Fine-coarse semantic processing in schizophrenia: a reversed pattern of hemispheric dominance.
Zeev-Wolf, Maor; Goldstein, Abraham; Levkovitz, Yechiel; Faust, Miriam
2014-04-01
Left lateralization for language processing is a feature of neurotypical brains. In individuals with schizophrenia, lack of left lateralization is associated with the language impairments manifested in this population. Beeman׳s fine-coarse semantic coding model asserts left hemisphere specialization in fine (i.e., conventionalized) semantic coding and right hemisphere specialization in coarse (i.e., non-conventionalized) semantic coding. Applying this model to schizophrenia would suggest that language impairments in this population are a result of greater reliance on coarse semantic coding. We investigated this hypothesis and examined whether a reversed pattern of hemispheric involvement in fine-coarse semantic coding along the time course of activation could be detected in individuals with schizophrenia. Seventeen individuals with schizophrenia and 30 neurotypical participants were presented with two word expressions of four types: literal, conventional metaphoric, unrelated (exemplars of fine semantic coding) and novel metaphoric (an exemplar of coarse semantic coding). Expressions were separated by either a short (250 ms) or long (750 ms) delay. Findings indicate that whereas during novel metaphor processing, controls displayed a left hemisphere advantage at 250 ms delay and right hemisphere advantage at 750 ms, individuals with schizophrenia displayed the opposite. For conventional metaphoric and unrelated expressions, controls showed left hemisphere advantage across times, while individuals with schizophrenia showed a right hemisphere advantage. Furthermore, whereas individuals with schizophrenia were less accurate than control at judging literal, conventional metaphoric and unrelated expressions they were more accurate when judging novel metaphors. Results suggest that individuals with schizophrenia display a reversed pattern of lateralization for semantic coding which causes them to rely more heavily on coarse semantic coding. Thus, for individuals with schizophrenia, speech situation are always non-conventional, compelling them to constantly seek for meanings and prejudicing them toward novel or atypical speech acts. This, in turn, may disadvantage them in conventionalized communication and result in language impairment. Copyright © 2014 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Faust, Miriam; Ben-Artzi, Elisheva; Vardi, Nili
2012-01-01
Previous studies suggest that whereas the left hemisphere (LH) is involved in fine semantic processing, the right hemisphere (RH) is uniquely engaged in coarse semantic coding including the comprehension of distinct types of language such as figurative language, lexical ambiguity and verbal humor (e.g., and ). The present study examined the…
Faust, Miriam; Ben-Artzi, Elisheva; Vardi, Nili
2012-12-01
Previous studies suggest that whereas the left hemisphere (LH) is involved in fine semantic processing, the right hemisphere (RH) is uniquely engaged in coarse semantic coding including the comprehension of distinct types of language such as figurative language, lexical ambiguity and verbal humor (e.g., Chiarello, 2003; Faust, 2012). The present study examined the patterns of hemispheric involvement in fine/coarse semantic processing in native and non-native languages using a split visual field priming paradigm. Thirty native Hebrew speaking students made lexical decision judgments of Hebrew and English target words preceded by strongly, weakly, or unrelated primes. Results indicated that whereas for Hebrew pairs, priming effect for the weakly-related word pairs was obtained only for RH presented target words, for English pairs, no priming effect for the weakly-related pairs emerged for either LH or RH presented targets, suggesting that coarse semantic coding is much weaker for a non-native than native language. Copyright © 2012 Elsevier Inc. All rights reserved.
Coarse coding and discourse comprehension in adults with right hemisphere brain damage
Tompkins, Connie A.; Scharp, Victoria L.; Meigh, Kimberly M.; Fassbinder, Wiltrud
2009-01-01
Background Various investigators suggest that some discourse-level comprehension difficulties in adults with right hemisphere brain damage (RHD) have a lexical-semantic basis. As words are processed, the intact right hemisphere arouses and sustains activation of a wide-ranging network of secondary or peripheral meanings and features—a phenomenon dubbed “coarse coding”. Coarse coding impairment has been postulated to underpin some prototypical RHD comprehension deficits, such as difficulties with nonliteral language interpretation, discourse integration, some kinds of inference generation, and recovery when a reinterpretation is needed. To date, however, no studies have addressed the hypothesised link between coarse coding deficit and discourse comprehension in RHD. Aims The current investigation examined whether coarse coding was related to performance on two measures of narrative comprehension in adults with RHD. Methods & Procedures Participants were 32 adults with unilateral RHD from cerebrovascular accident, and 38 adults without brain damage. Coarse coding was operationalised as poor activation of peripheral/weakly related semantic features of words. For the coarse coding assessment, participants listened to spoken sentences that ended in a concrete noun. Each sentence was followed by a spoken target phoneme string. Targets were subordinate semantic features of the sentence-final nouns that were incompatible with their dominant mental representations (e.g., “rotten” for apple). Targets were presented at two post-noun intervals. A lexical decision task was used to gauge both early activation and maintenance of activation of these weakly related semantic features. One of the narrative tasks assessed comprehension of implied main ideas and details, while the other indexed high-level inferencing and integration. Both comprehension tasks were presented auditorily. For all tasks, accuracy of performance was the dependent measure. Correlations were computed within the RHD group between both the early and late coarse coding measures and the two discourse measures. Additionally, ANCOVA and independent t-tests were used to compare both early and sustained coarse coding in subgroups of good and poor RHD comprehenders. Outcomes & Results The group with RHD was less accurate than the control group on all measures. The finding of coarse coding impairment (difficulty activating/sustaining activation of a word’s peripheral features) may appear to contradict prior evidence of RHD suppression deficit (prolonged activation for context-inappropriate meanings of words). However, the sentence contexts in this study were unbiased and thus did not provide an appropriate test of suppression function. Correlations between coarse coding and the discourse measures were small and nonsignificant. There were no differences in coarse coding between RHD comprehension subgroups on the high-level inferencing task. There was also no distinction in early coarse coding for subgroups based on comprehension of implied main ideas and details. But for these same subgroups, there was a difference in sustained coarse coding. Poorer RHD comprehenders of implied information from discourse were also poorer at maintaining activation for semantically distant features of concrete nouns. Conclusions This study provides evidence of a variant of the postulated link between coarse coding and discourse comprehension in RHD. Specifically, adults with RHD who were particularly poor at sustaining activation for peripheral semantic features of nouns were also relatively poor comprehenders of implied information from narratives. PMID:20037670
Kandhadai, Padmapriya; Federmeier, Kara D.
2009-01-01
The coarse coding hypothesis (Jung-Beeman 2005) postulates that the cerebral hemispheres differ in their breadth of semantic activation, with the left hemisphere (LH) activating a narrow, focused semantic field and the right (RH) weakly activating a broader semantic field. In support of coarse coding, studies (e.g., Faust and Lavidor 2003) investigating priming for multiple senses of a lexically ambiguous word have reported a RH benefit. However, studies of mediated priming (Livesay and Burgess 2003; Richards and Chiarello 1995) have failed to find a RH advantage for processing distantly-linked, unambiguous words. To address this debate, the present study made use of a multiple priming paradigm (Balota and Paul, 1996) in which two primes either converged onto the single meaning of an unambiguous, lexically-associated target (LION-STRIPES-TIGER) or diverged onto different meanings of an ambiguous target (KIDNEY-PIANO-ORGAN). In two experiments, participants either made lexical decisions to targets (Experiment 1) or made a semantic relatedness judgment between primes and targets (Experiment 2). In both tasks, for both ambiguous and unambiguous triplets we found equivalent priming strengths and patterns across the two visual fields, counter to the predictions of the coarse coding hypothesis. Priming patterns further suggested that both hemispheres made use of lexical level representations in the lexical decision task and semantic representations in the semantic judgment task. PMID:17459344
Tompkins, Connie A.; Meigh, Kimberly M.; Prat, Chantel S.
2015-01-01
Purpose This study examined right hemisphere (RH) neuroanatomical correlates of lexical–semantic deficits that predict narrative comprehension in adults with RH brain damage. Coarse semantic coding and suppression deficits were related to lesions by voxel-based lesion symptom mapping. Method Participants were 20 adults with RH cerebrovascular accidents. Measures of coarse coding and suppression deficits were computed from lexical decision reaction times at short (175 ms) and long (1000 ms) prime-target intervals. Lesions were drawn on magnetic resonance imaging images and through normalization were registered on an age-matched brain template. Voxel-based lesion symptom mapping analysis was applied to build a general linear model at each voxel. Z score maps were generated for each deficit, and results were interpreted using automated anatomical labeling procedures. Results A deficit in coarse semantic activation was associated with lesions to the RH posterior middle temporal gyrus, dorsolateral prefrontal cortex, and lenticular nuclei. A maintenance deficit for coarsely coded representations involved the RH temporal pole and dorsolateral prefrontal cortex more medially. Ineffective suppression implicated lesions to the RH inferior frontal gyrus and subcortical regions, as hypothesized, along with the rostral temporal pole. Conclusion Beyond their scientific implications, these lesion–deficit correspondences may help inform the clinical diagnosis and enhance decisions about candidacy for deficit-focused treatment to improve narrative comprehension in individuals with RH damage. PMID:26425785
Yang, Ying; Tompkins, Connie A; Meigh, Kimberly M; Prat, Chantel S
2015-11-01
This study examined right hemisphere (RH) neuroanatomical correlates of lexical-semantic deficits that predict narrative comprehension in adults with RH brain damage. Coarse semantic coding and suppression deficits were related to lesions by voxel-based lesion symptom mapping. Participants were 20 adults with RH cerebrovascular accidents. Measures of coarse coding and suppression deficits were computed from lexical decision reaction times at short (175 ms) and long (1000 ms) prime-target intervals. Lesions were drawn on magnetic resonance imaging images and through normalization were registered on an age-matched brain template. Voxel-based lesion symptom mapping analysis was applied to build a general linear model at each voxel. Z score maps were generated for each deficit, and results were interpreted using automated anatomical labeling procedures. A deficit in coarse semantic activation was associated with lesions to the RH posterior middle temporal gyrus, dorsolateral prefrontal cortex, and lenticular nuclei. A maintenance deficit for coarsely coded representations involved the RH temporal pole and dorsolateral prefrontal cortex more medially. Ineffective suppression implicated lesions to the RH inferior frontal gyrus and subcortical regions, as hypothesized, along with the rostral temporal pole. Beyond their scientific implications, these lesion-deficit correspondences may help inform the clinical diagnosis and enhance decisions about candidacy for deficit-focused treatment to improve narrative comprehension in individuals with RH damage.
Forgács, Bálint; Bohrn, Isabel; Baudewig, Jürgen; Hofmann, Markus J; Pléh, Csaba; Jacobs, Arthur M
2012-11-15
The right hemisphere's role in language comprehension is supported by results from several neuropsychology and neuroimaging studies. Special interest surrounds right temporoparietal structures, which are thought to be involved in processing novel metaphorical expressions, primarily due to the coarse semantic coding of concepts. In this event related fMRI experiment we aimed at assessing the extent of semantic distance processing in the comprehension of figurative meaning to clarify the role of the right hemisphere. Four categories of German noun noun compound words were presented in a semantic decision task: a) conventional metaphors; b) novel metaphors; c) conventional literal, and; d) novel literal expressions, controlled for length, frequency, imageability, arousal, and emotional valence. Conventional literal and metaphorical compounds increased BOLD signal change in right temporoparietal regions, suggesting combinatorial semantic processing, in line with the coarse semantic coding theory, but at odds with the graded salience hypothesis. Both novel literal and novel metaphorical expressions increased activity in left inferior frontal areas, presumably as a result of phonetic, morphosyntactic, and semantic unification processes, challenging predictions regarding right hemispheric involvement in processing unusual meanings. Meanwhile, both conventional and novel metaphorical expressions induced BOLD signal change in left hemispherical regions, suggesting that even novel metaphor processing involves more than linking semantically distant concepts. Copyright © 2012 Elsevier Inc. All rights reserved.
Blake, Margaret Lehman; Tompkins, Connie A.; Scharp, Victoria L.; Meigh, Kimberly M.; Wambaugh, Julie
2014-01-01
Coarse coding is the activation of broad semantic fields that can include multiple word meanings and a variety of features, including those peripheral to a word’s core meaning. It is a partially domain-general process related to general discourse comprehension and contributes to both literal and non-literal language processing. Adults with damage to the right cerebral hemisphere (RHD) and a coarse coding deficit are particularly slow to activate features of words that are relatively distant or peripheral. This manuscript reports a pre-efficacy study of Contextual Constraint Treatment (CCT), a novel, implicit treatment designed to increase the efficiency of coarse coding with the goal of improving narrative comprehension and other language performance that relies on coarse coding. Participants were four adults with RHD. The study used a single-subject controlled experimental design across subjects and behaviors. The treatment involves pre-stimulation, using a hierarchy of strong- and moderately-biased contexts, to prime the intended distantly-related features of critical stimulus words. Three of the four participants exhibited gains in auditory narrative discourse comprehension, the primary outcome measure. All participants exhibited generalization to untreated items. No strong generalization to processing nonliteral language was evident. The results indicate that CCT yields both improved efficiency of the coarse coding process and generalization to narrative comprehension. PMID:24983133
Hemispheric asymmetries in discourse processing: evidence from false memories for lists and texts.
Ben-Artzi, Elisheva; Faust, Miriam; Moeller, Edna
2009-01-01
Previous research suggests that the right hemisphere (RH) may contribute uniquely to discourse and text processing by activating and maintaining a wide range of meanings, including more distantly related meanings. The present study used the word-lists false memory paradigm [Roediger, H. L., III, & McDermott, K. B. (1995). Creating false memories: Remembering words not presented in lists. Journal of Experimental Psychology: Learning, Memory, and Cognition, 21, 803-814.] to examine the hypothesis that difference between the two cerebral hemispheres in discourse processing may be due, at least partly, to memory representations for implicit text-related semantic information. Specifically, we tested the susceptibility of the left hemisphere (LH) and RH to unpresented target words following the presentation of semantically related words appearing in either word lists or short texts. Findings showed that the RH produced more false alarms than the LH for unpresented target words following either word lists or texts. These findings reveal hemispheric differences in memory for semantically related information and suggest that RH advantage in long-term maintenance of a wide range of text-related word meanings may be one aspect of its unique contribution to the construction of a discourse model. The results support the RH coarse semantic coding theory [Beeman, M. (1998). Coarse semantic coding and discourse comprehension. In M. Beeman & C. Chiarello (Eds.), Right hemisphere language comprehension: Perspectives from cognitive neuroscience (pp. 255-284). Mahwah, NJ: Erlbaum.] and suggest that hemispheric differences in semantic processing during language comprehension extend also to verbal memory.
A dual-route approach to orthographic processing.
Grainger, Jonathan; Ziegler, Johannes C
2011-01-01
In the present theoretical note we examine how different learning constraints, thought to be involved in optimizing the mapping of print to meaning during reading acquisition, might shape the nature of the orthographic code involved in skilled reading. On the one hand, optimization is hypothesized to involve selecting combinations of letters that are the most informative with respect to word identity (diagnosticity constraint), and on the other hand to involve the detection of letter combinations that correspond to pre-existing sublexical phonological and morphological representations (chunking constraint). These two constraints give rise to two different kinds of prelexical orthographic code, a coarse-grained and a fine-grained code, associated with the two routes of a dual-route architecture. Processing along the coarse-grained route optimizes fast access to semantics by using minimal subsets of letters that maximize information with respect to word identity, while coding for approximate within-word letter position independently of letter contiguity. Processing along the fined-grained route, on the other hand, is sensitive to the precise ordering of letters, as well as to position with respect to word beginnings and endings. This enables the chunking of frequently co-occurring contiguous letter combinations that form relevant units for morpho-orthographic processing (prefixes and suffixes) and for the sublexical translation of print to sound (multi-letter graphemes).
A Dual-Route Approach to Orthographic Processing
Grainger, Jonathan; Ziegler, Johannes C.
2011-01-01
In the present theoretical note we examine how different learning constraints, thought to be involved in optimizing the mapping of print to meaning during reading acquisition, might shape the nature of the orthographic code involved in skilled reading. On the one hand, optimization is hypothesized to involve selecting combinations of letters that are the most informative with respect to word identity (diagnosticity constraint), and on the other hand to involve the detection of letter combinations that correspond to pre-existing sublexical phonological and morphological representations (chunking constraint). These two constraints give rise to two different kinds of prelexical orthographic code, a coarse-grained and a fine-grained code, associated with the two routes of a dual-route architecture. Processing along the coarse-grained route optimizes fast access to semantics by using minimal subsets of letters that maximize information with respect to word identity, while coding for approximate within-word letter position independently of letter contiguity. Processing along the fined-grained route, on the other hand, is sensitive to the precise ordering of letters, as well as to position with respect to word beginnings and endings. This enables the chunking of frequently co-occurring contiguous letter combinations that form relevant units for morpho-orthographic processing (prefixes and suffixes) and for the sublexical translation of print to sound (multi-letter graphemes). PMID:21716577
A Semantic Analysis Method for Scientific and Engineering Code
NASA Technical Reports Server (NTRS)
Stewart, Mark E. M.
1998-01-01
This paper develops a procedure to statically analyze aspects of the meaning or semantics of scientific and engineering code. The analysis involves adding semantic declarations to a user's code and parsing this semantic knowledge with the original code using multiple expert parsers. These semantic parsers are designed to recognize formulae in different disciplines including physical and mathematical formulae and geometrical position in a numerical scheme. In practice, a user would submit code with semantic declarations of primitive variables to the analysis procedure, and its semantic parsers would automatically recognize and document some static, semantic concepts and locate some program semantic errors. A prototype implementation of this analysis procedure is demonstrated. Further, the relationship between the fundamental algebraic manipulations of equations and the parsing of expressions is explained. This ability to locate some semantic errors and document semantic concepts in scientific and engineering code should reduce the time, risk, and effort of developing and using these codes.
An Experiment in Scientific Code Semantic Analysis
NASA Technical Reports Server (NTRS)
Stewart, Mark E. M.
1998-01-01
This paper concerns a procedure that analyzes aspects of the meaning or semantics of scientific and engineering code. This procedure involves taking a user's existing code, adding semantic declarations for some primitive variables, and parsing this annotated code using multiple, distributed expert parsers. These semantic parser are designed to recognize formulae in different disciplines including physical and mathematical formulae and geometrical position in a numerical scheme. The parsers will automatically recognize and document some static, semantic concepts and locate some program semantic errors. Results are shown for a subroutine test case and a collection of combustion code routines. This ability to locate some semantic errors and document semantic concepts in scientific and engineering code should reduce the time, risk, and effort of developing and using these codes.
Marsh, John E.; Pilgrim, Lea K.; Sörqvist, Patrik
2013-01-01
Serial short-term memory is impaired by irrelevant sound, particularly when the sound changes acoustically. This acoustic effect is larger when the sound is presented to the left compared to the right ear (a left-ear disadvantage). Serial memory appears relatively insensitive to distraction from the semantic properties of a background sound. In contrast, short-term free recall of semantic-category exemplars is impaired by the semantic properties of background speech and is relatively insensitive to the sound's acoustic properties. This semantic effect is larger when the sound is presented to the right compared to the left ear (a right-ear disadvantage). In this paper, we outline a speculative neurocognitive fine-coarse model of these hemispheric differences in relation to short-term memory and selective attention, and explicate empirical directions in which this model can be critically evaluated. PMID:24399988
Tompkins, Connie A.; Blake, Margaret T.; Wambaugh, Julie; Meigh, Kimberly
2012-01-01
Background This manuscript reports the initial phase of testing for a novel, “Contextual constraint” treatment, designed to stimulate inefficient language comprehension processes in adults with right hemisphere brain damage (RHD). Two versions of treatment were developed to target two normal comprehension processes that have broad relevance for discourse comprehension and that are often disrupted by RHD: coarse semantic coding and suppression. The development of the treatment was informed by two well-documented strengths of the RHD population. The first is consistently better performance on assessments that are implicit, or nearly so, than on explicit, metalinguistic measures of language and cognitive processing. The second is improved performance when given linguistic context that moderately-to-strongly biases an intended meaning. Treatment consisted of providing brief context sentences to prestimulate, or constrain, intended interpretations. Participants made no explicit associations or judgments about the constraint sentences; rather, these contexts served only as implicit primes. Aims This Phase I treatment study aimed to determine the effects of a novel, implicit, Contextual Constraint treatment in adults with RHD whose coarse coding or suppression processes were inefficient. Treatment was hypothesized to speed coarse coding or suppression function in these individuals. Methods & Procedures Three adults with RHD participated in this study, one (P1) with a coarse coding deficit and two (P2, P3) with suppression deficits. Probe tasks were adapted from prior studies of coarse coding and suppression in RHD. The dependent measure was the percentage of responses that met predetermined response time criteria. When pre-treatment baseline performance was stable, treatment was initiated. There were two levels of contextual constraint, Strong and Moderate, and treatment for each item began with the provision of the Strong constraint context. Outcomes & Results Treatment-contingent gains were evident after brief periods of treatment, for P1 on two treatment lists, and for P2. P3 made slower but still substantial gains. Maintenance of gains was evident for P1, the only participant for whom it was measured. Conclusions This Phase I treatment study documents the potential for considerable gains from an implicit, Contextual constraint treatment. If replicated, this approach to treatment may hold promise for individuals who do poorly with effortful, metalinguistic treatment tasks, or for whom it is desirable to minimize errors during treatment. The real test of this treatment’s benefit will come from later phase studies of study, which will test broad-based generalization to various aspects of discourse comprehension. PMID:22368317
Progress in The Semantic Analysis of Scientific Code
NASA Technical Reports Server (NTRS)
Stewart, Mark
2000-01-01
This paper concerns a procedure that analyzes aspects of the meaning or semantics of scientific and engineering code. This procedure involves taking a user's existing code, adding semantic declarations for some primitive variables, and parsing this annotated code using multiple, independent expert parsers. These semantic parsers encode domain knowledge and recognize formulae in different disciplines including physics, numerical methods, mathematics, and geometry. The parsers will automatically recognize and document some static, semantic concepts and help locate some program semantic errors. These techniques may apply to a wider range of scientific codes. If so, the techniques could reduce the time, risk, and effort required to develop and modify scientific codes.
NASA Astrophysics Data System (ADS)
Ge, Xuming
2017-08-01
The coarse registration of point clouds from urban building scenes has become a key topic in applications of terrestrial laser scanning technology. Sampling-based algorithms in the random sample consensus (RANSAC) model have emerged as mainstream solutions to address coarse registration problems. In this paper, we propose a novel combined solution to automatically align two markerless point clouds from building scenes. Firstly, the method segments non-ground points from ground points. Secondly, the proposed method detects feature points from each cross section and then obtains semantic keypoints by connecting feature points with specific rules. Finally, the detected semantic keypoints from two point clouds act as inputs to a modified 4PCS algorithm. Examples are presented and the results compared with those of K-4PCS to demonstrate the main contributions of the proposed method, which are the extension of the original 4PCS to handle heavy datasets and the use of semantic keypoints to improve K-4PCS in relation to registration accuracy and computational efficiency.
Mitchell, Rachel L C; Vidaki, Kleio; Lavidor, Michal
2016-10-01
For complex linguistic strings such as idioms, making a decision as to the correct meaning may require complex top-down cognitive control such as the suppression of incorrect alternative meanings. In the study presented here, we used transcranial direct current stimulation to test the hypothesis that a domain general dorsolateral prefrontal cognitive control network is involved in constraining the complex processing involved. Specifically, we sought to test prominent theoretical stances on the division of labour across dorsolateral prefrontal cortex in the left- and right-hemispheres of the brain, including the role of salience and fine vs. coarse semantic coding. 32 healthy young adult participants were randomly allocated to one of two stimulation montage groups (LH anodal/RH cathodal or RH anodal/LH cathodal). Participants were tested twice, completing a semantic decision task after either receiving active or sham stimulation. The semantic decision task required participants to judge the relatedness of an idiom and a target word. The target word was figuratively related, literally related, or unrelated to the idiom. Control non-literal non-idiomatic sentences were also included that only had a literal meaning. The results showed that left-hemisphere dorsolateral prefrontal cortex is highly involved in processing figurative language, whereas both left- and right- dorsolateral prefrontal cortex contributed to literal language processing. In comparison, semantic processing for the non-idiomatic control sentences did not require domain general cognitive control as it relates to suppression of the rejected alternative meaning. The results are discussed in terms of the interplay between need for domain general cognitive control in understanding the meaning of complex sentences, hemispheric differences in semantic processing, and salience detection. Copyright © 2016 Elsevier Ltd. All rights reserved.
Modelling Metamorphism by Abstract Interpretation
NASA Astrophysics Data System (ADS)
Dalla Preda, Mila; Giacobazzi, Roberto; Debray, Saumya; Coogan, Kevin; Townsend, Gregg M.
Metamorphic malware apply semantics-preserving transformations to their own code in order to foil detection systems based on signature matching. In this paper we consider the problem of automatically extract metamorphic signatures from these malware. We introduce a semantics for self-modifying code, later called phase semantics, and prove its correctness by showing that it is an abstract interpretation of the standard trace semantics. Phase semantics precisely models the metamorphic code behavior by providing a set of traces of programs which correspond to the possible evolutions of the metamorphic code during execution. We show that metamorphic signatures can be automatically extracted by abstract interpretation of the phase semantics, and that regular metamorphism can be modelled as finite state automata abstraction of the phase semantics.
An Experiment in Scientific Program Understanding
NASA Technical Reports Server (NTRS)
Stewart, Mark E. M.; Owen, Karl (Technical Monitor)
2000-01-01
This paper concerns a procedure that analyzes aspects of the meaning or semantics of scientific and engineering code. This procedure involves taking a user's existing code, adding semantic declarations for some primitive variables, and parsing this annotated code using multiple, independent expert parsers. These semantic parsers encode domain knowledge and recognize formulae in different disciplines including physics, numerical methods, mathematics, and geometry. The parsers will automatically recognize and document some static, semantic concepts and help locate some program semantic errors. Results are shown for three intensively studied codes and seven blind test cases; all test cases are state of the art scientific codes. These techniques may apply to a wider range of scientific codes. If so, the techniques could reduce the time, risk, and effort required to develop and modify scientific codes.
Semantic and Phonological Coding in Poor and Normal Readers.
ERIC Educational Resources Information Center
Vellutino, Frank R.; And Others
1995-01-01
Using poor and normal readers, three studies evaluated semantic coding and phonological coding deficits as explanations for reading disability. It was concluded that semantic coding deficits are unlikely causes of difficulties in poor readers in early stages but accrue with prolonged reading difficulties in older readers. Phonological coding…
Purser, Harry; Jarrold, Christopher
2010-04-01
A long-standing body of research supports the existence of separable short- and long-term memory systems, relying on phonological and semantic codes, respectively. The aim of the current study was to measure the contribution of long-term knowledge to short-term memory performance by looking for evidence of phonologically and semantically coded storage within a short-term recognition task, among developmental samples. Each experimental trial presented 4-item lists. In Experiment 1 typically developing children aged 5 to 6 years old showed evidence of phonologically coded storage across all 4 serial positions, but evidence of semantically coded storage at Serial Positions 1 and 2. In a further experiment, a group of individuals with Down syndrome was investigated as a test case that might be expected to use semantic coding to support short-term storage, but these participants showed no evidence of semantically coded storage and evidenced phonologically coded storage only at Serial Position 4, suggesting that individuals with Down syndrome have a verbal short-term memory capacity of 1 item. Our results suggest that previous evidence of semantic effects on "short-term memory performance" does not reflect semantic coding in short-term memory itself, and provide an experimental method for researchers wishing to take a relatively pure measure of verbal short-term memory capacity, in cases where rehearsal is unlikely.
Ambiguity and Relatedness Effects in Semantic Tasks: Are They Due to Semantic Coding?
ERIC Educational Resources Information Center
Hino, Yasushi; Pexman, Penny M.; Lupker, Stephen J.
2006-01-01
According to parallel distributed processing (PDP) models of visual word recognition, the speed of semantic coding is modulated by the nature of the orthographic-to-semantic mappings. Consistent with this idea, an ambiguity disadvantage and a relatedness-of-meaning (ROM) advantage have been reported in some word recognition tasks in which semantic…
Semantic representations in the temporal pole predict false memories
Chadwick, Martin J.; Anjum, Raeesa S.; Kumaran, Dharshan; Schacter, Daniel L.; Spiers, Hugo J.; Hassabis, Demis
2016-01-01
Recent advances in neuroscience have given us unprecedented insight into the neural mechanisms of false memory, showing that artificial memories can be inserted into the memory cells of the hippocampus in a way that is indistinguishable from true memories. However, this alone is not enough to explain how false memories can arise naturally in the course of our daily lives. Cognitive psychology has demonstrated that many instances of false memory, both in the laboratory and the real world, can be attributed to semantic interference. Whereas previous studies have found that a diverse set of regions show some involvement in semantic false memory, none have revealed the nature of the semantic representations underpinning the phenomenon. Here we use fMRI with representational similarity analysis to search for a neural code consistent with semantic false memory. We find clear evidence that false memories emerge from a similarity-based neural code in the temporal pole, a region that has been called the “semantic hub” of the brain. We further show that each individual has a partially unique semantic code within the temporal pole, and this unique code can predict idiosyncratic patterns of memory errors. Finally, we show that the same neural code can also predict variation in true-memory performance, consistent with an adaptive perspective on false memory. Taken together, our findings reveal the underlying structure of neural representations of semantic knowledge, and how this semantic structure can both enhance and distort our memories. PMID:27551087
Semantic representations in the temporal pole predict false memories.
Chadwick, Martin J; Anjum, Raeesa S; Kumaran, Dharshan; Schacter, Daniel L; Spiers, Hugo J; Hassabis, Demis
2016-09-06
Recent advances in neuroscience have given us unprecedented insight into the neural mechanisms of false memory, showing that artificial memories can be inserted into the memory cells of the hippocampus in a way that is indistinguishable from true memories. However, this alone is not enough to explain how false memories can arise naturally in the course of our daily lives. Cognitive psychology has demonstrated that many instances of false memory, both in the laboratory and the real world, can be attributed to semantic interference. Whereas previous studies have found that a diverse set of regions show some involvement in semantic false memory, none have revealed the nature of the semantic representations underpinning the phenomenon. Here we use fMRI with representational similarity analysis to search for a neural code consistent with semantic false memory. We find clear evidence that false memories emerge from a similarity-based neural code in the temporal pole, a region that has been called the "semantic hub" of the brain. We further show that each individual has a partially unique semantic code within the temporal pole, and this unique code can predict idiosyncratic patterns of memory errors. Finally, we show that the same neural code can also predict variation in true-memory performance, consistent with an adaptive perspective on false memory. Taken together, our findings reveal the underlying structure of neural representations of semantic knowledge, and how this semantic structure can both enhance and distort our memories.
Processing Code-Switching in Algerian Bilinguals: Effects of Language Use and Semantic Expectancy
Kheder, Souad; Kaan, Edith
2016-01-01
Using a cross-modal naming paradigm this study investigated the effect of sentence constraint and language use on the expectancy of a language switch during listening comprehension. Sixty-five Algerian bilinguals who habitually code-switch between Algerian Arabic and French (AA-FR) but not between Standard Arabic and French (SA-FR) listened to sentence fragments and named a visually presented French target NP out loud. Participants’ speech onset times were recorded. The sentence context was either highly semantically constraining toward the French NP or not. The language of the sentence context was either in Algerian Arabic or in Standard Arabic, but the target NP was always in French, thus creating two code-switching contexts: a typical and recurrent code-switching context (AA-FR) and a non-typical code-switching context (SA-FR). Results revealed a semantic constraint effect indicating that the French switches were easier to process in the high compared to the low-constraint context. In addition, the effect size of semantic constraint was significant in the more typical code-switching context (AA-FR) suggesting that language use influences the processing of switching between languages. The effect of semantic constraint was also modulated by code-switching habits and the proficiency of L2 French. Semantic constraint was reduced in bilinguals who frequently code-switch and in bilinguals with high proficiency in French. Results are discussed with regards to the bilingual interactive activation model (Dijkstra and Van Heuven, 2002) and the control process model of code-switching (Green and Wei, 2014). PMID:26973559
Prati, Gabriele; Pietrantoni, Luca
2013-01-01
The aim of the present study was to examine the comprehension of gesture in a situation in which the communicator cannot (or can only with difficulty) use verbal communication. Based on theoretical considerations, we expected to obtain higher semantic comprehension for emblems (gestures with a direct verbal definition or translation that is well known by all members of a group, or culture) compared to illustrators (gestures regarded as spontaneous and idiosyncratic and that do not have a conventional definition). Based on the extant literature, we predicted higher semantic specificity associated with arbitrarily coded and iconically coded emblems compared to intrinsically coded illustrators. Using a scenario of emergency evacuation, we tested the difference in semantic specificity between different categories of gestures. 138 participants saw 10 videos each illustrating a gesture performed by a firefighter. They were requested to imagine themselves in a dangerous situation and to report the meaning associated with each gesture. The results showed that intrinsically coded illustrators were more successfully understood than arbitrarily coded emblems, probably because the meaning of intrinsically coded illustrators is immediately comprehensible without recourse to symbolic interpretation. Furthermore, there was no significant difference between the comprehension of iconically coded emblems and that of both arbitrarily coded emblems and intrinsically coded illustrators. It seems that the difference between the latter two types of gestures was supported by their difference in semantic specificity, although in a direction opposite to that predicted. These results are in line with those of Hadar and Pinchas-Zamir (2004), which showed that iconic gestures have higher semantic specificity than conventional gestures.
Phonological, visual, and semantic coding strategies and children's short-term picture memory span.
Henry, Lucy A; Messer, David; Luger-Klein, Scarlett; Crane, Laura
2012-01-01
Three experiments addressed controversies in the previous literature on the development of phonological and other forms of short-term memory coding in children, using assessments of picture memory span that ruled out potentially confounding effects of verbal input and output. Picture materials were varied in terms of phonological similarity, visual similarity, semantic similarity, and word length. Older children (6/8-year-olds), but not younger children (4/5-year-olds), demonstrated robust and consistent phonological similarity and word length effects, indicating that they were using phonological coding strategies. This confirmed findings initially reported by Conrad (1971), but subsequently questioned by other authors. However, in contrast to some previous research, little evidence was found for a distinct visual coding stage at 4 years, casting doubt on assumptions that this is a developmental stage that consistently precedes phonological coding. There was some evidence for a dual visual and phonological coding stage prior to exclusive use of phonological coding at around 5-6 years. Evidence for semantic similarity effects was limited, suggesting that semantic coding is not a key method by which young children recall lists of pictures.
Pizzagalli, D; Lehmann, D; Brugger, P
2001-01-01
The present investigation tested the hypothesis that, as an aspect of schizotypal thinking, the formation of paranormal beliefs was related to spreading activation characteristics within semantic networks. From a larger student population (n = 117) prescreened for paranormal belief, 12 strong believers and 12 strong disbelievers (all women) were invited for a lateralized semantic priming task with directly and indirectly related prime-target pairs. Believers showed stronger indirect (but not direct) semantic priming effects than disbelievers after left (but not right) visual field stimulation, indicating faster appreciation of distant semantic relations specifically by the right hemisphere, reportedly specialized in coarse rather than focused semantic processing. These results are discussed in the light of recent findings in schizophrenic patients with thought disorders. They suggest that a disinhibition with semantic networks may underlie the formation of paranormal belief. The potential usefulness of work with healthy subjects for neuropsychiatric research is stressed. Copyright 2001 S. Karger AG, Basel
Weisberg, Jill; McCullough, Stephen; Emmorey, Karen
2018-01-01
Code-blends (simultaneous words and signs) are a unique characteristic of bimodal bilingual communication. Using fMRI, we investigated code-blend comprehension in hearing native ASL-English bilinguals who made a semantic decision (edible?) about signs, audiovisual words, and semantically equivalent code-blends. English and ASL recruited a similar fronto-temporal network with expected modality differences: stronger activation for English in auditory regions of bilateral superior temporal cortex, and stronger activation for ASL in bilateral occipitotemporal visual regions and left parietal cortex. Code-blend comprehension elicited activity in a combination of these regions, and no cognitive control regions were additionally recruited. Furthermore, code-blends elicited reduced activation relative to ASL presented alone in bilateral prefrontal and visual extrastriate cortices, and relative to English alone in auditory association cortex. Consistent with behavioral facilitation observed during semantic decisions, the findings suggest that redundant semantic content induces more efficient neural processing in language and sensory regions during bimodal language integration. PMID:26177161
Creating Semantic Waves: Using Legitimation Code Theory as a Tool to Aid the Teaching of Chemistry
ERIC Educational Resources Information Center
Blackie, Margaret A. L.
2014-01-01
This is a conceptual paper aimed at chemistry educators. The purpose of this paper is to illustrate the use of the semantic code of Legitimation Code Theory in chemistry teaching. Chemistry is an abstract subject which many students struggle to grasp. Legitimation Code Theory provides a way of separating out abstraction from complexity both of…
Semantic framework for mapping object-oriented model to semantic web languages
Ježek, Petr; Mouček, Roman
2015-01-01
The article deals with and discusses two main approaches in building semantic structures for electrophysiological metadata. It is the use of conventional data structures, repositories, and programming languages on one hand and the use of formal representations of ontologies, known from knowledge representation, such as description logics or semantic web languages on the other hand. Although knowledge engineering offers languages supporting richer semantic means of expression and technological advanced approaches, conventional data structures and repositories are still popular among developers, administrators and users because of their simplicity, overall intelligibility, and lower demands on technical equipment. The choice of conventional data resources and repositories, however, raises the question of how and where to add semantics that cannot be naturally expressed using them. As one of the possible solutions, this semantics can be added into the structures of the programming language that accesses and processes the underlying data. To support this idea we introduced a software prototype that enables its users to add semantically richer expressions into a Java object-oriented code. This approach does not burden users with additional demands on programming environment since reflective Java annotations were used as an entry for these expressions. Moreover, additional semantics need not to be written by the programmer directly to the code, but it can be collected from non-programmers using a graphic user interface. The mapping that allows the transformation of the semantically enriched Java code into the Semantic Web language OWL was proposed and implemented in a library named the Semantic Framework. This approach was validated by the integration of the Semantic Framework in the EEG/ERP Portal and by the subsequent registration of the EEG/ERP Portal in the Neuroscience Information Framework. PMID:25762923
Semantic framework for mapping object-oriented model to semantic web languages.
Ježek, Petr; Mouček, Roman
2015-01-01
The article deals with and discusses two main approaches in building semantic structures for electrophysiological metadata. It is the use of conventional data structures, repositories, and programming languages on one hand and the use of formal representations of ontologies, known from knowledge representation, such as description logics or semantic web languages on the other hand. Although knowledge engineering offers languages supporting richer semantic means of expression and technological advanced approaches, conventional data structures and repositories are still popular among developers, administrators and users because of their simplicity, overall intelligibility, and lower demands on technical equipment. The choice of conventional data resources and repositories, however, raises the question of how and where to add semantics that cannot be naturally expressed using them. As one of the possible solutions, this semantics can be added into the structures of the programming language that accesses and processes the underlying data. To support this idea we introduced a software prototype that enables its users to add semantically richer expressions into a Java object-oriented code. This approach does not burden users with additional demands on programming environment since reflective Java annotations were used as an entry for these expressions. Moreover, additional semantics need not to be written by the programmer directly to the code, but it can be collected from non-programmers using a graphic user interface. The mapping that allows the transformation of the semantically enriched Java code into the Semantic Web language OWL was proposed and implemented in a library named the Semantic Framework. This approach was validated by the integration of the Semantic Framework in the EEG/ERP Portal and by the subsequent registration of the EEG/ERP Portal in the Neuroscience Information Framework.
Dittrich, Peter
2018-02-01
The organic code concept and its operationalization by molecular codes have been introduced to study the semiotic nature of living systems. This contribution develops further the idea that the semantic capacity of a physical medium can be measured by assessing its ability to implement a code as a contingent mapping. For demonstration and evaluation, the approach is applied to a formal medium: elementary cellular automata (ECA). The semantic capacity is measured by counting the number of ways codes can be implemented. Additionally, a link to information theory is established by taking multivariate mutual information for quantifying contingency. It is shown how ECAs differ in their semantic capacities, how this is related to various ECA classifications, and how this depends on how a meaning is defined. Interestingly, if the meaning should persist for a certain while, the highest semantic capacity is found in CAs with apparently simple behavior, i.e., the fixed-point and two-cycle class. Synergy as a predictor for a CA's ability to implement codes can only be used if context implementing codes are common. For large context spaces with sparse coding contexts synergy is a weak predictor. Concluding, the approach presented here can distinguish CA-like systems with respect to their ability to implement contingent mappings. Applying this to physical systems appears straight forward and might lead to a novel physical property indicating how suitable a physical medium is to implement a semiotic system. Copyright © 2017 Elsevier B.V. All rights reserved.
Semantic enrichment of medical forms - semi-automated coding of ODM-elements via web services.
Breil, Bernhard; Watermann, Andreas; Haas, Peter; Dziuballe, Philipp; Dugas, Martin
2012-01-01
Semantic interoperability is an unsolved problem which occurs while working with medical forms from different information systems or institutions. Standards like ODM or CDA assure structural homogenization but in order to compare elements from different data models it is necessary to use semantic concepts and codes on an item level of those structures. We developed and implemented a web-based tool which enables a domain expert to perform semi-automated coding of ODM-files. For each item it is possible to inquire web services which result in unique concept codes without leaving the context of the document. Although it was not feasible to perform a totally automated coding we have implemented a dialog based method to perform an efficient coding of all data elements in the context of the whole document. The proportion of codable items was comparable to results from previous studies.
Kamel Boulos, Maged N; Roudsari, Abdul V; Carso N, Ewart R
2002-12-01
HealthCyberMap (HCM-http://healthcybermap.semanticweb.org) is a web-based service for healthcare professionals and librarians, patients and the public in general that aims at mapping parts of the health information resources in cyberspace in novel ways to improve their retrieval and navigation. HCM adopts a clinical metadata framework built upon a clinical coding ontology for the semantic indexing, classification and browsing of Internet health information resources. A resource metadata base holds information about selected resources. HCM then uses GIS (Geographic Information Systems) spatialization methods to generate interactive navigational cybermaps from the metadata base. These visual cybermaps are based on familiar medical metaphors. HCM cybermaps can be considered as semantically spatialized, ontology-based browsing views of the underlying resource metadata base. Using a clinical coding scheme as a metric for spatialization ('semantic distance') is unique to HCM and is very much suited for the semantic categorization and navigation of Internet health information resources. Clinical codes ensure reliable and unambiguous topical indexing of these resources. HCM also introduces a useful form of cyberspatial analysis for the detection of topical coverage gaps in the resource metadata base using choropleth (shaded) maps of human body systems.
On fuzzy semantic similarity measure for DNA coding.
Ahmad, Muneer; Jung, Low Tang; Bhuiyan, Md Al-Amin
2016-02-01
A coding measure scheme numerically translates the DNA sequence to a time domain signal for protein coding regions identification. A number of coding measure schemes based on numerology, geometry, fixed mapping, statistical characteristics and chemical attributes of nucleotides have been proposed in recent decades. Such coding measure schemes lack the biologically meaningful aspects of nucleotide data and hence do not significantly discriminate coding regions from non-coding regions. This paper presents a novel fuzzy semantic similarity measure (FSSM) coding scheme centering on FSSM codons׳ clustering and genetic code context of nucleotides. Certain natural characteristics of nucleotides i.e. appearance as a unique combination of triplets, preserving special structure and occurrence, and ability to own and share density distributions in codons have been exploited in FSSM. The nucleotides׳ fuzzy behaviors, semantic similarities and defuzzification based on the center of gravity of nucleotides revealed a strong correlation between nucleotides in codons. The proposed FSSM coding scheme attains a significant enhancement in coding regions identification i.e. 36-133% as compared to other existing coding measure schemes tested over more than 250 benchmarked and randomly taken DNA datasets of different organisms. Copyright © 2015 Elsevier Ltd. All rights reserved.
Semantic Integration and Age of Acquisition Effects in Code-Blend Comprehension
ERIC Educational Resources Information Center
Giezen, Marcel R.; Emmorey, Karen
2016-01-01
Semantic and lexical decision tasks were used to investigate the mechanisms underlying code-blend facilitation: the finding that hearing bimodal bilinguals comprehend signs in American Sign Language (ASL) and spoken English words more quickly when they are presented together simultaneously than when each is presented alone. More robust…
Memory for pictures and words as a function of level of processing: Depth or dual coding?
D'Agostino, P R; O'Neill, B J; Paivio, A
1977-03-01
The experiment was designed to test differential predictions derived from dual-coding and depth-of-processing hypotheses. Subjects under incidental memory instructions free recalled a list of 36 test events, each presented twice. Within the list, an equal number of events were assigned to structural, phonemic, and semantic processing conditions. Separate groups of subjects were tested with a list of pictures, concrete words, or abstract words. Results indicated that retention of concrete words increased as a direct function of the processing-task variable (structural < phonemic
Semantic and phonological coding in poor and normal readers.
Vellutino, F R; Scanlon, D M; Spearing, D
1995-02-01
Three studies were conducted evaluating semantic and phonological coding deficits as alternative explanations of reading disability. In the first study, poor and normal readers in second and sixth grade were compared on various tests evaluating semantic development as well as on tests evaluating rapid naming and pseudoword decoding as independent measures of phonological coding ability. In a second study, the same subjects were given verbal memory and visual-verbal learning tasks using high and low meaning words as verbal stimuli and Chinese ideographs as visual stimuli. On the semantic tasks, poor readers performed below the level of the normal readers only at the sixth grade level, but, on the rapid naming and pseudoword learning tasks, they performed below the normal readers at the second as well as at the sixth grade level. On both the verbal memory and visual-verbal learning tasks, performance in poor readers approximated that of normal readers when the word stimuli were high in meaning but not when they were low in meaning. These patterns were essentially replicated in a third study that used some of the same semantic and phonological measures used in the first experiment, and verbal memory and visual-verbal learning tasks that employed word lists and visual stimuli (novel alphabetic characters) that more closely approximated those used in learning to read. It was concluded that semantic coding deficits are an unlikely cause of reading difficulties in most poor readers at the beginning stages of reading skills acquisition, but accrue as a consequence of prolonged reading difficulties in older readers. It was also concluded that phonological coding deficits are a probable cause of reading difficulties in most poor readers.
ERIC Educational Resources Information Center
Suegami, Takashi; Laeng, Bruno
2013-01-01
It has been shown that the left and right cerebral hemispheres (LH and RH) respectively process qualitative or "categorical" spatial relations and metric or "coordinate" spatial relations. However, categorical spatial information could be thought as divided into two types: semantically-coded and visuospatially-coded categorical information. We…
NASA Technical Reports Server (NTRS)
Spirkovska, Lilly; Reid, Max B.
1993-01-01
A higher-order neural network (HONN) can be designed to be invariant to changes in scale, translation, and inplane rotation. Invariances are built directly into the architecture of a HONN and do not need to be learned. Consequently, fewer training passes and a smaller training set are required to learn to distinguish between objects. The size of the input field is limited, however, because of the memory required for the large number of interconnections in a fully connected HONN. By coarse coding the input image, the input field size can be increased to allow the larger input scenes required for practical object recognition problems. We describe a coarse coding technique and present simulation results illustrating its usefulness and its limitations. Our simulations show that a third-order neural network can be trained to distinguish between two objects in a 4096 x 4096 pixel input field independent of transformations in translation, in-plane rotation, and scale in less than ten passes through the training set. Furthermore, we empirically determine the limits of the coarse coding technique in the object recognition domain.
Kawakami, A; Hatta, T; Kogure, T
2001-12-01
Relative engagements of the orthographic and semantic codes in Kanji and Hiragana word recognition were investigated. In Exp. 1, subjects judged whether the pairs of Kanji words (prime and target) presented sequentially were physically identical to each other in the word condition. In the sentence condition, subjects decided whether the target word was valid for the prime sentence presented in advance. The results showed that the response times to the target swords orthographically similar (to the prime) were significantly slower than to semantically related target words in the word condition and that this was also the case in the sentence condition. In Exp. 2, subjects judged whether the target word written in Hiragana was physically identical to the prime word in the word condition. In the sentence condition, subjects decided if the target word was valid for the previously presented prime sentence. Analysis indicated that response times to orthographically similar words were slower than to semantically related words in the word condition but not in the sentence condition wherein the response times to the semantically and orthographically similar words were largely the same. Based on these results, differential contributions of orthographic and semantic codes in cognitive processing of Japanese Kanji and Hiragana words was discussed.
Making Semantic Waves: A Key to Cumulative Knowledge-Building
ERIC Educational Resources Information Center
Maton, Karl
2013-01-01
The paper begins by arguing that knowledge-blindness in educational research represents a serious obstacle to understanding knowledge-building. It then offers sociological concepts from Legitimation Code Theory--"semantic gravity" and "semantic density"--that systematically conceptualize one set of organizing principles underlying knowledge…
Research Prototype: Automated Analysis of Scientific and Engineering Semantics
NASA Technical Reports Server (NTRS)
Stewart, Mark E. M.; Follen, Greg (Technical Monitor)
2001-01-01
Physical and mathematical formulae and concepts are fundamental elements of scientific and engineering software. These classical equations and methods are time tested, universally accepted, and relatively unambiguous. The existence of this classical ontology suggests an ideal problem for automated comprehension. This problem is further motivated by the pervasive use of scientific code and high code development costs. To investigate code comprehension in this classical knowledge domain, a research prototype has been developed. The prototype incorporates scientific domain knowledge to recognize code properties (including units, physical, and mathematical quantity). Also, the procedure implements programming language semantics to propagate these properties through the code. This prototype's ability to elucidate code and detect errors will be demonstrated with state of the art scientific codes.
Qualitative dynamics semantics for SBGN process description.
Rougny, Adrien; Froidevaux, Christine; Calzone, Laurence; Paulevé, Loïc
2016-06-16
Qualitative dynamics semantics provide a coarse-grain modeling of networks dynamics by abstracting away kinetic parameters. They allow to capture general features of systems dynamics, such as attractors or reachability properties, for which scalable analyses exist. The Systems Biology Graphical Notation Process Description language (SBGN-PD) has become a standard to represent reaction networks. However, no qualitative dynamics semantics taking into account all the main features available in SBGN-PD had been proposed so far. We propose two qualitative dynamics semantics for SBGN-PD reaction networks, namely the general semantics and the stories semantics, that we formalize using asynchronous automata networks. While the general semantics extends standard Boolean semantics of reaction networks by taking into account all the main features of SBGN-PD, the stories semantics allows to model several molecules of a network by a unique variable. The obtained qualitative models can be checked against dynamical properties and therefore validated with respect to biological knowledge. We apply our framework to reason on the qualitative dynamics of a large network (more than 200 nodes) modeling the regulation of the cell cycle by RB/E2F. The proposed semantics provide a direct formalization of SBGN-PD networks in dynamical qualitative models that can be further analyzed using standard tools for discrete models. The dynamics in stories semantics have a lower dimension than the general one and prune multiple behaviors (which can be considered as spurious) by enforcing the mutual exclusiveness between the activity of different nodes of a same story. Overall, the qualitative semantics for SBGN-PD allow to capture efficiently important dynamical features of reaction network models and can be exploited to further refine them.
Activation of Phonological and Semantic Codes in Toddlers
ERIC Educational Resources Information Center
Mani, Nivedita; Durrant, Samantha; Floccia, Caroline
2012-01-01
What are the processes underlying word recognition in the toddler lexicon? Work with adults suggests that, by 5-years of age, hearing a word leads to cascaded activation of other phonologically, semantically and phono-semantically related words (Huang & Snedeker, 2010; Marslen-Wilson & Zwitserlood, 1989). Given substantial differences in…
Neural correlates of concreteness in semantic categorization.
Pexman, Penny M; Hargreaves, Ian S; Edwards, Jodi D; Henry, Luke C; Goodyear, Bradley G
2007-08-01
In some contexts, concrete words (CARROT) are recognized and remembered more readily than abstract words (TRUTH). This concreteness effect has historically been explained by two theories of semantic representation: dual-coding [Paivio, A. Dual coding theory: Retrospect and current status. Canadian Journal of Psychology, 45, 255-287, 1991] and context-availability [Schwanenflugel, P. J. Why are abstract concepts hard to understand? In P. J. Schwanenflugel (Ed.), The psychology of word meanings (pp. 223-250). Hillsdale, NJ: Erlbaum, 1991]. Past efforts to adjudicate between these theories using functional magnetic resonance imaging have produced mixed results. Using event-related functional magnetic resonance imaging, we reexamined this issue with a semantic categorization task that allowed for uniform semantic judgments of concrete and abstract words. The participants were 20 healthy adults. Functional analyses contrasted activation associated with concrete and abstract meanings of ambiguous and unambiguous words. Results showed that for both ambiguous and unambiguous words, abstract meanings were associated with more widespread cortical activation than concrete meanings in numerous regions associated with semantic processing, including temporal, parietal, and frontal cortices. These results are inconsistent with both dual-coding and context-availability theories, as these theories propose that the representations of abstract concepts are relatively impoverished. Our results suggest, instead, that semantic retrieval of abstract concepts involves a network of association areas. We argue that this finding is compatible with a theory of semantic representation such as Barsalou's [Barsalou, L. W. Perceptual symbol systems. Behavioral & Brain Sciences, 22, 577-660, 1999] perceptual symbol systems, whereby concrete and abstract concepts are represented by similar mechanisms but with differences in focal content.
The development of non-coding RNA ontology.
Huang, Jingshan; Eilbeck, Karen; Smith, Barry; Blake, Judith A; Dou, Dejing; Huang, Weili; Natale, Darren A; Ruttenberg, Alan; Huan, Jun; Zimmermann, Michael T; Jiang, Guoqian; Lin, Yu; Wu, Bin; Strachan, Harrison J; de Silva, Nisansa; Kasukurthi, Mohan Vamsi; Jha, Vikash Kumar; He, Yongqun; Zhang, Shaojie; Wang, Xiaowei; Liu, Zixing; Borchert, Glen M; Tan, Ming
2016-01-01
Identification of non-coding RNAs (ncRNAs) has been significantly improved over the past decade. On the other hand, semantic annotation of ncRNA data is facing critical challenges due to the lack of a comprehensive ontology to serve as common data elements and data exchange standards in the field. We developed the Non-Coding RNA Ontology (NCRO) to handle this situation. By providing a formally defined ncRNA controlled vocabulary, the NCRO aims to fill a specific and highly needed niche in semantic annotation of large amounts of ncRNA biological and clinical data.
Zhao, Jing; Yang, Yang; Song, Yao-Wu; Bi, Hong-Yan
2015-11-01
This study explored the underlying mechanism of the verbal short-term memory deficit in Chinese children with developmental dyslexia. Twenty-four children with dyslexia and 28 age-matched normal readers participated in the study. They were required to memorize a visually presented series of six Chinese characters and identify them from a list also including code-specific distracters and non-code-specific distracters. Error rates were recorded and were higher for code-specific distracters in all three conditions, revealing phonological, visual, and semantic similarity effects respectively. Group comparisons showed a stronger phonological similarity effect in dyslexic group, suggesting intact activation of phonological representations of target characters. Children with dyslexia also exhibited a greater semantic similarity effect, revealing stronger activation of semantic representations, while visual similarity effects were equivalent to controls. These results suggest that the verbal short-term memory deficit in Chinese dyslexics might not stem from insufficient activation of phonological information. Based the semantic activation of target characters in dyslexics is greater than in controls, it is possible that the memory deficit of dyslexia is related with deficient inhibition of target semantic representations in short-term memory. Copyright © 2015 John Wiley & Sons, Ltd.
Argument structure and the representation of abstract semantics.
Rodríguez-Ferreiro, Javier; Andreu, Llorenç; Sanz-Torrent, Mònica
2014-01-01
According to the dual coding theory, differences in the ease of retrieval between concrete and abstract words are related to the exclusive dependence of abstract semantics on linguistic information. Argument structure can be considered a measure of the complexity of the linguistic contexts that accompany a verb. If the retrieval of abstract verbs relies more on the linguistic codes they are associated to, we could expect a larger effect of argument structure for the processing of abstract verbs. In this study, sets of length- and frequency-matched verbs including 40 intransitive verbs, 40 transitive verbs taking simple complements, and 40 transitive verbs taking sentential complements were presented in separate lexical and grammatical decision tasks. Half of the verbs were concrete and half were abstract. Similar results were obtained in the two tasks, with significant effects of imageability and transitivity. However, the interaction between these two variables was not significant. These results conflict with hypotheses assuming a stronger reliance of abstract semantics on linguistic codes. In contrast, our data are in line with theories that link the ease of retrieval with availability and robustness of semantic information.
Hierarchical Recurrent Neural Hashing for Image Retrieval With Hierarchical Convolutional Features.
Lu, Xiaoqiang; Chen, Yaxiong; Li, Xuelong
Hashing has been an important and effective technology in image retrieval due to its computational efficiency and fast search speed. The traditional hashing methods usually learn hash functions to obtain binary codes by exploiting hand-crafted features, which cannot optimally represent the information of the sample. Recently, deep learning methods can achieve better performance, since deep learning architectures can learn more effective image representation features. However, these methods only use semantic features to generate hash codes by shallow projection but ignore texture details. In this paper, we proposed a novel hashing method, namely hierarchical recurrent neural hashing (HRNH), to exploit hierarchical recurrent neural network to generate effective hash codes. There are three contributions of this paper. First, a deep hashing method is proposed to extensively exploit both spatial details and semantic information, in which, we leverage hierarchical convolutional features to construct image pyramid representation. Second, our proposed deep network can exploit directly convolutional feature maps as input to preserve the spatial structure of convolutional feature maps. Finally, we propose a new loss function that considers the quantization error of binarizing the continuous embeddings into the discrete binary codes, and simultaneously maintains the semantic similarity and balanceable property of hash codes. Experimental results on four widely used data sets demonstrate that the proposed HRNH can achieve superior performance over other state-of-the-art hashing methods.Hashing has been an important and effective technology in image retrieval due to its computational efficiency and fast search speed. The traditional hashing methods usually learn hash functions to obtain binary codes by exploiting hand-crafted features, which cannot optimally represent the information of the sample. Recently, deep learning methods can achieve better performance, since deep learning architectures can learn more effective image representation features. However, these methods only use semantic features to generate hash codes by shallow projection but ignore texture details. In this paper, we proposed a novel hashing method, namely hierarchical recurrent neural hashing (HRNH), to exploit hierarchical recurrent neural network to generate effective hash codes. There are three contributions of this paper. First, a deep hashing method is proposed to extensively exploit both spatial details and semantic information, in which, we leverage hierarchical convolutional features to construct image pyramid representation. Second, our proposed deep network can exploit directly convolutional feature maps as input to preserve the spatial structure of convolutional feature maps. Finally, we propose a new loss function that considers the quantization error of binarizing the continuous embeddings into the discrete binary codes, and simultaneously maintains the semantic similarity and balanceable property of hash codes. Experimental results on four widely used data sets demonstrate that the proposed HRNH can achieve superior performance over other state-of-the-art hashing methods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moss, Nicholas
The Kokkos Clang compiler is a version of the Clang C++ compiler that has been modified to perform targeted code generation for Kokkos constructs in the goal of generating highly optimized code and to provide semantic (domain) awareness throughout the compilation toolchain of these constructs such as parallel for and parallel reduce. This approach is taken to explore the possibilities of exposing the developer’s intentions to the underlying compiler infrastructure (e.g. optimization and analysis passes within the middle stages of the compiler) instead of relying solely on the restricted capabilities of C++ template metaprogramming. To date our current activities havemore » focused on correct GPU code generation and thus we have not yet focused on improving overall performance. The compiler is implemented by recognizing specific (syntactic) Kokkos constructs in order to bypass normal template expansion mechanisms and instead use the semantic knowledge of Kokkos to directly generate code in the compiler’s intermediate representation (IR); which is then translated into an NVIDIA-centric GPU program and supporting runtime calls. In addition, by capturing and maintaining the higher-level semantics of Kokkos directly within the lower levels of the compiler has the potential for significantly improving the ability of the compiler to communicate with the developer in the terms of their original programming model/semantics.« less
Knowledge-Base Semantic Gap Analysis for the Vulnerability Detection
NASA Astrophysics Data System (ADS)
Wu, Raymond; Seki, Keisuke; Sakamoto, Ryusuke; Hisada, Masayuki
Web security became an alert in internet computing. To cope with ever-rising security complexity, semantic analysis is proposed to fill-in the gap that the current approaches fail to commit. Conventional methods limit their focus to the physical source codes instead of the abstraction of semantics. It bypasses new types of vulnerability and causes tremendous business loss.
Semantic Interoperability of Health Risk Assessments
Rajda, Jay; Vreeman, Daniel J.; Wei, Henry G.
2011-01-01
The health insurance and benefits industry has administered Health Risk Assessments (HRAs) at an increasing rate. These are used to collect data on modifiable health risk factors for wellness and disease management programs. However, there is significant variability in the semantics of these assessments, making it difficult to compare data sets from the output of 2 different HRAs. There is also an increasing need to exchange this data with Health Information Exchanges and Electronic Medical Records. To standardize the data and concepts from these tools, we outline a process to determine presence of certain common elements of modifiable health risk extracted from these surveys. This information is coded using concept identifiers, which allows cross-survey comparison and analysis. We propose that using LOINC codes or other universal coding schema may allow semantic interoperability of a variety of HRA tools across the industry, research, and clinical settings. PMID:22195174
Orthographic effects in spoken word recognition: Evidence from Chinese.
Qu, Qingqing; Damian, Markus F
2017-06-01
Extensive evidence from alphabetic languages demonstrates a role of orthography in the processing of spoken words. Because alphabetic systems explicitly code speech sounds, such effects are perhaps not surprising. However, it is less clear whether orthographic codes are involuntarily accessed from spoken words in languages with non-alphabetic systems, in which the sound-spelling correspondence is largely arbitrary. We investigated the role of orthography via a semantic relatedness judgment task: native Mandarin speakers judged whether or not spoken word pairs were related in meaning. Word pairs were either semantically related, orthographically related, or unrelated. Results showed that relatedness judgments were made faster for word pairs that were semantically related than for unrelated word pairs. Critically, orthographic overlap on semantically unrelated word pairs induced a significant increase in response latencies. These findings indicate that orthographic information is involuntarily accessed in spoken-word recognition, even in a non-alphabetic language such as Chinese.
Evolvix BEST Names for semantic reproducibility across code2brain interfaces
Scheuer, Katherine S.; Keel, Seth A.; Vyas, Vaibhav; Liblit, Ben; Hanlon, Bret; Ferris, Michael C.; Yin, John; Dutra, Inês; Pietsch, Anthony; Javid, Christine G.; Moog, Cecilia L.; Meyer, Jocelyn; Dresel, Jerdon; McLoone, Brian; Loberger, Sonya; Movaghar, Arezoo; Gilchrist‐Scott, Morgaine; Sabri, Yazeed; Sescleifer, Dave; Pereda‐Zorrilla, Ivan; Zietlow, Andrew; Smith, Rodrigo; Pietenpol, Samantha; Goldfinger, Jacob; Atzen, Sarah L.; Freiberg, Erika; Waters, Noah P.; Nusbaum, Claire; Nolan, Erik; Hotz, Alyssa; Kliman, Richard M.; Mentewab, Ayalew; Fregien, Nathan; Loewe, Martha
2016-01-01
Names in programming are vital for understanding the meaning of code and big data. We define code2brain (C2B) interfaces as maps in compilers and brains between meaning and naming syntax, which help to understand executable code. While working toward an Evolvix syntax for general‐purpose programming that makes accurate modeling easy for biologists, we observed how names affect C2B quality. To protect learning and coding investments, C2B interfaces require long‐term backward compatibility and semantic reproducibility (accurate reproduction of computational meaning from coder‐brains to reader‐brains by code alone). Semantic reproducibility is often assumed until confusing synonyms degrade modeling in biology to deciphering exercises. We highlight empirical naming priorities from diverse individuals and roles of names in different modes of computing to show how naming easily becomes impossibly difficult. We present the Evolvix BEST (Brief, Explicit, Summarizing, Technical) Names concept for reducing naming priority conflicts, test it on a real challenge by naming subfolders for the Project Organization Stabilizing Tool system, and provide naming questionnaires designed to facilitate C2B debugging by improving names used as keywords in a stabilizing programming language. Our experiences inspired us to develop Evolvix using a flipped programming language design approach with some unexpected features and BEST Names at its core. PMID:27918836
Henrich, Oliver; Gutiérrez Fosado, Yair Augusto; Curk, Tine; Ouldridge, Thomas E
2018-05-10
During the last decade coarse-grained nucleotide models have emerged that allow us to study DNA and RNA on unprecedented time and length scales. Among them is oxDNA, a coarse-grained, sequence-specific model that captures the hybridisation transition of DNA and many structural properties of single- and double-stranded DNA. oxDNA was previously only available as standalone software, but has now been implemented into the popular LAMMPS molecular dynamics code. This article describes the new implementation and analyses its parallel performance. Practical applications are presented that focus on single-stranded DNA, an area of research which has been so far under-investigated. The LAMMPS implementation of oxDNA lowers the entry barrier for using the oxDNA model significantly, facilitates future code development and interfacing with existing LAMMPS functionality as well as other coarse-grained and atomistic DNA models.
Assigning clinical codes with data-driven concept representation on Dutch clinical free text.
Scheurwegs, Elyne; Luyckx, Kim; Luyten, Léon; Goethals, Bart; Daelemans, Walter
2017-05-01
Clinical codes are used for public reporting purposes, are fundamental to determining public financing for hospitals, and form the basis for reimbursement claims to insurance providers. They are assigned to a patient stay to reflect the diagnosis and performed procedures during that stay. This paper aims to enrich algorithms for automated clinical coding by taking a data-driven approach and by using unsupervised and semi-supervised techniques for the extraction of multi-word expressions that convey a generalisable medical meaning (referred to as concepts). Several methods for extracting concepts from text are compared, two of which are constructed from a large unannotated corpus of clinical free text. A distributional semantic model (i.c. the word2vec skip-gram model) is used to generalize over concepts and retrieve relations between them. These methods are validated on three sets of patient stay data, in the disease areas of urology, cardiology, and gastroenterology. The datasets are in Dutch, which introduces a limitation on available concept definitions from expert-based ontologies (e.g. UMLS). The results show that when expert-based knowledge in ontologies is unavailable, concepts derived from raw clinical texts are a reliable alternative. Both concepts derived from raw clinical texts perform and concepts derived from expert-created dictionaries outperform a bag-of-words approach in clinical code assignment. Adding features based on tokens that appear in a semantically similar context has a positive influence for predicting diagnostic codes. Furthermore, the experiments indicate that a distributional semantics model can find relations between semantically related concepts in texts but also introduces erroneous and redundant relations, which can undermine clinical coding performance. Copyright © 2017. Published by Elsevier Inc.
Taxonomic and ad hoc categorization within the two cerebral hemispheres.
Shen, Yeshayahu; Aharoni, Bat-El; Mashal, Nira
2015-01-01
A typicality effect refers to categorization which is performed more quickly or more accurately for typical than for atypical members of a given category. Previous studies reported a typicality effect for category members presented in the left visual field/right hemisphere (RH), suggesting that the RH applies a similarity-based categorization strategy. However, findings regarding the typicality effect within the left hemisphere (LH) are less conclusive. The current study tested the pattern of typicality effects within each hemisphere for both taxonomic and ad hoc categories, using words presented to the left or right visual fields. Experiment 1 tested typical and atypical members of taxonomic categories as well as non-members, and Experiment 2 tested typical and atypical members of ad hoc categories as well as non-members. The results revealed a typicality effect in both hemispheres and in both types of categories. Furthermore, the RH categorized atypical stimuli more accurately than did the LH. Our findings suggest that both hemispheres rely on a similarity-based categorization strategy, but the coarse semantic coding of the RH seems to facilitate the categorization of atypical members.
