

    DOEpatents

    Scott, Charles D.; Faison, Brendlyn D.; Davison, Brian H.; Woodward, Jonathan

    1994-01-01

    A process for converting cellulosic materials, such as waste paper, into fuels and chemicals utilizing enzymatic hydrolysis of the major constituent of paper, cellulose. A waste paper slurry is contacted by cellulase in an agitated hydrolyzer. The cellulase is produced from a continuous, columnar, fluidized-bed bioreactor utilizing immobilized microorganisms. An attritor and a cellobiase reactor are coupled to the agitated hydrolyzer to improve reaction efficiency. The cellulase is recycled by an adsorption process. The resulting crude sugars are converted to dilute product in a fluidized-bed bioreactor utilizing microorganisms. The dilute product is concentrated and purified by utilizing distillation and/or a biparticle fluidized-bed bioreactor system.

  8. Regenerable cement sorbent for recycle fluidized-bed combustion systems. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoo, H.J.; Steinberg, M.

    1985-04-01

    Agglomerated cement sorbent pellets (ACS) were investigated as a regenerable sorbent for the purpose of removing SO/sub 2/ in a circulating fluidized-bed combustion (CFBC) system. The systems concept is to use an intermediate size sorbent pellet so that fine flyash can be separated from the sorbent at the top end of the CFBC and the coarse gangue can be separated from the sorbent remaining in the bottom end. In this study, basic experimental data were obtained on the sulfur capture capacity and regenerability of the ACS pellets as a function of the concentration of flyash mixed with the pellets andmore » as a function of temperature. Thermogravimetric Analysis (TGA) was used for this purpose. A 40 mm bench-scale fluidized-bed unit operated with a simulated combustion gas mixture was used to determine the attrition resistance of the pellets. The results indicate that 30-100 mesh ACS pellets at 958/sup 0/C (1756/sup 0/F) maintain a 55-60% sulfation capacity mixed with coal flyash concentration up to 75% by weight. The sorbent pellets were 100% regenerable and did not lose reactivity in repeated cyclical sulfation and regeneration tests. At higher temperatures up to 1158/sup 0/C (2116/sup 0/F) reactivity towards SO/sub 2/ declines due to sintering of the flyash on the surface of the ACS pellets. Tests showed good attrition resistance with only 1% loss per cycle in cyclical operation. These initial basic results indicate that ACS pellets are potentially useful as a recoverable and regenerable high capacity SO/sub 2/ sorbent in a circulating fluidized-bed combustion system. 5 refs., 7 figs., 8 tabs.« less

  9. Shaler: in situ analysis of a fluvial sedimentary deposit on Mars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edgar, Lauren A.; Gupta, Sanjeev; Rubin, David M.

    This article characterizes the detailed sedimentology of a fluvial sandbody on Mars for the first time and interprets its depositional processes and palaeoenvironmental setting. Despite numerous orbital observations of fluvial landforms on the surface of Mars, ground-based characterization of the sedimentology of such fluvial deposits has not previously been possible. Results from the NASA Mars Science Laboratory Curiosity rover provide an opportunity to reconstruct at fine scale the sedimentary architecture and palaeomorphology of a fluvial environment on Mars. This work describes the grain size, texture and sedimentary facies of the Shaler outcrop, reconstructs the bedding architecture, and analyses cross-stratification tomore » determine palaeocurrents. On the basis of bedset geometry and inclination, grain-size distribution and bedform migration direction, this study concludes that the Shaler outcrop probably records the accretion of a fluvial barform. The majority of the outcrop consists of large-scale trough cross-bedding of coarse sand and granules. Palaeocurrent analyses and bedform reconstruction indicate that the beds were deposited by bedforms that migrated towards the north-east, across the surface of a bar that migrated south-east. Stacked cosets of dune cross-bedding suggest aggradation of multiple bedforms, which provides evidence for short periods of sustained flow during Shaler deposition. However, local evidence for aeolian reworking and the presence of potential desiccation cracks within the outcrop suggest that fluvial deposition may have been intermittent. The uppermost strata at Shaler are distinct in terms of texture and chemistry and are inferred to record deposition from a different sediment dispersal system with a contrasting provenance. The outcrop as a whole is a testament to the availability of liquid water on the surface of Mars in its early history.« less

  10. Lithofacies variation across the Mammoth Cave-Pope Megagroup boundary -- a sequence stratigraphic approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDonald, T.A.; Tabor, E.; Marzolf, J.E.

