Sample records for coarse computational grids

  1. A coarse-grid-projection acceleration method for finite-element incompressible flow computations

    NASA Astrophysics Data System (ADS)

    Kashefi, Ali; Staples, Anne; FiN Lab Team

    2015-11-01

    Coarse grid projection (CGP) methodology provides a framework for accelerating computations by performing some part of the computation on a coarsened grid. We apply the CGP to pressure projection methods for finite element-based incompressible flow simulations. Based on it, the predicted velocity field data is restricted to a coarsened grid, the pressure is determined by solving the Poisson equation on the coarse grid, and the resulting data are prolonged to the preset fine grid. The contributions of the CGP method to the pressure correction technique are twofold: first, it substantially lessens the computational cost devoted to the Poisson equation, which is the most time-consuming part of the simulation process. Second, it preserves the accuracy of the velocity field. The velocity and pressure spaces are approximated by Galerkin spectral element using piecewise linear basis functions. A restriction operator is designed so that fine data are directly injected into the coarse grid. The Laplacian and divergence matrices are driven by taking inner products of coarse grid shape functions. Linear interpolation is implemented to construct a prolongation operator. A study of the data accuracy and the CPU time for the CGP-based versus non-CGP computations is presented. Laboratory for Fluid Dynamics in Nature.

  2. Investigation of Grid Adaptation to Reduce Computational Efforts for a 2-D Hydrogen-Fueled Dual-Mode Scramjet

    NASA Astrophysics Data System (ADS)

    Foo, Kam Keong

    A two-dimensional dual-mode scramjet flowpath is developed and evaluated using the ANSYS Fluent density-based flow solver with various computational grids. Results are obtained for fuel-off, fuel-on non-reacting, and fuel-on reacting cases at different equivalence ratios. A one-step global chemical kinetics hydrogen-air model is used in conjunction with the eddy-dissipation model. Coarse, medium and fine computational grids are used to evaluate grid sensitivity and to investigate a lack of grid independence. Different grid adaptation strategies are performed on the coarse grid in an attempt to emulate the solutions obtained from the finer grids. The goal of this study is to investigate the feasibility of using various mesh adaptation criteria to significantly decrease computational efforts for high-speed reacting flows.

  3. Acceleration of incremental-pressure-correction incompressible flow computations using a coarse-grid projection method

    NASA Astrophysics Data System (ADS)

    Kashefi, Ali; Staples, Anne

    2016-11-01

    Coarse grid projection (CGP) methodology is a novel multigrid method for systems involving decoupled nonlinear evolution equations and linear elliptic equations. The nonlinear equations are solved on a fine grid and the linear equations are solved on a corresponding coarsened grid. Mapping functions transfer data between the two grids. Here we propose a version of CGP for incompressible flow computations using incremental pressure correction methods, called IFEi-CGP (implicit-time-integration, finite-element, incremental coarse grid projection). Incremental pressure correction schemes solve Poisson's equation for an intermediate variable and not the pressure itself. This fact contributes to IFEi-CGP's efficiency in two ways. First, IFEi-CGP preserves the velocity field accuracy even for a high level of pressure field grid coarsening and thus significant speedup is achieved. Second, because incremental schemes reduce the errors that arise from boundaries with artificial homogenous Neumann conditions, CGP generates undamped flows for simulations with velocity Dirichlet boundary conditions. Comparisons of the data accuracy and CPU times for the incremental-CGP versus non-incremental-CGP computations are presented.

  4. A coarse-grid projection method for accelerating incompressible flow computations

    NASA Astrophysics Data System (ADS)

    San, Omer; Staples, Anne E.

    2013-01-01

    We present a coarse-grid projection (CGP) method for accelerating incompressible flow computations, which is applicable to methods involving Poisson equations as incompressibility constraints. The CGP methodology is a modular approach that facilitates data transfer with simple interpolations and uses black-box solvers for the Poisson and advection-diffusion equations in the flow solver. After solving the Poisson equation on a coarsened grid, an interpolation scheme is used to obtain the fine data for subsequent time stepping on the full grid. A particular version of the method is applied here to the vorticity-stream function, primitive variable, and vorticity-velocity formulations of incompressible Navier-Stokes equations. We compute several benchmark flow problems on two-dimensional Cartesian and non-Cartesian grids, as well as a three-dimensional flow problem. The method is found to accelerate these computations while retaining a level of accuracy close to that of the fine resolution field, which is significantly better than the accuracy obtained for a similar computation performed solely using a coarse grid. A linear acceleration rate is obtained for all the cases we consider due to the linear-cost elliptic Poisson solver used, with reduction factors in computational time between 2 and 42. The computational savings are larger when a suboptimal Poisson solver is used. We also find that the computational savings increase with increasing distortion ratio on non-Cartesian grids, making the CGP method a useful tool for accelerating generalized curvilinear incompressible flow solvers.

  5. A coarse-grid projection method for accelerating incompressible flow computations

    NASA Astrophysics Data System (ADS)

    San, Omer; Staples, Anne

    2011-11-01

    We present a coarse-grid projection (CGP) algorithm for accelerating incompressible flow computations, which is applicable to methods involving Poisson equations as incompressibility constraints. CGP methodology is a modular approach that facilitates data transfer with simple interpolations and uses black-box solvers for the Poisson and advection-diffusion equations in the flow solver. Here, we investigate a particular CGP method for the vorticity-stream function formulation that uses the full weighting operation for mapping from fine to coarse grids, the third-order Runge-Kutta method for time stepping, and finite differences for the spatial discretization. After solving the Poisson equation on a coarsened grid, bilinear interpolation is used to obtain the fine data for consequent time stepping on the full grid. We compute several benchmark flows: the Taylor-Green vortex, a vortex pair merging, a double shear layer, decaying turbulence and the Taylor-Green vortex on a distorted grid. In all cases we use either FFT-based or V-cycle multigrid linear-cost Poisson solvers. Reducing the number of degrees of freedom of the Poisson solver by powers of two accelerates these computations while, for the first level of coarsening, retaining the same level of accuracy in the fine resolution vorticity field.

  6. Coarse Grid Modeling of Turbine Film Cooling Flows Using Volumetric Source Terms

    NASA Technical Reports Server (NTRS)

    Heidmann, James D.; Hunter, Scott D.

    2001-01-01

    The recent trend in numerical modeling of turbine film cooling flows has been toward higher fidelity grids and more complex geometries. This trend has been enabled by the rapid increase in computing power available to researchers. However, the turbine design community requires fast turnaround time in its design computations, rendering these comprehensive simulations ineffective in the design cycle. The present study describes a methodology for implementing a volumetric source term distribution in a coarse grid calculation that can model the small-scale and three-dimensional effects present in turbine film cooling flows. This model could be implemented in turbine design codes or in multistage turbomachinery codes such as APNASA, where the computational grid size may be larger than the film hole size. Detailed computations of a single row of 35 deg round holes on a flat plate have been obtained for blowing ratios of 0.5, 0.8, and 1.0, and density ratios of 1.0 and 2.0 using a multiblock grid system to resolve the flows on both sides of the plate as well as inside the hole itself. These detailed flow fields were spatially averaged to generate a field of volumetric source terms for each conservative flow variable. Solutions were also obtained using three coarse grids having streamwise and spanwise grid spacings of 3d, 1d, and d/3. These coarse grid solutions used the integrated hole exit mass, momentum, energy, and turbulence quantities from the detailed solutions as volumetric source terms. It is shown that a uniform source term addition over a distance from the wall on the order of the hole diameter is able to predict adiabatic film effectiveness better than a near-wall source term model, while strictly enforcing correct values of integrated boundary layer quantities.

  7. Coarse Grid CFD for underresolved simulation

    NASA Astrophysics Data System (ADS)

    Class, Andreas G.; Viellieber, Mathias O.; Himmel, Steffen R.

    2010-11-01

    CFD simulation of the complete reactor core of a nuclear power plant requires exceedingly huge computational resources so that this crude power approach has not been pursued yet. The traditional approach is 1D subchannel analysis employing calibrated transport models. Coarse grid CFD is an attractive alternative technique based on strongly under-resolved CFD and the inviscid Euler equations. Obviously, using inviscid equations and coarse grids does not resolve all the physics requiring additional volumetric source terms modelling viscosity and other sub-grid effects. The source terms are implemented via correlations derived from fully resolved representative simulations which can be tabulated or computed on the fly. The technique is demonstrated for a Carnot diffusor and a wire-wrap fuel assembly [1]. [4pt] [1] Himmel, S.R. phd thesis, Stuttgart University, Germany 2009, http://bibliothek.fzk.de/zb/berichte/FZKA7468.pdf

  8. Coarsening of three-dimensional structured and unstructured grids for subsurface flow

    NASA Astrophysics Data System (ADS)

    Aarnes, Jørg Espen; Hauge, Vera Louise; Efendiev, Yalchin

    2007-11-01

    We present a generic, semi-automated algorithm for generating non-uniform coarse grids for modeling subsurface flow. The method is applicable to arbitrary grids and does not impose smoothness constraints on the coarse grid. One therefore avoids conventional smoothing procedures that are commonly used to ensure that the grids obtained with standard coarsening procedures are not too rough. The coarsening algorithm is very simple and essentially involves only two parameters that specify the level of coarsening. Consequently the algorithm allows the user to specify the simulation grid dynamically to fit available computer resources, and, e.g., use the original geomodel as input for flow simulations. This is of great importance since coarse grid-generation is normally the most time-consuming part of an upscaling phase, and therefore the main obstacle that has prevented simulation workflows with user-defined resolution. We apply the coarsening algorithm to a series of two-phase flow problems on both structured (Cartesian) and unstructured grids. The numerical results demonstrate that one consistently obtains significantly more accurate results using the proposed non-uniform coarsening strategy than with corresponding uniform coarse grids with roughly the same number of cells.

  9. Grid computing in large pharmaceutical molecular modeling.

    PubMed

    Claus, Brian L; Johnson, Stephen R

    2008-07-01

    Most major pharmaceutical companies have employed grid computing to expand their compute resources with the intention of minimizing additional financial expenditure. Historically, one of the issues restricting widespread utilization of the grid resources in molecular modeling is the limited set of suitable applications amenable to coarse-grained parallelization. Recent advances in grid infrastructure technology coupled with advances in application research and redesign will enable fine-grained parallel problems, such as quantum mechanics and molecular dynamics, which were previously inaccessible to the grid environment. This will enable new science as well as increase resource flexibility to load balance and schedule existing workloads.

  10. A highly parallel multigrid-like method for the solution of the Euler equations

    NASA Technical Reports Server (NTRS)

    Tuminaro, Ray S.

    1989-01-01

    We consider a highly parallel multigrid-like method for the solution of the two dimensional steady Euler equations. The new method, introduced as filtering multigrid, is similar to a standard multigrid scheme in that convergence on the finest grid is accelerated by iterations on coarser grids. In the filtering method, however, additional fine grid subproblems are processed concurrently with coarse grid computations to further accelerate convergence. These additional problems are obtained by splitting the residual into a smooth and an oscillatory component. The smooth component is then used to form a coarse grid problem (similar to standard multigrid) while the oscillatory component is used for a fine grid subproblem. The primary advantage in the filtering approach is that fewer iterations are required and that most of the additional work per iteration can be performed in parallel with the standard coarse grid computations. We generalize the filtering algorithm to a version suitable for nonlinear problems. We emphasize that this generalization is conceptually straight-forward and relatively easy to implement. In particular, no explicit linearization (e.g., formation of Jacobians) needs to be performed (similar to the FAS multigrid approach). We illustrate the nonlinear version by applying it to the Euler equations, and presenting numerical results. Finally, a performance evaluation is made based on execution time models and convergence information obtained from numerical experiments.

  11. Transonic Navier-Stokes computations of strake-generated vortex interactions for a fighter-like configuration

    NASA Technical Reports Server (NTRS)

    Reznick, Steve

    1988-01-01

    Transonic Euler/Navier-Stokes computations are accomplished for wing-body flow fields using a computer program called Transonic Navier-Stokes (TNS). The wing-body grids are generated using a program called ZONER, which subdivides a coarse grid about a fighter-like aircraft configuration into smaller zones, which are tailored to local grid requirements. These zones can be either finely clustered for capture of viscous effects, or coarsely clustered for inviscid portions of the flow field. Different equation sets may be solved in the different zone types. This modular approach also affords the opportunity to modify a local region of the grid without recomputing the global grid. This capability speeds up the design optimization process when quick modifications to the geometry definition are desired. The solution algorithm embodied in TNS is implicit, and is capable of capturing pressure gradients associated with shocks. The algebraic turbulence model employed has proven adequate for viscous interactions with moderate separation. Results confirm that the TNS program can successfully be used to simulate transonic viscous flows about complicated 3-D geometries.

  12. Three-dimensional elliptic grid generation for an F-16

    NASA Technical Reports Server (NTRS)

    Sorenson, Reese L.

    1988-01-01

    A case history depicting the effort to generate a computational grid for the simulation of transonic flow about an F-16 aircraft at realistic flight conditions is presented. The flow solver for which this grid is designed is a zonal one, using the Reynolds averaged Navier-Stokes equations near the surface of the aircraft, and the Euler equations in regions removed from the aircraft. A body conforming global grid, suitable for the Euler equation, is first generated using 3-D Poisson equations having inhomogeneous terms modeled after the 2-D GRAPE code. Regions of the global grid are then designated for zonal refinement as appropriate to accurately model the flow physics. Grid spacing suitable for solution of the Navier-Stokes equations is generated in the refinement zones by simple subdivision of the given coarse grid intervals. That grid generation project is described, with particular emphasis on the global coarse grid.

  13. Multigrid methods for differential equations with highly oscillatory coefficients

    NASA Technical Reports Server (NTRS)

    Engquist, Bjorn; Luo, Erding

    1993-01-01

    New coarse grid multigrid operators for problems with highly oscillatory coefficients are developed. These types of operators are necessary when the characters of the differential equations on coarser grids or longer wavelengths are different from that on the fine grid. Elliptic problems for composite materials and different classes of hyperbolic problems are practical examples. The new coarse grid operators can be constructed directly based on the homogenized differential operators or hierarchically computed from the finest grid. Convergence analysis based on the homogenization theory is given for elliptic problems with periodic coefficients and some hyperbolic problems. These are classes of equations for which there exists a fairly complete theory for the interaction between shorter and longer wavelengths in the problems. Numerical examples are presented.

  14. Multiresolution Iterative Reconstruction in High-Resolution Extremity Cone-Beam CT

    PubMed Central

    Cao, Qian; Zbijewski, Wojciech; Sisniega, Alejandro; Yorkston, John; Siewerdsen, Jeffrey H; Stayman, J Webster

    2016-01-01

    Application of model-based iterative reconstruction (MBIR) to high resolution cone-beam CT (CBCT) is computationally challenging because of the very fine discretization (voxel size <100 µm) of the reconstructed volume. Moreover, standard MBIR techniques require that the complete transaxial support for the acquired projections is reconstructed, thus precluding acceleration by restricting the reconstruction to a region-of-interest. To reduce the computational burden of high resolution MBIR, we propose a multiresolution Penalized-Weighted Least Squares (PWLS) algorithm, where the volume is parameterized as a union of fine and coarse voxel grids as well as selective binning of detector pixels. We introduce a penalty function designed to regularize across the boundaries between the two grids. The algorithm was evaluated in simulation studies emulating an extremity CBCT system and in a physical study on a test-bench. Artifacts arising from the mismatched discretization of the fine and coarse sub-volumes were investigated. The fine grid region was parameterized using 0.15 mm voxels and the voxel size in the coarse grid region was varied by changing a downsampling factor. No significant artifacts were found in either of the regions for downsampling factors of up to 4×. For a typical extremities CBCT volume size, this downsampling corresponds to an acceleration of the reconstruction that is more than five times faster than a brute force solution that applies fine voxel parameterization to the entire volume. For certain configurations of the coarse and fine grid regions, in particular when the boundary between the regions does not cross high attenuation gradients, downsampling factors as high as 10× can be used without introducing artifacts, yielding a ~50× speedup in PWLS. The proposed multiresolution algorithm significantly reduces the computational burden of high resolution iterative CBCT reconstruction and can be extended to other applications of MBIR where computationally expensive, high-fidelity forward models are applied only to a sub-region of the field-of-view. PMID:27694701

  15. Convergence acceleration of viscous flow computations

    NASA Technical Reports Server (NTRS)

    Johnson, G. M.

    1982-01-01

    A multiple-grid convergence acceleration technique introduced for application to the solution of the Euler equations by means of Lax-Wendroff algorithms is extended to treat compressible viscous flow. Computational results are presented for the solution of the thin-layer version of the Navier-Stokes equations using the explicit MacCormack algorithm, accelerated by a convective coarse-grid scheme. Extensions and generalizations are mentioned.

  16. Multiple-grid convergence acceleration of viscous and inviscid flow computations

    NASA Technical Reports Server (NTRS)

    Johnson, G. M.

    1983-01-01

    A multiple-grid algorithm for use in efficiently obtaining steady solution to the Euler and Navier-Stokes equations is presented. The convergence of a simple, explicit fine-grid solution procedure is accelerated on a sequence of successively coarser grids by a coarse-grid information propagation method which rapidly eliminates transients from the computational domain. This use of multiple-gridding to increase the convergence rate results in substantially reduced work requirements for the numerical solution of a wide range of flow problems. Computational results are presented for subsonic and transonic inviscid flows and for laminar and turbulent, attached and separated, subsonic viscous flows. Work reduction factors as large as eight, in comparison to the basic fine-grid algorithm, were obtained. Possibilities for further performance improvement are discussed.

  17. Verification of sub-grid filtered drag models for gas-particle fluidized beds with immersed cylinder arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarkar, Avik; Sun, Xin; Sundaresan, Sankaran

    2014-04-23

    The accuracy of coarse-grid multiphase CFD simulations of fluidized beds may be improved via the inclusion of filtered constitutive models. In our previous study (Sarkar et al., Chem. Eng. Sci., 104, 399-412), we developed such a set of filtered drag relationships for beds with immersed arrays of cooling tubes. Verification of these filtered drag models is addressed in this work. Predictions from coarse-grid simulations with the sub-grid filtered corrections are compared against accurate, highly-resolved simulations of full-scale turbulent and bubbling fluidized beds. The filtered drag models offer a computationally efficient yet accurate alternative for obtaining macroscopic predictions, but the spatialmore » resolution of meso-scale clustering heterogeneities is sacrificed.« less

  18. Three-Dimensional Viscous Alternating Direction Implicit Algorithm and Strategies for Shape Optimization

    NASA Technical Reports Server (NTRS)

    Pandya, Mohagna J.; Baysal, Oktay

    1997-01-01

    A gradient-based shape optimization based on quasi-analytical sensitivities has been extended for practical three-dimensional aerodynamic applications. The flow analysis has been rendered by a fully implicit, finite-volume formulation of the Euler and Thin-Layer Navier-Stokes (TLNS) equations. Initially, the viscous laminar flow analysis for a wing has been compared with an independent computational fluid dynamics (CFD) code which has been extensively validated. The new procedure has been demonstrated in the design of a cranked arrow wing at Mach 2.4 with coarse- and fine-grid based computations performed with Euler and TLNS equations. The influence of the initial constraints on the geometry and aerodynamics of the optimized shape has been explored. Various final shapes generated for an identical initial problem formulation but with different optimization path options (coarse or fine grid, Euler or TLNS), have been aerodynamically evaluated via a common fine-grid TLNS-based analysis. The initial constraint conditions show significant bearing on the optimization results. Also, the results demonstrate that to produce an aerodynamically efficient design, it is imperative to include the viscous physics in the optimization procedure with the proper resolution. Based upon the present results, to better utilize the scarce computational resources, it is recommended that, a number of viscous coarse grid cases using either a preconditioned bi-conjugate gradient (PbCG) or an alternating-direction-implicit (ADI) method, should initially be employed to improve the optimization problem definition, the design space and initial shape. Optimized shapes should subsequently be analyzed using a high fidelity (viscous with fine-grid resolution) flow analysis to evaluate their true performance potential. Finally, a viscous fine-grid-based shape optimization should be conducted, using an ADI method, to accurately obtain the final optimized shape.

  19. A machine learning approach for efficient uncertainty quantification using multiscale methods

    NASA Astrophysics Data System (ADS)

    Chan, Shing; Elsheikh, Ahmed H.

    2018-02-01

    Several multiscale methods account for sub-grid scale features using coarse scale basis functions. For example, in the Multiscale Finite Volume method the coarse scale basis functions are obtained by solving a set of local problems over dual-grid cells. We introduce a data-driven approach for the estimation of these coarse scale basis functions. Specifically, we employ a neural network predictor fitted using a set of solution samples from which it learns to generate subsequent basis functions at a lower computational cost than solving the local problems. The computational advantage of this approach is realized for uncertainty quantification tasks where a large number of realizations has to be evaluated. We attribute the ability to learn these basis functions to the modularity of the local problems and the redundancy of the permeability patches between samples. The proposed method is evaluated on elliptic problems yielding very promising results.

  20. Sub-grid drag model for immersed vertical cylinders in fluidized beds

    DOE PAGES

    Verma, Vikrant; Li, Tingwen; Dietiker, Jean -Francois; ...

    2017-01-03

    Immersed vertical cylinders are often used as heat exchanger in gas-solid fluidized beds. Computational Fluid Dynamics (CFD) simulations are computationally expensive for large scale systems with bundles of cylinders. Therefore sub-grid models are required to facilitate simulations on a coarse grid, where internal cylinders are treated as a porous medium. The influence of cylinders on the gas-solid flow tends to enhance segregation and affect the gas-solid drag. A correction to gas-solid drag must be modeled using a suitable sub-grid constitutive relationship. In the past, Sarkar et al. have developed a sub-grid drag model for horizontal cylinder arrays based on 2Dmore » simulations. However, the effect of a vertical cylinder arrangement was not considered due to computational complexities. In this study, highly resolved 3D simulations with vertical cylinders were performed in small periodic domains. These simulations were filtered to construct a sub-grid drag model which can then be implemented in coarse-grid simulations. Gas-solid drag was filtered for different solids fractions and a significant reduction in drag was identified when compared with simulation without cylinders and simulation with horizontal cylinders. Slip velocities significantly increase when vertical cylinders are present. Lastly, vertical suspension drag due to vertical cylinders is insignificant however substantial horizontal suspension drag is observed which is consistent to the finding for horizontal cylinders.« less

  1. Modeling of Turbulent Natural Convection in Enclosed Tall Cavities

    NASA Astrophysics Data System (ADS)

    Goloviznin, V. M.; Korotkin, I. A.; Finogenov, S. A.

    2017-12-01

    It was shown in our previous work (J. Appl. Mech. Tech. Phys 57 (7), 1159-1171 (2016)) that the eddy-resolving parameter-free CABARET scheme as applied to two-and three-dimensional de Vahl Davis benchmark tests (thermal convection in a square cavity) yields numerical results on coarse (20 × 20 and 20 × 20 × 20) grids that agree surprisingly well with experimental data and highly accurate computations for Rayleigh numbers of up to 1014. In the present paper, the sensitivity of this phenomenon to the cavity shape (varying from cubical to highly elongated) is analyzed. Box-shaped computational domains with aspect ratios of 1: 4, 1: 10, and 1: 28.6 are considered. The results produced by the CABARET scheme are compared with experimental data (aspect ratio of 1: 28.6), DNS results (aspect ratio of 1: 4), and an empirical formula (aspect ratio of 1: 10). In all the cases, the CABARET-based integral parameters of the cavity flow agree well with the other authors' results. Notably coarse grids with mesh refinement toward the walls are used in the CABARET calculations. It is shown that acceptable numerical accuracy on extremely coarse grids is achieved for an aspect ratio of up to 1: 10. For higher aspect ratios, the number of grid cells required for achieving prescribed accuracy grows significantly.

  2. An engineering closure for heavily under-resolved coarse-grid CFD in large applications

    NASA Astrophysics Data System (ADS)

    Class, Andreas G.; Yu, Fujiang; Jordan, Thomas

    2016-11-01

    Even though high performance computation allows very detailed description of a wide range of scales in scientific computations, engineering simulations used for design studies commonly merely resolve the large scales thus speeding up simulation time. The coarse-grid CFD (CGCFD) methodology is developed for flows with repeated flow patterns as often observed in heat exchangers or porous structures. It is proposed to use inviscid Euler equations on a very coarse numerical mesh. This coarse mesh needs not to conform to the geometry in all details. To reinstall physics on all smaller scales cheap subgrid models are employed. Subgrid models are systematically constructed by analyzing well-resolved generic representative simulations. By varying the flow conditions in these simulations correlations are obtained. These comprehend for each individual coarse mesh cell a volume force vector and volume porosity. Moreover, for all vertices, surface porosities are derived. CGCFD is related to the immersed boundary method as both exploit volume forces and non-body conformal meshes. Yet, CGCFD differs with respect to the coarser mesh and the use of Euler equations. We will describe the methodology based on a simple test case and the application of the method to a 127 pin wire-wrap fuel bundle.

  3. A general gridding, discretization, and coarsening methodology for modeling flow in porous formations with discrete geological features

    NASA Astrophysics Data System (ADS)

    Karimi-Fard, M.; Durlofsky, L. J.

    2016-10-01

    A comprehensive framework for modeling flow in porous media containing thin, discrete features, which could be high-permeability fractures or low-permeability deformation bands, is presented. The key steps of the methodology are mesh generation, fine-grid discretization, upscaling, and coarse-grid discretization. Our specialized gridding technique combines a set of intersecting triangulated surfaces by constructing approximate intersections using existing edges. This procedure creates a conforming mesh of all surfaces, which defines the internal boundaries for the volumetric mesh. The flow equations are discretized on this conforming fine mesh using an optimized two-point flux finite-volume approximation. The resulting discrete model is represented by a list of control-volumes with associated positions and pore-volumes, and a list of cell-to-cell connections with associated transmissibilities. Coarse models are then constructed by the aggregation of fine-grid cells, and the transmissibilities between adjacent coarse cells are obtained using flow-based upscaling procedures. Through appropriate computation of fracture-matrix transmissibilities, a dual-continuum representation is obtained on the coarse scale in regions with connected fracture networks. The fine and coarse discrete models generated within the framework are compatible with any connectivity-based simulator. The applicability of the methodology is illustrated for several two- and three-dimensional examples. In particular, we consider gas production from naturally fractured low-permeability formations, and transport through complex fracture networks. In all cases, highly accurate solutions are obtained with significant model reduction.

  4. Optimization of computations for adjoint field and Jacobian needed in 3D CSEM inversion

    NASA Astrophysics Data System (ADS)

    Dehiya, Rahul; Singh, Arun; Gupta, Pravin K.; Israil, M.

    2017-01-01

    We present the features and results of a newly developed code, based on Gauss-Newton optimization technique, for solving three-dimensional Controlled-Source Electromagnetic inverse problem. In this code a special emphasis has been put on representing the operations by block matrices for conjugate gradient iteration. We show how in the computation of Jacobian, the matrix formed by differentiation of system matrix can be made independent of frequency to optimize the operations at conjugate gradient step. The coarse level parallel computing, using OpenMP framework, is used primarily due to its simplicity in implementation and accessibility of shared memory multi-core computing machine to almost anyone. We demonstrate how the coarseness of modeling grid in comparison to source (comp`utational receivers) spacing can be exploited for efficient computing, without compromising the quality of the inverted model, by reducing the number of adjoint calls. It is also demonstrated that the adjoint field can even be computed on a grid coarser than the modeling grid without affecting the inversion outcome. These observations were reconfirmed using an experiment design where the deviation of source from straight tow line is considered. Finally, a real field data inversion experiment is presented to demonstrate robustness of the code.

  5. An Eulerian/Lagrangian method for computing blade/vortex impingement

    NASA Technical Reports Server (NTRS)

    Steinhoff, John; Senge, Heinrich; Yonghu, Wenren

    1991-01-01

    A combined Eulerian/Lagrangian approach to calculating helicopter rotor flows with concentrated vortices is described. The method computes a general evolving vorticity distribution without any significant numerical diffusion. Concentrated vortices can be accurately propagated over long distances on relatively coarse grids with cores only several grid cells wide. The method is demonstrated for a blade/vortex impingement case in 2D and 3D where a vortex is cut by a rotor blade, and the results are compared to previous 2D calculations involving a fifth-order Navier-Stokes solver on a finer grid.

  6. Sub-grid drag models for horizontal cylinder arrays immersed in gas-particle multiphase flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarkar, Avik; Sun, Xin; Sundaresan, Sankaran

    2013-09-08

    Immersed cylindrical tube arrays often are used as heat exchangers in gas-particle fluidized beds. In multiphase computational fluid dynamics (CFD) simulations of large fluidized beds, explicit resolution of small cylinders is computationally infeasible. Instead, the cylinder array may be viewed as an effective porous medium in coarse-grid simulations. The cylinders' influence on the suspension as a whole, manifested as an effective drag force, and on the relative motion between gas and particles, manifested as a correction to the gas-particle drag, must be modeled via suitable sub-grid constitutive relationships. In this work, highly resolved unit-cell simulations of flow around an arraymore » of horizontal cylinders, arranged in a staggered configuration, are filtered to construct sub-grid, or `filtered', drag models, which can be implemented in coarse-grid simulations. The force on the suspension exerted by the cylinders is comprised of, as expected, a buoyancy contribution, and a kinetic component analogous to fluid drag on a single cylinder. Furthermore, the introduction of tubes also is found to enhance segregation at the scale of the cylinder size, which, in turn, leads to a reduction in the filtered gas-particle drag.« less

  7. Full Multigrid Flow Solver

    NASA Technical Reports Server (NTRS)

    Mineck, Raymond E.; Thomas, James L.; Biedron, Robert T.; Diskin, Boris

    2005-01-01

    FMG3D (full multigrid 3 dimensions) is a pilot computer program that solves equations of fluid flow using a finite difference representation on a structured grid. Infrastructure exists for three dimensions but the current implementation treats only two dimensions. Written in Fortran 90, FMG3D takes advantage of the recursive subroutine feature, dynamic memory allocation, and structured-programming constructs of that language. FMG3D supports multi-block grids with three types of block-to-block interfaces: periodic, C-zero, and C-infinity. For all three types, grid points must match at interfaces. For periodic and C-infinity types, derivatives of grid metrics must be continuous at interfaces. The available equation sets are as follows: scalar elliptic equations, scalar convection equations, and the pressure-Poisson formulation of the Navier-Stokes equations for an incompressible fluid. All the equation sets are implemented with nonzero forcing functions to enable the use of user-specified solutions to assist in verification and validation. The equations are solved with a full multigrid scheme using a full approximation scheme to converge the solution on each succeeding grid level. Restriction to the next coarser mesh uses direct injection for variables and full weighting for residual quantities; prolongation of the coarse grid correction from the coarse mesh to the fine mesh uses bilinear interpolation; and prolongation of the coarse grid solution uses bicubic interpolation.

  8. 3D magnetospheric parallel hybrid multi-grid method applied to planet–plasma interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leclercq, L., E-mail: ludivine.leclercq@latmos.ipsl.fr; Modolo, R., E-mail: ronan.modolo@latmos.ipsl.fr; Leblanc, F.

    2016-03-15

    We present a new method to exploit multiple refinement levels within a 3D parallel hybrid model, developed to study planet–plasma interactions. This model is based on the hybrid formalism: ions are kinetically treated whereas electrons are considered as a inertia-less fluid. Generally, ions are represented by numerical particles whose size equals the volume of the cells. Particles that leave a coarse grid subsequently entering a refined region are split into particles whose volume corresponds to the volume of the refined cells. The number of refined particles created from a coarse particle depends on the grid refinement rate. In order tomore » conserve velocity distribution functions and to avoid calculations of average velocities, particles are not coalesced. Moreover, to ensure the constancy of particles' shape function sizes, the hybrid method is adapted to allow refined particles to move within a coarse region. Another innovation of this approach is the method developed to compute grid moments at interfaces between two refinement levels. Indeed, the hybrid method is adapted to accurately account for the special grid structure at the interfaces, avoiding any overlapping grid considerations. Some fundamental test runs were performed to validate our approach (e.g. quiet plasma flow, Alfven wave propagation). Lastly, we also show a planetary application of the model, simulating the interaction between Jupiter's moon Ganymede and the Jovian plasma.« less

  9. Upscaling of Hydraulic Conductivity using the Double Constraint Method

    NASA Astrophysics Data System (ADS)

    El-Rawy, Mustafa; Zijl, Wouter; Batelaan, Okke

    2013-04-01

    The mathematics and modeling of flow through porous media is playing an increasingly important role for the groundwater supply, subsurface contaminant remediation and petroleum reservoir engineering. In hydrogeology hydraulic conductivity data are often collected at a scale that is smaller than the grid block dimensions of a groundwater model (e.g. MODFLOW). For instance, hydraulic conductivities determined from the field using slug and packer tests are measured in the order of centimeters to meters, whereas numerical groundwater models require conductivities representative of tens to hundreds of meters of grid cell length. Therefore, there is a need for upscaling to decrease the number of grid blocks in a groundwater flow model. Moreover, models with relatively few grid blocks are simpler to apply, especially when the model has to run many times, as is the case when it is used to assimilate time-dependent data. Since the 1960s different methods have been used to transform a detailed description of the spatial variability of hydraulic conductivity to a coarser description. In this work we will investigate a relatively simple, but instructive approach: the Double Constraint Method (DCM) to identify the coarse-scale conductivities to decrease the number of grid blocks. Its main advantages are robustness and easy implementation, enabling to base computations on any standard flow code with some post processing added. The inversion step of the double constraint method is based on a first forward run with all known fluxes on the boundary and in the wells, followed by a second forward run based on the heads measured on the phreatic surface (i.e. measured in shallow observation wells) and in deeper observation wells. Upscaling, in turn is inverse modeling (DCM) to determine conductivities in coarse-scale grid blocks from conductivities in fine-scale grid blocks. In such a way that the head and flux boundary conditions applied to the fine-scale model are also honored at the coarse-scale. Exemplification will be presented for the Kleine Nete catchment, Belgium. As a result we identified coarse-scale conductivities while decreasing the number of grid blocks with the advantage that a model run costs less computation time and requires less memory space. In addition, ranking of models was investigated.

  10. A new hybrid-Lagrangian numerical scheme for gyrokinetic simulation of tokamak edge plasma

    DOE PAGES

    Ku, S.; Hager, R.; Chang, C. S.; ...

    2016-04-01

    In order to enable kinetic simulation of non-thermal edge plasmas at a reduced computational cost, a new hybrid-Lagrangian δf scheme has been developed that utilizes the phase space grid in addition to the usual marker particles, taking advantage of the computational strengths from both sides. The new scheme splits the particle distribution function of a kinetic equation into two parts. Marker particles contain the fast space-time varying, δf, part of the distribution function and the coarse-grained phase-space grid contains the slow space-time varying part. The coarse-grained phase-space grid reduces the memory-requirement and the computing cost, while the marker particles providemore » scalable computing ability for the fine-grained physics. Weights of the marker particles are determined by a direct weight evolution equation instead of the differential form weight evolution equations that the conventional delta-f schemes use. The particle weight can be slowly transferred to the phase space grid, thereby reducing the growth of the particle weights. The non-Lagrangian part of the kinetic equation – e.g., collision operation, ionization, charge exchange, heat-source, radiative cooling, and others – can be operated directly on the phase space grid. Deviation of the particle distribution function on the velocity grid from a Maxwellian distribution function – driven by ionization, charge exchange and wall loss – is allowed to be arbitrarily large. In conclusion, the numerical scheme is implemented in the gyrokinetic particle code XGC1, which specializes in simulating the tokamak edge plasma that crosses the magnetic separatrix and is in contact with the material wall.« less

  11. A new hybrid-Lagrangian numerical scheme for gyrokinetic simulation of tokamak edge plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ku, S.; Hager, R.; Chang, C. S.

    In order to enable kinetic simulation of non-thermal edge plasmas at a reduced computational cost, a new hybrid-Lagrangian δf scheme has been developed that utilizes the phase space grid in addition to the usual marker particles, taking advantage of the computational strengths from both sides. The new scheme splits the particle distribution function of a kinetic equation into two parts. Marker particles contain the fast space-time varying, δf, part of the distribution function and the coarse-grained phase-space grid contains the slow space-time varying part. The coarse-grained phase-space grid reduces the memory-requirement and the computing cost, while the marker particles providemore » scalable computing ability for the fine-grained physics. Weights of the marker particles are determined by a direct weight evolution equation instead of the differential form weight evolution equations that the conventional delta-f schemes use. The particle weight can be slowly transferred to the phase space grid, thereby reducing the growth of the particle weights. The non-Lagrangian part of the kinetic equation – e.g., collision operation, ionization, charge exchange, heat-source, radiative cooling, and others – can be operated directly on the phase space grid. Deviation of the particle distribution function on the velocity grid from a Maxwellian distribution function – driven by ionization, charge exchange and wall loss – is allowed to be arbitrarily large. In conclusion, the numerical scheme is implemented in the gyrokinetic particle code XGC1, which specializes in simulating the tokamak edge plasma that crosses the magnetic separatrix and is in contact with the material wall.« less

  12. A new hybrid-Lagrangian numerical scheme for gyrokinetic simulation of tokamak edge plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ku, S., E-mail: sku@pppl.gov; Hager, R.; Chang, C.S.

    In order to enable kinetic simulation of non-thermal edge plasmas at a reduced computational cost, a new hybrid-Lagrangian δf scheme has been developed that utilizes the phase space grid in addition to the usual marker particles, taking advantage of the computational strengths from both sides. The new scheme splits the particle distribution function of a kinetic equation into two parts. Marker particles contain the fast space-time varying, δf, part of the distribution function and the coarse-grained phase-space grid contains the slow space-time varying part. The coarse-grained phase-space grid reduces the memory-requirement and the computing cost, while the marker particles providemore » scalable computing ability for the fine-grained physics. Weights of the marker particles are determined by a direct weight evolution equation instead of the differential form weight evolution equations that the conventional delta-f schemes use. The particle weight can be slowly transferred to the phase space grid, thereby reducing the growth of the particle weights. The non-Lagrangian part of the kinetic equation – e.g., collision operation, ionization, charge exchange, heat-source, radiative cooling, and others – can be operated directly on the phase space grid. Deviation of the particle distribution function on the velocity grid from a Maxwellian distribution function – driven by ionization, charge exchange and wall loss – is allowed to be arbitrarily large. The numerical scheme is implemented in the gyrokinetic particle code XGC1, which specializes in simulating the tokamak edge plasma that crosses the magnetic separatrix and is in contact with the material wall.« less

  13. Upscaling of Mixed Finite Element Discretization Problems by the Spectral AMGe Method

    DOE PAGES

    Kalchev, Delyan Z.; Lee, C. S.; Villa, U.; ...

    2016-09-22

    Here, we propose two multilevel spectral techniques for constructing coarse discretization spaces for saddle-point problems corresponding to PDEs involving a divergence constraint, with a focus on mixed finite element discretizations of scalar self-adjoint second order elliptic equations on general unstructured grids. We use element agglomeration algebraic multigrid (AMGe), which employs coarse elements that can have nonstandard shape since they are agglomerates of fine-grid elements. The coarse basis associated with each agglomerated coarse element is constructed by solving local eigenvalue problems and local mixed finite element problems. This construction leads to stable upscaled coarse spaces and guarantees the inf-sup compatibility ofmore » the upscaled discretization. Also, the approximation properties of these upscaled spaces improve by adding more local eigenfunctions to the coarse spaces. The higher accuracy comes at the cost of additional computational effort, as the sparsity of the resulting upscaled coarse discretization (referred to as operator complexity) deteriorates when we introduce additional functions in the coarse space. We also provide an efficient solver for the coarse (upscaled) saddle-point system by employing hybridization, which leads to a symmetric positive definite (s.p.d.) reduced system for the Lagrange multipliers, and to solve the latter s.p.d. system, we use our previously developed spectral AMGe solver. Numerical experiments, in both two and three dimensions, are provided to illustrate the efficiency of the proposed upscaling technique.« less

  14. Upscaling of Mixed Finite Element Discretization Problems by the Spectral AMGe Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalchev, Delyan Z.; Lee, C. S.; Villa, U.

    Here, we propose two multilevel spectral techniques for constructing coarse discretization spaces for saddle-point problems corresponding to PDEs involving a divergence constraint, with a focus on mixed finite element discretizations of scalar self-adjoint second order elliptic equations on general unstructured grids. We use element agglomeration algebraic multigrid (AMGe), which employs coarse elements that can have nonstandard shape since they are agglomerates of fine-grid elements. The coarse basis associated with each agglomerated coarse element is constructed by solving local eigenvalue problems and local mixed finite element problems. This construction leads to stable upscaled coarse spaces and guarantees the inf-sup compatibility ofmore » the upscaled discretization. Also, the approximation properties of these upscaled spaces improve by adding more local eigenfunctions to the coarse spaces. The higher accuracy comes at the cost of additional computational effort, as the sparsity of the resulting upscaled coarse discretization (referred to as operator complexity) deteriorates when we introduce additional functions in the coarse space. We also provide an efficient solver for the coarse (upscaled) saddle-point system by employing hybridization, which leads to a symmetric positive definite (s.p.d.) reduced system for the Lagrange multipliers, and to solve the latter s.p.d. system, we use our previously developed spectral AMGe solver. Numerical experiments, in both two and three dimensions, are provided to illustrate the efficiency of the proposed upscaling technique.« less

  15. Aeroacoustic Simulation of Nose Landing Gear on Adaptive Unstructured Grids With FUN3D

    NASA Technical Reports Server (NTRS)

    Vatsa, Veer N.; Khorrami, Mehdi R.; Park, Michael A.; Lockard, David P.

    2013-01-01

    Numerical simulations have been performed for a partially-dressed, cavity-closed nose landing gear configuration that was tested in NASA Langley s closed-wall Basic Aerodynamic Research Tunnel (BART) and in the University of Florida's open-jet acoustic facility known as the UFAFF. The unstructured-grid flow solver FUN3D, developed at NASA Langley Research center, is used to compute the unsteady flow field for this configuration. Starting with a coarse grid, a series of successively finer grids were generated using the adaptive gridding methodology available in the FUN3D code. A hybrid Reynolds-averaged Navier-Stokes/large eddy simulation (RANS/LES) turbulence model is used for these computations. Time-averaged and instantaneous solutions obtained on these grids are compared with the measured data. In general, the correlation with the experimental data improves with grid refinement. A similar trend is observed for sound pressure levels obtained by using these CFD solutions as input to a FfowcsWilliams-Hawkings noise propagation code to compute the farfield noise levels. In general, the numerical solutions obtained on adapted grids compare well with the hand-tuned enriched fine grid solutions and experimental data. In addition, the grid adaption strategy discussed here simplifies the grid generation process, and results in improved computational efficiency of CFD simulations.

  16. Subsonic Analysis of 0.04-Scale F-16XL Models Using an Unstructured Euler Code

    NASA Technical Reports Server (NTRS)

    Lessard, Wendy B.

    1996-01-01

    The subsonic flow field about an F-16XL airplane model configuration was investigated with an inviscid unstructured grid technique. The computed surface pressures were compared to wind-tunnel test results at Mach 0.148 for a range of angles of attack from 0 deg to 20 deg. To evaluate the effect of grid dependency on the solution, a grid study was performed in which fine, medium, and coarse grid meshes were generated. The off-surface vortical flow field was locally adapted and showed improved correlation to the wind-tunnel data when compared to the nonadapted flow field. Computational results are also compared to experimental five-hole pressure probe data. A detailed analysis of the off-body computed pressure contours, velocity vectors, and particle traces are presented and discussed.

  17. NOTE: Acceleration of Monte Carlo-based scatter compensation for cardiac SPECT

    NASA Astrophysics Data System (ADS)

    Sohlberg, A.; Watabe, H.; Iida, H.

    2008-07-01

    Single proton emission computed tomography (SPECT) images are degraded by photon scatter making scatter compensation essential for accurate reconstruction. Reconstruction-based scatter compensation with Monte Carlo (MC) modelling of scatter shows promise for accurate scatter correction, but it is normally hampered by long computation times. The aim of this work was to accelerate the MC-based scatter compensation using coarse grid and intermittent scatter modelling. The acceleration methods were compared to un-accelerated implementation using MC-simulated projection data of the mathematical cardiac torso (MCAT) phantom modelling 99mTc uptake and clinical myocardial perfusion studies. The results showed that when combined the acceleration methods reduced the reconstruction time for 10 ordered subset expectation maximization (OS-EM) iterations from 56 to 11 min without a significant reduction in image quality indicating that the coarse grid and intermittent scatter modelling are suitable for MC-based scatter compensation in cardiac SPECT.

  18. Large-Eddy Simulation of Aeroacoustic Applications

    NASA Technical Reports Server (NTRS)

    Pruett, C. David; Sochacki, James S.

    1999-01-01

    This report summarizes work accomplished under a one-year NASA grant from NASA Langley Research Center (LaRC). The effort culminates three years of NASA-supported research under three consecutive one-year grants. The period of support was April 6, 1998, through April 5, 1999. By request, the grant period was extended at no-cost until October 6, 1999. Its predecessors have been directed toward adapting the numerical tool of large-eddy simulation (LES) to aeroacoustic applications, with particular focus on noise suppression in subsonic round jets. In LES, the filtered Navier-Stokes equations are solved numerically on a relatively coarse computational grid. Residual stresses, generated by scales of motion too small to be resolved on the coarse grid, are modeled. Although most LES incorporate spatial filtering, time-domain filtering affords certain conceptual and computational advantages, particularly for aeroacoustic applications. Consequently, this work has focused on the development of subgrid-scale (SGS) models that incorporate time-domain filters.

  19. Generic Wing-Body Aerodynamics Data Base

    NASA Technical Reports Server (NTRS)

    Holst, Terry L.; Olsen, Thomas H.; Kwak, Dochan (Technical Monitor)

    2001-01-01

    The wing-body aerodynamics data base consists of a series of CFD (Computational Fluid Dynamics) simulations about a generic wing body configuration consisting of a ogive-circular-cylinder fuselage and a simple symmetric wing mid-mounted on the fuselage. Solutions have been obtained for Nonlinear Potential (P), Euler (E) and Navier-Stokes (N) solvers over a range of subsonic and transonic Mach numbers and angles of attack. In addition, each solution has been computed on a series of grids, coarse, medium and fine to permit an assessment of grid refinement errors.

  20. Horizontal Residual Mean Circulation: Evaluation of Spatial Correlations in Coarse Resolution Ocean Models

    NASA Astrophysics Data System (ADS)

    Li, Y.; McDougall, T. J.

    2016-02-01

    Coarse resolution ocean models lack knowledge of spatial correlations between variables on scales smaller than the grid scale. Some researchers have shown that these spatial correlations play a role in the poleward heat flux. In order to evaluate the poleward transport induced by the spatial correlations at a fixed horizontal position, an equation is obtained to calculate the approximate transport from velocity gradients. The equation involves two terms that can be added to the quasi-Stokes streamfunction (based on temporal correlations) to incorporate the contribution of spatial correlations. Moreover, these new terms do not need to be parameterized and is ready to be evaluated by using model data directly. In this study, data from a high resolution ocean model have been used to estimate the accuracy of this HRM approach for improving the horizontal property fluxes in coarse-resolution ocean models. A coarse grid is formed by sub-sampling and box-car averaging the fine grid scale. The transport calculated on the coarse grid is then compared to the transport on original high resolution grid scale accumulated over a corresponding number of grid boxes. The preliminary results have shown that the estimate on coarse resolution grids roughly match the corresponding transports on high resolution grids.

  1. Ground Boundary Conditions for Thermal Convection Over Horizontal Surfaces at High Rayleigh Numbers

    NASA Astrophysics Data System (ADS)

    Hanjalić, K.; Hrebtov, M.

    2016-07-01

    We present "wall functions" for treating the ground boundary conditions in the computation of thermal convection over horizontal surfaces at high Rayleigh numbers using coarse numerical grids. The functions are formulated for an algebraic-flux model closed by transport equations for the turbulence kinetic energy, its dissipation rate and scalar variance, but could also be applied to other turbulence models. The three-equation algebraic-flux model, solved in a T-RANS mode ("Transient" Reynolds-averaged Navier-Stokes, based on triple decomposition), was shown earlier to reproduce well a number of generic buoyancy-driven flows over heated surfaces, albeit by integrating equations up to the wall. Here we show that by using a set of wall functions satisfactory results are found for the ensemble-averaged properties even on a very coarse computational grid. This is illustrated by the computations of the time evolution of a penetrative mixed layer and Rayleigh-Bénard (open-ended, 4:4:1 domain) convection, using 10 × 10 × 100 and 10 × 10 × 20 grids, compared also with finer grids (e.g. 60 × 60 × 100), as well as with one-dimensional treatment using 1 × 1 × 100 and 1 × 1 × 20 nodes. The approach is deemed functional for simulations of a convective boundary layer and mesoscale atmospheric flows, and pollutant transport over realistic complex hilly terrain with heat islands, urban and natural canopies, for diurnal cycles, or subjected to other time and space variations in ground conditions and stratification.

  2. Computation of Flow Over a Drag Prediction Workshop Wing/Body Transport Configuration Using CFL3D

    NASA Technical Reports Server (NTRS)

    Rumsey, Christopher L.; Biedron, Robert T.

    2001-01-01

    A Drag Prediction Workshop was held in conjunction with the 19th AIAA Applied Aerodynamics Conference in June 2001. The purpose of the workshop was to assess the prediction of drag by computational methods for a wing/body configuration (DLR-F4) representative of subsonic transport aircraft. This report details computed results submitted to this workshop using the Reynolds-averaged Navier-Stokes code CFL3D. Two supplied grids were used: a point-matched 1-to-1 multi-block grid, and an overset multi-block grid. The 1-to-1 grid, generally of much poorer quality and with less streamwise resolution than the overset grid, is found to be too coarse to adequately resolve the surface pressures. However, the global forces and moments are nonetheless similar to those computed using the overset grid. The effect of three different turbulence models is assessed using the 1-to-1 grid. Surface pressures are very similar overall, and the drag variation due to turbulence model is 18 drag counts. Most of this drag variation is in the friction component, and is attributed in part to insufficient grid resolution of the 1-to-1 grid. The misnomer of 'fully turbulent' computations is discussed; comparisons are made using different transition locations and their effects on the global forces and moments are quantified. Finally, the effect of two different versions of a widely used one-equation turbulence model is explored.

  3. Two- and three-dimensional natural and mixed convection simulation using modular zonal models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wurtz, E.; Nataf, J.M.; Winkelmann, F.

    We demonstrate the use of the zonal model approach, which is a simplified method for calculating natural and mixed convection in rooms. Zonal models use a coarse grid and use balance equations, state equations, hydrostatic pressure drop equations and power law equations of the form {ital m} = {ital C}{Delta}{sup {ital n}}. The advantage of the zonal approach and its modular implementation are discussed. The zonal model resolution of nonlinear equation systems is demonstrated for three cases: a 2-D room, a 3-D room and a pair of 3-D rooms separated by a partition with an opening. A sensitivity analysis withmore » respect to physical parameters and grid coarseness is presented. Results are compared to computational fluid dynamics (CFD) calculations and experimental data.« less

  4. A multiscale restriction-smoothed basis method for high contrast porous media represented on unstructured grids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Møyner, Olav, E-mail: olav.moyner@sintef.no; Lie, Knut-Andreas, E-mail: knut-andreas.lie@sintef.no

    2016-01-01

    A wide variety of multiscale methods have been proposed in the literature to reduce runtime and provide better scaling for the solution of Poisson-type equations modeling flow in porous media. We present a new multiscale restricted-smoothed basis (MsRSB) method that is designed to be applicable to both rectilinear grids and unstructured grids. Like many other multiscale methods, MsRSB relies on a coarse partition of the underlying fine grid and a set of local prolongation operators (multiscale basis functions) that map unknowns associated with the fine grid cells to unknowns associated with blocks in the coarse partition. These mappings are constructedmore » by restricted smoothing: Starting from a constant, a localized iterative scheme is applied directly to the fine-scale discretization to compute prolongation operators that are consistent with the local properties of the differential operators. The resulting method has three main advantages: First of all, both the coarse and the fine grid can have general polyhedral geometry and unstructured topology. This means that partitions and good prolongation operators can easily be constructed for complex models involving high media contrasts and unstructured cell connections introduced by faults, pinch-outs, erosion, local grid refinement, etc. In particular, the coarse partition can be adapted to geological or flow-field properties represented on cells or faces to improve accuracy. Secondly, the method is accurate and robust when compared to existing multiscale methods and does not need expensive recomputation of local basis functions to account for transient behavior: Dynamic mobility changes are incorporated by continuing to iterate a few extra steps on existing basis functions. This way, the cost of updating the prolongation operators becomes proportional to the amount of change in fluid mobility and one reduces the need for expensive, tolerance-based updates. Finally, since the MsRSB method is formulated on top of a cell-centered, conservative, finite-volume method, it is applicable to any flow model in which one can isolate a pressure equation. Herein, we only discuss single and two-phase incompressible models. Compressible flow, e.g., as modeled by the black-oil equations, is discussed in a separate paper.« less

  5. Efficient non-hydrostatic modelling of 3D wave-induced currents using a subgrid approach

    NASA Astrophysics Data System (ADS)

    Rijnsdorp, Dirk P.; Smit, Pieter B.; Zijlema, Marcel; Reniers, Ad J. H. M.

    2017-08-01

    Wave-induced currents are an ubiquitous feature in coastal waters that can spread material over the surf zone and the inner shelf. These currents are typically under resolved in non-hydrostatic wave-flow models due to computational constraints. Specifically, the low vertical resolutions adequate to describe the wave dynamics - and required to feasibly compute at the scales of a field site - are too coarse to account for the relevant details of the three-dimensional (3D) flow field. To describe the relevant dynamics of both wave and currents, while retaining a model framework that can be applied at field scales, we propose a two grid approach to solve the governing equations. With this approach, the vertical accelerations and non-hydrostatic pressures are resolved on a relatively coarse vertical grid (which is sufficient to accurately resolve the wave dynamics), whereas the horizontal velocities and turbulent stresses are resolved on a much finer subgrid (of which the resolution is dictated by the vertical scale of the mean flows). This approach ensures that the discrete pressure Poisson equation - the solution of which dominates the computational effort - is evaluated on the coarse grid scale, thereby greatly improving efficiency, while providing a fine vertical resolution to resolve the vertical variation of the mean flow. This work presents the general methodology, and discusses the numerical implementation in the SWASH wave-flow model. Model predictions are compared with observations of three flume experiments to demonstrate that the subgrid approach captures both the nearshore evolution of the waves, and the wave-induced flows like the undertow profile and longshore current. The accuracy of the subgrid predictions is comparable to fully resolved 3D simulations - but at much reduced computational costs. The findings of this work thereby demonstrate that the subgrid approach has the potential to make 3D non-hydrostatic simulations feasible at the scale of a realistic coastal region.

  6. A Simple Algebraic Grid Adaptation Scheme with Applications to Two- and Three-dimensional Flow Problems

    NASA Technical Reports Server (NTRS)

    Hsu, Andrew T.; Lytle, John K.

    1989-01-01

    An algebraic adaptive grid scheme based on the concept of arc equidistribution is presented. The scheme locally adjusts the grid density based on gradients of selected flow variables from either finite difference or finite volume calculations. A user-prescribed grid stretching can be specified such that control of the grid spacing can be maintained in areas of known flowfield behavior. For example, the grid can be clustered near a wall for boundary layer resolution and made coarse near the outer boundary of an external flow. A grid smoothing technique is incorporated into the adaptive grid routine, which is found to be more robust and efficient than the weight function filtering technique employed by other researchers. Since the present algebraic scheme requires no iteration or solution of differential equations, the computer time needed for grid adaptation is trivial, making the scheme useful for three-dimensional flow problems. Applications to two- and three-dimensional flow problems show that a considerable improvement in flowfield resolution can be achieved by using the proposed adaptive grid scheme. Although the scheme was developed with steady flow in mind, it is a good candidate for unsteady flow computations because of its efficiency.

  7. Quantitative Comparisons of a Coarse-Grid LES with Experimental Data for Backward-Facing Step Flow

    NASA Astrophysics Data System (ADS)

    McDonough, J. M.

    1999-11-01

    A novel approach to LES employing an additive decomposition of both solutions and governing equations (similar to ``multi-level'' approaches of Dubois et al.,Dynamic Multilevel Methods and the Simulation of Turbulence, Cambridge University Press, 1999) is presented; its main structural features are lack of filtering of governing equations (instead, solutions are filtered to remove aliasing due to under resolution) and direct modeling of subgrid-scale primitive variables (rather than modeling their correlations) in the manner proposed by Hylin and McDonough (Int. J. Fluid Mech. Res. 26, 228-256, 1999). A 2-D implementation of this formalism is applied to the backward-facing step flow studied experimentally by Driver and Seegmiller (AIAA J. 23, 163-171, 1985) and Driver et al. (AIAA J. 25, 914-919, 1987), and run on grids sufficiently coarse to permit easy extension to 3-D, industrially-realistic problems. Comparisons of computed and experimental mean quantities (velocity profiles, turbulence kinetic energy, reattachment lengths, etc.) and effects of grid refinement will be presented.

  8. Barriers to Achieving Textbook Multigrid Efficiency (TME) in CFD

    NASA Technical Reports Server (NTRS)

    Brandt, Achi

    1998-01-01

    As a guide to attaining this optimal performance for general CFD problems, the table below lists every foreseen kind of computational difficulty for achieving that goal, together with the possible ways for resolving that difficulty, their current state of development, and references. Included in the table are staggered and nonstaggered, conservative and nonconservative discretizations of viscous and inviscid, incompressible and compressible flows at various Mach numbers, as well as a simple (algebraic) turbulence model and comments on chemically reacting flows. The listing of associated computational barriers involves: non-alignment of streamlines or sonic characteristics with the grids; recirculating flows; stagnation points; discretization and relaxation on and near shocks and boundaries; far-field artificial boundary conditions; small-scale singularities (meaning important features, such as the complete airplane, which are not visible on some of the coarse grids); large grid aspect ratios; boundary layer resolution; and grid adaption.

  9. Scalability and Performance of Data-Parallel Pressure-Based Multigrid Methods for Viscous Flows

    NASA Astrophysics Data System (ADS)

    Blosch, Edwin L.; Shyy, Wei

    1996-05-01

    A full-approximation storage multigrid method for solving the steady-state 2-dincompressible Navier-Stokes equations on staggered grids has been implemented in Fortran on the CM-5,using the array aliasing feature in CM-Fortran to avoid declaring fine-grid-sized arrays on all levels while still allowing a variable number of grid levels. Thus, the storage cost scales with the number of unknowns,allowing us to consider significantly larger problems than would otherwise be possible. Timings over a range of problem sizes and numbers of processors, up to 4096 × 4096 on 512 nodes, show that the smoothing procedure, a pressure-correction technique, is scalable and that the restriction and prolongation steps are nearly so. The performance obtained for the multigrid method is 333 Mflops out of the theoretical peak 4 Gflops on a 32-node CM-5. In comparison, a single-grid computation obtained 420 Mflops. The decrease is due to the inefficiency of the smoothing iterations on the coarse grid levels. W cycles cost much more and are much less efficient than V cycles, due to the increased contribution from the coarse grids. The convergence rate characteristics of the pressure-correction multigrid method are investigated in a Re = 5000 lid-driven cavity flow and a Re = 300 symmetric backward-facing step flow, using either a defect-correction scheme or a second-order upwind scheme. A heuristic technique relating the convergence tolerances for the coarse grids to the truncation error of the discretization has been found effective and robust. With second-order upwinding on all grid levels, a 5-level 320× 80 step flow solution was obtained in 20 V cycles, which corresponds to a smoothing rate of 0.7, and required 25 s on a 32-node CM-5. Overall, the convergence rates obtained in the present work are comparable to the most competitive findings reported in the literature.

  10. Solving Upwind-Biased Discretizations. 2; Multigrid Solver Using Semicoarsening

    NASA Technical Reports Server (NTRS)

    Diskin, Boris

    1999-01-01

    This paper studies a novel multigrid approach to the solution for a second order upwind biased discretization of the convection equation in two dimensions. This approach is based on semi-coarsening and well balanced explicit correction terms added to coarse-grid operators to maintain on coarse-grid the same cross-characteristic interaction as on the target (fine) grid. Colored relaxation schemes are used on all the levels allowing a very efficient parallel implementation. The results of the numerical tests can be summarized as follows: 1) The residual asymptotic convergence rate of the proposed V(0, 2) multigrid cycle is about 3 per cycle. This convergence rate far surpasses the theoretical limit (4/3) predicted for standard multigrid algorithms using full coarsening. The reported efficiency does not deteriorate with increasing the cycle, depth (number of levels) and/or refining the target-grid mesh spacing. 2) The full multi-grid algorithm (FMG) with two V(0, 2) cycles on the target grid and just one V(0, 2) cycle on all the coarse grids always provides an approximate solution with the algebraic error less than the discretization error. Estimates of the total work in the FMG algorithm are ranged between 18 and 30 minimal work units (depending on the target (discretizatioin). Thus, the overall efficiency of the FMG solver closely approaches (if does not achieve) the goal of the textbook multigrid efficiency. 3) A novel approach to deriving a discrete solution approximating the true continuous solution with a relative accuracy given in advance is developed. An adaptive multigrid algorithm (AMA) using comparison of the solutions on two successive target grids to estimate the accuracy of the current target-grid solution is defined. A desired relative accuracy is accepted as an input parameter. The final target grid on which this accuracy can be achieved is chosen automatically in the solution process. the actual relative accuracy of the discrete solution approximation obtained by AMA is always better than the required accuracy; the computational complexity of the AMA algorithm is (nearly) optimal (comparable with the complexity of the FMG algorithm applied to solve the problem on the optimally spaced target grid).

  11. Elliptic generation of composite three-dimensional grids about realistic aircraft

    NASA Technical Reports Server (NTRS)

    Sorenson, R. L.

    1986-01-01

    An elliptic method for generating composite grids about realistic aircraft is presented. A body-conforming grid is first generated about the entire aircraft by the solution of Poisson's differential equation. This grid has relatively coarse spacing, and it covers the entire physical domain. At boundary surfaces, cell size is controlled and cell skewness is nearly eliminated by inhomogeneous terms, which are found automatically by the program. Certain regions of the grid in which high gradients are expected, and which map into rectangular solids in the computational domain, are then designated for zonal refinement. Spacing in the zonal grids is reduced by adding points with a simple, algebraic scheme. Details of the grid generation method are presented along with results of the present application, a wing-body configuration based on the F-16 fighter aircraft.

  12. A high-order multiscale finite-element method for time-domain acoustic-wave modeling

    NASA Astrophysics Data System (ADS)

    Gao, Kai; Fu, Shubin; Chung, Eric T.

    2018-05-01

    Accurate and efficient wave equation modeling is vital for many applications in such as acoustics, electromagnetics, and seismology. However, solving the wave equation in large-scale and highly heterogeneous models is usually computationally expensive because the computational cost is directly proportional to the number of grids in the model. We develop a novel high-order multiscale finite-element method to reduce the computational cost of time-domain acoustic-wave equation numerical modeling by solving the wave equation on a coarse mesh based on the multiscale finite-element theory. In contrast to existing multiscale finite-element methods that use only first-order multiscale basis functions, our new method constructs high-order multiscale basis functions from local elliptic problems which are closely related to the Gauss-Lobatto-Legendre quadrature points in a coarse element. Essentially, these basis functions are not only determined by the order of Legendre polynomials, but also by local medium properties, and therefore can effectively convey the fine-scale information to the coarse-scale solution with high-order accuracy. Numerical tests show that our method can significantly reduce the computation time while maintain high accuracy for wave equation modeling in highly heterogeneous media by solving the corresponding discrete system only on the coarse mesh with the new high-order multiscale basis functions.

  13. A high-order multiscale finite-element method for time-domain acoustic-wave modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Kai; Fu, Shubin; Chung, Eric T.

    Accurate and efficient wave equation modeling is vital for many applications in such as acoustics, electromagnetics, and seismology. However, solving the wave equation in large-scale and highly heterogeneous models is usually computationally expensive because the computational cost is directly proportional to the number of grids in the model. We develop a novel high-order multiscale finite-element method to reduce the computational cost of time-domain acoustic-wave equation numerical modeling by solving the wave equation on a coarse mesh based on the multiscale finite-element theory. In contrast to existing multiscale finite-element methods that use only first-order multiscale basis functions, our new method constructsmore » high-order multiscale basis functions from local elliptic problems which are closely related to the Gauss–Lobatto–Legendre quadrature points in a coarse element. Essentially, these basis functions are not only determined by the order of Legendre polynomials, but also by local medium properties, and therefore can effectively convey the fine-scale information to the coarse-scale solution with high-order accuracy. Numerical tests show that our method can significantly reduce the computation time while maintain high accuracy for wave equation modeling in highly heterogeneous media by solving the corresponding discrete system only on the coarse mesh with the new high-order multiscale basis functions.« less

  14. A high-order multiscale finite-element method for time-domain acoustic-wave modeling

    DOE PAGES

    Gao, Kai; Fu, Shubin; Chung, Eric T.

    2018-02-04

    Accurate and efficient wave equation modeling is vital for many applications in such as acoustics, electromagnetics, and seismology. However, solving the wave equation in large-scale and highly heterogeneous models is usually computationally expensive because the computational cost is directly proportional to the number of grids in the model. We develop a novel high-order multiscale finite-element method to reduce the computational cost of time-domain acoustic-wave equation numerical modeling by solving the wave equation on a coarse mesh based on the multiscale finite-element theory. In contrast to existing multiscale finite-element methods that use only first-order multiscale basis functions, our new method constructsmore » high-order multiscale basis functions from local elliptic problems which are closely related to the Gauss–Lobatto–Legendre quadrature points in a coarse element. Essentially, these basis functions are not only determined by the order of Legendre polynomials, but also by local medium properties, and therefore can effectively convey the fine-scale information to the coarse-scale solution with high-order accuracy. Numerical tests show that our method can significantly reduce the computation time while maintain high accuracy for wave equation modeling in highly heterogeneous media by solving the corresponding discrete system only on the coarse mesh with the new high-order multiscale basis functions.« less

  15. A Critical Study of Agglomerated Multigrid Methods for Diffusion

    NASA Technical Reports Server (NTRS)

    Nishikawa, Hiroaki; Diskin, Boris; Thomas, James L.

    2011-01-01

    Agglomerated multigrid techniques used in unstructured-grid methods are studied critically for a model problem representative of laminar diffusion in the incompressible limit. The studied target-grid discretizations and discretizations used on agglomerated grids are typical of current node-centered formulations. Agglomerated multigrid convergence rates are presented using a range of two- and three-dimensional randomly perturbed unstructured grids for simple geometries with isotropic and stretched grids. Two agglomeration techniques are used within an overall topology-preserving agglomeration framework. The results show that multigrid with an inconsistent coarse-grid scheme using only the edge terms (also referred to in the literature as a thin-layer formulation) provides considerable speedup over single-grid methods but its convergence deteriorates on finer grids. Multigrid with a Galerkin coarse-grid discretization using piecewise-constant prolongation and a heuristic correction factor is slower and also grid-dependent. In contrast, grid-independent convergence rates are demonstrated for multigrid with consistent coarse-grid discretizations. Convergence rates of multigrid cycles are verified with quantitative analysis methods in which parts of the two-grid cycle are replaced by their idealized counterparts.

  16. A Critical Study of Agglomerated Multigrid Methods for Diffusion

    NASA Technical Reports Server (NTRS)

    Thomas, James L.; Nishikawa, Hiroaki; Diskin, Boris

    2009-01-01

    Agglomerated multigrid techniques used in unstructured-grid methods are studied critically for a model problem representative of laminar diffusion in the incompressible limit. The studied target-grid discretizations and discretizations used on agglomerated grids are typical of current node-centered formulations. Agglomerated multigrid convergence rates are presented using a range of two- and three-dimensional randomly perturbed unstructured grids for simple geometries with isotropic and highly stretched grids. Two agglomeration techniques are used within an overall topology-preserving agglomeration framework. The results show that multigrid with an inconsistent coarse-grid scheme using only the edge terms (also referred to in the literature as a thin-layer formulation) provides considerable speedup over single-grid methods but its convergence deteriorates on finer grids. Multigrid with a Galerkin coarse-grid discretization using piecewise-constant prolongation and a heuristic correction factor is slower and also grid-dependent. In contrast, grid-independent convergence rates are demonstrated for multigrid with consistent coarse-grid discretizations. Actual cycle results are verified using quantitative analysis methods in which parts of the cycle are replaced by their idealized counterparts.

  17. Evaluation of the UnTRIM model for 3-D tidal circulation

    USGS Publications Warehouse

    Cheng, R.T.; Casulli, V.; ,

    2001-01-01

    A family of numerical models, known as the TRIM models, shares the same modeling philosophy for solving the shallow water equations. A characteristic analysis of the shallow water equations points out that the numerical instability is controlled by the gravity wave terms in the momentum equations and by the transport terms in the continuity equation. A semi-implicit finite-difference scheme has been formulated so that these terms and the vertical diffusion terms are treated implicitly and the remaining terms explicitly to control the numerical stability and the computations are carried out over a uniform finite-difference computational mesh without invoking horizontal or vertical coordinate transformations. An unstructured grid version of TRIM model is introduced, or UnTRIM (pronounces as "you trim"), which preserves these basic numerical properties and modeling philosophy, only the computations are carried out over an unstructured orthogonal grid. The unstructured grid offers the flexibilities in representing complex study areas so that fine grid resolution can be placed in regions of interest, and coarse grids are used to cover the remaining domain. Thus, the computational efforts are concentrated in areas of importance, and an overall computational saving can be achieved because the total number of grid-points is dramatically reduced. To use this modeling approach, an unstructured grid mesh must be generated to properly reflect the properties of the domain of the investigation. The new modeling flexibility in grid structure is accompanied by new challenges associated with issues of grid generation. To take full advantage of this new model flexibility, the model grid generation should be guided by insights into the physics of the problems; and the insights needed may require a higher degree of modeling skill.

  18. Grid adaption using Chimera composite overlapping meshes

    NASA Technical Reports Server (NTRS)

    Kao, Kai-Hsiung; Liou, Meng-Sing; Chow, Chuen-Yen

    1993-01-01

    The objective of this paper is to perform grid adaptation using composite over-lapping meshes in regions of large gradient to capture the salient features accurately during computation. The Chimera grid scheme, a multiple overset mesh technique, is used in combination with a Navier-Stokes solver. The numerical solution is first converged to a steady state based on an initial coarse mesh. Solution-adaptive enhancement is then performed by using a secondary fine grid system which oversets on top of the base grid in the high-gradient region, but without requiring the mesh boundaries to join in any special way. Communications through boundary interfaces between those separated grids are carried out using tri-linear interpolation. Applications to the Euler equations for shock reflections and to a shock wave/boundary layer interaction problem are tested. With the present method, the salient features are well resolved.

  19. Grid adaptation using chimera composite overlapping meshes

    NASA Technical Reports Server (NTRS)

    Kao, Kai-Hsiung; Liou, Meng-Sing; Chow, Chuen-Yen

    1994-01-01

    The objective of this paper is to perform grid adaptation using composite overlapping meshes in regions of large gradient to accurately capture the salient features during computation. The chimera grid scheme, a multiple overset mesh technique, is used in combination with a Navier-Stokes solver. The numerical solution is first converged to a steady state based on an initial coarse mesh. Solution-adaptive enhancement is then performed by using a secondary fine grid system which oversets on top of the base grid in the high-gradient region, but without requiring the mesh boundaries to join in any special way. Communications through boundary interfaces between those separated grids are carried out using trilinear interpolation. Application to the Euler equations for shock reflections and to shock wave/boundary layer interaction problem are tested. With the present method, the salient features are well-resolved.

  20. Grid adaptation using Chimera composite overlapping meshes

    NASA Technical Reports Server (NTRS)

    Kao, Kai-Hsiung; Liou, Meng-Sing; Chow, Chuen-Yen

    1993-01-01

    The objective of this paper is to perform grid adaptation using composite over-lapping meshes in regions of large gradient to capture the salient features accurately during computation. The Chimera grid scheme, a multiple overset mesh technique, is used in combination with a Navier-Stokes solver. The numerical solution is first converged to a steady state based on an initial coarse mesh. Solution-adaptive enhancement is then performed by using a secondary fine grid system which oversets on top of the base grid in the high-gradient region, but without requiring the mesh boundaries to join in any special way. Communications through boundary interfaces between those separated grids are carried out using tri-linear interpolation. Applications to the Euler equations for shock reflections and to a shock wave/boundary layer interaction problem are tested. With the present method, the salient features are well resolved.

  1. Development and Application of Agglomerated Multigrid Methods for Complex Geometries

    NASA Technical Reports Server (NTRS)

    Nishikawa, Hiroaki; Diskin, Boris; Thomas, James L.

    2010-01-01

    We report progress in the development of agglomerated multigrid techniques for fully un- structured grids in three dimensions, building upon two previous studies focused on efficiently solving a model diffusion equation. We demonstrate a robust fully-coarsened agglomerated multigrid technique for 3D complex geometries, incorporating the following key developments: consistent and stable coarse-grid discretizations, a hierarchical agglomeration scheme, and line-agglomeration/relaxation using prismatic-cell discretizations in the highly-stretched grid regions. A signi cant speed-up in computer time is demonstrated for a model diffusion problem, the Euler equations, and the Reynolds-averaged Navier-Stokes equations for 3D realistic complex geometries.

  2. Great Lakes modeling: Are the mathematics outpacing the data and our understanding of the system?

    EPA Science Inventory

    Mathematical modeling in the Great Lakes has come a long way from the pioneering work done by Manhattan College in the 1970s, when the models operated on coarse computational grids (often lake-wide) and used simple eutrophication formulations. Moving forward 40 years, we are now...

  3. A Domain-Decomposed Multilevel Method for Adaptively Refined Cartesian Grids with Embedded Boundaries

    NASA Technical Reports Server (NTRS)

    Aftosmis, M. J.; Berger, M. J.; Adomavicius, G.

    2000-01-01

    Preliminary verification and validation of an efficient Euler solver for adaptively refined Cartesian meshes with embedded boundaries is presented. The parallel, multilevel method makes use of a new on-the-fly parallel domain decomposition strategy based upon the use of space-filling curves, and automatically generates a sequence of coarse meshes for processing by the multigrid smoother. The coarse mesh generation algorithm produces grids which completely cover the computational domain at every level in the mesh hierarchy. A series of examples on realistically complex three-dimensional configurations demonstrate that this new coarsening algorithm reliably achieves mesh coarsening ratios in excess of 7 on adaptively refined meshes. Numerical investigations of the scheme's local truncation error demonstrate an achieved order of accuracy between 1.82 and 1.88. Convergence results for the multigrid scheme are presented for both subsonic and transonic test cases and demonstrate W-cycle multigrid convergence rates between 0.84 and 0.94. Preliminary parallel scalability tests on both simple wing and complex complete aircraft geometries shows a computational speedup of 52 on 64 processors using the run-time mesh partitioner.

  4. A Note on Multigrid Theory for Non-nested Grids and/or Quadrature

    NASA Technical Reports Server (NTRS)

    Douglas, C. C.; Douglas, J., Jr.; Fyfe, D. E.

    1996-01-01

    We provide a unified theory for multilevel and multigrid methods when the usual assumptions are not present. For example, we do not assume that the solution spaces or the grids are nested. Further, we do not assume that there is an algebraic relationship between the linear algebra problems on different levels. What we provide is a computationally useful theory for adaptively changing levels. Theory is provided for multilevel correction schemes, nested iteration schemes, and one way (i.e., coarse to fine grid with no correction iterations) schemes. We include examples showing the applicability of this theory: finite element examples using quadrature in the matrix assembly and finite volume examples with non-nested grids. Our theory applies directly to other discretizations as well.

  5. BRYNTRN: A baryon transport computer code, computation procedures and data base

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Townsend, Lawrence W.; Chun, Sang Y.; Buck, Warren W.; Khan, Ferdous; Cucinotta, Frank

    1988-01-01

    The development is described of an interaction data base and a numerical solution to the transport of baryons through the arbitrary shield material based on a straight ahead approximation of the Boltzmann equation. The code is most accurate for continuous energy boundary values but gives reasonable results for discrete spectra at the boundary with even a relatively coarse energy grid (30 points) and large spatial increments (1 cm in H2O).

  6. Coarse-grained hydrodynamics from correlation functions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palmer, Bruce

    This paper will describe a formalism for using correlation functions between different grid cells as the basis for determining coarse-grained hydrodynamic equations for modeling the behavior of mesoscopic fluid systems. Configuration from a molecular dynamics simulation are projected onto basis functions representing grid cells in a continuum hydrodynamic simulation. Equilbrium correlation functions between different grid cells are evaluated from the molecular simulation and used to determine the evolution operator for the coarse-grained hydrodynamic system. The formalism is applied to some simple hydrodynamic cases to determine the feasibility of applying this to realistic nanoscale systems.