Dynamic information processing states revealed through neurocognitive models of object semantics
Clarke, Alex
2015-01-01
Recognising objects relies on highly dynamic, interactive brain networks to process multiple aspects of object information. To fully understand how different forms of information about objects are represented and processed in the brain requires a neurocognitive account of visual object recognition that combines a detailed cognitive model of semantic knowledge with a neurobiological model of visual object processing. Here we ask how specific cognitive factors are instantiated in our mental processes and how they dynamically evolve over time. We suggest that coarse semantic information, based on generic shared semantic knowledge, is rapidly extracted from visual inputs and is sufficient to drive rapid category decisions. Subsequent recurrent neural activity between the anterior temporal lobe and posterior fusiform supports the formation of object-specific semantic representations – a conjunctive process primarily driven by the perirhinal cortex. These object-specific representations require the integration of shared and distinguishing object properties and support the unique recognition of objects. We conclude that a valuable way of understanding the cognitive activity of the brain is though testing the relationship between specific cognitive measures and dynamic neural activity. This kind of approach allows us to move towards uncovering the information processing states of the brain and how they evolve over time. PMID:25745632
NASA Astrophysics Data System (ADS)
Brambilla, Marco; Ceri, Stefano; Valle, Emanuele Della; Facca, Federico M.; Tziviskou, Christina
Although Semantic Web Services are expected to produce a revolution in the development of Web-based systems, very few enterprise-wide design experiences are available; one of the main reasons is the lack of sound Software Engineering methods and tools for the deployment of Semantic Web applications. In this chapter, we present an approach to software development for the Semantic Web based on classical Software Engineering methods (i.e., formal business process development, computer-aided and component-based software design, and automatic code generation) and on semantic methods and tools (i.e., ontology engineering, semantic service annotation and discovery).
Effect of normal aging and of Alzheimer's disease on, episodic memory.
Le Moal, S; Reymann, J M; Thomas, V; Cattenoz, C; Lieury, A; Allain, H
1997-01-01
Performances of 12 patients with Alzheimer's disease (AD), 15 healthy elderly subjects and 20 young healthy volunteers were compared on two episodic memory tests. The first, a learning test of semantically related words, enabled an assessment of the effect of semantic relationships on word learning by controlling the encoding and retrieval processes. The second, a dual coding test, is about the assessment of automatic processes operating during drawings encoding. The results obtained demonstrated quantitative and qualitative differences between the population. Manifestations of episodic memory deficit in AD patients were shown not only by lower performance scores than in elderly controls, but also by the lack of any effect of semantic cues and the production of a large number of extra-list intrusions. Automatic processes underlying dual coding appear to be spared in AD, although more time is needed to process information than in young or elderly subjects. These findings confirm former data and emphasize the preservation of certain memory processes (dual coding) in AD which could be used in future therapeutic approaches.
Choi, Jeungok; Jenkins, Melinda L.; Cimino, James J.; White, Thomas M.; Bakken, Suzanne
2005-01-01
Objective: The authors aimed to (1) formally represent OASIS-B1 concepts using the Logical Observation Identifiers, Names, and Codes (LOINC) semantic structure; (2) demonstrate integration of OASIS-B1 concepts into a concept-oriented terminology, the Medical Entities Dictionary (MED); (3) examine potential hierarchical structures within LOINC among OASIS-B1 and other nursing terms; and (4) illustrate a Web-based implementation for OASIS-B1 data entry using Dialogix, a software tool with a set of functions that supports complex data entry. Design and Measurements: Two hundred nine OASIS-B1 items were dissected into the six elements of the LOINC semantic structure and then integrated into the MED hierarchy. Each OASIS-B1 term was matched to LOINC-coded nursing terms, Home Health Care Classification, the Omaha System, and the Sign and Symptom Check-List for Persons with HIV, and the extent of the match was judged based on a scale of 0 (no match) to 4 (exact match). OASIS-B1 terms were implemented as a Web-based survey using Dialogix. Results: Of 209 terms, 204 were successfully dissected into the elements of the LOINC semantics structure and integrated into the MED with minor revisions of MED semantics. One hundred fifty-one OASIS-B1 terms were mapped to one or more of the LOINC-coded nursing terms. Conclusion: The LOINC semantic structure offers a standard way to add home health care data to a comprehensive patient record to facilitate data sharing for monitoring outcomes across sites and to further terminology management, decision support, and accurate information retrieval for evidence-based practice. The cross-mapping results support the possibility of a hierarchical structure of the OASIS-B1 concepts within nursing terminologies in the LOINC database. PMID:15802480
Choi, Jeungok; Jenkins, Melinda L; Cimino, James J; White, Thomas M; Bakken, Suzanne
2005-01-01
The authors aimed to (1) formally represent OASIS-B1 concepts using the Logical Observation Identifiers, Names, and Codes (LOINC) semantic structure; (2) demonstrate integration of OASIS-B1 concepts into a concept-oriented terminology, the Medical Entities Dictionary (MED); (3) examine potential hierarchical structures within LOINC among OASIS-B1 and other nursing terms; and (4) illustrate a Web-based implementation for OASIS-B1 data entry using Dialogix, a software tool with a set of functions that supports complex data entry. Two hundred nine OASIS-B1 items were dissected into the six elements of the LOINC semantic structure and then integrated into the MED hierarchy. Each OASIS-B1 term was matched to LOINC-coded nursing terms, Home Health Care Classification, the Omaha System, and the Sign and Symptom Check-List for Persons with HIV, and the extent of the match was judged based on a scale of 0 (no match) to 4 (exact match). OASIS-B1 terms were implemented as a Web-based survey using Dialogix. Of 209 terms, 204 were successfully dissected into the elements of the LOINC semantics structure and integrated into the MED with minor revisions of MED semantics. One hundred fifty-one OASIS-B1 terms were mapped to one or more of the LOINC-coded nursing terms. The LOINC semantic structure offers a standard way to add home health care data to a comprehensive patient record to facilitate data sharing for monitoring outcomes across sites and to further terminology management, decision support, and accurate information retrieval for evidence-based practice. The cross-mapping results support the possibility of a hierarchical structure of the OASIS-B1 concepts within nursing terminologies in the LOINC database.
Yamazaki, Yumiko; Yokochi, Hiroko; Tanaka, Michio; Okanoya, Kazuo; Iriki, Atsushi
2010-01-01
The anterior portion of the inferior parietal cortex possesses comprehensive representations of actions embedded in behavioural contexts. Mirror neurons, which respond to both self-executed and observed actions, exist in this brain region in addition to those originally found in the premotor cortex. We found that parietal mirror neurons responded differentially to identical actions embedded in different contexts. Another type of parietal mirror neuron represents an inverse and complementary property of responding equally to dissimilar actions made by itself and others for an identical purpose. Here, we propose a hypothesis that these sets of inferior parietal neurons constitute a neural basis for encoding the semantic equivalence of various actions across different agents and contexts. The neurons have mirror neuron properties, and they encoded generalization of agents, differentiation of outcomes, and categorization of actions that led to common functions. By integrating the activities of these mirror neurons with various codings, we further suggest that in the ancestral primates' brains, these various representations of meaningful action led to the gradual establishment of equivalence relations among the different types of actions, by sharing common action semantics. Such differential codings of the components of actions might represent precursors to the parts of protolanguage, such as gestural communication, which are shared among various members of a society. Finally, we suggest that the inferior parietal cortex serves as an interface between this action semantics system and other higher semantic systems, through common structures of action representation that mimic language syntax.
Yamazaki, Yumiko; Yokochi, Hiroko; Tanaka, Michio; Okanoya, Kazuo; Iriki, Atsushi
2010-01-01
The anterior portion of the inferior parietal cortex possesses comprehensive representations of actions embedded in behavioural contexts. Mirror neurons, which respond to both self-executed and observed actions, exist in this brain region in addition to those originally found in the premotor cortex. We found that parietal mirror neurons responded differentially to identical actions embedded in different contexts. Another type of parietal mirror neuron represents an inverse and complementary property of responding equally to dissimilar actions made by itself and others for an identical purpose. Here, we propose a hypothesis that these sets of inferior parietal neurons constitute a neural basis for encoding the semantic equivalence of various actions across different agents and contexts. The neurons have mirror neuron properties, and they encoded generalization of agents, differentiation of outcomes, and categorization of actions that led to common functions. By integrating the activities of these mirror neurons with various codings, we further suggest that in the ancestral primates' brains, these various representations of meaningful action led to the gradual establishment of equivalence relations among the different types of actions, by sharing common action semantics. Such differential codings of the components of actions might represent precursors to the parts of protolanguage, such as gestural communication, which are shared among various members of a society. Finally, we suggest that the inferior parietal cortex serves as an interface between this action semantics system and other higher semantic systems, through common structures of action representation that mimic language syntax. PMID:20119879
A top-down manner-based DCNN architecture for semantic image segmentation.
Qiao, Kai; Chen, Jian; Wang, Linyuan; Zeng, Lei; Yan, Bin
2017-01-01
Given their powerful feature representation for recognition, deep convolutional neural networks (DCNNs) have been driving rapid advances in high-level computer vision tasks. However, their performance in semantic image segmentation is still not satisfactory. Based on the analysis of visual mechanism, we conclude that DCNNs in a bottom-up manner are not enough, because semantic image segmentation task requires not only recognition but also visual attention capability. In the study, superpixels containing visual attention information are introduced in a top-down manner, and an extensible architecture is proposed to improve the segmentation results of current DCNN-based methods. We employ the current state-of-the-art fully convolutional network (FCN) and FCN with conditional random field (DeepLab-CRF) as baselines to validate our architecture. Experimental results of the PASCAL VOC segmentation task qualitatively show that coarse edges and error segmentation results are well improved. We also quantitatively obtain about 2%-3% intersection over union (IOU) accuracy improvement on the PASCAL VOC 2011 and 2012 test sets.
Hoelzer, Simon; Schweiger, Ralf K; Dudeck, Joachim
2003-01-01
With the introduction of ICD-10 as the standard for diagnostics, it becomes necessary to develop an electronic representation of its complete content, inherent semantics, and coding rules. The authors' design relates to the current efforts by the CEN/TC 251 to establish a European standard for hierarchical classification systems in health care. The authors have developed an electronic representation of ICD-10 with the eXtensible Markup Language (XML) that facilitates integration into current information systems and coding software, taking different languages and versions into account. In this context, XML provides a complete processing framework of related technologies and standard tools that helps develop interoperable applications. XML provides semantic markup. It allows domain-specific definition of tags and hierarchical document structure. The idea of linking and thus combining information from different sources is a valuable feature of XML. In addition, XML topic maps are used to describe relationships between different sources, or "semantically associated" parts of these sources. The issue of achieving a standardized medical vocabulary becomes more and more important with the stepwise implementation of diagnostically related groups, for example. The aim of the authors' work is to provide a transparent and open infrastructure that can be used to support clinical coding and to develop further software applications. The authors are assuming that a comprehensive representation of the content, structure, inherent semantics, and layout of medical classification systems can be achieved through a document-oriented approach.
Hoelzer, Simon; Schweiger, Ralf K.; Dudeck, Joachim
2003-01-01
With the introduction of ICD-10 as the standard for diagnostics, it becomes necessary to develop an electronic representation of its complete content, inherent semantics, and coding rules. The authors' design relates to the current efforts by the CEN/TC 251 to establish a European standard for hierarchical classification systems in health care. The authors have developed an electronic representation of ICD-10 with the eXtensible Markup Language (XML) that facilitates integration into current information systems and coding software, taking different languages and versions into account. In this context, XML provides a complete processing framework of related technologies and standard tools that helps develop interoperable applications. XML provides semantic markup. It allows domain-specific definition of tags and hierarchical document structure. The idea of linking and thus combining information from different sources is a valuable feature of XML. In addition, XML topic maps are used to describe relationships between different sources, or “semantically associated” parts of these sources. The issue of achieving a standardized medical vocabulary becomes more and more important with the stepwise implementation of diagnostically related groups, for example. The aim of the authors' work is to provide a transparent and open infrastructure that can be used to support clinical coding and to develop further software applications. The authors are assuming that a comprehensive representation of the content, structure, inherent semantics, and layout of medical classification systems can be achieved through a document-oriented approach. PMID:12807813
Dugas, Martin; Meidt, Alexandra; Neuhaus, Philipp; Storck, Michael; Varghese, Julian
2016-06-01
The volume and complexity of patient data - especially in personalised medicine - is steadily increasing, both regarding clinical data and genomic profiles: Typically more than 1,000 items (e.g., laboratory values, vital signs, diagnostic tests etc.) are collected per patient in clinical trials. In oncology hundreds of mutations can potentially be detected for each patient by genomic profiling. Therefore data integration from multiple sources constitutes a key challenge for medical research and healthcare. Semantic annotation of data elements can facilitate to identify matching data elements in different sources and thereby supports data integration. Millions of different annotations are required due to the semantic richness of patient data. These annotations should be uniform, i.e., two matching data elements shall contain the same annotations. However, large terminologies like SNOMED CT or UMLS don't provide uniform coding. It is proposed to develop semantic annotations of medical data elements based on a large-scale public metadata repository. To achieve uniform codes, semantic annotations shall be re-used if a matching data element is available in the metadata repository. A web-based tool called ODMedit ( https://odmeditor.uni-muenster.de/ ) was developed to create data models with uniform semantic annotations. It contains ~800,000 terms with semantic annotations which were derived from ~5,800 models from the portal of medical data models (MDM). The tool was successfully applied to manually annotate 22 forms with 292 data items from CDISC and to update 1,495 data models of the MDM portal. Uniform manual semantic annotation of data models is feasible in principle, but requires a large-scale collaborative effort due to the semantic richness of patient data. A web-based tool for these annotations is available, which is linked to a public metadata repository.
Emmorey, Karen; Petrich, Jennifer; Gollan, Tamar H.
2012-01-01
Bilinguals who are fluent in American Sign Language (ASL) and English often produce code-blends - simultaneously articulating a sign and a word while conversing with other ASL-English bilinguals. To investigate the cognitive mechanisms underlying code-blend processing, we compared picture-naming times (Experiment 1) and semantic categorization times (Experiment 2) for code-blends versus ASL signs and English words produced alone. In production, code-blending did not slow lexical retrieval for ASL and actually facilitated access to low-frequency signs. However, code-blending delayed speech production because bimodal bilinguals synchronized English and ASL lexical onsets. In comprehension, code-blending speeded access to both languages. Bimodal bilinguals’ ability to produce code-blends without any cost to ASL implies that the language system either has (or can develop) a mechanism for switching off competition to allow simultaneous production of close competitors. Code-blend facilitation effects during comprehension likely reflect cross-linguistic (and cross-modal) integration at the phonological and/or semantic levels. The absence of any consistent processing costs for code-blending illustrates a surprising limitation on dual-task costs and may explain why bimodal bilinguals code-blend more often than they code-switch. PMID:22773886
Medical image classification based on multi-scale non-negative sparse coding.
Zhang, Ruijie; Shen, Jian; Wei, Fushan; Li, Xiong; Sangaiah, Arun Kumar
2017-11-01
With the rapid development of modern medical imaging technology, medical image classification has become more and more important in medical diagnosis and clinical practice. Conventional medical image classification algorithms usually neglect the semantic gap problem between low-level features and high-level image semantic, which will largely degrade the classification performance. To solve this problem, we propose a multi-scale non-negative sparse coding based medical image classification algorithm. Firstly, Medical images are decomposed into multiple scale layers, thus diverse visual details can be extracted from different scale layers. Secondly, for each scale layer, the non-negative sparse coding model with fisher discriminative analysis is constructed to obtain the discriminative sparse representation of medical images. Then, the obtained multi-scale non-negative sparse coding features are combined to form a multi-scale feature histogram as the final representation for a medical image. Finally, SVM classifier is combined to conduct medical image classification. The experimental results demonstrate that our proposed algorithm can effectively utilize multi-scale and contextual spatial information of medical images, reduce the semantic gap in a large degree and improve medical image classification performance. Copyright © 2017 Elsevier B.V. All rights reserved.
Hoelzer, Simon; Schweiger, Ralf K; Liu, Raymond; Rudolf, Dirk; Rieger, Joerg; Dudeck, Joachim
2005-01-01
With the introduction of the ICD-10 as the standard for diagnosis, the development of an electronic representation of its complete content, inherent semantics and coding rules is necessary. Our concept refers to current efforts of the CEN/TC 251 to establish a European standard for hierarchical classification systems in healthcare. We have developed an electronic representation of the ICD-10 with the extensible Markup Language (XML) that facilitates the integration in current information systems or coding software taking into account different languages and versions. In this context, XML offers a complete framework of related technologies and standard tools for processing that helps to develop interoperable applications.
Ziegler, Johannes C; Bertrand, Daisy; Lété, Bernard; Grainger, Jonathan
2014-04-01
The present study used a variant of masked priming to track the development of 2 marker effects of orthographic and phonological processing from Grade 1 through Grade 5 in a cross-sectional study. Pseudohomophone (PsH) priming served as a marker for phonological processing, whereas transposed-letter (TL) priming was a marker for coarse-grained orthographic processing. The results revealed a clear developmental picture. First, the PsH priming effect was significant and remained stable across development, suggesting that phonology not only plays an important role in early reading development but continues to exert a robust influence throughout reading development. This finding challenges the view that more advanced readers should rely less on phonological information than younger readers. Second, the TL priming effect increased monotonically with grade level and reading age, which suggests greater reliance on coarse-grained orthographic coding as children become better readers. Thus, TL priming effects seem to be a good marker effect for children's ability to use coarse-grained orthographic coding to speed up direct lexical access in alphabetic languages. The results were predicted by the dual-route model of orthographic processing, which suggests that direct orthographic access is achieved through coarse-grained orthographic coding that tolerates some degree of flexibility in letter order. PsycINFO Database Record (c) 2014 APA, all rights reserved.
Variation of SNOMED CT coding of clinical research concepts among coding experts.
Andrews, James E; Richesson, Rachel L; Krischer, Jeffrey
2007-01-01
To compare consistency of coding among professional SNOMED CT coders representing three commercial providers of coding services when coding clinical research concepts with SNOMED CT. A sample of clinical research questions from case report forms (CRFs) generated by the NIH-funded Rare Disease Clinical Research Network (RDCRN) were sent to three coding companies with instructions to code the core concepts using SNOMED CT. The sample consisted of 319 question/answer pairs from 15 separate studies. The companies were asked to select SNOMED CT concepts (in any form, including post-coordinated) that capture the core concept(s) reflected in the question. Also, they were asked to state their level of certainty, as well as how precise they felt their coding was. Basic frequencies were calculated to determine raw level agreement among the companies and other descriptive information. Krippendorff's alpha was used to determine a statistical measure of agreement among the coding companies for several measures (semantic, certainty, and precision). No significant level of agreement among the experts was found. There is little semantic agreement in coding of clinical research data items across coders from 3 professional coding services, even using a very liberal definition of agreement.
Parallel program debugging with flowback analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Jongdeok.
1989-01-01
This thesis describes the design and implementation of an integrated debugging system for parallel programs running on shared memory multi-processors. The goal of the debugging system is to present to the programmer a graphical view of the dynamic program dependences while keeping the execution-time overhead low. The author first describes the use of flowback analysis to provide information on causal relationship between events in a programs' execution without re-executing the program for debugging. Execution time overhead is kept low by recording only a small amount of trace during a program's execution. He uses semantic analysis and a technique called incrementalmore » tracing to keep the time and space overhead low. As part of the semantic analysis, he uses a static program dependence graph structure that reduces the amount of work done at compile time and takes advantage of the dynamic information produced during execution time. The cornerstone of the incremental tracing concept is to generate a coarse trace during execution and fill incrementally, during the interactive portion of the debugging session, the gap between the information gathered in the coarse trace and the information needed to do the flowback analysis using the coarse trace. Then, he describes how to extend the flowback analysis to parallel programs. The flowback analysis can span process boundaries; i.e., the most recent modification to a shared variable might be traced to a different process than the one that contains the current reference. The static and dynamic program dependence graphs of the individual processes are tied together with synchronization and data dependence information to form complete graphs that represent the entire program.« less
ERIC Educational Resources Information Center
Hettiarachchi, Shyamani
2016-01-01
Background: Children diagnosed with intellectual difficulties experience difficulties with narrative skills, due to limited syntactic knowledge. The Colourful Semantics approach with thematic roles and a colour coding system may encourage syntactic development in children experiencing intellectual disabilities. Aim: To evaluate the effectiveness…
Semantic graphs and associative memories
NASA Astrophysics Data System (ADS)
Pomi, Andrés; Mizraji, Eduardo
2004-12-01
Graphs have been increasingly utilized in the characterization of complex networks from diverse origins, including different kinds of semantic networks. Human memories are associative and are known to support complex semantic nets; these nets are represented by graphs. However, it is not known how the brain can sustain these semantic graphs. The vision of cognitive brain activities, shown by modern functional imaging techniques, assigns renewed value to classical distributed associative memory models. Here we show that these neural network models, also known as correlation matrix memories, naturally support a graph representation of the stored semantic structure. We demonstrate that the adjacency matrix of this graph of associations is just the memory coded with the standard basis of the concept vector space, and that the spectrum of the graph is a code invariant of the memory. As long as the assumptions of the model remain valid this result provides a practical method to predict and modify the evolution of the cognitive dynamics. Also, it could provide us with a way to comprehend how individual brains that map the external reality, almost surely with different particular vector representations, are nevertheless able to communicate and share a common knowledge of the world. We finish presenting adaptive association graphs, an extension of the model that makes use of the tensor product, which provides a solution to the known problem of branching in semantic nets.
Evolvix BEST Names for semantic reproducibility across code2brain interfaces.
Loewe, Laurence; Scheuer, Katherine S; Keel, Seth A; Vyas, Vaibhav; Liblit, Ben; Hanlon, Bret; Ferris, Michael C; Yin, John; Dutra, Inês; Pietsch, Anthony; Javid, Christine G; Moog, Cecilia L; Meyer, Jocelyn; Dresel, Jerdon; McLoone, Brian; Loberger, Sonya; Movaghar, Arezoo; Gilchrist-Scott, Morgaine; Sabri, Yazeed; Sescleifer, Dave; Pereda-Zorrilla, Ivan; Zietlow, Andrew; Smith, Rodrigo; Pietenpol, Samantha; Goldfinger, Jacob; Atzen, Sarah L; Freiberg, Erika; Waters, Noah P; Nusbaum, Claire; Nolan, Erik; Hotz, Alyssa; Kliman, Richard M; Mentewab, Ayalew; Fregien, Nathan; Loewe, Martha
2017-01-01
Names in programming are vital for understanding the meaning of code and big data. We define code2brain (C2B) interfaces as maps in compilers and brains between meaning and naming syntax, which help to understand executable code. While working toward an Evolvix syntax for general-purpose programming that makes accurate modeling easy for biologists, we observed how names affect C2B quality. To protect learning and coding investments, C2B interfaces require long-term backward compatibility and semantic reproducibility (accurate reproduction of computational meaning from coder-brains to reader-brains by code alone). Semantic reproducibility is often assumed until confusing synonyms degrade modeling in biology to deciphering exercises. We highlight empirical naming priorities from diverse individuals and roles of names in different modes of computing to show how naming easily becomes impossibly difficult. We present the Evolvix BEST (Brief, Explicit, Summarizing, Technical) Names concept for reducing naming priority conflicts, test it on a real challenge by naming subfolders for the Project Organization Stabilizing Tool system, and provide naming questionnaires designed to facilitate C2B debugging by improving names used as keywords in a stabilizing programming language. Our experiences inspired us to develop Evolvix using a flipped programming language design approach with some unexpected features and BEST Names at its core. © 2016 The Authors. Annals of the New York Academy of Sciences published by Wiley Periodicals, Inc. on behalf of New York Academy of Sciences.
Interactive Exploration for Continuously Expanding Neuron Databases.
Li, Zhongyu; Metaxas, Dimitris N; Lu, Aidong; Zhang, Shaoting
2017-02-15
This paper proposes a novel framework to help biologists explore and analyze neurons based on retrieval of data from neuron morphological databases. In recent years, the continuously expanding neuron databases provide a rich source of information to associate neuronal morphologies with their functional properties. We design a coarse-to-fine framework for efficient and effective data retrieval from large-scale neuron databases. In the coarse-level, for efficiency in large-scale, we employ a binary coding method to compress morphological features into binary codes of tens of bits. Short binary codes allow for real-time similarity searching in Hamming space. Because the neuron databases are continuously expanding, it is inefficient to re-train the binary coding model from scratch when adding new neurons. To solve this problem, we extend binary coding with online updating schemes, which only considers the newly added neurons and update the model on-the-fly, without accessing the whole neuron databases. In the fine-grained level, we introduce domain experts/users in the framework, which can give relevance feedback for the binary coding based retrieval results. This interactive strategy can improve the retrieval performance through re-ranking the above coarse results, where we design a new similarity measure and take the feedback into account. Our framework is validated on more than 17,000 neuron cells, showing promising retrieval accuracy and efficiency. Moreover, we demonstrate its use case in assisting biologists to identify and explore unknown neurons. Copyright © 2017 Elsevier Inc. All rights reserved.
Garion, Liora; Dubin, Uri; Rubin, Yoav; Khateb, Mohamed; Schiller, Yitzhak; Azouz, Rony; Schiller, Jackie
2014-01-01
Texture discrimination is a fundamental function of somatosensory systems, yet the manner by which texture is coded and spatially represented in the barrel cortex are largely unknown. Using in vivo two-photon calcium imaging in the rat barrel cortex during artificial whisking against different surface coarseness or controlled passive whisker vibrations simulating different coarseness, we show that layer 2–3 neurons within barrel boundaries differentially respond to specific texture coarsenesses, while only a minority of neurons responded monotonically with increased or decreased surface coarseness. Neurons with similar preferred texture coarseness were spatially clustered. Multi-contact single unit recordings showed a vertical columnar organization of texture coarseness preference in layer 2–3. These findings indicate that layer 2–3 neurons perform high hierarchical processing of tactile information, with surface coarseness embodied by distinct neuronal subpopulations that are spatially mapped onto the barrel cortex. DOI: http://dx.doi.org/10.7554/eLife.03405.001 PMID:25233151
Code of Federal Regulations, 2014 CFR
2014-10-01
... definitions apply: Code set means any set of codes used to encode data elements, such as tables of terms... code sets inherent to a transaction, and not related to the format of the transaction. Data elements... information in a transaction. Data set means a semantically meaningful unit of information exchanged between...
Code of Federal Regulations, 2013 CFR
2013-10-01
... definitions apply: Code set means any set of codes used to encode data elements, such as tables of terms... code sets inherent to a transaction, and not related to the format of the transaction. Data elements... information in a transaction. Data set means a semantically meaningful unit of information exchanged between...
Devereux, Barry J; Clarke, Alex; Marouchos, Andreas; Tyler, Lorraine K
2013-11-27
Understanding the meanings of words and objects requires the activation of underlying conceptual representations. Semantic representations are often assumed to be coded such that meaning is evoked regardless of the input modality. However, the extent to which meaning is coded in modality-independent or amodal systems remains controversial. We address this issue in a human fMRI study investigating the neural processing of concepts, presented separately as written words and pictures. Activation maps for each individual word and picture were used as input for searchlight-based multivoxel pattern analyses. Representational similarity analysis was used to identify regions correlating with low-level visual models of the words and objects and the semantic category structure common to both. Common semantic category effects for both modalities were found in a left-lateralized network, including left posterior middle temporal gyrus (LpMTG), left angular gyrus, and left intraparietal sulcus (LIPS), in addition to object- and word-specific semantic processing in ventral temporal cortex and more anterior MTG, respectively. To explore differences in representational content across regions and modalities, we developed novel data-driven analyses, based on k-means clustering of searchlight dissimilarity matrices and seeded correlation analysis. These revealed subtle differences in the representations in semantic-sensitive regions, with representations in LIPS being relatively invariant to stimulus modality and representations in LpMTG being uncorrelated across modality. These results suggest that, although both LpMTG and LIPS are involved in semantic processing, only the functional role of LIPS is the same regardless of the visual input, whereas the functional role of LpMTG differs for words and objects.
Reliability in content analysis: The case of semantic feature norms classification.
Bolognesi, Marianna; Pilgram, Roosmaryn; van den Heerik, Romy
2017-12-01
Semantic feature norms (e.g., STIMULUS: car → RESPONSE:
Processing of Formational, Semantic, and Iconic Information in American Sign Language.
ERIC Educational Resources Information Center
Poizner, Howard; And Others
1981-01-01
Three experiments examined short-term encoding processes of deaf signers for different aspects of signs from American Sign Language. Results indicated that deaf signers code signs at one level in terms of linguistically significant formational parameters. The semantic and iconic information of signs, however, has little effect on short-term…
Time Travel: The Role of Temporality in Enabling Semantic Waves in Secondary School Teaching
ERIC Educational Resources Information Center
Matruglio, Erika; Maton, Karl; Martin, J. R.
2013-01-01
Based on the theoretical understandings from Legitimation Code Theory (Maton, 2013) and Systemic Functional Linguistics (Martin, 2013) underpinning the research discussed in this special issue, this paper focuses on classroom pedagogy to illustrate an important strategy for making semantic waves in History teaching, namely "temporal shifting". We…
Software Certification for Temporal Properties With Affordable Tool Qualification
NASA Technical Reports Server (NTRS)
Xia, Songtao; DiVito, Benedetto L.
2005-01-01
It has been recognized that a framework based on proof-carrying code (also called semantic-based software certification in its community) could be used as a candidate software certification process for the avionics industry. To meet this goal, tools in the "trust base" of a proof-carrying code system must be qualified by regulatory authorities. A family of semantic-based software certification approaches is described, each different in expressive power, level of automation and trust base. Of particular interest is the so-called abstraction-carrying code, which can certify temporal properties. When a pure abstraction-carrying code method is used in the context of industrial software certification, the fact that the trust base includes a model checker would incur a high qualification cost. This position paper proposes a hybrid of abstraction-based and proof-based certification methods so that the model checker used by a client can be significantly simplified, thereby leading to lower cost in tool qualification.
Coherent concepts are computed in the anterior temporal lobes.
Lambon Ralph, Matthew A; Sage, Karen; Jones, Roy W; Mayberry, Emily J
2010-02-09
In his Philosophical Investigations, Wittgenstein famously noted that the formation of semantic representations requires more than a simple combination of verbal and nonverbal features to generate conceptually based similarities and differences. Classical and contemporary neuroscience has tended to focus upon how different neocortical regions contribute to conceptualization through the summation of modality-specific information. The additional yet critical step of computing coherent concepts has received little attention. Some computational models of semantic memory are able to generate such concepts by the addition of modality-invariant information coded in a multidimensional semantic space. By studying patients with semantic dementia, we demonstrate that this aspect of semantic memory becomes compromised following atrophy of the anterior temporal lobes and, as a result, the patients become increasingly influenced by superficial rather than conceptual similarities.
ERIC Educational Resources Information Center
Emmorey, Karen; Petrich, Jennifer A. F.; Gollan, Tamar H.
2012-01-01
Bilinguals who are fluent in American Sign Language (ASL) and English often produce "code-blends"--simultaneously articulating a sign and a word while conversing with other ASL-English bilinguals. To investigate the cognitive mechanisms underlying code-blend processing, we compared picture-naming times (Experiment 1) and semantic categorization…
Lexical-Semantic Organization in Bilingual Children: Evidence from a Repeated Word Association Task
ERIC Educational Resources Information Center
Sheng, Li; McGregor, Karla K.; Marian, Viorica
2006-01-01
Purpose: This study examined lexical-semantic organization of bilingual children in their 2 languages and in relation to monolingual age-mates. Method: Twelve Mandarin-English bilingual and 12 English monolingual children generated 3 associations to each of 36 words. Responses were coded as paradigmatic ("dog-cat") or syntagmatic ("dog-bark").…
Pure Misallocation of ''0'' in Number Transcoding: A New Symptom of Right Cerebral Dysfunction
ERIC Educational Resources Information Center
Furumoto, Hideharu
2006-01-01
To account for the mechanism of number transcoding, many authors have proposed various models, for example, semantic-abstract model, lexical-semantic model, triple-code model, and so on. However, almost all of them are based on the symptoms of patients with left cerebral damage. Previously, I reported two Japanese patients with right posterior…
Shimotake, Akihiro; Matsumoto, Riki; Ueno, Taiji; Kunieda, Takeharu; Saito, Satoru; Hoffman, Paul; Kikuchi, Takayuki; Fukuyama, Hidenao; Miyamoto, Susumu; Takahashi, Ryosuke; Ikeda, Akio; Lambon Ralph, Matthew A.
2015-01-01
Semantic memory is a crucial higher cortical function that codes the meaning of objects and words, and when impaired after neurological damage, patients are left with significant disability. Investigations of semantic dementia have implicated the anterior temporal lobe (ATL) region, in general, as crucial for multimodal semantic memory. The potentially crucial role of the ventral ATL subregion has been emphasized by recent functional neuroimaging studies, but the necessity of this precise area has not been selectively tested. The implantation of subdural electrode grids over this subregion, for the presurgical assessment of patients with partial epilepsy or brain tumor, offers the dual yet rare opportunities to record cortical local field potentials while participants complete semantic tasks and to stimulate the functionally identified regions in the same participants to evaluate the necessity of these areas in semantic processing. Across 6 patients, and utilizing a variety of semantic assessments, we evaluated and confirmed that the anterior fusiform/inferior temporal gyrus is crucial in multimodal, receptive, and expressive, semantic processing. PMID:25491206
Devereux, Barry J.; Clarke, Alex; Marouchos, Andreas; Tyler, Lorraine K.
2013-01-01
Understanding the meanings of words and objects requires the activation of underlying conceptual representations. Semantic representations are often assumed to be coded such that meaning is evoked regardless of the input modality. However, the extent to which meaning is coded in modality-independent or amodal systems remains controversial. We address this issue in a human fMRI study investigating the neural processing of concepts, presented separately as written words and pictures. Activation maps for each individual word and picture were used as input for searchlight-based multivoxel pattern analyses. Representational similarity analysis was used to identify regions correlating with low-level visual models of the words and objects and the semantic category structure common to both. Common semantic category effects for both modalities were found in a left-lateralized network, including left posterior middle temporal gyrus (LpMTG), left angular gyrus, and left intraparietal sulcus (LIPS), in addition to object- and word-specific semantic processing in ventral temporal cortex and more anterior MTG, respectively. To explore differences in representational content across regions and modalities, we developed novel data-driven analyses, based on k-means clustering of searchlight dissimilarity matrices and seeded correlation analysis. These revealed subtle differences in the representations in semantic-sensitive regions, with representations in LIPS being relatively invariant to stimulus modality and representations in LpMTG being uncorrelated across modality. These results suggest that, although both LpMTG and LIPS are involved in semantic processing, only the functional role of LIPS is the same regardless of the visual input, whereas the functional role of LpMTG differs for words and objects. PMID:24285896
Rational's experience using Ada for very large systems
NASA Technical Reports Server (NTRS)
Archer, James E., Jr.; Devlin, Michael T.
1986-01-01
The experience using the Rational Environment has confirmed the advantages forseen when the project was started. Interactive syntatic and semantic information makes a tremendous difference in the ease of constructing programs and making changes to them. The ability to follow semantic references makes it easier to understand exisiting programs and the impact of changes. The integrated debugger makes it much easier to find bugs and test fixes quickly. Taken together, these facilites have helped greatly in reducing the impact of ongoing maintenance of the ability to produce a new code. Similar improvements are anticipated as the same level of integration and interactivity are achieved for configuration management and version control. The environment has also proven useful in introducing personnel to the project and existing personnel to new parts of the system. Personnel benefit from the assistance with syntax and semantics; everyone benefits from the ability to traverse and understand the structure of unfamiliar software. It is often possible for someone completely unfamiliar with a body of code to use these facilities, to understand it well enough to successfully with a body of code to use these facilities to understand it well enough to successfully diagnose and fix bugs in a matter of minutes.
Acoustic and semantic interference effects in words and pictures.
Dhawan, M; Pellegrino, J W
1977-05-01
Interference effects for pictures and words were investigated using a probe-recall task. Word stimuli showed acoustic interference effects for items at the end of the list and semantic interference effects for items at the beginning of the list, similar to results of Kintsch and Buschke (1969). Picture stimuli showed large semantic interference effects at all list positions with smaller acoustic interference effects. The results were related to latency data on picture-word processing and interpreted in terms of the differential order, probability, and/or speed of access to acoustic and semantic levels of processing. A levels of processing explanation of picture-word retention differences was related to dual coding theory. Both theoretical positions converge on an explanation of picture-word retention differences as a function of the relative capacity for semantic or associative processing.
The Food Code in the Yakut Culture: Semantics and Functions
ERIC Educational Resources Information Center
Gabysheva, Luiza Lvovna
2016-01-01
The relevance of researching the issue of a specific cultural meaning for a word in a folklore text is based on its being insufficiently studied and due to the importance for solving the problem of the folklore language semantic features. Yakut nominations for dairy products, which are the key words in the language of the Sakha people's folklore,…
ERIC Educational Resources Information Center
Pobric, Gorana; Jefferies, Elizabeth; Ralph, Matthew A. Lambon
2010-01-01
The key question of how the brain codes the meaning of words and pictures is the focus of vigorous debate. Is there a "semantic hub" in the temporal poles where these different inputs converge to form amodal conceptual representations? Alternatively, are there distinct neural circuits that underpin our comprehension of pictures and words?…
Lin, M.C.; Vreeman, D.J.; Huff, S.M.
2012-01-01
Objectives We wanted to develop a method for evaluating the consistency and usefulness of LOINC code use across different institutions, and to evaluate the degree of interoperability that can be attained when using LOINC codes for laboratory data exchange. Our specific goals were to: 1) Determine if any contradictory knowledge exists in LOINC. 2) Determine how many LOINC codes were used in a truly interoperable fashion between systems. 3) Provide suggestions for improving the semantic interoperability of LOINC. Methods We collected Extensional Definitions (EDs) of LOINC usage from three institutions. The version space approach was used to divide LOINC codes into small sets, which made auditing of LOINC use across the institutions feasible. We then compared pairings of LOINC codes from the three institutions for consistency and usefulness. Results The number of LOINC codes evaluated were 1,917, 1,267 and 1,693 as obtained from ARUP, Intermountain and Regenstrief respectively. There were 2,022, 2,030, and 2,301 version spaces among ARUP & Intermountain, Intermountain & Regenstrief and ARUP & Regenstrief respectively. Using the EDs as the gold standard, there were 104, 109 and 112 pairs containing contradictory knowledge and there were 1,165, 765 and 1,121 semantically interoperable pairs. The interoperable pairs were classified into three levels: 1) Level I – No loss of meaning, complete information was exchanged by identical codes. 2) Level II – No loss of meaning, but processing of data was needed to make the data completely comparable. 3) Level III – Some loss of meaning. For example, tests with a specific ‘method’ could be rolled-up with tests that were ‘methodless’. Conclusions There are variations in the way LOINC is used for data exchange that result in some data not being truly interoperable across different enterprises. To improve its semantic interoperability, we need to detect and correct any contradictory knowledge within LOINC and add computable relationships that can be used for making reliable inferences about the data. The LOINC committee should also provide detailed guidance on best practices for mapping from local codes to LOINC codes and for using LOINC codes in data exchange. PMID:22306382
Cross-modal representation of spoken and written word meaning in left pars triangularis.
Liuzzi, Antonietta Gabriella; Bruffaerts, Rose; Peeters, Ronald; Adamczuk, Katarzyna; Keuleers, Emmanuel; De Deyne, Simon; Storms, Gerrit; Dupont, Patrick; Vandenberghe, Rik
2017-04-15
The correspondence in meaning extracted from written versus spoken input remains to be fully understood neurobiologically. Here, in a total of 38 subjects, the functional anatomy of cross-modal semantic similarity for concrete words was determined based on a dual criterion: First, a voxelwise univariate analysis had to show significant activation during a semantic task (property verification) performed with written and spoken concrete words compared to the perceptually matched control condition. Second, in an independent dataset, in these clusters, the similarity in fMRI response pattern to two distinct entities, one presented as a written and the other as a spoken word, had to correlate with the similarity in meaning between these entities. The left ventral occipitotemporal transition zone and ventromedial temporal cortex, retrosplenial cortex, pars orbitalis bilaterally, and the left pars triangularis were all activated in the univariate contrast. Only the left pars triangularis showed a cross-modal semantic similarity effect. There was no effect of phonological nor orthographic similarity in this region. The cross-modal semantic similarity effect was confirmed by a secondary analysis in the cytoarchitectonically defined BA45. A semantic similarity effect was also present in the ventral occipital regions but only within the visual modality, and in the anterior superior temporal cortex only within the auditory modality. This study provides direct evidence for the coding of word meaning in BA45 and positions its contribution to semantic processing at the confluence of input-modality specific pathways that code for meaning within the respective input modalities. Copyright © 2017 Elsevier Inc. All rights reserved.
Relations between Short-term Memory Deficits, Semantic Processing, and Executive Function
Allen, Corinne M.; Martin, Randi C.; Martin, Nadine
2012-01-01
Background Previous research has suggested separable short-term memory (STM) buffers for the maintenance of phonological and lexical-semantic information, as some patients with aphasia show better ability to retain semantic than phonological information and others show the reverse. Recently, researchers have proposed that deficits to the maintenance of semantic information in STM are related to executive control abilities. Aims The present study investigated the relationship of executive function abilities with semantic and phonological short-term memory (STM) and semantic processing in such patients, as some previous research has suggested that semantic STM deficits and semantic processing abilities are critically related to specific or general executive function deficits. Method and Procedures 20 patients with aphasia and STM deficits were tested on measures of short-term retention, semantic processing, and both complex and simple executive function tasks. Outcome and Results In correlational analyses, we found no relation between semantic STM and performance on simple or complex executive function tasks. In contrast, phonological STM was related to executive function performance in tasks that had a verbal component, suggesting that performance in some executive function tasks depends on maintaining or rehearsing phonological codes. Although semantic STM was not related to executive function ability, performance on semantic processing tasks was related to executive function, perhaps due to similar executive task requirements in both semantic processing and executive function tasks. Conclusions Implications for treatment and interpretations of executive deficits are discussed. PMID:22736889
Database Dictionary for Ethiopian National Ground-Water Database (ENGDA) Data Fields
2007-01-01
Coarse Sand Fine Sand Fine-Grained Sandstone Fractured Igneous and Metamorphic Rock Gravel Karst Limestone, Dolomite Medium Sand Medium-Grained...Coarse Sand; Fine Sand; Fine-Grained Sandstone; Fractured Igneous and Metamorphic Rock; Gravel; Karst Limestone/ Dolomite ; Medium Sand; Medium...aquifer lithology (rock type; Babcock and other, 2004). - 20 - Data Type: List, 1-character code C Consolidated porous sedimentary I Fractured
Cyclic Behavior of Low Rise Concrete Shear Walls Containing Recycled Coarse and Fine Aggregates.
Qiao, Qiyun; Cao, Wanlin; Qian, Zhiwei; Li, Xiangyu; Zhang, Wenwen; Liu, Wenchao
2017-12-07
In this study, the cyclic behaviors of low rise concrete shear walls using recycled coarse or fine aggregates were investigated. Eight low rise Recycled Aggregates Concrete (RAC) shear wall specimens were designed and tested under a cyclic loading. The following parameters were varied: replacement percentages of recycled coarse or fine aggregates, reinforcement ratio, axial force ratio and X-shaped rebars brace. The failure characteristics, hysteretic behavior, strength and deformation capacity, strain characteristics and stiffness were studied. Test results showed that the using of the Recycled Coarse Aggregates (RCA) and its replacement ratio had almost no influence on the mechanical behavior of the shear wall; however, the using of Recycled Fine Aggregates (RFA) had a certain influence on the ductility of the shear wall. When the reinforcement ratio increased, the strength and ductility also increased. By increasing the axial force ratio, the strength increased but the ductility decreased significantly. The encased brace had a significant effect on enhancing the RAC shear walls. The experimental maximum strengths were evaluated with existing design codes, it was indicated that the strength evaluation of the low rise RAC shear walls can follow the existing design codes of the conventional concrete shear walls.
A VHDL Interface for Altera Design Files
1990-01-01
this requirement dictated that all prototype products developed during this research would have to mirror standard VHDL code . In fact, the final... product would have to meet the 20 syntactic and semantic requirements of standard VHDL . The coding style used to create the transformation program was the...Transformed Decoder File ....................... 47 C. Supplemental VHDL Package Source Code ........... 54 Altpk.vhd .................................... 54 D
NASA Technical Reports Server (NTRS)
Braun, W. R.
1981-01-01
Pseudo noise (PN) spread spectrum systems require a very accurate alignment between the PN code epochs at the transmitter and receiver. This synchronism is typically established through a two-step algorithm, including a coarse synchronization procedure and a fine synchronization procedure. A standard approach for the coarse synchronization is a sequential search over all code phases. The measurement of the power in the filtered signal is used to either accept or reject the code phase under test as the phase of the received PN code. This acquisition strategy, called a single dwell-time system, has been analyzed by Holmes and Chen (1977). A synopsis of the field of sequential analysis as it applies to the PN acquisition problem is provided. From this, the implementation of the variable dwell time algorithm as a sequential probability ratio test is developed. The performance of this algorithm is compared to the optimum detection algorithm and to the fixed dwell-time system.
Shimotake, Akihiro; Matsumoto, Riki; Ueno, Taiji; Kunieda, Takeharu; Saito, Satoru; Hoffman, Paul; Kikuchi, Takayuki; Fukuyama, Hidenao; Miyamoto, Susumu; Takahashi, Ryosuke; Ikeda, Akio; Lambon Ralph, Matthew A
2015-10-01
Semantic memory is a crucial higher cortical function that codes the meaning of objects and words, and when impaired after neurological damage, patients are left with significant disability. Investigations of semantic dementia have implicated the anterior temporal lobe (ATL) region, in general, as crucial for multimodal semantic memory. The potentially crucial role of the ventral ATL subregion has been emphasized by recent functional neuroimaging studies, but the necessity of this precise area has not been selectively tested. The implantation of subdural electrode grids over this subregion, for the presurgical assessment of patients with partial epilepsy or brain tumor, offers the dual yet rare opportunities to record cortical local field potentials while participants complete semantic tasks and to stimulate the functionally identified regions in the same participants to evaluate the necessity of these areas in semantic processing. Across 6 patients, and utilizing a variety of semantic assessments, we evaluated and confirmed that the anterior fusiform/inferior temporal gyrus is crucial in multimodal, receptive, and expressive, semantic processing. © The Author 2014. Published by Oxford University Press.
ERIC Educational Resources Information Center
Meyer, Patric; Mecklinger, Axel; Friederici, Angela D.
2010-01-01
Recognition memory based on familiarity judgments is a form of declarative memory that has been repeatedly associated with the anterior medial temporal lobe. It has been argued that this region sustains familiarity-based recognition not only by retrieving item-specific information but also by coding for those semantic aspects of an event that…
Souvignet, Julien; Declerck, Gunnar; Asfari, Hadyl; Jaulent, Marie-Christine; Bousquet, Cédric
2016-10-01
Efficient searching and coding in databases that use terminological resources requires that they support efficient data retrieval. The Medical Dictionary for Regulatory Activities (MedDRA) is a reference terminology for several countries and organizations to code adverse drug reactions (ADRs) for pharmacovigilance. Ontologies that are available in the medical domain provide several advantages such as reasoning to improve data retrieval. The field of pharmacovigilance does not yet benefit from a fully operational ontology to formally represent the MedDRA terms. Our objective was to build a semantic resource based on formal description logic to improve MedDRA term retrieval and aid the generation of on-demand custom groupings by appropriately and efficiently selecting terms: OntoADR. The method consists of the following steps: (1) mapping between MedDRA terms and SNOMED-CT, (2) generation of semantic definitions using semi-automatic methods, (3) storage of the resource and (4) manual curation by pharmacovigilance experts. We built a semantic resource for ADRs enabling a new type of semantics-based term search. OntoADR adds new search capabilities relative to previous approaches, overcoming the usual limitations of computation using lightweight description logic, such as the intractability of unions or negation queries, bringing it closer to user needs. Our automated approach for defining MedDRA terms enabled the association of at least one defining relationship with 67% of preferred terms. The curation work performed on our sample showed an error level of 14% for this automated approach. We tested OntoADR in practice, which allowed us to build custom groupings for several medical topics of interest. The methods we describe in this article could be adapted and extended to other terminologies which do not benefit from a formal semantic representation, thus enabling better data retrieval performance. Our custom groupings of MedDRA terms were used while performing signal detection, which suggests that the graphical user interface we are currently implementing to process OntoADR could be usefully integrated into specialized pharmacovigilance software that rely on MedDRA. Copyright © 2016 Elsevier Inc. All rights reserved.
Semantic deficits in Spanish-English bilingual children with language impairment.
Sheng, Li; Peña, Elizabeth D; Bedore, Lisa M; Fiestas, Christine E
2012-02-01
To examine the nature and extent of semantic deficits in bilingual children with language impairment (LI). Thirty-seven Spanish-English bilingual children with LI (ranging from age 7;0 [years;months] to 9;10) and 37 typically developing (TD) age-matched peers generated 3 associations to 12 pairs of translation equivalents in English and Spanish. Responses were coded as paradigmatic (e.g., dinner-lunch, cena-desayuno [dinner-breakfast]), syntagmatic (e.g., delicious-pizza, delicioso-frijoles [delicious-beans]), and errors (e.g., wearing-where, vestirse-mal [to get dressed-bad]). A semantic depth score was derived in each language and conceptually by combining children's performance in both languages. The LI group achieved significantly lower semantic depth scores than the TD group after controlling for group differences in vocabulary size. Children showed higher conceptual scores than single-language scores. Both groups showed decreases in semantic depth scores across multiple elicitations. Analyses of individual performances indicated that semantic deficits (1 SD below the TD mean semantic depth score) were manifested in 65% of the children with LI and in 14% of the TD children. School-age bilingual children with and without LI demonstrated spreading activation of semantic networks. Consistent with the literature on monolingual children with LI, sparsely linked semantic networks characterize a considerable proportion of bilingual children with LI.
Hybrid discrete ordinates and characteristics method for solving the linear Boltzmann equation
NASA Astrophysics Data System (ADS)
Yi, Ce
With the ability of computer hardware and software increasing rapidly, deterministic methods to solve the linear Boltzmann equation (LBE) have attracted some attention for computational applications in both the nuclear engineering and medical physics fields. Among various deterministic methods, the discrete ordinates method (SN) and the method of characteristics (MOC) are two of the most widely used methods. The SN method is the traditional approach to solve the LBE for its stability and efficiency. While the MOC has some advantages in treating complicated geometries. However, in 3-D problems requiring a dense discretization grid in phase space (i.e., a large number of spatial meshes, directions, or energy groups), both methods could suffer from the need for large amounts of memory and computation time. In our study, we developed a new hybrid algorithm by combing the two methods into one code, TITAN. The hybrid approach is specifically designed for application to problems containing low scattering regions. A new serial 3-D time-independent transport code has been developed. Under the hybrid approach, the preferred method can be applied in different regions (blocks) within the same problem model. Since the characteristics method is numerically more efficient in low scattering media, the hybrid approach uses a block-oriented characteristics solver in low scattering regions, and a block-oriented SN solver in the remainder of the physical model. In the TITAN code, a physical problem model is divided into a number of coarse meshes (blocks) in Cartesian geometry. Either the characteristics solver or the SN solver can be chosen to solve the LBE within a coarse mesh. A coarse mesh can be filled with fine meshes or characteristic rays depending on the solver assigned to the coarse mesh. Furthermore, with its object-oriented programming paradigm and layered code structure, TITAN allows different individual spatial meshing schemes and angular quadrature sets for each coarse mesh. Two quadrature types (level-symmetric and Legendre-Chebyshev quadrature) along with the ordinate splitting techniques (rectangular splitting and PN-TN splitting) are implemented. In the S N solver, we apply a memory-efficient 'front-line' style paradigm to handle the fine mesh interface fluxes. In the characteristics solver, we have developed a novel 'backward' ray-tracing approach, in which a bi-linear interpolation procedure is used on the incoming boundaries of a coarse mesh. A CPU-efficient scattering kernel is shared in both solvers within the source iteration scheme. Angular and spatial projection techniques are developed to transfer the angular fluxes on the interfaces of coarse meshes with different discretization grids. The performance of the hybrid algorithm is tested in a number of benchmark problems in both nuclear engineering and medical physics fields. Among them are the Kobayashi benchmark problems and a computational tomography (CT) device model. We also developed an extra sweep procedure with the fictitious quadrature technique to calculate angular fluxes along directions of interest. The technique is applied in a single photon emission computed tomography (SPECT) phantom model to simulate the SPECT projection images. The accuracy and efficiency of the TITAN code are demonstrated in these benchmarks along with its scalability. A modified version of the characteristics solver is integrated in the PENTRAN code and tested within the parallel engine of PENTRAN. The limitations on the hybrid algorithm are also studied.
Method and system for pattern analysis using a coarse-coded neural network
NASA Technical Reports Server (NTRS)
Spirkovska, Liljana (Inventor); Reid, Max B. (Inventor)
1994-01-01
A method and system for performing pattern analysis with a neural network coarse-coding a pattern to be analyzed so as to form a plurality of sub-patterns collectively defined by data. Each of the sub-patterns comprises sets of pattern data. The neural network includes a plurality fields, each field being associated with one of the sub-patterns so as to receive the sub-pattern data therefrom. Training and testing by the neural network then proceeds in the usual way, with one modification: the transfer function thresholds the value obtained from summing the weighted products of each field over all sub-patterns associated with each pattern being analyzed by the system.
The photo-colorimetric space as a medium for the representation of spatial data
NASA Technical Reports Server (NTRS)
Kraiss, K. Friedrich; Widdel, Heino
1989-01-01
Spatial displays and instruments are usually used in the context of vehicle guidance, but it is hard to find applicable spatial formats in information retrieval and interaction systems. Human interaction with spatial data structures and the applicability of the CIE color space to improve dialogue transparency is discussed. A proposal is made to use the color space to code spatially represented data. The semantic distances of the categories of dialogue structures or, more general, of database structures, are determined empirically. Subsequently the distances are transformed and depicted into the color space. The concept is demonstrated for a car diagnosis system, where the category cooling system could, e.g., be coded in blue, the category ignition system in red. Hereby a correspondence between color and semantic distances is achieved. Subcategories can be coded as luminance differences within the color space.
Neuhaus, Philipp; Doods, Justin; Dugas, Martin
2015-01-01
Automatic coding of medical terms is an important, but highly complicated and laborious task. To compare and evaluate different strategies a framework with a standardized web-interface was created. Two UMLS mapping strategies are compared to demonstrate the interface. The framework is a Java Spring application running on a Tomcat application server. It accepts different parameters and returns results in JSON format. To demonstrate the framework, a list of medical data items was mapped by two different methods: similarity search in a large table of terminology codes versus search in a manually curated repository. These mappings were reviewed by a specialist. The evaluation shows that the framework is flexible (due to standardized interfaces like HTTP and JSON), performant and reliable. Accuracy of automatically assigned codes is limited (up to 40%). Combining different semantic mappers into a standardized Web-API is feasible. This framework can be easily enhanced due to its modular design.
From perceptual to lexico-semantic analysis--cortical plasticity enabling new levels of processing.
Schlaffke, Lara; Rüther, Naima N; Heba, Stefanie; Haag, Lauren M; Schultz, Thomas; Rosengarth, Katharina; Tegenthoff, Martin; Bellebaum, Christian; Schmidt-Wilcke, Tobias
2015-11-01
Certain kinds of stimuli can be processed on multiple levels. While the neural correlates of different levels of processing (LOPs) have been investigated to some extent, most of the studies involve skills and/or knowledge already present when performing the task. In this study we specifically sought to identify neural correlates of an evolving skill that allows the transition from perceptual to a lexico-semantic stimulus analysis. Eighteen participants were trained to decode 12 letters of Morse code that were presented acoustically inside and outside of the scanner environment. Morse code was presented in trains of three letters while brain activity was assessed with fMRI. Participants either attended to the stimulus length (perceptual analysis), or evaluated its meaning distinguishing words from nonwords (lexico-semantic analysis). Perceptual and lexico-semantic analyses shared a mutual network comprising the left premotor cortex, the supplementary motor area (SMA) and the inferior parietal lobule (IPL). Perceptual analysis was associated with a strong brain activation in the SMA and the superior temporal gyrus bilaterally (STG), which remained unaltered from pre and post training. In the lexico-semantic analysis post learning, study participants showed additional activation in the left inferior frontal cortex (IFC) and in the left occipitotemporal cortex (OTC), regions known to be critically involved in lexical processing. Our data provide evidence for cortical plasticity evolving with a learning process enabling the transition from perceptual to lexico-semantic stimulus analysis. Importantly, the activation pattern remains task-related LOP and is thus the result of a decision process as to which LOP to engage in. © 2015 The Authors. Human Brain Mapping Published by Wiley Periodicals, Inc.
From perceptual to lexico‐semantic analysis—cortical plasticity enabling new levels of processing
Schlaffke, Lara; Rüther, Naima N.; Heba, Stefanie; Haag, Lauren M.; Schultz, Thomas; Rosengarth, Katharina; Tegenthoff, Martin; Bellebaum, Christian
2015-01-01
Abstract Certain kinds of stimuli can be processed on multiple levels. While the neural correlates of different levels of processing (LOPs) have been investigated to some extent, most of the studies involve skills and/or knowledge already present when performing the task. In this study we specifically sought to identify neural correlates of an evolving skill that allows the transition from perceptual to a lexico‐semantic stimulus analysis. Eighteen participants were trained to decode 12 letters of Morse code that were presented acoustically inside and outside of the scanner environment. Morse code was presented in trains of three letters while brain activity was assessed with fMRI. Participants either attended to the stimulus length (perceptual analysis), or evaluated its meaning distinguishing words from nonwords (lexico‐semantic analysis). Perceptual and lexico‐semantic analyses shared a mutual network comprising the left premotor cortex, the supplementary motor area (SMA) and the inferior parietal lobule (IPL). Perceptual analysis was associated with a strong brain activation in the SMA and the superior temporal gyrus bilaterally (STG), which remained unaltered from pre and post training. In the lexico‐semantic analysis post learning, study participants showed additional activation in the left inferior frontal cortex (IFC) and in the left occipitotemporal cortex (OTC), regions known to be critically involved in lexical processing. Our data provide evidence for cortical plasticity evolving with a learning process enabling the transition from perceptual to lexico‐semantic stimulus analysis. Importantly, the activation pattern remains task‐related LOP and is thus the result of a decision process as to which LOP to engage in. Hum Brain Mapp 36:4512–4528, 2015. © 2015 The Authors. Human Brain Mapping Published byWiley Periodicals, Inc. PMID:26304153
Boulos, Maged N; Roudsari, Abdul V; Carson, Ewart R
2002-07-01
HealthCyberMap (http://healthcybermap.semanticweb.org/) aims at mapping Internet health information resources in novel ways for enhanced retrieval and navigation. This is achieved by collecting appropriate resource metadata in an unambiguous form that preserves semantics. We modelled a qualified Dublin Core (DC) metadata set ontology with extra elements for resource quality and geographical provenance in Prot g -2000. A metadata collection form helps acquiring resource instance data within Prot g . The DC subject field is populated with UMLS terms directly imported from UMLS Knowledge Source Server using UMLS tab, a Prot g -2000 plug-in. The project is saved in RDFS/RDF. The ontology and associated form serve as a free tool for building and maintaining an RDF medical resource metadata base. The UMLS tab enables browsing and searching for concepts that best describe a resource, and importing them to DC subject fields. The resultant metadata base can be used with a search and inference engine, and have textual and/or visual navigation interface(s) applied to it, to ultimately build a medical Semantic Web portal. Different ways of exploiting Prot g -2000 RDF output are discussed. By making the context and semantics of resources, not merely their raw text and formatting, amenable to computer 'understanding,' we can build a Semantic Web that is more useful to humans than the current Web. This requires proper use of metadata and ontologies. Clinical codes can reliably describe the subjects of medical resources, establish the semantic relationships (as defined by underlying coding scheme) between related resources, and automate their topical categorisation.
Decoding the neural representation of fine-grained conceptual categories.
Ghio, Marta; Vaghi, Matilde Maria Serena; Perani, Daniela; Tettamanti, Marco
2016-05-15
Neuroscientific research on conceptual knowledge based on the grounded cognition framework has shed light on the organization of concrete concepts into semantic categories that rely on different types of experiential information. Abstract concepts have traditionally been investigated as an undifferentiated whole, and have only recently been addressed in a grounded cognition perspective. The present fMRI study investigated the involvement of brain systems coding for experiential information in the conceptual processing of fine-grained semantic categories along the abstract-concrete continuum. These categories consisted of mental state-, emotion-, mathematics-, mouth action-, hand action-, and leg action-related meanings. Thirty-five sentences for each category were used as stimuli in a 1-back task performed by 36 healthy participants. A univariate analysis failed to reveal category-specific activations. Multivariate pattern analyses, in turn, revealed that fMRI data contained sufficient information to disentangle all six fine-grained semantic categories across participants. However, the category-specific activity patterns showed no overlap with the regions coding for experiential information. These findings demonstrate the possibility of detecting specific patterns of neural representation associated with the processing of fine-grained conceptual categories, crucially including abstract ones, though bearing no anatomical correspondence with regions coding for experiential information as predicted by the grounded cognition hypothesis. Copyright © 2016 Elsevier Inc. All rights reserved.
Code of Federal Regulations, 2010 CFR
2010-10-01
... definitions apply: Code set means any set of codes used to encode data elements, such as tables of terms... sets inherent to a transaction, and not related to the format of the transaction. Data elements that... information in a transaction. Data set means a semantically meaningful unit of information exchanged between...
Code of Federal Regulations, 2012 CFR
2012-10-01
... definitions apply: Code set means any set of codes used to encode data elements, such as tables of terms... sets inherent to a transaction, and not related to the format of the transaction. Data elements that... information in a transaction. Data set means a semantically meaningful unit of information exchanged between...
Code of Federal Regulations, 2011 CFR
2011-10-01
... definitions apply: Code set means any set of codes used to encode data elements, such as tables of terms... sets inherent to a transaction, and not related to the format of the transaction. Data elements that... information in a transaction. Data set means a semantically meaningful unit of information exchanged between...
Phonological Coding in Good and Poor Readers.
ERIC Educational Resources Information Center
Briggs, Pamela; Underwood, Geoffrey
1982-01-01
A set of four experiments investigates the relationship between phonological coding and reading ability, using a picture-word interference task and a decoding task. Results with regard to both adults and children suggest that while poor readers possess weak decoding skills, good and poor readers show equivalent evidence of direct semantic and…
NASA Astrophysics Data System (ADS)
Ervik, Åsmund; Serratos, Guadalupe Jiménez; Müller, Erich A.
2017-03-01
We describe here raaSAFT, a Python code that enables the setup and running of coarse-grained molecular dynamics simulations in a systematic and efficient manner. The code is built on top of the popular HOOMD-blue code, and as such harnesses the computational power of GPUs. The methodology makes use of the SAFT- γ Mie force field, so the resulting coarse grained pair potentials are both closely linked to and consistent with the macroscopic thermodynamic properties of the simulated fluid. In raaSAFT both homonuclear and heteronuclear models are implemented for a wide range of compounds spanning from linear alkanes, to more complicated fluids such as water and alcohols, all the way up to nonionic surfactants and models of asphaltenes and resins. Adding new compounds as well as new features is made straightforward by the modularity of the code. To demonstrate the ease-of-use of raaSAFT, we give a detailed walkthrough of how to simulate liquid-liquid equilibrium of a hydrocarbon with water. We describe in detail how both homonuclear and heteronuclear compounds are implemented. To demonstrate the performance and versatility of raaSAFT, we simulate a large polymer-solvent mixture with 300 polystyrene molecules dissolved in 42 700 molecules of heptane, reproducing the experimentally observed temperature-dependent solubility of polystyrene. For this case we obtain a speedup of more than three orders of magnitude as compared to atomistically-detailed simulations.
Meade, Melissa E; Fernandes, Myra A
2016-07-01
We examined the influence of divided attention (DA) on recognition of words when the concurrent task was semantically related or unrelated to the to-be-recognised target words. Participants were asked to either study or retrieve a target list of semantically related words while simultaneously making semantic decisions (i.e., size judgements) to another set of related or unrelated words heard concurrently. We manipulated semantic relatedness of distractor to target words, and whether DA occurred during the encoding or retrieval phase of memory. Recognition accuracy was significantly diminished relative to full attention, following DA conditions at encoding, regardless of relatedness of distractors to study words. However, response times (RTs) were slower with related compared to unrelated distractors. Similarly, under DA at retrieval, recognition RTs were slower when distractors were semantically related than unrelated to target words. Unlike the effect from DA at encoding, recognition accuracy was worse under DA at retrieval when the distractors were related compared to unrelated to the target words. Results suggest that availability of general attentional resources is critical for successful encoding, whereas successful retrieval is particularly reliant on access to a semantic code, making it sensitive to related distractors under DA conditions.
False Memories Seconds Later: The Rapid and Compelling Onset of Illusory Recognition
ERIC Educational Resources Information Center
Flegal, Kristin E.; Atkins, Alexandra S.; Reuter-Lorenz, Patricia A.
2010-01-01
Distortions of long-term memory (LTM) in the converging associates task are thought to arise from semantic associative processes and monitoring failures due to degraded verbatim and/or contextual memory. Sensory-based coding is traditionally considered more prevalent than meaning-based coding in short-term memory (STM), whereas the converse is…
Air Traffic Controller Working Memory: Considerations in Air Traffic Control Tactical Operations
1993-09-01
INFORMATION PROCESSING SYSTEM 3 2. AIR TRAFFIC CONTROLLER MEMORY 5 2.1 MEMORY CODES 6 21.1 Visual Codes 7 2.1.2 Phonetic Codes 7 2.1.3 Semantic Codes 8...raise an awareness of the memory re- quirements of ATC tactical operations by presenting information on working memory processes that are relevant to...working v memory permeates every aspect of the controller’s ability to process air traffic information and control live traffic. The
Emmorey, Karen; Weisberg, Jill; McCullough, Stephen; Petrich, Jennifer A F
2013-08-01
We examined word-level reading circuits in skilled deaf readers whose primary language is American Sign Language, and hearing readers matched for reading ability (college level). During fMRI scanning, participants performed a semantic decision (concrete concept?), a phonological decision (two syllables?), and a false-font control task (string underlined?). The groups performed equally well on the semantic task, but hearing readers performed better on the phonological task. Semantic processing engaged similar left frontotemporal language circuits in deaf and hearing readers. However, phonological processing elicited increased neural activity in deaf, relative to hearing readers, in the left precentral gyrus, suggesting greater reliance on articulatory phonological codes, and in bilateral parietal cortex, suggesting increased phonological processing effort. Deaf readers also showed stronger anterior-posterior functional segregation between semantic and phonological processes in left inferior prefrontal cortex. Finally, weaker phonological decoding ability did not alter activation in the visual word form area for deaf readers. Copyright © 2013 Elsevier Inc. All rights reserved.
Jiang, Guoqian; Solbrig, Harold R; Chute, Christopher G
2011-01-01
A source of semantically coded Adverse Drug Event (ADE) data can be useful for identifying common phenotypes related to ADEs. We proposed a comprehensive framework for building a standardized ADE knowledge base (called ADEpedia) through combining ontology-based approach with semantic web technology. The framework comprises four primary modules: 1) an XML2RDF transformation module; 2) a data normalization module based on NCBO Open Biomedical Annotator; 3) a RDF store based persistence module; and 4) a front-end module based on a Semantic Wiki for the review and curation. A prototype is successfully implemented to demonstrate the capability of the system to integrate multiple drug data and ontology resources and open web services for the ADE data standardization. A preliminary evaluation is performed to demonstrate the usefulness of the system, including the performance of the NCBO annotator. In conclusion, the semantic web technology provides a highly scalable framework for ADE data source integration and standard query service.
