Science.gov

Sample records for coast geopressured aquifers

  1. Uranium geochemistry in geopressured-geothermal aquifers of the U.S. Gulf Coast

    USGS Publications Warehouse

    Kraemer, T.F.; Kharaka, Y.K.

    1986-01-01

    Formation water from U.S. Gulf Coast geopressured-geothermal sandstone aquifers has been analyzed to determine the geochemistry of uranium in these systems. Results of chemical analyses and chemical equilibrium modeling indicate the formation waters are in equilibrium with uraninite (UO2) and coffinite (USiO4). The 234U 238U activity ratios in the formation waters range from 1.06 to 1.69. These isotopic data suggest that at formation temperatures uranium is continually reequilibrating chemically and isotopically between water, a solid phase of either UO2 or USiO4 and a component of 234U supplied to solution from the aquifer matrix material by alpha recoil processes. ?? 1986.

  2. United States Gulf Coast geopressured-geothermal program. Annual report, 1 November 1980-31 October 1981

    SciTech Connect

    Dorfman, M.H.; Morton, R.A.; Dunlap, H.F.; Frederick, D.O.; Gray, K.E.; Peters, E.J.; Sepehrnoori, K.; Thompson, T.W.

    1982-07-01

    The following are included: objectives, overview, coordination assistance, compaction measurements on Texas Gulf Coast Sandstones and Shales; US Gulf Coast Geopressured-Geothermal Aquifer simulation, Preliminary Review of Subsidence Insurance Issues, Geopressured-Geothermal Information System, and Study of Log Derived Water Resistivity Values in Geopressured Geothermal Formations. (MHR)

  3. Continuity and internal properties of Gulf Coast sandstones and their implications for geopressured fluid production

    SciTech Connect

    Morton, R.A.; Ewing, T.E.; Tyler, N.

    1983-01-01

    The intrinsic properties of the genetic sandstone units that typify many geopressured geothermal aquifers and hydrocarbon reservoirs in the Gulf Coast region were systematically investigated classified, and differentiated. The following topics are coverd: structural and stratigraphic limits of sandstone reservoirs, characteristics and dimensions of Gulf Coast sandstones; fault-compartment areas; comparison of production and geologic estimates of aquifer fluid volume; geologic setting and reservoir characteristics, Wells of Opportunity; internal properties of sandstones; and implications for geopressured fluid production. (MHR)

  4. Continuity and internal properties of Gulf Coast sandstones and their implications for geopressured energy development. Annual report, November 1, 1980-October 31, 1981

    SciTech Connect

    Morton, R.A.; Ewing, T.E.; Tyler, N.

    1982-06-01

    Systematic investigation, classification, and differentiation of the intrinsic properties of genetic sandstone units that typify many geopressured geothermal aquifers and hydrocarbon reservoirs of the Gulf Coast region are provided. The following are included: structural and stratigraphic limits of sandstone reservoirs; characteristics and dimensions of Gulf Coast Sandstones; fault compartment areas; comparison of production and geologic estimates of aquifer volume; geologic setting and reservoir characteristics, wells of opportunity; internal properties of sandstones and implications for geopressured energy development. (MHR)

  5. Analysis of Sweet Lake geopressured-geothermal aquifer

    SciTech Connect

    Andrade, M.; Rago, F.M.; Ohkuma, H.; Sepehrnoori, K.; Peters, E.; Dorfman, M.

    1983-01-01

    The Sweet Lake geopressured-geothermal aquifer, located southeast of Lake Charles, Louisiana, is an aquifer modeled by a two-dimensional geopressured-geothermal simulator. This aquifer is a sandstone within the Frio formation at depths between 15,000 to 15,640 ft with a net porous thickness of 250 ft, a calculated in-situ permeability (from drawdown data) of 17 md, an estimated porosity of 24 percent, a uniaxial compaction coefficient of 4.5 x 10/sup -7/ psi/sup -1/ and a solution gas-water ratio of 11 SCF/STB all at the initial reservoir pressure of 12,060 psi. These parameters are typically pressure sensitive in geopressured-geothermal aquifers and are critically important to aquifer performance. Several simulation experiments are conducted which investigate the effects of varying initial values for these parameters with the experimentally determined values as means. The simulations give both optimistic and pessimistic expectations for aquifer performance. The expected life of the geopressured-geothermal well is reported for each simulation.

  6. Analysis of Sweet Lake geopressured-geothermal aquifer

    SciTech Connect

    Andrade, M.; Rago, F.; Ohkuma, H.; Sepehrnoori, K.; Peters, E.; Dorfman, M.

    1982-01-01

    The Sweet Lake geopressured-geothermal aquifer, located southeast of Lake Charles, Louisiana, is modeled by a two-dimensional geopressured-geothermal simulator. This aquifer is a sandstone within the Frio formation at depths between 15,000 to 15,640 ft with a net porous thickness of 250 ft, a calculated in-situ permeability (from drawdown data) of 17 md, an estimated porosity of 24%, a uniaxial compaction coefficient of 4.5 x 10/sup -7/ psi/sup -1/ and a solution gas-water ratio of 11 SCF/STB all at the initial reservoir pressure of 12,060 psi. These parameters are typically pressure sensitive in geopressured-geothermal aquifers and are critically important to aquifer performance. Several simulation experiments are conducted which investigate the effects of varying initial values for these parameters with the experimentally determined values as means. The simulations give both optimistic and pessimistic expectations for aquifer performance. The expected life of the geopressured-geothermal well is reported for each simulation.

  7. Depositional setting, structural style, and sandstone distribution in three geopressured geothermal areas, Texas Gulf Coast

    SciTech Connect

    Winker, C.D.; Morton, R.A.; Ewing, T.E.; Garcia, D.D.

    1981-10-01

    Three areas in the Texas Gulf Coast region with different depositional settings, structural styles, and sandstone distribution were studied with well log and seismic data to evaluate some of the controls on subsurface conditions in geopressured aquifers. Structural and stratigraphic interpretations were made primarily on the basis of well log correlations. Seismic data confirm the log interpretations but also are useful in structure mapping at depths below well control.

  8. Gulf Coast Geopressured-Geothermal Program Summary Report Compilation. Volume I, Executive Summary

    SciTech Connect

    Chacko, J. John; Maciasz, Gina; Harder, Brian J.

    1998-06-01

    The significant accomplishments of this program included (1) identification of the geopressured-geothermal onshore fairways in Louisiana and Texas, (2) determination that high brine flow rates of 20,000--40,000 barrels a day can be obtained for long periods of time, (3) brine, after gas extraction can be successfully reinjected into shallow aquifers without affecting the surface waters or the fresh water aquifers, (4) no observable subsidence or microseismic activity was induced due to the subsurface injection of brine, and no detrimental environmental effects attributable to geopressured--geothermal well testing were noticed, (5) sanding can be controlled by reducing flow rates, (6) corrosion controlled with inhibitors, (7) scaling controlled by phosphonate scale inhibitors, (8) demonstrated that production of gas from saturated brine under pressure was viable and (9) a hybrid power system can be successfully used for conversion of the thermal and chemical energy contained in the geopressured-geothermal resource for generation of electricity. The U. S. Department of Energy's geopressured-geothermal research program in the Gulf Coast achieved many significant findings and disproved and clarified many historical perceptions that had previously limited industry's interest in developing this resource. Though in today's economic market it may not be commercially profitable to exploit this resource, the rapid advance of technology in all its different aspects could potentially make this resource attractive in the not too distant future. The ideal situation would involve the development of a total energy system in which all three associated forms of energy--chemical, thermal and mechanical are utilized. The extraction of gas from brine combined with the large number of potential direct and indirect uses of this resource will add to its economic profitability. This U.S. DOE's visionary research program has essentially laid the foundations for characterization of this

  9. Identification of geopressured occurrences outside of the Gulf Coast. Final report, Phase I

    SciTech Connect

    Strongin, O.

    1980-09-30

    As an extension of its efforts in the development of the geopressured resources of the Gulf Coast, the Division of Geothermal Energy of the US Department of Energy is interested in determining the extent and characteristics of geopressured occurrences in areas outside the Gulf Coast. The work undertaken involved a literature search of available information documenting such occurrences. Geopressured reservoirs have been reported from various types of sedimentary lithologies representing virtually all geologic ages and in a host of geologic environments, many of which are unlike those of the Gulf Coast. These include many Rocky Mountain basins (Green River, Big Horn, Powder River, Wind River, Uinta, Piceance, Denver, San Juan), Mid-Continent basins (Delaware, Anadorko, Interior Salt, Williston, Appalachian), California basins (Sacramento, San Joaquin, Los Angeles, Ventura, Coast Ranges), Alaskan onshore and offshore basins, Pacific Coast offshore basins, and other isolated occurrences, both onshore and offshore.

  10. Gulf Coast geopressured-geothermal program summary report compilation. Volume 1: Executive summary

    SciTech Connect

    John, C.J.; Maciasz, G.; Harder, B.J.

    1998-06-01

    The significant accomplishments of this program included (1) identification of the geopressured-geothermal onshore fairways in Louisiana and Texas, (2) determination that high brine flow rates of 20,000--40,000 barrels a day can be obtained for long periods of time, (3) brine, after gas extraction can be successfully reinjected into shallow aquifers without affecting the surface waters or the fresh water aquifers, (4) no observable subsidence or microseismic activity was induced due to the subsurface injection of brine, and no detrimental environmental effects attributable to geopressured-geothermal well testing were noticed, (5) sanding can be controlled by reducing flow rates, (6) corrosion controlled with inhibitors, (7) scaling controlled by phosphonate scale inhibitors, (8) demonstrated that production of gas from saturated brine under pressure was viable and (9) a hybrid power system can be successfully used for conversion of the thermal and chemical energy contained in the geopressured-geothermal resource for generation of electricity.

  11. Identification of geopressured occurrences outside of the Gulf Coast

    SciTech Connect

    Strongin, O.

    1981-03-05

    The work focused on the occurrences of geopressures in Appalachia and selected California basins. In the former region, where geopressures have been observed, the pressure gradients for the most part were only slightly above normal as in the case of the Oriskany formation of Devonian age; this unit was also characterized by extremely high salinity. The one notable exception was in the Rome trough of West Virginia where Cambrian beds at depths below 10,000 feet display very high geopressures, approaching the lithostatic gradient, and the waters are only moderately saline. Though the geothermal gradient throughout Appalachian is relatively low, even in the Rome trough, the pressure, temperature and salinity values in this area indicate that the methane content of the Cambrian formation waters is in the range of 30 to 35 SCF/barrel. The two California areas researched included the contiguous Sacramento and San Joaquin Valleys. In the first, geopressures have been principally encountered in the Forbes formation of Cretaceous age, often at very shallow depths. Further waters are invariably characterized by very low salinity, far below the salinity of normal sea water, while the geothermal gradient in apparently higher in geopressured than in normally pressured zones. In the San Joaquin Valley, geopressures are particularly noteworthy in at least two formations of Miocene age at depths generally greater than those of the Forbes. The formation waters are likewise low in salinity; however, the geothemal gradient, especially in the geopressured zones on the west side of the valley, can be extremely high, up to twice as much as the normal temperature gradient. In view of these conditions, it is estimated that in the western San Joaquin Valley the methane content of geopressured formation waters will range from 30 to 40 SCF/barrel while in the Sacramento Valley, the methane content is estimated to be 20 to 25 SCF/barrel.

  12. Depositional setting, structural style, and sandstone distribution in three geopressured geothermal areas, Texas Gulf Coast

    SciTech Connect

    Winker, C.D.; Morton, R.A.; Ewing, T.E.; Garcia, D.D.

    1983-01-01

    Three areas in the Texas Gulf Coastal Plain were studied using electric logs and seismic-reflection data to interpret their depositional and structural history and to compare their potential as geopressured-geothermal reservoirs. The Cuero study area, on the lower Wilcox (upper Paleocene) growth-fault trend, is characterized by closely and evenly spaced, subparallel, down-to-the-basin growth faults, relatively small expansion ratios, and minor block rotation. Distributary-channel sandstones in the geopressured lower Wilcox Group of the South Cook fault block appear to be the best geothermal aquifers in the Cuero area. The Blessing study area, on the lower Frio (Oligocene) growth-fault trend, shows wider and more variable fault spacing and much greater expansion ratios and block rotation, particularly during early Frio time. Thick geopressured sandstone aquifers are laterally more extensive in the Blessing area than in the Cuero area. The Pleasant Bayou study area, like the Blessing area, is on the Frio growth-fault trand, and its early structural development was similar rapid movement of widely spaced faults resulted in large expansion ratios and major block rotation. However, a late-stage pattern of salt uplift and withdrawal complicated the structural style. Thick geopressured lower Frio sandstone aquifers are highly permeable and laterally extensive, as in the Blessing area. In all three areas, geopressured aquifers were created where early, rapid movement along down-to-the-basin growth faults juxtaposed shallow-water sands against older shales, probably deposited in slope environments. Major transgressions followed the deposition of reservoir sands and probably also influenced the hydraulic isolation that allowed the build up of abnormal pressures. 26 refs., 49 figs., 8 tabs.

  13. Geopressured geothermal resource of the Texas and Louisiana Gulf Coast: a technology characterization and environmental assessment

    SciTech Connect

    Usibelli, A.; Deibler, P.; Sathaye, J.

    1980-12-01

    Two aspects of the Texas and Louisiana Gulf Coast geopressured geothermal resource: (1) the technological requirements for well drilling, completion, and energy conversion, and, (2) the environmental impacts of resource exploitation are examined. The information comes from the literature on geopressured geothermal research and from interviews and discussions with experts. The technology characterization section emphasizes those areas in which uncertainty exists and in which further research and development is needed. The environmental assessment section discusses all anticipated environmental impacts and focuses on the two largest potential problems: (a) subsidence and (b) brine disposal.

  14. 234U and 238U concentration in brine from geopressured aquifers of the northern Gulf of Mexico basin

    USGS Publications Warehouse

    Kraemer, T.F.

    1981-01-01

    The 234U and 238U concentration in brine from six Gulf Coast geopressured aquifers has been determined. The results reveal very low uranium concentrations (from 0.003 to 0.03 ??g/l) and uranium activity ratios slightly greater than unity (from 1.06 to 1.62). Reducing conditions within the aquifers are responsible for the low uranium concentrations. The uranium activity ratios observed are well below those calculated using theoretical considerations of alpha-particle recoil effects. This can be explained by interference with alpha-recoil nuclides entering the liquid phase as a result of quartz overgrowths on sand grains and high-temperature re-equilibration that tends to minimize the effects of the alpha-recoil process. The fact that the uranium activity ratios of the brines are slightly greater than unity instead of the equilibrium value of 1.000 indicates that either the alpha particle recoil blocking and re-equlibration effects are not complete or that another process is operative that enriches the fluid in excess 234U by selectively removing uranium from radiation induced damage sites in the mineral (sand grain) matrix. ?? 1981.

  15. Analysis of three geopressured geothermal aquifer-natural gas fields; Duson Hollywood and Church Point, Louisiana

    SciTech Connect

    Rogers, L.A.; Boardman, C.R.

    1981-05-01

    The available well logs, production records and geological structure maps were analyzed for the Hollywood, Duson, and Church Point, Louisiana oil and gas field to determine the areal extent of the sealed geopressured blocks and to identify which aquifer sands within the blocks are connected to commercial production of hydrocarbons. The analysis showed that over the depth intervals of the geopressured zones shown on the logs essentially all of the sands of any substantial thickness had gas production from them somewhere or other in the fault block. It is therefore expected that the sands which are fully brine saturated in many of the wells are the water drive portion of the producing gas/oil somewhere else within the fault block. In this study only one deep sand was identified, in the Hollywood field, which was not connected to a producing horizon somewhere else in the field. Estimates of the reservoir parameters were made and a hypothetical production calculation showed the probable production to be less than 10,000 b/d. The required gas price to profitably produce this gas is well above the current market price.

  16. Radon in unconventional natural gas from gulf coast geopressured-geothermal reservoirs

    USGS Publications Warehouse

    Kraemer, T.F.

    1986-01-01

    Radon-222 has been measured in natural gas produced from experimental geopressured-geothermal test wells. Comparison with published data suggests that while radon activity of this unconventional natural gas resource is higher than conventional gas produced in the gulf coast, it is within the range found for conventional gas produced throughout the U.S. A method of predicting the likely radon activity of this unconventional gas is described on the basis of the data presented, methane solubility, and known or assumed reservoir conditions of temperature, fluid pressure, and formation water salinity.

  17. Natural injection of geopressured fluid possible

    SciTech Connect

    Foster, J.W.

    1984-09-24

    Geopressured zones lie deep along the Gulf Coast from Louisiana into Mexico, onshore and offshore. An appraisal of the reservoir physics of a typical field indicated that mild thermal stimulation from hot water sweep and elevation of formation pressures and hydraulic gradients can be achieved from the natural injection of deep geopressured fluid. Waters with temperatures upwards of 320/sup 0/F. and with several thousand psi pressure potential at injection depths are available from aquifers along the geopressured belt. Certain oil fields, however, are situated where geopressured sands are absent. From a geoengineering perspective, it seems to be technically feasible to tap geopressured fluid in quantity and to inject that fluid into a pay zone by a single well designed to accomplish both functions simultaneously. There may be an added bonus. Geopressured waters of the Gulf Coast are often rich in dissolved methane. This gas would be recovered at the enhanced-production wells; perhaps better yet, a portion of the fluid's methane is likely to become free gas within the pay sands.

  18. Properties of geopressured brines and wells in the Gulf Coast and opportunities for industrial/research participation

    SciTech Connect

    Negus-de Wys, J.

    1989-01-01

    Geopressured reservoirs exhibit pressure gradients in excess of the normal hydrostatic gradient. (In the Gulf Coast area the normal gradient is 0.465 psi/ft.) Pressures may approach lithostatic pressure and have been measured as high as 1.05 psi/ft in the Gulf Coast area. Geopressured basins exist worldwide and in a number of US locations, east, west, north and south. The Gulf Coast area has been studied extensively and is the subject of the DOE geopressured-geothermal research at present. Present industrial interest in the Pleasant Bayou and Hulin wells include: desalination plants, an economic study by a power company for regional use, use of generated electricity by a coalition of towns, aquaculture (catfish farming) research program, and an unsolicited proposal for enhanced oil recovery of heavy oil. Direct uses of the hot brine cover dozens of industries and processes. An example of multiple uses in the USSR is shown. A research spin-off: a sensitive in-line benzene monitor has been designed by USL and will be tested in the near future. An in-line pH monitor is also under development for the harsh conditions of the geopressured-geothermal wells. 24 refs., 12 figs.

  19. Properties of Geopressured Brines and Wells in the Gulf Coast and Opportunities for Industrial/Research Participation

    SciTech Connect

    Wys, J. Nequs- de

    1989-03-21

    Geopressured reservoirs exhibit pressure gradients in excess of the normal hydrostatic gradient. In the Gulf Coast area the normal gradient is 0.465 psi/ft. Pressures may approach lithostatic pressure and have been measured as high as 1.05 psi/ft in the Gulf Coast area. Geopressured basins exist worldwide and in a number of U.S. locations, east, west, north and south. The Gulf Coast area has been studied extensively and is the subject of the DOE geopressured-geothermal research at present. The assumed ranges in resource characteristics include: depth from -12,000 to > -20,000 feet, brine flow rate from 20,000 to 40,000 bpd, temperature from 300 to 400 F, bottomhole pressure from 12,000 to 18,500 psi; salinity from 20,000 to 200,000 mg/L, gas-water ratio from 40 to 80 scf/bbl., and condensate from a trace to production. Energy in the geopressured resource includes gas, thermal, and hydraulic energy. It has been estimated that there are 6,000 quads of methane and 11,000 quads of thermal energy in the Gulf Coast area geopressured-geothermal reservoirs. Estimates run as high as 50,000 quad for the thermal energy (Wallace et al, 1978). Present industrial interest in the Pleasant Bayou and Hulin wells includes: desalination plants, an economic study by a power company for regional use, use of generated electricity by a coalition of towns, aquaculture (catfish farming) research program, and an unsolicited proposal for enhanced oil recovery of heavy oil. Direct uses of the hot brine cover dozens of industries and processes. An example of multiple uses in the USSR is shown. Outside agency interest includes the U.S.G.S., N.S.F., G.R.I., and possibly other areas within DOE. A research spin-off: a sensitive in-line benzene monitor has been designed by USL and will be tested in the near future. An in-line pH monitor is also under development for the harsh conditions of the geopressured-geothermal wells.

  20. An Evaluation of the Available Energy Potential of the Gulf Coast Geopressured Zones

    SciTech Connect

    Swanson, R.K.; Osoba, J. S.; Hankin, J.W.

    1980-12-01

    The geopressured zones presently under serious study in the U.S. are tertiary sediments in the Gulf Coastal basin which are water saturated and exhibit pressures significantly greater than hydrostatic. These sediments are primarily shale, interbedded with sandstone. The top of the geopressured zone is frequently near 10,000 ft. or so, and extends to indeterminate depths. The water contained in these zones is at a moderately elevated temperature and, more significantly, appears to contain dissolved methane at near-saturation values. Conceptually, wells drilled into the geopressured zone might be expected to produce water without pumping, due to the high pressures. The dissolved methane could then be separated at the surface and used conventionally as natural gas. The water may contain sufficient heat to provide a useful source of geothermal energy, and the hydraulic energy might also provide useful work. Development of the geopressured/geothermal resource is largely dependent upon production characteristics of geopressured reservoirs. These in turn are intimately related to properties of the formations, and can be defined within reasonable limits.

  1. Failure studies on Texas Gulf Coast geopressured-geothermal sandstones and shales

    SciTech Connect

    Jogi, P.N.; Llewellyn, B.C.; Gray, K.E.

    1981-10-01

    Triaxial compression tests were run at room temperature to determine failure characteristics of rocks extracted from the geopressured-geothermal reservoir underlying Brazoria County. Effects of both confining and pore fluid pressure were considered. Like all other rocks, ultimate strength was found to increase with increase in effective confining pressure. Partial ductile behavior was observed at pressures above 5000 psi. In general rocks from this reservoir were found to be considerably weaker than corresponding well compacted sandstones.

  2. Wilcox sandstone reservoirs in the deep subsurface along the Texas Gulf Coast: their potential for production of geopressured geothermal energy. Report of Investigations No. 117

    SciTech Connect

    Debout, D.G.; Weise, B.R.; Gregory, A.R.; Edwards, M.B.

    1982-01-01

    Regional studies of the lower Eocene Wilcox Group in Texas were conducted to assess the potential for producing heat energy and solution methane from geopressured fluids in the deep-subsurface growth-faulted zone. However, in addition to assembling the necessary data for the geopressured geothermal project, this study has provided regional information of significance to exploration for other resources such as lignite, uranium, oil, and gas. Because the focus of this study was on the geopressured section, emphasis was placed on correlating and mapping those sandstones and shales occurring deeper than about 10,000 ft. The Wilcox and Midway Groups comprise the oldest thick sandstone/shale sequence of the Tertiary of the Gulf Coast. The Wilcox crops out in a band 10 to 20 mi wide located 100 to 200 mi inland from the present-day coastline. The Wilcox sandstones and shales in the outcrop and updip shallow subsurface were deposited primarily in fluvial environments; downdip in the deep subsurface, on the other hand, the Wilcox sediments were deposited in large deltaic systems, some of which were reworked into barrier-bar and strandplain systems. Growth faults developed within the deltaic systems, where they prograded basinward beyond the older, stable Lower Cretaceous shelf margin onto the less stable basinal muds. Continued displacement along these faults during burial resulted in: (1) entrapment of pore fluids within isolated sandstone and shale sequences, and (2) buildup of pore pressure greater than hydrostatic pressure and development of geopressure.

  3. Gulf Coast geopressured-geothermal program summary report compilation. Volume 4: Bibliography (annotated only for all major reports)

    SciTech Connect

    John, C.J.; Maciasz, G.; Harder, B.J.

    1998-06-01

    This bibliography contains US Department of Energy sponsored Geopressured-Geothermal reports published after 1984. Reports published prior to 1984 are documented in the Geopressured Geothermal bibliography Volumes 1, 2, and 3 that the Center for Energy Studies at the University of Texas at Austin compiled in May 1985. It represents reports, papers and articles covering topics from the scientific and technical aspects of geopressured geothermal reservoirs to the social, environmental, and legal considerations of exploiting those reservoirs for their energy resources.

  4. Gulf Coast geopressured-geothermal program summary report compilation. Volume 3: Applied and direct uses, resource feasibility, economics

    SciTech Connect

    John, C.J.; Maciasz, G.; Harder, B.J.

    1998-06-01

    The US Department of Energy established a geopressured-geothermal energy program in the mid 1970`s as one response to America`s need to develop alternate energy resources in view of the increasing dependence on imported fossil fuel energy. This program continued for 17 years and approximately two hundred million dollars were expended for various types of research and well testing to thoroughly investigate this alternative energy source. This volume describes the following studies: Geopressured-geothermal hybrid cycle power plant: design, testing, and operation summary; Feasibility of hydraulic energy recovery from geopressured-geothermal resources: economic analysis of the Pelton turbine; Brine production as an exploration tool for water drive gas reservoirs; Study of supercritical Rankine cycles; Application of the geopressured-geothermal resource to pyrolytic conversion or decomposition/detoxification processes; Conclusions on wet air oxidation, pyrolytic conversion, decomposition/detoxification process; Co-location of medium to heavy oil reservoirs with geopressured-geothermal resources and the feasibility of oil recovery using geopressured-geothermal fluids; Economic analysis; Application of geopressured-geothermal resources to direct uses; Industrial consortium for the utilization of the geopressured-geothermal resource; Power generation; Industrial desalination, gas use and sales, pollutant removal, thermal EOR, sulfur frasching, oil and natural gas pipelining, coal desulfurization and preparation, lumber and concrete products kilning; Agriculture and aquaculture applications; Paper and cane sugar industries; Chemical processing; Environmental considerations for geopressured-geothermal development. 27 figs., 25 tabs.

