NASA Astrophysics Data System (ADS)
Li, Y.; McDougall, T. J.
2016-02-01
Coarse resolution ocean models lack knowledge of spatial correlations between variables on scales smaller than the grid scale. Some researchers have shown that these spatial correlations play a role in the poleward heat flux. In order to evaluate the poleward transport induced by the spatial correlations at a fixed horizontal position, an equation is obtained to calculate the approximate transport from velocity gradients. The equation involves two terms that can be added to the quasi-Stokes streamfunction (based on temporal correlations) to incorporate the contribution of spatial correlations. Moreover, these new terms do not need to be parameterized and is ready to be evaluated by using model data directly. In this study, data from a high resolution ocean model have been used to estimate the accuracy of this HRM approach for improving the horizontal property fluxes in coarse-resolution ocean models. A coarse grid is formed by sub-sampling and box-car averaging the fine grid scale. The transport calculated on the coarse grid is then compared to the transport on original high resolution grid scale accumulated over a corresponding number of grid boxes. The preliminary results have shown that the estimate on coarse resolution grids roughly match the corresponding transports on high resolution grids.
Analyzing the Effects of Horizontal Resolution on Long-Term Coupled WRF-CMAQ Simulations
The objective of this study is to determine the adequacy of using a relatively coarse horizontal resolution (i.e. 36 km) to simulate long-term trends of pollutant concentrations and radiation variables with the coupled WRF-CMAQ model. To this end, WRF-CMAQ simulations over the co...
The objective of this study is to determine the adequacy of using a relatively coarse horizontal resolution (i.e. 36 km) to simulate long-term trends of pollutant concentrations and radiation variables with the coupled WRF-CMAQ model. WRF-CMAQ simulations over the continental Uni...
Assessment of the effects of horizontal grid resolution on long ...
The objective of this study is to determine the adequacy of using a relatively coarse horizontal resolution (i.e. 36 km) to simulate long-term trends of pollutant concentrations and radiation variables with the coupled WRF-CMAQ model. WRF-CMAQ simulations over the continental United State are performed over the 2001 to 2010 time period at two different horizontal resolutions of 12 and 36 km. Both simulations used the same emission inventory and model configurations. Model results are compared both in space and time to assess the potential weaknesses and strengths of using coarse resolution in long-term air quality applications. The results show that the 36 km and 12 km simulations are comparable in terms of trends analysis for both pollutant concentrations and radiation variables. The advantage of using the coarser 36 km resolution is a significant reduction of computational cost, time and storage requirement which are key considerations when performing multiple years of simulations for trend analysis. However, if such simulations are to be used for local air quality analysis, finer horizontal resolution may be beneficial since it can provide information on local gradients. In particular, divergences between the two simulations are noticeable in urban, complex terrain and coastal regions. The National Exposure Research Laboratory’s Atmospheric Modeling Division (AMAD) conducts research in support of EPA’s mission to protect human health and the environment.
The dataset represents the data depicted in the Figures and Tables of a Journal Manuscript with the following abstract: The objective of this study is to determine the adequacy of using a relatively coarse horizontal resolution (i.e. 36 km) to simulate long-term trends of pollutant concentrations and radiation variables with the coupled WRF-CMAQ model. WRF-CMAQ simulations over the continental United State are performed over the 2001 to 2010 time period at two different horizontal resolutions of 12 and 36 km. Both simulations used the same emission inventory and model configurations. Model results are compared both in space and time to assess the potential weaknesses and strengths of using coarse resolution in long-term air quality applications. The results show that the 36 km and 12 km simulations are comparable in terms of trends analysis for both pollutant concentrations and radiation variables. The advantage of using the coarser 36 km resolution is a significant reduction of computational cost, time and storage requirement which are key considerations when performing multiple years of simulations for trend analysis. However, if such simulations are to be used for local air quality analysis, finer horizontal resolution may be beneficial since it can provide information on local gradients. In particular, divergences between the two simulations are noticeable in urban, complex terrain and coastal regions.This dataset is associated with the following publication
Hyper-Resolution Groundwater Modeling using MODFLOW 6
NASA Astrophysics Data System (ADS)
Hughes, J. D.; Langevin, C.
2017-12-01
MODFLOW 6 is the latest version of the U.S. Geological Survey's modular hydrologic model. MODFLOW 6 was developed to synthesize many of the recent versions of MODFLOW into a single program, improve the way different process models are coupled, and to provide an object-oriented framework for adding new types of models and packages. The object-oriented framework and underlying numerical solver make it possible to tightly couple any number of hyper-resolution models within coarser regional models. The hyper-resolution models can be used to evaluate local-scale groundwater issues that may be affected by regional-scale forcings. In MODFLOW 6, hyper-resolution meshes can be maintained as separate model datasets, similar to MODFLOW-LGR, which simplifies the development of a coarse regional model with imbedded hyper-resolution models from a coarse regional model. For example, the South Atlantic Coastal Plain regional water availability model was converted from a MODFLOW-2000 model to a MODFLOW 6 model. The horizontal discretization of the original model is approximately 3,218 m x 3,218 m. Hyper-resolution models of the Aiken and Sumter County water budget areas in South Carolina with a horizontal discretization of approximately 322 m x 322 m were developed and were tightly coupled to a modified version of the original coarse regional model that excluded these areas. Hydraulic property and aquifer geometry data from the coarse model were mapped to the hyper-resolution models. The discretization of the hyper-resolution models is fine enough to make detailed analyses of the effect that changes in groundwater withdrawals in the production aquifers have on the water table and surface-water/groundwater interactions. The approach used in this analysis could be applied to other regional water availability models that have been developed by the U.S. Geological Survey to evaluate local scale groundwater issues.
Global climate models (GCMs) are currently used to obtain information about future changes in the large-scale climate. However, such simulations are typically done at coarse spatial resolutions, with model grid boxes on the order of 100 km on a horizontal side. Therefore, techniq...
NASA Astrophysics Data System (ADS)
Rimac, Antonija; von Storch, Jin-Song; Eden, Carsten
2013-04-01
The estimated power required to sustain global general circulation in the ocean is about 2 TW. This power is supplied with wind stress and tides. Energy spectrum shows pronounced maxima at near-inertial frequency. Near-inertial waves excited by high-frequency winds represent an important source for deep ocean mixing since they can propagate into the deep ocean and dissipate far away from the generation sites. The energy input by winds to near-inertial waves has been studied mostly using slab ocean models and wind stress forcing with coarse temporal resolution (e.g. 6-hourly). Slab ocean models lack the ability to reproduce fundamental aspects of kinetic energy balance and systematically overestimate the wind work. Also, slab ocean models do not account the energy used for the mixed layer deepening or the energy radiating downward into the deep ocean. Coarse temporal resolution of the wind forcing strongly underestimates the near-inertial energy. To overcome this difficulty we use an eddy permitting ocean model with high-frequency wind forcing. We establish the following model setup: We use the Max Planck Institute Ocean Model (MPIOM) on a tripolar grid with 45 km horizontal resolution and 40 vertical levels. We run the model with wind forcings that vary in horizontal and temporal resolution. We use high-resolution (1-hourly with 35 km horizontal resolution) and low-resolution winds (6-hourly with 250 km horizontal resolution). We address the following questions: Is the kinetic energy of near-inertial waves enhanced when high-resolution wind forcings are used? If so, is this due to higher level of overall wind variability or higher spatial or temporal resolution of wind forcing? How large is the power of near-inertial waves generated by winds? Our results show that near-inertial waves are enhanced and the near-inertial kinetic energy is two times higher (in the storm track regions 3.5 times higher) when high-resolution winds are used. Filtering high-resolution winds in space and time, the near-inertial kinetic energy reduces. The reduction is faster when a temporal filter is used suggesting that the high-frequency wind forcing is more efficient in generating near-inertial wave energy than the small-scale wind forcing. Using low-resolution wind forcing the wind generated power to near-inertial waves is 0.55 TW. When we use high-resolution wind forcing the result is 1.6 TW meaning that the result increases by 300%.
Bridging the scales in atmospheric composition simulations using a nudging technique
NASA Astrophysics Data System (ADS)
D'Isidoro, Massimo; Maurizi, Alberto; Russo, Felicita; Tampieri, Francesco
2010-05-01
Studying the interaction between climate and anthropogenic activities, specifically those concentrated in megacities/hot spots, requires the description of processes in a very wide range of scales from local, where anthropogenic emissions are concentrated to global where we are interested to study the impact of these sources. The description of all the processes at all scales within the same numerical implementation is not feasible because of limited computer resources. Therefore, different phenomena are studied by means of different numerical models that can cover different range of scales. The exchange of information from small to large scale is highly non-trivial though of high interest. In fact uncertainties in large scale simulations are expected to receive large contribution from the most polluted areas where the highly inhomogeneous distribution of sources connected to the intrinsic non-linearity of the processes involved can generate non negligible departures between coarse and fine scale simulations. In this work a new method is proposed and investigated in a case study (August 2009) using the BOLCHEM model. Monthly simulations at coarse (0.5° European domain, run A) and fine (0.1° Central Mediterranean domain, run B) horizontal resolution are performed using the coarse resolution as boundary condition for the fine one. Then another coarse resolution run (run C) is performed, in which the high resolution fields remapped on to the coarse grid are used to nudge the concentrations on the Po Valley area. The nudging is applied to all gas and aerosol species of BOLCHEM. Averaged concentrations and variances over Po Valley and other selected areas for O3 and PM are computed. It is observed that although the variance of run B is markedly larger than that of run A, the variance of run C is smaller because the remapping procedure removes large portion of variance from run B fields. Mean concentrations show some differences depending on species: in general mean values of run C lie between run A and run B. A propagation of the signal outside the nudging region is observed, and is evaluated in terms of differences between coarse resolution (with and without nudging) and fine resolution simulations.
Mesosacle eddies in a high resolution OGCM and coupled ocean-atmosphere GCM
NASA Astrophysics Data System (ADS)
Yu, Y.; Liu, H.; Lin, P.
2017-12-01
The present study described high-resolution climate modeling efforts including oceanic, atmospheric and coupled general circulation model (GCM) at the state key laboratory of numerical modeling for atmospheric sciences and geophysical fluid dynamics (LASG), Institute of Atmospheric Physics (IAP). The high-resolution OGCM is established based on the latest version of the LASG/IAP Climate system Ocean Model (LICOM2.1), but its horizontal resolution and vertical resolution are increased to 1/10° and 55 layers, respectively. Forced by the surface fluxes from the reanalysis and observed data, the model has been integrated for approximately more than 80 model years. Compared with the simulation of the coarse-resolution OGCM, the eddy-resolving OGCM not only better simulates the spatial-temporal features of mesoscale eddies and the paths and positions of western boundary currents but also reproduces the large meander of the Kuroshio Current and its interannual variability. Another aspect, namely, the complex structures of equatorial Pacific currents and currents in the coastal ocean of China, are better captured due to the increased horizontal and vertical resolution. Then we coupled the high resolution OGCM to NCAR CAM4 with 25km resolution, in which the mesoscale air-sea interaction processes are better captured.
A boundary condition for layer to level ocean model interaction
NASA Astrophysics Data System (ADS)
Mask, A.; O'Brien, J.; Preller, R.
2003-04-01
A radiation boundary condition based on vertical normal modes is introduced to allow a physical transition between nested/coupled ocean models that are of differing vertical structure and/or differing physics. In this particular study, a fine resolution regional/coastal sigma-coordinate Naval Coastal Ocean Model (NCOM) has been successfully nested to a coarse resolution (in the horizontal and vertical) basin scale NCOM and a coarse resolution basin scale Navy Layered Ocean Model (NLOM). Both of these models were developed at the Naval Research Laboratory (NRL) at Stennis Space Center, Mississippi, USA. This new method, which decomposes the vertical structure of the models into barotropic and baroclinic modes, gives improved results in the coastal domain over Orlanski radiation boundary conditions for the test cases. The principle reason for the improvement is that each mode has the radiation boundary condition applied individually; therefore, the packet of information passing through the boundary is allowed to have multiple phase speeds instead of a single-phase speed. Allowing multiple phase speeds reduces boundary reflections, thus improving results.
Impact of Variable-Resolution Meshes on Regional Climate Simulations
NASA Astrophysics Data System (ADS)
Fowler, L. D.; Skamarock, W. C.; Bruyere, C. L.
2014-12-01
The Model for Prediction Across Scales (MPAS) is currently being used for seasonal-scale simulations on globally-uniform and regionally-refined meshes. Our ongoing research aims at analyzing simulations of tropical convective activity and tropical cyclone development during one hurricane season over the North Atlantic Ocean, contrasting statistics obtained with a variable-resolution mesh against those obtained with a quasi-uniform mesh. Analyses focus on the spatial distribution, frequency, and intensity of convective and grid-scale precipitations, and their relative contributions to the total precipitation as a function of the horizontal scale. Multi-month simulations initialized on May 1st 2005 using ERA-Interim re-analyses indicate that MPAS performs satisfactorily as a regional climate model for different combinations of horizontal resolutions and transitions between the coarse and refined meshes. Results highlight seamless transitions for convection, cloud microphysics, radiation, and land-surface processes between the quasi-uniform and locally- refined meshes, despite the fact that the physics parameterizations were not developed for variable resolution meshes. Our goal of analyzing the performance of MPAS is twofold. First, we want to establish that MPAS can be successfully used as a regional climate model, bypassing the need for nesting and nudging techniques at the edges of the computational domain as done in traditional regional climate modeling. Second, we want to assess the performance of our convective and cloud microphysics parameterizations as the horizontal resolution varies between the lower-resolution quasi-uniform and higher-resolution locally-refined areas of the global domain.
Impact of Variable-Resolution Meshes on Regional Climate Simulations
NASA Astrophysics Data System (ADS)
Fowler, L. D.; Skamarock, W. C.; Bruyere, C. L.
2013-12-01
The Model for Prediction Across Scales (MPAS) is currently being used for seasonal-scale simulations on globally-uniform and regionally-refined meshes. Our ongoing research aims at analyzing simulations of tropical convective activity and tropical cyclone development during one hurricane season over the North Atlantic Ocean, contrasting statistics obtained with a variable-resolution mesh against those obtained with a quasi-uniform mesh. Analyses focus on the spatial distribution, frequency, and intensity of convective and grid-scale precipitations, and their relative contributions to the total precipitation as a function of the horizontal scale. Multi-month simulations initialized on May 1st 2005 using NCEP/NCAR re-analyses indicate that MPAS performs satisfactorily as a regional climate model for different combinations of horizontal resolutions and transitions between the coarse and refined meshes. Results highlight seamless transitions for convection, cloud microphysics, radiation, and land-surface processes between the quasi-uniform and locally-refined meshes, despite the fact that the physics parameterizations were not developed for variable resolution meshes. Our goal of analyzing the performance of MPAS is twofold. First, we want to establish that MPAS can be successfully used as a regional climate model, bypassing the need for nesting and nudging techniques at the edges of the computational domain as done in traditional regional climate modeling. Second, we want to assess the performance of our convective and cloud microphysics parameterizations as the horizontal resolution varies between the lower-resolution quasi-uniform and higher-resolution locally-refined areas of the global domain.
NASA Astrophysics Data System (ADS)
Fenech, Sara; Doherty, Ruth M.; Heaviside, Clare; Vardoulakis, Sotiris; Macintyre, Helen L.; O'Connor, Fiona M.
2018-04-01
We examine the impact of model horizontal resolution on simulated concentrations of surface ozone (O3) and particulate matter less than 2.5 µm in diameter (PM2.5), and the associated health impacts over Europe, using the HadGEM3-UKCA chemistry-climate model to simulate pollutant concentrations at a coarse (˜ 140 km) and a finer (˜ 50 km) resolution. The attributable fraction (AF) of total mortality due to long-term exposure to warm season daily maximum 8 h running mean (MDA8) O3 and annual-average PM2.5 concentrations is then calculated for each European country using pollutant concentrations simulated at each resolution. Our results highlight a seasonal variation in simulated O3 and PM2.5 differences between the two model resolutions in Europe. Compared to the finer resolution results, simulated European O3 concentrations at the coarse resolution are higher on average in winter and spring (˜ 10 and ˜ 6 %, respectively). In contrast, simulated O3 concentrations at the coarse resolution are lower in summer and autumn (˜ -1 and ˜ -4 %, respectively). These differences may be partly explained by differences in nitrogen dioxide (NO2) concentrations simulated at the two resolutions. Compared to O3, we find the opposite seasonality in simulated PM2.5 differences between the two resolutions. In winter and spring, simulated PM2.5 concentrations are lower at the coarse compared to the finer resolution (˜ -8 and ˜ -6 %, respectively) but higher in summer and autumn (˜ 29 and ˜ 8 %, respectively). Simulated PM2.5 values are also mostly related to differences in convective rainfall between the two resolutions for all seasons. These differences between the two resolutions exhibit clear spatial patterns for both pollutants that vary by season, and exert a strong influence on country to country variations in estimated AF for the two resolutions. Warm season MDA8 O3 levels are higher in most of southern Europe, but lower in areas of northern and eastern Europe when simulated at the coarse resolution compared to the finer resolution. Annual-average PM2.5 concentrations are higher across most of northern and eastern Europe but lower over parts of southwest Europe at the coarse compared to the finer resolution. Across Europe, differences in the AF associated with long-term exposure to population-weighted MDA8 O3 range between -0.9 and +2.6 % (largest positive differences in southern Europe), while differences in the AF associated with long-term exposure to population-weighted annual mean PM2.5 range from -4.7 to +2.8 % (largest positive differences in eastern Europe) of the total mortality. Therefore this study, with its unique focus on Europe, demonstrates that health impact assessments calculated using modelled pollutant concentrations, are sensitive to a change in model resolution by up to ˜ ±5 % of the total mortality across Europe.
NASA Astrophysics Data System (ADS)
Jin, Meibing; Deal, Clara; Maslowski, Wieslaw; Matrai, Patricia; Roberts, Andrew; Osinski, Robert; Lee, Younjoo J.; Frants, Marina; Elliott, Scott; Jeffery, Nicole; Hunke, Elizabeth; Wang, Shanlin
2018-01-01
The current coarse-resolution global Community Earth System Model (CESM) can reproduce major and large-scale patterns but is still missing some key biogeochemical features in the Arctic Ocean, e.g., low surface nutrients in the Canada Basin. We incorporated the CESM Version 1 ocean biogeochemical code into the Regional Arctic System Model (RASM) and coupled it with a sea-ice algal module to investigate model limitations. Four ice-ocean hindcast cases are compared with various observations: two in a global 1° (40˜60 km in the Arctic) grid: G1deg and G1deg-OLD with/without new sea-ice processes incorporated; two on RASM's 1/12° (˜9 km) grid R9km and R9km-NB with/without a subgrid scale brine rejection parameterization which improves ocean vertical mixing under sea ice. Higher-resolution and new sea-ice processes contributed to lower model errors in sea-ice extent, ice thickness, and ice algae. In the Bering Sea shelf, only higher resolution contributed to lower model errors in salinity, nitrate (NO3), and chlorophyll-a (Chl-a). In the Arctic Basin, model errors in mixed layer depth (MLD) were reduced 36% by brine rejection parameterization, 20% by new sea-ice processes, and 6% by higher resolution. The NO3 concentration biases were caused by both MLD bias and coarse resolution, because of excessive horizontal mixing of high NO3 from the Chukchi Sea into the Canada Basin in coarse resolution models. R9km showed improvements over G1deg on NO3, but not on Chl-a, likely due to light limitation under snow and ice cover in the Arctic Basin.
NASA Astrophysics Data System (ADS)
Lee, Huikyo; Waliser, Duane E.; Ferraro, Robert; Iguchi, Takamichi; Peters-Lidard, Christa D.; Tian, Baijun; Loikith, Paul C.; Wright, Daniel B.
2017-07-01
Accurate simulation of extreme precipitation events remains a challenge in climate models. This study utilizes hourly precipitation data from ground stations and satellite instruments to evaluate rainfall characteristics simulated by the NASA-Unified Weather Research and Forecasting (NU-WRF) regional climate model at horizontal resolutions of 4, 12, and 24 km over the Great Plains of the United States. We also examined the sensitivity of the simulated precipitation to different spectral nudging approaches and the cumulus parameterizations. The rainfall characteristics in the observations and simulations were defined as an hourly diurnal cycle of precipitation and a joint probability distribution function (JPDF) between duration and peak intensity of precipitation events over the Great Plains in summer. We calculated a JPDF for each data set and the overlapping area between observed and simulated JPDFs to measure the similarity between the two JPDFs. Comparison of the diurnal precipitation cycles between observations and simulations does not reveal the added value of high-resolution simulations. However, the performance of NU-WRF simulations measured by the JPDF metric strongly depends on horizontal resolution. The simulation with the highest resolution of 4 km shows the best agreement with the observations in simulating duration and intensity of wet spells. Spectral nudging does not affect the JPDF significantly. The effect of cumulus parameterizations on the JPDFs is considerable but smaller than that of horizontal resolution. The simulations with lower resolutions of 12 and 24 km show reasonable agreement but only with the high-resolution observational data that are aggregated into coarse resolution and spatially averaged.
Scanning tunneling microscope with two-dimensional translator.
Nichols, J; Ng, K-W
2011-01-01
Since the invention of the scanning tunneling microscope (STM), it has been a powerful tool for probing the electronic properties of materials. Typically STM designs capable of obtaining resolution on the atomic scale are limited to a small area which can be probed. We have built an STM capable of coarse motion in two dimensions, the z- and x-directions which are, respectively, parallel and perpendicular to the tip. This allows us to image samples with very high resolution at sites separated by macroscopic distances. This device is a single unit with a compact design making it very stable. It can operate in either a horizontal or vertical configuration and at cryogenic temperatures.
Motion coherence and direction discrimination in healthy aging.
Pilz, Karin S; Miller, Louisa; Agnew, Hannah C
2017-01-01
Perceptual functions change with age, particularly motion perception. With regard to healthy aging, previous studies mostly measured motion coherence thresholds for coarse motion direction discrimination along cardinal axes of motion. Here, we investigated age-related changes in the ability to discriminate between small angular differences in motion directions, which allows for a more specific assessment of age-related decline and its underlying mechanisms. We first assessed older (>60 years) and younger (<30 years) participants' ability to discriminate coarse horizontal (left/right) and vertical (up/down) motion at 100% coherence and a stimulus duration of 400 ms. In a second step, we determined participants' motion coherence thresholds for vertical and horizontal coarse motion direction discrimination. In a third step, we used the individually determined motion coherence thresholds and tested fine motion direction discrimination for motion clockwise away from horizontal and vertical motion. Older adults performed as well as younger adults for discriminating motion away from vertical. Surprisingly, performance for discriminating motion away from horizontal was strongly decreased. Further analyses, however, showed a relationship between motion coherence thresholds for horizontal coarse motion direction discrimination and fine motion direction discrimination performance in older adults. In a control experiment, using motion coherence above threshold for all conditions, the difference in performance for horizontal and vertical fine motion direction discrimination for older adults disappeared. These results clearly contradict the notion of an overall age-related decline in motion perception, and, most importantly, highlight the importance of taking into account individual differences when assessing age-related changes in perceptual functions.
The Sensitivity of Numerical Simulations of Cloud-Topped Boundary Layers to Cross-Grid Flow
NASA Astrophysics Data System (ADS)
Wyant, Matthew C.; Bretherton, Christopher S.; Blossey, Peter N.
2018-02-01
In mesoscale and global atmospheric simulations with large horizontal domains, strong horizontal flow across the grid is often unavoidable, but its effects on cloud-topped boundary layers have received comparatively little study. Here the effects of cross-grid flow on large-eddy simulations of stratocumulus and trade-cumulus marine boundary layers are studied across a range of grid resolutions (horizontal × vertical) between 500 m × 20 m and 35 m × 5 m. Three cases are simulated: DYCOMS nocturnal stratocumulus, BOMEX trade cumulus, and a GCSS stratocumulus-to-trade cumulus case. Simulations are performed with a stationary grid (with 4-8 m s-1 horizontal winds blowing through the cyclic domain) and a moving grid (equivalent to subtracting off a fixed vertically uniform horizontal wind) approximately matching the mean boundary-layer wind speed. For stratocumulus clouds, cross-grid flow produces two primary effects on stratocumulus clouds: a filtering of fine-scale resolved turbulent eddies, which reduces stratocumulus cloud-top entrainment, and a vertical broadening of the stratocumulus-top inversion which enhances cloud-top entrainment. With a coarse (20 m) vertical grid, the former effect dominates and leads to strong increases in cloud cover and LWP, especially as horizontal resolution is coarsened. With a finer (5 m) vertical grid, the latter effect is stronger and leads to small reductions in cloud cover and LWP. For the BOMEX trade cumulus case, cross-grid flow tends to produce fewer and larger clouds with higher LWP, especially for coarser vertical grid spacing. The results presented are robust to choice of scalar advection scheme and Courant number.
Sub-grid drag models for horizontal cylinder arrays immersed in gas-particle multiphase flows
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarkar, Avik; Sun, Xin; Sundaresan, Sankaran
2013-09-08
Immersed cylindrical tube arrays often are used as heat exchangers in gas-particle fluidized beds. In multiphase computational fluid dynamics (CFD) simulations of large fluidized beds, explicit resolution of small cylinders is computationally infeasible. Instead, the cylinder array may be viewed as an effective porous medium in coarse-grid simulations. The cylinders' influence on the suspension as a whole, manifested as an effective drag force, and on the relative motion between gas and particles, manifested as a correction to the gas-particle drag, must be modeled via suitable sub-grid constitutive relationships. In this work, highly resolved unit-cell simulations of flow around an arraymore » of horizontal cylinders, arranged in a staggered configuration, are filtered to construct sub-grid, or `filtered', drag models, which can be implemented in coarse-grid simulations. The force on the suspension exerted by the cylinders is comprised of, as expected, a buoyancy contribution, and a kinetic component analogous to fluid drag on a single cylinder. Furthermore, the introduction of tubes also is found to enhance segregation at the scale of the cylinder size, which, in turn, leads to a reduction in the filtered gas-particle drag.« less
A 4.5 km resolution Arctic Ocean simulation with the global multi-resolution model FESOM 1.4
NASA Astrophysics Data System (ADS)
Wang, Qiang; Wekerle, Claudia; Danilov, Sergey; Wang, Xuezhu; Jung, Thomas
2018-04-01
In the framework of developing a global modeling system which can facilitate modeling studies on Arctic Ocean and high- to midlatitude linkage, we evaluate the Arctic Ocean simulated by the multi-resolution Finite Element Sea ice-Ocean Model (FESOM). To explore the value of using high horizontal resolution for Arctic Ocean modeling, we use two global meshes differing in the horizontal resolution only in the Arctic Ocean (24 km vs. 4.5 km). The high resolution significantly improves the model's representation of the Arctic Ocean. The most pronounced improvement is in the Arctic intermediate layer, in terms of both Atlantic Water (AW) mean state and variability. The deepening and thickening bias of the AW layer, a common issue found in coarse-resolution simulations, is significantly alleviated by using higher resolution. The topographic steering of the AW is stronger and the seasonal and interannual temperature variability along the ocean bottom topography is enhanced in the high-resolution simulation. The high resolution also improves the ocean surface circulation, mainly through a better representation of the narrow straits in the Canadian Arctic Archipelago (CAA). The representation of CAA throughflow not only influences the release of water masses through the other gateways but also the circulation pathways inside the Arctic Ocean. However, the mean state and variability of Arctic freshwater content and the variability of freshwater transport through the Arctic gateways appear not to be very sensitive to the increase in resolution employed here. By highlighting the issues that are independent of model resolution, we address that other efforts including the improvement of parameterizations are still required.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pau, G. S. H.; Bisht, G.; Riley, W. J.
Existing land surface models (LSMs) describe physical and biological processes that occur over a wide range of spatial and temporal scales. For example, biogeochemical and hydrological processes responsible for carbon (CO 2, CH 4) exchanges with the atmosphere range from the molecular scale (pore-scale O 2 consumption) to tens of kilometers (vegetation distribution, river networks). Additionally, many processes within LSMs are nonlinearly coupled (e.g., methane production and soil moisture dynamics), and therefore simple linear upscaling techniques can result in large prediction error. In this paper we applied a reduced-order modeling (ROM) technique known as "proper orthogonal decomposition mapping method" thatmore » reconstructs temporally resolved fine-resolution solutions based on coarse-resolution solutions. We developed four different methods and applied them to four study sites in a polygonal tundra landscape near Barrow, Alaska. Coupled surface–subsurface isothermal simulations were performed for summer months (June–September) at fine (0.25 m) and coarse (8 m) horizontal resolutions. We used simulation results from three summer seasons (1998–2000) to build ROMs of the 4-D soil moisture field for the study sites individually (single-site) and aggregated (multi-site). The results indicate that the ROM produced a significant computational speedup (> 10 3) with very small relative approximation error (< 0.1%) for 2 validation years not used in training the ROM. We also demonstrate that our approach: (1) efficiently corrects for coarse-resolution model bias and (2) can be used for polygonal tundra sites not included in the training data set with relatively good accuracy (< 1.7% relative error), thereby allowing for the possibility of applying these ROMs across a much larger landscape. By coupling the ROMs constructed at different scales together hierarchically, this method has the potential to efficiently increase the resolution of land models for coupled climate simulations to spatial scales consistent with mechanistic physical process representation.« less
Pau, G. S. H.; Bisht, G.; Riley, W. J.
2014-09-17
Existing land surface models (LSMs) describe physical and biological processes that occur over a wide range of spatial and temporal scales. For example, biogeochemical and hydrological processes responsible for carbon (CO 2, CH 4) exchanges with the atmosphere range from the molecular scale (pore-scale O 2 consumption) to tens of kilometers (vegetation distribution, river networks). Additionally, many processes within LSMs are nonlinearly coupled (e.g., methane production and soil moisture dynamics), and therefore simple linear upscaling techniques can result in large prediction error. In this paper we applied a reduced-order modeling (ROM) technique known as "proper orthogonal decomposition mapping method" thatmore » reconstructs temporally resolved fine-resolution solutions based on coarse-resolution solutions. We developed four different methods and applied them to four study sites in a polygonal tundra landscape near Barrow, Alaska. Coupled surface–subsurface isothermal simulations were performed for summer months (June–September) at fine (0.25 m) and coarse (8 m) horizontal resolutions. We used simulation results from three summer seasons (1998–2000) to build ROMs of the 4-D soil moisture field for the study sites individually (single-site) and aggregated (multi-site). The results indicate that the ROM produced a significant computational speedup (> 10 3) with very small relative approximation error (< 0.1%) for 2 validation years not used in training the ROM. We also demonstrate that our approach: (1) efficiently corrects for coarse-resolution model bias and (2) can be used for polygonal tundra sites not included in the training data set with relatively good accuracy (< 1.7% relative error), thereby allowing for the possibility of applying these ROMs across a much larger landscape. By coupling the ROMs constructed at different scales together hierarchically, this method has the potential to efficiently increase the resolution of land models for coupled climate simulations to spatial scales consistent with mechanistic physical process representation.« less
Xu, Yiming; Smith, Scot E; Grunwald, Sabine; Abd-Elrahman, Amr; Wani, Suhas P; Nair, Vimala D
2017-09-11
Digital soil mapping (DSM) is gaining momentum as a technique to help smallholder farmers secure soil security and food security in developing regions. However, communications of the digital soil mapping information between diverse audiences become problematic due to the inconsistent scale of DSM information. Spatial downscaling can make use of accessible soil information at relatively coarse spatial resolution to provide valuable soil information at relatively fine spatial resolution. The objective of this research was to disaggregate the coarse spatial resolution soil exchangeable potassium (K ex ) and soil total nitrogen (TN) base map into fine spatial resolution soil downscaled map using weighted generalized additive models (GAMs) in two smallholder villages in South India. By incorporating fine spatial resolution spectral indices in the downscaling process, the soil downscaled maps not only conserve the spatial information of coarse spatial resolution soil maps but also depict the spatial details of soil properties at fine spatial resolution. The results of this study demonstrated difference between the fine spatial resolution downscaled maps and fine spatial resolution base maps is smaller than the difference between coarse spatial resolution base maps and fine spatial resolution base maps. The appropriate and economical strategy to promote the DSM technique in smallholder farms is to develop the relatively coarse spatial resolution soil prediction maps or utilize available coarse spatial resolution soil maps at the regional scale and to disaggregate these maps to the fine spatial resolution downscaled soil maps at farm scale.
Tropical Waves and the Quasi-Biennial Oscillation in a 7-km Global Climate Simulation
NASA Technical Reports Server (NTRS)
Holt, Laura A.; Alexander, M. Joan; Coy, Lawrence; Molod, Andrea; Putman, William; Pawson, Steven
2016-01-01
This study investigates tropical waves and their role in driving a quasi-biennial oscillation (QBO)-like signal in stratospheric winds in a global 7-km-horizontal-resolution atmospheric general circulation model. The Nature Run (NR) is a 2-year global mesoscale simulation of the Goddard Earth Observing System Model, version 5 (GEOS-5). In the tropics, there is evidence that the NR supports a broad range of convectively generated waves. The NR precipitation spectrum resembles the observed spectrum in many aspects, including the preference for westward-propagating waves. However, even with very high horizontal resolution and a healthy population of resolved waves, the zonal force provided by the resolved waves is still too low in the QBO region and parameterized gravity wave drag is the main driver of the NR QBO-like oscillation (NRQBO). The authors suggest that causes include coarse vertical resolution and excessive dissipation. Nevertheless, the very-high-resolution NR provides an opportunity to analyze the resolved wave forcing of the NR-QBO. In agreement with previous studies, large-scale Kelvin and small-scale waves contribute to the NRQBO driving in eastward shear zones and small-scale waves dominate the NR-QBO driving in westward shear zones. Waves with zonal wavelength,1000 km account for up to half of the small-scale (,3300 km) resolved wave forcing in eastward shear zones and up to 70% of the small-scale resolved wave forcing in westward shear zones of the NR-QBO.
NASA Astrophysics Data System (ADS)
Wengel, C.; Latif, M.; Park, W.; Harlaß, J.; Bayr, T.
2018-05-01
A long-standing difficulty of climate models is to capture the annual cycle (AC) of eastern equatorial Pacific (EEP) sea surface temperature (SST). In this study, we first examine the EEP SST AC in a set of integrations of the coupled Kiel Climate Model, in which only atmosphere model resolution differs. When employing coarse horizontal and vertical atmospheric resolution, significant biases in the EEP SST AC are observed. These are reflected in an erroneous timing of the cold tongue's onset and termination as well as in an underestimation of the boreal spring warming amplitude. A large portion of these biases are linked to a wrong simulation of zonal surface winds, which can be traced back to precipitation biases on both sides of the equator and an erroneous low-level atmospheric circulation over land. Part of the SST biases also is related to shortwave radiation biases related to cloud cover biases. Both wind and cloud cover biases are inherent to the atmospheric component, as shown by companion uncoupled atmosphere model integrations forced by observed SSTs. Enhancing atmosphere model resolution, horizontal and vertical, markedly reduces zonal wind and cloud cover biases in coupled as well as uncoupled mode and generally improves simulation of the EEP SST AC. Enhanced atmospheric resolution reduces convection biases and improves simulation of surface winds over land. Analysis of a subset of models from the Coupled Model Intercomparison Project phase 5 (CMIP5) reveals that in these models, very similar mechanisms are at work in driving EEP SST AC biases.
NASA Astrophysics Data System (ADS)
Vennam, L. P.; Vizuete, W.; Talgo, K.; Omary, M.; Binkowski, F. S.; Xing, J.; Mathur, R.; Arunachalam, S.
2017-12-01
Aviation is a unique anthropogenic source with four-dimensional varying emissions, peaking at cruise altitudes (9-12 km). Aircraft emission budgets in the upper troposphere lower stratosphere region and their potential impacts on upper troposphere and surface air quality are not well understood. Our key objective is to use chemical transport models (with prescribed meteorology) to predict aircraft emissions impacts on the troposphere and surface air quality. We quantified the importance of including full-flight intercontinental emissions and increased horizontal grid resolution. The full-flight aviation emissions in the Northern Hemisphere contributed 1.3% (mean, min-max: 0.46, 0.3-0.5 ppbv) and 0.2% (0.013, 0.004-0.02 μg/m3) of total O3 and PM2.5 concentrations at the surface, with Europe showing slightly higher impacts (1.9% (O3 0.69, 0.5-0.85 ppbv) and 0.5% (PM2.5 0.03, 0.01-0.05 μg/m3)) than North America (NA) and East Asia. We computed seasonal aviation-attributable mass flux vertical profiles and aviation perturbations along isentropic surfaces to quantify the transport of cruise altitude emissions at the hemispheric scale. The comparison of coarse (108 × 108 km2) and fine (36 × 36 km2) grid resolutions in NA showed 70 times and 13 times higher aviation impacts for O3 and PM2.5 in coarser domain. These differences are mainly due to the inability of the coarse resolution simulation to capture nonlinearities in chemical processes near airport locations and other urban areas. Future global studies quantifying aircraft contributions should consider model resolution and perhaps use finer scales near major aviation source regions.
Vennam, L. P.; Vizuete, W.; Talgo, K.; Omary, M.; Binkowski, F. S.; Xing, J.; Mathur, R.; Arunachalam, S.
2018-01-01
Aviation is a unique anthropogenic source with four-dimensional varying emissions, peaking at cruise altitudes (9–12 km). Aircraft emission budgets in the upper troposphere lower stratosphere region and their potential impacts on upper troposphere and surface air quality are not well understood. Our key objective is to use chemical transport models (with prescribed meteorology) to predict aircraft emissions impacts on the troposphere and surface air quality. We quantified the importance of including full-flight intercontinental emissions and increased horizontal grid resolution. The full-flight aviation emissions in the Northern Hemisphere contributed ~1.3% (mean, min–max: 0.46, 0.3–0.5 ppbv) and 0.2% (0.013, 0.004–0.02 μg/m3) of total O3 and PM2.5 concentrations at the surface, with Europe showing slightly higher impacts (1.9% (O3 0.69, 0.5–0.85 ppbv) and 0.5% (PM2.5 0.03, 0.01–0.05 μg/m3)) than North America (NA) and East Asia. We computed seasonal aviation-attributable mass flux vertical profiles and aviation perturbations along isentropic surfaces to quantify the transport of cruise altitude emissions at the hemispheric scale. The comparison of coarse (108 × 108 km2) and fine (36 × 36 km2) grid resolutions in NA showed ~70 times and ~13 times higher aviation impacts for O3 and PM2.5 in coarser domain. These differences are mainly due to the inability of the coarse resolution simulation to capture nonlinearities in chemical processes near airport locations and other urban areas. Future global studies quantifying aircraft contributions should consider model resolution and perhaps use finer scales near major aviation source regions. PMID:29707471
Vennam, L P; Vizuete, W; Talgo, K; Omary, M; Binkowski, F S; Xing, J; Mathur, R; Arunachalam, S
2017-01-01
Aviation is a unique anthropogenic source with four-dimensional varying emissions, peaking at cruise altitudes (9-12 km). Aircraft emission budgets in the upper troposphere lower stratosphere region and their potential impacts on upper troposphere and surface air quality are not well understood. Our key objective is to use chemical transport models (with prescribed meteorology) to predict aircraft emissions impacts on the troposphere and surface air quality. We quantified the importance of including full-flight intercontinental emissions and increased horizontal grid resolution. The full-flight aviation emissions in the Northern Hemisphere contributed ~1.3% (mean, min-max: 0.46, 0.3-0.5 ppbv) and 0.2% (0.013, 0.004-0.02 μg/m 3 ) of total O 3 and PM 2.5 concentrations at the surface, with Europe showing slightly higher impacts (1.9% (O 3 0.69, 0.5-0.85 ppbv) and 0.5% (PM 2.5 0.03, 0.01-0.05 μg/m 3 )) than North America (NA) and East Asia. We computed seasonal aviation-attributable mass flux vertical profiles and aviation perturbations along isentropic surfaces to quantify the transport of cruise altitude emissions at the hemispheric scale. The comparison of coarse (108 × 108 km 2 ) and fine (36 × 36 km 2 ) grid resolutions in NA showed ~70 times and ~13 times higher aviation impacts for O 3 and PM 2.5 in coarser domain. These differences are mainly due to the inability of the coarse resolution simulation to capture nonlinearities in chemical processes near airport locations and other urban areas. Future global studies quantifying aircraft contributions should consider model resolution and perhaps use finer scales near major aviation source regions.
The spectral signature of cloud spatial structure in shortwave irradiance
Song, Shi; Schmidt, K. Sebastian; Pilewskie, Peter; King, Michael D.; Heidinger, Andrew K.; Walther, Andi; Iwabuchi, Hironobu; Wind, Gala; Coddington, Odele M.
2017-01-01
In this paper, we used cloud imagery from a NASA field experiment in conjunction with three-dimensional radiative transfer calculations to show that cloud spatial structure manifests itself as a spectral signature in shortwave irradiance fields – specifically in transmittance and net horizontal photon transport in the visible and near-ultraviolet wavelength range. We found a robust correlation between the magnitude of net horizontal photon transport (H) and its spectral dependence (slope), which is scale-invariant and holds for the entire pixel population of a domain. This was surprising at first given the large degree of spatial inhomogeneity. We prove that the underlying physical mechanism for this phenomenon is molecular scattering in conjunction with cloud spatial structure. On this basis, we developed a simple parameterization through a single parameter ε, which quantifies the characteristic spectral signature of spatial inhomogeneities. In the case we studied, neglecting net horizontal photon transport leads to a local transmittance bias of ±12–19 %, even at the relatively coarse spatial resolution of 20 km. Since three-dimensional effects depend on the spatial context of a given pixel in a nontrivial way, the spectral dimension of this problem may emerge as the starting point for future bias corrections. PMID:28824698
The spectral signature of cloud spatial structure in shortwave irradiance.
Song, Shi; Schmidt, K Sebastian; Pilewskie, Peter; King, Michael D; Heidinger, Andrew K; Walther, Andi; Iwabuchi, Hironobu; Wind, Gala; Coddington, Odele M
2016-11-08
In this paper, we used cloud imagery from a NASA field experiment in conjunction with three-dimensional radiative transfer calculations to show that cloud spatial structure manifests itself as a spectral signature in shortwave irradiance fields - specifically in transmittance and net horizontal photon transport in the visible and near-ultraviolet wavelength range. We found a robust correlation between the magnitude of net horizontal photon transport ( H ) and its spectral dependence (slope), which is scale-invariant and holds for the entire pixel population of a domain. This was surprising at first given the large degree of spatial inhomogeneity. We prove that the underlying physical mechanism for this phenomenon is molecular scattering in conjunction with cloud spatial structure. On this basis, we developed a simple parameterization through a single parameter ε , which quantifies the characteristic spectral signature of spatial inhomogeneities. In the case we studied, neglecting net horizontal photon transport leads to a local transmittance bias of ±12-19 %, even at the relatively coarse spatial resolution of 20 km. Since three-dimensional effects depend on the spatial context of a given pixel in a nontrivial way, the spectral dimension of this problem may emerge as the starting point for future bias corrections.
Efficient non-hydrostatic modelling of 3D wave-induced currents using a subgrid approach
NASA Astrophysics Data System (ADS)
Rijnsdorp, Dirk P.; Smit, Pieter B.; Zijlema, Marcel; Reniers, Ad J. H. M.
2017-08-01
Wave-induced currents are an ubiquitous feature in coastal waters that can spread material over the surf zone and the inner shelf. These currents are typically under resolved in non-hydrostatic wave-flow models due to computational constraints. Specifically, the low vertical resolutions adequate to describe the wave dynamics - and required to feasibly compute at the scales of a field site - are too coarse to account for the relevant details of the three-dimensional (3D) flow field. To describe the relevant dynamics of both wave and currents, while retaining a model framework that can be applied at field scales, we propose a two grid approach to solve the governing equations. With this approach, the vertical accelerations and non-hydrostatic pressures are resolved on a relatively coarse vertical grid (which is sufficient to accurately resolve the wave dynamics), whereas the horizontal velocities and turbulent stresses are resolved on a much finer subgrid (of which the resolution is dictated by the vertical scale of the mean flows). This approach ensures that the discrete pressure Poisson equation - the solution of which dominates the computational effort - is evaluated on the coarse grid scale, thereby greatly improving efficiency, while providing a fine vertical resolution to resolve the vertical variation of the mean flow. This work presents the general methodology, and discusses the numerical implementation in the SWASH wave-flow model. Model predictions are compared with observations of three flume experiments to demonstrate that the subgrid approach captures both the nearshore evolution of the waves, and the wave-induced flows like the undertow profile and longshore current. The accuracy of the subgrid predictions is comparable to fully resolved 3D simulations - but at much reduced computational costs. The findings of this work thereby demonstrate that the subgrid approach has the potential to make 3D non-hydrostatic simulations feasible at the scale of a realistic coastal region.
Extended-Range High-Resolution Dynamical Downscaling over a Continental-Scale Domain
NASA Astrophysics Data System (ADS)
Husain, S. Z.; Separovic, L.; Yu, W.; Fernig, D.
2014-12-01
High-resolution mesoscale simulations, when applied for downscaling meteorological fields over large spatial domains and for extended time periods, can provide valuable information for many practical application scenarios including the weather-dependent renewable energy industry. In the present study, a strategy has been proposed to dynamically downscale coarse-resolution meteorological fields from Environment Canada's regional analyses for a period of multiple years over the entire Canadian territory. The study demonstrates that a continuous mesoscale simulation over the entire domain is the most suitable approach in this regard. Large-scale deviations in the different meteorological fields pose the biggest challenge for extended-range simulations over continental scale domains, and the enforcement of the lateral boundary conditions is not sufficient to restrict such deviations. A scheme has therefore been developed to spectrally nudge the simulated high-resolution meteorological fields at the different model vertical levels towards those embedded in the coarse-resolution driving fields derived from the regional analyses. A series of experiments were carried out to determine the optimal nudging strategy including the appropriate nudging length scales, nudging vertical profile and temporal relaxation. A forcing strategy based on grid nudging of the different surface fields, including surface temperature, soil-moisture, and snow conditions, towards their expected values obtained from a high-resolution offline surface scheme was also devised to limit any considerable deviation in the evolving surface fields due to extended-range temporal integrations. The study shows that ensuring large-scale atmospheric similarities helps to deliver near-surface statistical scores for temperature, dew point temperature and horizontal wind speed that are better or comparable to the operational regional forecasts issued by Environment Canada. Furthermore, the meteorological fields resulting from the proposed downscaling strategy have significantly improved spatiotemporal variance compared to those from the operational forecasts, and any time series generated from the downscaled fields do not suffer from discontinuities due to switching between the consecutive forecasts.
Parameterizing deep convection using the assumed probability density function method
Storer, R. L.; Griffin, B. M.; Höft, J.; ...
2014-06-11
Due to their coarse horizontal resolution, present-day climate models must parameterize deep convection. This paper presents single-column simulations of deep convection using a probability density function (PDF) parameterization. The PDF parameterization predicts the PDF of subgrid variability of turbulence, clouds, and hydrometeors. That variability is interfaced to a prognostic microphysics scheme using a Monte Carlo sampling method. The PDF parameterization is used to simulate tropical deep convection, the transition from shallow to deep convection over land, and mid-latitude deep convection. These parameterized single-column simulations are compared with 3-D reference simulations. The agreement is satisfactory except when the convective forcing ismore » weak. The same PDF parameterization is also used to simulate shallow cumulus and stratocumulus layers. The PDF method is sufficiently general to adequately simulate these five deep, shallow, and stratiform cloud cases with a single equation set. This raises hopes that it may be possible in the future, with further refinements at coarse time step and grid spacing, to parameterize all cloud types in a large-scale model in a unified way.« less
Parameterizing deep convection using the assumed probability density function method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Storer, R. L.; Griffin, B. M.; Höft, J.
2015-01-06
Due to their coarse horizontal resolution, present-day climate models must parameterize deep convection. This paper presents single-column simulations of deep convection using a probability density function (PDF) parameterization. The PDF parameterization predicts the PDF of subgrid variability of turbulence, clouds, and hydrometeors. That variability is interfaced to a prognostic microphysics scheme using a Monte Carlo sampling method.The PDF parameterization is used to simulate tropical deep convection, the transition from shallow to deep convection over land, and midlatitude deep convection. These parameterized single-column simulations are compared with 3-D reference simulations. The agreement is satisfactory except when the convective forcing is weak.more » The same PDF parameterization is also used to simulate shallow cumulus and stratocumulus layers. The PDF method is sufficiently general to adequately simulate these five deep, shallow, and stratiform cloud cases with a single equation set. This raises hopes that it may be possible in the future, with further refinements at coarse time step and grid spacing, to parameterize all cloud types in a large-scale model in a unified way.« less
Parameterizing deep convection using the assumed probability density function method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Storer, R. L.; Griffin, B. M.; Hoft, Jan
2015-01-06
Due to their coarse horizontal resolution, present-day climate models must parameterize deep convection. This paper presents single-column simulations of deep convection using a probability density function (PDF) parameterization. The PDF parameterization predicts the PDF of subgrid variability of turbulence, clouds, and hydrometeors. That variability is interfaced to a prognostic microphysics scheme using a Monte Carlo sampling method.The PDF parameterization is used to simulate tropical deep convection, the transition from shallow to deep convection over land, and mid-latitude deep convection.These parameterized single-column simulations are compared with 3-D reference simulations. The agreement is satisfactory except when the convective forcing is weak. Themore » same PDF parameterization is also used to simulate shallow cumulus and stratocumulus layers. The PDF method is sufficiently general to adequately simulate these five deep, shallow, and stratiform cloud cases with a single equation set. This raises hopes that it may be possible in the future, with further refinements at coarse time step and grid spacing, to parameterize all cloud types in a large-scale model in a unified way.« less
NASA Technical Reports Server (NTRS)
Luneva, M. V.; Clayson, C. A.; Dubovikov, Mikhail
2015-01-01
In eddy resolving simulations, we test a mixed layer mesoscale parametrisation, developed recently by Canuto and Dubovikov [Ocean Model., 2011, 39, 200-207]. With no adjustable parameters, the parametrisation yields the horizontal and vertical mesoscale fluxes in terms of coarse-resolution fields and eddy kinetic energy (EKE). We compare terms of the parametrisation diagnosed from coarse-grained fields with the eddy mesoscale fluxes diagnosed directly from the high resolution model. An expression for the EKE in terms of mean fields has also been found to get a closed parametrisation in terms of the mean fields only. In 40 numerical experiments we simulated two types of flows: idealised flows driven by baroclinic instabilities only, and more realistic flows, driven by wind and surface fluxes as well as by inflow-outflow. The diagnosed quasi-instantaneous horizontal and vertical mesoscale buoyancy fluxes (averaged over 1-2 degrees and 10 days) demonstrate a strong scatter typical for turbulent flows, however, the fluxes are positively correlated with the parametrisation with higher (0.5-0.74) correlations at the experiments with larger baroclinic radius Rossby. After being averaged over 3-4 months, diffusivities diagnosed from the eddy resolving simulations are consistent with the parametrisation for a broad range of parameters. Diagnosed vertical mesoscale fluxes restratify mixed layer and are in a good agreement with the parametrisation unless vertical turbulent mixing in the upper layer becomes strong enough in comparison with mesoscale advection. In the latter case, numerical simulations demonstrate that the deviation of the fluxes from the parametrisation is controlled by dimensionless parameter estimating the ratio of vertical turbulent mixing term to mesoscale advection. An analysis using a modified omega-equation reveals that the effects of the vertical mixing of vorticity is responsible for the two-three fold amplification of vertical mesoscale flux. Possible physical mechanisms, responsible for the amplification of vertical mesoscale flux are discussed.
Coarse climate change projections for species living in a fine-scaled world.
Nadeau, Christopher P; Urban, Mark C; Bridle, Jon R
2017-01-01
Accurately predicting biological impacts of climate change is necessary to guide policy. However, the resolution of climate data could be affecting the accuracy of climate change impact assessments. Here, we review the spatial and temporal resolution of climate data used in impact assessments and demonstrate that these resolutions are often too coarse relative to biologically relevant scales. We then develop a framework that partitions climate into three important components: trend, variance, and autocorrelation. We apply this framework to map different global climate regimes and identify where coarse climate data is most and least likely to reduce the accuracy of impact assessments. We show that impact assessments for many large mammals and birds use climate data with a spatial resolution similar to the biologically relevant area encompassing population dynamics. Conversely, impact assessments for many small mammals, herpetofauna, and plants use climate data with a spatial resolution that is orders of magnitude larger than the area encompassing population dynamics. Most impact assessments also use climate data with a coarse temporal resolution. We suggest that climate data with a coarse spatial resolution is likely to reduce the accuracy of impact assessments the most in climates with high spatial trend and variance (e.g., much of western North and South America) and the least in climates with low spatial trend and variance (e.g., the Great Plains of the USA). Climate data with a coarse temporal resolution is likely to reduce the accuracy of impact assessments the most in the northern half of the northern hemisphere where temporal climatic variance is high. Our framework provides one way to identify where improving the resolution of climate data will have the largest impact on the accuracy of biological predictions under climate change. © 2016 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Roth, Aurora; Hock, Regine; Schuler, Thomas V.; Bieniek, Peter A.; Pelto, Mauri; Aschwanden, Andy
2018-03-01
Assessing and modeling precipitation in mountainous areas remains a major challenge in glacier mass balance modeling. Observations are typically scarce and reanalysis data and similar climate products are too coarse to accurately capture orographic effects. Here we use the linear theory of orographic precipitation model (LT model) to downscale winter precipitation from a regional climate model over the Juneau Icefield, one of the largest ice masses in North America (>4000 km2), for the period 1979-2013. The LT model is physically-based yet computationally efficient, combining airflow dynamics and simple cloud microphysics. The resulting 1 km resolution precipitation fields show substantially reduced precipitation on the northeastern portion of the icefield compared to the southwestern side, a pattern that is not well captured in the coarse resolution (20 km) WRF data. Net snow accumulation derived from the LT model precipitation agrees well with point observations across the icefield. To investigate the robustness of the LT model results, we perform a series of sensitivity experiments varying hydrometeor fall speeds, the horizontal resolution of the underlying grid, and the source of the meteorological forcing data. The resulting normalized spatial precipitation pattern is similar for all sensitivity experiments, but local precipitation amounts vary strongly, with greatest sensitivity to variations in snow fall speed. Results indicate that the LT model has great potential to provide improved spatial patterns of winter precipitation for glacier mass balance modeling purposes in complex terrain, but ground observations are necessary to constrain model parameters to match total amounts.
Continuous data assimilation for downscaling large-footprint soil moisture retrievals
NASA Astrophysics Data System (ADS)
Altaf, Muhammad U.; Jana, Raghavendra B.; Hoteit, Ibrahim; McCabe, Matthew F.
2016-10-01
Soil moisture is a key component of the hydrologic cycle, influencing processes leading to runoff generation, infiltration and groundwater recharge, evaporation and transpiration. Generally, the measurement scale for soil moisture is found to be different from the modeling scales for these processes. Reducing this mismatch between observation and model scales in necessary for improved hydrological modeling. An innovative approach to downscaling coarse resolution soil moisture data by combining continuous data assimilation and physically based modeling is presented. In this approach, we exploit the features of Continuous Data Assimilation (CDA) which was initially designed for general dissipative dynamical systems and later tested numerically on the incompressible Navier-Stokes equation, and the Benard equation. A nudging term, estimated as the misfit between interpolants of the assimilated coarse grid measurements and the fine grid model solution, is added to the model equations to constrain the model's large scale variability by available measurements. Soil moisture fields generated at a fine resolution by a physically-based vadose zone model (HYDRUS) are subjected to data assimilation conditioned upon coarse resolution observations. This enables nudging of the model outputs towards values that honor the coarse resolution dynamics while still being generated at the fine scale. Results show that the approach is feasible to generate fine scale soil moisture fields across large extents, based on coarse scale observations. Application of this approach is likely in generating fine and intermediate resolution soil moisture fields conditioned on the radiometerbased, coarse resolution products from remote sensing satellites.
National Centers for Environmental Prediction
resolution at T574 becomes ~ 23 km T382 Spectral truncation equivalent to horizontal resolution ~37 km T254 Spectral truncation equivalent to horizontal resolution ~50-55 km T190 Spectral truncation equivalent to horizontal resolution ~70 km T126 Spectral truncation equivalent to horizontal resolution ~100 km UM Unified
Highly Coarse-Grained Representations of Transmembrane Proteins
2017-01-01
Numerous biomolecules and biomolecular complexes, including transmembrane proteins (TMPs), are symmetric or at least have approximate symmetries. Highly coarse-grained models of such biomolecules, aiming at capturing the essential structural and dynamical properties on resolution levels coarser than the residue scale, must preserve the underlying symmetry. However, making these models obey the correct physics is in general not straightforward, especially at the highly coarse-grained resolution where multiple (∼3–30 in the current study) amino acid residues are represented by a single coarse-grained site. In this paper, we propose a simple and fast method of coarse-graining TMPs obeying this condition. The procedure involves partitioning transmembrane domains into contiguous segments of equal length along the primary sequence. For the coarsest (lowest-resolution) mappings, it turns out to be most important to satisfy the symmetry in a coarse-grained model. As the resolution is increased to capture more detail, however, it becomes gradually more important to match modular repeats in the secondary structure (such as helix-loop repeats) instead. A set of eight TMPs of various complexity, functionality, structural topology, and internal symmetry, representing different classes of TMPs (ion channels, transporters, receptors, adhesion, and invasion proteins), has been examined. The present approach can be generalized to other systems possessing exact or approximate symmetry, allowing for reliable and fast creation of multiscale, highly coarse-grained mappings of large biomolecular assemblies. PMID:28043122
Downscaling soil moisture over regions that include multiple coarse-resolution grid cells
USDA-ARS?s Scientific Manuscript database
Many applications require soil moisture estimates over large spatial extents (30-300 km) and at fine-resolutions (10-30 m). Remote-sensing methods can provide soil moisture estimates over very large spatial extents (continental to global) at coarse resolutions (10-40 km), but their output must be d...
NASA Astrophysics Data System (ADS)
Rimac, A.; Eden, C.; von Storch, J.
2012-12-01
Coexistence of stable stratification, the meridional overturning circulation and meso-scale eddies and their influence on the ocean's circulation still raise complex questions concerning the ocean energetics. Oceanic general circulation is mainly forced by the wind field and deep water tides. Its essential energetics are the conversion of kinetic energy of the winds and tides into oceanic potential and kinetic energy. Energy needed for the circulation is bound to internal wave fields. Direct internal wave generation by the wind at the sea surface is one of the sources of this energy. Previous studies using mixed-layer type of models and low frequency wind forcings (six-hourly and daily) left room for improvement. Using mixed-layer models it is not possible to assess the distribution of near-inertial energy into the deep ocean. Also, coarse temporal resolution of wind forcing strongly underestimates the near-inertial wave energy. To overcome this difficulty we use a high resolution ocean model with high frequency wind forcings. We establish the following model setup: We use the Max Planck Institute Ocean Model (MPIOM) on a tripolar grid with 45km horizontal resolution and 40 vertical levels. We run the model with wind forcings that vary in horizontal (250km versus 40km) and temporal resolution (six versus one-hourly). In our study we answer the following questions: How big is the wind kinetic energy input to the near-inertial waves? Is the kinetic energy of the near-inertial waves enhanced when high-frequency wind forcings are used? If so, by how much and why, due to higher level of temporal wind variability or due to better spatial representation of the near-inertial waves? How big is the total power of near-inertial waves generated by the wind at the surface of the ocean? We run the model for one year. Our model results show that the near-inertial waves are excited both using wind forcings of high and low horizontal and temporal resolution. Near-inertial energy is almost two times higher when we force the model with high frequency wind forcings. The influence on the energy mostly depends on the time difference between two forcing fields while the spatial difference has little influence.
A downscaling scheme for atmospheric variables to drive soil-vegetation-atmosphere transfer models
NASA Astrophysics Data System (ADS)
Schomburg, A.; Venema, V.; Lindau, R.; Ament, F.; Simmer, C.
2010-09-01
For driving soil-vegetation-transfer models or hydrological models, high-resolution atmospheric forcing data is needed. For most applications the resolution of atmospheric model output is too coarse. To avoid biases due to the non-linear processes, a downscaling system should predict the unresolved variability of the atmospheric forcing. For this purpose we derived a disaggregation system consisting of three steps: (1) a bi-quadratic spline-interpolation of the low-resolution data, (2) a so-called `deterministic' part, based on statistical rules between high-resolution surface variables and the desired atmospheric near-surface variables and (3) an autoregressive noise-generation step. The disaggregation system has been developed and tested based on high-resolution model output (400m horizontal grid spacing). A novel automatic search-algorithm has been developed for deriving the deterministic downscaling rules of step 2. When applied to the atmospheric variables of the lowest layer of the atmospheric COSMO-model, the disaggregation is able to adequately reconstruct the reference fields. Applying downscaling step 1 and 2, root mean square errors are decreased. Step 3 finally leads to a close match of the subgrid variability and temporal autocorrelation with the reference fields. The scheme can be applied to the output of atmospheric models, both for stand-alone offline simulations, and a fully coupled model system.
Simulation of Deep Convective Clouds with the Dynamic Reconstruction Turbulence Closure
NASA Astrophysics Data System (ADS)
Shi, X.; Chow, F. K.; Street, R. L.; Bryan, G. H.
2017-12-01
The terra incognita (TI), or gray zone, in simulations is a range of grid spacing comparable to the most energetic eddy diameter. Spacing in mesoscale and simulations is much larger than the eddies, and turbulence is parameterized with one-dimensional vertical-mixing. Large eddy simulations (LES) have grid spacing much smaller than the energetic eddies, and use three-dimensional models of turbulence. Studies of convective weather use convection-permitting resolutions, which are in the TI. Neither mesoscale-turbulence nor LES models are designed for the TI, so TI turbulence parameterization needs to be discussed. Here, the effects of sub-filter scale (SFS) closure schemes on the simulation of deep tropical convection are evaluated by comparing three closures, i.e. Smagorinsky model, Deardorff-type TKE model and the dynamic reconstruction model (DRM), which partitions SFS turbulence into resolvable sub-filter scales (RSFS) and unresolved sub-grid scales (SGS). The RSFS are reconstructed, and the SGS are modeled with a dynamic eddy viscosity/diffusivity model. The RSFS stresses/fluxes allow backscatter of energy/variance via counter-gradient stresses/fluxes. In high-resolution (100m) simulations of tropical convection use of these turbulence models did not lead to significant differences in cloud water/ice distribution, precipitation flux, or vertical fluxes of momentum and heat. When model resolutions are coarsened, the Smagorinsky and TKE models overestimate cloud ice and produces large-amplitude downward heat flux in the middle troposphere (not found in the high-resolution simulations). This error is a result of unrealistically large eddy diffusivities, i.e., the eddy diffusivity of the DRM is on the order of 1 for the coarse resolution simulations, the eddy diffusivity of the Smagorinsky and TKE model is on the order of 100. Splitting the eddy viscosity/diffusivity scalars into vertical and horizontal components by using different length scales and strain rate components helps to reduce the errors, but does not completely remedy the problem. In contrast, the coarse resolution simulations using the DRM produce results that are more consistent with the high-resolution results, suggesting that the DRM is a more appropriate turbulence model for simulating convection in the TI.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maclaurin, Galen; Sengupta, Manajit; Xie, Yu
A significant source of bias in the transposition of global horizontal irradiance to plane-of-array (POA) irradiance arises from inaccurate estimations of surface albedo. The current physics-based model used to produce the National Solar Radiation Database (NSRDB) relies on model estimations of surface albedo from a reanalysis climatalogy produced at relatively coarse spatial resolution compared to that of the NSRDB. As an input to spectral decomposition and transposition models, more accurate surface albedo data from remotely sensed imagery at finer spatial resolutions would improve accuracy in the final product. The National Renewable Energy Laboratory (NREL) developed an improved white-sky (bi-hemispherical reflectance)more » broadband (0.3-5.0 ..mu..m) surface albedo data set for processing the NSRDB from two existing data sets: a gap-filled albedo product and a daily snow cover product. The Moderate Resolution Imaging Spectroradiometer (MODIS) sensors onboard the Terra and Aqua satellites have provided high-quality measurements of surface albedo at 30 arc-second spatial resolution and 8-day temporal resolution since 2001. The high spatial and temporal resolutions and the temporal coverage of the MODIS sensor will allow for improved modeling of POA irradiance in the NSRDB. However, cloud and snow cover interfere with MODIS observations of ground surface albedo, and thus they require post-processing. The MODIS production team applied a gap-filling methodology to interpolate observations obscured by clouds or ephemeral snow. This approach filled pixels with ephemeral snow cover because the 8-day temporal resolution is too coarse to accurately capture the variability of snow cover and its impact on albedo estimates. However, for this project, accurate representation of daily snow cover change is important in producing the NSRDB. Therefore, NREL also used the Integrated Multisensor Snow and Ice Mapping System data set, which provides daily snow cover observations of the Northern Hemisphere for the temporal extent of the NSRDB (1998-2015). We provide a review of validation studies conducted on these two products and describe the methodology developed by NREL to remap the data products to the NSRDB grid and integrate them into a seamless daily data set.« less
High-Resolution Coarse-Grained Modeling Using Oriented Coarse-Grained Sites.
Haxton, Thomas K
2015-03-10
We introduce a method to bring nearly atomistic resolution to coarse-grained models, and we apply the method to proteins. Using a small number of coarse-grained sites (about one per eight atoms) but assigning an independent three-dimensional orientation to each site, we preferentially integrate out stiff degrees of freedom (bond lengths and angles, as well as dihedral angles in rings) that are accurately approximated by their average values, while retaining soft degrees of freedom (unconstrained dihedral angles) mostly responsible for conformational variability. We demonstrate that our scheme retains nearly atomistic resolution by mapping all experimental protein configurations in the Protein Data Bank onto coarse-grained configurations and then analytically backmapping those configurations back to all-atom configurations. This roundtrip mapping throws away all information associated with the eliminated (stiff) degrees of freedom except for their average values, which we use to construct optimal backmapping functions. Despite the 4:1 reduction in the number of degrees of freedom, we find that heavy atoms move only 0.051 Å on average during the roundtrip mapping, while hydrogens move 0.179 Å on average, an unprecedented combination of efficiency and accuracy among coarse-grained protein models. We discuss the advantages of such a high-resolution model for parametrizing effective interactions and accurately calculating observables through direct or multiscale simulations.
Vicente J. Monleon
2009-01-01
Currently, Forest Inventory and Analysis estimation procedures use Smalian's formula to compute coarse woody debris (CWD) volume and assume that logs lie horizontally on the ground. In this paper, the impact of those assumptions on volume and biomass estimates is assessed using 7 years of Oregon's Phase 2 data. Estimates of log volume computed using Smalian...
NASA Astrophysics Data System (ADS)
Leung, L.; Hagos, S. M.; Rauscher, S.; Ringler, T.
2012-12-01
This study compares two grid refinement approaches using global variable resolution model and nesting for high-resolution regional climate modeling. The global variable resolution model, Model for Prediction Across Scales (MPAS), and the limited area model, Weather Research and Forecasting (WRF) model, are compared in an idealized aqua-planet context with a focus on the spatial and temporal characteristics of tropical precipitation simulated by the models using the same physics package from the Community Atmosphere Model (CAM4). For MPAS, simulations have been performed with a quasi-uniform resolution global domain at coarse (1 degree) and high (0.25 degree) resolution, and a variable resolution domain with a high-resolution region at 0.25 degree configured inside a coarse resolution global domain at 1 degree resolution. Similarly, WRF has been configured to run on a coarse (1 degree) and high (0.25 degree) resolution tropical channel domain as well as a nested domain with a high-resolution region at 0.25 degree nested two-way inside the coarse resolution (1 degree) tropical channel. The variable resolution or nested simulations are compared against the high-resolution simulations that serve as virtual reality. Both MPAS and WRF simulate 20-day Kelvin waves propagating through the high-resolution domains fairly unaffected by the change in resolution. In addition, both models respond to increased resolution with enhanced precipitation. Grid refinement induces zonal asymmetry in precipitation (heating), accompanied by zonal anomalous Walker like circulations and standing Rossby wave signals. However, there are important differences between the anomalous patterns in MPAS and WRF due to differences in the grid refinement approaches and sensitivity of model physics to grid resolution. This study highlights the need for "scale aware" parameterizations in variable resolution and nested regional models.
Exploration of scaling effects on coarse resolution land surface phenology
USDA-ARS?s Scientific Manuscript database
A great number of land surface phenoloy (LSP) data have been produced from various coarse resolution satellite datasets and detection algorithms across regional and global scales. Unlike field- measured phenological events which are quantitatively defined with clear biophysical meaning, current LSP ...
Adaptive resolution simulation of an atomistic protein in MARTINI water
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zavadlav, Julija; Melo, Manuel Nuno; Marrink, Siewert J., E-mail: s.j.marrink@rug.nl
2014-02-07
We present an adaptive resolution simulation of protein G in multiscale water. We couple atomistic water around the protein with mesoscopic water, where four water molecules are represented with one coarse-grained bead, farther away. We circumvent the difficulties that arise from coupling to the coarse-grained model via a 4-to-1 molecule coarse-grain mapping by using bundled water models, i.e., we restrict the relative movement of water molecules that are mapped to the same coarse-grained bead employing harmonic springs. The water molecules change their resolution from four molecules to one coarse-grained particle and vice versa adaptively on-the-fly. Having performed 15 ns long molecularmore » dynamics simulations, we observe within our error bars no differences between structural (e.g., root-mean-squared deviation and fluctuations of backbone atoms, radius of gyration, the stability of native contacts and secondary structure, and the solvent accessible surface area) and dynamical properties of the protein in the adaptive resolution approach compared to the fully atomistically solvated model. Our multiscale model is compatible with the widely used MARTINI force field and will therefore significantly enhance the scope of biomolecular simulations.« less
Adaptive resolution simulation of an atomistic protein in MARTINI water.
Zavadlav, Julija; Melo, Manuel Nuno; Marrink, Siewert J; Praprotnik, Matej
2014-02-07
We present an adaptive resolution simulation of protein G in multiscale water. We couple atomistic water around the protein with mesoscopic water, where four water molecules are represented with one coarse-grained bead, farther away. We circumvent the difficulties that arise from coupling to the coarse-grained model via a 4-to-1 molecule coarse-grain mapping by using bundled water models, i.e., we restrict the relative movement of water molecules that are mapped to the same coarse-grained bead employing harmonic springs. The water molecules change their resolution from four molecules to one coarse-grained particle and vice versa adaptively on-the-fly. Having performed 15 ns long molecular dynamics simulations, we observe within our error bars no differences between structural (e.g., root-mean-squared deviation and fluctuations of backbone atoms, radius of gyration, the stability of native contacts and secondary structure, and the solvent accessible surface area) and dynamical properties of the protein in the adaptive resolution approach compared to the fully atomistically solvated model. Our multiscale model is compatible with the widely used MARTINI force field and will therefore significantly enhance the scope of biomolecular simulations.
Linear mixing model applied to coarse spatial resolution data from multispectral satellite sensors
NASA Technical Reports Server (NTRS)
Holben, Brent N.; Shimabukuro, Yosio E.
1993-01-01
A linear mixing model was applied to coarse spatial resolution data from the NOAA Advanced Very High Resolution Radiometer. The reflective component of the 3.55-3.95 micron channel was used with the two reflective channels 0.58-0.68 micron and 0.725-1.1 micron to run a constrained least squares model to generate fraction images for an area in the west central region of Brazil. The fraction images were compared with an unsupervised classification derived from Landsat TM data acquired on the same day. The relationship between the fraction images and normalized difference vegetation index images show the potential of the unmixing techniques when using coarse spatial resolution data for global studies.
Spatially enhanced passive microwave derived soil moisture: capabilities and opportunities
USDA-ARS?s Scientific Manuscript database
Low frequency passive microwave remote sensing is a proven technique for soil moisture retrieval, but its coarse resolution restricts the range of applications. Downscaling, otherwise known as disaggregation, has been proposed as the solution to spatially enhance these coarse resolution soil moistur...
Evaluation of coarse scale land surface remote sensing albedo product over rugged terrain
NASA Astrophysics Data System (ADS)
Wen, J.; Xinwen, L.; You, D.; Dou, B.
2017-12-01
Satellite derived Land surface albedo is an essential climate variable which controls the earth energy budget and it can be used in applications such as climate change, hydrology, and numerical weather prediction. The accuracy and uncertainty of surface albedo products should be evaluated with a reliable reference truth data prior to applications. And more literatures investigated the validation methods about the albedo validation in a flat or homogenous surface. However, the albedo performance over rugged terrain is still unknow due to the validation method limited. A multi-validation strategy is implemented to give a comprehensive albedo validation, which will involve the high resolution albedo processing, high resolution albedo validation based on in situ albedo, and the method to upscale the high resolution albedo to a coarse scale albedo. Among them, the high resolution albedo generation and the upscale method is the core step for the coarse scale albedo validation. In this paper, the high resolution albedo is generated by Angular Bin algorithm. And a albedo upscale method over rugged terrain is developed to obtain the coarse scale albedo truth. The in situ albedo located 40 sites in mountain area are selected globally to validate the high resolution albedo, and then upscaled to the coarse scale albedo by the upscale method. This paper takes MODIS and GLASS albedo product as a example, and the prelimarily results show the RMSE of MODIS and GLASS albedo product over rugged terrain are 0.047 and 0.057, respectively under the RMSE with 0.036 of high resolution albedo.
NASA Technical Reports Server (NTRS)
Kaplan, Michael L.; Lin, Yuh-Lang
2004-01-01
During the research project, sounding datasets were generated for the region surrounding 9 major airports, including Dallas, TX, Boston, MA, New York, NY, Chicago, IL, St. Louis, MO, Atlanta, GA, Miami, FL, San Francico, CA, and Los Angeles, CA. The numerical simulation of winter and summer environments during which no instrument flight rule impact was occurring at these 9 terminals was performed using the most contemporary version of the Terminal Area PBL Prediction System (TAPPS) model nested from 36 km to 6 km to 1 km horizontal resolution and very detailed vertical resolution in the planetary boundary layer. The soundings from the 1 km model were archived at 30 minute time intervals for a 24 hour period and the vertical dependent variables as well as derived quantities, i.e., 3-dimensional wind components, temperatures, pressures, mixing ratios, turbulence kinetic energy and eddy dissipation rates were then interpolated to 5 m vertical resolution up to 1000 m elevation above ground level. After partial validation against field experiment datasets for Dallas as well as larger scale and much coarser resolution observations at the other 8 airports, these sounding datasets were sent to NASA for use in the Virtual Air Space and Modeling program. The application of these datasets being to determine representative airport weather environments to diagnose the response of simulated wake vortices to realistic atmospheric environments. These virtual datasets are based on large scale observed atmospheric initial conditions that are dynamically interpolated in space and time. The 1 km nested-grid simulated datasets providing a very coarse and highly smoothed representation of airport environment meteorological conditions. Details concerning the airport surface forcing are virtually absent from these simulated datasets although the observed background atmospheric processes have been compared to the simulated fields and the fields were found to accurately replicate the flows surrounding the airport where coarse verification data were available as well as where airport scale datasets were available.
A Modeling Approach to Global Land Surface Monitoring with Low Resolution Satellite Imaging
NASA Technical Reports Server (NTRS)
Hlavka, Christine A.; Dungan, Jennifer; Livingston, Gerry P.; Gore, Warren J. (Technical Monitor)
1998-01-01
The effects of changing land use/land cover on global climate and ecosystems due to greenhouse gas emissions and changing energy and nutrient exchange rates are being addressed by federal programs such as NASA's Mission to Planet Earth (MTPE) and by international efforts such as the International Geosphere-Biosphere Program (IGBP). The quantification of these effects depends on accurate estimates of the global extent of critical land cover types such as fire scars in tropical savannas and ponds in Arctic tundra. To address the requirement for accurate areal estimates, methods for producing regional to global maps with satellite imagery are being developed. The only practical way to produce maps over large regions of the globe is with data of coarse spatial resolution, such as Advanced Very High Resolution Radiometer (AVHRR) weather satellite imagery at 1.1 km resolution or European Remote-Sensing Satellite (ERS) radar imagery at 100 m resolution. The accuracy of pixel counts as areal estimates is in doubt, especially for highly fragmented cover types such as fire scars and ponds. Efforts to improve areal estimates from coarse resolution maps have involved regression of apparent area from coarse data versus that from fine resolution in sample areas, but it has proven difficult to acquire sufficient fine scale data to develop the regression. A method for computing accurate estimates from coarse resolution maps using little or no fine data is therefore needed.
Identifying grain-size dependent errors on global forest area estimates and carbon studies
Daolan Zheng; Linda S. Heath; Mark J. Ducey
2008-01-01
Satellite-derived coarse-resolution data are typically used for conducting global analyses. But the forest areas estimated from coarse-resolution maps (e.g., 1 km) inevitably differ from a corresponding fine-resolution map (such as a 30-m map) that would be closer to ground truth. A better understanding of changes in grain size on area estimation will improve our...
Takaki, Yasuhiro; Hayashi, Yuki
2008-07-01
The narrow viewing zone angle is one of the problems associated with electronic holography. We propose a technique that enables the ratio of horizontal and vertical resolutions of a spatial light modulator (SLM) to be altered. This technique increases the horizontal resolution of a SLM several times, so that the horizontal viewing zone angle is also increased several times. A SLM illuminated by a slanted point light source array is imaged by a 4f imaging system in which a horizontal slit is located on the Fourier plane. We show that the horizontal resolution was increased four times and that the horizontal viewing zone angle was increased approximately four times.
Linear mixing model applied to coarse resolution satellite data
NASA Technical Reports Server (NTRS)
Holben, Brent N.; Shimabukuro, Yosio E.
1992-01-01
A linear mixing model typically applied to high resolution data such as Airborne Visible/Infrared Imaging Spectrometer, Thematic Mapper, and Multispectral Scanner System is applied to the NOAA Advanced Very High Resolution Radiometer coarse resolution satellite data. The reflective portion extracted from the middle IR channel 3 (3.55 - 3.93 microns) is used with channels 1 (0.58 - 0.68 microns) and 2 (0.725 - 1.1 microns) to run the Constrained Least Squares model to generate fraction images for an area in the west central region of Brazil. The derived fraction images are compared with an unsupervised classification and the fraction images derived from Landsat TM data acquired in the same day. In addition, the relationship betweeen these fraction images and the well known NDVI images are presented. The results show the great potential of the unmixing techniques for applying to coarse resolution data for global studies.
Subranging technique using superconducting technology
Gupta, Deepnarayan
2003-01-01
Subranging techniques using "digital SQUIDs" are used to design systems with large dynamic range, high resolution and large bandwidth. Analog-to-digital converters (ADCs) embodying the invention include a first SQUID based "coarse" resolution circuit and a second SQUID based "fine" resolution circuit to convert an analog input signal into "coarse" and "fine" digital signals for subsequent processing. In one embodiment, an ADC includes circuitry for supplying an analog input signal to an input coil having at least a first inductive section and a second inductive section. A first superconducting quantum interference device (SQUID) is coupled to the first inductive section and a second SQUID is coupled to the second inductive section. The first SQUID is designed to produce "coarse" (large amplitude, low resolution) output signals and the second SQUID is designed to produce "fine" (low amplitude, high resolution) output signals in response to the analog input signals.
Coarse-to-fine construction for high-resolution representation in visual working memory.
Gao, Zaifeng; Ding, Xiaowei; Yang, Tong; Liang, Junying; Shui, Rende
2013-01-01
This study explored whether the high-resolution representations created by visual working memory (VWM) are constructed in a coarse-to-fine or all-or-none manner. The coarse-to-fine hypothesis suggests that coarse information precedes detailed information in entering VWM and that its resolution increases along with the processing time of the memory array, whereas the all-or-none hypothesis claims that either both enter into VWM simultaneously, or neither does. We tested the two hypotheses by asking participants to remember two or four complex objects. An ERP component, contralateral delay activity (CDA), was used as the neural marker. CDA is higher for four objects than for two objects when coarse information is primarily extracted; yet, this CDA difference vanishes when detailed information is encoded. Experiment 1 manipulated the comparison difficulty of the task under a 500-ms exposure time to determine a condition in which the detailed information was maintained. No CDA difference was found between two and four objects, even in an easy-comparison condition. Thus, Experiment 2 manipulated the memory array's exposure time under the easy-comparison condition and found a significant CDA difference at 100 ms while replicating Experiment 1's results at 500 ms. In Experiment 3, the 500-ms memory array was blurred to block the detailed information; this manipulation reestablished a significant CDA difference. These findings suggest that the creation of high-resolution representations in VWM is a coarse-to-fine process.
'Where' and 'what' in visual search.