    1994-04-01

    Regional stratigraphic relations in southern Illinois suggest a major unconformity near the top of the St. Genevieve Limestone. Large exposures below the unconformity within the Anna quarries display a retrogradational parasequence-stacking pattern. Eight to 12 m-thick parasequences comprise thinning-upward marine bioclastic wackestone overlain by oolitic and bioclastic thickening-upward eolian( ) grainstone. An eolian origin for the bioclastic grainstones is supported by large scale cross stratification (0.5 to 2 m-thick sets), reworked character of rounded, coated bioclasts, and preserved duneforms. At the quarries, the unconformity is directly overlain by mudstones and sandstones. Thinning-upward mudstones interbedded with very thin (1 to 3more » cm thick) intraclastic packstone tempestites crop out in a roadcut about 500 m NE of the quarries. Small-scale ripples and absence of trace fossils in lower mudstone units suggest an estuarine or lagoonal, brackish-waver environment. The trace fossil Conostichus and horizontal burrows appear abruptly in the upper, thin mudstone units. Highly bioturbated green and red shales overlying a 1 to 4 m-thick covered interval in a roadcut 610 m farther north are interbedded with tidally deposited, medium- to coarse-grained, bioclastic grainstones. The shale-draped, medium cross-bedded grainstones document ten or more tidal bundles. The cross-bedded grainstone is overlain by wavy- to flaser-bedded very fine-grained sandstone suggestive of sand flat origin. These sandstones are overlain by the Aux Vases Sandstone. Numerous low-angle bounding surfaces within the Aux Vases enclose low-angle, wedge-planar cross-bedding. A single irregular surface coated by a few centimeters of poorly sorted unstratified sandstone defines a ravinement surface near the base of the Aux Vases Sandstone.« less

  11. Shaler: in situ analysis of a fluvial sedimentary deposit on Mars

    USGS Publications Warehouse

    Edgar, Lauren; Gupta, Sanjeev; Rubin, David M.; Lewis, Kevin W.; Kocurek, Gary A.; Anderson, Ryan; Bell, James F.; Dromart, Gilles; Edgett, Kenneth S.; Grotzinger, John P.; Hardgrove, Craig; Kah, Linda C.; LeVeille, Richard A.; Malin, Michael C.; Mangold, Nicholas; Milliken, Ralph E.; Minitti, Michelle; Palucis, Marisa C.; Rice, Melissa; Rowland, Scott K.; Schieber, Juergen; Stack, Kathryn M.; Sumner, Dawn Y.; Wiens, Roger C.; Williams, Rebecca M.E.; Williams, Amy J.

    2018-01-01

    This paper characterizes the detailed sedimentology of a fluvial sandbody on Mars for the first time, and interprets its depositional processes and palaeoenvironmental setting. Despite numerous orbital observations of fluvial landforms on the surface of Mars, ground-based characterization of the sedimentology of such fluvial deposits has not previously been possible. Results from the NASA Mars Science Laboratory Curiosity rover provide an opportunity to reconstruct at fine scale the sedimentary architecture and palaeomorphology of a fluvial environment on Mars. This work describes the grain size, texture, and sedimentary facies of the Shaler outcrop, reconstructs the bedding architecture, and analyses cross-stratification to determine palaeocurrents. On the basis of bedset geometry and inclination, grain-size distribution, and bedform migration direction, this study concludes that the Shaler outcrop likely records the accretion of a fluvial barform. The majority of the outcrop consists of large-scale trough cross-bedding of coarse sand and granules. Palaeocurrent analyses and bedform reconstruction indicate that the beds were deposited by bedforms that migrated towards the northeast, across the surface of a bar that migrated southeast. Stacked cosets of dune cross-bedding suggest aggradation of multiple bedforms, which provides evidence for short periods of sustained flow during Shaler deposition. However, local evidence for aeolian reworking and the presence of potential desiccation cracks within the outcrop suggests that fluvial deposition may have been intermittent. The uppermost strata at Shaler are distinct in terms of texture and chemistry, and are inferred to record deposition from a different sediment dispersal system with a contrasting provenance. The outcrop as a whole is a testament to the availability of liquid water on the surface of Mars in its early history.

  12. Shaler: in situ analysis of a fluvial sedimentary deposit on Mars

    DOE PAGES

    Edgar, Lauren A.; Gupta, Sanjeev; Rubin, David M.; ...