  5. Geopressured geothermal bibliography (Geopressure Thesaurus)

    SciTech Connect

    Hill, T.R.; Sepehrnoori, K.

    1981-08-01

    This thesaurus of terminology associated with the geopressured geothermal energy field has been developed as a part of the Geopressured Geothermal Information System data base. A thesaurus is a compilation of terms displaying synonymous, hierarchical, and other relationships between terms. These terms, which are called descriptors, constitute the special language of the information retrieval system, the system vocabulary. The Thesaurus' role in the Geopressured Geothermal Information System is to provide a controlled vocabulary of sufficient specificity for subject indexing and retrieval of documents in the geopressured geothermal energy field. The thesauri most closely related to the Geopressure Thesaurus in coverage are the DOE Energy Information Data Base Subject Thesaurus and the Geothermal Thesaurus being developed at the Lawrence Berkeley Laboratory (LBL). The Geopressure Thesaurus differs from these thesauri in two respects: (1) specificity of the vocabulary or subject scope and (2) display format.

  6. Gulf Coast regional aquifer-system analysis; a Mississippi perspective

    USGS Publications Warehouse

    Grubb, H.F.

    1986-01-01

    The Gulf Coast Regional Aquifer-System Analysis is a study of regional aquifers in sediments of mostly Cenozoic age in an area of about 230,000 sq mi in the Central Plain of Alabama, Arkansas , Florida, Illinois, Kentucky, Louisiana, Mississippi, Missouri, Tennessee, and Texas, and an additional 60,000 sq mi offshore. Three aquifer systems have been identified: the Mississippi embayment aquifer system, the Texas coastal uplands aquifer system, and the coastal lowlands aquifer system. These aquifer systems thicken from < 100 ft near their updip limit to thousands of ft gulfward toward their downdip limits. The Mississippi embayment aquifer system exceeds 5,000 ft in thickness in central Louisiana and in southwestern Mississippi. The thickest area in southwestern Mississippi underlies most of the six Mississippi counties, centered around Jefferson County. The greatest thickness of the coastal lowlands aquifer system in Mississippi occurs in southern Hancock County where the system is composed of several individual aquifers and confining units. There are seven aquifers and three confining units in the Mississippi embayment aquifer system, five aquifers and two confining units in the Texas coastal uplands aquifer system, and five aquifers and two confining units in the coastal lowlands aquifer system. Most of the thicker parts of each aquifer system contain moderately saline to very saline water. Water in the Mississippi embayment aquifer system is moderately saline to very saline in most of a seven county area in southwestern Mississippi. About 9,600 million gal/day (gpd) of ground water was pumped from the aquifers in the study area during 1980. About 15% of that pumpage (or about 1,400 million gpd was in Mississippi, mostly from the Mississippi River Valley alluvial aquifer of the Mississippi embayment aquifer system. About 10% of the Mississippi pumpage, or 140 million gpd, was from the coastal lowlands aquifer system. Preliminary results from simulation of

  7. Environmental Assessment: Geothermal Energy Geopressure Subprogram. Gulf Coast Well Drilling and Testing Activity (Frio, Wilcox, and Tuscaloosa Formations, Texas and Louisiana)

    SciTech Connect

    1981-09-01

    The Department of Energy (DOE) has initiated a program to evaluate the feasibility of developing the geothermal-geopressured energy resources of the Louisiana-Texas Gulf Coast. As part of this effort, DOE is contracting for the drilling of design wells to define the nature and extent of the geopressure resource. At each of several sites, one deep well (4000-6400 m) will be drilled and flow tested. One or more shallow wells will also be drilled to dispose of geopressured brines. Each site will require about 2 ha (5 acres) of land. Construction and initial flow testing will take approximately one year. If initial flow testing is successful, a continuous one-year duration flow test will take place at a rate of up to 6400 m{sup 3} (40,000 bbl) per day. Extensive tests will be conducted on the physical and chemical composition of the fluids, on their temperature and flow rate, on fluid disposal techniques, and on the reliability and performance of equipment. Each project will require a maximum of three years to complete drilling, testing, and site restoration.

  8. Fingerprinting groundwater salinity sources in the Gulf Coast Aquifer System, USA

    NASA Astrophysics Data System (ADS)

    Chowdhury, Ali H.; Scanlon, Bridget R.; Reedy, Robert C.; Young, Steve

    2017-07-01

    Understanding groundwater salinity sources in the Gulf Coast Aquifer System (GCAS) is a critical issue due to depletion of fresh groundwater and concerns for potential seawater intrusion. The study objective was to assess sources of groundwater salinity in the GCAS using ˜1,400 chemical analyses and ˜90 isotopic analyses along nine well transects in the Texas Gulf Coast, USA. Salinity increases from northeast (median total dissolved solids (TDS) 340 mg/L) to southwest (median TDS 1,160 mg/L), which inversely correlates with the precipitation distribution pattern (1,370- 600 mm/yr, respectively). Molar Cl/Br ratios (median 540-600), depleted δ2H and δ18O (-24.7‰, -4.5‰) relative to seawater (Cl/Br ˜655 and δ2H, δ18O 0‰, 0‰, respectively), and elevated 36Cl/Cl ratios (˜100), suggest precipitation enriched with marine aerosols as the dominant salinity source. Mass balance estimates suggest that marine aerosols could adequately explain salt loading over the large expanse of the GCAS. Evapotranspiration enrichment to the southwest is supported by elevated chloride concentrations in soil profiles and higher δ18O. Secondary salinity sources include dissolution of salt domes or upwelling brines from geopressured zones along growth faults, mainly near the coast in the northeast. The regional extent and large quantities of brackish water have the potential to support moderate-sized desalination plants in this location. These results have important implications for groundwater management, suggesting a current lack of regional seawater intrusion and a suitable source of relatively low TDS water for desalination.

  9. Computer simulation of production from geothermal-geopressured aquifers. Final report, October 1, 1978-January 31, 1983

    SciTech Connect

    Doherty, M.G.; Poonawala, N.A.

    1983-07-01

    This is the final report on research conducted to improve the technical and scientific understanding of geopressured and geothermal resources. The effort utilized a computer to interpret the results of well tests and compile data on gas solubility in brine and the viscosity of brine. A detailed computer reservoir study of a geopressured test well that had been abandoned as a dry hole but became a commercial producer of hydrocarbons is presented. A number of special topical reports pertaining to test activities performed on Department of Energy test wells (MG-T/DOE Amoco Fee No. 1 Well, Leroy Sweezy No. 1 Well, and Pleasant Bayou No. 2 Well) are appended to the report. A referenced article written under this study that appeared in the Journal of Petroleum Technology is also reproduced.

  10. Gulf Coast geopressured-geothermal program summary report compilation. Volume 2-A: Resource description, program history, wells tested, university and company based research, site restoration

    SciTech Connect

    John, C.J.; Maciasz, G.; Harder, B.J.

    1998-06-01

    The US Department of Energy established a geopressured-geothermal energy program in the mid 1970`s as one response to America`s need to develop alternate energy resources in view of the increasing dependence on imported fossil fuel energy. This program continued for 17 years and approximately two hundred million dollars were expended for various types of research and well testing to thoroughly investigate this alternative energy source. This volume describes the following studies: Geopressured-geothermal resource description; Resource origin and sediment type; Gulf Coast resource extent; Resource estimates; Project history; Authorizing legislation; Program objectives; Perceived constraints; Program activities and structure; Well testing; Program management; Program cost summary; Funding history; Resource characterization; Wells of opportunity; Edna Delcambre No. 1 well; Edna Delcambre well recompletion; Fairfax Foster Sutter No. 2 well; Beulah Simon No. 2 well; P.E. Girouard No. 1 well; Prairie Canal No. 1 well; Crown Zellerbach No. 2 well; Alice C. Plantation No. 2 well; Tenneco Fee N No. 1 well; Pauline Kraft No. 1 well; Saldana well No. 2; G.M. Koelemay well No. 1; Willis Hulin No. 1 well; Investigations of other wells of opportunity; Clovis A. Kennedy No. 1 well; Watkins-Miller No. 1 well; Lucien J. Richard et al No. 1 well; and the C and K-Frank A. Godchaux, III, well No. 1.

  11. Computer simulation of production from geothermal-geopressured aquifers. Final report, October 1, 1978 through January 31, 1983

    SciTech Connect

    Doherty, M.G.; Poonawala, N.A.

    1983-07-01

    The effort utilized a computer to interpret the results of well tests and compile data on gas solubility in brine and the viscosity of brine. A detailed computer reservoir study of a geopressured test well that had been abandoned as a dry hole but became a commercial producer of hydrocarbons is presented. A number of special topical reports pertaining to test activities performed on Department of Energy test wells (MG-T/DOE Amoco Fee No. 1 Well, Leroy Sweezy No. 1 Well, and Pleasant Bayou No. 2 Well) are appended. A referenced article written under this study that appeared in the Journal of Petroleum Technology is also reproduced.

  12. Porosity and pressure: Role of compaction disequilibrium in the development of geopressures in a Gulf Coast Pleistocene basin

    SciTech Connect

    Hart, B.S.; Flemings, P.B.; Deshpande, A. )

    1995-01-01

    Measured pressures in Pleistocene strata of the Eugene Island block 330 area of offshore Louisiana reach approx. nine-tenths of the lithostatic pressures below 2 km depth; three-fourths of these geopressures are due to compaction disequilibrium. We show the relation between effective stress and porosity for compacting sediments to be exponential in shallow, normally pressured strata, then use the relation to calculate fluid pressure at depth in geopressured strata. Measured pressures below 2 km exceed our predicted values. A plot of effective stress vs. porosity demonstrates that compaction disequilibrium accounts for about three-quarters of the overpressures. We infer that the remainder must be due to pore-pressure generation at depth that occurred after the rocks reached their present porosity. 22 refs., 5 figs.

  13. Hydrology of the Texas Gulf Coast aquifer systems

    USGS Publications Warehouse

    Ryder, Paul D.; Ardis, Ann F.

    1991-01-01

    A complex, multilayered ground-water flow system exists in the Coastal Plain sediments of Texas. The Tertiary and Quaternary clastic deposits have an areal extent of 114,000 square miles onshore and in the Gulf of Mexico. Two distinct aquifer systems are recognized within the sediments, which range in thickness from a few feet to more than 12,000 feet The older system--the Texas coastal uplands aquifer system-consists of four aquifers and two confining units in the Claiborne and Wilcox Groups. It is underlain by the practically impermeable Midway confining unit or by the top of the geopressured zone. It is overlain by the nearly impermeable Vicksburg-Jackson confining unit, which separates it from the younger coastal lowlands aquifer system. The coastal lowlands aquifer system consists of five permeable zones and two confining units that range in age from Oligocene to Holocene. The hydrogeologic units of both systems are exposed in bands that parallel the coastline. The units dip and thicken toward the Gulf. Quality of water in the aquifer systems is highly variable, with dissolved solids ranging from less than 500 to 150,000 milligrams per liter.Substantial withdrawal from the aquifer systems began in the early 1900's and increased nearly continuously into the 1970's. The increase in withdrawal was relatively rapid from about 1940 to 1970. Adverse hydrologic effects, such as saltwater encroachment in coastal areas, land-surface subsidence in the Houston-Galveston area, and long-term dewatering in the Whiter Garden area, were among some of the factors that caused pumping increases to slow or to cease in the 1970's and 1980's.Ground-water withdrawals in the study area in 1980 were about 1.7 billion gallons per day. Nearly all of the withdrawal was from four units: Permeable zones A, B, and C of Miocene age and younger, and the lower Claiborae-upper Wilcox aquifer. Ground-water levels have declined hundreds of feet in the intensively pumped areas of Houston

  14. Hydrodynamic convergence of hydropressured and geopressured zones, Central Texas, Gulf of Mexico Basin, USA

    NASA Astrophysics Data System (ADS)

    Dutton, Alan R.; Nicot, Jean-Philippe; Kier, Katherine S.

    2006-09-01

    Freshwater moving downdip in the Carrizo-Wilcox aquifer, Central Texas, USA, and saltwater and hydrocarbons moving updip from a geopressured zone come together in a groundwater convergence zone, marked by (1) a hydraulic-gradient reversal, (2) “updip” oil fields, and (3) the downdip limit of potable water beyond which there is a marked increase in salinity. Data combined from groundwater-supply and petroleum-extraction industries document the interface between the hydropressured and geopressured zones. The hydraulic-head gradient updip of the convergence zone is 0.001 to 0.002, directed toward the coast; farther downdip it is -0.02 to -0.04, directed inland. Salinity increases from <400 mg/L near the outcrop, to ˜3,000 mg/L at the downdip limit of potable water, to >100,000 mg/L in the geopressured zone. Upward-directed flow paths probably predominate in the convergence zone. The convergence zone in the study area lies within only 30-50 km of the outcrop because updip extensional faulting offsets permeable aquifer units against low-permeability strata and restricts the downdip flux of recharged water. The major elements of the convergence zone may have been in place since the Miocene development of circulation in the updip coastal aquifer following incision of river valleys and lowering of base level.

  15. The Geopressured-Geothermal Resource, research and use

    SciTech Connect

    Negus-de Wys, J.

    1990-01-01

    The Geopressured-Geothermal Resource has an estimated accessible resource base of 5700 quads of gas and 11,000 quads of thermal energy in the onshore Texas and Louisiana Gulf Coast area alone. After 15 years the program is now beginning a transition to commercialization. The program presently has three geopressured- geothermal wells in Texas and Louisiana. Supporting research in the Geopressured Program includes research on rock mechanics, logging, geologic studies, reservoir modeling, and co-location of brine and heavy oil, environmental monitoring, geologic studies, hydrocarbons associated with the geopressured brines and development of a pH monitor for harsh environments, research support in prediction of reservoir behavior, thermal enhanced oil recovery, direct use, hydraulic and thermal conversion, and use of supercritical processes and pyrolysis in detoxification. The on-going research and well operations are preparing the way to commercialization of the Geopressured-Geothermal Resource is covered in this report. 12 refs., 8 figs., 1 tab.

  16. Screening of three proposed DOE geopressured-geothermal aquifer natural gas project areas for potential conflicting commercial production: Freshwater Bayou, Lake Theriot, and Kaplan, Louisiana

    SciTech Connect

    Knutson, C.F.; Rogers, L.A.

    1982-02-01

    Three proposed DOE geopressured geothermal prospects defined by the Louisiana State University resource assessment group were screened for possible conflict with existing gas production. The analysis used the public records available at the Louisiana Department of Conservation offices in Baton Rouge and structural and statigraphic interpretations made by the L.S.U. resource assessment group. (MHR)

  17. Geopressured geothermal bibliography. Volume III. (Geopressure thesaurus). Second edition

    SciTech Connect

    Sepehrnoori, K.; Carter, F.; Schneider, R.; Street, S.; McGill, K.

    1985-05-01

    This thesaurus of terminology associated with the geopressured geothermal energy field has been developed as a part of the Geopressured Geothermal Information System data base. The subject scope includes: (1) geopressure resource assessment; (2) geology, hydrology, and geochemistry of geopressured systems; (3) geopressure exploration and exploration technology; (4) geopressured reservoir engineering and drilling technology; (5) economic aspects; (6) environmental aspects; (7) legal, institutional, and sociological aspects; (8) electrical and nonelectrical utilization; and (9) other energy sources, especially methane and other fossil fuel reserves, associated with geopressured reservoirs.

  18. Subsurface evaluation of the geopressured-geothermal Chloe Prospect, Calcasieu Parish, Louisiana

    SciTech Connect

    Kurth, R.J.

    1981-12-01

    A 123 square mile area approximately 10 miles east of Lake Charles, Louisiana, has been studied to assess its potential geopressured-geothermal resources. Subsurface information was used to study the structure and stratigraphy of the area as they related to the development of geopressured aquifers. The Middle Frio Hackberry wedge was found to contain the geopressured-geothermal reservoir sand, as well as the shales responsible for the origin and sealing of the geopressured strata. The major reservoir within the wedge is the Hackberry massive A sand.

  19. Ground-water flow in the Gulf Coast aquifer systems, south-central United States

    USGS Publications Warehouse

    Williamson, A.K.; Grubb, H.F.

    2001-01-01

    The Gulf Coast regional aquifer systems constitute one of the largest, most complicated, and most interdependent aquifer systems in the United States. Ground-water flow in a 230,000-square-mile area of the south-central United States was modeled for the effect of withdrawing freshwater at the rate of nearly 10 billion gallons per day in 1985 from regional aquifers in the Mississippi Embayment, the Texas coastal uplands, and the coastal lowlands aquifer systems. The 1985 rate of pumping was three times the average rate of recharge to the aquifers before development. The report also estimates the effects of even greater withdrawal rates in the aquifer systems. About two-thirds of the water in the aquifers is saline to brine, which complicates the modeling. Land subsidence due to water withdrawal also was modeled.

  20. United States Gulf Coast geopressured geothermal program. Special projects research and coordination assistance. Final report, 1 December 1978-30 October 1980

    SciTech Connect

    Dorfman, M.H.; Morton, R.A.

    1981-06-01

    Work for the period, December 1, 1978 through October 31, 1980, is documented. The following activities are covered: project technical coordination assistance and liaison; technical assistance for review and evaluation of proposals and contract results; technical assistance for geopressured-geothermal test wells; technical assistance, coordination, and planning of surface utilization program; legal research; and special projects. (MHR)

  1. Volume and accessibility of entrained (solution) methane in deep geopressured reservoirs - tertiary formations of the Texas Gulf Coast. Final report

    SciTech Connect

    Gregory, A.R.; Dodge, M.M.; Posey, J.S.; Morton, R.A.

    1980-10-01

    The objective of this project was to appraise the total volume of in-place methane dissolved in formation waters of deep sandstone reservoirs of the onshore Texas Gulf Coast within the stratigraphic section extending from the base of significant hydrocarbon production (8000 ft)* to the deepest significant sandstone occurrence. The area of investigation is about 50,000 mi/sup 2/. Factors that determine the total methane resource are reservoir bulk volume, porosity, and methane solubility; the latter is controlled by the temperature, pressure, and salinity of formation waters. Regional assessment of the volume and the distribution of potential sandstone reservoirs was made from a data base of 880 electrical well logs, from which a grid of 24 dip cross sections and 4 strike cross sections was constructed. Solution methane content in each of nine formations or divisions of formations was determined for each subdivision. The distribution of solution methane in the Gulf Coast was described on the basis of five reservoir models. Each model was characterized by depositional environment, reservoir continuity, porosity, permeability, and methane solubility.

  2. Environmental impact of geopressure - geothermal cogeneration facility on wetland resources and socioeconomic characteristics in Louisiana Gulf Coast region. Final report, October 10, 1983-September 31, 1984

    SciTech Connect

    Smalley, A.M.; Saleh, F.M.S.; Fontenot, M.

    1984-08-01

    Baseline data relevant to air quality are presented. The following are also included: geology and resource assessment, design well prospects in southwestern Louisiana, water quality monitoring, chemical analysis subsidence, microseismicity, geopressure-geothermal subsidence modeling, models of compaction and subsidence, sampling handling and preparation, brine chemistry, wetland resources, socioeconomic characteristics, impacts on wetlands, salinity, toxic metals, non-metal toxicants, temperature, subsidence, and socioeconomic impacts. (MHR)

  3. Hydrologic conditions in the South Coast aquifer, Puerto Rico, 2010–15

    USGS Publications Warehouse

    Torres-Gonzalez, Sigfredo; Rodriguez, Jose M.

    2016-01-15

    Water level declines reduce the thickness of freshwater in the unconfined parts of the South Coast aquifer. Additionally, the pumping-induced migration of poor-quality water from deep or seaward areas of the aquifer can contribute to reductions in the thickness of freshwater in the aquifer. The reduction in the freshwater saturated thickness of the aquifer in areas near Ponce, Juana Díaz, Salinas, and Guayama is of particular concern because the total saturated thickness of the aquifer is thinner in these areas. Total dissolved solids concentration in groundwater samples indicates a small positive trend in Ponce, Santa Isabel, Salinas, and Guayama. Diminished aquifer recharge during 2012 to 2015 and, to a lesser extent, increased groundwater withdrawals have resulted in a reduction in the freshwater saturated thickness of the aquifer. The reduction in freshwater saturated thickness of the aquifer may affect freshwater resources available for agriculture and public water supply. A prolonged time period with reduced aquifer recharge may have substantial implications for groundwater levels and fresh groundwater availability.

  4. Geopressured-Geothermal Research Program: An Overview

    SciTech Connect

    Fortuna, Raymond; Jelacic, Allan

    1989-04-01

    The geopressured-geothermal resource consists of deeply buried reservoirs of hot brine, under abnormally high pressures, that contain dissolved methane. Geopressured brine reservoirs with pressures approaching the lithostatic load are known to occur both onshore and offshore beneath the Gulf of Mexico coast, along the Pacific west coast, in Appalachia, as well as in deep sedimentary basins elsewhere in the United States. The Department of Energy (DOE) has concentrated its research on the northern Gulf of Mexico sedimentary basin (Figure 1) which consists largely of Tertiary interbedded sandstones and shales deposited in alternating deltaic, fluvial, and marine environments. Thorsen (1964) and Norwood and Holland (1974) describe three generalized depositional facies in sedimentary beds of the Gulf Coast Geosyncline (Figure 2 ): (1) a massive sandstone facies in which sandstone constitutes 50 percent o r more of the sedimentary volume; (2) an alternating sandstone and shale facies in which sandstone constitutes 15 to 35 percent of the sedimentary volume. (3) a massive shale facies in which sandstone constitutes 15 percent or less of the sedimentary volume. In general, at any given location the volume of sandstone decreases with increasing depth. The datum of higher-than-normal fluid pressures is associated with the alternating sandstone and shale facies and the massive shale facies. Faulting and salt tectonics have complicated the depositional patterns and influenced the distribution of geopressured reservoirs (Wallace et a1 1978). The sandstones in the alternating sandstone and shale facies have the greatest potential for geopressured-geothermal energy development. Due to the insulating effect of surrounding shales, temperatures of the geopressured-geothermal brines typically range from 250 F to over 350 F, and under prevailing temperature, pressure, and salinity conditions, the brine contains 20 or more cubic feet of methane per barrel. Wallace et al (1978

  5. Controlling Transport Processes in Groundwater Contamination in the North Coast Karst Aquifer of Puerto Rico

    NASA Astrophysics Data System (ADS)

    Padilla, I. Y.; Steele, K.

    2008-05-01

    The karst aquifer of the North Coast of Puerto Rico represents a significant source of water for drinking purposes, as well as ecosystem sustainability. The same characteristics making this aquifer the most productive in the island, fast infiltration and rapid flow in karst conduits, make the aquifers vulnerable highly vulnerable to contamination. Once in the ground water, organic contaminants move through the karst aquifers by complex pathways dictated by system characteristics and flow regimes. Ground water flow in karst aquifers is subscribed to two types of flow systems: conduit flow and diffuse flow. Transport in conduit-flow dominated systems tends to convey solutes rapidly through the system to a discharge or point without much attenuation. Transport in diffuse- flow systems, on the other hand, causes significant solute retardation and serves as a long-term source of contamination. Although it is common to attribute one type of predominant flow regime, most carbonate aquifers are characterized by a mixture of both flow systems. The north coast aquifer of Puerto Rico has been impacted by a large number of contaminates sites. During the last 25 years, 10 Superfund sites have been declared in the zone and others are being evaluated for inclusion in the National Priority List. The work presented herein addresses the potential impact of these sites on the extent of contamination and discusses the transport mechanisms affecting the transport and persistence of organic contaminants in the north coast aquifer of Puerto Rico. Preliminary evaluation indicates that fate and transport of these contaminants is controlled by a combinations of conduit- and diffuse-flow mechanisms, where conduits tend to concentrate water and contaminants and convey it rapidly or to "trapping" diffusive-flow zones of smaller pore-size zones.

  6. Hydrogeology of the North Coast Limestone aquifer system of Puerto Rico

    USGS Publications Warehouse

    Rodríguez-Martínez, Jesús

    1995-01-01

    The North Coast Limestone aquifer system of Puerto Rico is composed of three regional hydrogeologic units: an upper aquifer that contains an underlying saltwater zone near the coast, a middle confining unit, and a lower aquifer. The upper aquifer is unconfined, except in coastal areas where it is locally confined by fine-grained surficial deposits. The upper aquifer is mostly absent in the Rio Piedras area of northeastern Puerto Rico. The confining unit is composed of calcareous claystone, marl, chalky and silicified limestone, and locally clayey fine-grained sandstone. Test hole data indicate that the confining unit is locally leaky in the San Juan metropolitan area. An artesian zone of limited areal extent exists within the middle confining unit, in the central part of the study area. The lower aquifer mostly contains ground water under confined conditions except in the outcrop areas, where it is unconfined. The lower aquifer is thickest and most transmissive in the north-central part of the study area. Water in the lower aquifer is fresh throughout much of the area, but is brackish in some areas near San Juan and Guaynabo. West of the Rio Grande de Arecibo, the extent of the lower aquifer is uncertain. Data are insufficient to determine whether or not the existing multiple water-bearing units in this area are an extension of the more productive lower aquifer in the Manati to Arecibo area. Zones of moderate permeability exist within small lenses of volcanic conglomerate and sandstone of the San Sebastian Formation, but in general this formation is not a productive aquifer. Transmissivity values for the upper aquifer range from 200 to more than 280,000 feet squared per day. The transmissivity values for the upper aquifer generally are highest in the area between the Rio de la Plata and Rio Grande de Arecibo, where transmissivity values have been reported to exceed 100,000 feet squared per day in six locations. Transmissivity estimates for the lower aquifer are

  7. Geologic aspects of the surficial aquifer in the upper East Coast planning area, Southeast Florida

    USGS Publications Warehouse

    Miller, Wesley L.