Strikwerda-Brown, Cherie; Mothakunnel, Annu; Hodges, John R; Piguet, Olivier; Irish, Muireann
2018-04-24
Autobiographical memory (ABM) is typically held to comprise episodic and semantic elements, with the vast majority of studies to date focusing on profiles of episodic details in health and disease. In this context, 'non-episodic' elements are often considered to reflect semantic processing or are discounted from analyses entirely. Mounting evidence suggests that rather than reflecting one unitary entity, semantic autobiographical information may contain discrete subcomponents, which vary in their relative degree of semantic or episodic content. This study aimed to (1) review the existing literature to formally characterize the variability in analysis of 'non-episodic' content (i.e., external details) on the Autobiographical Interview and (2) use these findings to create a theoretically grounded framework for coding external details. Our review exposed discrepancies in the reporting and interpretation of external details across studies, reinforcing the need for a new, consistent approach. We validated our new external details scoring protocol (the 'NExt' taxonomy) in patients with Alzheimer's disease (n = 18) and semantic dementia (n = 13), and 20 healthy older Control participants and compared profiles of the NExt subcategories across groups and time periods. Our results revealed increased sensitivity of the NExt taxonomy in discriminating between ABM profiles of patient groups, when compared to traditionally used internal and external detail metrics. Further, remote and recent autobiographical memories displayed distinct compositions of the NExt detail types. This study is the first to provide a fine-grained and comprehensive taxonomy to parse external details into intuitive subcategories and to validate this protocol in neurodegenerative disorders. © 2018 The British Psychological Society.
Jiang, Guoqian; Wang, Liwei; Liu, Hongfang; Solbrig, Harold R; Chute, Christopher G
2013-01-01
A semantically coded knowledge base of adverse drug events (ADEs) with severity information is critical for clinical decision support systems and translational research applications. However it remains challenging to measure and identify the severity information of ADEs. The objective of the study is to develop and evaluate a semantic web based approach for building a knowledge base of severe ADEs based on the FDA Adverse Event Reporting System (AERS) reporting data. We utilized a normalized AERS reporting dataset and extracted putative drug-ADE pairs and their associated outcome codes in the domain of cardiac disorders. We validated the drug-ADE associations using ADE datasets from SIDe Effect Resource (SIDER) and the UMLS. We leveraged the Common Terminology Criteria for Adverse Event (CTCAE) grading system and classified the ADEs into the CTCAE in the Web Ontology Language (OWL). We identified and validated 2,444 unique Drug-ADE pairs in the domain of cardiac disorders, of which 760 pairs are in Grade 5, 775 pairs in Grade 4 and 2,196 pairs in Grade 3.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Druinsky, Alex; Ghysels, Pieter; Li, Xiaoye S.
In this paper, we study the performance of a two-level algebraic-multigrid algorithm, with a focus on the impact of the coarse-grid solver on performance. We consider two algorithms for solving the coarse-space systems: the preconditioned conjugate gradient method and a new robust HSS-embedded low-rank sparse-factorization algorithm. Our test data comes from the SPE Comparative Solution Project for oil-reservoir simulations. We contrast the performance of our code on one 12-core socket of a Cray XC30 machine with performance on a 60-core Intel Xeon Phi coprocessor. To obtain top performance, we optimized the code to take full advantage of fine-grained parallelism andmore » made it thread-friendly for high thread count. We also developed a bounds-and-bottlenecks performance model of the solver which we used to guide us through the optimization effort, and also carried out performance tuning in the solver’s large parameter space. Finally, as a result, significant speedups were obtained on both machines.« less
Bakken, Suzanne; Cimino, James J.; Haskell, Robert; Kukafka, Rita; Matsumoto, Cindi; Chan, Garrett K.; Huff, Stanley M.
2000-01-01
Objective: The purpose of this study was to test the adequacy of the Clinical LOINC (Logical Observation Identifiers, Names, and Codes) semantic structure as a terminology model for standardized assessment measures. Methods: After extension of the definitions, 1,096 items from 35 standardized assessment instruments were dissected into the elements of the Clinical LOINC semantic structure. An additional coder dissected at least one randomly selected item from each instrument. When multiple scale types occurred in a single instrument, a second coder dissected one randomly selected item representative of each scale type. Results: The results support the adequacy of the Clinical LOINC semantic structure as a terminology model for standardized assessments. Using the revised definitions, the coders were able to dissect into the elements of Clinical LOINC all the standardized assessment items in the sample instruments. Percentage agreement for each element was as follows: component, 100 percent; property, 87.8 percent; timing, 82.9 percent; system/sample, 100 percent; scale, 92.6 percent; and method, 97.6 percent. Discussion: This evaluation was an initial step toward the representation of standardized assessment items in a manner that facilitates data sharing and re-use. Further clarification of the definitions, especially those related to time and property, is required to improve inter-rater reliability and to harmonize the representations with similar items already in LOINC. PMID:11062226
[Medical Image Registration Method Based on a Semantic Model with Directional Visual Words].
Jin, Yufei; Ma, Meng; Yang, Xin
2016-04-01
Medical image registration is very challenging due to the various imaging modality,image quality,wide inter-patients variability,and intra-patient variability with disease progressing of medical images,with strict requirement for robustness.Inspired by semantic model,especially the recent tremendous progress in computer vision tasks under bag-of-visual-word framework,we set up a novel semantic model to match medical images.Since most of medical images have poor contrast,small dynamic range,and involving only intensities and so on,the traditional visual word models do not perform very well.To benefit from the advantages from the relative works,we proposed a novel visual word model named directional visual words,which performs better on medical images.Then we applied this model to do medical registration.In our experiment,the critical anatomical structures were first manually specified by experts.Then we adopted the directional visual word,the strategy of spatial pyramid searching from coarse to fine,and the k-means algorithm to help us locating the positions of the key structures accurately.Sequentially,we shall register corresponding images by the areas around these positions.The results of the experiments which were performed on real cardiac images showed that our method could achieve high registration accuracy in some specific areas.
A Theoretical Analysis of Learning with Graphics--Implications for Computer Graphics Design.
ERIC Educational Resources Information Center
ChanLin, Lih-Juan
This paper reviews the literature pertinent to learning with graphics. The dual coding theory provides explanation about how graphics are stored and precessed in semantic memory. The level of processing theory suggests how graphics can be employed in learning to encourage deeper processing. In addition to dual coding theory and level of processing…
Secret Codes: The Hidden Curriculum of Semantic Web Technologies
ERIC Educational Resources Information Center
Edwards, Richard; Carmichael, Patrick
2012-01-01
There is a long tradition in education of examination of the hidden curriculum, those elements which are implicit or tacit to the formal goals of education. This article draws upon that tradition to open up for investigation the hidden curriculum and assumptions about students and knowledge that are embedded in the coding undertaken to facilitate…
Semantic and visual memory codes in learning disabled readers.
Swanson, H L
1984-02-01
Two experiments investigated whether learning disabled readers' impaired recall is due to multiple coding deficiencies. In Experiment 1, learning disabled and skilled readers viewed nonsense pictures without names or with either relevant or irrelevant names with respect to the distinctive characteristics of the picture. Both types of names improved recall of nondisabled readers, while learning disabled readers exhibited better recall for unnamed pictures. No significant difference in recall was found between name training (relevant, irrelevant) conditions within reading groups. In Experiment 2, both reading groups participated in recall training for complex visual forms labeled with unrelated words, hierarchically related words, or without labels. A subsequent reproduction transfer task showed a facilitation in performance in skilled readers due to labeling, with learning disabled readers exhibiting better reproduction for unnamed pictures. Measures of output organization (clustering) indicated that recall is related to the development of superordinate categories. The results suggest that learning disabled children's reading difficulties are due to an inability to activate a semantic representation that interconnects visual and verbal codes.
Chen, Qingrong; Zhang, Jingjing; Xu, Xiaodong; Scheepers, Christoph; Yang, Yiming; Tanenhaus, Michael K
2016-09-01
In an ERP study, classic Chinese poems with a well-known rhyme scheme were used to generate an expectation of a rhyme in the absence of an expectation for a specific character. Critical characters were either consistent or inconsistent with the expected rhyme scheme and semantically congruent or incongruent with the content of the poem. These stimuli allowed us to examine whether a top-down rhyme scheme expectation would affect relatively early components of the ERP associated with character-to-sound mapping (P200) and lexically-mediated semantic processing (N400). The ERP data revealed that rhyme scheme congruence, but not semantic congruence modulated the P200: rhyme-incongruent characters elicited a P200 effect across the head demonstrating that top-down expectations influence early phonological coding of the character before lexical-semantic processing. Rhyme scheme incongruence also produced a right-lateralized N400-like effect. Moreover, compared to semantically congruous poems, semantically incongruous poems produced a larger N400 response only when the character was consistent with the expected rhyme scheme. The results suggest that top-down prosodic expectations can modulate early phonological processing in visual word recognition, indicating that prosodic expectations might play an important role in silent reading. They also suggest that semantic processing is influenced by general knowledge of text genre. Copyright © 2016 Elsevier B.V. All rights reserved.
A survey of compiler development aids. [concerning lexical, syntax, and semantic analysis
NASA Technical Reports Server (NTRS)
Buckles, B. P.; Hodges, B. C.; Hsia, P.
1977-01-01
A theoretical background was established for the compilation process by dividing it into five phases and explaining the concepts and algorithms that underpin each. The five selected phases were lexical analysis, syntax analysis, semantic analysis, optimization, and code generation. Graph theoretical optimization techniques were presented, and approaches to code generation were described for both one-pass and multipass compilation environments. Following the initial tutorial sections, more than 20 tools that were developed to aid in the process of writing compilers were surveyed. Eight of the more recent compiler development aids were selected for special attention - SIMCMP/STAGE2, LANG-PAK, COGENT, XPL, AED, CWIC, LIS, and JOCIT. The impact of compiler development aids were assessed some of their shortcomings and some of the areas of research currently in progress were inspected.
Semantic Segmentation of Indoor Point Clouds Using Convolutional Neural Network
NASA Astrophysics Data System (ADS)
Babacan, K.; Chen, L.; Sohn, G.
2017-11-01
As Building Information Modelling (BIM) thrives, geometry becomes no longer sufficient; an ever increasing variety of semantic information is needed to express an indoor model adequately. On the other hand, for the existing buildings, automatically generating semantically enriched BIM from point cloud data is in its infancy. The previous research to enhance the semantic content rely on frameworks in which some specific rules and/or features that are hand coded by specialists. These methods immanently lack generalization and easily break in different circumstances. On this account, a generalized framework is urgently needed to automatically and accurately generate semantic information. Therefore we propose to employ deep learning techniques for the semantic segmentation of point clouds into meaningful parts. More specifically, we build a volumetric data representation in order to efficiently generate the high number of training samples needed to initiate a convolutional neural network architecture. The feedforward propagation is used in such a way to perform the classification in voxel level for achieving semantic segmentation. The method is tested both for a mobile laser scanner point cloud, and a larger scale synthetically generated data. We also demonstrate a case study, in which our method can be effectively used to leverage the extraction of planar surfaces in challenging cluttered indoor environments.
Modified Mean-Pyramid Coding Scheme
NASA Technical Reports Server (NTRS)
Cheung, Kar-Ming; Romer, Richard
1996-01-01
Modified mean-pyramid coding scheme requires transmission of slightly fewer data. Data-expansion factor reduced from 1/3 to 1/12. Schemes for progressive transmission of image data transmitted in sequence of frames in such way coarse version of image reconstructed after receipt of first frame and increasingly refined version of image reconstructed after receipt of each subsequent frame.
Geometric Nonlinear Computation of Thin Rods and Shells
NASA Astrophysics Data System (ADS)
Grinspun, Eitan
2011-03-01
We develop simple, fast numerical codes for the dynamics of thin elastic rods and shells, by exploiting the connection between physics, geometry, and computation. By building a discrete mechanical picture from the ground up, mimicking the axioms, structures, and symmetries of the smooth setting, we produce numerical codes that not only are consistent in a classical sense, but also reproduce qualitative, characteristic behavior of a physical system----such as exact preservation of conservation laws----even for very coarse discretizations. As two recent examples, we present discrete computational models of elastic rods and shells, with straightforward extensions to the viscous setting. Even at coarse discretizations, the resulting simulations capture characteristic geometric instabilities. The numerical codes we describe are used in experimental mechanics, cinema, and consumer software products. This is joint work with Miklós Bergou, Basile Audoly, Max Wardetzky, and Etienne Vouga. This research is supported in part by the Sloan Foundation, the NSF, Adobe, Autodesk, Intel, the Walt Disney Company, and Weta Digital.
Short range spread-spectrum radiolocation system and method
Smith, Stephen F.
2003-04-29
A short range radiolocation system and associated methods that allow the location of an item, such as equipment, containers, pallets, vehicles, or personnel, within a defined area. A small, battery powered, self-contained tag is provided to an item to be located. The tag includes a spread-spectrum transmitter that transmits a spread-spectrum code and identification information. A plurality of receivers positioned about the area receive signals from a transmitting tag. The position of the tag, and hence the item, is located by triangulation. The system employs three different ranging techniques for providing coarse, intermediate, and fine spatial position resolution. Coarse positioning information is provided by use of direct-sequence code phase transmitted as a spread-spectrum signal. Intermediate positioning information is provided by the use of a difference signal transmitted with the direct-sequence spread-spectrum code. Fine positioning information is provided by use of carrier phase measurements. An algorithm is employed to combine the three data sets to provide accurate location measurements.
Jiang, Guoqian; Wang, Chen; Zhu, Qian; Chute, Christopher G
2013-01-01
Knowledge-driven text mining is becoming an important research area for identifying pharmacogenomics target genes. However, few of such studies have been focused on the pharmacogenomics targets of adverse drug events (ADEs). The objective of the present study is to build a framework of knowledge integration and discovery that aims to support pharmacogenomics target predication of ADEs. We integrate a semantically annotated literature corpus Semantic MEDLINE with a semantically coded ADE knowledgebase known as ADEpedia using a semantic web based framework. We developed a knowledge discovery approach combining a network analysis of a protein-protein interaction (PPI) network and a gene functional classification approach. We performed a case study of drug-induced long QT syndrome for demonstrating the usefulness of the framework in predicting potential pharmacogenomics targets of ADEs.
Lekschas, Fritz; Stachelscheid, Harald; Seltmann, Stefanie; Kurtz, Andreas
2015-03-01
Advancing technologies generate large amounts of molecular and phenotypic data on cells, tissues and organisms, leading to an ever-growing detail and complexity while information retrieval and analysis becomes increasingly time-consuming. The Semantic Body Browser is a web application for intuitively exploring the body of an organism from the organ to the subcellular level and visualising expression profiles by means of semantically annotated anatomical illustrations. It is used to comprehend biological and medical data related to the different body structures while relying on the strong pattern recognition capabilities of human users. The Semantic Body Browser is a JavaScript web application that is freely available at http://sbb.cellfinder.org. The source code is provided on https://github.com/flekschas/sbb. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Reliable Adaptive Video Streaming Driven by Perceptual Semantics for Situational Awareness
Pimentel-Niño, M. A.; Saxena, Paresh; Vazquez-Castro, M. A.
2015-01-01
A novel cross-layer optimized video adaptation driven by perceptual semantics is presented. The design target is streamed live video to enhance situational awareness in challenging communications conditions. Conventional solutions for recreational applications are inadequate and novel quality of experience (QoE) framework is proposed which allows fully controlled adaptation and enables perceptual semantic feedback. The framework relies on temporal/spatial abstraction for video applications serving beyond recreational purposes. An underlying cross-layer optimization technique takes into account feedback on network congestion (time) and erasures (space) to best distribute available (scarce) bandwidth. Systematic random linear network coding (SRNC) adds reliability while preserving perceptual semantics. Objective metrics of the perceptual features in QoE show homogeneous high performance when using the proposed scheme. Finally, the proposed scheme is in line with content-aware trends, by complying with information-centric-networking philosophy and architecture. PMID:26247057
Lexical–Semantic Organization in Bilingual Children: Evidence From a Repeated Word Association Task
Sheng, Li; McGregor, Karla K.; Marian, Viorica
2007-01-01
Purpose This study examined lexical–semantic organization of bilingual children in their 2 languages and in relation to monolingual age-mates. Method Twelve Mandarin–English bilingual and 12 English monolingual children generated 3 associations to each of 36 words. Responses were coded as paradigmatic (dog–cat) or syntagmatic (dog–bark). Results Within the bilingual group, word association performance was comparable and correlated between 1st and 2nd languages. Bilingual and monolingual children demonstrated similar patterns of responses, but subtle group differences were also revealed. When between-group comparisons were made on English measures, there was a bilingual advantage in paradigmatic responding during the 1st elicitation and for verbs. Conclusion Results support previous studies in finding parallel development in bilinguals’ 1st- and 2nd-language lexical–semantic skills and provide preliminary evidence that bilingualism may enhance paradigmatic organization of the semantic lexicon. PMID:16787896
Guardia, Gabriela D A; Ferreira Pires, Luís; da Silva, Eduardo G; de Farias, Cléver R G
2017-02-01
Gene expression studies often require the combined use of a number of analysis tools. However, manual integration of analysis tools can be cumbersome and error prone. To support a higher level of automation in the integration process, efforts have been made in the biomedical domain towards the development of semantic web services and supporting composition environments. Yet, most environments consider only the execution of simple service behaviours and requires users to focus on technical details of the composition process. We propose a novel approach to the semantic composition of gene expression analysis services that addresses the shortcomings of the existing solutions. Our approach includes an architecture designed to support the service composition process for gene expression analysis, and a flexible strategy for the (semi) automatic composition of semantic web services. Finally, we implement a supporting platform called SemanticSCo to realize the proposed composition approach and demonstrate its functionality by successfully reproducing a microarray study documented in the literature. The SemanticSCo platform provides support for the composition of RESTful web services semantically annotated using SAWSDL. Our platform also supports the definition of constraints/conditions regarding the order in which service operations should be invoked, thus enabling the definition of complex service behaviours. Our proposed solution for semantic web service composition takes into account the requirements of different stakeholders and addresses all phases of the service composition process. It also provides support for the definition of analysis workflows at a high-level of abstraction, thus enabling users to focus on biological research issues rather than on the technical details of the composition process. The SemanticSCo source code is available at https://github.com/usplssb/SemanticSCo. Copyright © 2017 Elsevier Inc. All rights reserved.
Moving Controlled Vocabularies into the Semantic Web
NASA Astrophysics Data System (ADS)
Thomas, R.; Lowry, R. K.; Kokkinaki, A.
2015-12-01
One of the issues with legacy oceanographic data formats is that the only tool available for describing what a measurement is and how it was made is a single metadata tag known as the parameter code. The British Oceanographic Data Centre (BODC) has been supporting the international oceanographic community gain maximum benefit from this through a controlled vocabulary known as the BODC Parameter Usage Vocabulary (PUV). Over time this has grown to over 34,000 entries some of which have preferred labels with over 400 bytes of descriptive information detailing what was measured and how. A decade ago the BODC pioneered making this information available in a more useful form with the implementation of a prototype vocabulary server (NVS) that referenced each 'parameter code' as a URL. This developed into the current server (NVS V2) in which the parameter URL resolves into an RDF document based on the SKOS data model which includes a list of resource URLs mapped to the 'parameter'. For example the parameter code for a contaminant in biota, such as 'cadmium in Mytilus edulis', carries RDF triples leading to the entry for Mytilus edulis in the WoRMS and for cadmium in the ChEBI ontologies. By providing links into these external ontologies the information captured in a 1980s parameter code now conforms to the Linked Data paradigm of the Semantic Web, vastly increasing the descriptive information accessible to a user. This presentation will describe the next steps along the road to the Semantic Web with the development of a SPARQL end point1 to expose the PUV plus the 190 other controlled vocabularies held in NVS. Whilst this is ideal for those fluent in SPARQL, most users require something a little more user-friendly and so the NVS browser2 was developed over the end point to allow less technical users to query the vocabularies and navigate the NVS ontology. This tool integrates into an editor that allows vocabulary content to be manipulated by authorised users outside BODC. Having placed Linked Data tooling over a single SPARQL end point the obvious future development for this system is to support semantic interoperability outside NVS by the incorporation of federated SPARQL end points in the USA and Australia during the ODIP II project. 1https://vocab.nerc.ac.uk/sparql 2 https://www.bodc.ac.uk/data/codes_and_formats/vocabulary_search/
The Nature and Neural Correlates of Semantic Association versus Conceptual Similarity
Jackson, Rebecca L.; Hoffman, Paul; Pobric, Gorana; Lambon Ralph, Matthew A.
2015-01-01
The ability to represent concepts and the relationships between them is critical to human cognition. How does the brain code relationships between items that share basic conceptual properties (e.g., dog and wolf) while simultaneously representing associative links between dissimilar items that co-occur in particular contexts (e.g., dog and bone)? To clarify the neural bases of these semantic components in neurologically intact participants, both types of semantic relationship were investigated in an fMRI study optimized for anterior temporal lobe (ATL) coverage. The clear principal finding was that the same core semantic network (ATL, superior temporal sulcus, ventral prefrontal cortex) was equivalently engaged when participants made semantic judgments on the basis of association or conceptual similarity. Direct comparisons revealed small, weaker differences for conceptual similarity > associative decisions (e.g., inferior prefrontal cortex) and associative > conceptual similarity (e.g., ventral parietal cortex) which appear to reflect graded differences in task difficulty. Indeed, once reaction time was entered as a covariate into the analysis, no associative versus category differences remained. The paper concludes with a discussion of how categorical/feature-based and associative relationships might be represented within a single, unified semantic system. PMID:25636912
Action Algebras and Model Algebras in Denotational Semantics
NASA Astrophysics Data System (ADS)
Guedes, Luiz Carlos Castro; Haeusler, Edward Hermann
This article describes some results concerning the conceptual separation of model dependent and language inherent aspects in a denotational semantics of a programming language. Before going into the technical explanation, the authors wish to relate a story that illustrates how correctly and precisely posed questions can influence the direction of research. By means of his questions, Professor Mosses aided the PhD research of one of the authors of this article and taught the other, who at the time was a novice supervisor, the real meaning of careful PhD supervision. The student’s research had been partially developed towards the implementation of programming languages through denotational semantics specification, and the student had developed a prototype [12] that compared relatively well to some industrial compilers of the PASCAL language. During a visit to the BRICS lab in Aarhus, the student’s supervisor gave Professor Mosses a draft of an article describing the prototype and its implementation experiments. The next day, Professor Mosses asked the supervisor, “Why is the generated code so efficient when compared to that generated by an industrial compiler?” and “You claim that the efficiency is simply a consequence of the Object- Orientation mechanisms used by the prototype programming language (C++); this should be better investigated. Pay more attention to the class of programs that might have this good comparison profile.” As a result of these aptly chosen questions and comments, the student and supervisor made great strides in the subsequent research; the advice provided by Professor Mosses made them perceive that the code generated for certain semantic domains was efficient because it mapped to the “right aspect” of the language semantics. (Certain functional types, used to represent mappings such as Stores and Environments, were pushed to the level of the object language (as in
ERIC Educational Resources Information Center
Elbro, Carsten; And Others
1994-01-01
Compared to controls, adults (n=102) who reported a history of difficulties in learning to read were disabled in phonological coding, but less disabled in reading comprehension. Adults with poor phonological coding skills had basic deficits in phonological representations of spoken words, even when semantic word knowledge, phonemic awareness,…
On initial Brain Activity Mapping of episodic and semantic memory code in the hippocampus.
Tsien, Joe Z; Li, Meng; Osan, Remus; Chen, Guifen; Lin, Longian; Wang, Phillip Lei; Frey, Sabine; Frey, Julietta; Zhu, Dajiang; Liu, Tianming; Zhao, Fang; Kuang, Hui
2013-10-01
It has been widely recognized that the understanding of the brain code would require large-scale recording and decoding of brain activity patterns. In 2007 with support from Georgia Research Alliance, we have launched the Brain Decoding Project Initiative with the basic idea which is now similarly advocated by BRAIN project or Brain Activity Map proposal. As the planning of the BRAIN project is currently underway, we share our insights and lessons from our efforts in mapping real-time episodic memory traces in the hippocampus of freely behaving mice. We show that appropriate large-scale statistical methods are essential to decipher and measure real-time memory traces and neural dynamics. We also provide an example of how the carefully designed, sometime thinking-outside-the-box, behavioral paradigms can be highly instrumental to the unraveling of memory-coding cell assembly organizing principle in the hippocampus. Our observations to date have led us to conclude that the specific-to-general categorical and combinatorial feature-coding cell assembly mechanism represents an emergent property for enabling the neural networks to generate and organize not only episodic memory, but also semantic knowledge and imagination. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.
Co, Manuel C; Boden-Albala, Bernadette; Quarles, Leigh; Wilcox, Adam; Bakken, Suzanne
2012-01-01
In designing informatics infrastructure to support comparative effectiveness research (CER), it is necessary to implement approaches for integrating heterogeneous data sources such as clinical data typically stored in clinical data warehouses and those that are normally stored in separate research databases. One strategy to support this integration is the use of a concept-oriented data dictionary with a set of semantic terminology models. The aim of this paper is to illustrate the use of the semantic structure of Clinical LOINC (Logical Observation Identifiers, Names, and Codes) in integrating community-based survey items into the Medical Entities Dictionary (MED) to support the integration of survey data with clinical data for CER studies.
Semantic Technologies for Re-Use of Clinical Routine Data.
Kreuzthaler, Markus; Martínez-Costa, Catalina; Kaiser, Peter; Schulz, Stefan
2017-01-01
Routine patient data in electronic patient records are only partly structured, and an even smaller segment is coded, mainly for administrative purposes. Large parts are only available as free text. Transforming this content into a structured and semantically explicit form is a prerequisite for querying and information extraction. The core of the system architecture presented in this paper is based on SAP HANA in-memory database technology using the SAP Connected Health platform for data integration as well as for clinical data warehousing. A natural language processing pipeline analyses unstructured content and maps it to a standardized vocabulary within a well-defined information model. The resulting semantically standardized patient profiles are used for a broad range of clinical and research application scenarios.
Ervik, Åsmund; Mejía, Andrés; Müller, Erich A
2016-09-26
Coarse-grained molecular simulation has become a popular tool for modeling simple and complex fluids alike. The defining aspects of a coarse grained model are the force field parameters, which must be determined for each particular fluid. Because the number of molecular fluids of interest in nature and in engineering processes is immense, constructing force field parameter tables by individually fitting to experimental data is a futile task. A step toward solving this challenge was taken recently by Mejía et al., who proposed a correlation that provides SAFT-γ Mie force field parameters for a fluid provided one knows the critical temperature, the acentric factor and a liquid density, all relatively accessible properties. Building on this, we have applied the correlation to more than 6000 fluids, and constructed a web application, called "Bottled SAFT", which makes this data set easily searchable by CAS number, name or chemical formula. Alternatively, the application allows the user to calculate parameters for components not present in the database. Once the intermolecular potential has been found through Bottled SAFT, code snippets are provided for simulating the desired substance using the "raaSAFT" framework, which leverages established molecular dynamics codes to run the simulations. The code underlying the web application is written in Python using the Flask microframework; this allows us to provide a modern high-performance web app while also making use of the scientific libraries available in Python. Bottled SAFT aims at taking the complexity out of obtaining force field parameters for a wide range of molecular fluids, and facilitates setting up and running coarse-grained molecular simulations. The web application is freely available at http://www.bottledsaft.org . The underlying source code is available on Bitbucket under a permissive license.
Hauk, Olaf
2016-08-01
Theoretical developments about the nature of semantic representations and processes should be accompanied by a discussion of how these theories can be validated on the basis of empirical data. Here, I elaborate on the link between theory and empirical research, highlighting the need for temporal information in order to distinguish fundamental aspects of semantics. The generic point that fast cognitive processes demand fast measurement techniques has been made many times before, although arguably more often in the psychophysiological community than in the metabolic neuroimaging community. Many reviews on the neuroscience of semantics mostly or even exclusively focus on metabolic neuroimaging data. Following an analysis of semantics in terms of the representations and processes involved, I argue that fundamental theoretical debates about the neuroscience of semantics can only be concluded on the basis of data with sufficient temporal resolution. Any "semantic effect" may result from a conflation of long-term memory representations, retrieval and working memory processes, mental imagery, and episodic memory. This poses challenges for all neuroimaging modalities, but especially for those with low temporal resolution. It also throws doubt on the usefulness of contrasts between meaningful and meaningless stimuli, which may differ on a number of semantic and non-semantic dimensions. I will discuss the consequences of this analysis for research on the role of convergence zones or hubs and distributed modal brain networks, top-down modulation of task and context as well as interactivity between levels of the processing hierarchy, for example in the framework of predictive coding.
Shaban-Nejad, Arash; Mamiya, Hiroshi; Riazanov, Alexandre; Forster, Alan J; Baker, Christopher J O; Tamblyn, Robyn; Buckeridge, David L
2016-01-01
We propose an integrated semantic web framework consisting of formal ontologies, web services, a reasoner and a rule engine that together recommend appropriate level of patient-care based on the defined semantic rules and guidelines. The classification of healthcare-associated infections within the HAIKU (Hospital Acquired Infections - Knowledge in Use) framework enables hospitals to consistently follow the standards along with their routine clinical practice and diagnosis coding to improve quality of care and patient safety. The HAI ontology (HAIO) groups over thousands of codes into a consistent hierarchy of concepts, along with relationships and axioms to capture knowledge on hospital-associated infections and complications with focus on the big four types, surgical site infections (SSIs), catheter-associated urinary tract infection (CAUTI); hospital-acquired pneumonia, and blood stream infection. By employing statistical inferencing in our study we use a set of heuristics to define the rule axioms to improve the SSI case detection. We also demonstrate how the occurrence of an SSI is identified using semantic e-triggers. The e-triggers will be used to improve our risk assessment of post-operative surgical site infections (SSIs) for patients undergoing certain type of surgeries (e.g., coronary artery bypass graft surgery (CABG)).
Lorenz, Antje; Zwitserlood, Pienie
2016-01-01
This study examines the lexical representation and processing of noun-noun compounds and their grammatical gender during speech production in German, a language that codes for grammatical gender (masculine, feminine, and neuter). Using a picture-word interference paradigm, participants produced determiner-compound noun phrases in response to pictures, while ignoring written distractor words. Compound targets were either semantically transparent (e.g., birdhouse) or opaque (e.g., hotdog), and their constituent nouns either had the same or a different gender (internal gender match). Effects of gender-congruent but otherwise unrelated distractor nouns, and of two morphologically related distractors corresponding to the first or second constituent were assessed relative to a completely unrelated, gender-incongruent distractor baseline. Both constituent distractors strongly facilitated compound naming, and these effects were independent of the targets' semantic transparency. This supports retrieval of constituent morphemes for semantically transparent and opaque compounds during speech production. Furthermore, gender congruency between compounds and distractors did not speed up naming in general, but interacted with gender match of the compounds' constituent nouns, and their semantic transparency. A significant gender-congruency effect was obtained with semantically transparent compounds, consisting of two constituent nouns of the same gender, only. In principle, this pattern is compatible with a multiple lemma representation account for semantically transparent, but not for opaque compounds. The data also fit with a more parsimonious, holistic representation for all compounds at the lemma level, when differences in co-activation patterns for semantically transparent and opaque compounds are considered.
Interior Fluid Dynamics of Liquid-Filled Projectiles
1989-12-01
the Sandia code. The previous codes are primarily based on finite-difference approximations with relatively coarse grid and were designed without...exploits Chorin’s method of artificial compressibility. The steady solution at 11 X 24 X 21 grid points in r, 0, z-direction is obtained by integrating...differences in radial and axial direction and pseudoepectral differencing in the azimuthal direction. Nonuniform grids are introduced for increased
Fischbach, Martin; Wiebusch, Dennis; Latoschik, Marc Erich
2017-04-01
Modularity, modifiability, reusability, and API usability are important software qualities that determine the maintainability of software architectures. Virtual, Augmented, and Mixed Reality (VR, AR, MR) systems, modern computer games, as well as interactive human-robot systems often include various dedicated input-, output-, and processing subsystems. These subsystems collectively maintain a real-time simulation of a coherent application state. The resulting interdependencies between individual state representations, mutual state access, overall synchronization, and flow of control implies a conceptual close coupling whereas software quality asks for a decoupling to develop maintainable solutions. This article presents five semantics-based software techniques that address this contradiction: Semantic grounding, code from semantics, grounded actions, semantic queries, and decoupling by semantics. These techniques are applied to extend the well-established entity-component-system (ECS) pattern to overcome some of this pattern's deficits with respect to the implied state access. A walk-through of central implementation aspects of a multimodal (speech and gesture) VR-interface is used to highlight the techniques' benefits. This use-case is chosen as a prototypical example of complex architectures with multiple interacting subsystems found in many VR, AR and MR architectures. Finally, implementation hints are given, lessons learned regarding maintainability pointed-out, and performance implications discussed.
Controlled encoding strategies in memory tests in lithium patients.
Opgenoorth, E; Karlick-Bolten, E
1986-03-01
The "levels of processing" theory (Craik and Lockhart) and "dual coding" theory (Paivio) provide new aspects for clinical memory research work. Therefore, an incidental learning paradigm on the basis of these two theoretical approaches was chosen to test aspects of memory performances with lithium therapy. Results of two experiments, with controlled non-semantic processing (rating experiment "comparison of size") and additive semantic processing (rating "living--non-living") indicate a slight reduction in recall (Fig. 1) and recognition performance (Fig. 2) in lithium patients. Effects on encoding strategies are of equal quality in patients and healthy subjects (Tab. 1, 2) but performance differs between both groups: poorer systematic benefit from within code repetitions ("word-word" items, "picture-picture" items) and dual coding (repeated variable item presentation "picture-word") is obtained. The less efficient encoding strategies in the speeded task are discussed with respect to cognitive rigidity and slowing of performance by emotional states. This investigation of so-called "memory deficits" with lithium is an attempt to explore impairments at an early stage of processing; the characterization of the perceptual cognitive analysis seems useful for further clinical research work on this topic.
BRYNTRN: A baryon transport model
NASA Technical Reports Server (NTRS)
Wilson, John W.; Townsend, Lawrence W.; Nealy, John E.; Chun, Sang Y.; Hong, B. S.; Buck, Warren W.; Lamkin, S. L.; Ganapol, Barry D.; Khan, Ferdous; Cucinotta, Francis A.
1989-01-01
The development of an interaction data base and a numerical solution to the transport of baryons through an arbitrary shield material based on a straight ahead approximation of the Boltzmann equation are described. The code is most accurate for continuous energy boundary values, but gives reasonable results for discrete spectra at the boundary using even a relatively coarse energy grid (30 points) and large spatial increments (1 cm in H2O). The resulting computer code is self-contained, efficient and ready to use. The code requires only a very small fraction of the computer resources required for Monte Carlo codes.
[Learning virtual routes: what does verbal coding do in working memory?].
Gyselinck, Valérie; Grison, Élise; Gras, Doriane
2015-03-01
Two experiments were run to complete our understanding of the role of verbal and visuospatial encoding in the construction of a spatial model from visual input. In experiment 1 a dual task paradigm was applied to young adults who learned a route in a virtual environment and then performed a series of nonverbal tasks to assess spatial knowledge. Results indicated that landmark knowledge as asserted by the visual recognition of landmarks was not impaired by any of the concurrent task. Route knowledge, assessed by recognition of directions, was impaired both by a tapping task and a concurrent articulation task. Interestingly, the pattern was modulated when no landmarks were available to perform the direction task. A second experiment was designed to explore the role of verbal coding on the construction of landmark and route knowledge. A lexical-decision task was used as a verbal-semantic dual task, and a tone decision task as a nonsemantic auditory task. Results show that these new concurrent tasks impaired differently landmark knowledge and route knowledge. Results can be interpreted as showing that the coding of route knowledge could be grounded on both a coding of the sequence of events and on a semantic coding of information. These findings also point on some limits of Baddeley's working memory model. (PsycINFO Database Record (c) 2015 APA, all rights reserved).
Cieslowski, B J; Wajngurt, D; Cimino, J J; Bakken, S
2001-01-01
Recent investigations have tested the applicability of various terminology models for the representing nursing concepts including those related to nursing diagnoses, nursing interventions, and standardized nursing assessments as a prerequisite for building a reference terminology that supports the nursing domain. We used the semantic structure of Clinical LOINC (Logical Observations, Identifiers, Names, and Codes) as a reference terminology model to support the integration of standardized assessment terms from two nursing terminologies into the Medical Entities Dictionary (MED), the concept-oriented, metadata dictionary at New York Presbyterian Hospital. Although the LOINC semantic structure was used previously to represent laboratory terms in the MED, selected hierarchies and semantic slots required revisions in order to incorporate the nursing assessment concepts. This project was an initial step in integrating nursing assessment concepts into the MED in a manner consistent with evolving standards for reference terminology models. Moreover, the revisions provide the foundation for adding other types of standardized assessments to the MED.
Cieslowski, B. J.; Wajngurt, D.; Cimino, J. J.; Bakken, S.
2001-01-01
Recent investigations have tested the applicability of various terminology models for the representing nursing concepts including those related to nursing diagnoses, nursing interventions, and standardized nursing assessments as a prerequisite for building a reference terminology that supports the nursing domain. We used the semantic structure of Clinical LOINC (Logical Observations, Identifiers, Names, and Codes) as a reference terminology model to support the integration of standardized assessment terms from two nursing terminologies into the Medical Entities Dictionary (MED), the concept-oriented, metadata dictionary at New York Presbyterian Hospital. Although the LOINC semantic structure was used previously to represent laboratory terms in the MED, selected hierarchies and semantic slots required revisions in order to incorporate the nursing assessment concepts. This project was an initial step in integrating nursing assessment concepts into the MED in a manner consistent with evolving standards for reference terminology models. Moreover, the revisions provide the foundation for adding other types of standardized assessments to the MED. PMID:11825165
Co, Manuel C.; Boden-Albala, Bernadette; Quarles, Leigh; Wilcox, Adam; Bakken, Suzanne
2012-01-01
In designing informatics infrastructure to support comparative effectiveness research (CER), it is necessary to implement approaches for integrating heterogeneous data sources such as clinical data typically stored in clinical data warehouses and those that are normally stored in separate research databases. One strategy to support this integration is the use of a concept-oriented data dictionary with a set of semantic terminology models. The aim of this paper is to illustrate the use of the semantic structure of Clinical LOINC (Logical Observation Identifiers, Names, and Codes) in integrating community-based survey items into the Medical Entities Dictionary (MED) to support the integration of survey data with clinical data for CER studies. PMID:24199059
Savill, Nicola; Ellis, Andrew W; Jefferies, Elizabeth
2017-04-01
Verbal short-term memory (STM) is a crucial cognitive function central to language learning, comprehension and reasoning, yet the processes that underlie this capacity are not fully understood. In particular, although STM primarily draws on a phonological code, interactions between long-term phonological and semantic representations might help to stabilise the phonological trace for words ("semantic binding hypothesis"). This idea was first proposed to explain the frequent phoneme recombination errors made by patients with semantic dementia when recalling words that are no longer fully understood. However, converging evidence in support of semantic binding is scant: it is unusual for studies of healthy participants to examine serial recall at the phoneme level and also it is difficult to separate the contribution of phonological-lexical knowledge from effects of word meaning. We used a new method to disentangle these influences in healthy individuals by training new 'words' with or without associated semantic information. We examined phonological coherence in immediate serial recall (ISR), both immediately and the day after training. Trained items were more likely to be recalled than novel nonwords, confirming the importance of phonological-lexical knowledge, and items with semantic associations were also produced more accurately than those with no meaning, at both time points. For semantically-trained items, there were fewer phoneme ordering and identity errors, and consequently more complete target items were produced in both correct and incorrect list positions. These data show that lexical-semantic knowledge improves the robustness of verbal STM at the sub-item level, even when the effect of phonological familiarity is taken into account. Copyright © 2016 Elsevier Ltd. All rights reserved.
Jumping across biomedical contexts using compressive data fusion
Zitnik, Marinka; Zupan, Blaz
2016-01-01
Motivation: The rapid growth of diverse biological data allows us to consider interactions between a variety of objects, such as genes, chemicals, molecular signatures, diseases, pathways and environmental exposures. Often, any pair of objects—such as a gene and a disease—can be related in different ways, for example, directly via gene–disease associations or indirectly via functional annotations, chemicals and pathways. Different ways of relating these objects carry different semantic meanings. However, traditional methods disregard these semantics and thus cannot fully exploit their value in data modeling. Results: We present Medusa, an approach to detect size-k modules of objects that, taken together, appear most significant to another set of objects. Medusa operates on large-scale collections of heterogeneous datasets and explicitly distinguishes between diverse data semantics. It advances research along two dimensions: it builds on collective matrix factorization to derive different semantics, and it formulates the growing of the modules as a submodular optimization program. Medusa is flexible in choosing or combining semantic meanings and provides theoretical guarantees about detection quality. In a systematic study on 310 complex diseases, we show the effectiveness of Medusa in associating genes with diseases and detecting disease modules. We demonstrate that in predicting gene–disease associations Medusa compares favorably to methods that ignore diverse semantic meanings. We find that the utility of different semantics depends on disease categories and that, overall, Medusa recovers disease modules more accurately when combining different semantics. Availability and implementation: Source code is at http://github.com/marinkaz/medusa Contact: marinka@cs.stanford.edu, blaz.zupan@fri.uni-lj.si PMID:27307649
Abraham, Joanna; Kannampallil, Thomas G; Srinivasan, Vignesh; Galanter, William L; Tagney, Gail; Cohen, Trevor
2017-01-01
We develop and evaluate a methodological approach to measure the degree and nature of overlap in handoff communication content within and across clinical professions. This extensible, exploratory approach relies on combining techniques from conversational analysis and distributional semantics. We audio-recorded handoff communication of residents and nurses on the General Medicine floor of a large academic hospital (n=120 resident and n=120 nurse handoffs). We measured semantic similarity, a proxy for content overlap, between resident-resident and nurse-nurse communication using multiple steps: a qualitative conversational content analysis; an automated semantic similarity analysis using Reflective Random Indexing (RRI); and comparing semantic similarity generated by RRI analysis with human ratings of semantic similarity. There was significant association between the semantic similarity as computed by the RRI method and human rating (ρ=0.88). Based on the semantic similarity scores, content overlap was relatively higher for content related to patient active problems, assessment of active problems, patient-identifying information, past medical history, and medications/treatments. In contrast, content overlap was limited on content related to allergies, family-related information, code status, and anticipatory guidance. Our approach using RRI analysis provides new opportunities for characterizing the nature and degree of overlap in handoff communication. Although exploratory, this method provides a basis for identifying content that can be used for determining shared understanding across clinical professions. Additionally, this approach can inform the development of flexibly standardized handoff tools that reflect clinical content that are most appropriate for fostering shared understanding during transitions of care. Copyright © 2016 Elsevier Inc. All rights reserved.
Semantic, perceptual and number space: relations between category width and spatial processing.
Brugger, Peter; Loetscher, Tobias; Graves, Roger E; Knoch, Daria
2007-05-17
Coarse semantic encoding and broad categorization behavior are the hallmarks of the right cerebral hemisphere's contribution to language processing. We correlated 40 healthy subjects' breadth of categorization as assessed with Pettigrew's category width scale with lateral asymmetries in perceptual and representational space. Specifically, we hypothesized broader category width to be associated with larger leftward spatial biases. For the 20 men, but not the 20 women, this hypothesis was confirmed both in a lateralized tachistoscopic task with chimeric faces and a random digit generation task; the higher a male participant's score on category width, the more pronounced were his left-visual field bias in the judgement of chimeric faces and his small-number preference in digit generation ("small" is to the left of "large" in number space). Subjects' category width was unrelated to lateral displacements in a blindfolded tactile-motor rod centering task. These findings indicate that visual-spatial functions of the right hemisphere should not be considered independent of the same hemisphere's contribution to language. Linguistic and spatial cognition may be more tightly interwoven than is currently assumed.
Network-based approaches to climate knowledge discovery
NASA Astrophysics Data System (ADS)
Budich, Reinhard; Nyberg, Per; Weigel, Tobias
2011-11-01
Climate Knowledge Discovery Workshop; Hamburg, Germany, 30 March to 1 April 2011 Do complex networks combined with semantic Web technologies offer the next generation of solutions in climate science? To address this question, a first Climate Knowledge Discovery (CKD) Workshop, hosted by the German Climate Computing Center (Deutsches Klimarechenzentrum (DKRZ)), brought together climate and computer scientists from major American and European laboratories, data centers, and universities, as well as representatives from industry, the broader academic community, and the semantic Web communities. The participants, representing six countries, were concerned with large-scale Earth system modeling and computational data analysis. The motivation for the meeting was the growing problem that climate scientists generate data faster than it can be interpreted and the need to prepare for further exponential data increases. Current analysis approaches are focused primarily on traditional methods, which are best suited for large-scale phenomena and coarse-resolution data sets. The workshop focused on the open discussion of ideas and technologies to provide the next generation of solutions to cope with the increasing data volumes in climate science.
Sparseness of vowel category structure: Evidence from English dialect comparison
Scharinger, Mathias; Idsardi, William J.
2014-01-01
Current models of speech perception tend to emphasize either fine-grained acoustic properties or coarse-grained abstract characteristics of speech sounds. We argue for a particular kind of 'sparse' vowel representations and provide new evidence that these representations account for the successful access of the corresponding categories. In an auditory semantic priming experiment, American English listeners made lexical decisions on targets (e.g. load) preceded by semantically related primes (e.g. pack). Changes of the prime vowel that crossed a vowel-category boundary (e.g. peck) were not treated as a tolerable variation, as assessed by a lack of priming, although the phonetic categories of the two different vowels considerably overlap in American English. Compared to the outcome of the same experiment with New Zealand English listeners, where such prime variations were tolerated, our experiment supports the view that phonological representations are important in guiding the mapping process from the acoustic signal to an abstract mental representation. Our findings are discussed with regard to current models of speech perception and recent findings from brain imaging research. PMID:24653528
The civilizing process in London’s Old Bailey
Klingenstein, Sara; Hitchcock, Tim; DeDeo, Simon
2014-01-01
The jury trial is a critical point where the state and its citizens come together to define the limits of acceptable behavior. Here we present a large-scale quantitative analysis of trial transcripts from the Old Bailey that reveal a major transition in the nature of this defining moment. By coarse-graining the spoken word testimony into synonym sets and dividing the trials based on indictment, we demonstrate the emergence of semantically distinct violent and nonviolent trial genres. We show that although in the late 18th century the semantic content of trials for violent offenses is functionally indistinguishable from that for nonviolent ones, a long-term, secular trend drives the system toward increasingly clear distinctions between violent and nonviolent acts. We separate this process into the shifting patterns that drive it, determine the relative effects of bureaucratic change and broader cultural shifts, and identify the synonym sets most responsible for the eventual genre distinguishability. This work provides a new window onto the cultural and institutional changes that accompany the monopolization of violence by the state, described in qualitative historical analysis as the civilizing process. PMID:24979792
The civilizing process in London's Old Bailey.
Klingenstein, Sara; Hitchcock, Tim; DeDeo, Simon
2014-07-01
The jury trial is a critical point where the state and its citizens come together to define the limits of acceptable behavior. Here we present a large-scale quantitative analysis of trial transcripts from the Old Bailey that reveal a major transition in the nature of this defining moment. By coarse-graining the spoken word testimony into synonym sets and dividing the trials based on indictment, we demonstrate the emergence of semantically distinct violent and nonviolent trial genres. We show that although in the late 18th century the semantic content of trials for violent offenses is functionally indistinguishable from that for nonviolent ones, a long-term, secular trend drives the system toward increasingly clear distinctions between violent and nonviolent acts. We separate this process into the shifting patterns that drive it, determine the relative effects of bureaucratic change and broader cultural shifts, and identify the synonym sets most responsible for the eventual genre distinguishability. This work provides a new window onto the cultural and institutional changes that accompany the monopolization of violence by the state, described in qualitative historical analysis as the civilizing process.
Order recall in verbal short-term memory: The role of semantic networks.
Poirier, Marie; Saint-Aubin, Jean; Mair, Ali; Tehan, Gerry; Tolan, Anne
2015-04-01
In their recent article, Acheson, MacDonald, and Postle (Journal of Experimental Psychology: Learning, Memory, and Cognition 37:44-59, 2011) made an important but controversial suggestion: They hypothesized that (a) semantic information has an effect on order information in short-term memory (STM) and (b) order recall in STM is based on the level of activation of items within the relevant lexico-semantic long-term memory (LTM) network. However, verbal STM research has typically led to the conclusion that factors such as semantic category have a large effect on the number of correctly recalled items, but little or no impact on order recall (Poirier & Saint-Aubin, Quarterly Journal of Experimental Psychology 48A:384-404, 1995; Saint-Aubin, Ouellette, & Poirier, Psychonomic Bulletin & Review 12:171-177, 2005; Tse, Memory 17:874-891, 2009). Moreover, most formal models of short-term order memory currently suggest a separate mechanism for order coding-that is, one that is separate from item representation and not associated with LTM lexico-semantic networks. Both of the experiments reported here tested the predictions that we derived from Acheson et al. The findings show that, as predicted, manipulations aiming to affect the activation of item representations significantly impacted order memory.
2012-10-01
using the open-source code Large-scale Atomic/Molecular Massively Parallel Simulator ( LAMMPS ) (http://lammps.sandia.gov) (23). The commercial...parameters are proprietary and cannot be ported to the LAMMPS 4 simulation code. In our molecular dynamics simulations at the atomistic resolution, we...IBI iterative Boltzmann inversion LAMMPS Large-scale Atomic/Molecular Massively Parallel Simulator MAPS Materials Processes and Simulations MS
Towards a Framework for Developing Semantic Relatedness Reference Standards
Pakhomov, Serguei V.S.; Pedersen, Ted; McInnes, Bridget; Melton, Genevieve B.; Ruggieri, Alexander; Chute, Christopher G.
2010-01-01
Our objective is to develop a framework for creating reference standards for functional testing of computerized measures of semantic relatedness. Currently, research on computerized approaches to semantic relatedness between biomedical concepts relies on reference standards created for specific purposes using a variety of methods for their analysis. In most cases, these reference standards are not publicly available and the published information provided in manuscripts that evaluate computerized semantic relatedness measurement approaches is not sufficient to reproduce the results. Our proposed framework is based on the experiences of medical informatics and computational linguistics communities and addresses practical and theoretical issues with creating reference standards for semantic relatedness. We demonstrate the use of the framework on a pilot set of 101 medical term pairs rated for semantic relatedness by 13 medical coding experts. While the reliability of this particular reference standard is in the “moderate” range; we show that using clustering and factor analyses offers a data-driven approach to finding systematic differences among raters and identifying groups of potential outliers. We test two ontology-based measures of relatedness and provide both the reference standard containing individual ratings and the R program used to analyze the ratings as open-source. Currently, these resources are intended to be used to reproduce and compare results of studies involving computerized measures of semantic relatedness. Our framework may be extended to the development of reference standards in other research areas in medical informatics including automatic classification, information retrieval from medical records and vocabulary/ontology development. PMID:21044697
DiCarlo, James J.; Zecchina, Riccardo; Zoccolan, Davide
2013-01-01
The anterior inferotemporal cortex (IT) is the highest stage along the hierarchy of visual areas that, in primates, processes visual objects. Although several lines of evidence suggest that IT primarily represents visual shape information, some recent studies have argued that neuronal ensembles in IT code the semantic membership of visual objects (i.e., represent conceptual classes such as animate and inanimate objects). In this study, we investigated to what extent semantic, rather than purely visual information, is represented in IT by performing a multivariate analysis of IT responses to a set of visual objects. By relying on a variety of machine-learning approaches (including a cutting-edge clustering algorithm that has been recently developed in the domain of statistical physics), we found that, in most instances, IT representation of visual objects is accounted for by their similarity at the level of shape or, more surprisingly, low-level visual properties. Only in a few cases we observed IT representations of semantic classes that were not explainable by the visual similarity of their members. Overall, these findings reassert the primary function of IT as a conveyor of explicit visual shape information, and reveal that low-level visual properties are represented in IT to a greater extent than previously appreciated. In addition, our work demonstrates how combining a variety of state-of-the-art multivariate approaches, and carefully estimating the contribution of shape similarity to the representation of object categories, can substantially advance our understanding of neuronal coding of visual objects in cortex. PMID:23950700
Using ontologies to improve semantic interoperability in health data.
Liyanage, Harshana; Krause, Paul; De Lusignan, Simon
2015-07-10
The present-day health data ecosystem comprises a wide array of complex heterogeneous data sources. A wide range of clinical, health care, social and other clinically relevant information are stored in these data sources. These data exist either as structured data or as free-text. These data are generally individual person-based records, but social care data are generally case based and less formal data sources may be shared by groups. The structured data may be organised in a proprietary way or be coded using one-of-many coding, classification or terminologies that have often evolved in isolation and designed to meet the needs of the context that they have been developed. This has resulted in a wide range of semantic interoperability issues that make the integration of data held on these different systems changing. We present semantic interoperability challenges and describe a classification of these. We propose a four-step process and a toolkit for those wishing to work more ontologically, progressing from the identification and specification of concepts to validating a final ontology. The four steps are: (1) the identification and specification of data sources; (2) the conceptualisation of semantic meaning; (3) defining to what extent routine data can be used as a measure of the process or outcome of care required in a particular study or audit and (4) the formalisation and validation of the final ontology. The toolkit is an extension of a previous schema created to formalise the development of ontologies related to chronic disease management. The extensions are focused on facilitating rapid building of ontologies for time-critical research studies.
Rassinoux, Anne-Marie; Baud, Robert H; Rodrigues, Jean-Marie; Lovis, Christian; Geissbühler, Antoine
2007-01-01
The importance of clinical communication between providers, consumers and others, as well as the requisite for computer interoperability, strengthens the need for sharing common accepted terminologies. Under the directives of the World Health Organization (WHO), an approach is currently being conducted in Australia to adopt a standardized terminology for medical procedures that is intended to become an international reference. In order to achieve such a standard, a collaborative approach is adopted, in line with the successful experiment conducted for the development of the new French coding system CCAM. Different coding centres are involved in setting up a semantic representation of each term using a formal ontological structure expressed through a logic-based representation language. From this language-independent representation, multilingual natural language generation (NLG) is performed to produce noun phrases in various languages that are further compared for consistency with the original terms. Outcomes are presented for the assessment of the International Classification of Health Interventions (ICHI) and its translation into Portuguese. The initial results clearly emphasize the feasibility and cost-effectiveness of the proposed method for handling both a different classification and an additional language. NLG tools, based on ontology driven semantic representation, facilitate the discovery of ambiguous and inconsistent terms, and, as such, should be promoted for establishing coherent international terminologies.
Free-Form Region Description with Second-Order Pooling.
Carreira, João; Caseiro, Rui; Batista, Jorge; Sminchisescu, Cristian
2015-06-01
Semantic segmentation and object detection are nowadays dominated by methods operating on regions obtained as a result of a bottom-up grouping process (segmentation) but use feature extractors developed for recognition on fixed-form (e.g. rectangular) patches, with full images as a special case. This is most likely suboptimal. In this paper we focus on feature extraction and description over free-form regions and study the relationship with their fixed-form counterparts. Our main contributions are novel pooling techniques that capture the second-order statistics of local descriptors inside such free-form regions. We introduce second-order generalizations of average and max-pooling that together with appropriate non-linearities, derived from the mathematical structure of their embedding space, lead to state-of-the-art recognition performance in semantic segmentation experiments without any type of local feature coding. In contrast, we show that codebook-based local feature coding is more important when feature extraction is constrained to operate over regions that include both foreground and large portions of the background, as typical in image classification settings, whereas for high-accuracy localization setups, second-order pooling over free-form regions produces results superior to those of the winning systems in the contemporary semantic segmentation challenges, with models that are much faster in both training and testing.
Automated UMLS-Based Comparison of Medical Forms
Dugas, Martin; Fritz, Fleur; Krumm, Rainer; Breil, Bernhard
2013-01-01
Medical forms are very heterogeneous: on a European scale there are thousands of data items in several hundred different systems. To enable data exchange for clinical care and research purposes there is a need to develop interoperable documentation systems with harmonized forms for data capture. A prerequisite in this harmonization process is comparison of forms. So far – to our knowledge – an automated method for comparison of medical forms is not available. A form contains a list of data items with corresponding medical concepts. An automatic comparison needs data types, item names and especially item with these unique concept codes from medical terminologies. The scope of the proposed method is a comparison of these items by comparing their concept codes (coded in UMLS). Each data item is represented by item name, concept code and value domain. Two items are called identical, if item name, concept code and value domain are the same. Two items are called matching, if only concept code and value domain are the same. Two items are called similar, if their concept codes are the same, but the value domains are different. Based on these definitions an open-source implementation for automated comparison of medical forms in ODM format with UMLS-based semantic annotations was developed. It is available as package compareODM from http://cran.r-project.org. To evaluate this method, it was applied to a set of 7 real medical forms with 285 data items from a large public ODM repository with forms for different medical purposes (research, quality management, routine care). Comparison results were visualized with grid images and dendrograms. Automated comparison of semantically annotated medical forms is feasible. Dendrograms allow a view on clustered similar forms. The approach is scalable for a large set of real medical forms. PMID:23861827
BRYNTRN: A baryon transport computer code, computation procedures and data base
NASA Technical Reports Server (NTRS)
Wilson, John W.; Townsend, Lawrence W.; Chun, Sang Y.; Buck, Warren W.; Khan, Ferdous; Cucinotta, Frank
1988-01-01
The development is described of an interaction data base and a numerical solution to the transport of baryons through the arbitrary shield material based on a straight ahead approximation of the Boltzmann equation. The code is most accurate for continuous energy boundary values but gives reasonable results for discrete spectra at the boundary with even a relatively coarse energy grid (30 points) and large spatial increments (1 cm in H2O).
Ding, Jinfeng; Liu, Wenjuan; Yang, Yufang
2017-01-01
On the basis of previous studies revealing a processing advantage of concrete words over abstract words, the current study aimed to further explore the influence of concreteness on the integration of novel words into semantic memory with the event related potential (ERP) technique. In the experiment during the learning phase participants read two-sentence contexts and inferred the meaning of novel words. The novel words were two-character non-words in Chinese language. Their meaning was either a concrete or abstract known concept which could be inferred from the contexts. During the testing phase participants performed a lexical decision task in which the learned novel words served as primes for either their corresponding concepts, semantically related or unrelated targets. For the concrete novel words, the semantically related words belonged to the same semantic categories with their corresponding concepts. For the abstract novel words, the semantically related words were synonyms of their corresponding concepts. The unrelated targets were real words which were concrete or abstract for the concrete or abstract novel words respectively. The ERP results showed that the corresponding concepts and the semantically related words elicited smaller N400s than the unrelated words. The N400 effect was not modulated by the concreteness of the concepts. In addition, the concrete corresponding concepts elicited a smaller late positive component (LPC) than the concrete unrelated words. This LPC effect was absent for the abstract words. The results indicate that although both concrete and abstract novel words can be acquired and linked to their related words in the semantic network after a short learning phase, the concrete novel words are learned better. Our findings support the (extended) dual coding theory and broaden our understanding of adult word learning and changes in concept organization. PMID:29255440
Ding, Jinfeng; Liu, Wenjuan; Yang, Yufang
2017-01-01
On the basis of previous studies revealing a processing advantage of concrete words over abstract words, the current study aimed to further explore the influence of concreteness on the integration of novel words into semantic memory with the event related potential (ERP) technique. In the experiment during the learning phase participants read two-sentence contexts and inferred the meaning of novel words. The novel words were two-character non-words in Chinese language. Their meaning was either a concrete or abstract known concept which could be inferred from the contexts. During the testing phase participants performed a lexical decision task in which the learned novel words served as primes for either their corresponding concepts, semantically related or unrelated targets. For the concrete novel words, the semantically related words belonged to the same semantic categories with their corresponding concepts. For the abstract novel words, the semantically related words were synonyms of their corresponding concepts. The unrelated targets were real words which were concrete or abstract for the concrete or abstract novel words respectively. The ERP results showed that the corresponding concepts and the semantically related words elicited smaller N400s than the unrelated words. The N400 effect was not modulated by the concreteness of the concepts. In addition, the concrete corresponding concepts elicited a smaller late positive component (LPC) than the concrete unrelated words. This LPC effect was absent for the abstract words. The results indicate that although both concrete and abstract novel words can be acquired and linked to their related words in the semantic network after a short learning phase, the concrete novel words are learned better. Our findings support the (extended) dual coding theory and broaden our understanding of adult word learning and changes in concept organization.
Report on Automated Semantic Analysis of Scientific and Engineering Codes
NASA Technical Reports Server (NTRS)
Stewart. Maark E. M.; Follen, Greg (Technical Monitor)
2001-01-01
The loss of the Mars Climate Orbiter due to a software error reveals what insiders know: software development is difficult and risky because, in part, current practices do not readily handle the complex details of software. Yet, for scientific software development the MCO mishap represents the tip of the iceberg; few errors are so public, and many errors are avoided with a combination of expertise, care, and testing during development and modification. Further, this effort consumes valuable time and resources even when hardware costs and execution time continually decrease. Software development could use better tools! This lack of tools has motivated the semantic analysis work explained in this report. However, this work has a distinguishing emphasis; the tool focuses on automated recognition of the fundamental mathematical and physical meaning of scientific code. Further, its comprehension is measured by quantitatively evaluating overall recognition with practical codes. This emphasis is necessary if software errors-like the MCO error-are to be quickly and inexpensively avoided in the future. This report evaluates the progress made with this problem. It presents recommendations, describes the approach, the tool's status, the challenges, related research, and a development strategy.
Noussa-Yao, Joseph; Heudes, Didier; Escudie, Jean-Baptiste; Degoulet, Patrice
2016-01-01
Short-stay MSO (Medicine, Surgery, Obstetrics) hospitalization activities in public and private hospitals providing public services are funded through charges for the services provided (T2A in French). Coding must be well matched to the severity of the patient's condition, to ensure that appropriate funding is provided to the hospital. We propose the use of an autocompletion process and multidimensional matrix, to help physicians to improve the expression of information and to optimize clinical coding. With this approach, physicians without knowledge of the encoding rules begin from a rough concept, which is gradually refined through semantic proximity and uses information on the associated codes stemming of optimized knowledge bases of diagnosis code.
Non-binary LDPC-coded modulation for high-speed optical metro networks with backpropagation
NASA Astrophysics Data System (ADS)
Arabaci, Murat; Djordjevic, Ivan B.; Saunders, Ross; Marcoccia, Roberto M.
2010-01-01
To simultaneously mitigate the linear and nonlinear channel impairments in high-speed optical communications, we propose the use of non-binary low-density-parity-check-coded modulation in combination with a coarse backpropagation method. By employing backpropagation, we reduce the memory in the channel and in return obtain significant reductions in the complexity of the channel equalizer which is exponentially proportional to the channel memory. We then compensate for the remaining channel distortions using forward error correction based on non-binary LDPC codes. We propose non-binary-LDPC-coded modulation scheme because, compared to bit-interleaved binary-LDPC-coded modulation scheme employing turbo equalization, the proposed scheme lowers the computational complexity and latency of the overall system while providing impressively larger coding gains.
Towards a framework for developing semantic relatedness reference standards.
Pakhomov, Serguei V S; Pedersen, Ted; McInnes, Bridget; Melton, Genevieve B; Ruggieri, Alexander; Chute, Christopher G
2011-04-01
Our objective is to develop a framework for creating reference standards for functional testing of computerized measures of semantic relatedness. Currently, research on computerized approaches to semantic relatedness between biomedical concepts relies on reference standards created for specific purposes using a variety of methods for their analysis. In most cases, these reference standards are not publicly available and the published information provided in manuscripts that evaluate computerized semantic relatedness measurement approaches is not sufficient to reproduce the results. Our proposed framework is based on the experiences of medical informatics and computational linguistics communities and addresses practical and theoretical issues with creating reference standards for semantic relatedness. We demonstrate the use of the framework on a pilot set of 101 medical term pairs rated for semantic relatedness by 13 medical coding experts. While the reliability of this particular reference standard is in the "moderate" range; we show that using clustering and factor analyses offers a data-driven approach to finding systematic differences among raters and identifying groups of potential outliers. We test two ontology-based measures of relatedness and provide both the reference standard containing individual ratings and the R program used to analyze the ratings as open-source. Currently, these resources are intended to be used to reproduce and compare results of studies involving computerized measures of semantic relatedness. Our framework may be extended to the development of reference standards in other research areas in medical informatics including automatic classification, information retrieval from medical records and vocabulary/ontology development. Copyright © 2010 Elsevier Inc. All rights reserved.
Model comparisons of the reactive burn model SURF in three ASC codes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whitley, Von Howard; Stalsberg, Krista Lynn; Reichelt, Benjamin Lee
A study of the SURF reactive burn model was performed in FLAG, PAGOSA and XRAGE. In this study, three different shock-to-detonation transition experiments were modeled in each code. All three codes produced similar model results for all the experiments modeled and at all resolutions. Buildup-to-detonation time, particle velocities and resolution dependence of the models was notably similar between the codes. Given the current PBX 9502 equations of state and SURF calibrations, each code is equally capable of predicting the correct detonation time and distance when impacted by a 1D impactor at pressures ranging from 10-16 GPa, as long as themore » resolution of the mesh is not too coarse.« less
Gil, Yolanda; Michel, Felix; Ratnakar, Varun; Read, Jordan S.; Hauder, Matheus; Duffy, Christopher; Hanson, Paul C.; Dugan, Hilary
2015-01-01
The Web was originally developed to support collaboration in science. Although scientists benefit from many forms of collaboration on the Web (e.g., blogs, wikis, forums, code sharing, etc.), most collaborative projects are coordinated over email, phone calls, and in-person meetings. Our goal is to develop a collaborative infrastructure for scientists to work on complex science questions that require multi-disciplinary contributions to gather and analyze data, that cannot occur without significant coordination to synthesize findings, and that grow organically to accommodate new contributors as needed as the work evolves over time. Our approach is to develop an organic data science framework based on a task-centered organization of the collaboration, includes principles from social sciences for successful on-line communities, and exposes an open science process. Our approach is implemented as an extension of a semantic wiki platform, and captures formal representations of task decomposition structures, relations between tasks and users, and other properties of tasks, data, and other relevant science objects. All these entities are captured through the semantic wiki user interface, represented as semantic web objects, and exported as linked data.
Word add-in for ontology recognition: semantic enrichment of scientific literature.
Fink, J Lynn; Fernicola, Pablo; Chandran, Rahul; Parastatidis, Savas; Wade, Alex; Naim, Oscar; Quinn, Gregory B; Bourne, Philip E
2010-02-24
In the current era of scientific research, efficient communication of information is paramount. As such, the nature of scholarly and scientific communication is changing; cyberinfrastructure is now absolutely necessary and new media are allowing information and knowledge to be more interactive and immediate. One approach to making knowledge more accessible is the addition of machine-readable semantic data to scholarly articles. The Word add-in presented here will assist authors in this effort by automatically recognizing and highlighting words or phrases that are likely information-rich, allowing authors to associate semantic data with those words or phrases, and to embed that data in the document as XML. The add-in and source code are publicly available at http://www.codeplex.com/UCSDBioLit. The Word add-in for ontology term recognition makes it possible for an author to add semantic data to a document as it is being written and it encodes these data using XML tags that are effectively a standard in life sciences literature. Allowing authors to mark-up their own work will help increase the amount and quality of machine-readable literature metadata.
Pantazatos, Spiro P.; Li, Jianrong; Pavlidis, Paul; Lussier, Yves A.
2009-01-01
An approach towards heterogeneous neuroscience dataset integration is proposed that uses Natural Language Processing (NLP) and a knowledge-based phenotype organizer system (PhenOS) to link ontology-anchored terms to underlying data from each database, and then maps these terms based on a computable model of disease (SNOMED CT®). The approach was implemented using sample datasets from fMRIDC, GEO, The Whole Brain Atlas and Neuronames, and allowed for complex queries such as “List all disorders with a finding site of brain region X, and then find the semantically related references in all participating databases based on the ontological model of the disease or its anatomical and morphological attributes”. Precision of the NLP-derived coding of the unstructured phenotypes in each dataset was 88% (n = 50), and precision of the semantic mapping between these terms across datasets was 98% (n = 100). To our knowledge, this is the first example of the use of both semantic decomposition of disease relationships and hierarchical information found in ontologies to integrate heterogeneous phenotypes across clinical and molecular datasets. PMID:20495688
DOE Office of Scientific and Technical Information (OSTI.GOV)
The Profile Interface Generator (PIG) is a tool for loosely coupling applications and performance tools. It enables applications to write code that looks like standard C and Fortran functions calls, without requiring that applications link to specific implementations of those function calls. Performance tools can register with PIG in order to listen to only the calls that give information they care about. This interface reduces the build and configuration burden on application developers and allows semantic instrumentation to live in production codes without interfering with production runs.