    2017-03-09

    This article characterizes the detailed sedimentology of a fluvial sandbody on Mars for the first time and interprets its depositional processes and palaeoenvironmental setting. Despite numerous orbital observations of fluvial landforms on the surface of Mars, ground-based characterization of the sedimentology of such fluvial deposits has not previously been possible. Results from the NASA Mars Science Laboratory Curiosity rover provide an opportunity to reconstruct at fine scale the sedimentary architecture and palaeomorphology of a fluvial environment on Mars. This work describes the grain size, texture and sedimentary facies of the Shaler outcrop, reconstructs the bedding architecture, and analyses cross-stratification tomore » determine palaeocurrents. On the basis of bedset geometry and inclination, grain-size distribution and bedform migration direction, this study concludes that the Shaler outcrop probably records the accretion of a fluvial barform. The majority of the outcrop consists of large-scale trough cross-bedding of coarse sand and granules. Palaeocurrent analyses and bedform reconstruction indicate that the beds were deposited by bedforms that migrated towards the north-east, across the surface of a bar that migrated south-east. Stacked cosets of dune cross-bedding suggest aggradation of multiple bedforms, which provides evidence for short periods of sustained flow during Shaler deposition. However, local evidence for aeolian reworking and the presence of potential desiccation cracks within the outcrop suggest that fluvial deposition may have been intermittent. The uppermost strata at Shaler are distinct in terms of texture and chemistry and are inferred to record deposition from a different sediment dispersal system with a contrasting provenance. The outcrop as a whole is a testament to the availability of liquid water on the surface of Mars in its early history.« less

  13. A regional sediment transport modeling for assessing dispersal and recirculation of land-derived radionuclides in the Fukushima coast

    NASA Astrophysics Data System (ADS)

    Yamanishi, T.; Uchiyama, Y.; Tsumune, D.; Miyazawa, Y.

    2014-12-01

    Fluvial discharge from the rivers is viewed as a missing piece in the inventory of the radionuclides in the ocean during the accident at the Fukushima Daiichi Nuclear Power Plant (FNPP). The land-derived input introduces a time lag behind the direct release through hydrological process because these radionuclides mostly attach to suspended fine particles (sediments) that are transported quite differently to the dissolved matter. Therefore, we implement a sediment transport model proposed by Blaas et al. (2007) consisting of a multi-class non-cohesive sediment transport model, a wave-enhanced bed boundary layer model, and a stratigraphy model into ROMS. A 128 x 256 km domain with the grid resolution of dx = 250 m centered at FNPP is configured as a test bed embedded in the existing ROMS model domain at dx = 1 km (Uchiyama et al., 2012, 2013). A spectral wave model SWAN at dx = 1 km nested in the JMA GPV-CWM wave reanalysis is used for the wave forcing field. A surface runoff model (Toyota et al., 2009) provides daily-mean discharges and associated sediment fluxes at the mouths of 20 rivers in the study area.The model results show that bed stresses are enhanced in the coastal area about 10 to 20 km from the shore, most part of the semi-sheltered Sendai Bay, and on the continental shelf slope at about 600 m deep. In contrast, band-like structures are formed between the nearshore and the shelf slope where bed stresses are found to be modest. This low stress bands correspond to the areas where fine particles such as silt and clay are predominant in the bed. Since the cesium 137 is quite readily attached to fine particles rather than coarse sediments (sand), this result suggests that the band acts as a hot spot of the sediment-attached radionuclides. Indeed, a qualitative correlation is found between the low stress band with high radioactivity of cesium 137 in the bed sediment off FNPP based on the field measurement (Ambe et al., 2013).

  14. An Experimental Test of Factors Attracting Deer Mice into Buildings.

    PubMed

    Kuenzi, Amy J; Douglass, Richard

    2009-09-01

    Deer mice (Peromyscus maniculatus) are the principal reservoir host of Sin Nombre virus (SNV). Deer mice use a wide variety of habitats including peridomestic settings in and around human dwellings, their presence in and around homes has been implicated as a risk factor for acquiring Hantavirus Pulmonary Syndrome. Deer mice are believed to enter buildings in order to gain access to a variety of resources including food, bedding material, and better thermal microclimates. However, no one has experimentally tested which factors influence mice use of buildings. We conducted experiments using small simulated buildings to determine the effects of two factors, i.e., food and bedding material, on mouse activity in these buildings. We also examined if these effects varied with time of year. We found that deer mice entered our buildings regardless of the presence or absence of food or bedding. However, the amount of activity in buildings was affected by what they contained. We found significantly higher indices of activity in buildings containing food compared to both empty buildings (control) and buildings containing bedding material. Time of year did not affect activity in buildings.

  15. Effect of Bedding Material on Flies, and Behavior and Innate Immunity of Calves Reared in Hutches

    USDA-ARS?s Scientific Manuscript database

    Dairy calf hutches are often bedded with straw (STR), but sand (SND) and wood shavings (SHV) are becoming more common. The objective was to compare 3 beddings for presence of flies and measures of innate immunity and behavior of calves. Hutches were blocked by location and each of 3 hutches in a blo...