    1980-01-01

    The Upper East Coast Planning Area, as designated by the South Florida Water Management District, consists of St. Lucie County, Martin County, and eastern Okeechobee County. The surficial aquifer is the main source of freshwater for agricultural and urban uses in the area. The geologic framework of the aquifer is displayed by contour mapping and lithologic cross sections to provide water managers with a better understanding of the natural restraints that may be imposed on future development. The surficial aquifer is primarily sand, limestone, shell, silt, and clay deposited during the Pleistocene and Pliocene Epochs. The aquifer is unconfined and under water-table conditions in most of the area, but locally, artesian conditions exits where discontinuous clay layers act as confining units. Impermeable and semipermeable clays and marls of the Tamiami (lower Pliocene) and Hawthorn Formations (Miocene) unconformably underlie the surficial aquifer and form its base. Contour lines showing the altitude of the base of the aquifer indicate extensive erosion of the Miocene sediments prior to deposition of the aquifer materials. (USGS)

  8. Gulf Coast geopressured-geothermal program summary report compilation. Volume 2-B: Resource description, program history, wells tested, university and company based research, site restoration

    SciTech Connect

    John, C.J.; Maciasz, G.; Harder, B.J.

    1998-06-01

    The US Department of Energy established a geopressured-geothermal energy program in the mid 1970`s as one response to America`s need to develop alternate energy resources in view of the increasing dependence on imported fossil fuel energy. This program continued for 17 years and approximately two hundred million dollars were expended for various types of research and well testing to thoroughly investigate this alternative energy source. This volume describes the following studies: Design well program; LaFourche Crossing; MG-T/DOE Amoco Fee No. 1 (Sweet Lake); Environmental monitoring at Sweet Lake; Air quality; Water quality; Microseismic monitoring; Subsidence; Dow/DOE L.R. Sweezy No. 1 well; Reservoir testing; Environmental monitoring at Parcperdue; Air monitoring; Water runoff; Groundwater; Microseismic events; Subsidence; Environmental consideration at site; Gladys McCall No. 1 well; Test results of Gladys McCall; Hydrocarbons in production gas and brine; Environmental monitoring at the Gladys McCall site; Pleasant Bayou No. 2 well; Pleasant Bayou hybrid power system; Environmental monitoring at Pleasant Bayou; and Plug abandonment and well site restoration of three geopressured-geothermal test sites. 197 figs., 64 tabs.

  9. Oil production, agriculture, and groundwater quality in the southeastern Gulf Coast Aquifer, Texas.

    PubMed

    Hudak, P F; Wachal, D J

    2001-12-01

    Associations between groundwater quality and land use were evaluated in the southeastern Gulf Coast Aquifer, Texas. Data from 19234 oil/gas wells and 256 water wells were mapped with a geographic information system (GIS) and statistically analyzed. Water wells near oil/gas wells had significantly higher levels of chloride, bromide, and total dissolved solids (TDS). Bromide-chloride ratios were also higher at water wells near oil/gas wells. Shallower water wells had significantly higher chloride, bromide, TDS, and nitrate concentrations. Nitrate concentrations were higher beneath cropland compared to other land uses. Results of this study suggest that oil/gas production and agriculture have impacted water quality in the Gulf Coast Aquifer.

  10. Review: Groundwater flow and transport modeling of karst aquifers, with particular reference to the North Coast Limestone aquifer system of Puerto Rico

    PubMed Central

    Ghasemizadeh, Reza; Hellweger, Ferdinand; Butscher, Christoph; Padilla, Ingrid; Vesper, Dorothy; Field, Malcolm; Alshawabkeh, Akram

    2013-01-01

    Karst systems have a high degree of heterogeneity and anisotropy, which makes them behave very differently from other aquifers. Slow seepage through the rock matrix and fast flow through conduits and fractures result in a high variation in spring response to precipitation events. Contaminant storage occurs in the rock matrix and epikarst, but contaminant transport occurs mostly along preferential pathways that are typically inaccessible locations, which makes modeling of karst systems challenging. Computer models for understanding and predicting hydraulics and contaminant transport in aquifers make assumptions about the distribution and hydraulic properties of geologic features that may not always apply to karst aquifers. This paper reviews the basic concepts, mathematical descriptions, and modeling approaches for karst systems. The North Coast Limestone aquifer system of Puerto Rico (USA) is introduced as a case study to illustrate and discuss the application of groundwater models in karst aquifer systems to evaluate aquifer contamination. PMID:23645996

  11. Review: Groundwater flow and transport modeling of karst aquifers, with particular reference to the North Coast Limestone aquifer system of Puerto Rico.

    PubMed

    Ghasemizadeh, Reza; Hellweger, Ferdinand; Butscher, Christoph; Padilla, Ingrid; Vesper, Dorothy; Field, Malcolm; Alshawabkeh, Akram

    2012-12-01

    Karst systems have a high degree of heterogeneity and anisotropy, which makes them behave very differently from other aquifers. Slow seepage through the rock matrix and fast flow through conduits and fractures result in a high variation in spring response to precipitation events. Contaminant storage occurs in the rock matrix and epikarst, but contaminant transport occurs mostly along preferential pathways that are typically inaccessible locations, which makes modeling of karst systems challenging. Computer models for understanding and predicting hydraulics and contaminant transport in aquifers make assumptions about the distribution and hydraulic properties of geologic features that may not always apply to karst aquifers. This paper reviews the basic concepts, mathematical descriptions, and modeling approaches for karst systems. The North Coast Limestone aquifer system of Puerto Rico (USA) is introduced as a case study to illustrate and discuss the application of groundwater models in karst aquifer systems to evaluate aquifer contamination.

  12. Comparison of estimated and background subsidence rates in Texas-Louisiana geopressured geothermal areas

    SciTech Connect

    Lee, L.M.; Clayton, M.; Everingham, J.; Harding, R.C.; Massa, A.

    1982-06-01

    A comparison of background and potential geopressured geothermal development-related subsidence rates is given. Estimated potential geopressured-related rates at six prospects are presented. The effect of subsidence on the Texas-Louisiana Gulf Coast is examined including the various associated ground movements and the possible effects of these ground movements on surficial processes. The relationships between ecosystems and subsidence, including the capability of geologic and biologic systems to adapt to subsidence, are analyzed. The actual potential for environmental impact caused by potential geopressured-related subsidence at each of four prospects is addressed. (MHR)

  13. Geospatial compilation of historical water-level changes in the Chicot and Evangeline aquifers 1977-2013 and Jasper aquifer 2000-13, Gulf Coast aquifer system, Houston-Galveston region, Texas

    USGS Publications Warehouse

    Johnson, Michaela R.; Linard, Joshua I.

    2014-01-01

    The U.S. Geological Survey (USGS) in cooperation with the Harris-Galveston Subsidence District, City of Houston, Fort Bend Subsidence District, Lone Star Groundwater Conservation District, and Brazoria County Groundwater Conservation District has produced an annual series of reports that depict water-level changes in the Chicot, Evangeline, and Jasper aquifers of the Gulf Coast aquifer system in the Houston-Galveston region, Texas, from 1977 to 2013. Changes are determined from water-level measurements between December and March of each year from groundwater wells screened in one of the three aquifers. Existing published maps and unpublished geographic information system (GIS) datasets were compiled into a comprehensive geodatabase of all water-level-change maps produced as part of this multiagency effort. Annual water-level-change maps were georeferenced and digitized where existing GIS data were unavailable (1979–99). Existing GIS data available for 2000–13 were included in the geodatabase. The compilation contains 121 datasets showing water-level changes for each primary aquifer of the Gulf Coast aquifer system: 56 for the Chicot aquifer (1977; 1979–2013 and 1990; 1993–2013), 56 for the Evangeline aquifer (1977; 1979–2013 and 1990; 1993–2013), and 9 for the Jasper aquifer (2000; 2005–13).

  14. HISTORICAL CONTAMINATION OF GROUNDWATER RESOURCES IN THE NORTH COAST KARST AQUIFERS OF PUERTO RICO

    PubMed Central

    Padilla, Ingrid; Irizarry, Celys; Steele, Katherine

    2012-01-01

    The North Coast Karst Aquifer System of Puerto Rico is the island’s most productive aquifer. The characteristics that make it highly productive also make it vulnerable to contamination. This research, which addresses the historical contamination of groundwater resources in the northern karst region was conducted through integration of spatial hydrogeologic and contaminant concentration data in the La Plata-Arecibo area. The study used GIS technologies and focused on phthalates and chlorinated volatile organic compounds (CVOCs) and phthalates due to their ubiquitous presence in the environment as well as their presence in listed and potential superfund sites in Puerto Rico and U.S. and potential for exposure and health impacts. Results show an extensive historical contamination of the groundwater resources in the northern karst aquifers. Long-term contamination indicates the aquifers’ large capacity for storing and releasing contaminants and reflects a long-term potential for exposure. The degradation of this important water resource has resulted in a subsequent reduction of the extraction capacity and an increase in the cost of use. PMID:24772197

  15. Structural Styles of the Wilcox and Frio Growth-Fault Trends in Texas: Constraints on Geopressured Reservoirs

    SciTech Connect

    Ewing, Thomas E.; Anderson, R. G.; Babalola, O.; Hubby, K.; Padilla y Sanchez, R.; Reed, R. S.

    1986-01-01

    The wide variability in structural styles within the growth-faulted, geopressured trends of the Texas Gulf Coast is illustrated by detailed structural maps of selected areas of the Wilcox and Frio growth-fault trends and quantified by statistical analysis of fault compartment geometries. Structural variability is a key determinant of the size of geopressured aquifers in the deep subsurface. Two major structural styles exist in the Wilcox trend. (1) In southeast and Central Texas, the trend consists of continuous, closely spaced faults that have little associated rollover despite moderate expansion of section; the fault plane flattens little with depth. Where the trend crosses the Houston Diapir Province, growth faults are localized by preexisting salt pillows; however, the salt diapirs pierced the growth-faulted horizons after the main phase of faulting, so that salt-related movement deforms the growth faults. (2) By contrast, in South Texas a narrow band of growth faults having high expansion and moderate rollover lies above and downdip of a ridge of deformed, overpressured shale but updip of a deep basin formed by withdrawal of overpressured shale. Large antithetic faults are associated with this band of faults. Frio fault systems generally display greater rollover and wider spacing than do Wilcox fault systems; however, the Frio trend displays distinctive features in each study area. At Sarita in South Texas, shale mobilization produced shale ridges, one of which localized a low-angle growth fault. Shale mobilization at Corpus Christi produced a series of large growth faults, shale-cored domal anticlines, and shale-withdrawal basins, which become younger to the east. At Blessing, major growth faults show little progradation seaward. A major early-formed growth-fault system was deformed by later salt tectonism at Pleasant Bayou. At Port Arthur, low-displacement, long-lived faults formed on a sand-poor shelf margin contemporaneously with broad salt uplifts and

  16. Bibliography on the occurrence and intrusion of saltwater in aquifers along the Atlantic Coast of the United States

    USGS Publications Warehouse

    Barlow, Paul M.; Wild, Emily C.

    2002-01-01

    Freshwater aquifers along the Atlantic coast of the United States are vulnerable to the intrusion of saltwater from saline waters that bound the aquifers along their seaward margins. Incidences of saltwater intrusion have been documented along the Atlantic coast for more than 100 years. This report provides a bibliography of published literature relating to the occurrence and intrusion of saltwater along the Atlantic coast of the United States, including all of the coastal States from Maine to Florida (including the coast of Florida along the Gulf of Mexico). The bibliography contains 549 references that date from 1896 to 2001. The bibliography contains references to books, journal articles, and government and other technical reports and maps that could be readily obtained through a scientific library. Conference papers and abstracts, unpublished manuscripts, publications in press, newspaper articles, consulting reports, and reports prepared by local or regional water companies or water districts are omitted from the bibliography.

  17. Pleasant Bayou Geopressured-Geothermal Reservoir Analysis - January 1991

    SciTech Connect

    Riney, T.D.

    1991-01-01

    Many sedimentary basins contain formations with pore fluids at pressures higher than hydrostatic value; these formations are called geopressured. The pore pressure is generally well in excess of hydrostatic and the fluids vary in scalinity, temperature, and dissolved methane. As part of its program to define the magnitude and recoverability of the geopressured-geothermal energy resource, the US Department of Energy has drilled and tested deep wells in geopressured formations in the Texas-Louisiana Gulf Coast region. Geological information for the Pleasant Bayou geopressured geothermal resource is most extensive among the reservoirs tested. Earlier testing of the DOE well (Pleasant Bayou Well No.2) was conducted in several phases during 1979-1983. Long-term testing was resumed in May 1988 and is currently in progress. This report summarizes the pertinent field and laboratory test data available through December 31, 1990. A numerical reservoir simulator is employed as a tool for synthesizing and integrating the reservoir information, formation rock and fluid properties data from laboratory tests, well data from the earlier testing (1979-1983), and the ongoing long-term production testing (1988-1990) of Pleasant Bayou Well No.2. A reservoir simulation model has been constructed which provides a detailed match to the well test history to date. This model is constructed within a geologic framework described by the Texas Bureau of Economic Geology and relies heavily on the pressure transient data from the 1980 Reservoir Limits Test in conjunction with the 1988-1990 production testing.

  18. Geothermal energy geopressure subprogram

    SciTech Connect

    Not Available

    1981-02-01

    The proposed action will consist of drilling one geopressured-geothermal resource fluid well for intermittent production testing over the first year of the test. During the next two years, long-term testing of 40,000 BPD will be flowed. A number of scenarios may be implemented, but it is felt that the total fluid production will approximate 50 million barrels. The test well will be drilled with a 22 cm (8.75 in.) borehole to a total depth of approximately 5185 m (17,000 ft). Up to four disposal wells will provide disposal of the fluid from the designated 40,000 BPD test rate. The following are included in this assessment: the existing environment; probable environmental impacts-direct and indirect; probable cumulative and long-term environmental impacts; accidents; coordination with federal, state, regional, and local agencies; and alternative actions. (MHR)

  19. Contamination by Arsenate in Oxidizing Groundwater, Southern Gulf Coast Aquifer System, Texas

    NASA Astrophysics Data System (ADS)

    Gates, J. B.; Nicot, J.; Reedy, R. C.; Scanlon, B. R.

    2009-12-01

    Groundwater arsenic concentrations exceed the U.S. EPA maximum contaminant level for drinking water (10 μg/L) in about one-third of wells in the southern Gulf Coast Aquifer System (GCAS) in Texas, representing a potential public health hazard and an environmental compliance challenge to numerous small public water supply systems. The aim of this study is to better understand the hydrogeochemical mechanisms underpinning the widespread distribution of elevated groundwater arsenic concentrations in the region. Here we focus upon arsenic contamination in unconfined portions of the aquifer system. The investigation is based upon chemical analyses of a field transect of 27 groundwater samples collected from across three units of the GCAS; stratified water quality sampling from one additional well; and relevant water chemistry data from the Texas Water Development Board groundwater database (more than 500 samples). Chemical results from the field study showed that carbonate weathering and active recharge in the unconfined zone result in circum-neutral pH and oxidizing redox conditions, which are typically amenable to arsenic immobilization by adsorption of As(V) onto mineral oxides and clays. However, arsenic concentrations were found up to 129 μg/L (median 12 μg/L), and As(V) represented nearly 100% of total arsenic. Concentrations generally decreased with increasing distance from the Catahoula Formation (which contains abundant volcanic ash presumed to be the original arsenic source), through the overlying Jasper, Evangeline and Chicot Aquifers. Statistically significant pairwise correlations with arsenic were found for vanadium, silica and potassium, all of which were released during weathering of volcanic sediments and their degradation products. Silica that was co-released with arsenic may compete for sorption sites and reduce the capacity for arsenic adsorption. An important role for variable arsenic source availability was suggested by regional spatial

  20. Water-quality assessment of the Trinity River basin, Texas : ground-water quality of the Trinity, Carrizo-Wilcox, and Gulf Coast aquifers, February-August 1994

    USGS Publications Warehouse

    Reutter, David C.; Dunn, David D.

    2000-01-01

    Ground-water samples were collected from wells in the outcrops of the Trinity, Carrizo-Wilcox, and Gulf Coast aquifers during February-August 1994 to determine the quality of ground water in the three major aquifers in the Trinity River Basin study unit, Texas. These samples were collected and analyzed for selected properties, nutrients, major inorganic constituents, trace elements, pesticides, dissolved organic carbon, total phenols, methylene blue active substances, and volatile organic compounds as part of the U.S. Geological Survey National Water-Quality Assessment Program. Quality-control practices included the collection and analysis of blank, duplicate, and spiked samples. Samples were collected from 12 shallow wells (150 feet or less) and from 12 deep wells (greater than 150 feet) in the Trinity aquifer, 11 shallow wells and 12 deep wells in the Carrizo-Wilcox aquifer, and 14 shallow wells and 10 deep wells in the Gulf Coast aquifer. The three aquifers had similar water chemistries-calcium was the dominant cation and bicarbonate the dominant anion. Statistical tests relating well depths to concentrations of nutrients and major inorganic constituents indicated correlations between well depth and concentrations of ammonia nitrogen, nitrite plus nitrate nitrogen, bicarbonate, sodium, and dissolved solids in the Carrizo-Wilcox aquifer and between well depth and concentrations of sulfate in the Gulf Coast aquifer. The tests indicated no significant correlations for the Trinity aquifer. Concentrations of dissolved solids were larger than the secondary maximum contaminant level of 500 milligrams per liter established for drinking water by the U.S. Environmental Protection Agency in 12 wells in the Trinity aquifer, 4 wells in the Carrizo-Wilcox aquifer, and 6 wells in the Gulf Coast aquifer. Iron concentrations were larger than the secondary maximum contaminant level of 300 micrograms per liter in at least 3 samples from each aquifer, and manganese concentrations

  1. Effects of Hydrogeologic Conditions on Groundwater Contamination of CVOCs in the North Coast Karst Aquifer of Puerto Rico

    NASA Astrophysics Data System (ADS)

    Torres Torres, N. I.; Howard, J.; Padilla, I. Y.; Torres, P.; Cotto, I.; Irizarry, C.

    2012-12-01

    The karst system of northern Puerto Rico is the most productive aquifer of the island. It serves freshwater to industrial, domestic and agricultural purposes, and contributes to the ecological integrity of the region. The same characteristics that make this a highly productive aquifer, make it vulnerable to contamination of groundwater. Of particular importance is contamination with chlorinated volatile organic compounds (CVOCs), which have been related to preterm birth problems. A great extent of CVOC contamination has been seen in the North Coast of Puerto Rico since the 1970s. The main purposes of this study are (1) to relate the water quality of wells and springs with the hydrogeological conditions in the north coast limestone aquifer of Puerto Rico, and (2) to make a statistical analysis of the historical groundwater contamination in that area. To achieve these objectives, groundwater samples are collected from wells and springs during dry and wet seasons. Results show that trichloroethylene (TCE), tetrachloroethylene (PCE) and chloroform (TCM) are frequently detected in groundwater samples. A greater detection of CVOCs is detected during the wet season than the dry season. This is attributed to a greater capacity to flush stored contaminants during the wet season. Historical analysis of contamination in the north coast of Puerto Rico shows a high capacity of the aquifer to store and release contaminants. Future work will be focused the statistical analysis of the historical groundwater contamination data to understand the behavior of the contaminants in different hydrologic conditions.

  2. Parcperdue Geopressure -- Geothermal Project: Appendix E

    SciTech Connect

    Sweezy, L.R.

    1981-10-05

    The mechanical and transport properties and characteristics of rock samples obtained from DOW-DOE L.R. SWEEZY NO. 1 TEST WELL at the Parcperdue Geopressure/Geothermal Site have been investigated in the laboratory. Elastic moduli, compressibility, uniaxial compaction coefficient, strength, creep parameters, permeability, acoustic velocities (all at reservoir conditions) and changes in these quantities induced by simulated reservoir production have been obtained from tests on several sandstone and shale samples from different depths. Most important results are that the compaction coefficients are approximately an order of magnitude lower than those generally accepted for the reservoir sand in the Gulf Coast area and that the creep behavior is significant. Geologic characterization includes lithological description, SEM micrographs and mercury intrusion tests to obtain pore distributions. Petrographic analysis shows that approximately half of the total sand interval has excellent reservoir potential and that most of the effective porosity in the Cib Jeff Sand is formed by secondary porosity development.

  3. Technical support for geopressured-geothermal well activities in Louisiana

    SciTech Connect

    Not Available

    1991-07-01

    Continuous recording microearthquake monitoring networks have been established around US Department of Energy (DOE) geopressured-geothermal design wells in southwestern Louisiana and southeastern Texas since summer 1980 to assess the effects well development may have had on subsidence and growth-fault activation. This monitoring has shown several unusual characteristics of Gulf Coast seismic activity. The observed activity is classified into two dominant types, one with identifiable body phases (type 1) and the other with only surface-wave signatures (type 2). During this reporting period no type 1 or body-wave events were reported. A total of 230 type 2 or surface-wave events were recorded. Origins of the type 2 events are still not positively understood; however, little or no evidence is available to connect them with geopressured-geothermal well activity. We continue to suspect sonic booms from military aircraft or some other human-induced source. 37 refs., 16 figs., 6 tabs.

  4. Geohydrology and simulated effects of withdrawals on the Miocene aquifer system in the Mississippi Gulf Coast area

    USGS Publications Warehouse

    Sumner, D.M.; Wasson, B.E.; Kalkhoff, S.J.

    1987-01-01

    Intense development of the Miocene aquifer system for water supplies along the Mississippi Gulf Coast has resulted in large water level declines that have altered the groundwater flow pattern in the area. Water levels in some Miocene aquifers have declined about 2 ft/year since 1940; declines exceed 100 ft (80 ft sea level) in large areas along the coast. Water levels in the surficial aquifer system, generally less than 20 ft below land surface, have not declined. The Miocene and younger interbedded and lenticular sands and clays crop out in southern Mississippi and dip to the south and southwest. These sediments have large vertical variations in head and locally respond to stresses as separate aquifers. Freshwater recharge to the Miocene aquifer system primarily is from rainfall on the surficial aquifers. The water generally moves to the south and southeast along the bedding planes toward the Mississippi Gulf Coast where the water is either withdrawn by wells, discharges to the ocean, or gradually percolates upward into overlying aquifers. Drawdowns caused by large groundwater withdrawals along the coast probably have resulted in the gradual movement of the saltwater toward the pumping centers. In parts of the Miocene aquifer system commonly used for water supplies, the water generally is a sodium bicarbonate type. Increasing chloride concentrations in a few wells indicate that saline water is migrating into parts of all layers in the Pascagoula area. A quasi three-dimensional numerical model of the groundwater flow system was constructed and calibrated on the basis of the both pre- and post-development conditions. The effects of an expected 1.5% annual increase in groundwater withdrawals during the period 1985-2005 were evaluated by the flow model. Additional water level declines expected by the year 2005 in response to estimated pumpage are as follows: Gulfport, 135 ft in layer 4; Biloxi-Gulfport area, 100 ft in layer 5 and 50 ft in layer 3; Pascagoula area, 40

  5. Water quality and chemical evolution of ground water within the north coast limestone aquifers of Puerto Rico

    USGS Publications Warehouse

    Roman-Mas, Angel J.; Lee, Roger W.

    1985-01-01

    Waters within the north coastal limestoneaquifers are suitable for public supply, industrial and agricultural uses. For the artesian aquifer and the updip parts of the watertable aquifer, calcium and bicarbonate are the dominant ionic species with total dissolved solids and chloride concentrations below 500 and 250 mg/L, respectively. In coastal areas of thewater table aquifer, where a freshwater-saltwater mixing zone occurs, the calcium bicarbonate facie grade to a sodium-chloride facie. Within this zone, concentrations of total dissolved solids and chloride are greater than 250 and 500 mg/L respectively, affecting the suitability of the water for some uses. Geochemical models were constructed to determine the physical and chemicalreasons for the prevailing water quality patterns of the north coastlimestone aquifers. Models indicate that calcite and carbon dioxide dissolution, precipitation or degassing are the primary processes. The mixing of recharge water or saltwater with aquifer waters is an important feature within the water table aquifer. The models provide further evidence that support the circulation of groundwater within the north coast limestone.

  6. Economic overview of geopressured solution gas

    SciTech Connect

    Wrighton, F.; Bebout, D.G.; Bachman, A.L.

    1981-01-01

    Studies conducted over the last six years which include an economic evaluation of the geopressured geothermal resource are reviewed. Generalizations about the results of these studies given the difficulties of comparing them are presented. Sources of the recent pessimism about the commercialization of geopressured gas are considered along with the competitive alternative, gas produced from formations that are deeper than 15,000 feet. A proper perspective on geopressured gas is then suggested.

  7. Problem definition study of subsidence caused by geopressured geothermal resource development

    SciTech Connect

    Not Available

    1980-12-01

    The environmental and socio-economic settings of four environmentally representative Gulf Coast geopressured geothermal fairways were inventoried. Subsidence predictions were prepared using feasible development scenarios for the four representative subsidence sites. Based on the results of the subsidence estimates, an assessment of the associated potential environmental and socioeconomic impacts was prepared. An inventory of mitigation measures was also compiled. Results of the subsidence estimates and impact assessments are presented, as well as conclusions as to what are the major uncertainties, problems, and issues concerning the future study of geopressured geothermal subsidence.

  8. Economic review of the geopressured-geothermal resource with recommendations

    SciTech Connect

    Plum, M.M.; Negus-de Wys, J.; Faulder, D.D.; Lunis, B.C.