  7. Segmented Domain Decomposition Multigrid For 3-D Turbomachinery Flows

    NASA Technical Reports Server (NTRS)

    Celestina, M. L.; Adamczyk, J. J.; Rubin, S. G.

    2001-01-01

    A Segmented Domain Decomposition Multigrid (SDDMG) procedure was developed for three-dimensional viscous flow problems as they apply to turbomachinery flows. The procedure divides the computational domain into a coarse mesh comprised of uniformly spaced cells. To resolve smaller length scales such as the viscous layer near a surface, segments of the coarse mesh are subdivided into a finer mesh. This is repeated until adequate resolution of the smallest relevant length scale is obtained. Multigrid is used to communicate information between the different grid levels. To test the procedure, simulation results will be presented for a compressor and turbine cascade. These simulations are intended to show the ability of the present method to generate grid independent solutions. Comparisons with data will also be presented. These comparisons will further demonstrate the usefulness of the present work for they allow an estimate of the accuracy of the flow modeling equations independent of error attributed to numerical discretization.

  8. Influence of Computational Drop Representation in LES of a Droplet-Laden Mixing Layer

    NASA Technical Reports Server (NTRS)

    Bellan, Josette; Radhakrishnan, Senthilkumaran

    2013-01-01

    Multiphase turbulent flows are encountered in many practical applications including turbine engines or natural phenomena involving particle dispersion. Numerical computations of multiphase turbulent flows are important because they provide a cheaper alternative to performing experiments during an engine design process or because they can provide predictions of pollutant dispersion, etc. Two-phase flows contain millions and sometimes billions of particles. For flows with volumetrically dilute particle loading, the most accurate method of numerically simulating the flow is based on direct numerical simulation (DNS) of the governing equations in which all scales of the flow including the small scales that are responsible for the overwhelming amount of dissipation are resolved. DNS, however, requires high computational cost and cannot be used in engineering design applications where iterations among several design conditions are necessary. Because of high computational cost, numerical simulations of such flows cannot track all these drops. The objective of this work is to quantify the influence of the number of computational drops and grid spacing on the accuracy of predicted flow statistics, and to possibly identify the minimum number, or, if not possible, the optimal number of computational drops that provide minimal error in flow prediction. For this purpose, several Large Eddy Simulation (LES) of a mixing layer with evaporating drops have been performed by using coarse, medium, and fine grid spacings and computational drops, rather than physical drops. To define computational drops, an integer NR is introduced that represents the ratio of the number of existing physical drops to the desired number of computational drops; for example, if NR=8, this means that a computational drop represents 8 physical drops in the flow field. The desired number of computational drops is determined by the available computational resources; the larger NR is, the less computationally intensive is the simulation. A set of first order and second order flow statistics, and of drop statistics are extracted from LES predictions and are compared to results obtained by filtering a DNS database. First order statistics such as Favre averaged stream-wise velocity, Favre averaged vapor mass fraction, and the drop stream-wise velocity, are predicted accurately independent of the number of computational drops and grid spacing. Second order flow statistics depend both on the number of computational drops and on grid spacing. The scalar variance and turbulent vapor flux are predicted accurately by the fine mesh LES only when NR is less than 32, and by the coarse mesh LES reasonably accurately for all NR values. This is attributed to the fact that when the grid spacing is coarsened, the number of drops in a computational cell must not be significantly lower than that in the DNS.

  9. Influence of grid resolution, parcel size and drag models on bubbling fluidized bed simulation

    DOE PAGES

    Lu, Liqiang; Konan, Arthur; Benyahia, Sofiane

    2017-06-02

    Here in this paper, a bubbling fluidized bed is simulated with different numerical parameters, such as grid resolution and parcel size. We examined also the effect of using two homogeneous drag correlations and a heterogeneous drag based on the energy minimization method. A fast and reliable bubble detection algorithm was developed based on the connected component labeling. The radial and axial solids volume fraction profiles are compared with experiment data and previous simulation results. These results show a significant influence of drag models on bubble size and voidage distributions and a much less dependence on numerical parameters. With a heterogeneousmore » drag model that accounts for sub-scale structures, the void fraction in the bubbling fluidized bed can be well captured with coarse grid and large computation parcels. Refining the CFD grid and reducing the parcel size can improve the simulation results but with a large increase in computation cost.« less

  10. Compact cell-centered discretization stencils at fine-coarse block structured grid interfaces

    NASA Astrophysics Data System (ADS)

    Pletzer, Alexander; Jamroz, Ben; Crockett, Robert; Sides, Scott

    2014-03-01

    Different strategies for coupling fine-coarse grid patches are explored in the context of the adaptive mesh refinement (AMR) method. We show that applying linear interpolation to fill in the fine grid ghost values can produce a finite volume stencil of comparable accuracy to quadratic interpolation provided the cell volumes are adjusted. The volume of fine cells expands whereas the volume of neighboring coarse cells contracts. The amount by which the cells contract/expand depends on whether the interface is a face, an edge, or a corner. It is shown that quadratic or better interpolation is required when the conductivity is spatially varying, anisotropic, the refinement ratio is other than two, or when the fine-coarse interface is concave.

  11. Computational investigations and grid refinement study of 3D transient flow in a cylindrical tank using OpenFOAM

    NASA Astrophysics Data System (ADS)

    Mohd Sakri, F.; Mat Ali, M. S.; Sheikh Salim, S. A. Z.

    2016-10-01

    The study of physic fluid for a liquid draining inside a tank is easily accessible using numerical simulation. However, numerical simulation is expensive when the liquid draining involves the multi-phase problem. Since an accurate numerical simulation can be obtained if a proper method for error estimation is accomplished, this paper provides systematic assessment of error estimation due to grid convergence error using OpenFOAM. OpenFOAM is an open source CFD-toolbox and it is well-known among the researchers and institutions because of its free applications and ready to use. In this study, three types of grid resolution are used: coarse, medium and fine grids. Grid Convergence Index (GCI) is applied to estimate the error due to the grid sensitivity. A monotonic convergence condition is obtained in this study that shows the grid convergence error has been progressively reduced. The fine grid has the GCI value below 1%. The extrapolated value from Richardson Extrapolation is in the range of the GCI obtained.

  12. On a turbulent wall model to predict hemolysis numerically in medical devices

    NASA Astrophysics Data System (ADS)

    Lee, Seunghun; Chang, Minwook; Kang, Seongwon; Hur, Nahmkeon; Kim, Wonjung

    2017-11-01

    Analyzing degradation of red blood cells is very important for medical devices with blood flows. The blood shear stress has been recognized as the most dominant factor for hemolysis in medical devices. Compared to laminar flows, turbulent flows have higher shear stress values in the regions near the wall. In case of predicting hemolysis numerically, this phenomenon can require a very fine mesh and large computational resources. In order to resolve this issue, the purpose of this study is to develop a turbulent wall model to predict the hemolysis more efficiently. In order to decrease the numerical error of hemolysis prediction in a coarse grid resolution, we divided the computational domain into two regions and applied different approaches to each region. In the near-wall region with a steep velocity gradient, an analytic approach using modeled velocity profile is applied to reduce a numerical error to allow a coarse grid resolution. We adopt the Van Driest law as a model for the mean velocity profile. In a region far from the wall, a regular numerical discretization is applied. The proposed turbulent wall model is evaluated for a few turbulent flows inside a cannula and centrifugal pumps. The results present that the proposed turbulent wall model for hemolysis improves the computational efficiency significantly for engineering applications. Corresponding author.

  13. VizieR Online Data Catalog: 3D correction in 5 photometric systems (Bonifacio+, 2018)

    NASA Astrophysics Data System (ADS)

    Bonifacio, P.; Caffau, E.; Ludwig, H.-G.; Steffen, M.; Castelli, F.; Gallagher, A. J.; Kucinskas, A.; Prakapavicius, D.; Cayrel, R.; Freytag, B.; Plez, B.; Homeier, D.

    2018-01-01

    We have used the CIFIST grid of CO5BOLD models to investigate the effects of granulation on fluxes and colours of stars of spectral type F, G, and K. We publish tables with 3D corrections that can be applied to colours computed from any 1D model atmosphere. For Teff>=5000K, the corrections are smooth enough, as a function of atmospheric parameters, that it is possible to interpolate the corrections between grid points; thus the coarseness of the CIFIST grid should not be a major limitation. However at the cool end there are still far too few models to allow a reliable interpolation. (20 data files).

  14. Computational Investigations of Noise Suppression in Subsonic Round Jets

    NASA Technical Reports Server (NTRS)

    Pruett, C. David

    1997-01-01

    NASA Grant NAG1-1802, originally submitted in June 1996 as a two-year proposal, was awarded one-year's funding by NASA LaRC for the period 5 Oct., 1996, through 4 Oct., 1997. Because of the inavailability (from IT at NASA ARC) of sufficient supercomputer time in fiscal 1998 to complete the computational goals of the second year of the original proposal (estimated to be at least 400 Cray C-90 CPU hours), those goals have been appropriately amended, and a new proposal has been submitted to LaRC as a follow-on to NAG1-1802. The current report documents the activities and accomplishments on NAG1-1802 during the one-year period from 5 Oct., 1996, through 4 Oct., 1997. NASA Grant NAG1-1802, and its predecessor, NAG1-1772, have been directed toward adapting the numerical tool of Large-Eddy Simulation (LES) to aeroacoustic applications, with particular focus on noise suppression in subsonic round jets. In LES, the filtered Navier-Stokes equations are solved numerically on a relatively coarse computational grid. Residual stresses, generated by scales of motion too small to be resolved on the coarse grid, are modeled. Although most LES incorporate spatial filtering, time-domain filtering affords certain conceptual and computational advantages, particularly for aeroacoustic applications. Consequently, this work has focused on the development of SubGrid-Scale (SGS) models that incorporate time- domain filters. The author is unaware of any previous attempt at purely time-filtered LES; however, Aldama and Dakhoul and Bedford have considered approaches that combine both spatial and temporal filtering. In our view, filtering in both space and time is redundant, because removal of high frequencies effects the removal of small spatial scales and vice versa.

  15. Surrogate modeling of deformable joint contact using artificial neural networks.

    PubMed

    Eskinazi, Ilan; Fregly, Benjamin J

    2015-09-01

    Deformable joint contact models can be used to estimate loading conditions for cartilage-cartilage, implant-implant, human-orthotic, and foot-ground interactions. However, contact evaluations are often so expensive computationally that they can be prohibitive for simulations or optimizations requiring thousands or even millions of contact evaluations. To overcome this limitation, we developed a novel surrogate contact modeling method based on artificial neural networks (ANNs). The method uses special sampling techniques to gather input-output data points from an original (slow) contact model in multiple domains of input space, where each domain represents a different physical situation likely to be encountered. For each contact force and torque output by the original contact model, a multi-layer feed-forward ANN is defined, trained, and incorporated into a surrogate contact model. As an evaluation problem, we created an ANN-based surrogate contact model of an artificial tibiofemoral joint using over 75,000 evaluations of a fine-grid elastic foundation (EF) contact model. The surrogate contact model computed contact forces and torques about 1000 times faster than a less accurate coarse grid EF contact model. Furthermore, the surrogate contact model was seven times more accurate than the coarse grid EF contact model within the input domain of a walking motion. For larger input domains, the surrogate contact model showed the expected trend of increasing error with increasing domain size. In addition, the surrogate contact model was able to identify out-of-contact situations with high accuracy. Computational contact models created using our proposed ANN approach may remove an important computational bottleneck from musculoskeletal simulations or optimizations incorporating deformable joint contact models. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.

  16. Surrogate Modeling of Deformable Joint Contact using Artificial Neural Networks

    PubMed Central

    Eskinazi, Ilan; Fregly, Benjamin J.

    2016-01-01

    Deformable joint contact models can be used to estimate loading conditions for cartilage-cartilage, implant-implant, human-orthotic, and foot-ground interactions. However, contact evaluations are often so expensive computationally that they can be prohibitive for simulations or optimizations requiring thousands or even millions of contact evaluations. To overcome this limitation, we developed a novel surrogate contact modeling method based on artificial neural networks (ANNs). The method uses special sampling techniques to gather input-output data points from an original (slow) contact model in multiple domains of input space, where each domain represents a different physical situation likely to be encountered. For each contact force and torque output by the original contact model, a multi-layer feed-forward ANN is defined, trained, and incorporated into a surrogate contact model. As an evaluation problem, we created an ANN-based surrogate contact model of an artificial tibiofemoral joint using over 75,000 evaluations of a fine-grid elastic foundation (EF) contact model. The surrogate contact model computed contact forces and torques about 1000 times faster than a less accurate coarse grid EF contact model. Furthermore, the surrogate contact model was seven times more accurate than the coarse grid EF contact model within the input domain of a walking motion. For larger input domains, the surrogate contact model showed the expected trend of increasing error with increasing domain size. In addition, the surrogate contact model was able to identify out-of-contact situations with high accuracy. Computational contact models created using our proposed ANN approach may remove an important computational bottleneck from musculoskeletal simulations or optimizations incorporating deformable joint contact models. PMID:26220591

  17. Initialization of high resolution surface wind simulations using NWS gridded data

    Treesearch

    J. Forthofer; K. Shannon; Bret Butler

    2010-01-01

    WindNinja is a standalone computer model designed to provide the user with simulations of surface wind flow. It is deterministic and steady state. It is currently being modified to allow the user to initialize the flow calculation using National Digital Forecast Database. It essentially allows the user to downscale the coarse scale simulations from meso-scale models to...

  18. High-resolution subgrid models: background, grid generation, and implementation

    NASA Astrophysics Data System (ADS)

    Sehili, Aissa; Lang, Günther; Lippert, Christoph

    2014-04-01

    The basic idea of subgrid models is the use of available high-resolution bathymetric data at subgrid level in computations that are performed on relatively coarse grids allowing large time steps. For that purpose, an algorithm that correctly represents the precise mass balance in regions where wetting and drying occur was derived by Casulli (Int J Numer Method Fluids 60:391-408, 2009) and Casulli and Stelling (Int J Numer Method Fluids 67:441-449, 2010). Computational grid cells are permitted to be wet, partially wet, or dry, and no drying threshold is needed. Based on the subgrid technique, practical applications involving various scenarios were implemented including an operational forecast model for water level, salinity, and temperature of the Elbe Estuary in Germany. The grid generation procedure allows a detailed boundary fitting at subgrid level. The computational grid is made of flow-aligned quadrilaterals including few triangles where necessary. User-defined grid subdivision at subgrid level allows a correct representation of the volume up to measurement accuracy. Bottom friction requires a particular treatment. Based on the conveyance approach, an appropriate empirical correction was worked out. The aforementioned features make the subgrid technique very efficient, robust, and accurate. Comparison of predicted water levels with the comparatively highly resolved classical unstructured grid model shows very good agreement. The speedup in computational performance due to the use of the subgrid technique is about a factor of 20. A typical daily forecast can be carried out in less than 10 min on a standard PC-like hardware. The subgrid technique is therefore a promising framework to perform accurate temporal and spatial large-scale simulations of coastal and estuarine flow and transport processes at low computational cost.

  19. Dynamic subfilter-scale stress model for large-eddy simulations

    NASA Astrophysics Data System (ADS)

    Rouhi, A.; Piomelli, U.; Geurts, B. J.

    2016-08-01

    We present a modification of the integral length-scale approximation (ILSA) model originally proposed by Piomelli et al. [Piomelli et al., J. Fluid Mech. 766, 499 (2015), 10.1017/jfm.2015.29] and apply it to plane channel flow and a backward-facing step. In the ILSA models the length scale is expressed in terms of the integral length scale of turbulence and is determined by the flow characteristics, decoupled from the simulation grid. In the original formulation the model coefficient was constant, determined by requiring a desired global contribution of the unresolved subfilter scales (SFSs) to the dissipation rate, known as SFS activity; its value was found by a set of coarse-grid calculations. Here we develop two modifications. We de-fine a measure of SFS activity (based on turbulent stresses), which adds to the robustness of the model, particularly at high Reynolds numbers, and removes the need for the prior coarse-grid calculations: The model coefficient can be computed dynamically and adapt to large-scale unsteadiness. Furthermore, the desired level of SFS activity is now enforced locally (and not integrated over the entire volume, as in the original model), providing better control over model activity and also improving the near-wall behavior of the model. Application of the local ILSA to channel flow and a backward-facing step and comparison with the original ILSA and with the dynamic model of Germano et al. [Germano et al., Phys. Fluids A 3, 1760 (1991), 10.1063/1.857955] show better control over the model contribution in the local ILSA, while the positive properties of the original formulation (including its higher accuracy compared to the dynamic model on coarse grids) are maintained. The backward-facing step also highlights the advantage of the decoupling of the model length scale from the mesh.

  20. Linear scaling computation of the Fock matrix. VI. Data parallel computation of the exchange-correlation matrix

    NASA Astrophysics Data System (ADS)

    Gan, Chee Kwan; Challacombe, Matt

    2003-05-01

    Recently, early onset linear scaling computation of the exchange-correlation matrix has been achieved using hierarchical cubature [J. Chem. Phys. 113, 10037 (2000)]. Hierarchical cubature differs from other methods in that the integration grid is adaptive and purely Cartesian, which allows for a straightforward domain decomposition in parallel computations; the volume enclosing the entire grid may be simply divided into a number of nonoverlapping boxes. In our data parallel approach, each box requires only a fraction of the total density to perform the necessary numerical integrations due to the finite extent of Gaussian-orbital basis sets. This inherent data locality may be exploited to reduce communications between processors as well as to avoid memory and copy overheads associated with data replication. Although the hierarchical cubature grid is Cartesian, naive boxing leads to irregular work loads due to strong spatial variations of the grid and the electron density. In this paper we describe equal time partitioning, which employs time measurement of the smallest sub-volumes (corresponding to the primitive cubature rule) to load balance grid-work for the next self-consistent-field iteration. After start-up from a heuristic center of mass partitioning, equal time partitioning exploits smooth variation of the density and grid between iterations to achieve load balance. With the 3-21G basis set and a medium quality grid, equal time partitioning applied to taxol (62 heavy atoms) attained a speedup of 61 out of 64 processors, while for a 110 molecule water cluster at standard density it achieved a speedup of 113 out of 128. The efficiency of equal time partitioning applied to hierarchical cubature improves as the grid work per processor increases. With a fine grid and the 6-311G(df,p) basis set, calculations on the 26 atom molecule α-pinene achieved a parallel efficiency better than 99% with 64 processors. For more coarse grained calculations, superlinear speedups are found to result from reduced computational complexity associated with data parallelism.

  1. Pathloss Calculation Using the Transmission Line Matrix and Finite Difference Time Domain Methods With Coarse Grids

    DOE PAGES

    Nutaro, James; Kuruganti, Teja

    2017-02-24

    Numerical simulations of the wave equation that are intended to provide accurate time domain solutions require a computational mesh with grid points separated by a distance less than the wavelength of the source term and initial data. However, calculations of radio signal pathloss generally do not require accurate time domain solutions. This paper describes an approach for calculating pathloss by using the finite difference time domain and transmission line matrix models of wave propagation on a grid with points separated by distances much greater than the signal wavelength. The calculated pathloss can be kept close to the true value formore » freespace propagation with an appropriate selection of initial conditions. This method can also simulate diffraction with an error governed by the ratio of the signal wavelength to the grid spacing.« less

  2. A fast dynamic grid adaption scheme for meteorological flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fiedler, B.H.; Trapp, R.J.

    1993-10-01

    The continuous dynamic grid adaption (CDGA) technique is applied to a compressible, three-dimensional model of a rising thermal. The computational cost, per grid point per time step, of using CDGA instead of a fixed, uniform Cartesian grid is about 53% of the total cost of the model with CDGA. The use of general curvilinear coordinates contributes 11.7% to this total, calculating and moving the grid 6.1%, and continually updating the transformation relations 20.7%. Costs due to calculations that involve the gridpoint velocities (as well as some substantial unexplained costs) contribute the remaining 14.5%. A simple way to limit the costmore » of calculating the grid is presented. The grid is adapted by solving an elliptic equation for gridpoint coordinates on a coarse grid and then interpolating the full finite-difference grid. In this application, the additional costs per grid point of CDGA are shown to be easily offset by the savings resulting from the reduction in the required number of grid points. In simulation of the thermal costs are reduced by a factor of 3, as compared with those of a companion model with a fixed, uniform Cartesian grid. 8 refs., 8 figs.« less

  3. Modelling tidal current energy extraction in large area using a three-dimensional estuary model

    NASA Astrophysics Data System (ADS)

    Chen, Yaling; Lin, Binliang; Lin, Jie

    2014-11-01

    This paper presents a three-dimensional modelling study for simulating tidal current energy extraction in large areas, with a momentum sink term being added into the momentum equations. Due to the limits of computational capacity, the grid size of the numerical model is generally much larger than the turbine rotor diameter. Two models, i.e. a local grid refinement model and a coarse grid model, are employed and an idealized estuary is set up. The local grid refinement model is constructed to simulate the power generation of an isolated turbine and its impacts on hydrodynamics. The model is then used to determine the deployment of turbine farm and quantify a combined thrust coefficient for multiple turbines located in a grid element of coarse grid model. The model results indicate that the performance of power extraction is affected by array deployment, with more power generation from outer rows than inner rows due to velocity deficit influence of upstream turbines. Model results also demonstrate that the large-scale turbine farm has significant effects on the hydrodynamics. The tidal currents are attenuated within the turbine swept area, and both upstream and downstream of the array. While the currents are accelerated above and below turbines, which is contributed to speeding up the wake mixing process behind the arrays. The water levels are heightened in both low and high water levels as the turbine array spanning the full width of estuary. The magnitude of water level change is found to increase with the array expansion, especially at the low water level.

  4. Modal density of rectangular structures in a wide frequency range

    NASA Astrophysics Data System (ADS)

    Parrinello, A.; Ghiringhelli, G. L.

    2018-04-01

    A novel approach to investigate the modal density of a rectangular structure in a wide frequency range is presented. First, the modal density is derived, in the whole frequency range of interest, on the basis of sound transmission through the infinite counterpart of the structure; then, it is corrected by means of the low-frequency modal behavior of the structure, taking into account actual size and boundary conditions. A statistical analysis reveals the connection between the modal density of the structure and the transmission of sound through its thickness. A transfer matrix approach is used to compute the required acoustic parameters, making it possible to deal with structures having arbitrary stratifications of different layers. A finite element method is applied on coarse grids to derive the first few eigenfrequencies required to correct the modal density. Both the transfer matrix approach and the coarse grids involved in the finite element analysis grant high efficiency. Comparison with alternative formulations demonstrates the effectiveness of the proposed methodology.

  5. FV-MHMM: A Discussion on Weighting Schemes.

    NASA Astrophysics Data System (ADS)

    Franc, J.; Gerald, D.; Jeannin, L.; Egermann, P.; Masson, R.

    2016-12-01

    Upscaling or homogenization techniques consist in finding block-equivalentor equivalent upscaled properties on a coarse grid from heterogeneousproperties defined on an underlying fine grid. However, this couldbecome costly and resource consuming. Harder et al., 2013, have developeda Multiscale Hybrid-Mixed Method (MHMM) of upscaling to treat Darcytype equations on heterogeneous fields formulated using a finite elementmethod. Recently, Franc et al. 2016, has extended this method of upscalingto finite volume formulation (FV-MHMM). Although convergence refiningLagrange multipliers space has been observed, numerical artefactscan occur while trapping numerically the flow in regions of low permeability. This work will present the development of the method along with theresults obtained from its classical formulation. Then, two weightingschemes and their benefits on the FV-MHMM method will be presented insome simple random permeability cases. Next example will involve alarger heterogeneous 2D permeability field extracted from the 10thSPE test case. Eventually, multiphase flow will be addressed asan extension of this single phase flow method. An elliptic pressureequation solved on the coarse grid via FV-MHMM will be sequentiallycoupled with a hyperbolic saturation equation on the fine grid. Theimproved accuracy thanks to the weighting scheme will be measuredcompared to a finite volume fine grid solution. References: Harder, C., Paredes, D. and Valentin, F., A family of multiscalehybrid-mixed finite element methods for the Darcy equation with roughcoefficients, Journal of Computational Physics, 2013. Franc J., Debenest G., Jeannin L., Egermann P. and Masson R., FV-MHMMfor reservoir modelling ECMOR XV-15th European Conference on the Mathematicsof Oil Recovery, 2015.

  6. Improvements in sub-grid, microphysics averages using quadrature based approaches

    NASA Astrophysics Data System (ADS)

    Chowdhary, K.; Debusschere, B.; Larson, V. E.

    2013-12-01

    Sub-grid variability in microphysical processes plays a critical role in atmospheric climate models. In order to account for this sub-grid variability, Larson and Schanen (2013) propose placing a probability density function on the sub-grid cloud microphysics quantities, e.g. autoconversion rate, essentially interpreting the cloud microphysics quantities as a random variable in each grid box. Random sampling techniques, e.g. Monte Carlo and Latin Hypercube, can be used to calculate statistics, e.g. averages, on the microphysics quantities, which then feed back into the model dynamics on the coarse scale. We propose an alternate approach using numerical quadrature methods based on deterministic sampling points to compute the statistical moments of microphysics quantities in each grid box. We have performed a preliminary test on the Kessler autoconversion formula, and, upon comparison with Latin Hypercube sampling, our approach shows an increased level of accuracy with a reduction in sample size by almost two orders of magnitude. Application to other microphysics processes is the subject of ongoing research.

  7. Coarse-grained hydrodynamics from correlation functions

    NASA Astrophysics Data System (ADS)

    Palmer, Bruce

    2018-02-01

    This paper will describe a formalism for using correlation functions between different grid cells as the basis for determining coarse-grained hydrodynamic equations for modeling the behavior of mesoscopic fluid systems. Configurations from a molecular dynamics simulation or other atomistic simulation are projected onto basis functions representing grid cells in a continuum hydrodynamic simulation. Equilibrium correlation functions between different grid cells are evaluated from the molecular simulation and used to determine the evolution operator for the coarse-grained hydrodynamic system. The formalism is demonstrated on a discrete particle simulation of diffusion with a spatially dependent diffusion coefficient. Correlation functions are calculated from the particle simulation and the spatially varying diffusion coefficient is recovered using a fitting procedure.

  8. Summary of the Fourth AIAA CFD Drag Prediction Workshop

    NASA Technical Reports Server (NTRS)

    Vassberg, John C.; Tinoco, Edward N.; Mani, Mori; Rider, Ben; Zickuhr, Tom; Levy, David W.; Brodersen, Olaf P.; Eisfeld, Bernhard; Crippa, Simone; Wahls, Richard A.; hide

    2010-01-01

    Results from the Fourth AIAA Drag Prediction Workshop (DPW-IV) are summarized. The workshop focused on the prediction of both absolute and differential drag levels for wing-body and wing-body-horizontal-tail configurations that are representative of transonic transport air- craft. Numerical calculations are performed using industry-relevant test cases that include lift- specific flight conditions, trimmed drag polars, downwash variations, dragrises and Reynolds- number effects. Drag, lift and pitching moment predictions from numerous Reynolds-Averaged Navier-Stokes computational fluid dynamics methods are presented. Solutions are performed on structured, unstructured and hybrid grid systems. The structured-grid sets include point- matched multi-block meshes and over-set grid systems. The unstructured and hybrid grid sets are comprised of tetrahedral, pyramid, prismatic, and hexahedral elements. Effort is made to provide a high-quality and parametrically consistent family of grids for each grid type about each configuration under study. The wing-body-horizontal families are comprised of a coarse, medium and fine grid; an optional extra-fine grid augments several of the grid families. These mesh sequences are utilized to determine asymptotic grid-convergence characteristics of the solution sets, and to estimate grid-converged absolute drag levels of the wing-body-horizontal configuration using Richardson extrapolation.

  9. Grid-Based Surface Generalized Born Model for Calculation of Electrostatic Binding Free Energies.

    PubMed

    Forouzesh, Negin; Izadi, Saeed; Onufriev, Alexey V

    2017-10-23

    Fast and accurate calculation of solvation free energies is central to many applications, such as rational drug design. In this study, we present a grid-based molecular surface implementation of "R6" flavor of the generalized Born (GB) implicit solvent model, named GBNSR6. The speed, accuracy relative to numerical Poisson-Boltzmann treatment, and sensitivity to grid surface parameters are tested on a set of 15 small protein-ligand complexes and a set of biomolecules in the range of 268 to 25099 atoms. Our results demonstrate that the proposed model provides a relatively successful compromise between the speed and accuracy of computing polar components of the solvation free energies (ΔG pol ) and binding free energies (ΔΔG pol ). The model tolerates a relatively coarse grid size h = 0.5 Å, where the grid artifact error in computing ΔΔG pol remains in the range of k B T ∼ 0.6 kcal/mol. The estimated ΔΔG pol s are well correlated (r 2 = 0.97) with the numerical Poisson-Boltzmann reference, while showing virtually no systematic bias and RMSE = 1.43 kcal/mol. The grid-based GBNSR6 model is available in Amber (AmberTools) package of molecular simulation programs.

  10. Catching ghosts with a coarse net: use and abuse of spatial sampling data in detecting synchronization

    PubMed Central

    2017-01-01

    Synchronization of population dynamics in different habitats is a frequently observed phenomenon. A common mathematical tool to reveal synchronization is the (cross)correlation coefficient between time courses of values of the population size of a given species where the population size is evaluated from spatial sampling data. The corresponding sampling net or grid is often coarse, i.e. it does not resolve all details of the spatial configuration, and the evaluation error—i.e. the difference between the true value of the population size and its estimated value—can be considerable. We show that this estimation error can make the value of the correlation coefficient very inaccurate or even irrelevant. We consider several population models to show that the value of the correlation coefficient calculated on a coarse sampling grid rarely exceeds 0.5, even if the true value is close to 1, so that the synchronization is effectively lost. We also observe ‘ghost synchronization’ when the correlation coefficient calculated on a coarse sampling grid is close to 1 but in reality the dynamics are not correlated. Finally, we suggest a simple test to check the sampling grid coarseness and hence to distinguish between the true and artifactual values of the correlation coefficient. PMID:28202589

  11. The large discretization step method for time-dependent partial differential equations

    NASA Technical Reports Server (NTRS)

    Haras, Zigo; Taasan, Shlomo

    1995-01-01

    A new method for the acceleration of linear and nonlinear time dependent calculations is presented. It is based on the Large Discretization Step (LDS) approximation, defined in this work, which employs an extended system of low accuracy schemes to approximate a high accuracy discrete approximation to a time dependent differential operator. Error bounds on such approximations are derived. These approximations are efficiently implemented in the LDS methods for linear and nonlinear hyperbolic equations, presented here. In these algorithms the high and low accuracy schemes are interpreted as the same discretization of a time dependent operator on fine and coarse grids, respectively. Thus, a system of correction terms and corresponding equations are derived and solved on the coarse grid to yield the fine grid accuracy. These terms are initialized by visiting the fine grid once in many coarse grid time steps. The resulting methods are very general, simple to implement and may be used to accelerate many existing time marching schemes.

  12. Single-Grid-Pair Fourier Telescope for Imaging in Hard-X Rays and gamma Rays

    NASA Technical Reports Server (NTRS)

    Campbell, Jonathan

    2008-01-01

    This instrument, a proposed Fourier telescope for imaging in hard-x rays and gamma rays, would contain only one pair of grids made of an appropriate radiation-absorpting/ scattering material, in contradistinction to multiple pairs of such as grids in prior Fourier x- and gamma-ray telescopes. This instrument would also include a relatively coarse gridlike image detector appropriate to the radiant flux to be imaged. Notwithstanding the smaller number of grids and the relative coarseness of the imaging detector, the images produced by the proposed instrument would be of higher quality.

  13. Parallel Calculation of Sensitivity Derivatives for Aircraft Design using Automatic Differentiation

    NASA Technical Reports Server (NTRS)

    Bischof, c. H.; Green, L. L.; Haigler, K. J.; Knauff, T. L., Jr.

    1994-01-01

    Sensitivity derivative (SD) calculation via automatic differentiation (AD) typical of that required for the aerodynamic design of a transport-type aircraft is considered. Two ways of computing SD via code generated by the ADIFOR automatic differentiation tool are compared for efficiency and applicability to problems involving large numbers of design variables. A vector implementation on a Cray Y-MP computer is compared with a coarse-grained parallel implementation on an IBM SP1 computer, employing a Fortran M wrapper. The SD are computed for a swept transport wing in turbulent, transonic flow; the number of geometric design variables varies from 1 to 60 with coupling between a wing grid generation program and a state-of-the-art, 3-D computational fluid dynamics program, both augmented for derivative computation via AD. For a small number of design variables, the Cray Y-MP implementation is much faster. As the number of design variables grows, however, the IBM SP1 becomes an attractive alternative in terms of compute speed, job turnaround time, and total memory available for solutions with large numbers of design variables. The coarse-grained parallel implementation also can be moved easily to a network of workstations.

  14. A mass-conservative adaptive FAS multigrid solver for cell-centered finite difference methods on block-structured, locally-cartesian grids

    NASA Astrophysics Data System (ADS)

    Feng, Wenqiang; Guo, Zhenlin; Lowengrub, John S.; Wise, Steven M.

    2018-01-01

    We present a mass-conservative full approximation storage (FAS) multigrid solver for cell-centered finite difference methods on block-structured, locally cartesian grids. The algorithm is essentially a standard adaptive FAS (AFAS) scheme, but with a simple modification that comes in the form of a mass-conservative correction to the coarse-level force. This correction is facilitated by the creation of a zombie variable, analogous to a ghost variable, but defined on the coarse grid and lying under the fine grid refinement patch. We show that a number of different types of fine-level ghost cell interpolation strategies could be used in our framework, including low-order linear interpolation. In our approach, the smoother, prolongation, and restriction operations need never be aware of the mass conservation conditions at the coarse-fine interface. To maintain global mass conservation, we need only modify the usual FAS algorithm by correcting the coarse-level force function at points adjacent to the coarse-fine interface. We demonstrate through simulations that the solver converges geometrically, at a rate that is h-independent, and we show the generality of the solver, applying it to several nonlinear, time-dependent, and multi-dimensional problems. In several tests, we show that second-order asymptotic (h → 0) convergence is observed for the discretizations, provided that (1) at least linear interpolation of the ghost variables is employed, and (2) the mass conservation corrections are applied to the coarse-level force term.

  15. A two-way nesting procedure for the WAM model: Application to the Spanish coast

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lahoz, M.G.; Albiach, J.C.C.

    1997-02-01

    The performance of the standard one-way nesting procedure for a regional application of a third-generation wave model is investigated. It is found that this nesting procedure is not applicable when the resolution has to be enhanced drastically, unless intermediate grids are placed between the coarse and the fine grid areas. This solution, in turn, requires an excess of computing resources. A two-way nesting procedure is developed and implemented in the model. Advantages and disadvantages of both systems are discussed. The model output for a test case is compared with observed data and the results are discussed in the paper.

  16. Nonuniform depth grids in parabolic equation solutions.

    PubMed

    Sanders, William M; Collins, Michael D

    2013-04-01

    The parabolic wave equation is solved using a finite-difference solution in depth that involves a nonuniform grid. The depth operator is discretized using Galerkin's method with asymmetric hat functions. Examples are presented to illustrate that this approach can be used to improve efficiency for problems in ocean acoustics and seismo-acoustics. For shallow water problems, accuracy is sensitive to the precise placement of the ocean bottom interface. This issue is often addressed with the inefficient approach of using a fine grid spacing over all depth. Efficiency may be improved by using a relatively coarse grid with nonuniform sampling to precisely position the interface. Efficiency may also be improved by reducing the sampling in the sediment and in an absorbing layer that is used to truncate the computational domain. Nonuniform sampling may also be used to improve the implementation of a single-scattering approximation for sloping fluid-solid interfaces.

  17. Simulation of axisymmetric jets with a finite element Navier-Stokes solver and a multilevel VOF approach

    NASA Astrophysics Data System (ADS)

    Cervone, A.; Manservisi, S.; Scardovelli, R.

    2010-09-01

    A multilevel VOF approach has been coupled to an accurate finite element Navier-Stokes solver in axisymmetric geometry for the simulation of incompressible liquid jets with high density ratios. The representation of the color function over a fine grid has been introduced to reduce the discontinuity of the interface at the cell boundary. In the refined grid the automatic breakup and coalescence occur at a spatial scale much smaller than the coarse grid spacing. To reduce memory requirements, we have implemented on the fine grid a compact storage scheme which memorizes the color function data only in the mixed cells. The capillary force is computed by using the Laplace-Beltrami operator and a volumetric approach for the two principal curvatures. Several simulations of axisymmetric jets have been performed to show the accuracy and robustness of the proposed scheme.

  18. Fully implicit moving mesh adaptive algorithm

    NASA Astrophysics Data System (ADS)

    Serazio, C.; Chacon, L.; Lapenta, G.

    2006-10-01

    In many problems of interest, the numerical modeler is faced with the challenge of dealing with multiple time and length scales. The former is best dealt with with fully implicit methods, which are able to step over fast frequencies to resolve the dynamical time scale of interest. The latter requires grid adaptivity for efficiency. Moving-mesh grid adaptive methods are attractive because they can be designed to minimize the numerical error for a given resolution. However, the required grid governing equations are typically very nonlinear and stiff, and of considerably difficult numerical treatment. Not surprisingly, fully coupled, implicit approaches where the grid and the physics equations are solved simultaneously are rare in the literature, and circumscribed to 1D geometries. In this study, we present a fully implicit algorithm for moving mesh methods that is feasible for multidimensional geometries. Crucial elements are the development of an effective multilevel treatment of the grid equation, and a robust, rigorous error estimator. For the latter, we explore the effectiveness of a coarse grid correction error estimator, which faithfully reproduces spatial truncation errors for conservative equations. We will show that the moving mesh approach is competitive vs. uniform grids both in accuracy (due to adaptivity) and efficiency. Results for a variety of models 1D and 2D geometries will be presented. L. Chac'on, G. Lapenta, J. Comput. Phys., 212 (2), 703 (2006) G. Lapenta, L. Chac'on, J. Comput. Phys., accepted (2006)

  19. Box-Counting Dimension Revisited: Presenting an Efficient Method of Minimizing Quantization Error and an Assessment of the Self-Similarity of Structural Root Systems

    PubMed Central

    Bouda, Martin; Caplan, Joshua S.; Saiers, James E.

    2016-01-01

    Fractal dimension (FD), estimated by box-counting, is a metric used to characterize plant anatomical complexity or space-filling characteristic for a variety of purposes. The vast majority of published studies fail to evaluate the assumption of statistical self-similarity, which underpins the validity of the procedure. The box-counting procedure is also subject to error arising from arbitrary grid placement, known as quantization error (QE), which is strictly positive and varies as a function of scale, making it problematic for the procedure's slope estimation step. Previous studies either ignore QE or employ inefficient brute-force grid translations to reduce it. The goals of this study were to characterize the effect of QE due to translation and rotation on FD estimates, to provide an efficient method of reducing QE, and to evaluate the assumption of statistical self-similarity of coarse root datasets typical of those used in recent trait studies. Coarse root systems of 36 shrubs were digitized in 3D and subjected to box-counts. A pattern search algorithm was used to minimize QE by optimizing grid placement and its efficiency was compared to the brute force method. The degree of statistical self-similarity was evaluated using linear regression residuals and local slope estimates. QE, due to both grid position and orientation, was a significant source of error in FD estimates, but pattern search provided an efficient means of minimizing it. Pattern search had higher initial computational cost but converged on lower error values more efficiently than the commonly employed brute force method. Our representations of coarse root system digitizations did not exhibit details over a sufficient range of scales to be considered statistically self-similar and informatively approximated as fractals, suggesting a lack of sufficient ramification of the coarse root systems for reiteration to be thought of as a dominant force in their development. FD estimates did not characterize the scaling of our digitizations well: the scaling exponent was a function of scale. Our findings serve as a caution against applying FD under the assumption of statistical self-similarity without rigorously evaluating it first. PMID:26925073

  20. Large-Eddy Simulation of Turbulent Wall-Pressure Fluctuations

    NASA Technical Reports Server (NTRS)

    Singer, Bart A.

    1996-01-01

    Large-eddy simulations of a turbulent boundary layer with Reynolds number based on displacement thickness equal to 3500 were performed with two grid resolutions. The computations were continued for sufficient time to obtain frequency spectra with resolved frequencies that correspond to the most important structural frequencies on an aircraft fuselage. The turbulent stresses were adequately resolved with both resolutions. Detailed quantitative analysis of a variety of statistical quantities associated with the wall-pressure fluctuations revealed similar behavior for both simulations. The primary differences were associated with the lack of resolution of the high-frequency data in the coarse-grid calculation and the increased jitter (due to the lack of multiple realizations for averaging purposes) in the fine-grid calculation. A new curve fit was introduced to represent the spanwise coherence of the cross-spectral density.

  1. Filtered sub-grid constitutive models for fluidized gas-particle flows constructed from 3-D simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarkar, Avik; Milioli, Fernando E.; Ozarkar, Shailesh

    2016-10-01

    The accuracy of fluidized-bed CFD predictions using the two-fluid model can be improved significantly, even when using coarse grids, by replacing the microscopic kinetic-theory-based closures with coarse-grained constitutive models. These coarse-grained constitutive relationships, called filtered models, account for the unresolved gas-particle structures (clusters and bubbles) via sub-grid corrections. Following the previous 2-D approaches of Igci et al. [AIChE J., 54(6), 1431-1448, 2008] and Milioli et al. [AIChE J., 59(9), 3265-3275, 2013], new filtered models are constructed from highly-resolved 3-D simulations of gas-particle flows. Although qualitatively similar to the older 2-D models, the new 3-D relationships exhibit noticeable quantitative and functionalmore » differences. In particular, the filtered stresses are strongly dependent on the gas-particle slip velocity. Closures for the filtered inter-phase drag, gas- and solids-phase pressures and viscosities are reported. A new model for solids stress anisotropy is also presented. These new filtered 3-D constitutive relationships are better suited to practical coarse-grid 3-D simulations of large, commercial-scale devices.« less

  2. Scalability and performance of data-parallel pressure-based multigrid methods for viscous flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blosch, E.L.; Shyy, W.

    1996-05-01

    A full-approximation storage multigrid method for solving the steady-state 2-d incompressible Navier-Stokes equations on staggered grids has been implemented in Fortran on the CM-5, using the array aliasing feature in CM-Fortran to avoid declaring fine-grid-sized arrays on all levels while still allowing a variable number of grid levels. Thus, the storage cost scales with the number of unknowns, allowing us to consider significantly larger problems than would otherwise be possible. Timings over a range of problem sizes and numbers of processors, up to 4096 x 4096 on 512 nodes, show that the smoothing procedure, a pressure-correction technique, is scalable andmore » that the restriction and prolongation steps are nearly so. The performance obtained for the multigrid method is 333 Mflops out of the theoretical peak 4 Gflops on a 32-node CM-5. In comparison, a single-grid computation obtained 420 Mflops. The decrease is due to the inefficiency of the smoothing iterations on the coarse grid levels. W cycles cost much more and are much less efficient than V cycles, due to the increased contribution from the coarse grids. The convergence rate characteristics of the pressure-correction multigrid method are investigated in a Re = 5000 lid-driven cavity flow and a Re = 300 symmetric backward-facing step flow, using either a defect-correction scheme or a second-order upwind scheme. A heuristic technique relating the convergence tolerances for the course grids to the truncation error of the discretization has been found effective and robust. With second-order upwinding on all grid levels, a 5-level 320 x 80 step flow solution was obtained in 20 V cycles, which corresponds to a smoothing rate of 0.7, and required 25 s on a 32-node CM-5. Overall, the convergence rates obtained in the present work are comparable to the most competitive findings reported in the literature. 62 refs., 13 figs.« less

  3. An Evaluation of Recently Developed RANS-Based Turbulence Models for Flow Over a Two-Dimensional Block Subjected to Different Mesh Structures and Grid Resolutions

    NASA Astrophysics Data System (ADS)

    Kardan, Farshid; Cheng, Wai-Chi; Baverel, Olivier; Porté-Agel, Fernando

    2016-04-01

    Understanding, analyzing and predicting meteorological phenomena related to urban planning and built environment are becoming more essential than ever to architectural and urban projects. Recently, various version of RANS models have been established but more validation cases are required to confirm their capability for wind flows. In the present study, the performance of recently developed RANS models, including the RNG k-ɛ , SST BSL k-ω and SST ⪆mma-Reθ , have been evaluated for the flow past a single block (which represent the idealized architecture scale). For validation purposes, the velocity streamlines and the vertical profiles of the mean velocities and variances were compared with published LES and wind tunnel experiment results. Furthermore, other additional CFD simulations were performed to analyze the impact of regular/irregular mesh structures and grid resolutions based on selected turbulence model in order to analyze the grid independency. Three different grid resolutions (coarse, medium and fine) of Nx × Ny × Nz = 320 × 80 × 320, 160 × 40 × 160 and 80 × 20 × 80 for the computational domain and nx × nz = 26 × 32, 13 × 16 and 6 × 8, which correspond to number of grid points on the block edges, were chosen and tested. It can be concluded that among all simulated RANS models, the SST ⪆mma-Reθ model performed best and agreed fairly well to the LES simulation and experimental results. It can also be concluded that the SST ⪆mma-Reθ model provides a very satisfactory results in terms of grid dependency in the fine and medium grid resolutions in both regular and irregular structure meshes. On the other hand, despite a very good performance of the RNG k-ɛ model in the fine resolution and in the regular structure grids, a disappointing performance of this model in the coarse and medium grid resolutions indicates that the RNG k-ɛ model is highly dependent on grid structure and grid resolution. These quantitative validations are essential to access the accuracy of RANS models for the simulation of flow in urban environment.

  4. Scale-dependent coupling of hysteretic capillary pressure, trapping, and fluid mobilities

    NASA Astrophysics Data System (ADS)

    Doster, F.; Celia, M. A.; Nordbotten, J. M.

    2012-12-01

    Many applications of multiphase flow in porous media, including CO2-storage and enhanced oil recovery, require mathematical models that span a large range of length scales. In the context of numerical simulations, practical grid sizes are often on the order of tens of meters, thereby de facto defining a coarse model scale. Under particular conditions, it is possible to approximate the sub-grid-scale distribution of the fluid saturation within a grid cell; that reconstructed saturation can then be used to compute effective properties at the coarse scale. If both the density difference between the fluids and the vertical extend of the grid cell are large, and buoyant segregation within the cell on a sufficiently shorte time scale, then the phase pressure distributions are essentially hydrostatic and the saturation profile can be reconstructed from the inferred capillary pressures. However, the saturation reconstruction may not be unique because the parameters and parameter functions of classical formulations of two-phase flow in porous media - the relative permeability functions, the capillary pressure -saturation relationship, and the residual saturations - show path dependence, i.e. their values depend not only on the state variables but also on their drainage and imbibition histories. In this study we focus on capillary pressure hysteresis and trapping and show that the contribution of hysteresis to effective quantities is dependent on the vertical length scale. By studying the transition from the two extreme cases - the homogeneous saturation distribution for small vertical extents and the completely segregated distribution for large extents - we identify how hysteretic capillary pressure at the local scale induces hysteresis in all coarse-scale quantities for medium vertical extents and finally vanishes for large vertical extents. Our results allow for more accurate vertically integrated modeling while improving our understanding of the coupling of capillary pressure and relative permeabilities over larger length scales.

  5. Bayesian calibration of coarse-grained forces: Efficiently addressing transferability

    NASA Astrophysics Data System (ADS)

    Patrone, Paul N.; Rosch, Thomas W.; Phelan, Frederick R.

    2016-04-01

    Generating and calibrating forces that are transferable across a range of state-points remains a challenging task in coarse-grained (CG) molecular dynamics. In this work, we present a coarse-graining workflow, inspired by ideas from uncertainty quantification and numerical analysis, to address this problem. The key idea behind our approach is to introduce a Bayesian correction algorithm that uses functional derivatives of CG simulations to rapidly and inexpensively recalibrate initial estimates f0 of forces anchored by standard methods such as force-matching. Taking density-temperature relationships as a running example, we demonstrate that this algorithm, in concert with various interpolation schemes, can be used to efficiently compute physically reasonable force curves on a fine grid of state-points. Importantly, we show that our workflow is robust to several choices available to the modeler, including the interpolation schemes and tools used to construct f0. In a related vein, we also demonstrate that our approach can speed up coarse-graining by reducing the number of atomistic simulations needed as inputs to standard methods for generating CG forces.

  6. Development of a Navier-Stokes algorithm for parallel-processing supercomputers. Ph.D. Thesis - Colorado State Univ., Dec. 1988

    NASA Technical Reports Server (NTRS)

    Swisshelm, Julie M.

    1989-01-01

    An explicit flow solver, applicable to the hierarchy of model equations ranging from Euler to full Navier-Stokes, is combined with several techniques designed to reduce computational expense. The computational domain consists of local grid refinements embedded in a global coarse mesh, where the locations of these refinements are defined by the physics of the flow. Flow characteristics are also used to determine which set of model equations is appropriate for solution in each region, thereby reducing not only the number of grid points at which the solution must be obtained, but also the computational effort required to get that solution. Acceleration to steady-state is achieved by applying multigrid on each of the subgrids, regardless of the particular model equations being solved. Since each of these components is explicit, advantage can readily be taken of the vector- and parallel-processing capabilities of machines such as the Cray X-MP and Cray-2.

  7. On the use of co-ordinate stretching in the numeral computation of high frequency scattering. [of jet engine noise by fuselage

    NASA Technical Reports Server (NTRS)

    Bayliss, A.

    1978-01-01

    The scattering of the sound of a jet engine by an airplane fuselage is modeled by solving the axially symmetric Helmholtz equation exterior to a long thin ellipsoid. The integral equation method based on the single layer potential formulation is used. A family of coordinate systems on the body is introduced and an algorithm is presented to determine the optimal coordinate system. Numerical results verify that the optimal choice enables the solution to be computed with a grid that is coarse relative to the wavelength.

  8. BRYNTRN: A baryon transport model

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Townsend, Lawrence W.; Nealy, John E.; Chun, Sang Y.; Hong, B. S.; Buck, Warren W.; Lamkin, S. L.; Ganapol, Barry D.; Khan, Ferdous; Cucinotta, Francis A.

    1989-01-01

    The development of an interaction data base and a numerical solution to the transport of baryons through an arbitrary shield material based on a straight ahead approximation of the Boltzmann equation are described. The code is most accurate for continuous energy boundary values, but gives reasonable results for discrete spectra at the boundary using even a relatively coarse energy grid (30 points) and large spatial increments (1 cm in H2O). The resulting computer code is self-contained, efficient and ready to use. The code requires only a very small fraction of the computer resources required for Monte Carlo codes.

  9. Quantifying the uncertainty introduced by discretization and time-averaging in two-fluid model predictions

    DOE PAGES

    Syamlal, Madhava; Celik, Ismail B.; Benyahia, Sofiane

    2017-07-12

    The two-fluid model (TFM) has become a tool for the design and troubleshooting of industrial fluidized bed reactors. To use TFM for scale up with confidence, the uncertainty in its predictions must be quantified. Here, we study two sources of uncertainty: discretization and time-averaging. First, we show that successive grid refinement may not yield grid-independent transient quantities, including cross-section–averaged quantities. Successive grid refinement would yield grid-independent time-averaged quantities on sufficiently fine grids. A Richardson extrapolation can then be used to estimate the discretization error, and the grid convergence index gives an estimate of the uncertainty. Richardson extrapolation may not workmore » for industrial-scale simulations that use coarse grids. We present an alternative method for coarse grids and assess its ability to estimate the discretization error. Second, we assess two methods (autocorrelation and binning) and find that the autocorrelation method is more reliable for estimating the uncertainty introduced by time-averaging TFM data.« less

  10. Analysis Tools for CFD Multigrid Solvers

    NASA Technical Reports Server (NTRS)

    Mineck, Raymond E.; Thomas, James L.; Diskin, Boris

    2004-01-01

    Analysis tools are needed to guide the development and evaluate the performance of multigrid solvers for the fluid flow equations. Classical analysis tools, such as local mode analysis, often fail to accurately predict performance. Two-grid analysis tools, herein referred to as Idealized Coarse Grid and Idealized Relaxation iterations, have been developed and evaluated within a pilot multigrid solver. These new tools are applicable to general systems of equations and/or discretizations and point to problem areas within an existing multigrid solver. Idealized Relaxation and Idealized Coarse Grid are applied in developing textbook-efficient multigrid solvers for incompressible stagnation flow problems.

  11. Computational Methods for Complex Flowfields

    DTIC Science & Technology

    1989-07-05

    This treatment is easily every ohrgi ie(i.9.Telclyfns el a extedd fo a-D knds pinerfces. Ths reuatemen rost e belong to either an unembedded or an...leading edge region is embedded in both directions. The downstream region between the two shear layers remains unembedded . Comparison of the grid and...A2 are unembedded coarse cells with vertical dimensions twice those of cells As, A4. It is clear that an evaluation for example, of the viscous

  12. Hybrid discrete ordinates and characteristics method for solving the linear Boltzmann equation

    NASA Astrophysics Data System (ADS)

    Yi, Ce

    With the ability of computer hardware and software increasing rapidly, deterministic methods to solve the linear Boltzmann equation (LBE) have attracted some attention for computational applications in both the nuclear engineering and medical physics fields. Among various deterministic methods, the discrete ordinates method (SN) and the method of characteristics (MOC) are two of the most widely used methods. The SN method is the traditional approach to solve the LBE for its stability and efficiency. While the MOC has some advantages in treating complicated geometries. However, in 3-D problems requiring a dense discretization grid in phase space (i.e., a large number of spatial meshes, directions, or energy groups), both methods could suffer from the need for large amounts of memory and computation time. In our study, we developed a new hybrid algorithm by combing the two methods into one code, TITAN. The hybrid approach is specifically designed for application to problems containing low scattering regions. A new serial 3-D time-independent transport code has been developed. Under the hybrid approach, the preferred method can be applied in different regions (blocks) within the same problem model. Since the characteristics method is numerically more efficient in low scattering media, the hybrid approach uses a block-oriented characteristics solver in low scattering regions, and a block-oriented SN solver in the remainder of the physical model. In the TITAN code, a physical problem model is divided into a number of coarse meshes (blocks) in Cartesian geometry. Either the characteristics solver or the SN solver can be chosen to solve the LBE within a coarse mesh. A coarse mesh can be filled with fine meshes or characteristic rays depending on the solver assigned to the coarse mesh. Furthermore, with its object-oriented programming paradigm and layered code structure, TITAN allows different individual spatial meshing schemes and angular quadrature sets for each coarse mesh. Two quadrature types (level-symmetric and Legendre-Chebyshev quadrature) along with the ordinate splitting techniques (rectangular splitting and PN-TN splitting) are implemented. In the S N solver, we apply a memory-efficient 'front-line' style paradigm to handle the fine mesh interface fluxes. In the characteristics solver, we have developed a novel 'backward' ray-tracing approach, in which a bi-linear interpolation procedure is used on the incoming boundaries of a coarse mesh. A CPU-efficient scattering kernel is shared in both solvers within the source iteration scheme. Angular and spatial projection techniques are developed to transfer the angular fluxes on the interfaces of coarse meshes with different discretization grids. The performance of the hybrid algorithm is tested in a number of benchmark problems in both nuclear engineering and medical physics fields. Among them are the Kobayashi benchmark problems and a computational tomography (CT) device model. We also developed an extra sweep procedure with the fictitious quadrature technique to calculate angular fluxes along directions of interest. The technique is applied in a single photon emission computed tomography (SPECT) phantom model to simulate the SPECT projection images. The accuracy and efficiency of the TITAN code are demonstrated in these benchmarks along with its scalability. A modified version of the characteristics solver is integrated in the PENTRAN code and tested within the parallel engine of PENTRAN. The limitations on the hybrid algorithm are also studied.

  13. Multilevel Methods for Elliptic Problems with Highly Varying Coefficients on Nonaligned Coarse Grids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scheichl, Robert; Vassilevski, Panayot S.; Zikatanov, Ludmil T.

    2012-06-21

    We generalize the analysis of classical multigrid and two-level overlapping Schwarz methods for 2nd order elliptic boundary value problems to problems with large discontinuities in the coefficients that are not resolved by the coarse grids or the subdomain partition. The theoretical results provide a recipe for designing hierarchies of standard piecewise linear coarse spaces such that the multigrid convergence rate and the condition number of the Schwarz preconditioned system do not depend on the coefficient variation or on any mesh parameters. One assumption we have to make is that the coarse grids are sufficiently fine in the vicinity of crossmore » points or where regions with large diffusion coefficients are separated by a narrow region where the coefficient is small. We do not need to align them with possible discontinuities in the coefficients. The proofs make use of novel stable splittings based on weighted quasi-interpolants and weighted Poincaré-type inequalities. Finally, numerical experiments are included that illustrate the sharpness of the theoretical bounds and the necessity of the technical assumptions.« less

  14. Gradients estimation from random points with volumetric tensor in turbulence

    NASA Astrophysics Data System (ADS)

    Watanabe, Tomoaki; Nagata, Koji

    2017-12-01

    We present an estimation method of fully-resolved/coarse-grained gradients from randomly distributed points in turbulence. The method is based on a linear approximation of spatial gradients expressed with the volumetric tensor, which is a 3 × 3 matrix determined by a geometric distribution of the points. The coarse grained gradient can be considered as a low pass filtered gradient, whose cutoff is estimated with the eigenvalues of the volumetric tensor. The present method, the volumetric tensor approximation, is tested for velocity and passive scalar gradients in incompressible planar jet and mixing layer. Comparison with a finite difference approximation on a Cartesian grid shows that the volumetric tensor approximation computes the coarse grained gradients fairly well at a moderate computational cost under various conditions of spatial distributions of points. We also show that imposing the solenoidal condition improves the accuracy of the present method for solenoidal vectors, such as a velocity vector in incompressible flows, especially when the number of the points is not large. The volumetric tensor approximation with 4 points poorly estimates the gradient because of anisotropic distribution of the points. Increasing the number of points from 4 significantly improves the accuracy. Although the coarse grained gradient changes with the cutoff length, the volumetric tensor approximation yields the coarse grained gradient whose magnitude is close to the one obtained by the finite difference. We also show that the velocity gradient estimated with the present method well captures the turbulence characteristics such as local flow topology, amplification of enstrophy and strain, and energy transfer across scales.

  15. Grid-size dependence of Cauchy boundary conditions used to simulate stream-aquifer interactions

    USGS Publications Warehouse

    Mehl, S.; Hill, M.C.

    2010-01-01

    This work examines the simulation of stream–aquifer interactions as grids are refined vertically and horizontally and suggests that traditional methods for calculating conductance can produce inappropriate values when the grid size is changed. Instead, different grid resolutions require different estimated values. Grid refinement strategies considered include global refinement of the entire model and local refinement of part of the stream. Three methods of calculating the conductance of the Cauchy boundary conditions are investigated. Single- and multi-layer models with narrow and wide streams produced stream leakages that differ by as much as 122% as the grid is refined. Similar results occur for globally and locally refined grids, but the latter required as little as one-quarter the computer execution time and memory and thus are useful for addressing some scale issues of stream–aquifer interactions. Results suggest that existing grid-size criteria for simulating stream–aquifer interactions are useful for one-layer models, but inadequate for three-dimensional models. The grid dependence of the conductance terms suggests that values for refined models using, for example, finite difference or finite-element methods, cannot be determined from previous coarse-grid models or field measurements. Our examples demonstrate the need for a method of obtaining conductances that can be translated to different grid resolutions and provide definitive test cases for investigating alternative conductance formulations.

  16. An efficient unstructured WENO method for supersonic reactive flows

    NASA Astrophysics Data System (ADS)

    Zhao, Wen-Geng; Zheng, Hong-Wei; Liu, Feng-Jun; Shi, Xiao-Tian; Gao, Jun; Hu, Ning; Lv, Meng; Chen, Si-Cong; Zhao, Hong-Da

    2018-03-01

    An efficient high-order numerical method for supersonic reactive flows is proposed in this article. The reactive source term and convection term are solved separately by splitting scheme. In the reaction step, an adaptive time-step method is presented, which can improve the efficiency greatly. In the convection step, a third-order accurate weighted essentially non-oscillatory (WENO) method is adopted to reconstruct the solution in the unstructured grids. Numerical results show that our new method can capture the correct propagation speed of the detonation wave exactly even in coarse grids, while high order accuracy can be achieved in the smooth region. In addition, the proposed adaptive splitting method can reduce the computational cost greatly compared with the traditional splitting method.

  17. LES-ODT Simulations of Turbulent Reacting Shear Layers

    NASA Astrophysics Data System (ADS)

    Hoffie, Andreas; Echekki, Tarek

    2012-11-01

    Large-eddy simulations (LES) combined with the one-dimensional turbulence (ODT) simulations of a spatially developing turbulent reacting shear layer with heat release and high Reynolds numbers were conducted and compared to results from direct numerical simulations (DNS) of the same configuration. The LES-ODT approach is based on LES solutions for momentum on a coarse grid and solutions for momentum and reactive scalars on a fine ODT grid, which is embedded in the LES computational domain. The shear layer is simulated with a single-step, second-order reaction with an Arrhenius reaction rate. The transport equations are solved using a low Mach number approximation. The LES-ODT simulations yield reasonably accurate predictions of turbulence and passive/reactive scalars' statistics compared to DNS results.

  18. VP Structure of Mount St. Helens, Washington, USA, imaged with local earthquake tomography

    USGS Publications Warehouse

    Waite, G.P.; Moran, S.C.

    2009-01-01

    We present a new P-wave velocity model for Mount St. Helens using local earthquake data recorded by the Pacific Northwest Seismograph Stations and Cascades Volcano Observatory since the 18 May 1980 eruption. These data were augmented with records from a dense array of 19 temporary stations deployed during the second half of 2005. Because the distribution of earthquakes in the study area is concentrated beneath the volcano and within two nearly linear trends, we used a graded inversion scheme to compute a coarse-grid model that focused on the regional structure, followed by a fine-grid inversion to improve spatial resolution directly beneath the volcanic edifice. The coarse-grid model results are largely consistent with earlier geophysical studies of the area; we find high-velocity anomalies NW and NE of the edifice that correspond with igneous intrusions and a prominent low-velocity zone NNW of the edifice that corresponds with the linear zone of high seismicity known as the St. Helens Seismic Zone. This low-velocity zone may continue past Mount St. Helens to the south at depths below 5??km. Directly beneath the edifice, the fine-grid model images a low-velocity zone between about 2 and 3.5??km below sea level that may correspond to a shallow magma storage zone. And although the model resolution is poor below about 6??km, we found low velocities that correspond with the aseismic zone between about 5.5 and 8??km that has previously been modeled as the location of a large magma storage volume. ?? 2009 Elsevier B.V.

  19. Fully automatic hp-adaptivity for acoustic and electromagnetic scattering in three dimensions

    NASA Astrophysics Data System (ADS)

    Kurtz, Jason Patrick

    We present an algorithm for fully automatic hp-adaptivity for finite element approximations of elliptic and Maxwell boundary value problems in three dimensions. The algorithm automatically generates a sequence of coarse grids, and a corresponding sequence of fine grids, such that the energy norm of the error decreases exponentially with respect to the number of degrees of freedom in either sequence. At each step, we employ a discrete optimization algorithm to determine the refinements for the current coarse grid such that the projection-based interpolation error for the current fine grid solution decreases with an optimal rate with respect to the number of degrees of freedom added by the refinement. The refinements are restricted only by the requirement that the resulting mesh is at most 1-irregular, but they may be anisotropic in both element size h and order of approximation p. While we cannot prove that our method converges at all, we present numerical evidence of exponential convergence for a diverse suite of model problems from acoustic and electromagnetic scattering. In particular we show that our method is well suited to the automatic resolution of exterior problems truncated by the introduction of a perfectly matched layer. To enable and accelerate the solution of these problems on commodity hardware, we include a detailed account of three critical aspects of our implementation, namely an efficient implementation of sum factorization, several efficient interfaces to the direct multi-frontal solver MUMPS, and some fast direct solvers for the computation of a sequence of nested projections.

  20. Wind turbine wake interactions at field scale: An LES study of the SWiFT facility

    NASA Astrophysics Data System (ADS)

    Yang, Xiaolei; Boomsma, Aaron; Barone, Matthew; Sotiropoulos, Fotis

    2014-06-01

    The University of Minnesota Virtual Wind Simulator (VWiS) code is employed to simulate turbine/atmosphere interactions in the Scaled Wind Farm Technology (SWiFT) facility developed by Sandia National Laboratories in Lubbock, TX, USA. The facility presently consists of three turbines and the simulations consider the case of wind blowing from South such that two turbines are in the free stream and the third turbine in the direct wake of one upstream turbine with separation of 5 rotor diameters. Large-eddy simulation (LES) on two successively finer grids is carried out to examine the sensitivity of the computed solutions to grid refinement. It is found that the details of the break-up of the tip vortices into small-scale turbulence structures can only be resolved on the finer grid. It is also shown that the power coefficient CP of the downwind turbine predicted on the coarse grid is somewhat higher than that obtained on the fine mesh. On the other hand, the rms (root-mean-square) of the CP fluctuations are nearly the same on both grids, although more small-scale turbulence structures are resolved upwind of the downwind turbine on the finer grid.

  1. Implicit adaptive mesh refinement for 2D reduced resistive magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Philip, Bobby; Chacón, Luis; Pernice, Michael

    2008-10-01

    An implicit structured adaptive mesh refinement (SAMR) solver for 2D reduced magnetohydrodynamics (MHD) is described. The time-implicit discretization is able to step over fast normal modes, while the spatial adaptivity resolves thin, dynamically evolving features. A Jacobian-free Newton-Krylov method is used for the nonlinear solver engine. For preconditioning, we have extended the optimal "physics-based" approach developed in [L. Chacón, D.A. Knoll, J.M. Finn, An implicit, nonlinear reduced resistive MHD solver, J. Comput. Phys. 178 (2002) 15-36] (which employed multigrid solver technology in the preconditioner for scalability) to SAMR grids using the well-known Fast Adaptive Composite grid (FAC) method [S. McCormick, Multilevel Adaptive Methods for Partial Differential Equations, SIAM, Philadelphia, PA, 1989]. A grid convergence study demonstrates that the solver performance is independent of the number of grid levels and only depends on the finest resolution considered, and that it scales well with grid refinement. The study of error generation and propagation in our SAMR implementation demonstrates that high-order (cubic) interpolation during regridding, combined with a robustly damping second-order temporal scheme such as BDF2, is required to minimize impact of grid errors at coarse-fine interfaces on the overall error of the computation for this MHD application. We also demonstrate that our implementation features the desired property that the overall numerical error is dependent only on the finest resolution level considered, and not on the base-grid resolution or on the number of refinement levels present during the simulation. We demonstrate the effectiveness of the tool on several challenging problems.

  2. Operational forecasting with the subgrid technique on the Elbe Estuary

    NASA Astrophysics Data System (ADS)

    Sehili, Aissa

    2017-04-01

    Modern remote sensing technologies can deliver very detailed land surface height data that should be considered for more accurate simulations. In that case, and even if some compromise is made with regard to grid resolution of an unstructured grid, simulations still will require large grids which can be computationally very demanding. The subgrid technique, first published by Casulli (2009), is based on the idea of making use of the available detailed subgrid bathymetric information while performing computations on relatively coarse grids permitting large time steps. Consequently, accuracy and efficiency are drastically enhanced if compared to the classical linear method, where the underlying bathymetry is solely discretized by the computational grid. The algorithm guarantees rigorous mass conservation and nonnegative water depths for any time step size. Computational grid-cells are permitted to be wet, partially wet or dry and no drying threshold is needed. The subgrid technique is used in an operational forecast model for water level, current velocity, salinity and temperature of the Elbe estuary in Germany. Comparison is performed with the comparatively highly resolved classical unstructured grid model UnTRIM. The daily meteorological forcing data are delivered by the German Weather Service (DWD) using the ICON-EU model. Open boundary data are delivered by the coastal model BSHcmod of the German Federal Maritime and Hydrographic Agency (BSH). Comparison of predicted water levels between classical and subgrid model shows a very good agreement. The speedup in computational performance due to the use of the subgrid technique is about a factor of 20. A typical daily forecast can be carried out within less than 10 minutes on standard PC-like hardware. The model is capable of permanently delivering highly resolved temporal and spatial information on water level, current velocity, salinity and temperature for the whole estuary. The model offers also the possibility to recalculate any previous situation. This can be helpful to figure out for instance the context in which a certain event occurred like an accident. In addition to measurement, the model can be used to improve navigability by adjusting the tidal transit-schedule for container vessels that are depending on the tide to approach or leave the port of Hamburg.

  3. Scaling between reanalyses and high-resolution land-surface modelling in mountainous areas - enabling better application and testing of reanalyses in heterogeneous environments

    NASA Astrophysics Data System (ADS)

    Gruber, S.; Fiddes, J.

    2013-12-01

    In mountainous topography, the difference in scale between atmospheric reanalyses (typically tens of kilometres) and relevant processes and phenomena near the Earth surface, such as permafrost or snow cover (meters to tens of meters) is most obvious. This contrast of scales is one of the major obstacles to using reanalysis data for the simulation of surface phenomena and to confronting reanalyses with independent observation. At the example of modelling permafrost in mountain areas (but simple to generalise to other phenomena and heterogeneous environments), we present and test methods against measurements for (A) scaling atmospheric data from the reanalysis to the ground level and (B) smart sampling of the heterogeneous landscape in order to set up a lumped model simulation that represents the high-resolution land surface. TopoSCALE (Part A, see http://dx.doi.org/10.5194/gmdd-6-3381-2013) is a scheme, which scales coarse-grid climate fields to fine-grid topography using pressure level data. In addition, it applies necessary topographic corrections e.g. those variables required for computation of radiation fields. This provides the necessary driving fields to the LSM. Tested against independent ground data, this scheme has been shown to improve the scaling and distribution of meteorological parameters in complex terrain, as compared to conventional methods, e.g. lapse rate based approaches. TopoSUB (Part B, see http://dx.doi.org/10.5194/gmd-5-1245-2012) is a surface pre-processor designed to sample a fine-grid domain (defined by a digital elevation model) along important topographical (or other) dimensions through a clustering scheme. This allows constructing a lumped model representing the main sources of fine-grid variability and applying a 1D LSM efficiently over large areas. Results can processed to derive (i) summary statistics at coarse-scale re-analysis grid resolution, (ii) high-resolution data fields spatialized to e.g., the fine-scale digital elevation model grid, or (iii) validation products for locations at which measurements exist, only. The ability of TopoSUB to approximate results simulated by a 2D distributed numerical LSM at a factor of ~10,000 less computations is demonstrated by comparison of 2D and lumped simulations. Successful application of the combined scheme in the European Alps is reported and based on its results, open issues for future research are outlined.

  4. Towards the Development of a More Accurate Monitoring Procedure for Invertebrate Populations, in the Presence of an Unknown Spatial Pattern of Population Distribution in the Field

    PubMed Central

    Petrovskaya, Natalia B.; Forbes, Emily; Petrovskii, Sergei V.; Walters, Keith F. A.

    2018-01-01

    Studies addressing many ecological problems require accurate evaluation of the total population size. In this paper, we revisit a sampling procedure used for the evaluation of the abundance of an invertebrate population from assessment data collected on a spatial grid of sampling locations. We first discuss how insufficient information about the spatial population density obtained on a coarse sampling grid may affect the accuracy of an evaluation of total population size. Such information deficit in field data can arise because of inadequate spatial resolution of the population distribution (spatially variable population density) when coarse grids are used, which is especially true when a strongly heterogeneous spatial population density is sampled. We then argue that the average trap count (the quantity routinely used to quantify abundance), if obtained from a sampling grid that is too coarse, is a random variable because of the uncertainty in sampling spatial data. Finally, we show that a probabilistic approach similar to bootstrapping techniques can be an efficient tool to quantify the uncertainty in the evaluation procedure in the presence of a spatial pattern reflecting a patchy distribution of invertebrates within the sampling grid. PMID:29495513

  5. On Spurious Numerics in Solving Reactive Equations

    NASA Technical Reports Server (NTRS)

    Kotov, D. V; Yee, H. C.; Wang, W.; Shu, C.-W.

    2013-01-01

    The objective of this study is to gain a deeper understanding of the behavior of high order shock-capturing schemes for problems with stiff source terms and discontinuities and on corresponding numerical prediction strategies. The studies by Yee et al. (2012) and Wang et al. (2012) focus only on solving the reactive system by the fractional step method using the Strang splitting (Strang 1968). It is a common practice by developers in computational physics and engineering simulations to include a cut off safeguard if densities are outside the permissible range. Here we compare the spurious behavior of the same schemes by solving the fully coupled reactive system without the Strang splitting vs. using the Strang splitting. Comparison between the two procedures and the effects of a cut off safeguard is the focus the present study. The comparison of the performance of these schemes is largely based on the degree to which each method captures the correct location of the reaction front for coarse grids. Here "coarse grids" means standard mesh density requirement for accurate simulation of typical non-reacting flows of similar problem setup. It is remarked that, in order to resolve the sharp reaction front, local refinement beyond standard mesh density is still needed.

  6. Domain-averaged snow depth over complex terrain from flat field measurements

    NASA Astrophysics Data System (ADS)

    Helbig, Nora; van Herwijnen, Alec

    2017-04-01

    Snow depth is an important parameter for a variety of coarse-scale models and applications, such as hydrological forecasting. Since high-resolution snow cover models are computational expensive, simplified snow models are often used. Ground measured snow depth at single stations provide a chance for snow depth data assimilation to improve coarse-scale model forecasts. Snow depth is however commonly recorded at so-called flat fields, often in large measurement networks. While these ground measurement networks provide a wealth of information, various studies questioned the representativity of such flat field snow depth measurements for the surrounding topography. We developed two parameterizations to compute domain-averaged snow depth for coarse model grid cells over complex topography using easy to derive topographic parameters. To derive the two parameterizations we performed a scale dependent analysis for domain sizes ranging from 50m to 3km using highly-resolved snow depth maps at the peak of winter from two distinct climatic regions in Switzerland and in the Spanish Pyrenees. The first, simpler parameterization uses a commonly applied linear lapse rate. For the second parameterization, we first removed the obvious elevation gradient in mean snow depth, which revealed an additional correlation with the subgrid sky view factor. We evaluated domain-averaged snow depth derived with both parameterizations using flat field measurements nearby with the domain-averaged highly-resolved snow depth. This revealed an overall improved performance for the parameterization combining a power law elevation trend scaled with the subgrid parameterized sky view factor. We therefore suggest the parameterization could be used to assimilate flat field snow depth into coarse-scale snow model frameworks in order to improve coarse-scale snow depth estimates over complex topography.

  7. Simulations of turbulent rotating flows using a subfilter scale stress model derived from the partially integrated transport modeling method

    NASA Astrophysics Data System (ADS)

    Chaouat, Bruno

    2012-04-01

    The partially integrated transport modeling (PITM) method [B. Chaouat and R. Schiestel, "A new partially integrated transport model for subgrid-scale stresses and dissipation rate for turbulent developing flows," Phys. Fluids 17, 065106 (2005), 10.1063/1.1928607; R. Schiestel and A. Dejoan, "Towards a new partially integrated transport model for coarse grid and unsteady turbulent flow simulations," Theor. Comput. Fluid Dyn. 18, 443 (2005), 10.1007/s00162-004-0155-z; B. Chaouat and R. Schiestel, "From single-scale turbulence models to multiple-scale and subgridscale models by Fourier transform," Theor. Comput. Fluid Dyn. 21, 201 (2007), 10.1007/s00162-007-0044-3; B. Chaouat and R. Schiestel, "Progress in subgrid-scale transport modelling for continuous hybrid non-zonal RANS/LES simulations," Int. J. Heat Fluid Flow 30, 602 (2009), 10.1016/j.ijheatfluidflow.2009.02.021] viewed as a continuous approach for hybrid RANS/LES (Reynolds averaged Navier-Stoke equations/large eddy simulations) simulations with seamless coupling between RANS and LES regions is used to derive a subfilter scale stress model in the framework of second-moment closure applicable in a rotating frame of reference. This present subfilter scale model is based on the transport equations for the subfilter stresses and the dissipation rate and appears well appropriate for simulating unsteady flows on relatively coarse grids or flows with strong departure from spectral equilibrium because the cutoff wave number can be located almost anywhere inside the spectrum energy. According to the spectral theory developed in the wave number space [B. Chaouat and R. Schiestel, "From single-scale turbulence models to multiple-scale and subgrid-scale models by Fourier transform," Theor. Comput. Fluid Dyn. 21, 201 (2007), 10.1007/s00162-007-0044-3], the coefficients used in this model are no longer constants but they are some analytical functions of a dimensionless parameter controlling the spectral distribution of turbulence. The pressure-strain correlation term encompassed in this model is inspired from the nonlinear SSG model [C. G. Speziale, S. Sarkar, and T. B. Gatski, "Modelling the pressure-strain correlation of turbulence: an invariant dynamical systems approach," J. Fluid Mech. 227, 245 (1991), 10.1017/S0022112091000101] developed initially for homogeneous rotating flows in RANS methodology. It is modeled in system rotation using the principle of objectivity. Its modeling is especially extended in a low Reynolds number version for handling non-homogeneous wall flows. The present subfilter scale stress model is then used for simulating large scales of rotating turbulent flows on coarse and medium grids at moderate, medium, and high rotation rates. It is also applied to perform a simulation on a refined grid at the highest rotation rate. As a result, it is found that the PITM simulations reproduce fairly well the mean features of rotating channel flows allowing a drastic reduction of the computational cost in comparison with the one required for performing highly resolved LES. Overall, the mean velocities and turbulent stresses are found to be in good agreement with the data of highly resolved LES [E. Lamballais, O. Metais, and M. Lesieur, "Spectral-dynamic model for large-eddy simulations of turbulent rotating flow," Theor. Comput. Fluid Dyn. 12, 149 (1998)]. The anisotropy character of the flow resulting from the rotation effects is also well reproduced in accordance with the reference data. Moreover, the PITM2 simulations performed on the medium grid predict qualitatively well the three-dimensional flow structures as well as the longitudinal roll cells which appear in the anticyclonic wall-region of the rotating flows. As expected, the PITM3 simulation performed on the refined grid reverts to highly resolved LES. The present model based on a rational formulation appears to be an interesting candidate for tackling a large variety of engineering flows subjected to rotation.