  16. Effect of Bedding Material on Flies, and Behavior and Innate Immunity of Calves Reared in Hutches.

    USDA-ARS?s Scientific Manuscript database

    Dairy calf hutches are often bedded with straw (STR), but sand (SND) and wood shavings (SHV) are becoming more common. The objective was to compare 3 beddings for presence of flies and measures of innate immunity and behavior of calves. Hutches were blocked by location and each of 3 hutches in a blo...

  17. Fluidized bed combustor and coal gun-tube assembly therefor

    DOEpatents

    Hosek, William S.; Garruto, Edward J.

    1984-01-01

    A coal supply gun assembly for a fluidized bed combustor which includes heat exchange elements extending above the bed's distributor plate assembly and in which the gun's nozzles are disposed relative to the heat exchange elements to only discharge granular coal material between adjacent heat exchange elements and in a path which is substantially equidistant from adjacent heat exchange elements.

  18. Staged fluidized-bed combustion and filter system

    DOEpatents

    Mei, Joseph S.; Halow, John S.

    1994-01-01

    A staged fluidized-bed combustion and filter system for substantially reducing the quantity of waste through the complete combustion into ash-type solids and gaseous products. The device has two fluidized-bed portions, the first primarily as a combustor/pyrolyzer bed, and the second as a combustor/filter bed. The two portions each have internal baffles to define stages so that material moving therein as fluidized beds travel in an extended route through those stages. Fluidization and movement is achieved by the introduction of gases into each stage through a directional nozzle. Gases produced in the combustor/pyrolyzer bed are permitted to travel into corresponding stages of the combustor/filter bed through screen filters that permit gas flow but inhibit solids flow. Any catalyst used in the combustor/filter bed is recycled. The two beds share a common wall to minimize total volume of the system. A slightly modified embodiment can be used for hot gas desulfurization and sorbent regeneration. Either side-by-side rectangular beds or concentric beds can be used. The system is particularly suited to the processing of radioactive and chemically hazardous waste.

  19. Physics-based statistical learning approach to mesoscopic model selection.

    PubMed

    Taverniers, Søren; Haut, Terry S; Barros, Kipton; Alexander, Francis J; Lookman, Turab

    2015-11-01

    In materials science and many other research areas, models are frequently inferred without considering their generalization to unseen data. We apply statistical learning using cross-validation to obtain an optimally predictive coarse-grained description of a two-dimensional kinetic nearest-neighbor Ising model with Glauber dynamics (GD) based on the stochastic Ginzburg-Landau equation (sGLE). The latter is learned from GD "training" data using a log-likelihood analysis, and its predictive ability for various complexities of the model is tested on GD "test" data independent of the data used to train the model on. Using two different error metrics, we perform a detailed analysis of the error between magnetization time trajectories simulated using the learned sGLE coarse-grained description and those obtained using the GD model. We show that both for equilibrium and out-of-equilibrium GD training trajectories, the standard phenomenological description using a quartic free energy does not always yield the most predictive coarse-grained model. Moreover, increasing the amount of training data can shift the optimal model complexity to higher values. Our results are promising in that they pave the way for the use of statistical learning as a general tool for materials modeling and discovery.

  20. [Thermal energy utilization analysis and energy conservation measures of fluidized bed dryer].

    PubMed

    Xing, Liming; Zhao, Zhengsheng

    2012-07-01

    To propose measures for enhancing thermal energy utilization by analyzing drying process and operation principle of fluidized bed dryers,in order to guide optimization and upgrade of fluidized bed drying equipment. Through a systematic analysis on drying process and operation principle of fluidized beds,the energy conservation law was adopted to calculate thermal energy of dryers. The thermal energy of fluidized bed dryers is mainly used to make up for thermal consumption of water evaporation (Qw), hot air from outlet equipment (Qe), thermal consumption for heating and drying wet materials (Qm) and heat dissipation to surroundings through hot air pipelines and cyclone separators. Effective measures and major approaches to enhance thermal energy utilization of fluidized bed dryers were to reduce exhaust gas out by the loss of heat Qe, recycle dryer export air quantity of heat, preserve heat for dry towers, hot air pipes and cyclone separators, dehumidify clean air in inlets and reasonably control drying time and air temperature. Such technical parameters such air supply rate, air inlet temperature and humidity, material temperature and outlet temperature and humidity are set and controlled to effectively save energy during the drying process and reduce the production cost.

Top