    1989-11-01

    This report presents the results of an economic study conducted by the INEL under DOE Contract No. AC07-76ID01570 to evaluate the breakeven price to market energy from a geopressured-geothermal resource. A breakeven price is a minimum, per unit charge required for the developer to recover all direct and indirect costs and a rate of return sufficient to compensate the developer for depreciation, the time value of money, and the risk of failure. The DOE Geopressured-Geothermal Research Program and the DOE well testing and operations at three locations in the Gulf Coast region provide the bulk of resource and economic characteristics for this study. A menu-driven model was developed in LOTUS-123 to calculate the breakeven price to market gas and electricity from a geopressured-geothermal resource. This model was developed using the present value methodology and conservative assumptions. Assuming present well constraints and current off-the-shelf conversion technology, the breakeven price for electricity is about $0.26/kWh using only the thermal energy from a Hulin-type resource. Assuming identical resource and technology constraints, the breakeven price is reduced to about $0.15/kWh when using all available energy forms (methane, hydraulic, and thermal). Assuming the use of available advanced technologies, the breakeven price is reduced to about $0.10/kWh. Assuming the higher quality resource (with higher temperature and gas content) in the South Texas cases, the breakeven cost is about $0.095/kWh. Using advanced technology, this cost is further reduced to about $0.05/kWh. Both costs are within program goals. The results of this study suggest that the future direction of the Geopressured-Geothermal Program emphasize (a) selection of higher quality resource, (b) advanced energy conversion technology, and (c) total energy utilization.

  9. Subsidence measurements around geopressured-geothermal test sites in southwestern Louisiana

    SciTech Connect

    Trahan, D.B.

    1988-02-01

    First-order elevation surveys of benchmark networks established around geopressured-geothermal test sites in southwestern Louisiana have been conducted before, during, and after testing to determine the potential for growth fault activation and compactional subsidence due to depressurization of geopressured-geothermal reservoirs. Subsidence increased to the south along the line from Lafayette, Louisiana, to the Parcperdue test site as expected as this line descends the flank of the Iberian structural axis. Subsidence varied for benchmarks around the site and by yearly rate although the yearly pattern was consistent. During the period from 1980 to 1982, the benchmarks on the site may have subsided more than other benchmarks due to compaction of soils by drilling and testing equipment. Motion rates for benchmarks around the Sweet Lake geopressured-geothermal test site south of Lake Charles, Louisiana, were highly variable during the period from 1980 to 1984 and were less variable from 1984 to 1986. These rates and patterns of motion may reflect the instability of the Sweet Lake salt dome located south of the prospect but do not correlate with the subsidence expected from geopressured-geothermal development. Relevelings of the benchmark network around the Gladys McCall geopressured-geothermal test site on the coast illustrate generally decreasing subsidence from west to east and slight variations among benchmark motions. The greatest subsidence occurred along the well access road and at the well site from 1981 to 1984 coincident with well-site preparation and drilling.

  10. Subsidence measurements around geopressured-geothermal test sites in southwestern Louisiana

    SciTech Connect

    Trahan, D.B.

    1988-01-01

    First-order elevation surveys of benchmark networks established around geopressured-geothermal test sites in southwestern Louisiana have been conducted before, during, and after testing to determine the potential for growth fault activation and compactional subsidence due to depressurization of geopressured-geothermal reservoirs. Subsidence increased to the south along the line from Lafayette, Louisiana, to the Parcperdue test site as expected as this line descends the flank of the Iberian structural axis. Subsidence varied for benchmarks around the site and by yearly rate although the yearly pattern was consistent. During the period from 1980 to 1982, the benchmarks on the site may have subsided more than other benchmarks due to compaction of soils by drilling and testing equipment. Motion rates for benchmarks around the Sweet Lake geopressured-geothermal test site south of Lake Charles, Louisiana, were highly variable during the period from 1980 to 1984 and were less variable from 1984 to 1986. These rates and patterns of motion may reflect the instability of Sweet Lake salt dome located south of the prospect but do not correlate with the subsidence expected from geopressured-geothermal development. Relevelings of the benchmark network around the Gladys McCall geopressured-geomthermal test site on the coast illustrate generally decreasing subsidence from west to east and slight variations among benchmark motions. The greatest subsidence occurred along the well access road and the well site from 1981 to 1984 coincident with well-site preparation and drilling.

  11. Groundwater-Quality Survey of the South Coast Aquifer of Puerto Rico, April 2 through May 30, 2007

    USGS Publications Warehouse

    Rodriguez, Jose M.; Gómez-Gómez, Fernando

    2009-01-01

    The increased potential for variability of groundwater quality in the South Coast aquifer of Puerto Rico due to saline water encroachment from the Caribbean Sea and from deep parts of the aquifer has become a major concern of water planners and managers. In an effort to determine the extent and sources of this encroachment, the U.S. Geological Survey (USGS) and the Puerto Rico Department of Natural and Environmental Resources conducted a synoptic groundwater-quality survey from April 2 through May 30, 2007, for the South Coast aquifer between Ponce and Arroyo (fig. 1). Groundwater resources in this aquifer extend 150 square miles in south-central Puerto Rico and provide an estimated 44.2 million gallons per day (Mgal/d) or about 61 percent of the total water needs. This amount includes: 15.3 Mgal/d for irrigation, 27.4 Mgal/d for public supply, and 1.5 Mgal/d for industrial and other uses (W.L. Molina-Rivera, U.S. Geological Survey, written commun., 2007). Since 1980 when most of the south coastal plain was intensively cultivated for sugarcane, total groundwater withdrawals have declined about 32 Mgal/d with the greatest decline occurring in irrigation (37.2 Mgal/d) and the greatest increase occurring in public supply (5.5 Mgal/d). Although withdrawals have declined substantially, a major concern is that aquifer recharge provided by irrigation return flow from surface-water irrigation canals has essentially dropped to zero because of the large-scale implementation of groundwater drip irrigation systems.

  12. Geopressured geothermal bibliography. Volume II (geopressure thesaurus). Second Edition

    SciTech Connect

    Sepehrnoori, K.; Carter, F.; Schneider, R.; Street, S.; McGill, K.

    1983-05-01

    This thesaurus of terminology associated with the geopressured geothermal energy field has been developed as a part of the Geopressured Geothermal Information System data base. It is a compilation of terms displaying synomymous, hierarchical, and other relationships between terms. These terms, which are called descriptors, constitute the special language of the information retrieval system - the system vocabulary. The function of this thesaurus is to provide a standardized vocabulary for the information storage and retrieval system to facilitate both the indexing and subject-searching processes. In indexing, a thesaurus is used to translate the natural language of the document to be indexed into the standardized system vocabulary and to place the document at the appropriate level of generality or specificity in relation to the other documents in the data base. In subject retrieval, the thesaurus is used to match the natural language used in search requests with the system vocabulary and to find the most appropriate term to represent a concept.

  13. Groundwater quality of the Gulf Coast aquifer system, Houston, Texas, 2007-08

    USGS Publications Warehouse

    Oden, Jeannette H.; Oden, Timothy D.; Szabo, Zoltan

    2010-01-01

    In the summers of 2007 and 2008, the U.S. Geological Survey (USGS), in cooperation with the City of Houston, Texas, completed an initial reconnaissance-level survey of naturally occurring contaminants (arsenic, other selected trace elements, and radionuclides) in water from municipal supply wells in the Houston area. The purpose of this reconnaissance-level survey was to characterize source-water quality prior to drinking water treatment. Water-quality samples were collected from 28 municipal supply wells in the Houston area completed in the Evangeline aquifer, Chicot aquifer, or both. This initial survey is part of ongoing research to determine concentrations, spatial extent, and associated geochemical conditions that might be conducive for mobility and transport of these constituents in the Gulf Coast aquifer system in the Houston area. Samples were analyzed for major ions (calcium, magnesium, potassium, sodium, bromide, chloride, fluoride, silica, and sulfate), selected chemically related properties (residue on evaporation [dissolved solids] and chemical oxygen demand), dissolved organic carbon, arsenic species (arsenate [As(V)], arsenite [As(III)], dimethylarsinate [DMA], and monomethylarsonate [MMA]), other trace elements (aluminum, antimony, arsenic, barium, beryllium, boron, cadmium, chromium, cobalt, copper, iron, lead, lithium, manganese, molybdenum, nickel, selenium, silver, strontium, thallium, vanadium, and zinc), and selected radionuclides (gross alpha- and beta-particle activity [at 72 hours and 30 days], carbon-14, radium isotopes [radium-226 and radium-228], radon-222, tritium, and uranium). Field measurements were made of selected physicochemical (relating to both physical and chemical) properties (oxidation-reduction potential, turbidity, dissolved oxygen concentration, pH, specific conductance, water temperature, and alkalinity) and unfiltered sulfides. Dissolved organic carbon and chemical oxygen demand are presented but not discussed in the

  14. Geopressured energy availability. Final report

    SciTech Connect

    Not Available

    1980-07-01

    Near- and long-term prospects that geopressured/geothermal energy sources could become a viable alternative fuel for electric power generation were investigated. Technical questions of producibility and power generation were included, as well as economic and environmental considerations. The investigators relied heavily on the existing body of information, particularly in geotechnical areas. Statistical methods were used where possible to establish probable production values. Potentially productive geopressured sediments have been identified in twenty specific on-shore fairways in Louisiana and Texas. A total of 232 trillion cubic feet (TCF) of dissolved methane and 367 x 10/sup 15/ Btu (367 quads) of thermal energy may be contained in the water within the sandstone in these formations. Reasonable predictions of the significant reservoir parameters indicate that a maximum of 7.6 TCF methane and 12.6 quads of thermal energy may be producible from these potential reservoirs.

  15. Overview of Geopressured-Geothermal

    SciTech Connect

    Jelacic, Allan

    1992-03-24

    Dr. Mock began the session by paying tribute to Dr. Myron Dorfman, Professor of Petroleum Engineering at the University of Texas, who had just passed away after a protracted illness. Dr. Dorfman, more than other any individual, was responsible for bringing the geopressured-geothermal state-of-the-art to its present technological readiness for commercialization by industry. Allan Jelacic, Geosciences Team Leader, Geothermal Division, chaired the formal session and gave a historic overview of the conference that defined research needs and economic potential of the resource. First the Nevada Field Office and later the Idaho Field Office took the lead in setting research directions and managing the program. The major research activity was to flow-test ten Wells of Opportunity, provided by industry, as well as the Design Wells, of which four were drilled. Initial problems with calcium carbonate scale deposition and the safe handling and disposition of up to 30,000 barrels of geopressured brine per day were solved. A series of seminal conferences followed so that by the mid-eighties, the resource's extent and productivity were understood, and DOE's Geothermal Division was proceeding with technology transfer to industry. Allan Jelacic pointed out that currently the program is phasing down, with only three active wells remaining: Hulin, Pleasant Bayou, and Gladys McCall. Nevertheless, environmental monitoring, which to date has yielded no significant water quality or seismicity problems, will continue for several more years. The $190 million spent on the program yielded a number of major accomplishments, not the least of which was confirming USGS's initial estimate of the resource, which turned out to be the largest source of natural gas in the US. The economics of power production, however, are not attractive at this time, given the relatively low brine temperatures and current economic conditions in the energy sector. The next speaker, Ben Eaton, of Eaton Operating

  16. Geostatistical estimation of the transmissivity in a highly fractured metamorphic and crystalline aquifer (Man-Danane Region, Western Ivory Coast)

    NASA Astrophysics Data System (ADS)

    Razack, Moumtaz; Lasm, Théophile

    2006-06-01

    This work is aimed at estimating the transmissivity of highly fractured hard rock aquifers using a geostatistical approach. The studied aquifer is formed by the crystalline and metamorphic rocks of the Western Ivory Coast (West Africa), in the Man Danané area. The study area covers 7290 km 2 (90 km×81 km). The fracturing network is dense and well connected, without a marked fracture direction. A data base comprising 118 transmissivity ( T) values and 154 specific capacity ( Q/ s) values was compiled. A significant empirical relationship between T and Q/ s was found, which enabled the transmissivity data to be supplemented. The variographic analysis of the two variables showed that the variograms of T and Q/ s (which are lognormal variables) are much more structured than those of log T and log Q/ s (which are normal variables). This result is contrary to what was previously published and raises the question whether normality is necessary in geostatistical analysis. Several input and geostatistical estimations of the transmissivity were tested using the cross validation procedure: measured transmissivity data; supplemented transmissivity data; kriging; cokriging. The cross validation results showed that the best estimation is provided using the kriging procedure, the transmissivity field represented by the whole data sample (measured+estimated using specific capacity) and the structural model evaluated solely on the measured transmissivity. The geostatistical approach provided in fine a reliable estimation of the transmissivity of the Man Danané aquifer, which will be used as an input in forthcoming modelling.

  17. Ground-water flow in the Gulf Coast aquifer systems, south central United States; a preliminary analysis

    USGS Publications Warehouse

    Williamson, A.K.; Grubb, H.F.; Weiss, J.S.

    1990-01-01

    A major objective of the Gulf Coast Regional Aquifer-System Analysis is to use digital models of regional groundwater flow systems to develop better understanding and to improve management of the resource. Modeling is used to synthesize information about the aquifer systems and to test hypotheses about the relative importance of the components of the systems. The 290,000-sq mile study area in the Gulf of Mexico Coastal Plain includes the Mississippi embayment, Gulf Coastal Plain of Texas, and the Continental Shelf that are underlain by deposits of Tertiary and younger age, which contain fresh and saline water. A 10-layer, finite-difference, variable density model, with blocks 10 miles on a side, was used to simulate groundwater flow before development and in 1980, assuming steady- state conditions. Preliminary results indicate that the major factors controlling predevelopment regional flow are the topography, land-surface outcrop pattern, and geometry of aquifers and confining units. Geologic structure and the distribution of precipitation were less significant factors. The density of saline water in the deeper parts of the aquifer system probably has a substantial effect on regional groundwater flow that extends into the freshwater part of the system. Variable water density may be a significant driving force that transports salt great distances in many directions, including updip. The distribution and rates of regional recharge and discharge have been substantially changed by development. Groundwater pumpage in 1980 was about five times the value of predevelopment regional recharge. About 80% of the pumpage was supplied from increased regional recharge. Also resistance to vertical flow caused by many fine-grained beds within the permeable zones can be as important as resistance caused by regional confining units. (USGS)

  18. Geopressured habitat: A literature review

    SciTech Connect

    Negus-de Wys, Jane

    1992-09-01

    A literature review of the geopressured-geothermal habitat is summarized. Findings are presented and discussed with respect to the principal topics: Casual agents are both geological and geochemical; they include disequilibrium compaction of sediments, clay diagenesis, aquathermal pressuring, hydrocarbon generation, and lateral tectonic compression. The overall physical and chemical characteristics of the habitats are dictated by varying combinations of sedimentation rates, alteration mineralogy, permeability, porosity and pressure, temperature, fluid content and chemistry, and hydrodynamic flow. Habitat pressure seals are considered in terms of their formation processes, geologic characteristics, and physical behavior, including pressure release and reservoir pressure recharge on a geologic time scale. World-wide occurrence of geopressured-geothermal habitats is noted. The main thrust of this topic concerns the U.S.A. and Canada; in addition, reference is made to occurrences in China and indications from deep-sea vents, as well as the contribution of paleo-overpressure to habitat initiation and maintenance. Identification and assessment of the habitat is addressed in relation to use of hydrogeologic, geophysical, geochemical, and geothermic techniques, as well as well-logging and drill-stem-test data. Conclusions concerning the adequacy of the current state of knowledge and its applicability to resource exploration and development are set forth, together with recommendations for the thrust of future work.

  19. Ground-water quality of coastal aquifer systems in the West Coast Basin, Los Angeles County, California, 1999-2002

    USGS Publications Warehouse

    Land, Michael; Reichard, Eric G.; Crawford, Steven M.; Everett, Rhett; Newhouse, Mark W.; Williams, Colin F.

    2004-01-01

    The extensive use of ground water throughout the Central and West Coast Basins of Los Angeles County during the first half of the 20th century resulted in declining water levels, widespread seawater intrusion, and deterioration of water quality along most reaches of the coast. In order to control seawater intrusion in the West Coast Basin, freshwater is injected into a series of wells at two seawater barrier projects. In order to better understand the processes of seawater intrusion and the efficiency of current barrier operation, data were collected from multiple-well monitoring sites installed by the U.S. Geological Survey, from local observation wells, and from production wells. The occurrence and areal extent of native, saline, and recently injected ground water near the coast were defined through the collection and analysis of inorganic and isotopic water-quality data and geophysical logs. Most water in the West Coast Basin with a dissolved-solids concentration less than 500 milligrams per liter generally has a sodium-bicarbonate to sodium/calcium-bicarbonate character. Water with a dissolved-solids concentration greater than 1,000 milligrams per liter also contains variable amounts of calcium and sodium, but chloride is predominant. Most of these high-dissolved-solids wells are perforated in the Upper aquifer systems; several have dissolved-chloride values near that of seawater. Elevated chloride concentrations were measured at many wells in both the Upper and Lower aquifer systems inland from the barrier projects. Although water levels have increased in many wells over the last 30 years, some of the wells do not show a corresponding decrease in dissolved chloride. A detailed assessment of saline ground water was provided by examining the ratios of chloride to bromide, iodide, and boron. Seawater-freshwater mixing lines were constructed using all three ratios. These ion ratios also identify water affected by mixing with injected imported water and oil

  20. Geochemical evolution of waters within the north coast limestone aquifers of Puerto Rico; a conceptualization based on a flow path in the Barceloneta area

    USGS Publications Warehouse

    Roman-Mas, A. J.; Lee, R.W.

    1987-01-01

    Water samples along a groundwater flow path in the Barceloneta area, Puerto Rico, were collected from wells screened in the Montebello Limestone Member of the Cibao Formation (artesian aquifer) and in the overlying Aguada and Aymamon Limestones (water table aquifer). The groundwater chemistry changes as water migrates from recharge areas to downgradient zones in the aquifers. Dissolved magnesium, dissolved sulfate, pH, and carbon-13 isotope generally increase down-gradient. Total inorganic carbon and calcium decrease within the freshwater parts of the aquifer. Mass transfer calculations show that the likely reaction model is carbon dioxide incorporation as water infiltrates through the soil zone, followed by calcite dissolution as water recharges the aquifer. As water moves downgradient within the artesian aquifer, carbon dioxide may degas as a result of calcite precipitation while gypsum and dolomite are dissolved. Within the water table aquifer, continuous recharge of waters rich in carbonic acid maintains the dissolution of the carbonate minerals. Near the coast the mixing of fresh groundwater with saltwater is the primary process affecting water chemistry within the water table aquifer. (Author 's abstract)

  1. Arsenic and radionuclide occurrence and relation to geochemistry in groundwater of the Gulf Coast Aquifer System in Houston, Texas, 2007–11

    USGS Publications Warehouse

    Oden, Jeannette H.; Szabo, Zoltan

    2016-03-21

    Associated geochemical conditions conducive for mobility of arsenic and radionuclides and their spatial and vertical extent in the Gulf Coast aquifer system in Houston are important aspects to the areal management of the municipal groundwater supplies in Houston. Ongoing research is seeking to define chemical or geological factors that are the optimal indicators for elevated concentrations of these naturally occurring constituents.

  2. Geopressured geothermal drilling and completions technology development needs

    SciTech Connect

    Maish, A.B.

    1981-03-01

    Geopressured geothermal formations found in the Texas and Louisiana gulf coast region and elsewhere have the potential to supply large quantities of energy in the form of natural gas and warm brine (200 to 300/sup 0/F). Advances are needed, however, in hardware technology, well design technology, and drilling and completion practices to enable production and testing of exploratory wells and to enable economic production of the resource should further development be warranted. This report identifies needed technology for drilling and completing geopressured geothermal source and reinjection wells to reduce the cost and to accelerate commercial recovery of this resource. A comprehensive prioritized list of tasks to develop necessary technology has been prepared. Tasks listed in this report address a wide range of technology needs including new diagnostic techniques, control technologies, hardware, instrumentation, operational procedure guidelines and further research to define failure modes and control techniques. Tasks are organized into the functional areas of well design, drilling, casing installation, cementing, completions, logging, brine reinjection and workovers.

  3. Simulation of flow in the upper North Coast Limestone Aquifer, Manati-Vega Baja area, Puerto Rico

    USGS Publications Warehouse

    Cherry, Gregory S.

    2001-01-01

    A two-dimensional computer ground-water model was constructed of the Manati-Vega Baja area to improve the understanding of the unconfined upper aquifer within the North Coast Province of Puerto Rico. The modeled area covers approximately 79 square miles within the municipios of Manati and Vega Baja and small portions of Vega Alta and Barceloneta. Steady-state two-dimensional ground-water simulations were correlated to conditions prior to construction of the Laguna Tortuguero outlet channel in 1940 and calibrated to the observed potentiometric surface in March 1995. At the regional scale, the unconfined Upper North Coast Limestone aquifer is a diffuse ground-water flow system through the Aguada and Aymamon limestone units. The calibrated model input parameters for aquifer recharge varied from 2 inches per year in coastal areas to 18 inches per year in the upland areas south of Manati and Vega Baja. The calibrated transmissivity values ranged from less than 500 feet squared per day in the upland areas near the southern boundary to 70,000 feet squared per day in the areas west of Vega Baja. Increased ground-water withdrawals from 1.0 cubic foot per second for 1940 conditions to 26.3 cubic feet per second in 1995, has reduced the natural ground-water discharge to springs and wetland areas, and induced additional recharge from the rivers. The most important regional drainage feature is Laguna Tortuguero, which is the major ground-water discharge body for the upper aquifer, and has a drainage area of approximately 17 square miles. The discharge to the sea from Laguna Tortuguero through the outlet channel has been measured on a bi-monthly basis since 1974. The outflow represents a combination of ground- and surface-water discharge over the drainage area. Hydrologic conditions, prior to construction of the Laguna Tortuguero outlet channel in 1943, can be considered natural conditions with minimal ground-water pumpage (1.0 cubic foot per second), and heads in the lagoon

  4. Hydrogeology and simulation of ground-water flow and land-surface subsidence in the northern part of the Gulf Coast aquifer system, Texas

    USGS Publications Warehouse

    Kasmarek, Mark C.; Robinson, James L.

    2004-01-01

    As a part of the Texas Water Development Board Ground- Water Availability Modeling program, the U.S. Geological Survey developed and tested a numerical finite-difference (MODFLOW) model to simulate ground-water flow and land-surface subsidence in the northern part of the Gulf Coast aquifer system in Texas from predevelopment (before 1891) through 2000. The model is intended to be a tool that water-resource managers can use to address future ground-water-availability issues. From land surface downward, the Chicot aquifer, the Evangeline aquifer, the Burkeville confining unit, the Jasper aquifer, and the Catahoula confining unit are the hydrogeologic units of the Gulf Coast aquifer system. Withdrawals of large quantities of ground water have resulted in potentiometric surface (head) declines in the Chicot, Evangeline, and Jasper aquifers and land-surface subsidence (primarily in the Houston area) from depressurization and compaction of clay layers interbedded in the aquifer sediments. In a generalized conceptual model of the aquifer system, water enters the ground-waterflow system in topographically high outcrops of the hydrogeologic units in the northwestern part of the approximately 25,000-square-mile model area. Water that does not discharge to streams flows to intermediate and deep zones of the system southeastward of the outcrop areas where it is discharged by wells and by upward leakage in topographically low areas near the coast. The uppermost parts of the aquifer system, which include outcrop areas, are under water-table conditions. As depth increases in the aquifer system and as interbedded sand and clay accumulate, water-table conditions evolve into confined conditions. The model comprises four layers, one for each of the hydrogeologic units of the aquifer system except the Catahoula confining unit, the assumed no-flow base of the system. Each layer consists of 137 rows and 245 columns of uniformly spaced grid blocks, each block representing 1 square mile

  5. Impacts of Sea Level Rise caused by Climate Change on Saltwater Intrusion into the Gulf Coast Aquifer of South Texas

    NASA Astrophysics Data System (ADS)

    Venkataraman, K.; Uddameri, V.

    2011-12-01

    Coastal aquifers are a vital source of freshwater but are also vulnerable to hydrological problems such as saltwater intrusion, if managed incorrectly. Sea level rise induced by long-term climate change and groundwater development in coastal regions can cause migration of saltwater from the sea to an aquifer. Tide gauge records from Rockport, Port Mansfield and South Padre Island in South Texas indicate that the sea level has risen at a rate of about 0.25 mm/yr to 2.8mm/yr between 1948 and 2003. The Intergovernmental Panel for Climate Change (IPCC; 2007) Global Climate Change Models (GCMs) have projected a sea level rise between 20 cm and 87 cm by the year 2100 across the coastal bend of South Texas. Climate change also impacts groundwater recharge which directly influences the location and behavior of the freshwater-saltwater interface. In semi-arid regions like South Texas, additional factors such as large variability in rainfall, extended periods of droughts and limited availability of natural water resources have led to intensive groundwater extraction, increasing the susceptibility to saltwater intrusion. At present, two-thirds of the water demand is met by groundwater. The population of South Texas is expected to double over the next few decades, with half the population estimated to be living along the coast. As such, there is a need for proper management of water resources to match the trends in climate, economic and demographic changes. In this study, a hydrologic saltwater intrusion model has been developed and coupled with various global climate change models. Numerous model simulations have been performed to assess the combined effect of urbanization, groundwater recharge, and long-term climate change scenarios on saltwater intrusion in the Gulf Coast Aquifer of South Texas. The significance of inland controls versus coastal controls has also been assessed. A decision support system that evaluates uncertainties associated with future groundwater

  6. Groundwater Pathways In Fractured Heterogeneous Granitic Aquifers - A Hydrochemistry Survey In The Sassandra Watershed (Inland Ivory Coast

    NASA Astrophysics Data System (ADS)

    Yao, T.; Fouche, O.