  8. Comparison of Two Grid Refinement Approaches for High Resolution Regional Climate Modeling: MPAS vs WRF

    NASA Astrophysics Data System (ADS)

    Leung, L.; Hagos, S. M.; Rauscher, S.; Ringler, T.

    2012-12-01

    This study compares two grid refinement approaches using global variable resolution model and nesting for high-resolution regional climate modeling. The global variable resolution model, Model for Prediction Across Scales (MPAS), and the limited area model, Weather Research and Forecasting (WRF) model, are compared in an idealized aqua-planet context with a focus on the spatial and temporal characteristics of tropical precipitation simulated by the models using the same physics package from the Community Atmosphere Model (CAM4). For MPAS, simulations have been performed with a quasi-uniform resolution global domain at coarse (1 degree) and high (0.25 degree) resolution, and a variable resolution domain with a high-resolution region at 0.25 degree configured inside a coarse resolution global domain at 1 degree resolution. Similarly, WRF has been configured to run on a coarse (1 degree) and high (0.25 degree) resolution tropical channel domain as well as a nested domain with a high-resolution region at 0.25 degree nested two-way inside the coarse resolution (1 degree) tropical channel. The variable resolution or nested simulations are compared against the high-resolution simulations that serve as virtual reality. Both MPAS and WRF simulate 20-day Kelvin waves propagating through the high-resolution domains fairly unaffected by the change in resolution. In addition, both models respond to increased resolution with enhanced precipitation. Grid refinement induces zonal asymmetry in precipitation (heating), accompanied by zonal anomalous Walker like circulations and standing Rossby wave signals. However, there are important differences between the anomalous patterns in MPAS and WRF due to differences in the grid refinement approaches and sensitivity of model physics to grid resolution. This study highlights the need for "scale aware" parameterizations in variable resolution and nested regional models.

  9. Output-Adaptive Tetrahedral Cut-Cell Validation for Sonic Boom Prediction

    NASA Technical Reports Server (NTRS)

    Park, Michael A.; Darmofal, David L.

    2008-01-01

    A cut-cell approach to Computational Fluid Dynamics (CFD) that utilizes the median dual of a tetrahedral background grid is described. The discrete adjoint is also calculated, which permits adaptation based on improving the calculation of a specified output (off-body pressure signature) in supersonic inviscid flow. These predicted signatures are compared to wind tunnel measurements on and off the configuration centerline 10 body lengths below the model to validate the method for sonic boom prediction. Accurate mid-field sonic boom pressure signatures are calculated with the Euler equations without the use of hybrid grid or signature propagation methods. Highly-refined, shock-aligned anisotropic grids were produced by this method from coarse isotropic grids created without prior knowledge of shock locations. A heuristic reconstruction limiter provided stable flow and adjoint solution schemes while producing similar signatures to Barth-Jespersen and Venkatakrishnan limiters. The use of cut-cells with an output-based adaptive scheme completely automated this accurate prediction capability after a triangular mesh is generated for the cut surface. This automation drastically reduces the manual intervention required by existing methods.

  10. Effect of particle size distribution on the hydrodynamics of dense CFB risers

    NASA Astrophysics Data System (ADS)

    Bakshi, Akhilesh; Khanna, Samir; Venuturumilli, Raj; Altantzis, Christos; Ghoniem, Ahmed

    2015-11-01

    Circulating Fluidized Beds (CFB) are favorable in the energy and chemical industries, due to their high efficiency. While accurate hydrodynamic modeling is essential for optimizing performance, most CFB riser simulations are performed assuming equally-sized solid particles, owing to limited computational resources. Even though this approach yields reasonable predictions, it neglects commonly observed experimental findings suggesting the strong effect of particle size distribution (psd) on the hydrodynamics and chemical conversion. Thus, this study is focused on the inclusion of discrete particle sizes to represent the psd and its effect on fluidization via 2D numerical simulations. The particle sizes and corresponding mass fluxes are obtained using experimental data in dense CFB riser while the modeling framework is described in Bakshi et al 2015. Simulations are conducted at two scales: (a) fine grid to resolve heterogeneous structures and (b) coarse grid using EMMS sub-grid modifications. Using suitable metrics which capture bed dynamics, this study provides insights into segregation and mixing of particles as well as highlights need for improved sub-grid models.

  11. Convergence of Defect-Correction and Multigrid Iterations for Inviscid Flows

    NASA Technical Reports Server (NTRS)

    Diskin, Boris; Thomas, James L.

    2011-01-01

    Convergence of multigrid and defect-correction iterations is comprehensively studied within different incompressible and compressible inviscid regimes on high-density grids. Good smoothing properties of the defect-correction relaxation have been shown using both a modified Fourier analysis and a more general idealized-coarse-grid analysis. Single-grid defect correction alone has some slowly converging iterations on grids of medium density. The convergence is especially slow for near-sonic flows and for very low compressible Mach numbers. Additionally, the fast asymptotic convergence seen on medium density grids deteriorates on high-density grids. Certain downstream-boundary modes are very slowly damped on high-density grids. Multigrid scheme accelerates convergence of the slow defect-correction iterations to the extent determined by the coarse-grid correction. The two-level asymptotic convergence rates are stable and significantly below one in most of the regions but slow convergence is noted for near-sonic and very low-Mach compressible flows. Multigrid solver has been applied to the NACA 0012 airfoil and to different flow regimes, such as near-tangency and stagnation. Certain convergence difficulties have been encountered within stagnation regions. Nonetheless, for the airfoil flow, with a sharp trailing-edge, residuals were fast converging for a subcritical flow on a sequence of grids. For supercritical flow, residuals converged slower on some intermediate grids than on the finest grid or the two coarsest grids.

  12. A new vertical grid nesting capability in the Weather Research and Forecasting (WRF) Model

    DOE PAGES

    Daniels, Megan H.; Lundquist, Katherine A.; Mirocha, Jeffrey D.; ...

    2016-09-16

    Mesoscale atmospheric models are increasingly used for high-resolution (<3 km) simulations to better resolve smaller-scale flow details. Increased resolution is achieved using mesh refinement via grid nesting, a procedure where multiple computational domains are integrated either concurrently or in series. A constraint in the concurrent nesting framework offered by the Weather Research and Forecasting (WRF) Model is that mesh refinement is restricted to the horizontal dimensions. This limitation prevents control of the grid aspect ratio, leading to numerical errors due to poor grid quality and preventing grid optimization. Here, a procedure permitting vertical nesting for one-way concurrent simulation is developedmore » and validated through idealized cases. The benefits of vertical nesting are demonstrated using both mesoscale and large-eddy simulations (LES). Mesoscale simulations of the Terrain-Induced Rotor Experiment (T-REX) show that vertical grid nesting can alleviate numerical errors due to large aspect ratios on coarse grids, while allowing for higher vertical resolution on fine grids. Furthermore, the coarsening of the parent domain does not result in a significant loss of accuracy on the nested domain. LES of neutral boundary layer flow shows that, by permitting optimal grid aspect ratios on both parent and nested domains, use of vertical nesting yields improved agreement with the theoretical logarithmic velocity profile on both domains. Lastly, vertical grid nesting in WRF opens the path forward for multiscale simulations, allowing more accurate simulations spanning a wider range of scales than previously possible.« less

  13. A new vertical grid nesting capability in the Weather Research and Forecasting (WRF) Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daniels, Megan H.; Lundquist, Katherine A.; Mirocha, Jeffrey D.

    Mesoscale atmospheric models are increasingly used for high-resolution (<3 km) simulations to better resolve smaller-scale flow details. Increased resolution is achieved using mesh refinement via grid nesting, a procedure where multiple computational domains are integrated either concurrently or in series. A constraint in the concurrent nesting framework offered by the Weather Research and Forecasting (WRF) Model is that mesh refinement is restricted to the horizontal dimensions. This limitation prevents control of the grid aspect ratio, leading to numerical errors due to poor grid quality and preventing grid optimization. Here, a procedure permitting vertical nesting for one-way concurrent simulation is developedmore » and validated through idealized cases. The benefits of vertical nesting are demonstrated using both mesoscale and large-eddy simulations (LES). Mesoscale simulations of the Terrain-Induced Rotor Experiment (T-REX) show that vertical grid nesting can alleviate numerical errors due to large aspect ratios on coarse grids, while allowing for higher vertical resolution on fine grids. Furthermore, the coarsening of the parent domain does not result in a significant loss of accuracy on the nested domain. LES of neutral boundary layer flow shows that, by permitting optimal grid aspect ratios on both parent and nested domains, use of vertical nesting yields improved agreement with the theoretical logarithmic velocity profile on both domains. Lastly, vertical grid nesting in WRF opens the path forward for multiscale simulations, allowing more accurate simulations spanning a wider range of scales than previously possible.« less

  14. Large-Scale Parallel Viscous Flow Computations using an Unstructured Multigrid Algorithm

    NASA Technical Reports Server (NTRS)

    Mavriplis, Dimitri J.

    1999-01-01

    The development and testing of a parallel unstructured agglomeration multigrid algorithm for steady-state aerodynamic flows is discussed. The agglomeration multigrid strategy uses a graph algorithm to construct the coarse multigrid levels from the given fine grid, similar to an algebraic multigrid approach, but operates directly on the non-linear system using the FAS (Full Approximation Scheme) approach. The scalability and convergence rate of the multigrid algorithm are examined on the SGI Origin 2000 and the Cray T3E. An argument is given which indicates that the asymptotic scalability of the multigrid algorithm should be similar to that of its underlying single grid smoothing scheme. For medium size problems involving several million grid points, near perfect scalability is obtained for the single grid algorithm, while only a slight drop-off in parallel efficiency is observed for the multigrid V- and W-cycles, using up to 128 processors on the SGI Origin 2000, and up to 512 processors on the Cray T3E. For a large problem using 25 million grid points, good scalability is observed for the multigrid algorithm using up to 1450 processors on a Cray T3E, even when the coarsest grid level contains fewer points than the total number of processors.

  15. Development and evaluation of a local grid refinement method for block-centered finite-difference groundwater models using shared nodes

    USGS Publications Warehouse

    Mehl, S.; Hill, M.C.

    2002-01-01

    A new method of local grid refinement for two-dimensional block-centered finite-difference meshes is presented in the context of steady-state groundwater-flow modeling. The method uses an iteration-based feedback with shared nodes to couple two separate grids. The new method is evaluated by comparison with results using a uniform fine mesh, a variably spaced mesh, and a traditional method of local grid refinement without a feedback. Results indicate: (1) The new method exhibits quadratic convergence for homogeneous systems and convergence equivalent to uniform-grid refinement for heterogeneous systems. (2) Coupling the coarse grid with the refined grid in a numerically rigorous way allowed for improvement in the coarse-grid results. (3) For heterogeneous systems, commonly used linear interpolation of heads from the large model onto the boundary of the refined model produced heads that are inconsistent with the physics of the flow field. (4) The traditional method works well in situations where the better resolution of the locally refined grid has little influence on the overall flow-system dynamics, but if this is not true, lack of a feedback mechanism produced errors in head up to 3.6% and errors in cell-to-cell flows up to 25%. ?? 2002 Elsevier Science Ltd. All rights reserved.

  16. Conservative treatment of boundary interfaces for overlaid grids and multi-level grid adaptations

    NASA Technical Reports Server (NTRS)

    Moon, Young J.; Liou, Meng-Sing

    1989-01-01

    Conservative algorithms for boundary interfaces of overlaid grids are presented. The basic method is zeroth order, and is extended to a higher order method using interpolation and subcell decomposition. The present method, strictly based on a conservative constraint, is tested with overlaid grids for various applications of unsteady and steady supersonic inviscid flows with strong shock waves. The algorithm is also applied to a multi-level grid adaptation in which the next level finer grid is overlaid on the coarse base grid with an arbitrary orientation.

  17. Fluctuating hydrodynamics for multiscale modeling and simulation: energy and heat transfer in molecular fluids.

    PubMed

    Shang, Barry Z; Voulgarakis, Nikolaos K; Chu, Jhih-Wei

    2012-07-28

    This work illustrates that fluctuating hydrodynamics (FHD) simulations can be used to capture the thermodynamic and hydrodynamic responses of molecular fluids at the nanoscale, including those associated with energy and heat transfer. Using all-atom molecular dynamics (MD) trajectories as the reference data, the atomistic coordinates of each snapshot are mapped onto mass, momentum, and energy density fields on Eulerian grids to generate a corresponding field trajectory. The molecular length-scale associated with finite molecule size is explicitly imposed during this coarse-graining by requiring that the variances of density fields scale inversely with the grid volume. From the fluctuations of field variables, the response functions and transport coefficients encoded in the all-atom MD trajectory are computed. By using the extracted fluid properties in FHD simulations, we show that the fluctuations and relaxation of hydrodynamic fields quantitatively match with those observed in the reference all-atom MD trajectory, hence establishing compatibility between the atomistic and field representations. We also show that inclusion of energy transfer in the FHD equations can more accurately capture the thermodynamic and hydrodynamic responses of molecular fluids. The results indicate that the proposed MD-to-FHD mapping with explicit consideration of finite molecule size provides a robust framework for coarse-graining the solution phase of complex molecular systems.

  18. GRAPE- TWO-DIMENSIONAL GRIDS ABOUT AIRFOILS AND OTHER SHAPES BY THE USE OF POISSON'S EQUATION

    NASA Technical Reports Server (NTRS)

    Sorenson, R. L.

    1994-01-01

    The ability to treat arbitrary boundary shapes is one of the most desirable characteristics of a method for generating grids, including those about airfoils. In a grid used for computing aerodynamic flow over an airfoil, or any other body shape, the surface of the body is usually treated as an inner boundary and often cannot be easily represented as an analytic function. The GRAPE computer program was developed to incorporate a method for generating two-dimensional finite-difference grids about airfoils and other shapes by the use of the Poisson differential equation. GRAPE can be used with any boundary shape, even one specified by tabulated points and including a limited number of sharp corners. The GRAPE program has been developed to be numerically stable and computationally fast. GRAPE can provide the aerodynamic analyst with an efficient and consistent means of grid generation. The GRAPE procedure generates a grid between an inner and an outer boundary by utilizing an iterative procedure to solve the Poisson differential equation subject to geometrical restraints. In this method, the inhomogeneous terms of the equation are automatically chosen such that two important effects are imposed on the grid. The first effect is control of the spacing between mesh points along mesh lines intersecting the boundaries. The second effect is control of the angles with which mesh lines intersect the boundaries. Along with the iterative solution to Poisson's equation, a technique of coarse-fine sequencing is employed to accelerate numerical convergence. GRAPE program control cards and input data are entered via the NAMELIST feature. Each variable has a default value such that user supplied data is kept to a minimum. Basic input data consists of the boundary specification, mesh point spacings on the boundaries, and mesh line angles at the boundaries. Output consists of a dataset containing the grid data and, if requested, a plot of the generated mesh. The GRAPE program is written in FORTRAN IV for batch execution and has been implemented on a CDC 6000 series computer with a central memory requirement of approximately 135K (octal) of 60 bit words. For plotted output the commercially available DISSPLA graphics software package is required. The GRAPE program was developed in 1980.

  19. A new approach to flow simulation in highly heterogeneous porous media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rame, M.; Killough, J.E.

    In this paper, applications are presented for a new numerical method - operator splittings on multiple grids (OSMG) - devised for simulations in heterogeneous porous media. A coarse-grid, finite-element pressure solver is interfaced with a fine-grid timestepping scheme. The CPU time for the pressure solver is greatly reduced and concentration fronts have minimal numerical dispersion.

  20. A Test of the Validity of Inviscid Wall-Modeled LES

    NASA Astrophysics Data System (ADS)

    Redman, Andrew; Craft, Kyle; Aikens, Kurt

    2015-11-01

    Computational expense is one of the main deterrents to more widespread use of large eddy simulations (LES). As such, it is important to reduce computational costs whenever possible. In this vein, it may be reasonable to assume that high Reynolds number flows with turbulent boundary layers are inviscid when using a wall model. This assumption relies on the grid being too coarse to resolve either the viscous length scales in the outer flow or those near walls. We are not aware of other studies that have suggested or examined the validity of this approach. The inviscid wall-modeled LES assumption is tested here for supersonic flow over a flat plate on three different grids. Inviscid and viscous results are compared to those of another wall-modeled LES as well as experimental data - the results appear promising. Furthermore, the inviscid assumption reduces simulation costs by about 25% and 39% for supersonic and subsonic flows, respectively, with the current LES application. Recommendations are presented as are future areas of research. This work used the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation grant number ACI-1053575. Computational resources on TACC Stampede were provided under XSEDE allocation ENG150001.

  1. Summary of the Third AIAA CFD Drag Prediction Workshop

    NASA Technical Reports Server (NTRS)

    Vassberg, John C.; Tinoco, Edward N.; Mani, Mori; Brodersen, Olaf P.; Eisfeld, Bernhard; Wahls, Richard A.; Morrison, Joseph H.; Zickuhr, Tom; Laflin, Kelly R.; Mavriplis, DImitri J.

    2007-01-01

    The workshop focused on the prediction of both absolute and differential drag levels for wing-body and wing-al;one configurations of that are representative of transonic transport aircraft. The baseline DLR-F6 wing-body geometry, previously utilized in DPW-II, is also augmented with a side-body fairing to help reduce the complexity of the flow physics in the wing-body juncture region. In addition, two new wing-alone geometries have been developed for the DPW-II. Numerical calculations are performed using industry-relevant test cases that include lift-specific and fixed-alpha flight conditions, as well as full drag polars. Drag, lift, and pitching moment predictions from previous Reynolds-Averaged Navier-Stokes computational fluid Dynamics Methods are presented, focused on fully-turbulent flows. Solutions are performed on structured, unstructured, and hybrid grid systems. The structured grid sets include point-matched multi-block meshes and over-set grid systems. The unstructured and hybrid grid sets are comprised of tetrahedral, pyramid, and prismatic elements. Effort was made to provide a high-quality and parametrically consistent family of grids for each grid type about each configuration under study. The wing-body families are comprised of a coarse, medium, and fine grid, while the wing-alone families also include an extra-fine mesh. These mesh sequences are utilized to help determine how the provided flow solutions fair with respect to asymptotic grid convergence, and are used to estimate an absolute drag of each configuration.

  2. Towards the computation of time-periodic inertial range dynamics

    NASA Astrophysics Data System (ADS)

    van Veen, L.; Vela-Martín, A.; Kawahara, G.

    2018-04-01

    We explore the possibility of computing simple invariant solutions, like travelling waves or periodic orbits, in Large Eddy Simulation (LES) on a periodic domain with constant external forcing. The absence of material boundaries and the simple forcing mechanism make this system a comparatively simple target for the study of turbulent dynamics through invariant solutions. We show, that in spite of the application of eddy viscosity the computations are still rather challenging and must be performed on GPU cards rather than conventional coupled CPUs. We investigate the onset of turbulence in this system by means of bifurcation analysis, and present a long-period, large-amplitude unstable periodic orbit that is filtered from a turbulent time series. Although this orbit is computed on a coarse grid, with only a small separation between the integral scale and the LES filter length, the periodic dynamics seem to capture a regeneration process of the large-scale vortices.

  3. An approach to secure weather and climate models against hardware faults

    NASA Astrophysics Data System (ADS)

    Düben, Peter D.; Dawson, Andrew

    2017-03-01

    Enabling Earth System models to run efficiently on future supercomputers is a serious challenge for model development. Many publications study efficient parallelization to allow better scaling of performance on an increasing number of computing cores. However, one of the most alarming threats for weather and climate predictions on future high performance computing architectures is widely ignored: the presence of hardware faults that will frequently hit large applications as we approach exascale supercomputing. Changes in the structure of weather and climate models that would allow them to be resilient against hardware faults are hardly discussed in the model development community. In this paper, we present an approach to secure the dynamical core of weather and climate models against hardware faults using a backup system that stores coarse resolution copies of prognostic variables. Frequent checks of the model fields on the backup grid allow the detection of severe hardware faults, and prognostic variables that are changed by hardware faults on the model grid can be restored from the backup grid to continue model simulations with no significant delay. To justify the approach, we perform model simulations with a C-grid shallow water model in the presence of frequent hardware faults. As long as the backup system is used, simulations do not crash and a high level of model quality can be maintained. The overhead due to the backup system is reasonable and additional storage requirements are small. Runtime is increased by only 13 % for the shallow water model.

  4. An approach to secure weather and climate models against hardware faults

    NASA Astrophysics Data System (ADS)

    Düben, Peter; Dawson, Andrew

    2017-04-01

    Enabling Earth System models to run efficiently on future supercomputers is a serious challenge for model development. Many publications study efficient parallelisation to allow better scaling of performance on an increasing number of computing cores. However, one of the most alarming threats for weather and climate predictions on future high performance computing architectures is widely ignored: the presence of hardware faults that will frequently hit large applications as we approach exascale supercomputing. Changes in the structure of weather and climate models that would allow them to be resilient against hardware faults are hardly discussed in the model development community. We present an approach to secure the dynamical core of weather and climate models against hardware faults using a backup system that stores coarse resolution copies of prognostic variables. Frequent checks of the model fields on the backup grid allow the detection of severe hardware faults, and prognostic variables that are changed by hardware faults on the model grid can be restored from the backup grid to continue model simulations with no significant delay. To justify the approach, we perform simulations with a C-grid shallow water model in the presence of frequent hardware faults. As long as the backup system is used, simulations do not crash and a high level of model quality can be maintained. The overhead due to the backup system is reasonable and additional storage requirements are small. Runtime is increased by only 13% for the shallow water model.

  5. Divide-and-conquer density functional theory on hierarchical real-space grids: Parallel implementation and applications

    NASA Astrophysics Data System (ADS)

    Shimojo, Fuyuki; Kalia, Rajiv K.; Nakano, Aiichiro; Vashishta, Priya

    2008-02-01

    A linear-scaling algorithm based on a divide-and-conquer (DC) scheme has been designed to perform large-scale molecular-dynamics (MD) simulations, in which interatomic forces are computed quantum mechanically in the framework of the density functional theory (DFT). Electronic wave functions are represented on a real-space grid, which is augmented with a coarse multigrid to accelerate the convergence of iterative solutions and with adaptive fine grids around atoms to accurately calculate ionic pseudopotentials. Spatial decomposition is employed to implement the hierarchical-grid DC-DFT algorithm on massively parallel computers. The largest benchmark tests include 11.8×106 -atom ( 1.04×1012 electronic degrees of freedom) calculation on 131 072 IBM BlueGene/L processors. The DC-DFT algorithm has well-defined parameters to control the data locality, with which the solutions converge rapidly. Also, the total energy is well conserved during the MD simulation. We perform first-principles MD simulations based on the DC-DFT algorithm, in which large system sizes bring in excellent agreement with x-ray scattering measurements for the pair-distribution function of liquid Rb and allow the description of low-frequency vibrational modes of graphene. The band gap of a CdSe nanorod calculated by the DC-DFT algorithm agrees well with the available conventional DFT results. With the DC-DFT algorithm, the band gap is calculated for larger system sizes until the result reaches the asymptotic value.

  6. Large-eddy simulations with wall models

    NASA Technical Reports Server (NTRS)

    Cabot, W.

    1995-01-01

    The near-wall viscous and buffer regions of wall-bounded flows generally require a large expenditure of computational resources to be resolved adequately, even in large-eddy simulation (LES). Often as much as 50% of the grid points in a computational domain are devoted to these regions. The dense grids that this implies also generally require small time steps for numerical stability and/or accuracy. It is commonly assumed that the inner wall layers are near equilibrium, so that the standard logarithmic law can be applied as the boundary condition for the wall stress well away from the wall, for example, in the logarithmic region, obviating the need to expend large amounts of grid points and computational time in this region. This approach is commonly employed in LES of planetary boundary layers, and it has also been used for some simple engineering flows. In order to calculate accurately a wall-bounded flow with coarse wall resolution, one requires the wall stress as a boundary condition. The goal of this work is to determine the extent to which equilibrium and boundary layer assumptions are valid in the near-wall regions, to develop models for the inner layer based on such assumptions, and to test these modeling ideas in some relatively simple flows with different pressure gradients, such as channel flow and flow over a backward-facing step. Ultimately, models that perform adequately in these situations will be applied to more complex flow configurations, such as an airfoil.

  7. Deriving flow directions for coarse-resolution (1-4 km) gridded hydrologic modeling

    NASA Astrophysics Data System (ADS)

    Reed, Seann M.

    2003-09-01

    The National Weather Service Hydrology Laboratory (NWS-HL) is currently testing a grid-based distributed hydrologic model at a resolution (4 km) commensurate with operational, radar-based precipitation products. To implement distributed routing algorithms in this framework, a flow direction must be assigned to each model cell. A new algorithm, referred to as cell outlet tracing with an area threshold (COTAT) has been developed to automatically, accurately, and efficiently assign flow directions to any coarse-resolution grid cells using information from any higher-resolution digital elevation model. Although similar to previously published algorithms, this approach offers some advantages. Use of an area threshold allows more control over the tendency for producing diagonal flow directions. Analyses of results at different output resolutions ranging from 300 m to 4000 m indicate that it is possible to choose an area threshold that will produce minimal differences in average network flow lengths across this range of scales. Flow direction grids at a 4 km resolution have been produced for the conterminous United States.

  8. Multigrid method for stability problems

    NASA Technical Reports Server (NTRS)

    Ta'asan, Shlomo

    1988-01-01

    The problem of calculating the stability of steady state solutions of differential equations is addressed. Leading eigenvalues of large matrices that arise from discretization are calculated, and an efficient multigrid method for solving these problems is presented. The resulting grid functions are used as initial approximations for appropriate eigenvalue problems. The method employs local relaxation on all levels together with a global change on the coarsest level only, which is designed to separate the different eigenfunctions as well as to update their corresponding eigenvalues. Coarsening is done using the FAS formulation in a nonstandard way in which the right-hand side of the coarse grid equations involves unknown parameters to be solved on the coarse grid. This leads to a new multigrid method for calculating the eigenvalues of symmetric problems. Numerical experiments with a model problem are presented which demonstrate the effectiveness of the method.

  9. Drag Prediction for the NASA CRM Wing-Body-Tail Using CFL3D and OVERFLOW on an Overset Mesh

    NASA Technical Reports Server (NTRS)

    Sclafani, Anthony J.; DeHaan, Mark A.; Vassberg, John C.; Rumsey, Christopher L.; Pulliam, Thomas H.

    2010-01-01

    In response to the fourth AIAA CFD Drag Prediction Workshop (DPW-IV), the NASA Common Research Model (CRM) wing-body and wing-body-tail configurations are analyzed using the Reynolds-averaged Navier-Stokes (RANS) flow solvers CFL3D and OVERFLOW. Two families of structured, overset grids are built for DPW-IV. Grid Family 1 (GF1) consists of a coarse (7.2 million), medium (16.9 million), fine (56.5 million), and extra-fine (189.4 million) mesh. Grid Family 2 (GF2) is an extension of the first and includes a superfine (714.2 million) and an ultra-fine (2.4 billion) mesh. The medium grid anchors both families with an established build process for accurate cruise drag prediction studies. This base mesh is coarsened and enhanced to form a set of parametrically equivalent grids that increase in size by a factor of roughly 3.4 from one level to the next denser level. Both CFL3D and OVERFLOW are run on GF1 using a consistent numerical approach. Additional OVERFLOW runs are made to study effects of differencing scheme and turbulence model on GF1 and to obtain results for GF2. All CFD results are post-processed using Richardson extrapolation, and approximate grid-converged values of drag are compared. The medium grid is also used to compute a trimmed drag polar for both codes.

  10. Downscaling soil moisture over regions that include multiple coarse-resolution grid cells

    USDA-ARS?s Scientific Manuscript database

    Many applications require soil moisture estimates over large spatial extents (30-300 km) and at fine-resolutions (10-30 m). Remote-sensing methods can provide soil moisture estimates over very large spatial extents (continental to global) at coarse resolutions (10-40 km), but their output must be d...

  11. Reducing numerical costs for core wide nuclear reactor CFD simulations by the Coarse-Grid-CFD

    NASA Astrophysics Data System (ADS)

    Viellieber, Mathias; Class, Andreas G.

    2013-11-01

    Traditionally complete nuclear reactor core simulations are performed with subchannel analysis codes, that rely on experimental and empirical input. The Coarse-Grid-CFD (CGCFD) intends to replace the experimental or empirical input with CFD data. The reactor core consists of repetitive flow patterns, allowing the general approach of creating a parametrized model for one segment and composing many of those to obtain the entire reactor simulation. The method is based on a detailed and well-resolved CFD simulation of one representative segment. From this simulation we extract so-called parametrized volumetric forces which close, an otherwise strongly under resolved, coarsely-meshed model of a complete reactor setup. While the formulation so far accounts for forces created internally in the fluid others e.g. obstruction and flow deviation through spacers and wire wraps, still need to be accounted for if the geometric details are not represented in the coarse mesh. These are modelled with an Anisotropic Porosity Formulation (APF). This work focuses on the application of the CGCFD to a complete reactor core setup and the accomplishment of the parametrization of the volumetric forces.

  12. Interior Fluid Dynamics of Liquid-Filled Projectiles

    DTIC Science & Technology

    1989-12-01

    the Sandia code. The previous codes are primarily based on finite-difference approximations with relatively coarse grid and were designed without...exploits Chorin’s method of artificial compressibility. The steady solution at 11 X 24 X 21 grid points in r, 0, z-direction is obtained by integrating...differences in radial and axial direction and pseudoepectral differencing in the azimuthal direction. Nonuniform grids are introduced for increased

  13. Bridging the scales in atmospheric composition simulations using a nudging technique

    NASA Astrophysics Data System (ADS)

    D'Isidoro, Massimo; Maurizi, Alberto; Russo, Felicita; Tampieri, Francesco

    2010-05-01

    Studying the interaction between climate and anthropogenic activities, specifically those concentrated in megacities/hot spots, requires the description of processes in a very wide range of scales from local, where anthropogenic emissions are concentrated to global where we are interested to study the impact of these sources. The description of all the processes at all scales within the same numerical implementation is not feasible because of limited computer resources. Therefore, different phenomena are studied by means of different numerical models that can cover different range of scales. The exchange of information from small to large scale is highly non-trivial though of high interest. In fact uncertainties in large scale simulations are expected to receive large contribution from the most polluted areas where the highly inhomogeneous distribution of sources connected to the intrinsic non-linearity of the processes involved can generate non negligible departures between coarse and fine scale simulations. In this work a new method is proposed and investigated in a case study (August 2009) using the BOLCHEM model. Monthly simulations at coarse (0.5° European domain, run A) and fine (0.1° Central Mediterranean domain, run B) horizontal resolution are performed using the coarse resolution as boundary condition for the fine one. Then another coarse resolution run (run C) is performed, in which the high resolution fields remapped on to the coarse grid are used to nudge the concentrations on the Po Valley area. The nudging is applied to all gas and aerosol species of BOLCHEM. Averaged concentrations and variances over Po Valley and other selected areas for O3 and PM are computed. It is observed that although the variance of run B is markedly larger than that of run A, the variance of run C is smaller because the remapping procedure removes large portion of variance from run B fields. Mean concentrations show some differences depending on species: in general mean values of run C lie between run A and run B. A propagation of the signal outside the nudging region is observed, and is evaluated in terms of differences between coarse resolution (with and without nudging) and fine resolution simulations.

  14. Multigrid direct numerical simulation of the whole process of flow transition in 3-D boundary layers

    NASA Technical Reports Server (NTRS)

    Liu, Chaoqun; Liu, Zhining

    1993-01-01

    A new technology was developed in this study which provides a successful numerical simulation of the whole process of flow transition in 3-D boundary layers, including linear growth, secondary instability, breakdown, and transition at relatively low CPU cost. Most other spatial numerical simulations require high CPU cost and blow up at the stage of flow breakdown. A fourth-order finite difference scheme on stretched and staggered grids, a fully implicit time marching technique, a semi-coarsening multigrid based on the so-called approximate line-box relaxation, and a buffer domain for the outflow boundary conditions were all used for high-order accuracy, good stability, and fast convergence. A new fine-coarse-fine grid mapping technique was developed to keep the code running after the laminar flow breaks down. The computational results are in good agreement with linear stability theory, secondary instability theory, and some experiments. The cost for a typical case with 162 x 34 x 34 grid is around 2 CRAY-YMP CPU hours for 10 T-S periods.

  15. Development and application of a volume penalization immersed boundary method for the computation of blood flow and shear stresses in cerebral vessels and aneurysms.

    PubMed

    Mikhal, Julia; Geurts, Bernard J

    2013-12-01

    A volume-penalizing immersed boundary method is presented for the simulation of laminar incompressible flow inside geometrically complex blood vessels in the human brain. We concentrate on cerebral aneurysms and compute flow in curved brain vessels with and without spherical aneurysm cavities attached. We approximate blood as an incompressible Newtonian fluid and simulate the flow with the use of a skew-symmetric finite-volume discretization and explicit time-stepping. A key element of the immersed boundary method is the so-called masking function. This is a binary function with which we identify at any location in the domain whether it is 'solid' or 'fluid', allowing to represent objects immersed in a Cartesian grid. We compare three definitions of the masking function for geometries that are non-aligned with the grid. In each case a 'staircase' representation is used in which a grid cell is either 'solid' or 'fluid'. Reliable findings are obtained with our immersed boundary method, even at fairly coarse meshes with about 16 grid cells across a velocity profile. The validation of the immersed boundary method is provided on the basis of classical Poiseuille flow in a cylindrical pipe. We obtain first order convergence for the velocity and the shear stress, reflecting the fact that in our approach the solid-fluid interface is localized with an accuracy on the order of a grid cell. Simulations for curved vessels and aneurysms are done for different flow regimes, characterized by different values of the Reynolds number (Re). The validation is performed for laminar flow at Re = 250, while the flow in more complex geometries is studied at Re = 100 and Re = 250, as suggested by physiological conditions pertaining to flow of blood in the circle of Willis.

  16. Multigrid method for stability problems

    NASA Technical Reports Server (NTRS)

    Taasan, Shlomo

    1988-01-01

    The problem of calculating the stability of steady state solutions of differential equations is treated. Leading eigenvalues (i.e., having maximal real part) of large matrices that arise from discretization are to be calculated. An efficient multigrid method for solving these problems is presented. The method begins by obtaining an initial approximation for the dominant subspace on a coarse level using a damped Jacobi relaxation. This proceeds until enough accuracy for the dominant subspace has been obtained. The resulting grid functions are then used as an initial approximation for appropriate eigenvalue problems. These problems are being solved first on coarse levels, followed by refinement until a desired accuracy for the eigenvalues has been achieved. The method employs local relaxation on all levels together with a global change on the coarsest level only, which is designed to separate the different eigenfunctions as well as to update their corresponding eigenvalues. Coarsening is done using the FAS formulation in a non-standard way in which the right hand side of the coarse grid equations involves unknown parameters to be solved for on the coarse grid. This in particular leads to a new multigrid method for calculating the eigenvalues of symmetric problems. Numerical experiments with a model problem demonstrate the effectiveness of the method proposed. Using an FMG algorithm a solution to the level of discretization errors is obtained in just a few work units (less than 10), where a work unit is the work involved in one Jacobi relization on the finest level.

  17. A parallel second-order adaptive mesh algorithm for incompressible flow in porous media.

    PubMed

    Pau, George S H; Almgren, Ann S; Bell, John B; Lijewski, Michael J

    2009-11-28

    In this paper, we present a second-order accurate adaptive algorithm for solving multi-phase, incompressible flow in porous media. We assume a multi-phase form of Darcy's law with relative permeabilities given as a function of the phase saturation. The remaining equations express conservation of mass for the fluid constituents. In this setting, the total velocity, defined to be the sum of the phase velocities, is divergence free. The basic integration method is based on a total-velocity splitting approach in which we solve a second-order elliptic pressure equation to obtain a total velocity. This total velocity is then used to recast component conservation equations as nonlinear hyperbolic equations. Our approach to adaptive refinement uses a nested hierarchy of logically rectangular grids with simultaneous refinement of the grids in both space and time. The integration algorithm on the grid hierarchy is a recursive procedure in which coarse grids are advanced in time, fine grids are advanced multiple steps to reach the same time as the coarse grids and the data at different levels are then synchronized. The single-grid algorithm is described briefly, but the emphasis here is on the time-stepping procedure for the adaptive hierarchy. Numerical examples are presented to demonstrate the algorithm's accuracy and convergence properties and to illustrate the behaviour of the method.

  18. Isotropic stochastic rotation dynamics

    NASA Astrophysics Data System (ADS)

    Mühlbauer, Sebastian; Strobl, Severin; Pöschel, Thorsten

    2017-12-01

    Stochastic rotation dynamics (SRD) is a widely used method for the mesoscopic modeling of complex fluids, such as colloidal suspensions or multiphase flows. In this method, however, the underlying Cartesian grid defining the coarse-grained interaction volumes induces anisotropy. We propose an isotropic, lattice-free variant of stochastic rotation dynamics, termed iSRD. Instead of Cartesian grid cells, we employ randomly distributed spherical interaction volumes. This eliminates the requirement of a grid shift, which is essential in standard SRD to maintain Galilean invariance. We derive analytical expressions for the viscosity and the diffusion coefficient in relation to the model parameters, which show excellent agreement with the results obtained in iSRD simulations. The proposed algorithm is particularly suitable to model systems bound by walls of complex shape, where the domain cannot be meshed uniformly. The presented approach is not limited to SRD but is applicable to any other mesoscopic method, where particles interact within certain coarse-grained volumes.

  19. Modeled Full-Flight Aircraft Emissions Impacts on Air Quality and Their Sensitivity to Grid Resolution

    NASA Astrophysics Data System (ADS)

    Vennam, L. P.; Vizuete, W.; Talgo, K.; Omary, M.; Binkowski, F. S.; Xing, J.; Mathur, R.; Arunachalam, S.

    2017-12-01

    Aviation is a unique anthropogenic source with four-dimensional varying emissions, peaking at cruise altitudes (9-12 km). Aircraft emission budgets in the upper troposphere lower stratosphere region and their potential impacts on upper troposphere and surface air quality are not well understood. Our key objective is to use chemical transport models (with prescribed meteorology) to predict aircraft emissions impacts on the troposphere and surface air quality. We quantified the importance of including full-flight intercontinental emissions and increased horizontal grid resolution. The full-flight aviation emissions in the Northern Hemisphere contributed 1.3% (mean, min-max: 0.46, 0.3-0.5 ppbv) and 0.2% (0.013, 0.004-0.02 μg/m3) of total O3 and PM2.5 concentrations at the surface, with Europe showing slightly higher impacts (1.9% (O3 0.69, 0.5-0.85 ppbv) and 0.5% (PM2.5 0.03, 0.01-0.05 μg/m3)) than North America (NA) and East Asia. We computed seasonal aviation-attributable mass flux vertical profiles and aviation perturbations along isentropic surfaces to quantify the transport of cruise altitude emissions at the hemispheric scale. The comparison of coarse (108 × 108 km2) and fine (36 × 36 km2) grid resolutions in NA showed 70 times and 13 times higher aviation impacts for O3 and PM2.5 in coarser domain. These differences are mainly due to the inability of the coarse resolution simulation to capture nonlinearities in chemical processes near airport locations and other urban areas. Future global studies quantifying aircraft contributions should consider model resolution and perhaps use finer scales near major aviation source regions.

  20. Modeled Full-Flight Aircraft Emissions Impacts on Air Quality and Their Sensitivity to Grid Resolution

    PubMed Central

    Vennam, L. P.; Vizuete, W.; Talgo, K.; Omary, M.; Binkowski, F. S.; Xing, J.; Mathur, R.; Arunachalam, S.

    2018-01-01

    Aviation is a unique anthropogenic source with four-dimensional varying emissions, peaking at cruise altitudes (9–12 km). Aircraft emission budgets in the upper troposphere lower stratosphere region and their potential impacts on upper troposphere and surface air quality are not well understood. Our key objective is to use chemical transport models (with prescribed meteorology) to predict aircraft emissions impacts on the troposphere and surface air quality. We quantified the importance of including full-flight intercontinental emissions and increased horizontal grid resolution. The full-flight aviation emissions in the Northern Hemisphere contributed ~1.3% (mean, min–max: 0.46, 0.3–0.5 ppbv) and 0.2% (0.013, 0.004–0.02 μg/m3) of total O3 and PM2.5 concentrations at the surface, with Europe showing slightly higher impacts (1.9% (O3 0.69, 0.5–0.85 ppbv) and 0.5% (PM2.5 0.03, 0.01–0.05 μg/m3)) than North America (NA) and East Asia. We computed seasonal aviation-attributable mass flux vertical profiles and aviation perturbations along isentropic surfaces to quantify the transport of cruise altitude emissions at the hemispheric scale. The comparison of coarse (108 × 108 km2) and fine (36 × 36 km2) grid resolutions in NA showed ~70 times and ~13 times higher aviation impacts for O3 and PM2.5 in coarser domain. These differences are mainly due to the inability of the coarse resolution simulation to capture nonlinearities in chemical processes near airport locations and other urban areas. Future global studies quantifying aircraft contributions should consider model resolution and perhaps use finer scales near major aviation source regions. PMID:29707471

  1. Modeled Full-Flight Aircraft Emissions Impacts on Air Quality and Their Sensitivity to Grid Resolution.

    PubMed

    Vennam, L P; Vizuete, W; Talgo, K; Omary, M; Binkowski, F S; Xing, J; Mathur, R; Arunachalam, S

    2017-01-01

    Aviation is a unique anthropogenic source with four-dimensional varying emissions, peaking at cruise altitudes (9-12 km). Aircraft emission budgets in the upper troposphere lower stratosphere region and their potential impacts on upper troposphere and surface air quality are not well understood. Our key objective is to use chemical transport models (with prescribed meteorology) to predict aircraft emissions impacts on the troposphere and surface air quality. We quantified the importance of including full-flight intercontinental emissions and increased horizontal grid resolution. The full-flight aviation emissions in the Northern Hemisphere contributed ~1.3% (mean, min-max: 0.46, 0.3-0.5 ppbv) and 0.2% (0.013, 0.004-0.02 μg/m 3 ) of total O 3 and PM 2.5 concentrations at the surface, with Europe showing slightly higher impacts (1.9% (O 3 0.69, 0.5-0.85 ppbv) and 0.5% (PM 2.5 0.03, 0.01-0.05 μg/m 3 )) than North America (NA) and East Asia. We computed seasonal aviation-attributable mass flux vertical profiles and aviation perturbations along isentropic surfaces to quantify the transport of cruise altitude emissions at the hemispheric scale. The comparison of coarse (108 × 108 km 2 ) and fine (36 × 36 km 2 ) grid resolutions in NA showed ~70 times and ~13 times higher aviation impacts for O 3 and PM 2.5 in coarser domain. These differences are mainly due to the inability of the coarse resolution simulation to capture nonlinearities in chemical processes near airport locations and other urban areas. Future global studies quantifying aircraft contributions should consider model resolution and perhaps use finer scales near major aviation source regions.

  2. The FLAME-slab method for electromagnetic wave scattering in aperiodic slabs

    NASA Astrophysics Data System (ADS)

    Mansha, Shampy; Tsukerman, Igor; Chong, Y. D.

    2017-12-01

    The proposed numerical method, "FLAME-slab," solves electromagnetic wave scattering problems for aperiodic slab structures by exploiting short-range regularities in these structures. The computational procedure involves special difference schemes with high accuracy even on coarse grids. These schemes are based on Trefftz approximations, utilizing functions that locally satisfy the governing differential equations, as is done in the Flexible Local Approximation Method (FLAME). Radiation boundary conditions are implemented via Fourier expansions in the air surrounding the slab. When applied to ensembles of slab structures with identical short-range features, such as amorphous or quasicrystalline lattices, the method is significantly more efficient, both in runtime and in memory consumption, than traditional approaches. This efficiency is due to the fact that the Trefftz functions need to be computed only once for the whole ensemble.

  3. Modeling of shock wave propagation in large amplitude ultrasound.

    PubMed

    Pinton, Gianmarco F; Trahey, Gregg E

    2008-01-01

    The Rankine-Hugoniot relation for shock wave propagation describes the shock speed of a nonlinear wave. This paper investigates time-domain numerical methods that solve the nonlinear parabolic wave equation, or the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation, and the conditions they require to satisfy the Rankine-Hugoniot relation. Two numerical methods commonly used in hyperbolic conservation laws are adapted to solve the KZK equation: Godunov's method and the monotonic upwind scheme for conservation laws (MUSCL). It is shown that they satisfy the Rankine-Hugoniot relation regardless of attenuation. These two methods are compared with the current implicit solution based method. When the attenuation is small, such as in water, the current method requires a degree of grid refinement that is computationally impractical. All three numerical methods are compared in simulations for lithotripters and high intensity focused ultrasound (HIFU) where the attenuation is small compared to the nonlinearity because much of the propagation occurs in water. The simulations are performed on grid sizes that are consistent with present-day computational resources but are not sufficiently refined for the current method to satisfy the Rankine-Hugoniot condition. It is shown that satisfying the Rankine-Hugoniot conditions has a significant impact on metrics relevant to lithotripsy (such as peak pressures) and HIFU (intensity). Because the Godunov and MUSCL schemes satisfy the Rankine-Hugoniot conditions on coarse grids, they are particularly advantageous for three-dimensional simulations.

  4. Continuous data assimilation for downscaling large-footprint soil moisture retrievals

    NASA Astrophysics Data System (ADS)

    Altaf, Muhammad U.; Jana, Raghavendra B.; Hoteit, Ibrahim; McCabe, Matthew F.

    2016-10-01

    Soil moisture is a key component of the hydrologic cycle, influencing processes leading to runoff generation, infiltration and groundwater recharge, evaporation and transpiration. Generally, the measurement scale for soil moisture is found to be different from the modeling scales for these processes. Reducing this mismatch between observation and model scales in necessary for improved hydrological modeling. An innovative approach to downscaling coarse resolution soil moisture data by combining continuous data assimilation and physically based modeling is presented. In this approach, we exploit the features of Continuous Data Assimilation (CDA) which was initially designed for general dissipative dynamical systems and later tested numerically on the incompressible Navier-Stokes equation, and the Benard equation. A nudging term, estimated as the misfit between interpolants of the assimilated coarse grid measurements and the fine grid model solution, is added to the model equations to constrain the model's large scale variability by available measurements. Soil moisture fields generated at a fine resolution by a physically-based vadose zone model (HYDRUS) are subjected to data assimilation conditioned upon coarse resolution observations. This enables nudging of the model outputs towards values that honor the coarse resolution dynamics while still being generated at the fine scale. Results show that the approach is feasible to generate fine scale soil moisture fields across large extents, based on coarse scale observations. Application of this approach is likely in generating fine and intermediate resolution soil moisture fields conditioned on the radiometerbased, coarse resolution products from remote sensing satellites.

  5. Algorithms for parallel flow solvers on message passing architectures

    NASA Technical Reports Server (NTRS)

    Vanderwijngaart, Rob F.

    1995-01-01

    The purpose of this project has been to identify and test suitable technologies for implementation of fluid flow solvers -- possibly coupled with structures and heat equation solvers -- on MIMD parallel computers. In the course of this investigation much attention has been paid to efficient domain decomposition strategies for ADI-type algorithms. Multi-partitioning derives its efficiency from the assignment of several blocks of grid points to each processor in the parallel computer. A coarse-grain parallelism is obtained, and a near-perfect load balance results. In uni-partitioning every processor receives responsibility for exactly one block of grid points instead of several. This necessitates fine-grain pipelined program execution in order to obtain a reasonable load balance. Although fine-grain parallelism is less desirable on many systems, especially high-latency networks of workstations, uni-partition methods are still in wide use in production codes for flow problems. Consequently, it remains important to achieve good efficiency with this technique that has essentially been superseded by multi-partitioning for parallel ADI-type algorithms. Another reason for the concentration on improving the performance of pipeline methods is their applicability in other types of flow solver kernels with stronger implied data dependence. Analytical expressions can be derived for the size of the dynamic load imbalance incurred in traditional pipelines. From these it can be determined what is the optimal first-processor retardation that leads to the shortest total completion time for the pipeline process. Theoretical predictions of pipeline performance with and without optimization match experimental observations on the iPSC/860 very well. Analysis of pipeline performance also highlights the effect of uncareful grid partitioning in flow solvers that employ pipeline algorithms. If grid blocks at boundaries are not at least as large in the wall-normal direction as those immediately adjacent to them, then the first processor in the pipeline will receive a computational load that is less than that of subsequent processors, magnifying the pipeline slowdown effect. Extra compensation is needed for grid boundary effects, even if all grid blocks are equally sized.

  6. Subgrid Modeling Geomorphological and Ecological Processes in Salt Marsh Evolution

    NASA Astrophysics Data System (ADS)

    Shi, F.; Kirby, J. T., Jr.; Wu, G.; Abdolali, A.; Deb, M.

    2016-12-01

    Numerical modeling a long-term evolution of salt marshes is challenging because it requires an extensive use of computational resources. Due to the presence of narrow tidal creeks, variations of salt marsh topography can be significant over spatial length scales on the order of a meter. With growing availability of high-resolution bathymetry measurements, like LiDAR-derived DEM data, it is increasingly desirable to run a high-resolution model in a large domain and for a long period of time to get trends of sedimentation patterns, morphological change and marsh evolution. However, high spatial-resolution poses a big challenge in both computational time and memory storage, when simulating a salt marsh with dimensions of up to O(100 km^2) with a small time step. In this study, we have developed a so-called Pre-storage, Sub-grid Model (PSM, Wu et al., 2015) for simulating flooding and draining processes in salt marshes. The simulation of Brokenbridge salt marsh, Delaware, shows that, with the combination of the sub-grid model and the pre-storage method, over 2 orders of magnitude computational speed-up can be achieved with minimal loss of model accuracy. We recently extended PSM to include a sediment transport component and models for biomass growth and sedimentation in the sub-grid model framework. The sediment transport model is formulated based on a newly derived sub-grid sediment concentration equation following Defina's (2000) area-averaging procedure. Suspended sediment transport is modeled by the advection-diffusion equation in the coarse grid level, but the local erosion and sedimentation rates are integrated over the sub-grid level. The morphological model is based on the existing morphological model in NearCoM (Shi et al., 2013), extended to include organic production from the biomass model. The vegetation biomass is predicted by a simple logistic equation model proposed by Marani et al. (2010). The biomass component is loosely coupled with hydrodynamic and sedimentation models owing to the different time scales of the physical and ecological processes. The coupled model is being applied to Delaware marsh evolution in response to rising sea level and changing sediment supplies.

  7. Capturing Multiscale Phenomena via Adaptive Mesh Refinement (AMR) in 2D and 3D Atmospheric Flows

    NASA Astrophysics Data System (ADS)

    Ferguson, J. O.; Jablonowski, C.; Johansen, H.; McCorquodale, P.; Ullrich, P. A.; Langhans, W.; Collins, W. D.

    2017-12-01

    Extreme atmospheric events such as tropical cyclones are inherently complex multiscale phenomena. Such phenomena are a challenge to simulate in conventional atmosphere models, which typically use rather coarse uniform-grid resolutions. To enable study of these systems, Adaptive Mesh Refinement (AMR) can provide sufficient local resolution by dynamically placing high-resolution grid patches selectively over user-defined features of interest, such as a developing cyclone, while limiting the total computational burden of requiring such high-resolution globally. This work explores the use of AMR with a high-order, non-hydrostatic, finite-volume dynamical core, which uses the Chombo AMR library to implement refinement in both space and time on a cubed-sphere grid. The characteristics of the AMR approach are demonstrated via a series of idealized 2D and 3D test cases designed to mimic atmospheric dynamics and multiscale flows. In particular, new shallow-water test cases with forcing mechanisms are introduced to mimic the strengthening of tropical cyclone-like vortices and to include simplified moisture and convection processes. The forced shallow-water experiments quantify the improvements gained from AMR grids, assess how well transient features are preserved across grid boundaries, and determine effective refinement criteria. In addition, results from idealized 3D test cases are shown to characterize the accuracy and stability of the non-hydrostatic 3D AMR dynamical core.

  8. Statistical Analysis of CFD Solutions from 2nd Drag Prediction Workshop

    NASA Technical Reports Server (NTRS)

    Hemsch, M. J.; Morrison, J. H.

    2004-01-01

    In June 2001, the first AIAA Drag Prediction Workshop was held to evaluate results obtained from extensive N-Version testing of a series of RANS CFD codes. The geometry used for the computations was the DLR-F4 wing-body combination which resembles a medium-range subsonic transport. The cases reported include the design cruise point, drag polars at eight Mach numbers, and drag rise at three values of lift. Although comparisons of the code-to-code medians with available experimental data were similar to those obtained in previous studies, the code-to-code scatter was more than an order-of-magnitude larger than expected and far larger than desired for design and for experimental validation. The second Drag Prediction Workshop was held in June 2003 with emphasis on the determination of installed pylon-nacelle drag increments and on grid refinement studies. The geometry used was the DLR-F6 wing-body-pylon-nacelle combination for which the design cruise point and the cases run were similar to the first workshop except for additional runs on coarse and fine grids to complement the runs on medium grids. The code-to-code scatter was significantly reduced for the wing-body configuration compared to the first workshop, although still much larger than desired. However, the grid refinement studies showed no sign$cant improvement in code-to-code scatter with increasing grid refinement.

  9. Effect of elevation resolution on evapotranspiration simulations using MODFLOW.

    PubMed

    Kambhammettu, B V N P; Schmid, Wolfgang; King, James P; Creel, Bobby J

    2012-01-01

    Surface elevations represented in MODFLOW head-dependent packages are usually derived from digital elevation models (DEMs) that are available at much high resolution. Conventional grid refinement techniques to simulate the model at DEM resolution increases computational time, input file size, and in many cases are not feasible for regional applications. This research aims at utilizing the increasingly available high resolution DEMs for effective simulation of evapotranspiration (ET) in MODFLOW as an alternative to grid refinement techniques. The source code of the evapotranspiration package is modified by considering for a fixed MODFLOW grid resolution and for different DEM resolutions, the effect of variability in elevation data on ET estimates. Piezometric head at each DEM cell location is corrected by considering the gradient along row and column directions. Applicability of the research is tested for the lower Rio Grande (LRG) Basin in southern New Mexico. The DEM at 10 m resolution is aggregated to resampled DEM grid resolutions which are integer multiples of MODFLOW grid resolution. Cumulative outflows and ET rates are compared at different coarse resolution grids. Results of the analysis conclude that variability in depth-to-groundwater within the MODFLOW cell is a major contributing parameter to ET outflows in shallow groundwater regions. DEM aggregation methods for the LRG Basin have resulted in decreased volumetric outflow due to the formation of a smoothing error, which lowered the position of water table to a level below the extinction depth. © 2011, The Author(s). Ground Water © 2011, National Ground Water Association.

  10. Introduction to multigrid methods

    NASA Technical Reports Server (NTRS)

    Wesseling, P.

    1995-01-01

    These notes were written for an introductory course on the application of multigrid methods to elliptic and hyperbolic partial differential equations for engineers, physicists and applied mathematicians. The use of more advanced mathematical tools, such as functional analysis, is avoided. The course is intended to be accessible to a wide audience of users of computational methods. We restrict ourselves to finite volume and finite difference discretization. The basic principles are given. Smoothing methods and Fourier smoothing analysis are reviewed. The fundamental multigrid algorithm is studied. The smoothing and coarse grid approximation properties are discussed. Multigrid schedules and structured programming of multigrid algorithms are treated. Robustness and efficiency are considered.

  11. Effects of Land Surface Heterogeneity on Simulated Boundary-Layer Structures from the LES to the Mesoscale

    NASA Astrophysics Data System (ADS)

    Poll, Stefan; Shrestha, Prabhakar; Simmer, Clemens

    2017-04-01

    Land heterogeneity influences the atmospheric boundary layer (ABL) structure including organized (secondary) circulations which feed back on land-atmosphere exchange fluxes. Especially the latter effects cannot be incorporated explicitly in regional and climate models due to their coarse computational spatial grids, but must be parameterized. Current parameterizations lead, however, to uncertainties in modeled surface fluxes and boundary layer evolution, which feed back to cloud initiation and precipitation. This study analyzes the impact of different horizontal grid resolutions on the simulated boundary layer structures in terms of stability, height and induced secondary circulations. The ICON-LES (Icosahedral Nonhydrostatic in LES mode) developed by the MPI-M and the German weather service (DWD) and conducted within the framework of HD(CP)2 is used. ICON is dynamically downscaled through multiple scales of 20 km, 7 km, 2.8 km, 625 m, 312 m, and 156 m grid spacing for several days over Germany and partial neighboring countries for different synoptic conditions. We examined the entropy spectrum of the land surface heterogeneity at these grid resolutions for several locations close to measurement sites, such as Lindenberg, Jülich, Cabauw and Melpitz, and studied its influence on the surface fluxes and the evolution of the boundary layer profiles.

  12. Simulation study of entropy production in the one-dimensional Vlasov system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dai, Zongliang, E-mail: liangliang1223@gmail.com; Wang, Shaojie

    2016-07-15

    The coarse-grain averaged distribution function of the one-dimensional Vlasov system is obtained by numerical simulation. The entropy productions in cases of the random field, the linear Landau damping, and the bump-on-tail instability are computed with the coarse-grain averaged distribution function. The computed entropy production is converged with increasing length of coarse-grain average. When the distribution function differs slightly from a Maxwellian distribution, the converged value agrees with the result computed by using the definition of thermodynamic entropy. The length of the coarse-grain average to compute the coarse-grain averaged distribution function is discussed.

  13. Test problems for inviscid transonic flow

    NASA Technical Reports Server (NTRS)

    Carlson, L. A.

    1979-01-01

    Solving of test problems with the TRANDES program is discussed. This method utilizes the full, inviscid, perturbation potential flow equation in a Cartesian grid system that is stretched to infinity. This equation is represented by a nonconservative system of finite difference equations that includes at supersonic points a rotated difference scheme and is solved by column relaxation. The solution usually starts from a zero perturbation potential on a very coarse grid (typically 13 by 7) followed by several grid halvings until a final solution is obtained on a fine grid (97 by 49).

  14. Application of a multi-level grid method to transonic flow calculations

    NASA Technical Reports Server (NTRS)

    South, J. C., Jr.; Brandt, A.

    1976-01-01

    A multi-level grid method was studied as a possible means of accelerating convergence in relaxation calculations for transonic flows. The method employs a hierarchy of grids, ranging from very coarse to fine. The coarser grids are used to diminish the magnitude of the smooth part of the residuals. The method was applied to the solution of the transonic small disturbance equation for the velocity potential in conservation form. Nonlifting transonic flow past a parabolic arc airfoil is studied with meshes of both constant and variable step size.

  15. Capturing remote mixing due to internal tides using multi-scale modeling tool: SOMAR-LES

    NASA Astrophysics Data System (ADS)

    Santilli, Edward; Chalamalla, Vamsi; Scotti, Alberto; Sarkar, Sutanu

    2016-11-01

    Internal tides that are generated during the interaction of an oscillating barotropic tide with the bottom bathymetry dissipate only a fraction of their energy near the generation region. The rest is radiated away in the form of low- high-mode internal tides. These internal tides dissipate energy at remote locations when they interact with the upper ocean pycnocline, continental slope, and large scale eddies. Capturing the wide range of length and time scales involved during the life-cycle of internal tides is computationally very expensive. A recently developed multi-scale modeling tool called SOMAR-LES combines the adaptive grid refinement features of SOMAR with the turbulence modeling features of a Large Eddy Simulation (LES) to capture multi-scale processes at a reduced computational cost. Numerical simulations of internal tide generation at idealized bottom bathymetries are performed to demonstrate this multi-scale modeling technique. Although each of the remote mixing phenomena have been considered independently in previous studies, this work aims to capture remote mixing processes during the life cycle of an internal tide in more realistic settings, by allowing multi-level (coarse and fine) grids to co-exist and exchange information during the time stepping process.

  16. Efficient parallel seismic simulations including topography and 3-D material heterogeneities on locally refined composite grids

    NASA Astrophysics Data System (ADS)

    Petersson, Anders; Rodgers, Arthur

    2010-05-01

    The finite difference method on a uniform Cartesian grid is a highly efficient and easy to implement technique for solving the elastic wave equation in seismic applications. However, the spacing in a uniform Cartesian grid is fixed throughout the computational domain, whereas the resolution requirements in realistic seismic simulations usually are higher near the surface than at depth. This can be seen from the well-known formula h ≤ L-P which relates the grid spacing h to the wave length L, and the required number of grid points per wavelength P for obtaining an accurate solution. The compressional and shear wave lengths in the earth generally increase with depth and are often a factor of ten larger below the Moho discontinuity (at about 30 km depth), than in sedimentary basins near the surface. A uniform grid must have a grid spacing based on the small wave lengths near the surface, which results in over-resolving the solution at depth. As a result, the number of points in a uniform grid is unnecessarily large. In the wave propagation project (WPP) code, we address the over-resolution-at-depth issue by generalizing our previously developed single grid finite difference scheme to work on a composite grid consisting of a set of structured rectangular grids of different spacings, with hanging nodes on the grid refinement interfaces. The computational domain in a regional seismic simulation often extends to depth 40-50 km. Hence, using a refinement ratio of two, we need about three grid refinements from the bottom of the computational domain to the surface, to keep the local grid size in approximate parity with the local wave lengths. The challenge of the composite grid approach is to find a stable and accurate method for coupling the solution across the grid refinement interface. Of particular importance is the treatment of the solution at the hanging nodes, i.e., the fine grid points which are located in between coarse grid points. WPP implements a new, energy conserving, coupling procedure for the elastic wave equation at grid refinement interfaces. When used together with our single grid finite difference scheme, it results in a method which is provably stable, without artificial dissipation, for arbitrary heterogeneous isotropic elastic materials. The new coupling procedure is based on satisfying the summation-by-parts principle across refinement interfaces. From a practical standpoint, an important advantage of the proposed method is the absence of tunable numerical parameters, which seldom are appreciated by application experts. In WPP, the composite grid discretization is combined with a curvilinear grid approach that enables accurate modeling of free surfaces on realistic (non-planar) topography. The overall method satisfies the summation-by-parts principle and is stable under a CFL time step restriction. A feature of great practical importance is that WPP automatically generates the composite grid based on the user provided topography and the depths of the grid refinement interfaces. The WPP code has been verified extensively, for example using the method of manufactured solutions, by solving Lamb's problem, by solving various layer over half- space problems and comparing to semi-analytic (FK) results, and by simulating scenario earthquakes where results from other seismic simulation codes are available. WPP has also been validated against seismographic recordings of moderate earthquakes. WPP performs well on large parallel computers and has been run on up to 32,768 processors using about 26 Billion grid points (78 Billion DOF) and 41,000 time steps. WPP is an open source code that is available under the Gnu general public license.

  17. A new Downscaling Approach for SMAP, SMOS and ASCAT by predicting sub-grid Soil Moisture Variability based on Soil Texture

    NASA Astrophysics Data System (ADS)

    Montzka, C.; Rötzer, K.; Bogena, H. R.; Vereecken, H.

    2017-12-01

    Improving the coarse spatial resolution of global soil moisture products from SMOS, SMAP and ASCAT is currently an up-to-date topic. Soil texture heterogeneity is known to be one of the main sources of soil moisture spatial variability. A method has been developed that predicts the soil moisture standard deviation as a function of the mean soil moisture based on soil texture information. It is a closed-form expression using stochastic analysis of 1D unsaturated gravitational flow in an infinitely long vertical profile based on the Mualem-van Genuchten model and first-order Taylor expansions. With the recent development of high resolution maps of basic soil properties such as soil texture and bulk density, relevant information to estimate soil moisture variability within a satellite product grid cell is available. Here, we predict for each SMOS, SMAP and ASCAT grid cell the sub-grid soil moisture variability based on the SoilGrids1km data set. We provide a look-up table that indicates the soil moisture standard deviation for any given soil moisture mean. The resulting data set provides important information for downscaling coarse soil moisture observations of the SMOS, SMAP and ASCAT missions. Downscaling SMAP data by a field capacity proxy indicates adequate accuracy of the sub-grid soil moisture patterns.

  18. The R package 'icosa' for coarse resolution global triangular and penta-hexagonal gridding

    NASA Astrophysics Data System (ADS)

    Kocsis, Adam T.

    2017-04-01

    With the development of the internet and the computational power of personal computers, open source programming environments have become indispensable for science in the past decade. This includes the increase of the GIS capacity of the free R environment, which was originally developed for statistical analyses. The flexibility of R made it a preferred programming tool in a multitude of disciplines from the area of the biological and geological sciences. Many of these subdisciplines operate with incidence (occurrence) data that are in a large number of cases to be grained before further analyses can be conducted. This graining is executed mostly by gridding data to cells of a Gaussian grid of various resolutions to increase the density of data in a single unit of the analyses. This method has obvious shortcomings despite the ease of its application: well-known systematic biases are induced to cell sizes and shapes that can interfere with the results of statistical procedures, especially if the number of incidence points influences the metrics in question. The 'icosa' package employs a common method to overcome this obstacle by implementing grids with roughly equal cell sizes and shapes that are based on tessellated icosahedra. These grid objects are essentially polyhedra with xyz Cartesian vertex data that are linked to tables of faces and edges. At its current developmental stage, the package uses a single method of tessellation which balances grid cell size and shape distortions, but its structure allows the implementation of various other types of tessellation algorithms. The resolution of the grids can be set by the number of breakpoints inserted into a segment forming an edge of the original icosahedron. Both the triangular and their inverted penta-hexagonal grids are available for creation with the package. The package also incorporates functions to look up coordinates in the grid very effectively and data containers to link data to the grid structure. The classes defined in the package are communicating with classes of the 'sp' and 'raster' packages and functions are supplied that allow resolution change and type conversions. Three-dimensional rendering is made available with the 'rgl' package and two-dimensional projections can be calculated using 'sp' and 'rgdal'. The package was developed as part of a project funded by the Deutsche Forschungsgemeinschaft (KO - 5382/1-1).

  19. Highly Scalable Matching Pursuit Signal Decomposition Algorithm

    NASA Technical Reports Server (NTRS)

    Christensen, Daniel; Das, Santanu; Srivastava, Ashok N.

    2009-01-01

    Matching Pursuit Decomposition (MPD) is a powerful iterative algorithm for signal decomposition and feature extraction. MPD decomposes any signal into linear combinations of its dictionary elements or atoms . A best fit atom from an arbitrarily defined dictionary is determined through cross-correlation. The selected atom is subtracted from the signal and this procedure is repeated on the residual in the subsequent iterations until a stopping criterion is met. The reconstructed signal reveals the waveform structure of the original signal. However, a sufficiently large dictionary is required for an accurate reconstruction; this in return increases the computational burden of the algorithm, thus limiting its applicability and level of adoption. The purpose of this research is to improve the scalability and performance of the classical MPD algorithm. Correlation thresholds were defined to prune insignificant atoms from the dictionary. The Coarse-Fine Grids and Multiple Atom Extraction techniques were proposed to decrease the computational burden of the algorithm. The Coarse-Fine Grids method enabled the approximation and refinement of the parameters for the best fit atom. The ability to extract multiple atoms within a single iteration enhanced the effectiveness and efficiency of each iteration. These improvements were implemented to produce an improved Matching Pursuit Decomposition algorithm entitled MPD++. Disparate signal decomposition applications may require a particular emphasis of accuracy or computational efficiency. The prominence of the key signal features required for the proper signal classification dictates the level of accuracy necessary in the decomposition. The MPD++ algorithm may be easily adapted to accommodate the imposed requirements. Certain feature extraction applications may require rapid signal decomposition. The full potential of MPD++ may be utilized to produce incredible performance gains while extracting only slightly less energy than the standard algorithm. When the utmost accuracy must be achieved, the modified algorithm extracts atoms more conservatively but still exhibits computational gains over classical MPD. The MPD++ algorithm was demonstrated using an over-complete dictionary on real life data. Computational times were reduced by factors of 1.9 and 44 for the emphases of accuracy and performance, respectively. The modified algorithm extracted similar amounts of energy compared to classical MPD. The degree of the improvement in computational time depends on the complexity of the data, the initialization parameters, and the breadth of the dictionary. The results of the research confirm that the three modifications successfully improved the scalability and computational efficiency of the MPD algorithm. Correlation Thresholding decreased the time complexity by reducing the dictionary size. Multiple Atom Extraction also reduced the time complexity by decreasing the number of iterations required for a stopping criterion to be reached. The Course-Fine Grids technique enabled complicated atoms with numerous variable parameters to be effectively represented in the dictionary. Due to the nature of the three proposed modifications, they are capable of being stacked and have cumulative effects on the reduction of the time complexity.

  20. Multigrid Methods

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Developments in numerical solution of certain types of partial differential equations by rapidly converging sequences of operations on supporting grids that range from very fine to very coarse are presented.

  1. An improved fast multipole method for electrostatic potential calculations in a class of coarse-grained molecular simulations

    NASA Astrophysics Data System (ADS)

    Poursina, Mohammad; Anderson, Kurt S.

    2014-08-01

    This paper presents a novel algorithm to approximate the long-range electrostatic potential field in the Cartesian coordinates applicable to 3D coarse-grained simulations of biopolymers. In such models, coarse-grained clusters are formed via treating groups of atoms as rigid and/or flexible bodies connected together via kinematic joints. Therefore, multibody dynamic techniques are used to form and solve the equations of motion of such coarse-grained systems. In this article, the approximations for the potential fields due to the interaction between a highly negatively/positively charged pseudo-atom and charged particles, as well as the interaction between clusters of charged particles, are presented. These approximations are expressed in terms of physical and geometrical properties of the bodies such as the entire charge, the location of the center of charge, and the pseudo-inertia tensor about the center of charge of the clusters. Further, a novel substructuring scheme is introduced to implement the presented far-field potential evaluations in a binary tree framework as opposed to the existing quadtree and octree strategies of implementing fast multipole method. Using the presented Lagrangian grids, the electrostatic potential is recursively calculated via sweeping two passes: assembly and disassembly. In the assembly pass, adjacent charged bodies are combined together to form new clusters. Then, the potential field of each cluster due to its interaction with faraway resulting clusters is recursively calculated in the disassembly pass. The method is highly compatible with multibody dynamic schemes to model coarse-grained biopolymers. Since the proposed method takes advantage of constant physical and geometrical properties of rigid clusters, improvement in the overall computational cost is observed comparing to the tradition application of fast multipole method.

  2. Patch-based Adaptive Mesh Refinement for Multimaterial Hydrodynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lomov, I; Pember, R; Greenough, J

    2005-10-18

    We present a patch-based direct Eulerian adaptive mesh refinement (AMR) algorithm for modeling real equation-of-state, multimaterial compressible flow with strength. Our approach to AMR uses a hierarchical, structured grid approach first developed by (Berger and Oliger 1984), (Berger and Oliger 1984). The grid structure is dynamic in time and is composed of nested uniform rectangular grids of varying resolution. The integration scheme on the grid hierarchy is a recursive procedure in which the coarse grids are advanced, then the fine grids are advanced multiple steps to reach the same time, and finally the coarse and fine grids are synchronized tomore » remove conservation errors during the separate advances. The methodology presented here is based on a single grid algorithm developed for multimaterial gas dynamics by (Colella et al. 1993), refined by(Greenough et al. 1995), and extended to the solution of solid mechanics problems with significant strength by (Lomov and Rubin 2003). The single grid algorithm uses a second-order Godunov scheme with an approximate single fluid Riemann solver and a volume-of-fluid treatment of material interfaces. The method also uses a non-conservative treatment of the deformation tensor and an acoustic approximation for shear waves in the Riemann solver. This departure from a strict application of the higher-order Godunov methodology to the equation of solid mechanics is justified due to the fact that highly nonlinear behavior of shear stresses is rare. This algorithm is implemented in two codes, Geodyn and Raptor, the latter of which is a coupled rad-hydro code. The present discussion will be solely concerned with hydrodynamics modeling. Results from a number of simulations for flows with and without strength will be presented.« less

  3. Textbook Multigrid Efficiency for Leading Edge Stagnation

    NASA Technical Reports Server (NTRS)

    Diskin, Boris; Thomas, James L.; Mineck, Raymond E.

    2004-01-01

    A multigrid solver is defined as having textbook multigrid efficiency (TME) if the solutions to the governing system of equations are attained in a computational work which is a small (less than 10) multiple of the operation count in evaluating the discrete residuals. TME in solving the incompressible inviscid fluid equations is demonstrated for leading-edge stagnation flows. The contributions of this paper include (1) a special formulation of the boundary conditions near stagnation allowing convergence of the Newton iterations on coarse grids, (2) the boundary relaxation technique to facilitate relaxation and residual restriction near the boundaries, (3) a modified relaxation scheme to prevent initial error amplification, and (4) new general analysis techniques for multigrid solvers. Convergence of algebraic errors below the level of discretization errors is attained by a full multigrid (FMG) solver with one full approximation scheme (FAS) cycle per grid. Asymptotic convergence rates of the FAS cycles for the full system of flow equations are very fast, approaching those for scalar elliptic equations.

  4. Textbook Multigrid Efficiency for Leading Edge Stagnation

    NASA Technical Reports Server (NTRS)

    Diskin, Boris; Thomas, James L.; Mineck, Raymond E.

    2004-01-01

    A multigrid solver is defined as having textbook multigrid efficiency (TME) if the solutions to the governing system of equations are attained in a computational work which is a small (less than 10) multiple of the operation count in evaluating the discrete residuals. TME in solving the incompressible inviscid fluid equations is demonstrated for leading- edge stagnation flows. The contributions of this paper include (1) a special formulation of the boundary conditions near stagnation allowing convergence of the Newton iterations on coarse grids, (2) the boundary relaxation technique to facilitate relaxation and residual restriction near the boundaries, (3) a modified relaxation scheme to prevent initial error amplification, and (4) new general analysis techniques for multigrid solvers. Convergence of algebraic errors below the level of discretization errors is attained by a full multigrid (FMG) solver with one full approximation scheme (F.4S) cycle per grid. Asymptotic convergence rates of the F.4S cycles for the full system of flow equations are very fast, approaching those for scalar elliptic equations.