Trombert-Paviot, B; Rodrigues, J M; Rogers, J E; Baud, R; van der Haring, E; Rassinoux, A M; Abrial, V; Clavel, L; Idir, H
2000-09-01
Generalised architecture for languages, encyclopedia and nomenclatures in medicine (GALEN) has developed a new generation of terminology tools based on a language independent model describing the semantics and allowing computer processing and multiple reuses as well as natural language understanding systems applications to facilitate the sharing and maintaining of consistent medical knowledge. During the European Union 4 Th. framework program project GALEN-IN-USE and later on within two contracts with the national health authorities we applied the modelling and the tools to the development of a new multipurpose coding system for surgical procedures named CCAM in a minority language country, France. On one hand, we contributed to a language independent knowledge repository and multilingual semantic dictionaries for multicultural Europe. On the other hand, we support the traditional process for creating a new coding system in medicine which is very much labour consuming by artificial intelligence tools using a medically oriented recursive ontology and natural language processing. We used an integrated software named CLAW (for classification workbench) to process French professional medical language rubrics produced by the national colleges of surgeons domain experts into intermediate dissections and to the Grail reference ontology model representation. From this language independent concept model representation, on one hand, we generate with the LNAT natural language generator controlled French natural language to support the finalization of the linguistic labels (first generation) in relation with the meanings of the conceptual system structure. On the other hand, the Claw classification manager proves to be very powerful to retrieve the initial domain experts rubrics list with different categories of concepts (second generation) within a semantic structured representation (third generation) bridge to the electronic patient record detailed terminology.
Modulation of the semantic system by word imageability.
Sabsevitz, D S; Medler, D A; Seidenberg, M; Binder, J R
2005-08-01
A prevailing neurobiological theory of semantic memory proposes that part of our knowledge about concrete, highly imageable concepts is stored in the form of sensory-motor representations. While this theory predicts differential activation of the semantic system by concrete and abstract words, previous functional imaging studies employing this contrast have provided relatively little supporting evidence. We acquired event-related functional magnetic resonance imaging (fMRI) data while participants performed a semantic similarity judgment task on a large number of concrete and abstract noun triads. Task difficulty was manipulated by varying the degree to which the words in the triad were similar in meaning. Concrete nouns, relative to abstract nouns, produced greater activation in a bilateral network of multimodal and heteromodal association areas, including ventral and medial temporal, posterior-inferior parietal, dorsal prefrontal, and posterior cingulate cortex. In contrast, abstract nouns produced greater activation almost exclusively in the left hemisphere in superior temporal and inferior frontal cortex. Increasing task difficulty modulated activation mainly in attention, working memory, and response monitoring systems, with almost no effect on areas that were modulated by imageability. These data provide critical support for the hypothesis that concrete, imageable concepts activate perceptually based representations not available to abstract concepts. In contrast, processing abstract concepts makes greater demands on left perisylvian phonological and lexical retrieval systems. The findings are compatible with dual coding theory and less consistent with single-code models of conceptual representation. The lack of overlap between imageability and task difficulty effects suggests that once the neural representation of a concept is activated, further maintenance and manipulation of that information in working memory does not further increase neural activation in the conceptual store.
Reducing numerical costs for core wide nuclear reactor CFD simulations by the Coarse-Grid-CFD
NASA Astrophysics Data System (ADS)
Viellieber, Mathias; Class, Andreas G.
2013-11-01
Traditionally complete nuclear reactor core simulations are performed with subchannel analysis codes, that rely on experimental and empirical input. The Coarse-Grid-CFD (CGCFD) intends to replace the experimental or empirical input with CFD data. The reactor core consists of repetitive flow patterns, allowing the general approach of creating a parametrized model for one segment and composing many of those to obtain the entire reactor simulation. The method is based on a detailed and well-resolved CFD simulation of one representative segment. From this simulation we extract so-called parametrized volumetric forces which close, an otherwise strongly under resolved, coarsely-meshed model of a complete reactor setup. While the formulation so far accounts for forces created internally in the fluid others e.g. obstruction and flow deviation through spacers and wire wraps, still need to be accounted for if the geometric details are not represented in the coarse mesh. These are modelled with an Anisotropic Porosity Formulation (APF). This work focuses on the application of the CGCFD to a complete reactor core setup and the accomplishment of the parametrization of the volumetric forces.
He, Yi; Xiao, Yi; Liwo, Adam; Scheraga, Harold A
2009-10-01
We explored the energy-parameter space of our coarse-grained UNRES force field for large-scale ab initio simulations of protein folding, to obtain good initial approximations for hierarchical optimization of the force field with new virtual-bond-angle bending and side-chain-rotamer potentials which we recently introduced to replace the statistical potentials. 100 sets of energy-term weights were generated randomly, and good sets were selected by carrying out replica-exchange molecular dynamics simulations of two peptides with a minimal alpha-helical and a minimal beta-hairpin fold, respectively: the tryptophan cage (PDB code: 1L2Y) and tryptophan zipper (PDB code: 1LE1). Eight sets of parameters produced native-like structures of these two peptides. These eight sets were tested on two larger proteins: the engrailed homeodomain (PDB code: 1ENH) and FBP WW domain (PDB code: 1E0L); two sets were found to produce native-like conformations of these proteins. These two sets were tested further on a larger set of nine proteins with alpha or alpha + beta structure and found to locate native-like structures of most of them. These results demonstrate that, in addition to finding reasonable initial starting points for optimization, an extensive search of parameter space is a powerful method to produce a transferable force field. Copyright 2009 Wiley Periodicals, Inc.
OpenRBC: Redefining the Frontier of Red Blood Cell Simulations at Protein Resolution
NASA Astrophysics Data System (ADS)
Tang, Yu-Hang; Lu, Lu; Li, He; Grinberg, Leopold; Sachdeva, Vipin; Evangelinos, Constantinos; Karniadakis, George
We present a from-scratch development of OpenRBC, a coarse-grained molecular dynamics code, which is capable of performing an unprecedented in silico experiment - simulating an entire mammal red blood cell lipid bilayer and cytoskeleton modeled by 4 million mesoscopic particles - on a single shared memory node. To achieve this, we invented an adaptive spatial searching algorithm to accelerate the computation of short-range pairwise interactions in an extremely sparse 3D space. The algorithm is based on a Voronoi partitioning of the point cloud of coarse-grained particles, and is continuously updated over the course of the simulation. The algorithm enables the construction of a lattice-free cell list, i.e. the key spatial searching data structure in our code, in O (N) time and space space with cells whose position and shape adapts automatically to the local density and curvature. The code implements NUMA/NUCA-aware OpenMP parallelization and achieves perfect scaling with up to hundreds of hardware threads. The code outperforms a legacy solver by more than 8 times in time-to-solution and more than 20 times in problem size, thus providing a new venue for probing the cytomechanics of red blood cells. This work was supported by the Department of Energy (DOE) Collaboratory on Mathematics for Mesoscopic Model- ing of Materials (CM4). YHT acknowledges partial financial support from an IBM Ph.D. Scholarship Award.
The SeaHorn Verification Framework
NASA Technical Reports Server (NTRS)
Gurfinkel, Arie; Kahsai, Temesghen; Komuravelli, Anvesh; Navas, Jorge A.
2015-01-01
In this paper, we present SeaHorn, a software verification framework. The key distinguishing feature of SeaHorn is its modular design that separates the concerns of the syntax of the programming language, its operational semantics, and the verification semantics. SeaHorn encompasses several novelties: it (a) encodes verification conditions using an efficient yet precise inter-procedural technique, (b) provides flexibility in the verification semantics to allow different levels of precision, (c) leverages the state-of-the-art in software model checking and abstract interpretation for verification, and (d) uses Horn-clauses as an intermediate language to represent verification conditions which simplifies interfacing with multiple verification tools based on Horn-clauses. SeaHorn provides users with a powerful verification tool and researchers with an extensible and customizable framework for experimenting with new software verification techniques. The effectiveness and scalability of SeaHorn are demonstrated by an extensive experimental evaluation using benchmarks from SV-COMP 2015 and real avionics code.
Coarse Grid Modeling of Turbine Film Cooling Flows Using Volumetric Source Terms
NASA Technical Reports Server (NTRS)
Heidmann, James D.; Hunter, Scott D.
2001-01-01
The recent trend in numerical modeling of turbine film cooling flows has been toward higher fidelity grids and more complex geometries. This trend has been enabled by the rapid increase in computing power available to researchers. However, the turbine design community requires fast turnaround time in its design computations, rendering these comprehensive simulations ineffective in the design cycle. The present study describes a methodology for implementing a volumetric source term distribution in a coarse grid calculation that can model the small-scale and three-dimensional effects present in turbine film cooling flows. This model could be implemented in turbine design codes or in multistage turbomachinery codes such as APNASA, where the computational grid size may be larger than the film hole size. Detailed computations of a single row of 35 deg round holes on a flat plate have been obtained for blowing ratios of 0.5, 0.8, and 1.0, and density ratios of 1.0 and 2.0 using a multiblock grid system to resolve the flows on both sides of the plate as well as inside the hole itself. These detailed flow fields were spatially averaged to generate a field of volumetric source terms for each conservative flow variable. Solutions were also obtained using three coarse grids having streamwise and spanwise grid spacings of 3d, 1d, and d/3. These coarse grid solutions used the integrated hole exit mass, momentum, energy, and turbulence quantities from the detailed solutions as volumetric source terms. It is shown that a uniform source term addition over a distance from the wall on the order of the hole diameter is able to predict adiabatic film effectiveness better than a near-wall source term model, while strictly enforcing correct values of integrated boundary layer quantities.
Thoughts on the Semantics of "Information"
ERIC Educational Resources Information Center
Berger, Louis S.
1971-01-01
SRI attempts to apply aerospace research results to biomedicine are revealing inadequacies of present information systems when information originates in different discipline from that of user. Author suggests catergorizing characteristics of originator, symbolic vehicle, coding process and user, with possible design of new systems as well. (PD)
Duke, Jon D.; Friedlin, Jeff
2010-01-01
Evaluating medications for potential adverse events is a time-consuming process, typically involving manual lookup of information by physicians. This process can be expedited by CDS systems that support dynamic retrieval and filtering of adverse drug events (ADE’s), but such systems require a source of semantically-coded ADE data. We created a two-component system that addresses this need. First we created a natural language processing application which extracts adverse events from Structured Product Labels and generates a standardized ADE knowledge base. We then built a decision support service that consumes a Continuity of Care Document and returns a list of patient-specific ADE’s. Our database currently contains 534,125 ADE’s from 5602 product labels. An NLP evaluation of 9529 ADE’s showed recall of 93% and precision of 95%. On a trial set of 30 CCD’s, the system provided adverse event data for 88% of drugs and returned these results in an average of 620ms. PMID:21346964
Can, Dilara Deniz; Ginsburg-Block, Marika; Golinkoff, Roberta Michnick; Hirsh-Pasek, Kathryn
2013-09-01
This longitudinal study examined the predictive validity of the MacArthur Communicative Developmental Inventories-Short Form (CDI-SF), a parent report questionnaire about children's language development (Fenson, Pethick, Renda, Cox, Dale & Reznick, 2000). Data were first gathered from parents on the CDI-SF vocabulary scores for seventy-six children (mean age=1 ; 10). Four years later (mean age=6 ; 1), children were assessed on language outcomes (expressive vocabulary, syntax, semantics and pragmatics) and code-related skills, including phonemic awareness, word recognition and decoding skills. Hierarchical regression analyses revealed that early expressive vocabulary accounted for 17% of the variance in picture vocabulary, 11% of the variance in syntax, and 7% of the variance in semantics, while not accounting for any variance in pragmatics in kindergarten. CDI-SF scores did not predict code-related skills in kindergarten. The importance of early vocabulary skills for later language development and CDI-SF as a valuable research tool are discussed.
Pure global acalculia following a left subangular lesion.
Martory, M D; Mayer, E; Pegna, A J; Annoni, J M; Landis, T; Khateb, A
2003-08-01
We describe the case of a right-handed patient who presented a severe acalculia in the context of a pure Gerstmann syndrome following a subangular lesion that spared the left inferior parietal lobule (IPL). The patient showed impairments in Arabic and verbal codes, in number production and comprehension, as well as in numerical facts and problem solving. By using the EC301 calculation battery, semantic and syntactic tasks in Arabic and verbal codes, we tested the different hypotheses raised by the cognitive neuropsychological models of acalculia. The patients' difficulties, which were not associated with a general intellectual deterioration, and those affecting number processing as a particular semantic class, were indicative of a "global acalculia". This deficit, which exceeded the anarithmetia usually described in Gerstmann syndrome following left IPL lesion, suggested that the isolation of this area may constitute a sufficient condition for producing such a global acalculia. These results are discussed in terms of a disorder in the manipulation of mental images of spatially related objects.
A Knowledge-Based Representation Scheme for Environmental Science Models
NASA Technical Reports Server (NTRS)
Keller, Richard M.; Dungan, Jennifer L.; Lum, Henry, Jr. (Technical Monitor)
1994-01-01
One of the primary methods available for studying environmental phenomena is the construction and analysis of computational models. We have been studying how artificial intelligence techniques can be applied to assist in the development and use of environmental science models within the context of NASA-sponsored activities. We have identified several high-utility areas as potential targets for research and development: model development; data visualization, analysis, and interpretation; model publishing and reuse, training and education; and framing, posing, and answering questions. Central to progress on any of the above areas is a representation for environmental models that contains a great deal more information than is present in a traditional software implementation. In particular, a traditional software implementation is devoid of any semantic information that connects the code with the environmental context that forms the background for the modeling activity. Before we can build AI systems to assist in model development and usage, we must develop a representation for environmental models that adequately describes a model's semantics and explicitly represents the relationship between the code and the modeling task at hand. We have developed one such representation in conjunction with our work on the SIGMA (Scientists' Intelligent Graphical Modeling Assistant) environment. The key feature of the representation is that it provides a semantic grounding for the symbols in a set of modeling equations by linking those symbols to an explicit representation of the underlying environmental scenario.
Baneyx, Audrey; Charlet, Jean; Jaulent, Marie-Christine
2007-01-01
Pathologies and acts are classified in thesauri to help physicians to code their activity. In practice, the use of thesauri is not sufficient to reduce variability in coding and thesauri are not suitable for computer processing. We think the automation of the coding task requires a conceptual modeling of medical items: an ontology. Our task is to help lung specialists code acts and diagnoses with software that represents medical knowledge of this concerned specialty by an ontology. The objective of the reported work was to build an ontology of pulmonary diseases dedicated to the coding process. To carry out this objective, we develop a precise methodological process for the knowledge engineer in order to build various types of medical ontologies. This process is based on the need to express precisely in natural language the meaning of each concept using differential semantics principles. A differential ontology is a hierarchy of concepts and relationships organized according to their similarities and differences. Our main research hypothesis is to apply natural language processing tools to corpora to develop the resources needed to build the ontology. We consider two corpora, one composed of patient discharge summaries and the other being a teaching book. We propose to combine two approaches to enrich the ontology building: (i) a method which consists of building terminological resources through distributional analysis and (ii) a method based on the observation of corpus sequences in order to reveal semantic relationships. Our ontology currently includes 1550 concepts and the software implementing the coding process is still under development. Results show that the proposed approach is operational and indicates that the combination of these methods and the comparison of the resulting terminological structures give interesting clues to a knowledge engineer for the building of an ontology.
Iris Image Classification Based on Hierarchical Visual Codebook.
Zhenan Sun; Hui Zhang; Tieniu Tan; Jianyu Wang
2014-06-01
Iris recognition as a reliable method for personal identification has been well-studied with the objective to assign the class label of each iris image to a unique subject. In contrast, iris image classification aims to classify an iris image to an application specific category, e.g., iris liveness detection (classification of genuine and fake iris images), race classification (e.g., classification of iris images of Asian and non-Asian subjects), coarse-to-fine iris identification (classification of all iris images in the central database into multiple categories). This paper proposes a general framework for iris image classification based on texture analysis. A novel texture pattern representation method called Hierarchical Visual Codebook (HVC) is proposed to encode the texture primitives of iris images. The proposed HVC method is an integration of two existing Bag-of-Words models, namely Vocabulary Tree (VT), and Locality-constrained Linear Coding (LLC). The HVC adopts a coarse-to-fine visual coding strategy and takes advantages of both VT and LLC for accurate and sparse representation of iris texture. Extensive experimental results demonstrate that the proposed iris image classification method achieves state-of-the-art performance for iris liveness detection, race classification, and coarse-to-fine iris identification. A comprehensive fake iris image database simulating four types of iris spoof attacks is developed as the benchmark for research of iris liveness detection.
Dual coding theory, word abstractness, and emotion: a critical review of Kousta et al. (2011).
Paivio, Allan
2013-02-01
Kousta, Vigliocco, Del Campo, Vinson, and Andrews (2011) questioned the adequacy of dual coding theory and the context availability model as explanations of representational and processing differences between concrete and abstract words. They proposed an alternative approach that focuses on the role of emotional content in the processing of abstract concepts. Their dual coding critique is, however, based on impoverished and, in some respects, incorrect interpretations of the theory and its implications. This response corrects those gaps and misinterpretations and summarizes research findings that show predicted variations in the effects of dual coding variables in different tasks and contexts. Especially emphasized is an empirically supported dual coding theory of emotion that goes beyond the Kousta et al. emphasis on emotion in abstract semantics. 2013 APA, all rights reserved
Perspective: Semantic Data Management for the Home
2008-05-01
8 the more flexible policies found in many management tasks must be made in an ad - hoc fashion at the application level, leading to a loss of user...this mismatch as a significant source of disorganization: Aaron: “I’m very conscious about the way I name things; I have a coding system. But the...thing is, that doesn’t work if you have everything spread out. The coding system makes sense when there’s a lot of other things around, but not when it’s
Linking Multilingual Advertising to Foreign Language Teaching.
ERIC Educational Resources Information Center
Martin, Elizabeth
It is suggested that print advertising is particularly well suited to classroom second language teaching because it is attractive, entertaining, contains powerful emotional or factual messages, and is concise. Research indicates that multilingual or code-mixed advertising is common and reveals interesting linguistic phenomena, including semantic,…
Using VCL as an Aspect-Oriented Approach to Requirements Modelling
NASA Astrophysics Data System (ADS)
Amálio, Nuno; Kelsen, Pierre; Ma, Qin; Glodt, Christian
Software systems are becoming larger and more complex. By tackling the modularisation of crosscutting concerns, aspect orientation draws attention to modularity as a means to address the problems of scalability, complexity and evolution in software systems development. Aspect-oriented modelling (AOM) applies aspect-orientation to the construction of models. Most existing AOM approaches are designed without a formal semantics, and use multi-view partial descriptions of behaviour. This paper presents an AOM approach based on the Visual Contract Language (VCL): a visual language for abstract and precise modelling, designed with a formal semantics, and comprising a novel approach to visual behavioural modelling based on design by contract where behavioural descriptions are total. By applying VCL to a large case study of a car-crash crisis management system, the paper demonstrates how modularity of VCL's constructs, at different levels of granularity, help to tackle complexity. In particular, it shows how VCL's package construct and its associated composition mechanisms are key in supporting separation of concerns, coarse-grained problem decomposition and aspect-orientation. The case study's modelling solution has a clear and well-defined modular structure; the backbone of this structure is a collection of packages encapsulating local solutions to concerns.
TRAC-PD2 posttest analysis of the CCTF Evaluation-Model Test C1-19 (Run 38). [PWR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Motley, F.
The results of a Transient Reactor Analysis Code posttest analysis of the Cylindral Core Test Facility Evaluation-Model Test agree very well with the results of the experiment. The good agreement obtained verifies the multidimensional analysis capability of the TRAC code. Because of the steep radial power profile, the importance of using fine noding in the core region was demonstrated (as compared with poorer results obtained from an earlier pretest prediction that used a coarsely noded model).
Subband Coding Methods for Seismic Data Compression
NASA Technical Reports Server (NTRS)
Kiely, A.; Pollara, F.
1995-01-01
This paper presents a study of seismic data compression techniques and a compression algorithm based on subband coding. The compression technique described could be used as a progressive transmission system, where successive refinements of the data can be requested by the user. This allows seismologists to first examine a coarse version of waveforms with minimal usage of the channel and then decide where refinements are required. Rate-distortion performance results are presented and comparisons are made with two block transform methods.
Analysis and Defense of Vulnerabilities in Binary Code
2008-09-29
language . We demonstrate our techniques by automatically generating input filters from vulnerable binary programs. vi Acknowledgments I thank my wife, family...21 2.2 The Vine Intermediate Language . . . . . . . . . . . . . . . . . . . . . . 21 ix 2.2.1 Normalized Memory...The Traditional Weakest Precondition Semantics . . . . . . . . . . . . . 44 3.2.1 The Guarded Command Language . . . . . . . . . . . . . . . . . 44
Using Semantic Templates to Study Vulnerabilities Recorded in Large Software Repositories
ERIC Educational Resources Information Center
Wu, Yan
2011-01-01
Software vulnerabilities allow an attacker to reduce a system's Confidentiality, Availability, and Integrity by exposing information, executing malicious code, and undermine system functionalities that contribute to the overall system purpose and need. With new vulnerabilities discovered everyday in a variety of applications and user environments,…
Prosodic Encoding in Silent Reading.
ERIC Educational Resources Information Center
Wilkenfeld, Deborah
In silent reading, short-memory tasks, such as semantic and syntactic processing, require a stage of phonetic encoding between visual representation and the actual extraction of meaning, and this encoding includes prosodic as well as segmental features. To test for this suprasegmental coding, an experiment was conducted in which subjects were…
Statistical Learning as a Key to Cracking Chinese Orthographic Codes
ERIC Educational Resources Information Center
He, Xinjie; Tong, Xiuli
2017-01-01
This study examines statistical learning as a mechanism for Chinese orthographic learning among children in Grades 3-5. Using an artificial orthography, children were repeatedly exposed to positional, phonetic, and semantic regularities of radicals. Children showed statistical learning of all three regularities. Regularities' levels of consistency…
NASA Astrophysics Data System (ADS)
Marcer, Peter J.; Rowlands, Peter
2013-09-01
The principal criteria Cn (n = 1 to 23) and grammatical production rules are set out of a universal computational rewrite language spelling out a semantic description of an emergent, self-organizing architecture for the cosmos. These language productions already predicate: (1) Einstein's conservation law of energy, momentum and mass and, subsequently, (2) with respect to gauge invariant relativistic space time (both Lorentz special & Einstein general); (3) Standard Model elementary particle physics; (4) the periodic table of the elements & chemical valence; and (5) the molecular biological basis of the DNA / RNA genetic code; so enabling the Cybernetic Machine specialist Groups Mission Statement premise;** (6) that natural semantic language thinking at the higher level of the self-organized emergent chemical molecular complexity of the human brain (only surpassed by that of the cosmos itself!) would be realized (7) by this same universal semantic language via (8) an architecture of a conscious human brain/mind and self which, it predicates consists of its neural / glia and microtubule substrates respectively, so as to endow it with; (9) the intelligent semantic capability to be able to specify, symbolize, spell out and understand the cosmos that conceived it; and (10) provide a quantum physical explanation of consciousness and of how (11) the dichotomy between first person subjectivity and third person objectivity or `hard problem' is resolved.
The role of orthography in the semantic activation of neighbors.
Hino, Yasushi; Lupker, Stephen J; Taylor, Tamsen E
2012-09-01
There is now considerable evidence that a letter string can activate semantic information appropriate to its orthographic neighbors (e.g., Forster & Hector's, 2002, TURPLE effect). This phenomenon is the focus of the present research. Using Japanese words, we examined whether semantic activation of neighbors is driven directly by orthographic similarity alone or whether there is also a role for phonological similarity. In Experiment 1, using a relatedness judgment task in which a Kanji word-Katakana word pair was presented on each trial, an inhibitory effect was observed when the initial Kanji word was related to an orthographic and phonological neighbor of the Katakana word target but not when the initial Kanji word was related to a phonological but not orthographic neighbor of the Katakana word target. This result suggests that phonology plays little, if any, role in the activation of neighbors' semantics when reading familiar words. In Experiment 2, the targets were transcribed into Hiragana, a script they are typically not written in, requiring readers to engage in phonological coding. In that experiment, inhibitory effects were observed in both conditions. This result indicates that phonologically mediated semantic activation of neighbors will emerge when phonological processing is necessary in order to understand a written word (e.g., when that word is transcribed into an unfamiliar script). PsycINFO Database Record (c) 2012 APA, all rights reserved.
Word add-in for ontology recognition: semantic enrichment of scientific literature
2010-01-01
Background In the current era of scientific research, efficient communication of information is paramount. As such, the nature of scholarly and scientific communication is changing; cyberinfrastructure is now absolutely necessary and new media are allowing information and knowledge to be more interactive and immediate. One approach to making knowledge more accessible is the addition of machine-readable semantic data to scholarly articles. Results The Word add-in presented here will assist authors in this effort by automatically recognizing and highlighting words or phrases that are likely information-rich, allowing authors to associate semantic data with those words or phrases, and to embed that data in the document as XML. The add-in and source code are publicly available at http://www.codeplex.com/UCSDBioLit. Conclusions The Word add-in for ontology term recognition makes it possible for an author to add semantic data to a document as it is being written and it encodes these data using XML tags that are effectively a standard in life sciences literature. Allowing authors to mark-up their own work will help increase the amount and quality of machine-readable literature metadata. PMID:20181245
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-07
... (VOCs), PM 2.5 , coarse particles (PM 10 ), ammonia (NH 3 ), and sulfur dioxide (SO 2 ). EPA has... ), ammonia (NH 3 ), and sulfur dioxide (SO 2 ). [FR Doc. 2012-29611 Filed 12-6-12; 8:45 am] BILLING CODE 6560...
Optimization of computations for adjoint field and Jacobian needed in 3D CSEM inversion
NASA Astrophysics Data System (ADS)
Dehiya, Rahul; Singh, Arun; Gupta, Pravin K.; Israil, M.
2017-01-01
We present the features and results of a newly developed code, based on Gauss-Newton optimization technique, for solving three-dimensional Controlled-Source Electromagnetic inverse problem. In this code a special emphasis has been put on representing the operations by block matrices for conjugate gradient iteration. We show how in the computation of Jacobian, the matrix formed by differentiation of system matrix can be made independent of frequency to optimize the operations at conjugate gradient step. The coarse level parallel computing, using OpenMP framework, is used primarily due to its simplicity in implementation and accessibility of shared memory multi-core computing machine to almost anyone. We demonstrate how the coarseness of modeling grid in comparison to source (comp`utational receivers) spacing can be exploited for efficient computing, without compromising the quality of the inverted model, by reducing the number of adjoint calls. It is also demonstrated that the adjoint field can even be computed on a grid coarser than the modeling grid without affecting the inversion outcome. These observations were reconfirmed using an experiment design where the deviation of source from straight tow line is considered. Finally, a real field data inversion experiment is presented to demonstrate robustness of the code.
The picture superiority effect in a cross-modality recognition task.
Stenbert, G; Radeborg, K; Hedman, L R
1995-07-01
Words and pictures were studied and recognition tests given in which each studied object was to be recognized in both word and picture format. The main dependent variable was the latency of the recognition decision. The purpose was to investigate the effects of study modality (word or picture), of congruence between study and test modalities, and of priming resulting from repeated testing. Experiments 1 and 2 used the same basic design, but the latter also varied retention interval. Experiment 3 added a manipulation of instructions to name studied objects, and Experiment 4 deviated from the others by presenting both picture and word referring to the same object together for study. The results showed that congruence between study and test modalities consistently facilitated recognition. Furthermore, items studied as pictures were more rapidly recognized than were items studied as words. With repeated testing, the second instance was affected by its predecessor, but the facilitating effect of picture-to-word priming exceeded that of word-to-picture priming. The finds suggest a two- stage recognition process, in which the first is based on perceptual familiarity and the second uses semantic links for a retrieval search. Common-code theories that grant privileged access to the semantic code for pictures or, alternatively, dual-code theories that assume mnemonic superiority for the image code are supported by the findings. Explanations of the picture superiority effect as resulting from dual encoding of pictures are not supported by the data.
Concepts, Control, and Context: A Connectionist Account of Normal and Disordered Semantic Cognition
2018-01-01
Semantic cognition requires conceptual representations shaped by verbal and nonverbal experience and executive control processes that regulate activation of knowledge to meet current situational demands. A complete model must also account for the representation of concrete and abstract words, of taxonomic and associative relationships, and for the role of context in shaping meaning. We present the first major attempt to assimilate all of these elements within a unified, implemented computational framework. Our model combines a hub-and-spoke architecture with a buffer that allows its state to be influenced by prior context. This hybrid structure integrates the view, from cognitive neuroscience, that concepts are grounded in sensory-motor representation with the view, from computational linguistics, that knowledge is shaped by patterns of lexical co-occurrence. The model successfully codes knowledge for abstract and concrete words, associative and taxonomic relationships, and the multiple meanings of homonyms, within a single representational space. Knowledge of abstract words is acquired through (a) their patterns of co-occurrence with other words and (b) acquired embodiment, whereby they become indirectly associated with the perceptual features of co-occurring concrete words. The model accounts for executive influences on semantics by including a controlled retrieval mechanism that provides top-down input to amplify weak semantic relationships. The representational and control elements of the model can be damaged independently, and the consequences of such damage closely replicate effects seen in neuropsychological patients with loss of semantic representation versus control processes. Thus, the model provides a wide-ranging and neurally plausible account of normal and impaired semantic cognition. PMID:29733663
Semantic Annotation of Complex Text Structures in Problem Reports
NASA Technical Reports Server (NTRS)
Malin, Jane T.; Throop, David R.; Fleming, Land D.
2011-01-01
Text analysis is important for effective information retrieval from databases where the critical information is embedded in text fields. Aerospace safety depends on effective retrieval of relevant and related problem reports for the purpose of trend analysis. The complex text syntax in problem descriptions has limited statistical text mining of problem reports. The presentation describes an intelligent tagging approach that applies syntactic and then semantic analysis to overcome this problem. The tags identify types of problems and equipment that are embedded in the text descriptions. The power of these tags is illustrated in a faceted searching and browsing interface for problem report trending that combines automatically generated tags with database code fields and temporal information.
Handling knowledge via Concept Maps: a space weather use case
NASA Astrophysics Data System (ADS)
Messerotti, Mauro; Fox, Peter
Concept Maps (Cmaps) are powerful means for knowledge coding in graphical form. As flexible software tools exist to manipulate the knowledge embedded in Cmaps in machine-readable form, such complex entities are suitable candidates not only for the representation of ontologies and semantics in Virtual Observatory (VO) architectures, but also for knowledge handling and knowledge discovery. In this work, we present a use case relevant to space weather applications and we elaborate on its possible implementation and adavanced use in Semantic Virtual Observatories dedicated to Sun-Earth Connections. This analysis was carried out in the framework of the Electronic Geophysical Year (eGY) and represents an achievement synergized by the eGY Virtual Observatories Working Group.
Lower- and higher-level models of right hemisphere language. A selective survey.
Gainotti, Guido
2016-01-01
The models advanced to explain right hemisphere (RH) language function can be divided into two main types. According to the older (lower-level) models, RH language reflects the ontogenesis of conceptual and semantic-lexical development; the more recent models, on the other hand, suggest that the RH plays an important role in the use of higher-level language functions, such as metaphors, to convey complex, abstract concepts. The hypothesis that the RH may be preferentially involved in processing the semantic-lexical components of language was advanced by Zaidel in splitbrain patients and his model was confirmed by neuropsychological investigations, proving that right brain-damaged patients show selective semanticlexical disorders. The possible links between lower and higher levels of RH language are discussed, as is the hypothesis that the RH may have privileged access to the figurative aspects of novel metaphorical expressions, whereas conventionalization of metaphorical meaning could be a bilaterally-mediated process involving abstract semantic-lexical codes.
Functional Fixedness in Creative Thinking Tasks Depends on Stimulus Modality.
Chrysikou, Evangelia G; Motyka, Katharine; Nigro, Cristina; Yang, Song-I; Thompson-Schill, Sharon L
2016-11-01
Pictorial examples during creative thinking tasks can lead participants to fixate on these examples and reproduce their elements even when yielding suboptimal creative products. Semantic memory research may illuminate the cognitive processes underlying this effect. Here, we examined whether pictures and words differentially influence access to semantic knowledge for object concepts depending on whether the task is close- or open-ended. Participants viewed either names or pictures of everyday objects, or a combination of the two, and generated common, secondary, or ad hoc uses for them. Stimulus modality effects were assessed quantitatively through reaction times and qualitatively through a novel coding system, which classifies creative output on a continuum from top-down-driven to bottom-up-driven responses. Both analyses revealed differences across tasks. Importantly, for ad hoc uses, participants exposed to pictures generated more top-down-driven responses than those exposed to object names. These findings have implications for accounts of functional fixedness in creative thinking, as well as theories of semantic memory for object concepts.
Functional Fixedness in Creative Thinking Tasks Depends on Stimulus Modality
Chrysikou, Evangelia G.; Motyka, Katharine; Nigro, Cristina; Yang, Song-I; Thompson-Schill, Sharon L.
2015-01-01
Pictorial examples during creative thinking tasks can lead participants to fixate on these examples and reproduce their elements even when yielding suboptimal creative products. Semantic memory research may illuminate the cognitive processes underlying this effect. Here, we examined whether pictures and words differentially influence access to semantic knowledge for object concepts depending on whether the task is close- or open-ended. Participants viewed either names or pictures of everyday objects, or a combination of the two, and generated common, secondary, or ad hoc uses for them. Stimulus modality effects were assessed quantitatively through reaction times and qualitatively through a novel coding system, which classifies creative output on a continuum from top-down-driven to bottom-up-driven responses. Both analyses revealed differences across tasks. Importantly, for ad hoc uses, participants exposed to pictures generated more top-down-driven responses than those exposed to object names. These findings have implications for accounts of functional fixedness in creative thinking, as well as theories of semantic memory for object concepts. PMID:28344724
A High-Level Language for Modeling Algorithms and Their Properties
NASA Astrophysics Data System (ADS)
Akhtar, Sabina; Merz, Stephan; Quinson, Martin
Designers of concurrent and distributed algorithms usually express them using pseudo-code. In contrast, most verification techniques are based on more mathematically-oriented formalisms such as state transition systems. This conceptual gap contributes to hinder the use of formal verification techniques. Leslie Lamport introduced PlusCal, a high-level algorithmic language that has the "look and feel" of pseudo-code, but is equipped with a precise semantics and includes a high-level expression language based on set theory. PlusCal models can be compiled to TLA + and verified using the model checker tlc.
The Representation of Abstract Words: Why Emotion Matters
ERIC Educational Resources Information Center
Kousta, Stavroula-Thaleia; Vigliocco, Gabriella; Vinson, David P.; Andrews, Mark; Del Campo, Elena
2011-01-01
Although much is known about the representation and processing of concrete concepts, knowledge of what abstract semantics might be is severely limited. In this article we first address the adequacy of the 2 dominant accounts (dual coding theory and the context availability model) put forward in order to explain representation and processing…
Assessing Assessment: In Pursuit of Meaningful Learning
ERIC Educational Resources Information Center
Rootman-le Grange, Ilse; Blackie, Margaret A. L.
2018-01-01
The challenge of supporting the development of meaningful learning is prevalent in chemistry education research. One of the core activities used in the learning process is assessments. The aim of this paper is to illustrate how the semantics dimension of Legitimation Code Theory can be a helpful tool to critique the quality of assessments and…
Exploring the Nature of Disciplinary Teaching and Learning Using Legitimation Code Theory Semantics
ERIC Educational Resources Information Center
Clarence, Sherran
2016-01-01
Teaching and learning is a growing field of research and practice globally, and increasing investments are being made in developing academics as teachers. An inability to adequately account for disciplinary knowledge can lead to academic development inputs that are unable to fully address the needs of students, educators, or disciplines…
ERIC Educational Resources Information Center
Wang, Ling; Blackwell, Aleka Akoyunoglou
2015-01-01
Native speakers of alphabetic languages, which use letters governed by grapheme-phoneme correspondence rules, often find it particularly challenging to learn a logographic language whose writing system employs symbols with no direct sound-to-spelling connection but links to the visual and semantic information. The visuospatial properties of…
Brown, Adam D; Addis, Donna Rose; Romano, Tracy A; Marmar, Charles R; Bryant, Richard A; Hirst, William; Schacter, Daniel L
2014-01-01
Individuals with post-traumatic stress disorder (PTSD) tend to retrieve autobiographical memories with less episodic specificity, referred to as overgeneralised autobiographical memory. In line with evidence that autobiographical memory overlaps with one's capacity to imagine the future, recent work has also shown that individuals with PTSD also imagine themselves in the future with less episodic specificity. To date most studies quantify episodic specificity by the presence of a distinct event. However, this method does not distinguish between the numbers of internal (episodic) and external (semantic) details, which can provide additional insights into remembering the past and imagining the future. This study employed the Autobiographical Interview (AI) coding scheme to the autobiographical memory and imagined future event narratives generated by combat veterans with and without PTSD. Responses were coded for the number of internal and external details. Compared to combat veterans without PTSD, those with PTSD generated more external than internal details when recalling past or imagining future events, and fewer internal details were associated with greater symptom severity. The potential mechanisms underlying these bidirectional deficits and clinical implications are discussed.
The representation of abstract words: why emotion matters.
Kousta, Stavroula-Thaleia; Vigliocco, Gabriella; Vinson, David P; Andrews, Mark; Del Campo, Elena
2011-02-01
Although much is known about the representation and processing of concrete concepts, knowledge of what abstract semantics might be is severely limited. In this article we first address the adequacy of the 2 dominant accounts (dual coding theory and the context availability model) put forward in order to explain representation and processing differences between concrete and abstract words. We find that neither proposal can account for experimental findings and that this is, at least partly, because abstract words are considered to be unrelated to experiential information in both of these accounts. We then address a particular type of experiential information, emotional content, and demonstrate that it plays a crucial role in the processing and representation of abstract concepts: Statistically, abstract words are more emotionally valenced than are concrete words, and this accounts for a residual latency advantage for abstract words, when variables such as imageability (a construct derived from dual coding theory) and rated context availability are held constant. We conclude with a discussion of our novel hypothesis for embodied abstract semantics. (c) 2010 APA, all rights reserved.
Neural foundations and functional specificity of number representations.
Piazza, Manuela; Eger, Evelyn
2016-03-01
Number is a complex category, as with the word "number" we may refer to different entities. First, it is a perceptual property that characterizes any set of individual items, namely its cardinality. The ability to extract the (approximate) cardinality of sets is almost universal in the animal domain and present in humans since birth. In primates, posterior parietal cortex seems to be a crucial site for this ability, even if the degree of selectivity of numerical representations in parietal cortex reported to date appears much lower compared to that of other semantic categories in the ventral stream. Number can also be intended as a mathematical object, which we humans use to count, measure, and order: a (verbal or visual) symbol that stands for the cardinality of a set, the intensity of a continuous quantity or the position of an item on a list. Evidence points to a convergence towards parietal cortex for the semantic coding of numerical symbols and to the bilateral occipitotemporal cortex for the shape coding of Arabic digits and other number symbols. Copyright © 2015 Elsevier Ltd. All rights reserved.
Impulse Response Measurements Over Space-Earth Paths Using the GPS Coarse/Acquisition Codes
NASA Technical Reports Server (NTRS)
Lemmon, J. J.; Papazian, P. B.
1995-01-01
The impulse responses of radio transmission channels over space-earth paths were measured using the course/acquisition code signals from the Global Positioning System of satellites. The data acquisition system and signal processing techniques used to develop the impulse responses are described. Examples of impulse response measurements are presented. The results indicate that this measurement approach enables detection of multipath signals that are 20 dB or more below the power of the direct arrival. Channel characteristics that could be investigated with additional measurements and analyses are discussed.
2009-03-01
utilize L2 measurements via proprietary methods. The coarse/ acquisition (C/A) code transmitted on L1 is used for the vast majority of GPS position... code , which can be acquired and tracked by a GPS receiver. The satellites are in a near-circular orbit with a radius of 26,560 km. There are six orbital...planes, each with at least four satellites. The orbital planes have an inclination of 55◦ from the equator. [33, p . 33] The GPS satellite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, William Michael; Plimpton, Steven James; Wang, Peng
2010-03-01
LAMMPS is a classical molecular dynamics code, and an acronym for Large-scale Atomic/Molecular Massively Parallel Simulator. LAMMPS has potentials for soft materials (biomolecules, polymers) and solid-state materials (metals, semiconductors) and coarse-grained or mesoscopic systems. It can be used to model atoms or, more generically, as a parallel particle simulator at the atomic, meso, or continuum scale. LAMMPS runs on single processors or in parallel using message-passing techniques and a spatial-decomposition of the simulation domain. The code is designed to be easy to modify or extend with new functionality.
XPI: The Xanadu Parameter Interface
NASA Technical Reports Server (NTRS)
White, N.; Barrett, P.; Oneel, B.; Jacobs, P.
1992-01-01
XPI is a table driven parameter interface which greatly simplifies both command driven programs such as BROWSE and XIMAGE as well as stand alone single-task programs. It moves all of the syntax and semantic parsing of commands and parameters out of the users code into common code and externally defined tables. This allows the programmer to concentrate on writing the code unique to the application rather than reinventing the user interface and for external graphical interfaces to interface with no changes to the command driven program. XPI also includes a compatibility library which allows programs written using the IRAF host interface (Mandel and Roll) to use XPI in place of the IRAF host interface.
Illusory conjunctions in simultanagnosia: coarse coding of visual feature location?
McCrea, Simon M; Buxbaum, Laurel J; Coslett, H Branch
2006-01-01
Simultanagnosia is a disorder characterized by an inability to see more than one object at a time. We report a simultanagnosic patient (ED) with bilateral posterior infarctions who produced frequent illusory conjunctions on tasks involving form and surface features (e.g., a red T) and form alone. ED also produced "blend" errors in which features of one familiar perceptual unit appeared to migrate to another familiar perceptual unit (e.g., "RO" read as "PQ"). ED often misread scrambled letter strings as a familiar word (e.g., "hmoe" read as "home"). Finally, ED's success in reporting two letters in an array was inversely related to the distance between the letters. These findings are consistent with the hypothesis that ED's illusory reflect coarse coding of visual feature location that is ameliorated in part by top-down information from object and word recognition systems; the findings are also consistent, however, with Treisman's Feature Integration Theory. Finally, the data provide additional support for the claim that the dorsal parieto-occipital cortex is implicated in the binding of visual feature information.
The impact of impaired semantic knowledge on spontaneous iconic gesture production
Cocks, Naomi; Dipper, Lucy; Pritchard, Madeleine; Morgan, Gary
2013-01-01
Background Previous research has found that people with aphasia produce more spontaneous iconic gesture than control participants, especially during word-finding difficulties. There is some evidence that impaired semantic knowledge impacts on the diversity of gestural handshapes, as well as the frequency of gesture production. However, no previous research has explored how impaired semantic knowledge impacts on the frequency and type of iconic gestures produced during fluent speech compared with those produced during word-finding difficulties. Aims To explore the impact of impaired semantic knowledge on the frequency and type of iconic gestures produced during fluent speech and those produced during word-finding difficulties. Methods & Procedures A group of 29 participants with aphasia and 29 control participants were video recorded describing a cartoon they had just watched. All iconic gestures were tagged and coded as either “manner,” “path only,” “shape outline” or “other”. These gestures were then separated into either those occurring during fluent speech or those occurring during a word-finding difficulty. The relationships between semantic knowledge and gesture frequency and form were then investigated in the two different conditions. Outcomes & Results As expected, the participants with aphasia produced a higher frequency of iconic gestures than the control participants, but when the iconic gestures produced during word-finding difficulties were removed from the analysis, the frequency of iconic gesture was not significantly different between the groups. While there was not a significant relationship between the frequency of iconic gestures produced during fluent speech and semantic knowledge, there was a significant positive correlation between semantic knowledge and the proportion of word-finding difficulties that contained gesture. There was also a significant positive correlation between the speakers' semantic knowledge and the proportion of gestures that were produced during fluent speech that were classified as “manner”. Finally while not significant, there was a positive trend between semantic knowledge of objects and the production of “shape outline” gestures during word-finding difficulties for objects. Conclusions The results indicate that impaired semantic knowledge in aphasia impacts on both the iconic gestures produced during fluent speech and those produced during word-finding difficulties but in different ways. These results shed new light on the relationship between impaired language and iconic co-speech gesture production and also suggest that analysis of iconic gesture may be a useful addition to clinical assessment. PMID:24058228
Development of structured ICD-10 and its application to computer-assisted ICD coding.
Imai, Takeshi; Kajino, Masayuki; Sato, Megumi; Ohe, Kazuhiko
2010-01-01
This paper presents: (1) a framework of formal representation of ICD10, which functions as a bridge between ontological information and natural language expressions; and (2) a methodology to use formally described ICD10 for computer-assisted ICD coding. First, we analyzed and structurized the meanings of categories in 15 chapters of ICD10. Then we expanded the structured ICD10 (S-ICD10) by adding subordinate concepts and labels derived from Japanese Standard Disease Names. The information model to describe formal representation was refined repeatedly. The resultant model includes 74 types of semantic links. We also developed an ICD coding module based on S-ICD10 and a 'Coding Principle,' which achieved high accuracy (>70%) for four chapters. These results not only demonstrate the basic feasibility of our coding framework but might also inform the development of the information model for formal description framework in the ICD11 revision.
Huang, Jingshan; Gutierrez, Fernando; Strachan, Harrison J; Dou, Dejing; Huang, Weili; Smith, Barry; Blake, Judith A; Eilbeck, Karen; Natale, Darren A; Lin, Yu; Wu, Bin; Silva, Nisansa de; Wang, Xiaowei; Liu, Zixing; Borchert, Glen M; Tan, Ming; Ruttenberg, Alan
2016-01-01
As a special class of non-coding RNAs (ncRNAs), microRNAs (miRNAs) perform important roles in numerous biological and pathological processes. The realization of miRNA functions depends largely on how miRNAs regulate specific target genes. It is therefore critical to identify, analyze, and cross-reference miRNA-target interactions to better explore and delineate miRNA functions. Semantic technologies can help in this regard. We previously developed a miRNA domain-specific application ontology, Ontology for MIcroRNA Target (OMIT), whose goal was to serve as a foundation for semantic annotation, data integration, and semantic search in the miRNA field. In this paper we describe our continuing effort to develop the OMIT, and demonstrate its use within a semantic search system, OmniSearch, designed to facilitate knowledge capture of miRNA-target interaction data. Important changes in the current version OMIT are summarized as: (1) following a modularized ontology design (with 2559 terms imported from the NCRO ontology); (2) encoding all 1884 human miRNAs (vs. 300 in previous versions); and (3) setting up a GitHub project site along with an issue tracker for more effective community collaboration on the ontology development. The OMIT ontology is free and open to all users, accessible at: http://purl.obolibrary.org/obo/omit.owl. The OmniSearch system is also free and open to all users, accessible at: http://omnisearch.soc.southalabama.edu/index.php/Software.
The semantic component of the evoked potential of differentiation.
Izmailov, Chingis A; Korshunova, Svetlana G; Sokolov, Yevgeniy N
2008-05-01
This work analyzes data from recordings of (occipital and temporal) cortical evoked potentials (called evoked potentials of differentiation (EPD) occurring in humans in response to an abrupt substitution of stimuli. As stimuli we used three groups of words: the names of the ten basic colors taken from Newton's color circle; the names of seven basic emotions forming Shlossberg's circle of emotions; and seven nonsense words comprised of random combinations of letters. Within each group of word stimuli we constructed a matrix of the differences between the amplitudes of mid-latency components of EPD for each pair of words. This matrix was analyzed using the method of multidimensional scaling. As a result of this analysis we were able to distinguish the semantic and configurational components of EPD amplitude. The semantic component of EPD amplitude was evaluated by comparing structure of the data obtained to the circular structures of emotion and color names. The configurational component was evaluated on the basis of the attribute of word length (number of letters). It was demonstrated that the semantic component of the EPD can only be detected in the left occipital lead at an interpeak amplitude of P120-N180. The configurational component is reflected in the occipital and temporal leads to an identical extent, but only in the amplitude of a later (N180-P230) component of the EPD. The results obtained are discussed in terms of the coding of categorized, configurational, and semantic attributes of a visual stimulus.
NASA Astrophysics Data System (ADS)
Wendler, Th.; Meyer-Ebrecht, D.
1982-01-01
Picture archiving and communication systems, especially those for medical applications, will offer the potential to integrate the various image sources of different nature. A major problem, however, is the incompatibility of the different matrix sizes and data formats. This may be overcome by a novel hierarchical coding process, which could lead to a unified picture format standard. A picture coding scheme is described, which decomposites a given (2n)2 picture matrix into a basic (2m)2 coarse information matrix (representing lower spatial frequencies) and a set of n-m detail matrices, containing information of increasing spatial resolution. Thus, the picture is described by an ordered set of data blocks rather than by a full resolution matrix of pixels. The blocks of data are transferred and stored using data formats, which have to be standardized throughout the system. Picture sources, which produce pictures of different resolution, will provide the coarse-matrix datablock and additionally only those detail matrices that correspond to their required resolution. Correspondingly, only those detail-matrix blocks need to be retrieved from the picture base, that are actually required for softcopy or hardcopy output. Thus, picture sources and retrieval terminals of diverse nature and retrieval processes for diverse purposes are easily made compatible. Furthermore this approach will yield an economic use of storage space and transmission capacity: In contrast to fixed formats, redundand data blocks are always skipped. The user will get a coarse representation even of a high-resolution picture almost instantaneously with gradually added details, and may abort transmission at any desired detail level. The coding scheme applies the S-transform, which is a simple add/substract algorithm basically derived from the Hadamard Transform. Thus, an additional data compression can easily be achieved especially for high-resolution pictures by applying appropriate non-linear and/or adaptive quantizing.
NASA Astrophysics Data System (ADS)
Balaji, V.; Benson, Rusty; Wyman, Bruce; Held, Isaac
2016-10-01
Climate models represent a large variety of processes on a variety of timescales and space scales, a canonical example of multi-physics multi-scale modeling. Current hardware trends, such as Graphical Processing Units (GPUs) and Many Integrated Core (MIC) chips, are based on, at best, marginal increases in clock speed, coupled with vast increases in concurrency, particularly at the fine grain. Multi-physics codes face particular challenges in achieving fine-grained concurrency, as different physics and dynamics components have different computational profiles, and universal solutions are hard to come by. We propose here one approach for multi-physics codes. These codes are typically structured as components interacting via software frameworks. The component structure of a typical Earth system model consists of a hierarchical and recursive tree of components, each representing a different climate process or dynamical system. This recursive structure generally encompasses a modest level of concurrency at the highest level (e.g., atmosphere and ocean on different processor sets) with serial organization underneath. We propose to extend concurrency much further by running more and more lower- and higher-level components in parallel with each other. Each component can further be parallelized on the fine grain, potentially offering a major increase in the scalability of Earth system models. We present here first results from this approach, called coarse-grained component concurrency, or CCC. Within the Geophysical Fluid Dynamics Laboratory (GFDL) Flexible Modeling System (FMS), the atmospheric radiative transfer component has been configured to run in parallel with a composite component consisting of every other atmospheric component, including the atmospheric dynamics and all other atmospheric physics components. We will explore the algorithmic challenges involved in such an approach, and present results from such simulations. Plans to achieve even greater levels of coarse-grained concurrency by extending this approach within other components, such as the ocean, will be discussed.
Tracking neural coding of perceptual and semantic features of concrete nouns
Sudre, Gustavo; Pomerleau, Dean; Palatucci, Mark; Wehbe, Leila; Fyshe, Alona; Salmelin, Riitta; Mitchell, Tom
2015-01-01
We present a methodological approach employing magnetoencephalography (MEG) and machine learning techniques to investigate the flow of perceptual and semantic information decodable from neural activity in the half second during which the brain comprehends the meaning of a concrete noun. Important information about the cortical location of neural activity related to the representation of nouns in the human brain has been revealed by past studies using fMRI. However, the temporal sequence of processing from sensory input to concept comprehension remains unclear, in part because of the poor time resolution provided by fMRI. In this study, subjects answered 20 questions (e.g. is it alive?) about the properties of 60 different nouns prompted by simultaneous presentation of a pictured item and its written name. Our results show that the neural activity observed with MEG encodes a variety of perceptual and semantic features of stimuli at different times relative to stimulus onset, and in different cortical locations. By decoding these features, our MEG-based classifier was able to reliably distinguish between two different concrete nouns that it had never seen before. The results demonstrate that there are clear differences between the time course of the magnitude of MEG activity and that of decodable semantic information. Perceptual features were decoded from MEG activity earlier in time than semantic features, and features related to animacy, size, and manipulability were decoded consistently across subjects. We also observed that regions commonly associated with semantic processing in the fMRI literature may not show high decoding results in MEG. We believe that this type of approach and the accompanying machine learning methods can form the basis for further modeling of the flow of neural information during language processing and a variety of other cognitive processes. PMID:22565201
BIOSSES: a semantic sentence similarity estimation system for the biomedical domain.
Sogancioglu, Gizem; Öztürk, Hakime; Özgür, Arzucan
2017-07-15
The amount of information available in textual format is rapidly increasing in the biomedical domain. Therefore, natural language processing (NLP) applications are becoming increasingly important to facilitate the retrieval and analysis of these data. Computing the semantic similarity between sentences is an important component in many NLP tasks including text retrieval and summarization. A number of approaches have been proposed for semantic sentence similarity estimation for generic English. However, our experiments showed that such approaches do not effectively cover biomedical knowledge and produce poor results for biomedical text. We propose several approaches for sentence-level semantic similarity computation in the biomedical domain, including string similarity measures and measures based on the distributed vector representations of sentences learned in an unsupervised manner from a large biomedical corpus. In addition, ontology-based approaches are presented that utilize general and domain-specific ontologies. Finally, a supervised regression based model is developed that effectively combines the different similarity computation metrics. A benchmark data set consisting of 100 sentence pairs from the biomedical literature is manually annotated by five human experts and used for evaluating the proposed methods. The experiments showed that the supervised semantic sentence similarity computation approach obtained the best performance (0.836 correlation with gold standard human annotations) and improved over the state-of-the-art domain-independent systems up to 42.6% in terms of the Pearson correlation metric. A web-based system for biomedical semantic sentence similarity computation, the source code, and the annotated benchmark data set are available at: http://tabilab.cmpe.boun.edu.tr/BIOSSES/ . gizemsogancioglu@gmail.com or arzucan.ozgur@boun.edu.tr. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com
Topic models: A novel method for modeling couple and family text data
Atkins, David C.; Rubin, Tim N.; Steyvers, Mark; Doeden, Michelle A.; Baucom, Brian R.; Christensen, Andrew
2012-01-01
Couple and family researchers often collect open-ended linguistic data – either through free response questionnaire items or transcripts of interviews or therapy sessions. Because participant's responses are not forced into a set number of categories, text-based data can be very rich and revealing of psychological processes. At the same time it is highly unstructured and challenging to analyze. Within family psychology analyzing text data typically means applying a coding system, which can quantify text data but also has several limitations, including the time needed for coding, difficulties with inter-rater reliability, and defining a priori what should be coded. The current article presents an alternative method for analyzing text data called topic models (Steyvers & Griffiths, 2006), which has not yet been applied within couple and family psychology. Topic models have similarities with factor analysis and cluster analysis in that topic models identify underlying clusters of words with semantic similarities (i.e., the “topics”). In the present article, a non-technical introduction to topic models is provided, highlighting how these models can be used for text exploration and indexing (e.g., quickly locating text passages that share semantic meaning) and how output from topic models can be used to predict behavioral codes or other types of outcomes. Throughout the article a collection of transcripts from a large couple therapy trial (Christensen et al., 2004) is used as example data to highlight potential applications. Practical resources for learning more about topic models and how to apply them are discussed. PMID:22888778
Topic models: a novel method for modeling couple and family text data.
Atkins, David C; Rubin, Timothy N; Steyvers, Mark; Doeden, Michelle A; Baucom, Brian R; Christensen, Andrew
2012-10-01
Couple and family researchers often collect open-ended linguistic data-either through free-response questionnaire items, or transcripts of interviews or therapy sessions. Because participants' responses are not forced into a set number of categories, text-based data can be very rich and revealing of psychological processes. At the same time, it is highly unstructured and challenging to analyze. Within family psychology, analyzing text data typically means applying a coding system, which can quantify text data but also has several limitations, including the time needed for coding, difficulties with interrater reliability, and defining a priori what should be coded. The current article presents an alternative method for analyzing text data called topic models (Steyvers & Griffiths, 2006), which has not yet been applied within couple and family psychology. Topic models have similarities to factor analysis and cluster analysis in that they identify underlying clusters of words with semantic similarities (i.e., the "topics"). In the present article, a nontechnical introduction to topic models is provided, highlighting how these models can be used for text exploration and indexing (e.g., quickly locating text passages that share semantic meaning) and how output from topic models can be used to predict behavioral codes or other types of outcomes. Throughout the article, a collection of transcripts from a large couple-therapy trial (Christensen et al., 2004) is used as example data to highlight potential applications. Practical resources for learning more about topic models and how to apply them are discussed. (PsycINFO Database Record (c) 2012 APA, all rights reserved).
Fournier, Lisa Renee; Wiediger, Matthew D; McMeans, Ryan; Mattson, Paul S; Kirkwood, Joy; Herzog, Theibot
2010-07-01
Holding an action plan in memory for later execution can delay execution of another action if the actions share a similar (compatible) feature. This compatibility interference (CI) occurs for actions that share the same response modality (e.g., manual response). We investigated whether CI can generalize to actions that utilize different response modalities (manual and vocal). In three experiments, participants planned and withheld a sequence of key-presses with the left- or right-hand based on the visual identity of the first stimulus, and then immediately executed a speeded, vocal response ('left' or 'right') to a second visual stimulus. The vocal response was based on discriminating stimulus color (Experiment 1), reading a written word (Experiment 2), or reporting the antonym of a written word (Experiment 3). Results showed that CI occurred when the manual response hand (e.g., left) was compatible with the identity of the vocal response (e.g., 'left') in Experiment 1 and 3, but not in Experiment 2. This suggests that partial overlap of semantic codes is sufficient to obtain CI unless the intervening action can be accessed automatically (Experiment 2). These findings are consistent with the code occupation hypothesis and the general framework of the theory of event coding (Behav Brain Sci 24:849-878, 2001a; Behav Brain Sci 24:910-937, 2001b).
NASA Astrophysics Data System (ADS)
Veerraju, R. P. S. P.; Rao, A. Srinivasa; Murali, G.
2010-10-01
Refactoring is a disciplined technique for restructuring an existing body of code, altering its internal structure without changing its external behavior. It improves internal code structure without altering its external functionality by transforming functions and rethinking algorithms. It is an iterative process. Refactoring include reducing scope, replacing complex instructions with simpler or built-in instructions, and combining multiple statements into one statement. By transforming the code with refactoring techniques it will be faster to change, execute, and download. It is an excellent best practice to adopt for programmers wanting to improve their productivity. Refactoring is similar to things like performance optimizations, which are also behavior- preserving transformations. It also helps us find bugs when we are trying to fix a bug in difficult-to-understand code. By cleaning things up, we make it easier to expose the bug. Refactoring improves the quality of application design and implementation. In general, three cases concerning refactoring. Iterative refactoring, Refactoring when is necessary, Not refactor. Mr. Martin Fowler identifies four key reasons to refractor. Refactoring improves the design of software, makes software easier to understand, helps us find bugs and also helps in executing the program faster. There is an additional benefit of refactoring. It changes the way a developer thinks about the implementation when not refactoring. There are the three types of refactorings. 1) Code refactoring: It often referred to simply as refactoring. This is the refactoring of programming source code. 2) Database refactoring: It is a simple change to a database schema that improves its design while retaining both its behavioral and informational semantics. 3) User interface (UI) refactoring: It is a simple change to the UI which retains its semantics. Finally, we conclude the benefits of Refactoring are: Improves the design of software, Makes software easier to understand, Software gets cleaned up and Helps us to find bugs and Helps us to program faster.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Veerraju, R. P. S. P.; Rao, A. Srinivasa; Murali, G.
2010-10-26
Refactoring is a disciplined technique for restructuring an existing body of code, altering its internal structure without changing its external behavior. It improves internal code structure without altering its external functionality by transforming functions and rethinking algorithms. It is an iterative process. Refactoring include reducing scope, replacing complex instructions with simpler or built-in instructions, and combining multiple statements into one statement. By transforming the code with refactoring techniques it will be faster to change, execute, and download. It is an excellent best practice to adopt for programmers wanting to improve their productivity. Refactoring is similar to things like performance optimizations,more » which are also behavior- preserving transformations. It also helps us find bugs when we are trying to fix a bug in difficult-to-understand code. By cleaning things up, we make it easier to expose the bug. Refactoring improves the quality of application design and implementation. In general, three cases concerning refactoring. Iterative refactoring, Refactoring when is necessary, Not refactor.Mr. Martin Fowler identifies four key reasons to refractor. Refactoring improves the design of software, makes software easier to understand, helps us find bugs and also helps in executing the program faster. There is an additional benefit of refactoring. It changes the way a developer thinks about the implementation when not refactoring. There are the three types of refactorings. 1) Code refactoring: It often referred to simply as refactoring. This is the refactoring of programming source code. 2) Database refactoring: It is a simple change to a database schema that improves its design while retaining both its behavioral and informational semantics. 3) User interface (UI) refactoring: It is a simple change to the UI which retains its semantics. Finally, we conclude the benefits of Refactoring are: Improves the design of software, Makes software easier to understand, Software gets cleaned up and Helps us to find bugs and Helps us to program faster.« less
SciFlo: Semantically-Enabled Grid Workflow for Collaborative Science
NASA Astrophysics Data System (ADS)
Yunck, T.; Wilson, B. D.; Raskin, R.; Manipon, G.
2005-12-01
SciFlo is a system for Scientific Knowledge Creation on the Grid using a Semantically-Enabled Dataflow Execution Environment. SciFlo leverages Simple Object Access Protocol (SOAP) Web Services and the Grid Computing standards (WS-* standards and the Globus Alliance toolkits), and enables scientists to do multi-instrument Earth Science by assembling reusable SOAP Services, native executables, local command-line scripts, and python codes into a distributed computing flow (a graph of operators). SciFlo's XML dataflow documents can be a mixture of concrete operators (fully bound operations) and abstract template operators (late binding via semantic lookup). All data objects and operators can be both simply typed (simple and complex types in XML schema) and semantically typed using controlled vocabularies (linked to OWL ontologies such as SWEET). By exploiting ontology-enhanced search and inference, one can discover (and automatically invoke) Web Services and operators that have been semantically labeled as performing the desired transformation, and adapt a particular invocation to the proper interface (number, types, and meaning of inputs and outputs). The SciFlo client & server engines optimize the execution of such distributed data flows and allow the user to transparently find and use datasets and operators without worrying about the actual location of the Grid resources. The scientist injects a distributed computation into the Grid by simply filling out an HTML form or directly authoring the underlying XML dataflow document, and results are returned directly to the scientist's desktop. A Visual Programming tool is also being developed, but it is not required. Once an analysis has been specified for a granule or day of data, it can be easily repeated with different control parameters and over months or years of data. SciFlo uses and preserves semantics, and also generates and infers new semantic annotations. Specifically, the SciFlo engine uses semantic metadata to understand (infer) what it is doing and potentially improve the data flow; preserves semantics by saving links to the semantics of (metadata describing) the input datasets, related datasets, and the data transformations (algorithms) used to generate downstream products; generates new metadata by allowing the user to add semantic annotations to the generated data products (or simply accept automatically generated provenance annotations); and infers new semantic metadata by understanding and applying logic to the semantics of the data and the transformations performed. Much ontology development still needs to be done but, nevertheless, SciFlo documents provide a substrate for using and preserving more semantics as ontologies develop. We will give a live demonstration of the growing SciFlo network using an example dataflow in which atmospheric temperature and water vapor profiles from three Earth Observing System (EOS) instruments are retrieved using SOAP (geo-location query & data access) services, co-registered, and visually & statistically compared on demand (see http://sciflo.jpl.nasa.gov for more information).
[Psychosis, language and literature].
Maier, T
1999-05-01
There have always been debates about possible correlations between creative genius and mental illness, not only among psychiatrists but also among scientists of art and literature. Especially modern literary texts may show formal similarities to psychotic speech, which leads to the question, whether not only artists, but also people in psychotic states are able to create literature. This article points out the loosened semantic stability in psychotic speech, which equals a loss of common ground in the use of signs and symbols. In terms of Gadamer's hermeneutics, texts produced by psychotic people cannot be understood, they are mere form. Even in hermetic literary texts, the semantic code can be offended, but in deliberate artistic intention, which finds its communicative purpose in breaking the symbolic order.
ERIC Educational Resources Information Center
Thorne, John C.; Coggins, Truman E.; Olson, Heather Carmichael; Astley, Susan J.
2007-01-01
Purpose: To evaluate classification accuracy and clinical feasibility of a narrative analysis tool for identifying children with a fetal alcohol spectrum disorder (FASD). Method: Picture-elicited narratives generated by 16 age-matched pairs of school-aged children (FASD vs. typical development [TD]) were coded for semantic elaboration and…
ERIC Educational Resources Information Center
Kim, Young-Suk; Al Otaiba, Stephanie; Puranik, Cynthia; Folsom, Jessica Sidler; Gruelich, Luana
2014-01-01
In the present study we examined the relation between alphabet knowledge fluency (letter names and sounds) and letter writing automaticity, and unique relations of letter writing automaticity and semantic knowledge (i.e., vocabulary) to word reading and spelling over and above code-related skills such as phonological awareness and alphabet…
Lexical architecture based on a hierarchy of codes for high-speed string correction
NASA Astrophysics Data System (ADS)
de Bertrand de Beuvron, Francois; Trigano, Philippe
1992-03-01
AI systems for the general public have to be really tolerant to errors. These errors could be of several kinds: typographic, phonetic, grammatical, or semantic. A special lexical dictionary architecture has been designed to deal with the first two. It extends the hierarchical file method of E. Tanaka and Y. Kojima.
PCG: A prototype incremental compilation facility for the SAGA environment, appendix F
NASA Technical Reports Server (NTRS)
Kimball, Joseph John
1985-01-01
A programming environment supports the activity of developing and maintaining software. New environments provide language-oriented tools such as syntax-directed editors, whose usefulness is enhanced because they embody language-specific knowledge. When syntactic and semantic analysis occur early in the cycle of program production, that is, during editing, the use of a standard compiler is inefficient, for it must re-analyze the program before generating code. Likewise, it is inefficient to recompile an entire file, when the editor can determine that only portions of it need updating. The pcg, or Pascal code generation, facility described here generates code directly from the syntax trees produced by the SAGA syntax directed Pascal editor. By preserving the intermediate code used in the previous compilation, it can limit recompilation to the routines actually modified by editing.
The Cognitive Mechanisms of the SNARC Effect: An Individual Differences Approach
Viarouge, Arnaud; Hubbard, Edward M.; McCandliss, Bruce D.