Atkinson, J; Braddick, O J
1989-01-01
A line segment target can be detected among distractors of a different orientation by a fast 'preattentive' process. One view is that this depends on detection of a 'feature gradient', which enables subjects to locate where the target is without necessarily identifying what it is. An alternative view is that a target can be identified as distinctive in a particular 'feature map' without subjects knowing where it is in that map. Experiments are reported in which briefly exposed arrays of line segments were followed by a pattern mask, and the threshold stimulus-mask interval determined for three tasks: 'what'--subjects reported whether the target was vertical or horizontal among oblique distractors; 'coarse where'--subjects reported whether the target was in the upper or lower half of the array; 'fine where'--subjects reported whether or not the target was in a set of four particular array positions. The threshold interval was significantly lower for the 'coarse where' than for the 'what' task, indicating that, even though localization in this task depends on the target's orientation difference, this localization is possible without absolute identification of target orientation. However, for the 'fine where' task, intervals as long as or longer than those for the 'what' task were required. It appears either that different localization processes work at different levels of resolution, or that a single localization process, independent of identification, can increase its resolution at the expense of processing speed. These possibilities are discussed in terms of distinct neural representations of the visual field and fixed or variable localization processes acting upon them.
Can we trust climate models to realistically represent severe European windstorms?
NASA Astrophysics Data System (ADS)
Trzeciak, Tomasz M.; Knippertz, Peter; Pirret, Jennifer S. R.; Williams, Keith D.
2016-06-01
Cyclonic windstorms are one of the most important natural hazards for Europe, but robust climate projections of the position and the strength of the North Atlantic storm track are not yet possible, bearing significant risks to European societies and the (re)insurance industry. Previous studies addressing the problem of climate model uncertainty through statistical comparisons of simulations of the current climate with (re-)analysis data show large disagreement between different climate models, different ensemble members of the same model and observed climatologies of intense cyclones. One weakness of such evaluations lies in the difficulty to separate influences of the climate model's basic state from the influence of fast processes on the development of the most intense storms, which could create compensating effects and therefore suggest higher reliability than there really is. This work aims to shed new light into this problem through a cost-effective "seamless" approach of hindcasting 20 historical severe storms with the two global climate models, ECHAM6 and GA4 configuration of the Met Office Unified Model, run in a numerical weather prediction mode using different lead times, and horizontal and vertical resolutions. These runs are then compared to re-analysis data. The main conclusions from this work are: (a) objectively identified cyclone tracks are represented satisfactorily by most hindcasts; (b) sensitivity to vertical resolution is low; (c) cyclone depth is systematically under-predicted for a coarse resolution of T63 by both climate models; (d) no systematic bias is found for the higher resolution of T127 out to about three days, demonstrating that climate models are in fact able to represent the complex dynamics of explosively deepening cyclones well, if given the correct initial conditions; (e) an analysis using a recently developed diagnostic tool based on the surface pressure tendency equation points to too weak diabatic processes, mainly latent heating, as the main source for the under-prediction in the coarse-resolution runs. Finally, an interesting implication of these results is that the too low number of deep cyclones in many free-running climate simulations may therefore be related to an insufficient number of storm-prone initial conditions. This question will be addressed in future work.
STOCK: Structure mapper and online coarse-graining kit for molecular simulations
Bevc, Staš; Junghans, Christoph; Praprotnik, Matej
2015-03-15
We present a web toolkit STructure mapper and Online Coarse-graining Kit for setting up coarse-grained molecular simulations. The kit consists of two tools: structure mapping and Boltzmann inversion tools. The aim of the first tool is to define a molecular mapping from high, e.g. all-atom, to low, i.e. coarse-grained, resolution. Using a graphical user interface it generates input files, which are compatible with standard coarse-graining packages, e.g. VOTCA and DL_CGMAP. Our second tool generates effective potentials for coarse-grained simulations preserving the structural properties, e.g. radial distribution functions, of the underlying higher resolution model. The required distribution functions can be providedmore » by any simulation package. Simulations are performed on a local machine and only the distributions are uploaded to the server. The applicability of the toolkit is validated by mapping atomistic pentane and polyalanine molecules to a coarse-grained representation. Effective potentials are derived for systems of TIP3P (transferable intermolecular potential 3 point) water molecules and salt solution. The presented coarse-graining web toolkit is available at http://stock.cmm.ki.si.« less
Southern Ocean eddy compensation in a forced eddy-resolving GCM
NASA Astrophysics Data System (ADS)
Bruun Poulsen, Mads; Jochum, Markus; Eden, Carsten; Nuterman, Roman
2017-04-01
Contemporary eddy-resolving model studies have demonstrated that the common parameterisation of isopycnal mixing in the ocean is subject to limitations in the Southern Ocean where the mesoscale eddies are of leading order importance to the dynamics. We here present forced simulations from the Community Earth System Model on a global {1/10}° and 1° horizontal grid, the latter employing an eddy parameterisation, where the strength of the zonal wind stress south of 25°S has been varied. With a 50% zonally symmetric increase of the wind stress, we show that the two models arrive at two radically different solutions in terms of the large-scale circulation, with an increase of the deep inflow of water to the Southern Ocean at 40°S by 50% in the high resolution model against 20% at coarse resolution. Together with a weaker vertical displacement of the pycnocline in the 1° model, these results suggest that the parameterised eddies have an overly strong compensating effect on the water mass transformation compared to the explicit eddies. Implications for eddy mixing parameterisations will be discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herrnstein, Aaron R.
An ocean model with adaptive mesh refinement (AMR) capability is presented for simulating ocean circulation on decade time scales. The model closely resembles the LLNL ocean general circulation model with some components incorporated from other well known ocean models when appropriate. Spatial components are discretized using finite differences on a staggered grid where tracer and pressure variables are defined at cell centers and velocities at cell vertices (B-grid). Horizontal motion is modeled explicitly with leapfrog and Euler forward-backward time integration, and vertical motion is modeled semi-implicitly. New AMR strategies are presented for horizontal refinement on a B-grid, leapfrog time integration,more » and time integration of coupled systems with unequal time steps. These AMR capabilities are added to the LLNL software package SAMRAI (Structured Adaptive Mesh Refinement Application Infrastructure) and validated with standard benchmark tests. The ocean model is built on top of the amended SAMRAI library. The resulting model has the capability to dynamically increase resolution in localized areas of the domain. Limited basin tests are conducted using various refinement criteria and produce convergence trends in the model solution as refinement is increased. Carbon sequestration simulations are performed on decade time scales in domains the size of the North Atlantic and the global ocean. A suggestion is given for refinement criteria in such simulations. AMR predicts maximum pH changes and increases in CO 2 concentration near the injection sites that are virtually unattainable with a uniform high resolution due to extremely long run times. Fine scale details near the injection sites are achieved by AMR with shorter run times than the finest uniform resolution tested despite the need for enhanced parallel performance. The North Atlantic simulations show a reduction in passive tracer errors when AMR is applied instead of a uniform coarse resolution. No dramatic or persistent signs of error growth in the passive tracer outgassing or the ocean circulation are observed to result from AMR.« less
Tropical Cyclone Intensity in Global Models
NASA Astrophysics Data System (ADS)
Davis, C. A.; Wang, W.; Ahijevych, D.
2017-12-01
In recent years, global prediction and climate models have begun to depict intense tropical cyclones, even up to Category 5 on the Saffir-Simpson scale. In light of the limitation of horizontal resolution in such models, we examine the how well these models treat tropical cyclone intensity, measured from several different perspectives. The models evaluated include the operational Global Forecast System, with a grid spacing of about 13 km, and the Model for Prediction Across Scales, with a variable resolution of 15 km over the Northwest Pacific transitioning to 60 km elsewhere. We focus on the Northwest Pacific for the period July-October, 2016. Results indicate that discrimination of tropical cyclone intensity is reasonably good up to roughly category 3 storms. The models are able to capture storms of category 4 intensity, but still exhibit a negative intensity bias of 20-30 knots at lead times beyond 5 days. This is partly indicative of the large number of super-typhoons that occurred in 2016. The question arises of how well global models should represent intensity, given that it is unreasonable for them to depict the inner core of many intense tropical cyclones with a grid increment of 13-15 km. We compute an expected "best-case" prediction of intensity based on filtering the observed wind profiles of Atlantic tropical cyclones according to different hypothetical model resolutions. The Atlantic is used because of the significant number of reconnaissance missions and more reliable estimate of wind radii. Results indicate that, even under the most optimistic assumptions, models with horizontal grid spacing of 1/4 degree or coarser should not produce a realistic number of category 4 and 5 storms unless there are errors in spatial attributes of the wind field. Furthermore, models with a grid spacing of 1/4 degree or greater are unlikely to systematically discriminate hurricanes with differing intensity. Finally, for simple wind profiles, it is shown how an accurate representation of maximum wind on a coarse grid will lead to an overestimate of horizontally integrated kinetic energy by a factor of two or more.
The relative entropy is fundamental to adaptive resolution simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kreis, Karsten; Graduate School Materials Science in Mainz, Staudingerweg 9, 55128 Mainz; Potestio, Raffaello, E-mail: potestio@mpip-mainz.mpg.de
Adaptive resolution techniques are powerful methods for the efficient simulation of soft matter systems in which they simultaneously employ atomistic and coarse-grained (CG) force fields. In such simulations, two regions with different resolutions are coupled with each other via a hybrid transition region, and particles change their description on the fly when crossing this boundary. Here we show that the relative entropy, which provides a fundamental basis for many approaches in systematic coarse-graining, is also an effective instrument for the understanding of adaptive resolution simulation methodologies. We demonstrate that the use of coarse-grained potentials which minimize the relative entropy withmore » respect to the atomistic system can help achieve a smoother transition between the different regions within the adaptive setup. Furthermore, we derive a quantitative relation between the width of the hybrid region and the seamlessness of the coupling. Our results do not only shed light on the what and how of adaptive resolution techniques but will also help setting up such simulations in an optimal manner.« less
The relative entropy is fundamental to adaptive resolution simulations
NASA Astrophysics Data System (ADS)
Kreis, Karsten; Potestio, Raffaello
2016-07-01
Adaptive resolution techniques are powerful methods for the efficient simulation of soft matter systems in which they simultaneously employ atomistic and coarse-grained (CG) force fields. In such simulations, two regions with different resolutions are coupled with each other via a hybrid transition region, and particles change their description on the fly when crossing this boundary. Here we show that the relative entropy, which provides a fundamental basis for many approaches in systematic coarse-graining, is also an effective instrument for the understanding of adaptive resolution simulation methodologies. We demonstrate that the use of coarse-grained potentials which minimize the relative entropy with respect to the atomistic system can help achieve a smoother transition between the different regions within the adaptive setup. Furthermore, we derive a quantitative relation between the width of the hybrid region and the seamlessness of the coupling. Our results do not only shed light on the what and how of adaptive resolution techniques but will also help setting up such simulations in an optimal manner.
Siongco, Angela Cheska; Hohenegger, Cathy; Stevens, Bjorn
2017-02-09
A realistic simulation of the tropical Atlantic precipitation distribution remains a challenge for atmospheric general circulation models, owing to their too coarse resolution that makes it necessary to parameterize convection. During boreal summer, models tend to underestimate the northward shift of the tropical Atlantic rain belt, leading to deficient precipitation over land and an anomalous precipitation maximum over the west Atlantic ocean. In this study, the model ECHAM6 is used to test the sensitivity of the precipitation biases to convective parameterization and horizontal resolution. Two sets of sensitivity experiments are performed. In the first set of experiments, modifications are appliedmore » to the convection scheme in order to investigate the relative roles of the trigger, entrainment, and closure formulations. In the second set, the model is run at high resolution with low-resolution boundary conditions in order to identify the relative contributions of a high-resolution atmosphere, orography, and surface. Results show that the dry bias over land in the model can be reduced by weakening the entrainment rate over land. Over ocean, it is found that the anomalous precipitation maximum occurs because of model choices that decrease the sensitivity of convection to the monsoon circulation in the east Atlantic. A reduction of the west Atlantic precipitation bias can be achieved by (i) using a moisture convergence closure, (ii) increasing the resolution of orography, or (iii) enhancing the production of deep convection in the east Atlantic. As a result, the biases over land and over ocean do not impact each other.« less
Shen, Lin; Yang, Weitao
2016-04-12
We developed a new multiresolution method that spans three levels of resolution with quantum mechanical, atomistic molecular mechanical, and coarse-grained models. The resolution-adapted all-atom and coarse-grained water model, in which an all-atom structural description of the entire system is maintained during the simulations, is combined with the ab initio quantum mechanics and molecular mechanics method. We apply this model to calculate the redox potentials of the aqueous ruthenium and iron complexes by using the fractional number of electrons approach and thermodynamic integration simulations. The redox potentials are recovered in excellent accordance with the experimental data. The speed-up of the hybrid all-atom and coarse-grained water model renders it computationally more attractive. The accuracy depends on the hybrid all-atom and coarse-grained water model used in the combined quantum mechanical and molecular mechanical method. We have used another multiresolution model, in which an atomic-level layer of water molecules around redox center is solvated in supramolecular coarse-grained waters for the redox potential calculations. Compared with the experimental data, this alternative multilayer model leads to less accurate results when used with the coarse-grained polarizable MARTINI water or big multipole water model for the coarse-grained layer.
NASA Astrophysics Data System (ADS)
Putman, W. M.; Suarez, M.
2009-12-01
The Goddard Earth Observing System Model (GEOS-5), an earth system model developed in the NASA Global Modeling and Assimilation Office (GMAO), has integrated the non-hydrostatic finite-volume dynamical core on the cubed-sphere grid. The extension to a non-hydrostatic dynamical framework and the quasi-uniform cubed-sphere geometry permits the efficient exploration of global weather and climate modeling at cloud permitting resolutions of 10- to 4-km on today's high performance computing platforms. We have explored a series of incremental increases in global resolution with GEOS-5 from it's standard 72-level 27-km resolution (~5.5 million cells covering the globe from the surface to 0.1 hPa) down to 3.5-km (~3.6 billion cells). We will present results from a series of forecast experiments exploring the impact of the non-hydrostatic dynamics at transition resolutions of 14- to 7-km, and the influence of increased horizontal/vertical resolution on convection and physical parameterizations within GEOS-5. Regional and mesoscale features of 5- to 10-day weather forecasts will be presented and compared with satellite observations. Our results will highlight the impact of resolution on the structure of cloud features including tropical convection and tropical cyclone predicability, cloud streets, von Karman vortices, and the marine stratocumulus cloud layer. We will also present experiment design and early results from climate impact experiments for global non-hydrostatic models using GEOS-5. Our climate experiments will focus on support for the Year of Tropical Convection (YOTC). We will also discuss a seasonal climate time-slice experiment design for downscaling coarse resolution century scale climate simulations to global non-hydrostatic resolutions of 14- to 7-km with GEOS-5.
Sub-grid drag model for immersed vertical cylinders in fluidized beds
Verma, Vikrant; Li, Tingwen; Dietiker, Jean -Francois; ...
2017-01-03
Immersed vertical cylinders are often used as heat exchanger in gas-solid fluidized beds. Computational Fluid Dynamics (CFD) simulations are computationally expensive for large scale systems with bundles of cylinders. Therefore sub-grid models are required to facilitate simulations on a coarse grid, where internal cylinders are treated as a porous medium. The influence of cylinders on the gas-solid flow tends to enhance segregation and affect the gas-solid drag. A correction to gas-solid drag must be modeled using a suitable sub-grid constitutive relationship. In the past, Sarkar et al. have developed a sub-grid drag model for horizontal cylinder arrays based on 2Dmore » simulations. However, the effect of a vertical cylinder arrangement was not considered due to computational complexities. In this study, highly resolved 3D simulations with vertical cylinders were performed in small periodic domains. These simulations were filtered to construct a sub-grid drag model which can then be implemented in coarse-grid simulations. Gas-solid drag was filtered for different solids fractions and a significant reduction in drag was identified when compared with simulation without cylinders and simulation with horizontal cylinders. Slip velocities significantly increase when vertical cylinders are present. Lastly, vertical suspension drag due to vertical cylinders is insignificant however substantial horizontal suspension drag is observed which is consistent to the finding for horizontal cylinders.« less
Benefits and Pitfalls of GRACE Terrestrial Water Storage Data Assimilation
NASA Technical Reports Server (NTRS)
Girotto, Manuela
2018-01-01
Satellite observations of terrestrial water storage (TWS) from the Gravity Recovery and Climate Experiment (GRACE) mission have a coarse resolution in time (monthly) and space (roughly 150,000 sq km at midlatitudes) and vertically integrate all water storage components over land, including soil moisture and groundwater. Nonetheless, data assimilation can be used to horizontally downscale and vertically partition GRACE-TWS observations. This presentation illustrates some of the benefits and drawbacks of assimilating TWS observations from GRACE into a land surface model over the continental United States and India. The assimilation scheme yields improved skill metrics for groundwater compared to the no-assimilation simulations. A smaller impact is seen for surface and root-zone soil moisture. Further, GRACE observes TWS depletion associated with anthropogenic groundwater extraction. Results from the assimilation emphasize the importance of representing anthropogenic processes in land surface modeling and data assimilation systems.
NASA Astrophysics Data System (ADS)
Schmidt, Jerome Michael
This study addresses the production of sustained, straight-line, severe surface winds associated with mesoscale convective systems (MCSs) of extratropical origin otherwise known as derechos. The physical processes which govern the observed derecho characteristics are identified and their possible forcing mechanisms are determined. Detailed observations of two derechos are presented along with simulations using the Colorado State University Regional Atmospheric Modeling System (CSU-RAMS). The observations revealed a derecho environment characterized by strong vertical wind shear through the depth of the troposphere and large values of convective available potential energy (CAPE). The thermodynamic environment of the troposphere in each case had a distinct three-layer structure consisting of: (i) a surface-based stable layer of 1-to-2 km in depth, (ii) an elevated well -mixed layer of 2-4 km in depth, and (iii) an upper tropospheric layer of intermediate stability that extended to the tropopause. Two primary sets of simulations were performed to assess the impact of the observed environmental profiles on the derecho structure, propagation, and longevity. The first set consisted of nested-grid regional-scale simulations initialized from the standard NMC analyses on a domain having relatively coarse horizontal resolution (75 km). The second set of simulations consisted of two and three-dimensional experiments initialized in a horizontally homogeneous environment having a relatively fine horizontal resolution (2 km) and explicit microphysics. The results from these experiments indicate the importance of convectively -induced gravity waves on the MCS structure, propagation, longevity, and severe surface wind development. The sensitivity of the simulated convection and gravity waves to variations in the vertical wind shear and moisture profiles are described. Detailed Doppler radar analyses and 3-D simulations of a severe, bow echo squall line are presented which reveal the unique 3-D circulation features which accompany these mesoscale convective systems. We illustrate how the mesoscale and convective-scale flow fields within the bow echo establish the severe surface wind maximum. (Abstract shortened with permission of author.).
SST Variation Due to Interactive Convective-Radiative Processes
NASA Technical Reports Server (NTRS)
Tao, W.-K.; Shie, C.-L.; Johnson, D.; Simpson, J.; Li, X.; Sui, C.-H.
2000-01-01
The recent linking of Cloud-Resolving Models (CRMs) to Ocean-Mixed Layer (OML) models has provided a powerful new means of quantifying the role of cloud systems in ocean-atmosphere coupling. This is due to the fact that the CRM can better resolve clouds and cloud systems and allow for explicit cloud-radiation interaction. For example, Anderson (1997) applied an atmospheric forcing associated with a CRM simulated squall line to a 3-D OML model (one way or passive interaction). His results suggested that the spatial variability resulting from the squall forcing can last at least 24 hours when forced with otherwise spatially uniform fluxes. In addition, the sea surface salinity (SSS) variability continuously decreased following the forcing, while some of the SST variability remained when a diurnal mixed layer capped off the surface structure. The forcing used in the OML model, however, focused on shorter time (8 h) and smaller spatial scales (100-120 km). In this study, the 3-D Goddard Cumulus Ensemble Model (GCE; 512 x 512 x 23 cu km, 2-km horizontal resolution) is used to simulate convective active episodes occurring in the Western Pacific warm pool and Eastern Atlantic regions. The model is integrated for seven days, and the simulated results are coupled to an OML model to better understand the impact of precipitation and changes in the planetary boundary layer upon SST variation. We will specifically examine and compare the results of linking the OML model with various spatially-averaged outputs from GCE simulations (i.e., 2 km vs. 10-50 km horizontal resolutions), in order to help understand the SST sensitivity to multi-scale influences. This will allow us to assess the importance of explicitly simulated deep and shallow clouds, as well as the subgrid-scale effects (in coarse-model runs) upon SST variation. Results using both 1-D and 2-D OML models will be evaluated to assess the effects of horizontal advection.
von Sperling, M
2015-01-01
This paper presents a comparison between three simple sewage treatment lines involving natural processes: (a) upflow anaerobic sludge blanket (UASB) reactor-three maturation ponds in series-coarse rock filter; (b) UASB reactor-horizontal subsurface-flow constructed wetland; and (c) vertical-flow constructed wetlands treating raw sewage (first stage of the French system). The evaluation was based on several years of practical experience with three small full-scale plants receiving the same influent wastewater (population equivalents of 220, 60 and 100 inhabitants) in the city of Belo Horizonte, Brazil. The comparison included interpretation of concentrations and removal efficiencies based on monitoring data (organic matter, solids, nitrogen, phosphorus, coliforms and helminth eggs), together with an evaluation of practical aspects, such as land and volume requirements, sludge production and handling, plant management, clogging and others. Based on an integrated evaluation of all aspects involved, it is worth emphasizing that each system has its own specificities, and no generalization can be made on the best option. The overall conclusion is that the three lines are suitable for sewage treatment in small communities in warm-climate regions.
NASA Astrophysics Data System (ADS)
He, Qiang; Schultz, Richard R.; Chu, Chee-Hung Henry
2008-04-01
The concept surrounding super-resolution image reconstruction is to recover a highly-resolved image from a series of low-resolution images via between-frame subpixel image registration. In this paper, we propose a novel and efficient super-resolution algorithm, and then apply it to the reconstruction of real video data captured by a small Unmanned Aircraft System (UAS). Small UAS aircraft generally have a wingspan of less than four meters, so that these vehicles and their payloads can be buffeted by even light winds, resulting in potentially unstable video. This algorithm is based on a coarse-to-fine strategy, in which a coarsely super-resolved image sequence is first built from the original video data by image registration and bi-cubic interpolation between a fixed reference frame and every additional frame. It is well known that the median filter is robust to outliers. If we calculate pixel-wise medians in the coarsely super-resolved image sequence, we can restore a refined super-resolved image. The primary advantage is that this is a noniterative algorithm, unlike traditional approaches based on highly-computational iterative algorithms. Experimental results show that our coarse-to-fine super-resolution algorithm is not only robust, but also very efficient. In comparison with five well-known super-resolution algorithms, namely the robust super-resolution algorithm, bi-cubic interpolation, projection onto convex sets (POCS), the Papoulis-Gerchberg algorithm, and the iterated back projection algorithm, our proposed algorithm gives both strong efficiency and robustness, as well as good visual performance. This is particularly useful for the application of super-resolution to UAS surveillance video, where real-time processing is highly desired.
NASA Astrophysics Data System (ADS)
Seiler, C.; Zwiers, F. W.; Hodges, K. I.; Scinocca, J. F.
2018-01-01
Explosive extratropical cyclones (EETCs) are rapidly intensifying low pressure systems that generate severe weather along North America's Atlantic coast. Global climate models (GCMs) tend to simulate too few EETCs, perhaps partly due to their coarse horizontal resolution and poorly resolved moist diabatic processes. This study explores whether dynamical downscaling can reduce EETC frequency biases, and whether this affects future projections of storms along North America's Atlantic coast. A regional climate model (CanRCM4) is forced with the CanESM2 GCM for the periods 1981 to 2000 and 2081 to 2100. EETCs are tracked from relative vorticity using an objective feature tracking algorithm. CanESM2 simulates 38% fewer EETC tracks compared to reanalysis data, which is consistent with a negative Eady growth rate bias (-0.1 day^{-1}). Downscaling CanESM2 with CanRCM4 increases EETC frequency by one third, which reduces the frequency bias to -22%, and increases maximum EETC precipitation by 22%. Anthropogenic greenhouse gas forcing is projected to decrease EETC frequency (-15%, -18%) and Eady growth rate (-0.2 day^{-1}, -0.2 day^{-1}), and increase maximum EETC precipitation (46%, 52%) in CanESM2 and CanRCM4, respectively. The limited effect of dynamical downscaling on EETC frequency projections is consistent with the lack of impact on the maximum Eady growth rate. The coarse spatial resolution of GCMs presents an important limitation for simulating extreme ETCs, but Eady growth rate biases are likely just as relevant. Further bias reductions could be achieved by addressing processes that lead to an underestimation of lower tropospheric meridional temperature gradients.
NASA Astrophysics Data System (ADS)
Barajas-Solano, D. A.; Tartakovsky, A. M.
2017-12-01
We present a multiresolution method for the numerical simulation of flow and reactive transport in porous, heterogeneous media, based on the hybrid Multiscale Finite Volume (h-MsFV) algorithm. The h-MsFV algorithm allows us to couple high-resolution (fine scale) flow and transport models with lower resolution (coarse) models to locally refine both spatial resolution and transport models. The fine scale problem is decomposed into various "local'' problems solved independently in parallel and coordinated via a "global'' problem. This global problem is then coupled with the coarse model to strictly ensure domain-wide coarse-scale mass conservation. The proposed method provides an alternative to adaptive mesh refinement (AMR), due to its capacity to rapidly refine spatial resolution beyond what's possible with state-of-the-art AMR techniques, and the capability to locally swap transport models. We illustrate our method by applying it to groundwater flow and reactive transport of multiple species.
NASA Technical Reports Server (NTRS)
Myneni, Ranga
2003-01-01
The problem of how the scale, or spatial resolution, of reflectance data impacts retrievals of vegetation leaf area index (LAI) and fraction absorbed photosynthetically active radiation (PAR) has been investigated. We define the goal of scaling as the process by which it is established that LAI and FPAR values derived from coarse resolution sensor data equal the arithmetic average of values derived independently from fine resolution sensor data. The increasing probability of land cover mixtures with decreasing resolution is defined as heterogeneity, which is a key concept in scaling studies. The effect of pixel heterogeneity on spectral reflectances and LAI/FPAR retrievals is investigated with 1 km Advanced Very High Resolution Radiometer (AVHRR) data aggregated to different coarse spatial resolutions. It is shown that LAI retrieval errors at coarse resolution are inversely related to the proportion of the dominant land cover in such pixel. Further, large errors in LAI retrievals are incurred when forests are minority biomes in non-forest pixels compared to when forest biomes are mixed with one another, and vice-versa. A physically based technique for scaling with explicit spatial resolution dependent radiative transfer formulation is developed. The successful application of this theory to scaling LAI retrievals from AVHRR data of different resolutions is demonstrated
NASA Astrophysics Data System (ADS)
Yuan, Rui; Zhang, Changmin; Tang, Yong; Qu, Jianhua; Guo, Xudong; Sun, Yuqiu; Zhu, Rui; Zhou, Yuanquan (Nancy)
2017-11-01
Large-scale conglomerate fan-delta aprons were typical deposits on the slope of Mahu Depression during the Early Triassic. Without outcrops, it is difficult to study the lithofacies only by examining the limited cores from the main oil-bearing interval of the Baikouquan Formation. Borehole electrical imaging log provides abundant high-resolution geologic information that is obtainable only from real rocks previously. Referring to the lithology and sedimentary structure of cores, a case study of fan-deltas in the Lower Triassic Baikouquan Formation of the Mahu Depression presents a methodology for interpreting the complicated lithofacies utilizing borehole electrical images. Eleven types of lithologies and five types of sedimentary structures are summarized in borehole electrical images. The sediments are fining upward from gravel to silt and clay in the Baikouquan Formation. Fine-pebbles and granules are the main deposits in T1b1 and T1b2, but sandstones, siltstones and mudstones are more developed in T1b3. The main sedimentary textures are massive beddings, cross beddings and scour-and-fill structures. Parallel and horizontal beddings are more developed in T1b3 relatively. On integrated analysis of the lithology and sedimentary structure, eight lithofacies from electrical images, referred to as image lithofacies, is established for the fan-deltas. Granules to coarse-pebbles within massive beddings, granules to coarse-pebbles within cross and parallel beddings, siltstones within horizontal and massive beddings are the most developed lithofacies respectively in T1b1, T1b2 and T1b3. It indicates a gradual rise of the lake level of Mahu depression during the Early Triassic, with the fan-delta aprons retrograding towards to the margin of the basin. Therefore, the borehole electrical imaging log compensate for the limitation of cores of the Baikouquan Formation, providing an effective new approach to interpret the lithofacies of fan-delta.
Weather Research and Forecasting Model Wind Sensitivity Study at Edwards Air Force Base, CA
NASA Technical Reports Server (NTRS)
Watson, Leela R.; Bauman, William H., III
2008-01-01
NASA prefers to land the space shuttle at Kennedy Space Center (KSC). When weather conditions violate Flight Rules at KSC, NASA will usually divert the shuttle landing to Edwards Air Force Base (EAFB) in Southern California. But forecasting surface winds at EAFB is a challenge for the Spaceflight Meteorology Group (SMG) forecasters due to the complex terrain that surrounds EAFB, One particular phenomena identified by SMG is that makes it difficult to forecast the EAFB surface winds is called "wind cycling". This occurs when wind speeds and directions oscillate among towers near the EAFB runway leading to a challenging deorbit bum forecast for shuttle landings. The large-scale numerical weather prediction models cannot properly resolve the wind field due to their coarse horizontal resolutions, so a properly tuned high-resolution mesoscale model is needed. The Weather Research and Forecasting (WRF) model meets this requirement. The AMU assessed the different WRF model options to determine which configuration best predicted surface wind speed and direction at EAFB, To do so, the AMU compared the WRF model performance using two hot start initializations with the Advanced Research WRF and Non-hydrostatic Mesoscale Model dynamical cores and compared model performance while varying the physics options.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Fuyu; Collins, William D.; Wehner, Michael F.
High-resolution climate models have been shown to improve the statistics of tropical storms and hurricanes compared to low-resolution models. The impact of increasing horizontal resolution in the tropical storm simulation is investigated exclusively using a series of Atmospheric Global Climate Model (AGCM) runs with idealized aquaplanet steady-state boundary conditions and a fixed operational storm-tracking algorithm. The results show that increasing horizontal resolution helps to detect more hurricanes, simulate stronger extreme rainfall, and emulate better storm structures in the models. However, increasing model resolution does not necessarily produce stronger hurricanes in terms of maximum wind speed, minimum sea level pressure, andmore » mean precipitation, as the increased number of storms simulated by high-resolution models is mainly associated with weaker storms. The spatial scale at which the analyses are conducted appears to have more important control on these meteorological statistics compared to horizontal resolution of the model grid. When the simulations are analyzed on common low-resolution grids, the statistics of the hurricanes, particularly the hurricane counts, show reduced sensitivity to the horizontal grid resolution and signs of scale invariant.« less
Statistical Downscaling of WRF-Chem Model: An Air Quality Analysis over Bogota, Colombia
NASA Astrophysics Data System (ADS)
Kumar, Anikender; Rojas, Nestor
2015-04-01
Statistical downscaling is a technique that is used to extract high-resolution information from regional scale variables produced by coarse resolution models such as Chemical Transport Models (CTMs). The fully coupled WRF-Chem (Weather Research and Forecasting with Chemistry) model is used to simulate air quality over Bogota. Bogota is a tropical Andean megacity located over a high-altitude plateau in the middle of very complex terrain. The WRF-Chem model was adopted for simulating the hourly ozone concentrations. The computational domains were chosen of 120x120x32, 121x121x32 and 121x121x32 grid points with horizontal resolutions of 27, 9 and 3 km respectively. The model was initialized with real boundary conditions using NCAR-NCEP's Final Analysis (FNL) and a 1ox1o (~111 km x 111 km) resolution. Boundary conditions were updated every 6 hours using reanalysis data. The emission rates were obtained from global inventories, namely the REanalysis of the TROpospheric (RETRO) chemical composition and the Emission Database for Global Atmospheric Research (EDGAR). Multiple linear regression and artificial neural network techniques are used to downscale the model output at each monitoring stations. The results confirm that the statistically downscaled outputs reduce simulated errors by up to 25%. This study provides a general overview of statistical downscaling of chemical transport models and can constitute a reference for future air quality modeling exercises over Bogota and other Colombian cities.
Satellite-Scale Snow Water Equivalent Assimilation into a High-Resolution Land Surface Model
NASA Technical Reports Server (NTRS)
De Lannoy, Gabrielle J.M.; Reichle, Rolf H.; Houser, Paul R.; Arsenault, Kristi R.; Verhoest, Niko E.C.; Paulwels, Valentijn R.N.
2009-01-01
An ensemble Kalman filter (EnKF) is used in a suite of synthetic experiments to assimilate coarse-scale (25 km) snow water equivalent (SWE) observations (typical of satellite retrievals) into fine-scale (1 km) model simulations. Coarse-scale observations are assimilated directly using an observation operator for mapping between the coarse and fine scales or, alternatively, after disaggregation (re-gridding) to the fine-scale model resolution prior to data assimilation. In either case observations are assimilated either simultaneously or independently for each location. Results indicate that assimilating disaggregated fine-scale observations independently (method 1D-F1) is less efficient than assimilating a collection of neighboring disaggregated observations (method 3D-Fm). Direct assimilation of coarse-scale observations is superior to a priori disaggregation. Independent assimilation of individual coarse-scale observations (method 3D-C1) can bring the overall mean analyzed field close to the truth, but does not necessarily improve estimates of the fine-scale structure. There is a clear benefit to simultaneously assimilating multiple coarse-scale observations (method 3D-Cm) even as the entire domain is observed, indicating that underlying spatial error correlations can be exploited to improve SWE estimates. Method 3D-Cm avoids artificial transitions at the coarse observation pixel boundaries and can reduce the RMSE by 60% when compared to the open loop in this study.
Konrad, Christopher P.
2015-01-01
Ecological functions and flood-related risks were assessed for floodplains along the 17 major rivers flowing into Puget Sound Basin, Washington. The assessment addresses five ecological functions, five components of flood-related risks at two spatial resolutions—fine and coarse. The fine-resolution assessment compiled spatial attributes of floodplains from existing, publically available sources and integrated the attributes into 10-meter rasters for each function, hazard, or exposure. The raster values generally represent different types of floodplains with regard to each function, hazard, or exposure rather than the degree of function, hazard, or exposure. The coarse-resolution assessment tabulates attributes from the fine-resolution assessment for larger floodplain units, which are floodplains associated with 0.1 to 21-kilometer long segments of major rivers. The coarse-resolution assessment also derives indices that can be used to compare function or risk among different floodplain units and to develop normative (based on observed distributions) standards. The products of the assessment are available online as geospatial datasets (Konrad, 2015; http://dx.doi.org/10.5066/F7DR2SJC).
NASA Astrophysics Data System (ADS)
Ern, Manfred; Trinh, Quang Thai; Preusse, Peter; Gille, John C.; Mlynczak, Martin G.; Russell, James M., III; Riese, Martin
2018-04-01
Gravity waves are one of the main drivers of atmospheric dynamics. The spatial resolution of most global atmospheric models, however, is too coarse to properly resolve the small scales of gravity waves, which range from tens to a few thousand kilometers horizontally, and from below 1 km to tens of kilometers vertically. Gravity wave source processes involve even smaller scales. Therefore, general circulation models (GCMs) and chemistry climate models (CCMs) usually parametrize the effect of gravity waves on the global circulation. These parametrizations are very simplified. For this reason, comparisons with global observations of gravity waves are needed for an improvement of parametrizations and an alleviation of model biases. We present a gravity wave climatology based on atmospheric infrared limb emissions observed by satellite (GRACILE). GRACILE is a global data set of gravity wave distributions observed in the stratosphere and the mesosphere by the infrared limb sounding satellite instruments High Resolution Dynamics Limb Sounder (HIRDLS) and Sounding of the Atmosphere using Broadband Emission Radiometry (SABER). Typical distributions (zonal averages and global maps) of gravity wave vertical wavelengths and along-track horizontal wavenumbers are provided, as well as gravity wave temperature variances, potential energies and absolute momentum fluxes. This global data set captures the typical seasonal variations of these parameters, as well as their spatial variations. The GRACILE data set is suitable for scientific studies, and it can serve for comparison with other instruments (ground-based, airborne, or other satellite instruments) and for comparison with gravity wave distributions, both resolved and parametrized, in GCMs and CCMs. The GRACILE data set is available as supplementary data at https://doi.org/10.1594/PANGAEA.879658.
NASA Astrophysics Data System (ADS)
Cooper, H.; Zhang, C.; Sirianni, M.
2016-12-01
South Florida relies upon the health of the Everglades, the largest subtropical wetland in North America, as a vital source of water. Since the late 1800's, this imperiled ecosystem has been highly engineered to meet human needs of flood control and water use. The Comprehensive Everglades Restoration Plan (CERP) was initiated in 2000 to restore original water flows to the Everglades and improve overall ecosystem health, while also aiming to achieve balance with human water usage. Due to subtle changes in the Everglades terrain, better vertical accuracy elevation data are needed to model groundwater and surface water levels that are integral to monitoring the effects of restoration under impacts such as sea-level rise. The current best available elevation datasets for the coastal Everglades include High Accuracy Elevation Data (HAED) and Florida Department of Emergency Management (FDEM) Light Detection and Ranging (LiDAR). However, the horizontal resolution of the HAED data is too coarse ( 400 m) for fine scale mapping, and the LiDAR data does not contain an accuracy assessment for coastal Everglades' vegetation communities. The purpose of this study is to develop a framework for generating better vertical accuracy and horizontal resolution Digital Elevation Models in the Flamingo District of Everglades National Park. In the framework, field work is conducted to collect RTK GPS and total station elevation measurements for mangrove swamp, coastal prairies, and freshwater marsh, and the proposed accuracy assessment and elevation modeling methodology is integrated with a Geographical Information System (GIS). It is anticipated that this study will provide more accurate models of the soil substrate elevation that can be used by restoration planners to better predict the future state of the Everglades ecosystem.
NASA Astrophysics Data System (ADS)
Roth, A. C.; Hock, R.; Schuler, T.; Bieniek, P.; Aschwanden, A.
2017-12-01
Mass loss from glaciers in Southeast Alaska is expected to alter downstream ecological systems as runoff patterns change. To investigate these potential changes under future climate scenarios, distributed glacier mass balance modeling is required. However, the spatial resolution gap between global or regional climate models and the requirements for glacier mass balance modeling studies must be addressed first. We have used a linear theory of orographic precipitation model to downscale precipitation from both the Weather Research and Forecasting (WRF) model and ERA-Interim to the Juneau Icefield region over the period 1979-2013. This implementation of the LT model is a unique parameterization that relies on the specification of snow fall speed and rain fall speed as tuning parameters to calculate the cloud time delay, τ. We assessed the LT model results by considering winter precipitation so the effect of melt was minimized. The downscaled precipitation pattern produced by the LT model captures the orographic precipitation pattern absent from the coarse resolution WRF and ERA-Interim precipitation fields. Observational data constraints limited our ability to determine a unique parameter combination and calibrate the LT model to glaciological observations. We established a reference run of parameter values based on literature and performed a sensitivity analysis of the LT model parameters, horizontal resolution, and climate input data on the average winter precipitation. The results of the reference run showed reasonable agreement with the available glaciological measurements. The precipitation pattern produced by the LT model was consistent regardless of parameter combination, horizontal resolution, and climate input data, but the precipitation amount varied strongly with these factors. Due to the consistency of the winter precipitation pattern and the uncertainty in precipitation amount, we suggest a precipitation index map approach to be used in combination with a distributed mass balance model for future mass balance modeling studies of the Juneau Icefield. The LT model has potential to be used in other regions in Alaska and elsewhere with strong orographic effects for improved glacier mass balance modeling and/or hydrological modeling.
NASA Astrophysics Data System (ADS)
Kim, S. K.; Lee, J.; Zhang, C.; Ames, S.; Williams, D. N.
2017-12-01
Deep learning techniques have been successfully applied to solve many problems in climate and geoscience using massive-scaled observed and modeled data. For extreme climate event detections, several models based on deep neural networks have been recently proposed and attend superior performance that overshadows all previous handcrafted expert based method. The issue arising, though, is that accurate localization of events requires high quality of climate data. In this work, we propose framework capable of detecting and localizing extreme climate events in very coarse climate data. Our framework is based on two models using deep neural networks, (1) Convolutional Neural Networks (CNNs) to detect and localize extreme climate events, and (2) Pixel recursive recursive super resolution model to reconstruct high resolution climate data from low resolution climate data. Based on our preliminary work, we have presented two CNNs in our framework for different purposes, detection and localization. Our results using CNNs for extreme climate events detection shows that simple neural nets can capture the pattern of extreme climate events with high accuracy from very coarse reanalysis data. However, localization accuracy is relatively low due to the coarse resolution. To resolve this issue, the pixel recursive super resolution model reconstructs the resolution of input of localization CNNs. We present a best networks using pixel recursive super resolution model that synthesizes details of tropical cyclone in ground truth data while enhancing their resolution. Therefore, this approach not only dramat- ically reduces the human effort, but also suggests possibility to reduce computing cost required for downscaling process to increase resolution of data.
Dual-resolution dose assessments for proton beamlet using MCNPX 2.6.0
NASA Astrophysics Data System (ADS)
Chao, T. C.; Wei, S. C.; Wu, S. W.; Tung, C. J.; Tu, S. J.; Cheng, H. W.; Lee, C. C.
2015-11-01
The purpose of this study is to access proton dose distribution in dual resolution phantoms using MCNPX 2.6.0. The dual resolution phantom uses higher resolution in Bragg peak, area near large dose gradient, or heterogeneous interface and lower resolution in the rest. MCNPX 2.6.0 was installed in Ubuntu 10.04 with MPI for parallel computing. FMesh1 tallies were utilized to record the energy deposition which is a special designed tally for voxel phantoms that converts dose deposition from fluence. 60 and 120 MeV narrow proton beam were incident into Coarse, Dual and Fine resolution phantoms with pure water, water-bone-water and water-air-water setups. The doses in coarse resolution phantoms are underestimated owing to partial volume effect. The dose distributions in dual or high resolution phantoms agreed well with each other and dual resolution phantoms were at least 10 times more efficient than fine resolution one. Because the secondary particle range is much longer in air than in water, the dose of low density region may be under-estimated if the resolution or calculation grid is not small enough.
NASA Astrophysics Data System (ADS)
Yu, Karen; Keller, Christoph A.; Jacob, Daniel J.; Molod, Andrea M.; Eastham, Sebastian D.; Long, Michael S.
2018-01-01
Global simulations of atmospheric chemistry are commonly conducted with off-line chemical transport models (CTMs) driven by archived meteorological data from general circulation models (GCMs). The off-line approach has the advantages of simplicity and expediency, but it incurs errors due to temporal averaging in the meteorological archive and the inability to reproduce the GCM transport algorithms exactly. The CTM simulation is also often conducted at coarser grid resolution than the parent GCM. Here we investigate this cascade of CTM errors by using 222Rn-210Pb-7Be chemical tracer simulations off-line in the GEOS-Chem CTM at rectilinear 0.25° × 0.3125° (≈ 25 km) and 2° × 2.5° (≈ 200 km) resolutions and online in the parent GEOS-5 GCM at cubed-sphere c360 (≈ 25 km) and c48 (≈ 200 km) horizontal resolutions. The c360 GEOS-5 GCM meteorological archive, updated every 3 h and remapped to 0.25° × 0.3125°, is the standard operational product generated by the NASA Global Modeling and Assimilation Office (GMAO) and used as input by GEOS-Chem. We find that the GEOS-Chem 222Rn simulation at native 0.25° × 0.3125° resolution is affected by vertical transport errors of up to 20 % relative to the GEOS-5 c360 online simulation, in part due to loss of transient organized vertical motions in the GCM (resolved convection) that are temporally averaged out in the 3 h meteorological archive. There is also significant error caused by operational remapping of the meteorological archive from a cubed-sphere to a rectilinear grid. Decreasing the GEOS-Chem resolution from 0.25° × 0.3125° to 2° × 2.5° induces further weakening of vertical transport as transient vertical motions are averaged out spatially and temporally. The resulting 222Rn concentrations simulated by the coarse-resolution GEOS-Chem are overestimated by up to 40 % in surface air relative to the online c360 simulations and underestimated by up to 40 % in the upper troposphere, while the tropospheric lifetimes of 210Pb and 7Be against aerosol deposition are affected by 5-10 %. The lost vertical transport in the coarse-resolution GEOS-Chem simulation can be partly restored by recomputing the convective mass fluxes at the appropriate resolution to replace the archived convective mass fluxes and by correcting for bias in the spatial averaging of boundary layer mixing depths.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cao, Zhen; Voth, Gregory A., E-mail: gavoth@uchicago.edu
It is essential to be able to systematically construct coarse-grained (CG) models that can efficiently and accurately reproduce key properties of higher-resolution models such as all-atom. To fulfill this goal, a mapping operator is needed to transform the higher-resolution configuration to a CG configuration. Certain mapping operators, however, may lose information related to the underlying electrostatic properties. In this paper, a new mapping operator based on the centers of charge of CG sites is proposed to address this issue. Four example systems are chosen to demonstrate this concept. Within the multiscale coarse-graining framework, CG models that use this mapping operatormore » are found to better reproduce the structural correlations of atomistic models. The present work also demonstrates the flexibility of the mapping operator and the robustness of the force matching method. For instance, important functional groups can be isolated and emphasized in the CG model.« less
Application of a fast Newton-Krylov solver for equilibrium simulations of phosphorus and oxygen
NASA Astrophysics Data System (ADS)
Fu, Weiwei; Primeau, François
2017-11-01
Model drift due to inadequate spinup is a serious problem that complicates the interpretation of climate change simulations. Even after a 300 year spinup we show that solutions are not only still drifting but often drifting away from their eventual equilibrium over large parts of the ocean. Here we present a Newton-Krylov solver for computing cyclostationary equilibrium solutions of a biogeochemical model for the cycling of phosphorus and oxygen. In addition to using previously developed preconditioning strategies - time-averaging and coarse-graining the Jacobian matrix - we also introduce a new strategy: the adiabatic elimination of a fast variable (particulate organic phosphorus) by slaving it to a slow variable (dissolved inorganic phosphorus). We use transport matrices derived from the Community Earth System Model (CESM) with a nominal horizontal resolution of 1° × 1° and 60 vertical levels to implement and test the solver. We find that the new solver obtains seasonally-varying equilibrium solutions with no visible drift using no more than 80 simulation years.
Near-surface coherent structures explored by large eddy simulation of entire tropical cyclones.
Ito, Junshi; Oizumi, Tsutao; Niino, Hiroshi
2017-06-19
Taking advantage of the huge computational power of a massive parallel supercomputer (K-supercomputer), this study conducts large eddy simulations of entire tropical cyclones by employing a numerical weather prediction model, and explores near-surface coherent structures. The maximum of the near-surface wind changes little from that simulated based on coarse-resolution runs. Three kinds of coherent structures appeared inside the boundary layer. The first is a Type-A roll, which is caused by an inflection-point instability of the radial flow and prevails outside the radius of maximum wind. The second is a Type-B roll that also appears to be caused by an inflection-point instability but of both radial and tangential winds. Its roll axis is almost orthogonal to the Type-A roll. The third is a Type-C roll, which occurs inside the radius of maximum wind and only near the surface. It transports horizontal momentum in an up-gradient sense and causes the largest gusts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marjanovic, Nikola; Mirocha, Jeffrey D.; Kosović, Branko
A generalized actuator line (GAL) wind turbine parameterization is implemented within the Weather Research and Forecasting model to enable high-fidelity large-eddy simulations of wind turbine interactions with boundary layer flows under realistic atmospheric forcing conditions. Numerical simulations using the GAL parameterization are evaluated against both an already implemented generalized actuator disk (GAD) wind turbine parameterization and two field campaigns that measured the inflow and near-wake regions of a single turbine. The representation of wake wind speed, variance, and vorticity distributions is examined by comparing fine-resolution GAL and GAD simulations and GAD simulations at both fine and coarse-resolutions. The higher-resolution simulationsmore » show slightly larger and more persistent velocity deficits in the wake and substantially increased variance and vorticity when compared to the coarse-resolution GAD. The GAL generates distinct tip and root vortices that maintain coherence as helical tubes for approximately one rotor diameter downstream. Coarse-resolution simulations using the GAD produce similar aggregated wake characteristics to both fine-scale GAD and GAL simulations at a fraction of the computational cost. The GAL parameterization provides the capability to resolve near wake physics, including vorticity shedding and wake expansion.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamilton, K.; Wilson, R.J.; Hemler, R.S.
1999-11-15
The large-scale circulation in the Geophysical Fluid Dynamics Laboratory SKYHI troposphere-stratosphere-mesosphere finite-difference general circulation model is examined as a function of vertical and horizontal resolution. The experiments examined include one with horizontal grid spacing of {approximately}35 km and another with {approximately}100 km horizontal grid spacing but very high vertical resolution (160 levels between the ground and about 85 km). The simulation of the middle-atmospheric zonal-mean winds and temperatures in the extratropics is found to be very sensitive to horizontal resolution. For example, in the early Southern Hemisphere winter the South Pole near 1 mb in the model is colder thanmore » observed, but the bias is reduced with improved horizontal resolution (from {approximately}70 C in a version with {approximately}300 km grid spacing to less than 10 C in the {approximately}35 km version). The extratropical simulation is found to be only slightly affected by enhancements of the vertical resolution. By contrast, the tropical middle-atmospheric simulation is extremely dependent on the vertical resolution employed. With level spacing in the lower stratosphere {approximately}1.5 km, the lower stratospheric zonal-mean zonal winds in the equatorial region are nearly constant in time. When the vertical resolution is doubled, the simulated stratospheric zonal winds exhibit a strong equatorially centered oscillation with downward propagation of the wind reversals and with formation of strong vertical shear layers. This appears to be a spontaneous internally generated oscillation and closely resembles the observed QBO in many respects, although the simulated oscillation has a period less than half that of the real QBO.« less
NASA Astrophysics Data System (ADS)
Farhat, Aseel; Lunasin, Evelyn; Titi, Edriss S.
2017-06-01
In this paper we propose a continuous data assimilation (downscaling) algorithm for a two-dimensional Bénard convection problem. Specifically we consider the two-dimensional Boussinesq system of a layer of incompressible fluid between two solid horizontal walls, with no-normal flow and stress-free boundary conditions on the walls, and the fluid is heated from the bottom and cooled from the top. In this algorithm, we incorporate the observables as a feedback (nudging) term in the evolution equation of the horizontal velocity. We show that under an appropriate choice of the nudging parameter and the size of the spatial coarse mesh observables, and under the assumption that the observed data are error free, the solution of the proposed algorithm converges at an exponential rate, asymptotically in time, to the unique exact unknown reference solution of the original system, associated with the observed data on the horizontal component of the velocity.
NASA Astrophysics Data System (ADS)
King, C. H.; Wagenbrenner, J.; Fedora, M.; Watkins, D.; Watkins, M. K.; Huckins, C.
2017-12-01
The Great Lakes Region of North America has experienced more frequent extreme precipitation events in recent decades, resulting in a large number of stream crossing failures. While there are accepted methods for designing stream crossings to accommodate peak storm discharges, less attention has been paid to assessing the risk of failure. To evaluate failure risk and potential impacts, coarse-resolution stream crossing surveys were completed on 51 stream crossings and dams in the North Branch Paint River watershed in Michigan's Upper Peninsula. These inventories determined stream crossing dimensions along with stream and watershed characteristics. Eleven culverts were selected from the coarse surveys for high resolution hydraulic analysis to estimate discharge conditions expected at crossing failure. Watershed attributes upstream of the crossing, including area, slope, and storage, were acquired. Sediment discharge and the economic impact associated with a failure event were also estimated for each stream crossing. Impacts to stream connectivity and fish passability were assessed from the coarse-level surveys. Using information from both the coarse and high-resolution surveys, we also developed indicators to predict failure risk without the need for complex hydraulic modeling. These passability scores and failure risk indicators will help to prioritize infrastructure replacement and improve the overall connectivity of river systems throughout the upper Great Lakes Region.
A Study of the Extratropical Tropopause from Observations and Models
NASA Astrophysics Data System (ADS)
Wang, Shu Meir
The extratropical tropopause is a familiar feature in meteorology; however, the understanding of the mechanisms for its existence, formation, maintenance and sharpness is still an active area of research. Son and Povalni (2007) used a simple general circulation model to produce the TIL (Tropopause Inversion Layer), and they found that the extratropical tropopause is more sensitive to the change of the horizontal resolution than to the change of the vertical resolution. The extratropical tropopause is sharper and lower in higher horizontal resolution. They also successfully mimicked the seasonal variation of the extratropical tropopause by changing the Equator-to-Pole temperature difference. They found these features of the extratropical tropopause, but they did not explain why these features were seen in their simplified model. In this research, we try to explain why these features of the extratropical tropopause are seen from both observations and the models. I have shown in my MS thesis that the distance from the jet is more associated with the extratropical tropopause than is the upper tropospheric relative vorticity (Wirth, 2001) from observations. In this research, the reproduction of the work is done from both the idealized and the full model run, and the results are similar to those from the observations, which show that even on synoptic time scales, the distance from the jet is more important in determining the extratropical tropopause height than is the upper tropospheric relative vorticity. It also explains the seasonal variations of the extratropical tropopause since the jet is more poleward in summer than in winter (the Equator-to-Pole temperature difference is smaller in summer than in winter), thus there is larger area at south of the jet which means the extratropical tropopause is sharper and higher at midlatitudes in summer than in winter. We believe that baroclinic mixing of PV is the key factor that sharpens the extratropical tropopause, and adequate horizontal resolution is needed to resolve the baroclinic mixing and the small-scale filamentary structures. We used many methods in this study to show that there is more baroclinic activity seen in higher horizontal resolution. We also compared the correlations of the tropopause height with three variations in different quantities (PV fluxes, the upper tropospheric vorticity, and heat fluxes), and found that the correlations of the tropopause height and PV fluxes are the highest among the three. Thus, we conclude that baroclinic mixing is the most important factor that controls the extratropical tropopause sharpness. This also explains why the extratropical tropopause is sharper at midlatitudes when higher horizontal resolution is used (see figure 2.4 in the thesis and figure 2 in Son and Polvani's (2007)) since there is more baroclinic activity in the higher horizontal resolution models. Since there is more baroclinic activity seen in higher horizontal resolution, the baroclinic eddy drag is larger, which intensifies the thermally direct cell. The stronger thermally direct cell with higher horizontal resolution has greater downward motion in higher latitudes, and thus lowers the extratropical tropopause more in higher horizontal resolution models, which explains why the extratropical tropopause is lower in higher horizontal than in lower horizontal resolution models, as in Son and Polvani's (2007) paper.
Mud Flow Characteristics Occurred in Izuoshima Island, 2013
NASA Astrophysics Data System (ADS)
Takebayashi, H.; Egashira, S.; Fujita, M.
2015-12-01
Landslides and mud flows were occurred in the west part of the Izuoshima Island, Japan on 16 October 2013. The Izuoshima Island is a volcanic island and the land surface is covered by the volcanic ash sediment in 1m depth. Hence, the mud flow with high sediment concentration was formed. The laminar layer is formed in the debris flow from the bed to the fluid surface. On the other hand, the laminar flow is restricted near the bed in the mud flow and the turbulence flow is formed on the laminar flow layer. As a result, the equilibrium slope of the mud flow becomes smaller comparing to the debris flow. In this study, the numerical analysis mud flow model considering the effect of turbulence flow on the equilibrium slope of the mud flow is developed. Subsequently, the model is applied to the mud flow occurred in the Izuoshima Island and discussed the applicability of the model and the flow characteristics of the mud flow. The differences of the horizontal flow areas between the simulated results and the field data are compared and it was found that the outline of the horizontal shape of the flow areas is reproduced well. Furthermore, the horizontal distribution of the erosion and deposition area is reproduced by the numerical analysis well except for the residential area (Kandachi area). Kandachi area is judged as the erosion area by the field observation, but the sediment was deposited in the numerical analysis. It is considered that the 1.5hour heavy rain over 100mm/h after the mud flow makes the discrepancy. The difference of the horizontal distribution of the maximum flow surface elevation between the simulated results and the field data are compared and it was found that the simulated flow depth is overestimated slightly, because of the wider erosion area due to the coarse resolution elevation data. The averaged velocity and the depth of the mud flow was enough large to collapse the houses.
Crowding with detection and coarse discrimination of simple visual features.
Põder, Endel
2008-04-24
Some recent studies have suggested that there are actually no crowding effects with detection and coarse discrimination of simple visual features. The present study tests the generality of this idea. A target Gabor patch, surrounded by either 2 or 6 flanker Gabors, was presented briefly at 4 deg eccentricity of the visual field. Each Gabor patch was oriented either vertically or horizontally (selected randomly). Observers' task was either to detect the presence of the target (presented with probability 0.5) or to identify the orientation of the target. The target-flanker distance was varied. Results were similar for the two tasks but different for 2 and 6 flankers. The idea that feature detection and coarse discrimination are immune to crowding may be valid for the two-flanker condition only. With six flankers, a normal crowding effect was observed. It is suggested that the complexity of the full pattern (target plus flankers) could explain the difference.
Simulations and Evaluation of Mesoscale Convective Systems in a Multi-scale Modeling Framework (MMF)
NASA Astrophysics Data System (ADS)
Chern, J. D.; Tao, W. K.
2017-12-01
It is well known that the mesoscale convective systems (MCS) produce more than 50% of rainfall in most tropical regions and play important roles in regional and global water cycles. Simulation of MCSs in global and climate models is a very challenging problem. Typical MCSs have horizontal scale of a few hundred kilometers. Models with a domain of several hundred kilometers and fine enough resolution to properly simulate individual clouds are required to realistically simulate MCSs. The multiscale modeling framework (MMF), which replaces traditional cloud parameterizations with cloud-resolving models (CRMs) within a host atmospheric general circulation model (GCM), has shown some capabilities of simulating organized MCS-like storm signals and propagations. However, its embedded CRMs typically have small domain (less than 128 km) and coarse resolution ( 4 km) that cannot realistically simulate MCSs and individual clouds. In this study, a series of simulations were performed using the Goddard MMF. The impacts of the domain size and model grid resolution of the embedded CRMs on simulating MCSs are examined. The changes of cloud structure, occurrence, and properties such as cloud types, updraft and downdraft, latent heating profile, and cold pool strength in the embedded CRMs are examined in details. The simulated MCS characteristics are evaluated against satellite measurements using the Goddard Satellite Data Simulator Unit. The results indicate that embedded CRMs with large domain and fine resolution tend to produce better simulations compared to those simulations with typical MMF configuration (128 km domain size and 4 km model grid spacing).
NASA Astrophysics Data System (ADS)
Poll, Stefan; Shrestha, Prabhakar; Simmer, Clemens
2017-04-01
Land heterogeneity influences the atmospheric boundary layer (ABL) structure including organized (secondary) circulations which feed back on land-atmosphere exchange fluxes. Especially the latter effects cannot be incorporated explicitly in regional and climate models due to their coarse computational spatial grids, but must be parameterized. Current parameterizations lead, however, to uncertainties in modeled surface fluxes and boundary layer evolution, which feed back to cloud initiation and precipitation. This study analyzes the impact of different horizontal grid resolutions on the simulated boundary layer structures in terms of stability, height and induced secondary circulations. The ICON-LES (Icosahedral Nonhydrostatic in LES mode) developed by the MPI-M and the German weather service (DWD) and conducted within the framework of HD(CP)2 is used. ICON is dynamically downscaled through multiple scales of 20 km, 7 km, 2.8 km, 625 m, 312 m, and 156 m grid spacing for several days over Germany and partial neighboring countries for different synoptic conditions. We examined the entropy spectrum of the land surface heterogeneity at these grid resolutions for several locations close to measurement sites, such as Lindenberg, Jülich, Cabauw and Melpitz, and studied its influence on the surface fluxes and the evolution of the boundary layer profiles.
Vertical resolution of baroclinic modes in global ocean models
NASA Astrophysics Data System (ADS)
Stewart, K. D.; Hogg, A. McC.; Griffies, S. M.; Heerdegen, A. P.; Ward, M. L.; Spence, P.; England, M. H.
2017-05-01
Improvements in the horizontal resolution of global ocean models, motivated by the horizontal resolution requirements for specific flow features, has advanced modelling capabilities into the dynamical regime dominated by mesoscale variability. In contrast, the choice of the vertical grid remains a subjective choice, and it is not clear that efforts to improve vertical resolution adequately support their horizontal counterparts. Indeed, considering that the bulk of the vertical ocean dynamics (including convection) are parameterized, it is not immediately obvious what the vertical grid is supposed to resolve. Here, we propose that the primary purpose of the vertical grid in a hydrostatic ocean model is to resolve the vertical structure of horizontal flows, rather than to resolve vertical motion. With this principle we construct vertical grids based on their abilities to represent baroclinic modal structures commensurate with the theoretical capabilities of a given horizontal grid. This approach is designed to ensure that the vertical grids of global ocean models complement (and, importantly, to not undermine) the resolution capabilities of the horizontal grid. We find that for z-coordinate global ocean models, at least 50 well-positioned vertical levels are required to resolve the first baroclinic mode, with an additional 25 levels per subsequent mode. High-resolution ocean-sea ice simulations are used to illustrate some of the dynamical enhancements gained by improving the vertical resolution of a 1/10° global ocean model. These enhancements include substantial increases in the sea surface height variance (∼30% increase south of 40°S), the barotropic and baroclinic eddy kinetic energies (up to 200% increase on and surrounding the Antarctic continental shelf and slopes), and the overturning streamfunction in potential density space (near-tripling of the Antarctic Bottom Water cell at 65°S).
Deriving flow directions for coarse-resolution (1-4 km) gridded hydrologic modeling
NASA Astrophysics Data System (ADS)
Reed, Seann M.
2003-09-01
The National Weather Service Hydrology Laboratory (NWS-HL) is currently testing a grid-based distributed hydrologic model at a resolution (4 km) commensurate with operational, radar-based precipitation products. To implement distributed routing algorithms in this framework, a flow direction must be assigned to each model cell. A new algorithm, referred to as cell outlet tracing with an area threshold (COTAT) has been developed to automatically, accurately, and efficiently assign flow directions to any coarse-resolution grid cells using information from any higher-resolution digital elevation model. Although similar to previously published algorithms, this approach offers some advantages. Use of an area threshold allows more control over the tendency for producing diagonal flow directions. Analyses of results at different output resolutions ranging from 300 m to 4000 m indicate that it is possible to choose an area threshold that will produce minimal differences in average network flow lengths across this range of scales. Flow direction grids at a 4 km resolution have been produced for the conterminous United States.
Frontiers in Atmospheric Chemistry Modelling
NASA Astrophysics Data System (ADS)
Colette, Augustin; Bessagnet, Bertrand; Meleux, Frederik; Rouïl, Laurence
2013-04-01
The first pan-European kilometre-scale atmospheric chemistry simulation is introduced. The continental-scale air pollution episode of January 2009 is modelled with the CHIMERE offline chemistry-transport model with a massive grid of 2 million horizontal points, performed on 2000 CPU of a high performance computing system hosted by the Research and Technology Computing Center at the French Alternative Energies and Atomic Energy Commission (CCRT/CEA). Besides the technical challenge, which demonstrated the robustness of the selected air quality model, we discuss the added value in terms of air pollution modelling and decision support. The comparison with in-situ observations shows that model biases are significantly improved despite some spurious added spatial variability attributed to shortcomings in the emission downscaling process and coarse resolution of the meteorological fields. The increased spatial resolution is clearly beneficial for the detection of exceedances and exposure modelling. We reveal small scale air pollution patterns that highlight the contribution of city plumes to background air pollution levels. Up to a factor 5 underestimation of the fraction of population exposed to detrimental levels of pollution can be obtained with a coarse simulation if subgrid scale correction such as urban increments are ignored. This experiment opens new perspectives for environmental decision making. After two decades of efforts to reduce air pollutant emissions across Europe, the challenge is now to find the optimal trade-off between national and local air quality management strategies. While the first approach is based on sectoral strategies and energy policies, the later builds upon new alternatives such as urban development. The strategies, the decision pathways and the involvement of individual citizen differ, and a compromise based on cost and efficiency must be found. We illustrated how high performance computing in atmospheric science can contribute to this aim. Although further developments are still needed to secure the results for routine policy use, the door is now open...
A new vertical grid nesting capability in the Weather Research and Forecasting (WRF) Model
Daniels, Megan H.; Lundquist, Katherine A.; Mirocha, Jeffrey D.; ...
2016-09-16
Mesoscale atmospheric models are increasingly used for high-resolution (<3 km) simulations to better resolve smaller-scale flow details. Increased resolution is achieved using mesh refinement via grid nesting, a procedure where multiple computational domains are integrated either concurrently or in series. A constraint in the concurrent nesting framework offered by the Weather Research and Forecasting (WRF) Model is that mesh refinement is restricted to the horizontal dimensions. This limitation prevents control of the grid aspect ratio, leading to numerical errors due to poor grid quality and preventing grid optimization. Here, a procedure permitting vertical nesting for one-way concurrent simulation is developedmore » and validated through idealized cases. The benefits of vertical nesting are demonstrated using both mesoscale and large-eddy simulations (LES). Mesoscale simulations of the Terrain-Induced Rotor Experiment (T-REX) show that vertical grid nesting can alleviate numerical errors due to large aspect ratios on coarse grids, while allowing for higher vertical resolution on fine grids. Furthermore, the coarsening of the parent domain does not result in a significant loss of accuracy on the nested domain. LES of neutral boundary layer flow shows that, by permitting optimal grid aspect ratios on both parent and nested domains, use of vertical nesting yields improved agreement with the theoretical logarithmic velocity profile on both domains. Lastly, vertical grid nesting in WRF opens the path forward for multiscale simulations, allowing more accurate simulations spanning a wider range of scales than previously possible.« less
A new vertical grid nesting capability in the Weather Research and Forecasting (WRF) Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daniels, Megan H.; Lundquist, Katherine A.; Mirocha, Jeffrey D.
Mesoscale atmospheric models are increasingly used for high-resolution (<3 km) simulations to better resolve smaller-scale flow details. Increased resolution is achieved using mesh refinement via grid nesting, a procedure where multiple computational domains are integrated either concurrently or in series. A constraint in the concurrent nesting framework offered by the Weather Research and Forecasting (WRF) Model is that mesh refinement is restricted to the horizontal dimensions. This limitation prevents control of the grid aspect ratio, leading to numerical errors due to poor grid quality and preventing grid optimization. Here, a procedure permitting vertical nesting for one-way concurrent simulation is developedmore » and validated through idealized cases. The benefits of vertical nesting are demonstrated using both mesoscale and large-eddy simulations (LES). Mesoscale simulations of the Terrain-Induced Rotor Experiment (T-REX) show that vertical grid nesting can alleviate numerical errors due to large aspect ratios on coarse grids, while allowing for higher vertical resolution on fine grids. Furthermore, the coarsening of the parent domain does not result in a significant loss of accuracy on the nested domain. LES of neutral boundary layer flow shows that, by permitting optimal grid aspect ratios on both parent and nested domains, use of vertical nesting yields improved agreement with the theoretical logarithmic velocity profile on both domains. Lastly, vertical grid nesting in WRF opens the path forward for multiscale simulations, allowing more accurate simulations spanning a wider range of scales than previously possible.« less
Spatial scaling of net primary productivity using subpixel landcover information
NASA Astrophysics Data System (ADS)
Chen, X. F.; Chen, Jing M.; Ju, Wei M.; Ren, L. L.
2008-10-01
Gridding the land surface into coarse homogeneous pixels may cause important biases on ecosystem model estimations of carbon budget components at local, regional and global scales. These biases result from overlooking subpixel variability of land surface characteristics. Vegetation heterogeneity is an important factor introducing biases in regional ecological modeling, especially when the modeling is made on large grids. This study suggests a simple algorithm that uses subpixel information on the spatial variability of land cover type to correct net primary productivity (NPP) estimates, made at coarse spatial resolutions where the land surface is considered as homogeneous within each pixel. The algorithm operates in such a way that NPP obtained from calculations made at coarse spatial resolutions are multiplied by simple functions that attempt to reproduce the effects of subpixel variability of land cover type on NPP. Its application to a carbon-hydrology coupled model(BEPS-TerrainLab model) estimates made at a 1-km resolution over a watershed (named Baohe River Basin) located in the southwestern part of Qinling Mountains, Shaanxi Province, China, improved estimates of average NPP as well as its spatial variability.
Monte Carlo approaches to sampling forested tracts with lines or points
Harry T. Valentine; Jeffrey H. Gove; Timothy G. Gregoire
2001-01-01
Several line- and point-based sampling methods can be employed to estimate the aggregate dimensions of trees standing on a forested tract or pieces of coarse woody debris lying on the forest floor. Line methods include line intersect sampling, horizontal line sampling, and transect relascope sampling; point methods include variable- and fixed-radius plot sampling, and...
NASA Astrophysics Data System (ADS)
Dickson, N.
2009-12-01
The global observation, assimilation and prediction in numerical models of ice super-saturated (ISS) regions (ISSR) are crucial if the climate impact of aircraft condensations trails (contrails) is to be fully understood, and if, for example, contrail formation is to be avoided through aircraft operational measures. A robust assessment of the global distribution of ISSR will further this debate, and ISS event occurrence, frequency and spatial scales have recently attracted significant attention. The mean horizontal size of ISSR is 150 km (±250km) although 12-14% of ISS events occur on horizontal scales of less than 5km. The average vertical thickness of ISS layers is 600-800m (±575m) but layers ranging from 25m to 3000m have been observed, with up to one third of ISS layers thought to be less than 100m deep. Given their small scales compared to typical atmospheric model grid sizes, statistical representations of the spatial scales of ISSR are required, in both horizontal and vertical dimensions, if global occurrence of ISSR is to be adequately represented in climate models. This paper uses radiosonde launches made by the UK Meteorological Office, from the British Isles, Gibraltar, St. Helena and the Falkland Islands between January 2002 and December 2006, to investigate the probabilistic occurrence of ISSR. Specifically each radiosonde profile is divided into 50 and 100 hPa pressure layers, to emulate the coarse vertical resolution of some atmospheric models. Then the high resolution observations contained within each thick pressure layer are used to calculate an average relative humidity and an ISS fraction for each individual thick pressure layer. These relative humidity pressure layer descriptions are then linked through a probability function to produce an s-shaped curve describing the ISS fraction in any average relative humidity pressure layer. An empirical investigation has shown that this one curve is statistically valid for mid-latitude locations, irrespective of season and altitude, however, pressure layer depth is an important variable. Using this empirical understanding of the s-shaped relationship a mathematical model was developed to represent the ISS fraction within any arbitrary thick pressure layer. Here the statistical distributions of actual high resolution RHi observations in any thick pressure layer, along with an error function, are used to mathematically describe the s-shape. Two models were developed to represent both 50 and 100 hPa pressure layers with each reconstructing their respective s-shapes within 8-10% of the empirical curves. These new models can be used, to represent the small scale structures of ISS events, in modelled data where only low vertical resolution is available. This will be useful in understanding, and improving the global distribution, both observed and forecasted, of ice super-saturation.
Research on Horizontal Accuracy Method of High Spatial Resolution Remotely Sensed Orthophoto Image
NASA Astrophysics Data System (ADS)
Xu, Y. M.; Zhang, J. X.; Yu, F.; Dong, S.
2018-04-01
At present, in the inspection and acceptance of high spatial resolution remotly sensed orthophoto image, the horizontal accuracy detection is testing and evaluating the accuracy of images, which mostly based on a set of testing points with the same accuracy and reliability. However, it is difficult to get a set of testing points with the same accuracy and reliability in the areas where the field measurement is difficult and the reference data with high accuracy is not enough. So it is difficult to test and evaluate the horizontal accuracy of the orthophoto image. The uncertainty of the horizontal accuracy has become a bottleneck for the application of satellite borne high-resolution remote sensing image and the scope of service expansion. Therefore, this paper proposes a new method to test the horizontal accuracy of orthophoto image. This method using the testing points with different accuracy and reliability. These points' source is high accuracy reference data and field measurement. The new method solves the horizontal accuracy detection of the orthophoto image in the difficult areas and provides the basis for providing reliable orthophoto images to the users.
NASA Astrophysics Data System (ADS)
López López, Patricia; Wanders, Niko; Sutanudjaja, Edwin; Renzullo, Luigi; Sterk, Geert; Schellekens, Jaap; Bierkens, Marc
2015-04-01
The coarse spatial resolution of global hydrological models (typically > 0.25o) often limits their ability to resolve key water balance processes for many river basins and thus compromises their suitability for water resources management, especially when compared to locally-tunes river models. A possible solution to the problem may be to drive the coarse resolution models with high-resolution meteorological data as well as to assimilate ground-based and remotely-sensed observations of key water cycle variables. While this would improve the modelling resolution of the global model, the impact of prediction accuracy remains largely an open question. In this study we investigated the impact that assimilating streamflow and satellite soil moisture observations have on global hydrological model estimation, driven by coarse- and high-resolution meteorological observations, for the Murrumbidgee river basin in Australia. The PCR-GLOBWB global hydrological model is forced with downscaled global climatological data (from 0.5o downscaled to 0.1o resolution) obtained from the WATCH Forcing Data (WFDEI) and local high resolution gauging station based gridded datasets (0.05o), sourced from the Australian Bureau of Meteorology. Downscaled satellite derived soil moisture (from 0.5o downscaled to 0.1o resolution) from AMSR-E and streamflow observations collected from 25 gauging stations are assimilated using an ensemble Kalman filter. Several scenarios are analysed to explore the added value of data assimilation considering both local and global climatological data. Results show that the assimilation of streamflow observations result in the largest improvement of the model estimates. The joint assimilation of both streamflow and downscaled soil moisture observations leads to further improved in streamflow simulations (10% reduction in RMSE), mainly in the headwater catchments (up to 10,000 km2). Results also show that the added contribution of data assimilation, for both soil moisture and streamflow, is more pronounced when the global meteorological data are used to force the models. This is caused by the higher uncertainty and coarser resolution of the global forcing. This study demonstrates that it is possible to improve hydrological simulations forced by coarse resolution meteorological data with downscaled satellite soil moisture and streamflow observations and bring them closer to a hydrological model forced with local climatological data. These findings are important in light of the efforts that are currently done to go to global hyper-resolution modelling and can significantly help to advance this research.
NASA Astrophysics Data System (ADS)
Varghese, Saji; Langmann, Baerbel; Ceburnis, Darius; O'Dowd, Colin D.
2011-08-01
Horizontal resolution sensitivity can significantly contribute to the uncertainty in predictions of meteorology and air-quality from a regional climate model. In the study presented here, a state-of-the-art regional scale atmospheric climate-chemistry-aerosol model REMOTE is used to understand the influence of spatial model resolutions of 1.0°, 0.5° and 0.25° on predicted meteorological and aerosol parameters for June 2003 for the European domain comprising North-east Atlantic and Western Europe. Model precipitation appears to improve with resolution while wind speed has shown best results for 0.25° resolution for most of the stations compared with ECAD data. Low root mean square error and spatial bias for surface pressure, precipitation and surface temperature show that the model is very reliable. Spatial and temporal variation in black carbon, primary organic carbon, sea-salt and sulphate concentrations and their burden are presented. In most cases, chemical species concentrations at the surface show no particular trend or improvement with increase in resolution. There has been a pronounced influence of horizontal resolution on the vertical distribution pattern of some aerosol species. Some of these effects are due to the improvement in topographical details, flow characteristics and associated vertical and horizontal dynamic processes. The different sink processes have contributed very differently to the various aerosol species in terms of deposition (wet and dry) and sedimentation which are strongly linked to the meteorological processes. Overall, considering the performance of meteorological parameters and chemical species concentrations, a horizontal model resolution of 0.5° is suggested to achieve reasonable results within the limitations of this model.
Development of coarse-scale spatial data for wildland fire and fuel management
Kirsten M. Schmidt; James P. Menakis; Colin C. Hardy; Wendall J. Hann; David L. Bunnell
2002-01-01
We produced seven coarse-scale, 1-km2 resolution, spatial data layers for the conterminous United States to support national-level fire planning and risk assessments. Four of these layers were developed to evaluate ecological conditions and risk to ecosystem components: Potential Natural Vegetation Groups, a layer of climax vegetation types representing site...
NASA Astrophysics Data System (ADS)
Toigo, Anthony D.; Lee, Christopher; Newman, Claire E.; Richardson, Mark I.
2012-09-01
We investigate the sensitivity of the circulation and thermal structure of the martian atmosphere to numerical model resolution in a general circulation model (GCM) using the martian implementation (MarsWRF) of the planetWRF atmospheric model. We provide a description of the MarsWRF GCM and use it to study the global atmosphere at horizontal resolutions from 7.5° × 9° to 0.5° × 0.5°, encompassing the range from standard Mars GCMs to global mesoscale modeling. We find that while most of the gross-scale features of the circulation (the rough location of jets, the qualitative thermal structure, and the major large-scale features of the surface level winds) are insensitive to horizontal resolution over this range, several major features of the circulation are sensitive in detail. The northern winter polar circulation shows the greatest sensitivity, showing a continuous transition from a smooth polar winter jet at low resolution, to a distinct vertically “split” jet as resolution increases. The separation of the lower and middle atmosphere polar jet occurs at roughly 10 Pa, with the split jet structure developing in concert with the intensification of meridional jets at roughly 10 Pa and above 0.1 Pa. These meridional jets appear to represent the separation of lower and middle atmosphere mean overturning circulations (with the former being consistent with the usual concept of the “Hadley cell”). Further, the transition in polar jet structure is more sensitive to changes in zonal than meridional horizontal resolution, suggesting that representation of small-scale wave-mean flow interactions is more important than fine-scale representation of the meridional thermal gradient across the polar front. Increasing the horizontal resolution improves the match between the modeled thermal structure and the Mars Climate Sounder retrievals for northern winter high latitudes. While increased horizontal resolution also improves the simulation of the northern high latitudes at equinox, even the lowest model resolution considered here appears to do a good job for the southern winter and southern equinoctial pole (although in detail some discrepancies remain). These results suggest that studies of the northern winter jet (e.g., transient waves and cyclogenesis) will be more sensitive to global model resolution that those of the south (e.g., the confining dynamics of the southern polar vortex relevant to studies of argon transport). For surface winds, the major effect of increased horizontal resolution is in the superposition of circulations forced by local-scale topography upon the large-scale surface wind patterns. While passive predictions of dust lifting are generally insensitive to model horizontal resolution when no lifting threshold is considered, increasing the stress threshold produces significantly more lifting in higher resolution simulations with the generation of finer-scale, higher-stress winds due primarily to better-resolved topography. Considering the positive feedbacks expected for radiatively active dust lifting, we expect this bias to increase when such feedbacks are permitted.
NASA Astrophysics Data System (ADS)
Oigawa, Masanori; Tsuda, Toshitaka; Seko, Hiromu; Shoji, Yoshinori; Realini, Eugenio
2018-05-01
We studied the assimilation of high-resolution precipitable water vapor (PWV) data derived from a hyper-dense global navigation satellite system network around Uji city, Kyoto, Japan, which had a mean inter-station distance of about 1.7 km. We focused on a heavy rainfall event that occurred on August 13-14, 2012, around Uji city. We employed a local ensemble transform Kalman filter as the data assimilation method. The inhomogeneity of the observed PWV increased on a scale of less than 10 km in advance of the actual rainfall detected by the rain gauge. Zenith wet delay data observed by the Uji network showed that the characteristic length scale of water vapor distribution during the rainfall ranged from 1.9 to 3.5 km. It is suggested that the assimilation of PWV data with high horizontal resolution (a few km) improves the forecast accuracy. We conducted the assimilation experiment of high-resolution PWV data, using both small horizontal localization radii and a conventional horizontal localization radius. We repeated the sensitivity experiment, changing the mean horizontal spacing of the PWV data from 1.7 to 8.0 km. When the horizontal spacing of assimilated PWV data was decreased from 8.0 to 3.5 km, the accuracy of the simulated hourly rainfall amount worsened in the experiment that used the conventional localization radius for the assimilation of PWV. In contrast, the accuracy of hourly rainfall amounts improved when we applied small horizontal localization radii. In the experiment that used the small horizontal localization radii, the accuracy of the hourly rainfall amount was most improved when the horizontal resolution of the assimilated PWV data was 3.5 km. The optimum spatial resolution of PWV data was related to the characteristic length scale of water vapor variability.[Figure not available: see fulltext.
Design and testing of a novel multi-stroke micropositioning system with variable resolutions.
Xu, Qingsong
2014-02-01
Multi-stroke stages are demanded in micro-/nanopositioning applications which require smaller and larger motion strokes with fine and coarse resolutions, respectively. This paper presents the conceptual design of a novel multi-stroke, multi-resolution micropositioning stage driven by a single actuator for each working axis. It eliminates the issue of the interference among different drives, which resides in conventional multi-actuation stages. The stage is devised based on a fully compliant variable stiffness mechanism, which exhibits unequal stiffnesses in different strokes. Resistive strain sensors are employed to offer variable position resolutions in the different strokes. To quantify the design of the motion strokes and coarse/fine resolution ratio, analytical models are established. These models are verified through finite-element analysis simulations. A proof-of-concept prototype XY stage is designed, fabricated, and tested to demonstrate the feasibility of the presented ideas. Experimental results of static and dynamic testing validate the effectiveness of the proposed design.