    2008-12-01

    Hydrogeochemical data and Landsat images are used to characterize the groundwater flow in a complex fractured granitic aquifer system located at the South-West of Ivory Coast (West Africa). The specific processing of the Landsat ETM+ images allows producing a detailed map of faults having length more than 3 km. The map is integrated with other data sources into a geographical information system (GIS) in order to identify areas favourable to groundwater sampling in fractured rock. The results of statistical analyses, as applied to hydrochemical data set clearly indicate that the groundwater of the study region is principally of Ca-Mg-HCO3 and Na-K-HCO3 types. The Ca-HCO3 type waters occur in areas of recharge (generally topographically higher area) i.e. where recharge occurs relatively fast. These waters generally have lower pH and EC values. The recharge occurs through preferential pathways such as alongside dykes and sills and the various fracture and joint patterns that transect the study area. The Na- HCO3 and Na-SO4 type waters occur in discharging and static regimes (the lower lying areas) where evaporation and cation exchange are the dominant processes. Ground waters are mostly oxidizing in character, and clearly unsaturated with respect to calcite, reflecting the small amount of carbonate in the aquifer. A few samples are reducing, with low NO3 and high dissolved Fe2+ and Mn2+ concentration and occur in the valley area. These reducing waters are thought to have experienced a deeper circulation and longer residence time in which reducing reactions have proceeded, with groundwater discharge along the valleys bottom. The chemistry of major ions, here applied to fractured aquifers, turns to be a powerful tool when carefully compared with a map of fault traces. We obtain a sufficient knowledge of the aquifer heterogeneity prior to realize a zoning of the region, based on cells with homogeneous hydrodynamic behaviour in which local permeability ellipses are

  7. Summary of hydrogeology and simulation of ground-water flow and land-surface subsidence in the northern part of the Gulf Coast aquifer system, Texas

    USGS Publications Warehouse

    Kasmarek, Mark C.; Robinson, James L.

    2004-01-01

    The northern part of the Gulf Coast aquifer system in Texas, which includes the Chicot, Evangeline, and Jasper aquifers, supplies most of the water used for industrial, municipal, agricultural, and commercial purposes for an approximately 25,000- square-mile (mi2) area that includes the Beaumont and Houston metropolitan areas. The area has an abundant amount of potable ground water, but withdrawals of large quantities of ground water have resulted in potentiometric-surface declines in the Chicot, Evangeline, and Jasper aquifers and land-surface subsidence from depressurization and compaction of clay layers interbedded in the aquifer sediments. This fact sheet summarizes a study done in cooperation with the Texas Water Development Board (TWDB) and the Harris-Galveston Coastal Subsidence District (HGCSD) as a part of the TWDB Ground-Water Availability Modeling (or Model) (GAM) program. The study was designed to develop and test a ground-water-flow model of the northern part of the Gulf Coast aquifer system in the GAM area (fig. 1) that waterresource managers can use as a tool to address future groundwater- availability issues.

  8. Hydrogeology and simulation of ground-water flow and land-surface subsidence in the northern part of the Gulf Coast aquifer system, Texas

    USGS Publications Warehouse

    Kasmarek, Mark C.; Robinson, James L.

    2004-01-01

    As a part of the Texas Water Development Board Ground- Water Availability Modeling program, the U.S. Geological Survey developed and tested a numerical finite-difference (MODFLOW) model to simulate ground-water flow and land-surface subsidence in the northern part of the Gulf Coast aquifer system in Texas from predevelopment (before 1891) through 2000. The model is intended to be a tool that water-resource managers can use to address future ground-water-availability issues.From land surface downward, the Chicot aquifer, the Evangeline aquifer, the Burkeville confining unit, the Jasper aquifer, and the Catahoula confining unit are the hydrogeologic units of the Gulf Coast aquifer system. Withdrawals of large quantities of ground water have resulted in potentiometric surface (head) declines in the Chicot, Evangeline, and Jasper aquifers and land-surface subsidence (primarily in the Houston area) from depressurization and compaction of clay layers interbedded in the aquifer sediments. In a generalized conceptual model of the aquifer system, water enters the ground-waterflow system in topographically high outcrops of the hydrogeologic units in the northwestern part of the approximately 25,000-square-mile model area. Water that does not discharge to streams flows to intermediate and deep zones of the system southeastward of the outcrop areas where it is discharged by wells and by upward leakage in topographically low areas near the coast. The uppermost parts of the aquifer system, which include outcrop areas, are under water-table conditions. As depth increases in the aquifer system and as interbedded sand and clay accumulate, water-table conditions evolve into confined conditions.The model comprises four layers, one for each of the hydrogeologic units of the aquifer system except the Catahoula confining unit, the assumed no-flow base of the system. Each layer consists of 137 rows and 245 columns of uniformly spaced grid blocks, each block representing 1 square mile

  9. Geopressured geothermal bibliography. Volume 1 (citation extracts)

    SciTech Connect

    Hill, T.R.; Sepehrnoori, K.

    1981-08-01

    This bibliography was compiled by the Center for Energy Studies at The University of Texas at Austin to serve as a tool for researchers in the field of geopressured geothermal energy resources. The bibliography represents citations of papers on geopressured geothermal energy resources over the past eighteen years. Topics covered in the bibliography range from the technical aspects of geopressured geothermal reservoirs to social, environmental, and legal aspects of tapping those reservoirs for their energy resources. The bibliography currently contains more than 750 entries. For quick reference to a given topic, the citations are indexed into five divisions: author, category, conference title, descriptor, and sponsor. These indexes are arranged alphabetically and cross-referenced by page number.

  10. Geopressured-geothermal well activities in Louisiana

    SciTech Connect

    John, C.J.

    1992-10-01

    Since September 1978, microseismic networks have operated continuously around US Department of Energy (DOE) geopressured-geothermal well sites to monitor any microearthquake activity in the well vicinity. Microseismic monitoring is necessary before flow testing at a well site to establish the level of local background seismicity. Once flow testing has begun, well development may affect ground elevations and/or may activate growth faults, which are characteristic of the coastal region of southern Louisiana and southeastern Texas where these geopressured-geothermal wells are located. The microseismic networks are designed to detest small-scale local earthquakes indicative of such fault activation. Even after flow testing has ceased, monitoring continues to assess any microearthquake activity delayed by the time dependence of stress migration within the earth. Current monitoring shows no microseismicity in the geopressured-geothermal prospect areas before, during, or after flow testing.

  11. Geochemical evolution of waters within the north coast limestone aquifers of Puerto Rico: A conceptualization based on a flow path in the Barceloneta area

    SciTech Connect

    Roman-Mas, A.; Lee, R.W.

    1987-01-01

    Water samples along a groundwater flow path in the Barceloneta area, Puerto Rico, were collected from wells screened in the Montebello Limestone Member of the Cibao Formation and in the overlying Aguada and Aymamon Limestones. The groundwater chemistry changes as water migrates from recharge areas to downgradient zones in the aquifers. Dissolved magnesium, dissolved sulfate, Ph, and carbon-13 isotope generally increase down-gradient. Total inorganic carbon and calcium decrease within the freshwater parts of the aquifer. Mass transfer calculations show that the likely reaction model is carbon dioxide incorporation as water infiltrates through the soil zone, followed by calcite dissolution as water recharges the aquifer. As water moves downgradient within the artesian aquifer, carbon dioxide may degas as a result of calcite precipitation while gypsum and dolomite are dissolved. Within the water table aquifer, continuous recharge of waters rich in carbonic acid maintains the dissolution of the carbonate minerals. Near the coast the mixing of fresh groundwater with saltwater is the primary process affecting water chemistry within the water table aquifer. 19 refs., 3 figs., 7 tabs.

  12. Mapping of coastal aquifer vulnerable zone in the south west coast of Kanyakumari, South India, using GIS-based DRASTIC model.

    PubMed

    Kaliraj, S; Chandrasekar, N; Peter, T Simon; Selvakumar, S; Magesh, N S

    2015-01-01

    The south west coast of Kanyakumari district in Tamil Nadu, India, is significantly affected by seawater intrusion and diffusion of pollutants into the aquifers due to unregulated beach placer mining and other anthropogenic activities. The present study investigates the vulnerability of the coastal aquifers using Geographic Information System (GIS)-based DRASTIC model. The seven DRASTIC parameters have been analyzed using the statistical equation of this model to demarcate the vulnerable zones for aquifer contamination. The vulnerability index map is prepared from the weighted spatial parameters, and an accounting of total index value ranged from 85 to 213. Based on the categorization of vulnerability classes, the high vulnerable zones are found near the beach placer mining areas between Manavalakurichi and Kodimanal coastal stretches. The aquifers associated with settlements and agricultural lands in the middle-eastern part have experienced high vulnerability due to contaminated water bodies. Similarly, the coastal areas of Thengapattinam and Manakudi estuary and around the South Tamaraikulam have also been falling under high vulnerability condition due to backwater and saltpan. In general, the nearshore region except the placer mining zone and the backwater has a moderately vulnerable condition, and the vulnerability index values range from 149 to180. Significantly, the northern and northeastern uplands and some parts of deposition zones in the middle-south coast have been identified as low to no vulnerable conditions. They are structurally controlled by various geological features such as charnockite, garnet biotite gneiss and granites, and sand dunes, respectively. The aquifer vulnerability assessment has been cross-verified by geochemical indicators such as total dissolved solids (TDS), Cl(-), HCO₃(-), and Cl(-)/HCO₃(-) ratio. The high ranges of TDS (1,842--3,736 mg/l) and Cl(-) (1,412--2,112 mg/l) values are well correlated with the observed high

  13. Geopressured-geothermal testing of five dry holes during 1980 and 1981

    SciTech Connect

    Klauzinski, R.Z.

    1981-01-01

    This paper summarizes the testing of five hot, geopressured aquifers in different geologic environments in Texas and Louisiana by Eaton Operating Company for the US Department of Energy. The results were encouraging. Natural gas-to-brine content ranged from 33.0 to 55.0 SCF/bbl. Gas production rates ranged from 93 to 600 MCFD. Sustained water production rates ranged from 1950 to 15,000 BWPD. Bottom-hole temperatures ranged from 260 to 327/sup 0/F. Reservoir pressures ranged from 6627 psia to 13,203 psia. A test near Beaumont resulted in discovery of oil and gas.

  14. Leveling Sweet Lake Geopressured Well Site

    SciTech Connect

    1984-07-01

    First Order leveling surveys to be conducted as part of an environmental monitoring program for geopressured test well. Conduct first order leveling to determine the elevation of the previously installed and leveled bench marks in the area of the Sweetlake geothermal well. All leveling surveys to conform to NGS standards and specifications.

  15. Evaluation of groundwater quality and selected hydrologic conditions in the South Coast aquifer, Santa Isabel area, Puerto Rico, 2008–09

    USGS Publications Warehouse

    Rodríguez, José M.

    2013-01-01

    The source of drinking water in the Santa Isabel and Coamo areas of Puerto Rico (Molina and Gómez-Gómez, 2008) is the South Coast aquifer (hereafter referred to as the aquifer), which supplies about 30,700 cubic meters per day (m³/d) to Puerto Rico Aqueduct and Sewer Authority (PRASA) public-supply wells. In addition, approximately 45 wells provide an estimated 33,700 m³/d of groundwater to irrigate crops in the area. In 1967, baseline nitrate concentrations in groundwater throughout most of the aquifer were generally less than 6 milligrams per liter (mg/L) as nitrogen in collected water samples (U.S. Geological Survey, 2012). In 2007, elevated nitrate concentrations were detected in the aquifer, near Santa Isabel and the foothills north of the coastal plain at Santa Isabel as part of a regional groundwater-quality assessment conducted by the U.S. Geological Survey (USGS) during 2007 (Rodríguez and Gómez-Gómez, 2008). The increase in nitrate concentrations has been of concern to local government agencies because of its potential effect on public supply. To address public-supply concerns, the USGS, in cooperation with the Puerto Rico Department of Natural and Environmental Resources (PRDNER), evaluated groundwater quality in the aquifer near the Santa Isabel area between January 2008 and May 2009. The objectives of the study were to (1) define the groundwater-quality conditions of the aquifer, with emphasis on the distribution of nitrate concentrations; (2) identify potential sources leading to elevated nitrate concentrations; (3) estimate the nitrate loads from major sources identified; and (4) estimate the groundwater withdrawals by principal-use categories in the area. Results of this study will be used by Commonwealth of Puerto Rico and Federal agencies in developing strategies that can result in containment of high nitrate groundwater to minimize degradation of fresh groundwater in the aquifer.

  16. Potentiometric Surface of the Upper and Lower Aquifers of the North Coast Limestone Aquifer System and Hydrologic Conditions in the Arecibo-Manati Area, Puerto Rico, November 27-December 1, 2006

    USGS Publications Warehouse

    Rodriguez, Jose M.; Gómez-Gómez, Fernando

    2008-01-01

    A ground-water level synoptic survey of the limestone aquifer in the Arecibo to Manati area, Puerto Rico, was conducted from November 27 through December 1, 2006 by the U.S. Geological Survey in cooperation with the Puerto Rico Department of Natural and Environmental Resources. The purpose of the study was to define the spatial distribution of the potentiometric surface of the upper and lower aquifers of the North Coast limestone aquifer system. A potentiometric surface is defined as an areal representation of the levels to which water would rise in tightly cased wells open to an aquifer (Fetter, 1988). These potentiometric surface maps can be used by water-resources planners to understand the general direction of ground-water flow and to evaluate ground-water conditions for water supply and resource protection. The study was conducted during a period of rising ground-water levels resulting from above-normal rainfall during October and November 2006 when rainfall amount was about 30 percent above normal. The study area encompassed 125 square miles and was bounded to the north by the Atlantic Ocean, to the south by the southern extension of the limestone units, to the west by the Rio Grande de Arecibo, and to the east by the Rio Grande de Manati (pls. 1 and 2; inset).

  17. The occurrence and behavior of radium in saline formation water of the U.S. Gulf Coast region

    USGS Publications Warehouse

    Kraemer, T.F.; Reid, D.F.

    1984-01-01

    Radium has been measured in deep saline formation waters produced from a variety of U.S. Gulf Coast subsurface environments, including oil reservoirs, gas reservoirs and water-producing geopressured aquifers. A strong positive correlation has been found between formation-water salinity and Ra activity, resulting from the interaction of formation water with aquifer matrix. Ra isotopes enter the fluid phase after being produced by the decay of parent elements U and Th, which are located at sites on and within the solid matrix. Processes that are belived to be primarily responsible for transferring Ra from matrix to formation water are chemical leaching and alpha-particle recoil. Factors controlling the observed salinity-Ra relationship may be one or a combination of the following factors: (a) ion exchange; (b) increased solubility of matrix silica surrounding Ra atoms, coupled with a salinity-controlled rate of reequilibration of silica between solution and quartz grains; and (c) the equilibration of Ra in solution with detrial barite within the aquifer. No difference was found in the brine-Ra relation in water produced from oil or gas wells and water produced from wells penetrating only water-bearing aquifers, although the relation was more highly correlated for water-bearing aquifers than hydrocarbon-containing reservoirs. ?? 1984.

  18. The occurrence and behavior of radium in saline formation water of the U.S. Gulf Coast region.

    USGS Publications Warehouse

    Kraemer, T.F.; Reid, D.F.

    1984-01-01

    Ra was measured in deep saline formation waters produced from a variety of US Gulf Coast subsurface environments, including oil and gas reservoirs, and water-producing geopressured aquifers. A strong positive correlation was found between formation-water salinity and Ra activity, resulting from the interaction of formation water with aquifer matrix. Ra isotopes enter the fluid phase after being produced by the decay of parent elements U and Th on and within the solid matrix. The processes believed to be primarily responsible for transfering Ra from matrix to formation water are chemical leaching and alpha -particle recoil. Factors controlling the observed salinity-Ra relationship may be one or a combination of the following: 1) ion exchange; 2) increased solubility of matrix silica surrounding Ra atoms, coupled with a salinity-controlled rate of re-equilibration of silica between solution and quartz grains; and 3) the equilibration of Ra in solution with detrital baryte within the aquifer. No difference was found in the brine-Ra relation in water produced from oil or gas wells and water produced from wells penetrating only water-bearing aquifers, although the relation was more highly correlated for water-bearing aquifers than hydrocarbon-containing reservoirs.-P.Br.

  19. Evaluation of potential geopressure geothermal test sites in southern Louisiana

    SciTech Connect

    Bassiouni, Z.

    1980-04-01

    Six geopressured-geothermal prospects in southern Louisiana were studied in detail to assess their potential use as test sites for the production of geopressure-geothermal energy. Each of the six sites contains substantial quantities of energy. Three of these prospects, Grand Lake, Lake Theriot, and Bayou Hebert, appear to be suitable for a test site. A summary of the findings is presented.

  20. Planning report for the Gulf Coast Regional Aquifer-System Analysis in the Gulf of Mexico coastal plain, United States

    USGS Publications Warehouse

    Grubb, Hayes F.

    1984-01-01

    Large quantities of water for municipal, industrial and agriculture use are supplied from the aquifers in Tertiary and younger sediments over an area of about 225,000 square miles in the Coastal Plain of Alabama, Arkansas, Florida, Illinois, Kentucky, Louisiana, Mississippi, Missouri, Tennessee, and Texas. Three regional aquifer systems, the Mississippi Embayment aquifer system, the Coastal Lowlands aquifer system, and the Texas Coastal Uplands aquifer system have been developed to varying degrees throughout the area. A variety of problems has resulted from development such as movement of the saline-freshwater interface into parts of aquifers that were previously fresh, lowering of the potentiometric surface with resulting increases in pumping lift, and land-surface subsidence due to the compaction of clays within the aquifer. Increased demand for ground water is anticipated to meet the needs of urban growth, expanded energy development, and growth of irrigated agriculture. The U. S. Geological Survey initiated an eightyear study in 1981 to define the geohydrologic framework, describe the chemistry of the ground water, and to analyze the regional ground-water flow patterns. The objectives, plan, and organization of the study are described in this report and the major tasks to be undertaken are outlined.

  1. Evaluation of ground-water flow and land-surface subsidence caused by hypothetical withdrawals in the northern part of the Gulf Coast Aquifer system, Texas

    USGS Publications Warehouse

    Kasmarek, Mark C.; Reece, Brian D.; Houston, Natalie A.

    2005-01-01

    During 2003–04 the U.S. Geological Survey, in cooperation with the Texas Water Development Board (TWDB) and the Harris-Galveston Coastal Subsidence District (HGCSD), used the previously developed Northern Gulf Coast Ground-Water Availability Modeling (NGC GAM) model to evaluate the effects of hypothetical projected withdrawals on ground-water flow in the northern part of the Gulf Coast aquifer system and land-surface subsidence in the NGC GAM model area of Texas. The Gulf Coast aquifer system comprises, from the surface, the Chicot and Evangeline aquifers, the Burkeville confining unit, the Jasper aquifer, and the Catahoula confining unit. Two withdrawal scenarios were simulated. The first scenario comprises historical withdrawals from the aquifer system for 1891–2000 and hypothetical projected withdrawals for 2001–50 compiled by the TWDB (TWDB scenario). The projected withdrawals compiled by the TWDB are based on ground-water demands estimated by regional water planning groups. The second scenario is a “merge” of the TWDB scenario with an alternate set of projected withdrawals from the Chicot and Evangeline aquifers in the Houston metropolitan area for 1995–2030 provided by the HGCSD (HGCSD scenario). Under the TWDB scenario withdrawals from the entire system are projected to be about the same in 2050 as in 2000. The simulated potentiometric surfaces of the Chicot aquifer for 2010, 2020, 2030, 2040, and 2050 show relatively little change in configuration from the simulated 2000 potentiometric surface (maximum water-level depths in southern Harris County 150–200 feet below NGVD 29). The simulated decadal potentiometric surfaces of the Evangeline aquifer show the most change between 2000 and 2010. The area of water levels 250– 400 feet below NGVD 29 in western Harris County in 2000 shifts southeastward to southern Harris County, and water levels recover to 200–250 feet below NGVD 29 by 2010. Water levels in southern Harris County recover to 150

  2. Evaluation of ground-water flow and land-surface subsidence caused by hypothetical withdrawals in the northern part of the Gulf Coast Aquifer system, Texas

    USGS Publications Warehouse

    Kasmarek, Mark C.; Reece, Brian D.; Houston, Natalie A.

    2005-01-01

    During 2003?04 the U.S. Geological Survey, in cooperation with the Texas Water Development Board (TWDB) and the Harris-Galveston Coastal Subsidence District (HGCSD), used the previously developed Northern Gulf Coast Ground-Water Availability Modeling (NGC GAM) model to evaluate the effects of hypothetical projected withdrawals on ground-water flow in the northern part of the Gulf Coast aquifer system and land-surface subsidence in the NGC GAM model area of Texas. The Gulf Coast aquifer system comprises, from the surface, the Chicot and Evangeline aquifers, the Burkeville confining unit, the Jasper aquifer, and the Catahoula confining unit. Two withdrawal scenarios were simulated. The first scenario comprises historical withdrawals from the aquifer system for 1891?2000 and hypothetical projected withdrawals for 2001?50 compiled by the TWDB (TWDB scenario). The projected withdrawals compiled by the TWDB are based on ground-water demands estimated by regional water planning groups. The second scenario is a ?merge? of the TWDB scenario with an alternate set of projected withdrawals from the Chicot and Evangeline aquifers in the Houston metropolitan area for 1995?2030 provided by the HGCSD (HGCSD scenario). Under the TWDB scenario withdrawals from the entire system are projected to be about the same in 2050 as in 2000. The simulated potentiometric surfaces of the Chicot aquifer for 2010, 2020, 2030, 2040, and 2050 show relatively little change in configuration from the simulated 2000 potentiometric surface (maximum water-level depths in southern Harris County 150?200 feet below NGVD 29). The simulated decadal potentiometric surfaces of the Evangeline aquifer show the most change between 2000 and 2010. The area of water levels 250?400 feet below NGVD 29 in western Harris County in 2000 shifts southeastward to southern Harris County, and water levels recover to 200?250 feet below NGVD 29 by 2010. Water levels in southern Harris County recover to 150?200 feet below NGVD 29

  3. Geospatial compilation of historical water-level altitudes in the Chicot and Evangeline aquifers 1977-2013 and Jasper aquifer 2000-13 in the Gulf Coast aquifer system, Houston-Galveston Region, Texas

    USGS Publications Warehouse

    Johnson, Michaela R.; Ellis, Robert H.H.

    2013-01-01

    Maps were georeferenced and digitized where existing geographic information system (GIS) data were unavailable (1977–89, 1991, 1995–99). Existing GIS data available for 1990, 1992–94, and 2000–13 were included in the geodatabase. The feature classes were organized into three feature datasets by principal aquifer: Chicot, Evangeline, and Jasper aquifers.

  4. Survey of potential geopressured resource areas in California. Final report

    SciTech Connect

    Sanyal, S.K.; Robertson-Tait, A.; Kraemer, M.; Buening, N.

    1993-03-01

    This paper presents the initial results of a survey of the occurrence and characteristics of geopressured fluid resources in California using the publicly- available database involving more than 150,000 oil and gas wells drilled in the State. Of the 975 documented on-shore oil and gas pools studied, about 42% were identified as potentially geopressured. Geothermal gradients in California oil and gas fields lie within the normal range of 1 F to 2 F per 100 feet. Except for the Los Angeles Basin, there was no evidence of higher temperatures or temperature gradients in geopressured pools.

  5. Pleasant Bayou geopressured/geothermal testing project, Brazoria County, Texas. Final report

    SciTech Connect

    Ortego, P.K.

    1985-07-01

    Phase II-B production testing of the Pleasant Bayou No. 2 well began September 22, 1982. The test plan was designed to evaluate the capabilities of the geopressured-geothermal reservoir during an extended flow period. Tests were conducted to determine reservoir areal extent; aquifer fluid properties; fluid property change with production; information on reservoir production drive mechanism; long-term scale and corrosion control methods; and disposal well operations. Operatinal aspects of geopressured-geothermal production were also evaluated. The test was discontinued prematurely in May 1983 because of a production tubing failure. Most of the production tubing was recovered from the well and cause of the failure was determined. Plans for recompletion of the well were prepared. However, the well was not recompleted because of funding constraints and/or program rescheduling. In March 1984, the Department of Energy, Nevada Operations Office (DOE/NV) directed that the site be placed in a standby-secured condition. In August 1984, the site was secured. Routine site maintenance and security was provided during the secured period.

  6. An Evaluation of Geopressured Brine Injectability

    SciTech Connect

    Owen, L.B.; Blair, C.K.; Harrar, J.E.; Netherton, R.

    1980-12-16

    We-have developed an apparatus with a capability for evaluating geopressured brine injectability at elevated pressures and temperatures. The apparatus utilizes membrane filters as injection zone reservoir analogs and permits injectability tests to be performed in accordance with Barkman and Davidson Methdology. A field evaluation of geopressured brine injectability was completed during September 22-25, 1980 at the DOE, Brazoria test site in Texas. Membrane filters, with pore sizes of 0.4-{micro}m and 10.0-{micro}m, were used as the basis for obtaining suspended solids data and for developing performance-life estimates of typical spent brine injection wells. Field measurements were made at 130{degree}C and line pressures up to 3800 psig. Scale inhibited (phosphonate-polyacrylate threshold-type, carbonate scale inhibitor), prefiltered-scale-inhibited, and raw (untreated) brine were evaluated. Test results indicated raw brine was highly injectable, while scale-inhibited brine had extremely low quality. The poor injectability of scale-inhibited brine resulted from partial precipitation of the scale inhibitor.

  7. Brazoria County Re-Leveling Pleasant Bayou Geopressured Well Site

    SciTech Connect

    1984-07-01

    The purpose is to conduct first order leveling surveys as part of an ongoing environmental monitoring program for geopressured-geothermal test wells. The scope is to Conduct First Order, Class I, leveling to monitor subsidence of previously installed and leveled bench marks, established by the National Geodetic Survey (NGS) and Vernon F. Meyer and Associates, Inc., in the area of the Pleasant Bayou geopressured test well. All leveling surveys to conform to NGS standards and specifications.

  8. Investigation and evaluation of geopressured-geothermal wells. Final report: Beulah Simon No. 2 Well, Vermilion Parish, Louisiana. Volume I. Completion and testing

    SciTech Connect

    Dobson, R.J.; Hartsock, J.H.; McCoy, R.L.; Rodgers, J.A.