  5. MR thermometry characterization of a hyperthermia ultrasound array designed using the k-space computational method

    PubMed Central

    Al-Bataineh, Osama M; Collins, Christopher M; Park, Eun-Joo; Lee, Hotaik; Smith, Nadine Barrie

    2006-01-01

    Background Ultrasound induced hyperthermia is a useful adjuvant to radiation therapy in the treatment of prostate cancer. A uniform thermal dose (43°C for 30 minutes) is required within the targeted cancerous volume for effective therapy. This requires specific ultrasound phased array design and appropriate thermometry method. Inhomogeneous, acoustical, three-dimensional (3D) prostate models and economical computational methods provide necessary tools to predict the appropriate shape of hyperthermia phased arrays for better focusing. This research utilizes the k-space computational method and a 3D human prostate model to design an intracavitary ultrasound probe for hyperthermia treatment of prostate cancer. Evaluation of the probe includes ex vivo and in vivo controlled hyperthermia experiments using the noninvasive magnetic resonance imaging (MRI) thermometry. Methods A 3D acoustical prostate model was created using photographic data from the Visible Human Project®. The k-space computational method was used on this coarse grid and inhomogeneous tissue model to simulate the steady state pressure wavefield of the designed phased array using the linear acoustic wave equation. To ensure the uniformity and spread of the pressure in the length of the array, and the focusing capability in the width of the array, the equally-sized elements of the 4 × 20 elements phased array were 1 × 14 mm. A probe was constructed according to the design in simulation using lead zerconate titanate (PZT-8) ceramic and a Delrin® plastic housing. Noninvasive MRI thermometry and a switching feedback controller were used to accomplish ex vivo and in vivo hyperthermia evaluations of the probe. Results Both exposimetry and k-space simulation results demonstrated acceptable agreement within 9%. With a desired temperature plateau of 43.0°C, ex vivo and in vivo controlled hyperthermia experiments showed that the MRI temperature at the steady state was 42.9 ± 0.38°C and 43.1 ± 0.80°C, respectively, for 20 minutes of heating. Conclusion Unlike conventional computational methods, the k-space method provides a powerful tool to predict pressure wavefield in large scale, 3D, inhomogeneous and coarse grid tissue models. Noninvasive MRI thermometry supports the efficacy of this probe and the feedback controller in an in vivo hyperthermia treatment of canine prostate. PMID:17064421

  6. MR thermometry characterization of a hyperthermia ultrasound array designed using the k-space computational method.

    PubMed

    Al-Bataineh, Osama M; Collins, Christopher M; Park, Eun-Joo; Lee, Hotaik; Smith, Nadine Barrie

    2006-10-25

    Ultrasound induced hyperthermia is a useful adjuvant to radiation therapy in the treatment of prostate cancer. A uniform thermal dose (43 degrees C for 30 minutes) is required within the targeted cancerous volume for effective therapy. This requires specific ultrasound phased array design and appropriate thermometry method. Inhomogeneous, acoustical, three-dimensional (3D) prostate models and economical computational methods provide necessary tools to predict the appropriate shape of hyperthermia phased arrays for better focusing. This research utilizes the k-space computational method and a 3D human prostate model to design an intracavitary ultrasound probe for hyperthermia treatment of prostate cancer. Evaluation of the probe includes ex vivo and in vivo controlled hyperthermia experiments using the noninvasive magnetic resonance imaging (MRI) thermometry. A 3D acoustical prostate model was created using photographic data from the Visible Human Project. The k-space computational method was used on this coarse grid and inhomogeneous tissue model to simulate the steady state pressure wavefield of the designed phased array using the linear acoustic wave equation. To ensure the uniformity and spread of the pressure in the length of the array, and the focusing capability in the width of the array, the equally-sized elements of the 4 x 20 elements phased array were 1 x 14 mm. A probe was constructed according to the design in simulation using lead zerconate titanate (PZT-8) ceramic and a Delrin plastic housing. Noninvasive MRI thermometry and a switching feedback controller were used to accomplish ex vivo and in vivo hyperthermia evaluations of the probe. Both exposimetry and k-space simulation results demonstrated acceptable agreement within 9%. With a desired temperature plateau of 43.0 degrees C, ex vivo and in vivo controlled hyperthermia experiments showed that the MRI temperature at the steady state was 42.9 +/- 0.38 degrees C and 43.1 +/- 0.80 degrees C, respectively, for 20 minutes of heating. Unlike conventional computational methods, the k-space method provides a powerful tool to predict pressure wavefield in large scale, 3D, inhomogeneous and coarse grid tissue models. Noninvasive MRI thermometry supports the efficacy of this probe and the feedback controller in an in vivo hyperthermia treatment of canine prostate.

  7. Variational optical flow computation in real time.

    PubMed

    Bruhn, Andrés; Weickert, Joachim; Feddern, Christian; Kohlberger, Timo; Schnörr, Christoph

    2005-05-01

    This paper investigates the usefulness of bidirectional multigrid methods for variational optical flow computations. Although these numerical schemes are among the fastest methods for solving equation systems, they are rarely applied in the field of computer vision. We demonstrate how to employ those numerical methods for the treatment of variational optical flow formulations and show that the efficiency of this approach even allows for real-time performance on standard PCs. As a representative for variational optic flow methods, we consider the recently introduced combined local-global method. It can be considered as a noise-robust generalization of the Horn and Schunck technique. We present a decoupled, as well as a coupled, version of the classical Gauss-Seidel solver, and we develop several multgrid implementations based on a discretization coarse grid approximation. In contrast, with standard bidirectional multigrid algorithms, we take advantage of intergrid transfer operators that allow for nondyadic grid hierarchies. As a consequence, no restrictions concerning the image size or the number of traversed levels have to be imposed. In the experimental section, we juxtapose the developed multigrid schemes and demonstrate their superior performance when compared to unidirectional multgrid methods and nonhierachical solvers. For the well-known 316 x 252 Yosemite sequence, we succeeded in computing the complete set of dense flow fields in three quarters of a second on a 3.06-GHz Pentium4 PC. This corresponds to a frame rate of 18 flow fields per second which outperforms the widely-used Gauss-Seidel method by almost three orders of magnitude.

  8. Numerical Analysis of a Rotating Detonation Engine in the Relative Reference Frame

    NASA Technical Reports Server (NTRS)

    Paxson, Daniel E.

    2014-01-01

    A two-dimensional, computational fluid dynamic (CFD) simulation of a semi-idealized rotating detonation engine (RDE) is described. The simulation operates in the detonation frame of reference and utilizes a relatively coarse grid such that only the essential primary flow field structure is captured. This construction yields rapidly converging, steady solutions. Results from the simulation are compared to those from a more complex and refined code, and found to be in reasonable agreement. The performance impacts of several RDE design parameters are then examined. Finally, for a particular RDE configuration, it is found that direct performance comparison can be made with a straight-tube pulse detonation engine (PDE). Results show that they are essentially equivalent.

  9. Towards improved parameterization of a macroscale hydrologic model in a discontinuous permafrost boreal forest ecosystem

    DOE PAGES

    Endalamaw, Abraham; Bolton, W. Robert; Young-Robertson, Jessica M.; ...

    2017-09-14

    Modeling hydrological processes in the Alaskan sub-arctic is challenging because of the extreme spatial heterogeneity in soil properties and vegetation communities. Nevertheless, modeling and predicting hydrological processes is critical in this region due to its vulnerability to the effects of climate change. Coarse-spatial-resolution datasets used in land surface modeling pose a new challenge in simulating the spatially distributed and basin-integrated processes since these datasets do not adequately represent the small-scale hydrological, thermal, and ecological heterogeneity. The goal of this study is to improve the prediction capacity of mesoscale to large-scale hydrological models by introducing a small-scale parameterization scheme, which bettermore » represents the spatial heterogeneity of soil properties and vegetation cover in the Alaskan sub-arctic. The small-scale parameterization schemes are derived from observations and a sub-grid parameterization method in the two contrasting sub-basins of the Caribou Poker Creek Research Watershed (CPCRW) in Interior Alaska: one nearly permafrost-free (LowP) sub-basin and one permafrost-dominated (HighP) sub-basin. The sub-grid parameterization method used in the small-scale parameterization scheme is derived from the watershed topography. We found that observed soil thermal and hydraulic properties – including the distribution of permafrost and vegetation cover heterogeneity – are better represented in the sub-grid parameterization method than the coarse-resolution datasets. Parameters derived from the coarse-resolution datasets and from the sub-grid parameterization method are implemented into the variable infiltration capacity (VIC) mesoscale hydrological model to simulate runoff, evapotranspiration (ET), and soil moisture in the two sub-basins of the CPCRW. Simulated hydrographs based on the small-scale parameterization capture most of the peak and low flows, with similar accuracy in both sub-basins, compared to simulated hydrographs based on the coarse-resolution datasets. On average, the small-scale parameterization scheme improves the total runoff simulation by up to 50 % in the LowP sub-basin and by up to 10 % in the HighP sub-basin from the large-scale parameterization. This study shows that the proposed sub-grid parameterization method can be used to improve the performance of mesoscale hydrological models in the Alaskan sub-arctic watersheds.« less

  10. Towards improved parameterization of a macroscale hydrologic model in a discontinuous permafrost boreal forest ecosystem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Endalamaw, Abraham; Bolton, W. Robert; Young-Robertson, Jessica M.

    Modeling hydrological processes in the Alaskan sub-arctic is challenging because of the extreme spatial heterogeneity in soil properties and vegetation communities. Nevertheless, modeling and predicting hydrological processes is critical in this region due to its vulnerability to the effects of climate change. Coarse-spatial-resolution datasets used in land surface modeling pose a new challenge in simulating the spatially distributed and basin-integrated processes since these datasets do not adequately represent the small-scale hydrological, thermal, and ecological heterogeneity. The goal of this study is to improve the prediction capacity of mesoscale to large-scale hydrological models by introducing a small-scale parameterization scheme, which bettermore » represents the spatial heterogeneity of soil properties and vegetation cover in the Alaskan sub-arctic. The small-scale parameterization schemes are derived from observations and a sub-grid parameterization method in the two contrasting sub-basins of the Caribou Poker Creek Research Watershed (CPCRW) in Interior Alaska: one nearly permafrost-free (LowP) sub-basin and one permafrost-dominated (HighP) sub-basin. The sub-grid parameterization method used in the small-scale parameterization scheme is derived from the watershed topography. We found that observed soil thermal and hydraulic properties – including the distribution of permafrost and vegetation cover heterogeneity – are better represented in the sub-grid parameterization method than the coarse-resolution datasets. Parameters derived from the coarse-resolution datasets and from the sub-grid parameterization method are implemented into the variable infiltration capacity (VIC) mesoscale hydrological model to simulate runoff, evapotranspiration (ET), and soil moisture in the two sub-basins of the CPCRW. Simulated hydrographs based on the small-scale parameterization capture most of the peak and low flows, with similar accuracy in both sub-basins, compared to simulated hydrographs based on the coarse-resolution datasets. On average, the small-scale parameterization scheme improves the total runoff simulation by up to 50 % in the LowP sub-basin and by up to 10 % in the HighP sub-basin from the large-scale parameterization. This study shows that the proposed sub-grid parameterization method can be used to improve the performance of mesoscale hydrological models in the Alaskan sub-arctic watersheds.« less

  11. HIGH-FIDELITY SIMULATION-DRIVEN MODEL DEVELOPMENT FOR COARSE-GRAINED COMPUTATIONAL FLUID DYNAMICS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanna, Botros N.; Dinh, Nam T.; Bolotnov, Igor A.

    Nuclear reactor safety analysis requires identifying various credible accident scenarios and determining their consequences. For a full-scale nuclear power plant system behavior, it is impossible to obtain sufficient experimental data for a broad range of risk-significant accident scenarios. In single-phase flow convective problems, Direct Numerical Simulation (DNS) and Large Eddy Simulation (LES) can provide us with high fidelity results when physical data are unavailable. However, these methods are computationally expensive and cannot be afforded for simulation of long transient scenarios in nuclear accidents despite extraordinary advances in high performance scientific computing over the past decades. The major issue is themore » inability to make the transient computation parallel, thus making number of time steps required in high-fidelity methods unaffordable for long transients. In this work, we propose to apply a high fidelity simulation-driven approach to model sub-grid scale (SGS) effect in Coarse Grained Computational Fluid Dynamics CG-CFD. This approach aims to develop a statistical surrogate model instead of the deterministic SGS model. We chose to start with a turbulent natural convection case with volumetric heating in a horizontal fluid layer with a rigid, insulated lower boundary and isothermal (cold) upper boundary. This scenario of unstable stratification is relevant to turbulent natural convection in a molten corium pool during a severe nuclear reactor accident, as well as in containment mixing and passive cooling. The presented approach demonstrates how to create a correction for the CG-CFD solution by modifying the energy balance equation. A global correction for the temperature equation proves to achieve a significant improvement to the prediction of steady state temperature distribution through the fluid layer.« less

  12. Multi-level adaptive finite element methods. 1: Variation problems

    NASA Technical Reports Server (NTRS)

    Brandt, A.

    1979-01-01

    A general numerical strategy for solving partial differential equations and other functional problems by cycling between coarser and finer levels of discretization is described. Optimal discretization schemes are provided together with very fast general solvers. It is described in terms of finite element discretizations of general nonlinear minimization problems. The basic processes (relaxation sweeps, fine-grid-to-coarse-grid transfers of residuals, coarse-to-fine interpolations of corrections) are directly and naturally determined by the objective functional and the sequence of approximation spaces. The natural processes, however, are not always optimal. Concrete examples are given and some new techniques are reviewed. Including the local truncation extrapolation and a multilevel procedure for inexpensively solving chains of many boundary value problems, such as those arising in the solution of time-dependent problems.

  13. Dual-resolution dose assessments for proton beamlet using MCNPX 2.6.0

    NASA Astrophysics Data System (ADS)

    Chao, T. C.; Wei, S. C.; Wu, S. W.; Tung, C. J.; Tu, S. J.; Cheng, H. W.; Lee, C. C.

    2015-11-01

    The purpose of this study is to access proton dose distribution in dual resolution phantoms using MCNPX 2.6.0. The dual resolution phantom uses higher resolution in Bragg peak, area near large dose gradient, or heterogeneous interface and lower resolution in the rest. MCNPX 2.6.0 was installed in Ubuntu 10.04 with MPI for parallel computing. FMesh1 tallies were utilized to record the energy deposition which is a special designed tally for voxel phantoms that converts dose deposition from fluence. 60 and 120 MeV narrow proton beam were incident into Coarse, Dual and Fine resolution phantoms with pure water, water-bone-water and water-air-water setups. The doses in coarse resolution phantoms are underestimated owing to partial volume effect. The dose distributions in dual or high resolution phantoms agreed well with each other and dual resolution phantoms were at least 10 times more efficient than fine resolution one. Because the secondary particle range is much longer in air than in water, the dose of low density region may be under-estimated if the resolution or calculation grid is not small enough.

  14. Spatial scaling of net primary productivity using subpixel landcover information

    NASA Astrophysics Data System (ADS)

    Chen, X. F.; Chen, Jing M.; Ju, Wei M.; Ren, L. L.

    2008-10-01

    Gridding the land surface into coarse homogeneous pixels may cause important biases on ecosystem model estimations of carbon budget components at local, regional and global scales. These biases result from overlooking subpixel variability of land surface characteristics. Vegetation heterogeneity is an important factor introducing biases in regional ecological modeling, especially when the modeling is made on large grids. This study suggests a simple algorithm that uses subpixel information on the spatial variability of land cover type to correct net primary productivity (NPP) estimates, made at coarse spatial resolutions where the land surface is considered as homogeneous within each pixel. The algorithm operates in such a way that NPP obtained from calculations made at coarse spatial resolutions are multiplied by simple functions that attempt to reproduce the effects of subpixel variability of land cover type on NPP. Its application to a carbon-hydrology coupled model(BEPS-TerrainLab model) estimates made at a 1-km resolution over a watershed (named Baohe River Basin) located in the southwestern part of Qinling Mountains, Shaanxi Province, China, improved estimates of average NPP as well as its spatial variability.

  15. Performance Characteristics of the Multi-Zone NAS Parallel Benchmarks

    NASA Technical Reports Server (NTRS)

    Jin, Haoqiang; VanderWijngaart, Rob F.

    2003-01-01

    We describe a new suite of computational benchmarks that models applications featuring multiple levels of parallelism. Such parallelism is often available in realistic flow computations on systems of grids, but had not previously been captured in bench-marks. The new suite, named NPB Multi-Zone, is extended from the NAS Parallel Benchmarks suite, and involves solving the application benchmarks LU, BT and SP on collections of loosely coupled discretization meshes. The solutions on the meshes are updated independently, but after each time step they exchange boundary value information. This strategy provides relatively easily exploitable coarse-grain parallelism between meshes. Three reference implementations are available: one serial, one hybrid using the Message Passing Interface (MPI) and OpenMP, and another hybrid using a shared memory multi-level programming model (SMP+OpenMP). We examine the effectiveness of hybrid parallelization paradigms in these implementations on three different parallel computers. We also use an empirical formula to investigate the performance characteristics of the multi-zone benchmarks.

  16. Modeling the effects of auxiliary gas injection and fuel injection rate shape on diesel engine combustion and emissions

    NASA Astrophysics Data System (ADS)

    Mather, Daniel Kelly

    1998-11-01

    The effect of auxiliary gas injection and fuel injection rate-shaping on diesel engine combustion and emissions was studied using KIVA a multidimensional computational fluid dynamics code. Auxiliary gas injection (AGI) is the injection of a gas, in addition to the fuel injection, directly into the combustion chamber of a diesel engine. The objective of AGI is to influence the diesel combustion via mixing to reduce emissions of pollutants (soot and NO x). In this study, the accuracy of modeling high speed gas jets on very coarse computational grids was addressed. KIVA was found to inaccurately resolve the jet flows near walls. The cause of this inaccuracy was traced to the RNG k - ɛ turbulence model with the law-of-the-wall boundary condition used by KIVA. By prescribing the lengthscale near the nozzle exit, excellent agreement between computed and theoretical jet penetration was attained for a transient gas jet into a quiescent chamber at various operating conditions. The effect of AGI on diesel engine combustion and emissions was studied by incorporating the coarse grid gas jet model into a detailed multidimensional simulation of a Caterpillar 3401 heavy-duty diesel engine. The effects of AGI timing, composition, amount, orientation, and location were investigated. The effects of AGI and split fuel injection were also investigated. AGI was found to be effective at reducing soot emissions by increasing mixing within the combustion chamber. AGI of inert gas was found to be effective at reducing emissions of NOx by depressing the peak combustion temperatures. Finally, comparison of AGI simulations with experiments were conducted for a TACOM-LABECO engine. The results showed that AGI improved soot oxidation throughout the engine cycle. Simulation of fuel injection rate-shaping investigated the effects of three injection velocity profiles typical of unit-injector type, high-pressure common-rail type, and accumulator-type fuel injectors in the Caterpillar 3401 heavy-duty diesel engine. Pollutant emissions for the engine operating with different injection velocity profiles reflected the sensitivity of diesel engines to the location of pollutants within the combustion chamber, as influenced by the fuel injection.

  17. Navier-Stokes simulation of rotor-body flowfield in hover using overset grids

    NASA Technical Reports Server (NTRS)

    Srinivasan, G. R.; Ahmad, J. U.

    1993-01-01

    A free-wake Navier-Stokes numerical scheme and multiple Chimera overset grids have been utilized for calculating the quasi-steady hovering flowfield of a Boeing-360 rotor mounted on an axisymmetric whirl-tower. The entire geometry of this rotor-body configuration is gridded-up with eleven different overset grids. The composite grid has 1.3 million grid points for the entire flow domain. The numerical results, obtained using coarse grids and a rigid rotor assumption, show a thrust value that is within 5% of the experimental value at a flow condition of M(sub tip) = 0.63, Theta(sub c) = 8 deg, and Re = 2.5 x 10(exp 6). The numerical method thus demonstrates the feasibility of using a multi-block scheme for calculating the flowfields of complex configurations consisting of rotating and non-rotating components.

  18. Efficient Gradient-Based Shape Optimization Methodology Using Inviscid/Viscous CFD

    NASA Technical Reports Server (NTRS)

    Baysal, Oktay

    1997-01-01

    The formerly developed preconditioned-biconjugate-gradient (PBCG) solvers for the analysis and the sensitivity equations had resulted in very large error reductions per iteration; quadratic convergence was achieved whenever the solution entered the domain of attraction to the root. Its memory requirement was also lower as compared to a direct inversion solver. However, this memory requirement was high enough to preclude the realistic, high grid-density design of a practical 3D geometry. This limitation served as the impetus to the first-year activity (March 9, 1995 to March 8, 1996). Therefore, the major activity for this period was the development of the low-memory methodology for the discrete-sensitivity-based shape optimization. This was accomplished by solving all the resulting sets of equations using an alternating-direction-implicit (ADI) approach. The results indicated that shape optimization problems which required large numbers of grid points could be resolved with a gradient-based approach. Therefore, to better utilize the computational resources, it was recommended that a number of coarse grid cases, using the PBCG method, should initially be conducted to better define the optimization problem and the design space, and obtain an improved initial shape. Subsequently, a fine grid shape optimization, which necessitates using the ADI method, should be conducted to accurately obtain the final optimized shape. The other activity during this period was the interaction with the members of the Aerodynamic and Aeroacoustic Methods Branch of Langley Research Center during one stage of their investigation to develop an adjoint-variable sensitivity method using the viscous flow equations. This method had algorithmic similarities to the variational sensitivity methods and the control-theory approach. However, unlike the prior studies, it was considered for the three-dimensional, viscous flow equations. The major accomplishment in the second period of this project (March 9, 1996 to March 8, 1997) was the extension of the shape optimization methodology for the Thin-Layer Navier-Stokes equations. Both the Euler-based and the TLNS-based analyses compared with the analyses obtained using the CFL3D code. The sensitivities, again from both levels of the flow equations, also compared very well with the finite-differenced sensitivities. A fairly large set of shape optimization cases were conducted to study a number of issues previously not well understood. The testbed for these cases was the shaping of an arrow wing in Mach 2.4 flow. All the final shapes, obtained either from a coarse-grid-based or a fine-grid-based optimization, using either a Euler-based or a TLNS-based analysis, were all re-analyzed using a fine-grid, TLNS solution for their function evaluations. This allowed for a more fair comparison of their relative merits. From the aerodynamic performance standpoint, the fine-grid TLNS-based optimization produced the best shape, and the fine-grid Euler-based optimization produced the lowest cruise efficiency.

  19. Effects of heat exchanger tubes on hydrodynamics and CO 2 capture of a sorbent-based fluidized bed reactor

    DOE PAGES

    Lai, Canhai; Xu, Zhijie; Li, Tingwen; ...

    2017-08-05

    In virtual design and scale up of pilot-scale carbon capture systems, the coupled reactive multiphase flow problem must be solved to predict the adsorber's performance and capture efficiency under various operation conditions. This paper focuses on the detailed computational fluid dynamics (CFD) modeling of a pilot-scale fluidized bed adsorber equipped with vertical cooling tubes. Multiphase Flow with Interphase eXchanges (MFiX), an open-source multiphase flow CFD solver, is used for the simulations with custom code to simulate the chemical reactions and filtered sub-grid models to capture the effect of the unresolved details in the coarser mesh for simulations with reasonable accuracymore » and manageable computational effort. Previously developed filtered models for horizontal cylinder drag, heat transfer, and reaction kinetics have been modified to derive the 2D filtered models representing vertical cylinders in the coarse-grid CFD simulations. The effects of the heat exchanger configurations (i.e., horizontal or vertical tubes) on the adsorber's hydrodynamics and CO 2 capture performance are then examined. A one-dimensional three-region process model is briefly introduced for comparison purpose. The CFD model matches reasonably well with the process model while provides additional information about the flow field that is not available with the process model.« less

  20. Wall-layer model for LES with massive separation

    NASA Astrophysics Data System (ADS)

    Fakhari, Ahmad; Armenio, Vincenzo; Roman, Federico

    2016-11-01

    Currently, Wall Functions (WF) work well under specific conditions, mostly exhibit drawbacks specially in flows with separation beyond curvatures. In this work, we propose a more general WF which works well in attached and detached flows, in presence and absence of Immersed Boundaries (IB). First we modified an equilibrium stress WF for boundary-fitted geometry making dynamic the computation of the k (von Karman constant) of the log-law; the model was first applied to a periodic open channel flow, and then to the flow over a 2D single hill using uniform coarse grids; the model captured separation with reasonable accuracy. Thereafter IB Method by Roman et al. was improved to avoid momentum loss at the interface between the fluid-solid regions. This required calibration of interfacial eddy viscosity; also a random stochastic forcing was used in wall-normal direction to increase Reynolds stresses and improve mean velocity profile. Finally, to reproduce flow separation, a simplified boundary layer equation was applied to construct velocity at near wall computational nodes. The new scheme was tested on the 2D single hill and periodic hills applying Cartesian and curvilinear grids; good agreement with references was obtained with reduction in cost and complexity. Financial support from project COSMO "CFD open source per opera morta" PAR FSC 2007-2013, Friuli Venezia Giulia.

  1. A Semi-implicit Treatment of Porous Media in Steady-State CFD.

    PubMed

    Domaingo, Andreas; Langmayr, Daniel; Somogyi, Bence; Almbauer, Raimund

    There are many situations in computational fluid dynamics which require the definition of source terms in the Navier-Stokes equations. These source terms not only allow to model the physics of interest but also have a strong impact on the reliability, stability, and convergence of the numerics involved. Therefore, sophisticated numerical approaches exist for the description of such source terms. In this paper, we focus on the source terms present in the Navier-Stokes or Euler equations due to porous media-in particular the Darcy-Forchheimer equation. We introduce a method for the numerical treatment of the source term which is independent of the spatial discretization and based on linearization. In this description, the source term is treated in a fully implicit way whereas the other flow variables can be computed in an implicit or explicit manner. This leads to a more robust description in comparison with a fully explicit approach. The method is well suited to be combined with coarse-grid-CFD on Cartesian grids, which makes it especially favorable for accelerated solution of coupled 1D-3D problems. To demonstrate the applicability and robustness of the proposed method, a proof-of-concept example in 1D, as well as more complex examples in 2D and 3D, is presented.

  2. A dual communicator and dual grid-resolution algorithm for petascale simulations of turbulent mixing at high Schmidt number

    NASA Astrophysics Data System (ADS)

    Clay, M. P.; Buaria, D.; Gotoh, T.; Yeung, P. K.

    2017-10-01

    A new dual-communicator algorithm with very favorable performance characteristics has been developed for direct numerical simulation (DNS) of turbulent mixing of a passive scalar governed by an advection-diffusion equation. We focus on the regime of high Schmidt number (S c), where because of low molecular diffusivity the grid-resolution requirements for the scalar field are stricter than those for the velocity field by a factor √{ S c }. Computational throughput is improved by simulating the velocity field on a coarse grid of Nv3 points with a Fourier pseudo-spectral (FPS) method, while the passive scalar is simulated on a fine grid of Nθ3 points with a combined compact finite difference (CCD) scheme which computes first and second derivatives at eighth-order accuracy. A static three-dimensional domain decomposition and a parallel solution algorithm for the CCD scheme are used to avoid the heavy communication cost of memory transposes. A kernel is used to evaluate several approaches to optimize the performance of the CCD routines, which account for 60% of the overall simulation cost. On the petascale supercomputer Blue Waters at the University of Illinois, Urbana-Champaign, scalability is improved substantially with a hybrid MPI-OpenMP approach in which a dedicated thread per NUMA domain overlaps communication calls with computational tasks performed by a separate team of threads spawned using OpenMP nested parallelism. At a target production problem size of 81923 (0.5 trillion) grid points on 262,144 cores, CCD timings are reduced by 34% compared to a pure-MPI implementation. Timings for 163843 (4 trillion) grid points on 524,288 cores encouragingly maintain scalability greater than 90%, although the wall clock time is too high for production runs at this size. Performance monitoring with CrayPat for problem sizes up to 40963 shows that the CCD routines can achieve nearly 6% of the peak flop rate. The new DNS code is built upon two existing FPS and CCD codes. With the grid ratio Nθ /Nv = 8, the disparity in the computational requirements for the velocity and scalar problems is addressed by splitting the global communicator MPI_COMM_WORLD into disjoint communicators for the velocity and scalar fields, respectively. Inter-communicator transfer of the velocity field from the velocity communicator to the scalar communicator is handled with discrete send and non-blocking receive calls, which are overlapped with other operations on the scalar communicator. For production simulations at Nθ = 8192 and Nv = 1024 on 262,144 cores for the scalar field, the DNS code achieves 94% strong scaling relative to 65,536 cores and 92% weak scaling relative to Nθ = 1024 and Nv = 128 on 512 cores.

  3. Trends in life science grid: from computing grid to knowledge grid.

    PubMed

    Konagaya, Akihiko

    2006-12-18

    Grid computing has great potential to become a standard cyberinfrastructure for life sciences which often require high-performance computing and large data handling which exceeds the computing capacity of a single institution. This survey reviews the latest grid technologies from the viewpoints of computing grid, data grid and knowledge grid. Computing grid technologies have been matured enough to solve high-throughput real-world life scientific problems. Data grid technologies are strong candidates for realizing "resourceome" for bioinformatics. Knowledge grids should be designed not only from sharing explicit knowledge on computers but also from community formulation for sharing tacit knowledge among a community. Extending the concept of grid from computing grid to knowledge grid, it is possible to make use of a grid as not only sharable computing resources, but also as time and place in which people work together, create knowledge, and share knowledge and experiences in a community.

  4. Trends in life science grid: from computing grid to knowledge grid

    PubMed Central

    Konagaya, Akihiko

    2006-01-01

    Background Grid computing has great potential to become a standard cyberinfrastructure for life sciences which often require high-performance computing and large data handling which exceeds the computing capacity of a single institution. Results This survey reviews the latest grid technologies from the viewpoints of computing grid, data grid and knowledge grid. Computing grid technologies have been matured enough to solve high-throughput real-world life scientific problems. Data grid technologies are strong candidates for realizing "resourceome" for bioinformatics. Knowledge grids should be designed not only from sharing explicit knowledge on computers but also from community formulation for sharing tacit knowledge among a community. Conclusion Extending the concept of grid from computing grid to knowledge grid, it is possible to make use of a grid as not only sharable computing resources, but also as time and place in which people work together, create knowledge, and share knowledge and experiences in a community. PMID:17254294

  5. Analysis and Inverse Design of the HSR Arrow Wing Configuration with Fuselage, Wing, and Flow Through Nacelles

    NASA Technical Reports Server (NTRS)

    Krist, Steven E.; Bauer, Steven X. S.

    1999-01-01

    The design process for developing the natural flow wing design on the HSR arrow wing configuration utilized several design tools and analysis methods. Initial fuselage/wing designs were generated with inviscid analysis and optimization methods in conjunction with the natural flow wing design philosophy. A number of designs were generated, satisfying different system constraints. Of the three natural flow wing designs developed, the NFWAc2 configuration is the design which satisfies the constraints utilized by McDonnell Douglas Aerospace (MDA) in developing a series of optimized configurations; a wind tunnel model of the MDA designed OPT5 configuration was constructed and tested. The present paper is concerned with the viscous analysis and inverse design of the arrow wing configurations, including the effects of the installed diverters/nacelles. Analyses were conducted with OVERFLOW, a Navier-Stokes flow solver for overset grids. Inverse designs were conducted with OVERDISC, which couples OVERFLOW with the CDISC inverse design method. An initial system of overset grids was generated for the OPT5 configuration with installed diverters/nacelles. An automated regridding process was then developed to use the OPT5 component grids to create grids for the natural flow wing designs. The inverse design process was initiated using the NFWAc2 configuration as a starting point, eventually culminating in the NFWAc4 design-for which a wind tunnel model was constructed. Due to the time constraints on the design effort, initial analyses and designs were conducted with a fairly coarse grid; subsequent analyses have been conducted on a refined system of grids. Comparisons of the computational results to experiment are provided at the end of this paper.

  6. Advanced Turbulence Modeling Concepts

    NASA Technical Reports Server (NTRS)

    Shih, Tsan-Hsing

    2005-01-01

    The ZCET program developed at NASA Glenn Research Center is to study hydrogen/air injection concepts for aircraft gas turbine engines that meet conventional gas turbine performance levels and provide low levels of harmful NOx emissions. A CFD study for ZCET program has been successfully carried out. It uses the most recently enhanced National combustion code (NCC) to perform CFD simulations for two configurations of hydrogen fuel injectors (GRC- and Sandia-injector). The results can be used to assist experimental studies to provide quick mixing, low emission and high performance fuel injector designs. The work started with the configuration of the single-hole injector. The computational models were taken from the experimental designs. For example, the GRC single-hole injector consists of one air tube (0.78 inches long and 0.265 inches in diameter) and two hydrogen tubes (0.3 inches long and 0.0226 inches in diameter opposed at 180 degree). The hydrogen tubes are located 0.3 inches upstream from the exit of the air element (the inlet location for the combustor). To do the simulation, the single-hole injector is connected to a combustor model (8.16 inches long and 0.5 inches in diameter). The inlet conditions for air and hydrogen elements are defined according to actual experimental designs. Two crossing jets of hydrogen/air are simulated in detail in the injector. The cold flow, reacting flow, flame temperature, combustor pressure and possible flashback phenomena are studied. Two grid resolutions of the numerical model have been adopted. The first computational grid contains 0.52 million elements, the second one contains over 1.3 million elements. The CFD results have shown only about 5% difference between the two grid resolutions. Therefore, the CFD result obtained from the model of 1.3-million grid resolution can be considered as a grid independent numerical solution. Turbulence models built in NCC are consolidated and well tested. They can handle both coarse and fine grids near the wall. They can model the effect of anisotropy of turbulent stresses and the effect of swirling. The chemical reactions of Magnusson model and ILDM method were both used in this study.

  7. DNS/LES Simulations of Separated Flows at High Reynolds Numbers

    NASA Technical Reports Server (NTRS)

    Balakumar, P.

    2015-01-01

    Direct numerical simulations (DNS) and large-eddy simulations (LES) simulations of flow through a periodic channel with a constriction are performed using the dynamic Smagorinsky model at two Reynolds numbers of 2800 and 10595. The LES equations are solved using higher order compact schemes. DNS are performed for the lower Reynolds number case using a fine grid and the data are used to validate the LES results obtained with a coarse and a medium size grid. LES simulations are also performed for the higher Reynolds number case using a coarse and a medium size grid. The results are compared with an existing reference data set. The DNS and LES results agreed well with the reference data. Reynolds stresses, sub-grid eddy viscosity, and the budgets for the turbulent kinetic energy are also presented. It is found that the turbulent fluctuations in the normal and spanwise directions have the same magnitude. The turbulent kinetic energy budget shows that the production peaks near the separation point region and the production to dissipation ratio is very high on the order of five in this region. It is also observed that the production is balanced by the advection, diffusion, and dissipation in the shear layer region. The dominant term is the turbulent diffusion that is about two times the molecular dissipation.

  8. Nonhydrostatic simulation of hyperpycnal river plumes on sloping continental shelves: Flow structures and nonhydrostatic effect

    NASA Astrophysics Data System (ADS)

    Tseng, Chien-Yung; Chou, Yi-Ju

    2018-04-01

    A three-dimensional nonhydrostatic coastal model SUNTANS is used to study hyperpycnal plumes on sloping continental shelves with idealized domain setup. The study aims to examine the nonhydrostatic effect of the plunging hyperpycnal plume and the associated flow structures on different shelf slopes. The unstructured triangular grid in SUNTANS allows for local refinement of the grid size for regions in which the flow varies abruptly, while retaining low-cost computation using the coarse grid resolution for regions in which the flow is more uniform. These nonhydrostatic simulations reveal detailed three-dimensional flow structures in both transient and steady states. Via comparison with the hydrostatic simulation, we show that the nonhydrostatic effect is particularly important before plunging, when the plume is subject to significant changes in both the along-shore and vertical directions. After plunging, where the plume becomes an undercurrent that is more spatially uniform, little difference is found between the hydrostatic and nonhydrostatic simulations in the present gentle- and mild-slope cases. A grid-dependence study shows that the nonhydrostatic effect can be seen only when the grid resolution is sufficiently fine that the calculation is not overly diffusive. A depth-integrated momentum budget analysis is then conducted to show that the flow convergence due to plunging is an important factor in the three-dimensional flow structures. Moreover, it shows that the nonhydrostatic effect becomes more important as the slope increases, and in the steep-slope case, neglect of transport of the vertical momentum during plunging in the hydrostatic case further leads to an erroneous prediction for the undercurrent.

  9. Reduction of numerical diffusion in three-dimensional vortical flows using a coupled Eulerian/Lagrangian solution procedure

    NASA Technical Reports Server (NTRS)

    Felici, Helene M.; Drela, Mark

    1993-01-01

    A new approach based on the coupling of an Eulerian and a Lagrangian solver, aimed at reducing the numerical diffusion errors of standard Eulerian time-marching finite-volume solvers, is presented. The approach is applied to the computation of the secondary flow in two bent pipes and the flow around a 3D wing. Using convective point markers the Lagrangian approach provides a correction of the basic Eulerian solution. The Eulerian flow in turn integrates in time the Lagrangian state-vector. A comparison of coarse and fine grid Eulerian solutions makes it possible to identify numerical diffusion. It is shown that the Eulerian/Lagrangian approach is an effective method for reducing numerical diffusion errors.

  10. MC21 analysis of the MIT PWR benchmark: Hot zero power results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelly Iii, D. J.; Aviles, B. N.; Herman, B. R.

    2013-07-01

    MC21 Monte Carlo results have been compared with hot zero power measurements from an operating pressurized water reactor (PWR), as specified in a new full core PWR performance benchmark from the MIT Computational Reactor Physics Group. Included in the comparisons are axially integrated full core detector measurements, axial detector profiles, control rod bank worths, and temperature coefficients. Power depressions from grid spacers are seen clearly in the MC21 results. Application of Coarse Mesh Finite Difference (CMFD) acceleration within MC21 has been accomplished, resulting in a significant reduction of inactive batches necessary to converge the fission source. CMFD acceleration has alsomore » been shown to work seamlessly with the Uniform Fission Site (UFS) variance reduction method. (authors)« less

  11. Comparison of Numerically Simulated and Experimentally Measured Performance of a Rotating Detonation Engine

    NASA Technical Reports Server (NTRS)

    Paxson, Daniel E.; Fotia, Matthew L.; Hoke, John; Schauer, Fred

    2015-01-01

    A quasi-two-dimensional, computational fluid dynamic (CFD) simulation of a rotating detonation engine (RDE) is described. The simulation operates in the detonation frame of reference and utilizes a relatively coarse grid such that only the essential primary flow field structure is captured. This construction and other simplifications yield rapidly converging, steady solutions. Viscous effects, and heat transfer effects are modeled using source terms. The effects of potential inlet flow reversals are modeled using boundary conditions. Results from the simulation are compared to measured data from an experimental RDE rig with a converging-diverging nozzle added. The comparison is favorable for the two operating points examined. The utility of the code as a performance optimization tool and a diagnostic tool are discussed.

  12. Non-Gaussian power grid frequency fluctuations characterized by Lévy-stable laws and superstatistics

    NASA Astrophysics Data System (ADS)

    Schäfer, Benjamin; Beck, Christian; Aihara, Kazuyuki; Witthaut, Dirk; Timme, Marc

    2018-02-01

    Multiple types of fluctuations impact the collective dynamics of power grids and thus challenge their robust operation. Fluctuations result from processes as different as dynamically changing demands, energy trading and an increasing share of renewable power feed-in. Here we analyse principles underlying the dynamics and statistics of power grid frequency fluctuations. Considering frequency time series for a range of power grids, including grids in North America, Japan and Europe, we find a strong deviation from Gaussianity best described as Lévy-stable and q-Gaussian distributions. We present a coarse framework to analytically characterize the impact of arbitrary noise distributions, as well as a superstatistical approach that systematically interprets heavy tails and skewed distributions. We identify energy trading as a substantial contribution to today's frequency fluctuations and effective damping of the grid as a controlling factor enabling reduction of fluctuation risks, with enhanced effects for small power grids.

  13. A Lagrangian subgrid-scale model with dynamic estimation of Lagrangian time scale for large eddy simulation of complex flows

    NASA Astrophysics Data System (ADS)

    Verma, Aman; Mahesh, Krishnan

    2012-08-01

    The dynamic Lagrangian averaging approach for the dynamic Smagorinsky model for large eddy simulation is extended to an unstructured grid framework and applied to complex flows. The Lagrangian time scale is dynamically computed from the solution and does not need any adjustable parameter. The time scale used in the standard Lagrangian model contains an adjustable parameter θ. The dynamic time scale is computed based on a "surrogate-correlation" of the Germano-identity error (GIE). Also, a simple material derivative relation is used to approximate GIE at different events along a pathline instead of Lagrangian tracking or multi-linear interpolation. Previously, the time scale for homogeneous flows was computed by averaging along directions of homogeneity. The present work proposes modifications for inhomogeneous flows. This development allows the Lagrangian averaged dynamic model to be applied to inhomogeneous flows without any adjustable parameter. The proposed model is applied to LES of turbulent channel flow on unstructured zonal grids at various Reynolds numbers. Improvement is observed when compared to other averaging procedures for the dynamic Smagorinsky model, especially at coarse resolutions. The model is also applied to flow over a cylinder at two Reynolds numbers and good agreement with previous computations and experiments is obtained. Noticeable improvement is obtained using the proposed model over the standard Lagrangian model. The improvement is attributed to a physically consistent Lagrangian time scale. The model also shows good performance when applied to flow past a marine propeller in an off-design condition; it regularizes the eddy viscosity and adjusts locally to the dominant flow features.

  14. Changing from computing grid to knowledge grid in life-science grid.

    PubMed

    Talukdar, Veera; Konar, Amit; Datta, Ayan; Choudhury, Anamika Roy

    2009-09-01

    Grid computing has a great potential to become a standard cyber infrastructure for life sciences that often require high-performance computing and large data handling, which exceeds the computing capacity of a single institution. Grid computer applies the resources of many computers in a network to a single problem at the same time. It is useful to scientific problems that require a great number of computer processing cycles or access to a large amount of data.As biologists,we are constantly discovering millions of genes and genome features, which are assembled in a library and distributed on computers around the world.This means that new, innovative methods must be developed that exploit the re-sources available for extensive calculations - for example grid computing.This survey reviews the latest grid technologies from the viewpoints of computing grid, data grid and knowledge grid. Computing grid technologies have been matured enough to solve high-throughput real-world life scientific problems. Data grid technologies are strong candidates for realizing a "resourceome" for bioinformatics. Knowledge grids should be designed not only from sharing explicit knowledge on computers but also from community formulation for sharing tacit knowledge among a community. By extending the concept of grid from computing grid to knowledge grid, it is possible to make use of a grid as not only sharable computing resources, but also as time and place in which people work together, create knowledge, and share knowledge and experiences in a community.

  15. Performance Analysis of a Hybrid Overset Multi-Block Application on Multiple Architectures

    NASA Technical Reports Server (NTRS)

    Djomehri, M. Jahed; Biswas, Rupak

    2003-01-01

    This paper presents a detailed performance analysis of a multi-block overset grid compu- tational fluid dynamics app!ication on multiple state-of-the-art computer architectures. The application is implemented using a hybrid MPI+OpenMP programming paradigm that exploits both coarse and fine-grain parallelism; the former via MPI message passing and the latter via OpenMP directives. The hybrid model also extends the applicability of multi-block programs to large clusters of SNIP nodes by overcoming the restriction that the number of processors be less than the number of grid blocks. A key kernel of the application, namely the LU-SGS linear solver, had to be modified to enhance the performance of the hybrid approach on the target machines. Investigations were conducted on cacheless Cray SX6 vector processors, cache-based IBM Power3 and Power4 architectures, and single system image SGI Origin3000 platforms. Overall results for complex vortex dynamics simulations demonstrate that the SX6 achieves the highest performance and outperforms the RISC-based architectures; however, the best scaling performance was achieved on the Power3.

  16. A two-level stochastic collocation method for semilinear elliptic equations with random coefficients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Luoping; Zheng, Bin; Lin, Guang

    In this work, we propose a novel two-level discretization for solving semilinear elliptic equations with random coefficients. Motivated by the two-grid method for deterministic partial differential equations (PDEs) introduced by Xu, our two-level stochastic collocation method utilizes a two-grid finite element discretization in the physical space and a two-level collocation method in the random domain. In particular, we solve semilinear equations on a coarse meshmore » $$\\mathcal{T}_H$$ with a low level stochastic collocation (corresponding to the polynomial space $$\\mathcal{P}_{P}$$) and solve linearized equations on a fine mesh $$\\mathcal{T}_h$$ using high level stochastic collocation (corresponding to the polynomial space $$\\mathcal{P}_p$$). We prove that the approximated solution obtained from this method achieves the same order of accuracy as that from solving the original semilinear problem directly by stochastic collocation method with $$\\mathcal{T}_h$$ and $$\\mathcal{P}_p$$. The two-level method is computationally more efficient, especially for nonlinear problems with high random dimensions. Numerical experiments are also provided to verify the theoretical results.« less

  17. Cell-Averaged discretization for incompressible Navier-Stokes with embedded boundaries and locally refined Cartesian meshes: a high-order finite volume approach

    NASA Astrophysics Data System (ADS)

    Bhalla, Amneet Pal Singh; Johansen, Hans; Graves, Dan; Martin, Dan; Colella, Phillip; Applied Numerical Algorithms Group Team

    2017-11-01

    We present a consistent cell-averaged discretization for incompressible Navier-Stokes equations on complex domains using embedded boundaries. The embedded boundary is allowed to freely cut the locally-refined background Cartesian grid. Implicit-function representation is used for the embedded boundary, which allows us to convert the required geometric moments in the Taylor series expansion (upto arbitrary order) of polynomials into an algebraic problem in lower dimensions. The computed geometric moments are then used to construct stencils for various operators like the Laplacian, divergence, gradient, etc., by solving a least-squares system locally. We also construct the inter-level data-transfer operators like prolongation and restriction for multi grid solvers using the same least-squares system approach. This allows us to retain high-order of accuracy near coarse-fine interface and near embedded boundaries. Canonical problems like Taylor-Green vortex flow and flow past bluff bodies will be presented to demonstrate the proposed method. U.S. Department of Energy, Office of Science, ASCR (Award Number DE-AC02-05CH11231).

  18. Eulerian Simulation of Acoustic Waves Over Long Range in Realistic Environments

    NASA Astrophysics Data System (ADS)

    Chitta, Subhashini; Steinhoff, John

    2015-11-01

    In this paper, we describe a new method for computation of long-range acoustics. The approach is a hybrid of near and far-field methods, and is unique in its Eulerian treatment of the far-field propagation. The near-field generated by any existing method to project an acoustic solution onto a spherical surface that surrounds a source. The acoustic field on this source surface is then extended to an arbitrarily large distance in an inhomogeneous far-field. This would normally require an Eulerian solution of the wave equation. However, conventional Eulerian methods have prohibitive grid requirements. This problem is overcome by using a new method, ``Wave Confinement'' (WC) that propagates wave-identifying phase fronts as nonlinear solitary waves that live on grid indefinitely. This involves modification of wave equation by the addition of a nonlinear term without changing the basic conservation properties of the equation. These solitary waves can then be used to ``carry'' the essential integrals of the acoustic wave. For example, arrival time, centroid position and other properties that are invariant as the wave passes a grid point. Because of this property the grid can be made as coarse as necessary, consistent with overall accuracy to resolve atmospheric/ground variations. This work is being funded by the U.S. Army under a Small Business Innovation Research (SBIR) program (contract number: # W911W6-12-C-0036). The authors would like to thank Dr. Frank Caradonna and Dr. Ben W. Sim for this support.

  19. Pilot-in-the-Loop CFD Method Development

    DTIC Science & Technology

    2015-02-01

    expensive alternatives [1]. ALM represents the blades as a set of segments along with each blade axis and the ADM represents the entire rotor as...fine grid, Δx = 1.00 m Figure 4 – Time-averaged vertical velocity distributions on downwash and rotor disk plane for hybrid and loose coupling...cases with fine and coarse grid refinement levels. Figure 4 shows the time-averaged distributions of vertical velocities on both downwash and rotor disk

  20. High resolution global flood hazard map from physically-based hydrologic and hydraulic models.

    NASA Astrophysics Data System (ADS)

    Begnudelli, L.; Kaheil, Y.; McCollum, J.

    2017-12-01

    The global flood map published online at http://www.fmglobal.com/research-and-resources/global-flood-map at 90m resolution is being used worldwide to understand flood risk exposure, exercise certain measures of mitigation, and/or transfer the residual risk financially through flood insurance programs. The modeling system is based on a physically-based hydrologic model to simulate river discharges, and 2D shallow-water hydrodynamic model to simulate inundation. The model can be applied to large-scale flood hazard mapping thanks to several solutions that maximize its efficiency and the use of parallel computing. The hydrologic component of the modeling system is the Hillslope River Routing (HRR) hydrologic model. HRR simulates hydrological processes using a Green-Ampt parameterization, and is calibrated against observed discharge data from several publicly-available datasets. For inundation mapping, we use a 2D Finite-Volume Shallow-Water model with wetting/drying. We introduce here a grid Up-Scaling Technique (UST) for hydraulic modeling to perform simulations at higher resolution at global scale with relatively short computational times. A 30m SRTM is now available worldwide along with higher accuracy and/or resolution local Digital Elevation Models (DEMs) in many countries and regions. UST consists of aggregating computational cells, thus forming a coarser grid, while retaining the topographic information from the original full-resolution mesh. The full-resolution topography is used for building relationships between volume and free surface elevation inside cells and computing inter-cell fluxes. This approach almost achieves computational speed typical of the coarse grids while preserving, to a significant extent, the accuracy offered by the much higher resolution available DEM. The simulations are carried out along each river of the network by forcing the hydraulic model with the streamflow hydrographs generated by HRR. Hydrographs are scaled so that the peak corresponds to the return period corresponding to the hazard map being produced (e.g. 100 years, 500 years). Each numerical simulation models one river reach, except for the longest reaches which are split in smaller parts. Here we show results for selected river basins worldwide.

  1. Ab initio velocity-field curves in monoclinic β-Ga2O3

    NASA Astrophysics Data System (ADS)

    Ghosh, Krishnendu; Singisetti, Uttam

    2017-07-01

    We investigate the high-field transport in monoclinic β-Ga2O3 using a combination of ab initio calculations and full band Monte Carlo (FBMC) simulation. Scattering rate calculation and the final state selection in the FBMC simulation use complete wave-vector (both electron and phonon) and crystal direction dependent electron phonon interaction (EPI) elements. We propose and implement a semi-coarse version of the Wannier-Fourier interpolation method [Giustino et al., Phys. Rev. B 76, 165108 (2007)] for short-range non-polar optical phonon (EPI) elements in order to ease the computational requirement in FBMC simulation. During the interpolation of the EPI, the inverse Fourier sum over the real-space electronic grids is done on a coarse mesh while the unitary rotations are done on a fine mesh. This paper reports the high field transport in monoclinic β-Ga2O3 with deep insight into the contribution of electron-phonon interactions and velocity-field characteristics for electric fields ranging up to 450 kV/cm in different crystal directions. A peak velocity of 2 × 107 cm/s is estimated at an electric field of 200 kV/cm.

  2. Field Test of a Hybrid Finite-Difference and Analytic Element Regional Model.

    PubMed

    Abrams, D B; Haitjema, H M; Feinstein, D T; Hunt, R J

    2016-01-01

    Regional finite-difference models often have cell sizes that are too large to sufficiently model well-stream interactions. Here, a steady-state hybrid model is applied whereby the upper layer or layers of a coarse MODFLOW model are replaced by the analytic element model GFLOW, which represents surface waters and wells as line and point sinks. The two models are coupled by transferring cell-by-cell leakage obtained from the original MODFLOW model to the bottom of the GFLOW model. A real-world test of the hybrid model approach is applied on a subdomain of an existing model of the Lake Michigan Basin. The original (coarse) MODFLOW model consists of six layers, the top four of which are aggregated into GFLOW as a single layer, while the bottom two layers remain part of MODFLOW in the hybrid model. The hybrid model and a refined "benchmark" MODFLOW model simulate similar baseflows. The hybrid and benchmark models also simulate similar baseflow reductions due to nearby pumping when the well is located within the layers represented by GFLOW. However, the benchmark model requires refinement of the model grid in the local area of interest, while the hybrid approach uses a gridless top layer and is thus unaffected by grid discretization errors. The hybrid approach is well suited to facilitate cost-effective retrofitting of existing coarse grid MODFLOW models commonly used for regional studies because it leverages the strengths of both finite-difference and analytic element methods for predictions in mildly heterogeneous systems that can be simulated with steady-state conditions. © 2015, National Ground Water Association.

  3. Evaluation of tropical channel refinement using MPAS-A aquaplanet simulations

    DOE PAGES

    Martini, Matus N.; Gustafson, Jr., William I.; O'Brien, Travis A.; ...

    2015-09-13

    Climate models with variable-resolution grids offer a computationally less expensive way to provide more detailed information at regional scales and increased accuracy for processes that cannot be resolved by a coarser grid. This study uses the Model for Prediction Across Scales–Atmosphere (MPAS22A), consisting of a nonhydrostatic dynamical core and a subset of Advanced Research Weather Research and Forecasting (ARW-WRF) model atmospheric physics that have been modified to include the Community Atmosphere Model version 5 (CAM5) cloud fraction parameterization, to investigate the potential benefits of using increased resolution in an tropical channel. The simulations are performed with an idealized aquaplanet configurationmore » using two quasi-uniform grids, with 30 km and 240 km grid spacing, and two variable-resolution grids spanning the same grid spacing range; one with a narrow (20°S–20°N) and one with a wide (30°S–30°N) tropical channel refinement. Results show that increasing resolution in the tropics impacts both the tropical and extratropical circulation. Compared to the quasi-uniform coarse grid, the narrow-channel simulation exhibits stronger updrafts in the Ferrel cell as well as in the middle of the upward branch of the Hadley cell. The wider tropical channel has a closer correspondence to the 30 km quasi-uniform simulation. However, the total atmospheric poleward energy transports are similar in all simulations. The largest differences are in the low-level cloudiness. The refined channel simulations show improved tropical and extratropical precipitation relative to the global 240 km simulation when compared to the global 30 km simulation. All simulations have a single ITCZ. Furthermore, the relatively small differences in mean global and tropical precipitation rates among the simulations are a promising result, and the evidence points to the tropical channel being an effective method for avoiding the extraneous numerical artifacts seen in earlier studies that only refined portion of the tropics.« less

  4. Distributed Accounting on the Grid

    NASA Technical Reports Server (NTRS)

    Thigpen, William; Hacker, Thomas J.; McGinnis, Laura F.; Athey, Brian D.

    2001-01-01

    By the late 1990s, the Internet was adequately equipped to move vast amounts of data between HPC (High Performance Computing) systems, and efforts were initiated to link together the national infrastructure of high performance computational and data storage resources together into a general computational utility 'grid', analogous to the national electrical power grid infrastructure. The purpose of the Computational grid is to provide dependable, consistent, pervasive, and inexpensive access to computational resources for the computing community in the form of a computing utility. This paper presents a fully distributed view of Grid usage accounting and a methodology for allocating Grid computational resources for use on a Grid computing system.

  5. Operator induced multigrid algorithms using semirefinement

    NASA Technical Reports Server (NTRS)

    Decker, Naomi; Vanrosendale, John

    1989-01-01

    A variant of multigrid, based on zebra relaxation, and a new family of restriction/prolongation operators is described. Using zebra relaxation in combination with an operator-induced prolongation leads to fast convergence, since the coarse grid can correct all error components. The resulting algorithms are not only fast, but are also robust, in the sense that the convergence rate is insensitive to the mesh aspect ratio. This is true even though line relaxation is performed in only one direction. Multigrid becomes a direct method if an operator-induced prolongation is used, together with the induced coarse grid operators. Unfortunately, this approach leads to stencils which double in size on each coarser grid. The use of an implicit three point restriction can be used to factor these large stencils, in order to retain the usual five or nine point stencils, while still achieving fast convergence. This algorithm achieves a V-cycle convergence rate of 0.03 on Poisson's equation, using 1.5 zebra sweeps per level, while the convergence rate improves to 0.003 if optimal nine point stencils are used. Numerical results for two and three dimensional model problems are presented, together with a two level analysis explaining these results.

  6. Time-reversal transcranial ultrasound beam focusing using a k-space method

    PubMed Central

    Jing, Yun; Meral, F. Can; Clement, Greg. T.

    2012-01-01

    This paper proposes the use of a k-space method to obtain the correction for transcranial ultrasound beam focusing. Mirroring past approaches, A synthetic point source at the focal point is numerically excited, and propagated through the skull, using acoustic properties acquired from registered computed tomograpy of the skull being studied. The received data outside the skull contains the correction information and can be phase conjugated (time reversed) and then physically generated to achieve a tight focusing inside the skull, by assuming quasi-plane transmission where shear waves are not present or their contribution can be neglected. Compared with the conventional finite-difference time-domain method for wave propagation simulation, it will be shown that the k-space method is significantly more accurate even for a relatively coarse spatial resolution, leading to a dramatically reduced computation time. Both numerical simulations and experiments conducted on an ex vivo human skull demonstrate that, precise focusing can be realized using the k-space method with a spatial resolution as low as only 2.56 grid points per wavelength, thus allowing treatment planning computation on the order of minutes. PMID:22290477

  7. Deriving Continuous Fields of Tree Cover at 1-m over the Continental United States From the National Agriculture Imagery Program (NAIP) Imagery to Reduce Uncertainties in Forest Carbon Stock Estimation

    NASA Astrophysics Data System (ADS)

    Ganguly, S.; Basu, S.; Mukhopadhyay, S.; Michaelis, A.; Milesi, C.; Votava, P.; Nemani, R. R.

    2013-12-01

    An unresolved issue with coarse-to-medium resolution satellite-based forest carbon mapping over regional to continental scales is the high level of uncertainty in above ground biomass (AGB) estimates caused by the absence of forest cover information at a high enough spatial resolution (current spatial resolution is limited to 30-m). To put confidence in existing satellite-derived AGB density estimates, it is imperative to create continuous fields of tree cover at a sufficiently high resolution (e.g. 1-m) such that large uncertainties in forested area are reduced. The proposed work will provide means to reduce uncertainty in present satellite-derived AGB maps and Forest Inventory and Analysis (FIA) based regional estimates. Our primary objective will be to create Very High Resolution (VHR) estimates of tree cover at a spatial resolution of 1-m for the Continental United States using all available National Agriculture Imaging Program (NAIP) color-infrared imagery from 2010 till 2012. We will leverage the existing capabilities of the NASA Earth Exchange (NEX) high performance computing and storage facilities. The proposed 1-m tree cover map can be further aggregated to provide percent tree cover at any medium-to-coarse resolution spatial grid, which will aid in reducing uncertainties in AGB density estimation at the respective grid and overcome current limitations imposed by medium-to-coarse resolution land cover maps. We have implemented a scalable and computationally-efficient parallelized framework for tree-cover delineation - the core components of the algorithm [that] include a feature extraction process, a Statistical Region Merging image segmentation algorithm and a classification algorithm based on Deep Belief Network and a Feedforward Backpropagation Neural Network algorithm. An initial pilot exercise has been performed over the state of California (~11,000 scenes) to create a wall-to-wall 1-m tree cover map and the classification accuracy has been assessed. Results show an improvement in accuracy of tree-cover delineation as compared to existing forest cover maps from NLCD, especially over fragmented, heterogeneous and urban landscapes. Estimates of VHR tree cover will complement and enhance the accuracy of present remote-sensing based AGB modeling approaches and forest inventory based estimates at both national and local scales. A requisite step will be to characterize the inherent uncertainties in tree cover estimates and propagate them to estimate AGB.

  8. Multiscale solutions of radiative heat transfer by the discrete unified gas kinetic scheme

    NASA Astrophysics Data System (ADS)

    Luo, Xiao-Ping; Wang, Cun-Hai; Zhang, Yong; Yi, Hong-Liang; Tan, He-Ping

    2018-06-01

    The radiative transfer equation (RTE) has two asymptotic regimes characterized by the optical thickness, namely, optically thin and optically thick regimes. In the optically thin regime, a ballistic or kinetic transport is dominant. In the optically thick regime, energy transport is totally dominated by multiple collisions between photons; that is, the photons propagate by means of diffusion. To obtain convergent solutions to the RTE, conventional numerical schemes have a strong dependence on the number of spatial grids, which leads to a serious computational inefficiency in the regime where the diffusion is predominant. In this work, a discrete unified gas kinetic scheme (DUGKS) is developed to predict radiative heat transfer in participating media. Numerical performances of the DUGKS are compared in detail with conventional methods through three cases including one-dimensional transient radiative heat transfer, two-dimensional steady radiative heat transfer, and three-dimensional multiscale radiative heat transfer. Due to the asymptotic preserving property, the present method with relatively coarse grids gives accurate and reliable numerical solutions for large, small, and in-between values of optical thickness, and, especially in the optically thick regime, the DUGKS demonstrates a pronounced computational efficiency advantage over the conventional numerical models. In addition, the DUGKS has a promising potential in the study of multiscale radiative heat transfer inside the participating medium with a transition from optically thin to optically thick regimes.

  9. Development and application of GIS-based PRISM integration through a plugin approach

    NASA Astrophysics Data System (ADS)

    Lee, Woo-Seop; Chun, Jong Ahn; Kang, Kwangmin

    2014-05-01

    A PRISM (Parameter-elevation Regressions on Independent Slopes Model) QGIS-plugin was developed on Quantum GIS platform in this study. This Quantum GIS plugin system provides user-friendly graphic user interfaces (GUIs) so that users can obtain gridded meteorological data of high resolutions (1 km × 1 km). Also, this software is designed to run on a personal computer so that it does not require an internet access or a sophisticated computer system. This module is a user-friendly system that a user can generate PRISM data with ease. The proposed PRISM QGIS-plugin is a hybrid statistical-geographic model system that uses coarse resolution datasets (APHRODITE datasets in this study) with digital elevation data to generate the fine-resolution gridded precipitation. To validate the performance of the software, Prek Thnot River Basin in Kandal, Cambodia is selected for application. Overall statistical analysis shows promising outputs generated by the proposed plugin. Error measures such as RMSE (Root Mean Square Error) and MAPE (Mean Absolute Percentage Error) were used to evaluate the performance of the developed PRISM QGIS-plugin. Evaluation results using RMSE and MAPE were 2.76 mm and 4.2%, respectively. This study suggested that the plugin can be used to generate high resolution precipitation datasets for hydrological and climatological studies at a watershed where observed weather datasets are limited.

  10. Hierarchical and Parallelizable Direct Volume Rendering for Irregular and Multiple Grids

    NASA Technical Reports Server (NTRS)

    Wilhelms, Jane; VanGelder, Allen; Tarantino, Paul; Gibbs, Jonathan

    1996-01-01

    A general volume rendering technique is described that efficiently produces images of excellent quality from data defined over irregular grids having a wide variety of formats. Rendering is done in software, eliminating the need for special graphics hardware, as well as any artifacts associated with graphics hardware. Images of volumes with about one million cells can be produced in one to several minutes on a workstation with a 150 MHz processor. A significant advantage of this method for applications such as computational fluid dynamics is that it can process multiple intersecting grids. Such grids present problems for most current volume rendering techniques. Also, the wide range of cell sizes (by a factor of 10,000 or more), which is typical of such applications, does not present difficulties, as it does for many techniques. A spatial hierarchical organization makes it possible to access data from a restricted region efficiently. The tree has greater depth in regions of greater detail, determined by the number of cells in the region. It also makes it possible to render useful 'preview' images very quickly (about one second for one-million-cell grids) by displaying each region associated with a tree node as one cell. Previews show enough detail to navigate effectively in very large data sets. The algorithmic techniques include use of a kappa-d tree, with prefix-order partitioning of triangles, to reduce the number of primitives that must be processed for one rendering, coarse-grain parallelism for a shared-memory MIMD architecture, a new perspective transformation that achieves greater numerical accuracy, and a scanline algorithm with depth sorting and a new clipping technique.

  11. Modeling flow around bluff bodies and predicting urban dispersion using large eddy simulation.

    PubMed

    Tseng, Yu-Heng; Meneveau, Charles; Parlange, Marc B

    2006-04-15

    Modeling air pollutant transport and dispersion in urban environments is especially challenging due to complex ground topography. In this study, we describe a large eddy simulation (LES) tool including a new dynamic subgrid closure and boundary treatment to model urban dispersion problems. The numerical model is developed, validated, and extended to a realistic urban layout. In such applications fairly coarse grids must be used in which each building can be represented using relatively few grid-points only. By carrying out LES of flow around a square cylinder and of flow over surface-mounted cubes, the coarsest resolution required to resolve the bluff body's cross section while still producing meaningful results is established. Specifically, we perform grid refinement studies showing that at least 6-8 grid points across the bluff body are required for reasonable results. The performance of several subgrid models is also compared. Although effects of the subgrid models on the mean flow are found to be small, dynamic Lagrangian models give a physically more realistic subgrid-scale (SGS) viscosity field. When scale-dependence is taken into consideration, these models lead to more realistic resolved fluctuating velocities and spectra. These results set the minimum grid resolution and subgrid model requirements needed to apply LES in simulations of neutral atmospheric boundary layer flow and scalar transport over a realistic urban geometry. The results also illustrate the advantages of LES over traditional modeling approaches, particularly its ability to take into account the complex boundary details and the unsteady nature of atmospheric boundary layer flow. Thus LES can be used to evaluate probabilities of extreme events (such as probabilities of exceeding threshold pollutant concentrations). Some comments about computer resources required for LES are also included.

  12. POLARIS: A 30-meter probabilistic soil series map of the contiguous United States

    USGS Publications Warehouse

    Chaney, Nathaniel W; Wood, Eric F; McBratney, Alexander B; Hempel, Jonathan W; Nauman, Travis; Brungard, Colby W.; Odgers, Nathan P

    2016-01-01

    A new complete map of soil series probabilities has been produced for the contiguous United States at a 30 m spatial resolution. This innovative database, named POLARIS, is constructed using available high-resolution geospatial environmental data and a state-of-the-art machine learning algorithm (DSMART-HPC) to remap the Soil Survey Geographic (SSURGO) database. This 9 billion grid cell database is possible using available high performance computing resources. POLARIS provides a spatially continuous, internally consistent, quantitative prediction of soil series. It offers potential solutions to the primary weaknesses in SSURGO: 1) unmapped areas are gap-filled using survey data from the surrounding regions, 2) the artificial discontinuities at political boundaries are removed, and 3) the use of high resolution environmental covariate data leads to a spatial disaggregation of the coarse polygons. The geospatial environmental covariates that have the largest role in assembling POLARIS over the contiguous United States (CONUS) are fine-scale (30 m) elevation data and coarse-scale (~ 2 km) estimates of the geographic distribution of uranium, thorium, and potassium. A preliminary validation of POLARIS using the NRCS National Soil Information System (NASIS) database shows variable performance over CONUS. In general, the best performance is obtained at grid cells where DSMART-HPC is most able to reduce the chance of misclassification. The important role of environmental covariates in limiting prediction uncertainty suggests including additional covariates is pivotal to improving POLARIS' accuracy. This database has the potential to improve the modeling of biogeochemical, water, and energy cycles in environmental models; enhance availability of data for precision agriculture; and assist hydrologic monitoring and forecasting to ensure food and water security.

  13. An energy and potential enstrophy conserving scheme for the shallow water equations. [orography effects on atmospheric circulation

    NASA Technical Reports Server (NTRS)

    Arakawa, A.; Lamb, V. R.

    1979-01-01

    A three-dimensional finite difference scheme for the solution of the shallow water momentum equations which accounts for the conservation of potential enstrophy in the flow of a homogeneous incompressible shallow atmosphere over steep topography as well as for total energy conservation is presented. The scheme is derived to be consistent with a reasonable scheme for potential vorticity advection in a long-term integration for a general flow with divergent mass flux. Numerical comparisons of the characteristics of the present potential enstrophy-conserving scheme with those of a scheme that conserves potential enstrophy only for purely horizontal nondivergent flow are presented which demonstrate the reduction of computational noise in the wind field with the enstrophy-conserving scheme and its convergence even in relatively coarse grids.

  14. The Osher scheme for non-equilibrium reacting flows

    NASA Technical Reports Server (NTRS)

    Suresh, Ambady; Liou, Meng-Sing

    1992-01-01

    An extension of the Osher upwind scheme to nonequilibrium reacting flows is presented. Owing to the presence of source terms, the Riemann problem is no longer self-similar and therefore its approximate solution becomes tedious. With simplicity in mind, a linearized approach which avoids an iterative solution is used to define the intermediate states and sonic points. The source terms are treated explicitly. Numerical computations are presented to demonstrate the feasibility, efficiency and accuracy of the proposed method. The test problems include a ZND (Zeldovich-Neumann-Doring) detonation problem for which spurious numerical solutions which propagate at mesh speed have been observed on coarse grids. With the present method, a change of limiter causes the solution to change from the physically correct CJ detonation solution to the spurious weak detonation solution.

  15. Parareal algorithms with local time-integrators for time fractional differential equations

    NASA Astrophysics Data System (ADS)

    Wu, Shu-Lin; Zhou, Tao

    2018-04-01

    It is challenge work to design parareal algorithms for time-fractional differential equations due to the historical effect of the fractional operator. A direct extension of the classical parareal method to such equations will lead to unbalance computational time in each process. In this work, we present an efficient parareal iteration scheme to overcome this issue, by adopting two recently developed local time-integrators for time fractional operators. In both approaches, one introduces auxiliary variables to localized the fractional operator. To this end, we propose a new strategy to perform the coarse grid correction so that the auxiliary variables and the solution variable are corrected separately in a mixed pattern. It is shown that the proposed parareal algorithm admits robust rate of convergence. Numerical examples are presented to support our conclusions.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shadid, John Nicolas; Fish, Jacob; Waisman, Haim

    Two heuristic strategies intended to enhance the performance of the generalized global basis (GGB) method [H. Waisman, J. Fish, R.S. Tuminaro, J. Shadid, The Generalized Global Basis (GGB) method, International Journal for Numerical Methods in Engineering 61(8), 1243-1269] applied to nonlinear systems are presented. The standard GGB accelerates a multigrid scheme by an additional coarse grid correction that filters out slowly converging modes. This correction requires a potentially costly eigen calculation. This paper considers reusing previously computed eigenspace information. The GGB? scheme enriches the prolongation operator with new eigenvectors while the modified method (MGGB) selectively reuses the same prolongation. Bothmore » methods use the criteria of principal angles between subspaces spanned between the previous and current prolongation operators. Numerical examples clearly indicate significant time savings in particular for the MGGB scheme.« less

  17. Fast and accurate grid representations for atom-based docking with partner flexibility.

    PubMed

    de Vries, Sjoerd J; Zacharias, Martin

    2017-06-30

    Macromolecular docking methods can broadly be divided into geometric and atom-based methods. Geometric methods use fast algorithms that operate on simplified, grid-like molecular representations, while atom-based methods are more realistic and flexible, but far less efficient. Here, a hybrid approach of grid-based and atom-based docking is presented, combining precalculated grid potentials with neighbor lists for fast and accurate calculation of atom-based intermolecular energies and forces. The grid representation is compatible with simultaneous multibody docking and can tolerate considerable protein flexibility. When implemented in our docking method ATTRACT, grid-based docking was found to be ∼35x faster. With the OPLSX forcefield instead of the ATTRACT coarse-grained forcefield, the average speed improvement was >100x. Grid-based representations may allow atom-based docking methods to explore large conformational spaces with many degrees of freedom, such as multiple macromolecules including flexibility. This increases the domain of biological problems to which docking methods can be applied. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  18. Implementation and Characterization of Three-Dimensional Particle-in-Cell Codes on Multiple-Instruction-Multiple-Data Massively Parallel Supercomputers

    NASA Technical Reports Server (NTRS)

    Lyster, P. M.; Liewer, P. C.; Decyk, V. K.; Ferraro, R. D.

    1995-01-01

    A three-dimensional electrostatic particle-in-cell (PIC) plasma simulation code has been developed on coarse-grain distributed-memory massively parallel computers with message passing communications. Our implementation is the generalization to three-dimensions of the general concurrent particle-in-cell (GCPIC) algorithm. In the GCPIC algorithm, the particle computation is divided among the processors using a domain decomposition of the simulation domain. In a three-dimensional simulation, the domain can be partitioned into one-, two-, or three-dimensional subdomains ("slabs," "rods," or "cubes") and we investigate the efficiency of the parallel implementation of the push for all three choices. The present implementation runs on the Intel Touchstone Delta machine at Caltech; a multiple-instruction-multiple-data (MIMD) parallel computer with 512 nodes. We find that the parallel efficiency of the push is very high, with the ratio of communication to computation time in the range 0.3%-10.0%. The highest efficiency (> 99%) occurs for a large, scaled problem with 64(sup 3) particles per processing node (approximately 134 million particles of 512 nodes) which has a push time of about 250 ns per particle per time step. We have also developed expressions for the timing of the code which are a function of both code parameters (number of grid points, particles, etc.) and machine-dependent parameters (effective FLOP rate, and the effective interprocessor bandwidths for the communication of particles and grid points). These expressions can be used to estimate the performance of scaled problems--including those with inhomogeneous plasmas--to other parallel machines once the machine-dependent parameters are known.

  19. SoilGrids250m: Global gridded soil information based on machine learning

    PubMed Central

    Mendes de Jesus, Jorge; Heuvelink, Gerard B. M.; Ruiperez Gonzalez, Maria; Kilibarda, Milan; Blagotić, Aleksandar; Shangguan, Wei; Wright, Marvin N.; Geng, Xiaoyuan; Bauer-Marschallinger, Bernhard; Guevara, Mario Antonio; Vargas, Rodrigo; MacMillan, Robert A.; Batjes, Niels H.; Leenaars, Johan G. B.; Ribeiro, Eloi; Wheeler, Ichsani; Mantel, Stephan; Kempen, Bas

    2017-01-01

    This paper describes the technical development and accuracy assessment of the most recent and improved version of the SoilGrids system at 250m resolution (June 2016 update). SoilGrids provides global predictions for standard numeric soil properties (organic carbon, bulk density, Cation Exchange Capacity (CEC), pH, soil texture fractions and coarse fragments) at seven standard depths (0, 5, 15, 30, 60, 100 and 200 cm), in addition to predictions of depth to bedrock and distribution of soil classes based on the World Reference Base (WRB) and USDA classification systems (ca. 280 raster layers in total). Predictions were based on ca. 150,000 soil profiles used for training and a stack of 158 remote sensing-based soil covariates (primarily derived from MODIS land products, SRTM DEM derivatives, climatic images and global landform and lithology maps), which were used to fit an ensemble of machine learning methods—random forest and gradient boosting and/or multinomial logistic regression—as implemented in the R packages ranger, xgboost, nnet and caret. The results of 10–fold cross-validation show that the ensemble models explain between 56% (coarse fragments) and 83% (pH) of variation with an overall average of 61%. Improvements in the relative accuracy considering the amount of variation explained, in comparison to the previous version of SoilGrids at 1 km spatial resolution, range from 60 to 230%. Improvements can be attributed to: (1) the use of machine learning instead of linear regression, (2) to considerable investments in preparing finer resolution covariate layers and (3) to insertion of additional soil profiles. Further development of SoilGrids could include refinement of methods to incorporate input uncertainties and derivation of posterior probability distributions (per pixel), and further automation of spatial modeling so that soil maps can be generated for potentially hundreds of soil variables. Another area of future research is the development of methods for multiscale merging of SoilGrids predictions with local and/or national gridded soil products (e.g. up to 50 m spatial resolution) so that increasingly more accurate, complete and consistent global soil information can be produced. SoilGrids are available under the Open Data Base License. PMID:28207752

  20. SoilGrids250m: Global gridded soil information based on machine learning.

    PubMed

    Hengl, Tomislav; Mendes de Jesus, Jorge; Heuvelink, Gerard B M; Ruiperez Gonzalez, Maria; Kilibarda, Milan; Blagotić, Aleksandar; Shangguan, Wei; Wright, Marvin N; Geng, Xiaoyuan; Bauer-Marschallinger, Bernhard; Guevara, Mario Antonio; Vargas, Rodrigo; MacMillan, Robert A; Batjes, Niels H; Leenaars, Johan G B; Ribeiro, Eloi; Wheeler, Ichsani; Mantel, Stephan; Kempen, Bas

    2017-01-01

    This paper describes the technical development and accuracy assessment of the most recent and improved version of the SoilGrids system at 250m resolution (June 2016 update). SoilGrids provides global predictions for standard numeric soil properties (organic carbon, bulk density, Cation Exchange Capacity (CEC), pH, soil texture fractions and coarse fragments) at seven standard depths (0, 5, 15, 30, 60, 100 and 200 cm), in addition to predictions of depth to bedrock and distribution of soil classes based on the World Reference Base (WRB) and USDA classification systems (ca. 280 raster layers in total). Predictions were based on ca. 150,000 soil profiles used for training and a stack of 158 remote sensing-based soil covariates (primarily derived from MODIS land products, SRTM DEM derivatives, climatic images and global landform and lithology maps), which were used to fit an ensemble of machine learning methods-random forest and gradient boosting and/or multinomial logistic regression-as implemented in the R packages ranger, xgboost, nnet and caret. The results of 10-fold cross-validation show that the ensemble models explain between 56% (coarse fragments) and 83% (pH) of variation with an overall average of 61%. Improvements in the relative accuracy considering the amount of variation explained, in comparison to the previous version of SoilGrids at 1 km spatial resolution, range from 60 to 230%. Improvements can be attributed to: (1) the use of machine learning instead of linear regression, (2) to considerable investments in preparing finer resolution covariate layers and (3) to insertion of additional soil profiles. Further development of SoilGrids could include refinement of methods to incorporate input uncertainties and derivation of posterior probability distributions (per pixel), and further automation of spatial modeling so that soil maps can be generated for potentially hundreds of soil variables. Another area of future research is the development of methods for multiscale merging of SoilGrids predictions with local and/or national gridded soil products (e.g. up to 50 m spatial resolution) so that increasingly more accurate, complete and consistent global soil information can be produced. SoilGrids are available under the Open Data Base License.

  1. The interpretation of remotely sensed cloud properties from a model paramterization perspective

    NASA Technical Reports Server (NTRS)

    HARSHVARDHAN; Wielicki, Bruce A.; Ginger, Kathryn M.