2014-01-01
Access to mental representations of smaller vs. larger number symbols is associated with leftward vs. rightward spatial locations, as represented on a number line. The well-replicated SNARC effect (Spatial-Numerical Association of Response Codes) reveals that simple decisions about small numbers are facilitated when stimuli are presented on the left, and large numbers facilitated when on the right. We present novel evidence that the size of the SNARC effect is relatively stable within individuals over time. This enables us to take an individual differences approach to investigate how the SNARC effect is modulated by spatial and numerical cognition. Are number-space associations linked to spatial operations, such that those who have greater facility in spatial computations show the stronger SNARC effects, or are they linked to number semantics, such that those showing stronger influence of magnitude associations on number symbol decisions show stronger SNARC effects? Our results indicate a significant correlation between the SNARC effect and a 2D mental rotation task, suggesting that spatial operations are at play in the expression of this effect. We also uncover a significant correlation between the SNARC effect and the distance effect, suggesting that the SNARC is also related to access to number semantics. A multiple regression analysis reveals that the relative contributions of spatial cognition and distance effects represent significant, yet distinct, contributions in explaining variation in the size of the SNARC effect from one individual to the next. Overall, these results shed new light on how the spatial-numerical associations of response codes are influenced by both number semantics and spatial operations. PMID:24760048
A strong shock tube problem calculated by different numerical schemes
NASA Astrophysics Data System (ADS)
Lee, Wen Ho; Clancy, Sean P.
1996-05-01
Calculated results are presented for the solution of a very strong shock tube problem on a coarse mesh using (1) MESA code, (2) UNICORN code, (3) Schulz hydro, and (4) modified TVD scheme. The first two codes are written in Eulerian coordinates, whereas methods (3) and (4) are in Lagrangian coordinates. MESA and UNICORN codes are both of second order and use different monotonic advection method to avoid the Gibbs phenomena. Code (3) uses typical artificial viscosity for inviscid flow, whereas code (4) uses a modified TVD scheme. The test problem is a strong shock tube problem with a pressure ratio of 109 and density ratio of 103 in an ideal gas. For no mass-matching case, Schulz hydro is better than TVD scheme. In the case of mass-matching, there is no difference between them. MESA and UNICORN results are nearly the same. However, the computed positions such as the contact discontinuity (i.e. the material interface) are not as accurate as the Lagrangian methods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, W.H.; Clancy, S.P.
Calculated results are presented for the solution of a very strong shock tube problem on a coarse mesh using (1) MESA code, (2) UNICORN code, (3) Schulz hydro, and (4) modified TVD scheme. The first two codes are written in Eulerian coordinates, whereas methods (3) and (4) are in Lagrangian coordinates. MESA and UNICORN codes are both of second order and use different monotonic advection method to avoid the Gibbs phenomena. Code (3) uses typical artificial viscosity for inviscid flow, whereas code (4) uses a modified TVD scheme. The test problem is a strong shock tube problem with a pressuremore » ratio of 10{sup 9} and density ratio of 10{sup 3} in an ideal gas. For no mass-matching case, Schulz hydro is better than TVD scheme. In the case of mass-matching, there is no difference between them. MESA and UNICORN results are nearly the same. However, the computed positions such as the contact discontinuity (i.e. the material interface) are not as accurate as the Lagrangian methods. {copyright} {ital 1996 American Institute of Physics.}« less
Concreteness effects in semantic processing: ERP evidence supporting dual-coding theory.
Kounios, J; Holcomb, P J
1994-07-01
Dual-coding theory argues that processing advantages for concrete over abstract (verbal) stimuli result from the operation of 2 systems (i.e., imaginal and verbal) for concrete stimuli, rather than just 1 (for abstract stimuli). These verbal and imaginal systems have been linked with the left and right hemispheres of the brain, respectively. Context-availability theory argues that concreteness effects result from processing differences in a single system. The merits of these theories were investigated by examining the topographic distribution of event-related brain potentials in 2 experiments (lexical decision and concrete-abstract classification). The results were most consistent with dual-coding theory. In particular, different scalp distributions of an N400-like negativity were elicited by concrete and abstract words.
No grammatical gender effect on affective ratings: evidence from Italian and German languages.
Montefinese, Maria; Ambrosini, Ettore; Roivainen, Eka
2018-06-06
In this study, we tested the linguistic relativity hypothesis by studying the effect of grammatical gender (feminine vs. masculine) on affective judgments of conceptual representation in Italian and German. In particular, we examined the within- and cross-language grammatical gender effect and its interaction with participants' demographic characteristics (such as, the raters' age and sex) on semantic differential scales (affective ratings of valence, arousal and dominance) in Italian and German speakers. We selected the stimuli and the relative affective measures from Italian and German adaptations of the ANEW (Affective Norms for English Words). Bayesian and frequentist analyses yielded evidence for the absence of within- and cross-languages effects of grammatical gender and sex- and age-dependent interactions. These results suggest that grammatical gender does not affect judgments of affective features of semantic representation in Italian and German speakers, since an overt coding of word grammar is not required. Although further research is recommended to refine the impact of the grammatical gender on properties of semantic representation, these results have implications for any strong view of the linguistic relativity hypothesis.
First Steps to Automated Interior Reconstruction from Semantically Enriched Point Clouds and Imagery
NASA Astrophysics Data System (ADS)
Obrock, L. S.; Gülch, E.
2018-05-01
The automated generation of a BIM-Model from sensor data is a huge challenge for the modeling of existing buildings. Currently the measurements and analyses are time consuming, allow little automation and require expensive equipment. We do lack an automated acquisition of semantical information of objects in a building. We are presenting first results of our approach based on imagery and derived products aiming at a more automated modeling of interior for a BIM building model. We examine the building parts and objects visible in the collected images using Deep Learning Methods based on Convolutional Neural Networks. For localization and classification of building parts we apply the FCN8s-Model for pixel-wise Semantic Segmentation. We, so far, reach a Pixel Accuracy of 77.2 % and a mean Intersection over Union of 44.2 %. We finally use the network for further reasoning on the images of the interior room. We combine the segmented images with the original images and use photogrammetric methods to produce a three-dimensional point cloud. We code the extracted object types as colours of the 3D-points. We thus are able to uniquely classify the points in three-dimensional space. We preliminary investigate a simple extraction method for colour and material of building parts. It is shown, that the combined images are very well suited to further extract more semantic information for the BIM-Model. With the presented methods we see a sound basis for further automation of acquisition and modeling of semantic and geometric information of interior rooms for a BIM-Model.
A neural network model of semantic memory linking feature-based object representation and words.
Cuppini, C; Magosso, E; Ursino, M
2009-06-01
Recent theories in cognitive neuroscience suggest that semantic memory is a distributed process, which involves many cortical areas and is based on a multimodal representation of objects. The aim of this work is to extend a previous model of object representation to realize a semantic memory, in which sensory-motor representations of objects are linked with words. The model assumes that each object is described as a collection of features, coded in different cortical areas via a topological organization. Features in different objects are segmented via gamma-band synchronization of neural oscillators. The feature areas are further connected with a lexical area, devoted to the representation of words. Synapses among the feature areas, and among the lexical area and the feature areas are trained via a time-dependent Hebbian rule, during a period in which individual objects are presented together with the corresponding words. Simulation results demonstrate that, during the retrieval phase, the network can deal with the simultaneous presence of objects (from sensory-motor inputs) and words (from acoustic inputs), can correctly associate objects with words and segment objects even in the presence of incomplete information. Moreover, the network can realize some semantic links among words representing objects with shared features. These results support the idea that semantic memory can be described as an integrated process, whose content is retrieved by the co-activation of different multimodal regions. In perspective, extended versions of this model may be used to test conceptual theories, and to provide a quantitative assessment of existing data (for instance concerning patients with neural deficits).
Executive Function and Remission of Geriatric Depression: The Role of Semantic Strategy
Morimoto, Sarah Shizuko; Gunning, Faith M.; Murphy, Christopher F.; Kanellopoulos, Dora; Kelly, Robert E.; Alexopoulos, George S.
2013-01-01
BACKGROUND This study tested the hypothesis that use of semantic organizational strategy in approaching the Mattis Dementia Rating Scale (MDRS) Complex Verbal Initiation Perseveration (I/P) task, a test of semantic fluency, is the function specifically associated with remission of late-life depression. METHOD 70 elders with major depression participated in a 12-week escitalopram treatment trial. Neuropsychological performance was assessed at baseline after a 2-week drug washout period. Patients with a Hamilton Depression Rating Scale Score less than or equal to 7 for two consecutive weeks and who no longer met DSM-IV criteria were considered to be remitted. Cox proportional hazards survival analysis was used to examine the relationship between subtests of the I/P, other neuropsychological domains and remission rate. Participants’ performance on the CV I/P was coded for perseverations, and use of semantic strategy. RESULTS The relationship of performance on the Complex Verbal I/P and remission rate was significant. No other subtest of the MDRS I/P evidenced this association. There was no significant relationship of speed, confrontation naming, verbal memory or perseveration with remission rate. Remitters’ use of verbal strategy was significantly greater than non-remitters. CONCLUSIONS Geriatric depressed patients who showed decrements in performance on a semantic fluency task showed poorer remission rates than those who showed adequate performance on this measure. Executive impairment in verbal strategy explained performance. This finding supports the concept that executive functioning exerts a “top down” effect on other basic cognitive processes, perhaps as a result of frontostriatal network dysfunction implicated in geriatric depression. PMID:20808124
Chi, Yukai; Yue, Zhenzhu; Liu, Yupin; Mo, Lei; Chen, Qi
2014-08-01
There are ongoing debates on whether object concepts are coded as supramodal identity-based or modality-specific representations in the human brain. In this fMRI study, we adopted a cross-modal "prime-neutral cue-target" semantic priming paradigm, in which the prime-target relationship was manipulated along both the identity and the modality dimensions. The prime and the target could refer to either the same or different semantic identities, and could be delivered via either the same or different sensory modalities. By calculating the main effects and interactions of this 2 (identity cue validity: "Identity_Cued" vs. "Identity_Uncued") × 2 (modality cue validity: "Modality_Cued" vs. "Modality_Uncued") factorial design, we aimed at dissociating three neural networks involved in creating novel identity-specific representations independent of sensory modality, in creating modality-specific representations independent of semantic identity, and in evaluating changes of an object along both the identity and the modality dimensions, respectively. Our results suggested that bilateral lateral occipital cortex was involved in creating a new supramodal semantic representation irrespective of the input modality, left dorsal premotor cortex, and left intraparietal sulcus were involved in creating a new modality-specific representation irrespective of its semantic identity, and bilateral superior temporal sulcus was involved in creating a representation when the identity and modality properties were both cued or both uncued. In addition, right inferior frontal gyrus showed enhanced neural activity only when both the identity and the modality of the target were new, indicating its functional role in novelty detection. Copyright © 2014 Wiley Periodicals, Inc.
Semantic Web Technology for Mapping and Applying Clinical Functional Assessment Information
2015-05-01
summaries in free text (Figure 1) or form-based documents that are accessible as PDFs (Figure 2). Because there is no coding scheme for clinical...come from specific 2 The DBQs are VBA -21-0960M-14-ARE-Back.pdf, VBA -21-0960M-9-ARE-KneeLowerLeg.pdf, VBA -21-0960A- 1-ARE-ischemic, NEURO - TBI
ERIC Educational Resources Information Center
Kunde, Wilfried; Kiesel, Andrea; Hoffmann, Joachim
2005-01-01
We have recently argued that unconscious numerical stimuli might activate responses by a match with prespecified action trigger codes (action trigger account) rather than by semantic prime processing (elaborate processing account). [Van Opstal, F., Reynvoet, B., and Verguts, T. (2005). How to trigger elaborate processing? A comment on Kunde,…
Visualization of semantic indexing similarity over MeSH.
Du, Haixia; Yoo, Terry S
2007-10-11
We present an interactive visualization system for the evaluation of indexing results of the MEDLINE data-base over the Medical Subject Headings (MeSH) structure in a graphical radial-tree layout. It displays indexing similarity measurements with 2D color coding and a 3D height field permitting the evaluation of the automatic Medical Text Indexer (MTI), compared with human indexers.
ERIC Educational Resources Information Center
Vigliocco, Gabriella; Kousta, Stavroula; Vinson, David; Andrews, Mark; Del Campo, Elena
2013-01-01
In Kousta, Vigliocco, Vinson, Andrews, and Del Campo (2011), we presented an embodied theory of semantic representation, which crucially included abstract concepts as internally embodied via affective states. Paivio (2013) took issue with our treatment of dual coding theory, our reliance on data from lexical decision, and our theoretical proposal.…
ERIC Educational Resources Information Center
Einsiedler, Wolfgang
1996-01-01
Asks whether theories of knowledge representation provide a basis for the development of theories of knowledge structuring in instruction. Discusses codes of knowledge, surface versus deep structures, semantic networks, and multiple memory systems. Reviews research on teaching, external representation of cognitive structures, hierarchical…
A Low Power Digital Accumulation Technique for Digital-Domain CMOS TDI Image Sensor.
Yu, Changwei; Nie, Kaiming; Xu, Jiangtao; Gao, Jing
2016-09-23
In this paper, an accumulation technique suitable for digital domain CMOS time delay integration (TDI) image sensors is proposed to reduce power consumption without degrading the rate of imaging. In terms of the slight variations of quantization codes among different pixel exposures towards the same object, the pixel array is divided into two groups: one is for coarse quantization of high bits only, and the other one is for fine quantization of low bits. Then, the complete quantization codes are composed of both results from the coarse-and-fine quantization. The equivalent operation comparably reduces the total required bit numbers of the quantization. In the 0.18 µm CMOS process, two versions of 16-stage digital domain CMOS TDI image sensor chains based on a 10-bit successive approximate register (SAR) analog-to-digital converter (ADC), with and without the proposed technique, are designed. The simulation results show that the average power consumption of slices of the two versions are 6 . 47 × 10 - 8 J/line and 7 . 4 × 10 - 8 J/line, respectively. Meanwhile, the linearity of the two versions are 99.74% and 99.99%, respectively.
NoGOA: predicting noisy GO annotations using evidences and sparse representation.
Yu, Guoxian; Lu, Chang; Wang, Jun
2017-07-21
Gene Ontology (GO) is a community effort to represent functional features of gene products. GO annotations (GOA) provide functional associations between GO terms and gene products. Due to resources limitation, only a small portion of annotations are manually checked by curators, and the others are electronically inferred. Although quality control techniques have been applied to ensure the quality of annotations, the community consistently report that there are still considerable noisy (or incorrect) annotations. Given the wide application of annotations, however, how to identify noisy annotations is an important but yet seldom studied open problem. We introduce a novel approach called NoGOA to predict noisy annotations. NoGOA applies sparse representation on the gene-term association matrix to reduce the impact of noisy annotations, and takes advantage of sparse representation coefficients to measure the semantic similarity between genes. Secondly, it preliminarily predicts noisy annotations of a gene based on aggregated votes from semantic neighborhood genes of that gene. Next, NoGOA estimates the ratio of noisy annotations for each evidence code based on direct annotations in GOA files archived on different periods, and then weights entries of the association matrix via estimated ratios and propagates weights to ancestors of direct annotations using GO hierarchy. Finally, it integrates evidence-weighted association matrix and aggregated votes to predict noisy annotations. Experiments on archived GOA files of six model species (H. sapiens, A. thaliana, S. cerevisiae, G. gallus, B. Taurus and M. musculus) demonstrate that NoGOA achieves significantly better results than other related methods and removing noisy annotations improves the performance of gene function prediction. The comparative study justifies the effectiveness of integrating evidence codes with sparse representation for predicting noisy GO annotations. Codes and datasets are available at http://mlda.swu.edu.cn/codes.php?name=NoGOA .
On the need for Embodied and Dis-Embodied Cognition
Dove, Guy
2011-01-01
This essay proposes and defends a pluralistic theory of conceptual embodiment. Our concepts are represented in at least two ways: (i) through sensorimotor simulations of our interactions with objects and events and (ii) through sensorimotor simulations of natural language processing. Linguistic representations are “dis-embodied” in the sense that they are dynamic and multimodal but, in contrast to other forms of embodied cognition, do not inherit semantic content from this embodiment. The capacity to store information in the associations and inferential relationships among linguistic representations extends our cognitive reach and provides an explanation of our ability to abstract and generalize. This theory is supported by a number of empirical considerations, including the large body of evidence from cognitive neuroscience and neuropsychology supporting a multiple semantic code explanation of imageability effects. PMID:21833295
TRENCADIS--a WSRF grid MiddleWare for managing DICOM structured reporting objects.
Blanquer, Ignacio; Hernandez, Vicente; Segrelles, Damià
2006-01-01
The adoption of the digital processing of medical data, especially on radiology, has leaded to the availability of millions of records (images and reports). However, this information is mainly used at patient level, being the extraction of information, organised according to administrative criteria, which make the extraction of knowledge difficult. Moreover, legal constraints make the direct integration of information systems complex or even impossible. On the other side, the widespread of the DICOM format has leaded to the inclusion of other information different from just radiological images. The possibility of coding radiology reports in a structured form, adding semantic information about the data contained in the DICOM objects, eases the process of structuring images according to content. DICOM Structured Reporting (DICOM-SR) is a specification of tags and sections to code and integrate radiology reports, with seamless references to findings and regions of interests of the associated images, movies, waveforms, signals, etc. The work presented in this paper aims at developing of a framework to efficiently and securely share medical images and radiology reports, as well as to provide high throughput processing services. This system is based on a previously developed architecture in the framework of the TRENCADIS project, and uses other components such as the security system and the Grid processing service developed in previous activities. The work presented here introduces a semantic structuring and an ontology framework, to organise medical images considering standard terminology and disease coding formats (SNOMED, ICD9, LOINC..).
Gene function prediction based on Gene Ontology Hierarchy Preserving Hashing.
Zhao, Yingwen; Fu, Guangyuan; Wang, Jun; Guo, Maozu; Yu, Guoxian
2018-02-23
Gene Ontology (GO) uses structured vocabularies (or terms) to describe the molecular functions, biological roles, and cellular locations of gene products in a hierarchical ontology. GO annotations associate genes with GO terms and indicate the given gene products carrying out the biological functions described by the relevant terms. However, predicting correct GO annotations for genes from a massive set of GO terms as defined by GO is a difficult challenge. To combat with this challenge, we introduce a Gene Ontology Hierarchy Preserving Hashing (HPHash) based semantic method for gene function prediction. HPHash firstly measures the taxonomic similarity between GO terms. It then uses a hierarchy preserving hashing technique to keep the hierarchical order between GO terms, and to optimize a series of hashing functions to encode massive GO terms via compact binary codes. After that, HPHash utilizes these hashing functions to project the gene-term association matrix into a low-dimensional one and performs semantic similarity based gene function prediction in the low-dimensional space. Experimental results on three model species (Homo sapiens, Mus musculus and Rattus norvegicus) for interspecies gene function prediction show that HPHash performs better than other related approaches and it is robust to the number of hash functions. In addition, we also take HPHash as a plugin for BLAST based gene function prediction. From the experimental results, HPHash again significantly improves the prediction performance. The codes of HPHash are available at: http://mlda.swu.edu.cn/codes.php?name=HPHash. Copyright © 2018 Elsevier Inc. All rights reserved.
Moen, Hans; Ginter, Filip; Marsi, Erwin; Peltonen, Laura-Maria; Salakoski, Tapio; Salanterä, Sanna
2015-01-01
Patients' health related information is stored in electronic health records (EHRs) by health service providers. These records include sequential documentation of care episodes in the form of clinical notes. EHRs are used throughout the health care sector by professionals, administrators and patients, primarily for clinical purposes, but also for secondary purposes such as decision support and research. The vast amounts of information in EHR systems complicate information management and increase the risk of information overload. Therefore, clinicians and researchers need new tools to manage the information stored in the EHRs. A common use case is, given a--possibly unfinished--care episode, to retrieve the most similar care episodes among the records. This paper presents several methods for information retrieval, focusing on care episode retrieval, based on textual similarity, where similarity is measured through domain-specific modelling of the distributional semantics of words. Models include variants of random indexing and the semantic neural network model word2vec. Two novel methods are introduced that utilize the ICD-10 codes attached to care episodes to better induce domain-specificity in the semantic model. We report on experimental evaluation of care episode retrieval that circumvents the lack of human judgements regarding episode relevance. Results suggest that several of the methods proposed outperform a state-of-the art search engine (Lucene) on the retrieval task.
2015-01-01
Patients' health related information is stored in electronic health records (EHRs) by health service providers. These records include sequential documentation of care episodes in the form of clinical notes. EHRs are used throughout the health care sector by professionals, administrators and patients, primarily for clinical purposes, but also for secondary purposes such as decision support and research. The vast amounts of information in EHR systems complicate information management and increase the risk of information overload. Therefore, clinicians and researchers need new tools to manage the information stored in the EHRs. A common use case is, given a - possibly unfinished - care episode, to retrieve the most similar care episodes among the records. This paper presents several methods for information retrieval, focusing on care episode retrieval, based on textual similarity, where similarity is measured through domain-specific modelling of the distributional semantics of words. Models include variants of random indexing and the semantic neural network model word2vec. Two novel methods are introduced that utilize the ICD-10 codes attached to care episodes to better induce domain-specificity in the semantic model. We report on experimental evaluation of care episode retrieval that circumvents the lack of human judgements regarding episode relevance. Results suggest that several of the methods proposed outperform a state-of-the art search engine (Lucene) on the retrieval task. PMID:26099735
Lessons learned in detailed clinical modeling at Intermountain Healthcare
Oniki, Thomas A; Coyle, Joseph F; Parker, Craig G; Huff, Stanley M
2014-01-01
Background and objective Intermountain Healthcare has a long history of using coded terminology and detailed clinical models (DCMs) to govern storage of clinical data to facilitate decision support and semantic interoperability. The latest iteration of DCMs at Intermountain is called the clinical element model (CEM). We describe the lessons learned from our CEM efforts with regard to subjective decisions a modeler frequently needs to make in creating a CEM. We present insights and guidelines, but also describe situations in which use cases conflict with the guidelines. We propose strategies that can help reconcile the conflicts. The hope is that these lessons will be helpful to others who are developing and maintaining DCMs in order to promote sharing and interoperability. Methods We have used the Clinical Element Modeling Language (CEML) to author approximately 5000 CEMs. Results Based on our experience, we have formulated guidelines to lead our modelers through the subjective decisions they need to make when authoring models. Reported here are guidelines regarding precoordination/postcoordination, dividing content between the model and the terminology, modeling logical attributes, and creating iso-semantic models. We place our lessons in context, exploring the potential benefits of an implementation layer, an iso-semantic modeling framework, and ontologic technologies. Conclusions We assert that detailed clinical models can advance interoperability and sharing, and that our guidelines, an implementation layer, and an iso-semantic framework will support our progress toward that goal. PMID:24993546
Enhanced functionalities for annotating and indexing clinical text with the NCBO Annotator.
Tchechmedjiev, Andon; Abdaoui, Amine; Emonet, Vincent; Melzi, Soumia; Jonnagaddala, Jitendra; Jonquet, Clement
2018-06-01
Second use of clinical data commonly involves annotating biomedical text with terminologies and ontologies. The National Center for Biomedical Ontology Annotator is a frequently used annotation service, originally designed for biomedical data, but not very suitable for clinical text annotation. In order to add new functionalities to the NCBO Annotator without hosting or modifying the original Web service, we have designed a proxy architecture that enables seamless extensions by pre-processing of the input text and parameters, and post processing of the annotations. We have then implemented enhanced functionalities for annotating and indexing free text such as: scoring, detection of context (negation, experiencer, temporality), new output formats and coarse-grained concept recognition (with UMLS Semantic Groups). In this paper, we present the NCBO Annotator+, a Web service which incorporates these new functionalities as well as a small set of evaluation results for concept recognition and clinical context detection on two standard evaluation tasks (Clef eHealth 2017, SemEval 2014). The Annotator+ has been successfully integrated into the SIFR BioPortal platform-an implementation of NCBO BioPortal for French biomedical terminologies and ontologies-to annotate English text. A Web user interface is available for testing and ontology selection (http://bioportal.lirmm.fr/ncbo_annotatorplus); however the Annotator+ is meant to be used through the Web service application programming interface (http://services.bioportal.lirmm.fr/ncbo_annotatorplus). The code is openly available, and we also provide a Docker packaging to enable easy local deployment to process sensitive (e.g. clinical) data in-house (https://github.com/sifrproject). andon.tchechmedjiev@lirmm.fr. Supplementary data are available at Bioinformatics online.
Addressing the Challenges of Multi-Domain Data Integration with the SemantEco Framework
NASA Astrophysics Data System (ADS)
Patton, E. W.; Seyed, P.; McGuinness, D. L.
2013-12-01
Data integration across multiple domains will continue to be a challenge with the proliferation of big data in the sciences. Data origination issues and how data are manipulated are critical to enable scientists to understand and consume disparate datasets as research becomes more multidisciplinary. We present the SemantEco framework as an exemplar for designing an integrative portal for data discovery, exploration, and interpretation that uses best practice W3C Recommendations. We use the Resource Description Framework (RDF) with extensible ontologies described in the Web Ontology Language (OWL) to provide graph-based data representation. Furthermore, SemantEco ingests data via the software package csv2rdf4lod, which generates data provenance using the W3C provenance recommendation (PROV). Our presentation will discuss benefits and challenges of semantic integration, their effect on runtime performance, and how the SemantEco framework assisted in identifying performance issues and improved query performance across multiple domains by an order of magnitude. SemantEco benefits from a semantic approach that provides an 'open world', which allows data to incrementally change just as it does in the real world. SemantEco modules may load new ontologies and data using the W3C's SPARQL Protocol and RDF Query Language via HTTP. Modules may also provide user interface elements for applications and query capabilities to support new use cases. Modules can associate with domains, which are first-class objects in SemantEco. This enables SemantEco to perform integration and reasoning both within and across domains on module-provided data. The SemantEco framework has been used to construct a web portal for environmental and ecological data. The portal includes water and air quality data from the U.S. Geological Survey (USGS) and Environmental Protection Agency (EPA) and species observation counts for birds and fish from the Avian Knowledge Network and the Santa Barbara Long Term Ecological Research, respectively. We provide regulation ontologies using OWL2 datatype facets to detect out-of-range measurements for environmental standards set by the EPA, i.a. Users adjust queries using module-defined facets and a map presents the resulting measurement sites. Custom icons identify sites that violate regulations, making them easy to locate. Selecting a site gives the option of charting spatially proximate data from different domains over time. Our portal currently provides 1.6 billion triples of scientific data in RDF. We segment data by ZIP code and reasoning over 2157 measurements with our EPA regulation ontology that contains 131 regulations takes 2.5 seconds on a 2.4 GHz Intel Core 2 Quad with 8 GB of RAM. SemantEco's modular design and reasoning capabilities make it an exemplar for building multidisciplinary data integration tools that provide data access to scientists and the general population alike. Its provenance tracking provides accountability and its reasoning services can assist users in interpreting data. Future work includes support for geographical queries using the Open Geospatial Consortium's GeoSPARQL standard.
Vaccine Hesitancy in Discussion Forums: Computer-Assisted Argument Mining with Topic Models.
Skeppstedt, Maria; Kerren, Andreas; Stede, Manfred
2018-01-01
Arguments used when vaccination is debated on Internet discussion forums might give us valuable insights into reasons behind vaccine hesitancy. In this study, we applied automatic topic modelling on a collection of 943 discussion posts in which vaccine was debated, and six distinct discussion topics were detected by the algorithm. When manually coding the posts ranked as most typical for these six topics, a set of semantically coherent arguments were identified for each extracted topic. This indicates that topic modelling is a useful method for automatically identifying vaccine-related discussion topics and for identifying debate posts where these topics are discussed. This functionality could facilitate manual coding of salient arguments, and thereby form an important component in a system for computer-assisted coding of vaccine-related discussions.
Direct-Y: Fast Acquisition of the GPS PPS Signal
NASA Technical Reports Server (NTRS)
Namoos, Omar M.; DiEsposti, Raymond S.
1996-01-01
The NAVSTAR Global Positioning System (GPS) provides positioning and time information to military users via the Precise Positioning Service (PPS) which typically allows users a significant margin of precision over the commercially available Standard Positioning Service (SPS), Military sets that rely on first acquiring the SPS Coarse Acquisition (C/A) code, read from the data message the handover word (HOW) that provides the time-of-signal transmission needed to acquire and lock onto the PPS Y-code. Under extreme battlefield conditions, the use of GPS would be denied to the warfighter who cannot pick up the un-encrypted C/A code. Studies are underway at the GPS Joint Program Office (JPO) at the Space and Missile Center, Los Angeles Air Force Base that are aimed at developing the capability to directly acquire Y-code without first acquiring C/A code. This paper briefly outlines efforts to develop 'direct-Y' acquisition, and various approaches to solving this problem. The potential ramifications of direct-Y to military users are also discussed.
Coding coarse grained polymer model for LAMMPS and its application to polymer crystallization
NASA Astrophysics Data System (ADS)
Luo, Chuanfu; Sommer, Jens-Uwe
2009-08-01
We present a patch code for LAMMPS to implement a coarse grained (CG) model of poly(vinyl alcohol) (PVA). LAMMPS is a powerful molecular dynamics (MD) simulator developed at Sandia National Laboratories. Our patch code implements tabulated angular potential and Lennard-Jones-9-6 (LJ96) style interaction for PVA. Benefited from the excellent parallel efficiency of LAMMPS, our patch code is suitable for large-scale simulations. This CG-PVA code is used to study polymer crystallization, which is a long-standing unsolved problem in polymer physics. By using parallel computing, cooling and heating processes for long chains are simulated. The results show that chain-folded structures resembling the lamellae of polymer crystals are formed during the cooling process. The evolution of the static structure factor during the crystallization transition indicates that long-range density order appears before local crystalline packing. This is consistent with some experimental observations by small/wide angle X-ray scattering (SAXS/WAXS). During the heating process, it is found that the crystalline regions are still growing until they are fully melted, which can be confirmed by the evolution both of the static structure factor and average stem length formed by the chains. This two-stage behavior indicates that melting of polymer crystals is far from thermodynamic equilibrium. Our results concur with various experiments. It is the first time that such growth/reorganization behavior is clearly observed by MD simulations. Our code can be easily used to model other type of polymers by providing a file containing the tabulated angle potential data and a set of appropriate parameters. Program summaryProgram title: lammps-cgpva Catalogue identifier: AEDE_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEDE_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU's GPL No. of lines in distributed program, including test data, etc.: 940 798 No. of bytes in distributed program, including test data, etc.: 12 536 245 Distribution format: tar.gz Programming language: C++/MPI Computer: Tested on Intel-x86 and AMD64 architectures. Should run on any architecture providing a C++ compiler Operating system: Tested under Linux. Any other OS with C++ compiler and MPI library should suffice Has the code been vectorized or parallelized?: Yes RAM: Depends on system size and how many CPUs are used Classification: 7.7 External routines: LAMMPS ( http://lammps.sandia.gov/), FFTW ( http://www.fftw.org/) Nature of problem: Implementing special tabular angle potentials and Lennard-Jones-9-6 style interactions of a coarse grained polymer model for LAMMPS code. Solution method: Cubic spline interpolation of input tabulated angle potential data. Restrictions: The code is based on a former version of LAMMPS. Unusual features.: Any special angular potential can be used if it can be tabulated. Running time: Seconds to weeks, depending on system size, speed of CPU and how many CPUs are used. The test run provided with the package takes about 5 minutes on 4 AMD's opteron (2.6 GHz) CPUs. References:D. Reith, H. Meyer, F. Müller-Plathe, Macromolecules 34 (2001) 2335-2345. H. Meyer, F. Müller-Plathe, J. Chem. Phys. 115 (2001) 7807. H. Meyer, F. Müller-Plathe, Macromolecules 35 (2002) 1241-1252.
Tracing the time course of picture--word processing.
Smith, M C; Magee, L E
1980-12-01
A number of independent lines of research have suggested that semantic and articulatory information become available differentially from pictures and words. The first of the experiments reported here sought to clarify the time course by which information about pictures and words becomes available by considering the pattern of interference generated when incongruent pictures and words are presented simultaneously in a Stroop-like situation. Previous investigators report that picture naming is easily disrupted by the presence of a distracting word but that word naming is relatively immune to interference from an incongruent picture. Under the assumption that information available from a completed process may disrupt an ongoing process, these results suggest that words access articulatory information more rapidly than do pictures. Experiment 1 extended this paradigm by requiring subjects to verify the category of the target stimulus. In accordance with the hypothesis that picture access the semantic code more rapidly than words, there was a reversal in the interference pattern: Word categorization suffered considerable disruption, whereas picture categorization was minimally affected by the presence of an incongruent word. Experiment 2 sought to further test the hypothesis that access to semantic and articulatory codes is different for pictures and words by examining memory for those items following naming or categorization. Categorized words were better recognized than named words, whereas the reverse was true for pictures, a result which suggests that picture naming involves more extensive processing than picture categorization. Experiment 3 replicated this result under conditions in which viewing time was held constant. The last experiment extended the investigation of memory differences to a situation in which subjects were required to generate the superordinate category name. Here, memory for categorized pictures was as good as memory for named pictures. Category generation also influenced memory for words, memory performance being superior to that following a yes--no verification of category membership. These experiments suggest a model of information access whereby pictures access semantic information were readily than name information, with the reverse being true for words. Memory for both pictures and words was a function of the amount of processing required to access a particular type of information as well as the extent of response differentiation necessitated by the task.
NASA Technical Reports Server (NTRS)
Watson, Andrew B.
1990-01-01
All vision systems, both human and machine, transform the spatial image into a coded representation. Particular codes may be optimized for efficiency or to extract useful image features. Researchers explored image codes based on primary visual cortex in man and other primates. Understanding these codes will advance the art in image coding, autonomous vision, and computational human factors. In cortex, imagery is coded by features that vary in size, orientation, and position. Researchers have devised a mathematical model of this transformation, called the Hexagonal oriented Orthogonal quadrature Pyramid (HOP). In a pyramid code, features are segregated by size into layers, with fewer features in the layers devoted to large features. Pyramid schemes provide scale invariance, and are useful for coarse-to-fine searching and for progressive transmission of images. The HOP Pyramid is novel in three respects: (1) it uses a hexagonal pixel lattice, (2) it uses oriented features, and (3) it accurately models most of the prominent aspects of primary visual cortex. The transform uses seven basic features (kernels), which may be regarded as three oriented edges, three oriented bars, and one non-oriented blob. Application of these kernels to non-overlapping seven-pixel neighborhoods yields six oriented, high-pass pyramid layers, and one low-pass (blob) layer.
New methods for analyzing semantic graph based assessments in science education
NASA Astrophysics Data System (ADS)
Vikaros, Lance Steven
This research investigated how the scoring of semantic graphs (known by many as concept maps) could be improved and automated in order to address issues of inter-rater reliability and scalability. As part of the NSF funded SENSE-IT project to introduce secondary school science students to sensor networks (NSF Grant No. 0833440), semantic graphs illustrating how temperature change affects water ecology were collected from 221 students across 16 schools. The graphing task did not constrain students' use of terms, as is often done with semantic graph based assessment due to coding and scoring concerns. The graphing software used provided real-time feedback to help students learn how to construct graphs, stay on topic and effectively communicate ideas. The collected graphs were scored by human raters using assessment methods expected to boost reliability, which included adaptations of traditional holistic and propositional scoring methods, use of expert raters, topical rubrics, and criterion graphs. High levels of inter-rater reliability were achieved, demonstrating that vocabulary constraints may not be necessary after all. To investigate a new approach to automating the scoring of graphs, thirty-two different graph features characterizing graphs' structure, semantics, configuration and process of construction were then used to predict human raters' scoring of graphs in order to identify feature patterns correlated to raters' evaluations of graphs' topical accuracy and complexity. Results led to the development of a regression model able to predict raters' scoring with 77% accuracy, with 46% accuracy expected when used to score new sets of graphs, as estimated via cross-validation tests. Although such performance is comparable to other graph and essay based scoring systems, cross-context testing of the model and methods used to develop it would be needed before it could be recommended for widespread use. Still, the findings suggest techniques for improving the reliability and scalability of semantic graph based assessments without requiring constraint of how ideas are expressed.
Domain Specific Language Support for Exascale. Final Project Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baden, Scott
The project developed a domain specific translator enable legacy MPI source code to tolerate communication delays, which are increasing over time due to technological factors. The translator performs source-to-source translation that incorporates semantic information into the translation process. The output of the translator is a C program runs as a data driven program, and uses an existing run time to overlap communication automatically
ERIC Educational Resources Information Center
Kellogg, David
2017-01-01
The late Ruqaiya Hasan was an enthusiastic but exacting reader of Vygotsky: she reproached him for lacking a theory of language use, for using an asocial model of education without class variation in semantic code, and above all for using an atomistic unit of analysis, namely lexical word meaning. In this paper, I take up these criticisms and…
A Flexible and Non-instrusive Approach for Computing Complex Structural Coverage Metrics
NASA Technical Reports Server (NTRS)
Whalen, Michael W.; Person, Suzette J.; Rungta, Neha; Staats, Matt; Grijincu, Daniela
2015-01-01
Software analysis tools and techniques often leverage structural code coverage information to reason about the dynamic behavior of software. Existing techniques instrument the code with the required structural obligations and then monitor the execution of the compiled code to report coverage. Instrumentation based approaches often incur considerable runtime overhead for complex structural coverage metrics such as Modified Condition/Decision (MC/DC). Code instrumentation, in general, has to be approached with great care to ensure it does not modify the behavior of the original code. Furthermore, instrumented code cannot be used in conjunction with other analyses that reason about the structure and semantics of the code under test. In this work, we introduce a non-intrusive preprocessing approach for computing structural coverage information. It uses a static partial evaluation of the decisions in the source code and a source-to-bytecode mapping to generate the information necessary to efficiently track structural coverage metrics during execution. Our technique is flexible; the results of the preprocessing can be used by a variety of coverage-driven software analysis tasks, including automated analyses that are not possible for instrumented code. Experimental results in the context of symbolic execution show the efficiency and flexibility of our nonintrusive approach for computing code coverage information
Physics behind the mechanical nucleosome positioning code
NASA Astrophysics Data System (ADS)
Zuiddam, Martijn; Everaers, Ralf; Schiessel, Helmut
2017-11-01
The positions along DNA molecules of nucleosomes, the most abundant DNA-protein complexes in cells, are influenced by the sequence-dependent DNA mechanics and geometry. This leads to the "nucleosome positioning code", a preference of nucleosomes for certain sequence motives. Here we introduce a simplified model of the nucleosome where a coarse-grained DNA molecule is frozen into an idealized superhelical shape. We calculate the exact sequence preferences of our nucleosome model and find it to reproduce qualitatively all the main features known to influence nucleosome positions. Moreover, using well-controlled approximations to this model allows us to come to a detailed understanding of the physics behind the sequence preferences of nucleosomes.
The Effects of Oral Pyridostigmine on Serum Cholinesterase Activity in Macaca mulatta
1987-01-01
v! 1tbity Codes ".~~~~~~A 4.,:’.O:t 3;ca -- 1 R 09-4" S Drug Administration and Blood Sampling We developed a mixture of commercially available cookie ... dough and coarsely ground monkey chow as a vehicle for oral administration.. Balls (15-20 ml) of this vehicle were given to potential subjects for
The best bits in an iris code.
Hollingsworth, Karen P; Bowyer, Kevin W; Flynn, Patrick J
2009-06-01
Iris biometric systems apply filters to iris images to extract information about iris texture. Daugman's approach maps the filter output to a binary iris code. The fractional Hamming distance between two iris codes is computed and decisions about the identity of a person are based on the computed distance. The fractional Hamming distance weights all bits in an iris code equally. However, not all the bits in an iris code are equally useful. Our research is the first to present experiments documenting that some bits are more consistent than others. Different regions of the iris are compared to evaluate their relative consistency, and contrary to some previous research, we find that the middle bands of the iris are more consistent than the inner bands. The inconsistent-bit phenomenon is evident across genders and different filter types. Possible causes of inconsistencies, such as segmentation, alignment issues, and different filters are investigated. The inconsistencies are largely due to the coarse quantization of the phase response. Masking iris code bits corresponding to complex filter responses near the axes of the complex plane improves the separation between the match and nonmatch Hamming distance distributions.
Small, Jeff A; Perry, JoAnn
2005-02-01
This study examined the types of questions caregivers use and their outcomes when conversing with their spouse with Alzheimer's disease (AD). Of particular interest was caregivers' use of yes-no and open-ended questions and the demands they make on the memory of the person with AD. It was hypothesized that communication between caregivers and their spouses would be more successful when caregivers used yes-no rather than open-ended questions; however, it was also predicted that a more positive communication outcome would occur when caregivers used open-ended questions that requested information from semantic rather than episodic memory. Eighteen caregivers and their spouses diagnosed with AD were audiotaped while they conversed for approximately 10 min on a topic of their choosing. The conversations were transcribed and coded according to the occurrence of questions, the type of question (yes-no, choice, or open-ended), the type of memory required to respond to a question (semantic or episodic), and the outcome of a response to a question (communication breakdown). The results indicated that caregivers used yes-no and open-ended questions to a similar extent, whereas episodic questions were used almost twice as frequently as semantic questions. Communication was more successful when caregivers used yes-no compared with open-ended questions and when questions placed demands on semantic rather than episodic memory. The findings from this study suggest that caregivers can reduce communication problems by avoiding the use of questions that depend on episodic memory. In addition, while yes-no questions were associated with more favorable outcomes than open-ended questions, the latter do not need to be avoided if they refer to information that draws only on semantic memory.
KaBOB: ontology-based semantic integration of biomedical databases.
Livingston, Kevin M; Bada, Michael; Baumgartner, William A; Hunter, Lawrence E
2015-04-23
The ability to query many independent biological databases using a common ontology-based semantic model would facilitate deeper integration and more effective utilization of these diverse and rapidly growing resources. Despite ongoing work moving toward shared data formats and linked identifiers, significant problems persist in semantic data integration in order to establish shared identity and shared meaning across heterogeneous biomedical data sources. We present five processes for semantic data integration that, when applied collectively, solve seven key problems. These processes include making explicit the differences between biomedical concepts and database records, aggregating sets of identifiers denoting the same biomedical concepts across data sources, and using declaratively represented forward-chaining rules to take information that is variably represented in source databases and integrating it into a consistent biomedical representation. We demonstrate these processes and solutions by presenting KaBOB (the Knowledge Base Of Biomedicine), a knowledge base of semantically integrated data from 18 prominent biomedical databases using common representations grounded in Open Biomedical Ontologies. An instance of KaBOB with data about humans and seven major model organisms can be built using on the order of 500 million RDF triples. All source code for building KaBOB is available under an open-source license. KaBOB is an integrated knowledge base of biomedical data representationally based in prominent, actively maintained Open Biomedical Ontologies, thus enabling queries of the underlying data in terms of biomedical concepts (e.g., genes and gene products, interactions and processes) rather than features of source-specific data schemas or file formats. KaBOB resolves many of the issues that routinely plague biomedical researchers intending to work with data from multiple data sources and provides a platform for ongoing data integration and development and for formal reasoning over a wealth of integrated biomedical data.
A Fast Healthcare Interoperability Resources (FHIR) layer implemented over i2b2.
Boussadi, Abdelali; Zapletal, Eric
2017-08-14
Standards and technical specifications have been developed to define how the information contained in Electronic Health Records (EHRs) should be structured, semantically described, and communicated. Current trends rely on differentiating the representation of data instances from the definition of clinical information models. The dual model approach, which combines a reference model (RM) and a clinical information model (CIM), sets in practice this software design pattern. The most recent initiative, proposed by HL7, is called Fast Health Interoperability Resources (FHIR). The aim of our study was to investigate the feasibility of applying the FHIR standard to modeling and exposing EHR data of the Georges Pompidou European Hospital (HEGP) integrating biology and the bedside (i2b2) clinical data warehouse (CDW). We implemented a FHIR server over i2b2 to expose EHR data in relation with five FHIR resources: DiagnosisReport, MedicationOrder, Patient, Encounter, and Medication. The architecture of the server combines a Data Access Object design pattern and FHIR resource providers, implemented using the Java HAPI FHIR API. Two types of queries were tested: query type #1 requests the server to display DiagnosticReport resources, for which the diagnosis code is equal to a given ICD-10 code. A total of 80 DiagnosticReport resources, corresponding to 36 patients, were displayed. Query type #2, requests the server to display MedicationOrder, for which the FHIR Medication identification code is equal to a given code expressed in a French coding system. A total of 503 MedicationOrder resources, corresponding to 290 patients, were displayed. Results were validated by manually comparing the results of each request to the results displayed by an ad-hoc SQL query. We showed the feasibility of implementing a Java layer over the i2b2 database model to expose data of the CDW as a set of FHIR resources. An important part of this work was the structural and semantic mapping between the i2b2 model and the FHIR RM. To accomplish this, developers must manually browse the specifications of the FHIR standard. Our source code is freely available and can be adapted for use in other i2b2 sites.
Form gene clustering method about pan-ethnic-group products based on emotional semantic
NASA Astrophysics Data System (ADS)
Chen, Dengkai; Ding, Jingjing; Gao, Minzhuo; Ma, Danping; Liu, Donghui
2016-09-01
The use of pan-ethnic-group products form knowledge primarily depends on a designer's subjective experience without user participation. The majority of studies primarily focus on the detection of the perceptual demands of consumers from the target product category. A pan-ethnic-group products form gene clustering method based on emotional semantic is constructed. Consumers' perceptual images of the pan-ethnic-group products are obtained by means of product form gene extraction and coding and computer aided product form clustering technology. A case of form gene clustering about the typical pan-ethnic-group products is investigated which indicates that the method is feasible. This paper opens up a new direction for the future development of product form design which improves the agility of product design process in the era of Industry 4.0.
The storage capacity of Potts models for semantic memory retrieval
NASA Astrophysics Data System (ADS)
Kropff, Emilio; Treves, Alessandro
2005-08-01
We introduce and analyse a minimal network model of semantic memory in the human brain. The model is a global associative memory structured as a collection of N local modules, each coding a feature, which can take S possible values, with a global sparseness a (the average fraction of features describing a concept). We show that, under optimal conditions, the number cM of modules connected on average to a module can range widely between very sparse connectivity (high dilution, c_{M}/N\\to 0 ) and full connectivity (c_{M}\\to N ), maintaining a global network storage capacity (the maximum number pc of stored and retrievable concepts) that scales like pc~cMS2/a, with logarithmic corrections consistent with the constraint that each synapse may store up to a fraction of a bit.
An address geocoding method for improving rural spatial information infrastructure
NASA Astrophysics Data System (ADS)
Pan, Yuchun; Chen, Baisong; Lu, Zhou; Li, Shuhua; Zhang, Jingbo; Zhou, YanBing
2010-11-01
The transition of rural and agricultural management from divisional to integrated mode has highlighted the importance of data integration and sharing. Current data are mostly collected by specific department to satisfy their own needs and lake of considering on wider potential uses. This led to great difference in data format, semantic, and precision even in same area, which is a significant barrier for constructing an integrated rural spatial information system to support integrated management and decision-making. Considering the rural cadastral management system and postal zones, the paper designs a rural address geocoding method based on rural cadastral parcel. It puts forward a geocoding standard which consists of absolute position code, relative position code and extended code. It designs a rural geocoding database model, and addresses collection and update model. Then, based on the rural address geocoding model, it proposed a data model for rural agricultural resources management. The results show that the address coding based on postal code is stable and easy to memorize, two-dimensional coding based on the direction and distance is easy to be located and memorized, while extended code can enhance the extensibility and flexibility of address geocoding.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Linger, Richard C; Pleszkoch, Mark G; Prowell, Stacy J
Organizations maintaining mainframe legacy software can benefit from code modernization and incorporation of security capabilities to address the current threat environment. Oak Ridge National Laboratory is developing the Hyperion system to compute the behavior of software as a means to gain understanding of software functionality and security properties. Computation of functionality is critical to revealing security attributes, which are in fact specialized functional behaviors of software. Oak Ridge is collaborating with MITRE Corporation to conduct a demonstration project to compute behavior of legacy IBM Assembly Language code for a federal agency. The ultimate goal is to understand functionality and securitymore » vulnerabilities as a basis for code modernization. This paper reports on the first phase, to define functional semantics for IBM Assembly instructions and conduct behavior computation experiments.« less
Zhang, Yinsheng; Zhang, Guoming
2018-01-01
A terminology (or coding system) is a formal set of controlled vocabulary in a specific domain. With a well-defined terminology, each concept in the target domain is assigned with a unique code, which can be identified and processed across different medical systems in an unambiguous way. Though there are lots of well-known biomedical terminologies, there is currently no domain-specific terminology for ROP (retinopathy of prematurity). Based on a collection of historical ROP patients' data in the electronic medical record system, we extracted the most frequent terms in the domain and organized them into a hierarchical coding system-ROP Minimal Standard Terminology, which contains 62 core concepts in 4 categories. This terminology has been successfully used to provide highly structured and semantic-rich clinical data in several ROP-related applications.
2013-11-25
previously considered this proactive approach to combat unintentional, persistent (non- reactive) interference . In this project, we plan on extending our...channel” (or code ) by chance, through public knowledge of the underlying protocol semantics , or by compromising one of the network devices. An alternative...AFRL-RV-PS- AFRL-RV-PS- TR-2013-0142 TR-2013-0142 RENDEZVOUS PROTOCOLS AND DYNAMIC FREQUENCY HOPPING INTERFERENCE DESIGN FOR ANTI-JAMMING
Solving Semantic Searches for Source Code
2012-11-01
but of input and expected output pairs. In this domain, those inputs take the form of strings and outputs could be one of sev- eral datatypes ...for some relaxation of CPi that yields C ′ Pi . Encoding weakening is performed by systematically making the constraints on a particular datatype ...the datatypes that can hold concrete or symbolic values: integers, characters, booleans, and strings. The Java implementation uses all the data types
Representations in learning new faces: evidence from prosopagnosia.
Polster, M R; Rapcsak, S Z
1996-05-01
We report the performance of a prosopagnosic patient on face learning tasks under different encoding instructions (i.e., levels of processing manipulations). R.J. performs at chance when given no encoding instructions or when given "shallow" encoding instruction to focus on facial features. By contrast, he performs relatively well with "deep" encoding instructions to rate faces in terms of personality traits or when provided with semantic and name information during the study phase. We propose that the improvement associated with deep encoding instructions may be related to the establishment of distinct visually derived and identity-specific semantic codes. The benefit associated with deep encoding in R.J., however, was found to be restricted to the specific view of the face presented at study and did not generalize to other views of the same face. These observations suggest that deep encoding instructions may enhance memory for concrete or pictorial representations of faces in patients with prosopagnosia, but that these patients cannot compensate for the inability to construct abstract structural codes that normally allow faces to be recognized from different orientations. We postulate further that R.J.'s poor performance on face learning tasks may be attributable to excessive reliance on a feature-based left hemisphere face processing system that operates primarily on view-specific representations.
Rapid parallel semantic processing of numbers without awareness.
Van Opstal, Filip; de Lange, Floris P; Dehaene, Stanislas
2011-07-01
In this study, we investigate whether multiple digits can be processed at a semantic level without awareness, either serially or in parallel. In two experiments, we presented participants with two successive sets of four simultaneous Arabic digits. The first set was masked and served as a subliminal prime for the second, visible target set. According to the instructions, participants had to extract from the target set either the mean or the sum of the digits, and to compare it with a reference value. Results showed that participants applied the requested instruction to the entire set of digits that was presented below the threshold of conscious perception, because their magnitudes jointly affected the participant's decision. Indeed, response decision could be accurately modeled as a sigmoid logistic function that pooled together the evidence provided by the four targets and, with lower weights, the four primes. In less than 800ms, participants successfully approximated the addition and mean tasks, although they tended to overweight the large numbers, particularly in the sum task. These findings extend previous observations on ensemble coding by showing that set statistics can be extracted from abstract symbolic stimuli rather than low-level perceptual stimuli, and that an ensemble code can be represented without awareness. Copyright © 2011 Elsevier B.V. All rights reserved.
Early dynamics of the semantic priming shift
Lavigne, Frédéric; Chanquoy, Lucile; Dumercy, Laurent; Vitu, Françoise
2013-01-01
Semantic processing of sequences of words requires the cognitive system to keep several word meanings simultaneously activated in working memory with limited capacity. The real- time updating of the sequence of word meanings relies on dynamic changes in the associates to the words that are activated. Protocols involving two sequential primes report a semantic priming shift from larger priming of associates to the first prime to larger priming of associates to the second prime, in a range of long SOAs (stimulus-onset asynchronies) between the second prime and the target. However, the possibility for an early semantic priming shift is still to be tested, and its dynamics as a function of association strength remain unknown. Three multiple priming experiments are proposed that cross-manipulate association strength between each of two successive primes and a target, for different values of short SOAs and prime durations. Results show an early priming shift ranging from priming of associates to the first prime only to priming of strong associates to the first prime and all of the associates to the second prime. We investigated the neural basis of the early priming shift by using a network model of spike frequency adaptive cortical neurons (e.g., Deco & Rolls, 2005), able to code different association strengths between the primes and the target. The cortical network model provides a description of the early dynamics of the priming shift in terms of pro-active and retro-active interferences within populations of excitatory neurons regulated by fast and unselective inhibitory feedback. PMID:23717346
Streamlining geospatial metadata in the Semantic Web
NASA Astrophysics Data System (ADS)
Fugazza, Cristiano; Pepe, Monica; Oggioni, Alessandro; Tagliolato, Paolo; Carrara, Paola
2016-04-01
In the geospatial realm, data annotation and discovery rely on a number of ad-hoc formats and protocols. These have been created to enable domain-specific use cases generalized search is not feasible for. Metadata are at the heart of the discovery process and nevertheless they are often neglected or encoded in formats that either are not aimed at efficient retrieval of resources or are plainly outdated. Particularly, the quantum leap represented by the Linked Open Data (LOD) movement did not induce so far a consistent, interlinked baseline in the geospatial domain. In a nutshell, datasets, scientific literature related to them, and ultimately the researchers behind these products are only loosely connected; the corresponding metadata intelligible only to humans, duplicated on different systems, seldom consistently. Instead, our workflow for metadata management envisages i) editing via customizable web- based forms, ii) encoding of records in any XML application profile, iii) translation into RDF (involving the semantic lift of metadata records), and finally iv) storage of the metadata as RDF and back-translation into the original XML format with added semantics-aware features. Phase iii) hinges on relating resource metadata to RDF data structures that represent keywords from code lists and controlled vocabularies, toponyms, researchers, institutes, and virtually any description one can retrieve (or directly publish) in the LOD Cloud. In the context of a distributed Spatial Data Infrastructure (SDI) built on free and open-source software, we detail phases iii) and iv) of our workflow for the semantics-aware management of geospatial metadata.
Parallelization of Finite Element Analysis Codes Using Heterogeneous Distributed Computing
NASA Technical Reports Server (NTRS)
Ozguner, Fusun
1996-01-01
Performance gains in computer design are quickly consumed as users seek to analyze larger problems to a higher degree of accuracy. Innovative computational methods, such as parallel and distributed computing, seek to multiply the power of existing hardware technology to satisfy the computational demands of large applications. In the early stages of this project, experiments were performed using two large, coarse-grained applications, CSTEM and METCAN. These applications were parallelized on an Intel iPSC/860 hypercube. It was found that the overall speedup was very low, due to large, inherently sequential code segments present in the applications. The overall execution time T(sub par), of the application is dependent on these sequential segments. If these segments make up a significant fraction of the overall code, the application will have a poor speedup measure.
Spatial coding of object typical size: evidence for a SNARC-like effect.
Sellaro, Roberta; Treccani, Barbara; Job, Remo; Cubelli, Roberto
2015-11-01
The present study aimed to assess whether the representation of the typical size of objects can interact with response position codes in two-choice bimanual tasks, and give rise to a SNARC-like effect (faster responses when the representation of the typical size of the object to which the target stimulus refers corresponds to response side). Participants performed either a magnitude comparison task (in which they were required to judge whether the target was smaller or larger than a reference stimulus; Experiment 1) or a semantic decision task (in which they had to classify the target as belonging to either the category of living or non-living entities; Experiment 2). Target stimuli were pictures or written words referring to either typically large and small animals or inanimate objects. In both tasks, participants responded by pressing a left- or right-side button. Results showed that, regardless of the to-be-performed task (magnitude comparison or semantic decision) and stimulus format (picture or word), left responses were faster when the target represented typically small-sized entities, whereas right responses were faster for typically large-sized entities. These results provide evidence that the information about the typical size of objects is activated even if it is not requested by the task, and are consistent with the idea that objects' typical size is automatically spatially coded, as has been proposed to occur for number magnitudes. In this representation, small objects would be on the left and large objects would be on the right. Alternative interpretations of these results are also discussed.
Asynchronous Communication of TLNS3DMB Boundary Exchange
NASA Technical Reports Server (NTRS)
Hammond, Dana P.
1997-01-01
This paper describes the recognition of implicit serialization due to coarse-grain, synchronous communication and demonstrates the conversion to asynchronous communication for the exchange of boundary condition information in the Thin-Layer Navier Stokes 3-Dimensional Multi Block (TLNS3DMB) code. The implementation details of using asynchronous communication is provided including buffer allocation, message identification, and barrier control. The IBM SP2 was used for the tests presented.
Liwo, Adam; Ołdziej, Stanisław; Czaplewski, Cezary; Kleinerman, Dana S.; Blood, Philip; Scheraga, Harold A.
2010-01-01
We report the implementation of our united-residue UNRES force field for simulations of protein structure and dynamics with massively parallel architectures. In addition to coarse-grained parallelism already implemented in our previous work, in which each conformation was treated by a different task, we introduce a fine-grained level in which energy and gradient evaluation are split between several tasks. The Message Passing Interface (MPI) libraries have been utilized to construct the parallel code. The parallel performance of the code has been tested on a professional Beowulf cluster (Xeon Quad Core), a Cray XT3 supercomputer, and two IBM BlueGene/P supercomputers with canonical and replica-exchange molecular dynamics. With IBM BlueGene/P, about 50 % efficiency and 120-fold speed-up of the fine-grained part was achieved for a single trajectory of a 767-residue protein with use of 256 processors/trajectory. Because of averaging over the fast degrees of freedom, UNRES provides an effective 1000-fold speed-up compared to the experimental time scale and, therefore, enables us to effectively carry out millisecond-scale simulations of proteins with 500 and more amino-acid residues in days of wall-clock time. PMID:20305729
NASA Technical Reports Server (NTRS)
Chaikovsky, A.; Dubovik, O.; Holben, Brent N.; Bril, A.; Goloub, P.; Tanre, D.; Pappalardo, G.; Wandinger, U.; Chaikovskaya, L.; Denisov, S.;
2015-01-01
This paper presents a detailed description of LIRIC (LIdar-Radiometer Inversion Code)algorithm for simultaneous processing of coincident lidar and radiometric (sun photometric) observations for the retrieval of the aerosol concentration vertical profiles. As the lidar radiometric input data we use measurements from European Aerosol Re-search Lidar Network (EARLINET) lidars and collocated sun-photometers of Aerosol Robotic Network (AERONET). The LIRIC data processing provides sequential inversion of the combined lidar and radiometric data by the estimations of column-integrated aerosol parameters from radiometric measurements followed by the retrieval of height-dependent concentrations of fine and coarse aerosols from lidar signals using integrated column characteristics of aerosol layer as a priori constraints. The use of polarized lidar observations allows us to discriminate between spherical and non-spherical particles of the coarse aerosol mode. The LIRIC software package was implemented and tested at a number of EARLINET stations. Inter-comparison of the LIRIC-based aerosol retrievals was performed for the observations by seven EARLNET lidars in Leipzig, Germany on 25 May 2009. We found close agreement between the aerosol parameters derived from different lidars that supports high robustness of the LIRIC algorithm. The sensitivity of the retrieval results to the possible reduction of the available observation data is also discussed.
Optimization of Analytical Potentials for Coarse-Grained Biopolymer Models.
Mereghetti, Paolo; Maccari, Giuseppe; Spampinato, Giulia Lia Beatrice; Tozzini, Valentina
2016-08-25
The increasing trend in the recent literature on coarse grained (CG) models testifies their impact in the study of complex systems. However, the CG model landscape is variegated: even considering a given resolution level, the force fields are very heterogeneous and optimized with very different parametrization procedures. Along the road for standardization of CG models for biopolymers, here we describe a strategy to aid building and optimization of statistics based analytical force fields and its implementation in the software package AsParaGS (Assisted Parameterization platform for coarse Grained modelS). Our method is based on the use and optimization of analytical potentials, optimized by targeting internal variables statistical distributions by means of the combination of different algorithms (i.e., relative entropy driven stochastic exploration of the parameter space and iterative Boltzmann inversion). This allows designing a custom model that endows the force field terms with a physically sound meaning. Furthermore, the level of transferability and accuracy can be tuned through the choice of statistical data set composition. The method-illustrated by means of applications to helical polypeptides-also involves the analysis of two and three variable distributions, and allows handling issues related to the FF term correlations. AsParaGS is interfaced with general-purpose molecular dynamics codes and currently implements the "minimalist" subclass of CG models (i.e., one bead per amino acid, Cα based). Extensions to nucleic acids and different levels of coarse graining are in the course.
A thesaurus for a neural population code
Ganmor, Elad; Segev, Ronen; Schneidman, Elad
2015-01-01
Information is carried in the brain by the joint spiking patterns of large groups of noisy, unreliable neurons. This noise limits the capacity of the neural code and determines how information can be transmitted and read-out. To accurately decode, the brain must overcome this noise and identify which patterns are semantically similar. We use models of network encoding noise to learn a thesaurus for populations of neurons in the vertebrate retina responding to artificial and natural videos, measuring the similarity between population responses to visual stimuli based on the information they carry. This thesaurus reveals that the code is organized in clusters of synonymous activity patterns that are similar in meaning but may differ considerably in their structure. This organization is highly reminiscent of the design of engineered codes. We suggest that the brain may use this structure and show how it allows accurate decoding of novel stimuli from novel spiking patterns. DOI: http://dx.doi.org/10.7554/eLife.06134.001 PMID:26347983
Kazachenko, Sergey; Giovinazzo, Mark; Hall, Kyle Wm; Cann, Natalie M
2015-09-15
A custom code for molecular dynamics simulations has been designed to run on CUDA-enabled NVIDIA graphics processing units (GPUs). The double-precision code simulates multicomponent fluids, with intramolecular and intermolecular forces, coarse-grained and atomistic models, holonomic constraints, Nosé-Hoover thermostats, and the generation of distribution functions. Algorithms to compute Lennard-Jones and Gay-Berne interactions, and the electrostatic force using Ewald summations, are discussed. A neighbor list is introduced to improve scaling with respect to system size. Three test systems are examined: SPC/E water; an n-hexane/2-propanol mixture; and a liquid crystal mesogen, 2-(4-butyloxyphenyl)-5-octyloxypyrimidine. Code performance is analyzed for each system. With one GPU, a 33-119 fold increase in performance is achieved compared with the serial code while the use of two GPUs leads to a 69-287 fold improvement and three GPUs yield a 101-377 fold speedup. © 2015 Wiley Periodicals, Inc.
Employing multi-GPU power for molecular dynamics simulation: an extension of GALAMOST
NASA Astrophysics Data System (ADS)
Zhu, You-Liang; Pan, Deng; Li, Zhan-Wei; Liu, Hong; Qian, Hu-Jun; Zhao, Yang; Lu, Zhong-Yuan; Sun, Zhao-Yan
2018-04-01
We describe the algorithm of employing multi-GPU power on the basis of Message Passing Interface (MPI) domain decomposition in a molecular dynamics code, GALAMOST, which is designed for the coarse-grained simulation of soft matters. The code of multi-GPU version is developed based on our previous single-GPU version. In multi-GPU runs, one GPU takes charge of one domain and runs single-GPU code path. The communication between neighbouring domains takes a similar algorithm of CPU-based code of LAMMPS, but is optimised specifically for GPUs. We employ a memory-saving design which can enlarge maximum system size at the same device condition. An optimisation algorithm is employed to prolong the update period of neighbour list. We demonstrate good performance of multi-GPU runs on the simulation of Lennard-Jones liquid, dissipative particle dynamics liquid, polymer and nanoparticle composite, and two-patch particles on workstation. A good scaling of many nodes on cluster for two-patch particles is presented.
Development of full wave code for modeling RF fields in hot non-uniform plasmas
NASA Astrophysics Data System (ADS)
Zhao, Liangji; Svidzinski, Vladimir; Spencer, Andrew; Kim, Jin-Soo
2016-10-01
FAR-TECH, Inc. is developing a full wave RF modeling code to model RF fields in fusion devices and in general plasma applications. As an important component of the code, an adaptive meshless technique is introduced to solve the wave equations, which allows resolving plasma resonances efficiently and adapting to the complexity of antenna geometry and device boundary. The computational points are generated using either a point elimination method or a force balancing method based on the monitor function, which is calculated by solving the cold plasma dispersion equation locally. Another part of the code is the conductivity kernel calculation, used for modeling the nonlocal hot plasma dielectric response. The conductivity kernel is calculated on a coarse grid of test points and then interpolated linearly onto the computational points. All the components of the code are parallelized using MPI and OpenMP libraries to optimize the execution speed and memory. The algorithm and the results of our numerical approach to solving 2-D wave equations in a tokamak geometry will be presented. Work is supported by the U.S. DOE SBIR program.
A seismic data compression system using subband coding
NASA Technical Reports Server (NTRS)
Kiely, A. B.; Pollara, F.
1995-01-01
This article presents a study of seismic data compression techniques and a compression algorithm based on subband coding. The algorithm includes three stages: a decorrelation stage, a quantization stage that introduces a controlled amount of distortion to allow for high compression ratios, and a lossless entropy coding stage based on a simple but efficient arithmetic coding method. Subband coding methods are particularly suited to the decorrelation of nonstationary processes such as seismic events. Adaptivity to the nonstationary behavior of the waveform is achieved by dividing the data into separate blocks that are encoded separately with an adaptive arithmetic encoder. This is done with high efficiency due to the low overhead introduced by the arithmetic encoder in specifying its parameters. The technique could be used as a progressive transmission system, where successive refinements of the data can be requested by the user. This allows seismologists to first examine a coarse version of waveforms with minimal usage of the channel and then decide where refinements are required. Rate-distortion performance results are presented and comparisons are made with two block transform methods.
Pattern Matcher for Trees Constructed from Lists
NASA Technical Reports Server (NTRS)
James, Mark
2007-01-01
A software library has been developed that takes a high-level description of a pattern to be satisfied and applies it to a target. If the two match, it returns success; otherwise, it indicates a failure. The target is semantically a tree that is constructed from elements of terminal and non-terminal nodes represented through lists and symbols. Additionally, functionality is provided for finding the element in a set that satisfies a given pattern and doing a tree search, finding all occurrences of leaf nodes that match a given pattern. This process is valuable because it is a new algorithmic approach that significantly improves the productivity of the programmers and has the potential of making their resulting code more efficient by the introduction of a novel semantic representation language. This software has been used in many applications delivered to NASA and private industry, and the cost savings that have resulted from it are significant.
Statechart Analysis with Symbolic PathFinder
NASA Technical Reports Server (NTRS)
Pasareanu, Corina S.
2012-01-01
We report here on our on-going work that addresses the automated analysis and test case generation for software systems modeled using multiple Statechart formalisms. The work is motivated by large programs such as NASA Exploration, that involve multiple systems that interact via safety-critical protocols and are designed with different Statechart variants. To verify these safety-critical systems, we have developed Polyglot, a framework for modeling and analysis of model-based software written using different Statechart formalisms. Polyglot uses a common intermediate representation with customizable Statechart semantics and leverages the analysis and test generation capabilities of the Symbolic PathFinder tool. Polyglot is used as follows: First, the structure of the Statechart model (expressed in Matlab Stateflow or Rational Rhapsody) is translated into a common intermediate representation (IR). The IR is then translated into Java code that represents the structure of the model. The semantics are provided as "pluggable" modules.
Object Detection Techniques Applied on Mobile Robot Semantic Navigation
Astua, Carlos; Barber, Ramon; Crespo, Jonathan; Jardon, Alberto
2014-01-01
The future of robotics predicts that robots will integrate themselves more every day with human beings and their environments. To achieve this integration, robots need to acquire information about the environment and its objects. There is a big need for algorithms to provide robots with these sort of skills, from the location where objects are needed to accomplish a task up to where these objects are considered as information about the environment. This paper presents a way to provide mobile robots with the ability-skill to detect objets for semantic navigation. This paper aims to use current trends in robotics and at the same time, that can be exported to other platforms. Two methods to detect objects are proposed, contour detection and a descriptor based technique, and both of them are combined to overcome their respective limitations. Finally, the code is tested on a real robot, to prove its accuracy and efficiency. PMID:24732101
The SNARC effect is not a unitary phenomenon.