    1980-07-01

    Geopressured-geothermal (Geo{sup 2}) test operations were conducted at the Beulah Simon No. 2 well site during the period from September through December 1979. The well provided the second geopressured-geothermal test to be completed under the DOE-Gruy Well of Opportunity program. The completion in a geopressured aquifer of Oligocene age at approximately 14,700 feet and the testing of hot salt water from this zone were accomplished without significant difficulty. Some problems were encountered with the wireline and wireline high-pressure lubricator associated with the running of bottomhole instruments. The objectives of the project were all accomplished, and good test data were obtained on the flow rates of gas and water. The gas content was 24 standard cubic feet per stock tank barrel of water. The disposal well accepted the full wellhead stream at temperatures as high as 255{sup 0}F (124{sup 0}C). Over the 10-day flow period the hot brine did not appear to adversely affect the clay minerals in the disposal aquifer. A conclusion from this operation is that presently available wirelines and pressure lubricators are not adaptable for use with uninhibited well fluids under flowing conditions. In addition, this test demonstrated that injection of scale inhibitor down the annulus eliminated scale buildup within the flow string and surface facilities. (MHR)

  9. Depletion and recovery behavior of the Gladys McCall geopressured geothermal reservoir

    SciTech Connect

    Riney, T.D. )

    1990-06-01

    Many sedimentary basins throughout the world contain sealed fault blocks in which the pore fluids are at higher pressures and temperatures than normal as a consequence of their depositional environment. The U.S. Department of Energy has drilled, completed, and tested four deep research wells in selected geopressured geothermal prospects in the Texas-Louisiana Gulf Coast region to evaluate the recoverability of the thermal, hydraulic, and chemical (methane) energy in this potential energy resource. The wells are expensive and the specific energy of the fluids is relatively small, but the total recoverable energy from a single well can be extremely large. Long-term testing of the Gladys McCall No. 1 research well, located in Cameron Parish, Louisiana, U.S.A., has defined an impressively large geopressured geothermal reservoir. In this paper an integrated analysis of the test data is presented, and a numerical model is constructed that matches the available data for the 6.5-year test history of the well.

  10. Sequence Stratigraphic Characterization of Upper Miocene through Pleistocene Siliciclastic Aquifer Sediments, Baton Rouge Area, Southeastern Louisiana Gulf Coast

    NASA Astrophysics Data System (ADS)

    Chamberlain, E. L.; Hanor, J. S.; Tsai, F. T.

    2012-12-01

    Saltwater encroachment northward into freshwater sands of the Baton Rouge aquifer system, southeastern Louisiana, poses a serious environmental threat to this metropolitan municipal and industrial water source. The aquifer system consists of an 850-m thick succession of interbedded, unconsolidated south-dipping siliciclastic sandy units and mudstones of Upper Miocene through Pleistocene age. A geology-based understanding of the connectivity, geometry and depositional setting of this aquifer system is necessary for developing strategies to halt or control saltwater intrusion. Seventy five digitized spontaneous potential - resistivity logs for boreholes in the area provided data for interpreting environments of deposition, for correlating sand-rich and mudstone-rich zones, and for identifying periods of low and high rates of sediment aggradation. The sands have complex geometries representing braided stream, meandering channel fill, floodplain, levee, and crevasse splay facies. A high degree of lateral discontinuity of the sands makes visual correlation of units difficult. Therefore an assessment of lithology-depth relations was made by determining the frequency of occurrence of mudstone at discrete 0.15 m depth intervals in borehole logs along five 40-km long transects parallel to the strike of the aquifer units. Percent occurrence of mudstone was graphed as a function of depth using a 41-point centered moving average for smoothing, and mudstone-poor, sand-rich trends were correlated between transects. Ten major sand cycles were identified. Individual aquifer units are interpreted to be complex zones of amalgamated sand bodies deposited during times of low aggradation associated with sea-level falling-stages and lowstand system tracts. The amalgamation created a high degree of connectivity which results in these zones behaving as single hydrologic units. Mudstone-rich aquitard sequences are interpreted to be flood-plain sediments deposited during times of high

  11. Fluid movement and diagenesis in fine-grained geopressured sediments of Frio Formation (Oligocene), Kaplan field, southwestern Louisiana

    SciTech Connect

    Davis, B.A.; Ferrell, R.E.

    1983-03-01

    Investigation of structure, temperature, pressure, salinity, and core samples at Kaplan field yields information on diagenesis of fine-grained sandstones deposited in an outer shelf/upper slope depositional environment The shallow occurrence of geopressure is related to structure and a high shale/sand ratio. Low isothermal surfaces in the down fault blocks accompanied by anomalous high temperatures in the upthrown blocks indicate vertical leakage of fluids along growth faults from underlying geopressured aquifers. The Frio Formation core samples from 16,700 to 19,600 ft (5090 to 5974 m) of depth, representing channel and channel-edge turbidite sandstones, were examined petrographically and by SEM. The arkosic composition of late stage diagenesis sandstones at Kaplan field suggests an original arkose or lithic arkose composition (classification of McBride). Nonferroan calcite cementation, chlorite rims and cement, and quartz overgrowths characterize early diagenesis. At a middle stage of diagenesis secondary porosity is developed by dissolution of unstable grains and calcite cement. Samples flushed by geopressured waters from greater depth show kaolinite pore-fill and quartz over-growths, chlorite (polytype IIb) and illite cement, and feldspar overgrowths in the late diagenetic stage. The low permeability of sandstones with extensive early chlorite cement (channel-edge sandstones) precludes development of extensive secondary porosity. In contrast, sandstones with little early chlorite cement develop and maintain secondary porosity through the late diagenetic stage. Restriction of fluid movement by early chlorite cement has ramifications for migration of hydrocarbons or geothermal waters, and for gas production at Kaplan field.

  12. Environmental isotopic and hydrochemical study of water in the karst aquifer and submarine springs of the Syrian coast

    NASA Astrophysics Data System (ADS)

    Charideh, Al; Rahman, Abdul

    2007-03-01

    The groundwater of major karst systems and submarine springs in the coastal limestone aquifer of Syria has been investigated using chemical and isotopic techniques. The δ18O values of groundwater range from -6.8 to -5.05‰, while those for submarine springs vary from -6.34 to +1.08‰ (eastern Mediterranean seawater samples have a mean of +1.7‰). Groundwater originates from the direct infiltration of atmospheric water. Stable isotopes show that the elevation of the recharge zones feeding the Banyas area (400-600 m a.s.l.) is higher than that feeding the Amrit area (100-300 m a.s.l.). The 18Oextracted (18O content of the seawater contribution) for the major submarine springs suggests a mean recharge area elevation of 600-700 m a.s.l., and lower than 400 m a.s.l. for the spring close to Amrit. Based on the measured velocity and the percentage of fresh water at the submarine springs outlet, the estimated discharge rate is 350 million m3/year. The tritium concentrations in groundwater (1.6-5.9 TU) are low and very close to the current rainfall values (2.9-5.6 TU). Adopting a model with exponential time distribution, the mean turnover time of groundwater in the Al-sen spring was evaluated to be 60 years. A value of about 3.7 billion m3 was obtained for the maximum groundwater reservoir size.

  13. Geopressured -- Geothermal Drilling and Testing Plan: Volume 1 Drilling and Completion, Technadril/Fenix and Scisson -- Department of Energy T/F&S -- DOE Gladys McCall No. 1 Well, Cameron Parish, Louisiana

    SciTech Connect

    1981-03-01

    The principal objectives of the geopressured-geothermal reservoir resource assessment program are to obtain data related to the following: 1.2.1--Reservoir parameters and characteristics, including permeability, porosity, areal extent, net thickness of productive sands, methane content, and formation compressibilities; 1.2.2--Ability of a geopressured well to flow at the high rates, i.e., 40,000 bbls/day, expected to achieve the resource recovery required for economic commercial operations; 1.2.3--Reservoir production drive mechanisms and physical and chemical changes that may occur with various production rates and conditions; 1.2.4--Aquifer fluid properties, including chemical composition, dissolved and suspended solids, hydrocarbon content, in situ temperature, and pressure; 1.2.5--Techniques and strategies for completion and production of geopressured wells for methane, thermal, and hydraulic energy production, including examination of producibility using computer simulators employing parameters determined by well testing; 1.2.6--Disposal well parameters, such as optimum injection rate and pressures (transient and pseudo steady state), chemical compatibility of fluids, temperature-solubility relationships, and the economic considerations of injection, including evaluation of filtering and inhibition techniques in the process steam; and 1.2.7--The long-term environmental effects of an extensive commercial application of geopressured-geothermal energy, i.e., subsidence, induced seismicity, and fluid disposal.

  14. Role of aquifer heterogeneity in fresh groundwater discharge and seawater recycling: An example from the Carmel coast, Israel

    USGS Publications Warehouse

    Weinstein, Y.; Burnett, W.C.; Swarzenski, P.W.; Shalem, Y.; Yechieli, Y.; Herut, B.

    2007-01-01

    A case study is shown in which the pattern of submarine groundwater discharge and of seawater recycling is controlled by local hydrogeological variability. The coastal aquifer in Dor Bay is composed of two units: a partly confined calcaranitic sandstone (Kurkar) and an overlying loose sand. Groundwater in the Kurkar has elevated activities of 222Rn (∼390 dpm/L) and relatively low 224Ra/223Ra activity ratios (3–4), while the sand groundwater is significantly less radiogenic (6–90 dpm/L) and shows higher 224Ra/223Ra ratios. Groundwater discharging from sand-covered areas of the bay has salinities of 16–31 and an average 222Rn activity of 168 dpm/L, which lies on a mixing line between Rn-rich Kurkar fresh water and Rn-poor seawater. Another key observation is that seawater infiltrates to some extent into onshore sand groundwater, while the fresh water within the submarine Kurkar can be traced up to 40 m offshore. This implies that while fresh water mainly discharges from the Kurkar unit, seawater recycling is limited to the loose sand, and that the discharge from sand-covered areas is a mixture of Kurkar water with recycled seawater. Advection rates from the bay floor were calculated from Rn time series and found to vary between 0 and 36 cm/d, correlating negatively with bay water depth. The average flux was 8.1 cm/d, and it did not seem to change much during March, May, and July 2006. The average amount of fresh water discharging to the bay was 5.0 m3/d per meter of shoreline. Radon activity in the sand groundwater also fluctuates due to influx of Kurkar-type groundwater.

  15. Geopressured geothermal bibliography. Volume I. Citation extracts. Second edition

    SciTech Connect

    Sepehrnoori, K.; Carter, F.; Schneider, R.; Street, S.; McGill, K.

    1983-05-01

    This annoted bibliography contains 1131 citations. It represents reports, papers, and articles appearing over the past eighteen years covering topics from the scientific and technical aspects of geopressured geothermal reservoirs to the social, environmental, and legal considerations of exploiting those reservoirs for their energy resources. Six indexes include: author, conference title, descriptor, journal title, report number, and sponsor. (MHR)

  16. Aromatic hydrocarbons associated with brines from geopressured wells

    SciTech Connect

    Keeley, D.F.; Meriwether, J.R.

    1989-01-01

    The measurement of basic physical chemical properties of the brine components produced in the US DOE geopressured wells it necessary to provide the fundamental data necessary for an understanding of the mechanisms by which constituents of petroleum migrate and are partitioned into different phases in various geologic strata. The cryocondensate materials, which we sample, are present in the geopressured brines of all the wells observed to date. These materials are a complex mixture of aromatic compounds ranging in complexity from benzene to alkyl substituted anthracenes. This progress report includes articles published in the open literature from the data and findings of this project. Topics include the solubility and thermodynamic distribution coefficients. To accomplish these measurements of solubility and distribution coefficients, new techniques and new equipment were developed and were also published as journal articles.

  17. Statistical analysis of aquifer-test results for nine regional aquifers in Louisiana

    USGS Publications Warehouse

    Martin, Angel; Early, D.A.

    1987-01-01

    This report, prepared as part of the Gulf Coast Regional Aquifer-System Analysis project, presents a compilation, summarization, and statistical analysis of aquifer-test results for nine regional aquifers in Louisiana. These are from youngest to oldest: The alluvial, Pleistocene, Evangeline, Jasper, Catahoula, Cockfield, Sparta, Carrizo, and Wilcox aquifers. Approximately 1,500 aquifer tests in U.S. Geological Survey files in Louisiana were examined and 1,001 were input to a computer file. Analysis of the aquifer test results and plots that describe aquifer hydraulic characteristics were made for each regional aquifer. Results indicate that, on the average, permeability (hydraulic conductivity) generally tends to decrease from the youngest aquifers to the oldest. The most permeable aquifers in Louisiana are the alluvial and Pleistocene aquifers; whereas, the least permeable are the Carrizo and Wilcox aquifers. (Author 's abstract)

  18. Geopressured-geothermal development and coastal subsidence in Louisiana

    SciTech Connect

    Trahan, D.B.

    1985-01-01

    Elevation changes at the Parcperdue geopressured-geothermal test site in southwestern Louisiana range from 0.8 to 0.16 in/y (+2 to -4 mm/y) and reflect natural base-line movements associated with salt dome growth and the compaction of thick, recent sediments. Natural variation is the primary cause of greater movement at the nearby Rockefeller Refuge geopressured-geothermal test site where base-line movement rates range from -0.43 to -0.55 in/y (-12 to -14 mm/y). Holocene sediments in the coastal marshlands at Rockefeller Refuge are more susceptible to compactional subsidence than upland Pleistocene formations at Parcperdue. Anomalous subsidence at both test sites coincided with site preparation and well drilling and may have been related to loading of surficial soils by the weight of drilling equipment. Elevation changes monitored after drilling and during formation testing were consistent with base-line subsidence rates, indicating that loading was temporary. Anomalous base-line subsidence rates coinciding with areas of historical fluid withdrawal indicate that these effects may outweigh the effects of present geopressured-geothermal development.

  19. Subsurface and seismic investigation of the geopressured-geothermal potential of south Louisiana. Final report

    SciTech Connect

    Kinsland, G.L.; Paine, W.R.; Duhon, M.P.; Dungan, J.R.; Kurth, R.J.; Moore, D.R.; Lyons, W.S.

    1983-09-01

    Specific sites (areas) for geopressured-geothermal energy potential have been evaluated: (1) Abbeville Area, (2) Chloe Area, (3) Turtle Bayou Field-Kent Bayou Field Area and (4) Lirette-Chauvin-Lake Boudreaux Area. To arrive at geologic conclusions concerning the geopressured-geothermal energy potential of each area, the following factors have been considered in this study: (1) depth of geopressured sands, (2) geopressured sand volumes, (3) porosities, (4) permeabilities, (5) temperatures, (6) salinities, (7) dissolved gas content, (8) structure - especially as it relates to continuity of reservoirs, and (9) petroleum prodution - espeially if the geopressured fluids are driving mechanisms for current petroleum prodution. To evaluate these parameters the most useful source of information has been petroleum well logs which most commonly are a continuous depth survey of the spontaneous potential (SP) and the electrical resistivity of the subsurface formations. A separate thesis for each of the above four areas was processed separately.

  20. Unconventional gas sources. Volume IV. Geopressured brines

    SciTech Connect

    Not Available

    1980-01-01

    The following topics are covered: study objectives, regional geology and prospect evaluation, reservoir engineering, drilling and well costs, production and water disposal facilities, pressure maintenance, geothermal and hydraulic energy assessment, operating expense, economic evaluation, environmental considerations, legal considerations, and risks analysis. The study addresses only sandstone brine reservoirs in the Texas and Louisiana Gulf Coast onshore areas. (MHR)

  1. Groundwater-Level Altitudes and Changes and Measured Compaction of Fine-Grained Sediments by Borehole Extensometers in the Gulf Coast Aquifer System; 1977-2013

    NASA Astrophysics Data System (ADS)

    Beussink, A.; Kasmarek, M. C.; Johnson, M. R.; Ramage, J. K.

    2014-12-01

    Most of the subsidence in the Houston-Galveston region, Texas, has occurred as a direct result of groundwater withdrawals for municipal supply, commercial and industrial use, and irrigation that depressured and dewatered the Chicot and Evangeline aquifers, thereby causing compaction mostly in the clay and silt layers of the aquifer sediments. In 2013, water-level-altitude contours for the Chicot aquifer ranged from 200 feet (ft) below North American Vertical Datum of 1988 (hereinafter, datum) in a small area in southwestern Harris County to 200 ft above datum in central to west-central Montgomery County. Contoured 5-year and long-term changes in water levels in the Chicot aquifer ranged from a 30-ft decline to an 80-ft rise (2008-13), from a 120-ft decline to a 100-ft rise (1990-2013), and from an 80-ft decline to a 200-ft rise (1977-2013). In 2013, water-level-altitude contours for the Evangeline aquifer ranged from 300 ft below datum in south-central Montgomery County to 200 ft above datum in southeastern Grimes and northwestern Montgomery Counties. Contoured 5-year and long-term changes in water levels in the Evangeline aquifer ranged from an 80-ft decline to an 80-ft rise (2008-13), from a 220-ft decline to a 220-ft rise (1990-2013), and from a 360-ft decline to a 260-ft rise (1977-2013). In 2013, water-level-altitude contours for the Jasper aquifer ranged from 200 ft below datum in south-central Montgomery and north-central Harris Counties to 250 ft above datum in northwestern Montgomery County and extending into northeastern Grimes and south-central Walker Counties. Contoured changes in water levels in the Jasper aquifer ranged from a 100-ft decline to 20-ft rise (2008-13) and from a 220-ft decline to no change (2000-13). Compaction of subsurface sediments of the Chicot and Evangeline aquifers was recorded continuously by 13 borehole extensometers. For the period of record beginning in 1973-2012, cumulative measured compaction ranged from 0.100 ft at the

  2. Factors controlling reservoir quality in tertiary sandstones and their significance to geopressured geothermal production

    SciTech Connect

    Loucks, R.G.; Richmann, D.L.; Milliken, K.L.

    1981-01-01

    Variable intensity of diagenesis is the factor primarily responsible for contrasting regional reservoir quality of Tertiary sandstones from the upper and lower Texas coast. Detailed comparison of Frio sandstone from the Chocolate Bayou/Danbury Dome area, Brazoria County, and Vicksburg sandstones from the McAllen Ranch Field area, Hidalgo County, reveals that extent of diagenetic modification is most strongly influenced by (1) detrital mineralogy and (2) regional geothermal gradients. The regional reservoir quality of Frio sandstones from Brazoria County is far better than that characterizing Vicksburg sandstones from Hidalgo County, especially at depths suitable for geopressured geothermal energy production. However, in predicting reservoir quality on a site-specific basis, locally variable factors such as relative proportions for porosity types, pore geometry as related to permeability, and local depositional environment must also be considered. Even in an area of regionally favorable reservoir quality, such local factors can significantly affect reservoir quality and, hence, the geothermal production potential of a specific sandstone unit.

  3. Consolidation of geologic studies of geopressured geothermal resources in Texas. 1982 annual report

    SciTech Connect

    Morton, R.A.; Ewing, T.E.; Kaiser, W.R.; Finley, R.J.

    1983-03-01

    Detailed structural mapping at several horizons in selected study areas within the Frio growth-fault trend demonstrates a pronounced variability in structural style. At Sarita in South Texas, shale mobilization produced one or more shale ridges, one of which localized a low-angle growth fault trapping a wedge of deltaic sediments. At Corpus Christi, shale mobilization produced a series of large growth faults, shale-cored domed anticlines, and shale-withdrawal basins, which become progressively younger basinward. At Blessing, major growth faults trapped sands of the Greta/Carancahua barrier system with little progradation. At Pleasant Bayou, a major early growth-fault pattern was overprinted by later salt tectonics - the intrusion of Danbury Dome and the development of a salt-withdrawal basin. At Port Arthur, low-displacement, long-lived faults formed on a sand-poor shelf margin contemporaneously with broad salt uplifts and basins. Variability in styles is related to the nature and extent of Frio sedimentation and shelf-margin progradation and to the presence or absence of salt. Structural styles that are conducive to the development of large geothermal reservoirs include blocks between widely spaced growth faults having dip reversal, salt-withdrawal basins, and shale-withdrawal basins. These styles are widespread on the Texas Gulf Coast. However, actually finding a large reservoir depends on demonstrating the existence of sufficient sandstone with adequate quality to support geopressured geothermal energy production.

  4. Utilization of geopressured resources in the oxidation of organic waste in supercritical water. Phase I, Final report

    SciTech Connect

    Diaz, Alexander F.; Herzog, Howard J.; Tester, Jefferson W.

    1992-11-01

    Geopressured resources are geothermal reservoirs containing dissolved methane in hot brine at pressures well in excess of their in situ hydrostatic pressure. In the US, geopressured resources are primarily located in the Gulf (of Mexico) Coast. The wells in this area are characterized by typical bottomhole temperatures of 120-180 C (250-360 F) (Negus-de Wys, 1991a) and bottomhole pressures of 675-1275 bar (9,800-18,500 psia) (Negus-de Wys, 1991b). Supercritical water oxidation (SCWO) is an emerging technology for the destruction of hazardous organic waste in which oxidation is carried out in a water medium above the critical point of pure water (374 C/705 F, 221 bar/3208 psia) (Tester et al., 1992). Geopressured resources are particularly suitable as an input stream to a SCWO waste treatment process due to the near critical conditions of their hot brine. By using a Rankine-type power cycle, electric power can be generated by capturing the available thermal and hydraulic energy from the geothermal resource and the chemical energy of the dissolved methane released by the oxidation process. In addition to oxidizing the methane to convert the chemical energy to thermal energy, auxiliary fuel in the form of an organic waste can be co-oxidized to increase the energy output to commercially sustainable levels. Coupling the treatment of geopressured brine with an organic waste in a SCWO process synergistically improves power production while providing a means for treating hazardous waste. The objective of this study is to assess the feasibility of using geopressured resources to simultaneously detoxify hazardous waste and generate electric power. Our ultimate aim is to develop conceptual process designs for above-ground and fully or modified in situ approaches to co-processing organic waste with geopressured brine in supercritical water. As a preparatory step for investigating in situ approaches, a realistic above-ground conceptual design was developed in this study. In

  5. Exploitation et salinité des aquifères de la Chaouia côtière, littoral atlantique, MarocPotential exploitation and salinity of aquifers, Chaouia coast, Atlantic shoreline, Morocco

    NASA Astrophysics Data System (ADS)

    Fakir, Y.; Zerouali, A.; Aboufirassi, M.; Bouabdelli, M.

    2001-05-01

    The coastal plain of Chaouia, located on the Atlantic shoreline of Morocco, has a semiarid climate and consists of two aquifers: schist in the northeast and carbonate in the southwest. These aquifers are affected by evaporation and by intensive pumping for irrigation and drinking water. The groundwater reserves are seriously affected and the salinity increased, especially near the ocean and in the Oum Er Rbia River. Therefore, for many wells, exploitation has ceased due to them being dried out or having high salinity. To determine the causes of the high salinity, 18O/ 16O isotopes were used to enable the identification of areas where groundwater is effected by the influence of ocean water.

  6. Environmental monitoring at designed geopressured-geothermal well sites, Louisiana and Texas

    SciTech Connect

    Groat, C.; Stevenson, D.

    1990-01-01

    The research objectives of this report are to: implement and maintain the ongoing environmental monitoring program around DOE geopressured-geothermal test well in Louisiana and Texas; analyze and interpret collected data for evidence of subsidence and induced microearthquakes which may be brought about by geopressured-geothermal well testing and development; continue geological-geophysical studies of the Hulin and Gladys McCall sites incorporating new seismic data; continue review of previously identified and tested geopressured-geothermal prospects in Louisiana to determine if any link exists between such reservoirs and the existence of free gas in commercial or subcommercial quantities; and initiate review of geology, co-location and properties of geopressured brines with medium and heavy oil reservoirs in Louisiana utilizing existing maps, databases, reports, and journal articles.

  7. Environmental monitoring at designed geopressured-geothermal well sites, Louisiana and Texas

    SciTech Connect

    Not Available

    1991-01-01

    The research objectives of this report are to: implement and maintain the ongoing environmental monitoring program around DOE geopressured-geothermal test wells in Louisiana and Texas; analyze and interpret collected data for evidence of subsidence and induced microearthquakes which may be brought about by geopressured-geothermal well testing and development; continue geological-geophysical studies of the Hulin and Gladys McCall sites incorporating new seismic data; continue review of previously identified and tested geopressured-geothermal prospects in Louisiana to determine if any link exists between such reservoirs and the existence of free gas in commercial or subcommercial quantities; and initiate review of geology, co-location and properties of geopressured brines with medium and heavy oil reservoirs in Louisiana utilizing existing maps, databases, reports, and journal articles. 2 figs.

  8. Simulation of irreversible rock compaction effects on geopressured reservoir response: Topical report

    SciTech Connect

    Riney, T.D.

    1986-12-01

    A series of calculations are presented which quantitatively demonstrate the effects of nonlinear stress-deformation properties on the behavior of geopressured reservoirs. The range of stress-deformation parameters considered is based on information available from laboratory rock mechanics tests performed at the University of Texas at Austin and at Terra Tek, Inc. on cores recovered from geopressured wells. The effects of irreversible formation rock compaction, associated permeability reduction, and repetitive load/unload cycling are considered. The formation rock and geopressured brine properties are incorporated into an existing reservoir simulator using a bilinear model for the irreversible compaction process. Pressure drawdown and buildup testing of a well producing from the geopressured formation is simulated for a suite of calculations covering the range of formation parameters. The results are presented and discussed in terms of the inference (e.g., permeability and reservoir volume) that would be drawn from the simulated test data by an analyst using conventional methods.

  9. Water Resource Assessment of Geothermal Resources and Water Use in Geopressured Geothermal Systems

    SciTech Connect

    Clark, C. E.; Harto, C. B.; Troppe, W. A.

    2011-09-01

    This technical report from Argonne National Laboratory presents an assessment of fresh water demand for future growth in utility-scale geothermal power generation and an analysis of fresh water use in low-temperature geopressured geothermal power generation systems.

  10. Hydrogeochemical and isotopic characterisation of groundwater in a sand-dune phreatic aquifer on the northeastern coast of the province of Buenos Aires, Argentina.