    1994-01-01

    A study has been made of the relationship between mean cloud radiative properties and cloud fraction in stratocumulus cloud systems. The analysis is of several Land Resources Satellite System (LANDSAT) images and three hourly International Satellite Cloud Climatology Project (ISCCP) C-1 data during daylight hours for two grid boxes covering an area typical of a general circulation model (GCM) grid increment. Cloud properties were inferred from the LANDSAT images using two thresholds and several pixel resolutions ranging from roughly 0.0625 km to 8 km. At the finest resolution, the analysis shows that mean cloud optical depth (or liquid water path) increases somewhat with increasing cloud fraction up to 20% cloud coverage. More striking, however, is the lack of correlation between the two quantities for cloud fractions between roughly 0.2 and 0.8. When the scene is essentially overcast, the mean cloud optical tends to be higher. Coarse resolution LANDSAT analysis and the ISCCP 8-km data show lack of correlation between mean cloud optical depth and cloud fraction for coverage less than about 90%. This study shows that there is perhaps a local mean liquid water path (LWP) associated with partly cloudy areas of stratocumulus clouds. A method has been suggested to use this property to construct the cloud fraction paramterization in a GCM when the model computes a grid-box-mean LWP.

  2. Triangle Geometry Processing for Surface Modeling and Cartesian Grid Generation

    NASA Technical Reports Server (NTRS)

    Aftosmis, Michael J. (Inventor); Melton, John E. (Inventor); Berger, Marsha J. (Inventor)

    2002-01-01

    Cartesian mesh generation is accomplished for component based geometries, by intersecting components subject to mesh generation to extract wetted surfaces with a geometry engine using adaptive precision arithmetic in a system which automatically breaks ties with respect to geometric degeneracies. During volume mesh generation, intersected surface triangulations are received to enable mesh generation with cell division of an initially coarse grid. The hexagonal cells are resolved, preserving the ability to directionally divide cells which are locally well aligned.

  3. A new multigrid formulation for high order finite difference methods on summation-by-parts form

    NASA Astrophysics Data System (ADS)

    Ruggiu, Andrea A.; Weinerfelt, Per; Nordström, Jan

    2018-04-01

    Multigrid schemes for high order finite difference methods on summation-by-parts form are studied by comparing the effect of different interpolation operators. By using the standard linear prolongation and restriction operators, the Galerkin condition leads to inaccurate coarse grid discretizations. In this paper, an alternative class of interpolation operators that bypass this issue and preserve the summation-by-parts property on each grid level is considered. Clear improvements of the convergence rate for relevant model problems are achieved.

  4. Triangle geometry processing for surface modeling and cartesian grid generation

    DOEpatents

    Aftosmis, Michael J [San Mateo, CA; Melton, John E [Hollister, CA; Berger, Marsha J [New York, NY

    2002-09-03

    Cartesian mesh generation is accomplished for component based geometries, by intersecting components subject to mesh generation to extract wetted surfaces with a geometry engine using adaptive precision arithmetic in a system which automatically breaks ties with respect to geometric degeneracies. During volume mesh generation, intersected surface triangulations are received to enable mesh generation with cell division of an initially coarse grid. The hexagonal cells are resolved, preserving the ability to directionally divide cells which are locally well aligned.

  5. Tsunami Forecasting in the Atlantic Basin

    NASA Astrophysics Data System (ADS)

    Knight, W. R.; Whitmore, P.; Sterling, K.; Hale, D. A.; Bahng, B.

    2012-12-01

    The mission of the West Coast and Alaska Tsunami Warning Center (WCATWC) is to provide advance tsunami warning and guidance to coastal communities within its Area-of-Responsibility (AOR). Predictive tsunami models, based on the shallow water wave equations, are an important part of the Center's guidance support. An Atlantic-based counterpart to the long-standing forecasting ability in the Pacific known as the Alaska Tsunami Forecast Model (ATFM) is now developed. The Atlantic forecasting method is based on ATFM version 2 which contains advanced capabilities over the original model; including better handling of the dynamic interactions between grids, inundation over dry land, new forecast model products, an optional non-hydrostatic approach, and the ability to pre-compute larger and more finely gridded regions using parallel computational techniques. The wide and nearly continuous Atlantic shelf region presents a challenge for forecast models. Our solution to this problem has been to develop a single unbroken high resolution sub-mesh (currently 30 arc-seconds), trimmed to the shelf break. This allows for edge wave propagation and for kilometer scale bathymetric feature resolution. Terminating the fine mesh at the 2000m isobath keeps the number of grid points manageable while allowing for a coarse (4 minute) mesh to adequately resolve deep water tsunami dynamics. Higher resolution sub-meshes are then included around coastal forecast points of interest. The WCATWC Atlantic AOR includes eastern U.S. and Canada, the U.S. Gulf of Mexico, Puerto Rico, and the Virgin Islands. Puerto Rico and the Virgin Islands are in very close proximity to well-known tsunami sources. Because travel times are under an hour and response must be immediate, our focus is on pre-computing many tsunami source "scenarios" and compiling those results into a database accessible and calibrated with observations during an event. Seismic source evaluation determines the order of model pre-computation - starting with those sources that carry the highest risk. Model computation zones are confined to regions at risk to save computation time. For example, Atlantic sources have been shown to not propagate into the Gulf of Mexico. Therefore, fine grid computations are not performed in the Gulf for Atlantic sources. Outputs from the Atlantic model include forecast marigrams at selected sites, maximum amplitudes, drawdowns, and currents for all coastal points. The maximum amplitude maps will be supplemented with contoured energy flux maps which show more clearly the effects of bathymetric features on tsunami wave propagation. During an event, forecast marigrams will be compared to observations to adjust the model results. The modified forecasts will then be used to set alert levels between coastal breakpoints, and provided to emergency management.

  6. Investigation of Navier-Stokes Code Verification and Design Optimization

    NASA Technical Reports Server (NTRS)

    Vaidyanathan, Rajkumar

    2004-01-01

    With rapid progress made in employing computational techniques for various complex Navier-Stokes fluid flow problems, design optimization problems traditionally based on empirical formulations and experiments are now being addressed with the aid of computational fluid dynamics (CFD). To be able to carry out an effective CFD-based optimization study, it is essential that the uncertainty and appropriate confidence limits of the CFD solutions be quantified over the chosen design space. The present dissertation investigates the issues related to code verification, surrogate model-based optimization and sensitivity evaluation. For Navier-Stokes (NS) CFD code verification a least square extrapolation (LSE) method is assessed. This method projects numerically computed NS solutions from multiple, coarser base grids onto a freer grid and improves solution accuracy by minimizing the residual of the discretized NS equations over the projected grid. In this dissertation, the finite volume (FV) formulation is focused on. The interplay between the xi concepts and the outcome of LSE, and the effects of solution gradients and singularities, nonlinear physics, and coupling of flow variables on the effectiveness of LSE are investigated. A CFD-based design optimization of a single element liquid rocket injector is conducted with surrogate models developed using response surface methodology (RSM) based on CFD solutions. The computational model consists of the NS equations, finite rate chemistry, and the k-6 turbulence closure. With the aid of these surrogate models, sensitivity and trade-off analyses are carried out for the injector design whose geometry (hydrogen flow angle, hydrogen and oxygen flow areas and oxygen post tip thickness) is optimized to attain desirable goals in performance (combustion length) and life/survivability (the maximum temperatures on the oxidizer post tip and injector face and a combustion chamber wall temperature). A preliminary multi-objective optimization study is carried out using a geometric mean approach. Following this, sensitivity analyses with the aid of variance-based non-parametric approach and partial correlation coefficients are conducted using data available from surrogate models of the objectives and the multi-objective optima to identify the contribution of the design variables to the objective variability and to analyze the variability of the design variables and the objectives. In summary the present dissertation offers insight into an improved coarse to fine grid extrapolation technique for Navier-Stokes computations and also suggests tools for a designer to conduct design optimization study and related sensitivity analyses for a given design problem.

  7. Rapid inundation estimates at harbor scale using tsunami wave heights offshore simulation and coastal amplification laws

    NASA Astrophysics Data System (ADS)

    Gailler, A.; Loevenbruck, A.; Hebert, H.

    2013-12-01

    Numerical tsunami propagation and inundation models are well developed and have now reached an impressive level of accuracy, especially in locations such as harbors where the tsunami waves are mostly amplified. In the framework of tsunami warning under real-time operational conditions, the main obstacle for the routine use of such numerical simulations remains the slowness of the numerical computation, which is strengthened when detailed grids are required for the precise modeling of the coastline response of an individual harbor. Thus only tsunami offshore propagation modeling tools using a single sparse bathymetric computation grid are presently included within the French Tsunami Warning Center (CENALT), providing rapid estimation of tsunami warning at western Mediterranean and NE Atlantic basins scale. We present here a preliminary work that performs quick estimates of the inundation at individual harbors from these high sea forecasting tsunami simulations. The method involves an empirical correction based on theoretical amplification laws (either Green's or Synolakis laws). The main limitation is that its application to a given coastal area would require a large database of previous observations, in order to define the empirical parameters of the correction equation. As no such data (i.e., historical tide gage records of significant tsunamis) are available for the western Mediterranean and NE Atlantic basins, we use a set of synthetic mareograms, calculated for both fake and well-known historical tsunamigenic earthquakes in the area. This synthetic dataset is obtained through accurate numerical tsunami propagation and inundation modeling by using several nested bathymetric grids of increasingly fine resolution close to the shores (down to a grid cell size of 3m in some Mediterranean harbors). Non linear shallow water tsunami modeling performed on a single 2' coarse bathymetric grid are compared to the values given by time-consuming nested grids simulations (and observation when available), in order to check to which extent the simple approach based on the amplification laws can explain the data. The idea is to fit tsunami data with numerical modeling carried out without any refined coastal bathymetry/topography. To this end several parameters are discussed, namely the bathymetric depth to which model results must be extrapolated (using the Green's law), or the mean bathymetric slope to consider near the studied coast (when using the Synolakis law).

  8. Rapid inundation estimates using coastal amplification laws in the western Mediterranean basin

    NASA Astrophysics Data System (ADS)

    Gailler, Audrey; Loevenbruck, Anne; Hébert, Hélène

    2014-05-01

    Numerical tsunami propagation and inundation models are well developed and have now reached an impressive level of accuracy, especially in locations such as harbors where the tsunami waves are mostly amplified. In the framework of tsunami warning under real-time operational conditions, the main obstacle for the routine use of such numerical simulations remains the slowness of the numerical computation, which is strengthened when detailed grids are required for the precise modeling of the coastline response of an individual harbor. Thus only tsunami offshore propagation modeling tools using a single sparse bathymetric computation grid are presently included within the French Tsunami Warning Center (CENALT), providing rapid estimation of tsunami warning at western Mediterranean and NE Atlantic basins scale. We present here a preliminary work that performs quick estimates of the inundation at individual harbors from these high sea forecasting tsunami simulations. The method involves an empirical correction based on theoretical amplification laws (either Green's or Synolakis laws). The main limitation is that its application to a given coastal area would require a large database of previous observations, in order to define the empirical parameters of the correction equation. As no such data (i.e., historical tide gage records of significant tsunamis) are available for the western Mediterranean and NE Atlantic basins, we use a set of synthetic mareograms, calculated for both fake events and well-known historical tsunamigenic earthquakes in the area. This synthetic dataset is obtained through accurate numerical tsunami propagation and inundation modeling by using several nested bathymetric grids of increasingly fine resolution close to the shores (down to a grid cell size of 3m in some Mediterranean harbors). Non linear shallow water tsunami modeling performed on a single 2' coarse bathymetric grid are compared to the values given by time-consuming nested grids simulations (and observation when available), in order to check to which extent the simple approach based on the amplification laws can explain the data. The idea is to fit tsunami data with numerical modeling carried out without any refined coastal bathymetry/topography. To this end several parameters are discussed, namely the bathymetric depth to which model results must be extrapolated (using the Green's law), or the mean bathymetric slope to consider near the studied coast (when using the Synolakis law).

  9. Stochasticity and organization of tropical convection: Role of stratiform heating in the simulation of MJO in an aquaplanet coarse resolution GCM using a stochastic multicloud parameterization

    NASA Astrophysics Data System (ADS)

    Khouider, B.; Majda, A.; Deng, Q.; Ravindran, A. M.

    2015-12-01

    Global climate models (GCMs) are large computer codes based on the discretization of the equations of atmospheric and oceanic motions coupled to various processes of transfer of heat, moisture and other constituents between land, atmosphere, and oceans. Because of computing power limitations, typical GCM grid resolution is on the order of 100 km and the effects of many physical processes, occurring on smaller scales, on the climate system are represented through various closure recipes known as parameterizations. The parameterization of convective motions and many processes associated with cumulus clouds such as the exchange of latent heat and cloud radiative forcing are believed to be behind much of uncertainty in GCMs. Based on a lattice particle interacting system, the stochastic multicloud model (SMCM) provide a novel and efficient representation of the unresolved variability in GCMs due to organized tropical convection and the cloud cover. It is widely recognized that stratiform heating contributes significantly to tropical rainfall and to the dynamics of tropical convective systems by inducing a front-to-rear tilt in the heating profile. Stratiform anvils forming in the wake of deep convection play a central role in the dynamics of tropical mesoscale convective systems. Here, aquaplanet simulations with a warm pool like surface forcing, based on a coarse-resolution GCM , of ˜170 km grid mesh, coupled with SMCM, are used to demonstrate the importance of stratiform heating for the organization of convection on planetary and intraseasonal scales. When some key model parameters are set to produce higher stratiform heating fractions, the model produces low-frequency and planetary-scale Madden Julian oscillation (MJO)-like wave disturbances while lower to moderate stratiform heating fractions yield mainly synoptic-scale convectively coupled Kelvin-like waves. Rooted from the stratiform instability, it is conjectured here that the strength and extent of stratiform downdrafts are key contributors to the scale selection of convective organizations perhaps with mechanisms that are in essence similar to those of mesoscale convective systems.

  10. Evaluation of multisectional and two-section particulate matter photochemical grid models in the Western United States.

    PubMed

    Morris, Ralph; Koo, Bonyoung; Yarwood, Greg

    2005-11-01

    Version 4.10s of the comprehensive air-quality model with extensions (CAMx) photochemical grid model has been developed, which includes two options for representing particulate matter (PM) size distribution: (1) a two-section representation that consists of fine (PM2.5) and coarse (PM2.5-10) modes that has no interactions between the sections and assumes all of the secondary PM is fine; and (2) a multisectional representation that divides the PM size distribution into N sections (e.g., N = 10) and simulates the mass transfer between sections because of coagulation, accumulation, evaporation, and other processes. The model was applied to Southern California using the two-section and multisection representation of PM size distribution, and we found that allowing secondary PM to grow into the coarse mode had a substantial effect on PM concentration estimates. CAMx was then applied to the Western United States for the 1996 annual period with a 36-km grid resolution using both the two-section and multisection PM representation. The Community Multiscale Air Quality (CMAQ) and Regional Modeling for Aerosol and Deposition (REMSAD) models were also applied to the 1996 annual period. Similar model performance was exhibited by the four models across the Interagency Monitoring of Protected Visual Environments (IMPROVE) and Clean Air Status and Trends Network monitoring networks. All four of the models exhibited fairly low annual bias for secondary PM sulfate and nitrate but with a winter overestimation and summer underestimation bias. The CAMx multisectional model estimated that coarse mode secondary sulfate and nitrate typically contribute <10% of the total sulfate and nitrate when averaged across the more rural IMPROVE monitoring network.

  11. Three-dimensional hydrodynamic Bondi-Hoyle accretion. 2: Homogeneous medium at Mach 3 with gamma = 5/3

    NASA Technical Reports Server (NTRS)

    Ruffert, Maximilian; Arnett, David

    1994-01-01

    We investigate the hydrodynamics of three-dimensional classical Bondi-Hoyle accretion. Totally absorbing spheres of varying sizes (from 10 down to 0.01 accretion radii) move at Mach 3 relative to a homogeneous and slightly perturbed medium, which is taken to be an ideal gas (gamma = 5/3). To accommodate the long-range gravitational forces, the extent of the computational volume is 32(exp 3) accretion radii. We examine the influence of numerical procedure on physical behavior. The hydrodynamics is modeled by the 'piecewise parabolic method.' No energy sources (nuclear burning) or sinks (radiation, conduction) are included. The resolution in the vicinity of the accretor is increased by multiply nesting several (5-10) grids around the sphere, each finer grid being a factor of 2 smaller in zone dimension that the next coarser grid. The largest dynamic range (ratio of size of the largest grid to size of the finest zone) is 16,384. This allows us to include a coarse model for the surface of the accretor (vacuum sphere) on the finest grid, while at the same time evolving the gas on the coarser grids. Initially (at time t = 0-10), a shock front is set up, a Mach cone develops, and the accretion column is observable. Eventually the flow becomes unstable, destroying axisymmetry. This happens approximately when the mass accretion rate reaches the values (+/- 10%) predicted by the Bondi-Hoyle accretion formula (factor of 2 included). However, our three-dimensional models do not show the highly dynamic flip-flop flow so prominent in two-dimensional calculations performed by other authors. The flow, and thus the accretion rate of all quantities, shows quasi-periodic (P approximately equals 5) cycles between quiescent and active states. The interpolation formula proposed in an accompanying paper is found to follow the collected numerical data to within approximately 30%. The specific angular momentum accreted is of the same order of magnitude as the values previously found for two-dimensional flows.

  12. An Approach for Dynamic Grids

    NASA Technical Reports Server (NTRS)

    Slater, John W.; Liou, Meng-Sing; Hindman, Richard G.

    1994-01-01

    An approach is presented for the generation of two-dimensional, structured, dynamic grids. The grid motion may be due to the motion of the boundaries of the computational domain or to the adaptation of the grid to the transient, physical solution. A time-dependent grid is computed through the time integration of the grid speeds which are computed from a system of grid speed equations. The grid speed equations are derived from the time-differentiation of the grid equations so as to ensure that the dynamic grid maintains the desired qualities of the static grid. The grid equations are the Euler-Lagrange equations derived from a variational statement for the grid. The dynamic grid method is demonstrated for a model problem involving boundary motion, an inviscid flow in a converging-diverging nozzle during startup, and a viscous flow over a flat plate with an impinging shock wave. It is shown that the approach is more accurate for transient flows than an approach in which the grid speeds are computed using a finite difference with respect to time of the grid. However, the approach requires significantly more computational effort.

  13. Additional Security Considerations for Grid Management

    NASA Technical Reports Server (NTRS)

    Eidson, Thomas M.

    2003-01-01

    The use of Grid computing environments is growing in popularity. A Grid computing environment is primarily a wide area network that encompasses multiple local area networks, where some of the local area networks are managed by different organizations. A Grid computing environment also includes common interfaces for distributed computing software so that the heterogeneous set of machines that make up the Grid can be used more easily. The other key feature of a Grid is that the distributed computing software includes appropriate security technology. The focus of most Grid software is on the security involved with application execution, file transfers, and other remote computing procedures. However, there are other important security issues related to the management of a Grid and the users who use that Grid. This note discusses these additional security issues and makes several suggestions as how they can be managed.

  14. Cloud Computing for the Grid: GridControl: A Software Platform to Support the Smart Grid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    GENI Project: Cornell University is creating a new software platform for grid operators called GridControl that will utilize cloud computing to more efficiently control the grid. In a cloud computing system, there are minimal hardware and software demands on users. The user can tap into a network of computers that is housed elsewhere (the cloud) and the network runs computer applications for the user. The user only needs interface software to access all of the cloud’s data resources, which can be as simple as a web browser. Cloud computing can reduce costs, facilitate innovation through sharing, empower users, and improvemore » the overall reliability of a dispersed system. Cornell’s GridControl will focus on 4 elements: delivering the state of the grid to users quickly and reliably; building networked, scalable grid-control software; tailoring services to emerging smart grid uses; and simulating smart grid behavior under various conditions.« less

  15. Cost-effective accurate coarse-grid method for highly convective multidimensional unsteady flows

    NASA Technical Reports Server (NTRS)

    Leonard, B. P.; Niknafs, H. S.

    1991-01-01

    A fundamentally multidimensional convection scheme is described based on vector transient interpolation modeling rewritten in conservative control-volume form. Vector third-order upwinding is used as the basis of the algorithm; this automatically introduces important cross-difference terms that are absent from schemes using component-wise one-dimensional formulas. Third-order phase accuracy is good; this is important for coarse-grid large-eddy or full simulation. Potential overshoots or undershoots are avoided by using a recently developed universal limiter. Higher order accuracy is obtained locally, where needed, by the cost-effective strategy of adaptive stencil expansion in a direction normal to each control-volume face; this is controlled by monitoring the absolute normal gradient and curvature across the face. Higher (than third) order cross-terms do not appear to be needed. Since the wider stencil is used only in isolated narrow regions (near discontinuities), extremely high (in this case, seventh) order accuracy can be achieved for little more than the cost of a globally third-order scheme.

  16. A grid-embedding transonic flow analysis computer program for wing/nacelle configurations

    NASA Technical Reports Server (NTRS)

    Atta, E. H.; Vadyak, J.

    1983-01-01

    An efficient grid-interfacing zonal algorithm was developed for computing the three-dimensional transonic flow field about wing/nacelle configurations. the algorithm uses the full-potential formulation and the AF2 approximate factorization scheme. The flow field solution is computed using a component-adaptive grid approach in which separate grids are employed for the individual components in the multi-component configuration, where each component grid is optimized for a particular geometry such as the wing or nacelle. The wing and nacelle component grids are allowed to overlap, and flow field information is transmitted from one grid to another through the overlap region using trivariate interpolation. This report represents a discussion of the computational methods used to generate both the wing and nacelle component grids, the technique used to interface the component grids, and the method used to obtain the inviscid flow solution. Computed results and correlations with experiment are presented. also presented are discussions on the organization of the wing grid generation (GRGEN3) and nacelle grid generation (NGRIDA) computer programs, the grid interface (LK) computer program, and the wing/nacelle flow solution (TWN) computer program. Descriptions of the respective subroutines, definitions of the required input parameters, a discussion on interpretation of the output, and the sample cases illustrating application of the analysis are provided for each of the four computer programs.

  17. Challenges of Representing Sub-Grid Physics in an Adaptive Mesh Refinement Atmospheric Model

    NASA Astrophysics Data System (ADS)

    O'Brien, T. A.; Johansen, H.; Johnson, J. N.; Rosa, D.; Benedict, J. J.; Keen, N. D.; Collins, W.; Goodfriend, E.

    2015-12-01

    Some of the greatest potential impacts from future climate change are tied to extreme atmospheric phenomena that are inherently multiscale, including tropical cyclones and atmospheric rivers. Extremes are challenging to simulate in conventional climate models due to existing models' coarse resolutions relative to the native length-scales of these phenomena. Studying the weather systems of interest requires an atmospheric model with sufficient local resolution, and sufficient performance for long-duration climate-change simulations. To this end, we have developed a new global climate code with adaptive spatial and temporal resolution. The dynamics are formulated using a block-structured conservative finite volume approach suitable for moist non-hydrostatic atmospheric dynamics. By using both space- and time-adaptive mesh refinement, the solver focuses computational resources only where greater accuracy is needed to resolve critical phenomena. We explore different methods for parameterizing sub-grid physics, such as microphysics, macrophysics, turbulence, and radiative transfer. In particular, we contrast the simplified physics representation of Reed and Jablonowski (2012) with the more complex physics representation used in the System for Atmospheric Modeling of Khairoutdinov and Randall (2003). We also explore the use of a novel macrophysics parameterization that is designed to be explicitly scale-aware.

  18. High-resolution surface analysis for extended-range downscaling with limited-area atmospheric models

    NASA Astrophysics Data System (ADS)

    Separovic, Leo; Husain, Syed Zahid; Yu, Wei; Fernig, David

    2014-12-01

    High-resolution limited-area model (LAM) simulations are frequently employed to downscale coarse-resolution objective analyses over a specified area of the globe using high-resolution computational grids. When LAMs are integrated over extended time frames, from months to years, they are prone to deviations in land surface variables that can be harmful to the quality of the simulated near-surface fields. Nudging of the prognostic surface fields toward a reference-gridded data set is therefore devised in order to prevent the atmospheric model from diverging from the expected values. This paper presents a method to generate high-resolution analyses of land-surface variables, such as surface canopy temperature, soil moisture, and snow conditions, to be used for the relaxation of lower boundary conditions in extended-range LAM simulations. The proposed method is based on performing offline simulations with an external surface model, forced with the near-surface meteorological fields derived from short-range forecast, operational analyses, and observed temperatures and humidity. Results show that the outputs of the surface model obtained in the present study have potential to improve the near-surface atmospheric fields in extended-range LAM integrations.

  19. Global convergence of inexact Newton methods for transonic flow

    NASA Technical Reports Server (NTRS)

    Young, David P.; Melvin, Robin G.; Bieterman, Michael B.; Johnson, Forrester T.; Samant, Satish S.

    1990-01-01

    In computational fluid dynamics, nonlinear differential equations are essential to represent important effects such as shock waves in transonic flow. Discretized versions of these nonlinear equations are solved using iterative methods. In this paper an inexact Newton method using the GMRES algorithm of Saad and Schultz is examined in the context of the full potential equation of aerodynamics. In this setting, reliable and efficient convergence of Newton methods is difficult to achieve. A poor initial solution guess often leads to divergence or very slow convergence. This paper examines several possible solutions to these problems, including a standard local damping strategy for Newton's method and two continuation methods, one of which utilizes interpolation from a coarse grid solution to obtain the initial guess on a finer grid. It is shown that the continuation methods can be used to augment the local damping strategy to achieve convergence for difficult transonic flow problems. These include simple wings with shock waves as well as problems involving engine power effects. These latter cases are modeled using the assumption that each exhaust plume is isentropic but has a different total pressure and/or temperature than the freestream.

  20. Computing the Free Energy Barriers for Less by Sampling with a Coarse Reference Potential while Retaining Accuracy of the Target Fine Model.

    PubMed

    Plotnikov, Nikolay V

    2014-08-12

    Proposed in this contribution is a protocol for calculating fine-physics (e.g., ab initio QM/MM) free-energy surfaces at a high level of accuracy locally (e.g., only at reactants and at the transition state for computing the activation barrier) from targeted fine-physics sampling and extensive exploratory coarse-physics sampling. The full free-energy surface is still computed but at a lower level of accuracy from coarse-physics sampling. The method is analytically derived in terms of the umbrella sampling and the free-energy perturbation methods which are combined with the thermodynamic cycle and the targeted sampling strategy of the paradynamics approach. The algorithm starts by computing low-accuracy fine-physics free-energy surfaces from the coarse-physics sampling in order to identify the reaction path and to select regions for targeted sampling. Thus, the algorithm does not rely on the coarse-physics minimum free-energy reaction path. Next, segments of high-accuracy free-energy surface are computed locally at selected regions from the targeted fine-physics sampling and are positioned relative to the coarse-physics free-energy shifts. The positioning is done by averaging the free-energy perturbations computed with multistep linear response approximation method. This method is analytically shown to provide results of the thermodynamic integration and the free-energy interpolation methods, while being extremely simple in implementation. Incorporating the metadynamics sampling to the algorithm is also briefly outlined. The application is demonstrated by calculating the B3LYP//6-31G*/MM free-energy barrier for an enzymatic reaction using a semiempirical PM6/MM reference potential. These modifications allow computing the activation free energies at a significantly reduced computational cost but at the same level of accuracy compared to computing full potential of mean force.

  1. Computing the Free Energy Barriers for Less by Sampling with a Coarse Reference Potential while Retaining Accuracy of the Target Fine Model

    PubMed Central

    2015-01-01

    Proposed in this contribution is a protocol for calculating fine-physics (e.g., ab initio QM/MM) free-energy surfaces at a high level of accuracy locally (e.g., only at reactants and at the transition state for computing the activation barrier) from targeted fine-physics sampling and extensive exploratory coarse-physics sampling. The full free-energy surface is still computed but at a lower level of accuracy from coarse-physics sampling. The method is analytically derived in terms of the umbrella sampling and the free-energy perturbation methods which are combined with the thermodynamic cycle and the targeted sampling strategy of the paradynamics approach. The algorithm starts by computing low-accuracy fine-physics free-energy surfaces from the coarse-physics sampling in order to identify the reaction path and to select regions for targeted sampling. Thus, the algorithm does not rely on the coarse-physics minimum free-energy reaction path. Next, segments of high-accuracy free-energy surface are computed locally at selected regions from the targeted fine-physics sampling and are positioned relative to the coarse-physics free-energy shifts. The positioning is done by averaging the free-energy perturbations computed with multistep linear response approximation method. This method is analytically shown to provide results of the thermodynamic integration and the free-energy interpolation methods, while being extremely simple in implementation. Incorporating the metadynamics sampling to the algorithm is also briefly outlined. The application is demonstrated by calculating the B3LYP//6-31G*/MM free-energy barrier for an enzymatic reaction using a semiempirical PM6/MM reference potential. These modifications allow computing the activation free energies at a significantly reduced computational cost but at the same level of accuracy compared to computing full potential of mean force. PMID:25136268

  2. A Structured and Unstructured grid Relocatable ocean platform for Forecasting (SURF)

    NASA Astrophysics Data System (ADS)

    Trotta, Francesco; Fenu, Elisa; Pinardi, Nadia; Bruciaferri, Diego; Giacomelli, Luca; Federico, Ivan; Coppini, Giovanni

    2016-11-01

    We present a numerical platform named Structured and Unstructured grid Relocatable ocean platform for Forecasting (SURF). The platform is developed for short-time forecasts and is designed to be embedded in any region of the large-scale Mediterranean Forecasting System (MFS) via downscaling. We employ CTD data collected during a campaign around the Elba island to calibrate and validate SURF. The model requires an initial spin up period of a few days in order to adapt the initial interpolated fields and the subsequent solutions to the higher-resolution nested grids adopted by SURF. Through a comparison with the CTD data, we quantify the improvement obtained by SURF model compared to the coarse-resolution MFS model.

  3. The added value of dynamical downscaling in a climate change scenario simulation:A case study for European Alps and East Asia

    NASA Astrophysics Data System (ADS)

    Im, Eun-Soon; Coppola, Erika; Giorgi, Filippo

    2010-05-01

    Since anthropogenic climate change is a rather important factor for the future human life all over the planet and its effects are not globally uniform, climate information at regional or local scales become more and more important for an accurate assessment of the potential impact of climate change on societies and ecosystems. High resolution information with suitably fine-scale for resolving complex geographical features could be a critical factor for successful linkage between climate models and impact assessment studies. However, scale mismatch between them still remains major problem. One method for overcoming the resolution limitations of global climate models and for adding regional details to coarse-grid global projections is to use dynamical downscaling by means of a regional climate model. In this study, the ECHAM5/MPI-OM (1.875 degree) A1B scenario simulation has been dynamically downscaled by using two different approaches within the framework of RegCM3 modeling system. First, a mosaic-type parameterization of subgrid-scale topography and land use (Sub-BATS) is applied over the European Alpine region. The Sub-BATS system is composed of 15 km coarse-grid cell and 3 km sub-grid cell. Second, we developed the RegCM3 one-way double-nested system, with the mother domain encompassing the eastern regions of Asia at 60 km grid spacing and the nested domain covering the Korean Peninsula at 20 km grid spacing. By comparing the regional climate model output and the driving global model ECHAM5/MPI-OM output, it is possible to estimate the added value of physically-based dynamical downscaling when for example impact studies at hydrological scale are performed.

  4. Evaluation of MODFLOW-LGR in connection with a synthetic regional-scale model

    USGS Publications Warehouse

    Vilhelmsen, T.N.; Christensen, S.; Mehl, S.W.

    2012-01-01

    This work studies costs and benefits of utilizing local-grid refinement (LGR) as implemented in MODFLOW-LGR to simulate groundwater flow in a buried tunnel valley interacting with a regional aquifer. Two alternative LGR methods were used: the shared-node (SN) method and the ghost-node (GN) method. To conserve flows the SN method requires correction of sources and sinks in cells at the refined/coarse-grid interface. We found that the optimal correction method is case dependent and difficult to identify in practice. However, the results showed little difference and suggest that identifying the optimal method was of minor importance in our case. The GN method does not require corrections at the models' interface, and it uses a simpler head interpolation scheme than the SN method. The simpler scheme is faster but less accurate so that more iterations may be necessary. However, the GN method solved our flow problem more efficiently than the SN method. The MODFLOW-LGR results were compared with the results obtained using a globally coarse (GC) grid. The LGR simulations required one to two orders of magnitude longer run times than the GC model. However, the improvements of the numerical resolution around the buried valley substantially increased the accuracy of simulated heads and flows compared with the GC simulation. Accuracy further increased locally around the valley flanks when improving the geological resolution using the refined grid. Finally, comparing MODFLOW-LGR simulation with a globally refined (GR) grid showed that the refinement proportion of the model should not exceed 10% to 15% in order to secure method efficiency. ?? 2011, The Author(s). Ground Water ?? 2011, National Ground Water Association.

  5. Maps and grids of hydrogeologic information created from standardized water-well drillers’ records of the glaciated United States

    USGS Publications Warehouse

    Bayless, E. Randall; Arihood, Leslie D.; Reeves, Howard W.; Sperl, Benjamin J.S.; Qi, Sharon L.; Stipe, Valerie E.; Bunch, Aubrey R.

    2017-01-18

    As part of the National Water Availability and Use Program established by the U.S. Geological Survey (USGS) in 2005, this study took advantage of about 14 million records from State-managed collections of water-well drillers’ records and created a database of hydrogeologic properties for the glaciated United States. The water-well drillers’ records were standardized to be relatively complete and error-free and to provide consistent variables and naming conventions that span all State boundaries.Maps and geospatial grids were developed for (1) total thickness of glacial deposits, (2) total thickness of coarse-grained deposits, (3) specific-capacity based transmissivity and hydraulic conductivity, and (4) texture-based estimated equivalent horizontal and vertical hydraulic conductivity and transmissivity. The information included in these maps and grids is required for most assessments of groundwater availability, in addition to having applications to studies of groundwater flow and transport. The texture-based estimated equivalent horizontal and vertical hydraulic conductivity and transmissivity were based on an assumed range of hydraulic conductivity values for coarse- and fine-grained deposits and should only be used with complete awareness of the methods used to create them. However, the maps and grids of texture-based estimated equivalent hydraulic conductivity and transmissivity may be useful for application to areas where a range of measured values is available for re-scaling.Maps of hydrogeologic information for some States are presented as examples in this report but maps and grids for all States are available electronically at the project Web site (USGS Glacial Aquifer System Groundwater Availability Study, http://mi.water.usgs.gov/projects/WaterSmart/Map-SIR2015-5105.html) and the Science Base Web site, https://www.sciencebase.gov/catalog/item/58756c7ee4b0a829a3276352.

  6. Reconstruction method for inversion problems in an acoustic tomography based temperature distribution measurement

    NASA Astrophysics Data System (ADS)

    Liu, Sha; Liu, Shi; Tong, Guowei

    2017-11-01

    In industrial areas, temperature distribution information provides a powerful data support for improving system efficiency, reducing pollutant emission, ensuring safety operation, etc. As a noninvasive measurement technology, acoustic tomography (AT) has been widely used to measure temperature distribution where the efficiency of the reconstruction algorithm is crucial for the reliability of the measurement results. Different from traditional reconstruction techniques, in this paper a two-phase reconstruction method is proposed to ameliorate the reconstruction accuracy (RA). In the first phase, the measurement domain is discretized by a coarse square grid to reduce the number of unknown variables to mitigate the ill-posed nature of the AT inverse problem. By taking into consideration the inaccuracy of the measured time-of-flight data, a new cost function is constructed to improve the robustness of the estimation, and a grey wolf optimizer is used to solve the proposed cost function to obtain the temperature distribution on the coarse grid. In the second phase, the Adaboost.RT based BP neural network algorithm is developed for predicting the temperature distribution on the refined grid in accordance with the temperature distribution data estimated in the first phase. Numerical simulations and experiment measurement results validate the superiority of the proposed reconstruction algorithm in improving the robustness and RA.

  7. Distributed intrusion detection system based on grid security model

    NASA Astrophysics Data System (ADS)

    Su, Jie; Liu, Yahui

    2008-03-01

    Grid computing has developed rapidly with the development of network technology and it can solve the problem of large-scale complex computing by sharing large-scale computing resource. In grid environment, we can realize a distributed and load balance intrusion detection system. This paper first discusses the security mechanism in grid computing and the function of PKI/CA in the grid security system, then gives the application of grid computing character in the distributed intrusion detection system (IDS) based on Artificial Immune System. Finally, it gives a distributed intrusion detection system based on grid security system that can reduce the processing delay and assure the detection rates.

  8. Parallel Newton-Krylov-Schwarz algorithms for the transonic full potential equation

    NASA Technical Reports Server (NTRS)

    Cai, Xiao-Chuan; Gropp, William D.; Keyes, David E.; Melvin, Robin G.; Young, David P.

    1996-01-01

    We study parallel two-level overlapping Schwarz algorithms for solving nonlinear finite element problems, in particular, for the full potential equation of aerodynamics discretized in two dimensions with bilinear elements. The overall algorithm, Newton-Krylov-Schwarz (NKS), employs an inexact finite-difference Newton method and a Krylov space iterative method, with a two-level overlapping Schwarz method as a preconditioner. We demonstrate that NKS, combined with a density upwinding continuation strategy for problems with weak shocks, is robust and, economical for this class of mixed elliptic-hyperbolic nonlinear partial differential equations, with proper specification of several parameters. We study upwinding parameters, inner convergence tolerance, coarse grid density, subdomain overlap, and the level of fill-in in the incomplete factorization, and report their effect on numerical convergence rate, overall execution time, and parallel efficiency on a distributed-memory parallel computer.

  9. A split finite element algorithm for the compressible Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Baker, A. J.

    1979-01-01

    An accurate and efficient numerical solution algorithm is established for solution of the high Reynolds number limit of the Navier-Stokes equations governing the multidimensional flow of a compressible essentially inviscid fluid. Finite element interpolation theory is used within a dissipative formulation established using Galerkin criteria within the Method of Weighted Residuals. An implicit iterative solution algorithm is developed, employing tensor product bases within a fractional steps integration procedure, that significantly enhances solution economy concurrent with sharply reduced computer hardware demands. The algorithm is evaluated for resolution of steep field gradients and coarse grid accuracy using both linear and quadratic tensor product interpolation bases. Numerical solutions for linear and nonlinear, one, two and three dimensional examples confirm and extend the linearized theoretical analyses, and results are compared to competitive finite difference derived algorithms.

  10. Satellite-Scale Snow Water Equivalent Assimilation into a High-Resolution Land Surface Model

    NASA Technical Reports Server (NTRS)

    De Lannoy, Gabrielle J.M.; Reichle, Rolf H.; Houser, Paul R.; Arsenault, Kristi R.; Verhoest, Niko E.C.; Paulwels, Valentijn R.N.

    2009-01-01

    An ensemble Kalman filter (EnKF) is used in a suite of synthetic experiments to assimilate coarse-scale (25 km) snow water equivalent (SWE) observations (typical of satellite retrievals) into fine-scale (1 km) model simulations. Coarse-scale observations are assimilated directly using an observation operator for mapping between the coarse and fine scales or, alternatively, after disaggregation (re-gridding) to the fine-scale model resolution prior to data assimilation. In either case observations are assimilated either simultaneously or independently for each location. Results indicate that assimilating disaggregated fine-scale observations independently (method 1D-F1) is less efficient than assimilating a collection of neighboring disaggregated observations (method 3D-Fm). Direct assimilation of coarse-scale observations is superior to a priori disaggregation. Independent assimilation of individual coarse-scale observations (method 3D-C1) can bring the overall mean analyzed field close to the truth, but does not necessarily improve estimates of the fine-scale structure. There is a clear benefit to simultaneously assimilating multiple coarse-scale observations (method 3D-Cm) even as the entire domain is observed, indicating that underlying spatial error correlations can be exploited to improve SWE estimates. Method 3D-Cm avoids artificial transitions at the coarse observation pixel boundaries and can reduce the RMSE by 60% when compared to the open loop in this study.

  11. Testing MODFLOW-LGR for simulating flow around buried Quaternary valleys - synthetic test cases

    NASA Astrophysics Data System (ADS)

    Vilhelmsen, T. N.; Christensen, S.

    2009-12-01

    In this study the Local Grid Refinement (LGR) method developed for MODFLOW-2005 (Mehl and Hill, 2005) is utilized to describe groundwater flow in areas containing buried Quaternary valley structures. The tests are conducted as comparative analysis between simulations run with a globally refined model, a locally refined model, and a globally coarse model, respectively. The models vary from simple one layer models to more complex ones with up to 25 model layers. The comparisons of accuracy are conducted within the locally refined area and focus on water budgets, simulated heads, and simulated particle traces. Simulations made with the globally refined model are used as reference (regarded as “true” values). As expected, for all test cases the application of local grid refinement resulted in more accurate results than when using the globally coarse model. A significant advantage of utilizing MODFLOW-LGR was that it allows increased numbers of model layers to better resolve complex geology within local areas. This resulted in more accurate simulations than when using either a globally coarse model grid or a locally refined model with lower geological resolution. Improved accuracy in the latter case could not be expected beforehand because difference in geological resolution between the coarse parent model and the refined child model contradicts the assumptions of the Darcy weighted interpolation used in MODFLOW-LGR. With respect to model runtimes, it was sometimes found that the runtime for the locally refined model is much longer than for the globally refined model. This was the case even when the closure criteria were relaxed compared to the globally refined model. These results are contradictory to those presented by Mehl and Hill (2005). Furthermore, in the complex cases it took some testing (model runs) to identify the closure criteria and the damping factor that secured convergence, accurate solutions, and reasonable runtimes. For our cases this is judged to be a serious disadvantage of applying MODFLOW-LGR. Another disadvantage in the studied cases was that the MODFLOW-LGR results proved to be somewhat dependent on the correction method used at the parent-child model interface. This indicates that when applying MODFLOW-LGR there is a need for thorough and case-specific considerations regarding choice of correction method. References: Mehl, S. and M. C. Hill (2005). "MODFLOW-2005, THE U.S. GEOLOGICAL SURVEY MODULAR GROUND-WATER MODEL - DOCUMENTATION OF SHARED NODE LOCAL GRID REFINEMENT (LGR) AND THE BOUNDARY FLOW AND HEAD (BFH) PACKAGE " U.S. Geological Survey Techniques and Methods 6-A12

  12. An Improved Compressive Sensing and Received Signal Strength-Based Target Localization Algorithm with Unknown Target Population for Wireless Local Area Networks.

    PubMed

    Yan, Jun; Yu, Kegen; Chen, Ruizhi; Chen, Liang

    2017-05-30

    In this paper a two-phase compressive sensing (CS) and received signal strength (RSS)-based target localization approach is proposed to improve position accuracy by dealing with the unknown target population and the effect of grid dimensions on position error. In the coarse localization phase, by formulating target localization as a sparse signal recovery problem, grids with recovery vector components greater than a threshold are chosen as the candidate target grids. In the fine localization phase, by partitioning each candidate grid, the target position in a grid is iteratively refined by using the minimum residual error rule and the least-squares technique. When all the candidate target grids are iteratively partitioned and the measurement matrix is updated, the recovery vector is re-estimated. Threshold-based detection is employed again to determine the target grids and hence the target population. As a consequence, both the target population and the position estimation accuracy can be significantly improved. Simulation results demonstrate that the proposed approach achieves the best accuracy among all the algorithms compared.

  13. Setting Up a Grid-CERT: Experiences of an Academic CSIRT

    ERIC Educational Resources Information Center

    Moller, Klaus

    2007-01-01

    Purpose: Grid computing has often been heralded as the next logical step after the worldwide web. Users of grids can access dynamic resources such as computer storage and use the computing resources of computers under the umbrella of a virtual organisation. Although grid computing is often compared to the worldwide web, it is vastly more complex…

  14. A Multigrid NLS-4DVar Data Assimilation Scheme with Advanced Research WRF (ARW)

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Tian, X.

    2017-12-01

    The motions of the atmosphere have multiscale properties in space and/or time, and the background error covariance matrix (Β) should thus contain error information at different correlation scales. To obtain an optimal analysis, the multigrid three-dimensional variational data assimilation scheme is used widely when sequentially correcting errors from large to small scales. However, introduction of the multigrid technique into four-dimensional variational data assimilation is not easy, due to its strong dependence on the adjoint model, which has extremely high computational costs in data coding, maintenance, and updating. In this study, the multigrid technique was introduced into the nonlinear least-squares four-dimensional variational assimilation (NLS-4DVar) method, which is an advanced four-dimensional ensemble-variational method that can be applied without invoking the adjoint models. The multigrid NLS-4DVar (MG-NLS-4DVar) scheme uses the number of grid points to control the scale, with doubling of this number when moving from a coarse to a finer grid. Furthermore, the MG-NLS-4DVar scheme not only retains the advantages of NLS-4DVar, but also sufficiently corrects multiscale errors to achieve a highly accurate analysis. The effectiveness and efficiency of the proposed MG-NLS-4DVar scheme were evaluated by several groups of observing system simulation experiments using the Advanced Research Weather Research and Forecasting Model. MG-NLS-4DVar outperformed NLS-4DVar, with a lower computational cost.

  15. Calcium waves in a grid of clustered channels with synchronous IP3 binding and unbinding.

    PubMed

    Rückl, M; Rüdiger, S

    2016-11-01

    Calcium signals in cells occur at multiple spatial scales and variable temporal duration. However, a physical explanation for transitions between long-lasting global oscillations and localized short-term elevations (puffs) of cytoplasmic Ca 2+ is still lacking. Here we introduce a phenomenological, coarse-grained model for the calcium variable, which is represented by ordinary differential equations. Due to its small number of parameters, and its simplicity, this model allows us to numerically study the interplay of multi-scale calcium concentrations with stochastic ion channel gating dynamics even in larger systems. We apply this model to a single cluster of inositol trisphosphate (IP 3 ) receptor channels and find further evidence for the results presented in earlier work: a single cluster may be capable of producing different calcium release types, where long-lasting events are accompanied by unbinding of IP 3 from the receptor (Rückl et al., PLoS Comput. Biol. 11, e1003965 (2015)). Finally, we show the practicability of the model in a grid of 64 clusters which is computationally intractable with previous high-resolution models. Here long-lasting events can lead to synchronized oscillations and waves, while short events stay localized. The frequency of calcium releases as well as their coherence can thereby be regulated by the amplitude of IP 3 stimulation. Finally the model allows for a new explanation of oscillating [IP 3 ], which is not based on metabolic production and degradation of IP 3 .

  16. Time-marching multi-grid seismic tomography

    NASA Astrophysics Data System (ADS)

    Tong, P.; Yang, D.; Liu, Q.

    2016-12-01

    From the classic ray-based traveltime tomography to the state-of-the-art full waveform inversion, because of the nonlinearity of seismic inverse problems, a good starting model is essential for preventing the convergence of the objective function toward local minima. With a focus on building high-accuracy starting models, we propose the so-called time-marching multi-grid seismic tomography method in this study. The new seismic tomography scheme consists of a temporal time-marching approach and a spatial multi-grid strategy. We first divide the recording period of seismic data into a series of time windows. Sequentially, the subsurface properties in each time window are iteratively updated starting from the final model of the previous time window. There are at least two advantages of the time-marching approach: (1) the information included in the seismic data of previous time windows has been explored to build the starting models of later time windows; (2) seismic data of later time windows could provide extra information to refine the subsurface images. Within each time window, we use a multi-grid method to decompose the scale of the inverse problem. Specifically, the unknowns of the inverse problem are sampled on a coarse mesh to capture the macro-scale structure of the subsurface at the beginning. Because of the low dimensionality, it is much easier to reach the global minimum on a coarse mesh. After that, finer meshes are introduced to recover the micro-scale properties. That is to say, the subsurface model is iteratively updated on multi-grid in every time window. We expect that high-accuracy starting models should be generated for the second and later time windows. We will test this time-marching multi-grid method by using our newly developed eikonal-based traveltime tomography software package tomoQuake. Real application results in the 2016 Kumamoto earthquake (Mw 7.0) region in Japan will be demonstrated.

  17. : “Developing Regional Modeling Techniques Applicable for Simulating Future Climate Conditions in the Carolinas”

    EPA Science Inventory

    Global climate models (GCMs) are currently used to obtain information about future changes in the large-scale climate. However, such simulations are typically done at coarse spatial resolutions, with model grid boxes on the order of 100 km on a horizontal side. Therefore, techniq...

  18. Proposal for grid computing for nuclear applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Idris, Faridah Mohamad; Ismail, Saaidi; Haris, Mohd Fauzi B.

    2014-02-12

    The use of computer clusters for computational sciences including computational physics is vital as it provides computing power to crunch big numbers at a faster rate. In compute intensive applications that requires high resolution such as Monte Carlo simulation, the use of computer clusters in a grid form that supplies computational power to any nodes within the grid that needs computing power, has now become a necessity. In this paper, we described how the clusters running on a specific application could use resources within the grid, to run the applications to speed up the computing process.

  19. Rapid inundation estimates at harbor scale using tsunami wave heights offshore simulation and Green's law approach

    NASA Astrophysics Data System (ADS)

    Gailler, Audrey; Hébert, Hélène; Loevenbruck, Anne

    2013-04-01

    Improvements in the availability of sea-level observations and advances in numerical modeling techniques are increasing the potential for tsunami warnings to be based on numerical model forecasts. Numerical tsunami propagation and inundation models are well developed and have now reached an impressive level of accuracy, especially in locations such as harbors where the tsunami waves are mostly amplified. In the framework of tsunami warning under real-time operational conditions, the main obstacle for the routine use of such numerical simulations remains the slowness of the numerical computation, which is strengthened when detailed grids are required for the precise modeling of the coastline response on the scale of an individual harbor. In fact, when facing the problem of the interaction of the tsunami wavefield with a shoreline, any numerical simulation must be performed over an increasingly fine grid, which in turn mandates a reduced time step, and the use of a fully non-linear code. Such calculations become then prohibitively time-consuming, which is clearly unacceptable in the framework of real-time warning. Thus only tsunami offshore propagation modeling tools using a single sparse bathymetric computation grid are presently included within the French Tsunami Warning Center (CENALT), providing rapid estimation of tsunami wave heights in high seas, and tsunami warning maps at western Mediterranean and NE Atlantic basins scale. We present here a preliminary work that performs quick estimates of the inundation at individual harbors from these deep wave heights simulations. The method involves an empirical correction relation derived from Green's law, expressing conservation of wave energy flux to extend the gridded wave field into the harbor with respect to the nearby deep-water grid node. The main limitation of this method is that its application to a given coastal area would require a large database of previous observations, in order to define the empirical parameters of the correction equation. As no such data (i.e., historical tide gage records of significant tsunamis) are available for the western Mediterranean and NE Atlantic basins, a set of synthetic mareograms is calculated for both fake and well-known historical tsunamigenic earthquakes in the area. This synthetic dataset is obtained through accurate numerical tsunami propagation and inundation modeling by using several nested bathymetric grids characterized by a coarse resolution over deep water regions and an increasingly fine resolution close to the shores (down to a grid cell size of 3m in some Mediterranean harbors). This synthetic dataset is then used to approximate the empirical parameters of the correction equation. Results of inundation estimates in several french Mediterranean harbors obtained with the fast "Green's law - derived" method are presented and compared with values given by time-consuming nested grids simulations.

  20. Evaluation of the Ross fast solution of Richards’ equation in unfavourable conditions for standard finite element methods

    NASA Astrophysics Data System (ADS)

    Crevoisier, David; Chanzy, André; Voltz, Marc

    2009-06-01

    Ross [Ross PJ. Modeling soil water and solute transport - fast, simplified numerical solutions. Agron J 2003;95:1352-61] developed a fast, simplified method for solving Richards' equation. This non-iterative 1D approach, using Brooks and Corey [Brooks RH, Corey AT. Hydraulic properties of porous media. Hydrol. papers, Colorado St. Univ., Fort Collins; 1964] hydraulic functions, allows a significant reduction in computing time while maintaining the accuracy of the results. The first aim of this work is to confirm these results in a more extensive set of problems, including those that would lead to serious numerical difficulties for the standard numerical method. The second aim is to validate a generalisation of the Ross method to other mathematical representations of hydraulic functions. The Ross method is compared with the standard finite element model, Hydrus-1D [Simunek J, Sejna M, Van Genuchten MTh. The HYDRUS-1D and HYDRUS-2D codes for estimating unsaturated soil hydraulic and solutes transport parameters. Agron Abstr 357; 1999]. Computing time, accuracy of results and robustness of numerical schemes are monitored in 1D simulations involving different types of homogeneous soils, grids and hydrological conditions. The Ross method associated with modified Van Genuchten hydraulic functions [Vogel T, Cislerova M. On the reliability of unsaturated hydraulic conductivity calculated from the moisture retention curve. Transport Porous Media 1988;3:1-15] proves in every tested scenario to be more robust numerically, and the compromise of computing time/accuracy is seen to be particularly improved on coarse grids. Ross method run from 1.25 to 14 times faster than Hydrus-1D.

  1. Modeling a three-dimensional river plume over continental shelf using a 3D unstructured grid model

    USGS Publications Warehouse

    Cheng, R.T.; Casulli, V.; ,

    2004-01-01

    River derived fresh water discharging into an adjacent continental shelf forms a trapped river plume that propagates in a narrow region along the coast. These river plumes are real and they have been observed in the field. Many previous investigations have reported some aspects of the river plume properties, which are sensitive to stratification, Coriolis acceleration, winds (upwelling or downwelling), coastal currents, and river discharge. Numerical modeling of the dynamics of river plumes is very challenging, because the complete problem involves a wide range of vertical and horizontal scales. Proper simulations of river plume dynamics cannot be achieved without a realistic representation of the flow and salinity structure near the river mouth that controls the initial formation and propagation of the plume in the coastal ocean. In this study, an unstructured grid model was used for simulations of river plume dynamics allowing fine grid resolution in the river and in regions near the coast with a coarse grid in the far field of the river plume in the coastal ocean, in the vertical, fine fixed levels were used near the free surface, and coarse vertical levels were used over the continental shelf. The simulations have demonstrated the uniquely important role played by Coriolis acceleration. Without Coriolis acceleration, no trapped river plume can be formed no matter how favorable the ambient conditions might be. The simulation results show properties of the river plume and the characteristics of flow and salinity within the estuary; they are completely consistent with the physics of estuaries and coastal oceans.

  2. Refinement Of Hexahedral Cells In Euler Flow Computations

    NASA Technical Reports Server (NTRS)

    Melton, John E.; Cappuccio, Gelsomina; Thomas, Scott D.

    1996-01-01

    Topologically Independent Grid, Euler Refinement (TIGER) computer program solves Euler equations of three-dimensional, unsteady flow of inviscid, compressible fluid by numerical integration on unstructured hexahedral coordinate grid refined where necessary to resolve shocks and other details. Hexahedral cells subdivided, each into eight smaller cells, as needed to refine computational grid in regions of high flow gradients. Grid Interactive Refinement and Flow-Field Examination (GIRAFFE) computer program written in conjunction with TIGER program to display computed flow-field data and to assist researcher in verifying specified boundary conditions and refining grid.

  3. System design and implementation of digital-image processing using computational grids

    NASA Astrophysics Data System (ADS)

    Shen, Zhanfeng; Luo, Jiancheng; Zhou, Chenghu; Huang, Guangyu; Ma, Weifeng; Ming, Dongping

    2005-06-01

    As a special type of digital image, remotely sensed images are playing increasingly important roles in our daily lives. Because of the enormous amounts of data involved, and the difficulties of data processing and transfer, an important issue for current computer and geo-science experts is developing internet technology to implement rapid remotely sensed image processing. Computational grids are able to solve this problem effectively. These networks of computer workstations enable the sharing of data and resources, and are used by computer experts to solve imbalances of network resources and lopsided usage. In China, computational grids combined with spatial-information-processing technology have formed a new technology: namely, spatial-information grids. In the field of remotely sensed images, spatial-information grids work more effectively for network computing, data processing, resource sharing, task cooperation and so on. This paper focuses mainly on the application of computational grids to digital-image processing. Firstly, we describe the architecture of digital-image processing on the basis of computational grids, its implementation is then discussed in detail with respect to the technology of middleware. The whole network-based intelligent image-processing system is evaluated on the basis of the experimental analysis of remotely sensed image-processing tasks; the results confirm the feasibility of the application of computational grids to digital-image processing.

  4. Software Surface Modeling and Grid Generation Steering Committee

    NASA Technical Reports Server (NTRS)

    Smith, Robert E. (Editor)

    1992-01-01

    It is a NASA objective to promote improvements in the capability and efficiency of computational fluid dynamics. Grid generation, the creation of a discrete representation of the solution domain, is an essential part of computational fluid dynamics. However, grid generation about complex boundaries requires sophisticated surface-model descriptions of the boundaries. The surface modeling and the associated computation of surface grids consume an extremely large percentage of the total time required for volume grid generation. Efficient and user friendly software systems for surface modeling and grid generation are critical for computational fluid dynamics to reach its potential. The papers presented here represent the state-of-the-art in software systems for surface modeling and grid generation. Several papers describe improved techniques for grid generation.

  5. Development of full wave code for modeling RF fields in hot non-uniform plasmas

    NASA Astrophysics Data System (ADS)

    Zhao, Liangji; Svidzinski, Vladimir; Spencer, Andrew; Kim, Jin-Soo

    2016-10-01

    FAR-TECH, Inc. is developing a full wave RF modeling code to model RF fields in fusion devices and in general plasma applications. As an important component of the code, an adaptive meshless technique is introduced to solve the wave equations, which allows resolving plasma resonances efficiently and adapting to the complexity of antenna geometry and device boundary. The computational points are generated using either a point elimination method or a force balancing method based on the monitor function, which is calculated by solving the cold plasma dispersion equation locally. Another part of the code is the conductivity kernel calculation, used for modeling the nonlocal hot plasma dielectric response. The conductivity kernel is calculated on a coarse grid of test points and then interpolated linearly onto the computational points. All the components of the code are parallelized using MPI and OpenMP libraries to optimize the execution speed and memory. The algorithm and the results of our numerical approach to solving 2-D wave equations in a tokamak geometry will be presented. Work is supported by the U.S. DOE SBIR program.

  6. The optimization of high resolution topographic data for 1D hydrodynamic models

    NASA Astrophysics Data System (ADS)

    Ales, Ronovsky; Michal, Podhoranyi

    2016-06-01

    The main focus of our research presented in this paper is to optimize and use high resolution topographical data (HRTD) for hydrological modelling. Optimization of HRTD is done by generating adaptive mesh by measuring distance of coarse mesh and the surface of the dataset and adapting the mesh from the perspective of keeping the geometry as close to initial resolution as possible. Technique described in this paper enables computation of very accurate 1-D hydrodynamic models. In the paper, we use HEC-RAS software as a solver. For comparison, we have chosen the amount of generated cells/grid elements (in whole discretization domain and selected cross sections) with respect to preservation of the accuracy of the computational domain. Generation of the mesh for hydrodynamic modelling is strongly reliant on domain size and domain resolution. Topographical dataset used in this paper was created using LiDAR method and it captures 5.9km long section of a catchment of the river Olše. We studied crucial changes in topography for generated mesh. Assessment was done by commonly used statistical and visualization methods.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lai, Canhai; Xu, Zhijie; Li, Tingwen

    In virtual design and scale up of pilot-scale carbon capture systems, the coupled reactive multiphase flow problem must be solved to predict the adsorber’s performance and capture efficiency under various operation conditions. This paper focuses on the detailed computational fluid dynamics (CFD) modeling of a pilot-scale fluidized bed adsorber equipped with vertical cooling tubes. Multiphase Flow with Interphase eXchanges (MFiX), an open-source multiphase flow CFD solver, is used for the simulations with custom code to simulate the chemical reactions and filtered models to capture the effect of the unresolved details in the coarser mesh for simulations with reasonable simulations andmore » manageable computational effort. Previously developed two filtered models for horizontal cylinder drag, heat transfer, and reaction kinetics have been modified to derive the 2D filtered models representing vertical cylinders in the coarse-grid CFD simulations. The effects of the heat exchanger configurations (i.e., horizontal or vertical) on the adsorber’s hydrodynamics and CO2 capture performance are then examined. The simulation result subsequently is compared and contrasted with another predicted by a one-dimensional three-region process model.« less

  8. The optimization of high resolution topographic data for 1D hydrodynamic models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ales, Ronovsky, E-mail: ales.ronovsky@vsb.cz; Michal, Podhoranyi

    2016-06-08

    The main focus of our research presented in this paper is to optimize and use high resolution topographical data (HRTD) for hydrological modelling. Optimization of HRTD is done by generating adaptive mesh by measuring distance of coarse mesh and the surface of the dataset and adapting the mesh from the perspective of keeping the geometry as close to initial resolution as possible. Technique described in this paper enables computation of very accurate 1-D hydrodynamic models. In the paper, we use HEC-RAS software as a solver. For comparison, we have chosen the amount of generated cells/grid elements (in whole discretization domainmore » and selected cross sections) with respect to preservation of the accuracy of the computational domain. Generation of the mesh for hydrodynamic modelling is strongly reliant on domain size and domain resolution. Topographical dataset used in this paper was created using LiDAR method and it captures 5.9km long section of a catchment of the river Olše. We studied crucial changes in topography for generated mesh. Assessment was done by commonly used statistical and visualization methods.« less

  9. NASCAP simulation of PIX 2 experiments

    NASA Technical Reports Server (NTRS)

    Roche, J. C.; Mandell, M. J.

    1985-01-01

    The latest version of the NASCAP/LEO digital computer code used to simulate the PIX 2 experiment is discussed. NASCAP is a finite-element code and previous versions were restricted to a single fixed mesh size. As a consequence the resolution was dictated by the largest physical dimension to be modeled. The latest version of NASCAP/LEO can subdivide selected regions. This permitted the modeling of the overall Delta launch vehicle in the primary computational grid at a coarse resolution, with subdivided regions at finer resolution being used to pick up the details of the experiment module configuration. Langmuir probe data from the flight were used to estimate the space plasma density and temperature and the Delta ground potential relative to the space plasma. This information is needed for input to NASCAP. Because of the uncertainty or variability in the values of these parameters, it was necessary to explore a range around the nominal value in order to determine the variation in current collection. The flight data from PIX 2 were also compared with the results of the NASCAP simulation.

  10. Fault tolerance in computational grids: perspectives, challenges, and issues.

    PubMed

    Haider, Sajjad; Nazir, Babar

    2016-01-01

    Computational grids are established with the intention of providing shared access to hardware and software based resources with special reference to increased computational capabilities. Fault tolerance is one of the most important issues faced by the computational grids. The main contribution of this survey is the creation of an extended classification of problems that incur in the computational grid environments. The proposed classification will help researchers, developers, and maintainers of grids to understand the types of issues to be anticipated. Moreover, different types of problems, such as omission, interaction, and timing related have been identified that need to be handled on various layers of the computational grid. In this survey, an analysis and examination is also performed pertaining to the fault tolerance and fault detection mechanisms. Our conclusion is that a dependable and reliable grid can only be established when more emphasis is on fault identification. Moreover, our survey reveals that adaptive and intelligent fault identification, and tolerance techniques can improve the dependability of grid working environments.

  11. Chimera grids in the simulation of three-dimensional flowfields in turbine-blade-coolant passages

    NASA Technical Reports Server (NTRS)

    Stephens, M. A.; Rimlinger, M. J.; Shih, T. I.-P.; Civinskas, K. C.

    1993-01-01

    When computing flows inside geometrically complex turbine-blade coolant passages, the structure of the grid system used can affect significantly the overall time and cost required to obtain solutions. This paper addresses this issue while evaluating and developing computational tools for the design and analysis of coolant-passages, and is divided into two parts. In the first part, the various types of structured and unstructured grids are compared in relation to their ability to provide solutions in a timely and cost-effective manner. This comparison shows that the overlapping structured grids, known as Chimera grids, can rival and in some instances exceed the cost-effectiveness of unstructured grids in terms of both the man hours needed to generate grids and the amount of computer memory and CPU time needed to obtain solutions. In the second part, a computational tool utilizing Chimera grids was used to compute the flow and heat transfer in two different turbine-blade coolant passages that contain baffles and numerous pin fins. These computations showed the versatility and flexibility offered by Chimera grids.

  12. DPW-VI Results Using FUN3D with Focus on k-kL-MEAH2015 (k-kL) Turbulence Model

    NASA Technical Reports Server (NTRS)

    Abdol-Hamid, K. S.; Carlson, Jan-Renee; Rumsey, Christopher L.; Lee-Rausch, Elizabeth M.; Park, Michael A.

    2017-01-01

    The Common Research Model wing-body configuration is investigated with the k-kL-MEAH2015 turbulence model implemented in FUN3D. This includes results presented at the Sixth Drag Prediction Workshop and additional results generated after the workshop with a nonlinear Quadratic Constitutive Relation (QCR) variant of the same turbulence model. The workshop provided grids are used, and a uniform grid refinement study is performed at the design condition. A large variation between results with and without a reconstruction limiter is exhibited on "medium" grid sizes, indicating that the medium grid size is too coarse for drawing conclusions in comparison with experiment. This variation is reduced with grid refinement. At a fixed angle of attack near design conditions, the QCR variant yielded decreased lift and drag compared with the linear eddy-viscosity model by an amount that was approximately constant with grid refinement. The k-kL-MEAH2015 turbulence model produced wing root junction flow behavior consistent with wind tunnel observations.

  13. The Effects of Dissipation and Coarse Grid Resolution for Multigrid in Flow Problems

    NASA Technical Reports Server (NTRS)

    Eliasson, Peter; Engquist, Bjoern

    1996-01-01

    The objective of this paper is to investigate the effects of the numerical dissipation and the resolution of the solution on coarser grids for multigrid with the Euler equation approximations. The convergence is accomplished by multi-stage explicit time-stepping to steady state accelerated by FAS multigrid. A theoretical investigation is carried out for linear hyperbolic equations in one and two dimensions. The spectra reveals that for stability and hence robustness of spatial discretizations with a small amount of numerical dissipation the grid transfer operators have to be accurate enough and the smoother of low temporal accuracy. Numerical results give grid independent convergence in one dimension. For two-dimensional problems with a small amount of numerical dissipation, however, only a few grid levels contribute to an increased speed of convergence. This is explained by the small numerical dissipation leading to dispersion. Increasing the mesh density and hence making the problem over resolved increases the number of mesh levels contributing to an increased speed of convergence. If the steady state equations are elliptic, all grid levels contribute to the convergence regardless of the mesh density.

  14. Interoperability of GADU in using heterogeneous Grid resources for bioinformatics applications.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sulakhe, D.; Rodriguez, A.; Wilde, M.

    2008-03-01

    Bioinformatics tools used for efficient and computationally intensive analysis of genetic sequences require large-scale computational resources to accommodate the growing data. Grid computational resources such as the Open Science Grid and TeraGrid have proved useful for scientific discovery. The genome analysis and database update system (GADU) is a high-throughput computational system developed to automate the steps involved in accessing the Grid resources for running bioinformatics applications. This paper describes the requirements for building an automated scalable system such as GADU that can run jobs on different Grids. The paper describes the resource-independent configuration of GADU using the Pegasus-based virtual datamore » system that makes high-throughput computational tools interoperable on heterogeneous Grid resources. The paper also highlights the features implemented to make GADU a gateway to computationally intensive bioinformatics applications on the Grid. The paper will not go into the details of problems involved or the lessons learned in using individual Grid resources as it has already been published in our paper on genome analysis research environment (GNARE) and will focus primarily on the architecture that makes GADU resource independent and interoperable across heterogeneous Grid resources.« less

  15. Multidimensional Environmental Data Resource Brokering on Computational Grids and Scientific Clouds

    NASA Astrophysics Data System (ADS)

    Montella, Raffaele; Giunta, Giulio; Laccetti, Giuliano

    Grid computing has widely evolved over the past years, and its capabilities have found their way even into business products and are no longer relegated to scientific applications. Today, grid computing technology is not restricted to a set of specific grid open source or industrial products, but rather it is comprised of a set of capabilities virtually within any kind of software to create shared and highly collaborative production environments. These environments are focused on computational (workload) capabilities and the integration of information (data) into those computational capabilities. An active grid computing application field is the fully virtualization of scientific instruments in order to increase their availability and decrease operational and maintaining costs. Computational and information grids allow to manage real-world objects in a service-oriented way using industrial world-spread standards.

  16. 3D anisotropic modeling and identification for airborne EM systems based on the spectral-element method

    NASA Astrophysics Data System (ADS)

    Huang, Xin; Yin, Chang-Chun; Cao, Xiao-Yue; Liu, Yun-He; Zhang, Bo; Cai, Jing

    2017-09-01

    The airborne electromagnetic (AEM) method has a high sampling rate and survey flexibility. However, traditional numerical modeling approaches must use high-resolution physical grids to guarantee modeling accuracy, especially for complex geological structures such as anisotropic earth. This can lead to huge computational costs. To solve this problem, we propose a spectral-element (SE) method for 3D AEM anisotropic modeling, which combines the advantages of spectral and finite-element methods. Thus, the SE method has accuracy as high as that of the spectral method and the ability to model complex geology inherited from the finite-element method. The SE method can improve the modeling accuracy within discrete grids and reduce the dependence of modeling results on the grids. This helps achieve high-accuracy anisotropic AEM modeling. We first introduced a rotating tensor of anisotropic conductivity to Maxwell's equations and described the electrical field via SE basis functions based on GLL interpolation polynomials. We used the Galerkin weighted residual method to establish the linear equation system for the SE method, and we took a vertical magnetic dipole as the transmission source for our AEM modeling. We then applied fourth-order SE calculations with coarse physical grids to check the accuracy of our modeling results against a 1D semi-analytical solution for an anisotropic half-space model and verified the high accuracy of the SE. Moreover, we conducted AEM modeling for different anisotropic 3D abnormal bodies using two physical grid scales and three orders of SE to obtain the convergence conditions for different anisotropic abnormal bodies. Finally, we studied the identification of anisotropy for single anisotropic abnormal bodies, anisotropic surrounding rock, and single anisotropic abnormal body embedded in an anisotropic surrounding rock. This approach will play a key role in the inversion and interpretation of AEM data collected in regions with anisotropic geology.

  17. Grid Computing in K-12 Schools. Soapbox Digest. Volume 3, Number 2, Fall 2004

    ERIC Educational Resources Information Center

    AEL, 2004

    2004-01-01

    Grid computing allows large groups of computers (either in a lab, or remote and connected only by the Internet) to extend extra processing power to each individual computer to work on components of a complex request. Grid middleware, recognizing priorities set by systems administrators, allows the grid to identify and use this power without…

  18. An algebraic multigrid method for Q2-Q1 mixed discretizations of the Navier-Stokes equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prokopenko, Andrey; Tuminaro, Raymond S.

    Algebraic multigrid (AMG) preconditioners are considered for discretized systems of partial differential equations (PDEs) where unknowns associated with different physical quantities are not necessarily co-located at mesh points. Speci cally, we investigate a Q 2-Q 1 mixed finite element discretization of the incompressible Navier-Stokes equations where the number of velocity nodes is much greater than the number of pressure nodes. Consequently, some velocity degrees-of-freedom (dofs) are defined at spatial locations where there are no corresponding pressure dofs. Thus, AMG approaches lever- aging this co-located structure are not applicable. This paper instead proposes an automatic AMG coarsening that mimics certain pressure/velocitymore » dof relationships of the Q 2-Q 1 discretization. The main idea is to first automatically define coarse pressures in a somewhat standard AMG fashion and then to carefully (but automatically) choose coarse velocity unknowns so that the spatial location relationship between pressure and velocity dofs resembles that on the nest grid. To define coefficients within the inter-grid transfers, an energy minimization AMG (EMIN-AMG) is utilized. EMIN-AMG is not tied to specific coarsening schemes and grid transfer sparsity patterns, and so it is applicable to the proposed coarsening. Numerical results highlighting solver performance are given on Stokes and incompressible Navier-Stokes problems.« less

  19. An algebraic multigrid method for Q2-Q1 mixed discretizations of the Navier-Stokes equations

    DOE PAGES

    Prokopenko, Andrey; Tuminaro, Raymond S.

    2016-07-01

    Algebraic multigrid (AMG) preconditioners are considered for discretized systems of partial differential equations (PDEs) where unknowns associated with different physical quantities are not necessarily co-located at mesh points. Speci cally, we investigate a Q 2-Q 1 mixed finite element discretization of the incompressible Navier-Stokes equations where the number of velocity nodes is much greater than the number of pressure nodes. Consequently, some velocity degrees-of-freedom (dofs) are defined at spatial locations where there are no corresponding pressure dofs. Thus, AMG approaches lever- aging this co-located structure are not applicable. This paper instead proposes an automatic AMG coarsening that mimics certain pressure/velocitymore » dof relationships of the Q 2-Q 1 discretization. The main idea is to first automatically define coarse pressures in a somewhat standard AMG fashion and then to carefully (but automatically) choose coarse velocity unknowns so that the spatial location relationship between pressure and velocity dofs resembles that on the nest grid. To define coefficients within the inter-grid transfers, an energy minimization AMG (EMIN-AMG) is utilized. EMIN-AMG is not tied to specific coarsening schemes and grid transfer sparsity patterns, and so it is applicable to the proposed coarsening. Numerical results highlighting solver performance are given on Stokes and incompressible Navier-Stokes problems.« less

  20. Current Grid Generation Strategies and Future Requirements in Hypersonic Vehicle Design, Analysis and Testing

    NASA Technical Reports Server (NTRS)

    Papadopoulos, Periklis; Venkatapathy, Ethiraj; Prabhu, Dinesh; Loomis, Mark P.; Olynick, Dave; Arnold, James O. (Technical Monitor)

    1998-01-01

    Recent advances in computational power enable computational fluid dynamic modeling of increasingly complex configurations. A review of grid generation methodologies implemented in support of the computational work performed for the X-38 and X-33 are presented. In strategizing topological constructs and blocking structures factors considered are the geometric configuration, optimal grid size, numerical algorithms, accuracy requirements, physics of the problem at hand, computational expense, and the available computer hardware. Also addressed are grid refinement strategies, the effects of wall spacing, and convergence. The significance of grid is demonstrated through a comparison of computational and experimental results of the aeroheating environment experienced by the X-38 vehicle. Special topics on grid generation strategies are also addressed to model control surface deflections, and material mapping.

  1. Using Forest Health Monitoring to assess aspen forest cover change in the southern Rockies ecoregion

    Treesearch

    Paul Rogers

    2002-01-01

    Long-term qualitative observations suggest a marked decline in quaking aspen (Populus tremuloides Michx.) primarily due to advancing succession and fire suppression. This study presents an ecoregional coarse-grid analysis of the current aspen situation using Forest Health Monitoring (FHM) data from Idaho, Wyoming, and Colorado. A...

  2. A Polar Initial Alignment Algorithm for Unmanned Underwater Vehicles

    PubMed Central

    Yan, Zheping; Wang, Lu; Wang, Tongda; Zhang, Honghan; Zhang, Xun; Liu, Xiangling

    2017-01-01

    Due to its highly autonomy, the strapdown inertial navigation system (SINS) is widely used in unmanned underwater vehicles (UUV) navigation. Initial alignment is crucial because the initial alignment results will be used as the initial SINS value, which might affect the subsequent SINS results. Due to the rapid convergence of Earth meridians, there is a calculation overflow in conventional initial alignment algorithms, making conventional initial algorithms are invalid for polar UUV navigation. To overcome these problems, a polar initial alignment algorithm for UUV is proposed in this paper, which consists of coarse and fine alignment algorithms. Based on the principle of the conical slow drift of gravity, the coarse alignment algorithm is derived under the grid frame. By choosing the velocity and attitude as the measurement, the fine alignment with the Kalman filter (KF) is derived under the grid frame. Simulation and experiment are realized among polar, conventional and transversal initial alignment algorithms for polar UUV navigation. Results demonstrate that the proposed polar initial alignment algorithm can complete the initial alignment of UUV in the polar region rapidly and accurately. PMID:29168735

  3. Newton-Krylov-Schwarz: An implicit solver for CFD

    NASA Technical Reports Server (NTRS)

    Cai, Xiao-Chuan; Keyes, David E.; Venkatakrishnan, V.

    1995-01-01

    Newton-Krylov methods and Krylov-Schwarz (domain decomposition) methods have begun to become established in computational fluid dynamics (CFD) over the past decade. The former employ a Krylov method inside of Newton's method in a Jacobian-free manner, through directional differencing. The latter employ an overlapping Schwarz domain decomposition to derive a preconditioner for the Krylov accelerator that relies primarily on local information, for data-parallel concurrency. They may be composed as Newton-Krylov-Schwarz (NKS) methods, which seem particularly well suited for solving nonlinear elliptic systems in high-latency, distributed-memory environments. We give a brief description of this family of algorithms, with an emphasis on domain decomposition iterative aspects. We then describe numerical simulations with Newton-Krylov-Schwarz methods on aerodynamics applications emphasizing comparisons with a standard defect-correction approach, subdomain preconditioner consistency, subdomain preconditioner quality, and the effect of a coarse grid.