USDA-ARS?s Scientific Manuscript database
The SMAP (Soil Moisture Active Passive) mission provides global surface soil moisture product at 36 km resolution from its L-band radiometer. While the coarse resolution is satisfactory to many applications there are also a lot of applications which would benefit from a higher resolution soil moistu...
Luo, Y.; Xia, J.; Liu, J.; Xu, Y.; Liu, Q.
2008-01-01
Multichannel Analysis of Surface Waves utilizes a multichannel recording system to estimate near-surface shear (S)-wave velocities from high-frequency Rayleigh waves. A pseudo-2D S-wave velocity (vS) section is constructed by aligning 1D models at the midpoint of each receiver spread and using a spatial interpolation scheme. The horizontal resolution of the section is therefore most influenced by the receiver spread length and the source interval. The receiver spread length sets the theoretical lower limit and any vS structure with its lateral dimension smaller than this length will not be properly resolved in the final vS section. A source interval smaller than the spread length will not improve the horizontal resolution because spatial smearing has already been introduced by the receiver spread. In this paper, we first analyze the horizontal resolution of a pair of synthetic traces. Resolution analysis shows that (1) a pair of traces with a smaller receiver spacing achieves higher horizontal resolution of inverted S-wave velocities but results in a larger relative error; (2) the relative error of the phase velocity at a high frequency is smaller than at a low frequency; and (3) a relative error of the inverted S-wave velocity is affected by the signal-to-noise ratio of data. These results provide us with a guideline to balance the trade-off between receiver spacing (horizontal resolution) and accuracy of the inverted S-wave velocity. We then present a scheme to generate a pseudo-2D S-wave velocity section with high horizontal resolution using multichannel records by inverting high-frequency surface-wave dispersion curves calculated through cross-correlation combined with a phase-shift scanning method. This method chooses only a pair of consecutive traces within a shot gather to calculate a dispersion curve. We finally invert surface-wave dispersion curves of synthetic and real-world data. Inversion results of both synthetic and real-world data demonstrate that inverting high-frequency surface-wave dispersion curves - by a pair of traces through cross-correlation with phase-shift scanning method and with the damped least-square method and the singular-value decomposition technique - can feasibly achieve a reliable pseudo-2D S-wave velocity section with relatively high horizontal resolution. ?? 2008 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Loftfield, Nina; Kästner, Markus; Reithmeier, Eduard
2017-06-01
A critical factor of endoprostheses is the quality of the tribological pairing. The objective of this research project is to manufacture stochastically porous aluminum oxide surface coatings with high wear resistance and an active friction minimization. There are many experimental and computational techniques from mercury porosimetry to imaging methods for studying porous materials, however, the characterization of disordered pore networks is still a great challenge. To meet this challenge it is striven to gain a three dimensional high resolution reconstruction of the surface. In this work, the reconstruction is approached by repeatedly milling down the surface by a fixed decrement while measuring each layer using a confocal laser scanning microscope (CLSM). The so acquired depth data of the successive layers is then registered pairwise. Within this work a direct registration approach is deployed and implemented in two steps, a coarse and a fine alignment. The coarse alignment of the depth data is limited to a translational shift which occurs in horizontal direction due to placing the sample in turns under the CLSM and the milling machine and in vertical direction due to the milling process itself. The shift is determined by an approach utilizing 3D phase correlation. The fine alignment is implemented by the Trimmed Iterative Closest Point algorithm, matching the most likely common pixels roughly specified by an estimated overlap rate. With the presented two-step approach a proper 3D registration of the successive depth data of the layer is obtained.
Modeling a three-dimensional river plume over continental shelf using a 3D unstructured grid model
Cheng, R.T.; Casulli, V.; ,
2004-01-01
River derived fresh water discharging into an adjacent continental shelf forms a trapped river plume that propagates in a narrow region along the coast. These river plumes are real and they have been observed in the field. Many previous investigations have reported some aspects of the river plume properties, which are sensitive to stratification, Coriolis acceleration, winds (upwelling or downwelling), coastal currents, and river discharge. Numerical modeling of the dynamics of river plumes is very challenging, because the complete problem involves a wide range of vertical and horizontal scales. Proper simulations of river plume dynamics cannot be achieved without a realistic representation of the flow and salinity structure near the river mouth that controls the initial formation and propagation of the plume in the coastal ocean. In this study, an unstructured grid model was used for simulations of river plume dynamics allowing fine grid resolution in the river and in regions near the coast with a coarse grid in the far field of the river plume in the coastal ocean, in the vertical, fine fixed levels were used near the free surface, and coarse vertical levels were used over the continental shelf. The simulations have demonstrated the uniquely important role played by Coriolis acceleration. Without Coriolis acceleration, no trapped river plume can be formed no matter how favorable the ambient conditions might be. The simulation results show properties of the river plume and the characteristics of flow and salinity within the estuary; they are completely consistent with the physics of estuaries and coastal oceans.
A model of regional primary production for use with coarse resolution satellite data
NASA Technical Reports Server (NTRS)
Prince, S. D.
1991-01-01
A model of crop primary production, which was originally developed to relate the amount of absorbed photosynthetically active radiation (APAR) to net production in field studies, is discussed in the context of coarse resolution regional remote sensing of primary production. The model depends on an approximately linear relationship between APAR and the normalized difference vegetation index. A more comprehensive form of the conventional model is shown to be necessary when different physiological types of plants or heterogeneous vegetation types occur within the study area. The predicted variable in the new model is total assimilation (net production plus respiration) rather than net production alone or harvest yield.
Chang, Xueli; Du, Siliang; Li, Yingying; Fang, Shenghui
2018-01-01
Large size high resolution (HR) satellite image matching is a challenging task due to local distortion, repetitive structures, intensity changes and low efficiency. In this paper, a novel matching approach is proposed for the large size HR satellite image registration, which is based on coarse-to-fine strategy and geometric scale-invariant feature transform (SIFT). In the coarse matching step, a robust matching method scale restrict (SR) SIFT is implemented at low resolution level. The matching results provide geometric constraints which are then used to guide block division and geometric SIFT in the fine matching step. The block matching method can overcome the memory problem. In geometric SIFT, with area constraints, it is beneficial for validating the candidate matches and decreasing searching complexity. To further improve the matching efficiency, the proposed matching method is parallelized using OpenMP. Finally, the sensing image is rectified to the coordinate of reference image via Triangulated Irregular Network (TIN) transformation. Experiments are designed to test the performance of the proposed matching method. The experimental results show that the proposed method can decrease the matching time and increase the number of matching points while maintaining high registration accuracy. PMID:29702589
Grid-size dependence of Cauchy boundary conditions used to simulate stream-aquifer interactions
Mehl, S.; Hill, M.C.
2010-01-01
This work examines the simulation of stream–aquifer interactions as grids are refined vertically and horizontally and suggests that traditional methods for calculating conductance can produce inappropriate values when the grid size is changed. Instead, different grid resolutions require different estimated values. Grid refinement strategies considered include global refinement of the entire model and local refinement of part of the stream. Three methods of calculating the conductance of the Cauchy boundary conditions are investigated. Single- and multi-layer models with narrow and wide streams produced stream leakages that differ by as much as 122% as the grid is refined. Similar results occur for globally and locally refined grids, but the latter required as little as one-quarter the computer execution time and memory and thus are useful for addressing some scale issues of stream–aquifer interactions. Results suggest that existing grid-size criteria for simulating stream–aquifer interactions are useful for one-layer models, but inadequate for three-dimensional models. The grid dependence of the conductance terms suggests that values for refined models using, for example, finite difference or finite-element methods, cannot be determined from previous coarse-grid models or field measurements. Our examples demonstrate the need for a method of obtaining conductances that can be translated to different grid resolutions and provide definitive test cases for investigating alternative conductance formulations.
NASA Astrophysics Data System (ADS)
Bracco, Annalisa; Choi, Jun; Kurian, Jaison; Chang, Ping
2018-02-01
A set of nine regional ocean model simulations at various horizontal (from 1 to 9 km) and vertical (from 25 to 150 layers) resolutions with different vertical mixing parameterizations is carried out to examine the transport and mixing of a passive tracer released near the ocean bottom over the continental slope in the northern Gulf of Mexico. The release location is in proximity to the Deepwater Horizon oil well that ruptured in April 2010. Horizontal and diapycnal diffusivities are calculated and their dependence on the model set-up and on the representation of mesoscale and submesoscale circulations is discussed. Horizontal and vertical resolutions play a comparable role in determining the modeled horizontal diffusivities. Vertical resolution is key to a proper representation of passive tracer propagation and - in the case of the Gulf of Mexico - contributes to both confining the tracer along the continental slope and limiting its vertical spreading. The choice of the tracer advection scheme is also important, with positive definiteness in the tracer concentration being achieved at the price of spurious mixing across density surfaces. In all cases, however, the diapycnal mixing coefficient derived from the model simulations overestimates the observed value, indicating an area where model improvement is needed.
This study applied a phenology-based land-cover classification approach across the Laurentian Great Lakes Basin (GLB) using time-series data consisting of 23 Moderate Resolution Imaging Spectroradiometer (MODIS) Normalized Difference Vegetation Index (NDVI) composite images (250 ...
NASA Astrophysics Data System (ADS)
Ries, H.; Moseley, C.; Haensler, A.
2012-04-01
Reanalyses depict the state of the atmosphere as a best fit in space and time of many atmospheric observations in a physically consistent way. By essentially solving the data assimilation problem in a very accurate manner, reanalysis results can be used as reference for model evaluation procedures and as forcing data sets for different model applications. However, the spatial resolution of the most common and accepted reanalysis data sets (e.g. JRA25, ERA-Interim) ranges from approximately 124 km to 80 km. This resolution is too coarse to simulate certain small scale processes often associated with extreme events. In addition, many models need higher resolved forcing data ( e.g. land-surface models, tools for identifying and assessing hydrological extremes). Therefore we downscaled the ERA-Interim reanalysis over the EURO-CORDEX-Domain for the time period 1989 to 2008 to a horizontal resolution of approximately 12 km. The downscaling is performed by nudging REMO-simulations to lower and lateral boundary conditions of the reanalysis, and by re-initializing the model every 24 hours ("REMO in forecast mode"). In this study the three following questions will be addressed: 1.) Does the REMO poor man's reanalysis meet the needs (accuracy, extreme value distribution) in validation and forcing? 2.) What lessons can be learned about the model used for downscaling? As REMO is used as a pure downscaling procedure, any systematic deviations from ERA-Interim result from poor process modelling but not from predictability limitations. 3.) How much small scale information generated by the downscaling model is lost with frequent initializations? A comparison to a simulation that is performed in climate mode will be presented.
NASA Astrophysics Data System (ADS)
Huggenberger, P.; Huber, E.
2014-12-01
Detailed descriptions of the subsurface heterogeneities in coarse fluvial aquifer gravel often lack in concepts to distinguish between the essence and the noise of a permeability structure and the ability to extrapolate site specific hydraulic information at the tens to several hundred meters scale. At this scale the heterogeneity strongly influences the anisotropies of the flow field and the mixing processes in groundwater. However, in many hydrogeological models the complexity of natural systems is oversimplified. Understanding the link between the dynamics of the surface processes of braided-river systems and the resulting subsurface sedimentary structures is the key to characterizing the complexity of horizontal and vertical mixing processes in groundwater. From the different depositional elements of coarse braided-river systems, the largest permeability contrasts can be observed in the scour-fills. Other elements (e.g. different types of gravel sheets) show much smaller variabilities and could be considered as a kind of matrix. Field experiments on the river Tagliamento (Northeast Italy) based on morphological observation and ground-penetrating radar (GPR) surveys, as well as outcrop analyses of gravel pit exposures (Switzerland) allowed us to define the shape, sizes, spatial distribution and preservation potential of scour-fills. In vertical sections (e.g. 2D GPR data, vertical outcrop), the spatial density of remnant erosional bounding surfaces of scours is an indicator for the dynamics of the braided-river system (lateral mobility of the active floodplain, rate of sediment net deposition and spatial distribution of the confluence scours). In case of combined low aggradation rate and low lateral mobility the deposits may be dominated by a complex overprinting of scour-fills. The delineation of the erosional bounding surfaces, that are coherent over the survey area, is based on the identification of angular discontinuities of the reflectors. Fence diagrams and horizontal time-slices from GPR data are used to construct simplified 3D hydraulic properties distribution models and to derive anisotropy patterns. On the basis of this work, conceptual models could be designed and implemented into numerical models to simulate the flow field and mixing in heterogeneous braided-river deposits.
NASA Astrophysics Data System (ADS)
Yang, Le; Sang, Xinzhu; Yu, Xunbo; Liu, Boyang; Liu, Li; Yang, Shenwu; Yan, Binbin; Du, Jingyan; Gao, Chao
2018-05-01
A 54-inch horizontal-parallax only light-field display based on the light-emitting diode (LED) panel and the micro-pinhole unit array (MPUA) is demonstrated. Normally, the perceived 3D effect of the three-dimensional (3D) display with smooth motion parallax and abundant light-field information can be enhanced with increasing the density of viewpoints. However, the density of viewpoints is inversely proportional to the spatial display resolution for the conventional integral imaging. Here, a special MPUA is designed and fabricated, and the displayed 3D scene constructed by the proposed horizontal light-field display is presented. Compared with the conventional integral imaging, both the density of horizontal viewpoints and the spatial display resolution are significantly improved. In the experiment, A 54-inch horizontal light-field display with 42.8° viewing angle based on the LED panel with the resolution of 1280 × 720 and the MPUA is realized, which can provide natural 3D visual effect to observers with high quality.
Packing of sidechains in low-resolution models for proteins.
Keskin, O; Bahar, I
1998-01-01
Atomic level rotamer libraries for sidechains in proteins have been proposed by several groups. Conformations of side groups in coarse-grained models, on the other hand, have not yet been analyzed, although low resolution approaches are the only efficient way to explore global structural features. A residue-specific backbone-dependent library for sidechain isomers, compatible with a coarse-grained model, is proposed. The isomeric states are utilized in packing sidechains of known backbone structures. Sidechain positions are predicted with a root-mean-square deviation (r.m.s.d.) of 2.40 A with respect to crystal structure for 50 test proteins. The rmsd for core residues is 1.60 A and decreases to 1.35 A when conformational correlations and directional effects in inter-residue couplings are considered. An automated method for assigning sidechain positions in coarse-grained model proteins is proposed and made available on the internet; the method accounts satisfactorily for sidechain packing, particularly in the core.
NASA Astrophysics Data System (ADS)
Li, Puxi; Zhou, Tianjun; Zou, Liwei
2016-04-01
The authors evaluated the performance of Meteorological Research Institute (MRI) AGCM3.2 models in the simulations of climatology and interannual variability of the Spring Persistent Rains (SPR) over southeastern China. The possible impacts of different horizontal resolutions were also investigated based on the experiments with three different horizontal resolutions (i.e., 120, 60, and 20km). The model could reasonably reproduce the main rainfall center over southeastern China in boreal spring under the three different resolutions. In comparison with 120 simulation, it revealed that 60km and 20km simulations show the superiority in simulating rainfall centers anchored by the Nanling-Wuyi Mountains, but overestimate rainfall intensity. Water vapor budget diagnosis showed that, the 60km and 20km simulations tended to overestimate the water vapor convergence over southeastern China, which leads to wet biases. In the aspect of interannual variability of SPR, the model could reasonably reproduce the anomalous lower-tropospheric anticyclone in the western North Pacific (WNPAC) and positive precipitation anomalies over southeastern China in El Niño decaying spring. Compared with the 120km resolution, the large positive biases are substantially reduced in the mid and high resolution models which evidently improve the simulation of horizontal moisture advection in El Niño decaying spring. We highlight the importance of developing high resolution climate model as it could potentially improve the climatology and interannual variability of SPR.
A multi-temporal analysis approach for land cover mapping in support of nuclear incident response
NASA Astrophysics Data System (ADS)
Sah, Shagan; van Aardt, Jan A. N.; McKeown, Donald M.; Messinger, David W.
2012-06-01
Remote sensing can be used to rapidly generate land use maps for assisting emergency response personnel with resource deployment decisions and impact assessments. In this study we focus on constructing accurate land cover maps to map the impacted area in the case of a nuclear material release. The proposed methodology involves integration of results from two different approaches to increase classification accuracy. The data used included RapidEye scenes over Nine Mile Point Nuclear Power Station (Oswego, NY). The first step was building a coarse-scale land cover map from freely available, high temporal resolution, MODIS data using a time-series approach. In the case of a nuclear accident, high spatial resolution commercial satellites such as RapidEye or IKONOS can acquire images of the affected area. Land use maps from the two image sources were integrated using a probability-based approach. Classification results were obtained for four land classes - forest, urban, water and vegetation - using Euclidean and Mahalanobis distances as metrics. Despite the coarse resolution of MODIS pixels, acceptable accuracies were obtained using time series features. The overall accuracies using the fusion based approach were in the neighborhood of 80%, when compared with GIS data sets from New York State. The classifications were augmented using this fused approach, with few supplementary advantages such as correction for cloud cover and independence from time of year. We concluded that this method would generate highly accurate land maps, using coarse spatial resolution time series satellite imagery and a single date, high spatial resolution, multi-spectral image.
A PIXEL COMPOSITION-BASED REFERENCE DATA SET FOR THEMATIC ACCURACY ASSESSMENT
Developing reference data sets for accuracy assessment of land-cover classifications derived from coarse spatial resolution sensors such as MODIS can be difficult due to the large resolution differences between the image data and available reference data sources. Ideally, the spa...
Spence, Morgan L; Storrs, Katherine R; Arnold, Derek H
2014-07-29
Humans are experts at face recognition. The mechanisms underlying this complex capacity are not fully understood. Recently, it has been proposed that face recognition is supported by a coarse-scale analysis of visual information contained in horizontal bands of contrast distributed along the vertical image axis-a biological facial "barcode" (Dakin & Watt, 2009). A critical prediction of the facial barcode hypothesis is that the distribution of image contrast along the vertical axis will be more important for face recognition than image distributions along the horizontal axis. Using a novel paradigm involving dynamic image distortions, a series of experiments are presented examining famous face recognition impairments from selectively disrupting image distributions along the vertical or horizontal image axes. Results show that disrupting the image distribution along the vertical image axis is more disruptive for recognition than matched distortions along the horizontal axis. Consistent with the facial barcode hypothesis, these results suggest that human face recognition relies disproportionately on appropriately scaled distributions of image contrast along the vertical image axis. © 2014 ARVO.
NASA Astrophysics Data System (ADS)
Rasera, L. G.; Mariethoz, G.; Lane, S. N.
2017-12-01
Frequent acquisition of high-resolution digital elevation models (HR-DEMs) over large areas is expensive and difficult. Satellite-derived low-resolution digital elevation models (LR-DEMs) provide extensive coverage of Earth's surface but at coarser spatial and temporal resolutions. Although useful for large scale problems, LR-DEMs are not suitable for modeling hydrologic and geomorphic processes at scales smaller than their spatial resolution. In this work, we present a multiple-point geostatistical approach for downscaling a target LR-DEM based on available high-resolution training data and recurrent high-resolution remote sensing images. The method aims at generating several equiprobable HR-DEMs conditioned to a given target LR-DEM by borrowing small scale topographic patterns from an analogue containing data at both coarse and fine scales. An application of the methodology is demonstrated by using an ensemble of simulated HR-DEMs as input to a flow-routing algorithm. The proposed framework enables a probabilistic assessment of the spatial structures generated by natural phenomena operating at scales finer than the available terrain elevation measurements. A case study in the Swiss Alps is provided to illustrate the methodology.
Although remote sensing technology has long been used in wetland inventory and monitoring, the accuracy and detail level of derived wetland maps were limited or often unsatisfactory largely due to the relatively coarse spatial resolution of conventional satellite imagery. This re...
Hydrologic downscaling of soil moisture using global data without site-specific calibration
USDA-ARS?s Scientific Manuscript database
Numerous applications require fine-resolution (10-30 m) soil moisture patterns, but most satellite remote sensing and land-surface models provide coarse-resolution (9-60 km) soil moisture estimates. The Equilibrium Moisture from Topography, Vegetation, and Soil (EMT+VS) model downscales soil moistu...
Bajocco, Sofia; Dragoz, Eleni; Gitas, Ioannis; Smiraglia, Daniela; Salvati, Luca; Ricotta, Carlo
2015-01-01
Traditionally fuel maps are built in terms of ‘fuel types’, thus considering the structural characteristics of vegetation only. The aim of this work is to derive a phenological fuel map based on the functional attributes of coarse-scale vegetation phenology, such as seasonality and productivity. MODIS NDVI 250m images of Sardinia (Italy), a large Mediterranean island with high frequency of fire incidence, were acquired for the period 2000–2012 to construct a mean annual NDVI profile of the vegetation at the pixel-level. Next, the following procedure was used to develop the phenological fuel map: (i) image segmentation on the Fourier components of the NDVI profiles to identify phenologically homogeneous landscape units, (ii) cluster analysis of the phenological units and post-hoc analysis of the fire-proneness of the phenological fuel classes (PFCs) obtained, (iii) environmental characterization (in terms of land cover and climate) of the PFCs. Our results showed the ability of coarse-resolution satellite time-series to characterize the fire-proneness of Sardinia with an adequate level of accuracy. The remotely sensed phenological framework presented may represent a suitable basis for the development of fire distribution prediction models, coarse-scale fuel maps and for various biogeographic studies. PMID:25822505
NASA Astrophysics Data System (ADS)
Ramage, J. M.; Brodzik, M. J.; Hardman, M.
2016-12-01
Passive microwave (PM) 18 GHz and 36 GHz horizontally- and vertically-polarized brightness temperatures (Tb) channels from the Advanced Microwave Scanning Radiometer for EOS (AMSR-E) have been important sources of information about snow melt status in glacial environments, particularly at high latitudes. PM data are sensitive to the changes in near-surface liquid water that accompany melt onset, melt intensification, and refreezing. Overpasses are frequent enough that in most areas multiple (2-8) observations per day are possible, yielding the potential for determining the dynamic state of the snow pack during transition seasons. AMSR-E Tb data have been used effectively to determine melt onset and melt intensification using daily Tb and diurnal amplitude variation (DAV) thresholds. Due to mixed pixels in historically coarse spatial resolution Tb data, melt analysis has been impractical in ice-marginal zones where pixels may be only fractionally snow/ice covered, and in areas where the glacier is near large bodies of water: even small regions of open water in a pixel severely impact the microwave signal. We use the new enhanced-resolution Calibrated Passive Microwave Daily EASE-Grid 2.0 Brightness Temperature (CETB) Earth System Data Record product's twice daily obserations to test and update existing snow melt algorithms by determining appropriate melt thresholds for both Tb and DAV for the CETB 18 and 36 GHz channels. We use the enhanced resolution data to evaluate melt characteristics along glacier margins and melt transition zones during the melt seasons in locations spanning a wide range of melt scenarios, including the Patagonian Andes, the Alaskan Coast Range, and the Russian High Arctic icecaps. We quantify how improvement of spatial resolution from the original 12.5 - 25 km-scale pixels to the enhanced resolution of 3.125 - 6.25 km improves the ability to evaluate melt timing across boundaries and transition zones in diverse glacial environments.
Linear mixing model applied to AVHRR LAC data
NASA Technical Reports Server (NTRS)
Holben, Brent N.; Shimabukuro, Yosio E.
1993-01-01
A linear mixing model was applied to coarse spatial resolution data from the NOAA Advanced Very High Resolution Radiometer. The reflective component of the 3.55 - 3.93 microns channel was extracted and used with the two reflective channels 0.58 - 0.68 microns and 0.725 - 1.1 microns to run a Constraine Least Squares model to generate vegetation, soil, and shade fraction images for an area in the Western region of Brazil. The Landsat Thematic Mapper data covering the Emas National park region was used for estimating the spectral response of the mixture components and for evaluating the mixing model results. The fraction images were compared with an unsupervised classification derived from Landsat TM data acquired on the same day. The relationship between the fraction images and normalized difference vegetation index images show the potential of the unmixing techniques when using coarse resolution data for global studies.
Dynamical Downscaling of Typhoon Vera (1959) and related Storm Surge based on JRA-55 Reanalysis
NASA Astrophysics Data System (ADS)
Ninomiya, J.; Takemi, T.; Mori, N.; Shibutani, Y.; Kim, S.
2015-12-01
Typhoon Vera in 1959 is historical extreme typhoon that caused severest typhoon damage mainly due to the storm surge up to 389 cm in Japan. Vera developed 895 hPa on offshore and landed with 929.2 hPa. There are many studies of the dynamical downscaling of Vera but it is difficult to simulate accurately because of the lack of the accuracy of global reanalysis data. This study carried out dynamical downscaling experiment of Vera using WRF downscaling forced by JRA-55 that are latest atmospheric model and reanalysis data. In this study, the reproducibility of five global reanalysis data for Typhoon Vera were compered. Comparison shows that reanalysis data doesn't have strong typhoon information except for JRA-55, so that downscaling with conventional reanalysis data goes wrong. The dynamical downscaling method for storm surge is studied very much (e.g. choice of physical model, nudging, 4D-VAR, bogus and so on). In this study, domain size and resolution of the coarse domain were considered. The coarse domain size influences the typhoon route and central pressure, and larger domain restrains the typhoon strength. The results of simulations with different domain size show that the threshold of developing restrain is whether the coarse domain fully includes the area of wind speed more than 15 m/s around the typhoon. The results of simulations with different resolution show that the resolution doesn't affect the typhoon route, and higher resolution gives stronger typhoon simulation.
Spatial heterogeneity of leaf area index across scales from simulation and remote sensing
NASA Astrophysics Data System (ADS)
Reichenau, Tim G.; Korres, Wolfgang; Montzka, Carsten; Schneider, Karl
2016-04-01
Leaf area index (LAI, single sided leaf area per ground area) influences mass and energy exchange of vegetated surfaces. Therefore LAI is an input variable for many land surface schemes of coupled large scale models, which do not simulate LAI. Since these models typically run on rather coarse resolution grids, LAI is often inferred from coarse resolution remote sensing. However, especially in agriculturally used areas, a grid cell of these products often covers more than a single land-use. In that case, the given LAI does not apply to any single land-use. Therefore, the overall spatial heterogeneity in these datasets differs from that on resolutions high enough to distinguish areas with differing land-use. Detailed process-based plant growth models simulate LAI for separate plant functional types or specific species. However, limited availability of observations causes reduced spatial heterogeneity of model input data (soil, weather, land-use). Since LAI is strongly heterogeneous in space and time and since processes depend on LAI in a nonlinear way, a correct representation of LAI spatial heterogeneity is also desirable on coarse resolutions. The current study assesses this issue by comparing the spatial heterogeneity of LAI from remote sensing (RapidEye) and process-based simulations (DANUBIA simulation system) across scales. Spatial heterogeneity is assessed by analyzing LAI frequency distributions (spatial variability) and semivariograms (spatial structure). Test case is the arable land in the fertile loess plain of the Rur catchment near the Germany-Netherlands border.
Multiresolution Iterative Reconstruction in High-Resolution Extremity Cone-Beam CT
Cao, Qian; Zbijewski, Wojciech; Sisniega, Alejandro; Yorkston, John; Siewerdsen, Jeffrey H; Stayman, J Webster
2016-01-01
Application of model-based iterative reconstruction (MBIR) to high resolution cone-beam CT (CBCT) is computationally challenging because of the very fine discretization (voxel size <100 µm) of the reconstructed volume. Moreover, standard MBIR techniques require that the complete transaxial support for the acquired projections is reconstructed, thus precluding acceleration by restricting the reconstruction to a region-of-interest. To reduce the computational burden of high resolution MBIR, we propose a multiresolution Penalized-Weighted Least Squares (PWLS) algorithm, where the volume is parameterized as a union of fine and coarse voxel grids as well as selective binning of detector pixels. We introduce a penalty function designed to regularize across the boundaries between the two grids. The algorithm was evaluated in simulation studies emulating an extremity CBCT system and in a physical study on a test-bench. Artifacts arising from the mismatched discretization of the fine and coarse sub-volumes were investigated. The fine grid region was parameterized using 0.15 mm voxels and the voxel size in the coarse grid region was varied by changing a downsampling factor. No significant artifacts were found in either of the regions for downsampling factors of up to 4×. For a typical extremities CBCT volume size, this downsampling corresponds to an acceleration of the reconstruction that is more than five times faster than a brute force solution that applies fine voxel parameterization to the entire volume. For certain configurations of the coarse and fine grid regions, in particular when the boundary between the regions does not cross high attenuation gradients, downsampling factors as high as 10× can be used without introducing artifacts, yielding a ~50× speedup in PWLS. The proposed multiresolution algorithm significantly reduces the computational burden of high resolution iterative CBCT reconstruction and can be extended to other applications of MBIR where computationally expensive, high-fidelity forward models are applied only to a sub-region of the field-of-view. PMID:27694701
USDA-ARS?s Scientific Manuscript database
Vegetation monitoring requires remote sensing data at fine spatial and temporal resolution. While imagery from coarse resolution sensors such as MODIS/VIIRS can provide daily observations, they lack spatial detail to capture surface features for crop and rangeland monitoring. The Landsat satellite s...
Improving crop condition monitoring at field scale by using optimal Landsat and MODIS images
USDA-ARS?s Scientific Manuscript database
Satellite remote sensing data at coarse resolution (kilometers) have been widely used in monitoring crop condition for decades. However, crop condition monitoring at field scale requires high resolution data in both time and space. Although a large number of remote sensing instruments with different...
USDA-ARS?s Scientific Manuscript database
Vegetation monitoring requires frequent remote sensing observations. While imagery from coarse resolution sensors such as MODIS/VIIRS can provide daily observations, they lack spatial detail to capture surface features for vegetation monitoring. The medium spatial resolution (10-100m) sensors are su...
NASA Technical Reports Server (NTRS)
Kavaya, Michael J.; Singh, Upendra N.; Koch, Grady J.; Yu, Jirong; Frehlich, Rod G.
2009-01-01
We present preliminary results of computer simulations of the error in measuring carbon dioxide mixing ratio profiles from earth orbit. The simulated sensor is a pulsed, 2-micron, coherent-detection lidar alternately operating on at least two wavelengths. The simulated geometry is a nadir viewing lidar measuring the column content signal. Atmospheric absorption is modeled using FASCODE3P software with the HITRAN 2004 absorption line data base. Lidar shot accumulation is employed up to the horizontal resolution limit. Horizontal resolutions of 50, 100, and 200 km are shown. Assuming a 400 km spacecraft orbit, the horizontal resolutions correspond to measurement times of about 7, 14, and 28 s. We simulate laser pulse-pair repetition frequencies from 1 Hz to 100 kHz. The range of shot accumulation is 7 to 2.8 million pulse-pairs. The resultant error is shown as a function of horizontal resolution, laser pulse-pair repetition frequency, and laser pulse energy. The effect of different on and off pulse energies is explored. The results are compared to simulation results of others and to demonstrated 2-micron operating points at NASA Langley.
NASA Astrophysics Data System (ADS)
Markakis, Konstantinos; Valari, Myrto; Engardt, Magnuz; Lacressonniere, Gwendoline; Vautard, Robert; Andersson, Camilla
2016-02-01
Ozone, PM10 and PM2.5 concentrations over Paris, France and Stockholm, Sweden were modelled at 4 and 1 km horizontal resolutions respectively for the present and 2050 periods employing decade-long simulations. We account for large-scale global climate change (RCP-4.5) and fine-resolution bottom-up emission projections developed by local experts and quantify their impact on future pollutant concentrations. Moreover, we identify biases related to the implementation of regional-scale emission projections by comparing modelled pollutant concentrations between the fine- and coarse-scale simulations over the study areas. We show that over urban areas with major regional contribution (e.g. the city of Stockholm) the bias related to coarse-scale projections may be significant and lead to policy misclassification. Our results stress the need to better understand the mechanism of bias propagation across the modelling scales in order to design more successful local-scale strategies. We find that the impact of climate change is spatially homogeneous in both regions, implying strong regional influence. The climate benefit for ozone (daily mean and maximum) is up to -5 % for Paris and -2 % for Stockholm city. The climate benefit on PM2.5 and PM10 in Paris is between -5 and -10 %, while for Stockholm we estimate mixed trends of up to 3 % depending on season and size class. In Stockholm, emission mitigation leads to concentration reductions up to 15 % for daily mean and maximum ozone and 20 % for PM. Through a sensitivity analysis we show that this response is entirely due to changes in emissions at the regional scale. On the contrary, over the city of Paris (VOC-limited photochemical regime), local mitigation of NOx emissions increases future ozone concentrations due to ozone titration inhibition. This competing trend between the respective roles of emission and climate change, results in an increase in 2050 daily mean ozone by 2.5 % in Paris. Climate and not emission change appears to be the most influential factor for maximum ozone concentration over the city of Paris, which may be particularly interesting from a health impact perspective.
NASA Astrophysics Data System (ADS)
Markakis, K.; Valari, M.; Engardt, M.; Lacressonnière, G.; Vautard, R.; Andersson, C.
2015-10-01
Ozone, PM10 and PM2.5 concentrations over Paris, France and Stockholm, Sweden were modeled at 4 and 1 \\unit{km} horizontal resolutions respectively for the present and 2050 periods employing decade-long simulations. We account for large-scale global climate change (RCP-4.5) and fine resolution bottom-up emission projections developed by local experts and quantify their impact on future pollutant concentrations. Moreover, we identify biases related to the implementation of regional scale emission projections over the study areas by comparing modeled pollutant concentrations between the fine and coarse scale simulations. We show that over urban areas with major regional contribution (e.g., the city of Stockholm) the bias due to coarse emission inventory may be significant and lead to policy misclassification. Our results stress the need to better understand the mechanism of bias propagation across the modeling scales in order to design more successful local-scale strategies. We find that the impact of climate change is spatially homogeneous in both regions, implying strong regional influence. The climate benefit for ozone (daily average and maximum) is up to -5 % for Paris and -2 % for Stockholm city. The joined climate benefit on PM2.5 and PM10 in Paris is between -10 and -5 % while for Stockholm we observe mixed trends up to 3 % depending on season and size class. In Stockholm, emission mitigation leads to concentration reductions up to 15 % for daily average and maximum ozone and 20 % for PM and through a sensitivity analysis we show that this response is entirely due to changes in emissions at the regional scale. On the contrary, over the city of Paris (VOC-limited photochemical regime), local mitigation of NOx emissions increases future ozone concentrations due to ozone titration inhibition. This competing trend between the respective roles of emission and climate change, results in an increase in 2050 daily average ozone by 2.5 % in Paris. Climate and not emission change appears to be the most influential factor for maximum ozone concentration over the city of Paris, which may be particularly interesting in a health impact perspective.
Atmospheric gravity waves with small vertical-to-horizotal wavelength ratios
NASA Astrophysics Data System (ADS)
Song, I. S.; Jee, G.; Kim, Y. H.; Chun, H. Y.
2017-12-01
Gravity wave modes with small vertical-to-horizontal wavelength ratios of an order of 10-3 are investigated through the systematic scale analysis of governing equations for gravity wave perturbations embedded in the quasi-geostrophic large-scale flow. These waves can be categorized as acoustic gravity wave modes because their total energy is given by the sum of kinetic, potential, and elastic parts. It is found that these waves can be forced by density fluctuations multiplied by the horizontal gradients of the large-scale pressure (geopotential) fields. These theoretical findings are evaluated using the results of a high-resolution global model (Specified Chemistry WACCM with horizontal resolution of 25 km and vertical resolution of 600 m) by computing the density-related gravity-wave forcing terms from the modeling results.
Satellite observed thermodynamics during FGGE
NASA Technical Reports Server (NTRS)
Smith, W. L.
1985-01-01
During the First Global Atmospheric Research Program (GARP) Global Experiment (FGGE), determinations of temperature and moisture were made from TIROS-N and NOAA-6 satellite infrared and microwave sounding radiance measurements. The data were processed by two methods differing principally in their horizontal resolution. At the National Earth Satellite Service (NESS) in Washington, D.C., the data were produced operationally with a horizontal resolution of 250 km for inclusion in the FGGE Level IIb data sets for application to large-scale numerical analysis and prediction models. High horizontal resolution (75 km) sounding data sets were produced using man-machine interactive methods for the special observing periods of FGGE at the NASA/Goddard Space Flight Center and archived as supplementary Level IIb. The procedures used for sounding retrieval and the characteristics and quality of these thermodynamic observations are given.
NASA Technical Reports Server (NTRS)
Putman, William P.
2012-01-01
Using a high-resolution non-hydrostatic version of GEOS-5 with the cubed-sphere finite-volume dynamical core, the impact of spatial and temporal resolution on cloud properties will be evaluated. There are indications from examining convective cluster development in high resolution GEOS-5 forecasts that the temporal resolution within the model may playas significant a role as horizontal resolution. Comparing modeled convective cloud clusters versus satellite observations of brightness temperature, we have found that improved. temporal resolution in GEOS-S accounts for a significant portion of the improvements in the statistical distribution of convective cloud clusters. Using satellite simulators in GEOS-S we will compare the cloud optical properties of GEOS-S at various spatial and temporal resolutions with those observed from MODIS. The potential impact of these results on tropical cyclone formation and intensity will be examined as well.
NASA Astrophysics Data System (ADS)
Beller, S.; Monteiller, V.; Combe, L.; Operto, S.; Nolet, G.
2018-02-01
Full-waveform inversion (FWI) is not yet a mature imaging technology for lithospheric imaging from teleseismic data. Therefore, its promise and pitfalls need to be assessed more accurately according to the specifications of teleseismic experiments. Three important issues are related to (1) the choice of the lithospheric parametrization for optimization and visualization, (2) the initial model and (3) the acquisition design, in particular in terms of receiver spread and sampling. These three issues are investigated with a realistic synthetic example inspired by the CIFALPS experiment in the Western Alps. Isotropic elastic FWI is implemented with an adjoint-state formalism and aims to update three parameter classes by minimization of a classical least-squares difference-based misfit function. Three different subsurface parametrizations, combining density (ρ) with P and S wave speeds (Vp and Vs) , P and S impedances (Ip and Is), or elastic moduli (λ and μ) are first discussed based on their radiation patterns before their assessment by FWI. We conclude that the (ρ, λ, μ) parametrization provides the FWI models that best correlate with the true ones after recombining a posteriori the (ρ, λ, μ) optimization parameters into Ip and Is. Owing to the low frequency content of teleseismic data, 1-D reference global models as PREM provide sufficiently accurate initial models for FWI after smoothing that is necessary to remove the imprint of the layering. Two kinds of station deployments are assessed: coarse areal geometry versus dense linear one. We unambiguously conclude that a coarse areal geometry should be favoured as it dramatically increases the penetration in depth of the imaging as well as the horizontal resolution. This results because the areal geometry significantly increases local wavenumber coverage, through a broader sampling of the scattering and dip angles, compared to a linear deployment.
NASA Astrophysics Data System (ADS)
Skamarock, W. C.
2015-12-01
One of the major problems in atmospheric model applications is the representation of deep convection within the models; explicit simulation of deep convection on fine meshes performs much better than sub-grid parameterized deep convection on coarse meshes. Unfortunately, the high cost of explicit convective simulation has meant it has only been used to down-scale global simulations in weather prediction and regional climate applications, typically using traditional one-way interactive nesting technology. We have been performing real-time weather forecast tests using a global non-hydrostatic atmospheric model (the Model for Prediction Across Scales, MPAS) that employs a variable-resolution unstructured Voronoi horizontal mesh (nominally hexagons) to span hydrostatic to nonhydrostatic scales. The smoothly varying Voronoi mesh eliminates many downscaling problems encountered using traditional one- or two-way grid nesting. Our test weather forecasts cover two periods - the 2015 Spring Forecast Experiment conducted at the NOAA Storm Prediction Center during the month of May in which we used a 50-3 km mesh, and the PECAN field program examining nocturnal convection over the US during the months of June and July in which we used a 15-3 km mesh. An important aspect of this modeling system is that the model physics be scale-aware, particularly the deep convection parameterization. These MPAS simulations employ the Grell-Freitas scale-aware convection scheme. Our test forecasts show that the scheme produces a gradual transition in the deep convection, from the deep unstable convection being handled entirely by the convection scheme on the coarse mesh regions (dx > 15 km), to the deep convection being almost entirely explicit on the 3 km NA region of the meshes. We will present results illustrating the performance of critical aspects of the MPAS model in these tests.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dunn, Nicholas J. H.; Noid, W. G., E-mail: wnoid@chem.psu.edu
2015-12-28
The present work investigates the capability of bottom-up coarse-graining (CG) methods for accurately modeling both structural and thermodynamic properties of all-atom (AA) models for molecular liquids. In particular, we consider 1, 2, and 3-site CG models for heptane, as well as 1 and 3-site CG models for toluene. For each model, we employ the multiscale coarse-graining method to determine interaction potentials that optimally approximate the configuration dependence of the many-body potential of mean force (PMF). We employ a previously developed “pressure-matching” variational principle to determine a volume-dependent contribution to the potential, U{sub V}(V), that approximates the volume-dependence of the PMF.more » We demonstrate that the resulting CG models describe AA density fluctuations with qualitative, but not quantitative, accuracy. Accordingly, we develop a self-consistent approach for further optimizing U{sub V}, such that the CG models accurately reproduce the equilibrium density, compressibility, and average pressure of the AA models, although the CG models still significantly underestimate the atomic pressure fluctuations. Additionally, by comparing this array of models that accurately describe the structure and thermodynamic pressure of heptane and toluene at a range of different resolutions, we investigate the impact of bottom-up coarse-graining upon thermodynamic properties. In particular, we demonstrate that U{sub V} accounts for the reduced cohesion in the CG models. Finally, we observe that bottom-up coarse-graining introduces subtle correlations between the resolution, the cohesive energy density, and the “simplicity” of the model.« less
Monitoring forest dynamics with multi-scale and time series imagery.
Huang, Chunbo; Zhou, Zhixiang; Wang, Di; Dian, Yuanyong
2016-05-01
To learn the forest dynamics and evaluate the ecosystem services of forest effectively, a timely acquisition of spatial and quantitative information of forestland is very necessary. Here, a new method was proposed for mapping forest cover changes by combining multi-scale satellite remote-sensing imagery with time series data. Using time series Normalized Difference Vegetation Index products derived from the Moderate Resolution Imaging Spectroradiometer images (MODIS-NDVI) and Landsat Thematic Mapper/Enhanced Thematic Mapper Plus (TM/ETM+) images as data source, a hierarchy stepwise analysis from coarse scale to fine scale was developed for detecting the forest change area. At the coarse scale, MODIS-NDVI data with 1-km resolution were used to detect the changes in land cover types and a land cover change map was constructed using NDVI values at vegetation growing seasons. At the fine scale, based on the results at the coarse scale, Landsat TM/ETM+ data with 30-m resolution were used to precisely detect the forest change location and forest change trend by analyzing time series forest vegetation indices (IFZ). The method was tested using the data for Hubei Province, China. The MODIS-NDVI data from 2001 to 2012 were used to detect the land cover changes, and the overall accuracy was 94.02 % at the coarse scale. At the fine scale, the available TM/ETM+ images at vegetation growing seasons between 2001 and 2012 were used to locate and verify forest changes in the Three Gorges Reservoir Area, and the overall accuracy was 94.53 %. The accuracy of the two layer hierarchical monitoring results indicated that the multi-scale monitoring method is feasible and reliable.
NASA Astrophysics Data System (ADS)
Gibson, Angus H.; Hogg, Andrew McC.; Kiss, Andrew E.; Shakespeare, Callum J.; Adcroft, Alistair
2017-11-01
We examine the separate contributions to spurious mixing from horizontal and vertical processes in an ALE ocean model, MOM6, using reference potential energy (RPE). The RPE is a global diagnostic which changes only due to mixing between density classes. We extend this diagnostic to a sub-timestep timescale in order to individually separate contributions to spurious mixing through horizontal (tracer advection) and vertical (regridding/remapping) processes within the model. We both evaluate the overall spurious mixing in MOM6 against previously published output from other models (MOM5, MITGCM and MPAS-O), and investigate impacts on the components of spurious mixing in MOM6 across a suite of test cases: a lock exchange, internal wave propagation, and a baroclinically-unstable eddying channel. The split RPE diagnostic demonstrates that the spurious mixing in a lock exchange test case is dominated by horizontal tracer advection, due to the spatial variability in the velocity field. In contrast, the vertical component of spurious mixing dominates in an internal waves test case. MOM6 performs well in this test case owing to its quasi-Lagrangian implementation of ALE. Finally, the effects of model resolution are examined in a baroclinic eddies test case. In particular, the vertical component of spurious mixing dominates as horizontal resolution increases, an important consideration as global models evolve towards higher horizontal resolutions.
NASA Astrophysics Data System (ADS)
Costantino, Lorenzo; Heinrich, Philippe
2014-05-01
Small scale atmospheric waves, usually referred as internal of Gravity Waves (GW), represent an efficient transport mechanism of energy and momentum through the atmosphere. They propagate upward from their sources in the lower atmosphere (flow over topography, convection and jet adjustment) to the middle and upper atmosphere. Depending on the horizontal wind shear, they can dissipate at different altitudes and force the atmospheric circulation of the stratosphere and mesosphere. The deposition of momentum associated with the dissipation, or wave breaking, exerts an acceleration to the mean flow, that can significantly alter the thermal and dynamical structure of the atmosphere. GW may have spatial scales that range from few to hundreds of kilometers and range from minutes to hours. For that reason, General Circulation Model (GCM) used in climate studies have generally a coarse resolution, of approximately 2-5° horizontally and 3 km vertically, in the stratosphere. This resolution is fine enough to resolve Rossby-waves but not the small-scale GW activity. Hence, to calculate the momentum-forcing generated by the unresolved waves, they use a drag parametrization which mainly consists in some tuning parameters, constrained by observations of wind circulation and temperature in the upper troposphere and middle atmosphere (Alexander et al., 2010). Traditionally, the GW Drag (GWD) parametrization is used in climate and forecasting models to adjust the structure of winter jets and the horizontal temperature gradient. It was firstly based on the parametrization of orographic waves, which represent zero-phase-speed waves generated by sub-grid topography. Regional models, with horizontal resolutions that can reach few tens or hundreds of meters, are able to directly resolve small-scale GW and may represent a valuable addition to direct observations. In the framework of the ARISE (Atmospheric dynamics Research InfraStructure in Europe) project, this study tests the capability of the Weather Research and Forecasting (WRF) model to generate and propagate GW forced by convection and orography, without any GW parametrization. Results from model simulations are compared with in-situ observations of potential energy vertical profiles in the stratosphere, measured by a LIDAR located at the Observatoire de Haute Provence (Southern France). This comparison allows, to a certain extent, to validate WRF numerical results and quantify some of those wave parameters (e.g., GW drag force, intrinsic frequency, breaking level altitude, etc..) that are fundamental for a deeper understanding of GW role in atmospheric dynamics, but that are not easily measurable by ground- or space-based systems (limited to specific region or certain latitude band). Alexander, M. J., Geller, M., McLandress, C., Polavarapu, S., Preusse, P., Sassi, F., Sato, K., Eckermann, S., Ern, M., Hertzog, A., Kawatani, Y., Pulido, M., Shaw, T. A., Sigmond, M., Vincent, R. and Watanabe, S. (2010), Recent developments in gravity-wave effects in climate models and the global distribution of gravity-wave momentum flux from observations and models. Q.J.R. Meteorol. Soc., 136: 1103-1124. doi: 10.1002/qj.637
NASA Astrophysics Data System (ADS)
Federico, Ivan; Pinardi, Nadia; Coppini, Giovanni; Oddo, Paolo; Lecci, Rita; Mossa, Michele
2017-01-01
SANIFS (Southern Adriatic Northern Ionian coastal Forecasting System) is a coastal-ocean operational system based on the unstructured grid finite-element three-dimensional hydrodynamic SHYFEM model, providing short-term forecasts. The operational chain is based on a downscaling approach starting from the large-scale system for the entire Mediterranean Basin (MFS, Mediterranean Forecasting System), which provides initial and boundary condition fields to the nested system. The model is configured to provide hydrodynamics and active tracer forecasts both in open ocean and coastal waters of southeastern Italy using a variable horizontal resolution from the open sea (3-4 km) to coastal areas (50-500 m). Given that the coastal fields are driven by a combination of both local (also known as coastal) and deep-ocean forcings propagating along the shelf, the performance of SANIFS was verified both in forecast and simulation mode, first (i) on the large and shelf-coastal scales by comparing with a large-scale survey CTD (conductivity-temperature-depth) in the Gulf of Taranto and then (ii) on the coastal-harbour scale (Mar Grande of Taranto) by comparison with CTD, ADCP (acoustic doppler current profiler) and tide gauge data. Sensitivity tests were performed on initialization conditions (mainly focused on spin-up procedures) and on surface boundary conditions by assessing the reliability of two alternative datasets at different horizontal resolution (12.5 and 6.5 km). The SANIFS forecasts at a lead time of 1 day were compared with the MFS forecasts, highlighting that SANIFS is able to retain the large-scale dynamics of MFS. The large-scale dynamics of MFS are correctly propagated to the shelf-coastal scale, improving the forecast accuracy (+17 % for temperature and +6 % for salinity compared to MFS). Moreover, the added value of SANIFS was assessed on the coastal-harbour scale, which is not covered by the coarse resolution of MFS, where the fields forecasted by SANIFS reproduced the observations well (temperature RMSE equal to 0.11 °C). Furthermore, SANIFS simulations were compared with hourly time series of temperature, sea level and velocity measured on the coastal-harbour scale, showing a good agreement. Simulations in the Gulf of Taranto described a circulation mainly characterized by an anticyclonic gyre with the presence of cyclonic vortexes in shelf-coastal areas. A surface water inflow from the open sea to Mar Grande characterizes the coastal-harbour scale.
Application of Geostatistical Simulation to Enhance Satellite Image Products
NASA Technical Reports Server (NTRS)
Hlavka, Christine A.; Dungan, Jennifer L.; Thirulanambi, Rajkumar; Roy, David
2004-01-01
With the deployment of Earth Observing System (EOS) satellites that provide daily, global imagery, there is increasing interest in defining the limitations of the data and derived products due to its coarse spatial resolution. Much of the detail, i.e. small fragments and notches in boundaries, is lost with coarse resolution imagery such as the EOS MODerate-Resolution Imaging Spectroradiometer (MODIS) data. Higher spatial resolution data such as the EOS Advanced Spaceborn Thermal Emission and Reflection Radiometer (ASTER), Landsat and airborne sensor imagery provide more detailed information but are less frequently available. There are, however, both theoretical and analytical evidence that burn scars and other fragmented types of land covers form self-similar or self-affine patterns, that is, patterns that look similar when viewed at widely differing spatial scales. Therefore small features of the patterns should be predictable, at least in a statistical sense, with knowledge about the large features. Recent developments in fractal modeling for characterizing the spatial distribution of undiscovered petroleum deposits are thus applicable to generating simulations of finer resolution satellite image products. We will present example EOS products, analysis to investigate self-similarity, and simulation results.
The importance of vertical resolution in the free troposphere for modeling intercontinental plumes
NASA Astrophysics Data System (ADS)
Zhuang, Jiawei; Jacob, Daniel J.; Eastham, Sebastian D.
2018-05-01
Chemical plumes in the free troposphere can preserve their identity for more than a week as they are transported on intercontinental scales. Current global models cannot reproduce this transport. The plumes dilute far too rapidly due to numerical diffusion in sheared flow. We show how model accuracy can be limited by either horizontal resolution (Δx) or vertical resolution (Δz). Balancing horizontal and vertical numerical diffusion, and weighing computational cost, implies an optimal grid resolution ratio (Δx / Δz)opt ˜ 1000 for simulating the plumes. This is considerably higher than current global models (Δx / Δz ˜ 20) and explains the rapid plume dilution in the models as caused by insufficient vertical resolution. Plume simulations with the Geophysical Fluid Dynamics Laboratory Finite-Volume Cubed-Sphere Dynamical Core (GFDL-FV3) over a range of horizontal and vertical grid resolutions confirm this limiting behavior. Our highest-resolution simulation (Δx ≈ 25 km, Δz ≈ 80 m) preserves the maximum mixing ratio in the plume to within 35 % after 8 days in strongly sheared flow, a drastic improvement over current models. Adding free tropospheric vertical levels in global models is computationally inexpensive and would also improve the simulation of water vapor.
USDA-ARS?s Scientific Manuscript database
Mapping of soil moisture is important for many applications such as flood forecasting, soil protection, and crop management. Soil moisture can be estimated at coarse resolutions (>1 km) using satellite remote sensing, but that resolution is poorly suited for many applications. The Equilibrium Mois...
USDA-ARS?s Scientific Manuscript database
The resolution of General Circulation Models (GCMs) is too coarse to assess the fine scale or site-specific impacts of climate change. Downscaling approaches including dynamical and statistical downscaling have been developed to meet this requirement. As the resolution of climate model increases, it...
High-resolution dynamical downscaling of the future Alpine climate
NASA Astrophysics Data System (ADS)
Bozhinova, Denica; José Gómez-Navarro, Juan; Raible, Christoph
2017-04-01
The Alpine region and Switzerland is a challenging area for simulating and analysing Global Climate Model (GCM) results. This is mostly due to the combination of a very complex topography and the still rather coarse horizontal resolution of current GCMs, in which not all of the many-scale processes that drive the local weather and climate can be resolved. In our study, the Weather Research and Forecasting (WRF) model is used to dynamically downscale a GCM simulation to a resolution as high as 2 km x 2 km. WRF is driven by initial and boundary conditions produced with the Community Earth System Model (CESM) for the recent past (control run) and until 2100 using the RCP8.5 climate scenario (future run). The control run downscaled with WRF covers the period 1976-2005, while the future run investigates a 20-year-slice simulated for the 2080-2099. We compare the control WRF-CESM simulations to an observational product provided by MeteoSwiss and an additional WRF simulation driven by the ERA-Interim reanalysis, to estimate the bias that is introduced by the extra modelling step of our framework. Several bias-correction methods are evaluated, including a quantile mapping technique, to ameliorate the bias in the control WRF-CESM simulation. In the next step of our study these corrections are applied to our future WRF-CESM run. The resulting downscaled and bias-corrected data is analysed for the properties of precipitation and wind speed in the future climate. Our special interest focuses on the absolute quantities simulated for these meteorological variables as these are used to identify extreme events, such as wind storms and situations that can lead to floods.
NASA Astrophysics Data System (ADS)
Silva, M. E. S.; Da Rocha, R.; Pereira, G.
2015-12-01
In this study we investigated the climatic impact over South America region due to the increasing of deforestation at the eastern and southern regions of Amazon through the use of the climate model RegCM3 with 50 km of spatial resolution. Many studies, among global and regional models have been used to simulate climatic impact due to deforestation. Most of them used relatively coarse resolution, small domains over South America, besides do not consider deforestation as usually observed. In order to verify the RegCM3 ability to simulate climate impacts due to Amazon deforestation including relatively higher horizontal resolutions, 50 km, a larger domain, the whole South America, deforested areas more similar to the route-shaped commonly seen, and a landuse updating, the model was run for the 2001-2006 period. As the major part of the previous studies focusing Amazon deforestation, RegCM3-50km simulated over degraded areas air temperature increase, ranging from 1.0 to 2.5oC, and precipitation decreasing, ~10%. These aspects are mainly resulting from soil water depletion and roughness vegetation decreasing, both inhibiting evapotranspiration processes. Apart from these results, the model with 50 km simulated precipitation increasing, ~10%, over the eastern South America and adjacent South Atlantic ocean, after Amazon deforestation. Seeking for physical related reasons able to provide the precipitation increasing during rainy seasons, over eastern South America, we found out that upper levels high pressure system (the Bolivian High) intensification, coupled to the southeastward trough, what follows the low troposphere warming, seems to contribute to the precipitation increasing. The climatic impact simulated for winter seasons presents strongest values for areas with altered landuse, over the north region of South America.
NASA Astrophysics Data System (ADS)
Wigmore, Oliver; Mark, Bryan
2017-11-01
The glaciers of the Cordillera Blanca, Peru, are rapidly retreating and thinning as a result of climate change, altering the timing, quantity and quality of water available to downstream users. Furthermore, increases in the number and size of proglacial lakes associated with these melting glaciers is increasing potential exposure to glacier lake outburst floods (GLOFs). Understanding how these glaciers are changing and their connection to proglacial lake systems is thus of critical importance. Most satellite data are too coarse for studying small mountain glaciers and are often affected by cloud cover, while traditional airborne photogrammetry and lidar are costly. Recent developments have made unmanned aerial vehicles (UAVs) a viable and potentially transformative method for studying glacier change at high spatial resolution, on demand and at relatively low cost.Using a custom designed hexacopter built for high-altitude (4000-6000 m a. s. l. ) operation, we completed repeat aerial surveys (2014 and 2015) of the debris-covered Llaca Glacier tongue and proglacial lake system. High-resolution orthomosaics (5 cm) and digital elevation models (DEMs) (10 cm) were produced and their accuracy assessed. Analysis of these datasets reveals highly heterogeneous patterns of glacier change. The most rapid areas of ice loss were associated with exposed ice cliffs and meltwater ponds on the glacier surface. Considerable subsidence and low surface velocities were also measured on the sediments within the pro-glacial lake, indicating the presence of extensive regions of buried ice and continued connection to the glacier tongue. Only limited horizontal retreat of the glacier tongue was observed, indicating that measurements of changes in aerial extent alone are inadequate for monitoring changes in glacier ice quantity.
Root architecture and wind-firmness of mature Pinus pinaster.
Danjon, Frédéric; Fourcaud, Thierry; Bert, Didier
2005-11-01
This study aims to link three-dimensional coarse root architecture to tree stability in mature timber trees with an average of 1-m rooting depth. Undamaged and uprooted trees were sampled in a stand damaged by a storm. Root architecture was measured by three-dimensional (3-D) digitizing. The distribution of root volume by root type and in wind-oriented sectors was analysed. Mature Pinus pinaster root systems were organized in a rigid 'cage' composed of a taproot, the zone of rapid taper of horizontal surface roots and numerous sinkers and deep roots, imprisoning a large mass of soil and guyed by long horizontal surface roots. Key compartments for stability exhibited strong selective leeward or windward reinforcement. Uprooted trees showed a lower cage volume, a larger proportion of oblique and intermediate depth horizontal roots and less wind-oriented root reinforcement. Pinus pinaster stability on moderately deep soils is optimized through a typical rooting pattern and a considerable structural adaptation to the prevailing wind and soil profile.
Medvigy, David; Kim, Seung Hee; Kim, Jinwon; Kafatos, Menas C
2016-07-01
Models that predict the timing of deciduous tree leaf emergence are typically very sensitive to temperature. However, many temperature data products, including those from climate models, have been developed at a very coarse spatial resolution. Such coarse-resolution temperature products can lead to highly biased predictions of leaf emergence. This study investigates how dynamical downscaling of climate models impacts simulations of deciduous tree leaf emergence in California. Models for leaf emergence are forced with temperatures simulated by a general circulation model (GCM) at ~200-km resolution for 1981-2000 and 2031-2050 conditions. GCM simulations are then dynamically downscaled to 32- and 8-km resolution, and leaf emergence is again simulated. For 1981-2000, the regional average leaf emergence date is 30.8 days earlier in 32-km simulations than in ~200-km simulations. Differences between the 32 and 8 km simulations are small and mostly local. The impact of downscaling from 200 to 8 km is ~15 % smaller in 2031-2050 than in 1981-2000, indicating that the impacts of downscaling are unlikely to be stationary.
NASA Technical Reports Server (NTRS)
Xu, Kuan-Man
1994-01-01
Simulated data from the UCLA cumulus ensemble model are used to investigate the quasi-universal validity of closure assumptions used in existing cumulus parameterizations. A closure assumption is quasi-universally valid if it is sensitive neither to convective cloud regimes nor to horizontal resolutions of large-scale/mesoscale models. The dependency of three types of closure assumptions, as classified by Arakawa and Chen, on the horizontal resolution is addressed in this study. Type I is the constraint on the coupling of the time tendencies of large-scale temperature and water vapor mixing ratio. Type II is the constraint on the coupling of cumulus heating and cumulus drying. Type III is a direct constraint on the intensity of a cumulus ensemble. The macroscopic behavior of simulated cumulus convection is first compared with the observed behavior in view of Type I and Type II closure assumptions using 'quick-look' and canonical correlation analyses. It is found that they are statistically similar to each other. The three types of closure assumptions are further examined with simulated data averaged over selected subdomain sizes ranging from 64 to 512 km. It is found that the dependency of Type I and Type II closure assumptions on the horizontal resolution is very weak and that Type III closure assumption is somewhat dependent upon the horizontal resolution. The influences of convective and mesoscale processes on the closure assumptions are also addressed by comparing the structures of canonical components with the corresponding vertical profiles in the convective and stratiform regions of cumulus ensembles analyzed directly from simulated data. The implication of these results for cumulus parameterization is discussed.
On neutral metacommunity patterns of river basins at different scales of aggregation
NASA Astrophysics Data System (ADS)
Convertino, Matteo; Muneepeerakul, Rachata; Azaele, Sandro; Bertuzzo, Enrico; Rinaldo, Andrea; Rodriguez-Iturbe, Ignacio
2009-08-01
Neutral metacommunity models for spatial biodiversity patterns are implemented on river networks acting as ecological corridors at different resolution. Coarse-graining elevation fields (under the constraint of preserving the basin mean elevation) produce a set of reconfigured drainage networks. The hydrologic assumption made implies uniform runoff production such that each link has the same habitat capacity. Despite the universal scaling properties shown by river basins regardless of size, climate, vegetation, or exposed lithology, we find that species richness at local and regional scales exhibits resolution-dependent behavior. In addition, we investigate species-area relationships and rank-abundance patterns. The slopes of the species-area relationships, which are consistent over coarse-graining resolutions, match those found in real landscapes in the case of long-distance dispersal. The rank-abundance patterns are independent of the resolution over a broad range of dispersal length. Our results confirm that strong interactions occur between network structure and the dispersal of species and that under the assumption of neutral dynamics, these interactions produce resolution-dependent biodiversity patterns that diverge from expectations following from universal geomorphic scaling laws. Both in theoretical and in applied ecology studying how patterns change in resolution is relevant for understanding how ecological dynamics work in fragmented landscape and for sampling and biodiversity management campaigns, especially in consideration of climate change.
How well do CMIP5 models simulate the low-level jet in western Colombia?
NASA Astrophysics Data System (ADS)
Sierra, Juan P.; Arias, Paola A.; Vieira, Sara C.; Agudelo, Jhoana
2017-11-01
The Choco jet is an important atmospheric feature of Colombian and northern South America hydro-climatology. This work assesses the ability of 26 coupled and 11 uncoupled (AMIP) global climate models (GCMs) included in the fifth phase of the Coupled Model Intercomparison Project (CMIP5) archive to simulate the climatological basic features (annual cycle, spatial distribution and vertical structure) of this jet. Using factor and cluster analysis, we objectively classify models in Best, Worst, and Intermediate groups. Despite the coarse resolution of the GCMs, this study demonstrates that nearly all models can represent the existence of the Choco low-level jet. AMIP and Best models present a more realistic simulation of jet. Worst models exhibit biases such as an anomalous southward location of the Choco jet during the whole year and a shallower jet. The model skill to represent this jet comes from their ability to reproduce some of its main causes, such as the temperature and pressure differences between particular regions in the eastern Pacific and western Colombian lands, which are non-local features. Conversely, Worst models considerably underestimate temperature and pressure differences between these key regions. We identify a close relationship between the location of the Choco jet and the Inter-tropical Convergence Zone (ITCZ), and CMIP5 models are able to represent such relationship. Errors in Worst models are related with bias in the location of the ITCZ over the eastern tropical Pacific Ocean, as well as the representation of the topography and the horizontal resolution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Molenkamp, C.R.; Grossman, A.
1999-12-20
A network of small balloon-borne transponders which gather very high resolution wind and temperature data for use by modern numerical weather predication models has been proposed to improve the reliability of long-range weather forecasts. The global distribution of an array of such transponders is simulated using LLNL's atmospheric parcel transport model (GRANTOUR) with winds supplied by two different general circulation models. An initial study used winds from CCM3 with a horizontal resolution of about 3 degrees in latitude and longitude, and a second study used winds from NOGAPS with a 0.75 degree horizontal resolution. Results from both simulations show thatmore » reasonable global coverage can be attained by releasing balloons from an appropriate set of launch sites.« less
Resolution-Adapted All-Atomic and Coarse-Grained Model for Biomolecular Simulations.
Shen, Lin; Hu, Hao
2014-06-10
We develop here an adaptive multiresolution method for the simulation of complex heterogeneous systems such as the protein molecules. The target molecular system is described with the atomistic structure while maintaining concurrently a mapping to the coarse-grained models. The theoretical model, or force field, used to describe the interactions between two sites is automatically adjusted in the simulation processes according to the interaction distance/strength. Therefore, all-atomic, coarse-grained, or mixed all-atomic and coarse-grained models would be used together to describe the interactions between a group of atoms and its surroundings. Because the choice of theory is made on the force field level while the sampling is always carried out in the atomic space, the new adaptive method preserves naturally the atomic structure and thermodynamic properties of the entire system throughout the simulation processes. The new method will be very useful in many biomolecular simulations where atomistic details are critically needed.
Optimal Design of Experiments by Combining Coarse and Fine Measurements
NASA Astrophysics Data System (ADS)
Lee, Alpha A.; Brenner, Michael P.; Colwell, Lucy J.
2017-11-01
In many contexts, it is extremely costly to perform enough high-quality experimental measurements to accurately parametrize a predictive quantitative model. However, it is often much easier to carry out large numbers of experiments that indicate whether each sample is above or below a given threshold. Can many such categorical or "coarse" measurements be combined with a much smaller number of high-resolution or "fine" measurements to yield accurate models? Here, we demonstrate an intuitive strategy, inspired by statistical physics, wherein the coarse measurements are used to identify the salient features of the data, while the fine measurements determine the relative importance of these features. A linear model is inferred from the fine measurements, augmented by a quadratic term that captures the correlation structure of the coarse data. We illustrate our strategy by considering the problems of predicting the antimalarial potency and aqueous solubility of small organic molecules from their 2D molecular structure.
NASA Astrophysics Data System (ADS)
Dickson, N. C.; Gierens, K. M.; Rogers, H. L.; Jones, R. L.
2010-02-01
The global observation, assimilation and prediction in numerical models of ice super-saturated (ISS) regions (ISSR) are crucial if the climate impact of aircraft condensations trails (contrails) is to be fully understood, and if, for example, contrail formation is to be avoided through aircraft operational measures. A robust assessment of the global distribution of ISSR will further this debate, and ISS event occurrence, frequency and spatial scales have recently attracted significant attention. The mean horizontal path length through ISSR as observed by MOZAIC aircraft is 150 km (±250 km). The average vertical thickness of ISS layers is 600-800 m (±575 m) but layers ranging from 25 m to 3000 m have been observed, with up to one third of ISS layers thought to be less than 100 m deep. Given their small scales compared to typical atmospheric model grid sizes, statistical representations of the spatial scales of ISSR are required, in both horizontal and vertical dimensions, if global occurrence of ISSR is to be adequately represented in climate models. This paper uses radiosonde launches made by the UK Meteorological Office, from the British Isles, Gibraltar, St. Helena and the Falkland Islands between January 2002 and December 2006, to investigate the probabilistic occurrence of ISSR. Specifically each radiosonde profile is divided into 50- and 100-hPa pressure layers, to emulate the coarse vertical resolution of some atmospheric models. Then the high resolution observations contained within each thick pressure layer are used to calculate an average relative humidity and an ISS fraction for each individual thick pressure layer. These relative humidity pressure layer descriptions are then linked through a probability function to produce an s-shaped curve describing the ISS fraction in any average relative humidity pressure layer. An empirical investigation has shown that this one curve is statistically valid for mid-latitude locations, irrespective of season and altitude, however, pressure layer depth is an important variable. Using this empirical understanding of the s-shaped relationship a mathematical model was developed to represent the ISS fraction within any arbitrary thick pressure layer. Here the statistical distributions of actual high resolution RHi observations in any thick pressure layer, along with an error function, are used to mathematically describe the s-shape. Two models were developed to represent both 50- and 100-hPa pressure layers with each reconstructing their respective s-shapes within 8-10% of the empirical curves. These new models can be used, to represent the small scale structures of ISS events, in modelled data where only low vertical resolution is available. This will be useful in understanding, and improving the global distribution, both observed and forecasted, of ice super-saturation.
NASA Astrophysics Data System (ADS)
Degnan, J. J.
2002-05-01
We have recently demonstrated a scanning, photon-counting, laser altimeter, which is capable of daylight operations from aircraft cruise altitudes. The instrument measures the times-of-flight of individual photons to deduce the distances between the instrument reference and points on the underlying terrain from which the arriving photons were reflected. By imaging the terrain onto a highly pixellated detector followed by a multi-channel timing receiver, one can make multiple spatially-resolved measurements to the surface within a single laser pulse. The horizontal spatial resolution is limited by the optical projection of a single pixel onto the surface. In short, a 3D image of the terrain within the laser ground spot is obtained on each laser fire, assuming at least one signal photon is recorded by each pixel.. In test flights, a prototype airborne system has successfully recorded few kHz rate, single photon returns from clouds, soils, man-made objects, vegetation, and water surfaces at mid-day under conditions of maximum solar illumination. The system has also demonstrated a capability to resolve volumetrically distributed targets, such as tree canopies, and has performed wave height measurements and shallow water bathymetry over the Chesapeake Bay and Atlantic Ocean. The signal photons were reliably extracted from the solar noise background using an optimized Post-Detection Poisson Filter. The passively Q-switched microchip Nd:YAG laser transmitter measures only 2.25 mm in length and is pumped by a single 1.2 Watt laser diode. The output is frequency-doubled to take advantage of higher detector counting efficiencies and narrower spectral filters available at 532 nm. The transmitter produces a few microjoules of green energy in a subnanosecond pulse at several kilohertz rates. The illuminated ground area is imaged by a 14 cm diameter, diffraction-limited, off-axis telescope onto a segmented anode photomultiplier with up to 16 pixels (4 x4). Each anode segment is input to one channel of "fine" range receiver (5 cm detector-limited resolution), which records the times-of-flight of the individual photons. A parallel "coarse" receiver provides a lower resolution (>75 cm) histogram of atmospheric scatterers between the aircraft and ground and centers the "fine" receiver gate on the last set of returns, permitting the fine receiver to lock onto ground features with no a priori range knowledge. Many scientists have expressed a desire for globally contiguous maps of planetary bodies with few meter horizontal spatial resolutions and decimeter vertical resolutions. By sequentially overcoming various technical hurdles to globally contiguous mapping from space, we are led to a conceptual point design for a spaceborne, 3D imaging lidar, which utilizes low energy, high repetition rate lasers, photon-counting detector arrays, multi-channel timing receivers, and a unique optical scanner.
NASA Astrophysics Data System (ADS)
Wendler, Th.; Meyer-Ebrecht, D.
1982-01-01
Picture archiving and communication systems, especially those for medical applications, will offer the potential to integrate the various image sources of different nature. A major problem, however, is the incompatibility of the different matrix sizes and data formats. This may be overcome by a novel hierarchical coding process, which could lead to a unified picture format standard. A picture coding scheme is described, which decomposites a given (2n)2 picture matrix into a basic (2m)2 coarse information matrix (representing lower spatial frequencies) and a set of n-m detail matrices, containing information of increasing spatial resolution. Thus, the picture is described by an ordered set of data blocks rather than by a full resolution matrix of pixels. The blocks of data are transferred and stored using data formats, which have to be standardized throughout the system. Picture sources, which produce pictures of different resolution, will provide the coarse-matrix datablock and additionally only those detail matrices that correspond to their required resolution. Correspondingly, only those detail-matrix blocks need to be retrieved from the picture base, that are actually required for softcopy or hardcopy output. Thus, picture sources and retrieval terminals of diverse nature and retrieval processes for diverse purposes are easily made compatible. Furthermore this approach will yield an economic use of storage space and transmission capacity: In contrast to fixed formats, redundand data blocks are always skipped. The user will get a coarse representation even of a high-resolution picture almost instantaneously with gradually added details, and may abort transmission at any desired detail level. The coding scheme applies the S-transform, which is a simple add/substract algorithm basically derived from the Hadamard Transform. Thus, an additional data compression can easily be achieved especially for high-resolution pictures by applying appropriate non-linear and/or adaptive quantizing.
Quantum mechanics/coarse-grained molecular mechanics (QM/CG-MM)
NASA Astrophysics Data System (ADS)
Sinitskiy, Anton V.; Voth, Gregory A.
2018-01-01
Numerous molecular systems, including solutions, proteins, and composite materials, can be modeled using mixed-resolution representations, of which the quantum mechanics/molecular mechanics (QM/MM) approach has become the most widely used. However, the QM/MM approach often faces a number of challenges, including the high cost of repetitive QM computations, the slow sampling even for the MM part in those cases where a system under investigation has a complex dynamics, and a difficulty in providing a simple, qualitative interpretation of numerical results in terms of the influence of the molecular environment upon the active QM region. In this paper, we address these issues by combining QM/MM modeling with the methodology of "bottom-up" coarse-graining (CG) to provide the theoretical basis for a systematic quantum-mechanical/coarse-grained molecular mechanics (QM/CG-MM) mixed resolution approach. A derivation of the method is presented based on a combination of statistical mechanics and quantum mechanics, leading to an equation for the effective Hamiltonian of the QM part, a central concept in the QM/CG-MM theory. A detailed analysis of different contributions to the effective Hamiltonian from electrostatic, induction, dispersion, and exchange interactions between the QM part and the surroundings is provided, serving as a foundation for a potential hierarchy of QM/CG-MM methods varying in their accuracy and computational cost. A relationship of the QM/CG-MM methodology to other mixed resolution approaches is also discussed.
A novel capacitive absolute positioning sensor based on time grating with nanometer resolution
NASA Astrophysics Data System (ADS)
Pu, Hongji; Liu, Hongzhong; Liu, Xiaokang; Peng, Kai; Yu, Zhicheng
2018-05-01
The present work proposes a novel capacitive absolute positioning sensor based on time grating. The sensor includes a fine incremental-displacement measurement component combined with a coarse absolute-position measurement component to obtain high-resolution absolute positioning measurements. A single row type sensor was proposed to achieve fine displacement measurement, which combines the two electrode rows of a previously proposed double-row type capacitive displacement sensor based on time grating into a single row. To achieve absolute positioning measurement, the coarse measurement component is designed as a single-row type displacement sensor employing a single spatial period over the entire measurement range. In addition, this component employs a rectangular induction electrode and four groups of orthogonal discrete excitation electrodes with half-sinusoidal envelope shapes, which were formed by alternately extending the rectangular electrodes of the fine measurement component. The fine and coarse measurement components are tightly integrated to form a compact absolute positioning sensor. A prototype sensor was manufactured using printed circuit board technology for testing and optimization of the design in conjunction with simulations. Experimental results show that the prototype sensor achieves a ±300 nm measurement accuracy with a 1 nm resolution over a displacement range of 200 mm when employing error compensation. The proposed sensor is an excellent alternative to presently available long-range absolute nanometrology sensors owing to its low cost, simple structure, and ease of manufacturing.
Quantum mechanics/coarse-grained molecular mechanics (QM/CG-MM).
Sinitskiy, Anton V; Voth, Gregory A
2018-01-07
Numerous molecular systems, including solutions, proteins, and composite materials, can be modeled using mixed-resolution representations, of which the quantum mechanics/molecular mechanics (QM/MM) approach has become the most widely used. However, the QM/MM approach often faces a number of challenges, including the high cost of repetitive QM computations, the slow sampling even for the MM part in those cases where a system under investigation has a complex dynamics, and a difficulty in providing a simple, qualitative interpretation of numerical results in terms of the influence of the molecular environment upon the active QM region. In this paper, we address these issues by combining QM/MM modeling with the methodology of "bottom-up" coarse-graining (CG) to provide the theoretical basis for a systematic quantum-mechanical/coarse-grained molecular mechanics (QM/CG-MM) mixed resolution approach. A derivation of the method is presented based on a combination of statistical mechanics and quantum mechanics, leading to an equation for the effective Hamiltonian of the QM part, a central concept in the QM/CG-MM theory. A detailed analysis of different contributions to the effective Hamiltonian from electrostatic, induction, dispersion, and exchange interactions between the QM part and the surroundings is provided, serving as a foundation for a potential hierarchy of QM/CG-MM methods varying in their accuracy and computational cost. A relationship of the QM/CG-MM methodology to other mixed resolution approaches is also discussed.
Mesoscale mixing of the Denmark Strait Overflow in the Irminger Basin
NASA Astrophysics Data System (ADS)
Koszalka, Inga M.; Haine, Thomas W. N.; Magaldi, Marcello G.
2017-04-01
The Denmark Strait Overflow (DSO) is a major export route for dense waters from the Nordic Seas forming the lower limb of the Atlantic Meridional Overturning Circulation, an important element of the climate system. Mixing processes along the DSO pathway influence its volume transport and properties contributing to the variability of the deep overturning circulation. They are poorly sampled by observations, however, which hinders development of a proper DSO representation in global circulation models. We employ a high resolution regional ocean model of the Irminger Basin to quantify impact of the mesoscale flows on DSO mixing focusing on geographical localization and the time-modulation of water property changes. The model reproduces the observed bulk warming of the DSO plume 100-200 km downstream of the Denmark Strait sill. It also reveals that mesoscale variability of the overflow ('DSO-eddies', of 20-30 km extent and a time scale of 2-5 day) modulates water property changes and turbulent mixing, diagnosed with the vertical shear of horizontal velocity and the eddy heat flux divergence. The space-time localization of the DSO mixing and warming and the role of coherent mesoscale structures should be explored by turbulence measurements and factored into the coarse circulation models.
Simulating the Past, Present and Future of the Upper Troposphere and Lower Stratosphere
NASA Astrophysics Data System (ADS)
Gettelman, Andrew; Hegglin, Michaela
2010-05-01
A comprehensive assessment of coupled chemistry climate model (CCM) performance in the upper troposphere and lower stratosphere has been conducted with 18 models. Both qualitative and quantitative comparisons of model representation of UTLS dynamical, radiative and chemical structure have been conducted, using a collection of quantitative grading techniques. The models are able to reproduce the observed climatology of dynamical, radiative and chemical structure in the tropical and extratropical UTLS, despite relatively coarse vertical and horizontal resolution. Diagnostics of the Tropical Tropopause Layer (TTL), Tropopause Inversion Layer (TIL) and Extra-tropical Transition Layer (ExTL) are analyzed. The results provide new insight into the key processes that govern the dynamics and transport in the tropics and extra-tropicsa. The presentation will explain how models are able to reproduce key features of the UTLS, what features they do not reproduce, and why. Model trends over the historical period are also assessed and interannual variability is included in the metrics. Finally, key trends in the UTLS for the future with a given halogen and greenhouse gas scenario are presented, indicating significant changes in tropopause height and temperature, as well as UTLS ozone concentrations in the 21st century due to climate change and ozone recovery.
Impact of Antarctic Polar Front Variability on Southern Ocean Biogeochemistry
NASA Astrophysics Data System (ADS)
Freeman, N. M.; Lovenduski, N. S.; Gent, P. R.
2016-12-01
The Antarctic Polar Front (PF) is an important biogeochemical divide in the Southern Ocean, often coinciding with sharp gradients in silicate and nitrate concentration at the surface. Variability in the PF has the potential to influence Southern Ocean biogeochemistry and biological productivity both locally and at the basin scale. Characterizing PF variability is important for contextualizing recent biogeochemical observations from ORCAS, SOCCOM, and the Drake Passage time-series, as well as for understanding how anthropogenic change is influencing Southern Ocean biogeochemistry. Here, we employ a suite of remote sensing observations and output from the Community Earth System Model (CESM) to better understand the relationship between the PF and local biogeochemistry in the Southern Ocean. Using microwave SST measurements spanning 2002-2014 that avoid cloud contamination, we show that the PF has shifted northward (southward) in the Pacific (Indian) sector and intensified at nearly all longitudes along its circumpolar path. We identify the PF in CESM at both coarse (1°x1°) and fine (0.1°x0.1°) horizontal resolutions using temperature and silicate gradient maxima, and quantify its spatial and temporal variability. We further investigate co-variance between the position and intensity of the PF and local phytoplankton community structure.
Future climate change scenarios in Central America at high spatial resolution.