    PubMed

    Carretero, Silvina C; Dapeña, Cristina; Kruse, Eduardo E

    2013-01-01

    This contribution presents the hydrochemical and isotopic characterisation of the phreatic aquifer located in the Partido de la Costa, province of Buenos Aires, Argentina. In the sand-dune barrier geomorphological environment, groundwater is mainly a low-salinity Ca-HCO3 and Na-HCO3-type, being in general suitable for drinking, whereas in the continental plain (silty clay sediments), groundwater is a Na-Cl type with high salinity and unsuitable for human consumption. The general isotopic composition of the area ranges from-6.8 to-4.3 ‰ for δ(18)O and from-39 to-21 ‰ for δ(2)H, showing that rainwater rapidly infiltrates into the sandy substrate and reaches the water table almost without significant modification in its isotopic composition. These analyses, combined with other chemical parameters, made it possible to corroborate that in the eastern area of the phreatic aquifer, there is no contamination from marine salt water.

  11. Fluid sampling and chemical modeling of geopressured brines containing methane. Final report, March 1980-February 1981

    SciTech Connect

    Dudak, B.; Galbraith, R.; Hansen, L.; Sverjensky, D.; Weres, O.

    1982-07-01

    The development of a flowthrough sampler capable of obtaining fluid samples from geopressured wells at temperatures up to 400/sup 0/F and pressures up to 20,000 psi is described. The sampler has been designed, fabricated from MP35N alloy, laboratory tested, and used to obtain fluid samples from a geothermal well at The Geysers, California. However, it has not yet been used in a geopressured well. The design features, test results, and operation of this device are described. Alternative sampler designs are also discussed. Another activity was to review the chemistry and geochemistry of geopressured brines and reservoirs, and to evaluate the utility of available computer codes for modeling the chemistry of geopressured brines. The thermodynamic data bases for such codes are usually the limiting factor in their application to geopressured systems, but it was concluded that existing codes can be updated with reasonable effort and can usefully explain and predict the chemical characteristics of geopressured systems, given suitable input data.

  12. Testing geopressured geothermal reservoirs in existing wells: Detailed completions prognosis for geopressured-geothermal well of opportunity, prospect #1

    SciTech Connect

    Kennedy, Clovis A.

    1980-04-03

    This prospective well of opportunity was originally drilled and completed as a gas producer by Wrightsman Investment Company in early 1973. The original and present producing interval was from 15,216 to 15,238 feet. IMC Exploration Company, Inc. acquired the property from Wrightsman and is the present owner operator. The well is presently shut in s a non-economic producer and IMC proposed to perform plug and abandonment operations in April, 1980. This well has a good geopressured-geothermal water sand behind the 5-1/2 inch casing that has 94 feet of net sand thickness. Pursuant to DOE/NVO authorization of March 11,1980, Eaton negotiated an option agreement with IMC whereby IMC would delay their abandonment operations for a period of 90 days to permit DOE to evaluate the well for geopressure-geothermal testing. The IMC-Eaton option agreements provide that IMG will delay plugging the well until June 15, 1980. If Eaton exercises its option to acquire the well, IMC will sell the well bore, and an adjacent salt water disposal well, to Eaton for the sole consideration of Eaton assuming the obligation to plug and abandon the wells in accordance with lease and regulatory requirements. If Eaton does not exercise its option, then Eaton will pay IMC $95,000 cash and IMC will proceed with plugging and abandonment at the termination of the option period.

  13. Testing geopressured geothermal reservoirs in existing wells. Saldana well No. 2, Zapata County, Texas. Volume I. Completion and testing. Final report

    SciTech Connect

    Not Available

    1981-10-07

    The Saldana Well No. 2, approximately 35 miles Southeast of the city of Laredo, Texas, was the sixth successful test of a geopressured-geothermal aquifer under the DOE Wells of Opportunity Program. The well was tested through the annulus between 7-inch casing and 2-3/8 inch tubing. The interval tested was from 9745 to 9820 feet. The geological section was the 1st Hinnant Sand, an upper member of the Wilcox Group. Produced water was injected into the Saldana Well No. 1, which was also acquired from Riddle Oil Company and converted to a disposal well. A Miocene salt water sand was perforated from 3005 to 3100 feet for disposal. One pressure drawdown flow test and one pressure buildup test were conducted during a 10-day period. A total of 9328 barrels of water was produced. The highest sustained flow rate was 1950 BWPD.

  14. T-F and S/DOE Gladys McCall No. 1 well, Cameron Parish, Louisiana. Geopressured-geothermal well report, Volume II. Well workover and production testing, February 1982-October 1985. Final report. Part 1

    SciTech Connect

    Not Available

    1985-01-01

    The T-F and S/DOE Gladys McCall No. 1 well was the fourth in a series of wells in the DOE Design Wells Program that were drilled into deep, large geopressured-geothermal brine aquifers in order to provide basic data with which to determine the technological and economic viability of producing energy from these unconventional resources. This brine production well was spudded on May 27, 1981 and drilling operations were completed on November 2, 1981 after using 160 days of rig time. The well was drilled to a total depth of 16,510 feet. The target sands lie at a depth of 14,412 to 15,860 feet in the Fleming Formation of the lower Miocene. This report covers well production testing operations and necessary well workover operations during the February 1982 to October 1985 period. The primary goals of the well testing program were: (1) to determine reservoir size, shape, volume, drive mechanisms, and other reservoir parameters, (2) to determine and demonstrate the technological and economic viability of producing energy from a geopressured-geothermal brine aquifer through long-term production testing, and (3) to determine problem areas associated with such long-term production, and to develop solutions therefor.

  15. Hydrogeology and simulation of groundwater flow and land-surface subsidence in the northern part of the Gulf Coast aquifer system, Texas, 1891-2009

    USGS Publications Warehouse

    Kasmarek, Mark C.

    2012-01-01

    The MODFLOW-2000 groundwater flow model described in this report comprises four layers, one for each of the hydrogeologic units of the aquifer system except the Catahoula confining system, the assumed no-flow base of the system. The HAGM is composed of 137 rows and 245 columns of 1-square-mile grid cells with lateral no-flow boundaries at the extent of each hydrogeologic unit to the northwest, at groundwater divides associated with large rivers to the southwest and northeast, and at the downdip limit of freshwater to the southeast. The model was calibrated within the specified criteria by using trial-and-error adjustment of selected model-input data in a series of transient simulations until the model output (potentiometric surfaces, land-surface subsidence, and selected water-budget components) acceptably reproduced field measured (or estimated) aquifer responses including water level and subsidence. The HAGM-simulated subsidence generally compared well to 26 Predictions Relating Effective Stress to Subsidence (PRESS) models in Harris, Galveston, and Fort Bend Counties. Simulated HAGM results indicate that as much as 10 feet (ft) of subsidence has occurred in southeastern Harris County. Measured subsidence and model results indicate that a larger geographic area encompassing this area of maximum subsidence and much of central to southeastern Harris County has subsided at least 6 ft. For the western part of the study area, the HAGM simulated as much as 3 ft of subsidence in Wharton, Jackson, and Matagorda Counties. For the eastern part of the study area, the HAGM simulated as much as 3 ft of subsidence at the boundary of Hardin and Jasper Counties. Additionally, in the southeastern part of the study area in Orange County, the HAGM simulated as much as 3 ft of subsidence. Measured subsidence for these areas in the western and eastern parts of the HAGM has not been documented.

  16. Assessing the impacts of geopressure on exploration using integrated geological log analysis

    SciTech Connect

    Betancour, I.R. ); Vellez, F.; Gonzales, A. )

    1993-02-01

    The occurrence of geopressure anomalies in the El Furrial, Chaguaramal and Boqueron oil fields in the Maturin subbasin of the Eastern Venezuela Basin, and their heterogeneous evolution through geological time has caused significant drilling problems. Identification of these anomalies and isolation of the adjacent subcompacted formations has cost much time and money. There are two main abnormal pressure zones in the Eastern Venezuela Basin. The lower occurs in a thick homogenous marine shale sequence of the Carapita Formation, deposited during late Oligocene-early Miocene times, which was followed by a late Miocene period of uplift and erosion. The upper occurs in marine shales and sandstones of the La Pica Formation, which was transgressively deposited on the eroded Carapita Formation. Using an integrated analysis of lithology and wireline logs, tectonically-influenced sections have been identified within the lower geopressure which have modified its original conditions. Furthermore, the late Miocene unconformity between the two zones controls the occurrence, style and dimension of the upper geopressure. Detailed differential compaction analysis from low to high hydraulic potential intervals through the lithostratigraphic sequence and their association to the unconformity explain the evolution and the current state of geopressure distribution throughout the oil fields. These conclusions are supported by direct and indirect quantitative pore and fracture pressure gradient analysis. The study identifies areas within these fields (e.g., Central and Eastern Boqueron) which show alterations of the occurrence and behavior of the geopressure. Such knowledge permits rapid modifications to drilling programs, allowing successful exploration and development.

  17. Carbonate aquifers

    USGS Publications Warehouse

    Cunningham, Kevin J.; Sukop, Michael; Curran, H. Allen

    2012-01-01

    Only limited hydrogeological research has been conducted using ichnology in carbonate aquifer characterization. Regardless, important applications of ichnology to carbonate aquifer characterization include its use to distinguish and delineate depositional cycles, correlate mappable biogenically altered surfaces, identify zones of preferential groundwater flow and paleogroundwater flow, and better understand the origin of ichnofabric-related karst features. Three case studies, which include Pleistocene carbonate rocks of the Biscayne aquifer in southern Florida and Cretaceous carbonate strata of the Edwards–Trinity aquifer system in central Texas, demonstrate that (1) there can be a strong relation between ichnofabrics and groundwater flow in carbonate aquifers and (2) ichnology can offer a useful methodology for carbonate aquifer characterization. In these examples, zones of extremely permeable, ichnofabric-related macroporosity are mappable stratiform geobodies and as such can be represented in groundwater flow and transport simulations.

  18. Gas-turbine-topped hybrid power plants for the utilization of geopressured geothermal resources

    NASA Astrophysics Data System (ADS)

    Khalifa, H. E.

    1981-01-01

    The paper presents an analysis of the performance and economics of a novel hybrid energy conversion system that would efficiently utilize the methane, hydraulic and thermal energy produced by geopressured-geothermal resources. The novel system comprises a methane-fueled gas turbine whose waste heat is used to superheat the vapor generated from the geopressured brine in an otherwise-conventional double-flash power plant. The analysis indicates that, compared to a conventional double-flash system, the hybrid system can generate nearly 44 percent more work from the thermal energy of the brine, in addition to the outputs of the gas and hydraulic turbines. Conservative preliminary economic estimates indicate that the unit installed cost of the hybrid plant would be about 25 percent lower than that of a conventional system constructed at the same geopressured resource site.

  19. Recoverable Resource Estimate of Identified Onshore Geopressured Geothermal Energy in Texas and Louisiana (Presentation)

    SciTech Connect

    Esposito, A.; Augustine, C.

    2012-04-01

    Geopressured geothermal reservoirs are characterized by high temperatures and high pressures with correspondingly large quantities of dissolved methane. Due to these characteristics, the reservoirs provide two sources of energy: chemical energy from the recovered methane, and thermal energy from the recovered fluid at temperatures high enough to operate a binary power plant for electricity production. Formations with the greatest potential for recoverable energy are located in the gulf coastal region of Texas and Louisiana where significantly overpressured and hot formations are abundant. This study estimates the total recoverable onshore geopressured geothermal resource for identified sites in Texas and Louisiana. In this study a geopressured geothermal resource is defined as a brine reservoir with fluid temperature greater than 212 degrees F and a pressure gradient greater than 0.7 psi/ft.

  20. Estimation of the Change in Freshwater Volume in the North Coast Limestone Upper Aquifer of Puerto Rico in the Rio Grande de Manati-Rio de la Plata Area between 1960 and 1990 and Implications on Public-Supply Water Availability

    USGS Publications Warehouse

    Gómez-Gómez, Fernando

    2008-01-01

    Ground water in the upper aquifer of the North Coast Limestone aquifer system historically has been the principal source of public-supply and self-supplied industrial water use in north-central Puerto Rico. Development of the aquifer for these two major water-use categories began in about 1930; however, withdrawals did not become an important water-supply source for sustaining local development until the 1960s. Ground-water withdrawals averaged about 6 million gallons per day from 1948 to the mid-1960s and peaked at about 33 million gallons per day in the 1980s. Withdrawals have since declined, averaging about 11.5 million gallons per day in 2002. Aquifer contamination by industrial chemical spills and by nitrates from agricultural and domestic sources initially reduced pumpage for public-supply use within localized areas, leading eventually to increased withdrawals at unaffected well fields. The long-term effect of unconstrained ground-water withdrawals has been a regional thinning of the freshwater lens in an area encompassing 50,600 acres between the Rio Grande de Manati and Rio de la Plata, generally north of latitude 18?25?. The effects of aquifer overdraft have been documented in the regional thinning of the freshwater lens, with an increase in dissolved-solids concentration in ground-water wells. Dissolved-solids concentration in public-supply wells were generally between 250 and 350 milligrams per liter during the 1960s, but increased to greater than 500 milligrams per liter in virtually all of the wells by 2000. Depletion of fresh ground water was estimated at 282,000 acre-feet: 103,000 acre-feet in the Rio Grande de Manati to Rio Cibuco area between 1960 and 1995, and 179,000 acre-feet in the Rio Cibuco to Rio de la Plata area between 1960 and 1992. Thus, aquifer freshwater volume depletion below mean sea level datum may have contributed as much as 38 percent (7.5 million gallons per day) of the 20-million gallons per day average withdrawal rate during

  1. The feasibility of applying geopressured-geothermal resources to direct uses

    SciTech Connect

    Lunis, B.C.; Negus-de Wys, J.; Plum, M.M. ); Lienau, P.J. . Geo-Heat Center); Spencer, F.J. ); Nitschke, G.F. )

    1991-09-01

    This study concludes that direct use technologies, especially desalinated water production, can contribute significantly to the value added process and the overall economic viability in developing a geopressured resource. Although agriculture and aquaculture applications are marginal projects when they are the only use of a geopressured well, the small margin of profitability can contribute to improving the overall economics of the direct use development. The added complexity from a technical and management aspect may add to the overall risk and unpredictability of the project. Six combination of direct uses received economic evaluation that resulted in 15% discounted payback periods ranging from 4 to over 10 years. Many other combinations are possible depending on the resource and market variables. Selection of appropriate technologies and sizes of applications will be established by the developer that engages in geopressured resource utilization. Currently, many areas of the country where geopressured resources are located also have surplus electrical capacity and generation, thus power utilities have been selling power for less than 2 cents per kWH, well below a reasonable breakeven value for geopressured produced electricity. However, when the energy demand of the integrated geopressured facility is large enough to install power generation equipment, operating expenses can be reduced by not paying the 10 to 12 cents per kWH utility rate. The study includes an analysis of a geothermal turbine unit installed with a desalination and an agriculture/aquaculture facility, taking advantage of the cascading energy values. Results suggest that this scenario becomes profitable only where the market price for electricity exceeds five cents per kWH.

  2. Thermodynamic analysis of a geopressured geothermal hybrid wellhead power system. Final report

    SciTech Connect

    Chang, I.; Williams, J.R.

    1985-01-01

    This research project is designed to evaluate the performance and operating characteristics of hybrid power cycles applied to geopressured and geothermal resources. The power systems evaluated are from the EPRI geopressured wellheat project and data used for the analysis are from the Pleasant Bayou well site. Three types of hybrid power systems are analyzed thermodynamically. They are (A) the single flash system, (B) the double flash system, and (C) the binary system. The studies of the first two systems are more extensive than the third one, although the binary system is the one chosen for testing at the Pleasant Bayou well site.

  3. Fiscal Year 1992 Annual Operating Plan for the Geopressured-Geothermal Research Program ($4.3 Million Budget)

    SciTech Connect

    1991-08-01

    This plan describes the Geopressured-Geothermal Research Program. A Geopressured well in Texas (Pleasant Bayou) will undergo a slow test and a pressure buildup test. A geopressured well in Louisiana (Gladys McCall) will be flow tested for a short period, logged, plugged and abandoned or turned over to industry early in FY 92. A second deep geopressured well in Louisiana, the Hulin Well, is being kept on standby. Related university research in geology, numerical reservoir modeling, subsidence, microseismicity, and water quality will continue, with program data reviews initiated in appropriate areas. Increased emphasis on integrated reservoir engineering will be implemented. The well activities coupled with the related university research are designed to improve the ability to forecast reservoir productive capacity, to verify the reliability of the resource as a long-term energy resource, and to determine the environmental effects of long-term production. By these means, the Geopressured-Geothermal Research Program is developing a solid technology base that private industry can use to evaluate the geopressured-geothermal resource. The Industrial Consortium for utilization of the resource will be continued. Use projects in Louisiana and Texas will be evaluated. A geopressured reservoir review will be managed by INEL. The DOE Field Office, Idaho will make preparations to complete the program. [DJE-2005

  4. Organic geochemistry of the Sweet Lake geopressured test well

    SciTech Connect

    Bayliss, G.S.; Hart, G.F.; Bebout, D.G.; Bachman, A.L.

    1981-01-01

    The stratigraphic section penetrated by the Sweet Lake, Louisiana Geopressured Test Well (15,200' T.D.) was divided into five geochemical zones (zones A to E) with one zone (C) further subdivided into three subunits. Zones A through C extended to 9100 feet and are thermally immature and have a poor to very poor hydrocarbon source potential. Zones D and E (9100 to 15,720 feet) are thermally immature grading to mature and have a poor hydrocarbon source potential. The shales in the section are unlikely to have generated any significant amounts of hydrocarbons. Any potential reservoir facies penetrated by this well should not contain indigenously generated hydrocarbons in any significant quantities. These reservoirs will only be prospective if migrated hydrocarbons are entrapped that were sourced from more thermally mature and more organically rich shales that exist either laterally or at deeper, as yet umpenetrated, horizons. Geochemical evidence suggests that oil liquids and minor amounts of associated gas have moved into zone E (in excess of 14,000') and gas into the sands associated with subunit C/sub 3/ (8500 to 9100 feet).

  5. A study of hydrocarbons associated with brines from DOE geopressured wells. Final report

    SciTech Connect

    Keeley, D.F.

    1993-07-01

    Accomplishments are summarized on the following tasks: distribution coefficients and solubilities, DOE design well sampling, analysis of well samples, review of theoretical models of geopressured reservoir hydrocarbons, monitor for aliphatic hydrocarbons, development of a ph meter probe, DOE design well scrubber analysis, removal and disposition of gas scrubber equipment at Pleasant Bayou Well, and disposition of archived brines.

  6. A study of hydrocarbons associated with brines from DOE geopressured wells

    SciTech Connect

    Keeley, D.F.

    1993-01-01

    Accomplishments are summarized on the following tasks: distribution coefficients and solubilities, DOE design well sampling, analysis of well samples, review of theoretical models of geopressured reservoir hydrocarbons, monitor for aliphatic hydrocarbons, development of a ph meter probe, DOE design well scrubber analysis, removal and disposition of gas scrubber equipment at Pleasant Bayou Well, and disposition of archived brines.

  7. The Geopressured-Geothermal Program: Energy conversion status and future possibilities

    SciTech Connect

    Negus-de Wys, J.; Lawford, T.W.; Faulder, D.D. )

    1989-01-01

    The Geopressured-Geothermal Program, sponsored by the Department of Energy (DOE) began in 1976 with the Wells of Opportunity. This early research concentrated on resource characterization at several locations in Texas and Louisiana. More recently, the program has included well operations and supporting university research in geoscience and engineering. Long term flow testing, reinjection of brine, and scale prevention were accomplished at the Gladys McCall Well. The Pleasant Bayou Well provided additional data for modeling and predicting geopressured reservoir behavior. This year a hybrid power system (HPS) was constructed at Pleasant Bayou in cooperation with the Electric Power Research Institute (EPRI). This is the first conversion of the geopressured-geothermal resource to electricity. An economic review of geopressured-geothermal resource development concludes that using off-the-shelf technology, electricity can be produced for $0.125/kWh from a Gladys McCall type resource (40,000 bpd brine production, 27 scf methane/bbl, 288{degree}F brine, and 10-year resource life). The Pleasant Bayou type resource can produce electricity for $0.32/kWh. Advanced technology could reduce the cost to $0.16/kWh. A review and status of the HPS is presented with future possibilities for the program, including (1) recovery of medium and heavy oil with hot geopressured brine, (2) direct use, especially aquaculture, and (3) development and use of advanced technology for conversion at the Hulin Well, the deepest, hottest well in the program. The estimated improvement in efficiencies with advanced conversion technology range from 100 to 160%. This would greatly reduce the cost to produce electricity. 6 refs., 7 figs., 2 tabs.

  8. Flow pattern in regional aquifers and flow relations between the lower Colorado River valley and regional aquifers in six counties of southeastern Texas

    USGS Publications Warehouse

    Woodward, Dennis G.

    1989-01-01

    The lower Colorado River discussed in this report consists of the 318- river-mile reach from Mansfield Dam near Austin, Texas, to the Gulf of Mexico. The river is underlain directly or indirectly by six regional aquifers the Trinity Group, Edwards, Carrizo-Wilcox, Queen City, Sparta, and Gulf Coast; the Trinity Group aquifer is further subdivided into the lower Trinity, middle Trinity, and upper Trinity aquifers. Generalized potentiometric-surface maps of each regional aquifer show the ground-water-flow pattern near the river valley. Each regional aquifer discharges water to the lower Colorado River valley, particularly in the outcrop area of each aquifer. Only the Gulf Coast aquifer in central Wharton County appears to be recharged by water in the river valley. A summary map shows those subreaches of the lower Colorado River that gain water from the aquifers and those subreaches that lose water to the aquifers.

  9. Subsurface geology and potential for geopressured-geothermal energy in the Turtle Bayou field-Kent Bayou field area, Terrebonne Parish, Louisiana

    SciTech Connect

    Moore, D.R.

    1982-09-01

    A 216 square mile area approximately 65 miles southwest of New Orleans, Louisiana, has been geologically evaluated to determine its potential for geopressured-geothermal energy production. The structural and stratigraphic analyses were made with emphasis upon the Early and Middle Miocene age sediments which lie close to and within the geopressured section. Three geopressured sands, the Robulus (43) sand, Cibicides opima sand, and Cristellaria (I) sand, are evaluated for their potential of producing geothermal energy. Two of these sands, the Robulus (43) sand and the Cibicides opima sand, meet several of the United States Department of Energy's suggested minimum requirements for a prospective geopressured-geothermal energy reservoir.

  10. Saline fluid flow and hydrocarbon migration and maturation as related to geopressure, Frio Formation, Brazoria County, Texas

    SciTech Connect

    Tyler, N.; Light, M.P.R.; Ewing, T.E.

    1985-01-01

    The Pleasant Bayou geopressured-geothermal test wells in Brazoria County, Texas, display a prominent thermal-maturity anomaly in the Oligocene Anahuac and Frio Formations. Highly geopressured, more-mature shales are interbedded with hydropressured to moderately geopressured sandstones in the upper Frio and Anahuac. In contrast, shales and sandstones in the lower Frio, including the Andrau geopressured-geothermal production zone, are highly geopressured but exhibit lower thermal maturities. Vitrinite-reflectance data, supported by hydrocarbon-maturation data and anomalous concentrations of C/sub 5/ to C/sub 7/ hydrocarbons at Pleasant Bayou, indicate that the upper Frio was subjected to an extended period of hot, extremely saline, basinal fluid flow which caused the above thermal anomaly. Regional salinity studies (Morton and others, 1983) suggest that regional growth faults were the conduits for vertical basinal brine movement at depth. At shallower levels the upwelling waters migrated laterally through permeable sandstone-rich sections such as the upper Frio. Anomalously mature gasoline-range (C/sub 5/-C/sub 7/) hydrocarbons were introduced into the upper Frio by this process. Fluid influx in the lower Frio was probably limited by high geopressure, consequently maturity in the deep Frio section (greater than 14,000 ft) remained consistent with the regional geothermal gradient.

  11. Solvent extraction of methane from simulated geopressured-geothermal fluids: sub-pilot test results

    SciTech Connect

    Quong, R.; Otsuki, H.H.; Locke, F.E.

    1982-01-14

    The extraction of methane dissolved in 15 wt % sodium chloride solution at 150/sup 0/C and 1000 psi has been demonstrated using n-hexadecane as the solvent in a sub-pilot scale extraction column operated in a continuous, countercurrent flow mode. Greater than 90% recovery of methane was obtained with solvent/brine mass flow ratios in the range of .040 to .045. The height of an ideal stage in this experimental Elgin-type spray column is estimated to be 1.5 ft. Application of this process on actual geopressured fluids is technically feasible, and when combined with direct drive injection disposal is economically attractive. Design and operation of a methane saturated-brine supply system to provide simulated geopressured fluid continuously at 150/sup 0/C and 1000 psi are also described.

  12. Geopressured geothermal resource potential of Miocene Bayou Hebert Prospect, Vermilion and Iberia parishes, Louisiana

    SciTech Connect

    McCulloh, R.P.; Pino, M.A.; Bebout, D.G.; Bachman, A.L.

    1981-01-01

    The Bayou Hebert prospect is a fault-bounded block of lower Miocene shale and sandstone which covers a 75-square-mile area in southeastern Vermilion and southwestern Iberia parishes, southwestern Louisiana. The average depth to the top of the geopressured zone is 12,500 feet. Detailed correlation of shale resistivity patterns on well logs from this area has delineated faults, local unconformities, and changes in thickness and facies of lithologic units. Most faults revealed by this method are associated with the boundary fault zones, but the few delineated in the interior of the prospect could reduce the volume of potential reservoir units. Cross sections show that the lower Miocene section thickens across growth faults by addition of new units as well as by expansion. Of the parameters of reservoir volume, salinity, temperature, and permeability, reservoir volume shows the most significant variation and indicates that the eastern fourth of the prospect has the most geopressured geothermal potential.