  4. Finite-frequency structural sensitivities of short-period compressional body waves

    NASA Astrophysics Data System (ADS)

    Fuji, Nobuaki; Chevrot, Sébastien; Zhao, Li; Geller, Robert J.; Kawai, Kenji

    2012-07-01

    We present an extension of the method recently introduced by Zhao & Chevrot for calculating Fréchet kernels from a precomputed database of strain Green's tensors by normal mode summation. The extension involves two aspects: (1) we compute the strain Green's tensors using the Direct Solution Method, which allows us to go up to frequencies as high as 1 Hz; and (2) we develop a spatial interpolation scheme so that the Green's tensors can be computed with a relatively coarse grid, thus improving the efficiency in the computation of the sensitivity kernels. The only requirement is that the Green's tensors be computed with a fine enough spatial sampling rate to avoid spatial aliasing. The Green's tensors can then be interpolated to any location inside the Earth, avoiding the need to store and retrieve strain Green's tensors for a fine sampling grid. The interpolation scheme not only significantly reduces the CPU time required to calculate the Green's tensor database and the disk space to store it, but also enhances the efficiency in computing the kernels by reducing the number of I/O operations needed to retrieve the Green's tensors. Our new implementation allows us to calculate sensitivity kernels for high-frequency teleseismic body waves with very modest computational resources such as a laptop. We illustrate the potential of our approach for seismic tomography by computing traveltime and amplitude sensitivity kernels for high frequency P, PKP and Pdiff phases. A comparison of our PKP kernels with those computed by asymptotic ray theory clearly shows the limits of the latter. With ray theory, it is not possible to model waves diffracted by internal discontinuities such as the core-mantle boundary, and it is also difficult to compute amplitudes for paths close to the B-caustic of the PKP phase. We also compute waveform partial derivatives for different parts of the seismic wavefield, a key ingredient for high resolution imaging by waveform inversion. Our computations of partial derivatives in the time window where PcP precursors are commonly observed show that the distribution of sensitivity is complex and counter-intuitive, with a large contribution from the mid-mantle region. This clearly emphasizes the need to use accurate and complete partial derivatives in waveform inversion.

  5. Aerodynamic design optimization via reduced Hessian SQP with solution refining

    NASA Technical Reports Server (NTRS)

    Feng, Dan; Pulliam, Thomas H.

    1995-01-01

    An all-at-once reduced Hessian Successive Quadratic Programming (SQP) scheme has been shown to be efficient for solving aerodynamic design optimization problems with a moderate number of design variables. This paper extends this scheme to allow solution refining. In particular, we introduce a reduced Hessian refining technique that is critical for making a smooth transition of the Hessian information from coarse grids to fine grids. Test results on a nozzle design using quasi-one-dimensional Euler equations show that through solution refining the efficiency and the robustness of the all-at-once reduced Hessian SQP scheme are significantly improved.

  6. Use of Computed Tomography Imaging for Qualifying Coarse Roots, Rhizomes, Peat, and Particle Densities in Marsh Soils

    EPA Science Inventory

    Computed tomography (CT) imaging has been used to describe and quantify subtidal, benthic animals such as polychaetes, amphipods, and shrimp. Here, for the first time, CT imaging is used to successfully quantify wet mass of coarse roots, rhizomes, and peat in cores collected from...

  7. Use of Computer-Aided Tomography (CT) Imaging for Quantifying Coarse Roots, Rhizomes, Peat, and Particle Densities in Marsh Soils

    EPA Science Inventory

    Computer-aided Tomography (CT) imaging was utilized to quantify wet mass of coarse roots, rhizomes, and peat in cores collected from organic-rich (Jamaica Bay, NY) and mineral (North Inlet, SC) Spartina alterniflora soils. Calibration rods composed of materials with standard dens...

  8. Program Aids Specification Of Multiple-Block Grids

    NASA Technical Reports Server (NTRS)

    Sorenson, R. L.; Mccann, K. M.

    1993-01-01

    3DPREP computer program aids specification of multiple-block computational grids. Highly interactive graphical preprocessing program designed for use on powerful graphical scientific computer workstation. Divided into three main parts, each corresponding to principal graphical-and-alphanumerical display. Relieves user of some burden of collecting and formatting many data needed to specify blocks and grids, and prepares input data for NASA's 3DGRAPE grid-generating computer program.

  9. Efficient coarse simulation of a growing avascular tumor

    PubMed Central

    Kavousanakis, Michail E.; Liu, Ping; Boudouvis, Andreas G.; Lowengrub, John; Kevrekidis, Ioannis G.

    2013-01-01

    The subject of this work is the development and implementation of algorithms which accelerate the simulation of early stage tumor growth models. Among the different computational approaches used for the simulation of tumor progression, discrete stochastic models (e.g., cellular automata) have been widely used to describe processes occurring at the cell and subcell scales (e.g., cell-cell interactions and signaling processes). To describe macroscopic characteristics (e.g., morphology) of growing tumors, large numbers of interacting cells must be simulated. However, the high computational demands of stochastic models make the simulation of large-scale systems impractical. Alternatively, continuum models, which can describe behavior at the tumor scale, often rely on phenomenological assumptions in place of rigorous upscaling of microscopic models. This limits their predictive power. In this work, we circumvent the derivation of closed macroscopic equations for the growing cancer cell populations; instead, we construct, based on the so-called “equation-free” framework, a computational superstructure, which wraps around the individual-based cell-level simulator and accelerates the computations required for the study of the long-time behavior of systems involving many interacting cells. The microscopic model, e.g., a cellular automaton, which simulates the evolution of cancer cell populations, is executed for relatively short time intervals, at the end of which coarse-scale information is obtained. These coarse variables evolve on slower time scales than each individual cell in the population, enabling the application of forward projection schemes, which extrapolate their values at later times. This technique is referred to as coarse projective integration. Increasing the ratio of projection times to microscopic simulator execution times enhances the computational savings. Crucial accuracy issues arising for growing tumors with radial symmetry are addressed by applying the coarse projective integration scheme in a cotraveling (cogrowing) frame. As a proof of principle, we demonstrate that the application of this scheme yields highly accurate solutions, while preserving the computational savings of coarse projective integration. PMID:22587128

  10. Toward Improving Predictability of Extreme Hydrometeorological Events: the Use of Multi-scale Climate Modeling in the Northern High Plains

    NASA Astrophysics Data System (ADS)

    Munoz-Arriola, F.; Torres-Alavez, J.; Mohamad Abadi, A.; Walko, R. L.

    2014-12-01

    Our goal is to investigate possible sources of predictability of hydrometeorological extreme events in the Northern High Plains. Hydrometeorological extreme events are considered the most costly natural phenomena. Water deficits and surpluses highlight how the water-climate interdependence becomes crucial in areas where single activities drive economies such as Agriculture in the NHP. Nonetheless we recognize the Water-Climate interdependence and the regulatory role that human activities play, we still grapple to identify what sources of predictability could be added to flood and drought forecasts. To identify the benefit of multi-scale climate modeling and the role of initial conditions on flood and drought predictability on the NHP, we use the Ocean Land Atmospheric Model (OLAM). OLAM is characterized by a dynamic core with a global geodesic grid with hexagonal (and variably refined) mesh cells and a finite volume discretization of the full compressible Navier Stokes equations, a cut-grid cell method for topography (that reduces error in computational gradient computation and anomalous vertical dispersion). Our hypothesis is that wet conditions will drive OLAM's simulations of precipitation to wetter conditions affecting both flood forecast and drought forecast. To test this hypothesis we simulate precipitation during identified historical flood events followed by drought events in the NHP (i.e. 2011-2012 years). We initialized OLAM with CFS-data 1-10 days previous to a flooding event (as initial conditions) to explore (1) short-term and high-resolution and (2) long-term and coarse-resolution simulations of flood and drought events, respectively. While floods are assessed during a maximum of 15-days refined-mesh simulations, drought is evaluated during the following 15 months. Simulated precipitation will be compared with the Sub-continental Observation Dataset, a gridded 1/16th degree resolution data obtained from climatological stations in Canada, US, and Mexico. This in-progress research will ultimately contribute to integrate OLAM and VIC models and improve predictability of extreme hydrometeorological events.

  11. Modeling disease transmission near eradication: An equation free approach

    NASA Astrophysics Data System (ADS)

    Williams, Matthew O.; Proctor, Joshua L.; Kutz, J. Nathan

    2015-01-01

    Although disease transmission in the near eradication regime is inherently stochastic, deterministic quantities such as the probability of eradication are of interest to policy makers and researchers. Rather than running large ensembles of discrete stochastic simulations over long intervals in time to compute these deterministic quantities, we create a data-driven and deterministic "coarse" model for them using the Equation Free (EF) framework. In lieu of deriving an explicit coarse model, the EF framework approximates any needed information, such as coarse time derivatives, by running short computational experiments. However, the choice of the coarse variables (i.e., the state of the coarse system) is critical if the resulting model is to be accurate. In this manuscript, we propose a set of coarse variables that result in an accurate model in the endemic and near eradication regimes, and demonstrate this on a compartmental model representing the spread of Poliomyelitis. When combined with adaptive time-stepping coarse projective integrators, this approach can yield over a factor of two speedup compared to direct simulation, and due to its lower dimensionality, could be beneficial when conducting systems level tasks such as designing eradication or monitoring campaigns.

  12. Multiprocessor computer overset grid method and apparatus

    DOEpatents

    Barnette, Daniel W.; Ober, Curtis C.

    2003-01-01

    A multiprocessor computer overset grid method and apparatus comprises associating points in each overset grid with processors and using mapped interpolation transformations to communicate intermediate values between processors assigned base and target points of the interpolation transformations. The method allows a multiprocessor computer to operate with effective load balance on overset grid applications.

  13. Assessing the Predictability of Convection using Ensemble Data Assimilation of Simulated Radar Observations in an LETKF system

    NASA Astrophysics Data System (ADS)

    Lange, Heiner; Craig, George

    2014-05-01

    This study uses the Local Ensemble Transform Kalman Filter (LETKF) to perform storm-scale Data Assimilation of simulated Doppler radar observations into the non-hydrostatic, convection-permitting COSMO model. In perfect model experiments (OSSEs), it is investigated how the limited predictability of convective storms affects precipitation forecasts. The study compares a fine analysis scheme with small RMS errors to a coarse scheme that allows for errors in position, shape and occurrence of storms in the ensemble. The coarse scheme uses superobservations, a coarser grid for analysis weights, a larger localization radius and larger observation error that allow a broadening of the Gaussian error statistics. Three hour forecasts of convective systems (with typical lifetimes exceeding 6 hours) from the detailed analyses of the fine scheme are found to be advantageous to those of the coarse scheme during the first 1-2 hours, with respect to the predicted storm positions. After 3 hours in the convective regime used here, the forecast quality of the two schemes appears indiscernible, judging by RMSE and verification methods for rain-fields and objects. It is concluded that, for operational assimilation systems, the analysis scheme might not necessarily need to be detailed to the grid scale of the model. Depending on the forecast lead time, and on the presence of orographic or synoptic forcing that enhance the predictability of storm occurrences, analyses from a coarser scheme might suffice.

  14. Spatial heterogeneity of leaf area index across scales from simulation and remote sensing

    NASA Astrophysics Data System (ADS)

    Reichenau, Tim G.; Korres, Wolfgang; Montzka, Carsten; Schneider, Karl

    2016-04-01

    Leaf area index (LAI, single sided leaf area per ground area) influences mass and energy exchange of vegetated surfaces. Therefore LAI is an input variable for many land surface schemes of coupled large scale models, which do not simulate LAI. Since these models typically run on rather coarse resolution grids, LAI is often inferred from coarse resolution remote sensing. However, especially in agriculturally used areas, a grid cell of these products often covers more than a single land-use. In that case, the given LAI does not apply to any single land-use. Therefore, the overall spatial heterogeneity in these datasets differs from that on resolutions high enough to distinguish areas with differing land-use. Detailed process-based plant growth models simulate LAI for separate plant functional types or specific species. However, limited availability of observations causes reduced spatial heterogeneity of model input data (soil, weather, land-use). Since LAI is strongly heterogeneous in space and time and since processes depend on LAI in a nonlinear way, a correct representation of LAI spatial heterogeneity is also desirable on coarse resolutions. The current study assesses this issue by comparing the spatial heterogeneity of LAI from remote sensing (RapidEye) and process-based simulations (DANUBIA simulation system) across scales. Spatial heterogeneity is assessed by analyzing LAI frequency distributions (spatial variability) and semivariograms (spatial structure). Test case is the arable land in the fertile loess plain of the Rur catchment near the Germany-Netherlands border.

  15. A SEMI-LAGRANGIAN TWO-LEVEL PRECONDITIONED NEWTON-KRYLOV SOLVER FOR CONSTRAINED DIFFEOMORPHIC IMAGE REGISTRATION.

    PubMed

    Mang, Andreas; Biros, George

    2017-01-01

    We propose an efficient numerical algorithm for the solution of diffeomorphic image registration problems. We use a variational formulation constrained by a partial differential equation (PDE), where the constraints are a scalar transport equation. We use a pseudospectral discretization in space and second-order accurate semi-Lagrangian time stepping scheme for the transport equations. We solve for a stationary velocity field using a preconditioned, globalized, matrix-free Newton-Krylov scheme. We propose and test a two-level Hessian preconditioner. We consider two strategies for inverting the preconditioner on the coarse grid: a nested preconditioned conjugate gradient method (exact solve) and a nested Chebyshev iterative method (inexact solve) with a fixed number of iterations. We test the performance of our solver in different synthetic and real-world two-dimensional application scenarios. We study grid convergence and computational efficiency of our new scheme. We compare the performance of our solver against our initial implementation that uses the same spatial discretization but a standard, explicit, second-order Runge-Kutta scheme for the numerical time integration of the transport equations and a single-level preconditioner. Our improved scheme delivers significant speedups over our original implementation. As a highlight, we observe a 20 × speedup for a two dimensional, real world multi-subject medical image registration problem.

  16. Solution of free-boundary problems using finite-element/Newton methods and locally refined grids - Application to analysis of solidification microstructure

    NASA Technical Reports Server (NTRS)

    Tsiveriotis, K.; Brown, R. A.

    1993-01-01

    A new method is presented for the solution of free-boundary problems using Lagrangian finite element approximations defined on locally refined grids. The formulation allows for direct transition from coarse to fine grids without introducing non-conforming basis functions. The calculation of elemental stiffness matrices and residual vectors are unaffected by changes in the refinement level, which are accounted for in the loading of elemental data to the global stiffness matrix and residual vector. This technique for local mesh refinement is combined with recently developed mapping methods and Newton's method to form an efficient algorithm for the solution of free-boundary problems, as demonstrated here by sample calculations of cellular interfacial microstructure during directional solidification of a binary alloy.

  17. Numerical simulation code for self-gravitating Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Madarassy, Enikő J. M.; Toth, Viktor T.

    2013-04-01

    We completed the development of simulation code that is designed to study the behavior of a conjectured dark matter galactic halo that is in the form of a Bose-Einstein Condensate (BEC). The BEC is described by the Gross-Pitaevskii equation, which can be solved numerically using the Crank-Nicholson method. The gravitational potential, in turn, is described by Poisson’s equation, that can be solved using the relaxation method. Our code combines these two methods to study the time evolution of a self-gravitating BEC. The inefficiency of the relaxation method is balanced by the fact that in subsequent time iterations, previously computed values of the gravitational field serve as very good initial estimates. The code is robust (as evidenced by its stability on coarse grids) and efficient enough to simulate the evolution of a system over the course of 109 years using a finer (100×100×100) spatial grid, in less than a day of processor time on a contemporary desktop computer. Catalogue identifier: AEOR_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEOR_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 5248 No. of bytes in distributed program, including test data, etc.: 715402 Distribution format: tar.gz Programming language: C++ or FORTRAN. Computer: PCs or workstations. Operating system: Linux or Windows. Classification: 1.5. Nature of problem: Simulation of a self-gravitating Bose-Einstein condensate by simultaneous solution of the Gross-Pitaevskii and Poisson equations in three dimensions. Solution method: The Gross-Pitaevskii equation is solved numerically using the Crank-Nicholson method; Poisson’s equation is solved using the relaxation method. The time evolution of the system is governed by the Gross-Pitaevskii equation; the solution of Poisson’s equation at each time step is used as an initial estimate for the next time step, which dramatically increases the efficiency of the relaxation method. Running time: Depends on the chosen size of the problem. On a typical personal computer, a 100×100×100 grid can be solved with a time span of 10 Gyr in approx. a day of running time.

  18. Local free energies for the coarse-graining of adsorption phenomena: The interacting pair approximation

    NASA Astrophysics Data System (ADS)

    Pazzona, Federico G.; Pireddu, Giovanni; Gabrieli, Andrea; Pintus, Alberto M.; Demontis, Pierfranco

    2018-05-01

    We investigate the coarse-graining of host-guest systems under the perspective of the local distribution of pore occupancies, along with the physical meaning and actual computability of the coarse-interaction terms. We show that the widely accepted approach, in which the contributions to the free energy given by the molecules located in two neighboring pores are estimated through Monte Carlo simulations where the two pores are kept separated from the rest of the system, leads to inaccurate results at high sorbate densities. In the coarse-graining strategy that we propose, which is based on the Bethe-Peierls approximation, density-independent interaction terms are instead computed according to local effective potentials that take into account the correlations between the pore pair and its surroundings by means of mean-field correction terms without the need for simulating the pore pair separately. Use of the interaction parameters obtained this way allows the coarse-grained system to reproduce more closely the equilibrium properties of the original one. Results are shown for lattice-gases where the local free energy can be computed exactly and for a system of Lennard-Jones particles under the effect of a static confining field.

  19. Relative entropy and optimization-driven coarse-graining methods in VOTCA

    DOE PAGES

    Mashayak, S. Y.; Jochum, Mara N.; Koschke, Konstantin; ...

    2015-07-20

    We discuss recent advances of the VOTCA package for systematic coarse-graining. Two methods have been implemented, namely the downhill simplex optimization and the relative entropy minimization. We illustrate the new methods by coarse-graining SPC/E bulk water and more complex water-methanol mixture systems. The CG potentials obtained from both methods are then evaluated by comparing the pair distributions from the coarse-grained to the reference atomistic simulations.We have also added a parallel analysis framework to improve the computational efficiency of the coarse-graining process.

  20. Chimera Grid Tools

    NASA Technical Reports Server (NTRS)

    Chan, William M.; Rogers, Stuart E.; Nash, Steven M.; Buning, Pieter G.; Meakin, Robert

    2005-01-01

    Chimera Grid Tools (CGT) is a software package for performing computational fluid dynamics (CFD) analysis utilizing the Chimera-overset-grid method. For modeling flows with viscosity about geometrically complex bodies in relative motion, the Chimera-overset-grid method is among the most computationally cost-effective methods for obtaining accurate aerodynamic results. CGT contains a large collection of tools for generating overset grids, preparing inputs for computer programs that solve equations of flow on the grids, and post-processing of flow-solution data. The tools in CGT include grid editing tools, surface-grid-generation tools, volume-grid-generation tools, utility scripts, configuration scripts, and tools for post-processing (including generation of animated images of flows and calculating forces and moments exerted on affected bodies). One of the tools, denoted OVERGRID, is a graphical user interface (GUI) that serves to visualize the grids and flow solutions and provides central access to many other tools. The GUI facilitates the generation of grids for a new flow-field configuration. Scripts that follow the grid generation process can then be constructed to mostly automate grid generation for similar configurations. CGT is designed for use in conjunction with a computer-aided-design program that provides the geometry description of the bodies, and a flow-solver program.

  1. Surface Modeling and Grid Generation of Orbital Sciences X34 Vehicle. Phase 1

    NASA Technical Reports Server (NTRS)

    Alter, Stephen J.

    1997-01-01

    The surface modeling and grid generation requirements, motivations, and methods used to develop Computational Fluid Dynamic volume grids for the X34-Phase 1 are presented. The requirements set forth by the Aerothermodynamics Branch at the NASA Langley Research Center serve as the basis for the final techniques used in the construction of all volume grids, including grids for parametric studies of the X34. The Integrated Computer Engineering and Manufacturing code for Computational Fluid Dynamics (ICEM/CFD), the Grid Generation code (GRIDGEN), the Three-Dimensional Multi-block Advanced Grid Generation System (3DMAGGS) code, and Volume Grid Manipulator (VGM) code are used to enable the necessary surface modeling, surface grid generation, volume grid generation, and grid alterations, respectively. All volume grids generated for the X34, as outlined in this paper, were used for CFD simulations within the Aerothermodynamics Branch.

  2. A simple grid implementation with Berkeley Open Infrastructure for Network Computing using BLAST as a model

    PubMed Central

    Pinthong, Watthanai; Muangruen, Panya

    2016-01-01

    Development of high-throughput technologies, such as Next-generation sequencing, allows thousands of experiments to be performed simultaneously while reducing resource requirement. Consequently, a massive amount of experiment data is now rapidly generated. Nevertheless, the data are not readily usable or meaningful until they are further analysed and interpreted. Due to the size of the data, a high performance computer (HPC) is required for the analysis and interpretation. However, the HPC is expensive and difficult to access. Other means were developed to allow researchers to acquire the power of HPC without a need to purchase and maintain one such as cloud computing services and grid computing system. In this study, we implemented grid computing in a computer training center environment using Berkeley Open Infrastructure for Network Computing (BOINC) as a job distributor and data manager combining all desktop computers to virtualize the HPC. Fifty desktop computers were used for setting up a grid system during the off-hours. In order to test the performance of the grid system, we adapted the Basic Local Alignment Search Tools (BLAST) to the BOINC system. Sequencing results from Illumina platform were aligned to the human genome database by BLAST on the grid system. The result and processing time were compared to those from a single desktop computer and HPC. The estimated durations of BLAST analysis for 4 million sequence reads on a desktop PC, HPC and the grid system were 568, 24 and 5 days, respectively. Thus, the grid implementation of BLAST by BOINC is an efficient alternative to the HPC for sequence alignment. The grid implementation by BOINC also helped tap unused computing resources during the off-hours and could be easily modified for other available bioinformatics software. PMID:27547555

  3. How well do terrestrial biosphere models simulate coarse-scale runoff in the contiguous United States?

    DOE PAGES

    Schwalm, C.; Huntzinger, Deborah N.; Cook, Robert B.; ...

    2015-03-11

    Significant changes in the water cycle are expected under current global environmental change. Robust assessment of present-day water cycle dynamics at continental to global scales is confounded by shortcomings in the observed record. Modeled assessments also yield conflicting results which are linked to differences in model structure and simulation protocol. Here we compare simulated gridded (1 spatial resolution) runoff from six terrestrial biosphere models (TBMs), seven reanalysis products, and one gridded surface station product in the contiguous United States (CONUS) from 2001 to 2005. We evaluate the consistency of these 14 estimates with stream gauge data, both as depleted flowmore » and corrected for net withdrawals (2005 only), at the CONUS and water resource region scale, as well as examining similarity across TBMs and reanalysis products at the grid cell scale. Mean runoff across all simulated products and regions varies widely (range: 71 to 356 mm yr(-1)) relative to observed continental-scale runoff (209 or 280 mm yr(-1) when corrected for net withdrawals). Across all 14 products 8 exhibit Nash-Sutcliffe efficiency values in excess of 0.8 and three are within 10% of the observed value. Region-level mismatch exhibits a weak pattern of overestimation in western and underestimation in eastern regions although two products are systematically biased across all regions and largely scales with water use. Although gridded composite TBM and reanalysis runoff show some regional similarities, individual product values are highly variable. At the coarse scales used here we find that progress in better constraining simulated runoff requires standardized forcing data and the explicit incorporation of human effects (e.g., water withdrawals by source, fire, and land use change). (C) 2015 Elsevier B.V. All rights reserved.« less

  4. Model reduction for agent-based social simulation: coarse-graining a civil violence model.

    PubMed

    Zou, Yu; Fonoberov, Vladimir A; Fonoberova, Maria; Mezic, Igor; Kevrekidis, Ioannis G

    2012-06-01

    Agent-based modeling (ABM) constitutes a powerful computational tool for the exploration of phenomena involving emergent dynamic behavior in the social sciences. This paper demonstrates a computer-assisted approach that bridges the significant gap between the single-agent microscopic level and the macroscopic (coarse-grained population) level, where fundamental questions must be rationally answered and policies guiding the emergent dynamics devised. Our approach will be illustrated through an agent-based model of civil violence. This spatiotemporally varying ABM incorporates interactions between a heterogeneous population of citizens [active (insurgent), inactive, or jailed] and a population of police officers. Detailed simulations exhibit an equilibrium punctuated by periods of social upheavals. We show how to effectively reduce the agent-based dynamics to a stochastic model with only two coarse-grained degrees of freedom: the number of jailed citizens and the number of active ones. The coarse-grained model captures the ABM dynamics while drastically reducing the computation time (by a factor of approximately 20).

  5. Model reduction for agent-based social simulation: Coarse-graining a civil violence model

    NASA Astrophysics Data System (ADS)

    Zou, Yu; Fonoberov, Vladimir A.; Fonoberova, Maria; Mezic, Igor; Kevrekidis, Ioannis G.

    2012-06-01

    Agent-based modeling (ABM) constitutes a powerful computational tool for the exploration of phenomena involving emergent dynamic behavior in the social sciences. This paper demonstrates a computer-assisted approach that bridges the significant gap between the single-agent microscopic level and the macroscopic (coarse-grained population) level, where fundamental questions must be rationally answered and policies guiding the emergent dynamics devised. Our approach will be illustrated through an agent-based model of civil violence. This spatiotemporally varying ABM incorporates interactions between a heterogeneous population of citizens [active (insurgent), inactive, or jailed] and a population of police officers. Detailed simulations exhibit an equilibrium punctuated by periods of social upheavals. We show how to effectively reduce the agent-based dynamics to a stochastic model with only two coarse-grained degrees of freedom: the number of jailed citizens and the number of active ones. The coarse-grained model captures the ABM dynamics while drastically reducing the computation time (by a factor of approximately 20).

  6. A 3D object-based model to simulate highly-heterogeneous, coarse, braided river deposits

    NASA Astrophysics Data System (ADS)

    Huber, E.; Huggenberger, P.; Caers, J.

    2016-12-01

    There is a critical need in hydrogeological modeling for geologically more realistic representation of the subsurface. Indeed, widely-used representations of the subsurface heterogeneity based on smooth basis functions such as cokriging or the pilot-point approach fail at reproducing the connectivity of high permeable geological structures that control subsurface solute transport. To realistically model the connectivity of high permeable structures of coarse, braided river deposits, multiple-point statistics and object-based models are promising alternatives. We therefore propose a new object-based model that, according to a sedimentological model, mimics the dominant processes of floodplain dynamics. Contrarily to existing models, this object-based model possesses the following properties: (1) it is consistent with field observations (outcrops, ground-penetrating radar data, etc.), (2) it allows different sedimentological dynamics to be modeled that result in different subsurface heterogeneity patterns, (3) it is light in memory and computationally fast, and (4) it can be conditioned to geophysical data. In this model, the main sedimentological elements (scour fills with open-framework-bimodal gravel cross-beds, gravel sheet deposits, open-framework and sand lenses) and their internal structures are described by geometrical objects. Several spatial distributions are proposed that allow to simulate the horizontal position of the objects on the floodplain as well as the net rate of sediment deposition. The model is grid-independent and any vertical section can be computed algebraically. Furthermore, model realizations can serve as training images for multiple-point statistics. The significance of this model is shown by its impact on the subsurface flow distribution that strongly depends on the sedimentological dynamics modeled. The code will be provided as a free and open-source R-package.

  7. GRID3O- FAST GENERATION OF MULTILEVEL, THREE-DIMENSIONAL BOUNDARY-CONFORMING O-TYPE COMPUTATIONAL GRIDS

    NASA Technical Reports Server (NTRS)

    Dulikravich, D. S.

    1994-01-01

    A fast algorithm has been developed for accurately generating boundary-conforming, three-dimensional consecutively refined computational grids applicable to arbitrary wing-body and axial turbomachinery geometries. This algorithm has been incorporated into the GRID3O computer program. The method employed in GRID3O is based on using an analytic function to generate two-dimensional grids on a number of coaxial axisymmetric surfaces positioned between the centerbody and the outer radial boundary. These grids are of the O-type and are characterized by quasi-orthogonality, geometric periodicity, and an adequate resolution throughout the flow field. Because the built-in nonorthogonal coordinate stretching and shearing cause the grid lines leaving the blade or wing trailing-edge to end at downstream infinity, use of the generated grid simplifies the numerical treatment of three-dimensional trailing vortex sheets. The GRID3O program is written in FORTRAN IV for batch execution and has been implemented on an IBM 370 series computer with a central memory requirement of approximately 450K of 8 bit bytes. The GRID3O program was developed in 1981.

  8. Assessment of the effects of horizontal grid resolution on long ...

    EPA Pesticide Factsheets

    The objective of this study is to determine the adequacy of using a relatively coarse horizontal resolution (i.e. 36 km) to simulate long-term trends of pollutant concentrations and radiation variables with the coupled WRF-CMAQ model. WRF-CMAQ simulations over the continental United State are performed over the 2001 to 2010 time period at two different horizontal resolutions of 12 and 36 km. Both simulations used the same emission inventory and model configurations. Model results are compared both in space and time to assess the potential weaknesses and strengths of using coarse resolution in long-term air quality applications. The results show that the 36 km and 12 km simulations are comparable in terms of trends analysis for both pollutant concentrations and radiation variables. The advantage of using the coarser 36 km resolution is a significant reduction of computational cost, time and storage requirement which are key considerations when performing multiple years of simulations for trend analysis. However, if such simulations are to be used for local air quality analysis, finer horizontal resolution may be beneficial since it can provide information on local gradients. In particular, divergences between the two simulations are noticeable in urban, complex terrain and coastal regions. The National Exposure Research Laboratory’s Atmospheric Modeling Division (AMAD) conducts research in support of EPA’s mission to protect human health and the environment.

  9. Spatial services grid

    NASA Astrophysics Data System (ADS)

    Cao, Jian; Li, Qi; Cheng, Jicheng

    2005-10-01

    This paper discusses the concept, key technologies and main application of Spatial Services Grid. The technologies of Grid computing and Webservice is playing a revolutionary role in studying the spatial information services. The concept of the SSG (Spatial Services Grid) is put forward based on the SIG (Spatial Information Grid) and OGSA (open grid service architecture). Firstly, the grid computing is reviewed and the key technologies of SIG and their main applications are reviewed. Secondly, the grid computing and three kinds of SIG (in broad sense)--SDG (spatial data grid), SIG (spatial information grid) and SSG (spatial services grid) and their relationships are proposed. Thirdly, the key technologies of the SSG (spatial services grid) is put forward. Finally, three representative applications of SSG (spatial services grid) are discussed. The first application is urban location based services gird, which is a typical spatial services grid and can be constructed on OGSA (Open Grid Services Architecture) and digital city platform. The second application is region sustainable development grid which is the key to the urban development. The third application is Region disaster and emergency management services grid.

  10. Frontiers in Atmospheric Chemistry Modelling

    NASA Astrophysics Data System (ADS)

    Colette, Augustin; Bessagnet, Bertrand; Meleux, Frederik; Rouïl, Laurence

    2013-04-01

    The first pan-European kilometre-scale atmospheric chemistry simulation is introduced. The continental-scale air pollution episode of January 2009 is modelled with the CHIMERE offline chemistry-transport model with a massive grid of 2 million horizontal points, performed on 2000 CPU of a high performance computing system hosted by the Research and Technology Computing Center at the French Alternative Energies and Atomic Energy Commission (CCRT/CEA). Besides the technical challenge, which demonstrated the robustness of the selected air quality model, we discuss the added value in terms of air pollution modelling and decision support. The comparison with in-situ observations shows that model biases are significantly improved despite some spurious added spatial variability attributed to shortcomings in the emission downscaling process and coarse resolution of the meteorological fields. The increased spatial resolution is clearly beneficial for the detection of exceedances and exposure modelling. We reveal small scale air pollution patterns that highlight the contribution of city plumes to background air pollution levels. Up to a factor 5 underestimation of the fraction of population exposed to detrimental levels of pollution can be obtained with a coarse simulation if subgrid scale correction such as urban increments are ignored. This experiment opens new perspectives for environmental decision making. After two decades of efforts to reduce air pollutant emissions across Europe, the challenge is now to find the optimal trade-off between national and local air quality management strategies. While the first approach is based on sectoral strategies and energy policies, the later builds upon new alternatives such as urban development. The strategies, the decision pathways and the involvement of individual citizen differ, and a compromise based on cost and efficiency must be found. We illustrated how high performance computing in atmospheric science can contribute to this aim. Although further developments are still needed to secure the results for routine policy use, the door is now open...

  11. Model's sparse representation based on reduced mixed GMsFE basis methods

    NASA Astrophysics Data System (ADS)

    Jiang, Lijian; Li, Qiuqi

    2017-06-01

    In this paper, we propose a model's sparse representation based on reduced mixed generalized multiscale finite element (GMsFE) basis methods for elliptic PDEs with random inputs. A typical application for the elliptic PDEs is the flow in heterogeneous random porous media. Mixed generalized multiscale finite element method (GMsFEM) is one of the accurate and efficient approaches to solve the flow problem in a coarse grid and obtain the velocity with local mass conservation. When the inputs of the PDEs are parameterized by the random variables, the GMsFE basis functions usually depend on the random parameters. This leads to a large number degree of freedoms for the mixed GMsFEM and substantially impacts on the computation efficiency. In order to overcome the difficulty, we develop reduced mixed GMsFE basis methods such that the multiscale basis functions are independent of the random parameters and span a low-dimensional space. To this end, a greedy algorithm is used to find a set of optimal samples from a training set scattered in the parameter space. Reduced mixed GMsFE basis functions are constructed based on the optimal samples using two optimal sampling strategies: basis-oriented cross-validation and proper orthogonal decomposition. Although the dimension of the space spanned by the reduced mixed GMsFE basis functions is much smaller than the dimension of the original full order model, the online computation still depends on the number of coarse degree of freedoms. To significantly improve the online computation, we integrate the reduced mixed GMsFE basis methods with sparse tensor approximation and obtain a sparse representation for the model's outputs. The sparse representation is very efficient for evaluating the model's outputs for many instances of parameters. To illustrate the efficacy of the proposed methods, we present a few numerical examples for elliptic PDEs with multiscale and random inputs. In particular, a two-phase flow model in random porous media is simulated by the proposed sparse representation method.

  12. Model's sparse representation based on reduced mixed GMsFE basis methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Lijian, E-mail: ljjiang@hnu.edu.cn; Li, Qiuqi, E-mail: qiuqili@hnu.edu.cn

    2017-06-01

    In this paper, we propose a model's sparse representation based on reduced mixed generalized multiscale finite element (GMsFE) basis methods for elliptic PDEs with random inputs. A typical application for the elliptic PDEs is the flow in heterogeneous random porous media. Mixed generalized multiscale finite element method (GMsFEM) is one of the accurate and efficient approaches to solve the flow problem in a coarse grid and obtain the velocity with local mass conservation. When the inputs of the PDEs are parameterized by the random variables, the GMsFE basis functions usually depend on the random parameters. This leads to a largemore » number degree of freedoms for the mixed GMsFEM and substantially impacts on the computation efficiency. In order to overcome the difficulty, we develop reduced mixed GMsFE basis methods such that the multiscale basis functions are independent of the random parameters and span a low-dimensional space. To this end, a greedy algorithm is used to find a set of optimal samples from a training set scattered in the parameter space. Reduced mixed GMsFE basis functions are constructed based on the optimal samples using two optimal sampling strategies: basis-oriented cross-validation and proper orthogonal decomposition. Although the dimension of the space spanned by the reduced mixed GMsFE basis functions is much smaller than the dimension of the original full order model, the online computation still depends on the number of coarse degree of freedoms. To significantly improve the online computation, we integrate the reduced mixed GMsFE basis methods with sparse tensor approximation and obtain a sparse representation for the model's outputs. The sparse representation is very efficient for evaluating the model's outputs for many instances of parameters. To illustrate the efficacy of the proposed methods, we present a few numerical examples for elliptic PDEs with multiscale and random inputs. In particular, a two-phase flow model in random porous media is simulated by the proposed sparse representation method.« less

  13. Wide-area, real-time monitoring and visualization system

    DOEpatents

    Budhraja, Vikram S.; Dyer, James D.; Martinez Morales, Carlos A.

    2013-03-19

    A real-time performance monitoring system for monitoring an electric power grid. The electric power grid has a plurality of grid portions, each grid portion corresponding to one of a plurality of control areas. The real-time performance monitoring system includes a monitor computer for monitoring at least one of reliability metrics, generation metrics, transmission metrics, suppliers metrics, grid infrastructure security metrics, and markets metrics for the electric power grid. The data for metrics being monitored by the monitor computer are stored in a data base, and a visualization of the metrics is displayed on at least one display computer having a monitor. The at least one display computer in one said control area enables an operator to monitor the grid portion corresponding to a different said control area.

  14. Wide-area, real-time monitoring and visualization system

    DOEpatents

    Budhraja, Vikram S [Los Angeles, CA; Dyer, James D [La Mirada, CA; Martinez Morales, Carlos A [Upland, CA

    2011-11-15

    A real-time performance monitoring system for monitoring an electric power grid. The electric power grid has a plurality of grid portions, each grid portion corresponding to one of a plurality of control areas. The real-time performance monitoring system includes a monitor computer for monitoring at least one of reliability metrics, generation metrics, transmission metrics, suppliers metrics, grid infrastructure security metrics, and markets metrics for the electric power grid. The data for metrics being monitored by the monitor computer are stored in a data base, and a visualization of the metrics is displayed on at least one display computer having a monitor. The at least one display computer in one said control area enables an operator to monitor the grid portion corresponding to a different said control area.

  15. Real-time performance monitoring and management system

    DOEpatents

    Budhraja, Vikram S [Los Angeles, CA; Dyer, James D [La Mirada, CA; Martinez Morales, Carlos A [Upland, CA

    2007-06-19

    A real-time performance monitoring system for monitoring an electric power grid. The electric power grid has a plurality of grid portions, each grid portion corresponding to one of a plurality of control areas. The real-time performance monitoring system includes a monitor computer for monitoring at least one of reliability metrics, generation metrics, transmission metrics, suppliers metrics, grid infrastructure security metrics, and markets metrics for the electric power grid. The data for metrics being monitored by the monitor computer are stored in a data base, and a visualization of the metrics is displayed on at least one display computer having a monitor. The at least one display computer in one said control area enables an operator to monitor the grid portion corresponding to a different said control area.

  16. Spectral multigrid methods for elliptic equations 2

    NASA Technical Reports Server (NTRS)

    Zang, T. A.; Wong, Y. S.; Hussaini, M. Y.

    1983-01-01

    A detailed description of spectral multigrid methods is provided. This includes the interpolation and coarse-grid operators for both periodic and Dirichlet problems. The spectral methods for periodic problems use Fourier series and those for Dirichlet problems are based upon Chebyshev polynomials. An improved preconditioning for Dirichlet problems is given. Numerical examples and practical advice are included.

  17. Assessment of the effects of horizontal grid resolution on long-term air quality trends using coupled WRF-CMAQ simulations

    EPA Science Inventory

    The objective of this study is to determine the adequacy of using a relatively coarse horizontal resolution (i.e. 36 km) to simulate long-term trends of pollutant concentrations and radiation variables with the coupled WRF-CMAQ model. WRF-CMAQ simulations over the continental Uni...

  18. Geometry definition and grid generation for a complete fighter aircraft

    NASA Technical Reports Server (NTRS)

    Edwards, T. A.

    1986-01-01

    Recent advances in computing power and numerical solution procedures have enabled computational fluid dynamicists to attempt increasingly difficult problems. In particular, efforts are focusing on computations of complex three-dimensional flow fields about realistic aerodynamic bodies. To perform such computations, a very accurate and detailed description of the surface geometry must be provided, and a three-dimensional grid must be generated in the space around the body. The geometry must be supplied in a format compatible with the grid generation requirements, and must be verified to be free of inconsistencies. This paper presents a procedure for performing the geometry definition of a fighter aircraft that makes use of a commercial computer-aided design/computer-aided manufacturing system. Furthermore, visual representations of the geometry are generated using a computer graphics system for verification of the body definition. Finally, the three-dimensional grids for fighter-like aircraft are generated by means of an efficient new parabolic grid generation method. This method exhibits good control of grid quality.

  19. Geometry definition and grid generation for a complete fighter aircraft

    NASA Technical Reports Server (NTRS)

    Edwards, Thomas A.

    1986-01-01

    Recent advances in computing power and numerical solution procedures have enabled computational fluid dynamicists to attempt increasingly difficult problems. In particular, efforts are focusing on computations of complex three-dimensional flow fields about realistic aerodynamic bodies. To perform such computations, a very accurate and detailed description of the surface geometry must be provided, and a three-dimensional grid must be generated in the space around the body. The geometry must be supplied in a format compatible with the grid generation requirements, and must be verified to be free of inconsistencies. A procedure for performing the geometry definition of a fighter aircraft that makes use of a commercial computer-aided design/computer-aided manufacturing system is presented. Furthermore, visual representations of the geometry are generated using a computer graphics system for verification of the body definition. Finally, the three-dimensional grids for fighter-like aircraft are generated by means of an efficient new parabolic grid generation method. This method exhibits good control of grid quality.

  20. The LHCb Grid Simulation: Proof of Concept

    NASA Astrophysics Data System (ADS)

    Hushchyn, M.; Ustyuzhanin, A.; Arzymatov, K.; Roiser, S.; Baranov, A.

    2017-10-01

    The Worldwide LHC Computing Grid provides access to data and computational resources to analyze it for researchers with different geographical locations. The grid has a hierarchical topology with multiple sites distributed over the world with varying number of CPUs, amount of disk storage and connection bandwidth. Job scheduling and data distribution strategy are key elements of grid performance. Optimization of algorithms for those tasks requires their testing on real grid which is hard to achieve. Having a grid simulator might simplify this task and therefore lead to more optimal scheduling and data placement algorithms. In this paper we demonstrate a grid simulator for the LHCb distributed computing software.

  1. Cloud computing for energy management in smart grid - an application survey

    NASA Astrophysics Data System (ADS)

    Naveen, P.; Kiing Ing, Wong; Kobina Danquah, Michael; Sidhu, Amandeep S.; Abu-Siada, Ahmed

    2016-03-01

    The smart grid is the emerging energy system wherein the application of information technology, tools and techniques that make the grid run more efficiently. It possesses demand response capacity to help balance electrical consumption with supply. The challenges and opportunities of emerging and future smart grids can be addressed by cloud computing. To focus on these requirements, we provide an in-depth survey on different cloud computing applications for energy management in the smart grid architecture. In this survey, we present an outline of the current state of research on smart grid development. We also propose a model of cloud based economic power dispatch for smart grid.

  2. Integrated geometry and grid generation system for complex configurations

    NASA Technical Reports Server (NTRS)

    Akdag, Vedat; Wulf, Armin

    1992-01-01

    A grid generation system was developed that enables grid generation for complex configurations. The system called ICEM/CFD is described and its role in computational fluid dynamics (CFD) applications is presented. The capabilities of the system include full computer aided design (CAD), grid generation on the actual CAD geometry definition using robust surface projection algorithms, interfacing easily with known CAD packages through common file formats for geometry transfer, grid quality evaluation of the volume grid, coupling boundary condition set-up for block faces with grid topology generation, multi-block grid generation with or without point continuity and block to block interface requirement, and generating grid files directly compatible with known flow solvers. The interactive and integrated approach to the problem of computational grid generation not only substantially reduces manpower time but also increases the flexibility of later grid modifications and enhancements which is required in an environment where CFD is integrated into a product design cycle.

  3. Benchmarking urban flood models of varying complexity and scale using high resolution terrestrial LiDAR data

    NASA Astrophysics Data System (ADS)

    Fewtrell, Timothy J.; Duncan, Alastair; Sampson, Christopher C.; Neal, Jeffrey C.; Bates, Paul D.

    2011-01-01

    This paper describes benchmark testing of a diffusive and an inertial formulation of the de St. Venant equations implemented within the LISFLOOD-FP hydraulic model using high resolution terrestrial LiDAR data. The models are applied to a hypothetical flooding scenario in a section of Alcester, UK which experienced significant surface water flooding in the June and July floods of 2007 in the UK. The sensitivity of water elevation and velocity simulations to model formulation and grid resolution are analyzed. The differences in depth and velocity estimates between the diffusive and inertial approximations are within 10% of the simulated value but inertial effects persist at the wetting front in steep catchments. Both models portray a similar scale dependency between 50 cm and 5 m resolution which reiterates previous findings that errors in coarse scale topographic data sets are significantly larger than differences between numerical approximations. In particular, these results confirm the need to distinctly represent the camber and curbs of roads in the numerical grid when simulating surface water flooding events. Furthermore, although water depth estimates at grid scales coarser than 1 m appear robust, velocity estimates at these scales seem to be inconsistent compared to the 50 cm benchmark. The inertial formulation is shown to reduce computational cost by up to three orders of magnitude at high resolutions thus making simulations at this scale viable in practice compared to diffusive models. For the first time, this paper highlights the utility of high resolution terrestrial LiDAR data to inform small-scale flood risk management studies.

  4. Enabling campus grids with open science grid technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weitzel, Derek; Bockelman, Brian; Swanson, David

    2011-01-01

    The Open Science Grid is a recognized key component of the US national cyber-infrastructure enabling scientific discovery through advanced high throughput computing. The principles and techniques that underlie the Open Science Grid can also be applied to Campus Grids since many of the requirements are the same, even if the implementation technologies differ. We find five requirements for a campus grid: trust relationships, job submission, resource independence, accounting, and data management. The Holland Computing Center's campus grid at the University of Nebraska-Lincoln was designed to fulfill the requirements of a campus grid. A bridging daemon was designed to bring non-Condormore » clusters into a grid managed by Condor. Condor features which make it possible to bridge Condor sites into a multi-campus grid have been exploited at the Holland Computing Center as well.« less

  5. Simulation of a Wall-Bounded Flow using a Hybrid LES/RAS Approach with Turbulence Recycling

    NASA Technical Reports Server (NTRS)

    Quinlan, Jesse R.; Mcdaniel, James; Baurle, Robert A.

    2012-01-01

    Simulations of a supersonic recessed-cavity flow are performed using a hybrid large-eddy/ Reynolds-averaged simulation approach utilizing an inflow turbulence recycling procedure and hybridized inviscid flux scheme. Calorically perfect air enters the three-dimensional domain at a free stream Mach number of 2.92. Simulations are performed to assess grid sensitivity of the solution, efficacy of the turbulence recycling, and effect of the shock sensor used with the hybridized inviscid flux scheme. Analysis of the turbulent boundary layer upstream of the rearward-facing step for each case indicates excellent agreement with theoretical predictions. Mean velocity and pressure results are compared to Reynolds-averaged simulations and experimental data for each case, and these comparisons indicate good agreement on the finest grid. Simulations are repeated on a coarsened grid, and results indicate strong grid density sensitivity. The effect of turbulence recycling on the solution is illustrated by performing coarse grid simulations with and without inflow turbulence recycling. Two shock sensors, one of Ducros and one of Larsson, are assessed for use with the hybridized inviscid flux reconstruction scheme.

  6. Hybrid Large-Eddy/Reynolds-Averaged Simulation of a Supersonic Cavity Using VULCAN

    NASA Technical Reports Server (NTRS)

    Quinlan, Jesse; McDaniel, James; Baurle, Robert A.

    2013-01-01

    Simulations of a supersonic recessed-cavity flow are performed using a hybrid large-eddy/Reynolds-averaged simulation approach utilizing an inflow turbulence recycling procedure and hybridized inviscid flux scheme. Calorically perfect air enters a three-dimensional domain at a free stream Mach number of 2.92. Simulations are performed to assess grid sensitivity of the solution, efficacy of the turbulence recycling, and the effect of the shock sensor used with the hybridized inviscid flux scheme. Analysis of the turbulent boundary layer upstream of the rearward-facing step for each case indicates excellent agreement with theoretical predictions. Mean velocity and pressure results are compared to Reynolds-averaged simulations and experimental data for each case and indicate good agreement on the finest grid. Simulations are repeated on a coarsened grid, and results indicate strong grid density sensitivity. Simulations are performed with and without inflow turbulence recycling on the coarse grid to isolate the effect of the recycling procedure, which is demonstrably critical to capturing the relevant shear layer dynamics. Shock sensor formulations of Ducros and Larsson are found to predict mean flow statistics equally well.

  7. HOMAR: A computer code for generating homotopic grids using algebraic relations: User's manual

    NASA Technical Reports Server (NTRS)

    Moitra, Anutosh

    1989-01-01

    A computer code for fast automatic generation of quasi-three-dimensional grid systems for aerospace configurations is described. The code employs a homotopic method to algebraically generate two-dimensional grids in cross-sectional planes, which are stacked to produce a three-dimensional grid system. Implementation of the algebraic equivalents of the homotopic relations for generating body geometries and grids are explained. Procedures for controlling grid orthogonality and distortion are described. Test cases with description and specification of inputs are presented in detail. The FORTRAN computer program and notes on implementation and use are included.

  8. A multi-block adaptive solving technique based on lattice Boltzmann method

    NASA Astrophysics Data System (ADS)

    Zhang, Yang; Xie, Jiahua; Li, Xiaoyue; Ma, Zhenghai; Zou, Jianfeng; Zheng, Yao

    2018-05-01

    In this paper, a CFD parallel adaptive algorithm is self-developed by combining the multi-block Lattice Boltzmann Method (LBM) with Adaptive Mesh Refinement (AMR). The mesh refinement criterion of this algorithm is based on the density, velocity and vortices of the flow field. The refined grid boundary is obtained by extending outward half a ghost cell from the coarse grid boundary, which makes the adaptive mesh more compact and the boundary treatment more convenient. Two numerical examples of the backward step flow separation and the unsteady flow around circular cylinder demonstrate the vortex structure of the cold flow field accurately and specifically.

  9. Numerical Nuclear Second Derivatives on a Computing Grid: Enabling and Accelerating Frequency Calculations on Complex Molecular Systems.

    PubMed

    Yang, Tzuhsiung; Berry, John F

    2018-06-04

    The computation of nuclear second derivatives of energy, or the nuclear Hessian, is an essential routine in quantum chemical investigations of ground and transition states, thermodynamic calculations, and molecular vibrations. Analytic nuclear Hessian computations require the resolution of costly coupled-perturbed self-consistent field (CP-SCF) equations, while numerical differentiation of analytic first derivatives has an unfavorable 6 N ( N = number of atoms) prefactor. Herein, we present a new method in which grid computing is used to accelerate and/or enable the evaluation of the nuclear Hessian via numerical differentiation: NUMFREQ@Grid. Nuclear Hessians were successfully evaluated by NUMFREQ@Grid at the DFT level as well as using RIJCOSX-ZORA-MP2 or RIJCOSX-ZORA-B2PLYP for a set of linear polyacenes with systematically increasing size. For the larger members of this group, NUMFREQ@Grid was found to outperform the wall clock time of analytic Hessian evaluation; at the MP2 or B2LYP levels, these Hessians cannot even be evaluated analytically. We also evaluated a 156-atom catalytically relevant open-shell transition metal complex and found that NUMFREQ@Grid is faster (7.7 times shorter wall clock time) and less demanding (4.4 times less memory requirement) than an analytic Hessian. Capitalizing on the capabilities of parallel grid computing, NUMFREQ@Grid can outperform analytic methods in terms of wall time, memory requirements, and treatable system size. The NUMFREQ@Grid method presented herein demonstrates how grid computing can be used to facilitate embarrassingly parallel computational procedures and is a pioneer for future implementations.

  10. Synchrotron Imaging Computations on the Grid without the Computing Element

    NASA Astrophysics Data System (ADS)

    Curri, A.; Pugliese, R.; Borghes, R.; Kourousias, G.

    2011-12-01

    Besides the heavy use of the Grid in the Synchrotron Radiation Facility (SRF) Elettra, additional special requirements from the beamlines had to be satisfied through a novel solution that we present in this work. In the traditional Grid Computing paradigm the computations are performed on the Worker Nodes of the grid element known as the Computing Element. A Grid middleware extension that our team has been working on, is that of the Instrument Element. In general it is used to Grid-enable instrumentation; and it can be seen as a neighbouring concept to that of the traditional Control Systems. As a further extension we demonstrate the Instrument Element as the steering mechanism for a series of computations. In our deployment it interfaces a Control System that manages a series of computational demanding Scientific Imaging tasks in an online manner. The instrument control in Elettra is done through a suitable Distributed Control System, a common approach in the SRF community. The applications that we present are for a beamline working in medical imaging. The solution resulted to a substantial improvement of a Computed Tomography workflow. The near-real-time requirements could not have been easily satisfied from our Grid's middleware (gLite) due to the various latencies often occurred during the job submission and queuing phases. Moreover the required deployment of a set of TANGO devices could not have been done in a standard gLite WN. Besides the avoidance of certain core Grid components, the Grid Security infrastructure has been utilised in the final solution.

  11. Network gateway security method for enterprise Grid: a literature review

    NASA Astrophysics Data System (ADS)

    Sujarwo, A.; Tan, J.

    2017-03-01

    The computational Grid has brought big computational resources closer to scientists. It enables people to do a large computational job anytime and anywhere without any physical border anymore. However, the massive and spread of computer participants either as user or computational provider arise problems in security. The challenge is on how the security system, especially the one which filters data in the gateway could works in flexibility depends on the registered Grid participants. This paper surveys what people have done to approach this challenge, in order to find the better and new method for enterprise Grid. The findings of this paper is the dynamically controlled enterprise firewall to secure the Grid resources from unwanted connections with a new firewall controlling method and components.

  12. The Adoption of Grid Computing Technology by Organizations: A Quantitative Study Using Technology Acceptance Model

    ERIC Educational Resources Information Center

    Udoh, Emmanuel E.

    2010-01-01

    Advances in grid technology have enabled some organizations to harness enormous computational power on demand. However, the prediction of widespread adoption of the grid technology has not materialized despite the obvious grid advantages. This situation has encouraged intense efforts to close the research gap in the grid adoption process. In this…

  13. The HEPiX Virtualisation Working Group: Towards a Grid of Clouds

    NASA Astrophysics Data System (ADS)

    Cass, Tony

    2012-12-01

    The use of virtual machine images, as for example with Cloud services such as Amazon's Elastic Compute Cloud, is attractive for users as they have a guaranteed execution environment, something that cannot today be provided across sites participating in computing grids such as the Worldwide LHC Computing Grid. However, Grid sites often operate within computer security frameworks which preclude the use of remotely generated images. The HEPiX Virtualisation Working Group was setup with the objective to enable use of remotely generated virtual machine images at Grid sites and, to this end, has introduced the idea of trusted virtual machine images which are guaranteed to be secure and configurable by sites such that security policy commitments can be met. This paper describes the requirements and details of these trusted virtual machine images and presents a model for their use to facilitate the integration of Grid- and Cloud-based computing environments for High Energy Physics.

  14. A Debugger for Computational Grid Applications

    NASA Technical Reports Server (NTRS)

    Hood, Robert; Jost, Gabriele; Biegel, Bryan (Technical Monitor)

    2001-01-01

    This viewgraph presentation gives an overview of a debugger for computational grid applications. Details are given on NAS parallel tools groups (including parallelization support tools, evaluation of various parallelization strategies, and distributed and aggregated computing), debugger dependencies, scalability, initial implementation, the process grid, and information on Globus.

  15. A Development of Lightweight Grid Interface

    NASA Astrophysics Data System (ADS)

    Iwai, G.; Kawai, Y.; Sasaki, T.; Watase, Y.

    2011-12-01

    In order to help a rapid development of Grid/Cloud aware applications, we have developed API to abstract the distributed computing infrastructures based on SAGA (A Simple API for Grid Applications). SAGA, which is standardized in the OGF (Open Grid Forum), defines API specifications to access distributed computing infrastructures, such as Grid, Cloud and local computing resources. The Universal Grid API (UGAPI), which is a set of command line interfaces (CLI) and APIs, aims to offer simpler API to combine several SAGA interfaces with richer functionalities. These CLIs of the UGAPI offer typical functionalities required by end users for job management and file access to the different distributed computing infrastructures as well as local computing resources. We have also built a web interface for the particle therapy simulation and demonstrated the large scale calculation using the different infrastructures at the same time. In this paper, we would like to present how the web interface based on UGAPI and SAGA achieve more efficient utilization of computing resources over the different infrastructures with technical details and practical experiences.

  16. On the applicability of density dependent effective interactions in cluster-forming systems

    NASA Astrophysics Data System (ADS)

    Montes-Saralegui, Marta; Kahl, Gerhard; Nikoubashman, Arash

    2017-02-01

    We systematically studied the validity and transferability of the force-matching algorithm for computing effective pair potentials in a system of dendritic polymers, i.e., a particular class of ultrasoft colloids. We focused on amphiphilic dendrimers, macromolecules which can aggregate into clusters of overlapping particles to minimize the contact area with the surrounding implicit solvent. Simulations were performed for both the monomeric and coarse-grained models in the liquid phase at densities ranging from infinite dilution up to values close to the freezing point. The effective pair potentials for the coarse-grained simulations were computed from the monomeric simulations both in the zero-density limit (Φeff0) and at each investigated finite density (Φeff). Conducting the coarse-grained simulations with Φeff0 at higher densities is not appropriate as they failed at reproducing the structural properties of the monomeric simulations. In contrast, we found excellent agreement between the spatial dendrimer distributions obtained from the coarse-grained simulations with Φeff and the microscopically detailed simulations at low densities, where the macromolecules were distributed homogeneously in the system. However, the reliability of the coarse-grained simulations deteriorated significantly as the density was increased further and the cluster occupation became more polydisperse. Under these conditions, the effective pair potential of the coarse-grained model can no longer be computed by averaging over the whole system, but the local density needs to be taken into account instead.

  17. High capacitance of coarse-grained carbide derived carbon electrodes

    DOE PAGES

    Dyatkin, Boris; Gogotsi, Oleksiy; Malinovskiy, Bohdan; ...

    2016-01-01

    Here, we report exceptional electrochemical properties of supercapacitor electrodes composed of large, granular carbide-derived carbon (CDC) particles. We synthesized 70–250 μm sized particles with high surface area and a narrow pore size distribution, using a titanium carbide (TiC) precursor. Electrochemical cycling of these coarse-grained powders defied conventional wisdom that a small particle size is strictly required for supercapacitor electrodes and allowed high charge storage densities, rapid transport, and good rate handling ability. Moreover, the material showcased capacitance above 100 F g -1 at sweep rates as high as 250 mV s -1 in organic electrolyte. 250–1000 micron thick dense CDCmore » films with up to 80 mg cm -2 loading showed superior areal capacitances. The material significantly outperformed its activated carbon counterpart in organic electrolytes and ionic liquids. Furthermore, large internal/external surface ratio of coarse-grained carbons allowed the resulting electrodes to maintain high electrochemical stability up to 3.1 V in ionic liquid electrolyte. In addition to presenting novel insights into the electrosorption process, these coarse-grained carbons offer a pathway to low-cost, high-performance implementation of supercapacitors in automotive and grid-storage applications.« less

  18. High capacitance of coarse-grained carbide derived carbon electrodes

    NASA Astrophysics Data System (ADS)

    Dyatkin, Boris; Gogotsi, Oleksiy; Malinovskiy, Bohdan; Zozulya, Yuliya; Simon, Patrice; Gogotsi, Yury

    2016-02-01

    We report exceptional electrochemical properties of supercapacitor electrodes composed of large, granular carbide-derived carbon (CDC) particles. Using a titanium carbide (TiC) precursor, we synthesized 70-250 μm sized particles with high surface area and a narrow pore size distribution. Electrochemical cycling of these coarse-grained powders defied conventional wisdom that a small particle size is strictly required for supercapacitor electrodes and allowed high charge storage densities, rapid transport, and good rate handling ability. The material showcased capacitance above 100 F g-1 at sweep rates as high as 250 mV s-1 in organic electrolyte. 250-1000 micron thick dense CDC films with up to 80 mg cm-2 loading showed superior areal capacitances. The material significantly outperformed its activated carbon counterpart in organic electrolytes and ionic liquids. Furthermore, large internal/external surface ratio of coarse-grained carbons allowed the resulting electrodes to maintain high electrochemical stability up to 3.1 V in ionic liquid electrolyte. In addition to presenting novel insights into the electrosorption process, these coarse-grained carbons offer a pathway to low-cost, high-performance implementation of supercapacitors in automotive and grid-storage applications.

  19. GLAD: a system for developing and deploying large-scale bioinformatics grid.

    PubMed

    Teo, Yong-Meng; Wang, Xianbing; Ng, Yew-Kwong

    2005-03-01

    Grid computing is used to solve large-scale bioinformatics problems with gigabytes database by distributing the computation across multiple platforms. Until now in developing bioinformatics grid applications, it is extremely tedious to design and implement the component algorithms and parallelization techniques for different classes of problems, and to access remotely located sequence database files of varying formats across the grid. In this study, we propose a grid programming toolkit, GLAD (Grid Life sciences Applications Developer), which facilitates the development and deployment of bioinformatics applications on a grid. GLAD has been developed using ALiCE (Adaptive scaLable Internet-based Computing Engine), a Java-based grid middleware, which exploits the task-based parallelism. Two bioinformatics benchmark applications, such as distributed sequence comparison and distributed progressive multiple sequence alignment, have been developed using GLAD.

  20. CAGI: Computer Aided Grid Interface. A work in progress

    NASA Technical Reports Server (NTRS)

    Soni, Bharat K.; Yu, Tzu-Yi; Vaughn, David

    1992-01-01

    Progress realized in the development of a Computer Aided Grid Interface (CAGI) software system in integrating CAD/CAM geometric system output and/or Interactive Graphics Exchange Standard (IGES) files, geometry manipulations associated with grid generation, and robust grid generation methodologies is presented. CAGI is being developed in a modular fashion and will offer fast, efficient and economical response to geometry/grid preparation, allowing the ability to upgrade basic geometry in a step-by-step fashion interactively and under permanent visual control along with minimizing the differences between the actual hardware surface descriptions and corresponding numerical analog. The computer code GENIE is used as a basis. The Non-Uniform Rational B-Splines (NURBS) representation of sculptured surfaces is utilized for surface grid redistribution. The computer aided analysis system, PATRAN, is adapted as a CAD/CAM system. The progress realized in NURBS surface grid generation, the development of IGES transformer, and geometry adaption using PATRAN will be presented along with their applicability to grid generation associated with rocket propulsion applications.

  1. An assessment of the impact of FIA's default assumptions on the estimates of coarse woody debris volume and biomass

    Treesearch

    Vicente J. Monleon

    2009-01-01

    Currently, Forest Inventory and Analysis estimation procedures use Smalian's formula to compute coarse woody debris (CWD) volume and assume that logs lie horizontally on the ground. In this paper, the impact of those assumptions on volume and biomass estimates is assessed using 7 years of Oregon's Phase 2 data. Estimates of log volume computed using Smalian...

  2. AMR on the CM-2

    NASA Technical Reports Server (NTRS)

    Berger, Marsha J.; Saltzman, Jeff S.

    1992-01-01

    We describe the development of a structured adaptive mesh algorithm (AMR) for the Connection Machine-2 (CM-2). We develop a data layout scheme that preserves locality even for communication between fine and coarse grids. On 8K of a 32K machine we achieve performance slightly less than 1 CPU of the Cray Y-MP. We apply our algorithm to an inviscid compressible flow problem.

  3. Error Estimates of the Ares I Computed Turbulent Ascent Longitudinal Aerodynamic Analysis

    NASA Technical Reports Server (NTRS)

    Abdol-Hamid, Khaled S.; Ghaffari, Farhad

    2012-01-01

    Numerical predictions of the longitudinal aerodynamic characteristics for the Ares I class of vehicles, along with the associated error estimate derived from an iterative convergence grid refinement, are presented. Computational results are based on an unstructured grid, Reynolds-averaged Navier-Stokes analysis. The validity of the approach to compute the associated error estimates, derived from a base grid to an extrapolated infinite-size grid, was first demonstrated on a sub-scaled wind tunnel model at representative ascent flow conditions for which the experimental data existed. Such analysis at the transonic flow conditions revealed a maximum deviation of about 23% between the computed longitudinal aerodynamic coefficients with the base grid and the measured data across the entire roll angles. This maximum deviation from the wind tunnel data was associated with the computed normal force coefficient at the transonic flow condition and was reduced to approximately 16% based on the infinite-size grid. However, all the computed aerodynamic coefficients with the base grid at the supersonic flow conditions showed a maximum deviation of only about 8% with that level being improved to approximately 5% for the infinite-size grid. The results and the error estimates based on the established procedure are also presented for the flight flow conditions.

  4. Temporal acceleration of spatially distributed kinetic Monte Carlo simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chatterjee, Abhijit; Vlachos, Dionisios G.

    The computational intensity of kinetic Monte Carlo (KMC) simulation is a major impediment in simulating large length and time scales. In recent work, an approximate method for KMC simulation of spatially uniform systems, termed the binomial {tau}-leap method, was introduced [A. Chatterjee, D.G. Vlachos, M.A. Katsoulakis, Binomial distribution based {tau}-leap accelerated stochastic simulation, J. Chem. Phys. 122 (2005) 024112], where molecular bundles instead of individual processes are executed over coarse-grained time increments. This temporal coarse-graining can lead to significant computational savings but its generalization to spatially lattice KMC simulation has not been realized yet. Here we extend the binomial {tau}-leapmore » method to lattice KMC simulations by combining it with spatially adaptive coarse-graining. Absolute stability and computational speed-up analyses for spatial systems along with simulations provide insights into the conditions where accuracy and substantial acceleration of the new spatio-temporal coarse-graining method are ensured. Model systems demonstrate that the r-time increment criterion of Chatterjee et al. obeys the absolute stability limit for values of r up to near 1.« less

  5. Simulation of an Isolated Tiltrotor in Hover with an Unstructured Overset-Grid RANS Solver

    NASA Technical Reports Server (NTRS)

    Lee-Rausch, Elizabeth M.; Biedron, Robert T.

    2009-01-01

    An unstructured overset-grid Reynolds Averaged Navier-Stokes (RANS) solver, FUN3D, is used to simulate an isolated tiltrotor in hover. An overview of the computational method is presented as well as the details of the overset-grid systems. Steady-state computations within a noninertial reference frame define the performance trends of the rotor across a range of the experimental collective settings. Results are presented to show the effects of off-body grid refinement and blade grid refinement. The computed performance and blade loading trends show good agreement with experimental results and previously published structured overset-grid computations. Off-body flow features indicate a significant improvement in the resolution of the first perpendicular blade vortex interaction with background grid refinement across the collective range. Considering experimental data uncertainty and effects of transition, the prediction of figure of merit on the baseline and refined grid is reasonable at the higher collective range- within 3 percent of the measured values. At the lower collective settings, the computed figure of merit is approximately 6 percent lower than the experimental data. A comparison of steady and unsteady results show that with temporal refinement, the dynamic results closely match the steady-state noninertial results which gives confidence in the accuracy of the dynamic overset-grid approach.

  6. Computing the non-Markovian coarse-grained interactions derived from the Mori-Zwanzig formalism in molecular systems: Application to polymer melts

    NASA Astrophysics Data System (ADS)

    Li, Zhen; Lee, Hee Sun; Darve, Eric; Karniadakis, George Em

    2017-01-01

    Memory effects are often introduced during coarse-graining of a complex dynamical system. In particular, a generalized Langevin equation (GLE) for the coarse-grained (CG) system arises in the context of Mori-Zwanzig formalism. Upon a pairwise decomposition, GLE can be reformulated into its pairwise version, i.e., non-Markovian dissipative particle dynamics (DPD). GLE models the dynamics of a single coarse particle, while DPD considers the dynamics of many interacting CG particles, with both CG systems governed by non-Markovian interactions. We compare two different methods for the practical implementation of the non-Markovian interactions in GLE and DPD systems. More specifically, a direct evaluation of the non-Markovian (NM) terms is performed in LE-NM and DPD-NM models, which requires the storage of historical information that significantly increases computational complexity. Alternatively, we use a few auxiliary variables in LE-AUX and DPD-AUX models to replace the non-Markovian dynamics with a Markovian dynamics in a higher dimensional space, leading to a much reduced memory footprint and computational cost. In our numerical benchmarks, the GLE and non-Markovian DPD models are constructed from molecular dynamics (MD) simulations of star-polymer melts. Results show that a Markovian dynamics with auxiliary variables successfully generates equivalent non-Markovian dynamics consistent with the reference MD system, while maintaining a tractable computational cost. Also, transient subdiffusion of the star-polymers observed in the MD system can be reproduced by the coarse-grained models. The non-interacting particle models, LE-NM/AUX, are computationally much cheaper than the interacting particle models, DPD-NM/AUX. However, the pairwise models with momentum conservation are more appropriate for correctly reproducing the long-time hydrodynamics characterised by an algebraic decay in the velocity autocorrelation function.

  7. Using Multiple Grids To Compute Flows

    NASA Technical Reports Server (NTRS)

    Rai, Man Mohan

    1991-01-01

    Paper discusses decomposition of global grids into multiple patched and/or overlaid local grids in computations of fluid flow. Such "domain decomposition" particularly useful in computation of flows about complicated bodies moving relative to each other; for example, flows associated with rotors and stators in turbomachinery and rotors and fuselages in helicopters.

  8. A Grid Infrastructure for Supporting Space-based Science Operations

    NASA Technical Reports Server (NTRS)

    Bradford, Robert N.; Redman, Sandra H.; McNair, Ann R. (Technical Monitor)

    2002-01-01

    Emerging technologies for computational grid infrastructures have the potential for revolutionizing the way computers are used in all aspects of our lives. Computational grids are currently being implemented to provide a large-scale, dynamic, and secure research and engineering environments based on standards and next-generation reusable software, enabling greater science and engineering productivity through shared resources and distributed computing for less cost than traditional architectures. Combined with the emerging technologies of high-performance networks, grids provide researchers, scientists and engineers the first real opportunity for an effective distributed collaborative environment with access to resources such as computational and storage systems, instruments, and software tools and services for the most computationally challenging applications.

  9. The Sensitivity of Numerical Simulations of Cloud-Topped Boundary Layers to Cross-Grid Flow

    NASA Astrophysics Data System (ADS)

    Wyant, Matthew C.; Bretherton, Christopher S.; Blossey, Peter N.

    2018-02-01

    In mesoscale and global atmospheric simulations with large horizontal domains, strong horizontal flow across the grid is often unavoidable, but its effects on cloud-topped boundary layers have received comparatively little study. Here the effects of cross-grid flow on large-eddy simulations of stratocumulus and trade-cumulus marine boundary layers are studied across a range of grid resolutions (horizontal × vertical) between 500 m × 20 m and 35 m × 5 m. Three cases are simulated: DYCOMS nocturnal stratocumulus, BOMEX trade cumulus, and a GCSS stratocumulus-to-trade cumulus case. Simulations are performed with a stationary grid (with 4-8 m s-1 horizontal winds blowing through the cyclic domain) and a moving grid (equivalent to subtracting off a fixed vertically uniform horizontal wind) approximately matching the mean boundary-layer wind speed. For stratocumulus clouds, cross-grid flow produces two primary effects on stratocumulus clouds: a filtering of fine-scale resolved turbulent eddies, which reduces stratocumulus cloud-top entrainment, and a vertical broadening of the stratocumulus-top inversion which enhances cloud-top entrainment. With a coarse (20 m) vertical grid, the former effect dominates and leads to strong increases in cloud cover and LWP, especially as horizontal resolution is coarsened. With a finer (5 m) vertical grid, the latter effect is stronger and leads to small reductions in cloud cover and LWP. For the BOMEX trade cumulus case, cross-grid flow tends to produce fewer and larger clouds with higher LWP, especially for coarser vertical grid spacing. The results presented are robust to choice of scalar advection scheme and Courant number.

  10. Upwind schemes and bifurcating solutions in real gas computations

    NASA Technical Reports Server (NTRS)

    Suresh, Ambady; Liou, Meng-Sing

    1992-01-01

    The area of high speed flow is seeing a renewed interest due to advanced propulsion concepts such as the National Aerospace Plane (NASP), Space Shuttle, and future civil transport concepts. Upwind schemes to solve such flows have become increasingly popular in the last decade due to their excellent shock capturing properties. In the first part of this paper the authors present the extension of the Osher scheme to equilibrium and non-equilibrium gases. For simplicity, the source terms are treated explicitly. Computations based on the above scheme are presented to demonstrate the feasibility, accuracy and efficiency of the proposed scheme. One of the test problems is a Chapman-Jouguet detonation problem for which numerical solutions have been known to bifurcate into spurious weak detonation solutions on coarse grids. Results indicate that the numerical solution obtained depends both on the upwinding scheme used and the limiter employed to obtain second order accuracy. For example, the Osher scheme gives the correct CJ solution when the super-bee limiter is used, but gives the spurious solution when the Van Leer limiter is used. With the Roe scheme the spurious solution is obtained for all limiters.

  11. Discrete variable representation in electronic structure theory: quadrature grids for least-squares tensor hypercontraction.

    PubMed

    Parrish, Robert M; Hohenstein, Edward G; Martínez, Todd J; Sherrill, C David

    2013-05-21

    We investigate the application of molecular quadratures obtained from either standard Becke-type grids or discrete variable representation (DVR) techniques to the recently developed least-squares tensor hypercontraction (LS-THC) representation of the electron repulsion integral (ERI) tensor. LS-THC uses least-squares fitting to renormalize a two-sided pseudospectral decomposition of the ERI, over a physical-space quadrature grid. While this procedure is technically applicable with any choice of grid, the best efficiency is obtained when the quadrature is tuned to accurately reproduce the overlap metric for quadratic products of the primary orbital basis. Properly selected Becke DFT grids can roughly attain this property. Additionally, we provide algorithms for adopting the DVR techniques of the dynamics community to produce two different classes of grids which approximately attain this property. The simplest algorithm is radial discrete variable representation (R-DVR), which diagonalizes the finite auxiliary-basis representation of the radial coordinate for each atom, and then combines Lebedev-Laikov spherical quadratures and Becke atomic partitioning to produce the full molecular quadrature grid. The other algorithm is full discrete variable representation (F-DVR), which uses approximate simultaneous diagonalization of the finite auxiliary-basis representation of the full position operator to produce non-direct-product quadrature grids. The qualitative features of all three grid classes are discussed, and then the relative efficiencies of these grids are compared in the context of LS-THC-DF-MP2. Coarse Becke grids are found to give essentially the same accuracy and efficiency as R-DVR grids; however, the latter are built from explicit knowledge of the basis set and may guide future development of atom-centered grids. F-DVR is found to provide reasonable accuracy with markedly fewer points than either Becke or R-DVR schemes.

  12. Role of translational entropy in spatially inhomogeneous, coarse-grained models

    NASA Astrophysics Data System (ADS)

    Langenberg, Marcel; Jackson, Nicholas E.; de Pablo, Juan J.; Müller, Marcus

    2018-03-01

    Coarse-grained models of polymer and biomolecular systems have enabled the computational study of cooperative phenomena, e.g., self-assembly, by lumping multiple atomistic degrees of freedom along the backbone of a polymer, lipid, or DNA molecule into one effective coarse-grained interaction center. Such a coarse-graining strategy leaves the number of molecules unaltered. In order to treat the surrounding solvent or counterions on the same coarse-grained level of description, one can also stochastically group several of those small molecules into an effective, coarse-grained solvent bead or "fluid element." Such a procedure reduces the number of molecules, and we discuss how to compensate the concomitant loss of translational entropy by density-dependent interactions in spatially inhomogeneous systems.

  13. Three-dimensional local grid refinement for block-centered finite-difference groundwater models using iteratively coupled shared nodes: A new method of interpolation and analysis of errors

    USGS Publications Warehouse

    Mehl, S.; Hill, M.C.

    2004-01-01

    This paper describes work that extends to three dimensions the two-dimensional local-grid refinement method for block-centered finite-difference groundwater models of Mehl and Hill [Development and evaluation of a local grid refinement method for block-centered finite-difference groundwater models using shared nodes. Adv Water Resour 2002;25(5):497-511]. In this approach, the (parent) finite-difference grid is discretized more finely within a (child) sub-region. The grid refinement method sequentially solves each grid and uses specified flux (parent) and specified head (child) boundary conditions to couple the grids. Iteration achieves convergence between heads and fluxes of both grids. Of most concern is how to interpolate heads onto the boundary of the child grid such that the physics of the parent-grid flow is retained in three dimensions. We develop a new two-step, "cage-shell" interpolation method based on the solution of the flow equation on the boundary of the child between nodes shared with the parent grid. Error analysis using a test case indicates that the shared-node local grid refinement method with cage-shell boundary head interpolation is accurate and robust, and the resulting code is used to investigate three-dimensional local grid refinement of stream-aquifer interactions. Results reveal that (1) the parent and child grids interact to shift the true head and flux solution to a different solution where the heads and fluxes of both grids are in equilibrium, (2) the locally refined model provided a solution for both heads and fluxes in the region of the refinement that was more accurate than a model without refinement only if iterations are performed so that both heads and fluxes are in equilibrium, and (3) the accuracy of the coupling is limited by the parent-grid size - A coarse parent grid limits correct representation of the hydraulics in the feedback from the child grid.