Basso Moro, Sara; Dell'Acqua, Roberto; Cutini, Simone
2018-04-01
Models of the spatial-numerical association of response codes (SNARC) effect-faster responses to small numbers using left effectors, and the converse for large numbers-diverge substantially in localizing the root cause of this effect along the numbers' processing chain. One class of models ascribes the cause of the SNARC effect to the inherently spatial nature of the semantic representation of numerical magnitude. A different class of models ascribes the effect's cause to the processing dynamics taking place during response selection. To disentangle these opposing views, we devised a paradigm combining magnitude comparison and stimulus-response switching in order to monitor modulations of the SNARC effect while concurrently tapping both semantic and response-related processing stages. We observed that the SNARC effect varied nonlinearly as a function of both manipulated factors, a result that can hardly be reconciled with a unitary cause of the SNARC effect.
Morphological processing with deficient phonological short-term memory.
Kavé, Gitit; Ze'ev, Hagit Bar; Lev, Anita
2007-07-01
This paper investigates the processing of Hebrew derivational morphology in an individual (S.E.) with deficient phonological short-term memory. In comparison to 10 age- and education-matched men, S.E. was impaired on digit span tasks and demonstrated no recency effect in word list recall. S.E. had low word retention span, but he exhibited phonological similarity and word length effects. His ability to make lexical decisions was intact. In a paired-associate test S.E. successfully learned semantically and morphologically related pairs but not phonologically related pairs, and his learning of nonwords was facilitated by the presence of Hebrew consonant roots. Semantic and morphological similarity enhanced immediate word recall. Results show that S.E. is capable of conducting morphological decomposition of Hebrew-derived words despite his phonological deficit, suggesting that transient maintenance of morphological constituents is independent of temporary storage and rehearsal of phonological codes, and that each is processed separately within short-term memory.
Computer assessment of interview data using latent semantic analysis.
Dam, Gregory; Kaufmann, Stefan
2008-02-01
Clinical interviews are a powerful method for assessing students' knowledge and conceptualdevelopment. However, the analysis of the resulting data is time-consuming and can create a "bottleneck" in large-scale studies. This article demonstrates the utility of computational methods in supporting such an analysis. Thirty-four 7th-grade student explanations of the causes of Earth's seasons were assessed using latent semantic analysis (LSA). Analyses were performed on transcriptions of student responses during interviews administered, prior to (n = 21) and after (n = 13) receiving earth science instruction. An instrument that uses LSA technology was developed to identify misconceptions and assess conceptual change in students' thinking. Its accuracy, as determined by comparing its classifications to the independent coding performed by four human raters, reached 90%. Techniques for adapting LSA technology to support the analysis of interview data, as well as some limitations, are discussed.
Presentation format effects in a levels-of-processing task.
Foos, Paul W; Goolkasian, Paula
2008-01-01
Three experiments were conducted to examine better performance in long-term memory when stimulus items are pictures or spoken words compared to printed words. Hypotheses regarding the allocation of attention to printed words, the semantic link between pictures and processing, and a rich long-term representation for pictures were tested. Using levels-of-processing tasks eliminated format effects when no memory test was expected and processing was deep (El), and when study and test formats did not match (E3). Pictures produced superior performance when a memory test was expected (El & 2) and when study and test formats were the same (E3). Results of all experiments support the attenuation of attention model and that picture superiority is due to a more direct access to semantic processing and a richer visual code. General principles to guide the processing of stimulus information are discussed.
Automated Analysis of Stateflow Models
NASA Technical Reports Server (NTRS)
Bourbouh, Hamza; Garoche, Pierre-Loic; Garion, Christophe; Gurfinkel, Arie; Kahsaia, Temesghen; Thirioux, Xavier
2017-01-01
Stateflow is a widely used modeling framework for embedded and cyber physical systems where control software interacts with physical processes. In this work, we present a framework a fully automated safety verification technique for Stateflow models. Our approach is two-folded: (i) we faithfully compile Stateflow models into hierarchical state machines, and (ii) we use automated logic-based verification engine to decide the validity of safety properties. The starting point of our approach is a denotational semantics of State flow. We propose a compilation process using continuation-passing style (CPS) denotational semantics. Our compilation technique preserves the structural and modal behavior of the system. The overall approach is implemented as an open source toolbox that can be integrated into the existing Mathworks Simulink Stateflow modeling framework. We present preliminary experimental evaluations that illustrate the effectiveness of our approach in code generation and safety verification of industrial scale Stateflow models.
Jones, A.; Fastelli, A.; Atkinson, J.; Botting, N.; Morgan, G.
2017-01-01
Abstract Background Deafness has an adverse impact on children's ability to acquire spoken languages. Signed languages offer a more accessible input for deaf children, but because the vast majority are born to hearing parents who do not sign, their early exposure to sign language is limited. Deaf children as a whole are therefore at high risk of language delays. Aims We compared deaf and hearing children's performance on a semantic fluency task. Optimal performance on this task requires a systematic search of the mental lexicon, the retrieval of words within a subcategory and, when that subcategory is exhausted, switching to a new subcategory. We compared retrieval patterns between groups, and also compared the responses of deaf children who used British Sign Language (BSL) with those who used spoken English. We investigated how semantic fluency performance related to children's expressive vocabulary and executive function skills, and also retested semantic fluency in the majority of the children nearly 2 years later, in order to investigate how much progress they had made in that time. Methods & Procedures Participants were deaf children aged 6–11 years (N = 106, comprising 69 users of spoken English, 29 users of BSL and eight users of Sign Supported English—SSE) compared with hearing children (N = 120) of the same age who used spoken English. Semantic fluency was tested for the category ‘animals’. We coded for errors, clusters (e.g., ‘pets’, ‘farm animals’) and switches. Participants also completed the Expressive One‐Word Picture Vocabulary Test and a battery of six non‐verbal executive function tasks. In addition, we collected follow‐up semantic fluency data for 70 deaf and 74 hearing children, nearly 2 years after they were first tested. Outcomes & Results Deaf children, whether using spoken or signed language, produced fewer items in the semantic fluency task than hearing children, but they showed similar patterns of responses for items most commonly produced, clustering of items into subcategories and switching between subcategories. Both vocabulary and executive function scores predicted the number of correct items produced. Follow‐up data from deaf participants showed continuing delays relative to hearing children 2 years later. Conclusions & Implications We conclude that semantic fluency can be used experimentally to investigate lexical organization in deaf children, and that it potentially has clinical utility across the heterogeneous deaf population. We present normative data to aid clinicians who wish to use this task with deaf children. PMID:28691260
1983-03-01
As an illustration of this fact, the collection of tools designed to alleviate these maintenance costs for large systems typically our- problems, all...provide bnowledge which other or modifies code; and a collection of semantic systems (such as the IP) can employ, analysis and manipulation tools that...TPleetl and sumations. > (index *loops syntea-database) In the second approach, the user identifies a -> LOOPsetl:[lengtb 2) collection of items
PRELIM: Predictive Relevance Estimation from Linked Models
2014-10-14
code ) 14-10-2014 Final Report 11-07-2014 to 14-10-2014 PRELIM: Predictive Relevance Estimation from Linked Models N00014-14-P-1185 10257H. Van Dyke...Parunak, Ph.D. Soar Technology, Inc. 1 Executive Summary PRELIM (Predictive Relevance Estimation from Linked Models) draws on semantic models...The central challenge in proactive decision support is to anticipate the decision and information needs of decision-makers, in the light of likely
Geo-Coding for the Mapping of Documents and Social Media Messages
2013-08-22
O.L. (2007). UBC-ALM: Combining KNN with SVD for WSD. Proceedings of the 4th International Workshop on Semantic Evaluations (SemEval-2007), Prague...and Yarowsky, D. (1992). One sense per discourse. In Proceedings of the 4th DARPA Speech and Natural Language Workshop. pp. 233-237, 1992. Retrieved...Part-of- Speech Tagging for Twitter: Annotation, Features, and Experiments. Proceedings of the Annual Meeting of the Association for Computational
Semantic Web Research Trends and Directions
2006-01-01
workflow templates. Workflow templates are used for various different tasks such as en- coding business rules in a B2B application, specifying domain...recently suggest that rules are desirable in this space, both in terms of their expressivity, and in some cases, due to their attractive computational...of OWL documents. However, in most cases, a more attractive solution is to simply write a rule that captures the inference needed, as it is reusable
Semantic Congruence Accelerates the Onset of the Neural Signals of Successful Memory Encoding.
Packard, Pau A; Rodríguez-Fornells, Antoni; Bunzeck, Nico; Nicolás, Berta; de Diego-Balaguer, Ruth; Fuentemilla, Lluís
2017-01-11
As the stream of experience unfolds, our memory system rapidly transforms current inputs into long-lasting meaningful memories. A putative neural mechanism that strongly influences how input elements are transformed into meaningful memory codes relies on the ability to integrate them with existing structures of knowledge or schemas. However, it is not yet clear whether schema-related integration neural mechanisms occur during online encoding. In the current investigation, we examined the encoding-dependent nature of this phenomenon in humans. We showed that actively integrating words with congruent semantic information provided by a category cue enhances memory for words and increases false recall. The memory effect of such active integration with congruent information was robust, even with an interference task occurring right after each encoding word list. In addition, via electroencephalography, we show in 2 separate studies that the onset of the neural signals of successful encoding appeared early (∼400 ms) during the encoding of congruent words. That the neural signals of successful encoding of congruent and incongruent information followed similarly ∼200 ms later suggests that this earlier neural response contributed to memory formation. We propose that the encoding of events that are congruent with readily available contextual semantics can trigger an accelerated onset of the neural mechanisms, supporting the integration of semantic information with the event input. This faster onset would result in a long-lasting and meaningful memory trace for the event but, at the same time, make it difficult to distinguish it from plausible but never encoded events (i.e., related false memories). Conceptual or schema congruence has a strong influence on long-term memory. However, the question of whether schema-related integration neural mechanisms occur during online encoding has yet to be clarified. We investigated the neural mechanisms reflecting how the active integration of words with congruent semantic categories enhances memory for words and increases false recall of semantically related words. We analyzed event-related potentials during encoding and showed that the onset of the neural signals of successful encoding appeared early (∼400 ms) during the encoding of congruent words. Our findings indicate that congruent events can trigger an accelerated onset of neural encoding mechanisms supporting the integration of semantic information with the event input. Copyright © 2017 the authors 0270-6474/17/370291-11$15.00/0.
Bowers, Jeffrey S
2009-01-01
A fundamental claim associated with parallel distributed processing (PDP) theories of cognition is that knowledge is coded in a distributed manner in mind and brain. This approach rejects the claim that knowledge is coded in a localist fashion, with words, objects, and simple concepts (e.g. "dog"), that is, coded with their own dedicated representations. One of the putative advantages of this approach is that the theories are biologically plausible. Indeed, advocates of the PDP approach often highlight the close parallels between distributed representations learned in connectionist models and neural coding in brain and often dismiss localist (grandmother cell) theories as biologically implausible. The author reviews a range a data that strongly challenge this claim and shows that localist models provide a better account of single-cell recording studies. The author also contrast local and alternative distributed coding schemes (sparse and coarse coding) and argues that common rejection of grandmother cell theories in neuroscience is due to a misunderstanding about how localist models behave. The author concludes that the localist representations embedded in theories of perception and cognition are consistent with neuroscience; biology only calls into question the distributed representations often learned in PDP models.
Three-dimensional elliptic grid generation for an F-16
NASA Technical Reports Server (NTRS)
Sorenson, Reese L.
1988-01-01
A case history depicting the effort to generate a computational grid for the simulation of transonic flow about an F-16 aircraft at realistic flight conditions is presented. The flow solver for which this grid is designed is a zonal one, using the Reynolds averaged Navier-Stokes equations near the surface of the aircraft, and the Euler equations in regions removed from the aircraft. A body conforming global grid, suitable for the Euler equation, is first generated using 3-D Poisson equations having inhomogeneous terms modeled after the 2-D GRAPE code. Regions of the global grid are then designated for zonal refinement as appropriate to accurately model the flow physics. Grid spacing suitable for solution of the Navier-Stokes equations is generated in the refinement zones by simple subdivision of the given coarse grid intervals. That grid generation project is described, with particular emphasis on the global coarse grid.
A Calculus for Boxes and Traits in a Java-Like Setting
NASA Astrophysics Data System (ADS)
Bettini, Lorenzo; Damiani, Ferruccio; de Luca, Marco; Geilmann, Kathrin; Schäfer, Jan
The box model is a component model for the object-oriented paradigm, that defines components (the boxes) with clear encapsulation boundaries. Having well-defined boundaries is crucial in component-based software development, because it enables to argue about the interference and interaction between a component and its context. In general, boxes contain several objects and inner boxes, of which some are local to the box and cannot be accessed from other boxes and some can be accessible by other boxes. A trait is a set of methods divorced from any class hierarchy. Traits can be composed together to form classes or other traits. We present a calculus for boxes and traits. Traits are units of fine-grained reuse, whereas boxes can be seen as units of coarse-grained reuse. The calculus is equipped with an ownership type system and allows us to combine coarse- and fine-grained reuse of code by maintaining encapsulation of components.
Processing of visually presented clock times.
Goolkasian, P; Park, D C
1980-11-01
The encoding and representation of visually presented clock times was investigated in three experiments utilizing a comparative judgment task. Experiment 1 explored the effects of comparing times presented in different formats (clock face, digit, or word), and Experiment 2 examined angular distance effects created by varying positions of the hands on clock faces. In Experiment 3, encoding and processing differences between clock faces and digitally presented times were directly measured. Same/different reactions to digitally presented times were faster than to times presented on a clock face, and this format effect was found to be a result of differences in processing that occurred after encoding. Angular separation also had a limited effect on processing. The findings are interpreted within the framework of theories that refer to the importance of representational codes. The applicability to the data of Bank's semantic-coding theory, Paivio's dual-coding theory, and the levels-of-processing view of memory are discussed.
Detecting and Characterizing Semantic Inconsistencies in Ported Code
NASA Technical Reports Server (NTRS)
Ray, Baishakhi; Kim, Miryung; Person, Suzette J.; Rungta, Neha
2013-01-01
Adding similar features and bug fixes often requires porting program patches from reference implementations and adapting them to target implementations. Porting errors may result from faulty adaptations or inconsistent updates. This paper investigates (I) the types of porting errors found in practice, and (2) how to detect and characterize potential porting errors. Analyzing version histories, we define five categories of porting errors, including incorrect control- and data-flow, code redundancy, inconsistent identifier renamings, etc. Leveraging this categorization, we design a static control- and data-dependence analysis technique, SPA, to detect and characterize porting inconsistencies. Our evaluation on code from four open-source projects shows thai SPA can dell-oct porting inconsistencies with 65% to 73% precision and 90% recall, and identify inconsistency types with 58% to 63% precision and 92% to 100% recall. In a comparison with two existing error detection tools, SPA improves precision by 14 to 17 percentage points
Detecting and Characterizing Semantic Inconsistencies in Ported Code
NASA Technical Reports Server (NTRS)
Ray, Baishakhi; Kim, Miryung; Person,Suzette; Rungta, Neha
2013-01-01
Adding similar features and bug fixes often requires porting program patches from reference implementations and adapting them to target implementations. Porting errors may result from faulty adaptations or inconsistent updates. This paper investigates (1) the types of porting errors found in practice, and (2) how to detect and characterize potential porting errors. Analyzing version histories, we define five categories of porting errors, including incorrect control- and data-flow, code redundancy, inconsistent identifier renamings, etc. Leveraging this categorization, we design a static control- and data-dependence analysis technique, SPA, to detect and characterize porting inconsistencies. Our evaluation on code from four open-source projects shows that SPA can detect porting inconsistencies with 65% to 73% precision and 90% recall, and identify inconsistency types with 58% to 63% precision and 92% to 100% recall. In a comparison with two existing error detection tools, SPA improves precision by 14 to 17 percentage points.
Synergetic computer and holonics - information dynamics of a semantic computer
NASA Astrophysics Data System (ADS)
Shimizu, H.; Yamaguchi, Y.
1987-12-01
The dynamics of semantic information in biosystem is studied based on holons, generators of mutual relations. Any biosystem has an internal world, a so-called "self", which has an intrinsic purpose rendering the system continuously alive and developed as much as possible against a fluctuating external world. External signals to the system through sensory organs are classified by the self into two basic categories, semantic information with some meaning and value for the purpose and inputs from background and noise sources. Due to this breaking of semantic symmetry, any input signals are transformed into a figure and background, respectively. As a typical example, the visual perception of vertebrates is studied. For such semantic transformation the external signal is first decomposed and converted into a number of elementary signs named "syntons" which are then transmitted into a sensory area of cortex corresponding to an image synthesizer. The synthesizer is a sort of autonomic parallel processor composed of autonomic units, "holons", which are characterized by many internal modes. Syntons are fed into the holons one by one. A set of the elementary meanings, the so-called "semons", provided to the synton are encoded in the internal modes of the holon; that is, each internal mode encodes a semon. A dynamic information theory for the transformation of external signals to semantic information is developed based on our model which we call holovision. Holovision is a dynamic model of visual perception that processes an autonomic ability to self-organize visual images. Autonomous oscillators are utilized as the line processors to encode line elements with specific orientations in their phases as semons. An information space is defined according to the assembly of holons; the spatial plane on which holons are arranged is a syntactic subspace while the internal modes of the holons span a semantic subspace in the orthogonal direction. In this information space, the image of a figure is self-organized - as a sort of spatiotemporal pattern - by autonomic coordinations of the holons that select relevant internal modes, accompanied with compression of irrelevant syntons that correspond to the background. Holons coded by a synton are relevantly connected by means of coherent relations, i.e., dynamic connections with time-coherence, in order to represent the image that varies in time depending on the instantaneous state of the external object. These connections depend on the internal modes that are cooperatively selectively selected by the holons. The image is regarded as a bridge between the external and internal world that has both external and internal consistency. The meaning of the image, i.e., transformed semantic information, is spontaneously transferred from semantic items that have a coherent relation with the image, and the external signal is perceived by the self through the image. We demonstrate that images are indeed self-organized in holovision in the previously described sense. Simulated processes of the creation of semantic information in holovision are shown to display typical features of the forgoing steps of information compression. Based on these results, we propose quantitative indices that represent the value of semantic information in the image processor as well as in the memory.
Context-aware and locality-constrained coding for image categorization.
Xiao, Wenhua; Wang, Bin; Liu, Yu; Bao, Weidong; Zhang, Maojun
2014-01-01
Improving the coding strategy for BOF (Bag-of-Features) based feature design has drawn increasing attention in recent image categorization works. However, the ambiguity in coding procedure still impedes its further development. In this paper, we introduce a context-aware and locality-constrained Coding (CALC) approach with context information for describing objects in a discriminative way. It is generally achieved by learning a word-to-word cooccurrence prior to imposing context information over locality-constrained coding. Firstly, the local context of each category is evaluated by learning a word-to-word cooccurrence matrix representing the spatial distribution of local features in neighbor region. Then, the learned cooccurrence matrix is used for measuring the context distance between local features and code words. Finally, a coding strategy simultaneously considers locality in feature space and context space, while introducing the weight of feature is proposed. This novel coding strategy not only semantically preserves the information in coding, but also has the ability to alleviate the noise distortion of each class. Extensive experiments on several available datasets (Scene-15, Caltech101, and Caltech256) are conducted to validate the superiority of our algorithm by comparing it with baselines and recent published methods. Experimental results show that our method significantly improves the performance of baselines and achieves comparable and even better performance with the state of the arts.
Comparison of different methods used in integral codes to model coagulation of aerosols
NASA Astrophysics Data System (ADS)
Beketov, A. I.; Sorokin, A. A.; Alipchenkov, V. M.; Mosunova, N. A.
2013-09-01
The methods for calculating coagulation of particles in the carrying phase that are used in the integral codes SOCRAT, ASTEC, and MELCOR, as well as the Hounslow and Jacobson methods used to model aerosol processes in the chemical industry and in atmospheric investigations are compared on test problems and against experimental results in terms of their effectiveness and accuracy. It is shown that all methods are characterized by a significant error in modeling the distribution function for micrometer particles if calculations are performed using rather "coarse" spectra of particle sizes, namely, when the ratio of the volumes of particles from neighboring fractions is equal to or greater than two. With reference to the problems considered, the Hounslow method and the method applied in the aerosol module used in the ASTEC code are the most efficient ones for carrying out calculations.
Pedestrian mobile mapping system for indoor environments based on MEMS IMU and range camera
NASA Astrophysics Data System (ADS)
Haala, N.; Fritsch, D.; Peter, M.; Khosravani, A. M.
2011-12-01
This paper describes an approach for the modeling of building interiors based on a mobile device, which integrates modules for pedestrian navigation and low-cost 3D data collection. Personal navigation is realized by a foot mounted low cost MEMS IMU, while 3D data capture for subsequent indoor modeling uses a low cost range camera, which was originally developed for gaming applications. Both steps, navigation and modeling, are supported by additional information as provided from the automatic interpretation of evacuation plans. Such emergency plans are compulsory for public buildings in a number of countries. They consist of an approximate floor plan, the current position and escape routes. Additionally, semantic information like stairs, elevators or the floor number is available. After the user has captured an image of such a floor plan, this information is made explicit again by an automatic raster-to-vector-conversion. The resulting coarse indoor model then provides constraints at stairs or building walls, which restrict the potential movement of the user. This information is then used to support pedestrian navigation by eliminating drift effects of the used low-cost sensor system. The approximate indoor building model additionally provides a priori information during subsequent indoor modeling. Within this process, the low cost range camera Kinect is used for the collection of multiple 3D point clouds, which are aligned by a suitable matching step and then further analyzed to refine the coarse building model.
Statistical Analysis of CFD Solutions from 2nd Drag Prediction Workshop
NASA Technical Reports Server (NTRS)
Hemsch, M. J.; Morrison, J. H.
2004-01-01
In June 2001, the first AIAA Drag Prediction Workshop was held to evaluate results obtained from extensive N-Version testing of a series of RANS CFD codes. The geometry used for the computations was the DLR-F4 wing-body combination which resembles a medium-range subsonic transport. The cases reported include the design cruise point, drag polars at eight Mach numbers, and drag rise at three values of lift. Although comparisons of the code-to-code medians with available experimental data were similar to those obtained in previous studies, the code-to-code scatter was more than an order-of-magnitude larger than expected and far larger than desired for design and for experimental validation. The second Drag Prediction Workshop was held in June 2003 with emphasis on the determination of installed pylon-nacelle drag increments and on grid refinement studies. The geometry used was the DLR-F6 wing-body-pylon-nacelle combination for which the design cruise point and the cases run were similar to the first workshop except for additional runs on coarse and fine grids to complement the runs on medium grids. The code-to-code scatter was significantly reduced for the wing-body configuration compared to the first workshop, although still much larger than desired. However, the grid refinement studies showed no sign$cant improvement in code-to-code scatter with increasing grid refinement.
Semantic processing of unattended parafoveal words.
Di Pace, E; Longoni, A M; Zoccolotti, P
1991-08-01
The influence that a context word presented either foveally or parafoveally, may exert on the processing of a subsequent target word was studied in a semantic decision task. Fourteen subjects participated in the experiment. They were presented with word-nonword pairs (prime). One member of the pair (which the subjects had to attend to) appeared centrally, the other parafoveally. The prime was followed by a target at two inter-stimulus intervals (ISI; 200 and 2000 msec). The word stimulus of the pair could be semantically related or unrelated to the target. The subjects' task was to classify the target as animal or not animal by pressing one of two buttons as quickly as possible. When the target word was semantically associated with the foveal (attended) word the reaction times were faster for both ISIs; when it was associated with the parafoveal (unattended) word in the prime pair, there were facilitatory effects only in the short ISI condition. A second experiment was run in order to evaluate the possibility that the obtained results were due to identification of the parafoveal stimulus. The same prime-target pairs of experiment 1 (without the target stimuli) were used. The prime-target pairs were presented to fourteen subjects who were requested to name the foveal (attended) stimulus and subsequently, if possible, the parafoveal (unattended) one. Even in this condition, percentage of identification of the unattended word was only 15%, suggesting that previous findings were not due to identification of unattended stimuli. Results are discussed in relation to Posner and Snyder's (1975) dual coding theory.
NASA Astrophysics Data System (ADS)
Jian, Yu-Cin; Wu, Chao-Jung
2015-02-01
We investigated strategies used by readers when reading a science article with a diagram and assessed whether semantic and spatial representations were constructed while reading the diagram. Seventy-one undergraduate participants read a scientific article while tracking their eye movements and then completed a reading comprehension test. Our results showed that the text-diagram referencing strategy was commonly used. However, some readers adopted other reading strategies, such as reading the diagram or text first. We found all readers who had referred to the diagram spent roughly the same amount of time reading and performed equally well. However, some participants who ignored the diagram performed more poorly on questions that tested understanding of basic facts. This result indicates that dual coding theory may be a possible theory to explain the phenomenon. Eye movement patterns indicated that at least some readers had extracted semantic information of the scientific terms when first looking at the diagram. Readers who read the scientific terms on the diagram first tended to spend less time looking at the same terms in the text, which they read after. Besides, presented clear diagrams can help readers process both semantic and spatial information, thereby facilitating an overall understanding of the article. In addition, although text-first and diagram-first readers spent similar total reading time on the text and diagram parts of the article, respectively, text-first readers had significantly less number of saccades of text and diagram than diagram-first readers. This result might be explained as text-directed reading.
Enhanced semantic interoperability by profiling health informatics standards.
López, Diego M; Blobel, Bernd
2009-01-01
Several standards applied to the healthcare domain support semantic interoperability. These standards are far from being completely adopted in health information system development, however. The objective of this paper is to provide a method and suggest the necessary tooling for reusing standard health information models, by that way supporting the development of semantically interoperable systems and components. The approach is based on the definition of UML Profiles. UML profiling is a formal modeling mechanism to specialize reference meta-models in such a way that it is possible to adapt those meta-models to specific platforms or domains. A health information model can be considered as such a meta-model. The first step of the introduced method identifies the standard health information models and tasks in the software development process in which healthcare information models can be reused. Then, the selected information model is formalized as a UML Profile. That Profile is finally applied to system models, annotating them with the semantics of the information model. The approach is supported on Eclipse-based UML modeling tools. The method is integrated into a comprehensive framework for health information systems development, and the feasibility of the approach is demonstrated in the analysis, design, and implementation of a public health surveillance system, reusing HL7 RIM and DIMs specifications. The paper describes a method and the necessary tooling for reusing standard healthcare information models. UML offers several advantages such as tooling support, graphical notation, exchangeability, extensibility, semi-automatic code generation, etc. The approach presented is also applicable for harmonizing different standard specifications.
NASA Astrophysics Data System (ADS)
Pulsifer, P. L.; Parsons, M. A.; Duerr, R. E.; Fox, P. A.; Khalsa, S. S.; McCusker, J. P.; McGuinness, D. L.
2012-12-01
To address interoperability, we first need to understand how human perspectives and worldviews influence the way people conceive of and describe geophysical phenomena. There is never a single, unambiguous description of a phenomenon - the terminology used is based on the relationship people have with it and what their interests are. So how can these perspectives be reconciled in a way that is not only clear to different people but also formally described so that information systems can interoperate? In this paper we explore conceptions of Arctic sea ice as a means of exploring these issues. We examine multiple conceptions of sea ice and related processes as fundamental components of the Earth system. Arctic sea ice is undergoing rapid and dramatic decline. This will have huge impact on climate and biological systems as well as on shipping, exploration, human culture, and geopolitics. Local hunters, operational shipping forecasters, global climate researchers, and others have critical needs for sea ice data and information, but they conceive of, and describe sea ice phenomena in very different ways. Our hypothesis is that formally representing these diverse conceptions in a suite of formal ontologies can help facilitate sharing of information across communities and enhance overall Arctic data interoperability. We present initial work to model operational, research, and Indigenous (Iñupiat and Yup'ik) concepts of sea ice phenomena and data. Our results illustrate important and surprising differences in how these communities describe and represent sea ice, and we describe our approach to resolving incongruities and inconsistencies. We begin by exploring an intriguing information artifact, the World Meteorological Organization "egg code". The egg code is a compact, information rich way of illustrating detailed ice conditions that has been used broadly for a century. There is much agreement on construction and content encoding, but there are important regional differences in its application. Furthermore, it is an analog encoding scheme whose meaning has evolved over time. By semantically modeling the egg code, its subtle variations, and how it connects to other data, we illustrate a mechanism for translating across data formats and representations. But there are limits to what semantically modeling the egg-code can achieve. The egg-code and common operational sea ice formats do not address community needs, notably the timing and processes of sea ice freeze-up and break-up which have profound impact on local hunting, shipping, oil exploration, and safety. We work with local experts from four very different Indigenous communities and scientific creators of sea ice forecasts to establish an understanding of concepts and terminology related to fall freeze-up and spring break up from the individually represented regions. This helps expand our conceptions of sea ice while also aiding in understanding across cultures and communities, and in passing knowledge to younger generations. This is an early step to expanding concepts of interoperability to very different ways of knowing to make data truly relevant and locally useful.
A Weakest Precondition Approach to Robustness
NASA Astrophysics Data System (ADS)
Balliu, Musard; Mastroeni, Isabella
With the increasing complexity of information management computer systems, security becomes a real concern. E-government, web-based financial transactions or military and health care information systems are only a few examples where large amount of information can reside on different hosts distributed worldwide. It is clear that any disclosure or corruption of confidential information in these contexts can result fatal. Information flow controls constitute an appealing and promising technology to protect both data confidentiality and data integrity. The certification of the security degree of a program that runs in untrusted environments still remains an open problem in the area of language-based security. Robustness asserts that an active attacker, who can modify program code in some fixed points (holes), is unable to disclose more private information than a passive attacker, who merely observes unclassified data. In this paper, we extend a method recently proposed for checking declassified non-interference in presence of passive attackers only, in order to check robustness by means of weakest precondition semantics. In particular, this semantics simulates the kind of analysis that can be performed by an attacker, i.e., from public output towards private input. The choice of semantics allows us to distinguish between different attacks models and to characterize the security of applications in different scenarios.
Role of Utility and Inference in the Evolution of Functional Information
Sharov, Alexei A.
2009-01-01
Functional information means an encoded network of functions in living organisms from molecular signaling pathways to an organism’s behavior. It is represented by two components: code and an interpretation system, which together form a self-sustaining semantic closure. Semantic closure allows some freedom between components because small variations of the code are still interpretable. The interpretation system consists of inference rules that control the correspondence between the code and the function (phenotype) and determines the shape of the fitness landscape. The utility factor operates at multiple time scales: short-term selection drives evolution towards higher survival and reproduction rate within a given fitness landscape, and long-term selection favors those fitness landscapes that support adaptability and lead to evolutionary expansion of certain lineages. Inference rules make short-term selection possible by shaping the fitness landscape and defining possible directions of evolution, but they are under control of the long-term selection of lineages. Communication normally occurs within a set of agents with compatible interpretation systems, which I call communication system. Functional information cannot be directly transferred between communication systems with incompatible inference rules. Each biological species is a genetic communication system that carries unique functional information together with inference rules that determine evolutionary directions and constraints. This view of the relation between utility and inference can resolve the conflict between realism/positivism and pragmatism. Realism overemphasizes the role of inference in evolution of human knowledge because it assumes that logic is embedded in reality. Pragmatism substitutes usefulness for truth and therefore ignores the advantage of inference. The proposed concept of evolutionary pragmatism rejects the idea that logic is embedded in reality; instead, inference rules are constructed within each communication system to represent reality and they evolve towards higher adaptability on a long time scale. PMID:20160960
Portal of medical data models: information infrastructure for medical research and healthcare.
Dugas, Martin; Neuhaus, Philipp; Meidt, Alexandra; Doods, Justin; Storck, Michael; Bruland, Philipp; Varghese, Julian
2016-01-01
Information systems are a key success factor for medical research and healthcare. Currently, most of these systems apply heterogeneous and proprietary data models, which impede data exchange and integrated data analysis for scientific purposes. Due to the complexity of medical terminology, the overall number of medical data models is very high. At present, the vast majority of these models are not available to the scientific community. The objective of the Portal of Medical Data Models (MDM, https://medical-data-models.org) is to foster sharing of medical data models. MDM is a registered European information infrastructure. It provides a multilingual platform for exchange and discussion of data models in medicine, both for medical research and healthcare. The system is developed in collaboration with the University Library of Münster to ensure sustainability. A web front-end enables users to search, view, download and discuss data models. Eleven different export formats are available (ODM, PDF, CDA, CSV, MACRO-XML, REDCap, SQL, SPSS, ADL, R, XLSX). MDM contents were analysed with descriptive statistics. MDM contains 4387 current versions of data models (in total 10,963 versions). 2475 of these models belong to oncology trials. The most common keyword (n = 3826) is 'Clinical Trial'; most frequent diseases are breast cancer, leukemia, lung and colorectal neoplasms. Most common languages of data elements are English (n = 328,557) and German (n = 68,738). Semantic annotations (UMLS codes) are available for 108,412 data items, 2453 item groups and 35,361 code list items. Overall 335,087 UMLS codes are assigned with 21,847 unique codes. Few UMLS codes are used several thousand times, but there is a long tail of rarely used codes in the frequency distribution. Expected benefits of the MDM portal are improved and accelerated design of medical data models by sharing best practice, more standardised data models with semantic annotation and better information exchange between information systems, in particular Electronic Data Capture (EDC) and Electronic Health Records (EHR) systems. Contents of the MDM portal need to be further expanded to reach broad coverage of all relevant medical domains. Database URL: https://medical-data-models.org. © The Author(s) 2016. Published by Oxford University Press.
The role of visual imagery in the retention of information from sentences.
Drose, G S; Allen, G L
1994-01-01
We conducted two experiments to evaluate a multiple-code model for sentence memory that posits both propositional and visual representational systems. Both sentences involved recognition memory. The results of Experiment 1 indicated that subjects' recognition memory for concrete sentences was superior to their recognition memory for abstract sentences. Instructions to use visual imagery to enhance recognition performance yielded no effects. Experiment 2 tested the prediction that interference by a visual task would differentially affect recognition memory for concrete sentences. Results showed the interference task to have had a detrimental effect on recognition memory for both concrete and abstract sentences. Overall, the evidence provided partial support for both a multiple-code model and a semantic integration model of sentence memory.
West, W C; Holcomb, P J
2000-11-01
Words representing concrete concepts are processed more quickly and efficiently than words representing abstract concepts. Concreteness effects have also been observed in studies using event-related brain potentials (ERPs). The aim of this study was to examine concrete and abstract words using both reaction time (RT) and ERP measurements to determine (1) at what point in the stream of cognitive processing concreteness effects emerge and (2) how different types of cognitive operations influence these concreteness effects. Three groups of subjects performed a sentence verification task in which the final word of each sentence was concrete or abstract. For each group the truthfulness judgment required either (1) image generation, (2) semantic decision, or (3) evaluation of surface characteristics. Concrete and abstract words produced similar RTs and ERPs in the surface task, suggesting that postlexical semantic processing is necessary to elicit concreteness effects. In both the semantic and imagery tasks, RTs were shorter for concrete than for abstract words. This difference was greatest in the imagery task. Also, in both of these tasks concrete words elicited more negative ERPs than abstract words between 300 and 550 msec (N400). This effect was widespread across the scalp and may reflect activation in a linguistic semantic system common to both concrete and abstract words. ERPs were also more negative for concrete than abstract words between 550 and 800 msec. This effect was more frontally distributed and was most evident in the imagery task. We propose that this later anterior effect represents a distinct ERP component (N700) that is sensitive to the use of mental imagery. The N700 may reflect the a access of specific characteristics of the imaged item or activation in a working memory system specific to mental imagery. These results also support the extended dual-coding hypothesis that superior associative connections and the use of mental imagery both contribute to processing advantages for concrete words over abstract words.
CERN IT Book Fair 2009 - Special talk by Bjarne Stroustrup: "The Design of C++0x"
Stroustrup, Bjarne
2018-05-24
A draft for a revised ISO C++ standard, C++0x, has been produced. The speaker will present the background of C++, its aims, the standards process (with opinions), some of the guiding design principles (with tiny code examples), and two case studies.The case studies are initialization (a general and uniform syntax and semantics for initializers in all contexts) and concurrent support facilities (memory model, threads, locks, futures).
2016-02-01
system consists of a high-fidelity hardware simulation using field programmable gate arrays (FPGAs), with a set of runtime services (ConcreteWare...perimeter protection, patch, and pray” is not aligned with the threat. Programmers will not bail us out of this situation (by writing defect free code...hosted on a Field Programmable Gate Array (FPGA), with a set of runtime services (concreteware) running on the hardware. Secure applications can be
Toward Transparent Data Management in Multi-layer Storage Hierarchy for HPC Systems
Wadhwa, Bharti; Byna, Suren; Butt, Ali R.
2018-04-17
Upcoming exascale high performance computing (HPC) systems are expected to comprise multi-tier storage hierarchy, and thus will necessitate innovative storage and I/O mechanisms. Traditional disk and block-based interfaces and file systems face severe challenges in utilizing capabilities of storage hierarchies due to the lack of hierarchy support and semantic interfaces. Object-based and semantically-rich data abstractions for scientific data management on large scale systems offer a sustainable solution to these challenges. Such data abstractions can also simplify users involvement in data movement. Here, we take the first steps of realizing such an object abstraction and explore storage mechanisms for these objectsmore » to enhance I/O performance, especially for scientific applications. We explore how an object-based interface can facilitate next generation scalable computing systems by presenting the mapping of data I/O from two real world HPC scientific use cases: a plasma physics simulation code (VPIC) and a cosmology simulation code (HACC). Our storage model stores data objects in different physical organizations to support data movement across layers of memory/storage hierarchy. Our implementation sclaes well to 16K parallel processes, and compared to the state of the art, such as MPI-IO and HDF5, our object-based data abstractions and data placement strategy in multi-level storage hierarchy achieves up to 7 X I/O performance improvement for scientific data.« less
Toward Transparent Data Management in Multi-layer Storage Hierarchy for HPC Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wadhwa, Bharti; Byna, Suren; Butt, Ali R.
Upcoming exascale high performance computing (HPC) systems are expected to comprise multi-tier storage hierarchy, and thus will necessitate innovative storage and I/O mechanisms. Traditional disk and block-based interfaces and file systems face severe challenges in utilizing capabilities of storage hierarchies due to the lack of hierarchy support and semantic interfaces. Object-based and semantically-rich data abstractions for scientific data management on large scale systems offer a sustainable solution to these challenges. Such data abstractions can also simplify users involvement in data movement. Here, we take the first steps of realizing such an object abstraction and explore storage mechanisms for these objectsmore » to enhance I/O performance, especially for scientific applications. We explore how an object-based interface can facilitate next generation scalable computing systems by presenting the mapping of data I/O from two real world HPC scientific use cases: a plasma physics simulation code (VPIC) and a cosmology simulation code (HACC). Our storage model stores data objects in different physical organizations to support data movement across layers of memory/storage hierarchy. Our implementation sclaes well to 16K parallel processes, and compared to the state of the art, such as MPI-IO and HDF5, our object-based data abstractions and data placement strategy in multi-level storage hierarchy achieves up to 7 X I/O performance improvement for scientific data.« less
Shark: SQL and Analytics with Cost-Based Query Optimization on Coarse-Grained Distributed Memory
2014-01-13
RDBMS and contains a database (often MySQL or Derby) with a namespace for tables, table metadata and partition information. Table data is stored in an...serialization/deserialization) Java interface implementations with corresponding object inspectors. The Hive driver controls the processing of queries, coordinat...native API, RDD operations are invoked through a functional interface similar to DryadLINQ [32] in Scala, Java or Python. For example, the Scala code for
Novel Spectro-Temporal Codes and Computations for Auditory Signal Representation and Separation
2013-02-01
responses are shown). Bottom right panel (c) shows the Frequency responses of the tunable bandpass filter ( BPF ) triplets that adapt to the incoming...signal. One BPF triplet is associated with each fixed filter, such that coarse filtering of the fixed gammatone filters is followed by additional, finer...is achieved using a second layer of narrower bandpass filters ( BPFs , Q=8) that emulate the filtering functions of outer hair cells (OHCs). In the
NASA Astrophysics Data System (ADS)
Egeland, R.; Huang, C.-H.; Rossman, P.; Sundarrajan, P.; Wildish, T.
2012-12-01
PhEDEx is the data-transfer management solution written by CMS. It consists of agents running at each site, a website for presentation of information, and a web-based data-service for scripted access to information. The website allows users to monitor the progress of data-transfers, the status of site agents and links between sites, and the overall status and behaviour of everything about PhEDEx. It also allows users to make and approve requests for data-transfers and for deletion of data. It is the main point-of-entry for all users wishing to interact with PhEDEx. For several years, the website has consisted of a single perl program with about 10K SLOC. This program has limited capabilities for exploring the data, with only coarse filtering capabilities and no context-sensitive awareness. Graphical information is presented as static images, generated on the server, with no interactivity. It is also not well connected to the rest of the PhEDEx codebase, since much of it was written before the data-service was developed. All this makes it hard to maintain and extend. We are re-implementing the website to address these issues. The UI is being rewritten in Javascript, replacing most of the server-side code. We are using the YUI toolkit to provide advanced features and context-sensitive interaction, and will adopt a Javascript charting library for generating graphical representations client-side. This relieves the server of much of its load, and automatically improves server-side security. The Javascript components can be re-used in many ways, allowing custom pages to be developed for specific uses. In particular, standalone test-cases using small numbers of components make it easier to debug the Javascript than it is to debug a large server program. Information about PhEDEx is accessed through the PhEDEx data-service, since direct SQL is not available from the clients’ browser. This provides consistent semantics with other, externally written monitoring tools, which already use the data-service. It also reduces redundancy in the code, yielding a simpler, consolidated codebase. In this talk we describe our experience of re-factoring this monolithic server-side program into a lighter client-side framework. We describe some of the techniques that worked well for us, and some of the mistakes we made along the way. We present the current state of the project, and its future direction.
Zhang, Qingfang; Wang, Cheng
2016-01-01
A central issue in written production concerns how phonological codes influence the output of orthographic codes. We used a picture-word interference paradigm combined with the event-related potential technique to investigate the temporal courses of phonological and orthographic activation and their interplay in Chinese writing. Distractors were orthographically related, phonologically related, orthographically plus phonologically related, or unrelated to picture names. The behavioral results replicated the classic facilitation effect for all three types of relatedness. The ERP results indicated an orthographic effect in the time window of 370–500 ms (onset latency: 370 ms), a phonological effect in the time window of 460–500 ms (onset latency: 464 ms), and an additive pattern of both effects in both time windows, thus indicating that orthographic codes were accessed earlier than, and independent of, phonological codes in written production. The orthographic activation originates from the semantic system, whereas the phonological effect results from the activation spreading from the orthographic lexicon to the phonological lexicon. These findings substantially strengthen the existing evidence that shows that access to orthographic codes is not mediated by phonological information, and they provide important support for the orthographic autonomy hypothesis. PMID:27605911
GUI to Facilitate Research on Biological Damage from Radiation
NASA Technical Reports Server (NTRS)
Cucinotta, Frances A.; Ponomarev, Artem Lvovich
2010-01-01
A graphical-user-interface (GUI) computer program has been developed to facilitate research on the damage caused by highly energetic particles and photons impinging on living organisms. The program brings together, into one computational workspace, computer codes that have been developed over the years, plus codes that will be developed during the foreseeable future, to address diverse aspects of radiation damage. These include codes that implement radiation-track models, codes for biophysical models of breakage of deoxyribonucleic acid (DNA) by radiation, pattern-recognition programs for extracting quantitative information from biological assays, and image-processing programs that aid visualization of DNA breaks. The radiation-track models are based on transport models of interactions of radiation with matter and solution of the Boltzmann transport equation by use of both theoretical and numerical models. The biophysical models of breakage of DNA by radiation include biopolymer coarse-grained and atomistic models of DNA, stochastic- process models of deposition of energy, and Markov-based probabilistic models of placement of double-strand breaks in DNA. The program is designed for use in the NT, 95, 98, 2000, ME, and XP variants of the Windows operating system.
Design and Implementation of a Pretty Printer for the Functional Specification Language SPEC
1988-06-01
language independent pretty printer using Kodiyak and attribute grammars. These general guidelines are a direct result of the insight gained from the...outlined. The final subject in this chapter is the general and specific rules for the pretty printer. A user of the pretty printer code needs only a working...an extension of a context-free grammar whose generated language includes syntax and semantics. A context-free grammar (CFG) is a four tuple G (N,T, P ,S
Computer Language For Optimization Of Design
NASA Technical Reports Server (NTRS)
Scotti, Stephen J.; Lucas, Stephen H.
1991-01-01
SOL is computer language geared to solution of design problems. Includes mathematical modeling and logical capabilities of computer language like FORTRAN; also includes additional power of nonlinear mathematical programming methods at language level. SOL compiler takes SOL-language statements and generates equivalent FORTRAN code and system calls. Provides syntactic and semantic checking for recovery from errors and provides detailed reports containing cross-references to show where each variable used. Implemented on VAX/VMS computer systems. Requires VAX FORTRAN compiler to produce executable program.
A Technique for Removing an Important Class of Trojan Horses from High-Order Languages
1988-01-01
A Technique for Removing an Important Class of Trojan Horses from High Order Languages∗ John McDermott Center for Secure Information Technology...Ken Thompson described a sophisticated Trojan horse attack on a compiler, one that is undetectable by any search of the compiler source code. The...object of the compiler Trojan horse is to modify the semantics of the high order language in a way that breaks the security of a trusted system generated
NASA Astrophysics Data System (ADS)
Maffei, A. R.; Chandler, C. L.; Work, T.; Allen, J.; Groman, R. C.; Fox, P. A.
2009-12-01
Content Management Systems (CMSs) provide powerful features that can be of use to oceanographic (and other geo-science) data managers. However, in many instances, geo-science data management offices have previously designed customized schemas for their metadata. The WHOI Ocean Informatics initiative and the NSF funded Biological Chemical and Biological Data Management Office (BCO-DMO) have jointly sponsored a project to port an existing, relational database containing oceanographic metadata, along with an existing interface coded in Cold Fusion middleware, to a Drupal6 Content Management System. The goal was to translate all the existing database tables, input forms, website reports, and other features present in the existing system to employ Drupal CMS features. The replacement features include Drupal content types, CCK node-reference fields, themes, RDB, SPARQL, workflow, and a number of other supporting modules. Strategic use of some Drupal6 CMS features enables three separate but complementary interfaces that provide access to oceanographic research metadata via the MySQL database: 1) a Drupal6-powered front-end; 2) a standard SQL port (used to provide a Mapserver interface to the metadata and data; and 3) a SPARQL port (feeding a new faceted search capability being developed). Future plans include the creation of science ontologies, by scientist/technologist teams, that will drive semantically-enabled faceted search capabilities planned for the site. Incorporation of semantic technologies included in the future Drupal 7 core release is also anticipated. Using a public domain CMS as opposed to proprietary middleware, and taking advantage of the many features of Drupal 6 that are designed to support semantically-enabled interfaces will help prepare the BCO-DMO database for interoperability with other ecosystem databases.
SIDD: A Semantically Integrated Database towards a Global View of Human Disease
Cheng, Liang; Wang, Guohua; Li, Jie; Zhang, Tianjiao; Xu, Peigang; Wang, Yadong
2013-01-01
Background A number of databases have been developed to collect disease-related molecular, phenotypic and environmental features (DR-MPEs), such as genes, non-coding RNAs, genetic variations, drugs, phenotypes and environmental factors. However, each of current databases focused on only one or two DR-MPEs. There is an urgent demand to develop an integrated database, which can establish semantic associations among disease-related databases and link them to provide a global view of human disease at the biological level. This database, once developed, will facilitate researchers to query various DR-MPEs through disease, and investigate disease mechanisms from different types of data. Methodology To establish an integrated disease-associated database, disease vocabularies used in different databases are mapped to Disease Ontology (DO) through semantic match. 4,284 and 4,186 disease terms from Medical Subject Headings (MeSH) and Online Mendelian Inheritance in Man (OMIM) respectively are mapped to DO. Then, the relationships between DR-MPEs and diseases are extracted and merged from different source databases for reducing the data redundancy. Conclusions A semantically integrated disease-associated database (SIDD) is developed, which integrates 18 disease-associated databases, for researchers to browse multiple types of DR-MPEs in a view. A web interface allows easy navigation for querying information through browsing a disease ontology tree or searching a disease term. Furthermore, a network visualization tool using Cytoscape Web plugin has been implemented in SIDD. It enhances the SIDD usage when viewing the relationships between diseases and DR-MPEs. The current version of SIDD (Jul 2013) documents 4,465,131 entries relating to 139,365 DR-MPEs, and to 3,824 human diseases. The database can be freely accessed from: http://mlg.hit.edu.cn/SIDD. PMID:24146757
Semantic distance-based creation of clusters of pharmacovigilance terms and their evaluation.
Dupuch, Marie; Grabar, Natalia
2015-04-01
Pharmacovigilance is the activity related to the collection, analysis and prevention of adverse drug reactions (ADRs) induced by drugs or biologics. The detection of adverse drug reactions is performed using statistical algorithms and groupings of ADR terms from the MedDRA (Medical Dictionary for Drug Regulatory Activities) terminology. Standardized MedDRA Queries (SMQs) are the groupings which become a standard for assisting the retrieval and evaluation of MedDRA-coded ADR reports worldwide. Currently 84 SMQs have been created, while several important safety topics are not yet covered. Creation of SMQs is a long and tedious process performed by the experts. It relies on manual analysis of MedDRA in order to find out all the relevant terms to be included in a SMQ. Our objective is to propose an automatic method for assisting the creation of SMQs using the clustering of terms which are semantically similar. The experimental method relies on a specific semantic resource, and also on the semantic distance algorithms and clustering approaches. We perform several experiments in order to define the optimal parameters. Our results show that the proposed method can assist the creation of SMQs and make this process faster and systematic. The average performance of the method is precision 59% and recall 26%. The correlation of the results obtained is 0.72 against the medical doctors judgments and 0.78 against the medical coders judgments. These results and additional evaluation indicate that the generated clusters can be efficiently used for the detection of pharmacovigilance signals, as they provide better signal detection than the existing SMQs. Copyright © 2014. Published by Elsevier Inc.
Miller, Paul; Hazan-Liran, Batel; Cohen, Danielle
2018-06-01
Previous studies have shown that task-irrelevant information impedes learning by creating extraneous cognitive load. But still open is whether such intrusion reflects a purely semantic phenomenon or whether it also stands for sheer perceptual interference. Using Cognitive Load Theory as a framework, this study aimed to answer this question by examining whether and how task-irrelevant colour information modifies extraneous cognitive load in relation to a new code-learning paradigm. For this purpose, university students were asked to learn, based on an example, associations between colour-related and colour-unrelated words and digits presented in black or in a mismatched ink colour. Evident costs in learning efficacy were found in learning the associations between words and digits for colour-related, but not for colour-unrelated, word stimuli. This suggests that interference by task-irrelevant information in learning stands for a mere semantic conflict. Implications of the findings for extraneous cognitive load on learning efficacy are discussed.
Tirado-Ramos, Alfredo; Hu, Jingkun; Lee, K.P.
2002-01-01
Supplement 23 to DICOM (Digital Imaging and Communications for Medicine), Structured Reporting, is a specification that supports a semantically rich representation of image and waveform content, enabling experts to share image and related patient information. DICOM SR supports the representation of textual and coded data linked to images and waveforms. Nevertheless, the medical information technology community needs models that work as bridges between the DICOM relational model and open object-oriented technologies. The authors assert that representations of the DICOM Structured Reporting standard, using object-oriented modeling languages such as the Unified Modeling Language, can provide a high-level reference view of the semantically rich framework of DICOM and its complex structures. They have produced an object-oriented model to represent the DICOM SR standard and have derived XML-exchangeable representations of this model using World Wide Web Consortium specifications. They expect the model to benefit developers and system architects who are interested in developing applications that are compliant with the DICOM SR specification. PMID:11751804
Papež, Václav; Denaxas, Spiros; Hemingway, Harry
2017-01-01
Electronic Health Records are electronic data generated during or as a byproduct of routine patient care. Structured, semi-structured and unstructured EHR offer researchers unprecedented phenotypic breadth and depth and have the potential to accelerate the development of precision medicine approaches at scale. A main EHR use-case is defining phenotyping algorithms that identify disease status, onset and severity. Phenotyping algorithms utilize diagnoses, prescriptions, laboratory tests, symptoms and other elements in order to identify patients with or without a specific trait. No common standardized, structured, computable format exists for storing phenotyping algorithms. The majority of algorithms are stored as human-readable descriptive text documents making their translation to code challenging due to their inherent complexity and hinders their sharing and re-use across the community. In this paper, we evaluate the two key Semantic Web Technologies, the Web Ontology Language and the Resource Description Framework, for enabling computable representations of EHR-driven phenotyping algorithms.
Sridharan, Vishnupriya; Cohen, Trevor; Cobb, Nathan; Myneni, Sahiti
2016-01-01
With online social platforms gaining popularity as venues of behavior change, it is important to understand the ways in which these platforms facilitate peer interactions. In this paper, we characterize temporal trends in user communication through mapping of theoretically-linked semantic content. We used qualitative coding and automated text analysis to assign theoretical techniques to peer interactions in an online community for smoking cessation, subsequently facilitating temporal visualization of the observed techniques. Results indicate manifestation of several behavior change techniques such as feedback and monitoring' and 'rewards'. Automated methods yielded reasonable results (F-measure=0.77). Temporal trends among relapsers revealed reduction in communication after a relapse event. This social withdrawal may be attributed to failure guilt after the relapse. Results indicate significant change in thematic categories such as 'social support', 'natural consequences', and 'comparison of outcomes' pre and post relapse. Implications for development of behavioral support technologies that promote long-term abstinence are discussed.
Feature hashing for fast image retrieval
NASA Astrophysics Data System (ADS)
Yan, Lingyu; Fu, Jiarun; Zhang, Hongxin; Yuan, Lu; Xu, Hui
2018-03-01
Currently, researches on content based image retrieval mainly focus on robust feature extraction. However, due to the exponential growth of online images, it is necessary to consider searching among large scale images, which is very timeconsuming and unscalable. Hence, we need to pay much attention to the efficiency of image retrieval. In this paper, we propose a feature hashing method for image retrieval which not only generates compact fingerprint for image representation, but also prevents huge semantic loss during the process of hashing. To generate the fingerprint, an objective function of semantic loss is constructed and minimized, which combine the influence of both the neighborhood structure of feature data and mapping error. Since the machine learning based hashing effectively preserves neighborhood structure of data, it yields visual words with strong discriminability. Furthermore, the generated binary codes leads image representation building to be of low-complexity, making it efficient and scalable to large scale databases. Experimental results show good performance of our approach.
DOSE: an R/Bioconductor package for disease ontology semantic and enrichment analysis.
Yu, Guangchuang; Wang, Li-Gen; Yan, Guang-Rong; He, Qing-Yu
2015-02-15
Disease ontology (DO) annotates human genes in the context of disease. DO is important annotation in translating molecular findings from high-throughput data to clinical relevance. DOSE is an R package providing semantic similarity computations among DO terms and genes which allows biologists to explore the similarities of diseases and of gene functions in disease perspective. Enrichment analyses including hypergeometric model and gene set enrichment analysis are also implemented to support discovering disease associations of high-throughput biological data. This allows biologists to verify disease relevance in a biological experiment and identify unexpected disease associations. Comparison among gene clusters is also supported. DOSE is released under Artistic-2.0 License. The source code and documents are freely available through Bioconductor (http://www.bioconductor.org/packages/release/bioc/html/DOSE.html). Supplementary data are available at Bioinformatics online. gcyu@connect.hku.hk or tqyhe@jnu.edu.cn. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Analyzing Array Manipulating Programs by Program Transformation
NASA Technical Reports Server (NTRS)
Cornish, J. Robert M.; Gange, Graeme; Navas, Jorge A.; Schachte, Peter; Sondergaard, Harald; Stuckey, Peter J.
2014-01-01
We explore a transformational approach to the problem of verifying simple array-manipulating programs. Traditionally, verification of such programs requires intricate analysis machinery to reason with universally quantified statements about symbolic array segments, such as "every data item stored in the segment A[i] to A[j] is equal to the corresponding item stored in the segment B[i] to B[j]." We define a simple abstract machine which allows for set-valued variables and we show how to translate programs with array operations to array-free code for this machine. For the purpose of program analysis, the translated program remains faithful to the semantics of array manipulation. Based on our implementation in LLVM, we evaluate the approach with respect to its ability to extract useful invariants and the cost in terms of code size.
Multitasking the three-dimensional transport code TORT on CRAY platforms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Azmy, Y.Y.; Barnett, D.A.; Burre, C.A.
1996-04-01
The multitasking options in the three-dimensional neutral particle transport code TORT originally implemented for Cray`s CTSS operating system are revived and extended to run on Cray Y/MP and C90 computers using the UNICOS operating system. These include two coarse-grained domain decompositions; across octants, and across directions within an octant, termed Octant Parallel (OP), and Direction Parallel (DP), respectively. Parallel performance of the DP is significantly enhanced by increasing the task grain size and reducing load imbalance via dynamic scheduling of the discrete angles among the participating tasks. Substantial Wall Clock speedup factors, approaching 4.5 using 8 tasks, have been measuredmore » in a time-sharing environment, and generally depend on the test problem specifications, number of tasks, and machine loading during execution.« less
NASA Technical Reports Server (NTRS)
Anderson, B. H.; Benson, T. J.
1983-01-01
A supersonic three-dimensional viscous forward-marching computer design code called PEPSIS is used to obtain a numerical solution of the three-dimensional problem of the interaction of a glancing sidewall oblique shock wave and a turbulent boundary layer. Very good results are obtained for a test case that was run to investigate the use of the wall-function boundary-condition approximation for a highly complex three-dimensional shock-boundary layer interaction. Two additional test cases (coarse mesh and medium mesh) are run to examine the question of near-wall resolution when no-slip boundary conditions are applied. A comparison with experimental data shows that the PEPSIS code gives excellent results in general and is practical for three-dimensional supersonic inlet calculations.
NASA Technical Reports Server (NTRS)
Anderson, B. H.; Benson, T. J.
1983-01-01
A supersonic three-dimensional viscous forward-marching computer design code called PEPSIS is used to obtain a numerical solution of the three-dimensional problem of the interaction of a glancing sidewall oblique shock wave and a turbulent boundary layer. Very good results are obtained for a test case that was run to investigate the use of the wall-function boundary-condition approximation for a highly complex three-dimensional shock-boundary layer interaction. Two additional test cases (coarse mesh and medium mesh) are run to examine the question of near-wall resolution when no-slip boundary conditions are applied. A comparison with experimental data shows that the PEPSIS code gives excellent results in general and is practical for three-dimensional supersonic inlet calculations.
NASA Astrophysics Data System (ADS)
Azami, Hamed; Escudero, Javier
2017-01-01
Multiscale entropy (MSE) is an appealing tool to characterize the complexity of time series over multiple temporal scales. Recent developments in the field have tried to extend the MSE technique in different ways. Building on these trends, we propose the so-called refined composite multivariate multiscale fuzzy entropy (RCmvMFE) whose coarse-graining step uses variance (RCmvMFEσ2) or mean (RCmvMFEμ). We investigate the behavior of these multivariate methods on multichannel white Gaussian and 1/ f noise signals, and two publicly available biomedical recordings. Our simulations demonstrate that RCmvMFEσ2 and RCmvMFEμ lead to more stable results and are less sensitive to the signals' length in comparison with the other existing multivariate multiscale entropy-based methods. The classification results also show that using both the variance and mean in the coarse-graining step offers complexity profiles with complementary information for biomedical signal analysis. We also made freely available all the Matlab codes used in this paper.
Automatic translation of MPI source into a latency-tolerant, data-driven form
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, Tan; Cicotti, Pietro; Bylaska, Eric
Hiding communication behind useful computation is an important performance programming technique but remains an inscrutable programming exercise even for the expert. We present Bamboo, a code transformation framework that can realize communication overlap in applications written in MPI without the need to intrusively modify the source code. We reformulate MPI source into a task dependency graph representation, which partially orders the tasks, enabling the program to execute in a data-driven fashion under the control of an external runtime system. Experimental results demonstrate that Bamboo significantly reduces communication delays while requiring only modest amounts of programmer annotation for a variety ofmore » applications and platforms, including those employing co-processors and accelerators. Moreover, Bamboo’s performance meets or exceeds that of labor-intensive hand coding. As a result, the translator is more than a means of hiding communication costs automatically; it demonstrates the utility of semantic level optimization against a well-known library.« less
Automatic translation of MPI source into a latency-tolerant, data-driven form
Nguyen, Tan; Cicotti, Pietro; Bylaska, Eric; ...
2017-03-06
Hiding communication behind useful computation is an important performance programming technique but remains an inscrutable programming exercise even for the expert. We present Bamboo, a code transformation framework that can realize communication overlap in applications written in MPI without the need to intrusively modify the source code. We reformulate MPI source into a task dependency graph representation, which partially orders the tasks, enabling the program to execute in a data-driven fashion under the control of an external runtime system. Experimental results demonstrate that Bamboo significantly reduces communication delays while requiring only modest amounts of programmer annotation for a variety ofmore » applications and platforms, including those employing co-processors and accelerators. Moreover, Bamboo’s performance meets or exceeds that of labor-intensive hand coding. As a result, the translator is more than a means of hiding communication costs automatically; it demonstrates the utility of semantic level optimization against a well-known library.« less
Composing Data Parallel Code for a SPARQL Graph Engine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Castellana, Vito G.; Tumeo, Antonino; Villa, Oreste
Big data analytics process large amount of data to extract knowledge from them. Semantic databases are big data applications that adopt the Resource Description Framework (RDF) to structure metadata through a graph-based representation. The graph based representation provides several benefits, such as the possibility to perform in memory processing with large amounts of parallelism. SPARQL is a language used to perform queries on RDF-structured data through graph matching. In this paper we present a tool that automatically translates SPARQL queries to parallel graph crawling and graph matching operations. The tool also supports complex SPARQL constructs, which requires more than basicmore » graph matching for their implementation. The tool generates parallel code annotated with OpenMP pragmas for x86 Shared-memory Multiprocessors (SMPs). With respect to commercial database systems such as Virtuoso, our approach reduces memory occupation due to join operations and provides higher performance. We show the scaling of the automatically generated graph-matching code on a 48-core SMP.« less
Automatic translation of MPI source into a latency-tolerant, data-driven form
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, Tan; Cicotti, Pietro; Bylaska, Eric
Hiding communication behind useful computation is an important performance programming technique but remains an inscrutable programming exercise even for the expert. We present Bamboo, a code transformation framework that can realize communication overlap in applications written in MPI without the need to intrusively modify the source code. Bamboo reformulates MPI source into the form of a task dependency graph that expresses a partial ordering among tasks, enabling the program to execute in a data-driven fashion under the control of an external runtime system. Experimental results demonstrate that Bamboo significantly reduces communication delays while requiring only modest amounts of programmer annotationmore » for a variety of applications and platforms, including those employing co-processors and accelerators. Moreover, Bamboo's performance meets or exceeds that of labor-intensive hand coding. The translator is more than a means of hiding communication costs automatically; it demonstrates the utility of semantic level optimization against a wellknown library.« less
Multimodal Discriminative Binary Embedding for Large-Scale Cross-Modal Retrieval.
Wang, Di; Gao, Xinbo; Wang, Xiumei; He, Lihuo; Yuan, Bo
2016-10-01
Multimodal hashing, which conducts effective and efficient nearest neighbor search across heterogeneous data on large-scale multimedia databases, has been attracting increasing interest, given the explosive growth of multimedia content on the Internet. Recent multimodal hashing research mainly aims at learning the compact binary codes to preserve semantic information given by labels. The overwhelming majority of these methods are similarity preserving approaches which approximate pairwise similarity matrix with Hamming distances between the to-be-learnt binary hash codes. However, these methods ignore the discriminative property in hash learning process, which results in hash codes from different classes undistinguished, and therefore reduces the accuracy and robustness for the nearest neighbor search. To this end, we present a novel multimodal hashing method, named multimodal discriminative binary embedding (MDBE), which focuses on learning discriminative hash codes. First, the proposed method formulates the hash function learning in terms of classification, where the binary codes generated by the learned hash functions are expected to be discriminative. And then, it exploits the label information to discover the shared structures inside heterogeneous data. Finally, the learned structures are preserved for hash codes to produce similar binary codes in the same class. Hence, the proposed MDBE can preserve both discriminability and similarity for hash codes, and will enhance retrieval accuracy. Thorough experiments on benchmark data sets demonstrate that the proposed method achieves excellent accuracy and competitive computational efficiency compared with the state-of-the-art methods for large-scale cross-modal retrieval task.
Losh, Molly; Gordon, Peter C
2014-12-01
Autism is a neurodevelopmental disorder characterized by serious difficulties with the social use of language, along with impaired social functioning and ritualistic/repetitive behaviors (American Psychiatric Association in Diagnostic and statistical manual of mental disorders: DSM-5, 5th edn. American Psychiatric Association, Arlington, 2013). While substantial heterogeneity exists in symptom expression, impairments in language discourse skills, including narrative (or storytelling), are universally observed in autism (Tager-Flusberg et al. in Handbook on autism and pervasive developmental disorders, 3rd edn. Wiley, New York, pp 335-364, 2005). This study applied a computational linguistic tool, Latent Semantic Analysis (LSA), to objectively characterize narrative performance in high-functioning individuals with autism and typically-developing controls, across two different narrative contexts that differ in the interpersonal and cognitive demands placed on the narrator. Results indicated that high-functioning individuals with autism produced narratives comparable in semantic content to those produced by controls when narrating from a picture book, but produced narratives diminished in semantic quality in a more demanding narrative recall task. This pattern is similar to that detected from analyses of hand-coded picture book narratives in prior research, and extends findings to an additional narrative context that proves particularly challenging for individuals with autism. Results are discussed in terms of the utility of LSA as a quantitative, objective, and efficient measure of narrative ability.
Matches, Mismatches, and Methods: Multiple-View Workflows for Energy Portfolio Analysis.
Brehmer, Matthew; Ng, Jocelyn; Tate, Kevin; Munzner, Tamara
2016-01-01
The energy performance of large building portfolios is challenging to analyze and monitor, as current analysis tools are not scalable or they present derived and aggregated data at too coarse of a level. We conducted a visualization design study, beginning with a thorough work domain analysis and a characterization of data and task abstractions. We describe generalizable visual encoding design choices for time-oriented data framed in terms of matches and mismatches, as well as considerations for workflow design. Our designs address several research questions pertaining to scalability, view coordination, and the inappropriateness of line charts for derived and aggregated data due to a combination of data semantics and domain convention. We also present guidelines relating to familiarity and trust, as well as methodological considerations for visualization design studies. Our designs were adopted by our collaborators and incorporated into the design of an energy analysis software application that will be deployed to tens of thousands of energy workers in their client base.
JDFTx: Software for joint density-functional theory
Sundararaman, Ravishankar; Letchworth-Weaver, Kendra; Schwarz, Kathleen A.; ...
2017-11-14
Density-functional theory (DFT) has revolutionized computational prediction of atomic-scale properties from first principles in physics, chemistry and materials science. Continuing development of new methods is necessary for accurate predictions of new classes of materials and properties, and for connecting to nano- and mesoscale properties using coarse-grained theories. JDFTx is a fully-featured open-source electronic DFT software designed specifically to facilitate rapid development of new theories, models and algorithms. Using an algebraic formulation as an abstraction layer, compact C++11 code automatically performs well on diverse hardware including GPUs (Graphics Processing Units). This code hosts the development of joint density-functional theory (JDFT) thatmore » combines electronic DFT with classical DFT and continuum models of liquids for first-principles calculations of solvated and electrochemical systems. In addition, the modular nature of the code makes it easy to extend and interface with, facilitating the development of multi-scale toolkits that connect to ab initio calculations, e.g. photo-excited carrier dynamics combining electron and phonon calculations with electromagnetic simulations.« less
JDFTx: Software for joint density-functional theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sundararaman, Ravishankar; Letchworth-Weaver, Kendra; Schwarz, Kathleen A.