Imbach, Pablo; Chou, Sin Chan; Lyra, André; Rodrigues, Daniela; Rodriguez, Daniel; Latinovic, Dragan; Siqueira, Gracielle; Silva, Adan; Garofolo, Lucas; Georgiou, Selena
2018-01-01
The objective of this work is to assess the downscaling projections of climate change over Central America at 8-km resolution using the Eta Regional Climate Model, driven by the HadGEM2-ES simulations of RCP4.5 emission scenario. The narrow characteristic of continent supports the use of numerical simulations at very high-horizontal resolution. Prior to assessing climate change, the 30-year baseline period 1961-1990 is evaluated against different sources of observations of precipitation and temperature. The mean seasonal precipitation and temperature distribution show reasonable agreement with observations. Spatial correlation of the Eta, 8-km resolution, simulations against observations show clear advantage over the driver coarse global model simulations. Seasonal cycle of precipitation confirms the added value of the Eta at 8-km over coarser resolution simulations. The Eta simulations show a systematic cold bias in the region. Climate features of the Mid-Summer Drought and the Caribbean Low-Level Jet are well simulated by the Eta model at 8-km resolution. The assessment of the future climate change is based on the 30-year period 2021-2050, under RCP4.5 scenario. Precipitation is generally reduced, in particular during the JJA and SON, the rainy season. Warming is expected over the region, but stronger in the northern portion of the continent. The Mid-Summer Drought may develop in regions that do not occur during the baseline period, and where it occurs the strength may increase in the future scenario. The Caribbean Low-Level Jet shows little change in the future. Extreme temperatures have positive trend within the period 2021-2050, whereas extreme precipitation, measured by R50mm and R90p, shows positive trend in the eastern coast, around Costa Rica, and negative trends in the northern part of the continent. Negative trend in the duration of dry spell, which is an estimate based on evapotranspiration, is projected in most part of the continent. Annual mean water excess has negative trends in most part of the continent, which suggests decreasing water availability in the future scenario.
Future climate change scenarios in Central America at high spatial resolution
Imbach, Pablo; Chou, Sin Chan; Rodrigues, Daniela; Rodriguez, Daniel; Latinovic, Dragan; Siqueira, Gracielle; Silva, Adan; Garofolo, Lucas; Georgiou, Selena
2018-01-01
The objective of this work is to assess the downscaling projections of climate change over Central America at 8-km resolution using the Eta Regional Climate Model, driven by the HadGEM2-ES simulations of RCP4.5 emission scenario. The narrow characteristic of continent supports the use of numerical simulations at very high-horizontal resolution. Prior to assessing climate change, the 30-year baseline period 1961–1990 is evaluated against different sources of observations of precipitation and temperature. The mean seasonal precipitation and temperature distribution show reasonable agreement with observations. Spatial correlation of the Eta, 8-km resolution, simulations against observations show clear advantage over the driver coarse global model simulations. Seasonal cycle of precipitation confirms the added value of the Eta at 8-km over coarser resolution simulations. The Eta simulations show a systematic cold bias in the region. Climate features of the Mid-Summer Drought and the Caribbean Low-Level Jet are well simulated by the Eta model at 8-km resolution. The assessment of the future climate change is based on the 30-year period 2021–2050, under RCP4.5 scenario. Precipitation is generally reduced, in particular during the JJA and SON, the rainy season. Warming is expected over the region, but stronger in the northern portion of the continent. The Mid-Summer Drought may develop in regions that do not occur during the baseline period, and where it occurs the strength may increase in the future scenario. The Caribbean Low-Level Jet shows little change in the future. Extreme temperatures have positive trend within the period 2021–2050, whereas extreme precipitation, measured by R50mm and R90p, shows positive trend in the eastern coast, around Costa Rica, and negative trends in the northern part of the continent. Negative trend in the duration of dry spell, which is an estimate based on evapotranspiration, is projected in most part of the continent. Annual mean water excess has negative trends in most part of the continent, which suggests decreasing water availability in the future scenario. PMID:29694355
NASA Technical Reports Server (NTRS)
Warner, Thomas T.; Key, Lawrence E.; Lario, Annette M.
1989-01-01
The effects of horizontal and vertical data resolution, data density, data location, different objective analysis algorithms, and measurement error on mesoscale-forecast accuracy are studied with observing-system simulation experiments. Domain-averaged errors are shown to generally decrease with time. It is found that the vertical distribution of error growth depends on the initial vertical distribution of the error itself. Larger gravity-inertia wave noise is produced in forecasts with coarser vertical data resolution. The use of a low vertical resolution observing system with three data levels leads to more forecast errors than moderate and high vertical resolution observing systems with 8 and 14 data levels. Also, with poor vertical resolution in soundings, the initial and forecast errors are not affected by the horizontal data resolution.
A Computer Simulation of the System-Wide Effects of Parallel-Offset Route Maneuvers
NASA Technical Reports Server (NTRS)
Lauderdale, Todd A.; Santiago, Confesor; Pankok, Carl
2010-01-01
Most aircraft managed by air-traffic controllers in the National Airspace System are capable of flying parallel-offset routes. This paper presents the results of two related studies on the effects of increased use of offset routes as a conflict resolution maneuver. The first study analyzes offset routes in the context of all standard resolution types which air-traffic controllers currently use. This study shows that by utilizing parallel-offset route maneuvers, significant system-wide savings in delay due to conflict resolution of up to 30% are possible. It also shows that most offset resolutions replace horizontal-vectoring resolutions. The second study builds on the results of the first and directly compares offset resolutions and standard horizontal-vectoring maneuvers to determine that in-trail conflicts are often more efficiently resolved by offset maneuvers.
High-resolution radiography by means of a hodoscope
De Volpi, Alexander
1978-01-01
The fast neutron hodoscope, a device that produces neutron radiographs with coarse space resolution in a short time, is modified to produce neutron or gamma radiographs of relatively thick samples and with high space resolution. The modification comprises motorizing a neutron and gamma collimator to permit a controlled scanning pattern, simultaneous collection of data in a number of hodoscope channels over a period of time, and computerized image reconstruction of the data thus gathered.
Joseph St. Peter; John Hogland; Nathaniel Anderson; Jason Drake; Paul Medley
2018-01-01
Land cover classification provides valuable information for prioritizing management and conservation operations across large landscapes. Current regional scale land cover geospatial products within the United States have a spatial resolution that is too coarse to provide the necessary information for operations at the local and project scales. This paper describes a...
USDA-ARS?s Scientific Manuscript database
Surface albedo is widely used in climate and environment applications as an important parameter for controlling the surface energy budget. There is an increasing need for fine resolution (< 100 m) albedo data for use in small scale applications and for validating coarse-resolution datasets; however,...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wehner, Michael; ., Prabhat; Reed, Kevin A.
The four idealized configurations of the U.S. CLIVAR Hurricane Working Group are integrated using the global Community Atmospheric Model version 5.1 at two different horizontal resolutions, approximately 100 and 25 km. The publicly released 0.9° × 1.3° configuration is a poor predictor of the sign of the 0.23° × 0.31° model configuration’s change in the total number of tropical storms in a warmer climate. However, it does predict the sign of the higher-resolution configuration’s change in the number of intense tropical cyclones in a warmer climate. In the 0.23° × 0.31° model configuration, both increased CO 2 concentrations and elevatedmore » sea surface temperature (SST) independently lower the number of weak tropical storms and shorten their average duration. Conversely, increased SST causes more intense tropical cyclones and lengthens their average duration, resulting in a greater number of intense tropical cyclone days globally. Increased SST also increased maximum tropical storm instantaneous precipitation rates across all storm intensities. It was found that while a measure of maximum potential intensity based on climatological mean quantities adequately predicts the 0.23° × 0.31° model’s forced response in its most intense simulated tropical cyclones, a related measure of cyclogenesis potential fails to predict the model’s actual cyclogenesis response to warmer SSTs. These analyses lead to two broader conclusions: 1) Projections of future tropical storm activity obtained by a direct tracking of tropical storms simulated by coarse-resolution climate models must be interpreted with caution. 2) Projections of future tropical cyclogenesis obtained from metrics of model behavior that are based solely on changes in long-term climatological fields and tuned to historical records must also be interpreted with caution.« less
NASA Astrophysics Data System (ADS)
Dickson, N. C.; Gierens, K. M.; Rogers, H. L.; Jones, R. L.
2010-07-01
The global observation, assimilation and prediction in numerical models of ice super-saturated (ISS) regions (ISSR) are crucial if the climate impact of aircraft condensation trails (contrails) is to be fully understood, and if, for example, contrail formation is to be avoided through aircraft operational measures. Given their small scales compared to typical atmospheric model grid sizes, statistical representations of the spatial scales of ISSR are required, in both horizontal and vertical dimensions, if global occurrence of ISSR is to be adequately represented in climate models. This paper uses radiosonde launches made by the UK Meteorological Office, from the British Isles, Gibraltar, St. Helena and the Falkland Islands between January 2002 and December 2006, to investigate the probabilistic occurrence of ISSR. Each radiosonde profile is divided into 50- and 100-hPa pressure layers, to emulate the coarse vertical resolution of some atmospheric models. Then the high resolution observations contained within each thick pressure layer are used to calculate an average relative humidity and an ISS fraction for each individual thick pressure layer. These relative humidity pressure layer descriptions are then linked through a probability function to produce an s-shaped curve which empirically describes the ISS fraction in any average relative humidity pressure layer. Using this empirical understanding of the s-shaped relationship a mathematical model was developed to represent the ISS fraction within any arbitrary thick pressure layer. Two models were developed to represent both 50- and 100-hPa pressure layers with each reconstructing their respective s-shapes within 8-10% of the empirical curves. These new models can be used, to represent the small scale structures of ISS events, in modelled data where only low vertical resolution is available. This will be useful in understanding, and improving the global distribution, both observed and forecasted, of ice super-saturation.
Wehner, Michael; ., Prabhat; Reed, Kevin A.; ...
2015-05-12
The four idealized configurations of the U.S. CLIVAR Hurricane Working Group are integrated using the global Community Atmospheric Model version 5.1 at two different horizontal resolutions, approximately 100 and 25 km. The publicly released 0.9° × 1.3° configuration is a poor predictor of the sign of the 0.23° × 0.31° model configuration’s change in the total number of tropical storms in a warmer climate. However, it does predict the sign of the higher-resolution configuration’s change in the number of intense tropical cyclones in a warmer climate. In the 0.23° × 0.31° model configuration, both increased CO 2 concentrations and elevatedmore » sea surface temperature (SST) independently lower the number of weak tropical storms and shorten their average duration. Conversely, increased SST causes more intense tropical cyclones and lengthens their average duration, resulting in a greater number of intense tropical cyclone days globally. Increased SST also increased maximum tropical storm instantaneous precipitation rates across all storm intensities. It was found that while a measure of maximum potential intensity based on climatological mean quantities adequately predicts the 0.23° × 0.31° model’s forced response in its most intense simulated tropical cyclones, a related measure of cyclogenesis potential fails to predict the model’s actual cyclogenesis response to warmer SSTs. These analyses lead to two broader conclusions: 1) Projections of future tropical storm activity obtained by a direct tracking of tropical storms simulated by coarse-resolution climate models must be interpreted with caution. 2) Projections of future tropical cyclogenesis obtained from metrics of model behavior that are based solely on changes in long-term climatological fields and tuned to historical records must also be interpreted with caution.« less
NASA Astrophysics Data System (ADS)
Papenmeier, Svenja; Hass, H. Christian
2016-04-01
The detection of hard substrate habitats in sublittoral environments is a considerable challenge in spite of modern high resolution hydroacoustic techniques. In offshore areas those habitats are mainly represented by either cobbles and boulders (stones) often located in wide areas of soft sediments or by glacial relict sediments (heterogeneous mixture of medium sand to gravel size with cobbles and boulders). Sediment classification and object detection is commonly done on the basis of hydroacoustic backscatter intensities recorded with e.g. sidescan sonar (SSS) and multibeam echo sounder (MBES). Single objects lying on the sediment such as stones can generally be recognized by the acoustic shadow behind the object. However, objects close to the sonar's nadir may remain undetected because their shadows are below the data resolution. Further limitation in the detection of objects is caused by sessile communities that thrive on the objects. The bio-cover tends to absorb most of the acoustic signal. Automated identification based on the backscatter signal is often not satisfactory, especially when stones are present in a setting with glacial deposits. Areas characterized by glacial relict sediments are hardly differentiable in their backscatter characteristics from rippled coarse sand and fine gravel (rippled coarse sediments) without an intensive ground-truthing program. From the ecological point of view the relict and rippled coarse sediments are completely different habitats and need to be distinguished. The case study represents a seismo-acoustic approach in which SSS and nonlinear sediment echo sounder (SES) data are combined to enable a reliable and reproducible differentiation between relict sediments (with stones and coarse gravels) and rippled coarse sediments. Elevated objects produce hyperbola signatures at the sediment surface in the echo data which can be used to complement the SSS data. The nonlinear acoustic propagation of the SES sound pulses produces a comparably small foot print which results in high spatial resolution (decimeter in the xyz directions) and hence allows a more precise demarcation of hard substrate areas. Data for this study were recorded in the "Sylt Outer Reef" (German Bight, North Sea) in May 2013 and March 2015. The investigated area is characterized by heterogeneously distributed moraine deposits and rippled coarse sediments partly draped with Holocene fine sands. The relict sediments and the rippled coarse sediments indicate both high backscatter intensities but can be distinguished by means of the hyperbola locations. The northeast of the study area is dominated by rippled coarse sediments (without hyperbolas) and the southwestern part by relict sediments with a high amount of stones represented by hyperbolas which is also proven by extensive ground-truthing (grab sampling and high quality underwater videos). An automated procedure to identify and export the hyperbola positions makes the demarcation of hard substrate grounds (here: relict sediments) reproducible, faster and less complex in comparison to the visual-manual identification on the basis of sidescan sonar data.
Cryogenic scanning tunneling microscope with a magnetic coarse approach
NASA Astrophysics Data System (ADS)
Davydov, D. N.; Deltour, R.; Horii, N.; Timofeev, V. A.; Grokholski, A. S.
1993-11-01
A compact, rigid, and reliable cryogenic scanning tunneling microscope (CSTM) with a vertical electromagnetic coarse approach system was developed. This device can be used for topographic and local tunneling spectroscopy studies at liquid nitrogen and helium temperatures. Minimal step sizes of 28 nm for the electromagnetic translation device were achieved. The additional possibility of a coarse approach operation in the inertial slip-stick mode, without electromagnets, was successfully tested, making this STM compatible with external magnetic fields. A simple technique for characterizing the STM rigidity has been developed. Preliminary data, taken with this instrument are presented, demonstrating the achievement, at liquid helium temperature, of atomic resolution for topographic studies, and also the possibility of measuring simultaneously superconducting energy gap spectra.
NASA Astrophysics Data System (ADS)
Fukui, Shin; Iwasaki, Toshiki; Saito, Kazuo; Seko, Hiromu; Kunii, Masaru
2016-04-01
Several long-term global reanalyses have been produced by major operational centres and have contributed to the advance of weather and climate researches considerably. Although the horizontal resolutions of these global reanalyses are getting higher partly due to the development of computing technology, they are still too coarse to reproduce local circulations and precipitation realistically. To solve this problem, dynamical downscaling is often employed. However, the forcing from lateral boundaries only cannot necessarily control the inner fields especially in long-term dynamical downscaling. Regional reanalysis is expected to overcome the difficulty. To maintain the long-term consistency of the analysis quality, it is better to assimilate only the conventional observations that are available in long period. To confirm the effectiveness of the regional reanalysis, some assimilation experiments are performed. In the experiments, only conventional observations (SYNOP, SHIP, BUOY, TEMP, PILOT, TC-Bogus) are assimilated with the NHM-LETKF system, which consists of the nonhydrostatic model (NHM) of the Japan Meteorological Agency (JMA) and the local ensemble transform Kalman filter (LETKF). The horizontal resolution is 25 km and the domain covers Japan and its surroundings. Japanese 55-year reanalysis (JRA-55) is adopted as the initial and lateral boundary conditions for the NHM-LETKF forecast-analysis cycles. The ensemble size is 10. The experimental period is August 2014 as a representative of warm season for the region. The results are verified against the JMA's operational Meso-scale Analysis, which is produced with assimilating observation data including various remote sensing observations using a 4D-Var scheme, and compared with those of the simple dynamical downscaling experiment without data assimilation. Effects of implementation of lateral boundary perturbations derived from an EOF analysis of JRA-55 over the targeted domain are also examined. The comparison proposes that the assimilation system can reproduce more accurate fields than dynamical downscaling. The implementation of the lateral boundary perturbations implies that the perturbations contribute to providing more appropriate ensemble spreads, though the perturbations are not necessarily consistent to those of the inner fields given by NHM-LETKF.
Top-down Estimates of Isoprene Emissions in Australia Inferred from OMI Satellite Data.
NASA Astrophysics Data System (ADS)
Greenslade, J.; Fisher, J. A.; Surl, L.; Palmer, P. I.
2017-12-01
Australia is a global hotspot for biogenic isoprene emission factors predicted by process-based models such as the Model of Emissions of Gases and Aerosols from Nature (MEGAN). It is also prone to increasingly frequent temperature extremes that can drive episodically high emissions. Estimates of biogenic isoprene emissions from Australia are poorly constrained, with the frequently used MEGAN model overestimating emissions by a factor of 4-6 in some areas. Evaluating MEGAN and other models in Australia is difficult due to sparse measurements of emissions and their ensuing chemical products. In this talk, we will describe efforts to better quantify Australian isoprene emissions using top-down estimates based on formaldehyde (HCHO) observations from the OMI satellite instrument, combined with modelled isoprene to HCHO yields obtained from the GEOS-Chem chemical transport model. The OMI-based estimates are evaluated using in situ observations from field campaigns conducted in southeast Australia. We also investigate the impact on the inferred emission of horizontal resolution used for the yield calculations, particularly in regions on the boundary between low- and high-NOx chemistry. The prevalence of fire smoke plumes roughly halves the available satellite dataset over Australia for much of the year; however, seasonal averages remain robust. Preliminary results show that the top-down isoprene emissions are lower than MEGAN estimates by up to 90% in summer. The overestimates are greatest along the eastern coast, including areas surrounding Australia's major population centres in Sydney, Melbourne, and Brisbane. The coarse horizontal resolution of the model significantly affects the emissions estimates, as many biogenic emitting regions lie along narrow coastal stretches. Our results confirm previous findings that the MEGAN biogenic emission model is poorly calibrated for the Australian environment and suggests that chemical transport models driven by MEGAN are likely to overpredict ozone and secondary organic aerosols from biogenic sources in the Australian environment. Further measurements of biogenic gases are critical to improving biogenic emissions and follow-on chemical transport modelling, in this region. We hope to quantify this overestimation and its flow-on effects in future work.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baibakov, K.; O'Neill, N. T.; Firanski, B.
2009-03-11
In the summer of 2007, a SPSTAR03 starphotometer was installed at Egbert, Canada (44 deg. 13' N, 79 deg. 45' W, alt 264 m) and a continuous series of initial measurements was performed between August 26 and September 19. Several sunphotometry parameters such as the aerosol optical depth (AOD) and the 'fine' and 'coarse' optical depths were extracted from the SPSTAR03 extinction spectra. The SPSTAR03 data was analyzed in conjunction with sunphotometry and zenith-pointing lidar data acquired during the same time period. Preliminary results show coarse continuity between the day- and night time AOD values (with the mean difference betweenmore » the measured and the interpolated values being 0.05) as well as a qualitative correlation between the 'fine' and 'coarse' optical depths and the normalized lidar backscatter coefficient profiles. It was also found that the spectra produced with the differential two-star measurement method were sensitive to non-horizontally homogeneous differences in the line-of-sight conditions of both stars. The one-star method helps to reduce the uncertainties but requires the determination of a calibration constant.« less
The effect of horizontal resolution on simulation quality in the Community Atmospheric Model, CAM5.1
Wehner, Michael F.; Reed, Kevin A.; Li, Fuyu; ...
2014-10-13
We present an analysis of version 5.1 of the Community Atmospheric Model (CAM5.1) at a high horizontal resolution. Intercomparison of this global model at approximately 0.25°, 1°, and 2° is presented for extreme daily precipitation as well as for a suite of seasonal mean fields. In general, extreme precipitation amounts are larger in high resolution than in lower-resolution configurations. In many but not all locations and/or seasons, extreme daily precipitation rates in the high-resolution configuration are higher and more realistic. The high-resolution configuration produces tropical cyclones up to category 5 on the Saffir-Simpson scale and a comparison to observations revealsmore » both realistic and unrealistic model behavior. In the absence of extensive model tuning at high resolution, simulation of many of the mean fields analyzed in this study is degraded compared to the tuned lower-resolution public released version of the model.« less
The Enhancement of 3D Scans Depth Resolution Obtained by Confocal Scanning of Porous Materials
NASA Astrophysics Data System (ADS)
Martisek, Dalibor; Prochazkova, Jana
2017-12-01
The 3D reconstruction of simple structured materials using a confocal microscope is widely used in many different areas including civil engineering. Nonetheless, scans of porous materials such as concrete or cement paste are highly problematic. The well-known problem of these scans is low depth resolution in comparison to the horizontal and vertical resolution. The degradation of the image depth resolution is caused by systematic errors and especially by different random events. Our method is focused on the elimination of such random events, mainly the additive noise. We use an averaging method based on the Lindeberg-Lévy theorem that improves the final depth resolution to a level comparable with horizontal and vertical resolution. Moreover, using the least square method, we also precisely determine the limit value of a depth resolution. Therefore, we can continuously evaluate the difference between current resolution and the optimal one. This substantially simplifies the scanning process because the operator can easily determine the required number of scans.
Foster, D H; Westland, S
1998-01-01
Visual search for an edge or line element differing in orientation from a background of other edge or line elements can be performed rapidly and effortlessly. In this study, based on psychophysical measurements with ten human observers, threshold values of the angle between a target and background line elements were obtained as functions of background-element orientation, in brief masked displays. A repeated-loess analysis of the threshold functions suggested the existence of several groups of orientation-selective mechanisms contributing to rapid orientated-line detection; specifically, coarse, intermediate and fine mechanisms with preferred orientations spaced at angles of approximately 90 degrees, 35 degrees, and 10 degrees-25 degrees, respectively. The preferred orientations of coarse and some intermediate mechanisms coincided with the vertical or horizontal of the frontoparallel plane, but the preferred orientations of fine mechanisms varied randomly from observer to observer, possibly reflecting individual variations in neuronal sampling characteristics. PMID:9753784
Harrelson, Larry G.; Addison, Adrian D.
2006-01-01
This study explores the possibility of developing a bank-filtration process to improve water quality in which alluvial deposits serve as a natural sand filter to pretreat water to be used as a secondary drinking-water source in a small piedmont reservoir along the Middle Tyger River near Lyman in Spartanburg County, South Carolina. From January 2004 to September 2005, data from 10 auger borings, 2 sediment cores, 29 ground-penetrating radar transects, and 3 temporary observation wells, and field water-chemistry data were collected and analyzed. These data were collected and used to characterize the lithology, geometry, hydraulic properties, yield potential, and water-chemistry characteristics of the alluvial deposits in the channel and on the right bank of the reservoir. The assessment was undertaken to determine if an adequate amount of water could be withdrawn from the alluvial deposits to sustain a bank-filtration process and to characterize the water chemistry of the surface water and pore water. The heterogeneous alluvial and fill material at the study site--clay, silty clay, clayey sand, fine- to coarse-grained sand, and mica--on the right bank of the Middle Tyger River ranges in thickness from 0.6 to 7 meters, has a calculated horizontal hydraulic conductivity of 1 meter per day, and yields approximately 0.07 liter per second of water. The small calculated horizontal hydraulic conductivity and water yield for these deposits restrict the use of the right bank as a potential bank-filtration site. The coarse-grained alluvial sand deposit in the channel of the Middle Tyger River, however, may be used for a limited bank-filtration process. The discharge during pumping of the channel deposit yielded water at the rate of 1.9 liters per second. The coarse-grained channel deposit is approximately 49 meters wide and 3 meters thick near the dam. At approximately 183 meters upstream from the dam, the channel narrows to roughly 9 meters and the channel deposits thin to approximately 0.1 meter. Slug tests conducted in the channel deposits near the dam produced a calculated horizontal hydraulic conductivity of 60 meters per day. The limited thickness and aerial extent of the coarse-grained channel deposits coupled with large horizontal hydraulic conductivity likely would allow rapid transmission of water and may degrade the effectiveness of some water-chemistry improvements typical of a bank-filtration process. Field water-chemistry data were collected for approximately 1 hour and 45 minutes at 10 to 15 minute intervals to compare the surface-water and pore-water quality in and beneath the channel of the Middle Tyger River. The waterchemistry data indicate that (1) the mean water temperature was higher in surface water (22.5 degrees Celsius) than in pore water (18.5 degrees Celsius), (2) the mean specific conductance was less in surface water (56.9 microsiemens per centimeter at 25 degrees Celsius) than in pore water (125.7 microsiemens per centimeter at 25 degrees Celsius), (3) alkalinity was lower in surface water (22.5 milligrams per liter) than in pore water (44.6 milligrams per liter), and (4) recorded pH values ranged between 6.2 and 6.3 in the surface water and pore water during the sampling period. The flow velocity was orders of magnitude slower in the pore water than in the surface water; therefore, the pore water interacts with the alluvial sediment for a longer period of time producing the variation in water-chemistry data between the two waters.
Wedi, Nils P
2014-06-28
The steady path of doubling the global horizontal resolution approximately every 8 years in numerical weather prediction (NWP) at the European Centre for Medium Range Weather Forecasts may be substantially altered with emerging novel computing architectures. It coincides with the need to appropriately address and determine forecast uncertainty with increasing resolution, in particular, when convective-scale motions start to be resolved. Blunt increases in the model resolution will quickly become unaffordable and may not lead to improved NWP forecasts. Consequently, there is a need to accordingly adjust proven numerical techniques. An informed decision on the modelling strategy for harnessing exascale, massively parallel computing power thus also requires a deeper understanding of the sensitivity to uncertainty--for each part of the model--and ultimately a deeper understanding of multi-scale interactions in the atmosphere and their numerical realization in ultra-high-resolution NWP and climate simulations. This paper explores opportunities for substantial increases in the forecast efficiency by judicious adjustment of the formal accuracy or relative resolution in the spectral and physical space. One path is to reduce the formal accuracy by which the spectral transforms are computed. The other pathway explores the importance of the ratio used for the horizontal resolution in gridpoint space versus wavenumbers in spectral space. This is relevant for both high-resolution simulations as well as ensemble-based uncertainty estimation. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Atmospheric Rivers in VR-CESM: Historical Comparison and Future Projections
NASA Astrophysics Data System (ADS)
McClenny, E. E.; Ullrich, P. A.
2016-12-01
Atmospheric rivers (ARs) are responsible for most of the horizontal vapor transport from the tropics, and bring upwards of half the annual precipitation to midlatitude west coasts. The difference between a drought year and a wet year can come down to 1-2 ARs. Such few events transform an otherwise arid region into one which supports remarkable biodiversity, productive agriculture, and booming human populations. It follows that such a sensitive hydroclimate feature would demand priority in evaluating end-of-century climate runs, and indeed, the AR subfield has grown significantly over the last decade. However, results tend to vary wildly from study to study, raising questions about how to best approach ARs in models. The disparity may result from any number of issues, including the ability for a model to properly resolve a precipitating AR, to the formulation and application of an AR detection algorithm. ARs pose a unique problem in global climate models (GCMs) computationally and physically, because the GCM horizontal grid must be fine enough to resolve coastal mountain range topography and force orographic precipitation. Thus far, most end-of-century projections on ARs have been performed on models whose grids are too coarse to resolve mountain ranges, causing authors to draw conclusions on AR intensity from water vapor content or transport alone. The use of localized grid refinement in the Variable Resolution version of NCAR's Community Earth System Model (VR-CESM) has succeeded in resolving AR landfall. This study applies an integrated water vapor AR detection algorithm to historical and future projections from VR-CESM, with historical ARs validated against NASA's Modern Era Retrospective-Analysis for Research and Applications. Results on end-of-century precipitating AR frequency, intensity, and landfall location will be discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lim, Kyo-Sun; Hong, Song You; Yoon, Jin-Ho
2014-10-01
The most recent version of Simplified Arakawa-Schubert (SAS) cumulus scheme in National Center for Environmental Prediction (NCEP) Global Forecast System (GFS) (GFS SAS) has been implemented into the Weather and Research Forecasting (WRF) model with a modification of triggering condition and convective mass flux to become depending on model’s horizontal grid spacing. East Asian Summer Monsoon of 2006 from June to August is selected to evaluate the performance of the modified GFS SAS scheme. Simulated monsoon rainfall with the modified GFS SAS scheme shows better agreement with observation compared to the original GFS SAS scheme. The original GFS SAS schememore » simulates the similar ratio of subgrid-scale precipitation, which is calculated from a cumulus scheme, against total precipitation regardless of model’s horizontal grid spacing. This is counter-intuitive because the portion of resolved clouds in a grid box should be increased as the model grid spacing decreases. This counter-intuitive behavior of the original GFS SAS scheme is alleviated by the modified GFS SAS scheme. Further, three different cumulus schemes (Grell and Freitas, Kain and Fritsch, and Betts-Miller-Janjic) are chosen to investigate the role of a horizontal resolution on simulated monsoon rainfall. The performance of high-resolution modeling is not always enhanced as the spatial resolution becomes higher. Even though improvement of probability density function of rain rate and long wave fluxes by the higher-resolution simulation is robust regardless of a choice of cumulus parameterization scheme, the overall skill score of surface rainfall is not monotonically increasing with spatial resolution.« less
Singha, Mrinal; Wu, Bingfang; Zhang, Miao
2016-01-01
Accurate and timely mapping of paddy rice is vital for food security and environmental sustainability. This study evaluates the utility of temporal features extracted from coarse resolution data for object-based paddy rice classification of fine resolution data. The coarse resolution vegetation index data is first fused with the fine resolution data to generate the time series fine resolution data. Temporal features are extracted from the fused data and added with the multi-spectral data to improve the classification accuracy. Temporal features provided the crop growth information, while multi-spectral data provided the pattern variation of paddy rice. The achieved overall classification accuracy and kappa coefficient were 84.37% and 0.68, respectively. The results indicate that the use of temporal features improved the overall classification accuracy of a single-date multi-spectral image by 18.75% from 65.62% to 84.37%. The minimum sensitivity (MS) of the paddy rice classification has also been improved. The comparison showed that the mapped paddy area was analogous to the agricultural statistics at the district level. This work also highlighted the importance of feature selection to achieve higher classification accuracies. These results demonstrate the potential of the combined use of temporal and spectral features for accurate paddy rice classification. PMID:28025525
NASA Downscaling Project: Final Report
NASA Technical Reports Server (NTRS)
Ferraro, Robert; Waliser, Duane; Peters-Lidard, Christa
2017-01-01
A team of researchers from NASA Ames Research Center, Goddard Space Flight Center, the Jet Propulsion Laboratory, and Marshall Space Flight Center, along with university partners at UCLA, conducted an investigation to explore whether downscaling coarse resolution global climate model (GCM) predictions might provide valid insights into the regional impacts sought by decision makers. Since the computational cost of running global models at high spatial resolution for any useful climate scale period is prohibitive, the hope for downscaling is that a coarse resolution GCM provides sufficiently accurate synoptic scale information for a regional climate model (RCM) to accurately develop fine scale features that represent the regional impacts of a changing climate. As a proxy for a prognostic climate forecast model, and so that ground truth in the form of satellite and in-situ observations could be used for evaluation, the MERRA and MERRA - 2 reanalyses were used to drive the NU - WRF regional climate model and a GEOS - 5 replay. This was performed at various resolutions that were at factors of 2 to 10 higher than the reanalysis forcing. A number of experiments were conducted that varied resolution, model parameterizations, and intermediate scale nudging, for simulations over the continental US during the period from 2000 - 2010. The results of these experiments were compared to observational datasets to evaluate the output.
NASA Technical Reports Server (NTRS)
Ferraro, Robert; Waliser, Duane; Peters-Lidard, Christa
2017-01-01
A team of researchers from NASA Ames Research Center, Goddard Space Flight Center, the Jet Propulsion Laboratory, and Marshall Space Flight Center, along with university partners at UCLA, conducted an investigation to explore whether downscaling coarse resolution global climate model (GCM) predictions might provide valid insights into the regional impacts sought by decision makers. Since the computational cost of running global models at high spatial resolution for any useful climate scale period is prohibitive, the hope for downscaling is that a coarse resolution GCM provides sufficiently accurate synoptic scale information for a regional climate model (RCM) to accurately develop fine scale features that represent the regional impacts of a changing climate. As a proxy for a prognostic climate forecast model, and so that ground truth in the form of satellite and in-situ observations could be used for evaluation, the MERRA and MERRA-2 reanalyses were used to drive the NU-WRF regional climate model and a GEOS-5 replay. This was performed at various resolutions that were at factors of 2 to 10 higher than the reanalysis forcing. A number of experiments were conducted that varied resolution, model parameterizations, and intermediate scale nudging, for simulations over the continental US during the period from 2000-2010. The results of these experiments were compared to observational datasets to evaluate the output.
Singha, Mrinal; Wu, Bingfang; Zhang, Miao
2016-12-22
Accurate and timely mapping of paddy rice is vital for food security and environmental sustainability. This study evaluates the utility of temporal features extracted from coarse resolution data for object-based paddy rice classification of fine resolution data. The coarse resolution vegetation index data is first fused with the fine resolution data to generate the time series fine resolution data. Temporal features are extracted from the fused data and added with the multi-spectral data to improve the classification accuracy. Temporal features provided the crop growth information, while multi-spectral data provided the pattern variation of paddy rice. The achieved overall classification accuracy and kappa coefficient were 84.37% and 0.68, respectively. The results indicate that the use of temporal features improved the overall classification accuracy of a single-date multi-spectral image by 18.75% from 65.62% to 84.37%. The minimum sensitivity (MS) of the paddy rice classification has also been improved. The comparison showed that the mapped paddy area was analogous to the agricultural statistics at the district level. This work also highlighted the importance of feature selection to achieve higher classification accuracies. These results demonstrate the potential of the combined use of temporal and spectral features for accurate paddy rice classification.
The Use of Coarse Resolution Satellite Imagery to Predict Human Puumala Virus Epidemics in Sweden.
1992-09-11
the adverse effects on NDVI data quality can occur in both the spatial and temporal dimension. In other words, a specific pixel value recorded in...are compared to the land-oriented systems.22 On the other hand, the very course spatial resolution has the advantage of greatly reducing the volume...necessary on the scale of individual fields, in which case LANDSAT-TM has higher spatial resolution ; and secondly, when specific
Resolution dependence of precipitation statistical fidelity in hindcast simulations
O'Brien, Travis A.; Collins, William D.; Kashinath, Karthik; ...
2016-06-19
This article is a U.S. Government work and is in the public domain in the USA. Numerous studies have shown that atmospheric models with high horizontal resolution better represent the physics and statistics of precipitation in climate models. While it is abundantly clear from these studies that high-resolution increases the rate of extreme precipitation, it is not clear whether these added extreme events are “realistic”; whether they occur in simulations in response to the same forcings that drive similar events in reality. In order to understand whether increasing horizontal resolution results in improved model fidelity, a hindcast-based, multiresolution experimental designmore » has been conceived and implemented: the InitiaLIzed-ensemble, Analyze, and Develop (ILIAD) framework. The ILIAD framework allows direct comparison between observed and simulated weather events across multiple resolutions and assessment of the degree to which increased resolution improves the fidelity of extremes. Analysis of 5 years of daily 5 day hindcasts with the Community Earth System Model at horizontal resolutions of 220, 110, and 28 km shows that: (1) these hindcasts reproduce the resolution-dependent increase of extreme precipitation that has been identified in longer-duration simulations, (2) the correspondence between simulated and observed extreme precipitation improves as resolution increases; and (3) this increase in extremes and precipitation fidelity comes entirely from resolved-scale precipitation. Evidence is presented that this resolution-dependent increase in precipitation intensity can be explained by the theory of Rauscher et al. (), which states that precipitation intensifies at high resolution due to an interaction between the emergent scaling (spectral) properties of the wind field and the constraint of fluid continuity.« less
Resolution dependence of precipitation statistical fidelity in hindcast simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Brien, Travis A.; Collins, William D.; Kashinath, Karthik
This article is a U.S. Government work and is in the public domain in the USA. Numerous studies have shown that atmospheric models with high horizontal resolution better represent the physics and statistics of precipitation in climate models. While it is abundantly clear from these studies that high-resolution increases the rate of extreme precipitation, it is not clear whether these added extreme events are “realistic”; whether they occur in simulations in response to the same forcings that drive similar events in reality. In order to understand whether increasing horizontal resolution results in improved model fidelity, a hindcast-based, multiresolution experimental designmore » has been conceived and implemented: the InitiaLIzed-ensemble, Analyze, and Develop (ILIAD) framework. The ILIAD framework allows direct comparison between observed and simulated weather events across multiple resolutions and assessment of the degree to which increased resolution improves the fidelity of extremes. Analysis of 5 years of daily 5 day hindcasts with the Community Earth System Model at horizontal resolutions of 220, 110, and 28 km shows that: (1) these hindcasts reproduce the resolution-dependent increase of extreme precipitation that has been identified in longer-duration simulations, (2) the correspondence between simulated and observed extreme precipitation improves as resolution increases; and (3) this increase in extremes and precipitation fidelity comes entirely from resolved-scale precipitation. Evidence is presented that this resolution-dependent increase in precipitation intensity can be explained by the theory of Rauscher et al. (), which states that precipitation intensifies at high resolution due to an interaction between the emergent scaling (spectral) properties of the wind field and the constraint of fluid continuity.« less
Performance of European chemistry transport models as function of horizontal resolution
NASA Astrophysics Data System (ADS)
Schaap, M.; Cuvelier, C.; Hendriks, C.; Bessagnet, B.; Baldasano, J. M.; Colette, A.; Thunis, P.; Karam, D.; Fagerli, H.; Graff, A.; Kranenburg, R.; Nyiri, A.; Pay, M. T.; Rouïl, L.; Schulz, M.; Simpson, D.; Stern, R.; Terrenoire, E.; Wind, P.
2015-07-01
Air pollution causes adverse effects on human health as well as ecosystems and crop yield and also has an impact on climate change trough short-lived climate forcers. To design mitigation strategies for air pollution, 3D Chemistry Transport Models (CTMs) have been developed to support the decision process. Increases in model resolution may provide more accurate and detailed information, but will cubically increase computational costs and pose additional challenges concerning high resolution input data. The motivation for the present study was therefore to explore the impact of using finer horizontal grid resolution for policy support applications of the European Monitoring and Evaluation Programme (EMEP) model within the Long Range Transboundary Air Pollution (LRTAP) convention. The goal was to determine the "optimum resolution" at which additional computational efforts do not provide increased model performance using presently available input data. Five regional CTMs performed four runs for 2009 over Europe at different horizontal resolutions. The models' responses to an increase in resolution are broadly consistent for all models. The largest response was found for NO2 followed by PM10 and O3. Model resolution does not impact model performance for rural background conditions. However, increasing model resolution improves the model performance at stations in and near large conglomerations. The statistical evaluation showed that the increased resolution better reproduces the spatial gradients in pollution regimes, but does not help to improve significantly the model performance for reproducing observed temporal variability. This study clearly shows that increasing model resolution is advantageous, and that leaving a resolution of 50 km in favour of a resolution between 10 and 20 km is practical and worthwhile. As about 70% of the model response to grid resolution is determined by the difference in the spatial emission distribution, improved emission allocation procedures at high spatial and temporal resolution are a crucial factor for further model resolution improvements.
Iriza, Amalia; Dumitrache, Rodica C.; Lupascu, Aurelia; ...
2016-01-01
Our paper aims to evaluate the quality of high-resolution weather forecasts from the Weather Research and Forecasting (WRF) numerical weather prediction model. The lateral and boundary conditions were obtained from the numerical output of the Consortium for Small-scale Modeling (COSMO) model at 7 km horizontal resolution. Furthermore, the WRF model was run for January and July 2013 at two horizontal resolutions (3 and 1 km). The numerical forecasts of the WRF model were evaluated using different statistical scores for 2 m temperature and 10 m wind speed. Our results showed a tendency of the WRF model to overestimate the valuesmore » of the analyzed parameters in comparison to observations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iriza, Amalia; Dumitrache, Rodica C.; Lupascu, Aurelia
Our paper aims to evaluate the quality of high-resolution weather forecasts from the Weather Research and Forecasting (WRF) numerical weather prediction model. The lateral and boundary conditions were obtained from the numerical output of the Consortium for Small-scale Modeling (COSMO) model at 7 km horizontal resolution. Furthermore, the WRF model was run for January and July 2013 at two horizontal resolutions (3 and 1 km). The numerical forecasts of the WRF model were evaluated using different statistical scores for 2 m temperature and 10 m wind speed. Our results showed a tendency of the WRF model to overestimate the valuesmore » of the analyzed parameters in comparison to observations.« less
Hong S. He; Daniel C. Dey; Xiuli Fan; Mevin B. Hooten; John M. Kabrick; Christopher K. Wikle; Zhaofei. Fan
2007-01-01
In the Midwestern United States, the GeneralLandOffice (GLO) survey records provide the only reasonably accurate data source of forest composition and tree species distribution at the time of pre-European settlement (circa late 1800 to early 1850). However, GLO data have two fundamental limitations: coarse spatial resolutions (the square mile section and half mile...
Mapping day-of-burning with coarse-resolution satellite fire-detection data
Sean A. Parks
2014-01-01
Evaluating the influence of observed daily weather on observed fire-related effects (e.g. smoke production, carbon emissions and burn severity) often involves knowing exactly what day any given area has burned. As such, several studies have used fire progression maps  in which the perimeter of an actively burning fire is mapped at a fairly high temporal resolution -...
Grain-size segregation and levee formation in geophysical mass flows
Johnson, C.G.; Kokelaar, B.P.; Iverson, Richard M.; Logan, M.; LaHusen, R.G.; Gray, J.M.N.T.
2012-01-01
Data from large-scale debris-flow experiments are combined with modeling of particle-size segregation to explain the formation of lateral levees enriched in coarse grains. The experimental flows consisted of 10 m3 of water-saturated sand and gravel, which traveled ∼80 m down a steeply inclined flume before forming an elongated leveed deposit 10 m long on a nearly horizontal runout surface. We measured the surface velocity field and observed the sequence of deposition by seeding tracers onto the flow surface and tracking them in video footage. Levees formed by progressive downslope accretion approximately 3.5 m behind the flow front, which advanced steadily at ∼2 m s−1during most of the runout. Segregation was measured by placing ∼600 coarse tracer pebbles on the bed, which, when entrained into the flow, segregated upwards at ∼6–7.5 cm s−1. When excavated from the deposit these were distributed in a horseshoe-shaped pattern that became increasingly elevated closer to the deposit termination. Although there was clear evidence for inverse grading during the flow, transect sampling revealed that the resulting leveed deposit was strongly graded laterally, with only weak vertical grading. We construct an empirical, three-dimensional velocity field resembling the experimental observations, and use this with a particle-size segregation model to predict the segregation and transport of material through the flow. We infer that coarse material segregates to the flow surface and is transported to the flow front by shear. Within the flow head, coarse material is overridden, then recirculates in spiral trajectories due to size-segregation, before being advected to the flow edges and deposited to form coarse-particle-enriched levees.
Grain-size segregation and levee formation in geophysical mass flows
Johnson, C.G.; Kokelaar, B.P.; Iverson, R.M.; Logan, M.; LaHusen, R.G.; Gray, J.M.N.T.
2012-01-01
Data from large-scale debris-flow experiments are combined with modeling of particle-size segregation to explain the formation of lateral levees enriched in coarse grains. The experimental flows consisted of 10 m3 of water-saturated sand and gravel, which traveled ~80 m down a steeply inclined flume before forming an elongated leveed deposit 10 m long on a nearly horizontal runout surface. We measured the surface velocity field and observed the sequence of deposition by seeding tracers onto the flow surface and tracking them in video footage. Levees formed by progressive downslope accretion approximately 3.5 m behind the flow front, which advanced steadily at ~2 m s-1 during most of the runout. Segregation was measured by placing ~600 coarse tracer pebbles on the bed, which, when entrained into the flow, segregated upwards at ~6–7.5 cm s-1. When excavated from the deposit these were distributed in a horseshoe-shaped pattern that became increasingly elevated closer to the deposit termination. Although there was clear evidence for inverse grading during the flow, transect sampling revealed that the resulting leveed deposit was strongly graded laterally, with only weak vertical grading. We construct an empirical, three-dimensional velocity field resembling the experimental observations, and use this with a particle-size segregation model to predict the segregation and transport of material through the flow. We infer that coarse material segregates to the flow surface and is transported to the flow front by shear. Within the flow head, coarse material is overridden, then recirculates in spiral trajectories due to size-segregation, before being advected to the flow edges and deposited to form coarse-particle-enriched levees.
A review of spatial downscaling of satellite remotely sensed soil moisture
NASA Astrophysics Data System (ADS)
Peng, Jian; Loew, Alexander; Merlin, Olivier; Verhoest, Niko E. C.
2017-06-01
Satellite remote sensing technology has been widely used to estimate surface soil moisture. Numerous efforts have been devoted to develop global soil moisture products. However, these global soil moisture products, normally retrieved from microwave remote sensing data, are typically not suitable for regional hydrological and agricultural applications such as irrigation management and flood predictions, due to their coarse spatial resolution. Therefore, various downscaling methods have been proposed to improve the coarse resolution soil moisture products. The purpose of this paper is to review existing methods for downscaling satellite remotely sensed soil moisture. These methods are assessed and compared in terms of their advantages and limitations. This review also provides the accuracy level of these methods based on published validation studies. In the final part, problems and future trends associated with these methods are analyzed.
Numerical simulations of significant orographic precipitation in Madeira island
NASA Astrophysics Data System (ADS)
Couto, Flavio Tiago; Ducrocq, Véronique; Salgado, Rui; Costa, Maria João
2016-03-01
High-resolution simulations of high precipitation events with the MESO-NH model are presented, and also used to verify that increasing horizontal resolution in zones of complex orography, such as in Madeira island, improve the simulation of the spatial distribution and total precipitation. The simulations succeeded in reproducing the general structure of the cloudy systems over the ocean in the four periods considered of significant accumulated precipitation. The accumulated precipitation over the Madeira was better represented with the 0.5 km horizontal resolution and occurred under four distinct synoptic situations. Different spatial patterns of the rainfall distribution over the Madeira have been identified.
NASA Astrophysics Data System (ADS)
Heikkilä, Ulla; Gómez Navarro, Juan Jose; Franke, Jörg; Brönnimann, Stefan; Cattin, Réne
2016-04-01
Switzerland has experienced a number of severe precipitation events during the last few decades, such as during the 14-16 November of 2002 or during the 21-22 August of 2005. Both events, and subsequent extreme floods, caused fatalities and severe financial losses, and have been well studied both in terms of atmospheric conditions leading to extreme precipitation, and their consequences [e.g. Hohenegger et al., 2008, Stucki et al., 2012]. These examples highlight the need to better characterise the frequency and severity of flooding in the Alpine area. In a larger framework we will ultimately produce a high-resolution data set covering the entire 20th century to be used for detailed hydrological studies including all atmospheric parameters relevant for flooding events. In a first step, we downscale the aforementioned two events of 2002 and 2005 to assess the model performance regarding precipitation extremes. The complexity of the topography in the Alpine area demands high resolution datasets. To achieve a sufficient detail in resolution we employ the Weather Research and Forecasting regional climate model (WRF). A set of 4 nested domains is used with a 2-km resolution horizontal resolution over Switzerland. The NCAR 20th century reanalysis (20CR) with a horizontal resolution of 2.5° serves as boundary condition [Compo et al., 2011]. First results of the downscaling the 2002 and 2005 extreme precipitation events show that, compared to station observations provided by the Swiss Meteorological Office MeteoSwiss, the model strongly underestimates the strength of these events. This is mainly due to the coarse resolution of the 20CR data, which underestimates the moisture fluxes during these events. We tested driving WRF with the higher-resolved NCEP reanalysis and found a significant improvement in the amount of precipitation of the 2005 event. In a next step we will downscale the precipitation and wind fields during a 6-year period 2002-2007 to investigate and validate the model performance during a larger number of events. Compo, G. P., J. S. Whitaker, P. D. Sardeshmukh, N. Matsui, R. J. Allan, X. Yin,B. E. Gleason, R. S. Vose, G. Rutledge, P. Bessemoulin, S. Bronnimann, M. Brunet, R. I. Crouthamel, A. N. Grant, P. Y. Groisman, P. D. Jones, M. C. Kruk, A. C. Kruger, G. J. Marshall, M. Maugeri, H. Y. Mok, O. Nordli, T. F. Ross, R. M. Trigo, X. L. Wang, S. D. Woodruff, S. J. Worley, 2011: The Twentieth Century Reanalysis Project. Quarterly J. Roy. Met. Soc., 137, 1-28, DOI: 10.1002/qj.776. Hohenegger, C., Walser, A., Langhans, H. and Schär, C., 2008, Cloud-resolving ensemble simulations of the August 2005 Alpine flood, Q. J. R. Meteorol. Soc. 2008, DOI: 10.1002/qj.252 Stucki, P., Rickli, R., Brönnimann, S., Martius, O., Wanner, H., Grebner, D. and Luterbacher, J., 2012, Weather patterns and hydro-climatological precursors of extreme floods in Switzerland since 1868, Meteorologische Zeitschrift, Vol. 21, No. 6, 531-550.
NASA Astrophysics Data System (ADS)
Hildebrandt, Mario; Dittmann, Jana; Vielhauer, Claus; Leich, Marcus
2011-11-01
The preventive application of automated latent fingerprint acquisition devices can enhance the Homeland Defence, e.g. by improving the border security. Here, contact-less optical acquisition techniques for the capture of traces are subject to research; chromatic white light sensors allow for multi-mode operation using coarse or detailed scans. The presence of potential fingerprints could be detected using fast coarse scans. Those Regions-of- Interest can be acquired afterwards with high-resolution detailed scans to allow for a verification or identification of individuals. An acquisition and analysis of fingerprint traces on different objects that are imported or pass borders might be a great enhancement for security. Additionally, if suspicious objects require a further investigation, an initial securing of potential fingerprints could be very useful. In this paper we show current research results for the coarse detection of fingerprints to prepare the detailed acquisition from various surface materials that are relevant for preventive applications.
Storlie, Collin; Merino-Viteri, Andres; Phillips, Ben; VanDerWal, Jeremy; Welbergen, Justin; Williams, Stephen
2014-01-01
To assess a species' vulnerability to climate change, we commonly use mapped environmental data that are coarsely resolved in time and space. Coarsely resolved temperature data are typically inaccurate at predicting temperatures in microhabitats used by an organism and may also exhibit spatial bias in topographically complex areas. One consequence of these inaccuracies is that coarsely resolved layers may predict thermal regimes at a site that exceed species' known thermal limits. In this study, we use statistical downscaling to account for environmental factors and develop high-resolution estimates of daily maximum temperatures for a 36 000 km2 study area over a 38-year period. We then demonstrate that this statistical downscaling provides temperature estimates that consistently place focal species within their fundamental thermal niche, whereas coarsely resolved layers do not. Our results highlight the need for incorporation of fine-scale weather data into species' vulnerability analyses and demonstrate that a statistical downscaling approach can yield biologically relevant estimates of thermal regimes. PMID:25252835
Wang, Dongbin; Shafer, Martin M; Schauer, James J; Sioutas, Constantinos
2015-04-01
This study presents a novel system for online, field measurement of copper (Cu) in ambient coarse (2.5-10 μm) particulate matter (PM). This new system utilizes two virtual impactors combined with a modified liquid impinger (BioSampler) to collect coarse PM directly as concentrated slurry samples. The total and water-soluble Cu concentrations are subsequently measured by a copper Ion Selective Electrode (ISE). Laboratory evaluation results indicated excellent collection efficiency (over 85%) for particles in the coarse PM size ranges. In the field evaluations, very good agreements for both total and water-soluble Cu concentrations were obtained between online ISE-based monitor measurements and those analyzed by means of inductively coupled plasma mass spectrometry (ICP-MS). Moreover, the field tests indicated that the Cu monitor could achieve near-continuous operation for at least 6 consecutive days (a time resolution of 2-4 h) without obvious shortcomings. Copyright © 2015 Elsevier Ltd. All rights reserved.
Global tropospheric ozone modeling: Quantifying errors due to grid resolution
NASA Astrophysics Data System (ADS)
Wild, Oliver; Prather, Michael J.
2006-06-01
Ozone production in global chemical models is dependent on model resolution because ozone chemistry is inherently nonlinear, the timescales for chemical production are short, and precursors are artificially distributed over the spatial scale of the model grid. In this study we examine the sensitivity of ozone, its precursors, and its production to resolution by running a global chemical transport model at four different resolutions between T21 (5.6° × 5.6°) and T106 (1.1° × 1.1°) and by quantifying the errors in regional and global budgets. The sensitivity to vertical mixing through the parameterization of boundary layer turbulence is also examined. We find less ozone production in the boundary layer at higher resolution, consistent with slower chemical production in polluted emission regions and greater export of precursors. Agreement with ozonesonde and aircraft measurements made during the NASA TRACE-P campaign over the western Pacific in spring 2001 is consistently better at higher resolution. We demonstrate that the numerical errors in transport processes on a given resolution converge geometrically for a tracer at successively higher resolutions. The convergence in ozone production on progressing from T21 to T42, T63, and T106 resolution is likewise monotonic but indicates that there are still large errors at 120 km scales, suggesting that T106 resolution is too coarse to resolve regional ozone production. Diagnosing the ozone production and precursor transport that follow a short pulse of emissions over east Asia in springtime allows us to quantify the impacts of resolution on both regional and global ozone. Production close to continental emission regions is overestimated by 27% at T21 resolution, by 13% at T42 resolution, and by 5% at T106 resolution. However, subsequent ozone production in the free troposphere is not greatly affected. We find that the export of short-lived precursors such as NOx by convection is overestimated at coarse resolution.
Generating High Resolution Climate Scenarios Through Regional Climate Modelling Over Southern Africa
NASA Astrophysics Data System (ADS)
Ndhlovu, G. Z.; Woyessa, Y. E.; Vijayaraghavan, S.
2017-12-01
limate change has impacted the global environment and the Continent of Africa, especially Southern Africa, regarded as one of the most vulnerable regions in Africa, has not been spared from these impacts. Global Climate Models (GCMs) with coarse horizontal resolutions of 150-300 km do not provide sufficient details at the local basin scale due to mismatch between the size of river basins and the grid cell of the GCM. This makes it difficult to apply the outputs of GCMs directly to impact studies such as hydrological modelling. This necessitates the use of regional climate modelling at high resolutions that provide detailed information at regional and local scales to study both climate change and its impacts. To this end, an experiment was set up and conducted with PRECIS, a regional climate model, to generate climate scenarios at a high resolution of 25km for the local region in Zambezi River basin of Southern Africa. The major input data used included lateral and surface boundary conditions based on the GCMs. The data is processed, analysed and compared with CORDEX climate change project data generated for Africa. This paper, highlights the major differences of the climate scenarios generated by PRECIS Model and CORDEX Project for Africa and further gives recommendations for further research on generation of climate scenarios. The climatic variables such as precipitation and temperatures have been analysed for flood and droughts in the region. The paper also describes the setting up and running of an experiment using a high-resolution PRECIS model. In addition, a description has been made in running the model and generating the output variables on a sub basin scale. Regional climate modelling which provides information on climate change impact may lead to enhanced understanding of adaptive water resources management. Understanding the regional climate modelling results on sub basin scale is the first step in analysing complex hydrological processes and a basis for designing of adaptation and mitigation strategies in the region. Key words: Climate change, regional climate modelling, hydrological processes, extremes, scenarios [1] Corresponding author: Email:gndhlovu@cut.ac.za Tel:+27 (0) 51 507 3072
NASA Astrophysics Data System (ADS)
Masarik, M. T.; Watson, K. A.; Flores, A. N.; Anderson, K.; Tangen, S.
2016-12-01
The water resources infrastructure of the Western US is designed to deliver reliable water supply to users and provide recreational opportunities for the public, as well as afford flood control for communities by buffering variability in precipitation and snow storage. Thus water resource management is a balancing act of meeting multiple objectives while trying to anticipate and mitigate natural variability of water supply. Currently, the forecast guidance available to personnel managing resources in mountainous terrain is lacking in two ways: the spatial resolution is too coarse, and there is a gap in the intermediate time range (10-30 days). To address this need we examine the effectiveness of using the Weather Research and Forecasting (WRF) model, a state of the art, regional, numerical weather prediction model, as a means to generate high-resolution weather guidance in the intermediate time range. This presentation will focus on a reanalysis and hindcasting case study of the extreme precipitation and flooding event in the Payette River Basin of Idaho during the period of June 2nd-4th, 2010. For the reanalysis exercise we use NCEP's Climate Forecast System Reanalysis (CFSR) and the North American Regional Reanalysis (NARR) data sets as input boundary conditions to WRF. The model configuration includes a horizontal spatial resolution of 3km in the outer nest, and 1 km in the inner nest, with output temporal resolution of 3 hrs and 1 hr, respectively. The hindcast simulations, which are currently underway, will make use of the NCEP Climate Forecast System Reforecast (CFSRR) data. The current state of these runs will be discussed. Preparations for the second of two components in this project, weekly WRF forecasts during the intense portion of the water year, will be briefly described. These forecasts will use the NCEP Climate Forecast System version 2 (CFSv2) operational forecast data as boundary conditions to provide forecast guidance geared towards water resource managers out to a lead time of 30 days. We are particularly interested in the degree to which there is forecast skill in basinwide precipitation occurrence, departure from climatology, timing, and amount in the intermediate time range.
An expanded role for river networks
Jonathan P. Benstead; David S. Leigh
2012-01-01
Estimates of stream and river area have relied on observations at coarse resolution. Consideration of the smallest and most dynamic streams could reveal a greater role for river networks in global biogeochemical cycling than previously thought.
Overflow Simulations using MPAS-Ocean in Idealized and Realistic Domains
NASA Astrophysics Data System (ADS)
Reckinger, S.; Petersen, M. R.; Reckinger, S. J.
2016-02-01
MPAS-Ocean is used to simulate an idealized, density-driven overflow using the dynamics of overflow mixing and entrainment (DOME) setup. Numerical simulations are benchmarked against other models, including the MITgcm's z-coordinate model and HIM's isopycnal coordinate model. A full parameter study is presented that looks at how sensitive overflow simulations are to vertical grid type, resolution, and viscosity. Horizontal resolutions with 50 km grid cells are under-resolved and produce poor results, regardless of other parameter settings. Vertical grids ranging in thickness from 15 m to 120 m were tested. A horizontal resolution of 10 km and a vertical resolution of 60 m are sufficient to resolve the mesoscale dynamics of the DOME configuration, which mimics real-world overflow parameters. Mixing and final buoyancy are least sensitive to horizontal viscosity, but strongly sensitive to vertical viscosity. This suggests that vertical viscosity could be adjusted in overflow water formation regions to influence mixing and product water characteristics. Also, the study shows that sigma coordinates produce much less mixing than z-type coordinates, resulting in heavier plumes that go further down slope. Sigma coordinates are less sensitive to changes in resolution but as sensitive to vertical viscosity compared to z-coordinates. Additionally, preliminary measurements of overflow diagnostics on global simulations using a realistic oceanic domain are presented.
NASA Astrophysics Data System (ADS)
Ramage, J. M.; Brodzik, M. J.; Hardman, M.; Troy, T. J.
2017-12-01
Snow is a vital part of the terrestrial hydrological cycle, a crucial resource for people and ecosystems. In mountainous regions snow is extensive, variable, and challenging to document. Snow melt timing and duration are important factors affecting the transfer of snow mass to soil moisture and runoff. Passive microwave brightness temperature (Tb) changes at 36 and 18 GHz are a sensitive way to detect snow melt onset due to their sensitivity to the abrupt change in emissivity. They are widely used on large icefields and high latitude watersheds. The coarse resolution ( 25 km) of historically available data has precluded effective use in high relief, heterogeneous regions, and gaps between swaths also create temporal data gaps at lower latitudes. New enhanced resolution data products generated from a scatterometer image reconstruction for radiometer (rSIR) technique are available at the original frequencies. We use these Calibrated Enhanced-resolution Brightness (CETB) Temperatures Earth System Data Records (ESDR) to evaluate existing snow melt detection algorithms that have been used in other environments, including the cross polarized gradient ratio (XPGR) and the diurnal amplitude variations (DAV) approaches. We use the 36/37 GHz (3.125 km resolution) and 18/19 GHz (6.25 km resolution) vertically and horizontally polarized datasets from the Special Sensor Microwave Imager (SSM/I) and Advanced Microwave Radiometer for EOS (AMSR-E) and evaluate them for use in this high relief environment. The new data are used to assess glacier and snow melt records in the Hunza River Basin [area 13,000 sq. km, located at 36N, 74E], a tributary to the Upper Indus Basin, Pakistan. We compare the melt timing results visually and quantitatively to the corresponding EASE-Grid 2.0 25-km dataset, SRTM topography, and surface temperatures from station and reanalysis data. The new dataset is coarser than the topography, but is able to differentiate signals of melt/refreeze timing for different altitudes and land cover in this remote area with significant hazards from snow melt and glacier discharge. The improved spatial resolution, enhanced to 3-6 km, and retaining twice daily observations is a key improvement to fully analyze snowpack melt characteristics in remote mountainous regions.
HIGH-RESOLUTION DATASET OF URBAN CANOPY PARAMETERS FOR HOUSTON, TEXAS
Urban dispersion and air quality simulation models applied at various horizontal scales require different levels of fidelity for specifying the characteristics of the underlying surfaces. As the modeling scales approach the neighborhood level (~1 km horizontal grid spacing), the...
Sources of errors in the simulation of south Asian summer monsoon in the CMIP5 GCMs
Ashfaq, Moetasim; Rastogi, Deeksha; Mei, Rui; ...
2016-09-19
Accurate simulation of the South Asian summer monsoon (SAM) is still an unresolved challenge. There has not been a benchmark effort to decipher the origin of undesired yet virtually invariable unsuccessfulness of general circulation models (GCMs) over this region. This study analyzes a large ensemble of CMIP5 GCMs to show that most of the simulation errors in the precipitation distribution and their driving mechanisms are systematic and of similar nature across the GCMs, with biases in meridional differential heating playing a critical role in determining the timing of monsoon onset over land, the magnitude of seasonal precipitation distribution and themore » trajectories of monsoon depressions. Errors in the pre-monsoon heat low over the lower latitudes and atmospheric latent heating over the slopes of Himalayas and Karakoram Range induce significant errors in the atmospheric circulations and meridional differential heating. Lack of timely precipitation further exacerbates such errors by limiting local moisture recycling and latent heating aloft from convection. Most of the summer monsoon errors and their sources are reproducible in the land–atmosphere configuration of a GCM when it is configured at horizontal grid spacing comparable to the CMIP5 GCMs. While an increase in resolution overcomes many modeling challenges, coarse resolution is not necessarily the primary driver in the exhibition of errors over South Asia. Ultimately, these results highlight the importance of previously less well known pre-monsoon mechanisms that critically influence the strength of SAM in the GCMs and highlight the importance of land–atmosphere interactions in the development and maintenance of SAM.« less
Dominant Drivers of GCMs Errors in the Simulation of South Asian Summer Monsoon
NASA Astrophysics Data System (ADS)
Ashfaq, Moetasim
2017-04-01
Accurate simulation of the South Asian summer monsoon (SAM) is a longstanding unresolved problem in climate modeling science. There has not been a benchmark effort to decipher the origin of undesired yet virtually invariable unsuccessfulness of general circulation models (GCMs) over this region. This study analyzes a large ensemble of CMIP5 GCMs to demonstrate that most of the simulation errors in the summer season and their driving mechanisms are systematic and of similar nature across the GCMs, with biases in meridional differential heating playing a critical role in determining the timing of monsoon onset over land, the magnitude of seasonal precipitation distribution and the trajectories of monsoon depressions. Errors in the pre-monsoon heat low over the lower latitudes and atmospheric latent heating over the slopes of Himalayas and Karakoram Range induce significant errors in the atmospheric circulations and meridional differential heating. Lack of timely precipitation over land further exacerbates such errors by limiting local moisture recycling and latent heating aloft from convection. Most of the summer monsoon errors and their sources are reproducible in the land-atmosphere configuration of a GCM when it is configured at horizontal grid spacing comparable to the CMIP5 GCMs. While an increase in resolution overcomes many modeling challenges, coarse resolution is not necessarily the primary driver in the exhibition of errors over South Asia. These results highlight the importance of previously less well known pre-monsoon mechanisms that critically influence the strength of SAM in the GCMs and highlight the importance of land-atmosphere interactions in the development and maintenance of SAM.
Bed roughness of palaeo-ice streams: insights and implications for contemporary ice sheet dynamics
NASA Astrophysics Data System (ADS)
Falcini, Francesca; Rippin, David; Selby, Katherine; Krabbendam, Maarten
2017-04-01
Bed roughness is the vertical variation of elevation along a horizontal transect. It is an important control on ice stream location and dynamics, with a correspondingly important role in determining the behaviour of ice sheets. Previous studies of bed roughness have been limited to insights derived from Radio Echo Sounding (RES) profiles across parts of Antarctica and Greenland. Such an approach has been necessary due to the inaccessibility of the underlying bed. This approach has led to important insights, such as identifying a general link between smooth beds and fast ice flow, as well as rough beds and slow ice flow. However, these insights are mainly derived from relatively coarse datasets, so that links between roughness and flow are generalised and rather simplistic. Here, we explore the use of DTMs from the well-preserved footprints of palaeo-ice streams, coupled with high resolution models of palaeo-ice flow, as a tool for investigating basal controls on the behaviour of contemporary, active ice streams in much greater detail. Initially, artificial transects were set up across the Minch palaeo-ice stream (NW Scotland) to mimic RES flight lines from past studies in Antarctica. We then explored how increasing data-resolution impacted upon the roughness measurements that were derived. Our work on the Minch palaeo-ice stream indicates that different roughness signatures are associated with different glacial landforms, and we discuss the potential for using these insights to infer, from RES-based roughness measurements, the occurrence of particular landform assemblages that may exist beneath contemporary ice sheets.
Sources of errors in the simulation of south Asian summer monsoon in the CMIP5 GCMs
NASA Astrophysics Data System (ADS)
Ashfaq, Moetasim; Rastogi, Deeksha; Mei, Rui; Touma, Danielle; Ruby Leung, L.
2017-07-01
Accurate simulation of the South Asian summer monsoon (SAM) is still an unresolved challenge. There has not been a benchmark effort to decipher the origin of undesired yet virtually invariable unsuccessfulness of general circulation models (GCMs) over this region. This study analyzes a large ensemble of CMIP5 GCMs to show that most of the simulation errors in the precipitation distribution and their driving mechanisms are systematic and of similar nature across the GCMs, with biases in meridional differential heating playing a critical role in determining the timing of monsoon onset over land, the magnitude of seasonal precipitation distribution and the trajectories of monsoon depressions. Errors in the pre-monsoon heat low over the lower latitudes and atmospheric latent heating over the slopes of Himalayas and Karakoram Range induce significant errors in the atmospheric circulations and meridional differential heating. Lack of timely precipitation further exacerbates such errors by limiting local moisture recycling and latent heating aloft from convection. Most of the summer monsoon errors and their sources are reproducible in the land-atmosphere configuration of a GCM when it is configured at horizontal grid spacing comparable to the CMIP5 GCMs. While an increase in resolution overcomes many modeling challenges, coarse resolution is not necessarily the primary driver in the exhibition of errors over South Asia. These results highlight the importance of previously less well known pre-monsoon mechanisms that critically influence the strength of SAM in the GCMs and highlight the importance of land-atmosphere interactions in the development and maintenance of SAM.
Sources of errors in the simulation of south Asian summer monsoon in the CMIP5 GCMs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ashfaq, Moetasim; Rastogi, Deeksha; Mei, Rui
2016-09-19
Accurate simulation of the South Asian summer monsoon (SAM) is still an unresolved challenge. There has not been a benchmark effort to decipher the origin of undesired yet virtually invariable unsuccessfulness of general circulation models (GCMs) over this region. This study analyzes a large ensemble of CMIP5 GCMs to show that most of the simulation errors in the precipitation distribution and their driving mechanisms are systematic and of similar nature across the GCMs, with biases in meridional differential heating playing a critical role in determining the timing of monsoon onset over land, the magnitude of seasonal precipitation distribution and themore » trajectories of monsoon depressions. Errors in the pre-monsoon heat low over the lower latitudes and atmospheric latent heating over the slopes of Himalayas and Karakoram Range induce significant errors in the atmospheric circulations and meridional differential heating. Lack of timely precipitation further exacerbates such errors by limiting local moisture recycling and latent heating aloft from convection. Most of the summer monsoon errors and their sources are reproducible in the land–atmosphere configuration of a GCM when it is configured at horizontal grid spacing comparable to the CMIP5 GCMs. While an increase in resolution overcomes many modeling challenges, coarse resolution is not necessarily the primary driver in the exhibition of errors over South Asia. These results highlight the importance of previously less well known pre-monsoon mechanisms that critically influence the strength of SAM in the GCMs and highlight the importance of land–atmosphere interactions in the development and maintenance of SAM.« less
A. M. S. Smith; N. A. Drake; M. J. Wooster; A. T. Hudak; Z. A. Holden; C. J. Gibbons
2007-01-01
Accurate production of regional burned area maps are necessary to reduce uncertainty in emission estimates from African savannah fires. Numerous methods have been developed that map burned and unburned surfaces. These methods are typically applied to coarse spatial resolution (1 km) data to produce regional estimates of the area burned, while higher spatial resolution...
Gillette, Dale A.; Fryrear, D.W.; Xiao, Jing Bing; Stockton, Paul; Ono, Duane; Helm, Paula J.; Gill, Thomas E; Ley, Trevor
1997-01-01
A field experiment at Owens (dry) Lake, California, tested whether and how the relative profiles of airborne horizontal mass fluxes for >50-μm wind-eroded particles changed with friction velocity. The horizontal mass flux at almost all measured heights increased proportionally to the cube of friction velocity above an apparent threshold friction velocity for all sediment tested and increased with height except at one coarse-sand site where the relative horizontal mass flux profile did not change with friction velocity. Size distributions for long-time-averaged horizontal mass flux samples showed a saltation layer from the surface to a height between 30 and 50 cm, above which suspended particles dominate. Measurements from a large dust source area on a line parallel to the wind showed that even though the saltation flux reached equilibrium ∼650 m downwind of the starting point of erosion, weakly suspended particles were still input into the atmosphere 1567 m downwind of the starting point; thus the saltating fraction of the total mass flux decreased after 650 m. The scale length difference and ratio of 70/30 suspended mass flux to saltation mass flux at the farthest down wind sampling site confirm that suspended particles are very important for mass budgets in large source areas and that saltation mass flux can be a variable fraction of total horizontal mass flux for soils with a substantial fraction of <100-μm particles.
Challenge toward the prediction of typhoon behaviour and down pour
NASA Astrophysics Data System (ADS)
Takahashi, K.; Onishi, R.; Baba, Y.; Kida, S.; Matsuda, K.; Goto, K.; Fuchigami, H.
2013-08-01
Mechanisms of interactions among different scale phenomena play important roles for forecasting of weather and climate. Multi-scale Simulator for the Geoenvironment (MSSG), which deals with multi-scale multi-physics phenomena, is a coupled non-hydrostatic atmosphere-ocean model designed to be run efficiently on the Earth Simulator. We present simulation results with the world-highest 1.9km horizontal resolution for the entire globe and regional heavy rain with 1km horizontal resolution and 5m horizontal/vertical resolution for urban area simulation. To gain high performance by exploiting the system capabilities, we propose novel performance evaluation metrics introduced in previous studies that incorporate the effects of the data caching mechanism between CPU and memory. With a useful code optimization guideline based on such metrics, we demonstrate that MSSG can achieve an excellent peak performance ratio of 32.2% on the Earth Simulator with the single-core performance found to be a key to a reduced time-to-solution.
Area-to-point regression kriging for pan-sharpening
NASA Astrophysics Data System (ADS)
Wang, Qunming; Shi, Wenzhong; Atkinson, Peter M.
2016-04-01
Pan-sharpening is a technique to combine the fine spatial resolution panchromatic (PAN) band with the coarse spatial resolution multispectral bands of the same satellite to create a fine spatial resolution multispectral image. In this paper, area-to-point regression kriging (ATPRK) is proposed for pan-sharpening. ATPRK considers the PAN band as the covariate. Moreover, ATPRK is extended with a local approach, called adaptive ATPRK (AATPRK), which fits a regression model using a local, non-stationary scheme such that the regression coefficients change across the image. The two geostatistical approaches, ATPRK and AATPRK, were compared to the 13 state-of-the-art pan-sharpening approaches summarized in Vivone et al. (2015) in experiments on three separate datasets. ATPRK and AATPRK produced more accurate pan-sharpened images than the 13 benchmark algorithms in all three experiments. Unlike the benchmark algorithms, the two geostatistical solutions precisely preserved the spectral properties of the original coarse data. Furthermore, ATPRK can be enhanced by a local scheme in AATRPK, in cases where the residuals from a global regression model are such that their spatial character varies locally.
Linking models and data on vegetation structure
NASA Astrophysics Data System (ADS)
Hurtt, G. C.; Fisk, J.; Thomas, R. Q.; Dubayah, R.; Moorcroft, P. R.; Shugart, H. H.
2010-06-01
For more than a century, scientists have recognized the importance of vegetation structure in understanding forest dynamics. Now future satellite missions such as Deformation, Ecosystem Structure, and Dynamics of Ice (DESDynI) hold the potential to provide unprecedented global data on vegetation structure needed to reduce uncertainties in terrestrial carbon dynamics. Here, we briefly review the uses of data on vegetation structure in ecosystem models, develop and analyze theoretical models to quantify model-data requirements, and describe recent progress using a mechanistic modeling approach utilizing a formal scaling method and data on vegetation structure to improve model predictions. Generally, both limited sampling and coarse resolution averaging lead to model initialization error, which in turn is propagated in subsequent model prediction uncertainty and error. In cases with representative sampling, sufficient resolution, and linear dynamics, errors in initialization tend to compensate at larger spatial scales. However, with inadequate sampling, overly coarse resolution data or models, and nonlinear dynamics, errors in initialization lead to prediction error. A robust model-data framework will require both models and data on vegetation structure sufficient to resolve important environmental gradients and tree-level heterogeneity in forest structure globally.
A variable resolution nonhydrostatic global atmospheric semi-implicit semi-Lagrangian model
NASA Astrophysics Data System (ADS)
Pouliot, George Antoine
2000-10-01
The objective of this project is to develop a variable-resolution finite difference adiabatic global nonhydrostatic semi-implicit semi-Lagrangian (SISL) model based on the fully compressible nonhydrostatic atmospheric equations. To achieve this goal, a three-dimensional variable resolution dynamical core was developed and tested. The main characteristics of the dynamical core can be summarized as follows: Spherical coordinates were used in a global domain. A hydrostatic/nonhydrostatic switch was incorporated into the dynamical equations to use the fully compressible atmospheric equations. A generalized horizontal variable resolution grid was developed and incorporated into the model. For a variable resolution grid, in contrast to a uniform resolution grid, the order of accuracy of finite difference approximations is formally lost but remains close to the order of accuracy associated with the uniform resolution grid provided the grid stretching is not too significant. The SISL numerical scheme was implemented for the fully compressible set of equations. In addition, the generalized minimum residual (GMRES) method with restart and preconditioner was used to solve the three-dimensional elliptic equation derived from the discretized system of equations. The three-dimensional momentum equation was integrated in vector-form to incorporate the metric terms in the calculations of the trajectories. Using global re-analysis data for a specific test case, the model was compared to similar SISL models previously developed. Reasonable agreement between the model and the other independently developed models was obtained. The Held-Suarez test for dynamical cores was used for a long integration and the model was successfully integrated for up to 1200 days. Idealized topography was used to test the variable resolution component of the model. Nonhydrostatic effects were simulated at grid spacings of 400 meters with idealized topography and uniform flow. Using a high-resolution topographic data set and the variable resolution grid, sets of experiments with increasing resolution were performed over specific regions of interest. Using realistic initial conditions derived from re-analysis fields, nonhydrostatic effects were significant for grid spacings on the order of 0.1 degrees with orographic forcing. If the model code was adapted for use in a message passing interface (MPI) on a parallel supercomputer today, it was estimated that a global grid spacing of 0.1 degrees would be achievable for a global model. In this case, nonhydrostatic effects would be significant for most areas. A variable resolution grid in a global model provides a unified and flexible approach to many climate and numerical weather prediction problems. The ability to configure the model from very fine to very coarse resolutions allows for the simulation of atmospheric phenomena at different scales using the same code. We have developed a dynamical core illustrating the feasibility of using a variable resolution in a global model.
NASA Astrophysics Data System (ADS)
Husain, S. Z.; Separovic, L.; Yu, W.; Fernig, D.
2014-12-01
Extended-range high-resolution mesoscale simulations with limited-area atmospheric models when applied to downscale regional analysis fields over large spatial domains can provide valuable information for many applications including the weather-dependent renewable energy industry. Long-term simulations over a continental-scale spatial domain, however, require mechanisms to control the large-scale deviations in the high-resolution simulated fields from the coarse-resolution driving fields. As enforcement of the lateral boundary conditions is insufficient to restrict such deviations, large scales in the simulated high-resolution meteorological fields are therefore spectrally nudged toward the driving fields. Different spectral nudging approaches, including the appropriate nudging length scales as well as the vertical profiles and temporal relaxations for nudging, have been investigated to propose an optimal nudging strategy. Impacts of time-varying nudging and generation of hourly analysis estimates are explored to circumvent problems arising from the coarse temporal resolution of the regional analysis fields. Although controlling the evolution of the atmospheric large scales generally improves the outputs of high-resolution mesoscale simulations within the surface layer, the prognostically evolving surface fields can nevertheless deviate from their expected values leading to significant inaccuracies in the predicted surface layer meteorology. A forcing strategy based on grid nudging of the different surface fields, including surface temperature, soil moisture, and snow conditions, toward their expected values obtained from a high-resolution offline surface scheme is therefore proposed to limit any considerable deviation. Finally, wind speed and temperature at wind turbine hub height predicted by different spectrally nudged extended-range simulations are compared against observations to demonstrate possible improvements achievable using higher spatiotemporal resolution.
Ground Boundary Conditions for Thermal Convection Over Horizontal Surfaces at High Rayleigh Numbers
NASA Astrophysics Data System (ADS)
Hanjalić, K.; Hrebtov, M.
2016-07-01
We present "wall functions" for treating the ground boundary conditions in the computation of thermal convection over horizontal surfaces at high Rayleigh numbers using coarse numerical grids. The functions are formulated for an algebraic-flux model closed by transport equations for the turbulence kinetic energy, its dissipation rate and scalar variance, but could also be applied to other turbulence models. The three-equation algebraic-flux model, solved in a T-RANS mode ("Transient" Reynolds-averaged Navier-Stokes, based on triple decomposition), was shown earlier to reproduce well a number of generic buoyancy-driven flows over heated surfaces, albeit by integrating equations up to the wall. Here we show that by using a set of wall functions satisfactory results are found for the ensemble-averaged properties even on a very coarse computational grid. This is illustrated by the computations of the time evolution of a penetrative mixed layer and Rayleigh-Bénard (open-ended, 4:4:1 domain) convection, using 10 × 10 × 100 and 10 × 10 × 20 grids, compared also with finer grids (e.g. 60 × 60 × 100), as well as with one-dimensional treatment using 1 × 1 × 100 and 1 × 1 × 20 nodes. The approach is deemed functional for simulations of a convective boundary layer and mesoscale atmospheric flows, and pollutant transport over realistic complex hilly terrain with heat islands, urban and natural canopies, for diurnal cycles, or subjected to other time and space variations in ground conditions and stratification.
NASA Technical Reports Server (NTRS)
Nalepka, R. F. (Principal Investigator); Sadowski, F. E.; Sarno, J. E.
1976-01-01
The author has identified the following significant results. A supervised classification within two separate ground areas of the Sam Houston National Forest was carried out for two sq meters spatial resolution MSS data. Data were progressively coarsened to simulate five additional cases of spatial resolution ranging up to 64 sq meters. Similar processing and analysis of all spatial resolutions enabled evaluations of the effect of spatial resolution on classification accuracy for various levels of detail and the effects on area proportion estimation for very general forest features. For very coarse resolutions, a subset of spectral channels which simulated the proposed thematic mapper channels was used to study classification accuracy.
EXAMINATION OF MODEL PREDICTIONS AT DIFFERENT HORIZONTAL GRID RESOLUTIONS
While fluctuations in meteorological and air quality variables occur on a continuum of spatial scales, the horizontal grid spacing of coupled meteorological and photochemical models sets a lower limit on the spatial scales that they can resolve. However, both computational costs ...