  14. Probabilistic Learning by Rodent Grid Cells

    PubMed Central

    Cheung, Allen

    2016-01-01

    Mounting evidence shows mammalian brains are probabilistic computers, but the specific cells involved remain elusive. Parallel research suggests that grid cells of the mammalian hippocampal formation are fundamental to spatial cognition but their diverse response properties still defy explanation. No plausible model exists which explains stable grids in darkness for twenty minutes or longer, despite being one of the first results ever published on grid cells. Similarly, no current explanation can tie together grid fragmentation and grid rescaling, which show very different forms of flexibility in grid responses when the environment is varied. Other properties such as attractor dynamics and grid anisotropy seem to be at odds with one another unless additional properties are assumed such as a varying velocity gain. Modelling efforts have largely ignored the breadth of response patterns, while also failing to account for the disastrous effects of sensory noise during spatial learning and recall, especially in darkness. Here, published electrophysiological evidence from a range of experiments are reinterpreted using a novel probabilistic learning model, which shows that grid cell responses are accurately predicted by a probabilistic learning process. Diverse response properties of probabilistic grid cells are statistically indistinguishable from rat grid cells across key manipulations. A simple coherent set of probabilistic computations explains stable grid fields in darkness, partial grid rescaling in resized arenas, low-dimensional attractor grid cell dynamics, and grid fragmentation in hairpin mazes. The same computations also reconcile oscillatory dynamics at the single cell level with attractor dynamics at the cell ensemble level. Additionally, a clear functional role for boundary cells is proposed for spatial learning. These findings provide a parsimonious and unified explanation of grid cell function, and implicate grid cells as an accessible neuronal population readout of a set of probabilistic spatial computations. PMID:27792723

  15. A Bayesian framework for adaptive selection, calibration, and validation of coarse-grained models of atomistic systems

    NASA Astrophysics Data System (ADS)

    Farrell, Kathryn; Oden, J. Tinsley; Faghihi, Danial

    2015-08-01

    A general adaptive modeling algorithm for selection and validation of coarse-grained models of atomistic systems is presented. A Bayesian framework is developed to address uncertainties in parameters, data, and model selection. Algorithms for computing output sensitivities to parameter variances, model evidence and posterior model plausibilities for given data, and for computing what are referred to as Occam Categories in reference to a rough measure of model simplicity, make up components of the overall approach. Computational results are provided for representative applications.

  16. Computer Aided Grid Interface: An Interactive CFD Pre-Processor

    NASA Technical Reports Server (NTRS)

    Soni, Bharat K.

    1997-01-01

    NASA maintains an applications oriented computational fluid dynamics (CFD) efforts complementary to and in support of the aerodynamic-propulsion design and test activities. This is especially true at NASA/MSFC where the goal is to advance and optimize present and future liquid-fueled rocket engines. Numerical grid generation plays a significant role in the fluid flow simulations utilizing CFD. An overall goal of the current project was to develop a geometry-grid generation tool that will help engineers, scientists and CFD practitioners to analyze design problems involving complex geometries in a timely fashion. This goal is accomplished by developing the CAGI: Computer Aided Grid Interface system. The CAGI system is developed by integrating CAD/CAM (Computer Aided Design/Computer Aided Manufacturing) geometric system output and/or Initial Graphics Exchange Specification (IGES) files (including all the NASA-IGES entities), geometry manipulations and generations associated with grid constructions, and robust grid generation methodologies. This report describes the development process of the CAGI system.

  17. Computer Aided Grid Interface: An Interactive CFD Pre-Processor

    NASA Technical Reports Server (NTRS)

    Soni, Bharat K.

    1996-01-01

    NASA maintains an applications oriented computational fluid dynamics (CFD) efforts complementary to and in support of the aerodynamic-propulsion design and test activities. This is especially true at NASA/MSFC where the goal is to advance and optimize present and future liquid-fueled rocket engines. Numerical grid generation plays a significant role in the fluid flow simulations utilizing CFD. An overall goal of the current project was to develop a geometry-grid generation tool that will help engineers, scientists and CFD practitioners to analyze design problems involving complex geometries in a timely fashion. This goal is accomplished by developing the Computer Aided Grid Interface system (CAGI). The CAGI system is developed by integrating CAD/CAM (Computer Aided Design/Computer Aided Manufacturing) geometric system output and / or Initial Graphics Exchange Specification (IGES) files (including all the NASA-IGES entities), geometry manipulations and generations associated with grid constructions, and robust grid generation methodologies. This report describes the development process of the CAGI system.

  18. Simulations of kinetic electrostatic electron nonlinear (KEEN) waves with variable velocity resolution grids and high-order time-splitting

    NASA Astrophysics Data System (ADS)

    Afeyan, Bedros; Casas, Fernando; Crouseilles, Nicolas; Dodhy, Adila; Faou, Erwan; Mehrenberger, Michel; Sonnendrücker, Eric

    2014-10-01

    KEEN waves are non-stationary, nonlinear, self-organized asymptotic states in Vlasov plasmas. They lie outside the precepts of linear theory or perturbative analysis, unlike electron plasma waves or ion acoustic waves. Steady state, nonlinear constructs such as BGK modes also do not apply. The range in velocity that is strongly perturbed by KEEN waves depends on the amplitude and duration of the ponderomotive force generated by two crossing laser beams, for instance, used to drive them. Smaller amplitude drives manage to devolve into multiple highly-localized vorticlets, after the drive is turned off, and may eventually succeed to coalesce into KEEN waves. Fragmentation once the drive stops, and potential eventual remerger, is a hallmark of the weakly driven cases. A fully formed (more strongly driven) KEEN wave has one dominant vortical core. But it also involves fine scale complex dynamics due to shedding and merging of smaller vortical structures with the main one. Shedding and merging of vorticlets are involved in either case, but at different rates and with different relative importance. The narrow velocity range in which one must maintain sufficient resolution in the weakly driven cases, challenges fixed velocity grid numerical schemes. What is needed is the capability of resolving locally in velocity while maintaining a coarse grid outside the highly perturbed region of phase space. We here report on a new Semi-Lagrangian Vlasov-Poisson solver based on conservative non-uniform cubic splines in velocity that tackles this problem head on. An additional feature of our approach is the use of a new high-order time-splitting scheme which allows much longer simulations per computational effort. This is needed for low amplitude runs. There, global coherent structures take a long time to set up, such as KEEN waves, if they do so at all. The new code's performance is compared to uniform grid simulations and the advantages are quantified. The birth pains associated with weakly driven KEEN waves are captured in these simulations. Canonical KEEN waves with ample drive are also treated using these advanced techniques. They will allow the efficient simulation of KEEN waves in multiple dimensions, which will be tackled next, as well as generalizations to Vlasov-Maxwell codes. These are essential for pursuing the impact of KEEN waves in high energy density plasmas and in inertial confinement fusion applications. More generally, one needs a fully-adaptive grid-in-phase-space method which could handle all small vorticlet dynamics whether pealing off or remerging. Such fully adaptive grids would have to be computed sparsely in order to be viable. This two-velocity grid method is a concrete and fruitful step in that direction. Contribution to the Topical Issue "Theory and Applications of the Vlasov Equation", edited by Francesco Pegoraro, Francesco Califano, Giovanni Manfredi and Philip J. Morrison.

  19. 2-dimensional implicit hydrodynamics on adaptive grids

    NASA Astrophysics Data System (ADS)

    Stökl, A.; Dorfi, E. A.

    2007-12-01

    We present a numerical scheme for two-dimensional hydrodynamics computations using a 2D adaptive grid together with an implicit discretization. The combination of these techniques has offered favorable numerical properties applicable to a variety of one-dimensional astrophysical problems which motivated us to generalize this approach for two-dimensional applications. Due to the different topological nature of 2D grids compared to 1D problems, grid adaptivity has to avoid severe grid distortions which necessitates additional smoothing parameters to be included into the formulation of a 2D adaptive grid. The concept of adaptivity is described in detail and several test computations demonstrate the effectivity of smoothing. The coupled solution of this grid equation together with the equations of hydrodynamics is illustrated by computation of a 2D shock tube problem.

  20. Grids, virtualization, and clouds at Fermilab

    DOE PAGES

    Timm, S.; Chadwick, K.; Garzoglio, G.; ...

    2014-06-11

    Fermilab supports a scientific program that includes experiments and scientists located across the globe. To better serve this community, in 2004, the (then) Computing Division undertook the strategy of placing all of the High Throughput Computing (HTC) resources in a Campus Grid known as FermiGrid, supported by common shared services. In 2007, the FermiGrid Services group deployed a service infrastructure that utilized Xen virtualization, LVS network routing and MySQL circular replication to deliver highly available services that offered significant performance, reliability and serviceability improvements. This deployment was further enhanced through the deployment of a distributed redundant network core architecture andmore » the physical distribution of the systems that host the virtual machines across multiple buildings on the Fermilab Campus. In 2010, building on the experience pioneered by FermiGrid in delivering production services in a virtual infrastructure, the Computing Sector commissioned the FermiCloud, General Physics Computing Facility and Virtual Services projects to serve as platforms for support of scientific computing (FermiCloud 6 GPCF) and core computing (Virtual Services). Lastly, this work will present the evolution of the Fermilab Campus Grid, Virtualization and Cloud Computing infrastructure together with plans for the future.« less

  1. Grids, virtualization, and clouds at Fermilab

    NASA Astrophysics Data System (ADS)

    Timm, S.; Chadwick, K.; Garzoglio, G.; Noh, S.

    2014-06-01

    Fermilab supports a scientific program that includes experiments and scientists located across the globe. To better serve this community, in 2004, the (then) Computing Division undertook the strategy of placing all of the High Throughput Computing (HTC) resources in a Campus Grid known as FermiGrid, supported by common shared services. In 2007, the FermiGrid Services group deployed a service infrastructure that utilized Xen virtualization, LVS network routing and MySQL circular replication to deliver highly available services that offered significant performance, reliability and serviceability improvements. This deployment was further enhanced through the deployment of a distributed redundant network core architecture and the physical distribution of the systems that host the virtual machines across multiple buildings on the Fermilab Campus. In 2010, building on the experience pioneered by FermiGrid in delivering production services in a virtual infrastructure, the Computing Sector commissioned the FermiCloud, General Physics Computing Facility and Virtual Services projects to serve as platforms for support of scientific computing (FermiCloud 6 GPCF) and core computing (Virtual Services). This work will present the evolution of the Fermilab Campus Grid, Virtualization and Cloud Computing infrastructure together with plans for the future.

  2. Aerodynamic design and optimization in one shot

    NASA Technical Reports Server (NTRS)

    Ta'asan, Shlomo; Kuruvila, G.; Salas, M. D.

    1992-01-01

    This paper describes an efficient numerical approach for the design and optimization of aerodynamic bodies. As in classical optimal control methods, the present approach introduces a cost function and a costate variable (Lagrange multiplier) in order to achieve a minimum. High efficiency is achieved by using a multigrid technique to solve for all the unknowns simultaneously, but restricting work on a design variable only to grids on which their changes produce nonsmooth perturbations. Thus, the effort required to evaluate design variables that have nonlocal effects on the solution is confined to the coarse grids. However, if a variable has a nonsmooth local effect on the solution in some neighborhood, it is relaxed in that neighborhood on finer grids. The cost of solving the optimal control problem is shown to be approximately two to three times the cost of the equivalent analysis problem. Examples are presented to illustrate the application of the method to aerodynamic design and constraint optimization.

  3. Application of advanced grid generation techniques for flow field computations about complex configurations

    NASA Technical Reports Server (NTRS)

    Kathong, Monchai; Tiwari, Surendra N.

    1988-01-01

    In the computation of flowfields about complex configurations, it is very difficult to construct a boundary-fitted coordinate system. An alternative approach is to use several grids at once, each of which is generated independently. This procedure is called the multiple grids or zonal grids approach; its applications are investigated. The method conservative providing conservation of fluxes at grid interfaces. The Euler equations are solved numerically on such grids for various configurations. The numerical scheme used is the finite-volume technique with a three-stage Runge-Kutta time integration. The code is vectorized and programmed to run on the CDC VPS-32 computer. Steady state solutions of the Euler equations are presented and discussed. The solutions include: low speed flow over a sphere, high speed flow over a slender body, supersonic flow through a duct, and supersonic internal/external flow interaction for an aircraft configuration at various angles of attack. The results demonstrate that the multiple grids approach along with the conservative interfacing is capable of computing the flows about the complex configurations where the use of a single grid system is not possible.

  4. The space-time solution element method: A new numerical approach for the Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Scott, James R.; Chang, Sin-Chung

    1995-01-01

    This paper is one of a series of papers describing the development of a new numerical method for the Navier-Stokes equations. Unlike conventional numerical methods, the current method concentrates on the discrete simulation of both the integral and differential forms of the Navier-Stokes equations. Conservation of mass, momentum, and energy in space-time is explicitly provided for through a rigorous enforcement of both the integral and differential forms of the governing conservation laws. Using local polynomial expansions to represent the discrete primitive variables on each cell, fluxes at cell interfaces are evaluated and balanced using exact functional expressions. No interpolation or flux limiters are required. Because of the generality of the current method, it applies equally to the steady and unsteady Navier-Stokes equations. In this paper, we generalize and extend the authors' 2-D, steady state implicit scheme. A general closure methodology is presented so that all terms up through a given order in the local expansions may be retained. The scheme is also extended to nonorthogonal Cartesian grids. Numerous flow fields are computed and results are compared with known solutions. The high accuracy of the scheme is demonstrated through its ability to accurately resolve developing boundary layers on coarse grids. Finally, we discuss applications of the current method to the unsteady Navier-Stokes equations.

  5. A hybrid finite-difference and analytic element groundwater model

    USGS Publications Warehouse

    Haitjema, Henk M.; Feinstein, Daniel T.; Hunt, Randall J.; Gusyev, Maksym

    2010-01-01

    Regional finite-difference models tend to have large cell sizes, often on the order of 1–2 km on a side. Although the regional flow patterns in deeper formations may be adequately represented by such a model, the intricate surface water and groundwater interactions in the shallower layers are not. Several stream reaches and nearby wells may occur in a single cell, precluding any meaningful modeling of the surface water and groundwater interactions between the individual features. We propose to replace the upper MODFLOW layer or layers, in which the surface water and groundwater interactions occur, by an analytic element model (GFLOW) that does not employ a model grid; instead, it represents wells and surface waters directly by the use of point-sinks and line-sinks. For many practical cases it suffices to provide GFLOW with the vertical leakage rates calculated in the original coarse MODFLOW model in order to obtain a good representation of surface water and groundwater interactions. However, when the combined transmissivities in the deeper (MODFLOW) layers dominate, the accuracy of the GFLOW solution diminishes. For those cases, an iterative coupling procedure, whereby the leakages between the GFLOW and MODFLOW model are updated, appreciably improves the overall solution, albeit at considerable computational cost. The coupled GFLOW–MODFLOW model is applicable to relatively large areas, in many cases to the entire model domain, thus forming an attractive alternative to local grid refinement or inset models.

  6. Effect of boundary representation on viscous, separated flows in a discontinuous-Galerkin Navier-Stokes solver

    NASA Astrophysics Data System (ADS)

    Nelson, Daniel A.; Jacobs, Gustaaf B.; Kopriva, David A.

    2016-08-01

    The effect of curved-boundary representation on the physics of the separated flow over a NACA 65(1)-412 airfoil is thoroughly investigated. A method is presented to approximate curved boundaries with a high-order discontinuous-Galerkin spectral element method for the solution of the Navier-Stokes equations. Multiblock quadrilateral element meshes are constructed with the grid generation software GridPro. The boundary of a NACA 65(1)-412 airfoil, defined by a cubic natural spline, is piecewise-approximated by isoparametric polynomial interpolants that represent the edges of boundary-fitted elements. Direct numerical simulation of the airfoil is performed on a coarse mesh and fine mesh with polynomial orders ranging from four to twelve. The accuracy of the curve fitting is investigated by comparing the flows computed on curved-sided meshes with those given by straight-sided meshes. Straight-sided meshes yield irregular wakes, whereas curved-sided meshes produce a regular Karman street wake. Straight-sided meshes also produce lower lift and higher viscous drag as compared with curved-sided meshes. When the mesh is refined by reducing the sizes of the elements, the lift decrease and viscous drag increase are less pronounced. The differences in the aerodynamic performance between the straight-sided meshes and the curved-sided meshes are concluded to be the result of artificial surface roughness introduced by the piecewise-linear boundary approximation provided by the straight-sided meshes.

  7. Near real-time traffic routing

    NASA Technical Reports Server (NTRS)

    Yang, Chaowei (Inventor); Xie, Jibo (Inventor); Zhou, Bin (Inventor); Cao, Ying (Inventor)

    2012-01-01

    A near real-time physical transportation network routing system comprising: a traffic simulation computing grid and a dynamic traffic routing service computing grid. The traffic simulator produces traffic network travel time predictions for a physical transportation network using a traffic simulation model and common input data. The physical transportation network is divided into a multiple sections. Each section has a primary zone and a buffer zone. The traffic simulation computing grid includes multiple of traffic simulation computing nodes. The common input data includes static network characteristics, an origin-destination data table, dynamic traffic information data and historical traffic data. The dynamic traffic routing service computing grid includes multiple dynamic traffic routing computing nodes and generates traffic route(s) using the traffic network travel time predictions.

  8. A-Posteriori Error Estimates for Mixed Finite Element and Finite Volume Methods for Problems Coupled Through a Boundary with Non-Matching Grids

    DTIC Science & Technology

    2013-08-01

    both MFE and GFV, are often similar in size. As a gross measure of the effect of geometric projection and of the use of quadrature, we also report the...interest MFE ∑(e,ψ) or GFV ∑(e,ψ). Tables 1 and 2 show this using coarse and fine forward solutions. Table 1. The forward problem with solution (4.1) is run...adjoint data components ψu and ψp are constant everywhere and ψξ = 0. adj. grid MFE ∑(e,ψ) ∑MFEi ratio GFV ∑(e,ψ) ∑GFV i ratio 20x20 : 32x32 1.96E−3

  9. Tropical Cyclone Intensity in Global Models

    NASA Astrophysics Data System (ADS)

    Davis, C. A.; Wang, W.; Ahijevych, D.

    2017-12-01

    In recent years, global prediction and climate models have begun to depict intense tropical cyclones, even up to Category 5 on the Saffir-Simpson scale. In light of the limitation of horizontal resolution in such models, we examine the how well these models treat tropical cyclone intensity, measured from several different perspectives. The models evaluated include the operational Global Forecast System, with a grid spacing of about 13 km, and the Model for Prediction Across Scales, with a variable resolution of 15 km over the Northwest Pacific transitioning to 60 km elsewhere. We focus on the Northwest Pacific for the period July-October, 2016. Results indicate that discrimination of tropical cyclone intensity is reasonably good up to roughly category 3 storms. The models are able to capture storms of category 4 intensity, but still exhibit a negative intensity bias of 20-30 knots at lead times beyond 5 days. This is partly indicative of the large number of super-typhoons that occurred in 2016. The question arises of how well global models should represent intensity, given that it is unreasonable for them to depict the inner core of many intense tropical cyclones with a grid increment of 13-15 km. We compute an expected "best-case" prediction of intensity based on filtering the observed wind profiles of Atlantic tropical cyclones according to different hypothetical model resolutions. The Atlantic is used because of the significant number of reconnaissance missions and more reliable estimate of wind radii. Results indicate that, even under the most optimistic assumptions, models with horizontal grid spacing of 1/4 degree or coarser should not produce a realistic number of category 4 and 5 storms unless there are errors in spatial attributes of the wind field. Furthermore, models with a grid spacing of 1/4 degree or greater are unlikely to systematically discriminate hurricanes with differing intensity. Finally, for simple wind profiles, it is shown how an accurate representation of maximum wind on a coarse grid will lead to an overestimate of horizontally integrated kinetic energy by a factor of two or more.

  10. Parallel Proximity Detection for Computer Simulation

    NASA Technical Reports Server (NTRS)

    Steinman, Jeffrey S. (Inventor); Wieland, Frederick P. (Inventor)

    1997-01-01

    The present invention discloses a system for performing proximity detection in computer simulations on parallel processing architectures utilizing a distribution list which includes movers and sensor coverages which check in and out of grids. Each mover maintains a list of sensors that detect the mover's motion as the mover and sensor coverages check in and out of the grids. Fuzzy grids are includes by fuzzy resolution parameters to allow movers and sensor coverages to check in and out of grids without computing exact grid crossings. The movers check in and out of grids while moving sensors periodically inform the grids of their coverage. In addition, a lookahead function is also included for providing a generalized capability without making any limiting assumptions about the particular application to which it is applied. The lookahead function is initiated so that risk-free synchronization strategies never roll back grid events. The lookahead function adds fixed delays as events are scheduled for objects on other nodes.

  11. Parallel Proximity Detection for Computer Simulations

    NASA Technical Reports Server (NTRS)

    Steinman, Jeffrey S. (Inventor); Wieland, Frederick P. (Inventor)

    1998-01-01

    The present invention discloses a system for performing proximity detection in computer simulations on parallel processing architectures utilizing a distribution list which includes movers and sensor coverages which check in and out of grids. Each mover maintains a list of sensors that detect the mover's motion as the mover and sensor coverages check in and out of the grids. Fuzzy grids are included by fuzzy resolution parameters to allow movers and sensor coverages to check in and out of grids without computing exact grid crossings. The movers check in and out of grids while moving sensors periodically inform the grids of their coverage. In addition, a lookahead function is also included for providing a generalized capability without making any limiting assumptions about the particular application to which it is applied. The lookahead function is initiated so that risk-free synchronization strategies never roll back grid events. The lookahead function adds fixed delays as events are scheduled for objects on other nodes.

  12. A variational principle for compressible fluid mechanics: Discussion of the multi-dimensional theory

    NASA Technical Reports Server (NTRS)

    Prozan, R. J.

    1982-01-01

    The variational principle for compressible fluid mechanics previously introduced is extended to two dimensional flow. The analysis is stable, exactly conservative, adaptable to coarse or fine grids, and very fast. Solutions for two dimensional problems are included. The excellent behavior and results lend further credence to the variational concept and its applicability to the numerical analysis of complex flow fields.

  13. GRID2D/3D: A computer program for generating grid systems in complex-shaped two- and three-dimensional spatial domains. Part 2: User's manual and program listing

    NASA Technical Reports Server (NTRS)

    Bailey, R. T.; Shih, T. I.-P.; Nguyen, H. L.; Roelke, R. J.

    1990-01-01

    An efficient computer program, called GRID2D/3D, was developed to generate single and composite grid systems within geometrically complex two- and three-dimensional (2- and 3-D) spatial domains that can deform with time. GRID2D/3D generates single grid systems by using algebraic grid generation methods based on transfinite interpolation in which the distribution of grid points within the spatial domain is controlled by stretching functions. All single grid systems generated by GRID2D/3D can have grid lines that are continuous and differentiable everywhere up to the second-order. Also, grid lines can intersect boundaries of the spatial domain orthogonally. GRID2D/3D generates composite grid systems by patching together two or more single grid systems. The patching can be discontinuous or continuous. For continuous composite grid systems, the grid lines are continuous and differentiable everywhere up to the second-order except at interfaces where different single grid systems meet. At interfaces where different single grid systems meet, the grid lines are only differentiable up to the first-order. For 2-D spatial domains, the boundary curves are described by using either cubic or tension spline interpolation. For 3-D spatial domains, the boundary surfaces are described by using either linear Coon's interpolation, bi-hyperbolic spline interpolation, or a new technique referred to as 3-D bi-directional Hermite interpolation. Since grid systems generated by algebraic methods can have grid lines that overlap one another, GRID2D/3D contains a graphics package for evaluating the grid systems generated. With the graphics package, the user can generate grid systems in an interactive manner with the grid generation part of GRID2D/3D. GRID2D/3D is written in FORTRAN 77 and can be run on any IBM PC, XT, or AT compatible computer. In order to use GRID2D/3D on workstations or mainframe computers, some minor modifications must be made in the graphics part of the program; no modifications are needed in the grid generation part of the program. The theory and method used in GRID2D/3D is described.

  14. GRID2D/3D: A computer program for generating grid systems in complex-shaped two- and three-dimensional spatial domains. Part 1: Theory and method

    NASA Technical Reports Server (NTRS)

    Shih, T. I.-P.; Bailey, R. T.; Nguyen, H. L.; Roelke, R. J.

    1990-01-01

    An efficient computer program, called GRID2D/3D was developed to generate single and composite grid systems within geometrically complex two- and three-dimensional (2- and 3-D) spatial domains that can deform with time. GRID2D/3D generates single grid systems by using algebraic grid generation methods based on transfinite interpolation in which the distribution of grid points within the spatial domain is controlled by stretching functions. All single grid systems generated by GRID2D/3D can have grid lines that are continuous and differentiable everywhere up to the second-order. Also, grid lines can intersect boundaries of the spatial domain orthogonally. GRID2D/3D generates composite grid systems by patching together two or more single grid systems. The patching can be discontinuous or continuous. For continuous composite grid systems, the grid lines are continuous and differentiable everywhere up to the second-order except at interfaces where different single grid systems meet. At interfaces where different single grid systems meet, the grid lines are only differentiable up to the first-order. For 2-D spatial domains, the boundary curves are described by using either cubic or tension spline interpolation. For 3-D spatial domains, the boundary surfaces are described by using either linear Coon's interpolation, bi-hyperbolic spline interpolation, or a new technique referred to as 3-D bi-directional Hermite interpolation. Since grid systems generated by algebraic methods can have grid lines that overlap one another, GRID2D/3D contains a graphics package for evaluating the grid systems generated. With the graphics package, the user can generate grid systems in an interactive manner with the grid generation part of GRID2D/3D. GRID2D/3D is written in FORTRAN 77 and can be run on any IBM PC, XT, or AT compatible computer. In order to use GRID2D/3D on workstations or mainframe computers, some minor modifications must be made in the graphics part of the program; no modifications are needed in the grid generation part of the program. This technical memorandum describes the theory and method used in GRID2D/3D.

  15. Efficient grid-based techniques for density functional theory

    NASA Astrophysics Data System (ADS)

    Rodriguez-Hernandez, Juan Ignacio

    Understanding the chemical and physical properties of molecules and materials at a fundamental level often requires quantum-mechanical models for these substance's electronic structure. This type of many body quantum mechanics calculation is computationally demanding, hindering its application to substances with more than a few hundreds atoms. The supreme goal of many researches in quantum chemistry---and the topic of this dissertation---is to develop more efficient computational algorithms for electronic structure calculations. In particular, this dissertation develops two new numerical integration techniques for computing molecular and atomic properties within conventional Kohn-Sham-Density Functional Theory (KS-DFT) of molecular electronic structure. The first of these grid-based techniques is based on the transformed sparse grid construction. In this construction, a sparse grid is generated in the unit cube and then mapped to real space according to the pro-molecular density using the conditional distribution transformation. The transformed sparse grid was implemented in program deMon2k, where it is used as the numerical integrator for the exchange-correlation energy and potential in the KS-DFT procedure. We tested our grid by computing ground state energies, equilibrium geometries, and atomization energies. The accuracy on these test calculations shows that our grid is more efficient than some previous integration methods: our grids use fewer points to obtain the same accuracy. The transformed sparse grids were also tested for integrating, interpolating and differentiating in different dimensions (n = 1,2,3,6). The second technique is a grid-based method for computing atomic properties within QTAIM. It was also implemented in deMon2k. The performance of the method was tested by computing QTAIM atomic energies, charges, dipole moments, and quadrupole moments. For medium accuracy, our method is the fastest one we know of.

  16. Analysis of Ligand-Receptor Association and Intermediate Transfer Rates in Multienzyme Nanostructures with All-Atom Brownian Dynamics Simulations.

    PubMed

    Roberts, Christopher C; Chang, Chia-En A

    2016-08-25

    We present the second-generation GeomBD Brownian dynamics software for determining interenzyme intermediate transfer rates and substrate association rates in biomolecular complexes. Substrate and intermediate association rates for a series of enzymes or biomolecules can be compared between the freely diffusing disorganized configuration and various colocalized or complexed arrangements for kinetic investigation of enhanced intermediate transfer. In addition, enzyme engineering techniques, such as synthetic protein conjugation, can be computationally modeled and analyzed to better understand changes in substrate association relative to native enzymes. Tools are provided to determine nonspecific ligand-receptor association residence times, and to visualize common sites of nonspecific association of substrates on receptor surfaces. To demonstrate features of the software, interenzyme intermediate substrate transfer rate constants are calculated and compared for all-atom models of DNA origami scaffold-bound bienzyme systems of glucose oxidase and horseradish peroxidase. Also, a DNA conjugated horseradish peroxidase enzyme was analyzed for its propensity to increase substrate association rates and substrate local residence times relative to the unmodified enzyme. We also demonstrate the rapid determination and visualization of common sites of nonspecific ligand-receptor association by using HIV-1 protease and an inhibitor, XK263. GeomBD2 accelerates simulations by precomputing van der Waals potential energy grids and electrostatic potential grid maps, and has a flexible and extensible support for all-atom and coarse-grained force fields. Simulation software is written in C++ and utilizes modern parallelization techniques for potential grid preparation and Brownian dynamics simulation processes. Analysis scripts, written in the Python scripting language, are provided for quantitative simulation analysis. GeomBD2 is applicable to the fields of biophysics, bioengineering, and enzymology in both predictive and explanatory roles.

  17. Atmospheric Rivers in VR-CESM: Historical Comparison and Future Projections

    NASA Astrophysics Data System (ADS)

    McClenny, E. E.; Ullrich, P. A.

    2016-12-01

    Atmospheric rivers (ARs) are responsible for most of the horizontal vapor transport from the tropics, and bring upwards of half the annual precipitation to midlatitude west coasts. The difference between a drought year and a wet year can come down to 1-2 ARs. Such few events transform an otherwise arid region into one which supports remarkable biodiversity, productive agriculture, and booming human populations. It follows that such a sensitive hydroclimate feature would demand priority in evaluating end-of-century climate runs, and indeed, the AR subfield has grown significantly over the last decade. However, results tend to vary wildly from study to study, raising questions about how to best approach ARs in models. The disparity may result from any number of issues, including the ability for a model to properly resolve a precipitating AR, to the formulation and application of an AR detection algorithm. ARs pose a unique problem in global climate models (GCMs) computationally and physically, because the GCM horizontal grid must be fine enough to resolve coastal mountain range topography and force orographic precipitation. Thus far, most end-of-century projections on ARs have been performed on models whose grids are too coarse to resolve mountain ranges, causing authors to draw conclusions on AR intensity from water vapor content or transport alone. The use of localized grid refinement in the Variable Resolution version of NCAR's Community Earth System Model (VR-CESM) has succeeded in resolving AR landfall. This study applies an integrated water vapor AR detection algorithm to historical and future projections from VR-CESM, with historical ARs validated against NASA's Modern Era Retrospective-Analysis for Research and Applications. Results on end-of-century precipitating AR frequency, intensity, and landfall location will be discussed.

  18. The Impact of Spatial and Temporal Resolutions in Tropical Summer Rainfall Distribution: Preliminary Results

    NASA Astrophysics Data System (ADS)

    Liu, Q.; Chiu, L. S.; Hao, X.

    2017-10-01

    The abundance or lack of rainfall affects peoples' life and activities. As a major component of the global hydrological cycle (Chokngamwong & Chiu, 2007), accurate representations at various spatial and temporal scales are crucial for a lot of decision making processes. Climate models show a warmer and wetter climate due to increases of Greenhouse Gases (GHG). However, the models' resolutions are often too coarse to be directly applicable to local scales that are useful for mitigation purposes. Hence disaggregation (downscaling) procedures are needed to transfer the coarse scale products to higher spatial and temporal resolutions. The aim of this paper is to examine the changes in the statistical parameters of rainfall at various spatial and temporal resolutions. The TRMM Multi-satellite Precipitation Analysis (TMPA) at 0.25 degree, 3 hourly grid rainfall data for a summer is aggregated to 0.5,1.0, 2.0 and 2.5 degree and at 6, 12, 24 hourly, pentad (five days) and monthly resolutions. The probability distributions (PDF) and cumulative distribution functions(CDF) of rain amount at these resolutions are computed and modeled as a mixed distribution. Parameters of the PDFs are compared using the Kolmogrov-Smironov (KS) test, both for the mixed and the marginal distribution. These distributions are shown to be distinct. The marginal distributions are fitted with Lognormal and Gamma distributions and it is found that the Gamma distributions fit much better than the Lognormal.

  19. Parallelized implicit propagators for the finite-difference Schrödinger equation

    NASA Astrophysics Data System (ADS)

    Parker, Jonathan; Taylor, K. T.

    1995-08-01

    We describe the application of block Gauss-Seidel and block Jacobi iterative methods to the design of implicit propagators for finite-difference models of the time-dependent Schrödinger equation. The block-wise iterative methods discussed here are mixed direct-iterative methods for solving simultaneous equations, in the sense that direct methods (e.g. LU decomposition) are used to invert certain block sub-matrices, and iterative methods are used to complete the solution. We describe parallel variants of the basic algorithm that are well suited to the medium- to coarse-grained parallelism of work-station clusters, and MIMD supercomputers, and we show that under a wide range of conditions, fine-grained parallelism of the computation can be achieved. Numerical tests are conducted on a typical one-electron atom Hamiltonian. The methods converge robustly to machine precision (15 significant figures), in some cases in as few as 6 or 7 iterations. The rate of convergence is nearly independent of the finite-difference grid-point separations.

  20. A Cell-Centered Multigrid Algorithm for All Grid Sizes

    NASA Technical Reports Server (NTRS)

    Gjesdal, Thor

    1996-01-01

    Multigrid methods are optimal; that is, their rate of convergence is independent of the number of grid points, because they use a nested sequence of coarse grids to represent different scales of the solution. This nesting does, however, usually lead to certain restrictions of the permissible size of the discretised problem. In cases where the modeler is free to specify the whole problem, such constraints are of little importance because they can be taken into consideration from the outset. We consider the situation in which there are other competing constraints on the resolution. These restrictions may stem from the physical problem (e.g., if the discretised operator contains experimental data measured on a fixed grid) or from the need to avoid limitations set by the hardware. In this paper we discuss a modification to the cell-centered multigrid algorithm, so that it can be used br problems with any resolution. We discuss in particular a coarsening strategy and choice of intergrid transfer operators that can handle grids with both an even or odd number of cells. The method is described and applied to linear equations obtained by discretization of two- and three-dimensional second-order elliptic PDEs.

  1. A Debugger for Computational Grid Applications

    NASA Technical Reports Server (NTRS)

    Hood, Robert; Jost, Gabriele

    2000-01-01

    The p2d2 project at NAS has built a debugger for applications running on heterogeneous computational grids. It employs a client-server architecture to simplify the implementation. Its user interface has been designed to provide process control and state examination functions on a computation containing a large number of processes. It can find processes participating in distributed computations even when those processes were not created under debugger control. These process identification techniques work both on conventional distributed executions as well as those on a computational grid.

  2. Rapid Airplane Parametric Input Design(RAPID)

    NASA Technical Reports Server (NTRS)

    Smith, Robert E.; Bloor, Malcolm I. G.; Wilson, Michael J.; Thomas, Almuttil M.

    2004-01-01

    An efficient methodology is presented for defining a class of airplane configurations. Inclusive in this definition are surface grids, volume grids, and grid sensitivity. A small set of design parameters and grid control parameters govern the process. The general airplane configuration has wing, fuselage, vertical tail, horizontal tail, and canard components. The wing, tail, and canard components are manifested by solving a fourth-order partial differential equation subject to Dirichlet and Neumann boundary conditions. The design variables are incorporated into the boundary conditions, and the solution is expressed as a Fourier series. The fuselage has circular cross section, and the radius is an algebraic function of four design parameters and an independent computational variable. Volume grids are obtained through an application of the Control Point Form method. Grid sensitivity is obtained by applying the automatic differentiation precompiler ADIFOR to software for the grid generation. The computed surface grids, volume grids, and sensitivity derivatives are suitable for a wide range of Computational Fluid Dynamics simulation and configuration optimizations.

  3. Hybrid finite difference/finite element immersed boundary method.

    PubMed

    E Griffith, Boyce; Luo, Xiaoyu

    2017-12-01

    The immersed boundary method is an approach to fluid-structure interaction that uses a Lagrangian description of the structural deformations, stresses, and forces along with an Eulerian description of the momentum, viscosity, and incompressibility of the fluid-structure system. The original immersed boundary methods described immersed elastic structures using systems of flexible fibers, and even now, most immersed boundary methods still require Lagrangian meshes that are finer than the Eulerian grid. This work introduces a coupling scheme for the immersed boundary method to link the Lagrangian and Eulerian variables that facilitates independent spatial discretizations for the structure and background grid. This approach uses a finite element discretization of the structure while retaining a finite difference scheme for the Eulerian variables. We apply this method to benchmark problems involving elastic, rigid, and actively contracting structures, including an idealized model of the left ventricle of the heart. Our tests include cases in which, for a fixed Eulerian grid spacing, coarser Lagrangian structural meshes yield discretization errors that are as much as several orders of magnitude smaller than errors obtained using finer structural meshes. The Lagrangian-Eulerian coupling approach developed in this work enables the effective use of these coarse structural meshes with the immersed boundary method. This work also contrasts two different weak forms of the equations, one of which is demonstrated to be more effective for the coarse structural discretizations facilitated by our coupling approach. © 2017 The Authors International  Journal  for  Numerical  Methods  in  Biomedical  Engineering Published by John Wiley & Sons Ltd.

  4. A Roadmap for caGrid, an Enterprise Grid Architecture for Biomedical Research

    PubMed Central

    Saltz, Joel; Hastings, Shannon; Langella, Stephen; Oster, Scott; Kurc, Tahsin; Payne, Philip; Ferreira, Renato; Plale, Beth; Goble, Carole; Ervin, David; Sharma, Ashish; Pan, Tony; Permar, Justin; Brezany, Peter; Siebenlist, Frank; Madduri, Ravi; Foster, Ian; Shanbhag, Krishnakant; Mead, Charlie; Hong, Neil Chue

    2012-01-01

    caGrid is a middleware system which combines the Grid computing, the service oriented architecture, and the model driven architecture paradigms to support development of interoperable data and analytical resources and federation of such resources in a Grid environment. The functionality provided by caGrid is an essential and integral component of the cancer Biomedical Informatics Grid (caBIG™) program. This program is established by the National Cancer Institute as a nationwide effort to develop enabling informatics technologies for collaborative, multi-institutional biomedical research with the overarching goal of accelerating translational cancer research. Although the main application domain for caGrid is cancer research, the infrastructure provides a generic framework that can be employed in other biomedical research and healthcare domains. The development of caGrid is an ongoing effort, adding new functionality and improvements based on feedback and use cases from the community. This paper provides an overview of potential future architecture and tooling directions and areas of improvement for caGrid and caGrid-like systems. This summary is based on discussions at a roadmap workshop held in February with participants from biomedical research, Grid computing, and high performance computing communities. PMID:18560123

  5. A roadmap for caGrid, an enterprise Grid architecture for biomedical research.

    PubMed

    Saltz, Joel; Hastings, Shannon; Langella, Stephen; Oster, Scott; Kurc, Tahsin; Payne, Philip; Ferreira, Renato; Plale, Beth; Goble, Carole; Ervin, David; Sharma, Ashish; Pan, Tony; Permar, Justin; Brezany, Peter; Siebenlist, Frank; Madduri, Ravi; Foster, Ian; Shanbhag, Krishnakant; Mead, Charlie; Chue Hong, Neil

    2008-01-01

    caGrid is a middleware system which combines the Grid computing, the service oriented architecture, and the model driven architecture paradigms to support development of interoperable data and analytical resources and federation of such resources in a Grid environment. The functionality provided by caGrid is an essential and integral component of the cancer Biomedical Informatics Grid (caBIG) program. This program is established by the National Cancer Institute as a nationwide effort to develop enabling informatics technologies for collaborative, multi-institutional biomedical research with the overarching goal of accelerating translational cancer research. Although the main application domain for caGrid is cancer research, the infrastructure provides a generic framework that can be employed in other biomedical research and healthcare domains. The development of caGrid is an ongoing effort, adding new functionality and improvements based on feedback and use cases from the community. This paper provides an overview of potential future architecture and tooling directions and areas of improvement for caGrid and caGrid-like systems. This summary is based on discussions at a roadmap workshop held in February with participants from biomedical research, Grid computing, and high performance computing communities.

  6. Multidisciplinary Simulation Acceleration using Multiple Shared-Memory Graphical Processing Units

    NASA Astrophysics Data System (ADS)

    Kemal, Jonathan Yashar

    For purposes of optimizing and analyzing turbomachinery and other designs, the unsteady Favre-averaged flow-field differential equations for an ideal compressible gas can be solved in conjunction with the heat conduction equation. We solve all equations using the finite-volume multiple-grid numerical technique, with the dual time-step scheme used for unsteady simulations. Our numerical solver code targets CUDA-capable Graphical Processing Units (GPUs) produced by NVIDIA. Making use of MPI, our solver can run across networked compute notes, where each MPI process can use either a GPU or a Central Processing Unit (CPU) core for primary solver calculations. We use NVIDIA Tesla C2050/C2070 GPUs based on the Fermi architecture, and compare our resulting performance against Intel Zeon X5690 CPUs. Solver routines converted to CUDA typically run about 10 times faster on a GPU for sufficiently dense computational grids. We used a conjugate cylinder computational grid and ran a turbulent steady flow simulation using 4 increasingly dense computational grids. Our densest computational grid is divided into 13 blocks each containing 1033x1033 grid points, for a total of 13.87 million grid points or 1.07 million grid points per domain block. To obtain overall speedups, we compare the execution time of the solver's iteration loop, including all resource intensive GPU-related memory copies. Comparing the performance of 8 GPUs to that of 8 CPUs, we obtain an overall speedup of about 6.0 when using our densest computational grid. This amounts to an 8-GPU simulation running about 39.5 times faster than running than a single-CPU simulation.

  7. Grid Generation for Multidisciplinary Design and Optimization of an Aerospace Vehicle: Issues and Challenges

    NASA Technical Reports Server (NTRS)

    Samareh, Jamshid A.

    2000-01-01

    The purpose of this paper is to discuss grid generation issues and to challenge the grid generation community to develop tools suitable for automated multidisciplinary analysis and design optimization of aerospace vehicles. Special attention is given to the grid generation issues of computational fluid dynamics and computational structural mechanics disciplines.

  8. PNNL Data-Intensive Computing for a Smarter Energy Grid

    ScienceCinema

    Carol Imhoff; Zhenyu (Henry) Huang; Daniel Chavarria

    2017-12-09

    The Middleware for Data-Intensive Computing (MeDICi) Integration Framework, an integrated platform to solve data analysis and processing needs, supports PNNL research on the U.S. electric power grid. MeDICi is enabling development of visualizations of grid operations and vulnerabilities, with goal of near real-time analysis to aid operators in preventing and mitigating grid failures.

  9. Task Scheduling in Desktop Grids: Open Problems

    NASA Astrophysics Data System (ADS)

    Chernov, Ilya; Nikitina, Natalia; Ivashko, Evgeny

    2017-12-01

    We survey the areas of Desktop Grid task scheduling that seem to be insufficiently studied so far and are promising for efficiency, reliability, and quality of Desktop Grid computing. These topics include optimal task grouping, "needle in a haystack" paradigm, game-theoretical scheduling, domain-imposed approaches, special optimization of the final stage of the batch computation, and Enterprise Desktop Grids.

  10. Sensitivity to grid resolution in the ability of a chemical transport model to simulate observed oxidant chemistry under high-isoprene conditions

    NASA Astrophysics Data System (ADS)

    Yu, Karen; Jacob, Daniel J.; Fisher, Jenny A.; Kim, Patrick S.; Marais, Eloise A.; Miller, Christopher C.; Travis, Katherine R.; Zhu, Lei; Yantosca, Robert M.; Sulprizio, Melissa P.; Cohen, Ron C.; Dibb, Jack E.; Fried, Alan; Mikoviny, Tomas; Ryerson, Thomas B.; Wennberg, Paul O.; Wisthaler, Armin

    2016-04-01

    Formation of ozone and organic aerosol in continental atmospheres depends on whether isoprene emitted by vegetation is oxidized by the high-NOx pathway (where peroxy radicals react with NO) or by low-NOx pathways (where peroxy radicals react by alternate channels, mostly with HO2). We used mixed layer observations from the SEAC4RS aircraft campaign over the Southeast US to test the ability of the GEOS-Chem chemical transport model at different grid resolutions (0.25° × 0.3125°, 2° × 2.5°, 4° × 5°) to simulate this chemistry under high-isoprene, variable-NOx conditions. Observations of isoprene and NOx over the Southeast US show a negative correlation, reflecting the spatial segregation of emissions; this negative correlation is captured in the model at 0.25° × 0.3125° resolution but not at coarser resolutions. As a result, less isoprene oxidation takes place by the high-NOx pathway in the model at 0.25° × 0.3125° resolution (54 %) than at coarser resolution (59 %). The cumulative probability distribution functions (CDFs) of NOx, isoprene, and ozone concentrations show little difference across model resolutions and good agreement with observations, while formaldehyde is overestimated at coarse resolution because excessive isoprene oxidation takes place by the high-NOx pathway with high formaldehyde yield. The good agreement of simulated and observed concentration variances implies that smaller-scale non-linearities (urban and power plant plumes) are not important on the regional scale. Correlations of simulated vs. observed concentrations do not improve with grid resolution because finer modes of variability are intrinsically more difficult to capture. Higher model resolution leads to decreased conversion of NOx to organic nitrates and increased conversion to nitric acid, with total reactive nitrogen oxides (NOy) changing little across model resolutions. Model concentrations in the lower free troposphere are also insensitive to grid resolution. The overall low sensitivity of modeled concentrations to grid resolution implies that coarse resolution is adequate when modeling continental boundary layer chemistry for global applications.

  11. Benchmarking Memory Performance with the Data Cube Operator

    NASA Technical Reports Server (NTRS)

    Frumkin, Michael A.; Shabanov, Leonid V.

    2004-01-01

    Data movement across a computer memory hierarchy and across computational grids is known to be a limiting factor for applications processing large data sets. We use the Data Cube Operator on an Arithmetic Data Set, called ADC, to benchmark capabilities of computers and of computational grids to handle large distributed data sets. We present a prototype implementation of a parallel algorithm for computation of the operatol: The algorithm follows a known approach for computing views from the smallest parent. The ADC stresses all levels of grid memory and storage by producing some of 2d views of an Arithmetic Data Set of d-tuples described by a small number of integers. We control data intensity of the ADC by selecting the tuple parameters, the sizes of the views, and the number of realized views. Benchmarking results of memory performance of a number of computer architectures and of a small computational grid are presented.

  12. Near-Body Grid Adaption for Overset Grids

    NASA Technical Reports Server (NTRS)

    Buning, Pieter G.; Pulliam, Thomas H.

    2016-01-01

    A solution adaption capability for curvilinear near-body grids has been implemented in the OVERFLOW overset grid computational fluid dynamics code. The approach follows closely that used for the Cartesian off-body grids, but inserts refined grids in the computational space of original near-body grids. Refined curvilinear grids are generated using parametric cubic interpolation, with one-sided biasing based on curvature and stretching ratio of the original grid. Sensor functions, grid marking, and solution interpolation tasks are implemented in the same fashion as for off-body grids. A goal-oriented procedure, based on largest error first, is included for controlling growth rate and maximum size of the adapted grid system. The adaption process is almost entirely parallelized using MPI, resulting in a capability suitable for viscous, moving body simulations. Two- and three-dimensional examples are presented.

  13. FermiGrid - experience and future plans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chadwick, K.; Berman, E.; Canal, P.

    2007-09-01

    Fermilab supports a scientific program that includes experiments and scientists located across the globe. In order to better serve this community, Fermilab has placed its production computer resources in a Campus Grid infrastructure called 'FermiGrid'. The FermiGrid infrastructure allows the large experiments at Fermilab to have priority access to their own resources, enables sharing of these resources in an opportunistic fashion, and movement of work (jobs, data) between the Campus Grid and National Grids such as Open Science Grid and the WLCG. FermiGrid resources support multiple Virtual Organizations (VOs), including VOs from the Open Science Grid (OSG), EGEE and themore » Worldwide LHC Computing Grid Collaboration (WLCG). Fermilab also makes leading contributions to the Open Science Grid in the areas of accounting, batch computing, grid security, job management, resource selection, site infrastructure, storage management, and VO services. Through the FermiGrid interfaces, authenticated and authorized VOs and individuals may access our core grid services, the 10,000+ Fermilab resident CPUs, near-petabyte (including CMS) online disk pools and the multi-petabyte Fermilab Mass Storage System. These core grid services include a site wide Globus gatekeeper, VO management services for several VOs, Fermilab site authorization services, grid user mapping services, as well as job accounting and monitoring, resource selection and data movement services. Access to these services is via standard and well-supported grid interfaces. We will report on the user experience of using the FermiGrid campus infrastructure interfaced to a national cyberinfrastructure--the successes and the problems.« less

  14. An infrastructure for the integration of geoscience instruments and sensors on the Grid

    NASA Astrophysics Data System (ADS)

    Pugliese, R.; Prica, M.; Kourousias, G.; Del Linz, A.; Curri, A.

    2009-04-01

    The Grid, as a computing paradigm, has long been in the attention of both academia and industry[1]. The distributed and expandable nature of its general architecture result to scalability and more efficient utilisation of the computing infrastructures. The scientific community, including that of geosciences, often handles problems with very high requirements in data processing, transferring, and storing[2,3]. This has raised the interest on Grid technologies but these are often viewed solely as an access gateway to HPC. Suitable Grid infrastructures could provide the geoscience community with additional benefits like those of sharing, remote access and control of scientific systems. These systems can be scientific instruments, sensors, robots, cameras and any other device used in geosciences. The solution for practical, general, and feasible Grid-enabling of such devices requires non-intrusive extensions on core parts of the current Grid architecture. We propose an extended version of an architecture[4] that can serve as the solution to the problem. The solution we propose is called Grid Instrument Element (IE) [5]. It is an addition to the existing core Grid parts; the Computing Element (CE) and the Storage Element (SE) that serve the purposes that their name suggests. The IE that we will be referring to, and the related technologies have been developed in the EU project on the Deployment of Remote Instrumentation Infrastructure (DORII1). In DORII, partners of various scientific communities including those of Earthquake, Environmental science, and Experimental science, have adopted the technology of the Instrument Element in order to integrate to the Grid their devices. The Oceanographic and coastal observation and modelling Mediterranean Ocean Observing Network (OGS2), a DORII partner, is in the process of deploying the above mentioned Grid technologies on two types of observational modules: Argo profiling floats and a novel Autonomous Underwater Vehicle (AUV). In this paper i) we define the need for integration of instrumentation in the Grid, ii) we introduce the solution of the Instrument Element, iii) we demonstrate a suitable end-user web portal for accessing Grid resources, iv) we describe from the Grid-technological point of view the process of the integration to the Grid of two advanced environmental monitoring devices. References [1] M. Surridge, S. Taylor, D. De Roure, and E. Zaluska, "Experiences with GRIA—Industrial Applications on a Web Services Grid," e-Science and Grid Computing, First International Conference on e-Science and Grid Computing, 2005, pp. 98-105. [2] A. Chervenak, I. Foster, C. Kesselman, C. Salisbury, and S. Tuecke, "The data grid: Towards an architecture for the distributed management and analysis of large scientific datasets," Journal of Network and Computer Applications, vol. 23, 2000, pp. 187-200. [3] B. Allcock, J. Bester, J. Bresnahan, A.L. Chervenak, I. Foster, C. Kesselman, S. Meder, V. Nefedova, D. Quesnel, and S. Tuecke, "Data management and transfer in high-performance computational grid environments," Parallel Computing, vol. 28, 2002, pp. 749-771. [4] E. Frizziero, M. Gulmini, F. Lelli, G. Maron, A. Oh, S. Orlando, A. Petrucci, S. Squizzato, and S. Traldi, "Instrument Element: A New Grid component that Enables the Control of Remote Instrumentation," Proceedings of the Sixth IEEE International Symposium on Cluster Computing and the Grid (CCGRID'06)-Volume 00, IEEE Computer Society Washington, DC, USA, 2006. [5] R. Ranon, L. De Marco, A. Senerchia, S. Gabrielli, L. Chittaro, R. Pugliese, L. Del Cano, F. Asnicar, and M. Prica, "A Web-based Tool for Collaborative Access to Scientific Instruments in Cyberinfrastructures." 1 The DORII project is supported by the European Commission within the 7th Framework Programme (FP7/2007-2013) under grant agreement no. RI-213110. URL: http://www.dorii.eu 2 Istituto Nazionale di Oceanografia e di Geofisica Sperimentale. URL: http://www.ogs.trieste.it

  15. Conservative zonal schemes for patched grids in 2 and 3 dimensions

    NASA Technical Reports Server (NTRS)

    Hessenius, Kristin A.

    1987-01-01

    The computation of flow over complex geometries, such as realistic aircraft configurations, poses difficult grid generation problems for computational aerodynamicists. The creation of a traditional, single-module grid of acceptable quality about an entire configuration may be impossible even with the most sophisticated of grid generation techniques. A zonal approach, wherein the flow field is partitioned into several regions within which grids are independently generated, is a practical alternative for treating complicated geometries. This technique not only alleviates the problems of discretizing a complex region, but also facilitates a block processing approach to computation thereby circumventing computer memory limitations. The use of such a zonal scheme, however, requires the development of an interfacing procedure that ensures a stable, accurate, and conservative calculation for the transfer of information across the zonal borders.

  16. Computational System For Rapid CFD Analysis In Engineering

    NASA Technical Reports Server (NTRS)

    Barson, Steven L.; Ascoli, Edward P.; Decroix, Michelle E.; Sindir, Munir M.

    1995-01-01

    Computational system comprising modular hardware and software sub-systems developed to accelerate and facilitate use of techniques of computational fluid dynamics (CFD) in engineering environment. Addresses integration of all aspects of CFD analysis process, including definition of hardware surfaces, generation of computational grids, CFD flow solution, and postprocessing. Incorporates interfaces for integration of all hardware and software tools needed to perform complete CFD analysis. Includes tools for efficient definition of flow geometry, generation of computational grids, computation of flows on grids, and postprocessing of flow data. System accepts geometric input from any of three basic sources: computer-aided design (CAD), computer-aided engineering (CAE), or definition by user.

  17. Sustaining and Extending the Open Science Grid: Science Innovation on a PetaScale Nationwide Facility (DE-FC02-06ER41436) SciDAC-2 Closeout Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Livny, Miron; Shank, James; Ernst, Michael

    Under this SciDAC-2 grant the project’s goal w a s t o stimulate new discoveries by providing scientists with effective and dependable access to an unprecedented national distributed computational facility: the Open Science Grid (OSG). We proposed to achieve this through the work of the Open Science Grid Consortium: a unique hands-on multi-disciplinary collaboration of scientists, software developers and providers of computing resources. Together the stakeholders in this consortium sustain and use a shared distributed computing environment that transforms simulation and experimental science in the US. The OSG consortium is an open collaboration that actively engages new research communities. Wemore » operate an open facility that brings together a broad spectrum of compute, storage, and networking resources and interfaces to other cyberinfrastructures, including the US XSEDE (previously TeraGrid), the European Grids for ESciencE (EGEE), as well as campus and regional grids. We leverage middleware provided by computer science groups, facility IT support organizations, and computing programs of application communities for the benefit of consortium members and the US national CI.« less

  18. Using Computing and Data Grids for Large-Scale Science and Engineering

    NASA Technical Reports Server (NTRS)

    Johnston, William E.

    2001-01-01

    We use the term "Grid" to refer to a software system that provides uniform and location independent access to geographically and organizationally dispersed, heterogeneous resources that are persistent and supported. These emerging data and computing Grids promise to provide a highly capable and scalable environment for addressing large-scale science problems. We describe the requirements for science Grids, the resulting services and architecture of NASA's Information Power Grid (IPG) and DOE's Science Grid, and some of the scaling issues that have come up in their implementation.

  19. Collar grids for intersecting geometric components within the Chimera overlapped grid scheme

    NASA Technical Reports Server (NTRS)

    Parks, Steven J.; Buning, Pieter G.; Chan, William M.; Steger, Joseph L.

    1991-01-01

    A method for overcoming problems with using the Chimera overset grid scheme in the region of intersecting geometry components is presented. A 'collar grid' resolves the intersection region and provides communication between the component grids. This approach is validated by comparing computed and experimental data for a flow about a wing/body configuration. Application of the collar grid scheme to the Orbiter fuselage and vertical tail intersection in a computation of the full Space Shuttle launch vehicle demonstrates its usefulness for simulation of flow about complex aerospace vehicles.

  20. Effects of Model Resolution and Ocean Mixing on Forced Ice-Ocean Physical and Biogeochemical Simulations Using Global and Regional System Models

    NASA Astrophysics Data System (ADS)

    Jin, Meibing; Deal, Clara; Maslowski, Wieslaw; Matrai, Patricia; Roberts, Andrew; Osinski, Robert; Lee, Younjoo J.; Frants, Marina; Elliott, Scott; Jeffery, Nicole; Hunke, Elizabeth; Wang, Shanlin

    2018-01-01

    The current coarse-resolution global Community Earth System Model (CESM) can reproduce major and large-scale patterns but is still missing some key biogeochemical features in the Arctic Ocean, e.g., low surface nutrients in the Canada Basin. We incorporated the CESM Version 1 ocean biogeochemical code into the Regional Arctic System Model (RASM) and coupled it with a sea-ice algal module to investigate model limitations. Four ice-ocean hindcast cases are compared with various observations: two in a global 1° (40˜60 km in the Arctic) grid: G1deg and G1deg-OLD with/without new sea-ice processes incorporated; two on RASM's 1/12° (˜9 km) grid R9km and R9km-NB with/without a subgrid scale brine rejection parameterization which improves ocean vertical mixing under sea ice. Higher-resolution and new sea-ice processes contributed to lower model errors in sea-ice extent, ice thickness, and ice algae. In the Bering Sea shelf, only higher resolution contributed to lower model errors in salinity, nitrate (NO3), and chlorophyll-a (Chl-a). In the Arctic Basin, model errors in mixed layer depth (MLD) were reduced 36% by brine rejection parameterization, 20% by new sea-ice processes, and 6% by higher resolution. The NO3 concentration biases were caused by both MLD bias and coarse resolution, because of excessive horizontal mixing of high NO3 from the Chukchi Sea into the Canada Basin in coarse resolution models. R9km showed improvements over G1deg on NO3, but not on Chl-a, likely due to light limitation under snow and ice cover in the Arctic Basin.

  1. LES on unstructured deforming meshes: Towards reciprocating IC engines

    NASA Technical Reports Server (NTRS)

    Haworth, D. C.; Jansen, K.

    1996-01-01

    A variable explicit/implicit characteristics-based advection scheme that is second-order accurate in space and time has been developed recently for unstructured deforming meshes (O'Rourke & Sahota 1996a). To explore the suitability of this methodology for Large-Eddy Simulation (LES), three subgrid-scale turbulence models have been implemented in the CHAD CFD code (O'Rourke & Sahota 1996b): a constant-coefficient Smagorinsky model, a dynamic Smagorinsky model for flows having one or more directions of statistical homogeneity, and a Lagrangian dynamic Smagorinsky model for flows having no spatial or temporal homogeneity (Meneveau et al. 1996). Computations have been made for three canonical flows, progressing towards the intended application of in-cylinder flow in a reciprocating engine. Grid sizes were selected to be comparable to the coarsest meshes used in earlier spectral LES studies. Quantitative results are reported for decaying homogeneous isotropic turbulence, and for a planar channel flow. Computations are compared to experimental measurements, to Direct-Numerical Simulation (DNS) data, and to Rapid-Distortion Theory (RDT) where appropriate. Generally satisfactory evolution of first and second moments is found on these coarse meshes; deviations are attributed to insufficient mesh resolution. Issues include mesh resolution and computational requirements for a specified level of accuracy, analytic characterization of the filtering implied by the numerical method, wall treatment, and inflow boundary conditions. To resolve these issues, finer-mesh simulations and computations of a simplified axisymmetric reciprocating piston-cylinder assembly are in progress.

  2. Integrating Grid Services into the Cray XT4 Environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NERSC; Cholia, Shreyas; Lin, Hwa-Chun Wendy

    2009-05-01

    The 38640 core Cray XT4"Franklin" system at the National Energy Research Scientific Computing Center (NERSC) is a massively parallel resource available to Department of Energy researchers that also provides on-demand grid computing to the Open Science Grid. The integration of grid services on Franklin presented various challenges, including fundamental differences between the interactive and compute nodes, a stripped down compute-node operating system without dynamic library support, a shared-root environment and idiosyncratic application launching. Inour work, we describe how we resolved these challenges on a running, general-purpose production system to provide on-demand compute, storage, accounting and monitoring services through generic gridmore » interfaces that mask the underlying system-specific details for the end user.« less

  3. DICOMGrid: a middleware to integrate PACS and EELA-2 grid infrastructure

    NASA Astrophysics Data System (ADS)

    Moreno, Ramon A.; de Sá Rebelo, Marina; Gutierrez, Marco A.

    2010-03-01

    Medical images provide lots of information for physicians, but the huge amount of data produced by medical image equipments in a modern Health Institution is not completely explored in its full potential yet. Nowadays medical images are used in hospitals mostly as part of routine activities while its intrinsic value for research is underestimated. Medical images can be used for the development of new visualization techniques, new algorithms for patient care and new image processing techniques. These research areas usually require the use of huge volumes of data to obtain significant results, along with enormous computing capabilities. Such qualities are characteristics of grid computing systems such as EELA-2 infrastructure. The grid technologies allow the sharing of data in large scale in a safe and integrated environment and offer high computing capabilities. In this paper we describe the DicomGrid to store and retrieve medical images, properly anonymized, that can be used by researchers to test new processing techniques, using the computational power offered by grid technology. A prototype of the DicomGrid is under evaluation and permits the submission of jobs into the EELA-2 grid infrastructure while offering a simple interface that requires minimal understanding of the grid operation.

  4. Minimizing Cache Misses Using Minimum-Surface Bodies

    NASA Technical Reports Server (NTRS)

    Frumkin, Michael; VanderWijngaart, Rob; Biegel, Bryan (Technical Monitor)

    2002-01-01

    A number of known techniques for improving cache performance in scientific computations involve the reordering of the iteration space. Some of these reorderings can be considered as coverings of the iteration space with the sets having good surface-to-volume ratio. Use of such sets reduces the number of cache misses in computations of local operators having the iteration space as a domain. First, we derive lower bounds which any algorithm must suffer while computing a local operator on a grid. Then we explore coverings of iteration spaces represented by structured and unstructured grids which allow us to approach these lower bounds. For structured grids we introduce a covering by successive minima tiles of the interference lattice of the grid. We show that the covering has low surface-to-volume ratio and present a computer experiment showing actual reduction of the cache misses achieved by using these tiles. For planar unstructured grids we show existence of a covering which reduces the number of cache misses to the level of structured grids. On the other hand, we present a triangulation of a 3-dimensional cube such that any local operator on the corresponding grid has significantly larger number of cache misses than a similar operator on a structured grid.

  5. A hybrid method with deviational particles for spatial inhomogeneous plasma

    NASA Astrophysics Data System (ADS)

    Yan, Bokai

    2016-03-01

    In this work we propose a Hybrid method with Deviational Particles (HDP) for a plasma modeled by the inhomogeneous Vlasov-Poisson-Landau system. We split the distribution into a Maxwellian part evolved by a grid based fluid solver and a deviation part simulated by numerical particles. These particles, named deviational particles, could be both positive and negative. We combine the Monte Carlo method proposed in [31], a Particle in Cell method and a Macro-Micro decomposition method [3] to design an efficient hybrid method. Furthermore, coarse particles are employed to accelerate the simulation. A particle resampling technique on both deviational particles and coarse particles is also investigated and improved. This method is applicable in all regimes and significantly more efficient compared to a PIC-DSMC method near the fluid regime.

  6. How to deal with petabytes of data: the LHC Grid project

    NASA Astrophysics Data System (ADS)

    Britton, D.; Lloyd, S. L.

    2014-06-01

    We review the Grid computing system developed by the international community to deal with the petabytes of data coming from the Large Hadron Collider at CERN in Geneva with particular emphasis on the ATLAS experiment and the UK Grid project, GridPP. Although these developments were started over a decade ago, this article explains their continued relevance as part of the ‘Big Data’ problem and how the Grid has been forerunner of today's cloud computing.

  7. Preprocessor that Enables the Use of GridProTM Grids for Unsteady Reynolds-Averaged Navier-Stokes Code TURBO

    NASA Technical Reports Server (NTRS)

    Shyam, Vikram

    2010-01-01

    A preprocessor for the Computational Fluid Dynamics (CFD) code TURBO has been developed and tested. The preprocessor converts grids produced by GridPro (Program Development Company (PDC)) into a format readable by TURBO and generates the necessary input files associated with the grid. The preprocessor also generates information that enables the user to decide how to allocate the computational load in a multiple block per processor scenario.

  8. Techniques for grid manipulation and adaptation. [computational fluid dynamics

    NASA Technical Reports Server (NTRS)

    Choo, Yung K.; Eisemann, Peter R.; Lee, Ki D.

    1992-01-01

    Two approaches have been taken to provide systematic grid manipulation for improved grid quality. One is the control point form (CPF) of algebraic grid generation. It provides explicit control of the physical grid shape and grid spacing through the movement of the control points. It works well in the interactive computer graphics environment and hence can be a good candidate for integration with other emerging technologies. The other approach is grid adaptation using a numerical mapping between the physical space and a parametric space. Grid adaptation is achieved by modifying the mapping functions through the effects of grid control sources. The adaptation process can be repeated in a cyclic manner if satisfactory results are not achieved after a single application.

  9. New ghost-node method for linking different models with varied grid refinement

    USGS Publications Warehouse

    James, S.C.; Dickinson, J.E.; Mehl, S.W.; Hill, M.C.; Leake, S.A.; Zyvoloski, G.A.; Eddebbarh, A.-A.

    2006-01-01

    A flexible, robust method for linking grids of locally refined ground-water flow models constructed with different numerical methods is needed to address a variety of hydrologic problems. This work outlines and tests a new ghost-node model-linking method for a refined "child" model that is contained within a larger and coarser "parent" model that is based on the iterative method of Steffen W. Mehl and Mary C. Hill (2002, Advances in Water Res., 25, p. 497-511; 2004, Advances in Water Res., 27, p. 899-912). The method is applicable to steady-state solutions for ground-water flow. Tests are presented for a homogeneous two-dimensional system that has matching grids (parent cells border an integer number of child cells) or nonmatching grids. The coupled grids are simulated by using the finite-difference and finite-element models MODFLOW and FEHM, respectively. The simulations require no alteration of the MODFLOW or FEHM models and are executed using a batch file on Windows operating systems. Results indicate that when the grids are matched spatially so that nodes and child-cell boundaries are aligned, the new coupling technique has error nearly equal to that when coupling two MODFLOW models. When the grids are nonmatching, model accuracy is slightly increased compared to that for matching-grid cases. Overall, results indicate that the ghost-node technique is a viable means to couple distinct models because the overall head and flow errors relative to the analytical solution are less than if only the regional coarse-grid model was used to simulate flow in the child model's domain.

  10. Current Grid operation and future role of the Grid

    NASA Astrophysics Data System (ADS)

    Smirnova, O.

    2012-12-01

    Grid-like technologies and approaches became an integral part of HEP experiments. Some other scientific communities also use similar technologies for data-intensive computations. The distinct feature of Grid computing is the ability to federate heterogeneous resources of different ownership into a seamless infrastructure, accessible via a single log-on. Like other infrastructures of similar nature, Grid functioning requires not only technologically sound basis, but also reliable operation procedures, monitoring and accounting. The two aspects, technological and operational, are closely related: weaker is the technology, more burden is on operations, and other way around. As of today, Grid technologies are still evolving: at CERN alone, every LHC experiment uses an own Grid-like system. This inevitably creates a heavy load on operations. Infrastructure maintenance, monitoring and incident response are done on several levels, from local system administrators to large international organisations, involving massive human effort worldwide. The necessity to commit substantial resources is one of the obstacles faced by smaller research communities when moving computing to the Grid. Moreover, most current Grid solutions were developed under significant influence of HEP use cases, and thus need additional effort to adapt them to other applications. Reluctance of many non-HEP researchers to use Grid negatively affects the outlook for national Grid organisations, which strive to provide multi-science services. We started from the situation where Grid organisations were fused with HEP laboratories and national HEP research programmes; we hope to move towards the world where Grid will ultimately reach the status of generic public computing and storage service provider and permanent national and international Grid infrastructures will be established. How far will we be able to advance along this path, depends on us. If no standardisation and convergence efforts will take place, Grid will become limited to HEP; if however the current multitude of Grid-like systems will converge to a generic, modular and extensible solution, Grid will become true to its name.

  11. Tetrahedral-Mesh Simulation of Turbulent Flows with the Space-Time Conservative Schemes

    NASA Technical Reports Server (NTRS)

    Chang, Chau-Lyan; Venkatachari, Balaji; Cheng, Gary C.

    2015-01-01

    Direct numerical simulations of turbulent flows are predominantly carried out using structured, hexahedral meshes despite decades of development in unstructured mesh methods. Tetrahedral meshes offer ease of mesh generation around complex geometries and the potential of an orientation free grid that would provide un-biased small-scale dissipation and more accurate intermediate scale solutions. However, due to the lack of consistent multi-dimensional numerical formulations in conventional schemes for triangular and tetrahedral meshes at the cell interfaces, numerical issues exist when flow discontinuities or stagnation regions are present. The space-time conservative conservation element solution element (CESE) method - due to its Riemann-solver-free shock capturing capabilities, non-dissipative baseline schemes, and flux conservation in time as well as space - has the potential to more accurately simulate turbulent flows using unstructured tetrahedral meshes. To pave the way towards accurate simulation of shock/turbulent boundary-layer interaction, a series of wave and shock interaction benchmark problems that increase in complexity, are computed in this paper with triangular/tetrahedral meshes. Preliminary computations for the normal shock/turbulence interactions are carried out with a relatively coarse mesh, by direct numerical simulations standards, in order to assess other effects such as boundary conditions and the necessity of a buffer domain. The results indicate that qualitative agreement with previous studies can be obtained for flows where, strong shocks co-exist along with unsteady waves that display a broad range of scales, with a relatively compact computational domain and less stringent requirements for grid clustering near the shock. With the space-time conservation properties, stable solutions without any spurious wave reflections can be obtained without a need for buffer domains near the outflow/farfield boundaries. Computational results for the isotropic turbulent flow decay, at a relatively high turbulent Mach number, show a nicely behaved spectral decay rate for medium to high wave numbers. The high-order CESE schemes offer very robust solutions even with the presence of strong shocks or widespread shocklets. The explicit formulation in conjunction with a close to unity theoretical upper Courant number bound has the potential to offer an efficient numerical framework for general compressible turbulent flow simulations with unstructured meshes.

  12. Design and implementation of spatial knowledge grid for integrated spatial analysis

    NASA Astrophysics Data System (ADS)

    Liu, Xiangnan; Guan, Li; Wang, Ping

    2006-10-01

    Supported by spatial information grid(SIG), the spatial knowledge grid (SKG) for integrated spatial analysis utilizes the middleware technology in constructing the spatial information grid computation environment and spatial information service system, develops spatial entity oriented spatial data organization technology, carries out the profound computation of the spatial structure and spatial process pattern on the basis of Grid GIS infrastructure, spatial data grid and spatial information grid (specialized definition). At the same time, it realizes the complex spatial pattern expression and the spatial function process simulation by taking the spatial intelligent agent as the core to establish space initiative computation. Moreover through the establishment of virtual geographical environment with man-machine interactivity and blending, complex spatial modeling, network cooperation work and spatial community decision knowledge driven are achieved. The framework of SKG is discussed systematically in this paper. Its implement flow and the key technology with examples of overlay analysis are proposed as well.

  13. Two-boundary grid generation for the solution of the three dimensional compressible Navier-Stokes equations. Ph.D. Thesis - Old Dominion Univ.

    NASA Technical Reports Server (NTRS)

    Smith, R. E.

    1981-01-01

    A grid generation technique called the two boundary technique is developed and applied for the solution of the three dimensional Navier-Stokes equations. The Navier-Stokes equations are transformed from a cartesian coordinate system to a computational coordinate system, and the grid generation technique provides the Jacobian matrix describing the transformation. The two boundary technique is based on algebraically defining two distinct boundaries of a flow domain and the distribution of the grid is achieved by applying functions to the uniform computational grid which redistribute the computational independent variables and consequently concentrate or disperse the grid points in the physical domain. The Navier-Stokes equations are solved using a MacCormack time-split technique. Grids and supersonic laminar flow solutions are obtained for a family of three dimensional corners and two spike-nosed bodies.

  14. Overset grid applications on distributed memory MIMD computers

    NASA Technical Reports Server (NTRS)

    Chawla, Kalpana; Weeratunga, Sisira

    1994-01-01

    Analysis of modern aerospace vehicles requires the computation of flowfields about complex three dimensional geometries composed of regions with varying spatial resolution requirements. Overset grid methods allow the use of proven structured grid flow solvers to address the twin issues of geometrical complexity and the resolution variation by decomposing the complex physical domain into a collection of overlapping subdomains. This flexibility is accompanied by the need for irregular intergrid boundary communication among the overlapping component grids. This study investigates a strategy for implementing such a static overset grid implicit flow solver on distributed memory, MIMD computers; i.e., the 128 node Intel iPSC/860 and the 208 node Intel Paragon. Performance data for two composite grid configurations characteristic of those encountered in present day aerodynamic analysis are also presented.

  15. AGIS: The ATLAS Grid Information System

    NASA Astrophysics Data System (ADS)

    Anisenkov, Alexey; Belov, Sergey; Di Girolamo, Alessandro; Gayazov, Stavro; Klimentov, Alexei; Oleynik, Danila; Senchenko, Alexander

    2012-12-01

    ATLAS is a particle physics experiment at the Large Hadron Collider at CERN. The experiment produces petabytes of data annually through simulation production and tens petabytes of data per year from the detector itself. The ATLAS Computing model embraces the Grid paradigm and a high degree of decentralization and computing resources able to meet ATLAS requirements of petabytes scale data operations. In this paper we present ATLAS Grid Information System (AGIS) designed to integrate configuration and status information about resources, services and topology of whole ATLAS Grid needed by ATLAS Distributed Computing applications and services.

  16. Numerical Model of Turbulence, Sediment Transport, and Sediment Cover in a Large Canyon-Bound River

    NASA Astrophysics Data System (ADS)

    Alvarez, L. V.; Schmeeckle, M. W.

    2013-12-01

    The Colorado River in Grand Canyon is confined by bedrock and coarse-grained sediments. Finer grain sizes are supply limited, and sandbars primarily occur in lateral separation eddies downstream of coarse-grained tributary debris fans. These sandbars are important resources for native fish, recreational boaters, and as a source of aeolian transport preventing the erosion of archaeological resources by gully extension. Relatively accurate prediction of deposition and, especially, erosion of these sandbar beaches has proven difficult using two- and three-dimensional, time-averaged morphodynamic models. We present a parallelized, three-dimensional, turbulence-resolving model using the Detached-Eddy Simulation (DES) technique. DES is a hybrid large eddy simulation (LES) and Reynolds-averaged Navier Stokes (RANS). RANS is applied to the near-bed grid cells, where grid resolution is not sufficient to fully resolve wall turbulence. LES is applied further from the bed and banks. We utilize the Spalart-Allmaras one equation turbulence closure with a rough wall extension. The model resolves large-scale turbulence using DES and simultaneously integrates the suspended sediment advection-diffusion equation. The Smith and McLean suspended sediment boundary condition is used to calculate the upward and downward settling of sediment fluxes in the grid cells attached to the bed. The model calculates the entrainment of five grain sizes at every time step using a mixing layer model. Where the mixing layer depth becomes zero, the net entrainment is zero or negative. As such, the model is able to predict the exposure and burial of bedrock and coarse-grained surfaces by fine-grained sediments. A separate program was written to automatically construct the computational domain between the water surface and a triangulated surface of a digital elevation model of the given river reach. Model results compare favorably with ADCP measurements of flow taken on the Colorado River in Grand Canyon during the High Flow Experiment (HFE) of 2008. The model accurately reproduces the size and position of the major recirculation currents, and the error in velocity magnitude was found to be less than 17% or 0.22 m/s absolute error. The mean deviation of the direction of velocity with respect to the measured velocity was found to be 20 degrees. Large-scale turbulence structures with vorticity predominantly in the vertical direction are produced at the shear layer between the main channel and the separation zone. However, these structures rapidly become three-dimensional with no preferred orientation of vorticity. Surprisingly, cross-stream velocities, into the main recirculation zone just upstream of the point of reattachment and out of the main recirculation region just downstream of the point of separation, are highest near the bed. Lateral separation eddies are more efficient at storing and exporting sediment than previously modeled. The input of sediment to the eddy recirculation zone occurs near the reattachment zone and is relatively continuous in time. While, the export of sediment to the main channel by the return current occurs in pulses. Pulsation of the strength of the return current becomes a key factor to determine the rates of erosion and deposition in the main recirculation zone.