Density-functional theory (DFT) has revolutionized computational prediction of atomic-scale properties from first principles in physics, chemistry and materials science. Continuing development of new methods is necessary for accurate predictions of new classes of materials and properties, and for connecting to nano- and mesoscale properties using coarse-grained theories. JDFTx is a fully-featured open-source electronic DFT software designed specifically to facilitate rapid development of new theories, models and algorithms. Using an algebraic formulation as an abstraction layer, compact C++11 code automatically performs well on diverse hardware including GPUs (Graphics Processing Units). This code hosts the development of joint density-functional theory (JDFT) thatmore » combines electronic DFT with classical DFT and continuum models of liquids for first-principles calculations of solvated and electrochemical systems. In addition, the modular nature of the code makes it easy to extend and interface with, facilitating the development of multi-scale toolkits that connect to ab initio calculations, e.g. photo-excited carrier dynamics combining electron and phonon calculations with electromagnetic simulations.« less
NASA Astrophysics Data System (ADS)
Bellemans, Aurélie; Parente, Alessandro; Magin, Thierry
2018-04-01
The present work introduces a novel approach for obtaining reduced chemistry representations of large kinetic mechanisms in strong non-equilibrium conditions. The need for accurate reduced-order models arises from compression of large ab initio quantum chemistry databases for their use in fluid codes. The method presented in this paper builds on existing physics-based strategies and proposes a new approach based on the combination of a simple coarse grain model with Principal Component Analysis (PCA). The internal energy levels of the chemical species are regrouped in distinct energy groups with a uniform lumping technique. Following the philosophy of machine learning, PCA is applied on the training data provided by the coarse grain model to find an optimally reduced representation of the full kinetic mechanism. Compared to recently published complex lumping strategies, no expert judgment is required before the application of PCA. In this work, we will demonstrate the benefits of the combined approach, stressing its simplicity, reliability, and accuracy. The technique is demonstrated by reducing the complex quantum N2(g+1Σ) -N(S4u ) database for studying molecular dissociation and excitation in strong non-equilibrium. Starting from detailed kinetics, an accurate reduced model is developed and used to study non-equilibrium properties of the N2(g+1Σ) -N(S4u ) system in shock relaxation simulations.
Preferential coding of eye/hand motor actions in the human ventral occipito-temporal cortex.
Tosoni, Annalisa; Guidotti, Roberto; Del Gratta, Cosimo; Committeri, Giorgia; Sestieri, Carlo
2016-12-01
The human ventral occipito-temporal cortex (OTC) contains areas specialized for particular perceptual/semantic categories, such as faces (fusiform face area, FFA) and places (parahippocampal place area, PPA). This organization has been interpreted as reflecting the visual structure of the world, i.e. perceptual similarity and/or eccentricity biases. However, recent functional magnetic resonance imaging (fMRI) studies have shown not only that regions of the OTC are modulated by non-visual, action-related object properties but also by motor planning and execution, although the functional role and specificity of this motor-related activity are still unclear. Here, through a reanalysis of previously published data, we tested whether the selectivity for perceptual/semantic categories in the OTC corresponds to a preference for particular motor actions. The results demonstrate for the first time that face- and place-selective regions of the OTC exhibit preferential BOLD response to the execution of hand pointing and saccadic eye movements, respectively. Moreover, multivariate analyses provide novel evidence for the consistency across neural representations of stimulus category and movement effector in OTC. According to a 'spatial hypothesis', this pattern of results originates from the match between the region eccentricity bias and the typical action space of the motor effectors. Alternatively, the double dissociation may be caused by the different effect produced by hand vs. eye movements on regions coding for body representation. Overall, the present findings offer novel insights on the coupling between visual and motor cortical representations. Copyright © 2016. Published by Elsevier Ltd.
Life, Information, Entropy, and Time: Vehicles for Semantic Inheritance.
Crofts, Antony R
2007-01-01
Attempts to understand how information content can be included in an accounting of the energy flux of the biosphere have led to the conclusion that, in information transmission, one component, the semantic content, or "the meaning of the message," adds no thermodynamic burden over and above costs arising from coding, transmission and translation. In biology, semantic content has two major roles. For all life forms, the message of the genotype encoded in DNA specifies the phenotype, and hence the organism that is tested against the real world through the mechanisms of Darwinian evolution. For human beings, communication through language and similar abstractions provides an additional supra-phenotypic vehicle for semantic inheritance, which supports the cultural heritages around which civilizations revolve. The following three postulates provide the basis for discussion of a number of themes that demonstrate some important consequences. (i) Information transmission through either pathway has thermodynamic components associated with data storage and transmission. (ii) The semantic content adds no additional thermodynamic cost. (iii) For all semantic exchange, meaning is accessible only through translation and interpretation, and has a value only in context. (1) For both pathways of semantic inheritance, translational and copying machineries are imperfect. As a consequence both pathways are subject to mutation and to evolutionary pressure by selection. Recognition of semantic content as a common component allows an understanding of the relationship between genes and memes, and a reformulation of Universal Darwinism. (2) The emergent properties of life are dependent on a processing of semantic content. The translational steps allow amplification in complexity through combinatorial possibilities in space and time. Amplification depends on the increased potential for complexity opened by 3D interaction specificity of proteins, and on the selection of useful variants by evolution. The initial interpretational steps include protein synthesis, molecular recognition, and catalytic potential that facilitate structural and functional roles. Combinatorial possibilities are extended through interactions of increasing complexity in the temporal dimension. (3) All living things show a behavior that indicates awareness of time, or chronognosis. The ∼4 billion years of biological evolution have given rise to forms with increasing sophistication in sensory adaptation. This has been linked to the development of an increasing chronognostic range, and an associated increase in combinatorial complexity. (4) Development of a modern human phenotype and the ability to communicate through language, led to the development of archival storage, and invention of the basic skills, institutions and mechanisms that allowed the evolution of modern civilizations. Combinatorial amplification at the supra-phenotypical level arose from the invention of syntax, grammar, numbers, and the subsequent developments of abstraction in writing, algorithms, etc. The translational machineries of the human mind, the "mutation" of ideas therein, and the "conversations" of our social intercourse, have allowed a limited set of symbolic descriptors to evolve into an exponentially expanding semantic heritage. (5) The three postulates above open interesting epistemological questions. An understanding of topics such dualism, the élan vital, the status of hypothesis in science, memetics, the nature of consciousness, the role of semantic processing in the survival of societies, and Popper's three worlds, require recognition of an insubstantial component. By recognizing a necessary linkage between semantic content and a physical machinery, we can bring these perennial problems into the framework of a realistic philosophy. It is suggested, following Popper, that the ∼4 billion years of evolution of the biosphere represents an exploration of the nature of reality at the physicochemical level, which, together with the conscious extension of this exploration through science and culture, provides a firm epistemological underpinning for such a philosophy.
Formal Safety Certification of Aerospace Software
NASA Technical Reports Server (NTRS)
Denney, Ewen; Fischer, Bernd
2005-01-01
In principle, formal methods offer many advantages for aerospace software development: they can help to achieve ultra-high reliability, and they can be used to provide evidence of the reliability claims which can then be subjected to external scrutiny. However, despite years of research and many advances in the underlying formalisms of specification, semantics, and logic, formal methods are not much used in practice. In our opinion this is related to three major shortcomings. First, the application of formal methods is still expensive because they are labor- and knowledge-intensive. Second, they are difficult to scale up to complex systems because they are based on deep mathematical insights about the behavior of the systems (t.e., they rely on the "heroic proof"). Third, the proofs can be difficult to interpret, and typically stand in isolation from the original code. In this paper, we describe a tool for formally demonstrating safety-relevant aspects of aerospace software, which largely circumvents these problems. We focus on safely properties because it has been observed that safety violations such as out-of-bounds memory accesses or use of uninitialized variables constitute the majority of the errors found in the aerospace domain. In our approach, safety means that the program will not violate a set of rules that can range for the simple memory access rules to high-level flight rules. These different safety properties are formalized as different safety policies in Hoare logic, which are then used by a verification condition generator along with the code and logical annotations in order to derive formal safety conditions; these are then proven using an automated theorem prover. Our certification system is currently integrated into a model-based code generation toolset that generates the annotations together with the code. However, this automated formal certification technology is not exclusively constrained to our code generator and could, in principle, also be integrated with other code generators such as RealTime Workshop or even applied to legacy code. Our approach circumvents the historical problems with formal methods by increasing the degree of automation on all levels. The restriction to safety policies (as opposed to arbitrary functional behavior) results in simpler proof problems that can generally be solved by fully automatic theorem proves. An automated linking mechanism between the safety conditions and the code provides some of the traceability mandated by process standards such as DO-178B. An automated explanation mechanism uses semantic markup added by the verification condition generator to produce natural-language explanations of the safety conditions and thus supports their interpretation in relation to the code. It shows an automatically generated certification browser that lets users inspect the (generated) code along with the safety conditions (including textual explanations), and uses hyperlinks to automate tracing between the two levels. Here, the explanations reflect the logical structure of the safety obligation but the mechanism can in principle be customized using different sets of domain concepts. The interface also provides some limited control over the certification process itself. Our long-term goal is a seamless integration of certification, code generation, and manual coding that results in a "certified pipeline" in which specifications are automatically transformed into executable code, together with the supporting artifacts necessary for achieving and demonstrating the high level of assurance needed in the aerospace domain.
NASA Astrophysics Data System (ADS)
Holloway, James V.; Rillig, Matthias C.; Gurnell, Angela M.
2017-02-01
Following analysis of morphological (including dendrochronological and sedimentological) aspects of buried stem and coarse root structures of eight mature P. nigra individuals located within two sites along the middle to lower Tagliamento River, Italy (Holloway et al., 2017), this paper introduces information on the historical processes of vegetation development and river flow and links this to the form of these eight trees. Aerial images and flow time series are assembled to reconstruct the flood history, potential recruitment periods, and vegetation cover development in the vicinity of the studied trees. This information is combined with previous morphological evidence to reconstruct the development history of each tree via three-element summary diagrams showing (i) a time series of floods, aerial imagery dates, and potential recruitment periods, with colour-coded bars indicating likely key stages in the development of the tree; (ii) colour-coded overlays on an SfM photogrammetric model of each tree; and (iii) colour-coded text boxes providing explanatory annotations. The combined morphology-process analysis reveals complex three-dimensional underground structures, incorporating buried stems, shoots, and adventitious roots that are sometimes joined by grafting, linking the standing tree with the buried gravel surface on which it was recruited. Analysis of process data provides a firm basis for identifying and dating influential flow disturbance events and recruitment windows and shows that a relatively small number of flood events have significantly impacted the studied trees, which are mainly but not exclusively the largest floods in the record. Nevertheless, we stress that all suggested dates are best estimates in the light of the combined evidence. There is undoubted potential for building different interpretations of belowground woody structure development in light of such evidence, but we feel that the form and timing of the developmental trajectories we have proposed are reasonable and give balanced insights into the many possible ways in which this hidden component of riparian trees may develop. Our results are relevant to river research and management issues concerning riparian woodland, fluvial wood dynamics, and wood budgets, as they indicate (i) a large hidden volume of wood that is often ignored; (ii) complex, deep, coarse anchorage structures that have relevance for rates of fluvial wood recruitment associated with lateral bank erosion/stability or wind throw; and (iii) a wood element that may significantly affect wood transport and retention within fluvial systems.
Scientific Datasets: Discovery and Aggregation for Semantic Interpretation.
NASA Astrophysics Data System (ADS)
Lopez, L. A.; Scott, S.; Khalsa, S. J. S.; Duerr, R.
2015-12-01
One of the biggest challenges that interdisciplinary researchers face is finding suitable datasets in order to advance their science; this problem remains consistent across multiple disciplines. A surprising number of scientists, when asked what tool they use for data discovery, reply "Google", which is an acceptable solution in some cases but not even Google can find -or cares to compile- all the data that's relevant for science and particularly geo sciences. If a dataset is not discoverable through a well known search provider it will remain dark data to the scientific world.For the past year, BCube, an EarthCube Building Block project, has been developing, testing and deploying a technology stack capable of data discovery at web-scale using the ultimate dataset: The Internet. This stack has 2 principal components, a web-scale crawling infrastructure and a semantic aggregator. The web-crawler is a modified version of Apache Nutch (the originator of Hadoop and other big data technologies) that has been improved and tailored for data and data service discovery. The second component is semantic aggregation, carried out by a python-based workflow that extracts valuable metadata and stores it in the form of triples through the use semantic technologies.While implementing the BCube stack we have run into several challenges such as a) scaling the project to cover big portions of the Internet at a reasonable cost, b) making sense of very diverse and non-homogeneous data, and lastly, c) extracting facts about these datasets using semantic technologies in order to make them usable for the geosciences community. Despite all these challenges we have proven that we can discover and characterize data that otherwise would have remained in the dark corners of the Internet. Having all this data indexed and 'triplelized' will enable scientists to access a trove of information relevant to their work in a more natural way. An important characteristic of the BCube stack is that all the code we have developed is open sourced and available to anyone who wants to experiment and collaborate with the project at: http://github.com/b-cube/
Data Quality Screening Service
NASA Technical Reports Server (NTRS)
Strub, Richard; Lynnes, Christopher; Hearty, Thomas; Won, Young-In; Fox, Peter; Zednik, Stephan
2013-01-01
A report describes the Data Quality Screening Service (DQSS), which is designed to help automate the filtering of remote sensing data on behalf of science users. Whereas this process often involves much research through quality documents followed by laborious coding, the DQSS is a Web Service that provides data users with data pre-filtered to their particular criteria, while at the same time guiding the user with filtering recommendations of the cognizant data experts. The DQSS design is based on a formal semantic Web ontology that describes data fields and the quality fields for applying quality control within a data product. The accompanying code base handles several remote sensing datasets and quality control schemes for data products stored in Hierarchical Data Format (HDF), a common format for NASA remote sensing data. Together, the ontology and code support a variety of quality control schemes through the implementation of the Boolean expression with simple, reusable conditional expressions as operands. Additional datasets are added to the DQSS simply by registering instances in the ontology if they follow a quality scheme that is already modeled in the ontology. New quality schemes are added by extending the ontology and adding code for each new scheme.
On Initial Brain Activity Mapping of Associative Memory Code in the Hippocampus
Tsien, Joe Z.; Li, Meng; Osan, Remus; Chen, Guifen; Lin, Longian; Lei Wang, Phillip; Frey, Sabine; Frey, Julietta; Zhu, Dajiang; Liu, Tianming; Zhao, Fang; Kuang, Hui
2013-01-01
It has been widely recognized that the understanding of the brain code would require large-scale recording and decoding of brain activity patterns. In 2007 with support from Georgia Research Alliance, we have launched the Brain Decoding Project Initiative with the basic idea which is now similarly advocated by BRAIN project or Brain Activity Map proposal. As the planning of the BRAIN project is currently underway, we share our insights and lessons from our efforts in mapping real-time episodic memory traces in the hippocampus of freely behaving mice. We show that appropriate large-scale statistical methods are essential to decipher and measure real-time memory traces and neural dynamics. We also provide an example of how the carefully designed, sometime thinking-outside-the-box, behavioral paradigms can be highly instrumental to the unraveling of memory-coding cell assembly organizing principle in the hippocampus. Our observations to date have led us to conclude that the specific-to-general categorical and combinatorial feature-coding cell assembly mechanism represents an emergent property for enabling the neural networks to generate and organize not only episodic memory, but also semantic knowledge and imagination. PMID:23838072
Schultheiss, Oliver C.
2013-01-01
Traditionally, implicit motives (i.e., non-conscious preferences for specific classes of incentives) are assessed through semantic coding of imaginative stories. The present research tested the marker-word hypothesis, which states that implicit motives are reflected in the frequencies of specific words. Using Linguistic Inquiry and Word Count (LIWC; Pennebaker et al., 2001), Study 1 identified word categories that converged with a content-coding measure of the implicit motives for power, achievement, and affiliation in picture stories collected in German and US student samples, showed discriminant validity with self-reported motives, and predicted well-validated criteria of implicit motives (gender difference for the affiliation motive; in interaction with personal-goal progress: emotional well-being). Study 2 demonstrated LIWC-based motive scores' causal validity by documenting their sensitivity to motive arousal. PMID:24137149
Palm: Easing the Burden of Analytical Performance Modeling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tallent, Nathan R.; Hoisie, Adolfy
2014-06-01
Analytical (predictive) application performance models are critical for diagnosing performance-limiting resources, optimizing systems, and designing machines. Creating models, however, is difficult because they must be both accurate and concise. To ease the burden of performance modeling, we developed Palm, a modeling tool that combines top-down (human-provided) semantic insight with bottom-up static and dynamic analysis. To express insight, Palm defines a source code modeling annotation language. By coordinating models and source code, Palm's models are `first-class' and reproducible. Unlike prior work, Palm formally links models, functions, and measurements. As a result, Palm (a) uses functions to either abstract or express complexitymore » (b) generates hierarchical models (representing an application's static and dynamic structure); and (c) automatically incorporates measurements to focus attention, represent constant behavior, and validate models. We discuss generating models for three different applications.« less
Vigliocco, Gabriella; Kousta, Stavroula; Vinson, David; Andrews, Mark; Del Campo, Elena
2013-02-01
In Kousta, Vigliocco, Vinson, Andrews, and Del Campo (2011), we presented an embodied theory of semantic representation, which crucially included abstract concepts as internally embodied via affective states. Paivio (2013) took issue with our treatment of dual coding theory, our reliance on data from lexical decision, and our theoretical proposal. Here, we address these different issues and clarify how our findings offer a way to move forward in the investigation of how abstract concepts are represented. 2013 APA, all rights reserved
Parallelising a molecular dynamics algorithm on a multi-processor workstation
NASA Astrophysics Data System (ADS)
Müller-Plathe, Florian
1990-12-01
The Verlet neighbour-list algorithm is parallelised for a multi-processor Hewlett-Packard/Apollo DN10000 workstation. The implementation makes use of memory shared between the processors. It is a genuine master-slave approach by which most of the computational tasks are kept in the master process and the slaves are only called to do part of the nonbonded forces calculation. The implementation features elements of both fine-grain and coarse-grain parallelism. Apart from three calls to library routines, two of which are standard UNIX calls, and two machine-specific language extensions, the whole code is written in standard Fortran 77. Hence, it may be expected that this parallelisation concept can be transfered in parts or as a whole to other multi-processor shared-memory computers. The parallel code is routinely used in production work.
LAMMPS Project Report for the Trinity KNL Open Science Period.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moore, Stan Gerald; Thompson, Aidan P.; Wood, Mitchell
LAMMPS is a classical molecular dynamics code (lammps.sandia.gov) used to model materials science problems at Sandia National Laboratories and around the world. LAMMPS was one of three Sandia codes selected to participate in the Trinity KNL (TR2) Open Science period. During this period, three different problems of interest were investigated using LAMMPS. The first was benchmarking KNL performance using different force field models. The second was simulating void collapse in shocked HNS energetic material using an all-atom model. The third was simulating shock propagation through poly-crystalline RDX energetic material using a coarse-grain model, the results of which were used inmore » an ACM Gordon Bell Prize submission. This report describes the results of these simulations, lessons learned, and some hardware issues found on Trinity KNL as part of this work.« less
Dynamic-ETL: a hybrid approach for health data extraction, transformation and loading.
Ong, Toan C; Kahn, Michael G; Kwan, Bethany M; Yamashita, Traci; Brandt, Elias; Hosokawa, Patrick; Uhrich, Chris; Schilling, Lisa M
2017-09-13
Electronic health records (EHRs) contain detailed clinical data stored in proprietary formats with non-standard codes and structures. Participating in multi-site clinical research networks requires EHR data to be restructured and transformed into a common format and standard terminologies, and optimally linked to other data sources. The expertise and scalable solutions needed to transform data to conform to network requirements are beyond the scope of many health care organizations and there is a need for practical tools that lower the barriers of data contribution to clinical research networks. We designed and implemented a health data transformation and loading approach, which we refer to as Dynamic ETL (Extraction, Transformation and Loading) (D-ETL), that automates part of the process through use of scalable, reusable and customizable code, while retaining manual aspects of the process that requires knowledge of complex coding syntax. This approach provides the flexibility required for the ETL of heterogeneous data, variations in semantic expertise, and transparency of transformation logic that are essential to implement ETL conventions across clinical research sharing networks. Processing workflows are directed by the ETL specifications guideline, developed by ETL designers with extensive knowledge of the structure and semantics of health data (i.e., "health data domain experts") and target common data model. D-ETL was implemented to perform ETL operations that load data from various sources with different database schema structures into the Observational Medical Outcome Partnership (OMOP) common data model. The results showed that ETL rule composition methods and the D-ETL engine offer a scalable solution for health data transformation via automatic query generation to harmonize source datasets. D-ETL supports a flexible and transparent process to transform and load health data into a target data model. This approach offers a solution that lowers technical barriers that prevent data partners from participating in research data networks, and therefore, promotes the advancement of comparative effectiveness research using secondary electronic health data.
EarthCollab, building geoscience-centric implementations of the VIVO semantic software suite
NASA Astrophysics Data System (ADS)
Rowan, L. R.; Gross, M. B.; Mayernik, M. S.; Daniels, M. D.; Krafft, D. B.; Kahn, H. J.; Allison, J.; Snyder, C. B.; Johns, E. M.; Stott, D.
2017-12-01
EarthCollab, an EarthCube Building Block project, is extending an existing open-source semantic web application, VIVO, to enable the exchange of information about scientific researchers and resources across institutions. EarthCollab is a collaboration between UNAVCO, a geodetic facility and consortium that supports diverse research projects informed by geodesy, The Bering Sea Project, an interdisciplinary field program whose data archive is hosted by NCAR's Earth Observing Laboratory, and Cornell University. VIVO has been implemented by more than 100 universities and research institutions to highlight research and institutional achievements. This presentation will discuss benefits and drawbacks of working with and extending open source software. Some extensions include plotting georeferenced objects on a map, a mobile-friendly theme, integration of faceting via Elasticsearch, extending the VIVO ontology to capture geoscience-centric objects and relationships, and the ability to cross-link between VIVO instances. Most implementations of VIVO gather information about a single organization. The EarthCollab project created VIVO extensions to enable cross-linking of VIVO instances to reduce the amount of duplicate information about the same people and scientific resources and to enable dynamic linking of related information across VIVO installations. As the list of customizations grows, so does the effort required to maintain compatibility between the EarthCollab forks and the main VIVO code. For example, dozens of libraries and dependencies were updated prior to the VIVO v1.10 release, which introduced conflicts in the EarthCollab cross-linking code. The cross-linking code has been developed to enable sharing of data across different versions of VIVO, however, using a JSON output schema standardized across versions. We will outline lessons learned in working with VIVO and its open source dependencies, which include Jena, Solr, Freemarker, and jQuery and discuss future work by EarthCollab, which includes refining the cross-linking VIVO capabilities by continued integration of persistent and unique identifiers to enable automated lookup and matching across institutional VIVOs.
2006-10-01
The objective was to construct a bridge between existing and future microscopic simulation codes ( kMC , MD, MC, BD, LB etc.) and traditional, continuum...kinetic Monte Carlo, kMC , equilibrium MC, Lattice-Boltzmann, LB, Brownian Dynamics, BD, or general agent-based, AB) simulators. It also, fortuitously...cond-mat/0310460 at arXiv.org. 27. Coarse Projective kMC Integration: Forward/Reverse Initial and Boundary Value Problems", R. Rico-Martinez, C. W
The Semantic Distance Task: Quantifying Semantic Distance with Semantic Network Path Length
ERIC Educational Resources Information Center
Kenett, Yoed N.; Levi, Effi; Anaki, David; Faust, Miriam
2017-01-01
Semantic distance is a determining factor in cognitive processes, such as semantic priming, operating upon semantic memory. The main computational approach to compute semantic distance is through latent semantic analysis (LSA). However, objections have been raised against this approach, mainly in its failure at predicting semantic priming. We…
Life, Information, Entropy, and Time
Crofts, Antony R.
2008-01-01
Attempts to understand how information content can be included in an accounting of the energy flux of the biosphere have led to the conclusion that, in information transmission, one component, the semantic content, or “the meaning of the message,” adds no thermodynamic burden over and above costs arising from coding, transmission and translation. In biology, semantic content has two major roles. For all life forms, the message of the genotype encoded in DNA specifies the phenotype, and hence the organism that is tested against the real world through the mechanisms of Darwinian evolution. For human beings, communication through language and similar abstractions provides an additional supra-phenotypic vehicle for semantic inheritance, which supports the cultural heritages around which civilizations revolve. The following three postulates provide the basis for discussion of a number of themes that demonstrate some important consequences. (i) Information transmission through either pathway has thermodynamic components associated with data storage and transmission. (ii) The semantic content adds no additional thermodynamic cost. (iii) For all semantic exchange, meaning is accessible only through translation and interpretation, and has a value only in context. (1) For both pathways of semantic inheritance, translational and copying machineries are imperfect. As a consequence both pathways are subject to mutation and to evolutionary pressure by selection. Recognition of semantic content as a common component allows an understanding of the relationship between genes and memes, and a reformulation of Universal Darwinism. (2) The emergent properties of life are dependent on a processing of semantic content. The translational steps allow amplification in complexity through combinatorial possibilities in space and time. Amplification depends on the increased potential for complexity opened by 3D interaction specificity of proteins, and on the selection of useful variants by evolution. The initial interpretational steps include protein synthesis, molecular recognition, and catalytic potential that facilitate structural and functional roles. Combinatorial possibilities are extended through interactions of increasing complexity in the temporal dimension. (3) All living things show a behavior that indicates awareness of time, or chronognosis. The ∼4 billion years of biological evolution have given rise to forms with increasing sophistication in sensory adaptation. This has been linked to the development of an increasing chronognostic range, and an associated increase in combinatorial complexity. (4) Development of a modern human phenotype and the ability to communicate through language, led to the development of archival storage, and invention of the basic skills, institutions and mechanisms that allowed the evolution of modern civilizations. Combinatorial amplification at the supra-phenotypical level arose from the invention of syntax, grammar, numbers, and the subsequent developments of abstraction in writing, algorithms, etc. The translational machineries of the human mind, the “mutation” of ideas therein, and the “conversations” of our social intercourse, have allowed a limited set of symbolic descriptors to evolve into an exponentially expanding semantic heritage. (5) The three postulates above open interesting epistemological questions. An understanding of topics such dualism, the élan vital, the status of hypothesis in science, memetics, the nature of consciousness, the role of semantic processing in the survival of societies, and Popper's three worlds, require recognition of an insubstantial component. By recognizing a necessary linkage between semantic content and a physical machinery, we can bring these perennial problems into the framework of a realistic philosophy. It is suggested, following Popper, that the ∼4 billion years of evolution of the biosphere represents an exploration of the nature of reality at the physicochemical level, which, together with the conscious extension of this exploration through science and culture, provides a firm epistemological underpinning for such a philosophy. PMID:18978960
Pesaranghader, Ahmad; Matwin, Stan; Sokolova, Marina; Beiko, Robert G
2016-05-01
Measures of protein functional similarity are essential tools for function prediction, evaluation of protein-protein interactions (PPIs) and other applications. Several existing methods perform comparisons between proteins based on the semantic similarity of their GO terms; however, these measures are highly sensitive to modifications in the topological structure of GO, tend to be focused on specific analytical tasks and concentrate on the GO terms themselves rather than considering their textual definitions. We introduce simDEF, an efficient method for measuring semantic similarity of GO terms using their GO definitions, which is based on the Gloss Vector measure commonly used in natural language processing. The simDEF approach builds optimized definition vectors for all relevant GO terms, and expresses the similarity of a pair of proteins as the cosine of the angle between their definition vectors. Relative to existing similarity measures, when validated on a yeast reference database, simDEF improves correlation with sequence homology by up to 50%, shows a correlation improvement >4% with gene expression in the biological process hierarchy of GO and increases PPI predictability by > 2.5% in F1 score for molecular function hierarchy. Datasets, results and source code are available at http://kiwi.cs.dal.ca/Software/simDEF CONTACT: ahmad.pgh@dal.ca or beiko@cs.dal.ca Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Ghio, Marta; Locatelli, Matteo; Tettamanti, Andrea; Perani, Daniela; Gatti, Roberto; Tettamanti, Marco
2018-06-01
Embodied cognition theories of semantic memory still face the need for multiple sources of converging evidence in support of the involvement of sensory-motor systems in action-related knowledge. Previous studies showed that training manual actions improves semantic processing of verbs referring to the trained actions. The present work aimed to provide complementary evidence by measuring the brain plasticity effects of a cognitive training requiring sustained lexical-semantic processing of action-related verbs. We included two groups of participants, namely the Proximal Group (PG) and the Distal Group (DG), which underwent a 3-week training with verbs referring to actions involving the proximal and the distal upper limb musculature, respectively. Before and after training, we measured gray matter voxel brain morphometry based on T1 structural magnetic resonance imaging. By means of this 2 (Group: PG, DG) × 2 (Time: pre-, post-training) factorial design, we tested whether sustained cognitive experience with specific action-related verbs induces congruent brain plasticity modifications in target regions of interest pertaining to the action representation system. We found significant post- versus pre-training gray matter volume increases, specifically for PG in the left dorsal precentral gyrus, and for DG in the right cerebellar lobule VIIa. These preliminary results suggest that a cognitive training can induce structural plasticity modifications in brain regions specifically coding for the distal and proximal motor actions the trained verbs refer to. Copyright © 2018 Elsevier Ltd. All rights reserved.
Semantic Memory in the Clinical Progression of Alzheimer Disease.
Tchakoute, Christophe T; Sainani, Kristin L; Henderson, Victor W
2017-09-01
Semantic memory measures may be useful in tracking and predicting progression of Alzheimer disease. We investigated relationships among semantic memory tasks and their 1-year predictive value in women with Alzheimer disease. We conducted secondary analyses of a randomized clinical trial of raloxifene in 42 women with late-onset mild-to-moderate Alzheimer disease. We assessed semantic memory with tests of oral confrontation naming, category fluency, semantic recognition and semantic naming, and semantic density in written narrative discourse. We measured global cognition (Alzheimer Disease Assessment Scale, cognitive subscale), dementia severity (Clinical Dementia Rating sum of boxes), and daily function (Activities of Daily Living Inventory) at baseline and 1 year. At baseline and 1 year, most semantic memory scores correlated highly or moderately with each other and with global cognition, dementia severity, and daily function. Semantic memory task performance at 1 year had worsened one-third to one-half standard deviation. Factor analysis of baseline test scores distinguished processes in semantic and lexical retrieval (semantic recognition, semantic naming, confrontation naming) from processes in lexical search (semantic density, category fluency). The semantic-lexical retrieval factor predicted global cognition at 1 year. Considered separately, baseline confrontation naming and category fluency predicted dementia severity, while semantic recognition and a composite of semantic recognition and semantic naming predicted global cognition. No individual semantic memory test predicted daily function. Semantic-lexical retrieval and lexical search may represent distinct aspects of semantic memory. Semantic memory processes are sensitive to cognitive decline and dementia severity in Alzheimer disease.
Dermoscopic Image Segmentation via Multistage Fully Convolutional Networks.
Bi, Lei; Kim, Jinman; Ahn, Euijoon; Kumar, Ashnil; Fulham, Michael; Feng, Dagan
2017-09-01
Segmentation of skin lesions is an important step in the automated computer aided diagnosis of melanoma. However, existing segmentation methods have a tendency to over- or under-segment the lesions and perform poorly when the lesions have fuzzy boundaries, low contrast with the background, inhomogeneous textures, or contain artifacts. Furthermore, the performance of these methods are heavily reliant on the appropriate tuning of a large number of parameters as well as the use of effective preprocessing techniques, such as illumination correction and hair removal. We propose to leverage fully convolutional networks (FCNs) to automatically segment the skin lesions. FCNs are a neural network architecture that achieves object detection by hierarchically combining low-level appearance information with high-level semantic information. We address the issue of FCN producing coarse segmentation boundaries for challenging skin lesions (e.g., those with fuzzy boundaries and/or low difference in the textures between the foreground and the background) through a multistage segmentation approach in which multiple FCNs learn complementary visual characteristics of different skin lesions; early stage FCNs learn coarse appearance and localization information while late-stage FCNs learn the subtle characteristics of the lesion boundaries. We also introduce a new parallel integration method to combine the complementary information derived from individual segmentation stages to achieve a final segmentation result that has accurate localization and well-defined lesion boundaries, even for the most challenging skin lesions. We achieved an average Dice coefficient of 91.18% on the ISBI 2016 Skin Lesion Challenge dataset and 90.66% on the PH2 dataset. Our extensive experimental results on two well-established public benchmark datasets demonstrate that our method is more effective than other state-of-the-art methods for skin lesion segmentation.
Knowledge-based approaches to the maintenance of a large controlled medical terminology.
Cimino, J J; Clayton, P D; Hripcsak, G; Johnson, S B
1994-01-01
OBJECTIVE: Develop a knowledge-based representation for a controlled terminology of clinical information to facilitate creation, maintenance, and use of the terminology. DESIGN: The Medical Entities Dictionary (MED) is a semantic network, based on the Unified Medical Language System (UMLS), with a directed acyclic graph to represent multiple hierarchies. Terms from four hospital systems (laboratory, electrocardiography, medical records coding, and pharmacy) were added as nodes in the network. Additional knowledge about terms, added as semantic links, was used to assist in integration, harmonization, and automated classification of disparate terminologies. RESULTS: The MED contains 32,767 terms and is in active clinical use. Automated classification was successfully applied to terms for laboratory specimens, laboratory tests, and medications. One benefit of the approach has been the automated inclusion of medications into multiple pharmacologic and allergenic classes that were not present in the pharmacy system. Another benefit has been the reduction of maintenance efforts by 90%. CONCLUSION: The MED is a hybrid of terminology and knowledge. It provides domain coverage, synonymy, consistency of views, explicit relationships, and multiple classification while preventing redundancy, ambiguity (homonymy) and misclassification. PMID:7719786
BioSWR – Semantic Web Services Registry for Bioinformatics
Repchevsky, Dmitry; Gelpi, Josep Ll.
2014-01-01
Despite of the variety of available Web services registries specially aimed at Life Sciences, their scope is usually restricted to a limited set of well-defined types of services. While dedicated registries are generally tied to a particular format, general-purpose ones are more adherent to standards and usually rely on Web Service Definition Language (WSDL). Although WSDL is quite flexible to support common Web services types, its lack of semantic expressiveness led to various initiatives to describe Web services via ontology languages. Nevertheless, WSDL 2.0 descriptions gained a standard representation based on Web Ontology Language (OWL). BioSWR is a novel Web services registry that provides standard Resource Description Framework (RDF) based Web services descriptions along with the traditional WSDL based ones. The registry provides Web-based interface for Web services registration, querying and annotation, and is also accessible programmatically via Representational State Transfer (REST) API or using a SPARQL Protocol and RDF Query Language. BioSWR server is located at http://inb.bsc.es/BioSWR/and its code is available at https://sourceforge.net/projects/bioswr/under the LGPL license. PMID:25233118
BioSWR--semantic web services registry for bioinformatics.
Repchevsky, Dmitry; Gelpi, Josep Ll
2014-01-01
Despite of the variety of available Web services registries specially aimed at Life Sciences, their scope is usually restricted to a limited set of well-defined types of services. While dedicated registries are generally tied to a particular format, general-purpose ones are more adherent to standards and usually rely on Web Service Definition Language (WSDL). Although WSDL is quite flexible to support common Web services types, its lack of semantic expressiveness led to various initiatives to describe Web services via ontology languages. Nevertheless, WSDL 2.0 descriptions gained a standard representation based on Web Ontology Language (OWL). BioSWR is a novel Web services registry that provides standard Resource Description Framework (RDF) based Web services descriptions along with the traditional WSDL based ones. The registry provides Web-based interface for Web services registration, querying and annotation, and is also accessible programmatically via Representational State Transfer (REST) API or using a SPARQL Protocol and RDF Query Language. BioSWR server is located at http://inb.bsc.es/BioSWR/and its code is available at https://sourceforge.net/projects/bioswr/under the LGPL license.
Scalable and expressive medical terminologies.
Mays, E; Weida, R; Dionne, R; Laker, M; White, B; Liang, C; Oles, F J
1996-01-01
The K-Rep system, based on description logic, is used to represent and reason with large and expressive controlled medical terminologies. Expressive concept descriptions incorporate semantically precise definitions composed using logical operators, together with important non-semantic information such as synonyms and codes. Examples are drawn from our experience with K-Rep in modeling the InterMed laboratory terminology and also developing a large clinical terminology now in production use at Kaiser-Permanente. System-level scalability of performance is achieved through an object-oriented database system which efficiently maps persistent memory to virtual memory. Equally important is conceptual scalability-the ability to support collaborative development, organization, and visualization of a substantial terminology as it evolves over time. K-Rep addresses this need by logically completing concept definitions and automatically classifying concepts in a taxonomy via subsumption inferences. The K-Rep system includes a general-purpose GUI environment for terminology development and browsing, a custom interface for formulary term maintenance, a C+2 application program interface, and a distributed client-server mode which provides lightweight clients with efficient run-time access to K-Rep by means of a scripting language.
Tirado-Ramos, Alfredo; Hu, Jingkun; Lee, K P
2002-01-01
Supplement 23 to DICOM (Digital Imaging and Communications for Medicine), Structured Reporting, is a specification that supports a semantically rich representation of image and waveform content, enabling experts to share image and related patient information. DICOM SR supports the representation of textual and coded data linked to images and waveforms. Nevertheless, the medical information technology community needs models that work as bridges between the DICOM relational model and open object-oriented technologies. The authors assert that representations of the DICOM Structured Reporting standard, using object-oriented modeling languages such as the Unified Modeling Language, can provide a high-level reference view of the semantically rich framework of DICOM and its complex structures. They have produced an object-oriented model to represent the DICOM SR standard and have derived XML-exchangeable representations of this model using World Wide Web Consortium specifications. They expect the model to benefit developers and system architects who are interested in developing applications that are compliant with the DICOM SR specification.
Information Management for Unmanned Systems: Combining DL-Reasoning with Publish/Subscribe
NASA Astrophysics Data System (ADS)
Moser, Herwig; Reichelt, Toni; Oswald, Norbert; Förster, Stefan
Sharing capabilities and information between collaborating entities by using modem information- and communication-technology is a core principle in complex distributed civil or military mission scenarios. Previous work proved the suitability of Service-oriented Architectures for modelling and sharing the participating entities' capabilities. Albeit providing a satisfactory model for capabilities sharing, pure service-orientation curtails expressiveness for information exchange as opposed to dedicated data-centric communication principles. In this paper we introduce an Information Management System which combines OWL-Ontologies and automated reasoning with Publish/Subscribe-Systems, providing for a shared but decoupled data model. While confirming existing related research results, we emphasise the novel application and lack of practical experience of using Semantic Web technologies in areas other than originally intended. That is, aiding decision support and software design in the context of a mission scenario for an unmanned system. Experiments within a complex simulation environment show the immediate benefits of a semantic information-management and -dissemination platform: Clear separation of concerns in code and data model, increased service re-usability and extensibility as well as regulation of data flow and respective system behaviour through declarative rules.
Jian, Wen-Shan; Hsu, Chien-Yeh; Hao, Te-Hui; Wen, Hsyien-Chia; Hsu, Min-Huei; Lee, Yen-Liang; Li, Yu-Chuan; Chang, Polun
2007-11-01
Traditional electronic health record (EHR) data are produced from various hospital information systems. They could not have existed independently without an information system until the incarnation of XML technology. The interoperability of a healthcare system can be divided into two dimensions: functional interoperability and semantic interoperability. Currently, no single EHR standard exists that provides complete EHR interoperability. In order to establish a national EHR standard, we developed a set of local EHR templates. The Taiwan Electronic Medical Record Template (TMT) is a standard that aims to achieve semantic interoperability in EHR exchanges nationally. The TMT architecture is basically composed of forms, components, sections, and elements. Data stored in the elements which can be referenced by the code set, data type, and narrative block. The TMT was established with the following requirements in mind: (1) transformable to international standards; (2) having a minimal impact on the existing healthcare system; (3) easy to implement and deploy, and (4) compliant with Taiwan's current laws and regulations. The TMT provides a basis for building a portable, interoperable information infrastructure for EHR exchange in Taiwan.
Pure misallocation of "0" in number transcoding: a new symptom of right cerebral dysfunction.
Furumoto, Hideharu
2006-03-01
To account for the mechanism of number transcoding, many authors have proposed various models, for example, semantic-abstract model, lexical-semantic model, triple-code model, and so on. However, almost all of them are based on the symptoms of patients with left cerebral damage. Previously, I reported two Japanese patients with right posterior cerebral infarction showing pure misallocation of "0" (omission: "40,265"-->"4,265," addition: "107"-->"1,007," transposition: "4,072"-->"4,702") both in writing and oral reading of Arabic numerals. To examine whether the pure misallocation of "0" is commonly observed in patients with right cerebral damage, I investigated writing and oral reading of Arabic numerals in 18 patients with right cerebral damage and 16 healthy controls. All patients with right cerebral damage showed pure misallocation of "0" both in writing and reading. The pure misallocation of "0" due to right cerebral damage cannot be explained by current models. It may be more useful to explain the phenomenon by regarding an Arabic numeral as graph on a two-dimensional plane composed of two axes (place-holding values and digits).
A Concept for Run-Time Support of the Chapel Language
NASA Technical Reports Server (NTRS)
James, Mark
2006-01-01
A document presents a concept for run-time implementation of other concepts embodied in the Chapel programming language. (Now undergoing development, Chapel is intended to become a standard language for parallel computing that would surpass older such languages in both computational performance in the efficiency with which pre-existing code can be reused and new code written.) The aforementioned other concepts are those of distributions, domains, allocations, and access, as defined in a separate document called "A Semantic Framework for Domains and Distributions in Chapel" and linked to a language specification defined in another separate document called "Chapel Specification 0.3." The concept presented in the instant report is recognition that a data domain that was invented for Chapel offers a novel approach to distributing and processing data in a massively parallel environment. The concept is offered as a starting point for development of working descriptions of functions and data structures that would be necessary to implement interfaces to a compiler for transforming the aforementioned other concepts from their representations in Chapel source code to their run-time implementations.
The Prediction of Microstructure Evolution of 6005A Aluminum Alloy in a P-ECAP Extrusion Study
NASA Astrophysics Data System (ADS)
Lei, Shi; Jiu-Ba, Wen; Chang, Ren
2018-05-01
Finite element modeling (FEM) was applied for predicting the recrystallized structure in extruded 6005 aluminum alloy, and simulated results were experimentally validated. First, microstructure evolution of 6005 aluminum alloy during deformation was studied by means of isothermal compression test, where the processing parameters were chosen to reproduce the typical industrial conditions. Second, microstructure evolution was analyzed, and the obtained information was used to fit a dynamic recrystallization model implementing inside the DEFORM-3D FEM code environment. FEM of deformation of 6005 aluminum has been established and validated by microstructure comparison. Finally, the obtained dynamic recrystallization model was applied to tube extrusion by using a portholes-equal channel angular pressing die. The finite element analysis results showed that coarse DRX grains occur in the extruded tube at higher temperature and in the extruded tube at the faster speed of the stem. The test results showed material from the front end of the extruded tube has coarse grains (60 μm) and other extruded tube has finer grains (20 μm).
The Prediction of Microstructure Evolution of 6005A Aluminum Alloy in a P-ECAP Extrusion Study
NASA Astrophysics Data System (ADS)
Lei, Shi; Jiu-Ba, Wen; Chang, Ren
2018-04-01
Finite element modeling (FEM) was applied for predicting the recrystallized structure in extruded 6005 aluminum alloy, and simulated results were experimentally validated. First, microstructure evolution of 6005 aluminum alloy during deformation was studied by means of isothermal compression test, where the processing parameters were chosen to reproduce the typical industrial conditions. Second, microstructure evolution was analyzed, and the obtained information was used to fit a dynamic recrystallization model implementing inside the DEFORM-3D FEM code environment. FEM of deformation of 6005 aluminum has been established and validated by microstructure comparison. Finally, the obtained dynamic recrystallization model was applied to tube extrusion by using a portholes-equal channel angular pressing die. The finite element analysis results showed that coarse DRX grains occur in the extruded tube at higher temperature and in the extruded tube at the faster speed of the stem. The test results showed material from the front end of the extruded tube has coarse grains (60 μm) and other extruded tube has finer grains (20 μm).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Egeland, R.; Huang, C. H.; Rossman, P.
PhEDEx is the data-transfer management solution written by CMS. It consists of agents running at each site, a website for presentation of information, and a web-based data-service for scripted access to information. The website allows users to monitor the progress of data-transfers, the status of site agents and links between sites, and the overall status and behaviour of everything about PhEDEx. It also allows users to make and approve requests for data-transfers and for deletion of data. It is the main point-of-entry for all users wishing to interact with PhEDEx. For several years, the website has consisted of a singlemore » perl program with about 10K SLOC. This program has limited capabilities for exploring the data, with only coarse filtering capabilities and no context-sensitive awareness. Graphical information is presented as static images, generated on the server, with no interactivity. It is also not well connected to the rest of the PhEDEx codebase, since much of it was written before the data-service was developed. All this makes it hard to maintain and extend. We are re-implementing the website to address these issues. The UI is being rewritten in Javascript, replacing most of the server-side code. We are using the YUI toolkit to provide advanced features and context-sensitive interaction, and will adopt a Javascript charting library for generating graphical representations client-side. This relieves the server of much of its load, and automatically improves server-side security. The Javascript components can be re-used in many ways, allowing custom pages to be developed for specific uses. In particular, standalone test-cases using small numbers of components make it easier to debug the Javascript than it is to debug a large server program. Information about PhEDEx is accessed through the PhEDEx data-service, since direct SQL is not available from the clients browser. This provides consistent semantics with other, externally written monitoring tools, which already use the data-service. It also reduces redundancy in the code, yielding a simpler, consolidated codebase. In this talk we describe our experience of re-factoring this monolithic server-side program into a lighter client-side framework. We describe some of the techniques that worked well for us, and some of the mistakes we made along the way. We present the current state of the project, and its future direction.« less
Avogadro: an advanced semantic chemical editor, visualization, and analysis platform
2012-01-01
Background The Avogadro project has developed an advanced molecule editor and visualizer designed for cross-platform use in computational chemistry, molecular modeling, bioinformatics, materials science, and related areas. It offers flexible, high quality rendering, and a powerful plugin architecture. Typical uses include building molecular structures, formatting input files, and analyzing output of a wide variety of computational chemistry packages. By using the CML file format as its native document type, Avogadro seeks to enhance the semantic accessibility of chemical data types. Results The work presented here details the Avogadro library, which is a framework providing a code library and application programming interface (API) with three-dimensional visualization capabilities; and has direct applications to research and education in the fields of chemistry, physics, materials science, and biology. The Avogadro application provides a rich graphical interface using dynamically loaded plugins through the library itself. The application and library can each be extended by implementing a plugin module in C++ or Python to explore different visualization techniques, build/manipulate molecular structures, and interact with other programs. We describe some example extensions, one which uses a genetic algorithm to find stable crystal structures, and one which interfaces with the PackMol program to create packed, solvated structures for molecular dynamics simulations. The 1.0 release series of Avogadro is the main focus of the results discussed here. Conclusions Avogadro offers a semantic chemical builder and platform for visualization and analysis. For users, it offers an easy-to-use builder, integrated support for downloading from common databases such as PubChem and the Protein Data Bank, extracting chemical data from a wide variety of formats, including computational chemistry output, and native, semantic support for the CML file format. For developers, it can be easily extended via a powerful plugin mechanism to support new features in organic chemistry, inorganic complexes, drug design, materials, biomolecules, and simulations. Avogadro is freely available under an open-source license from http://avogadro.openmolecules.net. PMID:22889332
Avogadro: an advanced semantic chemical editor, visualization, and analysis platform.
Hanwell, Marcus D; Curtis, Donald E; Lonie, David C; Vandermeersch, Tim; Zurek, Eva; Hutchison, Geoffrey R
2012-08-13
The Avogadro project has developed an advanced molecule editor and visualizer designed for cross-platform use in computational chemistry, molecular modeling, bioinformatics, materials science, and related areas. It offers flexible, high quality rendering, and a powerful plugin architecture. Typical uses include building molecular structures, formatting input files, and analyzing output of a wide variety of computational chemistry packages. By using the CML file format as its native document type, Avogadro seeks to enhance the semantic accessibility of chemical data types. The work presented here details the Avogadro library, which is a framework providing a code library and application programming interface (API) with three-dimensional visualization capabilities; and has direct applications to research and education in the fields of chemistry, physics, materials science, and biology. The Avogadro application provides a rich graphical interface using dynamically loaded plugins through the library itself. The application and library can each be extended by implementing a plugin module in C++ or Python to explore different visualization techniques, build/manipulate molecular structures, and interact with other programs. We describe some example extensions, one which uses a genetic algorithm to find stable crystal structures, and one which interfaces with the PackMol program to create packed, solvated structures for molecular dynamics simulations. The 1.0 release series of Avogadro is the main focus of the results discussed here. Avogadro offers a semantic chemical builder and platform for visualization and analysis. For users, it offers an easy-to-use builder, integrated support for downloading from common databases such as PubChem and the Protein Data Bank, extracting chemical data from a wide variety of formats, including computational chemistry output, and native, semantic support for the CML file format. For developers, it can be easily extended via a powerful plugin mechanism to support new features in organic chemistry, inorganic complexes, drug design, materials, biomolecules, and simulations. Avogadro is freely available under an open-source license from http://avogadro.openmolecules.net.
Sajjad, Muhammad; Mehmood, Irfan; Baik, Sung Wook
2017-01-01
Medical image collections contain a wealth of information which can assist radiologists and medical experts in diagnosis and disease detection for making well-informed decisions. However, this objective can only be realized if efficient access is provided to semantically relevant cases from the ever-growing medical image repositories. In this paper, we present an efficient method for representing medical images by incorporating visual saliency and deep features obtained from a fine-tuned convolutional neural network (CNN) pre-trained on natural images. Saliency detector is employed to automatically identify regions of interest like tumors, fractures, and calcified spots in images prior to feature extraction. Neuronal activation features termed as neural codes from different CNN layers are comprehensively studied to identify most appropriate features for representing radiographs. This study revealed that neural codes from the last fully connected layer of the fine-tuned CNN are found to be the most suitable for representing medical images. The neural codes extracted from the entire image and salient part of the image are fused to obtain the saliency-injected neural codes (SiNC) descriptor which is used for indexing and retrieval. Finally, locality sensitive hashing techniques are applied on the SiNC descriptor to acquire short binary codes for allowing efficient retrieval in large scale image collections. Comprehensive experimental evaluations on the radiology images dataset reveal that the proposed framework achieves high retrieval accuracy and efficiency for scalable image retrieval applications and compares favorably with existing approaches. PMID:28771497
Narayanan, Ajit; Chen, Yi; Pang, Shaoning; Tao, Ban
2013-01-01
The continuous growth of malware presents a problem for internet computing due to increasingly sophisticated techniques for disguising malicious code through mutation and the time required to identify signatures for use by antiviral software systems (AVS). Malware modelling has focused primarily on semantics due to the intended actions and behaviours of viral and worm code. The aim of this paper is to evaluate a static structure approach to malware modelling using the growing malware signature databases now available. We show that, if malware signatures are represented as artificial protein sequences, it is possible to apply standard sequence alignment techniques in bioinformatics to improve accuracy of distinguishing between worm and virus signatures. Moreover, aligned signature sequences can be mined through traditional data mining techniques to extract metasignatures that help to distinguish between viral and worm signatures. All bioinformatics and data mining analysis were performed on publicly available tools and Weka.
The Effects of Different Representations on Static Structure Analysis of Computer Malware Signatures
Narayanan, Ajit; Chen, Yi; Pang, Shaoning; Tao, Ban
2013-01-01
The continuous growth of malware presents a problem for internet computing due to increasingly sophisticated techniques for disguising malicious code through mutation and the time required to identify signatures for use by antiviral software systems (AVS). Malware modelling has focused primarily on semantics due to the intended actions and behaviours of viral and worm code. The aim of this paper is to evaluate a static structure approach to malware modelling using the growing malware signature databases now available. We show that, if malware signatures are represented as artificial protein sequences, it is possible to apply standard sequence alignment techniques in bioinformatics to improve accuracy of distinguishing between worm and virus signatures. Moreover, aligned signature sequences can be mined through traditional data mining techniques to extract metasignatures that help to distinguish between viral and worm signatures. All bioinformatics and data mining analysis were performed on publicly available tools and Weka. PMID:23983644
Love, Bradley C; Gureckis, Todd M
2007-06-01
Mental localization efforts tend to stress the where more than the what. We argue that the proper targets for localization are well-specified cognitive models. We make this case by relating an existing cognitive model of category learning to a learning circuit involving the hippocampus, perirhinal, and prefrontal cortices. Results from groups varying in function along this circuit (e.g., infants, amnesics, and older adults) are successfully simulated by reducing the model's ability to form new clusters in response to surprising events, such as an error in supervised learning or an unfamiliar stimulus in unsupervised learning. Clusters in the model are akin to conjunctive codes that are rooted in an episodic experience (the surprising event) yet can develop to resemble abstract codes as they are updated by subsequent experiences. Thus, the model holds that the line separating episodic and semantic information can become blurred. Dissociations (categorization vs. recognition) are explained in terms of cluster recruitment demands.
Which it is it? The acquisition of referential and expletive it.
Kirby, Susannah; Becker, Misha
2007-08-01
The purpose of this study was to determine the natural order of acquisition of the proform it, comparing deictic pronoun it, anaphoric pronoun it and expletive it. Files from four children (Adam, Eve, Nina and Peter) aged 1;6-3;0 in the CHILDES database were coded for occurrences of NP it (here it is) and expletive it (it's raining). Occurrences of NP it were coded for whether they followed an overt discourse anaphor (anaphoric it) or not (deictic it). All children examined produce deictic and anaphoric pronoun it from the very first files, but do not produce expletive it until 2-7 months later. Following Inoue's (1991) lexical-semantic reanalysis account of the acquisition of expletive there after locative there, we propose that children acquire expletive it by reanalyzing referential pronoun it to include an expletive subtype. This reanalysis takes place when children realize that expletive it never co-occurs with any deictic/anaphoric referent.
Locally adaptive vector quantization: Data compression with feature preservation
NASA Technical Reports Server (NTRS)
Cheung, K. M.; Sayano, M.
1992-01-01
A study of a locally adaptive vector quantization (LAVQ) algorithm for data compression is presented. This algorithm provides high-speed one-pass compression and is fully adaptable to any data source and does not require a priori knowledge of the source statistics. Therefore, LAVQ is a universal data compression algorithm. The basic algorithm and several modifications to improve performance are discussed. These modifications are nonlinear quantization, coarse quantization of the codebook, and lossless compression of the output. Performance of LAVQ on various images using irreversible (lossy) coding is comparable to that of the Linde-Buzo-Gray algorithm, but LAVQ has a much higher speed; thus this algorithm has potential for real-time video compression. Unlike most other image compression algorithms, LAVQ preserves fine detail in images. LAVQ's performance as a lossless data compression algorithm is comparable to that of Lempel-Ziv-based algorithms, but LAVQ uses far less memory during the coding process.
NASA Astrophysics Data System (ADS)
Bertoni, Duccio; Sarti, Giovanni; Benelli, Giuliano; Pozzebon, Alessandro; Raguseo, Gianluca
2010-07-01
In this paper, Radio Frequency Identification technology has been applied to track both underwater and subaerial displacement of pebbles along an artificial coarse beach at Marina di Pisa, Italy. Several preliminary laboratory tests have been performed to adapt the RFID technique for underwater use, which has been the primary impediment to this promising approach to the study of coarse sediment transport and movement. Tests showed the reliability of low frequencies for this kind of work, since they enable good signal transmission and reception through water. Passive ABS plastic transponders were inserted into about 100 pebbles and released onto the beach in March, 2009. A CORE-125 reader was chosen as the operating antenna to continuously transmit low frequency (125 kHz) signals. An acoustic signal toned whenever a pebble was detected while the unambiguous identification code of the pebble is shown immediately on the screen of a laptop connected to the reader. The positions of the pebbles were recorded with a total station. After two months (May, 2009), 74 marked pebbles were retrieved, 77% of the total. The positions of the retrieved pebbles were also recorded with the total station, thus allowing calculation of the coarse sediment transport tendency. About 60% of the recovered pebbles (44 out of 74) were found on the upper shoreface. The analysis of the marked pebble trajectories revealed a divergent transport movement in the northernmost sector of the beach. This movement was probably triggered by an irregularity of the submerged breakwater fronting the shoreline. The southern sector is characterised by chaotic pathways related to the formation and evolution of beach cusps. This outcome highlights and confirms the importance of a complete definition of the beach system, with no separation between the underwater and the subaerial portion of the shore when it comes to sediment transport and movement. This successful application of RFID technology to the underwater environment provides a chance to broaden understanding of a topic in need of further study.
Semantic Interoperability for Computational Mineralogy: Experiences of the eMinerals Consortium
NASA Astrophysics Data System (ADS)
Walker, A. M.; White, T. O.; Dove, M. T.; Bruin, R. P.; Couch, P. A.; Tyer, R. P.
2006-12-01
The use of atomic scale computer simulation of minerals to obtain information for geophysics and environmental science has grown enormously over the past couple of decades. It is now routine to probe mineral behavior in the Earth's deep interior and in the surface environment by borrowing methods and simulation codes from computational chemistry and physics. It is becoming increasingly important to use methods embodied in more than one of these codes to solve any single scientific problem. However, scientific codes are rarely designed for easy interoperability and data exchange; data formats are often code-specific, poorly documented and fragile, liable to frequent change between software versions, and even compiler versions. This means that the scientist's simple desire to use the methodological approaches offered by multiple codes is frustrated, and even the sharing of data between collaborators becomes fraught with difficulties. The eMinerals consortium was formed in the early stages of the UK eScience program with the aim of developing the tools needed to apply atomic scale simulation to environmental problems in a grid-enabled world, and to harness the computational power offered by grid technologies to address some outstanding mineralogical problems. One example of the kind of problem we can tackle is the origin of the compressibility anomaly in silica glass. By passing data directly between simulation and analysis tools we were able to probe this effect in more detail than has previously been possible and have shown how the anomaly is related to the details of the amorphous structure. In order to approach this kind of problem we have constructed a mini-grid, a small scale and extensible combined compute- and data-grid that allows the execution of many calculations in parallel, and the transparent storage of semantically-rich marked-up result data. Importantly, we automatically capture multiple kinds of metadata and key results from each calculation. We believe that the lessons learned and tools developed will be useful in many areas of science beyond the computational mineralogy. Key tools that will be described include: a pure Fortran XML library (FoX) that presents XPath, SAX and DOM interfaces as well as permitting the easy production of valid XML from legacy Fortran programs; a job submission framework that automatically schedules calculations to remote grid resources, handles data staging and metadata capture; and a tool (AgentX) that map concepts from an ontology onto locations in documents of various formats that we use to enable data exchange.
A Joint Investigation of Semantic Facilitation and Semantic Interference in Continuous Naming
ERIC Educational Resources Information Center
Scaltritti, Michele; Peressotti, Francesca; Navarrete, Eduardo
2017-01-01
When speakers name multiple semantically related items, opposing effects can be found. Semantic facilitation is found when naming 2 semantically related items in a row. In contrast, semantic interference is found when speakers name semantically related items separated by 1 or more intervening unrelated items. This latter form of interference is…
The "Wow! signal" of the terrestrial genetic code
NASA Astrophysics Data System (ADS)
shCherbak, Vladimir I.; Makukov, Maxim A.
2013-05-01
It has been repeatedly proposed to expand the scope for SETI, and one of the suggested alternatives to radio is the biological media. Genomic DNA is already used on Earth to store non-biological information. Though smaller in capacity, but stronger in noise immunity is the genetic code. The code is a flexible mapping between codons and amino acids, and this flexibility allows modifying the code artificially. But once fixed, the code might stay unchanged over cosmological timescales; in fact, it is the most durable construct known. Therefore it represents an exceptionally reliable storage for an intelligent signature, if that conforms to biological and thermodynamic requirements. As the actual scenario for the origin of terrestrial life is far from being settled, the proposal that it might have been seeded intentionally cannot be ruled out. A statistically strong intelligent-like "signal" in the genetic code is then a testable consequence of such scenario. Here we show that the terrestrial code displays a thorough precision-type orderliness matching the criteria to be considered an informational signal. Simple arrangements of the code reveal an ensemble of arithmetical and ideographical patterns of the same symbolic language. Accurate and systematic, these underlying patterns appear as a product of precision logic and nontrivial computing rather than of stochastic processes (the null hypothesis that they are due to chance coupled with presumable evolutionary pathways is rejected with P-value < 10-13). The patterns are profound to the extent that the code mapping itself is uniquely deduced from their algebraic representation. The signal displays readily recognizable hallmarks of artificiality, among which are the symbol of zero, the privileged decimal syntax and semantical symmetries. Besides, extraction of the signal involves logically straightforward but abstract operations, making the patterns essentially irreducible to any natural origin. Plausible ways of embedding the signal into the code and possible interpretation of its content are discussed. Overall, while the code is nearly optimized biologically, its limited capacity is used extremely efficiently to pass non-biological information.
Neural Networks for the Classification of Building Use from Street-View Imagery
NASA Astrophysics Data System (ADS)
Laupheimer, D.; Tutzauer, P.; Haala, N.; Spicker, M.
2018-05-01
Within this paper we propose an end-to-end approach for classifying terrestrial images of building facades into five different utility classes (commercial, hybrid, residential, specialUse, underConstruction) by using Convolutional Neural Networks (CNNs). For our examples we use images provided by Google Street View. These images are automatically linked to a coarse city model, including the outlines of the buildings as well as their respective use classes. By these means an extensive dataset is available for training and evaluation of our Deep Learning pipeline. The paper describes the implemented end-to-end approach for classifying street-level images of building facades and discusses our experiments with various CNNs. In addition to the classification results, so-called Class Activation Maps (CAMs) are evaluated. These maps give further insights into decisive facade parts that are learned as features during the training process. Furthermore, they can be used for the generation of abstract presentations which facilitate the comprehension of semantic image content. The abstract representations are a result of the stippling method, an importance-based image rendering.
Adams, Sarah C.; Kiefer, Markus
2012-01-01
Recent studies challenged the classical notion of automaticity and indicated that even unconscious automatic semantic processing is under attentional control to some extent. In line with our attentional sensitization model, these data suggest that a sensitization of semantic pathways by a semantic task set is necessary for subliminal semantic priming to occur while non-semantic task sets attenuate priming. In the present study, we tested whether masked semantic priming is also reduced by phonological task sets using the previously developed induction task paradigm. This would substantiate the notion that attention to semantics is necessary for eliciting unconscious semantic priming. Participants first performed semantic and phonological induction tasks that should either activate a semantic or a phonological task set. Subsequent to the induction task, a masked prime word, either associated or non-associated with the following lexical decision target word, was presented. Across two experiments, we varied the nature of the phonological induction task (word phonology vs. letter phonology) to assess whether the attentional focus on the entire word vs. single letters modulates subsequent masked semantic priming. In both experiments, subliminal semantic priming was only found subsequent to the semantic induction task, but was attenuated following either phonological induction task. These results indicate that attention to phonology attenuates subsequent semantic processing of unconsciously presented primes whether or not attention is directed to the entire word or to single letters. The present findings therefore substantiate earlier evidence that an attentional orientation toward semantics is necessary for subliminal semantic priming to be elicited. PMID:22952461
Scalability and Portability of Two Parallel Implementations of ADI
NASA Technical Reports Server (NTRS)
Phung, Thanh; VanderWijngaart, Rob F.
1994-01-01
Two domain decompositions for the implementation of the NAS Scalar Penta-diagonal Parallel Benchmark on MIMD systems are investigated, namely transposition and multi-partitioning. Hardware platforms considered are the Intel iPSC/860 and Paragon XP/S-15, and clusters of SGI workstations on ethernet, communicating through PVM. It is found that the multi-partitioning strategy offers the kind of coarse granularity that allows scaling up to hundreds of processors on a massively parallel machine. Moreover, efficiency is retained when the code is ported verbatim (save message passing syntax) to a PVM environment on a modest size cluster of workstations.
Recent developments in multidimensional transport methods for the APOLLO 2 lattice code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zmijarevic, I.; Sanchez, R.
1995-12-31
A usual method of preparation of homogenized cross sections for reactor coarse-mesh calculations is based on two-dimensional multigroup transport treatment of an assembly together with an appropriate leakage model and reaction-rate-preserving homogenization technique. The actual generation of assembly spectrum codes based on collision probability methods is capable of treating complex geometries (i.e., irregular meshes of arbitrary shape), thus avoiding the modeling error that was introduced in codes with traditional tracking routines. The power and architecture of current computers allow the treatment of spatial domains comprising several mutually interacting assemblies using fine multigroup structure and retaining all geometric details of interest.more » Increasing safety requirements demand detailed two- and three-dimensional calculations for very heterogeneous problems such as control rod positioning, broken Pyrex rods, irregular compacting of mixed- oxide (MOX) pellets at an MOX-UO{sub 2} interface, and many others. An effort has been made to include accurate multi- dimensional transport methods in the APOLLO 2 lattice code. These include extension to three-dimensional axially symmetric geometries of the general-geometry collision probability module TDT and the development of new two- and three-dimensional characteristics methods for regular Cartesian meshes. In this paper we discuss the main features of recently developed multidimensional methods that are currently being tested.« less
Chen, Liang-Chieh; Papandreou, George; Kokkinos, Iasonas; Murphy, Kevin; Yuille, Alan L
2018-04-01
In this work we address the task of semantic image segmentation with Deep Learning and make three main contributions that are experimentally shown to have substantial practical merit. First, we highlight convolution with upsampled filters, or 'atrous convolution', as a powerful tool in dense prediction tasks. Atrous convolution allows us to explicitly control the resolution at which feature responses are computed within Deep Convolutional Neural Networks. It also allows us to effectively enlarge the field of view of filters to incorporate larger context without increasing the number of parameters or the amount of computation. Second, we propose atrous spatial pyramid pooling (ASPP) to robustly segment objects at multiple scales. ASPP probes an incoming convolutional feature layer with filters at multiple sampling rates and effective fields-of-views, thus capturing objects as well as image context at multiple scales. Third, we improve the localization of object boundaries by combining methods from DCNNs and probabilistic graphical models. The commonly deployed combination of max-pooling and downsampling in DCNNs achieves invariance but has a toll on localization accuracy. We overcome this by combining the responses at the final DCNN layer with a fully connected Conditional Random Field (CRF), which is shown both qualitatively and quantitatively to improve localization performance. Our proposed "DeepLab" system sets the new state-of-art at the PASCAL VOC-2012 semantic image segmentation task, reaching 79.7 percent mIOU in the test set, and advances the results on three other datasets: PASCAL-Context, PASCAL-Person-Part, and Cityscapes. All of our code is made publicly available online.
Lohmann, Johannes; Schroeder, Philipp A; Nuerk, Hans-Christoph; Plewnia, Christian; Butz, Martin V
2018-01-01
Spatial, physical, and semantic magnitude dimensions can influence action decisions in human cognitive processing and interact with each other. For example, in the spatial-numerical associations of response code (SNARC) effect, semantic numerical magnitude facilitates left-hand or right-hand responding dependent on the small or large magnitude of number symbols. SNARC-like interactions of numerical magnitudes with the radial spatial dimension (depth) were postulated from early on. Usually, the SNARC effect in any direction is investigated using fronto-parallel computer monitors for presentation of stimuli. In such 2D setups, however, the metaphorical and literal interpretation of the radial depth axis with seemingly close/far stimuli or responses are not distinct. Hence, it is difficult to draw clear conclusions with respect to the contribution of different spatial mappings to the SNARC effect. In order to disentangle the different mappings in a natural way, we studied parametrical interactions between semantic numerical magnitude, horizontal directional responses, and perceptual distance by means of stereoscopic depth in an immersive virtual reality (VR). Two VR experiments show horizontal SNARC effects across all spatial displacements in traditional latency measures and kinematic response parameters. No indications of a SNARC effect along the depth axis, as it would be predicted by a direct mapping account, were observed, but the results show a non-linear relationship between horizontal SNARC slopes and physical distance. Steepest SNARC slopes were observed for digits presented close to the hands. We conclude that spatial-numerical processing is susceptible to effector-based processes but relatively resilient to task-irrelevant variations of radial-spatial magnitudes.