Weighted least squares phase unwrapping based on the wavelet transform
NASA Astrophysics Data System (ADS)
Chen, Jiafeng; Chen, Haiqin; Yang, Zhengang; Ren, Haixia
2007-01-01
The weighted least squares phase unwrapping algorithm is a robust and accurate method to solve phase unwrapping problem. This method usually leads to a large sparse linear equation system. Gauss-Seidel relaxation iterative method is usually used to solve this large linear equation. However, this method is not practical due to its extremely slow convergence. The multigrid method is an efficient algorithm to improve convergence rate. However, this method needs an additional weight restriction operator which is very complicated. For this reason, the multiresolution analysis method based on the wavelet transform is proposed. By applying the wavelet transform, the original system is decomposed into its coarse and fine resolution levels and an equivalent equation system with better convergence condition can be obtained. Fast convergence in separate coarse resolution levels speeds up the overall system convergence rate. The simulated experiment shows that the proposed method converges faster and provides better result than the multigrid method.
LSAH: a fast and efficient local surface feature for point cloud registration
NASA Astrophysics Data System (ADS)
Lu, Rongrong; Zhu, Feng; Wu, Qingxiao; Kong, Yanzi
2018-04-01
Point cloud registration is a fundamental task in high level three dimensional applications. Noise, uneven point density and varying point cloud resolutions are the three main challenges for point cloud registration. In this paper, we design a robust and compact local surface descriptor called Local Surface Angles Histogram (LSAH) and propose an effectively coarse to fine algorithm for point cloud registration. The LSAH descriptor is formed by concatenating five normalized sub-histograms into one histogram. The five sub-histograms are created by accumulating a different type of angle from a local surface patch respectively. The experimental results show that our LSAH is more robust to uneven point density and point cloud resolutions than four state-of-the-art local descriptors in terms of feature matching. Moreover, we tested our LSAH based coarse to fine algorithm for point cloud registration. The experimental results demonstrate that our algorithm is robust and efficient as well.
Proximity correction of high-dosed frame with PROXECCO
NASA Astrophysics Data System (ADS)
Eisenmann, Hans; Waas, Thomas; Hartmann, Hans
1994-05-01
Usefulness of electron beam lithography is strongly related to the efficiency and quality of methods used for proximity correction. This paper addresses the above issue by proposing an extension to the new proximity correction program PROXECCO. The combination of a framing step with PROXECCO produces a pattern with a very high edge accuracy and still allows usage of the fast correction procedure. Making a frame with a higher dose imitates a fine resolution correction where the coarse part is disregarded. So after handling the high resolution effect by means of framing, an additional coarse correction is still needed. Higher doses have a higher contribution to the proximity effect. This additional proximity effect is taken into account with the help of the multi-dose input of PROXECCO. The dose of the frame is variable, depending on the deposited energy coming from backscattering of the proximity. Simulation proves the very high edge accuracy of the applied method.
Phillips, Steven P.; Belitz, Kenneth
1991-01-01
The occurrence of selenium in agricultural drain water from the western San Joaquin Valley, California, has focused concern on the semiconfined ground-water flow system, which is underlain by the Corcoran Clay Member of the Tulare Formation. A two-step procedure is used to calibrate a preliminary model of the system for the purpose of determining the steady-state hydraulic properties. Horizontal and vertical hydraulic conductivities are modeled as functions of the percentage of coarse sediment, hydraulic conductivities of coarse-textured (Kcoarse) and fine-textured (Kfine) end members, and averaging methods used to calculate equivalent hydraulic conductivities. The vertical conductivity of the Corcoran (Kcorc) is an additional parameter to be evaluated. In the first step of the calibration procedure, the model is run by systematically varying the following variables: (1) Kcoarse/Kfine, (2) Kcoarse/Kcorc, and (3) choice of averaging methods in the horizontal and vertical directions. Root mean square error and bias values calculated from the model results are functions of these variables. These measures of error provide a means for evaluating model sensitivity and for selecting values of Kcoarse, Kfine, and Kcorc for use in the second step of the calibration procedure. In the second step, recharge rates are evaluated as functions of Kcoarse, Kcorc, and a combination of averaging methods. The associated Kfine values are selected so that the root mean square error is minimized on the basis of the results from the first step. The results of the two-step procedure indicate that the spatial distribution of hydraulic conductivity that best produces the measured hydraulic head distribution is created through the use of arithmetic averaging in the horizontal direction and either geometric or harmonic averaging in the vertical direction. The equivalent hydraulic conductivities resulting from either combination of averaging methods compare favorably to field- and laboratory-based values.
Blaschke, A P; Derx, J; Zessner, M; Kirnbauer, R; Kavka, G; Strelec, H; Farnleitner, A H; Pang, L
2016-12-15
Contamination of groundwater by pathogenic viruses from small biological wastewater treatment system discharges in remote areas is a major concern. To protect drinking water wells against virus contamination, safe setback distances are required between wastewater disposal fields and water supply wells. In this study, setback distances are calculated for alluvial sand and gravel aquifers for different vadose zone and aquifer thicknesses and horizontal groundwater gradients. This study applies to individual households and small settlements (1-20 persons) in decentralized locations without access to receiving surface waters but with the legal obligation of biological wastewater treatment. The calculations are based on Monte Carlo simulations using an analytical model that couples vertical unsaturated and horizontal saturated flow with virus transport. Hydraulic conductivities and water retention curves were selected from reported distribution functions depending on the type of subsurface media. The enteric virus concentration in effluent discharge was calculated based on reported ranges of enteric virus concentration in faeces, virus infectivity, suspension factor, and virus reduction by mechanical-biological wastewater treatment. To meet the risk target of <10 -4 infections/person/year, a 12 log 10 reduction was required, using a linear dose-response relationship for the total amount of enteric viruses, at very low exposure concentrations. The results of this study suggest that the horizontal setback distances vary widely ranging 39 to 144m in sand aquifers, 66-289m in gravel aquifers and 1-2.5km in coarse gravel aquifers. It also varies for the same aquifers, depending on the thickness of the vadose zones and the groundwater gradient. For vulnerable fast-flow alluvial aquifers like coarse gravels, the calculated setback distances were too large to achieve practically. Therefore, for this category of aquifer, a high level of treatment is recommended before the effluent is discharged to the ground surface. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, Shu Meir; Geller, Marvin A.
2016-09-01
Previous works have shown that a dry, idealized general circulation model could produce many features of the extratropical Tropopause Inversion Layer (TIL). In particular, the following have been shown, but no explanations were given for these results. (1) A sharper extratropical TIL resulted more from increased horizontal resolution than from increased vertical resolution. (2) If the Equator-to-Pole temperature gradient was varied, the annual variation of the extratropical TIL found in observations could be reproduced. (3) The extratropical TIL altitude showed excellent correlation with the upper tropospheric relative vorticity, as had been previously proposed. (4) Increased horizontal model resolutions led to extratropical TILs that were at lower altitudes. We show that these conclusions follow from baroclinic mixing of high stratospheric potential vorticity into the troposphere being the principal sharpening mechanism for the extratropical TIL and the increased baroclinic activity occurring in higher horizontal resolution models. We furthermore suggest that the distance from the jet exerts a greater influence on the height and sharpness of the extratropical TIL than does the upper tropospheric relative vorticity, and this accounts for the annual behavior of the extratropical TIL found in observations and reproduced with a dry, mechanistic, global model.
Accurate reconstruction of 3D cardiac geometry from coarsely-sliced MRI.
Ringenberg, Jordan; Deo, Makarand; Devabhaktuni, Vijay; Berenfeld, Omer; Snyder, Brett; Boyers, Pamela; Gold, Jeffrey
2014-02-01
We present a comprehensive validation analysis to assess the geometric impact of using coarsely-sliced short-axis images to reconstruct patient-specific cardiac geometry. The methods utilize high-resolution diffusion tensor MRI (DTMRI) datasets as reference geometries from which synthesized coarsely-sliced datasets simulating in vivo MRI were produced. 3D models are reconstructed from the coarse data using variational implicit surfaces through a commonly used modeling tool, CardioViz3D. The resulting geometries were then compared to the reference DTMRI models from which they were derived to analyze how well the synthesized geometries approximate the reference anatomy. Averaged over seven hearts, 95% spatial overlap, less than 3% volume variability, and normal-to-surface distance of 0.32 mm was observed between the synthesized myocardial geometries reconstructed from 8 mm sliced images and the reference data. The results provide strong supportive evidence to validate the hypothesis that coarsely-sliced MRI may be used to accurately reconstruct geometric ventricular models. Furthermore, the use of DTMRI for validation of in vivo MRI presents a novel benchmark procedure for studies which aim to substantiate their modeling and simulation methods using coarsely-sliced cardiac data. In addition, the paper outlines a suggested original procedure for deriving image-based ventricular models using the CardioViz3D software. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Collier, J. C.; Zhang, G. J.
2006-05-01
Simulation of the North American monsoon system by the National Center for Atmospheric Research (NCAR) Community Atmosphere Model (CAM3) is evaluated in its sensitivity to increasing horizontal resolution. For two resolutions, T42 and T85, rainfall is compared to TRMM satellite-derived and surface gauge-based rainfall rates over the U.S. and northern Mexico as well as rainfall accumulations in gauges of the North American Monsoon Experiment (NAME) Enhanced Rain Gauge Network (NERN) in the Sierra Madre Occidental mountains. Simulated upper-tropospheric mass and wind fields are compared to those from NCEP-NCAR reanalyses. The comparison presented herein demonstrates that tropospheric motions associated with the North American monsoon system are sensitive to increasing the horizontal resolution of the model. An increase in resolution from T42 to T85 results in changes to a region of large-scale mid-tropospheric descent found north and east of the monsoon anticyclone. Relative to its simulation at T42, this region extends farther south and west at T85. Additionally, at T85, the subsidence is stronger. Consistent with the differences in large-scale descent, the T85 simulation of CAM3 is anomalously dry over Texas and northeastern Mexico during the peak monsoon months. Meanwhile, the geographic distribution of rainfall over the Sierra Madre Occidental region of Mexico is more satisfactorily simulated at T85 than at T42 for July and August. Moisture import into this region is greater at T85 than at T42 during these months. A focused study of the Sierra Madre Occidental region in particular shows that, in the regional average sense, the timing of the peak of the monsoon is relatively insensitive to the horizontal resolution of the model, while a phase bias in the diurnal cycle of monsoon-season precipitation is somewhat reduced in the higher-resolution run. At both resolutions, CAM3 poorly simulates the month-to-month evolution of monsoon rainfall over extreme northwestern Mexico and Arizona, though biases are considerably improved at T85.
NASA Astrophysics Data System (ADS)
Berckmans, Julie; Hamdi, Rafiq; De Troch, Rozemien; Giot, Olivier
2015-04-01
At the Royal Meteorological Institute of Belgium (RMI), climate simulations are performed with the regional climate model (RCM) ALARO, a version of the ALADIN model with improved physical parameterizations. In order to obtain high-resolution information of the regional climate, lateral bounary conditions (LBC) are prescribed from the global climate model (GCM) ARPEGE. Dynamical downscaling is commonly done in a continuous long-term simulation, with the initialisation of the model at the start and driven by the regularly updated LBCs of the GCM. Recently, more interest exists in the dynamical downscaling approach of frequent reinitializations of the climate simulations. For these experiments, the model is initialised daily and driven for 24 hours by the GCM. However, the surface is either initialised daily together with the atmosphere or free to evolve continuously. The surface scheme implemented in ALARO is SURFEX, which can be either run in coupled mode or in stand-alone mode. The regional climate is simulated on different domains, on a 20km horizontal resolution over Western-Europe and a 4km horizontal resolution over Belgium. Besides, SURFEX allows to perform a stand-alone or offline simulation on 1km horizontal resolution over Belgium. This research is in the framework of the project MASC: "Modelling and Assessing Surface Change Impacts on Belgian and Western European Climate", a 4-year project funded by the Belgian Federal Government. The overall aim of the project is to study the feedbacks between climate changes and land surface changes in order to improve regional climate model projections at the decennial scale over Belgium and Western Europe and thus to provide better climate projections and climate change evaluation tools to policy makers, stakeholders and the scientific community.
NASA Astrophysics Data System (ADS)
Liu, Q.; Chiu, L. S.; Hao, X.
2017-10-01
The abundance or lack of rainfall affects peoples' life and activities. As a major component of the global hydrological cycle (Chokngamwong & Chiu, 2007), accurate representations at various spatial and temporal scales are crucial for a lot of decision making processes. Climate models show a warmer and wetter climate due to increases of Greenhouse Gases (GHG). However, the models' resolutions are often too coarse to be directly applicable to local scales that are useful for mitigation purposes. Hence disaggregation (downscaling) procedures are needed to transfer the coarse scale products to higher spatial and temporal resolutions. The aim of this paper is to examine the changes in the statistical parameters of rainfall at various spatial and temporal resolutions. The TRMM Multi-satellite Precipitation Analysis (TMPA) at 0.25 degree, 3 hourly grid rainfall data for a summer is aggregated to 0.5,1.0, 2.0 and 2.5 degree and at 6, 12, 24 hourly, pentad (five days) and monthly resolutions. The probability distributions (PDF) and cumulative distribution functions(CDF) of rain amount at these resolutions are computed and modeled as a mixed distribution. Parameters of the PDFs are compared using the Kolmogrov-Smironov (KS) test, both for the mixed and the marginal distribution. These distributions are shown to be distinct. The marginal distributions are fitted with Lognormal and Gamma distributions and it is found that the Gamma distributions fit much better than the Lognormal.
NASA Astrophysics Data System (ADS)
Ma, M.
2015-12-01
The Qinghai-Tibet Plateau (QTP) is the world's highest and largest plateau and is occasionally referred to as "the roof of the world". As the important "water tower", there are 1,091 lakes of more than 1.0 km2 in the QTP areas, which account for 49.4% of the total area of lakes in China. Some studies focus on the lake area changes of the QTP areas, which mainly use the middle-resolution remote sensing data (e.g. Landsat TM). In this study, the coarse-resolution time series remote sensing data, MODIS data at a spatial resolution of 250m, was used to monitor the lake area changes of the QTP areas during the last 15 years. The dataset is the MOD13Q1 and the Normal Difference Vegetation Index (NDVI) is used to identify the lake area when the NDVI is less than 0. The results show the obvious inner-annual changes of most of the lakes. Therefore the annually average and maximum lake areas are calculated based on the time series remote data, which can better quantify the change characteristics than the single scene of image data from the middle-resolution data. The results indicate that there are big spatial variances of the lake area changes in the QTB. The natural driving factors are analyzed for revealing the causes of changes.
Graphics Processing Unit (GPU) Acceleration of the Goddard Earth Observing System Atmospheric Model
NASA Technical Reports Server (NTRS)
Putnam, Williama
2011-01-01
The Goddard Earth Observing System 5 (GEOS-5) is the atmospheric model used by the Global Modeling and Assimilation Office (GMAO) for a variety of applications, from long-term climate prediction at relatively coarse resolution, to data assimilation and numerical weather prediction, to very high-resolution cloud-resolving simulations. GEOS-5 is being ported to a graphics processing unit (GPU) cluster at the NASA Center for Climate Simulation (NCCS). By utilizing GPU co-processor technology, we expect to increase the throughput of GEOS-5 by at least an order of magnitude, and accelerate the process of scientific exploration across all scales of global modeling, including: The large-scale, high-end application of non-hydrostatic, global, cloud-resolving modeling at 10- to I-kilometer (km) global resolutions Intermediate-resolution seasonal climate and weather prediction at 50- to 25-km on small clusters of GPUs Long-range, coarse-resolution climate modeling, enabled on a small box of GPUs for the individual researcher After being ported to the GPU cluster, the primary physics components and the dynamical core of GEOS-5 have demonstrated a potential speedup of 15-40 times over conventional processor cores. Performance improvements of this magnitude reduce the required scalability of 1-km, global, cloud-resolving models from an unfathomable 6 million cores to an attainable 200,000 GPU-enabled cores.
Range-Specific High-Resolution Mesoscale Model Setup: Data Assimilation
NASA Technical Reports Server (NTRS)
Watson, Leela R.
2014-01-01
Mesoscale weather conditions can have an adverse effect on space launch, landing, and ground processing at the Eastern Range (ER) in Florida and Wallops Flight Facility (WFF) in Virginia. During summer, land-sea interactions across Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS) lead to sea breeze front formation, which can spawn deep convection that can hinder operations and endanger personnel and resources. Many other weak locally driven low-level boundaries and their interactions with the sea breeze front and each other can also initiate deep convection in the KSC/CCAFS area. Some of these other boundaries include the Indian River breeze front, Banana River breeze front, outflows from previous convection, horizontal convective rolls, convergence lines from other inland bodies of water such as Lake Okeechobee, the trailing convergence line from convergence of sea breeze fronts due to the shape of Cape Canaveral, frictional convergence lines from the islands in the Bahamas, convergence lines from soil moisture differences, convergence lines from cloud shading, and others. All these subtle weak boundary interactions often make forecasting of operationally important weather very difficult at KSC/CCAFS during the convective season (May-Oct). These convective processes often build quickly, last a short time (60 minutes or less), and occur over small distances, all of which also poses a significant challenge to the local forecasters who are responsible for issuing weather advisories, watches, and warnings. Surface winds during the transition seasons of spring and fall pose the most difficulties for the forecasters at WFF. They also encounter problems forecasting convective activity and temperature during those seasons. Therefore, accurate mesoscale model forecasts are needed to aid in their decision making. Both the ER and WFF would benefit greatly from high-resolution mesoscale model output to better forecast a variety of unique weather phenomena. Global and national scale models cannot properly resolve important local-scale weather features at each location due to their horizontal resolutions being much too coarse. Therefore, a properly tuned model at a high resolution is needed to provide improved capability. This task is a multi-year effort in which the Applied Meteorology Unit (AMU) will tune the Weather Research and Forecasting (WRF) model individually for each range. The goal of the first year, the results of which are in this report, was to tune the WRF model based on the best model resolution and run time while using reasonable computing capabilities. To accomplish this, the ER and WFF supported the tasking of the AMU to perform a number of sensitivity tests in order to determine the best model configuration for operational use at each of the ranges to best predict winds, precipitation, and temperature (Watson 2013). This task is a continuation of that work and will provide a recommended local data assimilation (DA) and numerical forecast model design optimized for the ER and WFF to support space launch activities. The model will be optimized for local weather challenges at both ranges.
NASA Astrophysics Data System (ADS)
Kassianov, E.; Pekour, M. S.; Flynn, C. J.; Berg, L. K.; Beranek, J.; Zelenyuk, A.; Zhao, C.; Leung, L. R.; Ma, P. L.; Riihimaki, L.; Fast, J. D.; Barnard, J.; Hallar, G. G.; McCubbin, I.; Eloranta, E. W.; McComiskey, A. C.; Rasch, P. J.
2017-12-01
Understanding the effects of dust on the regional and global climate requires detailed information on particle size distributions and their changes with distance from the source. Awareness is now growing about the tendency of the dust coarse mode with moderate ( 3.5 µm) volume median diameter (VMD) to be rather insensitive to complex removal processes associated with long-range transport of dust from the main sources. Our study, with a focus on the transpacific transport of dust, demonstrates that the impact of coarse mode aerosol (VMD 3µm) is well defined at the high-elevation mountain-top Storm Peak Laboratory (SPL, about 3.2 km MSL) and nearby Atmospheric Radiation Measurement (ARM) Climate Research Facility Mobile Facility (AMF) during March 2011. Significant amounts of coarse mode aerosol are also found at the nearest Aerosol Robotic Network (AERONET) site. Outputs from the high-resolution Weather Research and Forecasting (WRF) Model coupled with chemistry (WRF-Chem) show that the major dust event is likely associated with transpacific transport of Asian and African plumes. Satellite data, including the Moderate Resolution Imaging Spectroradiometer (MODIS) and Multiangle Imaging SpectroRadiometer (MISR) aerosol optical depth (AOD) and plume height from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) lidar data provide the observational support of the WRF-Chem simulations. Our study complements previous findings by indicating that the quasi-static nature of the coarse mode appears to be a reasonable approximation for Asian and African dust despite expected frequent orographic precipitation over mountainous regions in the western United States.
Testing Munk's hypothesis for submesoscale eddy generation using observations in the North Atlantic
NASA Astrophysics Data System (ADS)
Buckingham, Christian E.; Khaleel, Zammath; Lazar, Ayah; Martin, Adrian P.; Allen, John T.; Naveira Garabato, Alberto C.; Thompson, Andrew F.; Vic, Clément
2017-08-01
A high-resolution satellite image that reveals a train of coherent, submesoscale (6 km) vortices along the edge of an ocean front is examined in concert with hydrographic measurements in an effort to understand formation mechanisms of the submesoscale eddies. The infrared satellite image consists of ocean surface temperatures at ˜390 m resolution over the midlatitude North Atlantic (48.69°N, 16.19°W). Concomitant altimetric observations coupled with regular spacing of the eddies suggest the eddies result from mesoscale stirring, filamentation, and subsequent frontal instability. While horizontal shear or barotropic instability (BTI) is one mechanism for generating such eddies (Munk's hypothesis), we conclude from linear theory coupled with the in situ data that mixed layer or submesoscale baroclinic instability (BCI) is a more plausible explanation for the observed submesoscale vortices. Here we assume that the frontal disturbance remains in its linear growth stage and is accurately described by linear dynamics. This result likely has greater applicability to the open ocean, i.e., regions where the gradient Rossby number is reduced relative to its value along coasts and within strong current systems. Given that such waters comprise an appreciable percentage of the ocean surface and that energy and buoyancy fluxes differ under BTI and BCI, this result has wider implications for open-ocean energy/buoyancy budgets and parameterizations within ocean general circulation models. In summary, this work provides rare observational evidence of submesoscale eddy generation by BCI in the open ocean.
NASA Astrophysics Data System (ADS)
Cowley, Garret S.; Niemann, Jeffrey D.; Green, Timothy R.; Seyfried, Mark S.; Jones, Andrew S.; Grazaitis, Peter J.
2017-02-01
Soil moisture can be estimated at coarse resolutions (>1 km) using satellite remote sensing, but that resolution is poorly suited for many applications. The Equilibrium Moisture from Topography, Vegetation, and Soil (EMT+VS) model downscales coarse-resolution soil moisture using fine-resolution topographic, vegetation, and soil data to produce fine-resolution (10-30 m) estimates of soil moisture. The EMT+VS model performs well at catchments with low topographic relief (≤124 m), but it has not been applied to regions with larger ranges of elevation. Large relief can produce substantial variations in precipitation and potential evapotranspiration (PET), which might affect the fine-resolution patterns of soil moisture. In this research, simple methods to downscale temporal average precipitation and PET are developed and included in the EMT+VS model, and the effects of spatial variations in these variables on the surface soil moisture estimates are investigated. The methods are tested against ground truth data at the 239 km2 Reynolds Creek watershed in southern Idaho, which has 1145 m of relief. The precipitation and PET downscaling methods are able to capture the main features in the spatial patterns of both variables. The space-time Nash-Sutcliffe coefficients of efficiency of the fine-resolution soil moisture estimates improve from 0.33 to 0.36 and 0.41 when the precipitation and PET downscaling methods are included, respectively. PET downscaling provides a larger improvement in the soil moisture estimates than precipitation downscaling likely because the PET pattern is more persistent through time, and thus more predictable, than the precipitation pattern.
Fernández, Miguel; Hamilton, Healy H; Kueppers, Lara M
2015-11-01
Studies that model the effect of climate change on terrestrial ecosystems often use climate projections from downscaled global climate models (GCMs). These simulations are generally too coarse to capture patterns of fine-scale climate variation, such as the sharp coastal energy and moisture gradients associated with wind-driven upwelling of cold water. Coastal upwelling may limit future increases in coastal temperatures, compromising GCMs' ability to provide realistic scenarios of future climate in these coastal ecosystems. Taking advantage of naturally occurring variability in the high-resolution historic climatic record, we developed multiple fine-scale scenarios of California climate that maintain coherent relationships between regional climate and coastal upwelling. We compared these scenarios against coarse resolution GCM projections at a regional scale to evaluate their temporal equivalency. We used these historically based scenarios to estimate potential suitable habitat for coast redwood (Sequoia sempervirens D. Don) under 'normal' combinations of temperature and precipitation, and under anomalous combinations representative of potential future climates. We found that a scenario of warmer temperature with historically normal precipitation is equivalent to climate projected by GCMs for California by 2020-2030 and that under these conditions, climatically suitable habitat for coast redwood significantly contracts at the southern end of its current range. Our results suggest that historical climate data provide a high-resolution alternative to downscaled GCM outputs for near-term ecological forecasts. This method may be particularly useful in other regions where local climate is strongly influenced by ocean-atmosphere dynamics that are not represented by coarse-scale GCMs. © 2015 John Wiley & Sons Ltd.
Consistent integration of experimental and ab initio data into molecular and coarse-grained models
NASA Astrophysics Data System (ADS)
Vlcek, Lukas
As computer simulations are increasingly used to complement or replace experiments, highly accurate descriptions of physical systems at different time and length scales are required to achieve realistic predictions. The questions of how to objectively measure model quality in relation to reference experimental or ab initio data, and how to transition seamlessly between different levels of resolution are therefore of prime interest. To address these issues, we use the concept of statistical distance to define a measure of similarity between statistical mechanical systems, i.e., a model and its target, and show that its minimization leads to general convergence of the systems' measurable properties. Through systematic coarse-graining, we arrive at appropriate expressions for optimization loss functions consistently incorporating microscopic ab initio data as well as macroscopic experimental data. The design of coarse-grained and multiscale models is then based on factoring the model system partition function into terms describing the system at different resolution levels. The optimization algorithm takes advantage of thermodynamic perturbation expressions for fast exploration of the model parameter space, enabling us to scan millions of parameter combinations per hour on a single CPU. The robustness and generality of the new model optimization framework and its efficient implementation are illustrated on selected examples including aqueous solutions, magnetic systems, and metal alloys.
Kirchheimer, Bernhard; Schinkel, Christoph C F; Dellinger, Agnes S; Klatt, Simone; Moser, Dietmar; Winkler, Manuela; Lenoir, Jonathan; Caccianiga, Marco; Guisan, Antoine; Nieto-Lugilde, Diego; Svenning, Jens-Christian; Thuiller, Wilfried; Vittoz, Pascal; Willner, Wolfgang; Zimmermann, Niklaus E; Hörandl, Elvira; Dullinger, Stefan
2016-03-22
Emerging polyploids may depend on environmental niche shifts for successful establishment. Using the alpine plant Ranunculus kuepferi as a model system, we explore the niche shift hypothesis at different spatial resolutions and in contrasting parts of the species range. European Alps. We sampled 12 individuals from each of 102 populations of R. kuepferi across the Alps, determined their ploidy levels, derived coarse-grain (100 × 100 m) environmental descriptors for all sampling sites by downscaling WorldClim maps, and calculated fine-scale environmental descriptors (2 × 2 m) from indicator values of the vegetation accompanying the sampled individuals. Both coarse and fine-scale variables were further computed for 8239 vegetation plots from across the Alps. Subsequently, we compared niche optima and breadths of diploid and tetraploid cytotypes by combining principal components analysis and kernel smoothing procedures. Comparisons were done separately for coarse and fine-grain data sets and for sympatric, allopatric and the total set of populations. All comparisons indicate that the niches of the two cytotypes differ in optima and/or breadths, but results vary in important details. The whole-range analysis suggests differentiation along the temperature gradient to be most important. However, sympatric comparisons indicate that this climatic shift was not a direct response to competition with diploid ancestors. Moreover, fine-grained analyses demonstrate niche contraction of tetraploids, especially in the sympatric range, that goes undetected with coarse-grained data. Although the niche optima of the two cytotypes differ, separation along ecological gradients was probably less decisive for polyploid establishment than a shift towards facultative apomixis, a particularly effective strategy to avoid minority cytotype exclusion. In addition, our results suggest that coarse-grained analyses overestimate niche breadths of widely distributed taxa. Niche comparison analyses should hence be conducted at environmental data resolutions appropriate for the organism and question under study.
Comparative treatment effectiveness of conventional trench and seepage pit systems.
Field, J P; Farrell-Poe, K L; Walworth, J L
2007-03-01
On-site wastewater treatment systems can be a potential source of groundwater contamination in regions throughout the United States and other parts of the world. Here, we evaluate four conventional trench systems and four seepage pit systems to determine the relative effectiveness of these systems for the treatment of septic tank effluent in medium- to coarse-textured arid and semiarid soils. Soil borings were advanced up to twice the depth of the trenches (4 m) and seepage pits (15 m) at two horizontal distances (30 cm and 1.5 m) from the sidewalls of the systems. Soil samples were analyzed for various biological and chemical parameters, including Escherichia coli, total coliform, pH, total organic carbon, total dissolved solids, total nitrogen, ammonium-nitrogen, and nitrate-nitrogen. Most soil parameters investigated approached background levels more rapidly near the trenches than the seepage pits, as sampling distance increased both vertically and horizontally from the sidewalls of the systems.
NASA Astrophysics Data System (ADS)
Broich, Mark
Humid tropical forest cover loss is threatening the sustainability of ecosystem goods and services as vast forest areas are rapidly cleared for industrial scale agriculture and tree plantations. Despite the importance of humid tropical forest in the provision of ecosystem services and economic development opportunities, the spatial and temporal distribution of forest cover loss across large areas is not well quantified. Here I improve the quantification of humid tropical forest cover loss using two remote sensing-based methods: sampling and wall-to-wall mapping. In all of the presented studies, the integration of coarse spatial, high temporal resolution data with moderate spatial, low temporal resolution data enable advances in quantifying forest cover loss in the humid tropics. Imagery from the Moderate Resolution Imaging Spectroradiometer (MODIS) are used as the source of coarse spatial resolution, high temporal resolution data and imagery from the Landsat Enhanced Thematic Mapper Plus (ETM+) sensor are used as the source of moderate spatial, low temporal resolution data. In a first study, I compare the precision of different sampling designs for the Brazilian Amazon using the annual deforestation maps derived by the Brazilian Space Agency for reference. I show that sampling designs can provide reliable deforestation estimates; furthermore, sampling designs guided by MODIS data can provide more efficient estimates than the systematic design used for the United Nations Food and Agricultural Organization Forest Resource Assessment 2010. Sampling approaches, such as the one demonstrated, are viable in regions where data limitations, such as cloud contamination, limit exhaustive mapping methods. Cloud-contaminated regions experiencing high rates of change include Insular Southeast Asia, specifically Indonesia and Malaysia. Due to persistent cloud cover, forest cover loss in Indonesia has only been mapped at a 5-10 year interval using photo interpretation of single best Landsat images. Such an approach does not provide timely results, and cloud cover reduces the utility of map outputs. In a second study, I develop a method to exhaustively mine the recently opened Landsat archive for cloud-free observations and automatically map forest cover loss for Sumatra and Kalimantan for the 2000-2005 interval. In a comparison with a reference dataset consisting of 64 Landsat sample blocks, I show that my method, using per pixel time-series, provides more accurate forest cover loss maps for multiyear intervals than approaches using image composites. In a third study, I disaggregate Landsat-mapped forest cover loss, mapped over a multiyear interval, by year using annual forest cover loss maps generated from coarse spatial, high temporal resolution MODIS imagery. I further disaggregate and analyze forest cover loss by forest land use, and provinces. Forest cover loss trends show high spatial and temporal variability. These results underline the importance of annual mapping for the quantification of forest cover loss in Indonesia, specifically in the light of the developing Reducing Emissions from Deforestation and Forest Degradation in Developing Countries policy framework (REDD). All three studies highlight the advances in quantifying forest cover loss in the humid tropics made by integrating coarse spatial, high temporal resolution data with moderate spatial, low temporal resolution data. The three methods presented can be combined into an integrated monitoring strategy.
Kawase & McDermott revisited with a proper ocean model.
NASA Astrophysics Data System (ADS)
Jochum, Markus; Poulsen, Mads; Nuterman, Roman
2017-04-01
A suite of experiments with global ocean models is used to test the hypothesis that Southern Ocean (SO) winds can modify the strength of the Atlantic Meridional Overturning Circulation (AMOC). It is found that for 3 and 1 degree resolution models the results are consistent with Toggweiler & Samuels (1995): stronger SO winds lead to a slight increase of the AMOC. In the simulations with 1/10 degree resolution, however, stronger SO winds weaken the AMOC. We show that these different outcomes are determined by the models' representation of topographic Rossby and Kelvin waves. Consistent with previous literature based on theory and idealized models, first baroclinic waves are slower in the coarse resolution models, but still manage to establish a pattern of global response that is similar to the one in the eddy-permitting model. Because of its different stratification, however, the Atlantic signal is transmitted by higher baroclinic modes. In the coarse resolution model these higher modes are dissipated before they reach 30N, whereas in the eddy-permitting model they reach the subpolar gyre undiminished. This inability of non-eddy-permitting ocean models to represent planetary waves with higher baroclinic modes casts doubt on the ability of climate models to represent non-local effects of climate change. Ideas on how to overcome these difficulties will be discussed.
On the role of horizontal resolution over the Tibetan Plateau in the REMO regional climate model
NASA Astrophysics Data System (ADS)
Xu, Jingwei; Koldunov, Nikolay; Remedio, Armelle Reca C.; Sein, Dmitry V.; Zhi, Xiefei; Jiang, Xi; Xu, Min; Zhu, Xiuhua; Fraedrich, Klaus; Jacob, Daniela
2018-02-01
A number of studies have shown that added value is obtained by increasing the horizontal resolution of a regional climate model to capture additional fine-scale weather processes. However, the mechanisms leading to this added value are different over areas with complicated orographic features, such as the Tibetan Plateau (TP). To determine the role that horizontal resolution plays over the TP, a detailed comparison was made between the results from the REMO regional climate model at resolutions of 25 and 50 km for the period 1980-2007. The model was driven at the lateral boundaries by the European Centre for Medium-Range Weather Forecasts Interim Reanalysis data. The experiments differ only in representation of topography, all other land parameters (e.g., vegetation characteristics, soil texture) are the same. The results show that the high-resolution topography affects the regional air circulation near the ground surface around the edge of the TP, which leads to a redistribution of the transport of atmospheric water vapor, especially over the Brahmaputra and Irrawaddy valleys—the main water vapor paths for the southern TP—increasing the amount of atmospheric water vapor transported onto the TP by about 5%. This, in turn, significantly decreases the temperature at 2 m by > 1.5 °C in winter in the high-resolution simulation of the southern TP. The impact of topography on the 2 m temperature over the TP is therefore by influencing the transport of atmospheric water vapor in the main water vapor paths.
A study of overflow simulations using MPAS-Ocean: Vertical grids, resolution, and viscosity
NASA Astrophysics Data System (ADS)
Reckinger, Shanon M.; Petersen, Mark R.; Reckinger, Scott J.
2015-12-01
MPAS-Ocean is used to simulate an idealized, density-driven overflow using the dynamics of overflow mixing and entrainment (DOME) setup. Numerical simulations are carried out using three of the vertical coordinate types available in MPAS-Ocean, including z-star with partial bottom cells, z-star with full cells, and sigma coordinates. The results are first benchmarked against other models, including the MITgcm's z-coordinate model and HIM's isopycnal coordinate model, which are used to set the base case used for this work. A full parameter study is presented that looks at how sensitive overflow simulations are to vertical grid type, resolution, and viscosity. Horizontal resolutions with 50 km grid cells are under-resolved and produce poor results, regardless of other parameter settings. Vertical grids ranging in thickness from 15 m to 120 m were tested. A horizontal resolution of 10 km and a vertical resolution of 60 m are sufficient to resolve the mesoscale dynamics of the DOME configuration, which mimics real-world overflow parameters. Mixing and final buoyancy are least sensitive to horizontal viscosity, but strongly sensitive to vertical viscosity. This suggests that vertical viscosity could be adjusted in overflow water formation regions to influence mixing and product water characteristics. Lastly, the study shows that sigma coordinates produce much less mixing than z-type coordinates, resulting in heavier plumes that go further down slope. Sigma coordinates are less sensitive to changes in resolution but as sensitive to vertical viscosity compared to z-coordinates.
NASA Technical Reports Server (NTRS)
Austin, J.
1986-01-01
Midstratospheric trajectories for February and March 1979 are calculated using geopotential analyses derived from limb infrared monitor of the stratosphere data. These trajectories are compared with the corresponding results using stratospheric sounding unit data. The trajectories are quasi-isentropic in that a radiation scheme is used to simply cross-isentrope flow. The results show that in disturbed conditions, quantitative agreement the trajectories, that is, within 25 great circle degrees (GCD) (one GCD about 110 km) may be valid for only 3 or 4 days, whereas during quiescent periods, quantitative agreement may last up to 10 days. By comparing trajectories calculated with different data some insight can be gained as to errors due to vertical resolution and horizontal resolution (due to infrequent sampling) in the analyzed geopotential height fields. For the disturbed trajectories described in this paper the horizontal resolution of the data was more important than vertical resolution; however, for the quiescent trajectories, which could be calculated accurately for a longer duration because of the absence of appreciable transients, the vertical resolution of the data was found to be more important than the horizontal resolution. It is speculated that these characteristics are also applicable to trajectories calculated during disturbed and quiescent periods in general. A review of some recently published trajectories shows that the qualitative conclusions of such works remains unaffected when the calculations are repeated using different data.
Endalamaw, Abraham; Bolton, W. Robert; Young-Robertson, Jessica M.; ...
2017-09-14
Modeling hydrological processes in the Alaskan sub-arctic is challenging because of the extreme spatial heterogeneity in soil properties and vegetation communities. Nevertheless, modeling and predicting hydrological processes is critical in this region due to its vulnerability to the effects of climate change. Coarse-spatial-resolution datasets used in land surface modeling pose a new challenge in simulating the spatially distributed and basin-integrated processes since these datasets do not adequately represent the small-scale hydrological, thermal, and ecological heterogeneity. The goal of this study is to improve the prediction capacity of mesoscale to large-scale hydrological models by introducing a small-scale parameterization scheme, which bettermore » represents the spatial heterogeneity of soil properties and vegetation cover in the Alaskan sub-arctic. The small-scale parameterization schemes are derived from observations and a sub-grid parameterization method in the two contrasting sub-basins of the Caribou Poker Creek Research Watershed (CPCRW) in Interior Alaska: one nearly permafrost-free (LowP) sub-basin and one permafrost-dominated (HighP) sub-basin. The sub-grid parameterization method used in the small-scale parameterization scheme is derived from the watershed topography. We found that observed soil thermal and hydraulic properties – including the distribution of permafrost and vegetation cover heterogeneity – are better represented in the sub-grid parameterization method than the coarse-resolution datasets. Parameters derived from the coarse-resolution datasets and from the sub-grid parameterization method are implemented into the variable infiltration capacity (VIC) mesoscale hydrological model to simulate runoff, evapotranspiration (ET), and soil moisture in the two sub-basins of the CPCRW. Simulated hydrographs based on the small-scale parameterization capture most of the peak and low flows, with similar accuracy in both sub-basins, compared to simulated hydrographs based on the coarse-resolution datasets. On average, the small-scale parameterization scheme improves the total runoff simulation by up to 50 % in the LowP sub-basin and by up to 10 % in the HighP sub-basin from the large-scale parameterization. This study shows that the proposed sub-grid parameterization method can be used to improve the performance of mesoscale hydrological models in the Alaskan sub-arctic watersheds.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Endalamaw, Abraham; Bolton, W. Robert; Young-Robertson, Jessica M.
Modeling hydrological processes in the Alaskan sub-arctic is challenging because of the extreme spatial heterogeneity in soil properties and vegetation communities. Nevertheless, modeling and predicting hydrological processes is critical in this region due to its vulnerability to the effects of climate change. Coarse-spatial-resolution datasets used in land surface modeling pose a new challenge in simulating the spatially distributed and basin-integrated processes since these datasets do not adequately represent the small-scale hydrological, thermal, and ecological heterogeneity. The goal of this study is to improve the prediction capacity of mesoscale to large-scale hydrological models by introducing a small-scale parameterization scheme, which bettermore » represents the spatial heterogeneity of soil properties and vegetation cover in the Alaskan sub-arctic. The small-scale parameterization schemes are derived from observations and a sub-grid parameterization method in the two contrasting sub-basins of the Caribou Poker Creek Research Watershed (CPCRW) in Interior Alaska: one nearly permafrost-free (LowP) sub-basin and one permafrost-dominated (HighP) sub-basin. The sub-grid parameterization method used in the small-scale parameterization scheme is derived from the watershed topography. We found that observed soil thermal and hydraulic properties – including the distribution of permafrost and vegetation cover heterogeneity – are better represented in the sub-grid parameterization method than the coarse-resolution datasets. Parameters derived from the coarse-resolution datasets and from the sub-grid parameterization method are implemented into the variable infiltration capacity (VIC) mesoscale hydrological model to simulate runoff, evapotranspiration (ET), and soil moisture in the two sub-basins of the CPCRW. Simulated hydrographs based on the small-scale parameterization capture most of the peak and low flows, with similar accuracy in both sub-basins, compared to simulated hydrographs based on the coarse-resolution datasets. On average, the small-scale parameterization scheme improves the total runoff simulation by up to 50 % in the LowP sub-basin and by up to 10 % in the HighP sub-basin from the large-scale parameterization. This study shows that the proposed sub-grid parameterization method can be used to improve the performance of mesoscale hydrological models in the Alaskan sub-arctic watersheds.« less
NASA Astrophysics Data System (ADS)
Senanayake, I. P.; Yeo, I. Y.; Tangdamrongsub, N.; Willgoose, G. R.; Hancock, G. R.; Wells, T.; Fang, B.; Lakshmi, V.
2017-12-01
Long-term soil moisture datasets at high spatial resolution are important in agricultural, hydrological, and climatic applications. The soil moisture estimates can be achieved using satellite remote sensing observations. However, the satellite soil moisture data are typically available at coarse spatial resolutions ( several tens of km), therefore require further downscaling. Different satellite soil moisture products have to be conjointly employed in developing a consistent time-series of high resolution soil moisture, while the discrepancies amongst different satellite retrievals need to be resolved. This study aims to downscale three different satellite soil moisture products, the Soil Moisture and Ocean Salinity (SMOS, 25 km), the Soil Moisture Active Passive (SMAP, 36 km) and the SMAP-Enhanced (9 km), and to conduct an inter-comparison of the downscaled results. The downscaling approach is developed based on the relationship between the diurnal temperature difference and the daily mean soil moisture content. The approach is applied to two sub-catchments (Krui and Merriwa River) of the Goulburn River catchment in the Upper Hunter region (NSW, Australia) to estimate soil moisture at 1 km resolution for 2015. The three coarse spatial resolution soil moisture products and their downscaled results will be validated with the in-situ observations obtained from the Scaling and Assimilation of Soil Moisture and Streamflow (SASMAS) network. The spatial and temporal patterns of the downscaled results will also be analysed. This study will provide the necessary insights for data selection and bias corrections to maintain the consistency of a long-term high resolution soil moisture dataset. The results will assist in developing a time-series of high resolution soil moisture data over the south-eastern Australia.
NASA Astrophysics Data System (ADS)
Dang, Hao; Webster Stayman, J.; Sisniega, Alejandro; Zbijewski, Wojciech; Xu, Jennifer; Wang, Xiaohui; Foos, David H.; Aygun, Nafi; Koliatsos, Vassilis E.; Siewerdsen, Jeffrey H.
2017-01-01
A prototype cone-beam CT (CBCT) head scanner featuring model-based iterative reconstruction (MBIR) has been recently developed and demonstrated the potential for reliable detection of acute intracranial hemorrhage (ICH), which is vital to diagnosis of traumatic brain injury and hemorrhagic stroke. However, data truncation (e.g. due to the head holder) can result in artifacts that reduce image uniformity and challenge ICH detection. We propose a multi-resolution MBIR method with an extended reconstruction field of view (RFOV) to mitigate truncation effects in CBCT of the head. The image volume includes a fine voxel size in the (inner) nontruncated region and a coarse voxel size in the (outer) truncated region. This multi-resolution scheme allows extension of the RFOV to mitigate truncation effects while introducing minimal increase in computational complexity. The multi-resolution method was incorporated in a penalized weighted least-squares (PWLS) reconstruction framework previously developed for CBCT of the head. Experiments involving an anthropomorphic head phantom with truncation due to a carbon-fiber holder were shown to result in severe artifacts in conventional single-resolution PWLS, whereas extending the RFOV within the multi-resolution framework strongly reduced truncation artifacts. For the same extended RFOV, the multi-resolution approach reduced computation time compared to the single-resolution approach (viz. time reduced by 40.7%, 83.0%, and over 95% for an image volume of 6003, 8003, 10003 voxels). Algorithm parameters (e.g. regularization strength, the ratio of the fine and coarse voxel size, and RFOV size) were investigated to guide reliable parameter selection. The findings provide a promising method for truncation artifact reduction in CBCT and may be useful for other MBIR methods and applications for which truncation is a challenge.
Ruff, Kiersten M.; Harmon, Tyler S.; Pappu, Rohit V.
2015-01-01
We report the development and deployment of a coarse-graining method that is well suited for computer simulations of aggregation and phase separation of protein sequences with block-copolymeric architectures. Our algorithm, named CAMELOT for Coarse-grained simulations Aided by MachinE Learning Optimization and Training, leverages information from converged all atom simulations that is used to determine a suitable resolution and parameterize the coarse-grained model. To parameterize a system-specific coarse-grained model, we use a combination of Boltzmann inversion, non-linear regression, and a Gaussian process Bayesian optimization approach. The accuracy of the coarse-grained model is demonstrated through direct comparisons to results from all atom simulations. We demonstrate the utility of our coarse-graining approach using the block-copolymeric sequence from the exon 1 encoded sequence of the huntingtin protein. This sequence comprises of 17 residues from the N-terminal end of huntingtin (N17) followed by a polyglutamine (polyQ) tract. Simulations based on the CAMELOT approach are used to show that the adsorption and unfolding of the wild type N17 and its sequence variants on the surface of polyQ tracts engender a patchy colloid like architecture that promotes the formation of linear aggregates. These results provide a plausible explanation for experimental observations, which show that N17 accelerates the formation of linear aggregates in block-copolymeric N17-polyQ sequences. The CAMELOT approach is versatile and is generalizable for simulating the aggregation and phase behavior of a range of block-copolymeric protein sequences. PMID:26723608
The power spectrum of solar convection flows from high-resolution observations and 3D simulations
NASA Astrophysics Data System (ADS)
Yelles Chaouche, L.; Moreno-Insertis, F.; Bonet, J. A.
2014-03-01
Context. Understanding solar surface magnetoconvection requires the study of the Fourier spectra of the velocity fields. Nowadays, observations are available that resolve very small spatial scales, well into the subgranular range, almost reaching the scales routinely resolved in numerical magnetoconvection simulations. Comparison of numerical and observational data at present can provide an assessment of the validity of the observational proxies. Aims: Our aims are: (1) to obtain Fourier spectra for the photospheric velocity fields using the spectropolarimetric observations with the highest spatial resolution so far (~120 km), thus reaching for the first time spatial scales well into the subgranular range; (2) to calculate corresponding Fourier spectra from realistic 3D numerical simulations of magnetoconvection and carry out a proper comparison with their observational counterparts considering the residual instrumental degradation in the observational data; and (3) to test the observational proxies on the basis of the numerical data alone, by comparing the actual velocity field in the simulations with synthetic observations obtained from the numerical boxes. Methods: (a) For the observations, data from the SUNRISE/IMaX spectropolarimeter are used. (b) For the simulations, we use four series of runs obtained with the STAGGER code for different average signed vertical magnetic field values (0, 50, 100, and 200 G). Spectral line profiles are synthesized from the numerical boxes for the same line observed by IMaX (Fe I 5250.2 Å) and degraded to match the performance of the IMaX instrument. Proxies for the velocity field are obtained via Dopplergrams (vertical component) and local correlation tracking (LCT, for the horizontal component). Fourier power spectra are calculated and a comparison between the synthetic and observational data sets carried out. (c) For the internal comparison of the numerical data, velocity values on constant optical depth surfaces are used instead of on horizontal planes. Results: A very good match between observational and simulated Fourier power spectra is obtained for the vertical velocity data for scales between 200 km and 6 Mm. Instead, a clear vertical shift is obtained when the synthetic observations are not degraded to emulate the degradation in the IMaX data. The match for the horizontal velocity data is much less impressive because of the inaccuracies of the LCT procedure. Concerning the internal comparison of the direct velocity values of the numerical boxes with those from the synthetic observations, a high correlation (0.96) is obtained for the vertical component when using the velocity values on the log τ500 = -1 surface in the box. The corresponding Fourier spectra are near each other. A lower maximum correlation (0.5) is reached (at log τ500 = 0) for the horizontal velocities as a result of the coarseness of the LCT procedure. Correspondingly, the Fourier spectra for the LCT-determined velocities is well below that from the actual velocity components. Conclusions: As measured by the Fourier spectra, realistic numerical simulations of surface magnetoconvection provide a very good match to the observational proxies for the photospheric velocity fields at least on scales from several Mm down to around 200 km. Taking into account the spatial and spectral instrumental blurring is essential for the comparison between simulations and observations. Dopplergrams are an excellent proxy for the vertical velocities on constant-τ isosurfaces, while LCT is a much less reliable method of determining the horizontal velocities.
The first ISLSCP field experiment (FIFE). [International Satellite Land Surface Climatology Project
NASA Technical Reports Server (NTRS)
Sellers, P. J.; Hall, F. G.; Asrar, G.; Strebel, D. E.; Murphy, R. E.
1988-01-01
The background and planning of the first International Satellite Land Surface Climatology Project (ISLSCP) field experiment (FIFE) are discussed. In FIFE, the NOAA series of satellites and GOES will be used to provide a moderate-temporal resolution coarse-spatial resolution data set, with SPOT and aircraft data providing the high-spatial resolution pointable-instrument capability. The paper describes the experiment design, the measurement strategy, the configuration of the site of the experiment (which will be at and around the Konza prairie near Manhattan, Kansas), and the experiment's operations and execution.
Testing of the new tuner design for the CEBAF 12 GeV upgrade SRF cavities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edward Daly; G. Davis; William Hicks
2005-05-01
The new tuner design for the 12 GeV Upgrade SRF cavities consists of a coarse mechanical tuner and a fine piezoelectric tuner. The mechanism provides a 30:1 mechanical advantage, is pre-loaded at room temperature and tunes the cavities in tension only. All of the components are located in the insulating vacuum space and attached to the helium vessel, including the motor, harmonic drive and piezoelectric actuators. The requirements and detailed design are presented. Measurements of range and resolution of the coarse tuner are presented and discussed.
CMIP5 model simulations of Ethiopian Kiremt-season precipitation: current climate and future changes
NASA Astrophysics Data System (ADS)
Li, Laifang; Li, Wenhong; Ballard, Tristan; Sun, Ge; Jeuland, Marc
2016-05-01
Kiremt-season (June-September) precipitation provides a significant water supply for Ethiopia, particularly in the central and northern regions. The response of Kiremt-season precipitation to climate change is thus of great concern to water resource managers. However, the complex processes that control Kiremt-season precipitation challenge the capability of general circulation models (GCMs) to accurately simulate precipitation amount and variability. This in turn raises questions about their utility for predicting future changes. This study assesses the impact of climate change on Kiremt-season precipitation using state-of-the-art GCMs participating in the Coupled Model Intercomparison Project Phase 5. Compared to models with a coarse resolution, high-resolution models (horizontal resolution <2°) can more accurately simulate precipitation, most likely due to their ability to capture precipitation induced by topography. Under the Representative Concentration Pathway (RCP) 4.5 scenario, these high-resolution models project an increase in precipitation over central Highlands and northern Great Rift Valley in Ethiopia, but a decrease in precipitation over the southern part of the country. Such a dipole pattern is attributable to the intensification of the North Atlantic subtropical high (NASH) in a warmer climate, which influences Ethiopian Kiremt-season precipitation mainly by modulating atmospheric vertical motion. Diagnosis of the omega equation demonstrates that an intensified NASH increases (decreases) the advection of warm air and positive vorticity into the central Highlands and northern Great Rift Valley (southern part of the country), enhancing upward motion over the northern Rift Valley but decreasing elsewhere. Under the RCP 4.5 scenario, the high-resolution models project an intensification of the NASH by 15 (3 × 105 m2 s-2) geopotential meters (stream function) at the 850-hPa level, contributing to the projected precipitation change over Ethiopia. The influence of the NASH on Kiremt-season precipitation becomes more evident in the future due to the offsetting effects of two other major circulation systems: the East African Low-level Jet (EALLJ) and the Tropical Easterly Jet (TEJ). The high-resolution models project a strengthening of the EALLJ, but a weakening of the TEJ. Future changes in the EALLJ and TEJ will drive this precipitation system in opposite directions, leading to small or no net changes in precipitation in Ethiopia.
Storlie, Collin; Merino-Viteri, Andres; Phillips, Ben; VanDerWal, Jeremy; Welbergen, Justin; Williams, Stephen
2014-09-01
To assess a species' vulnerability to climate change, we commonly use mapped environmental data that are coarsely resolved in time and space. Coarsely resolved temperature data are typically inaccurate at predicting temperatures in microhabitats used by an organism and may also exhibit spatial bias in topographically complex areas. One consequence of these inaccuracies is that coarsely resolved layers may predict thermal regimes at a site that exceed species' known thermal limits. In this study, we use statistical downscaling to account for environmental factors and develop high-resolution estimates of daily maximum temperatures for a 36 000 km(2) study area over a 38-year period. We then demonstrate that this statistical downscaling provides temperature estimates that consistently place focal species within their fundamental thermal niche, whereas coarsely resolved layers do not. Our results highlight the need for incorporation of fine-scale weather data into species' vulnerability analyses and demonstrate that a statistical downscaling approach can yield biologically relevant estimates of thermal regimes. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
NASA Astrophysics Data System (ADS)
Federico, S.; Avolio, E.; Bellecci, C.; Colacino, M.; Walko, R. L.
2006-03-01
This paper reports preliminary results for a Limited area model Ensemble Prediction System (LEPS), based on RAMS (Regional Atmospheric Modelling System), for eight case studies of moderate-intense precipitation over Calabria, the southernmost tip of the Italian peninsula. LEPS aims to transfer the benefits of a probabilistic forecast from global to regional scales in countries where local orographic forcing is a key factor to force convection. To accomplish this task and to limit computational time in an operational implementation of LEPS, we perform a cluster analysis of ECMWF-EPS runs. Starting from the 51 members that form the ECMWF-EPS we generate five clusters. For each cluster a representative member is selected and used to provide initial and dynamic boundary conditions to RAMS, whose integrations generate LEPS. RAMS runs have 12-km horizontal resolution. To analyze the impact of enhanced horizontal resolution on quantitative precipitation forecasts, LEPS forecasts are compared to a full Brute Force (BF) ensemble. This ensemble is based on RAMS, has 36 km horizontal resolution and is generated by 51 members, nested in each ECMWF-EPS member. LEPS and BF results are compared subjectively and by objective scores. Subjective analysis is based on precipitation and probability maps of case studies whereas objective analysis is made by deterministic and probabilistic scores. Scores and maps are calculated by comparing ensemble precipitation forecasts against reports from the Calabria regional raingauge network. Results show that LEPS provided better rainfall predictions than BF for all case studies selected. This strongly suggests the importance of the enhanced horizontal resolution, compared to ensemble population, for Calabria for these cases. To further explore the impact of local physiographic features on QPF (Quantitative Precipitation Forecasting), LEPS results are also compared with a 6-km horizontal resolution deterministic forecast. Due to local and mesoscale forcing, the high resolution forecast (Hi-Res) has better performance compared to the ensemble mean for rainfall thresholds larger than 10mm but it tends to overestimate precipitation for lower amounts. This yields larger false alarms that have a detrimental effect on objective scores for lower thresholds. To exploit the advantages of a probabilistic forecast compared to a deterministic one, the relation between the ECMWF-EPS 700 hPa geopotential height spread and LEPS performance is analyzed. Results are promising even if additional studies are required.
Effect of Conflict Resolution Maneuver Execution Delay on Losses of Separation
NASA Technical Reports Server (NTRS)
Cone, Andrew C.
2010-01-01
This paper examines uncertainty in the maneuver execution delay for data linked conflict resolution maneuvers. This uncertainty could cause the previously cleared primary conflict to reoccur or a secondary conflict to appear. Results show that the likelihood of a primary conflict reoccurring during a horizontal conflict resolution maneuver increases with larger initial turn-out angles and with shorter times until loss of separation. There is also a significant increase in the probability of a primary conflict reoccurring when the time until loss falls under three minutes. Increasing horizontal separation by an additional 1.5 nmi lowers the risk, but does not completely eliminate it. Secondary conflicts were shown to have a small probability of occurring in all tested configurations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Birch, Gabriel Carisle; Griffin, John Clark
2015-01-01
The horizontal television lines (HTVL) metric has been the primary quantity used by division 6000 related to camera resolution for high consequence security systems. This document shows HTVL measurements are fundamen- tally insufficient as a metric to determine camera resolution, and propose a quantitative, standards based methodology by measuring the camera system modulation transfer function (MTF), the most common and accepted metric of res- olution in the optical science community. Because HTVL calculations are easily misinterpreted or poorly defined, we present several scenarios in which HTVL is frequently reported, and discuss their problems. The MTF metric is discussed, and scenariosmore » are presented with calculations showing the application of such a metric.« less
New Horizons Best Close-Up of Pluto Surface
2016-05-27
This frame from a movie, which extends across the hemisphere that faced New Horizons spacecraft as it flew past Pluto on July 14, 2015, includes all of the highest-resolution images taken by the NASA probe. With a resolution of about 260 feet (80 meters) per pixel, the movie affords New Horizons scientists and the public the best opportunity to examine the fine details of the various types of terrain the mosaic covers, and determine the processes that formed and shaped them. The view extends from the "limb" of Pluto at the top of the strip, almost to the "terminator" (or day/night line) in the southeast of the encounter hemisphere, seen at the bottom of the strip. The width of the strip ranges from more than 55 miles (90 kilometers) at its northern end to about 45 miles (75 kilometers) at its southern end. The perspective changes greatly along the strip: at its northern end, the view looks out horizontally across the surface, while at its southern end, the view looks straight down onto the surface. This movie pans down the mosaic from top to bottom, offering new views of many of Pluto's distinct landscapes along the way. Starting with hummocky, cratered uplands at top, the view crosses over parallel ridges of the "washboard" terrain; chaotic and angular mountain ranges; the craterless, cellular plains; coarsely "pitted" areas of sublimating nitrogen ice; zones of thin nitrogen ice draped over the topography below; and rugged, dark, mountainous highlands scarred by deep pits. The frames in the movie were obtained by New Horizons' Long Range Reconnaissance Imager (LORRI) approximately 9,850 miles (15,850 kilometers) from Pluto, about 23 minutes before New Horizons' closest approach. LORRI is only capable of obtaining black-and-white images; all color images are made by the Ralph instrument, which has somewhat lower resolution than LORRI. Movies are available at http://photojournal.jpl.nasa.gov/catalog/PIA14457
NASA Astrophysics Data System (ADS)
Barros, A. P.; Eghdami, M.
2017-12-01
High-resolution ( 1 km) numerical weather prediction models are capable of producing atmospheric spectra over synoptic and mesoscale ranges. Nogueira and Barros (2015) showed using high-resolution simulations in the Andes that the horizontal scale invariant behavior of atmospheric wind and water fields in the model is a process-dependent transient property that varies with the underlying dynamics. They found a sharp transition in the scaling parameters between non-convective and convective conditions. Spectral slopes around 2-2.3 arise under non-convective or very weak convective conditions, whereas in convective situations the transient scaling exponents remain under -5/3. Based on these results, Nogueira and Barros (2015) proposed a new sub-grid scale parameterization of clouds obtained from coarse resolution states alone. High Reynolds number direct numerical simulations of two-dimensional turbulence transfer shows that atmospheric flows involve concurrent direct (downscale) enstrophy transfer in the synoptic scales and inverse (upscale) kinetic energy transfer from the meso- to the synoptic-scales. In this study we use an analogy to investigate the transient behavior of kinetic energy spectra of winds over the Andes and Southern Appalachian Mountains representative of high and middle mountains, respectively. In the unstable conditions and particularly in the Planetary Boundary Layer (PBL) the spectral slopes approach -5/3 associated with the upscale KE turbulence transfer. However, in the stable conditions and above the planetary boundary layer, the spectra slopes approach steeper slopes about -3 associated with the downscale KE transfer. The underlying topography, surface roughness, diurnal heating and cooling and moist processes add to the complexity of the problem by introducing anisotropy and sources and sinks of energy. A comprehensive analysis and scaling of flow behavior conditional on stability regime for both KE and moist processes (total water, cloud water, rainfall) is necessary to elucidate scale-interactions among different processes.
Air-sea exchange over Black Sea estimated from high resolution regional climate simulations
NASA Astrophysics Data System (ADS)
Velea, Liliana; Bojariu, Roxana; Cica, Roxana
2013-04-01
Black Sea is an important influencing factor for the climate of bordering countries, showing cyclogenetic activity (Trigo et al, 1999) and influencing Mediterranean cyclones passing over. As for other seas, standard observations of the atmosphere are limited in time and space and available observation-based estimations of air-sea exchange terms present quite large ranges of uncertainty. The reanalysis datasets (e.g. ERA produced by ECMWF) provide promising validation estimates of climatic characteristics against the ones in available climatic data (Schrum et al, 2001), while cannot reproduce some local features due to relatively coarse horizontal resolution. Detailed and realistic information on smaller-scale processes are foreseen to be provided by regional climate models, due to continuous improvements of physical parameterizations and numerical solutions and thus affording simulations at high spatial resolution. The aim of the study is to assess the potential of three regional climate models in reproducing known climatological characteristics of air-sea exchange over Black Sea, as well as to explore the added value of the model compared to the input (reanalysis) data. We employ results of long-term (1961-2000) simulations performed within ENSEMBLE project (http://ensemblesrt3.dmi.dk/) using models ETHZ-CLM, CNRM-ALADIN, METO-HadCM, for which the integration domain covers the whole area of interest. The analysis is performed for the entire basin for several variables entering the heat and water budget terms and available as direct output from the models, at seasonal and annual scale. A comparison with independent data (ERA-INTERIM) and findings from other studies (e.g. Schrum et al, 2001) is also presented. References: Schrum, C., Staneva, J., Stanev, E. and Ozsoy, E., 2001: Air-sea exchange in the Black Sea estimated from atmospheric analysis for the period 1979-1993, J. Marine Systems, 31, 3-19 Trigo, I. F., T. D. Davies, and G. R. Bigg (1999): Objective climatology of cyclones in the Mediterranean region. J. Climate, 12, 1685- 169
On the effects of scale for ecosystem services mapping
Grêt-Regamey, Adrienne; Weibel, Bettina; Bagstad, Kenneth J.; Ferrari, Marika; Geneletti, Davide; Klug, Hermann; Schirpke, Uta; Tappeiner, Ulrike
2014-01-01
Ecosystems provide life-sustaining services upon which human civilization depends, but their degradation largely continues unabated. Spatially explicit information on ecosystem services (ES) provision is required to better guide decision making, particularly for mountain systems, which are characterized by vertical gradients and isolation with high topographic complexity, making them particularly sensitive to global change. But while spatially explicit ES quantification and valuation allows the identification of areas of abundant or limited supply of and demand for ES, the accuracy and usefulness of the information varies considerably depending on the scale and methods used. Using four case studies from mountainous regions in Europe and the U.S., we quantify information gains and losses when mapping five ES - carbon sequestration, flood regulation, agricultural production, timber harvest, and scenic beauty - at coarse and fine resolution (250 m vs. 25 m in Europe and 300 m vs. 30 m in the U.S.). We analyze the effects of scale on ES estimates and their spatial pattern and show how these effects are related to different ES, terrain structure and model properties. ES estimates differ substantially between the fine and coarse resolution analyses in all case studies and across all services. This scale effect is not equally strong for all ES. We show that spatially explicit information about non-clustered, isolated ES tends to be lost at coarse resolution and against expectation, mainly in less rugged terrain, which calls for finer resolution assessments in such contexts. The effect of terrain ruggedness is also related to model properties such as dependency on land use-land cover data. We close with recommendations for mapping ES to make the resulting maps more comparable, and suggest a four-step approach to address the issue of scale when mapping ES that can deliver information to support ES-based decision making with greater accuracy and reliability.
On the Effects of Scale for Ecosystem Services Mapping
Grêt-Regamey, Adrienne; Weibel, Bettina; Bagstad, Kenneth J.; Ferrari, Marika; Geneletti, Davide; Klug, Hermann; Schirpke, Uta; Tappeiner, Ulrike
2014-01-01
Ecosystems provide life-sustaining services upon which human civilization depends, but their degradation largely continues unabated. Spatially explicit information on ecosystem services (ES) provision is required to better guide decision making, particularly for mountain systems, which are characterized by vertical gradients and isolation with high topographic complexity, making them particularly sensitive to global change. But while spatially explicit ES quantification and valuation allows the identification of areas of abundant or limited supply of and demand for ES, the accuracy and usefulness of the information varies considerably depending on the scale and methods used. Using four case studies from mountainous regions in Europe and the U.S., we quantify information gains and losses when mapping five ES - carbon sequestration, flood regulation, agricultural production, timber harvest, and scenic beauty - at coarse and fine resolution (250 m vs. 25 m in Europe and 300 m vs. 30 m in the U.S.). We analyze the effects of scale on ES estimates and their spatial pattern and show how these effects are related to different ES, terrain structure and model properties. ES estimates differ substantially between the fine and coarse resolution analyses in all case studies and across all services. This scale effect is not equally strong for all ES. We show that spatially explicit information about non-clustered, isolated ES tends to be lost at coarse resolution and against expectation, mainly in less rugged terrain, which calls for finer resolution assessments in such contexts. The effect of terrain ruggedness is also related to model properties such as dependency on land use-land cover data. We close with recommendations for mapping ES to make the resulting maps more comparable, and suggest a four-step approach to address the issue of scale when mapping ES that can deliver information to support ES-based decision making with greater accuracy and reliability. PMID:25549256
LaFontaine, Jacob H.; Jones, L. Elliott; Painter, Jaime A.
2017-12-29
A suite of hydrologic models has been developed for the Apalachicola-Chattahoochee-Flint River Basin (ACFB) as part of the National Water Census, a U.S. Geological Survey research program that focuses on developing new water accounting tools and assessing water availability and use at the regional and national scales. Seven hydrologic models were developed using the Precipitation-Runoff Modeling System (PRMS), a deterministic, distributed-parameter, process-based system that simulates the effects of precipitation, temperature, land cover, and water use on basin hydrology. A coarse-resolution PRMS model was developed for the entire ACFB, and six fine-resolution PRMS models were developed for six subbasins of the ACFB. The coarse-resolution model was loosely coupled with a groundwater model to better assess the effects of water use on streamflow in the lower ACFB, a complex geologic setting with karst features. The PRMS coarse-resolution model was used to provide inputs of recharge to the groundwater model, which in turn provide simulations of groundwater flow that were aggregated with PRMS-based simulations of surface runoff and shallow-subsurface flow. Simulations without the effects of water use were developed for each model for at least the calendar years 1982–2012 with longer periods for the Potato Creek subbasin (1942–2012) and the Spring Creek subbasin (1952–2012). Water-use-affected flows were simulated for 2008–12. Water budget simulations showed heterogeneous distributions of precipitation, actual evapotranspiration, recharge, runoff, and storage change across the ACFB. Streamflow volume differences between no-water-use and water-use simulations were largest along the main stem of the Apalachicola and Chattahoochee River Basins, with streamflow percentage differences largest in the upper Chattahoochee and Flint River Basins and Spring Creek in the lower Flint River Basin. Water-use information at a shorter time step and a fully coupled simulation in the lower ACFB may further improve water availability estimates and hydrologic simulations in the basin.
On the effects of scale for ecosystem services mapping.
Grêt-Regamey, Adrienne; Weibel, Bettina; Bagstad, Kenneth J; Ferrari, Marika; Geneletti, Davide; Klug, Hermann; Schirpke, Uta; Tappeiner, Ulrike
2014-01-01
Ecosystems provide life-sustaining services upon which human civilization depends, but their degradation largely continues unabated. Spatially explicit information on ecosystem services (ES) provision is required to better guide decision making, particularly for mountain systems, which are characterized by vertical gradients and isolation with high topographic complexity, making them particularly sensitive to global change. But while spatially explicit ES quantification and valuation allows the identification of areas of abundant or limited supply of and demand for ES, the accuracy and usefulness of the information varies considerably depending on the scale and methods used. Using four case studies from mountainous regions in Europe and the U.S., we quantify information gains and losses when mapping five ES - carbon sequestration, flood regulation, agricultural production, timber harvest, and scenic beauty - at coarse and fine resolution (250 m vs. 25 m in Europe and 300 m vs. 30 m in the U.S.). We analyze the effects of scale on ES estimates and their spatial pattern and show how these effects are related to different ES, terrain structure and model properties. ES estimates differ substantially between the fine and coarse resolution analyses in all case studies and across all services. This scale effect is not equally strong for all ES. We show that spatially explicit information about non-clustered, isolated ES tends to be lost at coarse resolution and against expectation, mainly in less rugged terrain, which calls for finer resolution assessments in such contexts. The effect of terrain ruggedness is also related to model properties such as dependency on land use-land cover data. We close with recommendations for mapping ES to make the resulting maps more comparable, and suggest a four-step approach to address the issue of scale when mapping ES that can deliver information to support ES-based decision making with greater accuracy and reliability.
Venusian tectonics: Convective coupling to the lithosphere?
NASA Technical Reports Server (NTRS)
Phillips, R. J.
1987-01-01
The relationship between the dominant global heat loss mechanism and planetary size has motivated the search for tectonic style on Venus. Prior to the American and Soviet mapping missions of the past eight years, it was thought that terrestrial style plate tectonics was operative on Venus because this planet is approximately the size of the Earth and is conjectured to have about the same heat source content per unit mass. However, surface topography mapped by the altimeter of the Pioneer Venus spacecraft did not show any physiographic expression of terrestrial style spreading ridges, trenches, volcanic arcs or transform faults, although the horizontal resolution was questionable for detection of at least some of these features. The Venera 15 and 16 radar missions mapped the northern latitudes of Venus at 1 to 2 km resolution and showed that there are significant geographic areas of deformation seemingly created by large horizontal stresses. These same high resolution images show no evidence for plate tectonic features. Thus a fundamental problem for venusian tectonics is the origin of large horizontal stresses near the surface in the apparent absence of plate tectonics.
NASA Astrophysics Data System (ADS)
Ganguly, S.; Basu, S.; Mukhopadhyay, S.; Michaelis, A.; Milesi, C.; Votava, P.; Nemani, R. R.
2013-12-01
An unresolved issue with coarse-to-medium resolution satellite-based forest carbon mapping over regional to continental scales is the high level of uncertainty in above ground biomass (AGB) estimates caused by the absence of forest cover information at a high enough spatial resolution (current spatial resolution is limited to 30-m). To put confidence in existing satellite-derived AGB density estimates, it is imperative to create continuous fields of tree cover at a sufficiently high resolution (e.g. 1-m) such that large uncertainties in forested area are reduced. The proposed work will provide means to reduce uncertainty in present satellite-derived AGB maps and Forest Inventory and Analysis (FIA) based regional estimates. Our primary objective will be to create Very High Resolution (VHR) estimates of tree cover at a spatial resolution of 1-m for the Continental United States using all available National Agriculture Imaging Program (NAIP) color-infrared imagery from 2010 till 2012. We will leverage the existing capabilities of the NASA Earth Exchange (NEX) high performance computing and storage facilities. The proposed 1-m tree cover map can be further aggregated to provide percent tree cover at any medium-to-coarse resolution spatial grid, which will aid in reducing uncertainties in AGB density estimation at the respective grid and overcome current limitations imposed by medium-to-coarse resolution land cover maps. We have implemented a scalable and computationally-efficient parallelized framework for tree-cover delineation - the core components of the algorithm [that] include a feature extraction process, a Statistical Region Merging image segmentation algorithm and a classification algorithm based on Deep Belief Network and a Feedforward Backpropagation Neural Network algorithm. An initial pilot exercise has been performed over the state of California (~11,000 scenes) to create a wall-to-wall 1-m tree cover map and the classification accuracy has been assessed. Results show an improvement in accuracy of tree-cover delineation as compared to existing forest cover maps from NLCD, especially over fragmented, heterogeneous and urban landscapes. Estimates of VHR tree cover will complement and enhance the accuracy of present remote-sensing based AGB modeling approaches and forest inventory based estimates at both national and local scales. A requisite step will be to characterize the inherent uncertainties in tree cover estimates and propagate them to estimate AGB.
Relative resolution: A hybrid formalism for fluid mixtures.
Chaimovich, Aviel; Peter, Christine; Kremer, Kurt
2015-12-28
We show here that molecular resolution is inherently hybrid in terms of relative separation. While nearest neighbors are characterized by a fine-grained (geometrically detailed) model, other neighbors are characterized by a coarse-grained (isotropically simplified) model. We notably present an analytical expression for relating the two models via energy conservation. This hybrid framework is correspondingly capable of retrieving the structural and thermal behavior of various multi-component and multi-phase fluids across state space.
Relative resolution: A hybrid formalism for fluid mixtures
NASA Astrophysics Data System (ADS)
Chaimovich, Aviel; Peter, Christine; Kremer, Kurt
2015-12-01
We show here that molecular resolution is inherently hybrid in terms of relative separation. While nearest neighbors are characterized by a fine-grained (geometrically detailed) model, other neighbors are characterized by a coarse-grained (isotropically simplified) model. We notably present an analytical expression for relating the two models via energy conservation. This hybrid framework is correspondingly capable of retrieving the structural and thermal behavior of various multi-component and multi-phase fluids across state space.
Impact of Resolution on the Representation of Precipitation Variability Associated With the ITCZ
NASA Astrophysics Data System (ADS)
De Benedetti, Marc; Moore, G. W. K.
2017-12-01
The Intertropical Convergence Zone (ITCZ) is responsible for most of the weather and climate in equatorial regions along with many tropical-midlatitude interactions. It is therefore important to understand how models represent its structure and variability. Most ITCZ-associated precipitation is convective, making it unclear how horizontal resolution impacts its representation. To assess this, we introduce a novel technique that involves calculation of the precipitation field's decorrelation length scale (DCLS) using model data sets that share a common lineage with horizontal resolutions from 16 to 160 km. All resolutions captured the ITCZ's mean structure; however, imprints of topography, such as Hawaii and sea surface temperature, including the variability associated with upwelling cold water off the coast of South America, are more clearly represented at higher resolutions. The DCLS analysis indicates that there are changes in the spatial variability of the ITCZ's precipitation that are not reflected in its mean structure, thus confirming its utility as a diagnostic.
Recommended aquifer grid resolution for E-Area PA revision transport simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flach, G.
This memorandum addresses portions of Section 3.5.2 of SRNL (2016) by recommending horizontal and vertical grid resolution for aquifer transport, in preparation for the next E-Area Performance Assessment (WSRC 2008) revision.
Relationship between large horizontal electric fields and auroral arc elements
NASA Astrophysics Data System (ADS)
Lanchester, B. S.; Kailá, K.; McCrea, I. W.
1996-03-01
High time resolution optical measurements in the magnetic zenith are compared with European Incoherent Scatter (EISCAT) field-aligned measurements of electron density at 0.2-s resolution and with horizontal electric field measurements made at 278 km with resolution of 9 s. In one event, 20 min after a spectacular auroral breakup, a system of narrow and active arc elements moved southward into the magnetic zenith, where it remained for several minutes. During a 30-s interval of activity in a narrow arc element very close to the radar beam, the electric field vectors at 3-s resolution were found to be extremely large (up to 400 mVm-1) and to point toward the bright optical features in the arc, which moved along its length. It is proposed that the large electric fields are short-lived and are directly associated with the particle precipitation that causes the bright features in auroral arc elements.
Design for and efficient dynamic climate model with realistic geography
NASA Technical Reports Server (NTRS)
Suarez, M. J.; Abeles, J.
1984-01-01
The long term climate sensitivity which include realistic atmospheric dynamics are severely restricted by the expense of integrating atmospheric general circulation models are discussed. Taking as an example models used at GSFC for this dynamic model is an alternative which is of much lower horizontal or vertical resolution. The model of Heid and Suarez uses only two levels in the vertical and, although it has conventional grid resolution in the meridional direction, horizontal resolution is reduced by keeping only a few degrees of freedom in the zonal wavenumber spectrum. Without zonally asymmetric forcing this model simulates a day in roughly 1/2 second on a CRAY. The model under discussion is a fully finite differenced, zonally asymmetric version of the Heid-Suarez model. It is anticipated that speeds can be obtained a few seconds a day roughly 50 times faster than moderate resolution, multilayer GCM's.
Summary of the Fourth AIAA CFD Drag Prediction Workshop
NASA Technical Reports Server (NTRS)
Vassberg, John C.; Tinoco, Edward N.; Mani, Mori; Rider, Ben; Zickuhr, Tom; Levy, David W.; Brodersen, Olaf P.; Eisfeld, Bernhard; Crippa, Simone; Wahls, Richard A.;
2010-01-01
Results from the Fourth AIAA Drag Prediction Workshop (DPW-IV) are summarized. The workshop focused on the prediction of both absolute and differential drag levels for wing-body and wing-body-horizontal-tail configurations that are representative of transonic transport air- craft. Numerical calculations are performed using industry-relevant test cases that include lift- specific flight conditions, trimmed drag polars, downwash variations, dragrises and Reynolds- number effects. Drag, lift and pitching moment predictions from numerous Reynolds-Averaged Navier-Stokes computational fluid dynamics methods are presented. Solutions are performed on structured, unstructured and hybrid grid systems. The structured-grid sets include point- matched multi-block meshes and over-set grid systems. The unstructured and hybrid grid sets are comprised of tetrahedral, pyramid, prismatic, and hexahedral elements. Effort is made to provide a high-quality and parametrically consistent family of grids for each grid type about each configuration under study. The wing-body-horizontal families are comprised of a coarse, medium and fine grid; an optional extra-fine grid augments several of the grid families. These mesh sequences are utilized to determine asymptotic grid-convergence characteristics of the solution sets, and to estimate grid-converged absolute drag levels of the wing-body-horizontal configuration using Richardson extrapolation.
Parameterized and resolved Southern Ocean eddy compensation
NASA Astrophysics Data System (ADS)
Poulsen, Mads B.; Jochum, Markus; Nuterman, Roman
2018-04-01
The ability to parameterize Southern Ocean eddy effects in a forced coarse resolution ocean general circulation model is assessed. The transient model response to a suite of different Southern Ocean wind stress forcing perturbations is presented and compared to identical experiments performed with the same model in 0.1° eddy-resolving resolution. With forcing of present-day wind stress magnitude and a thickness diffusivity formulated in terms of the local stratification, it is shown that the Southern Ocean residual meridional overturning circulation in the two models is different in structure and magnitude. It is found that the difference in the upper overturning cell is primarily explained by an overly strong subsurface flow in the parameterized eddy-induced circulation while the difference in the lower cell is mainly ascribed to the mean-flow overturning. With a zonally constant decrease of the zonal wind stress by 50% we show that the absolute decrease in the overturning circulation is insensitive to model resolution, and that the meridional isopycnal slope is relaxed in both models. The agreement between the models is not reproduced by a 50% wind stress increase, where the high resolution overturning decreases by 20%, but increases by 100% in the coarse resolution model. It is demonstrated that this difference is explained by changes in surface buoyancy forcing due to a reduced Antarctic sea ice cover, which strongly modulate the overturning response and ocean stratification. We conclude that the parameterized eddies are able to mimic the transient response to altered wind stress in the high resolution model, but partly misrepresent the unperturbed Southern Ocean meridional overturning circulation and associated heat transports.
Image resolution enhancement via image restoration using neural network
NASA Astrophysics Data System (ADS)
Zhang, Shuangteng; Lu, Yihong
2011-04-01
Image super-resolution aims to obtain a high-quality image at a resolution that is higher than that of the original coarse one. This paper presents a new neural network-based method for image super-resolution. In this technique, the super-resolution is considered as an inverse problem. An observation model that closely follows the physical image acquisition process is established to solve the problem. Based on this model, a cost function is created and minimized by a Hopfield neural network to produce high-resolution images from the corresponding low-resolution ones. Not like some other single frame super-resolution techniques, this technique takes into consideration point spread function blurring as well as additive noise and therefore generates high-resolution images with more preserved or restored image details. Experimental results demonstrate that the high-resolution images obtained by this technique have a very high quality in terms of PSNR and visually look more pleasant.
Spatial Downscaling of TRMM Precipitation using MODIS product in the Korean Peninsula
NASA Astrophysics Data System (ADS)
Cho, H.; Choi, M.