  17. Grid today, clouds on the horizon

    NASA Astrophysics Data System (ADS)

    Shiers, Jamie

    2009-04-01

    By the time of CCP 2008, the largest scientific machine in the world - the Large Hadron Collider - had been cooled down as scheduled to its operational temperature of below 2 degrees Kelvin and injection tests were starting. Collisions of proton beams at 5+5 TeV were expected within one to two months of the initial tests, with data taking at design energy ( 7+7 TeV) foreseen for 2009. In order to process the data from this world machine, we have put our "Higgs in one basket" - that of Grid computing [The Worldwide LHC Computing Grid (WLCG), in: Proceedings of the Conference on Computational Physics 2006 (CCP 2006), vol. 177, 2007, pp. 219-223]. After many years of preparation, 2008 saw a final "Common Computing Readiness Challenge" (CCRC'08) - aimed at demonstrating full readiness for 2008 data taking, processing and analysis. By definition, this relied on a world-wide production Grid infrastructure. But change - as always - is on the horizon. The current funding model for Grids - which in Europe has been through 3 generations of EGEE projects, together with related projects in other parts of the world, including South America - is evolving towards a long-term, sustainable e-infrastructure, like the European Grid Initiative (EGI) [The European Grid Initiative Design Study, website at http://web.eu-egi.eu/]. At the same time, potentially new paradigms, such as that of "Cloud Computing" are emerging. This paper summarizes the results of CCRC'08 and discusses the potential impact of future Grid funding on both regional and international application communities. It contrasts Grid and Cloud computing models from both technical and sociological points of view. Finally, it discusses the requirements from production application communities, in terms of stability and continuity in the medium to long term.

  18. Variational formulation of high performance finite elements: Parametrized variational principles

    NASA Technical Reports Server (NTRS)

    Felippa, Carlos A.; Militello, Carmello

    1991-01-01

    High performance elements are simple finite elements constructed to deliver engineering accuracy with coarse arbitrary grids. This is part of a series on the variational basis of high-performance elements, with emphasis on those constructed with the free formulation (FF) and assumed natural strain (ANS) methods. Parametrized variational principles that provide a foundation for the FF and ANS methods, as well as for a combination of both are presented.

  19. Refinement of Out of Circularity and Thickness Measurements of a Cylinder for Finite Element Analysis

    DTIC Science & Technology

    2016-09-01

    UNCLASSIFIED UNCLASSIFIED Refinement of Out of Circularity and Thickness Measurements of a Cylinder for Finite Element Analysis...significant effect on the collapse strength and must be accurately represented in finite element analysis to obtain accurate results. Often it is necessary...to interpolate measurements from a relatively coarse grid to a refined finite element model and methods that have wide general acceptance are

  20. Modeling and scaleup of steamflood in a heterogeneous reservoir

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dehghani, K.; Basham, W.M.; Durlofsky, L.J.

    1995-11-01

    A series of simulation runs was conducted for different geostatistically derived cross-sectional models to study the degree of heterogeneity required for proper modeling of steamfloods in a thick, heavy-oil reservoir with thin diatomite barriers Different methods for coarsening the most detailed models were applied, and performance predictions for the coarsened and detailed models compared. Use of a general scaleup method provided the most accurate coarse grid models.

  1. Summation-by-Parts operators with minimal dispersion error for coarse grid flow calculations

    NASA Astrophysics Data System (ADS)

    Linders, Viktor; Kupiainen, Marco; Nordström, Jan

    2017-07-01

    We present a procedure for constructing Summation-by-Parts operators with minimal dispersion error both near and far from numerical interfaces. Examples of such operators are constructed and compared with a higher order non-optimised Summation-by-Parts operator. Experiments show that the optimised operators are superior for wave propagation and turbulent flows involving large wavenumbers, long solution times and large ranges of resolution scales.

  2. Design & implementation of distributed spatial computing node based on WPS

    NASA Astrophysics Data System (ADS)

    Liu, Liping; Li, Guoqing; Xie, Jibo

    2014-03-01

    Currently, the research work of SIG (Spatial Information Grid) technology mostly emphasizes on the spatial data sharing in grid environment, while the importance of spatial computing resources is ignored. In order to implement the sharing and cooperation of spatial computing resources in grid environment, this paper does a systematical research of the key technologies to construct Spatial Computing Node based on the WPS (Web Processing Service) specification by OGC (Open Geospatial Consortium). And a framework of Spatial Computing Node is designed according to the features of spatial computing resources. Finally, a prototype of Spatial Computing Node is implemented and the relevant verification work under the environment is completed.

  3. FermiGrid—experience and future plans

    NASA Astrophysics Data System (ADS)

    Chadwick, K.; Berman, E.; Canal, P.; Hesselroth, T.; Garzoglio, G.; Levshina, T.; Sergeev, V.; Sfiligoi, I.; Sharma, N.; Timm, S.; Yocum, D. R.

    2008-07-01

    Fermilab supports a scientific program that includes experiments and scientists located across the globe. In order to better serve this community, Fermilab has placed its production computer resources in a Campus Grid infrastructure called 'FermiGrid'. The FermiGrid infrastructure allows the large experiments at Fermilab to have priority access to their own resources, enables sharing of these resources in an opportunistic fashion, and movement of work (jobs, data) between the Campus Grid and National Grids such as Open Science Grid (OSG) and the Worldwide LHC Computing Grid Collaboration (WLCG). FermiGrid resources support multiple Virtual Organizations (VOs), including VOs from the OSG, EGEE, and the WLCG. Fermilab also makes leading contributions to the Open Science Grid in the areas of accounting, batch computing, grid security, job management, resource selection, site infrastructure, storage management, and VO services. Through the FermiGrid interfaces, authenticated and authorized VOs and individuals may access our core grid services, the 10,000+ Fermilab resident CPUs, near-petabyte (including CMS) online disk pools and the multi-petabyte Fermilab Mass Storage System. These core grid services include a site wide Globus gatekeeper, VO management services for several VOs, Fermilab site authorization services, grid user mapping services, as well as job accounting and monitoring, resource selection and data movement services. Access to these services is via standard and well-supported grid interfaces. We will report on the user experience of using the FermiGrid campus infrastructure interfaced to a national cyberinfrastructure - the successes and the problems.

  4. A chimera grid scheme. [multiple overset body-conforming mesh system for finite difference adaptation to complex aircraft configurations

    NASA Technical Reports Server (NTRS)

    Steger, J. L.; Dougherty, F. C.; Benek, J. A.

    1983-01-01

    A mesh system composed of multiple overset body-conforming grids is described for adapting finite-difference procedures to complex aircraft configurations. In this so-called 'chimera mesh,' a major grid is generated about a main component of the configuration and overset minor grids are used to resolve all other features. Methods for connecting overset multiple grids and modifications of flow-simulation algorithms are discussed. Computational tests in two dimensions indicate that the use of multiple overset grids can simplify the task of grid generation without an adverse effect on flow-field algorithms and computer code complexity.

  5. Predicting debris-flow initiation and run-out with a depth-averaged two-phase model and adaptive numerical methods

    NASA Astrophysics Data System (ADS)

    George, D. L.; Iverson, R. M.

    2012-12-01

    Numerically simulating debris-flow motion presents many challenges due to the complicated physics of flowing granular-fluid mixtures, the diversity of spatial scales (ranging from a characteristic particle size to the extent of the debris flow deposit), and the unpredictability of the flow domain prior to a simulation. Accurately predicting debris-flows requires models that are complex enough to represent the dominant effects of granular-fluid interaction, while remaining mathematically and computationally tractable. We have developed a two-phase depth-averaged mathematical model for debris-flow initiation and subsequent motion. Additionally, we have developed software that numerically solves the model equations efficiently on large domains. A unique feature of the mathematical model is that it includes the feedback between pore-fluid pressure and the evolution of the solid grain volume fraction, a process that regulates flow resistance. This feature endows the model with the ability to represent the transition from a stationary mass to a dynamic flow. With traditional approaches, slope stability analysis and flow simulation are treated separately, and the latter models are often initialized with force balances that are unrealistically far from equilibrium. Additionally, our new model relies on relatively few dimensionless parameters that are functions of well-known material properties constrained by physical data (eg. hydraulic permeability, pore-fluid viscosity, debris compressibility, Coulomb friction coefficient, etc.). We have developed numerical methods and software for accurately solving the model equations. By employing adaptive mesh refinement (AMR), the software can efficiently resolve an evolving debris flow as it advances through irregular topography, without needing terrain-fit computational meshes. The AMR algorithms utilize multiple levels of grid resolutions, so that computationally inexpensive coarse grids can be used where the flow is absent, and much higher resolution grids evolve with the flow. The reduction in computational cost, due to AMR, makes very large-scale problems tractable on personal computers. Model accuracy can be tested by comparison of numerical predictions and empirical data. These comparisons utilize controlled experiments conducted at the USGS debris-flow flume, which provide detailed data about flow mobilization and dynamics. Additionally, we have simulated historical large-scale debris flows, such as the (≈50 million m^3) debris flow that originated on Mt. Meager, British Columbia in 2010. This flow took a very complex route through highly variable topography and provides a valuable benchmark for testing. Maps of the debris flow deposit and data from seismic stations provide evidence regarding flow initiation, transit times and deposition. Our simulations reproduce many of the complex patterns of the event, such as run-out geometry and extent, and the large-scale nature of the flow and the complex topographical features demonstrate the utility of AMR in flow simulations.

  6. Comparative Performance Analysis of Coarse Solvers for Algebraic Multigrid on Multicore and Manycore Architectures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Druinsky, Alex; Ghysels, Pieter; Li, Xiaoye S.

    In this paper, we study the performance of a two-level algebraic-multigrid algorithm, with a focus on the impact of the coarse-grid solver on performance. We consider two algorithms for solving the coarse-space systems: the preconditioned conjugate gradient method and a new robust HSS-embedded low-rank sparse-factorization algorithm. Our test data comes from the SPE Comparative Solution Project for oil-reservoir simulations. We contrast the performance of our code on one 12-core socket of a Cray XC30 machine with performance on a 60-core Intel Xeon Phi coprocessor. To obtain top performance, we optimized the code to take full advantage of fine-grained parallelism andmore » made it thread-friendly for high thread count. We also developed a bounds-and-bottlenecks performance model of the solver which we used to guide us through the optimization effort, and also carried out performance tuning in the solver’s large parameter space. Finally, as a result, significant speedups were obtained on both machines.« less

  7. 20 plus Years of Computational Fluid Dynamics for the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Gomez, Reynaldo J., III

    2011-01-01

    This slide presentation reviews the use of computational fluid dynamics in performing analysis of the space shuttle with particular reference to the return to flight analysis and other shuttle problems. Slides show a comparison of pressure coefficient with the shuttle ascent configuration between the wind tunnel test and the computed values. the evolution of the grid system for the space shuttle launch vehicle (SSLv) from the early 80's to one in 2004, the grid configuration of the bipod ramp redesign from the original design to the current configuration, charts with the computations showing solid rocket booster surface pressures from wind tunnel data, calculated over two grid systems (i.e., the original 14 grid system, and the enhanced 113 grid system), and the computed flight orbiter wing loads are compared with strain gage data on STS-50 during flight. The loss of STS-107 initiated an unprecedented review of all external environments. The current SSLV grid system of 600+ grids, 1.8 Million surface points and 95+ million volume points is shown. The inflight entry analyses is shown, and the use of Overset CFD as a key part to many external tank redesign and debris assessments is discussed. The work that still remains to be accomplished for future shuttle flights is discussed.

  8. Development of numerical methods for overset grids with applications for the integrated Space Shuttle vehicle

    NASA Technical Reports Server (NTRS)

    Chan, William M.

    1995-01-01

    Algorithms and computer code developments were performed for the overset grid approach to solving computational fluid dynamics problems. The techniques developed are applicable to compressible Navier-Stokes flow for any general complex configurations. The computer codes developed were tested on different complex configurations with the Space Shuttle launch vehicle configuration as the primary test bed. General, efficient and user-friendly codes were produced for grid generation, flow solution and force and moment computation.

  9. Soil Sampling Techniques For Alabama Grain Fields

    NASA Technical Reports Server (NTRS)

    Thompson, A. N.; Shaw, J. N.; Mask, P. L.; Touchton, J. T.; Rickman, D.

    2003-01-01

    Characterizing the spatial variability of nutrients facilitates precision soil sampling. Questions exist regarding the best technique for directed soil sampling based on a priori knowledge of soil and crop patterns. The objective of this study was to evaluate zone delineation techniques for Alabama grain fields to determine which method best minimized the soil test variability. Site one (25.8 ha) and site three (20.0 ha) were located in the Tennessee Valley region, and site two (24.2 ha) was located in the Coastal Plain region of Alabama. Tennessee Valley soils ranged from well drained Rhodic and Typic Paleudults to somewhat poorly drained Aquic Paleudults and Fluventic Dystrudepts. Coastal Plain s o i l s ranged from coarse-loamy Rhodic Kandiudults to loamy Arenic Kandiudults. Soils were sampled by grid soil sampling methods (grid sizes of 0.40 ha and 1 ha) consisting of: 1) twenty composited cores collected randomly throughout each grid (grid-cell sampling) and, 2) six composited cores collected randomly from a -3x3 m area at the center of each grid (grid-point sampling). Zones were established from 1) an Order 1 Soil Survey, 2) corn (Zea mays L.) yield maps, and 3) airborne remote sensing images. All soil properties were moderately to strongly spatially dependent as per semivariogram analyses. Differences in grid-point and grid-cell soil test values suggested grid-point sampling does not accurately represent grid values. Zones created by soil survey, yield data, and remote sensing images displayed lower coefficient of variations (8CV) for soil test values than overall field values, suggesting these techniques group soil test variability. However, few differences were observed between the three zone delineation techniques. Results suggest directed sampling using zone delineation techniques outlined in this paper would result in more efficient soil sampling for these Alabama grain fields.

  10. Gene regulatory networks: a coarse-grained, equation-free approach to multiscale computation.

    PubMed

    Erban, Radek; Kevrekidis, Ioannis G; Adalsteinsson, David; Elston, Timothy C

    2006-02-28

    We present computer-assisted methods for analyzing stochastic models of gene regulatory networks. The main idea that underlies this equation-free analysis is the design and execution of appropriately initialized short bursts of stochastic simulations; the results of these are processed to estimate coarse-grained quantities of interest, such as mesoscopic transport coefficients. In particular, using a simple model of a genetic toggle switch, we illustrate the computation of an effective free energy Phi and of a state-dependent effective diffusion coefficient D that characterize an unavailable effective Fokker-Planck equation. Additionally we illustrate the linking of equation-free techniques with continuation methods for performing a form of stochastic "bifurcation analysis"; estimation of mean switching times in the case of a bistable switch is also implemented in this equation-free context. The accuracy of our methods is tested by direct comparison with long-time stochastic simulations. This type of equation-free analysis appears to be a promising approach to computing features of the long-time, coarse-grained behavior of certain classes of complex stochastic models of gene regulatory networks, circumventing the need for long Monte Carlo simulations.

  11. Business aspects and sustainability for healthgrids - an expert survey.

    PubMed

    Scholz, Stefan; Semler, Sebastian C; Breitner, Michael H

    2009-01-01

    Grid computing initiatives in medicine and life sciences are under pressure to prove their sustainability. While some first business model frameworks were outlined, few practical experiences were considered. This gap has been narrowed by an international survey of 33 grid computing experts with biomedical and non-biomedical background on business aspects. The experts surveyed were cautiously optimistic about a sustainable implementation of grid computing within a mid term timeline. They identified marketable application areas, stated the underlying value proposition, outlined trends and specify critical success factors. From a general perspective of their answers, they provided a stable basis for a road map of sustainable grid computing solutions for medicine and life sciences.

  12. Information Power Grid Posters

    NASA Technical Reports Server (NTRS)

    Vaziri, Arsi

    2003-01-01

    This document is a summary of the accomplishments of the Information Power Grid (IPG). Grids are an emerging technology that provide seamless and uniform access to the geographically dispersed, computational, data storage, networking, instruments, and software resources needed for solving large-scale scientific and engineering problems. The goal of the NASA IPG is to use NASA's remotely located computing and data system resources to build distributed systems that can address problems that are too large or complex for a single site. The accomplishments outlined in this poster presentation are: access to distributed data, IPG heterogeneous computing, integration of large-scale computing node into distributed environment, remote access to high data rate instruments,and exploratory grid environment.

  13. Solution of Poisson equations for 3-dimensional grid generations. [computations of a flow field over a thin delta wing

    NASA Technical Reports Server (NTRS)

    Fujii, K.

    1983-01-01

    A method for generating three dimensional, finite difference grids about complicated geometries by using Poisson equations is developed. The inhomogenous terms are automatically chosen such that orthogonality and spacing restrictions at the body surface are satisfied. Spherical variables are used to avoid the axis singularity, and an alternating-direction-implicit (ADI) solution scheme is used to accelerate the computations. Computed results are presented that show the capability of the method. Since most of the results presented have been used as grids for flow-field computations, this is indicative that the method is a useful tool for generating three-dimensional grids about complicated geometries.

  14. Application of CFD to aerothermal heating problems

    NASA Technical Reports Server (NTRS)

    Macaraeg, M. G.

    1986-01-01

    Numerical solutions of the compressible Navier-Stokes equations by an alternating direction implicit scheme, applied to two experimental investigations are presented. The first is cooling by injection of a gas jet through the nose of an ogive-cone, and the second is the aerothermal environment in the gap formed by the wing and elevon section of a test model of the space shuttle. The simulations demonstrate that accurate pressure calculations are easily obtained on a coarse grid, while convergence is obtained after the residual reduces by four orders of magnitude. Accurate heating rates, however, require a fine grid solution, with convergence requiring at least a reduction of six orders of magnitude in the residual. The effect of artificial dissipation on numerical results is also assessed.

  15. Aerosol transport simulations in indoor and outdoor environments using computational fluid dynamics (CFD)

    NASA Astrophysics Data System (ADS)

    Landazuri, Andrea C.

    This dissertation focuses on aerosol transport modeling in occupational environments and mining sites in Arizona using computational fluid dynamics (CFD). The impacts of human exposure in both environments are explored with the emphasis on turbulence, wind speed, wind direction and particle sizes. Final emissions simulations involved the digitalization process of available elevation contour plots of one of the mining sites to account for realistic topographical features. The digital elevation map (DEM) of one of the sites was imported to COMSOL MULTIPHYSICSRTM for subsequent turbulence and particle simulations. Simulation results that include realistic topography show considerable deviations of wind direction. Inter-element correlation results using metal and metalloid size resolved concentration data using a Micro-Orifice Uniform Deposit Impactor (MOUDI) under given wind speeds and directions provided guidance on groups of metals that coexist throughout mining activities. Groups between Fe-Mg, Cr-Fe, Al-Sc, Sc-Fe, and Mg-Al are strongly correlated for unrestricted wind directions and speeds, suggesting that the source may be of soil origin (e.g. ore and tailings); also, groups of elements where Cu is present, in the coarse fraction range, may come from mechanical action mining activities and saltation phenomenon. Besides, MOUDI data under low wind speeds (<2 m/s) and at night showed a strong correlation for 1 mum particles between the groups: Sc-Be-Mg, Cr-Al, Cu-Mn, Cd-Pb-Be, Cd-Cr, Cu-Pb, Pb-Cd, As-Cd-Pb. The As-Cd-Pb correlates strongly in almost all ranges of particle sizes. When restricted low wind speeds were imposed more groups of elements are evident and this may be justified with the fact that at lower speeds particles are more likely to settle. When linking these results with CFD simulations and Pb-isotope results it is concluded that the source of elements found in association with Pb in the fine fraction come from the ore that is subsequently processed in the smelter site, whereas the source of elements associated to Pb in the coarse fraction is of different origin. CFD simulation results will not only provide realistic and quantifiable information in terms of potential deleterious effects, but also that the application of CFD represents an important contribution to actual dispersion modeling studies; therefore, Computational Fluid Dynamics can be used as a source apportionment tool to identify areas that have an effect over specific sampling points and susceptible regions under certain meteorological conditions, and these conclusions can be supported with inter-element correlation matrices and lead isotope analysis, especially since there is limited access to the mining sites. Additional results concluded that grid adaption is a powerful tool that allows to refine specific regions that require lots of detail and therefore better resolve flow detail, provides higher number of locations with monotonic convergence than the manual grids, and requires the least computational effort. CFD simulations were approached using the k-epsilon model, with the aid of computer aided engineering software: ANSYSRTM and COMSOL MULTIPHYSICS RTM. The success of aerosol transport simulations depends on a good simulation of the turbulent flow. A lot of attention was placed on investigating and choosing the best models in terms of convergence, independence and computational effort. This dissertation also includes preliminary studies of transient discrete phase, eulerian and species transport modeling, importance of saltation of particles, information on CFD methods, and strategies for future directions that should be taken.

  16. The National Grid Project: A system overview

    NASA Technical Reports Server (NTRS)

    Gaither, Adam; Gaither, Kelly; Jean, Brian; Remotigue, Michael; Whitmire, John; Soni, Bharat; Thompson, Joe; Dannenhoffer,, John; Weatherill, Nigel

    1995-01-01

    The National Grid Project (NGP) is a comprehensive numerical grid generation software system that is being developed at the National Science Foundation (NSF) Engineering Research Center (ERC) for Computational Field Simulation (CFS) at Mississippi State University (MSU). NGP is supported by a coalition of U.S. industries and federal laboratories. The objective of the NGP is to significantly decrease the amount of time it takes to generate a numerical grid for complex geometries and to increase the quality of these grids to enable computational field simulations for applications in industry. A geometric configuration can be discretized into grids (or meshes) that have two fundamental forms: structured and unstructured. Structured grids are formed by intersecting curvilinear coordinate lines and are composed of quadrilateral (2D) and hexahedral (3D) logically rectangular cells. The connectivity of a structured grid provides for trivial identification of neighboring points by incrementing coordinate indices. Unstructured grids are composed of cells of any shape (commonly triangles, quadrilaterals, tetrahedra and hexahedra), but do not have trivial identification of neighbors by incrementing an index. For unstructured grids, a set of points and an associated connectivity table is generated to define unstructured cell shapes and neighboring points. Hybrid grids are a combination of structured grids and unstructured grids. Chimera (overset) grids are intersecting or overlapping structured grids. The NGP system currently provides a user interface that integrates both 2D and 3D structured and unstructured grid generation, a solid modeling topology data management system, an internal Computer Aided Design (CAD) system based on Non-Uniform Rational B-Splines (NURBS), a journaling language, and a grid/solution visualization system.

  17. AstroGrid-D: Grid technology for astronomical science

    NASA Astrophysics Data System (ADS)

    Enke, Harry; Steinmetz, Matthias; Adorf, Hans-Martin; Beck-Ratzka, Alexander; Breitling, Frank; Brüsemeister, Thomas; Carlson, Arthur; Ensslin, Torsten; Högqvist, Mikael; Nickelt, Iliya; Radke, Thomas; Reinefeld, Alexander; Reiser, Angelika; Scholl, Tobias; Spurzem, Rainer; Steinacker, Jürgen; Voges, Wolfgang; Wambsganß, Joachim; White, Steve

    2011-02-01

    We present status and results of AstroGrid-D, a joint effort of astrophysicists and computer scientists to employ grid technology for scientific applications. AstroGrid-D provides access to a network of distributed machines with a set of commands as well as software interfaces. It allows simple use of computer and storage facilities and to schedule or monitor compute tasks and data management. It is based on the Globus Toolkit middleware (GT4). Chapter 1 describes the context which led to the demand for advanced software solutions in Astrophysics, and we state the goals of the project. We then present characteristic astrophysical applications that have been implemented on AstroGrid-D in chapter 2. We describe simulations of different complexity, compute-intensive calculations running on multiple sites (Section 2.1), and advanced applications for specific scientific purposes (Section 2.2), such as a connection to robotic telescopes (Section 2.2.3). We can show from these examples how grid execution improves e.g. the scientific workflow. Chapter 3 explains the software tools and services that we adapted or newly developed. Section 3.1 is focused on the administrative aspects of the infrastructure, to manage users and monitor activity. Section 3.2 characterises the central components of our architecture: The AstroGrid-D information service to collect and store metadata, a file management system, the data management system, and a job manager for automatic submission of compute tasks. We summarise the successfully established infrastructure in chapter 4, concluding with our future plans to establish AstroGrid-D as a platform of modern e-Astronomy.

  18. ICASE Workshop on Programming Computational Grids

    DTIC Science & Technology

    2001-09-01

    ICASE Workshop on Programming Computational Grids Thomas M. Eidson and Merrell L. Patrick ICASE, Hampton, Virginia ICASE NASA Langley Research Center...Computational Grids Contract Number Grant Number Program Element Number Author(s) Thomas M. Eidson and Merrell L. Patrick Project Number Task Number...clear that neither group fully understood the ideas and problems of the other. It was also clear that neither group is given the time and support to

  19. Differences in Visual-Spatial Input May Underlie Different Compression Properties of Firing Fields for Grid Cell Modules in Medial Entorhinal Cortex

    PubMed Central

    Raudies, Florian; Hasselmo, Michael E.

    2015-01-01

    Firing fields of grid cells in medial entorhinal cortex show compression or expansion after manipulations of the location of environmental barriers. This compression or expansion could be selective for individual grid cell modules with particular properties of spatial scaling. We present a model for differences in the response of modules to barrier location that arise from different mechanisms for the influence of visual features on the computation of location that drives grid cell firing patterns. These differences could arise from differences in the position of visual features within the visual field. When location was computed from the movement of visual features on the ground plane (optic flow) in the ventral visual field, this resulted in grid cell spatial firing that was not sensitive to barrier location in modules modeled with small spacing between grid cell firing fields. In contrast, when location was computed from static visual features on walls of barriers, i.e. in the more dorsal visual field, this resulted in grid cell spatial firing that compressed or expanded based on the barrier locations in modules modeled with large spacing between grid cell firing fields. This indicates that different grid cell modules might have differential properties for computing location based on visual cues, or the spatial radius of sensitivity to visual cues might differ between modules. PMID:26584432

  20. Aeroacoustic Simulations of a Nose Landing Gear with FUN3D: A Grid Refinement Study

    NASA Technical Reports Server (NTRS)

    Vatsa, Veer N.; Khorrami, Mehdi R.; Lockard, David P.

    2017-01-01

    A systematic grid refinement study is presented for numerical simulations of a partially-dressed, cavity-closed (PDCC) nose landing gear configuration that was tested in the University of Florida's open-jet acoustic facility known as the UFAFF. The unstructured-grid flow solver FUN3D is used to compute the unsteady flow field for this configuration. Mixed-element grids generated using the Pointwise (Registered Trademark) grid generation software are used for numerical simulations. Particular care is taken to ensure quality cells and proper resolution in critical areas of interest in an effort to minimize errors introduced by numerical artifacts. A set of grids was generated in this manner to create a family of uniformly refined grids. The finest grid was then modified to coarsen the wall-normal spacing to create a grid suitable for the wall-function implementation in FUN3D code. A hybrid Reynolds-averaged Navier-Stokes/large eddy simulation (RANS/LES) turbulence modeling approach is used for these simulations. Time-averaged and instantaneous solutions obtained on these grids are compared with the measured data. These CFD solutions are used as input to a FfowcsWilliams-Hawkings (FW-H) noise propagation code to compute the farfield noise levels. The agreement of the computed results with the experimental data improves as the grid is refined.

  1. Stability and error estimation for Component Adaptive Grid methods

    NASA Technical Reports Server (NTRS)

    Oliger, Joseph; Zhu, Xiaolei

    1994-01-01

    Component adaptive grid (CAG) methods for solving hyperbolic partial differential equations (PDE's) are discussed in this paper. Applying recent stability results for a class of numerical methods on uniform grids. The convergence of these methods for linear problems on component adaptive grids is established here. Furthermore, the computational error can be estimated on CAG's using the stability results. Using these estimates, the error can be controlled on CAG's. Thus, the solution can be computed efficiently on CAG's within a given error tolerance. Computational results for time dependent linear problems in one and two space dimensions are presented.

  2. A Simple XML Producer-Consumer Protocol

    NASA Technical Reports Server (NTRS)

    Smith, Warren; Gunter, Dan; Quesnel, Darcy; Biegel, Bryan (Technical Monitor)

    2001-01-01

    There are many different projects from government, academia, and industry that provide services for delivering events in distributed environments. The problem with these event services is that they are not general enough to support all uses and they speak different protocols so that they cannot interoperate. We require such interoperability when we, for example, wish to analyze the performance of an application in a distributed environment. Such an analysis might require performance information from the application, computer systems, networks, and scientific instruments. In this work we propose and evaluate a standard XML-based protocol for the transmission of events in distributed systems. One recent trend in government and academic research is the development and deployment of computational grids. Computational grids are large-scale distributed systems that typically consist of high-performance compute, storage, and networking resources. Examples of such computational grids are the DOE Science Grid, the NASA Information Power Grid (IPG), and the NSF Partnerships for Advanced Computing Infrastructure (PACIs). The major effort to deploy these grids is in the area of developing the software services to allow users to execute applications on these large and diverse sets of resources. These services include security, execution of remote applications, managing remote data, access to information about resources and services, and so on. There are several toolkits for providing these services such as Globus, Legion, and Condor. As part of these efforts to develop computational grids, the Global Grid Forum is working to standardize the protocols and APIs used by various grid services. This standardization will allow interoperability between the client and server software of the toolkits that are providing the grid services. The goal of the Performance Working Group of the Grid Forum is to standardize protocols and representations related to the storage and distribution of performance data. These standard protocols and representations must support tasks such as profiling parallel applications, monitoring the status of computers and networks, and monitoring the performance of services provided by a computational grid. This paper describes a proposed protocol and data representation for the exchange of events in a distributed system. The protocol exchanges messages formatted in XML and it can be layered atop any low-level communication protocol such as TCP or UDP Further, we describe Java and C++ implementations of this protocol and discuss their performance. The next section will provide some further background information. Section 3 describes the main communication patterns of our protocol. Section 4 describes how we represent events and related information using XML. Section 5 describes our protocol and Section 6 discusses the performance of two implementations of the protocol. Finally, an appendix provides the XML Schema definition of our protocol and event information.

  3. Resolving Properties of Polymers and Nanoparticle Assembly through Coarse-Grained Computational Studies.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grest, Gary S.

    2017-09-01

    Coupled length and time scales determine the dynamic behavior of polymers and polymer nanocomposites and underlie their unique properties. To resolve the properties over large time and length scales it is imperative to develop coarse grained models which retain the atomistic specificity. Here we probe the degree of coarse graining required to simultaneously retain significant atomistic details a nd access large length and time scales. The degree of coarse graining in turn sets the minimum length scale instrumental in defining polymer properties and dynamics. Using polyethylene as a model system, we probe how the coarse - graining scale affects themore » measured dynamics with different number methylene group s per coarse - grained beads. Using these models we simulate polyethylene melts for times over 500 ms to study the viscoelastic properties of well - entangled polymer melts and large nanoparticle assembly as the nanoparticles are driven close enough to form nanostructures.« less

  4. A survey of nested grid techniques and their potential for use within the MASS weather prediction model

    NASA Technical Reports Server (NTRS)

    Koch, Steven E.; Mcqueen, Jeffery T.

    1987-01-01

    A survey of various one- and two-way interactive nested grid techniques used in hydrostatic numerical weather prediction models is presented and the advantages and disadvantages of each method are discussed. The techniques for specifying the lateral boundary conditions for each nested grid scheme are described in detail. Averaging and interpolation techniques used when applying the coarse mesh grid (CMG) and fine mesh grid (FMG) interface conditions during two-way nesting are discussed separately. The survey shows that errors are commonly generated at the boundary between the CMG and FMG due to boundary formulation or specification discrepancies. Methods used to control this noise include application of smoothers, enhanced diffusion, or damping-type time integration schemes to model variables. The results from this survey provide the information needed to decide which one-way and two-way nested grid schemes merit future testing with the Mesoscale Atmospheric Simulation System (MASS) model. An analytically specified baroclinic wave will be used to conduct systematic tests of the chosen schemes since this will allow for objective determination of the interfacial noise in the kind of meteorological setting for which MASS is designed. Sample diagnostic plots from initial tests using the analytic wave are presented to illustrate how the model-generated noise is ascertained. These plots will be used to compare the accuracy of the various nesting schemes when incorporated into the MASS model.

  5. On the effects of grid ill-conditioning in three dimensional finite element vector potential magnetostatic field computations

    NASA Technical Reports Server (NTRS)

    Wang, R.; Demerdash, N. A.

    1990-01-01

    The effects of finite element grid geometries and associated ill-conditioning were studied in single medium and multi-media (air-iron) three dimensional magnetostatic field computation problems. The sensitivities of these 3D field computations to finite element grid geometries were investigated. It was found that in single medium applications the unconstrained magnetic vector potential curl-curl formulation in conjunction with first order finite elements produce global results which are almost totally insensitive to grid geometries. However, it was found that in multi-media (air-iron) applications first order finite element results are sensitive to grid geometries and consequent elemental shape ill-conditioning. These sensitivities were almost totally eliminated by means of the use of second order finite elements in the field computation algorithms. Practical examples are given in this paper to demonstrate these aspects mentioned above.

  6. Description of the F-16XL Geometry and Computational Grids Used in CAWAPI

    NASA Technical Reports Server (NTRS)

    Boelens, O. J.; Badcock, K. J.; Gortz, S.; Morton, S.; Fritz, W.; Karman, S. L., Jr.; Michal, T.; Lamar, J. E.

    2009-01-01

    The objective of the Cranked-Arrow Wing Aerodynamics Project International (CAWAPI) was to allow a comprehensive validation of Computational Fluid Dynamics methods against the CAWAP flight database. A major part of this work involved the generation of high-quality computational grids. Prior to the grid generation an IGES file containing the air-tight geometry of the F-16XL aircraft was generated by a cooperation of the CAWAPI partners. Based on this geometry description both structured and unstructured grids have been generated. The baseline structured (multi-block) grid (and a family of derived grids) has been generated by the National Aerospace Laboratory NLR. Although the algorithms used by NLR had become available just before CAWAPI and thus only a limited experience with their application to such a complex configuration had been gained, a grid of good quality was generated well within four weeks. This time compared favourably with that required to produce the unstructured grids in CAWAPI. The baseline all-tetrahedral and hybrid unstructured grids has been generated at NASA Langley Research Center and the USAFA, respectively. To provide more geometrical resolution, trimmed unstructured grids have been generated at EADS-MAS, the UTSimCenter, Boeing Phantom Works and KTH/FOI. All grids generated within the framework of CAWAPI will be discussed in the article. Both results obtained on the structured grids and the unstructured grids showed a significant improvement in agreement with flight test data in comparison with those obtained on the structured multi-block grid used during CAWAP.

  7. Land surface modeling in convection permitting simulations

    NASA Astrophysics Data System (ADS)

    van Heerwaarden, Chiel; Benedict, Imme

    2017-04-01

    The next generation of weather and climate models permits convection, albeit at a grid spacing that is not sufficient to resolve all details of the clouds. Whereas much attention is being devoted to the correct simulation of convective clouds and associated precipitation, the role of the land surface has received far less interest. In our view, convective permitting simulations pose a set of problems that need to be solved before accurate weather and climate prediction is possible. The heart of the problem lies at the direct runoff and at the nonlinearity of the surface stress as a function of soil moisture. In coarse resolution simulations, where convection is not permitted, precipitation that reaches the land surface is uniformly distributed over the grid cell. Subsequently, a fraction of this precipitation is intercepted by vegetation or leaves the grid cell via direct runoff, whereas the remainder infiltrates into the soil. As soon as we move to convection permitting simulations, this precipitation falls often locally in large amounts. If the same land-surface model is used as in simulations with parameterized convection, this leads to an increase in direct runoff. Furthermore, spatially non-uniform infiltration leads to a very different surface stress, when scaled up to the course resolution of simulations without convection. Based on large-eddy simulation of realistic convection events at a large domain, this study presents a quantification of the errors made at the land surface in convection permitting simulation. It compares the magnitude of the errors to those made in the convection itself due to the coarse resolution of the simulation. We find that, convection permitting simulations have less evaporation than simulations with parameterized convection, resulting in a non-realistic drying of the atmosphere. We present solutions to resolve this problem.

  8. Single Particulate SEM-EDX Analysis of Iron-Containing Coarse Particulate Matter in an Urban Environment: Sources and Distribution of Iron within Cleveland, Ohio

    EPA Science Inventory

    The physicochemical properties of coarse-mode, iron-containing particles, and their temporal and spatial distributions are poorly understood. Single particle analysis combining x-ray elemental mapping and computer-controlled scanning electron microscopy (CCSEM-EDX) of passively ...

  9. An open source software for fast grid-based data-mining in spatial epidemiology (FGBASE).

    PubMed

    Baker, David M; Valleron, Alain-Jacques

    2014-10-30

    Examining whether disease cases are clustered in space is an important part of epidemiological research. Another important part of spatial epidemiology is testing whether patients suffering from a disease are more, or less, exposed to environmental factors of interest than adequately defined controls. Both approaches involve determining the number of cases and controls (or population at risk) in specific zones. For cluster searches, this often must be done for millions of different zones. Doing this by calculating distances can lead to very lengthy computations. In this work we discuss the computational advantages of geographical grid-based methods, and introduce an open source software (FGBASE) which we have created for this purpose. Geographical grids based on the Lambert Azimuthal Equal Area projection are well suited for spatial epidemiology because they preserve area: each cell of the grid has the same area. We describe how data is projected onto such a grid, as well as grid-based algorithms for spatial epidemiological data-mining. The software program (FGBASE), that we have developed, implements these grid-based methods. The grid based algorithms perform extremely fast. This is particularly the case for cluster searches. When applied to a cohort of French Type 1 Diabetes (T1D) patients, as an example, the grid based algorithms detected potential clusters in a few seconds on a modern laptop. This compares very favorably to an equivalent cluster search using distance calculations instead of a grid, which took over 4 hours on the same computer. In the case study we discovered 4 potential clusters of T1D cases near the cities of Le Havre, Dunkerque, Toulouse and Nantes. One example of environmental analysis with our software was to study whether a significant association could be found between distance to vineyards with heavy pesticide. None was found. In both examples, the software facilitates the rapid testing of hypotheses. Grid-based algorithms for mining spatial epidemiological data provide advantages in terms of computational complexity thus improving the speed of computations. We believe that these methods and this software tool (FGBASE) will lower the computational barriers to entry for those performing epidemiological research.

  10. Partitioning medical image databases for content-based queries on a Grid.

    PubMed

    Montagnat, J; Breton, V; E Magnin, I

    2005-01-01

    In this paper we study the impact of executing a medical image database query application on the grid. For lowering the total computation time, the image database is partitioned into subsets to be processed on different grid nodes. A theoretical model of the application complexity and estimates of the grid execution overhead are used to efficiently partition the database. We show results demonstrating that smart partitioning of the database can lead to significant improvements in terms of total computation time. Grids are promising for content-based image retrieval in medical databases.

  11. Lambda Data Grid: Communications Architecture in Support of Grid Computing

    DTIC Science & Technology

    2006-12-21

    number of paradigm shifts in the 20th century, including the growth of large geographically dispersed teams and the use of simulations and computational...get results. The work in this thesis automates the orchestration of networks with other resources, better utilizing all resources in a time efficient...domains, over transatlantic links in around minute. The main goal of this thesis is to build a new grid-computing paradigm that fully harnesses the

  12. Grids: The Top Ten Questions

    DOE PAGES

    Schopf, Jennifer M.; Nitzberg, Bill

    2002-01-01

    The design and implementation of a national computing system and data grid has become a reachable goal from both the computer science and computational science point of view. A distributed infrastructure capable of sophisticated computational functions can bring many benefits to scientific work, but poses many challenges, both technical and socio-political. Technical challenges include having basic software tools, higher-level services, functioning and pervasive security, and standards, while socio-political issues include building a user community, adding incentives for sites to be part of a user-centric environment, and educating funding sources about the needs of this community. This paper details the areasmore » relating to Grid research that we feel still need to be addressed to fully leverage the advantages of the Grid.« less

  13. Job Superscheduler Architecture and Performance in Computational Grid Environments

    NASA Technical Reports Server (NTRS)

    Shan, Hongzhang; Oliker, Leonid; Biswas, Rupak

    2003-01-01

    Computational grids hold great promise in utilizing geographically separated heterogeneous resources to solve large-scale complex scientific problems. However, a number of major technical hurdles, including distributed resource management and effective job scheduling, stand in the way of realizing these gains. In this paper, we propose a novel grid superscheduler architecture and three distributed job migration algorithms. We also model the critical interaction between the superscheduler and autonomous local schedulers. Extensive performance comparisons with ideal, central, and local schemes using real workloads from leading computational centers are conducted in a simulation environment. Additionally, synthetic workloads are used to perform a detailed sensitivity analysis of our superscheduler. Several key metrics demonstrate that substantial performance gains can be achieved via smart superscheduling in distributed computational grids.

  14. The distribution of tree roots in Douglas-fir forests in the Pacific Northwest in relation to depth, space, coarse organic matter and mineral fragments.

    Treesearch

    Constance A. Harrington; Scott M. Holub; Cici Bauer; E. Ashley Steel

    2017-01-01

    This study evaluated relationships between site or tree characteristics and below-ground materials in Douglas-fir forests of the Pacific Northwest. We core-sampled living roots, dead organic matter, and mineral fragments at three soil depths on a 300-sample grid at nine forested sites in western Washington and Oregon resulting in approximately 7200 samples. We explored...

  15. Blasim: A computational tool to assess ice impact damage on engine blades

    NASA Astrophysics Data System (ADS)

    Reddy, E. S.; Abumeri, G. H.; Chamis, C. C.

    1993-04-01

    A portable computer called BLASIM was developed at NASA LeRC to assess ice impact damage on aircraft engine blades. In addition to ice impact analyses, the code also contains static, dynamic, resonance margin, and supersonic flutter analysis capabilities. Solid, hollow, superhybrid, and composite blades are supported. An optional preprocessor (input generator) was also developed to interactively generate input for BLASIM. The blade geometry can be defined using a series of airfoils at discrete input stations or by a finite element grid. The code employs a coarse, fixed finite element mesh containing triangular plate finite elements to minimize program execution time. Ice piece is modeled using an equivalent spherical objective that has a high velocity opposite that of the aircraft and parallel to the engine axis. For local impact damage assessment, the impact load is considered as a distributed force acting over a region around the impact point. The average radial strain of the finite elements along the leading edge is used as a measure of the local damage. To estimate damage at the blade root, the impact is treated as an impulse and a combined stress failure criteria is employed. Parametric studies of local and root ice impact damage, and post-impact dynamics are discussed for solid and composite blades.

  16. Finite Volume Element (FVE) discretization and multilevel solution of the axisymmetric heat equation

    NASA Astrophysics Data System (ADS)

    Litaker, Eric T.

    1994-12-01

    The axisymmetric heat equation, resulting from a point-source of heat applied to a metal block, is solved numerically; both iterative and multilevel solutions are computed in order to compare the two processes. The continuum problem is discretized in two stages: finite differences are used to discretize the time derivatives, resulting is a fully implicit backward time-stepping scheme, and the Finite Volume Element (FVE) method is used to discretize the spatial derivatives. The application of the FVE method to a problem in cylindrical coordinates is new, and results in stencils which are analyzed extensively. Several iteration schemes are considered, including both Jacobi and Gauss-Seidel; a thorough analysis of these schemes is done, using both the spectral radii of the iteration matrices and local mode analysis. Using this discretization, a Gauss-Seidel relaxation scheme is used to solve the heat equation iteratively. A multilevel solution process is then constructed, including the development of intergrid transfer and coarse grid operators. Local mode analysis is performed on the components of the amplification matrix, resulting in the two-level convergence factors for various combinations of the operators. A multilevel solution process is implemented by using multigrid V-cycles; the iterative and multilevel results are compared and discussed in detail. The computational savings resulting from the multilevel process are then discussed.

  17. A computing method for spatial accessibility based on grid partition

    NASA Astrophysics Data System (ADS)

    Ma, Linbing; Zhang, Xinchang

    2007-06-01

    An accessibility computing method and process based on grid partition was put forward in the paper. As two important factors impacting on traffic, density of road network and relative spatial resistance for difference land use was integrated into computing traffic cost in each grid. A* algorithms was inducted to searching optimum traffic cost of grids path, a detailed searching process and definition of heuristic evaluation function was described in the paper. Therefore, the method can be implemented more simply and its data source is obtained more easily. Moreover, by changing heuristic searching information, more reasonable computing result can be obtained. For confirming our research, a software package was developed with C# language under ArcEngine9 environment. Applying the computing method, a case study on accessibility of business districts in Guangzhou city was carried out.

  18. GreenView and GreenLand Applications Development on SEE-GRID Infrastructure

    NASA Astrophysics Data System (ADS)

    Mihon, Danut; Bacu, Victor; Gorgan, Dorian; Mészáros, Róbert; Gelybó, Györgyi; Stefanut, Teodor

    2010-05-01

    The GreenView and GreenLand applications [1] have been developed through the SEE-GRID-SCI (SEE-GRID eInfrastructure for regional eScience) FP7 project co-funded by the European Commission [2]. The development of environment applications is a challenge for Grid technologies and software development methodologies. This presentation exemplifies the development of the GreenView and GreenLand applications over the SEE-GRID infrastructure by the Grid Application Development Methodology [3]. Today's environmental applications are used in vary domains of Earth Science such as meteorology, ground and atmospheric pollution, ground metal detection or weather prediction. These applications run on satellite images (e.g. Landsat, MERIS, MODIS, etc.) and the accuracy of output results depends mostly of the quality of these images. The main drawback of such environmental applications regards the need of computation power and storage power (some images are almost 1GB in size), in order to process such a large data volume. Actually, almost applications requiring high computation resources have approached the migration onto the Grid infrastructure. This infrastructure offers the computing power by running the atomic application components on different Grid nodes in sequential or parallel mode. The middleware used between the Grid infrastructure and client applications is ESIP (Environment Oriented Satellite Image Processing Platform), which is based on gProcess platform [4]. In its current format, gProcess is used for launching new processes on the Grid nodes, but also for monitoring the execution status of these processes. This presentation highlights two case studies of Grid based environmental applications, GreenView and GreenLand [5]. GreenView is used in correlation with MODIS (Moderate Resolution Imaging Spectroradiometer) satellite images and meteorological datasets, in order to produce pseudo colored temperature and vegetation maps for different geographical CEE (Central Eastern Europe) regions. On the other hand, GreenLand is used for generating maps for different vegetation indexes (e.g. NDVI, EVI, SAVI, GEMI) based on Landsat satellite images. Both applications are using interpolation and random value generation algorithms, but also specific formulas for computing vegetation index values. The GreenView and GreenLand applications have been experimented over the SEE-GRID infrastructure and the performance evaluation is reported in [6]. The improvement of the execution time (obtained through a better parallelization of jobs), the extension of geographical areas to other parts of the Earth, and new user interaction techniques on spatial data and large set of satellite images are the goals of the future work. References [1] GreenView application on Wiki, http://wiki.egee-see.org/index.php/GreenView [2] SEE-GRID-SCI Project, http://www.see-grid-sci.eu/ [3] Gorgan D., Stefanut T., Bâcu V., Mihon D., Grid based Environment Application Development Methodology, SCICOM, 7th International Conference on "Large-Scale Scientific Computations", 4-8 June, 2009, Sozopol, Bulgaria, (To be published by Springer), (2009). [4] Gorgan D., Bacu V., Stefanut T., Rodila D., Mihon D., Grid based Satellite Image Processing Platform for Earth Observation Applications Development. IDAACS'2009 - IEEE Fifth International Workshop on "Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications", 21-23 September, Cosenza, Italy, IEEE Published in Computer Press, 247-252 (2009). [5] Mihon D., Bacu V., Stefanut T., Gorgan D., "Grid Based Environment Application Development - GreenView Application". ICCP2009 - IEEE 5th International Conference on Intelligent Computer Communication and Processing, 27 Aug, 2009 Cluj-Napoca. Published by IEEE Computer Press, pp. 275-282 (2009). [6] Danut Mihon, Victor Bacu, Dorian Gorgan, Róbert Mészáros, Györgyi Gelybó, Teodor Stefanut, Practical Considerations on the GreenView Application Development and Execution over SEE-GRID. SEE-GRID-SCI User Forum, 9-10 Dec 2009, Bogazici University, Istanbul, Turkey, ISBN: 978-975-403-510-0, pp. 167-175 (2009).

  19. Pervasive access to images and data--the use of computing grids and mobile/wireless devices across healthcare enterprises.

    PubMed

    Pohjonen, Hanna; Ross, Peeter; Blickman, Johan G; Kamman, Richard

    2007-01-01

    Emerging technologies are transforming the workflows in healthcare enterprises. Computing grids and handheld mobile/wireless devices are providing clinicians with enterprise-wide access to all patient data and analysis tools on a pervasive basis. In this paper, emerging technologies are presented that provide computing grids and streaming-based access to image and data management functions, and system architectures that enable pervasive computing on a cost-effective basis. Finally, the implications of such technologies are investigated regarding the positive impacts on clinical workflows.

  20. AGIS: The ATLAS Grid Information System

    NASA Astrophysics Data System (ADS)

    Anisenkov, A.; Di Girolamo, A.; Klimentov, A.; Oleynik, D.; Petrosyan, A.; Atlas Collaboration

    2014-06-01

    ATLAS, a particle physics experiment at the Large Hadron Collider at CERN, produced petabytes of data annually through simulation production and tens of petabytes of data per year from the detector itself. The ATLAS computing model embraces the Grid paradigm and a high degree of decentralization and computing resources able to meet ATLAS requirements of petabytes scale data operations. In this paper we describe the ATLAS Grid Information System (AGIS), designed to integrate configuration and status information about resources, services and topology of the computing infrastructure used by the ATLAS Distributed Computing applications and services.

  1. Domain Decomposition By the Advancing-Partition Method for Parallel Unstructured Grid Generation

    NASA Technical Reports Server (NTRS)

    Pirzadeh, Shahyar Z.; Zagaris, George

    2009-01-01

    A new method of domain decomposition has been developed for generating unstructured grids in subdomains either sequentially or using multiple computers in parallel. Domain decomposition is a crucial and challenging step for parallel grid generation. Prior methods are generally based on auxiliary, complex, and computationally intensive operations for defining partition interfaces and usually produce grids of lower quality than those generated in single domains. The new technique, referred to as "Advancing Partition," is based on the Advancing-Front method, which partitions a domain as part of the volume mesh generation in a consistent and "natural" way. The benefits of this approach are: 1) the process of domain decomposition is highly automated, 2) partitioning of domain does not compromise the quality of the generated grids, and 3) the computational overhead for domain decomposition is minimal. The new method has been implemented in NASA's unstructured grid generation code VGRID.

  2. Three-dimensional computational fluid dynamics modeling of particle uptake by an occupational air sampler using manually-scaled and adaptive grids

    PubMed Central

    Landázuri, Andrea C.; Sáez, A. Eduardo; Anthony, T. Renée

    2016-01-01

    This work presents fluid flow and particle trajectory simulation studies to determine the aspiration efficiency of a horizontally oriented occupational air sampler using computational fluid dynamics (CFD). Grid adaption and manual scaling of the grids were applied to two sampler prototypes based on a 37-mm cassette. The standard k–ε model was used to simulate the turbulent air flow and a second order streamline-upwind discretization scheme was used to stabilize convective terms of the Navier–Stokes equations. Successively scaled grids for each configuration were created manually and by means of grid adaption using the velocity gradient in the main flow direction. Solutions were verified to assess iterative convergence, grid independence and monotonic convergence. Particle aspiration efficiencies determined for both prototype samplers were undistinguishable, indicating that the porous filter does not play a noticeable role in particle aspiration. Results conclude that grid adaption is a powerful tool that allows to refine specific regions that require lots of detail and therefore better resolve flow detail. It was verified that adaptive grids provided a higher number of locations with monotonic convergence than the manual grids and required the least computational effort. PMID:26949268

  3. The Impact of Varying the Physics Grid Resolution Relative to the Dynamical Core Resolution in CAM-SE-CSLAM

    NASA Astrophysics Data System (ADS)

    Herrington, A. R.; Lauritzen, P. H.; Reed, K. A.

    2017-12-01

    The spectral element dynamical core of the Community Atmosphere Model (CAM) has recently been coupled to an approximately isotropic, finite-volume grid per implementation of the conservative semi-Lagrangian multi-tracer transport scheme (CAM-SE-CSLAM; Lauritzen et al. 2017). In this framework, the semi-Lagrangian transport of tracers are computed on the finite-volume grid, while the adiabatic dynamics are solved using the spectral element grid. The physical parameterizations are evaluated on the finite-volume grid, as opposed to the unevenly spaced Gauss-Lobatto-Legendre nodes of the spectral element grid. Computing the physics on the finite-volume grid reduces numerical artifacts such as grid imprinting, possibly because the forcing terms are no longer computed at element boundaries where the resolved dynamics are least smooth. The separation of the physics grid and the dynamics grid allows for a unique opportunity to understand the resolution sensitivity in CAM-SE-CSLAM. The observed large sensitivity of CAM to horizontal resolution is a poorly understood impediment to improved simulations of regional climate using global, variable resolution grids. Here, a series of idealized moist simulations are presented in which the finite-volume grid resolution is varied relative to the spectral element grid resolution in CAM-SE-CSLAM. The simulations are carried out at multiple spectral element grid resolutions, in part to provide a companion set of simulations, in which the spectral element grid resolution is varied relative to the finite-volume grid resolution, but more generally to understand if the sensitivity to the finite-volume grid resolution is consistent across a wider spectrum of resolved scales. Results are interpreted in the context of prior ideas regarding resolution sensitivity of global atmospheric models.

  4. A coarse-grained Monte Carlo approach to diffusion processes in metallic nanoparticles

    NASA Astrophysics Data System (ADS)

    Hauser, Andreas W.; Schnedlitz, Martin; Ernst, Wolfgang E.

    2017-06-01

    A kinetic Monte Carlo approach on a coarse-grained lattice is developed for the simulation of surface diffusion processes of Ni, Pd and Au structures with diameters in the range of a few nanometers. Intensity information obtained via standard two-dimensional transmission electron microscopy imaging techniques is used to create three-dimensional structure models as input for a cellular automaton. A series of update rules based on reaction kinetics is defined to allow for a stepwise evolution in time with the aim to simulate surface diffusion phenomena such as Rayleigh breakup and surface wetting. The material flow, in our case represented by the hopping of discrete portions of metal on a given grid, is driven by the attempt to minimize the surface energy, which can be achieved by maximizing the number of filled neighbor cells.

  5. On long-time instabilities in staggered finite difference simulations of the seismic acoustic wave equations on discontinuous grids

    NASA Astrophysics Data System (ADS)

    Gao, Longfei; Ketcheson, David; Keyes, David

    2018-02-01

    We consider the long-time instability issue associated with finite difference simulation of seismic acoustic wave equations on discontinuous grids. This issue is exhibited by a prototype algebraic problem abstracted from practical application settings. Analysis of this algebraic problem leads to better understanding of the cause of the instability and provides guidance for its treatment. Specifically, we use the concept of discrete energy to derive the proper solution transfer operators and design an effective way to damp the unstable solution modes. Our investigation shows that the interpolation operators need to be matched with their companion restriction operators in order to properly couple the coarse and fine grids. Moreover, to provide effective damping, specially designed diffusive terms are introduced to the equations at designated locations and discretized with specially designed schemes. These techniques are applied to simulations in practical settings and are shown to lead to superior results in terms of both stability and accuracy.

  6. Drag Prediction for the DLR-F6 Wing/Body and DPW Wing using CFL3D and OVERFLOW Overset Mesh

    NASA Technical Reports Server (NTRS)

    Sclanfani, Anthony J.; Vassberg, John C.; Harrison, Neal A.; DeHaan, Mark A.; Rumsey, Christopher L.; Rivers, S. Melissa; Morrison, Joseph H.

    2007-01-01

    A series of overset grids was generated in response to the 3rd AIAA CFD Drag Prediction Workshop (DPW-III) which preceded the 25th Applied Aerodynamics Conference in June 2006. DPW-III focused on accurate drag prediction for wing/body and wing-alone configurations. The grid series built for each configuration consists of a coarse, medium, fine, and extra-fine mesh. The medium mesh is first constructed using the current state of best practices for overset grid generation. The medium mesh is then coarsened and enhanced by applying a factor of 1.5 to each (I,J,K) dimension. The resulting set of parametrically equivalent grids increase in size by a factor of roughly 3.5 from one level to the next denser level. CFD simulations were performed on the overset grids using two different RANS flow solvers: CFL3D and OVERFLOW. The results were post-processed using Richardson extrapolation to approximate grid converged values of lift, drag, pitching moment, and angle-of-attack at the design condition. This technique appears to work well if the solution does not contain large regions of separated flow (similar to that seen n the DLR-F6 results) and appropriate grid densities are selected. The extra-fine grid data helped to establish asymptotic grid convergence for both the OVERFLOW FX2B wing/body results and the OVERFLOW DPW-W1/W2 wing-alone results. More CFL3D data is needed to establish grid convergence trends. The medium grid was utilized beyond the grid convergence study by running each configuration at several angles-of-attack so drag polars and lift/pitching moment curves could be evaluated. The alpha sweep results are used to compare data across configurations as well as across flow solvers. With the exception of the wing/body drag polar, the two codes compare well qualitatively showing consistent incremental trends and similar wing pressure comparisons.

  7. Rapid Airplane Parametric Input Design (RAPID)

    NASA Technical Reports Server (NTRS)

    Smith, Robert E.

    1995-01-01

    RAPID is a methodology and software system to define a class of airplane configurations and directly evaluate surface grids, volume grids, and grid sensitivity on and about the configurations. A distinguishing characteristic which separates RAPID from other airplane surface modellers is that the output grids and grid sensitivity are directly applicable in CFD analysis. A small set of design parameters and grid control parameters govern the process which is incorporated into interactive software for 'real time' visual analysis and into batch software for the application of optimization technology. The computed surface grids and volume grids are suitable for a wide range of Computational Fluid Dynamics (CFD) simulation. The general airplane configuration has wing, fuselage, horizontal tail, and vertical tail components. The double-delta wing and tail components are manifested by solving a fourth order partial differential equation (PDE) subject to Dirichlet and Neumann boundary conditions. The design parameters are incorporated into the boundary conditions and therefore govern the shapes of the surfaces. The PDE solution yields a smooth transition between boundaries. Surface grids suitable for CFD calculation are created by establishing an H-type topology about the configuration and incorporating grid spacing functions in the PDE equation for the lifting components and the fuselage definition equations. User specified grid parameters govern the location and degree of grid concentration. A two-block volume grid about a configuration is calculated using the Control Point Form (CPF) technique. The interactive software, which runs on Silicon Graphics IRIS workstations, allows design parameters to be continuously varied and the resulting surface grid to be observed in real time. The batch software computes both the surface and volume grids and also computes the sensitivity of the output grid with respect to the input design parameters by applying the precompiler tool ADIFOR to the grid generation program. The output of ADIFOR is a new source code containing the old code plus expressions for derivatives of specified dependent variables (grid coordinates) with respect to specified independent variables (design parameters). The RAPID methodology and software provide a means of rapidly defining numerical prototypes, grids, and grid sensitivity of a class of airplane configurations. This technology and software is highly useful for CFD research for preliminary design and optimization processes.

  8. Towards the Irving-Kirkwood limit of the mechanical stress tensor

    NASA Astrophysics Data System (ADS)

    Smith, E. R.; Heyes, D. M.; Dini, D.

    2017-06-01

    The probability density functions (PDFs) of the local measure of pressure as a function of the sampling volume are computed for a model Lennard-Jones (LJ) fluid using the Method of Planes (MOP) and Volume Averaging (VA) techniques. This builds on the study of Heyes, Dini, and Smith [J. Chem. Phys. 145, 104504 (2016)] which only considered the VA method for larger subvolumes. The focus here is typically on much smaller subvolumes than considered previously, which tend to the Irving-Kirkwood limit where the pressure tensor is defined at a point. The PDFs from the MOP and VA routes are compared for cubic subvolumes, V =ℓ3. Using very high grid-resolution and box-counting analysis, we also show that any measurement of pressure in a molecular system will fail to exactly capture the molecular configuration. This suggests that it is impossible to obtain the pressure in the Irving-Kirkwood limit using the commonly employed grid based averaging techniques. More importantly, below ℓ ≈3 in LJ reduced units, the PDFs depart from Gaussian statistics, and for ℓ =1.0 , a double peaked PDF is observed in the MOP but not VA pressure distributions. This departure from a Gaussian shape means that the average pressure is not the most representative or common value to arise. In addition to contributing to our understanding of local pressure formulas, this work shows a clear lower limit on the validity of simply taking the average value when coarse graining pressure from molecular (and colloidal) systems.

  9. Towards the Irving-Kirkwood limit of the mechanical stress tensor.

    PubMed

    Smith, E R; Heyes, D M; Dini, D

    2017-06-14

    The probability density functions (PDFs) of the local measure of pressure as a function of the sampling volume are computed for a model Lennard-Jones (LJ) fluid using the Method of Planes (MOP) and Volume Averaging (VA) techniques. This builds on the study of Heyes, Dini, and Smith [J. Chem. Phys. 145, 104504 (2016)] which only considered the VA method for larger subvolumes. The focus here is typically on much smaller subvolumes than considered previously, which tend to the Irving-Kirkwood limit where the pressure tensor is defined at a point. The PDFs from the MOP and VA routes are compared for cubic subvolumes, V=ℓ 3 . Using very high grid-resolution and box-counting analysis, we also show that any measurement of pressure in a molecular system will fail to exactly capture the molecular configuration. This suggests that it is impossible to obtain the pressure in the Irving-Kirkwood limit using the commonly employed grid based averaging techniques. More importantly, below ℓ≈3 in LJ reduced units, the PDFs depart from Gaussian statistics, and for ℓ=1.0, a double peaked PDF is observed in the MOP but not VA pressure distributions. This departure from a Gaussian shape means that the average pressure is not the most representative or common value to arise. In addition to contributing to our understanding of local pressure formulas, this work shows a clear lower limit on the validity of simply taking the average value when coarse graining pressure from molecular (and colloidal) systems.

  10. Modeling and simulation of storm surge on Staten Island to understand inundation mitigation strategies

    USGS Publications Warehouse

    Kress, Michael E.; Benimoff, Alan I.; Fritz, William J.; Thatcher, Cindy A.; Blanton, Brian O.; Dzedzits, Eugene

    2016-01-01

    Hurricane Sandy made landfall on October 29, 2012, near Brigantine, New Jersey, and had a transformative impact on Staten Island and the New York Metropolitan area. Of the 43 New York City fatalities, 23 occurred on Staten Island. The borough, with a population of approximately 500,000, experienced some of the most devastating impacts of the storm. Since Hurricane Sandy, protective dunes have been constructed on the southeast shore of Staten Island. ADCIRC+SWAN model simulations run on The City University of New York's Cray XE6M, housed at the College of Staten Island, using updated topographic data show that the coast of Staten Island is still susceptible to tidal surge similar to those generated by Hurricane Sandy. Sandy hindcast simulations of storm surges focusing on Staten Island are in good agreement with observed storm tide measurements. Model results calculated from fine-scaled and coarse-scaled computational grids demonstrate that finer grids better resolve small differences in the topography of critical hydraulic control structures, which affect storm surge inundation levels. The storm surge simulations, based on post-storm topography obtained from high-resolution lidar, provide much-needed information to understand Staten Island's changing vulnerability to storm surge inundation. The results of fine-scale storm surge simulations can be used to inform efforts to improve resiliency to future storms. For example, protective barriers contain planned gaps in the dunes to provide for beach access that may inadvertently increase the vulnerability of the area.

  11. Towards the Irving-Kirkwood limit of the mechanical stress tensor

    PubMed Central

    Heyes, D. M.; Dini, D.

    2017-01-01

    The probability density functions (PDFs) of the local measure of pressure as a function of the sampling volume are computed for a model Lennard-Jones (LJ) fluid using the Method of Planes (MOP) and Volume Averaging (VA) techniques. This builds on the study of Heyes, Dini, and Smith [J. Chem. Phys. 145, 104504 (2016)] which only considered the VA method for larger subvolumes. The focus here is typically on much smaller subvolumes than considered previously, which tend to the Irving-Kirkwood limit where the pressure tensor is defined at a point. The PDFs from the MOP and VA routes are compared for cubic subvolumes, V=ℓ3. Using very high grid-resolution and box-counting analysis, we also show that any measurement of pressure in a molecular system will fail to exactly capture the molecular configuration. This suggests that it is impossible to obtain the pressure in the Irving-Kirkwood limit using the commonly employed grid based averaging techniques. More importantly, below ℓ≈3 in LJ reduced units, the PDFs depart from Gaussian statistics, and for ℓ=1.0, a double peaked PDF is observed in the MOP but not VA pressure distributions. This departure from a Gaussian shape means that the average pressure is not the most representative or common value to arise. In addition to contributing to our understanding of local pressure formulas, this work shows a clear lower limit on the validity of simply taking the average value when coarse graining pressure from molecular (and colloidal) systems. PMID:29166053

  12. Development of a Distributed Parallel Computing Framework to Facilitate Regional/Global Gridded Crop Modeling with Various Scenarios

    NASA Astrophysics Data System (ADS)

    Jang, W.; Engda, T. A.; Neff, J. C.; Herrick, J.

    2017-12-01

    Many crop models are increasingly used to evaluate crop yields at regional and global scales. However, implementation of these models across large areas using fine-scale grids is limited by computational time requirements. In order to facilitate global gridded crop modeling with various scenarios (i.e., different crop, management schedule, fertilizer, and irrigation) using the Environmental Policy Integrated Climate (EPIC) model, we developed a distributed parallel computing framework in Python. Our local desktop with 14 cores (28 threads) was used to test the distributed parallel computing framework in Iringa, Tanzania which has 406,839 grid cells. High-resolution soil data, SoilGrids (250 x 250 m), and climate data, AgMERRA (0.25 x 0.25 deg) were also used as input data for the gridded EPIC model. The framework includes a master file for parallel computing, input database, input data formatters, EPIC model execution, and output analyzers. Through the master file for parallel computing, the user-defined number of threads of CPU divides the EPIC simulation into jobs. Then, Using EPIC input data formatters, the raw database is formatted for EPIC input data and the formatted data moves into EPIC simulation jobs. Then, 28 EPIC jobs run simultaneously and only interesting results files are parsed and moved into output analyzers. We applied various scenarios with seven different slopes and twenty-four fertilizer ranges. Parallelized input generators create different scenarios as a list for distributed parallel computing. After all simulations are completed, parallelized output analyzers are used to analyze all outputs according to the different scenarios. This saves significant computing time and resources, making it possible to conduct gridded modeling at regional to global scales with high-resolution data. For example, serial processing for the Iringa test case would require 113 hours, while using the framework developed in this study requires only approximately 6 hours, a nearly 95% reduction in computing time.

  13. Grid Computing at GSI for ALICE and FAIR - present and future

    NASA Astrophysics Data System (ADS)

    Schwarz, Kilian; Uhlig, Florian; Karabowicz, Radoslaw; Montiel-Gonzalez, Almudena; Zynovyev, Mykhaylo; Preuss, Carsten

    2012-12-01

    The future FAIR experiments CBM and PANDA have computing requirements that fall in a category that could currently not be satisfied by one single computing centre. One needs a larger, distributed computing infrastructure to cope with the amount of data to be simulated and analysed. Since 2002, GSI operates a tier2 center for ALICE@CERN. The central component of the GSI computing facility and hence the core of the ALICE tier2 centre is a LSF/SGE batch farm, currently split into three subclusters with a total of 15000 CPU cores shared by the participating experiments, and accessible both locally and soon also completely via Grid. In terms of data storage, a 5.5 PB Lustre file system, directly accessible from all worker nodes is maintained, as well as a 300 TB xrootd-based Grid storage element. Based on this existing expertise, and utilising ALICE's middleware ‘AliEn’, the Grid infrastructure for PANDA and CBM is being built. Besides a tier0 centre at GSI, the computing Grids of the two FAIR collaborations encompass now more than 17 sites in 11 countries and are constantly expanding. The operation of the distributed FAIR computing infrastructure benefits significantly from the experience gained with the ALICE tier2 centre. A close collaboration between ALICE Offline and FAIR provides mutual advantages. The employment of a common Grid middleware as well as compatible simulation and analysis software frameworks ensure significant synergy effects.

  14. Integrating Xgrid into the HENP distributed computing model

    NASA Astrophysics Data System (ADS)

    Hajdu, L.; Kocoloski, A.; Lauret, J.; Miller, M.

    2008-07-01

    Modern Macintosh computers feature Xgrid, a distributed computing architecture built directly into Apple's OS X operating system. While the approach is radically different from those generally expected by the Unix based Grid infrastructures (Open Science Grid, TeraGrid, EGEE), opportunistic computing on Xgrid is nonetheless a tempting and novel way to assemble a computing cluster with a minimum of additional configuration. In fact, it requires only the default operating system and authentication to a central controller from each node. OS X also implements arbitrarily extensible metadata, allowing an instantly updated file catalog to be stored as part of the filesystem itself. The low barrier to entry allows an Xgrid cluster to grow quickly and organically. This paper and presentation will detail the steps that can be taken to make such a cluster a viable resource for HENP research computing. We will further show how to provide to users a unified job submission framework by integrating Xgrid through the STAR Unified Meta-Scheduler (SUMS), making tasks and jobs submission effortlessly at reach for those users already using the tool for traditional Grid or local cluster job submission. We will discuss additional steps that can be taken to make an Xgrid cluster a full partner in grid computing initiatives, focusing on Open Science Grid integration. MIT's Xgrid system currently supports the work of multiple research groups in the Laboratory for Nuclear Science, and has become an important tool for generating simulations and conducting data analyses at the Massachusetts Institute of Technology.

  15. Multiscale virtual particle based elastic network model (MVP-ENM) for normal mode analysis of large-sized biomolecules.

    PubMed

    Xia, Kelin

    2017-12-20

    In this paper, a multiscale virtual particle based elastic network model (MVP-ENM) is proposed for the normal mode analysis of large-sized biomolecules. The multiscale virtual particle (MVP) model is proposed for the discretization of biomolecular density data. With this model, large-sized biomolecular structures can be coarse-grained into virtual particles such that a balance between model accuracy and computational cost can be achieved. An elastic network is constructed by assuming "connections" between virtual particles. The connection is described by a special harmonic potential function, which considers the influence from both the mass distributions and distance relations of the virtual particles. Two independent models, i.e., the multiscale virtual particle based Gaussian network model (MVP-GNM) and the multiscale virtual particle based anisotropic network model (MVP-ANM), are proposed. It has been found that in the Debye-Waller factor (B-factor) prediction, the results from our MVP-GNM with a high resolution are as good as the ones from GNM. Even with low resolutions, our MVP-GNM can still capture the global behavior of the B-factor very well with mismatches predominantly from the regions with large B-factor values. Further, it has been demonstrated that the low-frequency eigenmodes from our MVP-ANM are highly consistent with the ones from ANM even with very low resolutions and a coarse grid. Finally, the great advantage of MVP-ANM model for large-sized biomolecules has been demonstrated by using two poliovirus virus structures. The paper ends with a conclusion.

  16. Modeling winter precipitation over the Juneau Icefield, Alaska, using a linear model of orographic precipitation

    NASA Astrophysics Data System (ADS)

    Roth, Aurora; Hock, Regine; Schuler, Thomas V.; Bieniek, Peter A.; Pelto, Mauri; Aschwanden, Andy

    2018-03-01

    Assessing and modeling precipitation in mountainous areas remains a major challenge in glacier mass balance modeling. Observations are typically scarce and reanalysis data and similar climate products are too coarse to accurately capture orographic effects. Here we use the linear theory of orographic precipitation model (LT model) to downscale winter precipitation from a regional climate model over the Juneau Icefield, one of the largest ice masses in North America (>4000 km2), for the period 1979-2013. The LT model is physically-based yet computationally efficient, combining airflow dynamics and simple cloud microphysics. The resulting 1 km resolution precipitation fields show substantially reduced precipitation on the northeastern portion of the icefield compared to the southwestern side, a pattern that is not well captured in the coarse resolution (20 km) WRF data. Net snow accumulation derived from the LT model precipitation agrees well with point observations across the icefield. To investigate the robustness of the LT model results, we perform a series of sensitivity experiments varying hydrometeor fall speeds, the horizontal resolution of the underlying grid, and the source of the meteorological forcing data. The resulting normalized spatial precipitation pattern is similar for all sensitivity experiments, but local precipitation amounts vary strongly, with greatest sensitivity to variations in snow fall speed. Results indicate that the LT model has great potential to provide improved spatial patterns of winter precipitation for glacier mass balance modeling purposes in complex terrain, but ground observations are necessary to constrain model parameters to match total amounts.

  17. Data for Figures and Tables in Journal Article Assessment of the Effects of Horizontal Grid Resolution on Long-Term Air Quality Trends using Coupled WRF-CMAQ Simulations, doi:10.1016/j.atmosenv.2016.02.036

    EPA Pesticide Factsheets

    The dataset represents the data depicted in the Figures and Tables of a Journal Manuscript with the following abstract: The objective of this study is to determine the adequacy of using a relatively coarse horizontal resolution (i.e. 36 km) to simulate long-term trends of pollutant concentrations and radiation variables with the coupled WRF-CMAQ model. WRF-CMAQ simulations over the continental United State are performed over the 2001 to 2010 time period at two different horizontal resolutions of 12 and 36 km. Both simulations used the same emission inventory and model configurations. Model results are compared both in space and time to assess the potential weaknesses and strengths of using coarse resolution in long-term air quality applications. The results show that the 36 km and 12 km simulations are comparable in terms of trends analysis for both pollutant concentrations and radiation variables. The advantage of using the coarser 36 km resolution is a significant reduction of computational cost, time and storage requirement which are key considerations when performing multiple years of simulations for trend analysis. However, if such simulations are to be used for local air quality analysis, finer horizontal resolution may be beneficial since it can provide information on local gradients. In particular, divergences between the two simulations are noticeable in urban, complex terrain and coastal regions.This dataset is associated with the following publication

  18. Block-structured grids for complex aerodynamic configurations: Current status

    NASA Technical Reports Server (NTRS)

    Vatsa, Veer N.; Sanetrik, Mark D.; Parlette, Edward B.

    1995-01-01

    The status of CFD methods based on the use of block-structured grids for analyzing viscous flows over complex configurations is examined. The objective of the present study is to make a realistic assessment of the usability of such grids for routine computations typically encountered in the aerospace industry. It is recognized at the very outset that the total turnaround time, from the moment the configuration is identified until the computational results have been obtained and postprocessed, is more important than just the computational time. Pertinent examples will be cited to demonstrate the feasibility of solving flow over practical configurations of current interest on block-structured grids.

  19. Implicit schemes and parallel computing in unstructured grid CFD

    NASA Technical Reports Server (NTRS)

    Venkatakrishnam, V.

    1995-01-01

    The development of implicit schemes for obtaining steady state solutions to the Euler and Navier-Stokes equations on unstructured grids is outlined. Applications are presented that compare the convergence characteristics of various implicit methods. Next, the development of explicit and implicit schemes to compute unsteady flows on unstructured grids is discussed. Next, the issues involved in parallelizing finite volume schemes on unstructured meshes in an MIMD (multiple instruction/multiple data stream) fashion are outlined. Techniques for partitioning unstructured grids among processors and for extracting parallelism in explicit and implicit solvers are discussed. Finally, some dynamic load balancing ideas, which are useful in adaptive transient computations, are presented.

  20. SAGE: The Self-Adaptive Grid Code. 3

    NASA Technical Reports Server (NTRS)

    Davies, Carol B.; Venkatapathy, Ethiraj

    1999-01-01

    The multi-dimensional self-adaptive grid code, SAGE, is an important tool in the field of computational fluid dynamics (CFD). It provides an efficient method to improve the accuracy of flow solutions while simultaneously reducing computer processing time. Briefly, SAGE enhances an initial computational grid by redistributing the mesh points into more appropriate locations. The movement of these points is driven by an equal-error-distribution algorithm that utilizes the relationship between high flow gradients and excessive solution errors. The method also provides a balance between clustering points in the high gradient regions and maintaining the smoothness and continuity of the adapted grid, The latest version, Version 3, includes the ability to change the boundaries of a given grid to more efficiently enclose flow structures and provides alternative redistribution algorithms.

Top