Simultenious binary hash and features learning for image retrieval
NASA Astrophysics Data System (ADS)
Frantc, V. A.; Makov, S. V.; Voronin, V. V.; Marchuk, V. I.; Semenishchev, E. A.; Egiazarian, K. O.; Agaian, S.
2016-05-01
Content-based image retrieval systems have plenty of applications in modern world. The most important one is the image search by query image or by semantic description. Approaches to this problem are employed in personal photo-collection management systems, web-scale image search engines, medical systems, etc. Automatic analysis of large unlabeled image datasets is virtually impossible without satisfactory image-retrieval technique. It's the main reason why this kind of automatic image processing has attracted so much attention during recent years. Despite rather huge progress in the field, semantically meaningful image retrieval still remains a challenging task. The main issue here is the demand to provide reliable results in short amount of time. This paper addresses the problem by novel technique for simultaneous learning of global image features and binary hash codes. Our approach provide mapping of pixel-based image representation to hash-value space simultaneously trying to save as much of semantic image content as possible. We use deep learning methodology to generate image description with properties of similarity preservation and statistical independence. The main advantage of our approach in contrast to existing is ability to fine-tune retrieval procedure for very specific application which allow us to provide better results in comparison to general techniques. Presented in the paper framework for data- dependent image hashing is based on use two different kinds of neural networks: convolutional neural networks for image description and autoencoder for feature to hash space mapping. Experimental results confirmed that our approach has shown promising results in compare to other state-of-the-art methods.
The Layer-Oriented Approach to Declarative Languages for Biological Modeling
Raikov, Ivan; De Schutter, Erik
2012-01-01
We present a new approach to modeling languages for computational biology, which we call the layer-oriented approach. The approach stems from the observation that many diverse biological phenomena are described using a small set of mathematical formalisms (e.g. differential equations), while at the same time different domains and subdomains of computational biology require that models are structured according to the accepted terminology and classification of that domain. Our approach uses distinct semantic layers to represent the domain-specific biological concepts and the underlying mathematical formalisms. Additional functionality can be transparently added to the language by adding more layers. This approach is specifically concerned with declarative languages, and throughout the paper we note some of the limitations inherent to declarative approaches. The layer-oriented approach is a way to specify explicitly how high-level biological modeling concepts are mapped to a computational representation, while abstracting away details of particular programming languages and simulation environments. To illustrate this process, we define an example language for describing models of ionic currents, and use a general mathematical notation for semantic transformations to show how to generate model simulation code for various simulation environments. We use the example language to describe a Purkinje neuron model and demonstrate how the layer-oriented approach can be used for solving several practical issues of computational neuroscience model development. We discuss the advantages and limitations of the approach in comparison with other modeling language efforts in the domain of computational biology and outline some principles for extensible, flexible modeling language design. We conclude by describing in detail the semantic transformations defined for our language. PMID:22615554
The layer-oriented approach to declarative languages for biological modeling.
Raikov, Ivan; De Schutter, Erik
2012-01-01
We present a new approach to modeling languages for computational biology, which we call the layer-oriented approach. The approach stems from the observation that many diverse biological phenomena are described using a small set of mathematical formalisms (e.g. differential equations), while at the same time different domains and subdomains of computational biology require that models are structured according to the accepted terminology and classification of that domain. Our approach uses distinct semantic layers to represent the domain-specific biological concepts and the underlying mathematical formalisms. Additional functionality can be transparently added to the language by adding more layers. This approach is specifically concerned with declarative languages, and throughout the paper we note some of the limitations inherent to declarative approaches. The layer-oriented approach is a way to specify explicitly how high-level biological modeling concepts are mapped to a computational representation, while abstracting away details of particular programming languages and simulation environments. To illustrate this process, we define an example language for describing models of ionic currents, and use a general mathematical notation for semantic transformations to show how to generate model simulation code for various simulation environments. We use the example language to describe a Purkinje neuron model and demonstrate how the layer-oriented approach can be used for solving several practical issues of computational neuroscience model development. We discuss the advantages and limitations of the approach in comparison with other modeling language efforts in the domain of computational biology and outline some principles for extensible, flexible modeling language design. We conclude by describing in detail the semantic transformations defined for our language.
The semantic distance task: Quantifying semantic distance with semantic network path length.
Kenett, Yoed N; Levi, Effi; Anaki, David; Faust, Miriam
2017-09-01
Semantic distance is a determining factor in cognitive processes, such as semantic priming, operating upon semantic memory. The main computational approach to compute semantic distance is through latent semantic analysis (LSA). However, objections have been raised against this approach, mainly in its failure at predicting semantic priming. We propose a novel approach to computing semantic distance, based on network science methodology. Path length in a semantic network represents the amount of steps needed to traverse from 1 word in the network to the other. We examine whether path length can be used as a measure of semantic distance, by investigating how path length affect performance in a semantic relatedness judgment task and recall from memory. Our results show a differential effect on performance: Up to 4 steps separating between word-pairs, participants exhibit an increase in reaction time (RT) and decrease in the percentage of word-pairs judged as related. From 4 steps onward, participants exhibit a significant decrease in RT and the word-pairs are dominantly judged as unrelated. Furthermore, we show that as path length between word-pairs increases, success in free- and cued-recall decreases. Finally, we demonstrate how our measure outperforms computational methods measuring semantic distance (LSA and positive pointwise mutual information) in predicting participants RT and subjective judgments of semantic strength. Thus, we provide a computational alternative to computing semantic distance. Furthermore, this approach addresses key issues in cognitive theory, namely the breadth of the spreading activation process and the effect of semantic distance on memory retrieval. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Wiese, Holger; Schweinberger, Stefan R
2015-01-01
The present study examined whether semantic memory for newly learned people is structured by visual co-occurrence, shared semantics, or both. Participants were trained with pairs of simultaneously presented (i.e., co-occurring) preexperimentally unfamiliar faces, which either did or did not share additionally provided semantic information (occupation, place of living, etc.). Semantic information could also be shared between faces that did not co-occur. A subsequent priming experiment revealed faster responses for both co-occurrence/no shared semantics and no co-occurrence/shared semantics conditions, than for an unrelated condition. Strikingly, priming was strongest in the co-occurrence/shared semantics condition, suggesting additive effects of these factors. Additional analysis of event-related brain potentials yielded priming in the N400 component only for combined effects of visual co-occurrence and shared semantics, with more positive amplitudes in this than in the unrelated condition. Overall, these findings suggest that both semantic relatedness and visual co-occurrence are important when novel information is integrated into person-related semantic memory.
Kovalenko, Lyudmyla Y; Chaumon, Maximilien; Busch, Niko A
2012-07-01
Semantic processing of verbal and visual stimuli has been investigated in semantic violation or semantic priming paradigms in which a stimulus is either related or unrelated to a previously established semantic context. A hallmark of semantic priming is the N400 event-related potential (ERP)--a deflection of the ERP that is more negative for semantically unrelated target stimuli. The majority of studies investigating the N400 and semantic integration have used verbal material (words or sentences), and standardized stimulus sets with norms for semantic relatedness have been published for verbal but not for visual material. However, semantic processing of visual objects (as opposed to words) is an important issue in research on visual cognition. In this study, we present a set of 800 pairs of semantically related and unrelated visual objects. The images were rated for semantic relatedness by a sample of 132 participants. Furthermore, we analyzed low-level image properties and matched the two semantic categories according to these features. An ERP study confirmed the suitability of this image set for evoking a robust N400 effect of semantic integration. Additionally, using a general linear modeling approach of single-trial data, we also demonstrate that low-level visual image properties and semantic relatedness are in fact only minimally overlapping. The image set is available for download from the authors' website. We expect that the image set will facilitate studies investigating mechanisms of semantic and contextual processing of visual stimuli.
The Role of Simple Semantics in the Process of Artificial Grammar Learning.
Öttl, Birgit; Jäger, Gerhard; Kaup, Barbara
2017-10-01
This study investigated the effect of semantic information on artificial grammar learning (AGL). Recursive grammars of different complexity levels (regular language, mirror language, copy language) were investigated in a series of AGL experiments. In the with-semantics condition, participants acquired semantic information prior to the AGL experiment; in the without-semantics control condition, participants did not receive semantic information. It was hypothesized that semantics would generally facilitate grammar acquisition and that the learning benefit in the with-semantics conditions would increase with increasing grammar complexity. Experiment 1 showed learning effects for all grammars but no performance difference between conditions. Experiment 2 replicated the absence of a semantic benefit for all grammars even though semantic information was more prominent during grammar acquisition as compared to Experiment 1. Thus, we did not find evidence for the idea that semantics facilitates grammar acquisition, which seems to support the view of an independent syntactic processing component.
Lexical-semantic processing in the semantic priming paradigm in aphasic patients.
Salles, Jerusa Fumagalli de; Holderbaum, Candice Steffen; Parente, Maria Alice Mattos Pimenta; Mansur, Letícia Lessa; Ansaldo, Ana Inès
2012-09-01
There is evidence that the explicit lexical-semantic processing deficits which characterize aphasia may be observed in the absence of implicit semantic impairment. The aim of this article was to critically review the international literature on lexical-semantic processing in aphasia, as tested through the semantic priming paradigm. Specifically, this review focused on aphasia and lexical-semantic processing, the methodological strengths and weaknesses of the semantic paradigms used, and recent evidence from neuroimaging studies on lexical-semantic processing. Furthermore, evidence on dissociations between implicit and explicit lexical-semantic processing reported in the literature will be discussed and interpreted by referring to functional neuroimaging evidence from healthy populations. There is evidence that semantic priming effects can be found both in fluent and in non-fluent aphasias, and that these effects are related to an extensive network which includes the temporal lobe, the pre-frontal cortex, the left frontal gyrus, the left temporal gyrus and the cingulated cortex.
Semantic Networks and Social Networks
ERIC Educational Resources Information Center
Downes, Stephen
2005-01-01
Purpose: To illustrate the need for social network metadata within semantic metadata. Design/methodology/approach: Surveys properties of social networks and the semantic web, suggests that social network analysis applies to semantic content, argues that semantic content is more searchable if social network metadata is merged with semantic web…
Hoffman, Paul
2018-05-25
Semantic cognition refers to the appropriate use of acquired knowledge about the world. This requires representation of knowledge as well as control processes which ensure that currently-relevant aspects of knowledge are retrieved and selected. Although these abilities can be impaired selectively following brain damage, the relationship between them in healthy individuals is unclear. It is also commonly assumed that semantic cognition is preserved in later life, because older people have greater reserves of knowledge. However, this claim overlooks the possibility of decline in semantic control processes. Here, semantic cognition was assessed in 100 young and older adults. Despite having a broader knowledge base, older people showed specific impairments in semantic control, performing more poorly than young people when selecting among competing semantic representations. Conversely, they showed preserved controlled retrieval of less salient information from the semantic store. Breadth of semantic knowledge was positively correlated with controlled retrieval but was unrelated to semantic selection ability, which was instead correlated with non-semantic executive function. These findings indicate that three distinct elements contribute to semantic cognition: semantic representations that accumulate throughout the lifespan, processes for controlled retrieval of less salient semantic information, which appear age-invariant, and mechanisms for selecting task-relevant aspects of semantic knowledge, which decline with age and may relate more closely to domain-general executive control.
Semantics, Pragmatics, and the Nature of Semantic Theories
ERIC Educational Resources Information Center
Spewak, David Charles, Jr.
2013-01-01
The primary concern of this dissertation is determining the distinction between semantics and pragmatics and how context sensitivity should be accommodated within a semantic theory. I approach the question over how to distinguish semantics from pragmatics from a new angle by investigating what the objects of a semantic theory are, namely…
Long, Nicole M.; Kahana, Michael J.
2016-01-01
Although episodic and semantic memory share overlapping neural mechanisms, it remains unclear how our pre-existing semantic associations modulate the formation of new, episodic associations. When freely recalling recently studied words, people rely on both episodic and semantic associations, shown through temporal and semantic clustering of responses. We asked whether orienting participants toward semantic associations interferes with or facilitates the formation of episodic associations. We compared electroencephalographic (EEG) activity recorded during the encoding of subsequently recalled words that were either temporally or semantically clustered. Participants studied words with or without a concurrent semantic orienting task. We identified a neural signature of successful episodic association formation whereby high frequency EEG activity (HFA, 44 – 100 Hz) overlying left prefrontal regions increased for subsequently temporally clustered words, but only for those words studied without a concurrent semantic orienting task. To confirm that this disruption in the formation of episodic associations was driven by increased semantic processing, we measured the neural correlates of subsequent semantic clustering. We found that HFA increased for subsequently semantically clustered words only for lists with a concurrent semantic orienting task. This dissociation suggests that increased semantic processing of studied items interferes with the neural processes that support the formation of novel episodic associations. PMID:27617775
Long, Nicole M; Kahana, Michael J
2017-02-01
Although episodic and semantic memory share overlapping neural mechanisms, it remains unclear how our pre-existing semantic associations modulate the formation of new, episodic associations. When freely recalling recently studied words, people rely on both episodic and semantic associations, shown through temporal and semantic clustering of responses. We asked whether orienting participants toward semantic associations interferes with or facilitates the formation of episodic associations. We compared electroencephalographic (EEG) activity recorded during the encoding of subsequently recalled words that were either temporally or semantically clustered. Participants studied words with or without a concurrent semantic orienting task. We identified a neural signature of successful episodic association formation whereby high-frequency EEG activity (HFA, 44-100 Hz) overlying left prefrontal regions increased for subsequently temporally clustered words, but only for those words studied without a concurrent semantic orienting task. To confirm that this disruption in the formation of episodic associations was driven by increased semantic processing, we measured the neural correlates of subsequent semantic clustering. We found that HFA increased for subsequently semantically clustered words only for lists with a concurrent semantic orienting task. This dissociation suggests that increased semantic processing of studied items interferes with the neural processes that support the formation of novel episodic associations. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
A European classification of services for long-term care—the EU-project eDESDE-LTC
Weber, Germain; Brehmer, Barbara; Zeilinger, Elisabeth; Salvador-Carulla, Luis
2009-01-01
Purpose and theory The eDESDE-LTC project aims at developing an operational system for coding, mapping and comparing services for long-term care (LTC) across EU. The projects strategy is to improve EU listing and access to relevant sources of healthcare information via development of SEMANTIC INTER-OPERABILITY in eHEALTH (coding and listing of services for LTC); to increase access to relevant sources of information on LTC services, and to improve linkages between national and regional websites; to foster cooperation with international organizations (OECD). Methods This operational system will include a standard classification of main types of care for persons with LTC needs and an instrument for mapping and standard description of services. These instruments are based on previous classification systems for mental health services (ESMS), disabilities services (DESDE) and ageing services (DESDAE). A Delphi panel made by seven partners developed a DESDE-LTC beta version, which was translated into six languages. The feasibility of DESDE-LTC is tested in six countries using national focal groups. Then the final version will be developed by the Delphi panel, a webpage, training material and course will be carried out. Results and conclusions The eDESDE-LTC system will be piloted in two EU countries (Spain and Bulgaria). Evaluation will focus primarily on usability and impact analysis. Discussion The added value of this project is related to the right of “having access to high-quality healthcare when and where it is needed” by EU citizens. Due to semantic variability and service complexity, existing national listings of services do not provide an adequate framework for patient mobility.
NASA Astrophysics Data System (ADS)
Hua, H.; Wilson, B. D.; Manipon, G.; Pan, L.; Fetzer, E.
2011-12-01
Multi-decadal climate data records are critical to studying climate variability and change. These often also require merging data from multiple instruments such as those from NASA's A-Train that contain measurements covering a wide range of atmospheric conditions and phenomena. Multi-decadal climate data record of water vapor measurements from sensors on A-Train, operational weather, and other satellites are being assembled from existing data sources, or produced from well-established methods published in peer-reviewed literature. However, the immense volume and inhomogeneity of data often requires an "exploratory computing" approach to product generation where data is processed in a variety of different ways with varying algorithms, parameters, and code changes until an acceptable intermediate product is generated. This process is repeated until a desirable final merged product can be generated. Typically the production legacy is often lost due to the complexity of processing steps that were tried along the way. The data product information associated with source data, processing methods, parameters used, intermediate product outputs, and associated materials are often hidden in each of the trials and scattered throughout the processing system(s). We will discuss methods to help users better capture and explore the production legacy of the data, metadata, ancillary files, code, and computing environment changes used during the production of these merged and multi-sensor data products. By leveraging existing semantic and provenance tools, we can capture sufficient information to enable users to track, perform faceted searches, and visualize the provenance of the products and processing lineage. We will explore if sufficient provenance information can be captured to enable science reproducibility of these climate data records.
Semantic memory in object use.
Silveri, Maria Caterina; Ciccarelli, Nicoletta
2009-10-01
We studied five patients with semantic memory disorders, four with semantic dementia and one with herpes simplex virus encephalitis, to investigate the involvement of semantic conceptual knowledge in object use. Comparisons between patients who had semantic deficits of different severity, as well as the follow-up, showed that the ability to use objects was largely preserved when the deficit was mild but progressively decayed as the deficit became more severe. Naming was generally more impaired than object use. Production tasks (pantomime execution and actual object use) and comprehension tasks (pantomime recognition and action recognition) as well as functional knowledge about objects were impaired when the semantic deficit was severe. Semantic and unrelated errors were produced during object use, but actions were always fluent and patients performed normally on a novel tools task in which the semantic demand was minimal. Patients with severe semantic deficits scored borderline on ideational apraxia tasks. Our data indicate that functional semantic knowledge is crucial for using objects in a conventional way and suggest that non-semantic factors, mainly non-declarative components of memory, might compensate to some extent for semantic disorders and guarantee some residual ability to use very common objects independently of semantic knowledge.
Lambon Ralph, Matthew A; Ehsan, Sheeba; Baker, Gus A; Rogers, Timothy T
2012-01-01
Contemporary clinical and basic neuroscience studies have increasingly implicated the anterior temporal lobe regions, bilaterally, in the formation of coherent concepts. Mounting convergent evidence for the importance of the anterior temporal lobe in semantic memory is found in patients with bilateral anterior temporal lobe damage (e.g. semantic dementia), functional neuroimaging and repetitive transcranial magnetic stimulation studies. If this proposal is correct, then one might expect patients with anterior temporal lobe resection for long-standing temporal lobe epilepsy to be semantically impaired. Such patients, however, do not present clinically with striking comprehension deficits but with amnesia and variable anomia, leading some to conclude that semantic memory is intact in resection for temporal lobe epilepsy and thus casting doubt over the conclusions drawn from semantic dementia and linked basic neuroscience studies. Whilst there is a considerable neuropsychological literature on temporal lobe epilepsy, few studies have probed semantic memory directly, with mixed results, and none have undertaken the same type of systematic investigation of semantic processing that has been conducted with other patient groups. In this study, therefore, we investigated the semantic performance of 20 patients with resection for chronic temporal lobe epilepsy with a full battery of semantic assessments, including more sensitive measures of semantic processing. The results provide a bridge between the current clinical observations about resection for temporal lobe epilepsy and the expectations from semantic dementia and other neuroscience findings. Specifically, we found that on simple semantic tasks, the patients' accuracy fell in the normal range, with the exception that some patients with left resection for temporal lobe epilepsy had measurable anomia. Once the semantic assessments were made more challenging, by probing specific-level concepts, lower frequency/more abstract items or measuring reaction times on semantic tasks versus those on difficulty-matched non-semantic assessments, evidence of a semantic impairment was found in all individuals. We conclude by describing a unified, computationally inspired framework for capturing the variable degrees of semantic impairment found across different patient groups (semantic dementia, temporal lobe epilepsy, glioma and stroke) as well as semantic processing in neurologically intact participants.
Ehsan, Sheeba; Baker, Gus A.; Rogers, Timothy T.
2012-01-01
Contemporary clinical and basic neuroscience studies have increasingly implicated the anterior temporal lobe regions, bilaterally, in the formation of coherent concepts. Mounting convergent evidence for the importance of the anterior temporal lobe in semantic memory is found in patients with bilateral anterior temporal lobe damage (e.g. semantic dementia), functional neuroimaging and repetitive transcranial magnetic stimulation studies. If this proposal is correct, then one might expect patients with anterior temporal lobe resection for long-standing temporal lobe epilepsy to be semantically impaired. Such patients, however, do not present clinically with striking comprehension deficits but with amnesia and variable anomia, leading some to conclude that semantic memory is intact in resection for temporal lobe epilepsy and thus casting doubt over the conclusions drawn from semantic dementia and linked basic neuroscience studies. Whilst there is a considerable neuropsychological literature on temporal lobe epilepsy, few studies have probed semantic memory directly, with mixed results, and none have undertaken the same type of systematic investigation of semantic processing that has been conducted with other patient groups. In this study, therefore, we investigated the semantic performance of 20 patients with resection for chronic temporal lobe epilepsy with a full battery of semantic assessments, including more sensitive measures of semantic processing. The results provide a bridge between the current clinical observations about resection for temporal lobe epilepsy and the expectations from semantic dementia and other neuroscience findings. Specifically, we found that on simple semantic tasks, the patients’ accuracy fell in the normal range, with the exception that some patients with left resection for temporal lobe epilepsy had measurable anomia. Once the semantic assessments were made more challenging, by probing specific-level concepts, lower frequency/more abstract items or measuring reaction times on semantic tasks versus those on difficulty-matched non-semantic assessments, evidence of a semantic impairment was found in all individuals. We conclude by describing a unified, computationally inspired framework for capturing the variable degrees of semantic impairment found across different patient groups (semantic dementia, temporal lobe epilepsy, glioma and stroke) as well as semantic processing in neurologically intact participants. PMID:22287382
Thompson, Hannah E; Jefferies, Elizabeth
2013-08-01
Research suggests that semantic memory deficits can occur in at least three ways. Patients can (1) show amodal degradation of concepts within the semantic store itself, such as in semantic dementia (SD), (2) have difficulty in controlling activation within the semantic system and accessing appropriate knowledge in line with current goals or context, as in semantic aphasia (SA) and (3) experience a semantic deficit in only one modality following degraded input from sensory cortex. Patients with SA show deficits of semantic control and access across word and picture tasks, consistent with the view that their problems arise from impaired modality-general control processes. However, there are a few reports in the literature of patients with semantic access problems restricted to auditory-verbal materials, who show decreasing ability to retrieve concepts from words when they are presented repeatedly with closely related distractors. These patients challenge the notion that semantic control processes are modality-general and suggest instead a separation of 'access' to auditory-verbal and non-verbal semantic systems. We had the rare opportunity to study such a case in detail. Our aims were to examine the effect of manipulations of control demands in auditory-verbal semantic, non-verbal semantic and non-semantic tasks, allowing us to assess whether such cases always show semantic control/access impairments that follow a modality-specific pattern, or whether there are alternative explanations. Our findings revealed: (1) deficits on executive tasks, unrelated to semantic demands, which were more evident in the auditory modality than the visual modality; (2) deficits in executively-demanding semantic tasks which were accentuated in the auditory-verbal domain compared with the visual modality, but still present on non-verbal tasks, and (3) a coupling between comprehension and executive control requirements, in that mild impairment on single word comprehension was greatly increased on more demanding, associative judgements across modalities. This pattern of results suggests that mild executive-semantic impairment, paired with disrupted connectivity from auditory input, may give rise to semantic 'access' deficits affecting only the auditory modality. Copyright © 2013 Elsevier Ltd. All rights reserved.
Objects and categories: feature statistics and object processing in the ventral stream.
Tyler, Lorraine K; Chiu, Shannon; Zhuang, Jie; Randall, Billi; Devereux, Barry J; Wright, Paul; Clarke, Alex; Taylor, Kirsten I
2013-10-01
Recognizing an object involves more than just visual analyses; its meaning must also be decoded. Extensive research has shown that processing the visual properties of objects relies on a hierarchically organized stream in ventral occipitotemporal cortex, with increasingly more complex visual features being coded from posterior to anterior sites culminating in the perirhinal cortex (PRC) in the anteromedial temporal lobe (aMTL). The neurobiological principles of the conceptual analysis of objects remain more controversial. Much research has focused on two neural regions-the fusiform gyrus and aMTL, both of which show semantic category differences, but of different types. fMRI studies show category differentiation in the fusiform gyrus, based on clusters of semantically similar objects, whereas category-specific deficits, specifically for living things, are associated with damage to the aMTL. These category-specific deficits for living things have been attributed to problems in differentiating between highly similar objects, a process that involves the PRC. To determine whether the PRC and the fusiform gyri contribute to different aspects of an object's meaning, with differentiation between confusable objects in the PRC and categorization based on object similarity in the fusiform, we carried out an fMRI study of object processing based on a feature-based model that characterizes the degree of semantic similarity and difference between objects and object categories. Participants saw 388 objects for which feature statistic information was available and named the objects at the basic level while undergoing fMRI scanning. After controlling for the effects of visual information, we found that feature statistics that capture similarity between objects formed category clusters in fusiform gyri, such that objects with many shared features (typical of living things) were associated with activity in the lateral fusiform gyri whereas objects with fewer shared features (typical of nonliving things) were associated with activity in the medial fusiform gyri. Significantly, a feature statistic reflecting differentiation between highly similar objects, enabling object-specific representations, was associated with bilateral PRC activity. These results confirm that the statistical characteristics of conceptual object features are coded in the ventral stream, supporting a conceptual feature-based hierarchy, and integrating disparate findings of category responses in fusiform gyri and category deficits in aMTL into a unifying neurocognitive framework.
Phonologically-Based Priming in the Same-Different Task With L1 Readers.
Lupker, Stephen J; Nakayama, Mariko; Yoshihara, Masahiro
2018-02-01
The present experiment provides an investigation of a promising new tool, the masked priming same-different task, for investigating the orthographic coding process. Orthographic coding is the process of establishing a mental representation of the letters and letter order in the word being read which is then used by readers to access higher-level (e.g., semantic) information about that word. Prior research (e.g., Norris & Kinoshita, 2008) had suggested that performance in this task may be based entirely on orthographic codes. As reported by Lupker, Nakayama, and Perea (2015a), however, in at least some circumstances, phonological codes also play a role. Specifically, even though their 2 languages are completely different orthographically, Lupker et al.'s Japanese-English bilinguals showed priming in this task when masked L1 primes were phonologically similar to L2 targets. An obvious follow-up question is whether Lupker et al.'s effect might have resulted from a strategy that was adopted by their bilinguals to aid in processing of, and memory for, the somewhat unfamiliar L2 targets. In the present experiment, Japanese readers responded to (Japanese) Kanji targets with phonologically identical primes (on "related" trials) being presented in a completely different but highly familiar Japanese script, Hiragana. Once again, significant priming effects were observed, indicating that, although performance in the masked priming same-different task may be mainly based on orthographic codes, phonological codes can play a role even when the stimuli being matched are familiar words from a reader's L1. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Selective Short-Term Memory Deficits Arise from Impaired Domain-General Semantic Control Mechanisms
ERIC Educational Resources Information Center
Hoffman, Paul; Jefferies, Elizabeth; Ehsan, Sheeba; Hopper, Samantha; Lambon Ralph, Matthew A.
2009-01-01
Semantic short-term memory (STM) patients have a reduced ability to retain semantic information over brief delays but perform well on other semantic tasks; this pattern suggests damage to a dedicated buffer for semantic information. Alternatively, these difficulties may arise from mild disruption to domain-general semantic processes that have…
Multiple Scales of Representation along the Hippocampal Anteroposterior Axis in Humans.
Brunec, Iva K; Bellana, Buddhika; Ozubko, Jason D; Man, Vincent; Robin, Jessica; Liu, Zhong-Xu; Grady, Cheryl; Rosenbaum, R Shayna; Winocur, Gordon; Barense, Morgan D; Moscovitch, Morris
2018-06-13
The ability to represent the world accurately relies on simultaneous coarse and fine-grained neural information coding, capturing both gist and detail of an experience. The longitudinal axis of the hippocampus may provide a gradient of representational granularity in spatial and episodic memory in rodents and humans [1-8]. Rodent place cells in the ventral hippocampus exhibit significantly larger place fields and greater autocorrelation than those in the dorsal hippocampus [1, 9-11], which may underlie a coarser and slower changing representation of space [10, 12]. Recent evidence suggests that properties of cellular dynamics in rodents can be captured with fMRI in humans during spatial navigation [13] and conceptual learning [14]. Similarly, mechanisms supporting granularity along the long axis may also be extrapolated to the scale of fMRI signal. Here, we provide the first evidence for separable scales of representation along the human hippocampal anteroposterior axis during navigation and rest by showing (1) greater similarity among voxel time courses and (2) higher temporal autocorrelation in anterior hippocampus (aHPC), relative to posterior hippocampus (pHPC), the human homologs of ventral and dorsal rodent hippocampus. aHPC voxels exhibited more similar activity at each time point and slower signal change over time than voxels in pHPC, consistent with place field organization in rodents. Importantly, similarity between voxels was related to navigational strategy and episodic memory. These findings provide evidence that the human hippocampus supports an anterior-to-posterior gradient of coarse-to-fine spatiotemporal representations, suggesting the existence of a cross-species mechanism, whereby lower neural similarity supports more complex coding of experience. Copyright © 2018 Elsevier Ltd. All rights reserved.
Egmose, Ida; Varni, Giovanna; Cordes, Katharina; Smith-Nielsen, Johanne; Væver, Mette S.; Køppe, Simo; Cohen, David; Chetouani, Mohamed
2017-01-01
Bodily movements are an essential component of social interactions. However, the role of movement in early mother-infant interaction has received little attention in the research literature. The aim of the present study was to investigate the relationship between automatically extracted motion features and interaction quality in mother-infant interactions at 4 and 13 months. The sample consisted of 19 mother-infant dyads at 4 months and 33 mother-infant dyads at 13 months. The coding system Coding Interactive Behavior (CIB) was used for rating the quality of the interactions. Kinetic energy of upper-body, arms and head motion was calculated and used as segmentation in order to extract coarse- and fine-grained motion features. Spearman correlations were conducted between the composites derived from the CIB and the coarse- and fine-grained motion features. At both 4 and 13 months, longer durations of maternal arm motion and infant upper-body motion were associated with more aversive interactions, i.e., more parent-led interactions and more infant negativity. Further, at 4 months, the amount of motion silence was related to more adaptive interactions, i.e., more sensitive and child-led interactions. Analyses of the fine-grained motion features showed that if the mother coordinates her head movements with her infant's head movements, the interaction is rated as more adaptive in terms of less infant negativity and less dyadic negative states. We found more and stronger correlations between the motion features and the interaction qualities at 4 compared to 13 months. These results highlight that motion features are related to the quality of mother-infant interactions. Factors such as infant age and interaction set-up are likely to modify the meaning and importance of different motion features. PMID:29326626
Egmose, Ida; Varni, Giovanna; Cordes, Katharina; Smith-Nielsen, Johanne; Væver, Mette S; Køppe, Simo; Cohen, David; Chetouani, Mohamed
2017-01-01
Bodily movements are an essential component of social interactions. However, the role of movement in early mother-infant interaction has received little attention in the research literature. The aim of the present study was to investigate the relationship between automatically extracted motion features and interaction quality in mother-infant interactions at 4 and 13 months. The sample consisted of 19 mother-infant dyads at 4 months and 33 mother-infant dyads at 13 months. The coding system Coding Interactive Behavior (CIB) was used for rating the quality of the interactions. Kinetic energy of upper-body, arms and head motion was calculated and used as segmentation in order to extract coarse- and fine-grained motion features. Spearman correlations were conducted between the composites derived from the CIB and the coarse- and fine-grained motion features. At both 4 and 13 months, longer durations of maternal arm motion and infant upper-body motion were associated with more aversive interactions, i.e., more parent-led interactions and more infant negativity. Further, at 4 months, the amount of motion silence was related to more adaptive interactions, i.e., more sensitive and child-led interactions. Analyses of the fine-grained motion features showed that if the mother coordinates her head movements with her infant's head movements, the interaction is rated as more adaptive in terms of less infant negativity and less dyadic negative states. We found more and stronger correlations between the motion features and the interaction qualities at 4 compared to 13 months. These results highlight that motion features are related to the quality of mother-infant interactions. Factors such as infant age and interaction set-up are likely to modify the meaning and importance of different motion features.
Patch-based Adaptive Mesh Refinement for Multimaterial Hydrodynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lomov, I; Pember, R; Greenough, J
2005-10-18
We present a patch-based direct Eulerian adaptive mesh refinement (AMR) algorithm for modeling real equation-of-state, multimaterial compressible flow with strength. Our approach to AMR uses a hierarchical, structured grid approach first developed by (Berger and Oliger 1984), (Berger and Oliger 1984). The grid structure is dynamic in time and is composed of nested uniform rectangular grids of varying resolution. The integration scheme on the grid hierarchy is a recursive procedure in which the coarse grids are advanced, then the fine grids are advanced multiple steps to reach the same time, and finally the coarse and fine grids are synchronized tomore » remove conservation errors during the separate advances. The methodology presented here is based on a single grid algorithm developed for multimaterial gas dynamics by (Colella et al. 1993), refined by(Greenough et al. 1995), and extended to the solution of solid mechanics problems with significant strength by (Lomov and Rubin 2003). The single grid algorithm uses a second-order Godunov scheme with an approximate single fluid Riemann solver and a volume-of-fluid treatment of material interfaces. The method also uses a non-conservative treatment of the deformation tensor and an acoustic approximation for shear waves in the Riemann solver. This departure from a strict application of the higher-order Godunov methodology to the equation of solid mechanics is justified due to the fact that highly nonlinear behavior of shear stresses is rare. This algorithm is implemented in two codes, Geodyn and Raptor, the latter of which is a coupled rad-hydro code. The present discussion will be solely concerned with hydrodynamics modeling. Results from a number of simulations for flows with and without strength will be presented.« less
Coderre, Emily L; Chernenok, Mariya; Gordon, Barry; Ledoux, Kerry
2017-03-01
Individuals with autism spectrum disorders (ASD) experience difficulties with language, particularly higher-level functions like semantic integration. Yet some studies indicate that semantic processing of non-linguistic stimuli is not impaired, suggesting a language-specific deficit in semantic processing. Using a semantic priming task, we compared event-related potentials (ERPs) in response to lexico-semantic processing (written words) and visuo-semantic processing (pictures) in adults with ASD and adults with typical development (TD). The ASD group showed successful lexico-semantic and visuo-semantic processing, indicated by similar N400 effects between groups for word and picture stimuli. However, differences in N400 latency and topography in word conditions suggested different lexico-semantic processing mechanisms: an expectancy-based strategy for the TD group but a controlled post-lexical integration strategy for the ASD group.
Exploiting Recurring Structure in a Semantic Network
NASA Technical Reports Server (NTRS)
Wolfe, Shawn R.; Keller, Richard M.
2004-01-01
With the growing popularity of the Semantic Web, an increasing amount of information is becoming available in machine interpretable, semantically structured networks. Within these semantic networks are recurring structures that could be mined by existing or novel knowledge discovery methods. The mining of these semantic structures represents an interesting area that focuses on mining both for and from the Semantic Web, with surprising applicability to problems confronting the developers of Semantic Web applications. In this paper, we present representative examples of recurring structures and show how these structures could be used to increase the utility of a semantic repository deployed at NASA.
Introduction to geospatial semantics and technology workshop handbook
Varanka, Dalia E.
2012-01-01
The workshop is a tutorial on introductory geospatial semantics with hands-on exercises using standard Web browsers. The workshop is divided into two sections, general semantics on the Web and specific examples of geospatial semantics using data from The National Map of the U.S. Geological Survey and the Open Ontology Repository. The general semantics section includes information and access to publicly available semantic archives. The specific session includes information on geospatial semantics with access to semantically enhanced data for hydrography, transportation, boundaries, and names. The Open Ontology Repository offers open-source ontologies for public use.
Fu, Haohao; Shao, Xueguang; Chipot, Christophe; Cai, Wensheng
2016-08-09
Proper use of the adaptive biasing force (ABF) algorithm in free-energy calculations needs certain prerequisites to be met, namely, that the Jacobian for the metric transformation and its first derivative be available and the coarse variables be independent and fully decoupled from any holonomic constraint or geometric restraint, thereby limiting singularly the field of application of the approach. The extended ABF (eABF) algorithm circumvents these intrinsic limitations by applying the time-dependent bias onto a fictitious particle coupled to the coarse variable of interest by means of a stiff spring. However, with the current implementation of eABF in the popular molecular dynamics engine NAMD, a trajectory-based post-treatment is necessary to derive the underlying free-energy change. Usually, such a posthoc analysis leads to a decrease in the reliability of the free-energy estimates due to the inevitable loss of information, as well as to a drop in efficiency, which stems from substantial read-write accesses to file systems. We have developed a user-friendly, on-the-fly code for performing eABF simulations within NAMD. In the present contribution, this code is probed in eight illustrative examples. The performance of the algorithm is compared with traditional ABF, on the one hand, and the original eABF implementation combined with a posthoc analysis, on the other hand. Our results indicate that the on-the-fly eABF algorithm (i) supplies the correct free-energy landscape in those critical cases where the coarse variables at play are coupled to either each other or to geometric restraints or holonomic constraints, (ii) greatly improves the reliability of the free-energy change, compared to the outcome of a posthoc analysis, and (iii) represents a negligible additional computational effort compared to regular ABF. Moreover, in the proposed implementation, guidelines for choosing two parameters of the eABF algorithm, namely the stiffness of the spring and the mass of the fictitious particles, are proposed. The present on-the-fly eABF implementation can be viewed as the second generation of the ABF algorithm, expected to be widely utilized in the theoretical investigation of recognition and association phenomena relevant to physics, chemistry, and biology.
Hodgson, Catherine; Lambon Ralph, Matthew A
2008-01-01
Semantic errors are commonly found in semantic dementia (SD) and some forms of stroke aphasia and provide insights into semantic processing and speech production. Low error rates are found in standard picture naming tasks in normal controls. In order to increase error rates and thus provide an experimental model of aphasic performance, this study utilised a novel method- tempo picture naming. Experiment 1 showed that, compared to standard deadline naming tasks, participants made more errors on the tempo picture naming tasks. Further, RTs were longer and more errors were produced to living items than non-living items a pattern seen in both semantic dementia and semantically-impaired stroke aphasic patients. Experiment 2 showed that providing the initial phoneme as a cue enhanced performance whereas providing an incorrect phonemic cue further reduced performance. These results support the contention that the tempo picture naming paradigm reduces the time allowed for controlled semantic processing causing increased error rates. This experimental procedure would, therefore, appear to mimic the performance of aphasic patients with multi-modal semantic impairment that results from poor semantic control rather than the degradation of semantic representations observed in semantic dementia [Jefferies, E. A., & Lambon Ralph, M. A. (2006). Semantic impairment in stoke aphasia vs. semantic dementia: A case-series comparison. Brain, 129, 2132-2147]. Further implications for theories of semantic cognition and models of speech processing are discussed.
Chen, Xuqian; Liao, Yuanlan; Chen, Xianzhe
2017-08-01
Using a non-alphabetic language (e.g., Chinese), the present study tested a novel view that semantic information at the sublexical level should be activated during handwriting production. Over 80% of Chinese characters are phonograms, in which semantic radicals represent category information (e.g., 'chair,' 'peach,' 'orange' are related to plants) while phonetic radicals represent phonetic information (e.g., 'wolf,' 'brightness,' 'male,' are all pronounced /lang/). Under different semantic category conditions at the lexical level (semantically related in Experiment 1; semantically unrelated in Experiment 2), the orthographic relatedness and semantic relatedness of semantic radicals in the picture name and its distractor were manipulated under different SOAs (i.e., stimulus onset asynchrony, the interval between the onset of the picture and the onset of the interference word). Two questions were addressed: (1) Is it possible that semantic information could be activated in the sublexical level conditions? (2) How are semantic and orthographic information dynamically accessed in word production? Results showed that both orthographic and semantic information were activated under the present picture-word interference paradigm, dynamically under different SOAs, which supported our view that discussions on semantic processes in the writing modality should be extended to the sublexical level. The current findings provide possibility for building new orthography-phonology-semantics models in writing. © 2017 Scandinavian Psychological Associations and John Wiley & Sons Ltd.
Demb, J B; Desmond, J E; Wagner, A D; Vaidya, C J; Glover, G H; Gabrieli, J D
1995-09-01
Prefrontal cortical function was examined during semantic encoding and repetition priming using functional magnetic resonance imaging (fMRI), a noninvasive technique for localizing regional changes in blood oxygenation, a correlate of neural activity. Words studied in a semantic (deep) encoding condition were better remembered than words studied in both easier and more difficult nonsemantic (shallow) encoding conditions, with difficulty indexed by response time. The left inferior prefrontal cortex (LIPC) (Brodmann's areas 45, 46, 47) showed increased activation during semantic encoding relative to nonsemantic encoding regardless of the relative difficulty of the nonsemantic encoding task. Therefore, LIPC activation appears to be related to semantic encoding and not task difficulty. Semantic encoding decisions are performed faster the second time words are presented. This represents semantic repetition priming, a facilitation in semantic processing for previously encoded words that is not dependent on intentional recollection. The same LIPC area activated during semantic encoding showed decreased activation during repeated semantic encoding relative to initial semantic encoding of the same words. This decrease in activation during repeated encoding was process specific; it occurred when words were semantically reprocessed but not when words were nonsemantically reprocessed. The results were apparent in both individual and averaged functional maps. These findings suggest that the LIPC is part of a semantic executive system that contributes to the on-line retrieval of semantic information.
Cousins, Katheryn A Q; Grossman, Murray
2017-12-01
Category-specific impairments caused by brain damage can provide important insights into how semantic concepts are organized in the brain. Recent research has demonstrated that disease to sensory and motor cortices can impair perceptual feature knowledge important to the representation of semantic concepts. This evidence supports the grounded cognition theory of semantics, the view that lexical knowledge is partially grounded in perceptual experience and that sensory and motor regions support semantic representations. Less well understood, however, is how heteromodal semantic hubs work to integrate and process semantic information. Although the majority of semantic research to date has focused on how sensory cortical areas are important for the representation of semantic features, new research explores how semantic memory is affected by neurodegeneration in regions important for semantic processing. Here, we review studies that demonstrate impairments to abstract noun knowledge in behavioural variant frontotemporal degeneration (bvFTD) and to action verb knowledge in Parkinson's disease, and discuss how these deficits relate to disease of the semantic selection network. Findings demonstrate that semantic selection processes are supported by the left inferior frontal gyrus (LIFG) and basal ganglia, and that disease to these regions in bvFTD and Parkinson's disease can lead to categorical impairments for abstract nouns and action verbs, respectively.
Category Membership and Semantic Coding in the Cerebral Hemispheres.
Turner, Casey E; Kellogg, Ronald T
2016-01-01
Although a gradient of category membership seems to form the internal structure of semantic categories, it is unclear whether the 2 hemispheres of the brain differ in terms of this gradient. The 2 experiments reported here examined this empirical question and explored alternative theoretical interpretations. Participants viewed category names centrally and determined whether a closely related or distantly related word presented to either the left visual field/right hemisphere (LVF/RH) or the right visual field/left hemisphere (RVF/LH) was a member of the category. Distantly related words were categorized more slowly in the LVF/RH relative to the RVF/LH, with no difference for words close to the prototype. The finding resolved past mixed results showing an unambiguous typicality effect for both visual field presentations. Furthermore, we examined items near the fuzzy border that were sometimes rejected as nonmembers of the category and found both hemispheres use the same category boundary. In Experiment 2, we presented 2 target words to be categorized, with the expectation of augmenting the speed advantage for the RVF/LH if the 2 hemispheres differ structurally. Instead the results showed a weakening of the hemispheric difference, arguing against a structural in favor of a processing explanation.
Messina, Irene; Sambin, Marco; Beschoner, Petra; Viviani, Roberto
2016-08-01
Influential neurobiological models of the mechanism of action of psychotherapy attribute its success to increases of activity in prefrontal areas and decreases in limbic areas, interpreted as the successful and adaptive recruitment of controlled processes to achieve emotion regulation. In this article, we review the behavioral and neuroscientific evidence in support of this model and its applicability to explain the mechanism of action of psychotherapy. Neuroimaging studies of explicit emotion regulation, evidence on the neurobiological substrates of implicit emotion regulation, and meta-analyses of neuroimaging studies of the effect of psychotherapy consistently suggest that areas implicated in coding semantic representations play an important role in emotion regulation not covered by existing models based on controlled processes. We discuss the findings that implicate these same areas in supporting working memory, in encoding preferences and the prospective outcome of actions taken in rewarding or aversive contingencies, and show how these functions may be integrated into process models of emotion regulation that depend on elaborate semantic representations for their effectiveness. These alternative models also appear to be more consistent with internal accounts in the psychotherapeutic literature of how psychotherapy works.
Cordonnier, Aline; Barnier, Amanda J; Sutton, John
2016-01-01
Research on future thinking has emphasized how episodic details from memories are combined to create future thoughts, but has not yet examined the role of semantic scripts. In this study, participants recalled how they planned a past camping trip in Australia (past planning task) and imagined how they would plan a future camping trip (future planning task), set either in a familiar (Australia) or an unfamiliar (Antarctica) context. Transcripts were segmented into information units that were coded according to semantic category (e.g., where, when, transport, material, actions). Results revealed a strong interaction between tasks and their presentation order. Starting with the past planning task constrained the future planning task when the context was familiar. Participants generated no new information when the future camping trip was set in Australia and completed second (after the past planning task). Conversely, starting with the future planning task facilitated the past planning task. Participants recalled more information units of their past plan when the past planning task was completed second (after the future planning task). These results shed new light on the role of scripts in past and future thinking and on how past and future thinking processes interact.
The Emotions of Abstract Words: A Distributional Semantic Analysis.
Lenci, Alessandro; Lebani, Gianluca E; Passaro, Lucia C
2018-04-06
Recent psycholinguistic and neuroscientific research has emphasized the crucial role of emotions for abstract words, which would be grounded by affective experience, instead of a sensorimotor one. The hypothesis of affective embodiment has been proposed as an alternative to the idea that abstract words are linguistically coded and that linguistic processing plays a key role in their acquisition and processing. In this paper, we use distributional semantic models to explore the complex interplay between linguistic and affective information in the representation of abstract words. Distributional analyses on Italian norming data show that abstract words have more affective content and tend to co-occur with contexts with higher emotive values, according to affective statistical indices estimated in terms of distributional similarity with a restricted number of seed words strongly associated with a set of basic emotions. Therefore, the strong affective content of abstract words might just be an indirect byproduct of co-occurrence statistics. This is consistent with a version of representational pluralism in which concepts that are fully embodied either at the sensorimotor or at the affective level live side-by-side with concepts only indirectly embodied via their linguistic associations with other embodied words. Copyright © 2018 Cognitive Science Society, Inc.
Challenges of interoperability using HL7 v3 in Czech healthcare.
Nagy, Miroslav; Preckova, Petra; Seidl, Libor; Zvarova, Jana
2010-01-01
The paper describes several classification systems that could improve patient safety through semantic interoperability among contemporary electronic health record systems (EHR-Ss) with support of the HL7 v3 standard. We describe a proposal and a pilot implementation of a semantic interoperability platform (SIP) interconnecting current EHR-Ss by using HL7 v3 messages and concepts mappings on most widely used classification systems. The increasing number of classification systems and nomenclatures requires designing of various conversion tools for transfer between main classification systems. We present the so-called LIM filler module and the HL7 broker, which are parts of the SIP, playing the role of such conversion tools. The analysis of suitability and usability of individual terminological thesauri has been started by mapping of clinical contents of the Minimal Data Model for Cardiology (MDMC) to various terminological classification systems. A national-wide implementation of the SIP would include adopting and translating international coding systems and nomenclatures, and developing implementation guidelines facilitating the migration from national standards to international ones. Our research showed that creation of such a platform is feasible; however, it will require a huge effort to adapt fully the Czech healthcare system to the European environment.
[Big data, medical language and biomedical terminology systems].
Schulz, Stefan; López-García, Pablo
2015-08-01
A variety of rich terminology systems, such as thesauri, classifications, nomenclatures and ontologies support information and knowledge processing in health care and biomedical research. Nevertheless, human language, manifested as individually written texts, persists as the primary carrier of information, in the description of disease courses or treatment episodes in electronic medical records, and in the description of biomedical research in scientific publications. In the context of the discussion about big data in biomedicine, we hypothesize that the abstraction of the individuality of natural language utterances into structured and semantically normalized information facilitates the use of statistical data analytics to distil new knowledge out of textual data from biomedical research and clinical routine. Computerized human language technologies are constantly evolving and are increasingly ready to annotate narratives with codes from biomedical terminology. However, this depends heavily on linguistic and terminological resources. The creation and maintenance of such resources is labor-intensive. Nevertheless, it is sensible to assume that big data methods can be used to support this process. Examples include the learning of hierarchical relationships, the grouping of synonymous terms into concepts and the disambiguation of homonyms. Although clear evidence is still lacking, the combination of natural language technologies, semantic resources, and big data analytics is promising.
2011-01-01
Background Translational medicine requires the integration of knowledge using heterogeneous data from health care to the life sciences. Here, we describe a collaborative effort to produce a prototype Translational Medicine Knowledge Base (TMKB) capable of answering questions relating to clinical practice and pharmaceutical drug discovery. Results We developed the Translational Medicine Ontology (TMO) as a unifying ontology to integrate chemical, genomic and proteomic data with disease, treatment, and electronic health records. We demonstrate the use of Semantic Web technologies in the integration of patient and biomedical data, and reveal how such a knowledge base can aid physicians in providing tailored patient care and facilitate the recruitment of patients into active clinical trials. Thus, patients, physicians and researchers may explore the knowledge base to better understand therapeutic options, efficacy, and mechanisms of action. Conclusions This work takes an important step in using Semantic Web technologies to facilitate integration of relevant, distributed, external sources and progress towards a computational platform to support personalized medicine. Availability TMO can be downloaded from http://code.google.com/p/translationalmedicineontology and TMKB can be accessed at http://tm.semanticscience.org/sparql. PMID:21624155
Kumar, Manoj; Federmeier, Kara D; Fei-Fei, Li; Beck, Diane M
2017-07-15
A long-standing core question in cognitive science is whether different modalities and representation types (pictures, words, sounds, etc.) access a common store of semantic information. Although different input types have been shown to activate a shared network of brain regions, this does not necessitate that there is a common representation, as the neurons in these regions could still differentially process the different modalities. However, multi-voxel pattern analysis can be used to assess whether, e.g., pictures and words evoke a similar pattern of activity, such that the patterns that separate categories in one modality transfer to the other. Prior work using this method has found support for a common code, but has two limitations: they have either only examined disparate categories (e.g. animals vs. tools) that are known to activate different brain regions, raising the possibility that the pattern separation and inferred similarity reflects only large scale differences between the categories or they have been limited to individual object representations. By using natural scene categories, we not only extend the current literature on cross-modal representations beyond objects, but also, because natural scene categories activate a common set of brain regions, we identify a more fine-grained (i.e. higher spatial resolution) common representation. Specifically, we studied picture- and word-based representations of natural scene stimuli from four different categories: beaches, cities, highways, and mountains. Participants passively viewed blocks of either phrases (e.g. "sandy beach") describing scenes or photographs from those same scene categories. To determine whether the phrases and pictures evoke a common code, we asked whether a classifier trained on one stimulus type (e.g. phrase stimuli) would transfer (i.e. cross-decode) to the other stimulus type (e.g. picture stimuli). The analysis revealed cross-decoding in the occipitotemporal, posterior parietal and frontal cortices. This similarity of neural activity patterns across the two input types, for categories that co-activate local brain regions, provides strong evidence of a common semantic code for pictures and words in the brain. Copyright © 2017 Elsevier Inc. All rights reserved.
Type-specific proactive interference in patients with semantic and phonological STM deficits.
Harris, Lara; Olson, Andrew; Humphreys, Glyn
2014-01-01
Prior neuropsychological evidence suggests that semantic and phonological components of short-term memory (STM) are functionally and neurologically distinct. The current paper examines proactive interference (PI) from semantic and phonological information in two STM-impaired patients, DS (semantic STM deficit) and AK (phonological STM deficit). In Experiment 1 probe recognition tasks with open and closed sets of stimuli were used. Phonological PI was assessed using nonword items, and semantic and phonological PI was assessed using words. In Experiment 2 phonological and semantic PI was elicited by an item recognition probe test with stimuli that bore phonological and semantic relations to the probes. The data suggested heightened phonological PI for the semantic STM patient, and exaggerated effects of semantic PI in the phonological STM case. The findings are consistent with an account of extremely rapid decay of activated type-specific representations in cases of severely impaired phonological and semantic STM.
Numerical benchmarking of a Coarse-Mesh Transport (COMET) Method for medical physics applications
NASA Astrophysics Data System (ADS)
Blackburn, Megan Satterfield
2009-12-01
Radiation therapy has become a very import method for treating cancer patients. Thus, it is extremely important to accurately determine the location of energy deposition during these treatments, maximizing dose to the tumor region and minimizing it to healthy tissue. A Coarse-Mesh Transport Method (COMET) has been developed at the Georgia Institute of Technology in the Computational Reactor and Medical Physics Group for use very successfully with neutron transport to analyze whole-core criticality. COMET works by decomposing a large, heterogeneous system into a set of smaller fixed source problems. For each unique local problem that exists, a solution is obtained that we call a response function. These response functions are pre-computed and stored in a library for future use. The overall solution to the global problem can then be found by a linear superposition of these local problems. This method has now been extended to the transport of photons and electrons for use in medical physics problems to determine energy deposition from radiation therapy treatments. The main goal of this work was to develop benchmarks for testing in order to evaluate the COMET code to determine its strengths and weaknesses for these medical physics applications. For response function calculations, legendre polynomial expansions are necessary for space, angle, polar angle, and azimuthal angle. An initial sensitivity study was done to determine the best orders for future testing. After the expansion orders were found, three simple benchmarks were tested: a water phantom, a simplified lung phantom, and a non-clinical slab phantom. Each of these benchmarks was decomposed into 1cm x 1cm and 0.5cm x 0.5cm coarse meshes. Three more clinically relevant problems were developed from patient CT scans. These benchmarks modeled a lung patient, a prostate patient, and a beam re-entry situation. As before, the problems were divided into 1cm x 1cm, 0.5cm x 0.5cm, and 0.25cm x 0.25cm coarse mesh cases. Multiple beam energies were also tested for each case. The COMET solutions for each case were compared to a reference solution obtained by pure Monte Carlo results from EGSnrc. When comparing the COMET results to the reference cases, a pattern of differences appeared in each phantom case. It was found that better results were obtained for lower energy incident photon beams as well as for larger mesh sizes. Possible changes may need to be made with the expansion orders used for energy and angle to better model high energy secondary electrons. Heterogeneity also did not pose a problem for the COMET methodology. Heterogeneous results were found in a comparable amount of time to the homogeneous water phantom. The COMET results were typically found in minutes to hours of computational time, whereas the reference cases typically required hundreds or thousands of hours. A second sensitivity study was also performed on a more stringent problem and with smaller coarse meshes. Previously, the same expansion order was used for each incident photon beam energy so better comparisons could be made. From this second study, it was found that it is optimal to have different expansion orders based on the incident beam energy. Recommendations for future work with this method include more testing on higher expansion orders or possible code modification to better handle secondary electrons. The method also needs to handle more clinically relevant beam descriptions with an energy and angular distribution associated with it.
NASA Astrophysics Data System (ADS)
Hur, Min Young; Verboncoeur, John; Lee, Hae June
2014-10-01
Particle-in-cell (PIC) simulations have high fidelity in the plasma device requiring transient kinetic modeling compared with fluid simulations. It uses less approximation on the plasma kinetics but requires many particles and grids to observe the semantic results. It means that the simulation spends lots of simulation time in proportion to the number of particles. Therefore, PIC simulation needs high performance computing. In this research, a graphic processing unit (GPU) is adopted for high performance computing of PIC simulation for low temperature discharge plasmas. GPUs have many-core processors and high memory bandwidth compared with a central processing unit (CPU). NVIDIA GeForce GPUs were used for the test with hundreds of cores which show cost-effective performance. PIC code algorithm is divided into two modules which are a field solver and a particle mover. The particle mover module is divided into four routines which are named move, boundary, Monte Carlo collision (MCC), and deposit. Overall, the GPU code solves particle motions as well as electrostatic potential in two-dimensional geometry almost 30 times faster than a single CPU code. This work was supported by the Korea Institute of Science Technology Information.
Integrated Japanese Dependency Analysis Using a Dialog Context
NASA Astrophysics Data System (ADS)
Ikegaya, Yuki; Noguchi, Yasuhiro; Kogure, Satoru; Itoh, Toshihiko; Konishi, Tatsuhiro; Kondo, Makoto; Asoh, Hideki; Takagi, Akira; Itoh, Yukihiro
This paper describes how to perform syntactic parsing and semantic analysis in a dialog system. The paper especially deals with how to disambiguate potentially ambiguous sentences using the contextual information. Although syntactic parsing and semantic analysis are often studied independently of each other, correct parsing of a sentence often requires the semantic information on the input and/or the contextual information prior to the input. Accordingly, we merge syntactic parsing with semantic analysis, which enables syntactic parsing taking advantage of the semantic content of an input and its context. One of the biggest problems of semantic analysis is how to interpret dependency structures. We employ a framework for semantic representations that circumvents the problem. Within the framework, the meaning of any predicate is converted into a semantic representation which only permits a single type of predicate: an identifying predicate "aru". The semantic representations are expressed as sets of "attribute-value" pairs, and those semantic representations are stored in the context information. Our system disambiguates syntactic/semantic ambiguities of inputs referring to the attribute-value pairs in the context information. We have experimentally confirmed the effectiveness of our approach; specifically, the experiment confirmed high accuracy of parsing and correctness of generated semantic representations.
Entanglement renormalization and gauge symmetry
NASA Astrophysics Data System (ADS)
Tagliacozzo, L.; Vidal, G.
2011-03-01
A lattice gauge theory is described by a redundantly large vector space that is subject to local constraints and can be regarded as the low-energy limit of an extended lattice model with a local symmetry. We propose a numerical coarse-graining scheme to produce low-energy, effective descriptions of lattice models with a local symmetry such that the local symmetry is exactly preserved during coarse-graining. Our approach results in a variational ansatz for the ground state(s) and low-energy excitations of such models and, by extension, of lattice gauge theories. This ansatz incorporates the local symmetry in its structure and exploits it to obtain a significant reduction of computational costs. We test the approach in the context of a Z2 lattice gauge theory formulated as the low-energy theory of a specific regime of the toric code with a magnetic field, for lattices with up to 16×16 sites (162×2=512 spins) on a torus. We reproduce the well-known ground-state phase diagram of the model, consisting of a deconfined and spin-polarized phases separated by a continuous quantum phase transition, and obtain accurate estimates of energy gaps, ground-state fidelities, Wilson loops, and several other quantities.
Parallel Calculation of Sensitivity Derivatives for Aircraft Design using Automatic Differentiation
NASA Technical Reports Server (NTRS)
Bischof, c. H.; Green, L. L.; Haigler, K. J.; Knauff, T. L., Jr.
1994-01-01
Sensitivity derivative (SD) calculation via automatic differentiation (AD) typical of that required for the aerodynamic design of a transport-type aircraft is considered. Two ways of computing SD via code generated by the ADIFOR automatic differentiation tool are compared for efficiency and applicability to problems involving large numbers of design variables. A vector implementation on a Cray Y-MP computer is compared with a coarse-grained parallel implementation on an IBM SP1 computer, employing a Fortran M wrapper. The SD are computed for a swept transport wing in turbulent, transonic flow; the number of geometric design variables varies from 1 to 60 with coupling between a wing grid generation program and a state-of-the-art, 3-D computational fluid dynamics program, both augmented for derivative computation via AD. For a small number of design variables, the Cray Y-MP implementation is much faster. As the number of design variables grows, however, the IBM SP1 becomes an attractive alternative in terms of compute speed, job turnaround time, and total memory available for solutions with large numbers of design variables. The coarse-grained parallel implementation also can be moved easily to a network of workstations.
Recharge at the Hanford Site: Status report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gee, G.W.
A variety of field programs designed to evaluate recharge and other water balance components including precipitation, infiltration, evaporation, and water storage changes, have been carried out at the Hanford Site since 1970. Data from these programs have indicated that a wide range of recharge rates can occur depending upon specific site conditions. Present evidence suggests that minimum recharge occurs where soils are fine-textured and surfaces are vegetated with deep-rooted plants. Maximum recharge occurs where coarse soils or gravels exist at the surface and soils are kept bare. Recharge can occur in areas where shallow-rooted plants dominate the surface, particularly wheremore » soils are coarse-textured. Recharge estimates have been made for the site using simulation models. A US Geological Survey model that attempts to account for climate variability, soil storage parameters, and plant factors has calculated recharge values ranging from near zero to an average of about 1 cm/yr for the Hanford Site. UNSAT-H, a deterministic model developed for the site, appears to be the best code available for estimating recharge on a site-specific basis. Appendix I contains precipitation data from January 1979 to June 1987. 42 refs., 11 figs., 11 tabs.« less
Calculating the n-point correlation function with general and efficient python code
NASA Astrophysics Data System (ADS)
Genier, Fred; Bellis, Matthew
2018-01-01
There are multiple approaches to understanding the evolution of large-scale structure in our universe and with it the role of baryonic matter, dark matter, and dark energy at different points in history. One approach is to calculate the n-point correlation function estimator for galaxy distributions, sometimes choosing a particular type of galaxy, such as luminous red galaxies. The standard way to calculate these estimators is with pair counts (for the 2-point correlation function) and with triplet counts (for the 3-point correlation function). These are O(n2) and O(n3) problems, respectively and with the number of galaxies that will be characterized in future surveys, having efficient and general code will be of increasing importance. Here we show a proof-of-principle approach to the 2-point correlation function that relies on pre-calculating galaxy locations in coarse “voxels”, thereby reducing the total number of necessary calculations. The code is written in python, making it easily accessible and extensible and is open-sourced to the community. Basic results and performance tests using SDSS/BOSS data will be shown and we discuss the application of this approach to the 3-point correlation function.
Explaining semantic short-term memory deficits: Evidence for the critical role of semantic control
Hoffman, Paul; Jefferies, Elizabeth; Lambon Ralph, Matthew A.
2011-01-01
Patients with apparently selective short-term memory (STM) deficits for semantic information have played an important role in developing multi-store theories of STM and challenge the idea that verbal STM is supported by maintaining activation in the language system. We propose that semantic STM deficits are not as selective as previously thought and can occur as a result of mild disruption to semantic control processes, i.e., mechanisms that bias semantic processing towards task-relevant aspects of knowledge and away from irrelevant information. We tested three semantic STM patients with tasks that tapped four aspects of semantic control: (i) resolving ambiguity between word meanings, (ii) sensitivity to cues, (iii) ignoring irrelevant information and (iv) detecting weak semantic associations. All were impaired in conditions requiring more semantic control, irrespective of the STM demands of the task, suggesting a mild, but task-general, deficit in regulating semantic knowledge. This mild deficit has a disproportionate effect on STM tasks because they have high intrinsic control demands: in STM tasks, control is required to keep information active when it is no longer available in the environment and to manage competition between items held in memory simultaneously. By re-interpreting the core deficit in semantic STM patients in this way, we are able to explain their apparently selective impairment without the need for a specialised STM store. Instead, we argue that semantic STM patients occupy the mildest end of spectrum of semantic control disorders. PMID:21195105
[Schizophrenia and semantic priming effects].
Lecardeur, L; Giffard, B; Eustache, F; Dollfus, S
2006-01-01
This article is a review of studies using the semantic priming paradigm to assess the functioning of semantic memory in schizophrenic patients. Semantic priming describes the phenomenon of increasing the speed with which a string of letters (the target) is recognized as a word (lexical decision task) by presenting to the subject a semantically related word (the prime) prior to the appearance of the target word. This semantic priming is linked to both automatic and controlled processes depending on experimental conditions (stimulus onset asynchrony (SOA), percentage of related words and explicit memory instructions). Automatic process observed with short SOA, low related word percentage and instructions asking only to process the target, could be linked to the "automatic spreading activation" through the semantic network. Controlled processes involve "semantic matching" (the number of related and unrelated pairs influences the subjects decision) and "expectancy" (the prime leads the subject to generate an expectancy set of potential target to the prime). These processes can be observed whatever the SOA for the former and with long SOA for the later, but both with only high related word percentage and explicit memory instructions. Studies evaluating semantic priming effects in schizophrenia show conflicting results: schizophrenic patients can present hyperpriming (semantic priming effect is larger in patients than in controls), hypopriming (semantic priming effect is lower in patients than in controls) or equal semantic priming effects compared to control subjects. These results could be associated to a global impairment of controlled processes in schizophrenia, essentially to a dysfunction of semantic matching process. On the other hand, efficiency of semantic automatic spreading activation process is controversial. These discrepancies could be linked to the different experimental conditions used (duration of SOA, proportion of related pairs and instructions), which influence on the degree of involvement of controlled processes and therefore prevent to really assess its functioning. In addition, manipulations of the relation between prime and target (semantic distance, type of semantic relation and strength of semantic relation) seem to influence reaction times. However, the relation between prime and target (mediated priming) frequently used could not be the most relevant relation to understand the way of spreading of activation in semantic network in patients with schizophrenia. Finally, patients with formal thought disorders present particularly high priming effects relative to controls. These abnormal semantic priming effects could reflect a dysfunction of automatic spreading activation process and consequently an exaggerated diffusion of activation in the semantic network. In the future, the inclusion of different groups schizophrenic subjects could allow us to determine whether semantic memory disorders are pathognomonic or specific of a particular group of patients with schizophrenia.
Kindlmann, Gordon; Chiw, Charisee; Seltzer, Nicholas; Samuels, Lamont; Reppy, John
2016-01-01
Many algorithms for scientific visualization and image analysis are rooted in the world of continuous scalar, vector, and tensor fields, but are programmed in low-level languages and libraries that obscure their mathematical foundations. Diderot is a parallel domain-specific language that is designed to bridge this semantic gap by providing the programmer with a high-level, mathematical programming notation that allows direct expression of mathematical concepts in code. Furthermore, Diderot provides parallel performance that takes advantage of modern multicore processors and GPUs. The high-level notation allows a concise and natural expression of the algorithms and the parallelism allows efficient execution on real-world datasets.
Parallel computation with the force
NASA Technical Reports Server (NTRS)
Jordan, H. F.
1985-01-01
A methodology, called the force, supports the construction of programs to be executed in parallel by a force of processes. The number of processes in the force is unspecified, but potentially very large. The force idea is embodied in a set of macros which produce multiproceossor FORTRAN code and has been studied on two shared memory multiprocessors of fairly different character. The method has simplified the writing of highly parallel programs within a limited class of parallel algorithms and is being extended to cover a broader class. The individual parallel constructs which comprise the force methodology are discussed. Of central concern are their semantics, implementation on different architectures and performance implications.
Assurance Cases for Proofs as Evidence
NASA Technical Reports Server (NTRS)
Chaki, Sagar; Gurfinkel, Arie; Wallnau, Kurt; Weinstock, Charles
2009-01-01
Proof-carrying code (PCC) provides a 'gold standard' for establishing formal and objective confidence in program behavior. However, in order to extend the benefits of PCC - and other formal certification techniques - to realistic systems, we must establish the correspondence of a mathematical proof of a program's semantics and its actual behavior. In this paper, we argue that assurance cases are an effective means of establishing such a correspondence. To this end, we present an assurance case pattern for arguing that a proof is free from various proof hazards. We also instantiate this pattern for a proof-based mechanism to provide evidence about a generic medical device software.