2013-12-01
Precipitation is a major driving force in the water cycle. But, it is difficult to provide spatially distributed precipitation data from isolated individual in situ. The Tropical Rainfall Monitoring Mission (TRMM) satellite can provide precipitation data with relatively coarse spatial resolution (0.25° scale) at daily basis. In order to overcome the coarse spatial resolution of TRMM precipitation products, we conducted a downscaling technique using a scaling parameter from the Moderate Resolution Imaging Spectroradiometers (MODIS) sensor. In this study, statistical relations between precipitation estimates derived from the TRMM satellite and the normalized difference vegetation index (NDVI) which is obtained from the MODIS sensor in TERRA satellite are found for different spatial scales on the Korean peninsula in northeast Asia. We obtain the downscaled precipitation mapping by regression equation between yearly TRMM precipitations values and annual average NDVI aggregating 1km to 25 degree. The downscaled precipitation is validated using time series of the ground measurements precipitation dataset provided by Korea Meteorological Organization (KMO) from 2002 to 2005. To improve the spatial downscaling of precipitation, we will conduct a study about correlation between precipitation and land surface temperature, perceptible water and other hydrological parameters.
Downscaling Coarse Scale Microwave Soil Moisture Product using Machine Learning
NASA Astrophysics Data System (ADS)
Abbaszadeh, P.; Moradkhani, H.; Yan, H.
2016-12-01
Soil moisture (SM) is a key variable in partitioning and examining the global water-energy cycle, agricultural planning, and water resource management. It is also strongly coupled with climate change, playing an important role in weather forecasting and drought monitoring and prediction, flood modeling and irrigation management. Although satellite retrievals can provide an unprecedented information of soil moisture at a global-scale, the products might be inadequate for basin scale study or regional assessment. To improve the spatial resolution of SM, this work presents a novel approach based on Machine Learning (ML) technique that allows for downscaling of the satellite soil moisture to fine resolution. For this purpose, the SMAP L-band radiometer SM products were used and conditioned on the Variable Infiltration Capacity (VIC) model prediction to describe the relationship between the coarse and fine scale soil moisture data. The proposed downscaling approach was applied to a western US basin and the products were compared against the available SM data from in-situ gauge stations. The obtained results indicated a great potential of the machine learning technique to derive the fine resolution soil moisture information that is currently used for land data assimilation applications.
Mode Tracker for Mode-Hop-Free Operation of a Laser
NASA Technical Reports Server (NTRS)
Wysocki, Gerard; Tittel, Frank K.; Curl, Robert F.
2010-01-01
A mode-tracking system that includes a mode-controlling subsystem has been incorporated into an external-cavity (EC) quantum cascade laser that operates in a mid-infrared wavelength range. The mode-tracking system makes it possible to perform mode-hop-free wavelength scans, as needed for high-resolution spectroscopy and detection of trace gases. The laser includes a gain chip, a beam-collimating lens, and a diffraction grating. The grating is mounted on a platform, the position of which can be varied to effect independent control of the EC length and the grating angle. The position actuators include a piezoelectric stage for translation control and a motorized stage for coarse rotation control equipped with a piezoelectric actuator for fine rotation control. Together, these actuators enable control of the EC length over a range of about 90 m with a resolution of 0.9 nm, and control of the grating angle over a coarse-tuning range of +/-6.3deg and a fine-tuning range of +/-520 microrad with a resolution of 10 nrad. A mirror mounted on the platform with the grating assures always the same direction of the output laser beam.
Assumption-versus data-based approaches to summarizing species' ranges.
Peterson, A Townsend; Navarro-Sigüenza, Adolfo G; Gordillo, Alejandro
2018-06-01
For conservation decision making, species' geographic distributions are mapped using various approaches. Some such efforts have downscaled versions of coarse-resolution extent-of-occurrence maps to fine resolutions for conservation planning. We examined the quality of the extent-of-occurrence maps as range summaries and the utility of refining those maps into fine-resolution distributional hypotheses. Extent-of-occurrence maps tend to be overly simple, omit many known and well-documented populations, and likely frequently include many areas not holding populations. Refinement steps involve typological assumptions about habitat preferences and elevational ranges of species, which can introduce substantial error in estimates of species' true areas of distribution. However, no model-evaluation steps are taken to assess the predictive ability of these models, so model inaccuracies are not noticed. Whereas range summaries derived by these methods may be useful in coarse-grained, global-extent studies, their continued use in on-the-ground conservation applications at fine spatial resolutions is not advisable in light of reliance on assumptions, lack of real spatial resolution, and lack of testing. In contrast, data-driven techniques that integrate primary data on biodiversity occurrence with remotely sensed data that summarize environmental dimensions (i.e., ecological niche modeling or species distribution modeling) offer data-driven solutions based on a minimum of assumptions that can be evaluated and validated quantitatively to offer a well-founded, widely accepted method for summarizing species' distributional patterns for conservation applications. © 2016 Society for Conservation Biology.
NASA Astrophysics Data System (ADS)
Trishchenko, Alexander P.; Khlopenkov, Konstantin V.; Wang, Shusen; Luo, Yi; Kruzelecky, Roman V.; Jamroz, Wes; Kroupnik, Guennadi
2007-10-01
Among all trace gases, the carbon dioxide and methane provide the largest contribution to the climate radiative forcing and together with carbon monoxide also to the global atmospheric carbon budget. New Micro Earth Observation Satellite (MEOS) mission is proposed to obtain information about these gases along with some other mission's objectives related to studying cloud and aerosol interactions. The miniature suit of instruments is proposed to make measurements with reduced spectral resolution (1.2nm) over wide NIR range 0.9μm to 2.45μm and with high spectral resolution (0.03nm) for three selected regions: oxygen A-band, 1.5μm-1.7μm band and 2.2μm-2.4μm band. It is also planned to supplement the spectrometer measurements with high spatial resolution imager for detailed characterization of cloud and surface albedo distribution within spectrometer field of view. The approaches for cloud/clear-sky identification and column retrievals of above trace gases are based on differential absorption technique and employ the combination of coarse and high-resolution spectral data. The combination of high and coarse resolution spectral data is beneficial for better characterization of surface spectral albedo and aerosol effects. An additional capability for retrieval of the vertical distribution amounts is obtained from the combination of nadir and limb measurements. Oxygen A-band path length will be used for normalization of trace gas retrievals.
Evaluation of a multi-scale WRF-CAM5 simulation during the 2010 East Asian Summer Monsoon
Campbell, Patrick; Zhang, Yang; Wang, Kai; ...
2017-09-08
The Weather Research and Forecasting model with Chemistry (WRF-Chem) with the physics package of the Community Atmosphere Model Version 5 (CAM5) has been applied at multiple scales over Eastern China (EC) and the Yangtze River Delta (YRD) to evaluate how increased horizontal resolution with physics designed for a coarser resolution climate model impacts aerosols and clouds, and the resulting precipitation characteristics and performance during the 2010 East Asian Summer Monsoon (EASM). Despite large underpredictions in surface aerosol concentrations and aerosol optical depth, there is good spatial agreement with surface observations of chemical predictions, and increasing spatial resolution tends to improvemore » performance. Model bias and normalized root mean square values for precipitation predictions are relatively small, but there are significant differences when comparing modeled and observed probability density functions for precipitation in EC and YRD. Increasing model horizontal resolution tends to reduce model bias and error for precipitation predictions. The surface and column aerosol loading is maximized between about 32°N and 42°N in early to mid-May during the 2010 EASM, and then shifts north while decreasing in magnitude during July and August. Changing model resolution moderately changes the spatiotemporal relationships between aerosols, cloud properties, and precipitation during the EASM, thus demonstrating the importance of model grid resolution in simulating EASM circulation and rainfall patterns over EC and the YRD. In conclusion, results from this work demonstrate the capability and limitations in the aerosol, cloud, and precipitation representation of WRF-CAM5 for regional-scale applications down to relatively fine horizontal resolutions. Further WRF-CAM5 model development and application in this area is needed.« less
NASA Astrophysics Data System (ADS)
Harlaß, Jan; Latif, Mojib; Park, Wonsun
2018-04-01
We investigate the quality of simulating tropical Atlantic (TA) sector climatology and interannual variability in integrations of the Kiel climate model (KCM) with varying atmosphere model resolution. The ocean model resolution is kept fixed. A reasonable simulation of TA sector annual-mean climate, seasonal cycle and interannual variability can only be achieved at sufficiently high horizontal and vertical atmospheric resolution. Two major reasons for the improvements are identified. First, the western equatorial Atlantic westerly surface wind bias in spring can be largely eliminated, which is explained by a better representation of meridional and especially vertical zonal momentum transport. The enhanced atmospheric circulation along the equator in turn greatly improves the thermal structure of the upper equatorial Atlantic with much reduced warm sea surface temperature (SST) biases. Second, the coastline in the southeastern TA and steep orography are better resolved at high resolution, which improves wind structure and in turn reduces warm SST biases in the Benguela upwelling region. The strongly diminished wind and SST biases at high atmosphere model resolution allow for a more realistic latitudinal position of the intertropical convergence zone. Resulting stronger cross-equatorial winds, in conjunction with a shallower thermocline, enable a rapid cold tongue development in the eastern TA in boreal spring. This enables simulation of realistic interannual SST variability and its seasonal phase locking in the KCM, which primarily is the result of a stronger thermocline feedback. Our findings suggest that enhanced atmospheric resolution, both vertical and horizontal, could be a key to achieving more realistic simulation of TA climatology and interannual variability in climate models.
An Overview of Numerical Weather Prediction on Various Scales
NASA Astrophysics Data System (ADS)
Bao, J.-W.
2009-04-01
The increasing public need for detailed weather forecasts, along with the advances in computer technology, has motivated many research institutes and national weather forecasting centers to develop and run global as well as regional numerical weather prediction (NWP) models at high resolutions (i.e., with horizontal resolutions of ~10 km or higher for global models and 1 km or higher for regional models, and with ~60 vertical levels or higher). The need for running NWP models at high horizontal and vertical resolutions requires the implementation of non-hydrostatic dynamic core with a choice of horizontal grid configurations and vertical coordinates that are appropriate for high resolutions. Development of advanced numerics will also be needed for high resolution global and regional models, in particular, when the models are applied to transport problems and air quality applications. In addition to the challenges in numerics, the NWP community is also facing the challenges of developing physics parameterizations that are well suited for high-resolution NWP models. For example, when NWP models are run at resolutions of ~5 km or higher, the use of much more detailed microphysics parameterizations than those currently used in NWP model will become important. Another example is that regional NWP models at ~1 km or higher only partially resolve convective energy containing eddies in the lower troposphere. Parameterizations to account for the subgrid diffusion associated with unresolved turbulence still need to be developed. Further, physically sound parameterizations for air-sea interaction will be a critical component for tropical NWP models, particularly for hurricane predictions models. In this review presentation, the above issues will be elaborated on and the approaches to address them will be discussed.
Evaluation of a multi-scale WRF-CAM5 simulation during the 2010 East Asian Summer Monsoon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campbell, Patrick; Zhang, Yang; Wang, Kai
The Weather Research and Forecasting model with Chemistry (WRF-Chem) with the physics package of the Community Atmosphere Model Version 5 (CAM5) has been applied at multiple scales over Eastern China (EC) and the Yangtze River Delta (YRD) to evaluate how increased horizontal resolution with physics designed for a coarser resolution climate model impacts aerosols and clouds, and the resulting precipitation characteristics and performance during the 2010 East Asian Summer Monsoon (EASM). Despite large underpredictions in surface aerosol concentrations and aerosol optical depth, there is good spatial agreement with surface observations of chemical predictions, and increasing spatial resolution tends to improvemore » performance. Model bias and normalized root mean square values for precipitation predictions are relatively small, but there are significant differences when comparing modeled and observed probability density functions for precipitation in EC and YRD. Increasing model horizontal resolution tends to reduce model bias and error for precipitation predictions. The surface and column aerosol loading is maximized between about 32N and 42N in early to mid-May during the 2010 EASM, and then shifts north while decreasing in magnitude during July and August. Changing model resolution moderately changes the spatiotemporal relationships between aerosols, cloud properties, and precipitation during the EASM, thus demonstrating the importance of model grid resolution in simulating EASM circulation and rainfall patterns over EC and the YRD. Results from this work demonstrate the capability and limitations in the aerosol, cloud, and precipitation representation of WRF-CAM5 for regional-scale applications down to relatively fine horizontal resolutions. Further WRF-CAM5 model development and application in this area is needed.« less
Evaluation of a multi-scale WRF-CAM5 simulation during the 2010 East Asian Summer Monsoon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campbell, Patrick; Zhang, Yang; Wang, Kai
The Weather Research and Forecasting model with Chemistry (WRF-Chem) with the physics package of the Community Atmosphere Model Version 5 (CAM5) has been applied at multiple scales over Eastern China (EC) and the Yangtze River Delta (YRD) to evaluate how increased horizontal resolution with physics designed for a coarser resolution climate model impacts aerosols and clouds, and the resulting precipitation characteristics and performance during the 2010 East Asian Summer Monsoon (EASM). Despite large underpredictions in surface aerosol concentrations and aerosol optical depth, there is good spatial agreement with surface observations of chemical predictions, and increasing spatial resolution tends to improvemore » performance. Model bias and normalized root mean square values for precipitation predictions are relatively small, but there are significant differences when comparing modeled and observed probability density functions for precipitation in EC and YRD. Increasing model horizontal resolution tends to reduce model bias and error for precipitation predictions. The surface and column aerosol loading is maximized between about 32°N and 42°N in early to mid-May during the 2010 EASM, and then shifts north while decreasing in magnitude during July and August. Changing model resolution moderately changes the spatiotemporal relationships between aerosols, cloud properties, and precipitation during the EASM, thus demonstrating the importance of model grid resolution in simulating EASM circulation and rainfall patterns over EC and the YRD. In conclusion, results from this work demonstrate the capability and limitations in the aerosol, cloud, and precipitation representation of WRF-CAM5 for regional-scale applications down to relatively fine horizontal resolutions. Further WRF-CAM5 model development and application in this area is needed.« less
NASA Astrophysics Data System (ADS)
Ansari Amoli, Abdolreza; Lopez-Baeza, Ernesto; Mahmoudi, Ali; Mahmoodi, Ali
2016-07-01
Synergistic Use of SMOS Measurements with SMAP Derived and In-situ Data over the Valencia Anchor Station by Using a Downscaling Technique Ansari Amoli, A.(1),Mahmoodi, A.(2) and Lopez-Baeza, E.(3) (1) Department of Earth Physics and Thermodynamics, University of Valencia, Spain (2) Centre d'Etudes Spatiales de la BIOsphère (CESBIO), France (3) Department of Earth Physics and Thermodynamics, University of Valencia, Spain Soil moisture products from active sensors are not operationally available. Passive remote sensors return more accurate estimates, but their resolution is much coarser. One solution to overcome this problem is the synergy between radar and radiometric data by using disaggregation (downscaling) techniques. Few studies have been conducted to merge high resolution radar and coarse resolution radiometer measurements in order to obtain an intermediate resolution product. In this paper we present an algorithm using combined available SMAP (Soil Moisture Active and Passive) radar and SMOS (Soil Moisture and Ocean Salinity) radiometer measurements to estimate surface soil moisture over the Valencia Anchor Station (VAS), Valencia, Spain. The goal is to combine the respective attributes of the radar and radiometer observations to estimate soil moisture at a resolution of 3 km. The algorithm disaggregates the coarse resolution SMOS (15 km) radiometer brightness temperature product based on the spatial variation of the high resolution SMAP (3 km) radar backscatter. The disaggregation of the radiometer brightness temperature uses the radar backscatter spatial patterns within the radiometer footprint that are inferred from the radar measurements. For this reason the radar measurements within the radiometer footprint are scaled by parameters that are derived from the temporal fluctuations in the radar and radiometer measurements.
NASA Astrophysics Data System (ADS)
Oaida, C. M.; Skiles, M.; Painter, T. H.; Xue, Y.
2015-12-01
The mountain snowpack is an essential resource for both the environment as well as society. Observational and energy balance modeling work have shown that dust on snow (DOS) in western U.S. (WUS) is a major contributor to snow processes, including snowmelt timing and runoff amount in regions like the Upper Colorado River Basin (UCRB). In order to accurately estimate the impact of DOS to the hydrologic cycle and water resources, now and under a changing climate, we need to be able to (1) adequately simulate the snowpack (accumulation), and (2) realistically represent DOS processes in models. Energy balance models do not capture the impact on a broader local or regional scale, nor the land-atmosphere feedbacks, while GCM studies cannot resolve orographic-related precipitation processes, and therefore snowpack accumulation, owing to coarse spatial resolution and smoother terrain. All this implies the impacts of dust on snow on the mountain snowpack and other hydrologic processes are likely not well captured in current modeling studies. Recent increase in computing power allows for RCMs to be used at higher spatial resolutions, while recent in situ observations of dust in snow properties can help constrain modeling simulations. Therefore, in the work presented here, we take advantage of these latest resources to address the some of the challenges outlined above. We employ the newly enhanced WRF/SSiB regional climate model at 4 km horizontal resolution. This scale has been shown by others to be adequate in capturing orographic processes over WUS. We also constrain the magnitude of dust deposition provided by a global chemistry and transport model, with in situ measurements taken at sites in the UCRB. Furthermore, we adjust the dust absorptive properties based on observed values at these sites, as opposed to generic global ones. This study aims to improve simulation of the impact of dust in snow on the hydrologic cycle and related water resources.
Can we trust climate models to realistically represent severe European windstorms?
NASA Astrophysics Data System (ADS)
Trzeciak, Tomasz M.; Knippertz, Peter; Owen, Jennifer S. R.
2014-05-01
Despite the enormous advances made in climate change research, robust projections of the position and the strength of the North Atlantic stormtrack are not yet possible. In particular with respect to damaging windstorms, this incertitude bears enormous risks to European societies and the (re)insurance industry. Previous studies have addressed the problem of climate model uncertainty through statistical comparisons of simulations of the current climate with (re-)analysis data and found that there is large disagreement between different climate models, different ensemble members of the same model and observed climatologies of intense cyclones. One weakness of such statistical evaluations lies in the difficulty to separate influences of the climate model's basic state from the influence of fast processes on the development of the most intense storms. Compensating effects between the two might conceal errors and suggest higher reliability than there really is. A possible way to separate influences of fast and slow processes in climate projections is through a "seamless" approach of hindcasting historical, severe storms with climate models started from predefined initial conditions and run in a numerical weather prediction mode on the time scale of several days. Such a cost-effective case-study approach, which draws from and expands on the concepts from the Transpose-AMIP initiative, has recently been undertaken in the SEAMSEW project at the University of Leeds funded by the AXA Research Fund. Key results from this work focusing on 20 historical storms and using different lead times and horizontal and vertical resolutions include: (a) Tracks are represented reasonably well by most hindcasts. (b) Sensitivity to vertical resolution is low. (c) There is a systematic underprediction of cyclone depth for a coarse resolution of T63, but surprisingly no systematic bias is found for higher-resolution runs using T127, showing that climate models are in fact able to represent the storm dynamics well, if given the correct initial conditions. Combined with a too low number of deep cyclones in many climate models, this points too an insufficient number of storm-prone initial conditions in free-running climate runs. This question will be addressed in future work.
NASA Astrophysics Data System (ADS)
Brewer, M.; Mass, C.
2014-12-01
Though western Oregon and Washington summers are typically mild due to the influence of the nearby Pacific Ocean, this region occasionally experiences heat waves with temperatures in excess of 35ºC. These heat waves can have a substantial impact on this highly populated region, particularly since the population is unaccustomed to and generally unprepared for such conditions. A comprehensive evaluation is needed of past and future heat wave trends in frequency, intensity, and duration. Furthermore, it is important to understand the physical mechanisms of Northwest heat waves and how such mechanisms might change under anthropogenic global warming. Lower-tropospheric heat waves over the west coast of North America are the result of both synoptic and mesoscale factors, the latter requiring high-resolution models (roughly 12-15 km grid spacing) to simulate. Synoptic factors include large-scale warming due to horizontal advection and subsidence, as well as reductions in large-scale cloudiness. An important mesoscale factor is the occurrence of offshore (easterly) flow, resulting in an adiabatically warmed continental air mass spreading over the western lowlands rather than the more usual cool, marine air influence. To fully understand how heat waves will change under AGW, it is necessary to determine the combined impacts of both synoptic and mesoscale effects in a warming world. General Circulation Models (GCM) are generally are too coarse to simulate mesoscale effects realistically and thus may provide unreliable estimates of the frequency and magnitudes of West Coast heat waves. Therefore, to determine the regional implications of global warming, this work made use of long-term, high-resolution WRF simulations, at 36- and 12-km resolution, produced by dynamically downscaling GCM grids. This talk will examine the predicted trends in Pacific Northwest heat wave intensity, duration, and frequency during the 21st century (through 2100). The spatial distribution in the trends in heat waves, and the variability of these trends at different resolutions and among different models will also be described. Finally, changes in the synoptic and mesoscale configurations that drive Pacific Northwest heat waves and the modulating effects of local terrain and land/water contrast will be discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, J.R.; Miller, S.M.O.; Torzynski, C.A.
Many studies have debated whether beach cusps are erosional or depositional features. The April 12-14, 1988, extratropical storm provided an opportunity to view the direct effects of one of the largest storms of the past decade upon beach sedimentology and morphology on barrier islands near Duck, North Carolina. Prior to the storm, the beach at Duck was characterized by a well-defined pattern of beach cusps with horn-to-horn spacings averaging 35 m. Storm-induced alterations were dominated by an initial period of beach erosion that remobilized the upper 30 to 50 cm of beach sediment, followed by aggradation. Net aggradation was mostmore » prominent along the middle beachface and within the pre-storm cusp bays. These morphologic adjustments resulted in the destruction of cusps, which were replaced with a post-storm planar beachface composed of horizontally bedded fine- to coarse-grained sediments. Within 24 hrs of storm subsidence, new beach cusps formed sequentially along the coast in the direction of longshore transport. Initial cusp formation resulted from beach erosion and the creation of bays in the planar storm-beach surface at positions of preferential post-storm runup. The initial cusp horns were composed of truncated horizontal beds of the planar beach accreted during the storm. After their formation, the cusps sequentially migrated downdrift. Migrating horns were composed of a coarse-grained sediment wedge that thickened toward horn crests, suggesting formation by deposition. It is concluded from these observations that beach cusps are both erosional and depositional in nature.« less
NASA Astrophysics Data System (ADS)
Fambrini, Gelson Luís; Neumann, Virgínio Henrique M. L.; Menezes-Filho, José Acioli B.; Da Silva-Filho, Wellington F.; De Oliveira, Édison Vicente
2017-12-01
Sedimentological analysis of the Missão Velha Formation (Araripe Basin, northeast Brazil) is the aim of this paper through detailed facies analysis, architectural elements, depositional systems and paleocurrent data. The main facies recognized were: (i) coarse-grained conglomeratic sandstones, locally pebbly conglomerates, with abundant silicified fossil trunks and several large-to-medium trough cross-stratifications and predominantly lenticular geometry; (ii) lenticular coarse-to-medium sandstones with some granules, abundant silicified fossil wood, and large-to-medium trough cross-stratifications, cut-and fill features and mud drapes on the foresets of cross-strata, (iii) poorly sorted medium-grained sandstones with sparse pebbles and with horizontal stratification, (iv) fine to very fine silty sandstones, laminated, interlayered with (v) decimetric muddy layers with horizontal lamination and climbing-ripple cross-lamination. Nine architectural elements were recognized: CH: Channels, GB: Gravel bars and bed forms, SB: Sand bars and bedforms, SB (p): sand bedform with planar cross-stratification, OF: Overbank flow, DA: Downstream-accretion macroforms, LS: Laminated sandsheet, LA: Lateral-accretion macroforms and FF: Floodplain fines. The lithofacies types and facies associations were interpreted as having been generated by alluvial systems characterized by (i) high energy perennial braided river systems and (ii) ephemeral river systems. Aeolian sand dunes and sand sheets generated by the reworking of braided alluvial deposits can also occur. The paleocurrent measurements show a main dispersion pattern to S, SE and SW, and another to NE/E. These features imply a paleodrainage flowing into the basins of the Recôncavo-Tucano-Jatobá.
NASA Astrophysics Data System (ADS)
Yu, Karen; Jacob, Daniel J.; Fisher, Jenny A.; Kim, Patrick S.; Marais, Eloise A.; Miller, Christopher C.; Travis, Katherine R.; Zhu, Lei; Yantosca, Robert M.; Sulprizio, Melissa P.; Cohen, Ron C.; Dibb, Jack E.; Fried, Alan; Mikoviny, Tomas; Ryerson, Thomas B.; Wennberg, Paul O.; Wisthaler, Armin
2016-04-01
Formation of ozone and organic aerosol in continental atmospheres depends on whether isoprene emitted by vegetation is oxidized by the high-NOx pathway (where peroxy radicals react with NO) or by low-NOx pathways (where peroxy radicals react by alternate channels, mostly with HO2). We used mixed layer observations from the SEAC4RS aircraft campaign over the Southeast US to test the ability of the GEOS-Chem chemical transport model at different grid resolutions (0.25° × 0.3125°, 2° × 2.5°, 4° × 5°) to simulate this chemistry under high-isoprene, variable-NOx conditions. Observations of isoprene and NOx over the Southeast US show a negative correlation, reflecting the spatial segregation of emissions; this negative correlation is captured in the model at 0.25° × 0.3125° resolution but not at coarser resolutions. As a result, less isoprene oxidation takes place by the high-NOx pathway in the model at 0.25° × 0.3125° resolution (54 %) than at coarser resolution (59 %). The cumulative probability distribution functions (CDFs) of NOx, isoprene, and ozone concentrations show little difference across model resolutions and good agreement with observations, while formaldehyde is overestimated at coarse resolution because excessive isoprene oxidation takes place by the high-NOx pathway with high formaldehyde yield. The good agreement of simulated and observed concentration variances implies that smaller-scale non-linearities (urban and power plant plumes) are not important on the regional scale. Correlations of simulated vs. observed concentrations do not improve with grid resolution because finer modes of variability are intrinsically more difficult to capture. Higher model resolution leads to decreased conversion of NOx to organic nitrates and increased conversion to nitric acid, with total reactive nitrogen oxides (NOy) changing little across model resolutions. Model concentrations in the lower free troposphere are also insensitive to grid resolution. The overall low sensitivity of modeled concentrations to grid resolution implies that coarse resolution is adequate when modeling continental boundary layer chemistry for global applications.
Precise Aperture-Dependent Motion Compensation with Frequency Domain Fast Back-Projection Algorithm.
Zhang, Man; Wang, Guanyong; Zhang, Lei
2017-10-26
Precise azimuth-variant motion compensation (MOCO) is an essential and difficult task for high-resolution synthetic aperture radar (SAR) imagery. In conventional post-filtering approaches, residual azimuth-variant motion errors are generally compensated through a set of spatial post-filters, where the coarse-focused image is segmented into overlapped blocks concerning the azimuth-dependent residual errors. However, image domain post-filtering approaches, such as precise topography- and aperture-dependent motion compensation algorithm (PTA), have difficulty of robustness in declining, when strong motion errors are involved in the coarse-focused image. In this case, in order to capture the complete motion blurring function within each image block, both the block size and the overlapped part need necessary extension leading to degeneration of efficiency and robustness inevitably. Herein, a frequency domain fast back-projection algorithm (FDFBPA) is introduced to deal with strong azimuth-variant motion errors. FDFBPA disposes of the azimuth-variant motion errors based on a precise azimuth spectrum expression in the azimuth wavenumber domain. First, a wavenumber domain sub-aperture processing strategy is introduced to accelerate computation. After that, the azimuth wavenumber spectrum is partitioned into a set of wavenumber blocks, and each block is formed into a sub-aperture coarse resolution image via the back-projection integral. Then, the sub-aperture images are straightforwardly fused together in azimuth wavenumber domain to obtain a full resolution image. Moreover, chirp-Z transform (CZT) is also introduced to implement the sub-aperture back-projection integral, increasing the efficiency of the algorithm. By disusing the image domain post-filtering strategy, robustness of the proposed algorithm is improved. Both simulation and real-measured data experiments demonstrate the effectiveness and superiority of the proposal.
NASA Astrophysics Data System (ADS)
Kuik, Friderike; Lauer, Axel; Churkina, Galina; Denier van der Gon, Hugo A. C.; Fenner, Daniel; Mar, Kathleen A.; Butler, Tim M.
2016-12-01
Air pollution is the number one environmental cause of premature deaths in Europe. Despite extensive regulations, air pollution remains a challenge, especially in urban areas. For studying summertime air quality in the Berlin-Brandenburg region of Germany, the Weather Research and Forecasting Model with Chemistry (WRF-Chem) is set up and evaluated against meteorological and air quality observations from monitoring stations as well as from a field campaign conducted in 2014. The objective is to assess which resolution and level of detail in the input data is needed for simulating urban background air pollutant concentrations and their spatial distribution in the Berlin-Brandenburg area. The model setup includes three nested domains with horizontal resolutions of 15, 3 and 1 km and anthropogenic emissions from the TNO-MACC III inventory. We use RADM2 chemistry and the MADE/SORGAM aerosol scheme. Three sensitivity simulations are conducted updating input parameters to the single-layer urban canopy model based on structural data for Berlin, specifying land use classes on a sub-grid scale (mosaic option) and downscaling the original emissions to a resolution of ca. 1 km × 1 km for Berlin based on proxy data including traffic density and population density. The results show that the model simulates meteorology well, though urban 2 m temperature and urban wind speeds are biased high and nighttime mixing layer height is biased low in the base run with the settings described above. We show that the simulation of urban meteorology can be improved when specifying the input parameters to the urban model, and to a lesser extent when using the mosaic option. On average, ozone is simulated reasonably well, but maximum daily 8 h mean concentrations are underestimated, which is consistent with the results from previous modelling studies using the RADM2 chemical mechanism. Particulate matter is underestimated, which is partly due to an underestimation of secondary organic aerosols. NOx (NO + NO2) concentrations are simulated reasonably well on average, but nighttime concentrations are overestimated due to the model's underestimation of the mixing layer height, and urban daytime concentrations are underestimated. The daytime underestimation is improved when using downscaled, and thus locally higher emissions, suggesting that part of this bias is due to deficiencies in the emission input data and their resolution. The results further demonstrate that a horizontal resolution of 3 km improves the results and spatial representativeness of the model compared to a horizontal resolution of 15 km. With the input data (land use classes, emissions) at the level of detail of the base run of this study, we find that a horizontal resolution of 1 km does not improve the results compared to a resolution of 3 km. However, our results suggest that a 1 km horizontal model resolution could enable a detailed simulation of local pollution patterns in the Berlin-Brandenburg region if the urban land use classes, together with the respective input parameters to the urban canopy model, are specified with a higher level of detail and if urban emissions of higher spatial resolution are used.
NASA Astrophysics Data System (ADS)
Mallet, M.; Solmon, F.; Roblou, L.; Peers, F.; Turquety, S.; Waquet, F.; Jethva, H.; Torres, O.
2017-10-01
The regional climate model RegCM has been modified to better account for the climatic effects of biomass-burning particles. Smoke aerosols are represented by new tracers with consistent radiative and hygroscopic properties to simulate the direct radiative forcing (DRF), and a new parameterization has been integrated for relating the droplet number concentration to the aerosol concentration for marine stratocumulus clouds (Sc). RegCM has been tested during the summer of 2008 over California, when extreme concentration of smoke, together with the presence of Sc, is observed. This work indicates that significant aerosol optical depth (AOD) ( 1-2 at 550 nm) is related to the intense 2008 fires. Compared to Ozone Monitoring Instrument (OMI) and Moderate Resolution Imaging Spectroradiometer, the regional pattern of RegCM AOD is well represented although the magnitude is lower than satellite observations. Comparisons with Polarization and Directionality of Earth Reflectances (POLDER) above-clouds aerosol optical depth (ACAOD) show the ability of RegCM to simulate realistic ACAOD during the transport of smoke above the Pacific Ocean. The simulated single scattering albedo is 0.90 (at 550 nm) near biomass-burning sources, consistent with OMI and POLDER, and smoke leads to shortwave heating rates 1.5-2°K d-1. RegCM is not able to correctly resolve the daily patterns in cloud properties notably due to its coarse horizontal resolutions. However, the changes in the sign of the DRF at top of atmosphere (TOA) (negative to positive) from clear-sky to all-sky conditions is well simulated. Finally, the "aerosol-cloud" parameterization allows simulating an increase of the cloud optical depth for significant concentrations, leading to large perturbations of radiative fluxes at TOA.
Equilibrium Atmospheric Response to North Atlantic SST Anomalies.
NASA Astrophysics Data System (ADS)
Kushnir, Yochanan; Held, Isaac M.
1996-06-01
The equilibrium general circulation model (GCM) response to sea surface temperature (SST) anomalies in the western North Atlantic region is studied. A coarse resolution GCM, with realistic lower boundary conditions including topography and climatological SST distribution, is integrated in perpetual January and perpetual October modes, distinguished from one another by the strength of the midlatitude westerlies. An SST anomaly with a maximum of 4°C is added to the climatological SST distribution of the model with both positive and negative polarity. These anomaly runs are compared to one another, and to a control integration, to determine the atmospheric response. In all cases warming (cooling) of the midlatitude ocean surface yields a warming (cooling) of the atmosphere over and to the east of the SST anomaly center. The atmospheric temperature change is largest near the surface and decreases upward. Consistent with this simple thermal response, the geopotential height field displays a baroclinic response with a shallow anomalous low somewhat downstream from the warm SST anomaly. The equivalent barotropic, downstream response is weak and not robust. To help interpret the results, the realistic GCM integrations are compared with parallel idealized model runs. The idealized model has full physics and a similar horizontal and vertical resolution, but an all-ocean surface with a single, permanent zonal asymmetry. The idealized and realistic versions of the GCM display compatible response patterns that are qualitatively consistent with stationary, linear, quasigeostrophic theory. However, the idealized model response is stronger and more coherent. The differences between the two model response patterns can be reconciled based on the size of the anomaly, the model treatment of cloud-radiation interaction, and the static stability of the model atmosphere in the vicinity of the SST anomaly. Model results are contrasted with other GCM studies and observations.
A climatology of gravity wave parameters based on satellite limb soundings
NASA Astrophysics Data System (ADS)
Ern, Manfred; Trinh, Quang Thai; Preusse, Peter; Riese, Martin
2017-04-01
Gravity waves are one of the main drivers of atmospheric dynamics. The resolution of most global circulation models (GCMs) and chemistry climate models (CCMs), however, is too coarse to properly resolve the small scales of gravity waves. Horizontal scales of gravity waves are in the range of tens to a few thousand kilometers. Gravity wave source processes involve even smaller scales. Therefore GCMs/CCMs usually parametrize the effect of gravity waves on the global circulation. These parametrizations are very simplified, and comparisons with global observations of gravity waves are needed for an improvement of parametrizations and an alleviation of model biases. In our study, we present a global data set of gravity wave distributions observed in the stratosphere and the mesosphere by the infrared limb sounding satellite instruments High Resolution Dynamics Limb Sounder (HIRDLS) and Sounding of the Atmosphere using Broadband Emission Radiometry (SABER). We provide various gravity wave parameters (for example, gravity variances, potential energies and absolute momentum fluxes). This comprehensive climatological data set can serve for comparison with other instruments (ground based, airborne, or other satellite instruments), as well as for comparison with gravity wave distributions, both resolved and parametrized, in GCMs and CCMs. The purpose of providing various different parameters is to make our data set useful for a large number of potential users and to overcome limitations of other observation techniques, or of models, that may be able to provide only one of those parameters. We present a climatology of typical average global distributions and of zonal averages, as well as their natural range of variations. In addition, we discuss seasonal variations of the global distribution of gravity waves, as well as limitations of our method of deriving gravity wave parameters from satellite data.
NASA Technical Reports Server (NTRS)
Srivastava, Prashant K.; Han, Dawei; Rico-Ramirez, Miguel A.; O'Neill, Peggy; Islam, Tanvir; Gupta, Manika
2014-01-01
Soil Moisture and Ocean Salinity (SMOS) is the latest mission which provides flow of coarse resolution soil moisture data for land applications. However, the efficient retrieval of soil moisture for hydrological applications depends on optimally choosing the soil and vegetation parameters. The first stage of this work involves the evaluation of SMOS Level 2 products and then several approaches for soil moisture retrieval from SMOS brightness temperature are performed to estimate Soil Moisture Deficit (SMD). The most widely applied algorithm i.e. Single channel algorithm (SCA), based on tau-omega is used in this study for the soil moisture retrieval. In tau-omega, the soil moisture is retrieved using the Horizontal (H) polarisation following Hallikainen dielectric model, roughness parameters, Fresnel's equation and estimated Vegetation Optical Depth (tau). The roughness parameters are empirically calibrated using the numerical optimization techniques. Further to explore the improvement in retrieval models, modifications have been incorporated in the algorithms with respect to the sources of the parameters, which include effective temperatures derived from the European Center for Medium-Range Weather Forecasts (ECMWF) downscaled using the Weather Research and Forecasting (WRF)-NOAH Land Surface Model and Moderate Resolution Imaging Spectroradiometer (MODIS) land surface temperature (LST) while the s is derived from MODIS Leaf Area Index (LAI). All the evaluations are performed against SMD, which is estimated using the Probability Distributed Model following a careful calibration and validation integrated with sensitivity and uncertainty analysis. The performance obtained after all those changes indicate that SCA-H using WRF-NOAH LSM downscaled ECMWF LST produces an improved performance for SMD estimation at a catchment scale.
High-resolution dust modelling over complex terrains in West Asia
NASA Astrophysics Data System (ADS)
Basart, S.; Vendrell, L.; Baldasano, J. M.
2016-12-01
The present work demonstrates the impact of model resolution in dust propagation in a complex terrain region such as West Asia. For this purpose, two simulations using the NMMB/BSC-Dust model are performed and analysed, one with a high horizontal resolution (at 0.03° × 0.03°) and one with a lower horizontal resolution (at 0.33° × 0.33°). Both model experiments cover two intense dust storms that occurred on 17-20 March 2012 as a consequence of strong northwesterly Shamal winds that spanned over thousands of kilometres in West Asia. The comparison with ground-based (surface weather stations and sunphotometers) and satellite aerosol observations (Aqua/MODIS and MSG/SEVIRI) shows that despite differences in the magnitude of the simulated dust concentrations, the model is able to reproduce these two dust outbreaks. Differences between both simulations on the dust spread rise on regional dust transport areas in south-western Saudi Arabia, Yemen and Oman. The complex orography in south-western Saudi Arabia, Yemen and Oman (with peaks higher than 3000 m) has an impact on the transported dust concentration fields over mountain regions. Differences between both model configurations are mainly associated to the channelization of the dust flow through valleys and the differences in the modelled altitude of the mountains that alters the meteorology and blocks the dust fronts limiting the dust transport. These results demonstrate how the dust prediction in the vicinity of complex terrains improves using high-horizontal resolution simulations.
Ray Drapek; John B. Kim; Ronald P. Neilson
2015-01-01
Land managers need to include climate change in their decisionmaking, but the climate models that project future climates operate at spatial scales that are too coarse to be of direct use. To create a dataset more useful to managers, soil and historical climate were assembled for the United States and Canada at a 5-arcminute grid resolution. Nine CMIP3 future climate...
NASA Astrophysics Data System (ADS)
Pithan, Felix; Shepherd, Theodore G.; Zappa, Giuseppe; Sandu, Irina
2016-07-01
State-of-the art climate models generally struggle to represent important features of the large-scale circulation. Common model deficiencies include an equatorward bias in the location of the midlatitude westerlies and an overly zonal orientation of the North Atlantic storm track. Orography is known to strongly affect the atmospheric circulation and is notoriously difficult to represent in coarse-resolution climate models. Yet how the representation of orography affects circulation biases in current climate models is not understood. Here we show that the effects of switching off the parameterization of drag from low-level orographic blocking in one climate model resemble the biases of the Coupled Model Intercomparison Project Phase 5 ensemble: An overly zonal wintertime North Atlantic storm track and less European blocking events, and an equatorward shift in the Southern Hemispheric jet and increase in the Southern Annular Mode time scale. This suggests that typical circulation biases in coarse-resolution climate models may be alleviated by improved parameterizations of low-level drag.
Color-binding errors during rivalrous suppression of form.
Hong, Sang Wook; Shevell, Steven K
2009-09-01
How does a physical stimulus determine a conscious percept? Binocular rivalry provides useful insights into this question because constant physical stimulation during rivalry causes different visual experiences. For example, presentation of vertical stripes to one eye and horizontal stripes to the other eye results in a percept that alternates between horizontal and vertical stripes. Presentation of a different color to each eye (color rivalry) produces alternating percepts of the two colors or, in some cases, a color mixture. The experiments reported here reveal a novel and instructive resolution of rivalry for stimuli that differ in both form and color: perceptual alternation between the rivalrous forms (e.g., horizontal or vertical stripes), with both eyes' colors seen simultaneously in separate parts of the currently perceived form. Thus, the colors presented to the two eyes (a) maintain their distinct neural representations despite resolution of form rivalry and (b) can bind separately to distinct parts of the perceived form.
Smagorinsky-type diffusion in a high-resolution GCM
NASA Astrophysics Data System (ADS)
Schaefer-Rolffs, Urs; Becker, Erich
2013-04-01
The parametrization of the (horizontal) momentum diffusion is a paramount component of a Global Circulation Model (GCM). Aside from friction in the boundary layer, a relevant fraction of kinetic energy is dissipated in the free atmosphere, and it is known that a linear harmonic turbulence model is not sufficient to obtain a reasonable simulation of the kinetic energy spectrum. Therefore, often empirical hyper-diffusion schemes are employed, regardless of disadvantages like the violation of energy conservation and the second law of thermodynamics. At IAP we have developed an improved parametrization of the horizontal diffusion that is based on Smagorinsky's nonlinear and energy conservation formulation. This approach is extended by the dynamic Smagorinsky model (DSM) of M. Germano. In this new scheme, the mixing length is no longer a prescribed parameter but calculated dynamically from the resolved flow such as to preserve scale invariance for the horizontal energy cascade. The so-called Germano identity is solved by a tensor norm ansatz which yields a positive definite frictional heating. We present results from an investigation using the DSM as a parametrization of horizontal diffusion in a high-resolution version of the Kühlungborn Mechanistic general Circulation Model (KMCM) with spectral truncation at horizontal wavenumber 330. The DSM calculates the Smagorinsky parameter cS independent from the resolution scale. We find that this method yields an energy spectrum that exhibits a pronounced transition from a synoptic -3 to a mesoscale -5-3 slope at wavenumbers around 50. At the highest wavenumber end, a behaviour similar to that often obtained by tuning the hyper-diffusion is achieved self-consistently. This result is very sensitive to the explicit choice of the test filter in the DSM.
NASA Astrophysics Data System (ADS)
Fauchez, T.; Platnick, S. E.; Sourdeval, O.; Wang, C.; Meyer, K.; Cornet, C.; Szczap, F.
2017-12-01
Cirrus are an important part of the Earth radiation budget but an assessment of their role yet remains highly uncertain. Cirrus optical properties such as Cloud Optical Thickness (COT) and ice crystal effective particle size (Re) are often retrieved with a combination of Visible/Near InfraRed (VNIR) and ShortWave-InfraRed (SWIR) reflectance channels. Alternatively, Thermal InfraRed (TIR) techniques, such as the Split Window Technique (SWT), have demonstrated better sensitivity to thin cirrus. However, current satellite operational products for both retrieval methods assume that cloudy pixels are horizontally homogeneous (Plane Parallel and Homogeneous Approximation (PPHA)) and independent (Independent Pixel Approximation (IPA)). The impact of these approximations on cirrus retrievals needs to be understood and, as far as possible, corrected. Horizontal heterogeneity effects can be more easily estimated and corrected in the TIR range because they are mainly dominated by the PPA bias, which primarily depends on the COT subpixel heterogeneity. For solar reflectance channels, in addition to the PPHA bias, the IPA can lead to significant retrieval errors if there is large photon transport between cloudy columns in addition to brightening and shadowing effects that are more difficult to quantify.The effects of cirrus horizontal heterogeneity are here studied on COT and Re retrievals obtained using simulated MODIS reflectances at 0.86 and 2.11 μm and radiances at 8.5, 11.0 and 12.0 μm, for spatial resolutions ranging from 50 m to 10 km. For each spatial resolution, simulated TOA reflectances and radiances are combined for cloud optical property retrievals with a research-level optimal estimation retrieval method (OEM). The impact of horizontal heterogeneity on the retrieved products is assessed for different solar geometries and various combinations of the five channels.
Large-scale horizontal flows from SOUP observations of solar granulation
NASA Technical Reports Server (NTRS)
November, L. J.; Simon, G. W.; Tarbell, T. D.; Title, A. M.; Ferguson, S. H.
1987-01-01
Using high resolution time sequence photographs of solar granulation from the SOUP experiment on Spacelab 2, large scale horizontal flows were observed in the solar surface. The measurement method is based upon a local spatial cross correlation analysis. The horizontal motions have amplitudes in the range 300 to 1000 m/s. Radial outflow of granulation from a sunspot penumbra into surrounding photosphere is a striking new discovery. Both the supergranulation pattern and cellular structures having the scale of mesogranulation are seen. The vertical flows that are inferred by continuity of mass from these observed horizontal flows have larger upflow amplitudes in cell centers than downflow amplitudes at cell boundaries.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kassianov, E.; Pekour, M.; Flynn, C.
Our work is motivated by previous studies of the long-range trans-Atlantic transport of Saharan dust and the observed quasi-static nature of coarse mode aerosol with a volume median diameter (VMD) of approximately 3.5 µm. We examine coarse mode contributions from the trans-Pacific transport of Asian dust to North American aerosol microphysical and optical properties using a dataset collected at the high-elevation, mountain-top Storm Peak Laboratory (SPL, 3.22 km above sea level [ASL]) and the nearby Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF, 2.76 km ASL). Data collected during the SPL Cloud Property Validation Experiment (STORMVEX, March 2011) are complemented bymore » quasi-global high-resolution model simulations coupled with aerosol chemistry. We identify dust event associated mostly with Asian plume (about 70% of dust mass) where the coarse mode with moderate (~4 µm) VMD is distinct and contributes substantially to aerosol microphysical (up to 70% for total volume) and optical (up to 45% for total scattering and aerosol optical depth) properties. Our results, when compared with previous Saharan dust studies, suggest a fairly invariant behavior of coarse mode dust aerosols. If confirmed in additional studies, this invariant behavior may simplify considerably model parameterizations for complex and size-dependent processes associated with dust transport and removal.« less
NASA Astrophysics Data System (ADS)
Chen, J. M.; Chen, X.; Ju, W.
2013-03-01
Due to the heterogeneous nature of the land surface, spatial scaling is an inevitable issue in the development of land models coupled with low-resolution Earth system models (ESMs) for predicting land-atmosphere interactions and carbon-climate feedbacks. In this study, a simple spatial scaling algorithm is developed to correct errors in net primary productivity (NPP) estimates made at a coarse spatial resolution based on sub-pixel information of vegetation heterogeneity and surface topography. An eco-hydrological model BEPS-TerrainLab, which considers both vegetation and topographical effects on the vertical and lateral water flows and the carbon cycle, is used to simulate NPP at 30 m and 1 km resolutions for a 5700 km2 watershed with an elevation range from 518 m to 3767 m in the Qinling Mountain, Shaanxi Province, China. Assuming that the NPP simulated at 30 m resolution represents the reality and that at 1 km resolution is subject to errors due to sub-pixel heterogeneity, a spatial scaling index (SSI) is developed to correct the coarse resolution NPP values pixel by pixel. The agreement between the NPP values at these two resolutions is improved considerably from R2 = 0.782 to R2 = 0.884 after the correction. The mean bias error (MBE) in NPP modeled at the 1 km resolution is reduced from 14.8 g C m-2 yr-1 to 4.8 g C m-2 yr-1 in comparison with NPP modeled at 30 m resolution, where the mean NPP is 668 g C m-2 yr-1. The range of spatial variations of NPP at 30 m resolution is larger than that at 1 km resolution. Land cover fraction is the most important vegetation factor to be considered in NPP spatial scaling, and slope is the most important topographical factor for NPP spatial scaling especially in mountainous areas, because of its influence on the lateral water redistribution, affecting water table, soil moisture and plant growth. Other factors including leaf area index (LAI), elevation and aspect have small and additive effects on improving the spatial scaling between these two resolutions.
NASA Astrophysics Data System (ADS)
Chen, J. M.; Chen, X.; Ju, W.
2013-07-01
Due to the heterogeneous nature of the land surface, spatial scaling is an inevitable issue in the development of land models coupled with low-resolution Earth system models (ESMs) for predicting land-atmosphere interactions and carbon-climate feedbacks. In this study, a simple spatial scaling algorithm is developed to correct errors in net primary productivity (NPP) estimates made at a coarse spatial resolution based on sub-pixel information of vegetation heterogeneity and surface topography. An eco-hydrological model BEPS-TerrainLab, which considers both vegetation and topographical effects on the vertical and lateral water flows and the carbon cycle, is used to simulate NPP at 30 m and 1 km resolutions for a 5700 km2 watershed with an elevation range from 518 m to 3767 m in the Qinling Mountain, Shanxi Province, China. Assuming that the NPP simulated at 30 m resolution represents the reality and that at 1 km resolution is subject to errors due to sub-pixel heterogeneity, a spatial scaling index (SSI) is developed to correct the coarse resolution NPP values pixel by pixel. The agreement between the NPP values at these two resolutions is improved considerably from R2 = 0.782 to R2 = 0.884 after the correction. The mean bias error (MBE) in NPP modelled at the 1 km resolution is reduced from 14.8 g C m-2 yr-1 to 4.8 g C m-2 yr-1 in comparison with NPP modelled at 30 m resolution, where the mean NPP is 668 g C m-2 yr-1. The range of spatial variations of NPP at 30 m resolution is larger than that at 1 km resolution. Land cover fraction is the most important vegetation factor to be considered in NPP spatial scaling, and slope is the most important topographical factor for NPP spatial scaling especially in mountainous areas, because of its influence on the lateral water redistribution, affecting water table, soil moisture and plant growth. Other factors including leaf area index (LAI) and elevation have small and additive effects on improving the spatial scaling between these two resolutions.
Sources and Loading of Nitrogen to U.S. Estuaries
Previous assessments of land-based nitrogen loading and sources to U.S. estuaries have been limited to estimates for larger systems with watersheds at the scale of 8-digit HUCs and larger, in part due to the coarse resolution of available data, including estuarine watershed bound...
TOWARDS AN IMPROVED UNDERSTANDING OF SIMULATED AND OBSERVED CHANGES IN EXTREME PRECIPITATION
The evaluation of climate model precipitation is expected to reveal biases in simulated mean and extreme precipitation which may be a result of coarse model resolution or inefficiencies in the precipitation generating mechanisms in models. The analysis of future extreme precip...
Coarsening of three-dimensional structured and unstructured grids for subsurface flow
NASA Astrophysics Data System (ADS)
Aarnes, Jørg Espen; Hauge, Vera Louise; Efendiev, Yalchin
2007-11-01
We present a generic, semi-automated algorithm for generating non-uniform coarse grids for modeling subsurface flow. The method is applicable to arbitrary grids and does not impose smoothness constraints on the coarse grid. One therefore avoids conventional smoothing procedures that are commonly used to ensure that the grids obtained with standard coarsening procedures are not too rough. The coarsening algorithm is very simple and essentially involves only two parameters that specify the level of coarsening. Consequently the algorithm allows the user to specify the simulation grid dynamically to fit available computer resources, and, e.g., use the original geomodel as input for flow simulations. This is of great importance since coarse grid-generation is normally the most time-consuming part of an upscaling phase, and therefore the main obstacle that has prevented simulation workflows with user-defined resolution. We apply the coarsening algorithm to a series of two-phase flow problems on both structured (Cartesian) and unstructured grids. The numerical results demonstrate that one consistently obtains significantly more accurate results using the proposed non-uniform coarsening strategy than with corresponding uniform coarse grids with roughly the same number of cells.
Spatial Analysis of Coastal Erosion over Five Decades near Barrow, Alaska
NASA Astrophysics Data System (ADS)
Manley, W. F.
2004-12-01
There has been increasing interest in processes affecting Arctic coastlines, including shoreline erosion. The prospect of continued -- and possibly accelerated -- coastal erosion is a major concern for many Arctic communities. Documenting and understanding spatial variability in erosion rates are increasingly attainable as high-resolution imagery becomes available, and as GIS and remote-sensing tools are more widely accepted. This study presents such an analysis for a broad area near Barrow, Alaska. Shoreline erosion and accretion were quantified by comparison of coregistered datasets and imagery. Orthorectified Radar Imagery (ORRI) was acquired in July, 2002 at 1.25 m resolution. Twenty frames of aerial photos from August, 1955 were scanned and georectified to the ORRI using a polynomial transformation in ArcGIS, with resulting resolution of about 1.4 m and RMS error of 2.6 m. The 2002 and 1955 shorelines were digitized with points spaced every 20 m along the 250 km of mainland coastline. For barrier islands and the Barrow Spit, the 1955 coastline was digitized from DRG files depicting the USGS 15-minute maps. Using a variety of vector ArcInfo commands, horizontal displacement of the mainland shoreline was converted to erosion and accretion rates for the intervening 47 years. (Note that time-averaged rates will underrepresent episodically high rates during storm events). Overall error considering georectification, digitizing, and transient waterline shifts due to microtidal fluctuation and wave-set up is approx. 3.1 m for the mainland coast, equating with 0.07 m/yr. For barrier features, where the DRG's are less accurate, error is about 28 m (0.6 m/yr). Nearly all of the mainland coast (91%) has experienced erosion. Highly variable, rates average -0.91 m/yr, with an average horizontal shoreline displacement of -42.5 m. (Rates and displacements are negative for erosion). Relatively low rates of about -0.3 m/yr occur along the Chukchi coast, where sand- and gravel-dominated beaches are backed by bluffs up to 15 m high. Rates are higher along the low coastal plain facing Elson Lagoon, exceeding -5 m/yr near Scott, Ross, and Christie Points, before decreasing again in the sheltered waters of inner Admiralty Bay. Rates also decrease within small bays and inlets. Lateral accretion from 1955 to 2002 is uncommon, limited to short stretches of widening beach along the Chukchi coast, and isolated progradation or shifting of small nearshore spits and bars. Immediately adjacent to Barrow, the shoreline has eroded -0.2 to -0.8 m/yr, in agreement with a higher-resolution, related study, whereas the beach near the NARL/UIC complex has prograded on average +0.3 m/yr. The narrow offshore barrier islands have migrated considerably, with an average horizontal shift of 205 m. Although erosion over five decades has been locally variable, a few patterns emerge. High bluffs and coarse beach sediment help protect the Chukchi shoreline, whereas low coastal bluffs exposing ice-rich, peaty soils are susceptible along the Beaufort coast. Beyond bluff height and shoreface lithologies, fetch plays an important role, with the inner portions of bays and inlets protected at a variety of scales. Erosion appears to be more pronounced where ice-wedge polygons are strongly developed within mature thaw-lake basins. Near Barrow, human activities in the nearshore zone have played a role, and erosion is a concern -- even though it occurs there more slowly than the region as a whole. The importance of extreme weather events, and the possibility of accelerated change due to warming and decreasing summer sea ice, will be examined as other imagery improves the temporal resolution for analysis.
High-Resolution Mesoscale Model Setup for the Eastern Range and Wallops Flight Facility
NASA Technical Reports Server (NTRS)
Watson, Leela R.; Zavodsky, Bradley T.
2015-01-01
Mesoscale weather conditions can have an adverse effect on space launch, landing, ground processing, and weather advisories, watches, and warnings at the Eastern Range (ER) in Florida and Wallops Flight Facility (WFF) in Virginia. During summer, land-sea interactions across Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS) lead to sea breeze front formation, which can spawn deep convection that can hinder operations and endanger personnel and resources. Many other weak locally-driven low-level boundaries and their interactions with the sea breeze front and each other can also initiate deep convection in the KSC/CCAFS area. These convective processes often last 60 minutes or less and pose a significant challenge to the local forecasters. Surface winds during the transition seasons (spring and fall) pose the most difficulties for the forecasters at WFF. They also encounter problems forecasting convective activity and temperature during those seasons. Therefore, accurate mesoscale model forecasts are needed to better forecast a variety of unique weather phenomena. Global and national scale models cannot properly resolve important local-scale weather features at each location due to their horizontal resolutions being much too coarse. Therefore, a properly tuned local data assimilation (DA) and forecast model at a high resolution is needed to provide improved capability. To accomplish this, a number of sensitivity tests were performed using the Weather Research and Forecasting (WRF) model in order to determine the best DA/model configuration for operational use at each of the space launch ranges to best predict winds, precipitation, and temperature. A set of Perl scripts to run the Gridpoint Statistical Interpolation (GSI)/WRF in real-time were provided by NASA's Short-term Prediction Research and Transition Center (SPoRT). The GSI can analyze many types of observational data including satellite, radar, and conventional data. The GSI/WRF scripts use a cycled GSI system similar to the operational North American Mesoscale (NAM) model. The scripts run a 12-hour pre-cycle in which data are assimilated from 12 hours prior up to the model initialization time. A number of different model configurations were tested for both the ER and WFF by varying the horizontal resolution on which the data assimilation was done. Three different grid configurations were run for the ER and two configurations were run for WFF for archive cases from 27 Aug 2013 through 10 Nov 2013. To quantify model performance, standard model output will be compared to the Meteorological Assimilation Data Ingest System (MADIS) data. The MADIS observation data will be compared to the WRF forecasts using the Model Evaluation Tools (MET) verification package. In addition, the National Centers for Environmental Prediction's Stage IV precipitation data will be used to validate the WRF precipitation forecasts. The author will summarize the relative skill of the various WRF configurations and how each configuration behaves relative to the others, as well as determine the best model configuration for each space launch range.
Intercomparison of AIRS and HIRDLS stratospheric gravity wave observations
NASA Astrophysics Data System (ADS)
Meyer, Catrin I.; Ern, Manfred; Hoffmann, Lars; Trinh, Quang Thai; Alexander, M. Joan
2018-01-01
We investigate stratospheric gravity wave observations by the Atmospheric InfraRed Sounder (AIRS) aboard NASA's Aqua satellite and the High Resolution Dynamics Limb Sounder (HIRDLS) aboard NASA's Aura satellite. AIRS operational temperature retrievals are typically not used for studies of gravity waves, because their vertical and horizontal resolution is rather limited. This study uses data of a high-resolution retrieval which provides stratospheric temperature profiles for each individual satellite footprint. Therefore the horizontal sampling of the high-resolution retrieval is 9 times better than that of the operational retrieval. HIRDLS provides 2-D spectral information of observed gravity waves in terms of along-track and vertical wavelengths. AIRS as a nadir sounder is more sensitive to short-horizontal-wavelength gravity waves, and HIRDLS as a limb sounder is more sensitive to short-vertical-wavelength gravity waves. Therefore HIRDLS is ideally suited to complement AIRS observations. A calculated momentum flux factor indicates that the waves seen by AIRS contribute significantly to momentum flux, even if the AIRS temperature variance may be small compared to HIRDLS. The stratospheric wave structures observed by AIRS and HIRDLS often agree very well. Case studies of a mountain wave event and a non-orographic wave event demonstrate that the observed phase structures of AIRS and HIRDLS are also similar. AIRS has a coarser vertical resolution, which results in an attenuation of the amplitude and coarser vertical wavelengths than for HIRDLS. However, AIRS has a much higher horizontal resolution, and the propagation direction of the waves can be clearly identified in geographical maps. The horizontal orientation of the phase fronts can be deduced from AIRS 3-D temperature fields. This is a restricting factor for gravity wave analyses of limb measurements. Additionally, temperature variances with respect to stratospheric gravity wave activity are compared on a statistical basis. The complete HIRDLS measurement period from January 2005 to March 2008 is covered. The seasonal and latitudinal distributions of gravity wave activity as observed by AIRS and HIRDLS agree well. A strong annual cycle at mid- and high latitudes is found in time series of gravity wave variances at 42 km, which has its maxima during wintertime and its minima during summertime. The variability is largest during austral wintertime at 60° S. Variations in the zonal winds at 2.5 hPa are associated with large variability in gravity wave variances. Altogether, gravity wave variances of AIRS and HIRDLS are complementary to each other. Large parts of the gravity wave spectrum are covered by joint observations. This opens up fascinating vistas for future gravity wave research.
Resolution characteristics of optical coherence tomography for dental use.
Watanabe, Hiroshi; Kuribayashi, Ami; Sumi, Yasunori; Kurabayashi, Tohru
2017-03-01
The purpose of this study was to clarify the resolution characteristics of optical coherence tomography (OCT) for dental use. Two types of swept-source optical coherence tomography machines were employed in this study. To clarify their resolution characteristics, we newly developed a glass chart device with a ladder pattern of wavelengths, which ranged from 4 × 2 μm to 1024 × 2 μm, as well as a star-target pattern, a grid pattern and a spatial frequency response pattern. The resolving powers and characteristics of the OCTs were subjectively evaluated. The Santec OCT-2000 ™ (Santec Co., Komaki, Japan) had a resolving power of 64 μm in both the horizontal X and vertical Y directions, while the OCT from Yoshida had a resolving power of 64 μm in the horizontal X direction and 128 µm in the vertical Y direction. The resolving power of the depth Z direction could not be obtained from this study. With the Yoshida OCT, the star-target pattern seemed to be non-symmetrical, owing to an edge enhancement effect, which was revealed when the ladder patterns were placed in a horizontal direction. This study successfully clarified the resolution characteristics of two types of OCTs. The obtained data may be useful for diagnostic purposes, and the glass chart device used in this study may be useful for OCT quality assurance programmes.
NASA Astrophysics Data System (ADS)
Marson, Avishai; Stern, Adrian
2015-05-01
One of the main limitations of horizontal parallax autostereoscopic displays is the horizontal resolution loss due the need to repartition the pixels of the display panel among the multiple views. Recently we have shown that this problem can be alleviated by applying a color sub-pixel rendering technique1. Interpolated views are generated by down-sampling the panel pixels at sub-pixel level, thus increasing the number of views. The method takes advantage of lower acuity of the human eye to chromatic resolution. Here we supply further support of the technique by analyzing the spectra of the subsampled images.
Speckle imaging through turbulent atmosphere based on adaptable pupil segmentation
NASA Astrophysics Data System (ADS)
Loktev, Mikhail; Soloviev, Oleg; Savenko, Svyatoslav; Vdovin, Gleb
2011-07-01
We report on the first results to our knowledge obtained with adaptable multiaperture imaging through turbulence on a horizontal atmospheric path. We show that the resolution can be improved by adaptively matching the size of the subaperture to the characteristic size of the turbulence. Further improvement is achieved by the deconvolution of a number of subimages registered simultaneously through multiple subapertures. Different implementations of multiaperture geometry, including pupil multiplication, pupil image sampling, and a plenoptic telescope, are considered. Resolution improvement has been demonstrated on a ˜550m horizontal turbulent path, using a combination of aperture sampling, speckle image processing, and, optionally, frame selection.
NASA Astrophysics Data System (ADS)
Herrington, A. R.; Reed, K. A.
2018-02-01
A set of idealized experiments are developed using the Community Atmosphere Model (CAM) to understand the vertical velocity response to reductions in forcing scale that is known to occur when the horizontal resolution of the model is increased. The test consists of a set of rising bubble experiments, in which the horizontal radius of the bubble and the model grid spacing are simultaneously reduced. The test is performed with moisture, through incorporating moist physics routines of varying complexity, although convection schemes are not considered. Results confirm that the vertical velocity in CAM is to first-order, proportional to the inverse of the horizontal forcing scale, which is consistent with a scale analysis of the dry equations of motion. In contrast, experiments in which the coupling time step between the moist physics routines and the dynamical core (i.e., the "physics" time step) are relaxed back to more conventional values results in severely damped vertical motion at high resolution, degrading the scaling. A set of aqua-planet simulations using different physics time steps are found to be consistent with the results of the idealized experiments.
NASA Astrophysics Data System (ADS)
Bressan, Lidia; Valentini, Andrea; Paccagnella, Tiziana; Montani, Andrea; Marsigli, Chiara; Stefania Tesini, Maria
2017-04-01
At the Hydro-meteo-climate service of the Regional environmental agency of Emilia-Romagna, Italy (Arpae-SIMC), the oceanographic numerical model AdriaROMS is used in the operational forecasting suite to compute sea level, temperature, salinity and 3-D current fields of the Adriatic Sea (northern Mediterranean Sea). In order to evaluate the performance of the sea-level forecast and to study different configurations of the ROMS model, two marine storms occurred on the Emilia Romagna coast during the winter 2015-2016 are investigated. The main focus of this study is to analyse the sensitivity of the model to the horizontal resolution and to the meteorological forcing. To this end, the model is run with two different configurations and with two horizontal grids at 1 and 2 km resolution. To study the influence of the meteorological forcing, the two storms have been reproduced by running ROMS in ensemble mode, forced by the 16-members of the meteorological ensemble COSMO-LEPS system. Possible optimizations of the model set-up are deduced by the comparison of the different run outputs.
Selmants, Paul C.; Moreno, Alvaro; Running, Steve W.; Giardina, Christian P.
2017-01-01
Gross primary production (GPP) is the Earth’s largest carbon flux into the terrestrial biosphere and plays a critical role in regulating atmospheric chemistry and global climate. The Moderate Resolution Imaging Spectrometer (MODIS)-MOD17 data product is a widely used remote sensing-based model that provides global estimates of spatiotemporal trends in GPP. When the MOD17 algorithm is applied to regional scale heterogeneous landscapes, input data from coarse resolution land cover and climate products may increase uncertainty in GPP estimates, especially in high productivity tropical ecosystems. We examined the influence of using locally specific land cover and high-resolution local climate input data on MOD17 estimates of GPP for the State of Hawaii, a heterogeneous and discontinuous tropical landscape. Replacing the global land cover data input product (MOD12Q1) with Hawaii-specific land cover data reduced statewide GPP estimates by ~8%, primarily because the Hawaii-specific land cover map had less vegetated land area compared to the global land cover product. Replacing coarse resolution GMAO climate data with Hawaii-specific high-resolution climate data also reduced statewide GPP estimates by ~8% because of the higher spatial variability of photosynthetically active radiation (PAR) in the Hawaii-specific climate data. The combined use of both Hawaii-specific land cover and high-resolution Hawaii climate data inputs reduced statewide GPP by ~16%, suggesting equal and independent influence on MOD17 GPP estimates. Our sensitivity analyses within a heterogeneous tropical landscape suggest that refined global land cover and climate data sets may contribute to an enhanced MOD17 product at a variety of spatial scales. PMID:28886187
Kimball, Heather L.; Selmants, Paul; Moreno, Alvaro; Running Steve W,; Giardina, Christian P.
2017-01-01
Gross primary production (GPP) is the Earth’s largest carbon flux into the terrestrial biosphere and plays a critical role in regulating atmospheric chemistry and global climate. The Moderate Resolution Imaging Spectrometer (MODIS)-MOD17 data product is a widely used remote sensing-based model that provides global estimates of spatiotemporal trends in GPP. When the MOD17 algorithm is applied to regional scale heterogeneous landscapes, input data from coarse resolution land cover and climate products may increase uncertainty in GPP estimates, especially in high productivity tropical ecosystems. We examined the influence of using locally specific land cover and high-resolution local climate input data on MOD17 estimates of GPP for the State of Hawaii, a heterogeneous and discontinuous tropical landscape. Replacing the global land cover data input product (MOD12Q1) with Hawaii-specific land cover data reduced statewide GPP estimates by ~8%, primarily because the Hawaii-specific land cover map had less vegetated land area compared to the global land cover product. Replacing coarse resolution GMAO climate data with Hawaii-specific high-resolution climate data also reduced statewide GPP estimates by ~8% because of the higher spatial variability of photosynthetically active radiation (PAR) in the Hawaii-specific climate data. The combined use of both Hawaii-specific land cover and high-resolution Hawaii climate data inputs reduced statewide GPP by ~16%, suggesting equal and independent influence on MOD17 GPP estimates. Our sensitivity analyses within a heterogeneous tropical landscape suggest that refined global land cover and climate data sets may contribute to an enhanced MOD17 product at a variety of spatial scales.
Kimball, Heather L; Selmants, Paul C; Moreno, Alvaro; Running, Steve W; Giardina, Christian P
2017-01-01
Gross primary production (GPP) is the Earth's largest carbon flux into the terrestrial biosphere and plays a critical role in regulating atmospheric chemistry and global climate. The Moderate Resolution Imaging Spectrometer (MODIS)-MOD17 data product is a widely used remote sensing-based model that provides global estimates of spatiotemporal trends in GPP. When the MOD17 algorithm is applied to regional scale heterogeneous landscapes, input data from coarse resolution land cover and climate products may increase uncertainty in GPP estimates, especially in high productivity tropical ecosystems. We examined the influence of using locally specific land cover and high-resolution local climate input data on MOD17 estimates of GPP for the State of Hawaii, a heterogeneous and discontinuous tropical landscape. Replacing the global land cover data input product (MOD12Q1) with Hawaii-specific land cover data reduced statewide GPP estimates by ~8%, primarily because the Hawaii-specific land cover map had less vegetated land area compared to the global land cover product. Replacing coarse resolution GMAO climate data with Hawaii-specific high-resolution climate data also reduced statewide GPP estimates by ~8% because of the higher spatial variability of photosynthetically active radiation (PAR) in the Hawaii-specific climate data. The combined use of both Hawaii-specific land cover and high-resolution Hawaii climate data inputs reduced statewide GPP by ~16%, suggesting equal and independent influence on MOD17 GPP estimates. Our sensitivity analyses within a heterogeneous tropical landscape suggest that refined global land cover and climate data sets may contribute to an enhanced MOD17 product at a variety of spatial scales.
A Simple Downscaling Algorithm for Remotely Sensed Land Surface Temperature
NASA Astrophysics Data System (ADS)
Sandholt, I.; Nielsen, C.; Stisen, S.
2009-05-01
The method is illustrated using a combination of MODIS NDVI data with a spatial resolution of 250m and 3 Km Meteosat Second Generation SEVIRI LST data. Geostationary Earth Observation data carry a large potential for assessment of surface state variables. Not the least the European Meteosat Second Generation platform with its SEVIRI sensor is well suited for studies of the dynamics of land surfaces due to its high temporal frequency (15 minutes) and its red, Near Infrared (NIR) channels that provides vegetation indices, and its two split window channels in the thermal infrared for assessment of Land Surface Temperature (LST). For some applications the spatial resolution in geostationary data is too coarse. Due to the low statial resolution of 4.8 km at nadir for the SEVIRI sensor, a means of providing sub pixel information is sought for. By combining and properly scaling two types of satellite images, namely data from the MODIS sensor onboard the polar orbiting platforms TERRA and AQUA and the coarse resolution MSG-SEVIRI, we exploit the best from two worlds. The vegetation index/surface temperature space has been used in a vast number of studies for assessment of air temperature, soil moisture, dryness indices, evapotranspiration and for studies of land use change. In this paper, we present an improved method to derive a finer resolution Land Surface Temperature (LST). A new, deterministic scaling method has been applied, and is compared to existing deterministic downscaling methods based on LST and NDVI. We also compare our results from in situ measurements of LST from the Dahra test site in West Africa.
NASA Astrophysics Data System (ADS)
King, Kristien C.
In order to further assess the wind energy potential for Nevada, the accuracy of a computational meteorological model, the Operational Multi-scale Environment model with Grid Adaptivity (OMEGA), was evaluated by comparing simulation results with data collected from a wind monitoring tower near Tonopah, NV. The state of Nevada is characterized by high mountains and low-lying valleys, therefore, in order to determine the wind potential for the state, meteorological models that predict the wind must be able to accurately represent and account for terrain features and simulate topographic forcing with accuracy. Topographic forcing has a dominant role in the development and modification of mesoscale flows in regions of complex terrain, like Tonopah, especially at the level of wind turbine blade heights (~80 m). Additionally, model factors such as horizontal resolution, terrain database resolution, model physics, time of model initialization, stability regime, and source of initial conditions may each affect the ability of a mesoscale model to forecast winds correctly. The observational tower used for comparison was located at Stone Cabin, Nevada. The tower had both sonic anemometers and cup anemometers installed at heights of 40 m, 60 m, and 80 m above the surface. During a previous experiment, tower data were collected for the period February 9 through March 10, 2007 and compared to model simulations using the MM5 and WRF models at a number of varying horizontal resolutions. In this previous research, neither the MM5 nor the WRF showed a significant improvement in ability to forecast wind speed with increasing horizontal grid resolution. The present research evaluated the ability of OMEGA to reproduce point winds as compared to the observational data from the Stone Cabin Tower at heights of 40 m, 60 m, and 80 m. Unlike other mesoscale atmospheric models, OMEGA incorporates an unstructured triangular adaptive grid which allows for increased flexibility and accuracy in characterizing areas of complex terrain. Model sensitivity to horizontal grid resolution, initial conditions, and time of initialization were tested. OMEGA was run over three different horizontal grid resolutions with minimum horizontal edge lengths of: 18 km, 6 km, and 2 km. For each resolution, the model was initialized using both the Global Forecasting System (GFS) and North American Regional Reanalysis (NARR) to determine model sensitivity to initial conditions. For both the NARR and GFS initializations, the model was started at both 0000 UTC and 1200 UTC to determine the effect of start time and stability regime on the performance of the model. An additional intensive study into the model's performance was also conducted by a detailed evaluation of model results during two separate 24-hour periods, the first a period where the model performed well and the second a period where the model performed poorly, to determine which atmospheric factors most affect the predictive ability of the OMEGA model. The statistical results were then compared with the results from the MM5 and WRF simulations to determine the most appropriate model for wind energy potential studies in complex terrain.
A number of articles have investigated the impact of sampling design on remotely sensed landcover accuracy estimates. Gong and Howarth (1990) found significant differences for Kappa accuracy values when comparing purepixel sampling, stratified random sampling, and stratified sys...
Passive microwave soil moisture downscaling using vegetation index and skin surface temperature
USDA-ARS?s Scientific Manuscript database
Soil moisture satellite estimates are available from a variety of passive microwave satellite sensors, but their spatial resolution is frequently too coarse for use by land managers and other decision makers. In this paper, a soil moisture downscaling algorithm based on a regression relationship bet...
Active–passive soil moisture retrievals during the SMAP validation experiment 2012
USDA-ARS?s Scientific Manuscript database
The goal of this study is to assess the performance of the active–passive algorithm for the NASA Soil Moisture Active Passive mission (SMAP) using airborne and ground observations from a field campaign. The SMAP active–passive algorithm disaggregates the coarse-resolution radiometer brightness tempe...
Can dynamically downscaled climate model outputs improve pojections of extreme precipitation events?
Many of the storms that generate damaging floods are caused by locally intense, sub-daily precipitation, yet the spatial and temporal resolution of the most widely available climate model outputs are both too coarse to simulate these events. Thus there is often a disconnect betwe...
Structural alignment sensor. [laser applications and interferometry
NASA Technical Reports Server (NTRS)
Davis, L.; Buholz, N. E.; Gillard, C. W.; Huang, C. C.; Wells, W. M., III
1978-01-01
Comparative Michelson interferometers are discussed as well as the operating range potential of a structural alignment sensor (SAS) which requires only one laser mode. Schematics are presented for the distance measurement logic, the basic SAS system, the SAS optical layout, the coarse measurement signal processor, and the measured range resolution.
Analysis of North Atlantic Tropical Cyclone Intensify Change Using Data Mining
ERIC Educational Resources Information Center
Tang, Jiang
2010-01-01
Tropical cyclones (TC), especially when their intensity reaches hurricane scale, can become a costly natural hazard. Accurate prediction of tropical cyclone intensity is very difficult because of inadequate observations on TC structures, poor understanding of physical processes, coarse model resolution and inaccurate initial conditions, etc. This…
NASA Astrophysics Data System (ADS)
Liu, Peng; Ju, Yang; Gao, Feng; Ranjith, Pathegama G.; Zhang, Qianbing
2018-03-01
Understanding and characterization of the three-dimensional (3-D) propagation and distribution of hydrofracturing cracks in heterogeneous rock are key for enhancing the stimulation of low-permeability petroleum reservoirs. In this study, we investigated the propagation and distribution characteristics of hydrofracturing cracks, by conducting true triaxial hydrofracturing tests and computed tomography on artificial heterogeneous rock specimens. Silica sand, Portland cement, and aedelforsite were mixed to create artificial heterogeneous rock specimens using the data of mineral compositions, coarse gravel distribution, and mechanical properties that were measured from the natural heterogeneous glutenite cores. To probe the effects of material heterogeneity on hydrofracturing cracks, the artificial homogenous specimens were created using the identical matrix compositions of the heterogeneous rock specimens and then fractured for comparison. The effects of horizontal geostress ratio on the 3-D growth and distribution of cracks during hydrofracturing were examined. A fractal-based method was proposed to characterize the complexity of fractures and the efficiency of hydrofracturing stimulation of heterogeneous media. The material heterogeneity and horizontal geostress ratio were found to significantly influence the 3-D morphology, growth, and distribution of hydrofracturing cracks. A horizontal geostress ratio of 1.7 appears to be the upper limit for the occurrence of multiple cracks, and higher ratios cause a single crack perpendicular to the minimum horizontal geostress component. The fracturing efficiency is associated with not only the fractured volume but also the complexity of the crack network.
Horizontal Temperature Variability in the Stratosphere: Global Variations Inferred from CRISTA Data
NASA Technical Reports Server (NTRS)
Eidmann, G.; Offermann, D.; Jarisch, M.; Preusse, P.; Eckermann, S. D.; Schmidlin, F. J.
2001-01-01
In two separate orbital campaigns (November, 1994 and August, 1997), the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere (CRISTA) instrument acquired global stratospheric data of high accuracy and high spatial resolution. The standard limb-scanned CRISTA measurements resolved atmospheric spatial structures with vertical dimensions greater than or equal to 1.5 - 2 km and horizontal dimensions is greater than or equal to 100 - 200 km. A fluctuation analysis of horizontal temperature distributions derived from these data is presented. This method is somewhat complementary to conventional power-spectral analysis techniques.
NASA Technical Reports Server (NTRS)
Meek, C. E.; Manson, A. H.; Smith, M. J.
1983-01-01
Two remote receiving sites have been set up at a distance of approx 40 km from the main MF radar system. This allows measurement of upper atmosphere winds from 60-120 km (3 km resolution) at the corners of an approximately equilateral triangle of side approx 20 km. Some preliminary data are compared through cross correlation and cross spectral analysis in an attempt to determine the horizontal velocity of wind perturbations and/or the horizontal wavelength and phase velocity of gravity waves.
The influence of multispectral scanner spatial resolution on forest feature classification
NASA Technical Reports Server (NTRS)
Sadowski, F. G.; Malila, W. A.; Sarno, J. E.; Nalepka, R. F.
1977-01-01
Inappropriate spatial resolution and corresponding data processing techniques may be major causes for non-optimal forest classification results frequently achieved from multispectral scanner (MSS) data. Procedures and results of empirical investigations are studied to determine the influence of MSS spatial resolution on the classification of forest features into levels of detail or hierarchies of information that might be appropriate for nationwide forest surveys and detailed in-place inventories. Two somewhat different, but related studies are presented. The first consisted of establishing classification accuracies for several hierarchies of features as spatial resolution was progressively coarsened from (2 meters) squared to (64 meters) squared. The second investigated the capabilities for specialized processing techniques to improve upon the results of conventional processing procedures for both coarse and fine resolution data.
Large-scale horizontal flows from SOUP observations of solar granulation
NASA Astrophysics Data System (ADS)
November, L. J.; Simon, G. W.; Tarbell, T. D.; Title, A. M.; Ferguson, S. H.
1987-09-01
Using high-resolution time-sequence photographs of solar granulation from the SOUP experiment on Spacelab 2 the authors observed large-scale horizontal flows in the solar surface. The measurement method is based upon a local spatial cross correlation analysis. The horizontal motions have amplitudes in the range 300 to 1000 m/s. Radial outflow of granulation from a sunspot penumbra into the surrounding photosphere is a striking new discovery. Both the supergranulation pattern and cellular structures having the scale of mesogranulation are seen. The vertical flows that are inferred by continuity of mass from these observed horizontal flows have larger upflow amplitudes in cell centers than downflow amplitudes at cell boundaries.
Mapping wildfire burn severity in the Arctic Tundra from downsampled MODIS data
Kolden, Crystal A.; Rogan, John
2013-01-01
Wildfires are historically infrequent in the arctic tundra, but are projected to increase with climate warming. Fire effects on tundra ecosystems are poorly understood and difficult to quantify in a remote region where a short growing season severely limits ground data collection. Remote sensing has been widely utilized to characterize wildfire regimes, but primarily from the Landsat sensor, which has limited data acquisition in the Arctic. Here, coarse-resolution remotely sensed data are assessed as a means to quantify wildfire burn severity of the 2007 Anaktuvuk River Fire in Alaska, the largest tundra wildfire ever recorded on Alaska's North Slope. Data from Landsat Thematic Mapper (TM) and downsampled Moderate-resolution Imaging Spectroradiometer (MODIS) were processed to spectral indices and correlated to observed metrics of surface, subsurface, and comprehensive burn severity. Spectral indices were strongly correlated to surface severity (maximum R2 = 0.88) and slightly less strongly correlated to substrate severity. Downsampled MODIS data showed a decrease in severity one year post-fire, corroborating rapid vegetation regeneration observed on the burned site. These results indicate that widely-used spectral indices and downsampled coarse-resolution data provide a reasonable supplement to often-limited ground data collection for analysis and long-term monitoring of wildfire effects in arctic ecosystems.
Nurmoja, Merle; Eamets, Triin; Härma, Hanne-Loore; Bachmann, Talis
2012-10-01
While the dependence of face identification on the level of pixelation-transform of the images of faces has been well studied, similar research on face-based trait perception is underdeveloped. Because depiction formats used for hiding individual identity in visual media and evidential material recorded by surveillance cameras often consist of pixelized images, knowing the effects of pixelation on person perception has practical relevance. Here, the results of two experiments are presented showing the effect of facial image pixelation on the perception of criminality, trustworthiness, and suggestibility. It appears that individuals (N = 46, M age = 21.5 yr., SD = 3.1 for criminality ratings; N = 94, M age = 27.4 yr., SD = 10.1 for other ratings) have the ability to discriminate between facial cues ndicative of these perceived traits from the coarse level of image pixelation (10-12 pixels per face horizontally) and that the discriminability increases with a decrease in the coarseness of pixelation. Perceived criminality and trustworthiness appear to be better carried by the pixelized images than perceived suggestibility.
Ultra-Parameterized CAM: Progress Towards Low-Cloud Permitting Superparameterization
NASA Astrophysics Data System (ADS)
Parishani, H.; Pritchard, M. S.; Bretherton, C. S.; Khairoutdinov, M.; Wyant, M. C.; Singh, B.
2016-12-01
A leading source of uncertainty in climate feedback arises from the representation of low clouds, which are not resolved but depend on small-scale physical processes (e.g. entrainment, boundary layer turbulence) that are heavily parameterized. We show results from recent attempts to achieve an explicit representation of low clouds by pushing the computational limits of cloud superparameterization to resolve boundary-layer eddy scales relevant to marine stratocumulus (250m horizontal and 20m vertical length scales). This extreme configuration is called "ultraparameterization". Effects of varying horizontal vs. vertical resolution are analyzed in the context of altered constraints on the turbulent kinetic energy statistics of the marine boundary layer. We show that 250m embedded horizontal resolution leads to a more realistic boundary layer vertical structure, but also to an unrealistic cloud pulsation that cannibalizes time mean LWP. We explore the hypothesis that feedbacks involving horizontal advection (not typically encountered in offline LES that neglect this degree of freedom) may conspire to produce such effects and present strategies to compensate. The results are relevant to understanding the emergent behavior of quasi-resolved low cloud decks in a multi-scale modeling framework within a previously unencountered grey zone of better resolved boundary-layer turbulence.
Sun, Pei; Gardner, Justin L.; Costagli, Mauro; Ueno, Kenichi; Waggoner, R. Allen; Tanaka, Keiji; Cheng, Kang
2013-01-01
Cells in the animal early visual cortex are sensitive to contour orientations and form repeated structures known as orientation columns. At the behavioral level, there exist 2 well-known global biases in orientation perception (oblique effect and radial bias) in both animals and humans. However, their neural bases are still under debate. To unveil how these behavioral biases are achieved in the early visual cortex, we conducted high-resolution functional magnetic resonance imaging experiments with a novel continuous and periodic stimulation paradigm. By inserting resting recovery periods between successive stimulation periods and introducing a pair of orthogonal stimulation conditions that differed by 90° continuously, we focused on analyzing a blood oxygenation level-dependent response modulated by the change in stimulus orientation and reliably extracted orientation preferences of single voxels. We found that there are more voxels preferring horizontal and vertical orientations, a physiological substrate underlying the oblique effect, and that these over-representations of horizontal and vertical orientations are prevalent in the cortical regions near the horizontal- and vertical-meridian representations, a phenomenon related to the radial bias. Behaviorally, we also confirmed that there exists perceptual superiority for horizontal and vertical orientations around horizontal and vertical meridians, respectively. Our results, thus, refined the neural mechanisms of these 2 global biases in orientation perception. PMID:22661413
Sensory factors limiting horizontal and vertical visual span for letter recognition
Yu, Deyue; Legge, Gordon E.; Wagoner, Gunther; Chung, Susana T. L.
2014-01-01
Reading speed for English text is slower for text oriented vertically than horizontally. Yu, Park, Gerold, and Legge (2010) showed that slower reading of vertical text is associated with a smaller visual span (the number of letters recognized with high accuracy without moving the eyes). Three possible sensory determinants of the size of the visual span are: resolution (decreasing acuity at letter positions farther from the midline), mislocations (uncertainty about the relative position of letters in strings), and crowding (interference from flanking letters in recognizing the target letter). In the present study, we asked which of these factors is most important in determining the size of the visual span, and likely in turn in determining the horizontal/vertical difference in reading when letter size is above the critical print size for reading. We used a decomposition analysis to represent constraints due to resolution, mislocations, and crowding as losses in information transmitted (in bits) about letter recognition. Across vertical and horizontal conditions, crowding accounted for 75% of the loss in information, mislocations accounted for 19% of the loss, and declining acuity away from fixation accounted for only 6%. We conclude that crowding is the major factor limiting the size of the visual span, and that the horizontal/vertical difference in the size of the visual span is associated with stronger crowding along the vertical midline. PMID:25187253
Sensory factors limiting horizontal and vertical visual span for letter recognition
Yu, Deyue; Legge, Gordon E.; Wagoner, Gunther; Chung, Susana T. L.
2014-01-01
Reading speed for English text is slower for text oriented vertically than horizontally. Yu, Park, Gerold, and Legge (2010) showed that slower reading of vertical text is associated with a smaller visual span (the number of letters recognized with high accuracy without moving the eyes). Three possible sensory determinants of the size of the visual span are: resolution (decreasing acuity at letter positions farther from the midline), mislocations (uncertainty about the relative position of letters in strings), and crowding (interference from flanking letters in recognizing the target letter). In the present study, we asked which of these factors is most important in determining the size of the visual span, and likely in turn in determining the horizontal/vertical difference in reading when letter size is above the critical print size for reading. We used a decomposition analysis to represent constraints due to resolution, mislocations, and crowding as losses in information transmitted (in bits) about letter recognition. Across vertical and horizontal conditions, crowding accounted for 75% of the loss in information, mislocations accounted for 19% of the loss, and declining acuity away from fixation accounted for only 6%. We conclude that crowding is the major factor limiting the size of the visual span, and that the horizontal/vertical difference in the size of the visual span is associated with stronger crowding along the vertical midline.
Gieger, Tracy; Rassnick, Kenneth; Siegel, Sheri; Proulx, David; Bergman, Philip; Anderson, Christine; LaDue, Tracy; Smith, Annette; Northrup, Nicole; Roberts, Royce
2008-01-01
Data from 48 dogs with nasal carcinomas treated with palliative radiation therapy (PRT) were retrospectively reviewed. Factors potentially influencing resolution of clinical signs and survival after PRT were evaluated. Clinical signs completely resolved in 66% of dogs for a median of 120 days. The overall median survival time was 146 days. Duration of response to PRT was shorter in dogs that had clinical signs for <90 days before PRT. Survival times were shorter in dogs that had partial or no resolution of clinical signs after PRT than in dogs that had complete resolution of clinical signs.
Bayless, E. Randall; Arihood, Leslie D.; Reeves, Howard W.; Sperl, Benjamin J.S.; Qi, Sharon L.; Stipe, Valerie E.; Bunch, Aubrey R.
2017-01-18
As part of the National Water Availability and Use Program established by the U.S. Geological Survey (USGS) in 2005, this study took advantage of about 14 million records from State-managed collections of water-well drillers’ records and created a database of hydrogeologic properties for the glaciated United States. The water-well drillers’ records were standardized to be relatively complete and error-free and to provide consistent variables and naming conventions that span all State boundaries.Maps and geospatial grids were developed for (1) total thickness of glacial deposits, (2) total thickness of coarse-grained deposits, (3) specific-capacity based transmissivity and hydraulic conductivity, and (4) texture-based estimated equivalent horizontal and vertical hydraulic conductivity and transmissivity. The information included in these maps and grids is required for most assessments of groundwater availability, in addition to having applications to studies of groundwater flow and transport. The texture-based estimated equivalent horizontal and vertical hydraulic conductivity and transmissivity were based on an assumed range of hydraulic conductivity values for coarse- and fine-grained deposits and should only be used with complete awareness of the methods used to create them. However, the maps and grids of texture-based estimated equivalent hydraulic conductivity and transmissivity may be useful for application to areas where a range of measured values is available for re-scaling.Maps of hydrogeologic information for some States are presented as examples in this report but maps and grids for all States are available electronically at the project Web site (USGS Glacial Aquifer System Groundwater Availability Study, http://mi.water.usgs.gov/projects/WaterSmart/Map-SIR2015-5105.html) and the Science Base Web site, https://www.sciencebase.gov/catalog/item/58756c7ee4b0a829a3276352.
Data analysis of a dense GPS network operated during the ESCOMPTE campaign: first results
NASA Astrophysics Data System (ADS)
Walpersdorf, A.; Bock, O.; Doerflinger, E.; Masson, F.; van Baelen, J.; Somieski, A.; Bürki, B.
The experiment GPS/H 2O involving 17 GPS receivers has been operated for two weeks in June 2001 in a dense network around Marseille. This project was integrated into the ESCOMPTE campaign. This paper will focus on the GPS analysis in preparation of the tomographic inversion of GPS slant delays. As first results, GPS tropospheric parameters zenith delays and horizontal gradients have been extracted. For a first visualization of the humidity field overlying the network, zenith delays have been transformed into precipitable water. Successive humidity fields are presented for a period of sudden drop in humidity, indicating some spatial resolution in the small network. The time series of horizontal gradients evaluated at individual sites are compared to correlated zenith delay variations over the whole network (horizontal gradient of zenith delays), showing that in the small size network horizontal atmospheric structure is reflected by both types of parameters. To compare these two quantities, scaling of zenith delays due to different station altitudes was necessary. In this way, a GPS internal validation of the individual gradients by comparison with the horizontal gradient of zenith delays has been established. Differential features along transects across the network indicate a good spatial resolution of tropospheric phenomena, encouraging for the further tomographic exploitation of the data. Moreover, individual and zenith delay gradients weight differently atmospheric horizontal gradients occurring at different heights. This different sensitivity has been used for a first identification of a vertical atmospheric structure from GPS tropospheric delays, by observing an inclined frontal zone crossing the network.
NASA Technical Reports Server (NTRS)
Pierson, W. J., Jr.; Sylvester, W. B.; Salfi, R. E.
1984-01-01
Conventional data obtained in 1983 are contrasted with SEASAT-A scatterometer and scanning multichannel microwave radiometer (SMMR) data to show how observations at a single station can be extended to an area of about 150,000 square km by means of remotely sensed data obtained in nine minutes. Superobservations at a one degree resolution for the vector winds were estimated along with their standard deviations. From these superobservations, the horizontal divergence, vector wind stress, and the curl of the wind stress can be found. Weather forecasting theory is discussed and meteorological charts of the North Pacific Ocean are presented. Synoptic meteorology as a technique is examined.
Speckle imaging through turbulent atmosphere based on adaptable pupil segmentation.
Loktev, Mikhail; Soloviev, Oleg; Savenko, Svyatoslav; Vdovin, Gleb
2011-07-15
We report on the first results to our knowledge obtained with adaptable multiaperture imaging through turbulence on a horizontal atmospheric path. We show that the resolution can be improved by adaptively matching the size of the subaperture to the characteristic size of the turbulence. Further improvement is achieved by the deconvolution of a number of subimages registered simultaneously through multiple subapertures. Different implementations of multiaperture geometry, including pupil multiplication, pupil image sampling, and a plenoptic telescope, are considered. Resolution improvement has been demonstrated on a ∼550 m horizontal turbulent path, using a combination of aperture sampling, speckle image processing, and, optionally, frame selection. © 2011 Optical Society of America
The high-energy x-ray diffraction and scattering beamline at the Canadian Light Source
NASA Astrophysics Data System (ADS)
Gomez, A.; Dina, G.; Kycia, S.
2018-06-01
The optical design for the high-energy x-ray diffraction and scattering beamline of the Brockhouse sector at the Canadian Light Source is described. The design is based on a single side-bounce silicon focusing monochromator that steers the central part of a high-field permanent magnet wiggler beam into the experimental station. Two different configurations are proposed: a higher energy resolution with vertical focusing and a lower energy resolution with horizontal and vertical focusing. The monochromator will have the possibility of mounting three crystals: one crystal optimized for 35 keV that focuses in the horizontal and vertical directions using reflection (1,1,1) and two other crystals both covering the energies above 40 keV: one with only vertical focusing and another one with horizontal and vertical focusing. The geometry of the last two monochromator crystals was optimized to use reflections (4,2,2) and (5,3,3) to cover the broad energy range from 40 to 95 keV.
The Relationship Between Fusion, Suppression, and Diplopia in Normal and Amblyopic Vision.
Spiegel, Daniel P; Baldwin, Alex S; Hess, Robert F
2016-10-01
Single vision occurs through a combination of fusion and suppression. When neither mechanism takes place, we experience diplopia. Under normal viewing conditions, the perceptual state depends on the spatial scale and interocular disparity. The purpose of this study was to examine the three perceptual states in human participants with normal and amblyopic vision. Participants viewed two dichoptically separated horizontal blurred edges with an opposite tilt (2.35°) and indicated their binocular percept: "one flat edge," "one tilted edge," or "two edges." The edges varied with scale (fine 4 min arc and coarse 32 min arc), disparity, and interocular contrast. We investigated how the binocular interactions vary in amblyopic (visual acuity [VA] > 0.2 logMAR, n = 4) and normal vision (VA ≤ 0 logMAR, n = 4) under interocular variations in stimulus contrast and luminance. In amblyopia, despite the established sensory dominance of the fellow eye, fusion prevails at the coarse scale and small disparities (75%). We also show that increasing the relative contrast to the amblyopic eye enhances the probability of fusion at the fine scale (from 18% to 38%), and leads to a reversal of the sensory dominance at coarse scale. In normal vision we found that interocular luminance imbalances disturbed binocular combination only at the fine scale in a way similar to that seen in amblyopia. Our results build upon the growing evidence that the amblyopic visual system is binocular and further show that the suppressive mechanisms rendering the amblyopic system functionally monocular are scale dependent.
NASA Astrophysics Data System (ADS)
Jiménez-Esteve, B.; Udina, M.; Soler, M. R.; Pepin, N.; Miró, J. R.
2018-04-01
Different types of land use (LU) have different physical properties which can change local energy balance and hence vertical fluxes of moisture, heat and momentum. This in turn leads to changes in near-surface temperature and moisture fields. Simulating atmospheric flow over complex terrain requires accurate local-scale energy balance and therefore model grid spacing must be sufficient to represent both topography and land-use. In this study we use both the Corine Land Cover (CLC) and United States Geological Survey (USGS) land use databases for use with the Weather Research and Forecasting (WRF) model and evaluate the importance of both land-use classification and horizontal resolution in contributing to successful modelling of surface temperatures and humidities observed from a network of 39 sensors over a 9 day period in summer 2013. We examine case studies of the effects of thermal inertia and soil moisture availability at individual locations. The scale at which the LU classification is observed influences the success of the model in reproducing observed patterns of temperature and moisture. Statistical validation of model output demonstrates model sensitivity to both the choice of LU database used and the horizontal resolution. In general, results show that on average, by a) using CLC instead of USGS and/or b) increasing horizontal resolution, model performance is improved. We also show that the sensitivity to these changes in the model performance shows a daily cycle.
Initial stage corrosion of nanocrystalline copper particles and thin films
NASA Astrophysics Data System (ADS)
Tao, Weimin
1997-12-01
Corrosion behavior is an important issue in nanocrystalline materials research and development. A very fine grain size is expected to have significant effects on the corrosion resistance of these novel materials. However, both the macroscopic corrosion properties and the corresponding structure evolution during corrosion have not been fully studied. Under such circumstances, conducting fundamental research in this area is important and necessary. In this study, high purity nanocrystalline and coarse-grained copper were selected as our sample material, sodium nitrite aqueous solution at room temperature and air at a high temperature were employed as corrosive environments. The weight loss testing and electrochemical methods were used to obtain the macroscopic corrosion properties, whereas the high resolution transmission electron microscope was employed for the structure analysis. The weight loss tests indicate that the corrosion rate of nanocrystalline copper is about 5 times higher than that of coarse-grained copper at the initial stage of corrosion. The electrochemical measurements show that the corrosion potential of the nanocrystalline copper has a 230 mV negative shift in comparison with that of the coarse-grained copper. The nanocrystalline copper also exhibits a significantly higher exchange current density than the coarse-grained copper. High resolution TEM revealed that the surface structure changes at the initial stage of corrosion. It was found that the first copper oxide layer formed on the surface of nanocrystalline copper thin film contains a large density of high angle grain boundaries, whereas that formed on the surface of coarse-grained copper shows highly oriented oxide nuclei and appears to show a strong tendency for forming low angle grain boundaries. A correlation between the macroscopic corrosion properties and the structure characteristics is proposed for the nanocrystalline copper based on the concept of the "apparent" exchange current density associated with mass transport of ions in the oxide layer. A hypothesis is developed that the high corrosion rate of the nanocrystalline copper is closely associated with the structure of the copper oxide layer. Therefore, a high "apparent" exchange current density for the nanocrystalline copper is associated with the high angle grain boundary structure in the initial oxide layer. Additional structure analysis was also carried out: (a) High resolution TEM imaging has provided a cross sectional view of the epitaxial interface between nanocrystalline copper and copper (I) oxide and explicitly discloses the presence of interface defects such as misfit dislocations. Based on this observation, a mechanism was proposed to explain the Cu/Cusb2O interface misfit accommodation. This appears to be the first time this interface has been directly examined. (b) A nanocrystalline analogue to a cross-section of Gwathmey's copper single crystal sphere was revealed by high resolution TEM imaging. A partially oxidized nanocrystalline copper particle is used to examine the variation of the Cu/Cusb2O orientation relationship with respect to changes in surface orientation. A new orientation relationship, Cu (011) //Cusb2O (11), ˜ Cu(011)//Cusb2O(111), was found for the oxidation of nanocrystalline copper.
2015-01-01
Many commonly used coarse-grained models for proteins are based on simplified interaction sites and consequently may suffer from significant limitations, such as the inability to properly model protein secondary structure without the addition of restraints. Recent work on a benzene fluid (LettieriS.; ZuckermanD. M.J. Comput. Chem.2012, 33, 268−27522120971) suggested an alternative strategy of tabulating and smoothing fully atomistic orientation-dependent interactions among rigid molecules or fragments. Here we report our initial efforts to apply this approach to the polar and covalent interactions intrinsic to polypeptides. We divide proteins into nearly rigid fragments, construct distance and orientation-dependent tables of the atomistic interaction energies between those fragments, and apply potential energy smoothing techniques to those tables. The amount of smoothing can be adjusted to give coarse-grained models that range from the underlying atomistic force field all the way to a bead-like coarse-grained model. For a moderate amount of smoothing, the method is able to preserve about 70–90% of the α-helical structure while providing a factor of 3–10 improvement in sampling per unit computation time (depending on how sampling is measured). For a greater amount of smoothing, multiple folding–unfolding transitions of the peptide were observed, along with a factor of 10–100 improvement in sampling per unit computation time, although the time spent in the unfolded state was increased compared with less smoothed simulations. For a β hairpin, secondary structure is also preserved, albeit for a narrower range of the smoothing parameter and, consequently, for a more modest improvement in sampling. We have also applied the new method in a “resolution exchange” setting, in which each replica runs a Monte Carlo simulation with a different degree of smoothing. We obtain exchange rates that compare favorably to our previous efforts at resolution exchange (LymanE.; ZuckermanD. M.J. Chem. Theory Comput.2006, 2, 656−666). PMID:25400525
Spatial models reveal the microclimatic buffering capacity of old-growth forests
Sarah J. K. Frey; Adam S. Hadley; Sherri L. Johnson; Mark Schulze; Julia A. Jones; Matthew. G. Betts
2016-01-01
Climate change is predicted to cause widespread declines in biodiversity, but these predictions are derived from coarse-resolution climate models applied at global scales. Such models lack the capacity to incorporate microclimate variability, which is critical to biodiversity microrefugia. In forested montane regions, microclimate is thought to be influenced by...
USDA-ARS?s Scientific Manuscript database
The Evaporative Stress Index (ESI) quantifies temporal anomalies in a normalized evapotranspiration (ET) metric describing the ratio of actual-to-reference ET (fRET) as derived from satellite remote sensing. At coarse, regional scales (5-10 km resolution), the ESI has demonstrated capacity to captur...
Mohammad Safeeq; Guillaume S. Mauger; Gordon E. Grant; Ivan Arismendi; Alan F. Hamlet; Se-Yeun Lee
2014-01-01
Assessing uncertainties in hydrologic models can improve accuracy in predicting future streamflow. Here, simulated streamflows using the Variable Infiltration Capacity (VIC) model at coarse (1/16°) and fine (1/120°) spatial resolutions were evaluated against observed streamflows from 217 watersheds. In...
USDA-ARS?s Scientific Manuscript database
The generation of realistic future precipitation scenarios is crucial for assessing their impacts on a range of environmental and socio-economic impact sectors. A scale mismatch exists, however, between the coarse spatial resolution at which global climate models (GCMs) output future climate scenari...
USDA-ARS?s Scientific Manuscript database
Resolution of climate model outputs are too coarse to be used as direct inputs to impact models for assessing climate change impacts on agricultural production, water resources, and eco-system services at local or site-specific scales. Statistical downscaling approaches are usually used to bridge th...
Kearney, Sean P; Scoglietti, Daniel J; Kliewer, Christopher J
2013-05-20
A hybrid fs/ps pure-rotational CARS scheme is characterized in furnace-heated air at temperatures from 290 to 800 K. Impulsive femtosecond excitation is used to prepare a rotational Raman coherence that is probed with a ps-duration beam generated from an initially broadband fs pulse that is bandwidth limited using air-spaced Fabry-Perot etalons. CARS spectra are generated using 1.5- and 7.0-ps duration probe beams with corresponding coarse and narrow spectral widths. The spectra are fitted using a simple phenomenological model for both shot-averaged and single-shot measurements of temperature and oxygen mole fraction. Our single-shot temperature measurements exhibit high levels of precision and accuracy when the spectrally coarse 1.5-ps probe beam is used, demonstrating that high spectral resolution is not required for thermometry. An initial assessment of concentration measurements in air is also provided, with best results obtained using the higher resolution 7.0-ps probe. This systematic assessment of the hybrid CARS technique demonstrates its utility for practical application in low-temperature gas-phase systems.
Kapoor, Abhijeet; Travesset, Alex
2014-03-01
We develop an intermediate resolution model, where the backbone is modeled with atomic resolution but the side chain with a single bead, by extending our previous model (Proteins (2013) DOI: 10.1002/prot.24269) to properly include proline, preproline residues and backbone rigidity. Starting from random configurations, the model properly folds 19 proteins (including a mutant 2A3D sequence) into native states containing β sheet, α helix, and mixed α/β. As a further test, the stability of H-RAS (a 169 residue protein, critical in many signaling pathways) is investigated: The protein is stable, with excellent agreement with experimental B-factors. Despite that proteins containing only α helices fold to their native state at lower backbone rigidity, and other limitations, which we discuss thoroughly, the model provides a reliable description of the dynamics as compared with all atom simulations, but does not constrain secondary structures as it is typically the case in more coarse-grained models. Further implications are described. Copyright © 2013 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Zarzycki, C. M.; Gettelman, A.; Callaghan, P.
2017-12-01
Accurately predicting weather extremes such as precipitation (floods and droughts) and temperature (heat waves) requires high resolution to resolve mesoscale dynamics and topography at horizontal scales of 10-30km. Simulating such resolutions globally for climate scales (years to decades) remains computationally impractical. Simulating only a small region of the planet is more tractable at these scales for climate applications. This work describes global simulations using variable-resolution static meshes with multiple dynamical cores that target the continental United States using developmental versions of the Community Earth System Model version 2 (CESM2). CESM2 is tested in idealized, aquaplanet and full physics configurations to evaluate variable mesh simulations against uniform high and uniform low resolution simulations at resolutions down to 15km. Different physical parameterization suites are also evaluated to gauge their sensitivity to resolution. Idealized variable-resolution mesh cases compare well to high resolution tests. More recent versions of the atmospheric physics, including cloud schemes for CESM2, are more stable with respect to changes in horizontal resolution. Most of the sensitivity is due to sensitivity to timestep and interactions between deep convection and large scale condensation, expected from the closure methods. The resulting full physics model produces a comparable climate to the global low resolution mesh and similar high frequency statistics in the high resolution region. Some biases are reduced (orographic precipitation in the western United States), but biases do not necessarily go away at high resolution (e.g. summertime JJA surface Temp). The simulations are able to reproduce uniform high resolution results, making them an effective tool for regional climate studies and are available in CESM2.
Genheden, Samuel
2017-10-01
We present the estimation of solvation free energies of small solutes in water, n-octanol and hexane using molecular dynamics simulations with two MARTINI models at different resolutions, viz. the coarse-grained (CG) and the hybrid all-atom/coarse-grained (AA/CG) models. From these estimates, we also calculate the water/hexane and water/octanol partition coefficients. More than 150 small, organic molecules were selected from the Minnesota solvation database and parameterized in a semi-automatic fashion. Using either the CG or hybrid AA/CG models, we find considerable deviations between the estimated and experimental solvation free energies in all solvents with mean absolute deviations larger than 10 kJ/mol, although the correlation coefficient is between 0.55 and 0.75 and significant. There is also no difference between the results when using the non-polarizable and polarizable water model, although we identify some improvements when using the polarizable model with the AA/CG solutes. In contrast to the estimated solvation energies, the estimated partition coefficients are generally excellent with both the CG and hybrid AA/CG models, giving mean absolute deviations between 0.67 and 0.90 log units and correlation coefficients larger than 0.85. We analyze the error distribution further and suggest avenues for improvements.
NASA Astrophysics Data System (ADS)
Genheden, Samuel
2017-10-01
We present the estimation of solvation free energies of small solutes in water, n-octanol and hexane using molecular dynamics simulations with two MARTINI models at different resolutions, viz. the coarse-grained (CG) and the hybrid all-atom/coarse-grained (AA/CG) models. From these estimates, we also calculate the water/hexane and water/octanol partition coefficients. More than 150 small, organic molecules were selected from the Minnesota solvation database and parameterized in a semi-automatic fashion. Using either the CG or hybrid AA/CG models, we find considerable deviations between the estimated and experimental solvation free energies in all solvents with mean absolute deviations larger than 10 kJ/mol, although the correlation coefficient is between 0.55 and 0.75 and significant. There is also no difference between the results when using the non-polarizable and polarizable water model, although we identify some improvements when using the polarizable model with the AA/CG solutes. In contrast to the estimated solvation energies, the estimated partition coefficients are generally excellent with both the CG and hybrid AA/CG models, giving mean absolute deviations between 0.67 and 0.90 log units and correlation coefficients larger than 0.85. We analyze the error distribution further and suggest avenues for improvements.
Zhu, Hai-Feng; Zele, Andrew J; Suheimat, Marwan; Lambert, Andrew J; Atchison, David A
2016-08-01
This study compared neural resolution and detection limits of the human mid-/long-wavelength and short-wavelength cone systems with anatomical estimates of photoreceptor and retinal ganglion cell spacings and sizes. Detection and resolution limits were measured from central fixation out to 35° eccentricity across the horizontal visual field using a modified Lotmar interferometer. The mid-/long-wavelength cone system was studied using a green (550 nm) test stimulus to which S-cones have low sensitivity. To bias resolution and detection to the short-wavelength cone system, a blue (450 nm) test stimulus was presented against a bright yellow background that desensitized the M- and L-cones. Participants were three trichromatic males with normal visual functions. With green stimuli, resolution showed a steep central-peripheral gradient that was similar between participants, whereas the detection gradient was shallower and patterns were different between participants. Detection and resolution with blue stimuli were poorer than for green stimuli. The detection of blue stimuli was superior to resolution across the horizontal visual field and the patterns were different between participants. The mid-/long-wavelength cone system's resolution is limited by midget ganglion cell spacing and its detection is limited by the size of the M- and L-cone photoreceptors, consistent with previous observations. We found that no such simple relationships occur for the short-wavelength cone system between resolution and the bistratified ganglion cell spacing, nor between detection and the S-cone photoreceptor sizes.
Towards a High-Resolution Global Inundation Delineation Dataset
NASA Astrophysics Data System (ADS)
Fluet-Chouinard, E.; Lehner, B.
2011-12-01
Although their importance for biodiversity, flow regulation and ecosystem service provision is widely recognized, wetlands and temporarily inundated landscapes remain poorly mapped globally because of their inherent elusive nature. Inventorying of wetland resources has been identified in international agreements as an essential component of appropriate conservation efforts and management initiatives of these threatened ecosystems. However, despite recent advances in remote sensing surface water monitoring, current inventories of surface water variations remain incomplete at the regional-to-global scale due to methodological limitations restricting truly global application. Remote sensing wetland applications such as SAR L-band are particularly constrained by image availability and heterogeneity of acquisition dates, while coarse resolution passive microwave and multi-sensor methods cannot discriminate distinct surface water bodies. As a result, the most popular global wetland dataset remains to this day the Global Lake & Wetland Database (Lehner and Doll, 2004) a spatially inconsistent database assembled from various existing data sources. The approach taken in this project circumvents the limitations of current global wetland monitoring methods by combining globally available topographic and hydrographic data to downscale coarse resolution global inundation data (Prigent et al., 2007) and thus create a superior inundation delineation map product. The developed procedure downscales inundation data from the coarse resolution (~27km) of current passive microwave sensors to the finer spatial resolution (~500m) of the topographic and hydrographic layers of HydroSHEDS' data suite (Lehner et al., 2006), while retaining the high temporal resolution of the multi-sensor inundation dataset. From the downscaling process emerges new information on the specific location of inundation, but also on its frequency and duration. The downscaling algorithm employs a decision tree classifier trained on regional remote sensing wetland maps, to derive inundation probability followed by a seeded region growing segmentation process to redistribute the inundated area at the finer resolution. Assessment of the algorithm's performance is accomplished by evaluating the level of agreement between its outputted downscaled inundation maps and existing regional remote sensing inundation delineation. Upon completion, this project's will offer a dynamic globally seamless inundation map at an unprecedented spatial and temporal scale, which will provide the baseline inventory long requested by the research community, and will open the door to a wide array of possible conservation and hydrological modeling applications which were until now data-restricted. Literature Lehner, B., K. Verdin, and A. Jarvis. 2008. New global hydrography derived from spaceborne elevation data. Eos 89, no. 10. Lehner, B, and P Doll. 2004. Development and validation of a global database of lakes, reservoirs and wetlands. Journal of Hydrology 296, no. 1-4: 1-22. Prigent, C., F. Papa, F. Aires, W. B. Rossow, and E. Matthews. 2007. Global inundation dynamics inferred from multiple satellite observations, 1993-2000. Journal of Geophysical Research 112, no. D12: 1-13.
Computational efficiency and Amdahl’s law for the adaptive resolution simulation technique
DOE Office of Scientific and Technical Information (OSTI.GOV)
Junghans, Christoph; Agarwal, Animesh; Delle Site, Luigi
Here, we discuss the computational performance of the adaptive resolution technique in molecular simulation when it is compared with equivalent full coarse-grained and full atomistic simulations. We show that an estimate of its efficiency, within 10%–15% accuracy, is given by the Amdahl’s Law adapted to the specific quantities involved in the problem. The derivation of the predictive formula is general enough that it may be applied to the general case of molecular dynamics approaches where a reduction of degrees of freedom in a multi scale fashion occurs.
Future Climate Change Impact Assessment of River Flows at Two Watersheds of Peninsular Malaysia
NASA Astrophysics Data System (ADS)
Ercan, A.; Ishida, K.; Kavvas, M. L.; Chen, Z. R.; Jang, S.; Amin, M. Z. M.; Shaaban, A. J.
2016-12-01
Impacts of climate change on the river flows under future climate change conditions were assessed over Muda and Dungun watersheds of Peninsular Malaysia by means of a coupled regional climate model and a physically-based hydrology model utilizing an ensemble of 15 different future climate realizations. Coarse resolution GCMs' future projections covering a wide range of emission scenarios were dynamically downscaled to 6 km resolution over the study area. Hydrologic simulations of the two selected watersheds were carried out at hillslope-scale and at hourly increments.
Climate Change Impact Assessment of Hydro-Climate in Southern Peninsular Malaysia
NASA Astrophysics Data System (ADS)
Ercan, A.; Ishida, K.; Kavvas, M. L.; Chen, Z. R.; Jang, S.; Amin, M. Z. M.; Shaaban, A. J.
2017-12-01
Impacts of climate change on the hydroclimate of the coastal region in the south of Peninsular Malaysia in the 21st century was assessed by means of a regional climate model utilizing an ensemble of 15 different future climate realizations. Coarse resolution Global Climate Models' future projections covering four emission scenarios based on Coupled Model Intercomparison Project phase 3 (CMIP3) datasets were dynamically downscaled to 6 km resolution over the study area. The analyses were made in terms of rainfall, air temperature, evapotranporation, and soil water storage.
Computational efficiency and Amdahl’s law for the adaptive resolution simulation technique
Junghans, Christoph; Agarwal, Animesh; Delle Site, Luigi
2017-06-01
Here, we discuss the computational performance of the adaptive resolution technique in molecular simulation when it is compared with equivalent full coarse-grained and full atomistic simulations. We show that an estimate of its efficiency, within 10%–15% accuracy, is given by the Amdahl’s Law adapted to the specific quantities involved in the problem. The derivation of the predictive formula is general enough that it may be applied to the general case of molecular dynamics approaches where a reduction of degrees of freedom in a multi scale fashion occurs.
Geologic map of the Bell Regio Quadrangle (V-9), Venus
Campbell, Bruce A.; Campbell, Patricia G.
2002-01-01
The Magellan spacecraft orbited Venus from August 10, 1990, until it plunged into the venusian atmosphere on October 12, 1994. Magellan had the objectives of (1) improving knowledge of the geologic processes, surface properties, and geologic history of Venus by analysis of surface radar characteristics, topography, and morphology and (2) improving knowledge of the geophysics of Venus by analysis of venusian gravity. The Magellan spacecraft carried a 12.6-cm radar system to map the surface of Venus. The transmitter and receiver systems were used to collect three datasets: synthetic aperture radar (SAR) images of the surface, passive microwave thermal emission observations, and measurements of the backscattered power at small angles of incidence, which were processed to yield altimetric data. Radar imaging and altimetric and radiometric mapping of the venusian surface were done in mission cycles 1, 2, and 3, from September 1990 until September 1992. Ninety-eight percent of the surface was mapped with radar resolution of approximately 120 meters. The SAR observations were projected to a 75-m nominal horizontal resolution; these full-resolution data compose the image base used in geologic mapping. The primary polarization mode was horizontal-transmit, horizontal-receive (HH), but additional data for selected areas were collected for the vertical polarization sense. Incidence angles varied from about 20° to 45°. High-resolution Doppler tracking of the spacecraft was done from September 1992 through October 1994 (mission cycles 4, 5, 6). High-resolution gravity observations from about 950 orbits were obtained between September 1992 and May 1993, while Magellan was in an elliptical orbit with a periapsis near 175 kilometers and an apoapsis near 8,000 kilometers. Observations from an additional 1,500 orbits were obtained following orbitcircularization in mid-1993. These data exist as a 75° by 75° harmonic field.
Geologic/geomorphic map of the Galindo Quadrangle (V-40), Venus
Chapman, Mary G.
2000-01-01
The Magellan spacecraft orbited Venus from August 10, 1990, until it plunged into the venusian atmosphere on October 12, 1994. Magellan had the objectives of (1) improving knowledge of the geologic processes, surface properties, and geologic history of Venus by analysis of surface radar characteristics, topography, and morphology and (2) improving knowledge of the geophysics of Venus by analysis of venusian gravity. The Magellan spacecraft carried a 12.6-cm radar system to map the surface of Venus. The transmitter and receiver systems were used to collect three datasets: synthetic aperture radar (SAR) images of the surface, passive microwave thermal emission observations, and measurements of the backscattered power at small angles of incidence, which were processed to yield altimetric data. Radar imaging and altimetric and radiometric mapping of the venusian surface were done in mission cycles 1, 2, and 3, from September 1990 until September 1992. Ninety-eight percent of the surface was mapped with radar resolution of approximately 120 meters. The SAR observations were projected to a 75-m nominal horizontal resolution; these full-resolution data compose the image base used in geologic mapping. The primary polarization mode was horizontal-transmit, horizontal-receive (HH), but additional data for selected areas were collected for the vertical polarization sense. Incidence angles varied from about 20° to 45°. High-resolution Doppler tracking of the spacecraft was done from September 1992 through October 1994 (mission cycles 4, 5, 6). High-resolution gravity observations from about 950 orbits were obtained between September 1992 and May 1993, while Magellan was in an elliptical orbit with a periapsis near 175 kilometers and an apoapsis near 8,000 kilometers. Observations from an additional 1,500 orbits were obtained following orbitcircularization in mid-1993. These data exist as a 75° by 75° harmonic field.
Geologic map of the Carson Quadrangle (V-43), Venus
Bender, Kelly C.; Senske, David A.; Greeley, Ronald
2000-01-01
The Magellan spacecraft orbited Venus from August 10, 1990, until it plunged into the venusian atmosphere on October 12, 1994. Magellan had the objectives of (1) improving knowledge of the geologic processes, surface properties, and geologic history of Venus by analysis of surface radar characteristics, topography, and morphology and (2) improving knowledge of the geophysics of Venus by analysis of venusian gravity. The Magellan spacecraft carried a 12.6-cm radar system to map the surface of Venus. The transmitter and receiver systems were used to collect three datasets: synthetic aperture radar (SAR) images of the surface, passive microwave thermal emission observations, and measurements of the backscattered power at small angles of incidence, which were processed to yield altimetric data. Radar imaging and altimetric and radiometric mapping of the venusian surface were done in mission cycles 1, 2, and 3, from September 1990 until September 1992. Ninety-eight percent of the surface was mapped with radar resolution of approximately 120 meters. The SAR observations were projected to a 75-m nominal horizontal resolution; these full-resolution data compose the image base used in geologic mapping. The primary polarization mode was horizontal-transmit, horizontal-receive (HH), but additional data for selected areas were collected for the vertical polarization sense. Incidence angles varied from about 20° to 45°. High-resolution Doppler tracking of the spacecraft was done from September 1992 through October 1994 (mission cycles 4, 5, 6). High-resolution gravity observations from about 950 orbits were obtained between September 1992 and May 1993, while Magellan was in an elliptical orbit with a periapsis near 175 kilometers and an apoapsis near 8,000 kilometers. Observations from an additional 1,500 orbits were obtained following orbitcircularization in mid-1993. These data exist as a 75° by 75° harmonic field.
Geological map of the Kaiwan Fluctus Quadrangle (V-44), Venus
Bridges, Nathan T.; McGill, George E.
2002-01-01
Introduction The Magellan spacecraft orbited Venus from August 10, 1990, until it plunged into the Venusian atmosphereon October 12, 1994. Magellan had the objectives of: (1) improving knowledge of the geologic processes, surface properties, and geologic history of Venus by analysis of surface radar characteristics, topography, and morphology and (2) improving knowledge of the geophysics of Venus by analysis of Venusian gravity. The Magellan spacecraft carried a 12.6-cm radar system to map the surface of Venus. The transmitter and receiver systems were used to collect three datasets: synthetic aperture radar (SAR) images of the surface, passive microwave thermal emission observations, and measurements of the backscattered power at small angles of incidence, which were processed to yield altimetric data. Radar imaging and altimetric and radiometric mapping of the Venusian surface were done in mission cycles 1, 2, and 3, from September 1990 until September of 1992. Ninety-eight percent of the surface was mapped with radar resolution of approximately 120 meters. The SAR observations were projected to a 75-m nominal horizontal resolution; these full-resolution data compose the image base used in geologic mapping. The primary polarization mode was horizontal-transmit, horizontal receive (HH), but additional data for selected areas were collected for the vertical polarization sense. Incidence angles varied from about 20? to 45?. High-resolution Doppler tracking of the spacecraft was done from September 1992 through October 1994 (mission cycles 4, 5, 6). High-resolution gravity observations from about 950 orbits were obtained between September 1992 and May 1993, while Magellan was in an elliptical orbit with a periapsis near 175 kilometers and an apoapsis near 8,000 kilometers. Observations from an additional 1,500 orbits were obtained following orbit-circularization in mid-1993. These data exist as a 75? by 75? harmonic field.
Geologic map of the Pandrosos Dorsa Quadrangle (V-5), Venus
Rosenberg, Elizabeth; McGill, George E.
2001-01-01
Introduction The Magellan spacecraft orbited Venus from August 10, 1990, until it plunged into the Venusian atmosphere on October 12, 1994. Magellan had the objectives of (1) improving knowledge of the geologic processes, surface properties, and geologic history of Venus by analysis of surface radar characteristics, topography, and morphology and (2) improving knowledge of the geophysics of Venus by analysis of Venusian gravity. The Magellan spacecraft carried a 12.6-cm radar system to map the surface of Venus. The transmitter and receiver systems were used to collect three datasets: synthetic aperture radar (SAR) images of the surface, passive microwave thermal emission observations, and measurements of the backscattered power at small angles of incidence, which were processed to yield altimetric data. Radar imaging and altimetric and radiometric mapping of the Venusian surface were done in mission cycles 1, 2, and 3, from September 1990 until September 1992. Ninety-eight percent of the surface was mapped with radar resolution of approximately 120 meters. The SAR observations were projected to a 75-m nominal horizontal resolution; these full-resolution data compose the image base used in geologic mapping. The primary polarization mode was horizontal-transmit, horizontal-receive (HH), but additional data for selected areas were collected for the vertical polarization sense. Incidence angles varied from about 20? to 45?. High-resolution Doppler tracking of the spacecraft was done from September 1992 through October 1994 (mission cycles 4, 5, 6). High-resolution gravity observations from about 950 orbits were obtained between September 1992 and May 1993, while Magellan was in an elliptical orbit with a periapsis near 175 kilometers and an apoapsis near 8,000 kilometers. Observations from an additional 1,500 orbits were obtained following orbitcircularization in mid-1993. These data exist as a 75? by 75? harmonic field.
NASA Technical Reports Server (NTRS)
Bufton, Jack L.; Harding, David J.; Ramos-Izquierdo, Luis
1993-01-01
Laser altimetry provides a high-resolution, high-accuracy method for measurement of the elevation and horizontal variability of Earth-surface topography. The basis of the measurement is the timing of the round-trip propagation of short-duration pulses of laser radiation between a spacecraft and the Earth's surface. Vertical resolution of the altimetry measurement is determined primarily by laser pulsewidth, surface-induced spreading in time of the reflected pulse, and the timing precision of the altimeter electronics. With conventional gain-switched pulses from solid-state lasers and sub-nsec resolution electronics, sub-meter vertical range resolution is possible from orbital attitudes of several hundred kilometers. Horizontal resolution is a function of laser beam footprint size at the surface and the spacing between successive laser pulses. Laser divergence angle and altimeter platform height above the surface determine the laser footprint size at the surface, while laser pulse repetition-rate, laser transmitter beam configuration, and altimeter platform velocity determine the space between successive laser pulses. Multiple laser transitters in a singlaltimeter instrument provide across-track and along-track coverage that can be used to construct a range image of the Earth's surface. Other aspects of the multi-beam laser altimeter are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jie; Draxl, Caroline; Hopson, Thomas
Numerical weather prediction (NWP) models have been widely used for wind resource assessment. Model runs with higher spatial resolution are generally more accurate, yet extremely computational expensive. An alternative approach is to use data generated by a low resolution NWP model, in conjunction with statistical methods. In order to analyze the accuracy and computational efficiency of different types of NWP-based wind resource assessment methods, this paper performs a comparison of three deterministic and probabilistic NWP-based wind resource assessment methodologies: (i) a coarse resolution (0.5 degrees x 0.67 degrees) global reanalysis data set, the Modern-Era Retrospective Analysis for Research and Applicationsmore » (MERRA); (ii) an analog ensemble methodology based on the MERRA, which provides both deterministic and probabilistic predictions; and (iii) a fine resolution (2-km) NWP data set, the Wind Integration National Dataset (WIND) Toolkit, based on the Weather Research and Forecasting model. Results show that: (i) as expected, the analog ensemble and WIND Toolkit perform significantly better than MERRA confirming their ability to downscale coarse estimates; (ii) the analog ensemble provides the best estimate of the multi-year wind distribution at seven of the nine sites, while the WIND Toolkit is the best at one site; (iii) the WIND Toolkit is more accurate in estimating the distribution of hourly wind speed differences, which characterizes the wind variability, at five of the available sites, with the analog ensemble being best at the remaining four locations; and (iv) the analog ensemble computational cost is negligible, whereas the WIND Toolkit requires large computational resources. Future efforts could focus on the combination of the analog ensemble with intermediate resolution (e.g., 10-15 km) NWP estimates, to considerably reduce the computational burden, while providing accurate deterministic estimates and reliable probabilistic assessments.« less
NASA Astrophysics Data System (ADS)
Malbéteau, Yoann; Merlin, Olivier; Molero, Beatriz; Rüdiger, Christoph; Bacon, Stephan
2016-03-01
Validating coarse-scale satellite soil moisture data still represents a big challenge, notably due to the large mismatch existing between the spatial resolution (> 10 km) of microwave radiometers and the representativeness scale (several m) of localized in situ measurements. This study aims to examine the potential of DisPATCh (Disaggregation based on Physical and Theoretical scale Change) for validating SMOS (Soil Moisture and Ocean Salinity) and AMSR-E (Advanced Microwave Scanning Radiometer-Earth observation system) level-3 soil moisture products. The ∽40-50 km resolution SMOS and AMSR-E data are disaggregated at 1 km resolution over the Murrumbidgee catchment in Southeastern Australia during a one year period in 2010-2011, and the satellite products are compared with the in situ measurements of 38 stations distributed within the study area. It is found that disaggregation improves the mean difference, correlation coefficient and slope of the linear regression between satellite and in situ data in 77%, 92% and 94% of cases, respectively. Nevertheless, the downscaling efficiency is lower in winter than during the hotter months when DisPATCh performance is optimal. Consistently, better results are obtained in the semi-arid than in a temperate zone of the catchment. In the semi-arid Yanco region, disaggregation in summer increases the correlation coefficient from 0.63 to 0.78 and from 0.42 to 0.71 for SMOS and AMSR-E in morning overpasses and from 0.37 to 0.63 and from 0.47 to 0.73 for SMOS and AMSR-E in afternoon overpasses, respectively. DisPATCh has strong potential in low vegetated semi-arid areas where it can be used as a tool to evaluate coarse-scale remotely sensed soil moisture by explicitly representing the sub-pixel variability.
NASA Astrophysics Data System (ADS)
Ko, A.; Mascaro, G.; Vivoni, E. R.
2017-12-01
Hyper-resolution (< 1 km) hydrological modeling is expected to support a range of studies related to the terrestrial water cycle. A critical need for increasing the utility of hyper-resolution modeling is the availability of meteorological forcings and land surface characteristics at high spatial resolution. Unfortunately, in many areas these datasets are only available at coarse (> 10 km) scales. In this study, we address some of the challenges by applying a parallel version of the Triangulated Irregular Network (TIN)-based Real Time Integrated Basin Simulator (tRIBS) to the Rio Sonora Basin (RSB) in northwest Mexico. The RSB is a large, semiarid watershed ( 21,000 km2) characterized by complex topography and a strong seasonality in vegetation conditions, due to the North American monsoon. We conducted simulations at an average spatial resolution of 88 m over a decadal (2004-2013) period using spatially-distributed forcings from remotely-sensed and reanalysis products. Meteorological forcings were derived from the North American Land Data Assimilation System (NLDAS) at the original resolution of 12 km and were downscaled at 1 km with techniques accounting for terrain effects. Two grids of soil properties were created from different sources, including: (i) CONABIO (Comisión Nacional para el Conocimiento y Uso de la Biodiversidad) at 6 km resolution; and (ii) ISRIC (International Soil Reference Information Centre) at 250 m. Time-varying vegetation parameters were derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) composite products. The model was first calibrated and validated through distributed soil moisture data from a network of 20 soil moisture stations during the monsoon season. Next, hydrologic simulations were conducted with five different combinations of coarse and downscaled forcings and soil properties. Outputs in the different configurations were then compared with independent observations of soil moisture, and with estimates of land surface temperature (1 km, daily) and evapotranspiration (1 km, monthly) from MODIS. This study is expected to support the community involved in hyper-resolution hydrologic modeling by identifying the crucial factors that, if available at higher resolution, lead to the largest improvement of the simulation prognostic capability.
NASA Astrophysics Data System (ADS)
Wouters, Hendrik; Vanden Broucke, Sam; van Lipzig, Nicole; Demuzere, Matthias
2016-04-01
Recent research clearly show that climate modelling at high resolution - which resolve the deep convection, the detailed orography and land-use including urbanization - leads to better modelling performance with respect to temperatures, the boundary-layer, clouds and precipitation. The increasing computational power enables the climate research community to address climate-change projections with higher accuracy and much more detail. In the framework of the CORDEX.be project aiming for coherent high-resolution micro-ensemble projections for Belgium employing different GCMs and RCMs, the KU Leuven contributes by means of the downscaling of EC-EARTH global climate model projections (provided by the Royal Meteorological Institute of the Netherlands) to the Belgian domain. The downscaling is obtained with regional climate simulations at 12.5km resolution over Europe (CORDEX-EU domain) and at 2.8km resolution over Belgium (CORDEX.be domain) using COSMO-CLM coupled to urban land-surface parametrization TERRA_URB. This is done for the present-day (1975-2005) and future (2040 → 2070 and 2070 → 2100). In these high-resolution runs, both GHG changes (in accordance to RCP8.5) and urban land-use changes (in accordance to a business-as-usual urban expansion scenario) are taken into account. Based on these simulations, it is shown how climate-change statistics are modified when going from coarse resolution modelling to high-resolution modelling. The climate-change statistics of particular interest are the changes in number of extreme precipitation events and extreme heat waves in cities. Hereby, it is futher investigated for the robustness of the signal change between the course and high-resolution and whether a (statistical) translation is possible. The different simulations also allow to address the relative impact and synergy between the urban expansion and increased GHG on the climate-change statistics. Hereby, it is investigated for which climate-change statistics the urban heat island and urban expansion is relevant, and to what extent the urban expansion can be included in the coarse-to-high resolution translation.
Dynamical downscaling techniques have previously been developed by the U.S. Environmental Protection Agency (EPA) using a nested WRF at 108- and 36-km. Subsequent work extended one-way nesting down to 12-km resolution. Recently, the EPA Office of Research and Development used com...
Scanning tunneling microscope with a rotary piezoelectric stepping motor
NASA Astrophysics Data System (ADS)
Yakimov, V. N.
1996-02-01
A compact scanning tunneling microscope (STM) with a novel rotary piezoelectric stepping motor for coarse positioning has been developed. An inertial method for rotating of the rotor by the pair of piezoplates has been used in the piezomotor. Minimal angular step size was about several arcsec with the spindle working torque up to 1 N×cm. Design of the STM was noticeably simplified by utilization of the piezomotor with such small step size. A shaft eccentrically attached to the piezomotor spindle made it possible to push and pull back the cylindrical bush with the tubular piezoscanner. A linear step of coarse positioning was about 50 nm. STM resolution in vertical direction was better than 0.1 nm without an external vibration isolation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarkar, Avik; Sun, Xin; Sundaresan, Sankaran
2014-04-23
The accuracy of coarse-grid multiphase CFD simulations of fluidized beds may be improved via the inclusion of filtered constitutive models. In our previous study (Sarkar et al., Chem. Eng. Sci., 104, 399-412), we developed such a set of filtered drag relationships for beds with immersed arrays of cooling tubes. Verification of these filtered drag models is addressed in this work. Predictions from coarse-grid simulations with the sub-grid filtered corrections are compared against accurate, highly-resolved simulations of full-scale turbulent and bubbling fluidized beds. The filtered drag models offer a computationally efficient yet accurate alternative for obtaining macroscopic predictions, but the spatialmore » resolution of meso-scale clustering heterogeneities is sacrificed.« less
NASA Astrophysics Data System (ADS)
Skamarock, W. C.
2017-12-01
We have performed week-long full-physics simulations with the MPAS global model at 15 km cell spacing using vertical mesh spacings of 800, 400, 200 and 100 meters in the mid-troposphere through the mid-stratosphere. We find that the horizontal kinetic energy spectra in the upper troposphere and stratosphere does not converge with increasing vertical resolution until we reach 200 meter level spacing. Examination of the solutions indicates that significant inertia-gravity waves are not vertically resolved at the lower vertical resolutions. Diagnostics from the simulations indicate that the primary kinetic energy dissipation results from the vertical mixing within the PBL parameterization and from the gravity-wave drag parameterization, with smaller but significant contributions from damping in the vertical transport scheme and from the horizontal filters in the dynamical core. Most of the kinetic energy dissipation in the free atmosphere occurs within breaking mid-latitude baroclinic waves. We will briefly review these results and their implications for atmospheric model configuration and for atmospheric dynamics, specifically that related to the dynamics associated with the mesoscale kinetic energy spectrum.
Zhan, Huili; Zhang, Huibo; Bai, Rongjie; Qian, Zhanhua; Liu, Yue; Zhang, Heng; Yin, Yuming
2017-12-01
To investigate if using high-resolution 3-T MRI can identify additional injuries of the triangular fibrocartilage complex (TFCC) beyond the Palmer classification. Eighty-six patients with surgically proven TFCC injury were included in this study. All patients underwent high-resolution 3-T MRI of the injured wrist. The MR imaging features of TFCC were analyzed according to the Palmer classification. According to the Palmer classification, 69 patients could be classified as having Palmer injuries (52 had traumatic tears and 17 had degenerative tears). There were 17 patients whose injuries could not be classified according to the Palmer classification: 13 had volar or dorsal capsular TFC detachment and 4 had a horizontal tear of the articular disk. Using high-resolution 3-T MRI, we have not only found all the TFCC injuries described in the Palmer classification, additional injury types were found in this study, including horizontal tear of the TFC and capsular TFC detachment. We propose the modified Palmer classification and add the injury types that were not included in the original Palmer classification.
Ma, Po-Lun; Rasch, Philip J.; Wang, Minghuai; ...
2015-06-23
We report the Community Atmosphere Model Version 5 is run at horizontal grid spacing of 2, 1, 0.5, and 0.25°, with the meteorology nudged toward the Year Of Tropical Convection analysis, and cloud simulators and the collocated A-Train satellite observations are used to explore the resolution dependence of aerosol-cloud interactions. The higher-resolution model produces results that agree better with observations, showing an increase of susceptibility of cloud droplet size, indicating a stronger first aerosol indirect forcing (AIF), and a decrease of susceptibility of precipitation probability, suggesting a weaker second AIF. The resolution sensitivities of AIF are attributed to those ofmore » droplet nucleation and precipitation parameterizations. Finally, the annual average AIF in the Northern Hemisphere midlatitudes (where most anthropogenic emissions occur) in the 0.25° model is reduced by about 1 W m -2 (-30%) compared to the 2° model, leading to a 0.26 W m -2 reduction (-15%) in the global annual average AIF.« less
Cris-atms Retrievals Using an AIRS Science Team Version 6-like Retrieval Algorithm
NASA Technical Reports Server (NTRS)
Susskind, Joel; Kouvaris, Louis C.; Iredell, Lena
2014-01-01
CrIS is the infrared high spectral resolution atmospheric sounder launched on Suomi-NPP in 2011. CrISATMS comprise the IRMW Sounding Suite on Suomi-NPP. CrIS is functionally equivalent to AIRS, the high spectral resolution IR sounder launched on EOS Aqua in 2002 and ATMS is functionally equivalent to AMSU on EOS Aqua. CrIS is an interferometer and AIRS is a grating spectrometer. Spectral coverage, spectral resolution, and channel noise of CrIS is similar to AIRS. CrIS spectral sampling is roughly twice as coarse as AIRSAIRS has 2378 channels between 650 cm-1 and 2665 cm-1. CrIS has 1305 channels between 650 cm-1 and 2550 cm-1. Spatial resolution of CrIS is comparable to AIRS.
Time and space integrating acousto-optic folded spectrum processing for SETI
NASA Technical Reports Server (NTRS)
Wagner, K.; Psaltis, D.
1986-01-01
Time and space integrating folded spectrum techniques utilizing acousto-optic devices (AOD) as 1-D input transducers are investigated for a potential application as wideband, high resolution, large processing gain spectrum analyzers in the search for extra-terrestrial intelligence (SETI) program. The space integrating Fourier transform performed by a lens channels the coarse spectral components diffracted from an AOD onto an array of time integrating narrowband fine resolution spectrum analyzers. The pulsing action of a laser diode samples the interferometrically detected output, aliasing the fine resolution components to baseband, as required for the subsequent charge coupled devices (CCD) processing. The raster scan mechanism incorporated into the readout of the CCD detector array is used to unfold the 2-D transform, reproducing the desired high resolution Fourier transform of the input signal.
NASA Astrophysics Data System (ADS)
Kaiser, Jennifer; Jacob, Daniel J.; Zhu, Lei; Travis, Katherine R.; Fisher, Jenny A.; González Abad, Gonzalo; Zhang, Lin; Zhang, Xuesong; Fried, Alan; Crounse, John D.; St. Clair, Jason M.; Wisthaler, Armin
2018-04-01
Isoprene emissions from vegetation have a large effect on atmospheric chemistry and air quality. Bottom-up
isoprene emission inventories used in atmospheric models are based on limited vegetation information and uncertain land cover data, leading to potentially large errors. Satellite observations of atmospheric formaldehyde (HCHO), a high-yield isoprene oxidation product, provide top-down
information to evaluate isoprene emission inventories through inverse analyses. Past inverse analyses have however been hampered by uncertainty in the HCHO satellite data, uncertainty in the time- and NOx-dependent yield of HCHO from isoprene oxidation, and coarse resolution of the atmospheric models used for the inversion. Here we demonstrate the ability to use HCHO satellite data from OMI in a high-resolution inversion to constrain isoprene emissions on ecosystem-relevant scales. The inversion uses the adjoint of the GEOS-Chem chemical transport model at 0.25° × 0.3125° horizontal resolution to interpret observations over the southeast US in August-September 2013. It takes advantage of concurrent NASA SEAC4RS aircraft observations of isoprene and its oxidation products including HCHO to validate the OMI HCHO data over the region, test the GEOS-Chem isoprene oxidation mechanism and NOx environment, and independently evaluate the inversion. This evaluation shows in particular that local model errors in NOx concentrations propagate to biases in inferring isoprene emissions from HCHO data. It is thus essential to correct model NOx biases, which was done here using SEAC4RS observations but can be done more generally using satellite NO2 data concurrently with HCHO. We find in our inversion that isoprene emissions from the widely used MEGAN v2.1 inventory are biased high over the southeast US by 40 % on average, although the broad-scale distributions are correct including maximum emissions in Arkansas/Louisiana and high base emission factors in the oak-covered Ozarks of southeast Missouri. A particularly large discrepancy is in the Edwards Plateau of central Texas where MEGAN v2.1 is too high by a factor of 3, possibly reflecting errors in land cover. The lower isoprene emissions inferred from our inversion, when implemented into GEOS-Chem, decrease surface ozone over the southeast US by 1-3 ppb and decrease the isoprene contribution to organic aerosol from 40 to 20 %.
NASA Technical Reports Server (NTRS)
Carsey, Frank D.; Garwood, Ronald W.; Roach, Andrew T.
1993-01-01
In this paper we present an interpretation of coarse resolution passive microwave data for 1989 and 1992 in the context of a simple model of ice-edge retreat to obtain the Nordbukta emayment growth and the formation and migration of an Odden polynya.
Comparing riparian and catchment influences on stream habitat in a forested, montane landscape.
K.M. Burnett; G.H. Reeves
2006-01-01
The goal of this study was to understand relationships between salmon habitat and landscape characteristics, summarized at multiple spatial scales, in a montane basin where forestry is the dominant land use. Specific study objectives were to (1) examine differences among spatial scales for landscape characteristics described with relatively coarse-resolution data, (2)...
2006-11-10
features based on shape are easy to come by. The Great Pyramids at Giza are instantly identified from space, even at the very coarse spatial... Pyramids at Giza , Egypt, are recognized by their triangular faces in this 1 m resolution Ikonos image, as are nearby rectangular tombs (credit: Space
Comparison and assessment of coarse resolution land cover maps for Northern Eurasia
Dirk Pflugmacher; Olga N. Krankina; Warren B. Cohen; Mark A. Friedl; Damien Sulla-Menashe; Robert E. Kennedy; Peder Nelson; Tatiana V. Loboda; Tobias Kuemmerle; Egor Dyukarev; Vladimir Elsadov; Viacheslav I. Kharuk
2011-01-01
Information on land cover at global and continental scales is critical for addressing a range of ecological, socioeconomic and policy questions. Global land cover maps have evolved rapidly in the last decade, but efforts to evaluate map uncertainties have been limited, especially in remote areas like Northern Eurasia. Northern Eurasia comprises a particularly diverse...
Comparison of digital elevation models for aquatic data development.
Sharon Clarke; Kelly Burnett
2003-01-01
Thirty-meter digital elevation models (DEMs) produced by the U.S. Geological Survey (USGS) are widely available and commonly used in analyzing aquatic systems. However, these DEMs are of relatively coarse resolution, were inconsistently produced (i.e., Level 1 versus Level 2 DEMs), and lack drainage enforcement. Such issues may hamper efforts to accurately model...
USDA-ARS?s Scientific Manuscript database
The Soil Moisture Active Passive (SMAP) mission is dedicated toward global soil moisture mapping. Typically, an L-band microwave radiometer has a spatial resolution on the order of 36-40 km, which is too coarse for many specific hydro-meteorological and agricultural applications. With the failure of...
ERIC Educational Resources Information Center
de la Rosa, Stephan; Choudhery, Rabia N.; Chatziastros, Astros
2011-01-01
Recent evidence suggests that the recognition of an object's presence and its explicit recognition are temporally closely related. Here we re-examined the time course (using a fine and a coarse temporal resolution) and the sensitivity of three possible component processes of visual object recognition. In particular, participants saw briefly…
Non-Markovian closure models for large eddy simulations using the Mori-Zwanzig formalism
NASA Astrophysics Data System (ADS)
Parish, Eric J.; Duraisamy, Karthik
2017-01-01
This work uses the Mori-Zwanzig (M-Z) formalism, a concept originating from nonequilibrium statistical mechanics, as a basis for the development of coarse-grained models of turbulence. The mechanics of the generalized Langevin equation (GLE) are considered, and insight gained from the orthogonal dynamics equation is used as a starting point for model development. A class of subgrid models is considered which represent nonlocal behavior via a finite memory approximation [Stinis, arXiv:1211.4285 (2012)], the length of which is determined using a heuristic that is related to the spectral radius of the Jacobian of the resolved variables. The resulting models are intimately tied to the underlying numerical resolution and are capable of approximating non-Markovian effects. Numerical experiments on the Burgers equation demonstrate that the M-Z-based models can accurately predict the temporal evolution of the total kinetic energy and the total dissipation rate at varying mesh resolutions. The trajectory of each resolved mode in phase space is accurately predicted for cases where the coarse graining is moderate. Large eddy simulations (LESs) of homogeneous isotropic turbulence and the Taylor-Green Vortex show that the M-Z-based models are able to provide excellent predictions, accurately capturing the subgrid contribution to energy transfer. Last, LESs of fully developed channel flow demonstrate the applicability of M-Z-based models to nondecaying problems. It is notable that the form of the closure is not imposed by the modeler, but is rather derived from the mathematics of the coarse graining, highlighting the potential of M-Z-based techniques to define LES closures.
Analysis and numerical study of inertia-gravity waves generated by convection in the tropics
NASA Astrophysics Data System (ADS)
Evan, Stephanie
2011-12-01
Gravity waves transport momentum and energy upward from the troposphere and by dissipation affect the large-scale structure of the middle atmosphere. An accurate representation of these waves in climate models is important for climate studies, but is still a challenge for most global and climate models. In the tropics, several studies have shown that mesoscale gravity waves and intermediate scale inertia-gravity waves play an important role in the dynamics of the upper atmosphere. Despite observational evidence for the importance of forcing of the tropical circulation by inertia-gravity waves, their exact properties and forcing of the tropical stratospheric circulation are not fully understood. In this thesis, properties of tropical inertia-gravity waves are investigated using radiosonde data from the 2006 Tropical Warm Pool International Cloud Experiment (TWP-ICE), the European Centre for Medium-Range Weather Forecasts (ECMWF) dataset and high-resolution numerical experiments. Few studies have characterized inertia-gravity wave properties using radiosonde profiles collected on a campaign basis. We first examine the properties of intermediate-scale inertia-gravity waves observed during the 2006 TWP-ICE campaign in Australia. We show that the total vertical flux of horizontal momentum associated with the waves is of the same order of magnitude as previous observations of Kelvin waves. This constitutes evidence for the importance of the forcing of the tropical circulation by intermediate-scale inertia-gravity waves. Then, we focus on the representation of inertia-gravity waves in analysis data. The wave event observed during TWP-ICE is also present in the ECMWF data. A comparison between the characteristics of the inertia-gravity wave derived with the ECMWF data to the properties of the wave derived with the radiosonde data shows that the ECMWF data capture similar structure for this wave event but with a larger vertical wavelength. The Weather Research and Forecasting (WRF) modeling system is used to understand the representation of the wave event in the ECMWF data. The model is configured as a tropical channel with a high top at 1 hPa. WRF is used with the same horizontal resolution (˜ 40 km) as the operational ECMWF in 2006 while using a finer vertical grid-spacing than ECMWF. Different experiments are performed to determine the sensitivity of the wave structure to cumulus schemes, initial conditions and vertical resolution. We demonstrate that high vertical resolution would be required for ECMWF to accurately resolve the vertical structure of inertia-gravity waves and their effect on the middle atmosphere circulation. Lastly we perform WRF simulations in January 2006 and 2007 to assess gravity wave forcing of the tropical stratospheric circulation. In these simulations a large part of the gravity wave spectrum is explicitly simulated. The WRF model is able to reproduce the evolution of the mean tropical stratospheric zonal wind when compared to observational data and the ECMWF reanalysis. It is shown that gravity waves account for 60% up to 80% of the total wave forcing of the tropical stratospheric circulation. We also compute wave forcing associated with intermediate-scale inertiagravity waves. In the WRF simulations this wave type represents ˜ 30% of the total gravity wave forcing. This suggests that intermediate-scale inertia-gravity waves can play an important role in the tropical middle-atmospheric circulation. In addition, the WRF high-resolution simulations are used to provide some guidance for constraining gravity wave parameterizations in coarse-grid climate models.
NASA Astrophysics Data System (ADS)
Smith, W.; Weisz, E.; McNabb, J. M. C.
2017-12-01
A technique is described which enables the combination of high vertical resolution (1 to 2-km) JPSS hyper-spectral soundings (i.e., from AIRS, CrIS, and IASI) with high horizontal (2-km) and temporal (15-min) resolution GOES multi-spectral imagery (i.e., provided by ABI) to produce low latency sounding products with the highest possible spatial and temporal resolution afforded by the instruments.
Yoo, Jejoong; Jackson, Meyer B.; Cui, Qiang
2013-01-01
To establish the validity of continuum mechanics models quantitatively for the analysis of membrane remodeling processes, we compare the shape and energies of the membrane fusion pore predicted by coarse-grained (MARTINI) and continuum mechanics models. The results at these distinct levels of resolution give surprisingly consistent descriptions for the shape of the fusion pore, and the deviation between the continuum and coarse-grained models becomes notable only when the radius of curvature approaches the thickness of a monolayer. Although slow relaxation beyond microseconds is observed in different perturbative simulations, the key structural features (e.g., dimension and shape of the fusion pore near the pore center) are consistent among independent simulations. These observations provide solid support for the use of coarse-grained and continuum models in the analysis of membrane remodeling. The combined coarse-grained and continuum analysis confirms the recent prediction of continuum models that the fusion pore is a metastable structure and that its optimal shape is neither toroidal nor catenoidal. Moreover, our results help reveal a new, to our knowledge, bowing feature in which the bilayers close to the pore axis separate more from one another than those at greater distances from the pore axis; bowing helps reduce the curvature and therefore stabilizes the fusion pore structure. The spread of the bilayer deformations over distances of hundreds of nanometers and the substantial reduction in energy of fusion pore formation provided by this spread indicate that membrane fusion can be enhanced by allowing a larger area of membrane to participate and be deformed. PMID:23442963
Granular avalanches on the Moon: Mass-wasting conditions, processes, and features
NASA Astrophysics Data System (ADS)
Kokelaar, B. P.; Bahia, R. S.; Joy, K. H.; Viroulet, S.; Gray, J. M. N. T.
2017-09-01
Seven lunar crater sites of granular avalanches are studied utilizing high-resolution images (0.42-1.3 m/pixel) from the Lunar Reconnaissance Orbiter Camera; one, in Kepler crater, is examined in detail. All the sites are slopes of debris extensively aggraded by frictional freezing at their dynamic angle of repose, four in craters formed in basaltic mare and three in the anorthositic highlands. Diverse styles of mass wasting occur, and three types of dry-debris flow deposit are recognized: (1) multiple channel-and-lobe type, with coarse-grained levees and lobate terminations that impound finer debris, (2) single-surge polylobate type, with subparallel arrays of lobes and fingers with segregated coarse-grained margins, and (3) multiple-ribbon type, with tracks reflecting reworked substrate, minor levees, and no coarse terminations. The latter type results from propagation of granular erosion-deposition waves down slopes dominantly of fine regolith, and it is the first recognized natural example. Dimensions, architectures, and granular segregation styles of the two coarse-grained deposit types are like those formed in natural and experimental avalanches on Earth, although the timescale of motion differs due to the reduced gravity. Influences of reduced gravity and fine-grained regolith on dynamics of granular flow and deposition appear slight, but we distinguish, for the first time, extensive remobilization of coarse talus by inundation with finer debris. The (few) sites show no clear difference attributable to the contrasting mare basalt and highland megaregolith host rocks and their fragmentation. This lunar study offers a benchmarking of deposit types that can be attributed to formation without influence of liquid or gas.
Subranging scheme for SQUID sensors
NASA Technical Reports Server (NTRS)
Penanen, Konstantin I. (Inventor)
2008-01-01
A readout scheme for measuring the output from a SQUID-based sensor-array using an improved subranging architecture that includes multiple resolution channels (such as a coarse resolution channel and a fine resolution channel). The scheme employs a flux sensing circuit with a sensing coil connected in series to multiple input coils, each input coil being coupled to a corresponding SQUID detection circuit having a high-resolution SQUID device with independent linearizing feedback. A two-resolution configuration (course and fine) is illustrated with a primary SQUID detection circuit for generating a fine readout, and a secondary SQUID detection circuit for generating a course readout, both having feedback current coupled to the respective SQUID devices via feedback/modulation coils. The primary and secondary SQUID detection circuits function and derive independent feedback. Thus, the SQUID devices may be monitored independently of each other (and read simultaneously) to dramatically increase slew rates and dynamic range.
Enhancing Hi-C data resolution with deep convolutional neural network HiCPlus.
Zhang, Yan; An, Lin; Xu, Jie; Zhang, Bo; Zheng, W Jim; Hu, Ming; Tang, Jijun; Yue, Feng
2018-02-21
Although Hi-C technology is one of the most popular tools for studying 3D genome organization, due to sequencing cost, the resolution of most Hi-C datasets are coarse and cannot be used to link distal regulatory elements to their target genes. Here we develop HiCPlus, a computational approach based on deep convolutional neural network, to infer high-resolution Hi-C interaction matrices from low-resolution Hi-C data. We demonstrate that HiCPlus can impute interaction matrices highly similar to the original ones, while only using 1/16 of the original sequencing reads. We show that the models learned from one cell type can be applied to make predictions in other cell or tissue types. Our work not only provides a computational framework to enhance Hi-C data resolution but also reveals features underlying the formation of 3D chromatin interactions.
Day, I N; Humphries, S E
1994-11-01
Electrophoresis of DNA has been performed traditionally in either an agarose or acrylamide gel matrix. Considerable effort has been directed to improved quality agaroses capable of high resolution, but for small fragments, such as those from polymerase chain reaction (PCR) and post-PCR digests, acrylamide still offers the highest resolution. Although agarose gels can easily be prepared in an open-faced format to gain the conveniences of horizontal electrophoresis, acrylamide does not polymerize in the presence of air and the usual configurations for gel preparation lead to electrophoresis in the vertical dimension. We describe here a very simple device and method to prepare and manipulate horizontal polyacrylamide gels (H-PAGE). In addition, the open-faced horizontal arrangement enables loading of arrays of wells. Since many procedures are undertaken in standard 96-well microtiter plates, we have also designed a device which preserves the exact configuration of the 8 x 12 array and enables electrophoresis in tracks following a 71.6 degrees diagonal between wells (MADGE, microtiter array diagonal gel electrophoresis), using either acrylamide or agarose. This eliminates almost all of the staff time taken in setup, loading, and recordkeeping and offers high resolution for genotyping pattern recognition. The nature and size of the gels allow direct stacking of gels in one tank, so that a tank used typically to analyze 30-60 samples can readily be used to analyze 1000-2000 samples. The gels would also enable robotic loading. Electrophoresis allows analysis of size and charge, parameters inaccessible to liquid-phase methods: thus, genotyping size patterns, variable length repeats, and haplotypes is possible, as well as adaptability to typing of point variations using protocols which create a difference detectable by electrophoresis.
NASA Astrophysics Data System (ADS)
Xu, Z.; Rhoades, A.; Johansen, H.; Ullrich, P. A.; Collins, W. D.
2017-12-01
Dynamical downscaling is widely used to properly characterize regional surface heterogeneities that shape the local hydroclimatology. However, the factors in dynamical downscaling, including the refinement of model horizontal resolution, large-scale forcing datasets and dynamical cores, have not been fully evaluated. Two cutting-edge global-to-regional downscaling methods are used to assess these, specifically the variable-resolution Community Earth System Model (VR-CESM) and the Weather Research & Forecasting (WRF) regional climate model, under different horizontal resolutions (28, 14, and 7 km). Two groups of WRF simulations are driven by either the NCEP reanalysis dataset (WRF_NCEP) or VR-CESM outputs (WRF_VRCESM) to evaluate the effects of the large-scale forcing datasets. The impacts of dynamical core are assessed by comparing the VR-CESM simulations to the coupled WRF_VRCESM simulations with the same physical parameterizations and similar grid domains. The simulated hydroclimatology (i.e., total precipitation, snow cover, snow water equivalent and surface temperature) are compared with the reference datasets. The large-scale forcing datasets are critical to the WRF simulations in more accurately simulating total precipitation, SWE and snow cover, but not surface temperature. Both the WRF and VR-CESM results highlight that no significant benefit is found in the simulated hydroclimatology by just increasing horizontal resolution refinement from 28 to 7 km. Simulated surface temperature is sensitive to the choice of dynamical core. WRF generally simulates higher temperatures than VR-CESM, alleviates the systematic cold bias of DJF temperatures over the California mountain region, but overestimates the JJA temperature in California's Central Valley.
Coarse Graining to Investigate Membrane Induced Peptide Folding of Anticancer Peptides
NASA Astrophysics Data System (ADS)
Ganesan, Sai; Xu, Hongcheng; Matysiak, Silvina
Information about membrane induced peptide folding mechanisms using all-atom molecular dynamics simulations is a challenge due to time and length scale issues.We recently developed a low resolution Water Explicit Polarizable PROtein coarse-grained Model by adding oppositely charged dummy particles inside protein backbone beads.These two dummy particles represent a fluctuating dipole,thus introducing structural polarization into the coarse-grained model.With this model,we were able to achieve significant α- β secondary structure content de novo,without any added bias.We extended the model to zwitterionic and anionic lipids,by adding oppositely charged dummy particles inside polar beads, to capture the ability of the head group region to form hydrogen bonds.We use zwitterionic POPC and anionic POPS as our model lipids, and a cationic anticancer peptide,SVS1,as our model peptide.We have characterized the driving forces for SVS1 folding on lipid bilayers with varying anionic and zwitterionic lipid compositions.Based on our results, dipolar interactions between peptide backbone and lipid head groups contribute to stabilize folded conformations.Cooperativity in folding is induced by both intra peptide and membrane-peptide interaction.
Using High Resolution Model Data to Improve Lightning Forecasts across Southern California
NASA Astrophysics Data System (ADS)
Capps, S. B.; Rolinski, T.
2014-12-01
Dry lightning often results in a significant amount of fire starts in areas where the vegetation is dry and continuous. Meteorologists from the USDA Forest Service Predictive Services' program in Riverside, California are tasked to provide southern and central California's fire agencies with fire potential outlooks. Logistic regression equations were developed by these meteorologists several years ago, which forecast probabilities of lightning as well as lightning amounts, out to seven days across southern California. These regression equations were developed using ten years of historical gridded data from the Global Forecast System (GFS) model on a coarse scale (0.5 degree resolution), correlated with historical lightning strike data. These equations do a reasonably good job of capturing a lightning episode (3-5 consecutive days or greater of lightning), but perform poorly regarding more detailed information such as exact location and amounts. It is postulated that the inadequacies in resolving the finer details of episodic lightning events is due to the coarse resolution of the GFS data, along with limited predictors. Stability parameters, such as the Lifted Index (LI), the Total Totals index (TT), Convective Available Potential Energy (CAPE), along with Precipitable Water (PW) are the only parameters being considered as predictors. It is hypothesized that the statistical forecasts will benefit from higher resolution data both in training and implementing the statistical model. We have dynamically downscaled NCEP FNL (Final) reanalysis data using the Weather Research and Forecasting model (WRF) to 3km spatial and hourly temporal resolution across a decade. This dataset will be used to evaluate the contribution to the success of the statistical model of additional predictors in higher vertical, spatial and temporal resolution. If successful, we will implement an operational dynamically downscaled GFS forecast product to generate predictors for the resulting statistical lightning model. This data will help fire agencies be better prepared to pre-deploy resources in advance of these events. Specific information regarding duration, amount, and location will be especially valuable.
NASA Astrophysics Data System (ADS)
Unnikrishnan, C. K.; Rajeevan, M.; Rao, S. Vijaya Bhaskara
2016-06-01
The direct impact of high resolution land surface initialization on the forecast bias in a regional climate model in recent years over Indian summer monsoon region is investigated. Two sets of regional climate model simulations are performed, one with a coarse resolution land surface initial conditions and second one used a high resolution land surface data for initial condition. The results show that all monsoon years respond differently to the high resolution land surface initialization. The drought monsoon year 2009 and extended break periods were more sensitive to the high resolution land surface initialization. These results suggest that the drought monsoon year predictions can be improved with high resolution land surface initialization. Result also shows that there are differences in the response to the land surface initialization within the monsoon season. Case studies of heat wave and a monsoon depression simulation show that, the model biases were also improved with high resolution land surface initialization. These results show the need for a better land surface initialization strategy in high resolution regional models for monsoon forecasting.
A two-dimensional kinematic dynamo model of the ionospheric magnetic field at Venus
NASA Technical Reports Server (NTRS)
Cravens, T. E.; Wu, D.; Shinagawa, H.
1990-01-01
The results of a high-resolution, two-dimensional, time dependent, kinematic dynamo model of the ionospheric magnetic field of Venus are presented. Various one-dimensional models are considered and the two-dimensional model is then detailed. In this model, the two-dimensional magnetic induction equation, the magnetic diffusion-convection equation, is numerically solved using specified plasma velocities. Origins of the vertical velocity profile and of the horizontal velocities are discussed. It is argued that the basic features of the vertical magnetic field profile remain unaltered by horizontal flow effects and also that horizontal plasma flow can strongly affect the magnetic field for altitudes above 300 km.
Effects of wave shape on sheet flow sediment transport
Hsu, T.-J.; Hanes, D.M.
2004-01-01
A two-phase model is implemented to study the effects of wave shape on the transport of coarse-grained sediment in the sheet flow regime. The model is based on balance equations for the average mass, momentum, and fluctuation energy for both the fluid and sediment phases. Model simulations indicate that the responses of the sheet flow, such as the velocity profiles, the instantaneous bed shear stress, the sediment flux, and the total amount of the mobilized sediment, cannot be fully parameterized by quasi-steady free-stream velocity and may be correlated with the magnitude of local horizontal pressure gradient (or free-stream acceleration). A net sediment flux in the direction of wave advance is obtained for both skewed and saw-tooth wave shapes typical of shoaled and breaking waves. The model further suggests that at critical values of the horizontal pressure gradient, there is a failure event within the bed that mobilizes more sediment into the mobile sheet and enhances the sediment flux. Preliminary attempts to parameterize the total bed shear stress and the total sediment flux appear promising. Copyright 2004 by the American Geophysical Union.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lai, Canhai; Xu, Zhijie; Li, Tingwen
In virtual design and scale up of pilot-scale carbon capture systems, the coupled reactive multiphase flow problem must be solved to predict the adsorber’s performance and capture efficiency under various operation conditions. This paper focuses on the detailed computational fluid dynamics (CFD) modeling of a pilot-scale fluidized bed adsorber equipped with vertical cooling tubes. Multiphase Flow with Interphase eXchanges (MFiX), an open-source multiphase flow CFD solver, is used for the simulations with custom code to simulate the chemical reactions and filtered models to capture the effect of the unresolved details in the coarser mesh for simulations with reasonable simulations andmore » manageable computational effort. Previously developed two filtered models for horizontal cylinder drag, heat transfer, and reaction kinetics have been modified to derive the 2D filtered models representing vertical cylinders in the coarse-grid CFD simulations. The effects of the heat exchanger configurations (i.e., horizontal or vertical) on the adsorber’s hydrodynamics and CO2 capture performance are then examined. The simulation result subsequently is compared and contrasted with another predicted by a one-dimensional three-region process model.« less
A meteorological distribution system for high-resolution terrestrial modeling (MicroMet)
Glen E. Liston; Kelly Elder
2006-01-01
An intermediate-complexity, quasi-physically based, meteorological model (MicroMet) has been developed to produce high-resolution (e.g., 30-m to 1-km horizontal grid increment) atmospheric forcings required to run spatially distributed terrestrial models over a wide variety of landscapes. The following eight variables, required to run most terrestrial models, are...
High Resolution Model Intercomparison Project (HighResMIP v1.0) for CMIP6
NASA Astrophysics Data System (ADS)
Haarsma, Reindert J.; Roberts, Malcolm J.; Vidale, Pier Luigi; Senior, Catherine A.; Bellucci, Alessio; Bao, Qing; Chang, Ping; Corti, Susanna; Fučkar, Neven S.; Guemas, Virginie; von Hardenberg, Jost; Hazeleger, Wilco; Kodama, Chihiro; Koenigk, Torben; Leung, L. Ruby; Lu, Jian; Luo, Jing-Jia; Mao, Jiafu; Mizielinski, Matthew S.; Mizuta, Ryo; Nobre, Paulo; Satoh, Masaki; Scoccimarro, Enrico; Semmler, Tido; Small, Justin; von Storch, Jin-Song
2016-11-01
Robust projections and predictions of climate variability and change, particularly at regional scales, rely on the driving processes being represented with fidelity in model simulations. The role of enhanced horizontal resolution in improved process representation in all components of the climate system is of growing interest, particularly as some recent simulations suggest both the possibility of significant changes in large-scale aspects of circulation as well as improvements in small-scale processes and extremes. However, such high-resolution global simulations at climate timescales, with resolutions of at least 50 km in the atmosphere and 0.25° in the ocean, have been performed at relatively few research centres and generally without overall coordination, primarily due to their computational cost. Assessing the robustness of the response of simulated climate to model resolution requires a large multi-model ensemble using a coordinated set of experiments. The Coupled Model Intercomparison Project 6 (CMIP6) is the ideal framework within which to conduct such a study, due to the strong link to models being developed for the CMIP DECK experiments and other model intercomparison projects (MIPs). Increases in high-performance computing (HPC) resources, as well as the revised experimental design for CMIP6, now enable a detailed investigation of the impact of increased resolution up to synoptic weather scales on the simulated mean climate and its variability. The High Resolution Model Intercomparison Project (HighResMIP) presented in this paper applies, for the first time, a multi-model approach to the systematic investigation of the impact of horizontal resolution. A coordinated set of experiments has been designed to assess both a standard and an enhanced horizontal-resolution simulation in the atmosphere and ocean. The set of HighResMIP experiments is divided into three tiers consisting of atmosphere-only and coupled runs and spanning the period 1950-2050, with the possibility of extending to 2100, together with some additional targeted experiments. This paper describes the experimental set-up of HighResMIP, the analysis plan, the connection with the other CMIP6 endorsed MIPs, as well as the DECK and CMIP6 historical simulations. HighResMIP thereby focuses on one of the CMIP6 broad questions, "what are the origins and consequences of systematic model biases?", but we also discuss how it addresses the World Climate Research Program (WCRP) grand challenges.
Sea-ice deformation in a coupled ocean-sea-ice model and in satellite remote sensing data
NASA Astrophysics Data System (ADS)
Spreen, Gunnar; Kwok, Ron; Menemenlis, Dimitris; Nguyen, An T.
2017-07-01
A realistic representation of sea-ice deformation in models is important for accurate simulation of the sea-ice mass balance. Simulated sea-ice deformation from numerical simulations with 4.5, 9, and 18 km horizontal grid spacing and a viscous-plastic (VP) sea-ice rheology are compared with synthetic aperture radar (SAR) satellite observations (RGPS, RADARSAT Geophysical Processor System) for the time period 1996-2008. All three simulations can reproduce the large-scale ice deformation patterns, but small-scale sea-ice deformations and linear kinematic features (LKFs) are not adequately reproduced. The mean sea-ice total deformation rate is about 40 % lower in all model solutions than in the satellite observations, especially in the seasonal sea-ice zone. A decrease in model grid spacing, however, produces a higher density and more localized ice deformation features. The 4.5 km simulation produces some linear kinematic features, but not with the right frequency. The dependence on length scale and probability density functions (PDFs) of absolute divergence and shear for all three model solutions show a power-law scaling behavior similar to RGPS observations, contrary to what was found in some previous studies. Overall, the 4.5 km simulation produces the most realistic divergence, vorticity, and shear when compared with RGPS data. This study provides an evaluation of high and coarse-resolution viscous-plastic sea-ice simulations based on spatial distribution, time series, and power-law scaling metrics.
A CPT for Improving Turbulence and Cloud Processes in the NCEP Global Models
NASA Astrophysics Data System (ADS)
Krueger, S. K.; Moorthi, S.; Randall, D. A.; Pincus, R.; Bogenschutz, P.; Belochitski, A.; Chikira, M.; Dazlich, D. A.; Swales, D. J.; Thakur, P. K.; Yang, F.; Cheng, A.
2016-12-01
Our Climate Process Team (CPT) is based on the premise that the NCEP (National Centers for Environmental Prediction) global models can be improved by installing an integrated, self-consistent description of turbulence, clouds, deep convection, and the interactions between clouds and radiative and microphysical processes. The goal of our CPT is to unify the representation of turbulence and subgrid-scale (SGS) cloud processes and to unify the representation of SGS deep convective precipitation and grid-scale precipitation as the horizontal resolution decreases. We aim to improve the representation of small-scale phenomena by implementing a PDF-based SGS turbulence and cloudiness scheme that replaces the boundary layer turbulence scheme, the shallow convection scheme, and the cloud fraction schemes in the GFS (Global Forecast System) and CFS (Climate Forecast System) global models. We intend to improve the treatment of deep convection by introducing a unified parameterization that scales continuously between the simulation of individual clouds when and where the grid spacing is sufficiently fine and the behavior of a conventional parameterization of deep convection when and where the grid spacing is coarse. We will endeavor to improve the representation of the interactions of clouds, radiation, and microphysics in the GFS/CFS by using the additional information provided by the PDF-based SGS cloud scheme. The team is evaluating the impacts of the model upgrades with metrics used by the NCEP short-range and seasonal forecast operations.
Review: advances in in situ and satellite phenological observations in Japan
NASA Astrophysics Data System (ADS)
Nagai, Shin; Nasahara, Kenlo Nishida; Inoue, Tomoharu; Saitoh, Taku M.; Suzuki, Rikie
2016-04-01
To accurately evaluate the responses of spatial and temporal variation of ecosystem functioning (evapotranspiration and photosynthesis) and services (regulating and cultural services) to the rapid changes caused by global warming, we depend on long-term, continuous, near-surface, and satellite remote sensing of phenology over wide areas. Here, we review such phenological studies in Japan and discuss our current knowledge, problems, and future developments. In contrast with North America and Europe, Japan has been able to evaluate plant phenology along vertical and horizontal gradients within a narrow area because of the country's high topographic relief. Phenological observation networks that support scientific studies and outreach activities have used near-surface tools such as digital cameras and spectral radiometers. Differences in phenology among ecosystems and tree species have been detected by analyzing the seasonal variation of red, green, and blue digital numbers (RGB values) extracted from phenological images, as well as spectral reflectance and vegetation indices. The relationships between seasonal variations in RGB-derived indices or spectral characteristics and the ecological and CO2 flux measurement data have been well validated. In contrast, insufficient satellite remote-sensing observations have been conducted because of the coarse spatial resolution of previous datasets, which could not detect the heterogeneous plant phenology that results from Japan's complex topography and vegetation. To improve Japanese phenological observations, multidisciplinary analysis and evaluation will be needed to link traditional phenological observations with "index trees," near-surface and satellite remote-sensing observations, "citizen science" (observations by citizens), and results published on the Internet.
How ocean lateral mixing changes Southern Ocean variability in coupled climate models
NASA Astrophysics Data System (ADS)
Pradal, M. A. S.; Gnanadesikan, A.; Thomas, J. L.
2016-02-01
The lateral mixing of tracers represents a major uncertainty in the formulation of coupled climate models. The mixing of tracers along density surfaces in the interior and horizontally within the mixed layer is often parameterized using a mixing coefficient ARedi. The models used in the Coupled Model Intercomparison Project 5 exhibit more than an order of magnitude range in the values of this coefficient used within the Southern Ocean. The impacts of such uncertainty on Southern Ocean variability have remained unclear, even as recent work has shown that this variability differs between different models. In this poster, we change the lateral mixing coefficient within GFDL ESM2Mc, a coarse-resolution Earth System model that nonetheless has a reasonable circulation within the Southern Ocean. As the coefficient varies from 400 to 2400 m2/s the amplitude of the variability varies significantly. The low-mixing case shows strong decadal variability with an annual mean RMS temperature variability exceeding 1C in the Circumpolar Current. The highest-mixing case shows a very similar spatial pattern of variability, but with amplitudes only about 60% as large. The suppression of mixing is larger in the Atlantic Sector of the Southern Ocean relatively to the Pacific sector. We examine the salinity budgets of convective regions, paying particular attention to the extent to which high mixing prevents the buildup of low-saline waters that are capable of shutting off deep convection entirely.
Sedimentary structures and textures of Rio Orinoco channel sands, Venezuela and Colombia
McKee, Edwin Dinwiddie
1989-01-01
Most sedimentary structures represented in sand bodies of the Rio Orinoco are tabular-planar cross-strata which, together with some wedge-planar cross-strata, are the products of sand-wave deposition. Locally, in areas of river meander where point bars characteristically form, trough structures forming festoon patterns are numerous. At a few localities, sets of nearly horizontal strata occur between tabular-planar sets and are interpreted to be the deposits of very fast currents of the upper flow regime; elsewhere, uncommon lenses and beds of silt, clay, or organic matter consisting of leaves and twigs, seem to be the result of quiet-water settling through gravity. By far the most common grain size represented in the tabular-planar and wedge-planar cross-strata of the sandwave deposits is medium sand (? - ? millimeter) as determined by screen analyses. Many samples, however, also contain moderate quantities of coarse or very coarse sand. Eolian dunes on top of the sand-wave deposits are dominantly fine grained. The river channel sands were determined to be largely moderately well sorted, although in some places they were mostly well sorted, and in others, mostly moderately sorted.
NASA Astrophysics Data System (ADS)
Moore, Kent; Renfrew, Ian; Bromwich, David; Wilson, Aaron; Vage, Kjetil; Bai, Lesheng
2017-04-01
Open ocean convection, where a loss of surface buoyancy leads to an overturning of the water column, occurs in four distinct regions of the North Atlantic and is an integral component of the Atlantic Meridional Overturning Circulation (AMOC). The overturning typically occurs during cold air outbreaks characterized by large surface turbulent heat fluxes and convective roll cloud development. Here we compare the statistics of the air-sea interaction over these convection sites as represented in three reanalyses with horizontal grid sizes ranging from 80km to 15km. We show that increasing the resolution increases the magnitude and frequency of the most extreme total turbulent heat fluxes, as well as displacing the maxima downstream away from the ice edges. We argue that these changes are a result of the higher resolution reanalysis being better able to represent mesoscale processes that occur within the atmospheric boundary layer during cold air outbreaks.
Development of CO2 inversion system based on the adjoint of the global coupled transport model
NASA Astrophysics Data System (ADS)
Belikov, Dmitry; Maksyutov, Shamil; Chevallier, Frederic; Kaminski, Thomas; Ganshin, Alexander; Blessing, Simon
2014-05-01
We present the development of an inverse modeling system employing an adjoint of the global coupled transport model consisting of the National Institute for Environmental Studies (NIES) Eulerian transport model (TM) and the Lagrangian plume diffusion model (LPDM) FLEXPART. NIES TM is a three-dimensional atmospheric transport model, which solves the continuity equation for a number of atmospheric tracers on a grid spanning the entire globe. Spatial discretization is based on a reduced latitude-longitude grid and a hybrid sigma-isentropic coordinate in the vertical. NIES TM uses a horizontal resolution of 2.5°×2.5°. However, to resolve synoptic-scale tracer distributions and to have the ability to optimize fluxes at resolutions of 0.5° and higher we coupled NIES TM with the Lagrangian model FLEXPART. The Lagrangian component of the forward and adjoint models uses precalculated responses of the observed concentration to the surface fluxes and 3-D concentrations field simulated with the FLEXPART model. NIES TM and FLEXPART are driven by JRA-25/JCDAS reanalysis dataset. Construction of the adjoint of the Lagrangian part is less complicated, as LPDMs calculate the sensitivity of measurements to the surrounding emissions field by tracking a large number of "particles" backwards in time. Developing of the adjoint to Eulerian part was performed with automatic differentiation tool the Transformation of Algorithms in Fortran (TAF) software (http://www.FastOpt.com). This method leads to the discrete adjoint of NIES TM. The main advantage of the discrete adjoint is that the resulting gradients of the numerical cost function are exact, even for nonlinear algorithms. The overall advantages of our method are that: 1. No code modification of Lagrangian model is required, making it applicable to combination of global NIES TM and any Lagrangian model; 2. Once run, the Lagrangian output can be applied to any chemically neutral gas; 3. High-resolution results can be obtained over limited regions close to the monitoring sites (using the LPDM part), and at coarse resolution for the rest of the globe (using the Eulerian part), minimizing aggregation errors and computation cost. The adjoint of the coupled high-resolution Eulerian-Lagrangian model will be incorporated into the PYVAR CO2 variational inverse system (Chevallier et al., 2005). Chevallier, F., Fisher, M., Peylin, P., Serrar, S., Bousquet, P., Bréon, F.-M., Chédin, A., and Ciais, P.: Inferring CO2 sources and sinks from satellite observations: method and application to TOVS data, J. Geophys. Res., 110, D24309, doi:10.1029/2005JD006390, 2005.
Toward 10-km mesh global climate simulations
NASA Astrophysics Data System (ADS)
Ohfuchi, W.; Enomoto, T.; Takaya, K.; Yoshioka, M. K.
2002-12-01
An atmospheric general circulation model (AGCM) that runs very efficiently on the Earth Simulator (ES) was developed. The ES is a gigantic vector-parallel computer with the peak performance of 40 Tflops. The AGCM, named AFES (AGCM for ES), was based on the version 5.4.02 of an AGCM developed jointly by the Center for Climate System Research, the University of Tokyo and the Japanese National Institute for Environmental Sciences. The AFES was, however, totally rewritten in FORTRAN90 and MPI while the original AGCM was written in FORTRAN77 and not capable of parallel computing. The AFES achieved 26 Tflops (about 65 % of the peak performance of the ES) at resolution of T1279L96 (10-km horizontal resolution and 500-m vertical resolution in middle troposphere to lower stratosphere). Some results of 10- to 20-day global simulations will be presented. At this moment, only short-term simulations are possible due to data storage limitation. As ten tera flops computing is achieved, peta byte data storage are necessary to conduct climate-type simulations at this super-high resolution global simulations. Some possibilities for future research topics in global super-high resolution climate simulations will be discussed. Some target topics are mesoscale structures and self-organization of the Baiu-Meiyu front over Japan, cyclogenecsis over the North Pacific and typhoons around the Japan area. Also improvement in local precipitation with increasing horizontal resolution will be demonstrated.
A Variable Resolution Stretched Grid General Circulation Model: Regional Climate Simulation
NASA Technical Reports Server (NTRS)
Fox-Rabinovitz, Michael S.; Takacs, Lawrence L.; Govindaraju, Ravi C.; Suarez, Max J.
2000-01-01
The development of and results obtained with a variable resolution stretched-grid GCM for the regional climate simulation mode, are presented. A global variable resolution stretched- grid used in the study has enhanced horizontal resolution over the U.S. as the area of interest The stretched-grid approach is an ideal tool for representing regional to global scale interaction& It is an alternative to the widely used nested grid approach introduced over a decade ago as a pioneering step in regional climate modeling. The major results of the study are presented for the successful stretched-grid GCM simulation of the anomalous climate event of the 1988 U.S. summer drought- The straightforward (with no updates) two month simulation is performed with 60 km regional resolution- The major drought fields, patterns and characteristics such as the time averaged 500 hPa heights precipitation and the low level jet over the drought area. appear to be close to the verifying analyses for the stretched-grid simulation- In other words, the stretched-grid GCM provides an efficient down-scaling over the area of interest with enhanced horizontal resolution. It is also shown that the GCM skill is sustained throughout the simulation extended to one year. The developed and tested in a simulation mode stretched-grid GCM is a viable tool for regional and subregional climate studies and applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vargo, A.; McDowell, R.; Matchen, D.
1992-01-01
The Granny Creek field (approximately 6 sq. miles in area), located in Clay and Roane counties, West Virginia, produces oil from the Big Injun sandstone (Lower Mississippian). Analysis of 15 cores, 22 core analyses, and approximately 400 wireline logs (gamma ray and bulk density) show that the Big Injun (approximately 12 to 55 feet thick) can be separated into an upper, coarse-grained sandstone and a lower, fine-grained sandstone. The Big Injun is truncated by an erosional unconformity of Early to Middle Mississippian age which removes the coarse-grain upper unit in the northwest portion of the field. The cores show nodulesmore » and zones (1 inch to 6 feet thick) of calcite and siderite cement. Where the cements occur as zones, porosity and permeability are reduced. Thin shales (1 inch to 1 foot thick) are found in the coarse-grained member of the Big Injun, whereas the bottom of the fine-grained, lower member contains intertongues of dark shale which cause pinchouts in porosity at the bottom of the reservoir. Calcite and siderite cement are recognized on wireline logs as high bulk density zones that form horizontal, inclined, and irregular pods of impermeable sandstone. At a 400 foot well spacing, pods may be confined to a single well or encompass as many as 30 wells creating linear and irregular barriers to flow. These pods increase the length of the fluid flow path and may divide the reservoir into discrete compartments. The combination of sedimentologic and diagenetic features contribute to the heterogeneity observed in the field.« less
Analysis of the typical small watershed of warping dams in the sand properties
NASA Astrophysics Data System (ADS)
Li, Li; Yang, Ji Shan; Sun, Wei Ying; Shen, Sha Sha
2018-06-01
Coarse sediment with a particle size greater than 0.05mm is the main deposit of riverbed in the lower Yellow River, the Loess Plateau is one of the concentrated source of coarse sediment, warping dam is one of the important engineering measures for gully control. Jiuyuangou basin is a typical small basin in the first sub region of hilly-gullied loess region, twenty warping dams in Jiuyuangou basin was selected as research object, samples of sediment along the main line of dam from upper, middle to lower reaches of dam fields and samples of undisturbed soil in slope of dam control basin were taken to carry out particle gradation analysis, in the hope of clearing reducing capacity on coarse sediment of different types of warping dam through the experimental data. The results show that the undisturbed soil in slope of dam control basin has characteristics of standard loess, the particle size are mainly distributed in 0.025 0.05mm, and the 0.05mm particle size of Jiuyuangou basinof loess is an obvious boundary; Particle size of sediment in 15 warping dam of Jiuyuangou basin are mainly distributed in 0.031 0.05mm with the dam tail is greater than dam front in general. The separation effect of horizontal pipe drainage is better than shaft drainage for which particle size greater than 0.05mm, notch dam is for particle size between 0.025 0.1 mm, and fill dam is for particle size between 0.016 0.1 mm, they all have a certain function in the sediment sorting.
NASA Technical Reports Server (NTRS)
da Silva, Arlindo M.; Putman, William; Nattala, J.
2014-01-01
This document describes the gridded output files produced by a two-year global, non-hydrostatic mesoscale simulation for the period 2005-2006 produced with the non-hydrostatic version of GEOS-5 Atmospheric Global Climate Model (AGCM). In addition to standard meteorological parameters (wind, temperature, moisture, surface pressure), this simulation includes 15 aerosol tracers (dust, sea-salt, sulfate, black and organic carbon), O3, CO and CO2. This model simulation is driven by prescribed sea-surface temperature and sea-ice, daily volcanic and biomass burning emissions, as well as high-resolution inventories of anthropogenic sources. A description of the GEOS-5 model configuration used for this simulation can be found in Putman et al. (2014). The simulation is performed at a horizontal resolution of 7 km using a cubed-sphere horizontal grid with 72 vertical levels, extending up to to 0.01 hPa (approximately 80 km). For user convenience, all data products are generated on two logically rectangular longitude-latitude grids: a full-resolution 0.0625 deg grid that approximately matches the native cubed-sphere resolution, and another 0.5 deg reduced-resolution grid. The majority of the full-resolution data products are instantaneous with some fields being time-averaged. The reduced-resolution datasets are mostly time-averaged, with some fields being instantaneous. Hourly data intervals are used for the reduced-resolution datasets, while 30-minute intervals are used for the full-resolution products. All full-resolution output is on the model's native 72-layer hybrid sigma-pressure vertical grid, while the reduced-resolution output is given on native vertical levels and on 48 pressure surfaces extending up to 0.02 hPa. Section 4 presents additional details on horizontal and vertical grids. Information of the model surface representation can be found in Appendix B. The GEOS-5 product is organized into file collections that are described in detail in Appendix C. Additional details about variables listed in this file specification can be found in a separate document, the GEOS-5 File Specification Variable Definition Glossary. Documentation about the current access methods for products described in this document can be found on the GEOS-5 Nature Run portal: http://gmao.gsfc.nasa.gov/projects/G5NR. Information on the scientific quality of this simulation will appear in a forthcoming NASA Technical Report Series on Global Modeling and Data Assimilation to be available from http://gmao.gsfc.nasa.gov/pubs/tm/.
Scintillator-based transverse proton beam profiler for laser-plasma ion sources.
Dover, N P; Nishiuchi, M; Sakaki, H; Alkhimova, M A; Faenov, A Ya; Fukuda, Y; Kiriyama, H; Kon, A; Kondo, K; Nishitani, K; Ogura, K; Pikuz, T A; Pirozhkov, A S; Sagisaka, A; Kando, M; Kondo, K
2017-07-01
A high repetition rate scintillator-based transverse beam profile diagnostic for laser-plasma accelerated proton beams has been designed and commissioned. The proton beam profiler uses differential filtering to provide coarse energy resolution and a flexible design to allow optimisation for expected beam energy range and trade-off between spatial and energy resolution depending on the application. A plastic scintillator detector, imaged with a standard 12-bit scientific camera, allows data to be taken at a high repetition rate. An algorithm encompassing the scintillator non-linearity is described to estimate the proton spectrum at different spatial locations.
The impact of scatterometer wind data on global weather forecasting
NASA Technical Reports Server (NTRS)
Atlas, D.; Baker, W. E.; Kalnay, E.; Halem, M.; Woiceshyn, P. M.; Peteherych, S.
1984-01-01
The impact of SEASAT-A scatterometer (SASS) winds on coarse resolution atmospheric model forecasts was assessed. The scatterometer provides high resolution winds, but each wind can have up to four possible directions. One wind direction is correct; the remainder are ambiguous or "aliases'. In general, the effect of objectively dealiased-SASS data was found to be negligible in the Northern Hemisphere. In the Southern Hemisphere, the impact was larger and primarily beneficial when vertical temperature profile radiometer (VTPR) data was excluded. However, the inclusion of VTPR data eliminates the positive impact, indicating some redundancy between the two data sets.
Developments in Scanning Hall Probe Microscopy
NASA Astrophysics Data System (ADS)
Chouinard, Taras; Chu, Ricky; David, Nigel; Broun, David
2009-05-01
Low temperature scanning Hall probe microscopy is a sensitive means of imaging magnetic structures with high spatial resolution and magnetic flux sensitivity approaching that of a Superconducting Quantum Interference Device. We have developed a scanning Hall probe microscope with novel features, including highly reliable coarse positioning, in situ optimization of sensor-sample alignment and capacitive transducers for linear, long range positioning measurement. This has been motivated by the need to reposition accurately above fabricated nanostructures such as small superconducting rings. Details of the design and performance will be presented as well as recent progress towards time-resolved measurements with sub nanosecond resolution.
Modelling Precipitation and Temperature Extremes: The Importance of Horizontal Resolution
NASA Astrophysics Data System (ADS)
Shields, C. A.; Kiehl, J. T.; Meehl, G. A.
2013-12-01
Understanding Earth's water cycle on a warming planet is of critical importance in society's ability to adapt to climate change. Extreme weather events, such as floods, heat waves, and drought will likely change with the water cycle as greenhouse gases continue to rise. Location, duration, and intensity of extreme events can be studied using complex earth system models. Here, we employ the fully coupled Community Earth System Model (CESM1.0) to evaluate extreme event impacts for different possible future forcing scenarios. Simulations applying the Representative Concentration Pathway (RCP) scenarios 2.6 and 8.5 were chosen to bracket the range of model responses. Because extreme weather events happen on a regional scale, there is a tendency to favor using higher resolution models, i.e. models that can represent regional features with greater accuracy. Within the CESM1.0 framework, we evaluate both the standard 1 degree resolution (1 degree atmosphere/land coupled to 1 degree ocean/sea ice), and the higher 0.5 degree resolution version (0.5 degree atmosphere/land coupled to 1 degree ocean/sea ice), focusing on extreme precipitation events, heat waves, and droughts. We analyze a variety of geographical regions, but generally find that benefits from increased horizontal resolution are most significant on the regional scale.
Challenges in the development of very high resolution Earth System Models for climate science
NASA Astrophysics Data System (ADS)
Rasch, Philip J.; Xie, Shaocheng; Ma, Po-Lun; Lin, Wuyin; Wan, Hui; Qian, Yun
2017-04-01
The authors represent the 20+ members of the ACME atmosphere development team. The US Department of Energy (DOE) has, like many other organizations around the world, identified the need for an Earth System Model capable of rapid completion of decade to century length simulations at very high (vertical and horizontal) resolution with good climate fidelity. Two years ago DOE initiated a multi-institution effort called ACME (Accelerated Climate Modeling for Energy) to meet this an extraordinary challenge, targeting a model eventually capable of running at 10-25km horizontal and 20-400m vertical resolution through the troposphere on exascale computational platforms at speeds sufficient to complete 5+ simulated years per day. I will outline the challenges our team has encountered in development of the atmosphere component of this model, and the strategies we have been using for tuning and debugging a model that we can barely afford to run on today's computational platforms. These strategies include: 1) evaluation at lower resolutions; 2) ensembles of short simulations to explore parameter space, and perform rough tuning and evaluation; 3) use of regionally refined versions of the model for probing high resolution model behavior at less expense; 4) use of "auto-tuning" methodologies for model tuning; and 5) brute force long climate simulations.
Impact of Variable SST on Simulated Warm Season Precipitation
NASA Astrophysics Data System (ADS)
Saleeby, S. M.; Cotton, W. R.
2007-05-01
The Colorado State University - Regional Atmospheric Modeling System (CSU-RAMS) is being used to examine the variability in monsoon-related warm season precipitation over Mexico and the United States due to variability in SST. Given recent improvements and increased resolution in satellite derived SSTs it is pertinent to examine the sensitivity of the RAMS model to the variety of SST data sources that are available. In particular, we are examining this dependence across continental scales over the full warm season, as well as across the regional scale centered around the Gulf of California on time scales of individual surge events. In this study we performed an ensemble of simulations that include the 2002, 2003, and 2004 warm seasons with use of the Climatology, Reynold's, AVHRR, and MODIS SSTs. From the seasonal 90-day simulations with 30km grid spacing, it was found that variations in surface latent heat flux are directly linked to differences in SST. Regions with cooler (warmer) SST have decreased (increased) moisture flux from the ocean which is in proportion to the magnitude of the SST difference. Over the eastern Pacific, differences in low-level horizontal moisture flux show a general trend toward reduced fluxes over cooler waters and very little inland impact. Over the Gulf of Mexico, however, there is substantial variability for each dataset comparison, despite having only limited variability among the SST data. Causes of this unexpected variability are not straight-forward. Precipitation impacts are greatest near the southern coast of Mexico and along the Sierra Madres. Precipitation variability over the CONUS is rather chaotic and is limited to areas impacted by the Gulf of Mexico or monsoon convection. Another unexpected outcome is the lack of variability in areas near the northern Gulf of California where SST and latent heat flux variability is a maximum. From the 7-day surge period simulations at 7km grid spacing, we found that SST differences on the higher resolution nested grid reveal fine scale variability that is otherwise smoothed out or unapparent on the coarser grid. Unlike the coarse grid, the latent heat flux, temperature, and moisture transport differences on the fine grid reveal an inland impact. This is likely due to fine scale variability in onshore moisture transport and sea- breeze circulations which may alter monsoonal convection and precipitation. However, only the largest SST differences (spatially and in magnitude) tend to invoke large, coherent responses in moisture flux. The SST variability at high resolution produces relatively large differences in precipitation that are focused along the slopes of the SMO, with a tendency toward greater variability along the western slope adjacent to the coast. The precipitation differences are of fine resolution, with variability of +/- 30 mm (over 5 days) along the length of the SMO. Variability on the fine grid also invokes precipitation changes over AZ/NM that are not resolved on the coarse grid. Vertical cross-sections examined along the GoC during the surge episode revealed variations in the moisture and temperature structure of the surge. The cooler SSTs in the climatological dataset produced the greatest variability compared to the other datasets. The surge produced from climatology SSTs was nearly 5g/kg drier and up to 4°C cooler compared to surges influenced by the SST datasets. The overall northward propagation of the surge appeared unaffected by the SSTs.
Scale dependency of regional climate modeling of current and future climate extremes in Germany
NASA Astrophysics Data System (ADS)
Tölle, Merja H.; Schefczyk, Lukas; Gutjahr, Oliver
2017-11-01
A warmer climate is projected for mid-Europe, with less precipitation in summer, but with intensified extremes of precipitation and near-surface temperature. However, the extent and magnitude of such changes are associated with creditable uncertainty because of the limitations of model resolution and parameterizations. Here, we present the results of convection-permitting regional climate model simulations for Germany integrated with the COSMO-CLM using a horizontal grid spacing of 1.3 km, and additional 4.5- and 7-km simulations with convection parameterized. Of particular interest is how the temperature and precipitation fields and their extremes depend on the horizontal resolution for current and future climate conditions. The spatial variability of precipitation increases with resolution because of more realistic orography and physical parameterizations, but values are overestimated in summer and over mountain ridges in all simulations compared to observations. The spatial variability of temperature is improved at a resolution of 1.3 km, but the results are cold-biased, especially in summer. The increase in resolution from 7/4.5 km to 1.3 km is accompanied by less future warming in summer by 1 ∘C. Modeled future precipitation extremes will be more severe, and temperature extremes will not exclusively increase with higher resolution. Although the differences between the resolutions considered (7/4.5 km and 1.3 km) are small, we find that the differences in the changes in extremes are large. High-resolution simulations require further studies, with effective parameterizations and tunings for different topographic regions. Impact models and assessment studies may benefit from such high-resolution model results, but should account for the impact of model resolution on model processes and climate change.
What model resolution is required in climatological downscaling over complex terrain?
NASA Astrophysics Data System (ADS)
El-Samra, Renalda; Bou-Zeid, Elie; El-Fadel, Mutasem
2018-05-01
This study presents results from the Weather Research and Forecasting (WRF) model applied for climatological downscaling simulations over highly complex terrain along the Eastern Mediterranean. We sequentially downscale general circulation model results, for a mild and wet year (2003) and a hot and dry year (2010), to three local horizontal resolutions of 9, 3 and 1 km. Simulated near-surface hydrometeorological variables are compared at different time scales against data from an observational network over the study area comprising rain gauges, anemometers, and thermometers. The overall performance of WRF at 1 and 3 km horizontal resolution was satisfactory, with significant improvement over the 9 km downscaling simulation. The total yearly precipitation from WRF's 1 km and 3 km domains exhibited < 10% bias with respect to observational data. The errors in minimum and maximum temperatures were reduced by the downscaling, along with a high-quality delineation of temperature variability and extremes for both the 1 and 3 km resolution runs. Wind speeds, on the other hand, are generally overestimated for all model resolutions, in comparison with observational data, particularly on the coast (up to 50%) compared to inland stations (up to 40%). The findings therefore indicate that a 3 km resolution is sufficient for the downscaling, especially that it would allow more years and scenarios to be investigated compared to the higher 1 km resolution at the same computational effort. In addition, the results provide a quantitative measure of the potential errors for various hydrometeorological variables.
Two- and three-dimensional natural and mixed convection simulation using modular zonal models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wurtz, E.; Nataf, J.M.; Winkelmann, F.
We demonstrate the use of the zonal model approach, which is a simplified method for calculating natural and mixed convection in rooms. Zonal models use a coarse grid and use balance equations, state equations, hydrostatic pressure drop equations and power law equations of the form {ital m} = {ital C}{Delta}{sup {ital n}}. The advantage of the zonal approach and its modular implementation are discussed. The zonal model resolution of nonlinear equation systems is demonstrated for three cases: a 2-D room, a 3-D room and a pair of 3-D rooms separated by a partition with an opening. A sensitivity analysis withmore » respect to physical parameters and grid coarseness is presented. Results are compared to computational fluid dynamics (CFD) calculations and experimental data.« less
An efficient cloud detection method for high resolution remote sensing panchromatic imagery
NASA Astrophysics Data System (ADS)
Li, Chaowei; Lin, Zaiping; Deng, Xinpu
2018-04-01
In order to increase the accuracy of cloud detection for remote sensing satellite imagery, we propose an efficient cloud detection method for remote sensing satellite panchromatic images. This method includes three main steps. First, an adaptive intensity threshold value combined with a median filter is adopted to extract the coarse cloud regions. Second, a guided filtering process is conducted to strengthen the textural features difference and then we conduct the detection process of texture via gray-level co-occurrence matrix based on the acquired texture detail image. Finally, the candidate cloud regions are extracted by the intersection of two coarse cloud regions above and we further adopt an adaptive morphological dilation to refine them for thin clouds in boundaries. The experimental results demonstrate the effectiveness of the proposed method.
Effects of vertical shear in modelling horizontal oceanic dispersion
NASA Astrophysics Data System (ADS)
Lanotte, A. S.; Corrado, R.; Palatella, L.; Pizzigalli, C.; Schipa, I.; Santoleri, R.
2016-02-01
The effect of vertical shear on the horizontal dispersion properties of passive tracer particles on the continental shelf of the South Mediterranean is investigated by means of observation and model data. In situ current measurements reveal that vertical gradients of horizontal velocities in the upper mixing layer decorrelate quite fast ( ˜ 1 day), whereas an eddy-permitting ocean model, such as the Mediterranean Forecasting System, tends to overestimate such decorrelation time because of finite resolution effects. Horizontal dispersion, simulated by the Mediterranean sea Forecasting System, is mostly affected by: (1) unresolved scale motions, and mesoscale motions that are largely smoothed out at scales close to the grid spacing; (2) poorly resolved time variability in the profiles of the horizontal velocities in the upper layer. For the case study we have analysed, we show that a suitable use of deterministic kinematic parametrizations is helpful to implement realistic statistical features of tracer dispersion in two and three dimensions. The approach here suggested provides a functional tool to control the horizontal spreading of small organisms or substance concentrations, and is thus relevant for marine biology, pollutant dispersion as well as oil spill applications.
Model comparisons of the reactive burn model SURF in three ASC codes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whitley, Von Howard; Stalsberg, Krista Lynn; Reichelt, Benjamin Lee
A study of the SURF reactive burn model was performed in FLAG, PAGOSA and XRAGE. In this study, three different shock-to-detonation transition experiments were modeled in each code. All three codes produced similar model results for all the experiments modeled and at all resolutions. Buildup-to-detonation time, particle velocities and resolution dependence of the models was notably similar between the codes. Given the current PBX 9502 equations of state and SURF calibrations, each code is equally capable of predicting the correct detonation time and distance when impacted by a 1D impactor at pressures ranging from 10-16 GPa, as long as themore » resolution of the mesh is not too coarse.« less
NASA Technical Reports Server (NTRS)
Kim, Dongchul; Chin, Mian; Kemp, Eric M.; Tao, Zhining; Peters-Lidard, Christa D.; Ginoux, Paul
2017-01-01
A high-resolution dynamic dust source has been developed in the NASA Unified-Weather Research and Forecasting (NU-WRF) model to improve the existing coarse static dust source. In the new dust source map, topographic depression is in 1-km resolution and surface bareness is derived using the Normalized Difference Vegetation Index (NDVI) data from Moderate Resolution Imaging Spectroradiometer (MODIS). The new dust source better resolves the complex topographic distribution over the Western United States where its magnitude is higher than the existing, coarser resolution static source. A case study is conducted with an extreme dust storm that occurred in Phoenix, Arizona in 0203 UTC July 6, 2011. The NU-WRF model with the new high-resolution dynamic dust source is able to successfully capture the dust storm, which was not achieved with the old source identification. However the case study also reveals several challenges in reproducing the time evolution of the short-lived, extreme dust storm events.
Kim, Dongchul; Chin, Mian; Kemp, Eric M.; Tao, Zhining; Peters-Lidard, Christa D.; Ginoux, Paul
2018-01-01
A high-resolution dynamic dust source has been developed in the NASA Unified-Weather Research and Forecasting (NU-WRF) model to improve the existing coarse static dust source. In the new dust source map, topographic depression is in 1-km resolution and surface bareness is derived using the Normalized Difference Vegetation Index (NDVI) data from Moderate Resolution Imaging Spectroradiometer (MODIS). The new dust source better resolves the complex topographic distribution over the Western United States where its magnitude is higher than the existing, coarser resolution static source. A case study is conducted with an extreme dust storm that occurred in Phoenix, Arizona in 02-03 UTC July 6, 2011. The NU-WRF model with the new high-resolution dynamic dust source is able to successfully capture the dust storm, which was not achieved with the old source identification. However the case study also reveals several challenges in reproducing the time evolution of the short-lived, extreme dust storm events. PMID:29632432
Kim, Dongchul; Chin, Mian; Kemp, Eric M; Tao, Zhining; Peters-Lidard, Christa D; Ginoux, Paul
2017-06-01
A high-resolution dynamic dust source has been developed in the NASA Unified-Weather Research and Forecasting (NU-WRF) model to improve the existing coarse static dust source. In the new dust source map, topographic depression is in 1-km resolution and surface bareness is derived using the Normalized Difference Vegetation Index (NDVI) data from Moderate Resolution Imaging Spectroradiometer (MODIS). The new dust source better resolves the complex topographic distribution over the Western United States where its magnitude is higher than the existing, coarser resolution static source. A case study is conducted with an extreme dust storm that occurred in Phoenix, Arizona in 02-03 UTC July 6, 2011. The NU-WRF model with the new high-resolution dynamic dust source is able to successfully capture the dust storm, which was not achieved with the old source identification. However the case study also reveals several challenges in reproducing the time evolution of the short-lived, extreme dust storm events.
NASA Astrophysics Data System (ADS)
Guerra, J. E.; Ullrich, P. A.
2015-12-01
Tempest is a next-generation global climate and weather simulation platform designed to allow experimentation with numerical methods at very high spatial resolutions. The atmospheric fluid equations are discretized by continuous / discontinuous finite elements in the horizontal and by a staggered nodal finite element method (SNFEM) in the vertical, coupled with implicit/explicit time integration. At global horizontal resolutions below 10km, many important questions remain on optimal techniques for solving the fluid equations. We present results from a suite of meso-scale test cases to validate the performance of the SNFEM applied in the vertical. Internal gravity wave, mountain wave, convective, and Cartesian baroclinic instability tests will be shown at various vertical orders of accuracy and compared with known results.
D.J. Hayes; W.B. Cohen
2006-01-01
This article describes the development of a methodology for scaling observations of changes in tropical forest cover to large areas at high temporal frequency from coarse-resolution satellite imagery. The approach for estimating proportional forest cover change as a continuous variable is based on a regression model that relates multispectral, multitemporal Moderate...
David S. Leigh
2016-01-01
Bottomland sediments from the southern Blue Ridge Mountains provide a coarse-resolution, multi-millennial stratigraphic record of past regional forest disturbance (soil erosion). This record is represented by 12 separate vertical accretion stratigraphic profi les that have been dated by radiocarbon, luminescence, cesium-137, and correlation methods...
First direct evidence of long-distance seasonal movements and hibernation in a migratory bat
Theodore J. Weller; Kevin T. Castle; Felix Liechti; Cris D. Hein; Michael R. Schirmacher; Paul M. Cryan
2016-01-01
Understanding of migration in small bats has been constrained by limitations of techniques that were labor-intensive, provided coarse levels of resolution, or were limited to population-level inferences. Knowledge of movements and behaviors of individual bats have been unknowable because of limitations in size of tracking devices and methods to attach them for...
Initialization of high resolution surface wind simulations using NWS gridded data
J. Forthofer; K. Shannon; Bret Butler
2010-01-01
WindNinja is a standalone computer model designed to provide the user with simulations of surface wind flow. It is deterministic and steady state. It is currently being modified to allow the user to initialize the flow calculation using National Digital Forecast Database. It essentially allows the user to downscale the coarse scale simulations from meso-scale models to...
A New Approach in Downscaling Microwave Soil Moisture Product using Machine Learning
NASA Astrophysics Data System (ADS)
Abbaszadeh, Peyman; Yan, Hongxiang; Moradkhani, Hamid
2016-04-01
Understating the soil moisture pattern has significant impact on flood modeling, drought monitoring, and irrigation management. Although satellite retrievals can provide an unprecedented spatial and temporal resolution of soil moisture at a global-scale, their soil moisture products (with a spatial resolution of 25-50 km) are inadequate for regional study, where a resolution of 1-10 km is needed. In this study, a downscaling approach using Genetic Programming (GP), a specialized version of Genetic Algorithm (GA), is proposed to improve the spatial resolution of satellite soil moisture products. The GP approach was applied over a test watershed in United States using the coarse resolution satellite data (25 km) from Advanced Microwave Scanning Radiometer - EOS (AMSR-E) soil moisture products, the fine resolution data (1 km) from Moderate Resolution Imaging Spectroradiometer (MODIS) vegetation index, and ground based data including land surface temperature, vegetation and other potential physical variables. The results indicated the great potential of this approach to derive the fine resolution soil moisture information applicable for data assimilation and other regional studies.
Gieger, Tracy; Siegel, Sheri; Rosen, Kari; Jackson, Dorothy; Ware, Kevin; Kiselow, Michael; Shiomitsu, Keijiro
2013-01-01
Data from 37 dogs with nasal carcinomas treated with two or more coarsely fractionated courses of radiation therapy (RT) were retrospectively reviewed. The median radiation dose for the first course of RT was 24 Gray (Gy). All dogs clinically responded, and 11 had complete resolution of signs for a median of 114 days. Dogs were retreated at relapse, with a median dose of 20 Gy, and 26 of 37 dogs (70%) had clinical responses. The second course of RT was initiated at a median of 150 days following completion of the first course. Side effects were mild: four dogs had chronic ocular conditions necessitating medication, one of which required enucleation. Median survival time (ST) from the first dose of RT was 453 days and 180 days from the first dose of the second course of RT. The following factors were examined but were not significant for survival: total RT dose, dose of the first course of RT, complete resolution of clinical signs, use of either chemotherapy or nonsteroidal anti-inflammatory drugs (NSAIDs), and stage (T1/T2 versus T3/T4). Dogs responded well to reirradiation with a subset experiencing chronic ocular side effects.
NASA Astrophysics Data System (ADS)
Ward, L. A.; Smith-Konter, B. R.; Higa, J. T.; Xu, X.; Tong, X.; Sandwell, D. T.
2017-12-01
After over a decade of operation, the EarthScope (GAGE) Facility has now accumulated a wealth of GPS and InSAR data, that when successfully integrated, make it possible to image the entire San Andreas Fault System (SAFS) with unprecedented spatial coverage and resolution. Resulting surface velocity and deformation time series products provide critical boundary conditions needed for improving our understanding of how faults are loaded across a broad range of temporal and spatial scales. Moreover, our understanding of how earthquake cycle deformation is influenced by fault zone strength and crust/mantle rheology is still developing. To further study these processes, we construct a new 4D earthquake cycle model of the SAFS representing the time-dependent 3D velocity field associated with interseismic strain accumulation, co-seismic slip, and postseismic viscoelastic relaxation. This high-resolution California statewide model, spanning the Cerro Prieto fault to the south to the Maacama fault to the north, is constructed on a 500 m spaced grid and comprises variable slip and locking depths along 42 major fault segments. Secular deep slip is prescribed from the base of the locked zone to the base of the elastic plate while episodic shallow slip is prescribed from the historical earthquake record and geologic recurrence intervals. Locking depths and slip rates for all 42 fault segments are constrained by the newest GAGE Facility geodetic observations; 3169 horizontal GPS velocity measurements, combined with over 53,000 line-of-sight (LOS) InSAR velocity observations from Sentinel-1A, are used in a weighted least-squares inversion. To assess slip rate and locking depth sensitivity of a heterogeneous rheology model, we also implement variations in crustal rigidity throughout the plate boundary, assuming a coarse representation of shear modulus variability ranging from 20-40 GPa throughout the (low rigidity) Salton Trough and Basin and Range and the (high rigidity) Central Valley and ocean lithosphere.
NASA Astrophysics Data System (ADS)
Patricola, C. M.; Cook, K. H.
2008-12-01
As greenhouse warming continues there is growing concern about the future climate of both Africa, which is highlighted by the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC AR4) as exceptionally vulnerable to climate change, and India. Precipitation projections from the AOGCMs of the IPCC AR4 are relatively consistent over India, but not over northern Africa. Inconsistencies can be related to the model's inability to capture climate process correctly, deficiencies in physical parameterizations, different SST projections, or horizontal atmospheric resolution that is too coarse to realistically represent the tight gradients over West Africa and complex topography of East Africa and India. Treatment of the land surface in a model may also be an issue over West Africa and India where land-surface/atmosphere interactions are very important. Here a method for simulating future climate is developed and applied using a high-resolution regional model in conjunction with output from a suite of AOGCMs, drawing on the advantages of both the regional and global modeling approaches. Integration by the regional model allows for finer horizontal resolution and regionally appropriate selection of parameterizations and land-surface model. AOGCM output is used to provide SST projections and lateral boundary conditions to constrain the regional model. The control simulation corresponds to 1981-2000, and eight future simulations representing 2081-2100 are conducted, each constrained by a different AOGCM and forced by CO2 concentrations from the SRES A2 emissions scenario. After model spin-up, May through October remain for investigation. Analysis is focused on climate change parameters important for impacts on agriculture and water resource management, and is presented in a format compatible with the IPCC reports. Precipitation projections simulated by the regional model are quite consistent, with 75% or more ensemble members agreeing on the sign of the anomaly over vast regions of Africa and India. Over West Africa, where the regional model provides the greatest improvement over the AOGCMs in consistency of ensemble members, precipitation at the end of the century is generally projected to increase during May and decrease in June and July. Wetter conditions are simulated during August though October, with the exception of drying close to the Guinean Coast in August. In late summer, high rainfall rates are simulated more frequently in the future, indicating the possibility for increases in flooding events. The regional model's projections over India are in stark contrast to the AOGCM's, producing intense and generally widespread drying in August and September. The very promising method developed here is young and further potential developments are recognized, including the addition of ocean, vegetation, and dust models. Ensembles which employ other regional models, sets of parameterizations, and emissions scenarios should also be explored.
Employing lidar to detail vegetation canopy architecture for prediction of aeolian transport
Sankey, Joel B.; Law, Darin J.; Breshears, David D.; Munson, Seth M.; Webb, Robert H.
2013-01-01
The diverse and fundamental effects that aeolian processes have on the biosphere and geosphere are commonly generated by horizontal sediment transport at the land surface. However, predicting horizontal sediment transport depends on vegetation architecture, which is difficult to quantify in a rapid but accurate manner. We demonstrate an approach to measure vegetation canopy architecture at high resolution using lidar along a gradient of dryland sites ranging from 2% to 73% woody plant canopy cover. Lidar-derived canopy height, distance (gaps) between vegetation elements (e.g., trunks, limbs, leaves), and the distribution of gaps scaled by vegetation height were correlated with canopy cover and highlight potentially improved horizontal dust flux estimation than with cover alone. Employing lidar to estimate detailed vegetation canopy architecture offers promise for improved predictions of horizontal sediment transport across heterogeneous plant assemblages.
Regional model simulations of New Zealand climate
NASA Astrophysics Data System (ADS)
Renwick, James A.; Katzfey, Jack J.; Nguyen, Kim C.; McGregor, John L.
1998-03-01
Simulation of New Zealand climate is examined through the use of a regional climate model nested within the output of the Commonwealth Scientific and Industrial Research Organisation nine-level general circulation model (GCM). R21 resolution GCM output is used to drive a regional model run at 125 km grid spacing over the Australasian region. The 125 km run is used in turn to drive a simulation at 50 km resolution over New Zealand. Simulations with a full seasonal cycle are performed for 10 model years. The focus is on the quality of the simulation of present-day climate, but results of a doubled-CO2 run are discussed briefly. Spatial patterns of mean simulated precipitation and surface temperatures improve markedly as horizontal resolution is increased, through the better resolution of the country's orography. However, increased horizontal resolution leads to a positive bias in precipitation. At 50 km resolution, simulated frequency distributions of daily maximum/minimum temperatures are statistically similar to those of observations at many stations, while frequency distributions of daily precipitation appear to be statistically different to those of observations at most stations. Modeled daily precipitation variability at 125 km resolution is considerably less than observed, but is comparable to, or exceeds, observed variability at 50 km resolution. The sensitivity of the simulated climate to changes in the specification of the land surface is discussed briefly. Spatial patterns of the frequency of extreme temperatures and precipitation are generally well modeled. Under a doubling of CO2, the frequency of precipitation extremes changes only slightly at most locations, while air frosts become virtually unknown except at high-elevation sites.
Wang, Yunlong; Liu, Fei; Zhang, Kunbo; Hou, Guangqi; Sun, Zhenan; Tan, Tieniu
2018-09-01
The low spatial resolution of light-field image poses significant difficulties in exploiting its advantage. To mitigate the dependency of accurate depth or disparity information as priors for light-field image super-resolution, we propose an implicitly multi-scale fusion scheme to accumulate contextual information from multiple scales for super-resolution reconstruction. The implicitly multi-scale fusion scheme is then incorporated into bidirectional recurrent convolutional neural network, which aims to iteratively model spatial relations between horizontally or vertically adjacent sub-aperture images of light-field data. Within the network, the recurrent convolutions are modified to be more effective and flexible in modeling the spatial correlations between neighboring views. A horizontal sub-network and a vertical sub-network of the same network structure are ensembled for final outputs via stacked generalization. Experimental results on synthetic and real-world data sets demonstrate that the proposed method outperforms other state-of-the-art methods by a large margin in peak signal-to-noise ratio and gray-scale structural similarity indexes, which also achieves superior quality for human visual systems. Furthermore, the proposed method can enhance the performance of light field applications such as depth estimation.
Chen, Lidong; Basu, Anup; Zhang, Maojun; Wang, Wei; Liu, Yu
2014-03-20
A complementary catadioptric imaging technique was proposed to solve the problem of low and nonuniform resolution in omnidirectional imaging. To enhance this research, our paper focuses on how to generate a high-resolution panoramic image from the captured omnidirectional image. To avoid the interference between the inner and outer images while fusing the two complementary views, a cross-selection kernel regression method is proposed. First, in view of the complementarity of sampling resolution in the tangential and radial directions between the inner and the outer images, respectively, the horizontal gradients in the expected panoramic image are estimated based on the scattered neighboring pixels mapped from the outer, while the vertical gradients are estimated using the inner image. Then, the size and shape of the regression kernel are adaptively steered based on the local gradients. Furthermore, the neighboring pixels in the next interpolation step of kernel regression are also selected based on the comparison between the horizontal and vertical gradients. In simulation and real-image experiments, the proposed method outperforms existing kernel regression methods and our previous wavelet-based fusion method in terms of both visual quality and objective evaluation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pekney, Natalie J.; Reeder, Matthew; Veloski, Garret A.
The West Virginia Department of Environmental Protection’s Office of Oil and Gas was directed according to the Natural Gas Horizontal Well Control Act of December 14, 2011 (West Virginia Code §22-6A) to conduct studies of horizontal well drilling activities related to air quality. The planned study, “Noise, Light, Dust, Volatile Organic Compounds Related to Well Location Restrictions,” required determination of the effectiveness of a 625 ft minimum set-back from the center of the pad of a horizontal well drilling site to the nearest occupied dwelling. An investigation was conducted at seven drilling sites by West Virginia University (WVU) and themore » National Energy Technology Laboratory (NETL) to collect data on dust, hydrocarbon compounds and on noise, radiation, and light levels. NETL’s role in this study was to collect measurements of ambient pollutant concentrations at six of the seven selected sites using NETL’s Mobile Air Monitoring Laboratory. The trailer-based laboratory was situated a distance of 492–1,312 ft from each well pad, on which activities included well pad construction, vertical drilling, horizontal drilling, hydraulic fracturing, and flaring, with the objective of evaluating the air quality impact of each activity for 1–4 weeks per site. Measured pollutants included volatile organic compounds (VOCs), coarse and fine particulate matter (PM 10 and PM 2.5, respectively), ozone, methane (CH 4), carbon dioxide (CO 2), carbon isotopes of CH 4 and CO 2, organic carbon (OC), elemental carbon (EC), oxides of nitrogen (NOx), and sulfur dioxide (SO 2).« less
Domain-averaged snow depth over complex terrain from flat field measurements
NASA Astrophysics Data System (ADS)
Helbig, Nora; van Herwijnen, Alec
2017-04-01
Snow depth is an important parameter for a variety of coarse-scale models and applications, such as hydrological forecasting. Since high-resolution snow cover models are computational expensive, simplified snow models are often used. Ground measured snow depth at single stations provide a chance for snow depth data assimilation to improve coarse-scale model forecasts. Snow depth is however commonly recorded at so-called flat fields, often in large measurement networks. While these ground measurement networks provide a wealth of information, various studies questioned the representativity of such flat field snow depth measurements for the surrounding topography. We developed two parameterizations to compute domain-averaged snow depth for coarse model grid cells over complex topography using easy to derive topographic parameters. To derive the two parameterizations we performed a scale dependent analysis for domain sizes ranging from 50m to 3km using highly-resolved snow depth maps at the peak of winter from two distinct climatic regions in Switzerland and in the Spanish Pyrenees. The first, simpler parameterization uses a commonly applied linear lapse rate. For the second parameterization, we first removed the obvious elevation gradient in mean snow depth, which revealed an additional correlation with the subgrid sky view factor. We evaluated domain-averaged snow depth derived with both parameterizations using flat field measurements nearby with the domain-averaged highly-resolved snow depth. This revealed an overall improved performance for the parameterization combining a power law elevation trend scaled with the subgrid parameterized sky view factor. We therefore suggest the parameterization could be used to assimilate flat field snow depth into coarse-scale snow model frameworks in order to improve coarse-scale snow depth estimates over complex topography.
Spontaneous adsorption of coiled-coil model peptides K and E to a mixed lipid bilayer.
Pluhackova, Kristyna; Wassenaar, Tsjerk A; Kirsch, Sonja; Böckmann, Rainer A
2015-03-26
A molecular description of the lipid-protein interactions underlying the adsorption of proteins to membranes is crucial for understanding, for example, the specificity of adsorption or the binding strength of a protein to a bilayer, or for characterizing protein-induced changes of membrane properties. In this paper, we extend an automated in silico assay (DAFT) for binding studies and apply it to characterize the adsorption of the model fusion peptides E and K to a mixed phospholipid/cholesterol membrane using coarse-grained molecular dynamics simulations. In addition, we couple the coarse-grained protocol to reverse transformation to atomistic resolution, thereby allowing to study molecular interactions with high detail. The experimentally observed differential binding of the peptides E and K to membranes, as well as the increased binding affinity of helical over unstructered peptides, could be well reproduced using the polarizable Martini coarse-grained (CG) force field. Binding to neutral membranes is shown to be dominated by initial binding of the positively charged N-terminus to the phospholipid headgroup region, followed by membrane surface-aligned insertion of the peptide at the interface between the hydrophobic core of the membrane and its polar headgroup region. Both coarse-grained and atomistic simulations confirm a before hypothesized snorkeling of lysine side chains for the membrane-bound state of the peptide K. Cholesterol was found to be enriched in peptide vicinity, which is probably of importance for the mechanism of membrane fusion. The applied sequential multiscale method, using coarse-grained simulations for the slow adsorption process of peptides to membranes followed by backward transformation to atomistic detail and subsequent atomistic simulations of the preformed peptide-lipid complexes, is shown to be a versatile approach to study the interactions of peptides or proteins with biomembranes.
Coarse-grained incompressible magnetohydrodynamics: Analyzing the turbulent cascades
Aluie, Hussein
2017-02-21
Here, we formulate a coarse-graining approach to the dynamics of magnetohydrodynamic (MHD) fluids at a continuum of length-scales. In this methodology, effective equations are derived for the observable velocity and magnetic fields spatially-averaged at an arbitrary scale of resolution. The microscopic equations for the bare velocity and magnetic fields are renormalized by coarse-graining to yield macroscopic effective equations that contain both a subscale stress and a subscale electromotive force (EMF) generated by nonlinear interaction of eliminated fields and plasma motions. At large coarse-graining length-scales, the direct dissipation of invariants by microscopic mechanisms (such as molecular viscosity and Spitzer resistivity) ismore » shown to be negligible. The balance at large scales is dominated instead by the subscale nonlinear terms, which can transfer invariants across scales, and are interpreted in terms of work concepts for energy and in terms of topological flux-linkage for the two helicities. An important application of this approach is to MHD turbulence, where the coarse-graining length ℓ lies in the inertial cascade range. We show that in the case of sufficiently rough velocity and/or magnetic fields, the nonlinear inter-scale transfer need not vanish and can persist to arbitrarily small scales. Although closed expressions are not available for subscale stress and subscale EMF, we derive rigorous upper bounds on the effective dissipation they produce in terms of scaling exponents of the velocity and magnetic fields. These bounds provide exact constraints on phenomenological theories of MHD turbulence in order to allow the nonlinear cascade of energy and cross-helicity. On the other hand, we show that the forward cascade of magnetic helicity to asymptotically small scales is impossible unless 3rd-order moments of either velocity or magnetic field become infinite.« less
NASA Astrophysics Data System (ADS)
Kardan, Farshid; Cheng, Wai-Chi; Baverel, Olivier; Porté-Agel, Fernando
2016-04-01
Understanding, analyzing and predicting meteorological phenomena related to urban planning and built environment are becoming more essential than ever to architectural and urban projects. Recently, various version of RANS models have been established but more validation cases are required to confirm their capability for wind flows. In the present study, the performance of recently developed RANS models, including the RNG k-ɛ , SST BSL k-ω and SST ⪆mma-Reθ , have been evaluated for the flow past a single block (which represent the idealized architecture scale). For validation purposes, the velocity streamlines and the vertical profiles of the mean velocities and variances were compared with published LES and wind tunnel experiment results. Furthermore, other additional CFD simulations were performed to analyze the impact of regular/irregular mesh structures and grid resolutions based on selected turbulence model in order to analyze the grid independency. Three different grid resolutions (coarse, medium and fine) of Nx × Ny × Nz = 320 × 80 × 320, 160 × 40 × 160 and 80 × 20 × 80 for the computational domain and nx × nz = 26 × 32, 13 × 16 and 6 × 8, which correspond to number of grid points on the block edges, were chosen and tested. It can be concluded that among all simulated RANS models, the SST ⪆mma-Reθ model performed best and agreed fairly well to the LES simulation and experimental results. It can also be concluded that the SST ⪆mma-Reθ model provides a very satisfactory results in terms of grid dependency in the fine and medium grid resolutions in both regular and irregular structure meshes. On the other hand, despite a very good performance of the RNG k-ɛ model in the fine resolution and in the regular structure grids, a disappointing performance of this model in the coarse and medium grid resolutions indicates that the RNG k-ɛ model is highly dependent on grid structure and grid resolution. These quantitative validations are essential to access the accuracy of RANS models for the simulation of flow in urban environment.
Disaggregation Of Passive Microwave Soil Moisture For Use In Watershed Hydrology Applications
NASA Astrophysics Data System (ADS)
Fang, Bin
In recent years the passive microwave remote sensing has been providing soil moisture products using instruments on board satellite/airborne platforms. Spatial resolution has been restricted by the diameter of antenna which is inversely proportional to resolution. As a result, typical products have a spatial resolution of tens of kilometers, which is not compatible for some hydrological research applications. For this reason, the dissertation explores three disaggregation algorithms that estimate L-band passive microwave soil moisture at the subpixel level by using high spatial resolution remote sensing products from other optical and radar instruments were proposed and implemented in this investigation. The first technique utilized a thermal inertia theory to establish a relationship between daily temperature change and average soil moisture modulated by the vegetation condition was developed by using NLDAS, AVHRR, SPOT and MODIS data were applied to disaggregate the 25 km AMSR-E soil moisture to 1 km in Oklahoma. The second algorithm was built on semi empirical physical models (NP89 and LP92) derived from numerical experiments between soil evaporation efficiency and soil moisture over the surface skin sensing depth (a few millimeters) by using simulated soil temperature derived from MODIS and NLDAS as well as AMSR-E soil moisture at 25 km to disaggregate the coarse resolution soil moisture to 1 km in Oklahoma. The third algorithm modeled the relationship between the change in co-polarized radar backscatter and the remotely sensed microwave change in soil moisture retrievals and assumed that change in soil moisture was a function of only the canopy opacity. The change detection algorithm was implemented using aircraft based the remote sensing data from PALS and UAVSAR that were collected in SMPAVEX12 in southern Manitoba, Canada. The PALS L-band h-polarization radiometer soil moisture retrievals were disaggregated by combining them with the PALS and UAVSAR L-band hh-polarization radar spatial resolutions of 1500 m and 5 m/800 m, respectively. All three algorithms were validated using ground measurements from network in situ stations or handheld hydra probes. The validation results demonstrate the practicability on coarse resolution passive microwave soil moisture products.
NASA Technical Reports Server (NTRS)
Ott, L.; Putman, B.; Collatz, J.; Gregg, W.
2012-01-01
Column CO2 observations from current and future remote sensing missions represent a major advancement in our understanding of the carbon cycle and are expected to help constrain source and sink distributions. However, data assimilation and inversion methods are challenged by the difference in scale of models and observations. OCO-2 footprints represent an area of several square kilometers while NASA s future ASCENDS lidar mission is likely to have an even smaller footprint. In contrast, the resolution of models used in global inversions are typically hundreds of kilometers wide and often cover areas that include combinations of land, ocean and coastal areas and areas of significant topographic, land cover, and population density variations. To improve understanding of scales of atmospheric CO2 variability and representativeness of satellite observations, we will present results from a global, 10-km simulation of meteorology and atmospheric CO2 distributions performed using NASA s GEOS-5 general circulation model. This resolution, typical of mesoscale atmospheric models, represents an order of magnitude increase in resolution over typical global simulations of atmospheric composition allowing new insight into small scale CO2 variations across a wide range of surface flux and meteorological conditions. The simulation includes high resolution flux datasets provided by NASA s Carbon Monitoring System Flux Pilot Project at half degree resolution that have been down-scaled to 10-km using remote sensing datasets. Probability distribution functions are calculated over larger areas more typical of global models (100-400 km) to characterize subgrid-scale variability in these models. Particular emphasis is placed on coastal regions and regions containing megacities and fires to evaluate the ability of coarse resolution models to represent these small scale features. Additionally, model output are sampled using averaging kernels characteristic of OCO-2 and ASCENDS measurement concepts to create realistic pseudo-datasets. Pseudo-data are averaged over coarse model grid cell areas to better understand the ability of measurements to characterize CO2 distributions and spatial gradients on both short (daily to weekly) and long (monthly to seasonal) time scales
Finding the best resolution for the Kingman-Tajima coalescent: theory and applications.
Sainudiin, Raazesh; Stadler, Tanja; Véber, Amandine
2015-05-01
Many summary statistics currently used in population genetics and in phylogenetics depend only on a rather coarse resolution of the underlying tree (the number of extant lineages, for example). Hence, for computational purposes, working directly on these resolutions appears to be much more efficient. However, this approach seems to have been overlooked in the past. In this paper, we describe six different resolutions of the Kingman-Tajima coalescent together with the corresponding Markov chains, which are essential for inference methods. Two of the resolutions are the well-known n-coalescent and the lineage death process due to Kingman. Two other resolutions were mentioned by Kingman and Tajima, but never explicitly formalized. Another two resolutions are novel, and complete the picture of a multi-resolution coalescent. For all of them, we provide the forward and backward transition probabilities, the probability of visiting a given state as well as the probability of a given realization of the full Markov chain. We also provide a description of the state-space that highlights the computational gain obtained by working with lower-resolution objects. Finally, we give several examples of summary statistics that depend on a coarser resolution of Kingman's coalescent, on which simulations are usually based.
Tests of high-resolution simulations over a region of complex terrain in Southeast coast of Brazil
NASA Astrophysics Data System (ADS)
Chou, Sin Chan; Luís Gomes, Jorge; Ristic, Ivan; Mesinger, Fedor; Sueiro, Gustavo; Andrade, Diego; Lima-e-Silva, Pedro Paulo
2013-04-01
The Eta Model is used operationally by INPE at the Centre for Weather Forecasts and Climate Studies (CPTEC) to produce weather forecasts over South America since 1997. The model has gone through upgrades along these years. In order to prepare the model for operational higher resolution forecasts, the model is configured and tested over a region of complex topography located near the coast of Southeast Brazil. The model domain includes the two Brazilians cities, Rio de Janeiro and Sao Paulo, urban areas, preserved tropical forest, pasture fields, and complex terrain where it can rise from sea level up to about 1000 m. Accurate near-surface wind direction and magnitude are needed for the power plant emergency plan. Besides, the region suffers from frequent events of floods and landslides, therefore accurate local forecasts are required for disaster warnings. The objective of this work is to carry out a series of numerical experiments to test and evaluate high resolution simulations in this complex area. Verification of model runs uses observations taken from the nuclear power plant and higher resolution reanalyses data. The runs were tested in a period when flow was predominately forced by local conditions and in a period forced by frontal passage. The Eta Model was configured initially with 2-km horizontal resolution and 50 layers. The Eta-2km is a second nesting, it is driven by Eta-15km, which in its turn is driven by Era-Interim reanalyses. The series of experiments consists of replacing surface layer stability function, adjusting cloud microphysics scheme parameters, further increasing vertical and horizontal resolutions. By replacing the stability function for the stable conditions substantially increased the katabatic winds and verified better against the tower wind data. Precipitation produced by the model was excessive in the region. Increasing vertical resolution to 60 layers caused a further increase in precipitation production. This excessive precipitation was reduced by adjusting some parameters in the cloud microphysics scheme. Precipitation overestimate still occurs and further tests are still necessary. The increase of horizontal resolution to 1 km required adjusting model diffusion parameters and refining divergence calculations. Available observations in the region for a thorough evaluation is a major constraint.
NASA Astrophysics Data System (ADS)
Ohfuchi, Wataru; Enomoto, Takeshi; Yoshioka, Mayumi K.; Takaya, Koutarou
2014-05-01
Some high-resolution simulations with a conventional atmospheric general circulation model (AGCM) were conducted right after the first Earth Simulator started operating in the spring of 2002. More simulations with various resolutions followed. The AGCM in this study, AFES (Agcm For the Earth Simulator), is a primitive equation spectral transform method model with a cumulus convection parameterization. In this presentation, some findings from comparisons between high and low-resolution simulations, and some future perspectives of old-fashioned AGCMs will be discussed. One obvious advantage of increasing resolution is capability of resolving the fine structures of topography and atmospheric flow. By increasing resolution from T39 (about 320 km horizontal grid interval) to T79 (160 km), to T159 (80 km) to T319 (40 km), topographic precipitation over Japan becomes increasingly realistic. This feature is necessary for climate and weather studies involving both global and local aspects. In order to resolve submesoscale (about 100 km horizontal scale) atmospheric circulation, about 10-km grid interval is necessary. Comparing T1279 (10 km) simulations with T319 ones, it is found that, for example, the intensity of heavy rain associated with Baiu front and the central pressure of typhoon become more realistic. These realistic submesoscale phenomena should have impact on larger-sale flow through dynamics and thermodynamics. An interesting finding by increasing horizontal resolution of a conventional AGCM is that some cumulus convection parameterizations, such as Arakawa-Schubert type scheme, gradually stop producing precipitation, while some others, such as Emanuel type, do not. With the former, the grid condensation increases with the model resolution to compensate. Which characteristics are more desirable is arguable but it is an important feature one has to consider when developing a high-resolution conventional AGCM. Many may think that conventional primitive equation spectral transform AGCMs, such as AFES, have no future. Developing globally homogeneous nonhydrostatic cloud resolving grid AGCMs is obviously a straightforward direction for the future. However these models will be very expensive for many users for a while, perhaps for the next some decades. On the other hand, old-fashioned AGCMs with a grid interval of 20-100 km will remain to be accurate and efficient tools for many users for many years to come. Also by coupling with a fine-resolution regional nonhydrostatic model, a conventional AGCM may overcome its limitation for use in climate and weather studies in the future.
NASA Astrophysics Data System (ADS)
Pan, Shuai; Choi, Yunsoo; Roy, Anirban; Jeon, Wonbae
2017-09-01
A WRF-SMOKE-CMAQ air quality modeling system was used to investigate the impact of horizontal spatial resolution on simulated nitrogen oxides (NOx) and ozone (O3) in the Greater Houston area (a non-attainment area for O3). We employed an approach recommended by the United States Environmental Protection Agency to allocate county-based emissions to model grid cells in 1 km and 4 km horizontal grid resolutions. The CMAQ Integrated Process Rate analyses showed a substantial difference in emissions contributions between 1 and 4 km grids but similar NOx and O3 concentrations over urban and industrial locations. For example, the peak NOx emissions at an industrial and urban site differed by a factor of 20 for the 1 km and 8 for the 4 km grid, but simulated NOx concentrations changed only by a factor of 1.2 in both cases. Hence, due to the interplay of the atmospheric processes, we cannot expect a similar level of reduction of the gas-phase air pollutants as the reduction of emissions. Both simulations reproduced the variability of NASA P-3B aircraft measurements of NOy and O3 in the lower atmosphere (from 90 m to 4.5 km). Both simulations provided similar reasonable predictions at surface, while 1 km case depicted more detailed features of emissions and concentrations in heavily polluted areas, such as highways, airports, and industrial regions, which are useful in understanding the major causes of O3 pollution in such regions, and to quantify transport of O3 to populated communities in urban areas. The Integrated Reaction Rate analyses indicated a distinctive difference of chemistry processes between the model surface layer and upper layers, implying that correcting the meteorological conditions at the surface may not help to enhance the O3 predictions. The model-observation O3 bias in our studies (e.g., large over-prediction during the nighttime or along Gulf of Mexico coastline), were due to uncertainties in meteorology, chemistry or other processes. Horizontal grid resolution is unlikely the major contributor to these biases.
Kooperman, Gabriel J.; Pritchard, Michael S.; O'Brien, Travis A.; ...
2018-04-01
Deficiencies in the parameterizations of convection used in global climate models often lead to a distorted representation of the simulated rainfall intensity distribution (i.e., too much rainfall from weak rain rates). While encouraging improvements in high percentile rainfall intensity have been found as the horizontal resolution of the Community Atmosphere Model is increased to ~25 km, we demonstrate no corresponding improvement in the moderate rain rates that generate the majority of accumulated rainfall. Using a statistical framework designed to emphasize links between precipitation intensity and accumulated rainfall beyond just the frequency distribution, we show that CAM cannot realistically simulate moderatemore » rain rates, and cannot capture their intensification with climate change, even as resolution is increased. However, by separating the parameterized convective and large-scale resolved contributions to total rainfall, we find that the intensity, geographic pattern, and climate change response of CAM's large-scale rain rates are more consistent with observations (TRMM 3B42), superparameterization, and theoretical expectations, despite issues with parameterized convection. Increasing CAM's horizontal resolution does improve the representation of total rainfall intensity, but not due to changes in the intensity of large-scale rain rates, which are surprisingly insensitive to horizontal resolution. Rather, improvements occur through an increase in the relative contribution of the large-scale component to the total amount of accumulated rainfall. Analysis of sensitivities to convective timescale and entrainment rate confirm the importance of these parameters in the possible development of scale-aware parameterizations, but also reveal unrecognized trade-offs from the entanglement of precipitation frequency and total amount.« less
NASA Astrophysics Data System (ADS)
Kooperman, Gabriel J.; Pritchard, Michael S.; O'Brien, Travis A.; Timmermans, Ben W.
2018-04-01
Deficiencies in the parameterizations of convection used in global climate models often lead to a distorted representation of the simulated rainfall intensity distribution (i.e., too much rainfall from weak rain rates). While encouraging improvements in high percentile rainfall intensity have been found as the horizontal resolution of the Community Atmosphere Model is increased to ˜25 km, we demonstrate no corresponding improvement in the moderate rain rates that generate the majority of accumulated rainfall. Using a statistical framework designed to emphasize links between precipitation intensity and accumulated rainfall beyond just the frequency distribution, we show that CAM cannot realistically simulate moderate rain rates, and cannot capture their intensification with climate change, even as resolution is increased. However, by separating the parameterized convective and large-scale resolved contributions to total rainfall, we find that the intensity, geographic pattern, and climate change response of CAM's large-scale rain rates are more consistent with observations (TRMM 3B42), superparameterization, and theoretical expectations, despite issues with parameterized convection. Increasing CAM's horizontal resolution does improve the representation of total rainfall intensity, but not due to changes in the intensity of large-scale rain rates, which are surprisingly insensitive to horizontal resolution. Rather, improvements occur through an increase in the relative contribution of the large-scale component to the total amount of accumulated rainfall. Analysis of sensitivities to convective timescale and entrainment rate confirm the importance of these parameters in the possible development of scale-aware parameterizations, but also reveal unrecognized trade-offs from the entanglement of precipitation frequency and total amount.
Pritchard, Michael S.; O'Brien, Travis A.; Timmermans, Ben W.
2018-01-01
Abstract Deficiencies in the parameterizations of convection used in global climate models often lead to a distorted representation of the simulated rainfall intensity distribution (i.e., too much rainfall from weak rain rates). While encouraging improvements in high percentile rainfall intensity have been found as the horizontal resolution of the Community Atmosphere Model is increased to ∼25 km, we demonstrate no corresponding improvement in the moderate rain rates that generate the majority of accumulated rainfall. Using a statistical framework designed to emphasize links between precipitation intensity and accumulated rainfall beyond just the frequency distribution, we show that CAM cannot realistically simulate moderate rain rates, and cannot capture their intensification with climate change, even as resolution is increased. However, by separating the parameterized convective and large‐scale resolved contributions to total rainfall, we find that the intensity, geographic pattern, and climate change response of CAM's large‐scale rain rates are more consistent with observations (TRMM 3B42), superparameterization, and theoretical expectations, despite issues with parameterized convection. Increasing CAM's horizontal resolution does improve the representation of total rainfall intensity, but not due to changes in the intensity of large‐scale rain rates, which are surprisingly insensitive to horizontal resolution. Rather, improvements occur through an increase in the relative contribution of the large‐scale component to the total amount of accumulated rainfall. Analysis of sensitivities to convective timescale and entrainment rate confirm the importance of these parameters in the possible development of scale‐aware parameterizations, but also reveal unrecognized trade‐offs from the entanglement of precipitation frequency and total amount. PMID:29861837
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kooperman, Gabriel J.; Pritchard, Michael S.; O'Brien, Travis A.
Deficiencies in the parameterizations of convection used in global climate models often lead to a distorted representation of the simulated rainfall intensity distribution (i.e., too much rainfall from weak rain rates). While encouraging improvements in high percentile rainfall intensity have been found as the horizontal resolution of the Community Atmosphere Model is increased to ~25 km, we demonstrate no corresponding improvement in the moderate rain rates that generate the majority of accumulated rainfall. Using a statistical framework designed to emphasize links between precipitation intensity and accumulated rainfall beyond just the frequency distribution, we show that CAM cannot realistically simulate moderatemore » rain rates, and cannot capture their intensification with climate change, even as resolution is increased. However, by separating the parameterized convective and large-scale resolved contributions to total rainfall, we find that the intensity, geographic pattern, and climate change response of CAM's large-scale rain rates are more consistent with observations (TRMM 3B42), superparameterization, and theoretical expectations, despite issues with parameterized convection. Increasing CAM's horizontal resolution does improve the representation of total rainfall intensity, but not due to changes in the intensity of large-scale rain rates, which are surprisingly insensitive to horizontal resolution. Rather, improvements occur through an increase in the relative contribution of the large-scale component to the total amount of accumulated rainfall. Analysis of sensitivities to convective timescale and entrainment rate confirm the importance of these parameters in the possible development of scale-aware parameterizations, but also reveal unrecognized trade-offs from the entanglement of precipitation frequency and total amount.« less
MISR Level 2 TOA/Cloud Classifier parameters (MIL2TCCL_V2)
NASA Technical Reports Server (NTRS)
Diner, David J. (Principal Investigator)
The TOA/Cloud Classifiers contain the Angular Signature Cloud Mask (ASCM), a scene classifier calculated using support vector machine technology (SVM) both of which are on a 1.1 km grid, and cloud fractions at 17.6 km resolution that are available in different height bins (low, middle, high) and are also calculated on an angle-by-angle basis. [Location=GLOBAL] [Temporal_Coverage: Start_Date=2000-02-24; Stop_Date=] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180] [Data_Resolution: Latitude_Resolution=17.6 km; Longitude_Resolution=17.6 km; Horizontal_Resolution_Range=10 km - < 50 km or approximately .09 degree - < .5 degree; Temporal_Resolution=about 15 orbits/day; Temporal_Resolution_Range=Daily - < Weekly, Daily - < Weekly].
NASA Technical Reports Server (NTRS)
Pandya, Mohagna J.; Baysal, Oktay
1997-01-01
A gradient-based shape optimization based on quasi-analytical sensitivities has been extended for practical three-dimensional aerodynamic applications. The flow analysis has been rendered by a fully implicit, finite-volume formulation of the Euler and Thin-Layer Navier-Stokes (TLNS) equations. Initially, the viscous laminar flow analysis for a wing has been compared with an independent computational fluid dynamics (CFD) code which has been extensively validated. The new procedure has been demonstrated in the design of a cranked arrow wing at Mach 2.4 with coarse- and fine-grid based computations performed with Euler and TLNS equations. The influence of the initial constraints on the geometry and aerodynamics of the optimized shape has been explored. Various final shapes generated for an identical initial problem formulation but with different optimization path options (coarse or fine grid, Euler or TLNS), have been aerodynamically evaluated via a common fine-grid TLNS-based analysis. The initial constraint conditions show significant bearing on the optimization results. Also, the results demonstrate that to produce an aerodynamically efficient design, it is imperative to include the viscous physics in the optimization procedure with the proper resolution. Based upon the present results, to better utilize the scarce computational resources, it is recommended that, a number of viscous coarse grid cases using either a preconditioned bi-conjugate gradient (PbCG) or an alternating-direction-implicit (ADI) method, should initially be employed to improve the optimization problem definition, the design space and initial shape. Optimized shapes should subsequently be analyzed using a high fidelity (viscous with fine-grid resolution) flow analysis to evaluate their true performance potential. Finally, a viscous fine-grid-based shape optimization should be conducted, using an ADI method, to accurately obtain the final optimized shape.