  13. Parcperdue geopressure-geothermal project. Study a geopressured reservoir by drilling and producing a well in a limited geopressured water sand. Final technical report, September 28, 1979-December 31, 1983

    SciTech Connect

    Hamilton, J.R.; Stanley, J.G.

    1984-01-15

    The behavior of geopressured reservoirs was investigated by drilling and producing a well in small, well defined, geopressured reservoir; and performing detailed pressure transient analysis together with geological, geophysical, chemical, and physical studies. The Dow-DOE L. R. Sweezy No. 1 well was drilled to a depth of 13,600 feet in Parcperdue field, just south of Lafayette, Louisiana, and began production in April, 1982. The production zone was a poorly consolidated sandstone which constantly produced sand into the well stream, causing damage to equipment and causing other problems. The amount of sand production was kept manageable by limiting the flow rate to below 10,000 barrels per day. Reservoir properties of size, thickness, depth, temperature, pressure, salinity, porosity, and permeability were close to predicted values. The reservoir brine was undersaturated with respect to gas, containing approximately 20 standard cubic feet of gas per barrel of brine. Shale dewatering either did not occur or was insignificant as a drive mechanism. Production terminated when the gravel-pack completion failed and the production well totally sanded in, February, 1983. Total production up to the sanding incident was 1.94 million barrels brine and 31.5 million standard cubic feet gas.

  14. Testing geopressured geothermal reservoirs in existing wells: Detailed completion prognosis for geopressured-geothermal well of opportunity, prospect #2

    SciTech Connect

    1981-03-01

    A geopressured-geothermal test of Martin Exploration Company's Crown Zellerbach Well No. 2 will be conducted in the Tuscaloosa Trend. The Crown Zellerbach Well No. 1 will be converted to a saltwater disposal well for disposal of produced brine. The well is located in the Satsuma Area, Livingston parish, Louisiana. Eaton proposes to test the Tuscaloosa by perforating the 7 inch casing from 16,718 feet to 16,754 feet. The reservoir pressure at an intermediate formation depth of 16,736 feet is anticipated to be 12,010 psi and the temperature is anticipated to be 297 F. Calculated water salinity is 16,000 ppm. The well is expected to produce a maximum of 16,000 barrels of water a day with a gas content of 51 SCF/bbl. Eaton will re-enter the test well, clean out to 17,000 feet, run production casing and complete the well. The disposal well will be re-entered and completed in the 9-5/8 inch casing for disposal of produced brine. Testing will be conducted similar to previous Eaton annular flow WOO tests. An optional test from 16,462 feet to 16,490 feet may be performed after the original test and will require a workover with a rig on location to perform the plugback. The surface production equipment utilized on previous tests will be utilized on this test. The equipment has worked satisfactorily and all parties involved in the testing are familiar with its operation. Weatherly Engineering will operate the test equipment. The Institute of Gas Technology (IGT) and Mr. Don Clark will handle sampling, testing and reservoir engineering evaluation, respectively. wireline work required will be awarded on basis of bid evaluation. At the conclusion of the test period, the D.O.E. owned test equipment will be removed from the test site, the test and disposal wells plugged and abandoned and the sites restored to the satisfaction of all parties.

  15. AQUIFER TRANSMISSIVITY

    EPA Science Inventory

    Evaluation of groundwater resources requires the knowledge of the capacity of aquifers to store and transmit ground water. This requires estimates of key hydraulic parameters, such as the transmissivity, among others. The transmissivity T (m2/sec) is a hydrauli...

  16. AQUIFER TRANSMISSIVITY

    EPA Science Inventory

    Evaluation of groundwater resources requires the knowledge of the capacity of aquifers to store and transmit ground water. This requires estimates of key hydraulic parameters, such as the transmissivity, among others. The transmissivity T (m2/sec) is a hydrauli...

  17. Design and operation of a geopressurized-geothermal hybrid cycle power plant

    SciTech Connect

    Campbell, R.G.; Hattar, M.M.

    1991-02-01

    Geopressured-geothermal resources can contribute significantly to the national electricity supply once technical and economic obstacles are overcome. Power plant performance under the harsh conditions of a geopressured resource was unproven, so a demonstration power plant was built and operated on the Pleasant Bayou geopressured resource in Texas. This one megawatt facility provided valuable data over a range of operating conditions. This power plant was a first-of-a-kind demonstration of the hybrid cycle concept. A hybrid cycle was used to take advantage of the fact that geopressured resources contain energy in more than one form -- hot water and natural gas. Studies have shown that hybrid cycles can yield thirty percent more power than stand-alone geothermal and fossil fuel power plants operating on the same resource. In the hybrid cycle at Pleasant Bayou, gas was burned in engines to generate electricity directly. Exhaust heat from the engines was then combined with heat from the brine to generate additional electricity in a binary cycle. Heat from the gas engine was available at high temperature, thus improving the efficiency of the binary portion of the hybrid cycle. Design power output was achieved, and 3445 MWh of power were sold to the local utility over the course of the test. Plant availability was 97.5% and the capacity factor was over 80% for the extended run at maximum power production. The hybrid cycle power plant demonstrated that there are no technical obstacles to electricity generation at Pleasant Bayou. 14 refs., 38 figs., 16 tabs.

  18. Industrial Consortium for the Utilization of the Geopressured-Geothermal Resource. Volume 2

    SciTech Connect

    Negus-deWys, J.

    1990-03-01

    The Geopressured-Geothermal Program, now in its fifteenth year, is entering the transition period to commercial use. The industry cost-shared proposals to the consortium, represented in the presentations included in these proceedings, attest to the interest developing in the industrial community in utilizing the geopressured-geothermal resource. Sixty-five participants attended these sessions, two-thirds of whom represented industry. The areas represented by cost-shared proposals include (1) thermal enhanced oil recovery, (2) direct process use of thermal energy, e.g., aquaculture and agriculture, (3) conversion of thermal energy to electricity, (4) environment related technologies, e.g., use of supercritical processes, and (5) operational proposals, e.g., a field manual for scale inhibitors. It is hoped that from this array of potential use projects, some will persist and be successful in proving the viability of using the geopressured-geothermal resource. Such industrial use of an alternative and relatively clean energy resource will benefit our nation and its people.

  19. Industrial Consortium for the Utilization of the Geopressured-Geothermal Resource. Volume 1

    SciTech Connect

    Negus-deWys, J.

    1990-03-01

    The Geopressured-Geothermal Program, now in its fifteenth year, is entering the transition period to commercial use. The industry cost-shared proposals to the consortium, represented in the presentations included in these proceedings, attest to the interest developing in the industrial community in utilizing the geopressured-geothermal resource. Sixty-five participants attended these sessions, two-thirds of whom represented industry. The areas represented by cost-shared proposals include (1) thermal enhanced oil recovery, (2) direct process use of thermal energy, e.g., aquaculture and agriculture, (3) conversion of thermal energy to electricity, (4) environment related technologies, e.g., use of supercritical processes, and (5) operational proposals, e.g., a field manual for scale inhibitors. It is hoped that from this array of potential use projects, some will persist and be successful in proving the viability of using the geopressured-geothermal resource. Such industrial use of an alternative and relatively clean energy resource will benefit our nation and its people.

  20. Assessment of the geothermal/geopressure potential of the Gulf Coastal Plan of Alabama. Final report

    SciTech Connect

    Wilson, G.V.; Wang, G.C.; Mancini, E.A.; Benson, D.J.

    1980-01-01

    Geothermal and geopressure as well as geologic and geophysical data were studied to evaluate the potential for future development of geothermal resources underlying the Alabama Coastal Plain. Wire-line log data compiled and interpreted from more than 1300 oil and gas test wells included maximum recorded temperatures, mud weights, rock resistivities as related to geopressure, formation tops, fault locations, and depths to basement rock. The Alabama Coastal Plain area is underlain by a conduction dominated, deep sedimentary basin where geothermal gradients are low to moderate (1.0 to 1.8/sup 0/F/100 feet). In some areas of southwest Alabama, abnormally high temperatures are found in association with geopressured zones within the Haynesville Formation of Jurassic age; however, rocks of poor reservoir quality dominate this formation, with the exception of a 200-square-mile area centered in southernmost Clarke County where a porous and permeable sand unit is encased within massive salt deposits of the lower Haynesville. The results of a petrograhic study of the Smackover Formation, which underlies the Haynesville, indicate that this carbonate rock unit has sufficient porosity in some areas to be considered a potential geothermal reservoir. Future development of geothermal resources in south Alabama will be restricted to low or moderate temperature, non-electric applications, which constitute a significant potential energy source for applications in space heating and cooling and certain agricultural and industrial processes.

  1. Well Test Analysis and Improved Models for Geopressured-Geothermal Systems

    SciTech Connect

    Riney, T.D.

    1990-12-01

    In accordance with the S-CUBED Subcontract Work Statement, S-CUBED has concentrated on the synthesis, correlation and analysis of all pertinent data from the Department of Energy (DOE) geopressured-geothermal research wells undergoing testing during the contract period. This work has included the development of reservoir simulation models for the geopressured-geothermal resource in hydrological connection with each well. Existing S-CUBED simulation techniques have been applied to develop, update and improve the models for the reservoirs tested. During the contract period, data have been available from the Gladys McCall, Pleasant Bayou and Hulin test wells. S-CUBED has also contributed to the design of the well tests and participated in DOE's planning and review meetings in support of the geopressured-geothermal program. Detailed technical Topical Reports have been prepared and issued as appropriate during the contract period as referenced in the following summary of the work performed during the final year of the S-CUBED Subcontract to UTA.

  2. Testing geopressured geothermal reservoirs in existing wells. Final report P. R. Girouard Well No. 1, Lafayette Parish, Louisiana. Volume I. Completion and testing

    SciTech Connect

    Not Available

    1981-01-01

    The P.R. Girouard No. 1 Well, located approximately 10 miles southeast of Lafayette, Louisiana, was the fourth successful test of a geopressured-geothermal aquifer under the Wells of Opportunity program. The well was tested through 3-1/2 inch tubing set on a packer at 14,570 feet without major problems. The geological section tested was the Oligocene Marginulina Texana No. 1 sand of upper Frio age. The interval tested was from 14,744 to 14,819 feet. Produced water was piped down a disposal well perforated from 2870 to 3000 feet in a Miocene saltwater sand. Four flow tests were conducted for sustained production rates of approximately 4000 BWPD to approximately 15,000 BWPD. The highest achieved, during a fifth short test, was 18,460 BWPD. The test equipment was capable of handling higher rates. The gas-to-water ratio was relatively uniform at approximately 40 SCF/bbl. The heating value of the gas is 970 Btu/SCF. The reservoir tests show that is is doubtful that this well would sustain production rates over 10,000 BWPD for any lengthy period from the sand zone in which it was completed. This limited flow capacity is due to the well's poor location in the reservoir and is not a result of any production deficiencies of the Marginulina Texana sand.

  3. Factors controlling reservoir quality in tertiary sandstones and their significance to geopressured geothermal production. Annual report, May 1, 1979-May 31, 1980

    SciTech Connect

    Loucks, R.G.; Richmann, D.L.; Milliken, K.L.

    1980-07-01

    Differing extents of diagenetic modification is the factor primarily responsible for contrasting regional reservoir quality of Tertiary sandstones from the Upper and Lower Texas Gulf Coast. Detailed comparison of Frio sandstones from the Chocolate Bayou/Danbury Dome area, Brazoria County, and Vicksburg sandstones from the McAllen Ranch Field area, Hidalgo County, reveals that extent of diagenetic modification is most strongly influenced by (1) detrital mineralogy and (2) regional geothermal gradients. Vicksburg sandstones from the McAllen Ranch Field area are less stable, chemically and mechanically, than Frio sandstones from the Chocolate Bayou/Danbury dome area. Vicksburg sandstones are mineralogically immature and contain greater proportions of feldspars and rock fragments than do Frio sandstones. Thr reactive detrital assemblage of Vicksubrg sandstones is highly susceptible to diagenetic modification. Susceptibility is enhanced by higher than normal geothermal gradients in the McAllen Ranch Field area. Thus, consolidation of Vicksburg sandstones began at shallower depth of burial and precipitation of authigenic phases (especially calcite) was more pervasive than in Frio sandstones. Moreover, the late-stage episode of ferroan calcite precipitation that occluded most secondary porosity in Vicksburg sandstones did not occur significantly in Frio sandstones. Therefore, regional reservoir quality of Frio sandstones from Brazoria County is far better than that characterizing Vicksburg sandstones from Hidalgo County, especially at depths suitable for geopressured geothermal energy production.

  4. Distribution and origin of salinity in the surficial and intermediate aquifer systems, southwestern Florida

    USGS Publications Warehouse

    Schmerge, David L.

    2001-01-01

    Chloride concentrations in the surficial and intermediate aquifer systems in southwestern Florida indicate a general trend of increasing salinity coastward and with depth. There are some notable exceptions to this trend. Brackish water is present in the sandstone and mid-Hawthorn aquifers in several inland areas in Lee County. In an area near the coast in Collier County, the lower Tamiami aquifer contains freshwater, with brackish water present farther inland. Saline water is present in the lower Tamiami aquifer along the coast in Collier County, but water is brackish in the underlying mid-Hawthorn and Upper Floridan aquifers. The analyses of major ions, hydrogen and oxygen isotopes, and strontium isotopes indicate the primary sources of salinity are underlying aquifers and the Gulf of Mexico. Based on these data, much of the salinity is from upward leakage of brackish water from underlying aquifers. Discharge as diffuse upward leakage and artesian wells are two possible pathways of saltwater intrusion from underlying aquifers. Artesian wells open to multiple aquifers have been pathways of saltwater intrusion in the sandstone and mid-Hawthorn aquifers in much of Lee County. The source of brackish water in the lower Tamiami and mid-Hawthorn aquifers in Collier County may be natural diffuse leakage from underlying aquifers. The source of the saline water in the lower Tamiami aquifer in Collier County is apparently the Gulf of Mexico; it is unclear however, whether this saline water is residual water from former Pleistocene sea invasions or recent saltwater intrusion.

  5. Microseismic monitoring of Chocolate Bayou, Texas: The Pleasant Bayou no. 2 geopressured/geothermal energy test well program

    NASA Astrophysics Data System (ADS)

    Mauk, F. J.; Kimball, B.; Davis, R. A.

    The Brazoria seismic network, instrumentation, design, and specifications are described. The data analysis procedures are presented. Seismicity is described in relation to the Pleasant Bayou production history. Seismicity originating near the chemical plant east of the geopressured/geothermal well is discussed.

  6. Microseismic monitoring of Chocolate Bayou, Texas: the Pleasant Bayou No. 2 geopressured/geothermal energy test well program

    SciTech Connect

    Mauk, F.J.; Kimball, B.; Davis, R.A.

    1984-01-01

    The Brazoria seismic network, instrumentation, design, and specifications are described. The data analysis procedures are presented. Seismicity is described in relation to the Pleasant Bayou production history. Seismicity originating near the chemical plant east of the geopressured/geothermal well is discussed. (MHR)

  7. Geologic, geophysical, and geochemical aspects of site-specific studies of the geopressured-geothermal energy resource of southern Louisiana. Final report

    SciTech Connect

    Pilger, R.H. Jr.

    1985-01-01

    The report consists of four sections dealing with progress in evaluating geologic, geochemical, and geophysical aspects of geopressured-geothermal energy resources in Louisiana. Separate abstracts have been prepared for the individual sections. (ACR)

  8. Contractor for geopressured-geothermal sites: Final contract report, Volume 1, fiscal years 1986--1990 (5 years), testing of wells through October 1990

    SciTech Connect

    Not Available

    1992-09-01

    Field tests and studies were conducted to determine the production behavior of geopressured-geothermal reservoirs and their potential as future energy sources. Results are presented for Gladys McCall Site, Pleasant Bayou Site, and Hulin Site.

  9. Investigation and evaluation of geopressured-geothermal wells. Summary of Gruy Federal's Well-of-Opportunity Program to January 31, 1980

    SciTech Connect

    Not Available

    1980-03-01

    Scouting and monitoring techniques peculiar to geopressured-geothermal wells and legal problems are presented. The following are tabulated: priority wells actively monitored, industry contacts, and the summary of industry responses to well-or-opportunity solicitation. (MHR)

  10. The feasibility of recovering medium to heavy oil using geopressured- geothermal fluids

    SciTech Connect

    Negus-de Wys, J.; Kimmell, C.E.; Hart, G.F.; Plum, M.M.

    1991-09-01

    The feasibility, economics and environmental concerns of producing more domestic oil using thermal enhanced oil recovery (TEOR) are reviewed and the unique nature of geopressured-geothermal (GPGT) fluids for thermal recovery are outlined. Current methods of TEOR are briefly discussed and it is noted that these methods are presently under scrutiny by both federal and state air quality agencies; and moreover, they often involve costly operational and mechanical problems associated with heating water on the surface for injection into the target reservoir. The characteristics of the GPGT resources as seen through previous Department of Energy (DOE) studies from sites in Louisiana and Texas are discussed. These studies indicate sufficient quantities of GPGT fluids can be produced to sustain a TEOR project. The Alworth Field in the south Texas Mirando Trend is proposed as a TEOR pilot site. The target reservoirs for injection of the GPGT fluids are the Jackson and Yegua sandstones of the upper Eocene Epoch. The reservoirs contain an estimated 4 MMbbls of heavy oil in place (OIP) (18.6{degree}API) of which it is estimated that at least 1 MMbbls could be recovered by TEOR. The problems associated with using the GPGT fluids for TEOR include those normally associated with hot water flooding but in addition the reaction of the brine from the geopressured-geothermal reservoir with the target reservoir is uncertain. Under the elevated temperatures associated with GPGT TEOR, actual increased porosity and permeability are possible. 120 refs., 40 figs., 13 tabs.

  11. Geopressured Geothermal Resource and Recoverable Energy Estimate for the Wilcox and Frio Formations, Texas (Presentation)

    SciTech Connect

    Esposito, A.; Augustine, C.

    2011-10-01

    An estimate of the total and recoverable geopressured geothermal resource of the fairways in the Wilcox and Frio formations is made using the current data available. The flow rate of water and methane for wells located in the geopressured geothermal fairways is simulated over a 20-year period utilizing the TOUGH2 Reservoir Simulator and research data. The model incorporates relative permeability, capillary pressure, rock compressibility, and leakage from the bounding shale layers. The simulations show that permeability, porosity, pressure, sandstone thickness, well spacing, and gas saturation in the sandstone have a significant impact on the percent of energy recovered. The results also predict lower average well production flow rates and a significantly higher production of natural gas relative to water than in previous studies done from 1975 to 1980. Previous studies underestimate the amount of methane produced with hot brine. Based on the work completed in this study, multiphase flow processes and reservoir boundary conditions greatly influence the total quantity of the fluid produced as well as the ratio of gas and water in the produced fluid.

  12. Reservoir Modeling and Prediction at Pleasant Bayou Geopressured-Geothermal Reservoir

    SciTech Connect

    Shook, Mike

    1992-03-24

    Modeling and prediction of geopressured-geothermal reservoirs is an excellent example of an engineering problem that can be solved through many different means. The problem may be approached from a purely numerical viewpoint, where a successful history match ''demonstrates'' the validity of the reservoir model, or from an analytical point of view. Each method has its own inherent limitations and weaknesses. Such limitations can be minimized by using some combination of both numerical and analytical methods, taking advantage of the strengths of each without the attendant weaknesses. This paper describes a combined numerical/analytical approach to reservoir engineering at the Pleasant Bayou geopressured-geothermal reservoir. A reservoir description had previously been developed, through which a successful history match was performed. Certain details of the reservoir can also be obtained through analysis of pressure and flow transients; these can then be used to constrain the numerical model. Methods for extracting such reservoir data are discussed, and the manner in which they can be used as constraints in the numerical models are presented.

  13. Coast Guard

    SciTech Connect

    Meed, R.M.

    1991-10-01

    This paper testifies that water pollution by oil remains significant, and noncompliance with federal regulations to prevent oil pollution continues to be great in the four ports GAO visited. Additionally, the impact of the Coast Guard's efforts to reduce oil spill in unknown because the agency does not compile and analyze inspection and spill data needed to make this determination. Further, the Coast Guard has not been inspecting portions of pipes that transport oil between docks and storage tanks. Coast Guard officials now acknowledge this responsibility.

  14. Ground-water flow analysis of the Mississippi Embayment aquifer system, South-Central United States

    USGS Publications Warehouse

    Arthur, J.K.; Taylor, R.E.

    1998-01-01

    The Mississippi Embayment aquifer system is composed of six regional aquifers covering about 160,000 square miles in parts of Alabama, Arkansas, Illinois, Kentucky, Louisiana, Mississippi, Missouri, and Tennessee. The flow analysis presented in this report as part of the Gulf Coast Regional Aquifer-System Analysis study pertains to five aquifers in sediments of the Wilcox and Claiborne groups of Tertiary age. In descending order, the aquifers are (1) the upper Claiborne, (2) the middle Claiborne, (3) the lower Claiborne-upper Wilcox, (4) the middle Wilcox, and (5) the lower Wilcox. The flow analysis of the sixth aquifer in the aquifer system, the Mississippi River valley alluvial aquifer in sediments of Holocene and Pleistocene age, is presented in chapter D of this Professional Paper.

  15. Evaluation of geopressured brine injectability: Department of Energy, Pleasant Bayou No. 2 well, Brazoria County, Texas

    SciTech Connect

    Owen, L.B.; Blair, C.K.; Harrar, J.E.; Netherton, R.

    1980-10-28

    A field evaluation of geopressured brine injectability was completed during September 22 to 25, 1980 at the DOE, Brazoria test site in Texas. Membrane filters, with pore sizes of 0.4-..mu..m and 10.0-..mu..m, were used as the basis for obtaining suspended solids data and for developing performance-life estimates of typical spent brine injection wells. Field measurements were made at 130/sup 0/C and line pressures up to 3800 psig. Scale inhibited (phosphonate-polyacrylate threshold-type, carbonate scale inhibitor), prefiltered-scale-inhibited, and untreated brine were evaluated. Test results indicated that raw brine was highly injectable, while scale-inhibited brine had extremely low quality. The poor injectability of scale-inhibited brine resulted from partial precipitation of the scale inhibitor.

  16. Laboratory determination of mechanical properties of rocks from the Parcperdue geopressured/geothermal site

    SciTech Connect

    Sinha, K.P.; Borschel, T.F.; Holland, M.T.; Schatz, J.F.; Bebout, D.G.; Bachman, A.L.

    1981-01-01

    The deformational behavior and fluid flow characteristics of rock samples obtained from DOW/DOE L.R. Sweezy No. 1 Test Well at the Parcperdue Geopressured/Geothermal Site have been investigated in the laboratory. Elastic moduli, compressibility, uniaxial compaction coefficient, strength, creep parameters, permeability, acoustic velocites (all at reservoir conditions) and changes in these quantities induced by simulated reservoir production have been obtained from tests on several sandstone and shale samples from different depths. Tests consisting of several hydrostatic and triaxial loading phases and pore pressure reduction were designed to provide measurements to be used for calculating several of the above mentioned parameters in a single test. Pore volume changes were measured during some phases of the tests.

  17. Aromatic hydrocarbons associated with brines from geopressured wells. Annual report, fiscal 1985

    SciTech Connect

    Keeley, D.F.; Meriwether, J.R.

    1985-01-01

    Samples of cryocondensates - materials condensed at - 78.5/sup 0/C were taken on a regular basis from the gas stream for the USDOE geopressured wells. Most of the data has been taken from the Gladys McCall well as it has flowed on a regular and almost continous basis. The cryocondensates, not the ''condensate'' from gas wells, are almost exclusively aromatic hydrocarbons, primarily benzene, toluene, ethylbenzene, and the xylenes, but contain over 95 compounds, characterized using gas chromatographic-mass spectroscopy. The solubility in water and brine of benezene, toluene, ethylbenzene and o-xylene, some of the components of the cryocondensate, as well as distribution coefficients between water or brine and a standard oil have been measured. 25 refs.

  18. The industrial consortium for the utilization of the geopressured-geothermal resource

    SciTech Connect

    Negus-de Wys, J.

    1991-02-15

    Four feasibility studies have been developed by the INEL on thermal enhanced oil recovery (TEOR) Use of Supercritical Fluid processes for Detoxification of Pollutants, and Hydraulic Conversion to Electricity, and Direct Use. The studies provide information bases for potential industrial partners in the resource utilization. A joint proposal from Los Alamos National Laboratory (LANL) and INEL on supercritical fluid processes in going forward. Western Resources Technology has begun development of a dozen geopressured well projects. An hydraulic turbine test will be conducted at Pleasant Bayou in Summer of 1991. Dr. Wayne Steele of Anglewood, TX, a retired medical doctor, is proposing to raise fresh water Australian lobsters in the Pleasant Bayou Well fire water pond. Additional projects such as catfish farming, crayfish, desalintion plant and agricultural greenhouse use of the resource heat are waiting in the wings'' for the DOE wells to become available for pilot use projects. 2 figs.

  19. Evaluation of Petrophysical Data for Geopressure Analysis in HPHT Settings: A Case Study of the UK Sector of the Central North Sea.

    NASA Astrophysics Data System (ADS)

    Nwozor, K. K.; Yardley, G.

    2015-12-01

    Drilling into high pressure-high temperature (HPHT) reservoirs requires accurate understanding of the formation fluid pressures. Many wells have been drilled in the Central North Sea but it still remains a challenge to understand its high pressure, high temperature geopressure regimes. This lack of understanding complicates the development of the deep Jurassic and Triassic aged prospects. Most of these concerns arise because the nature of the pressure transition from relatively low pressures at the top of the Chalk Group, to extremely high pressures in the deep Jurassic / Triassic reservoirs is not well known. Consequently, several models of the pressure transition zone have been proposed and tried by industry operators but with mixed success. In this study, well logs and measured pressure data have been analysed by several methods including a new tool: the Late Geopressure Indicator (LGI). It is shown that overpressure is generated by both disequilibrium compaction and late geopressure mechanisms. Disequilibrium compaction is dominant in the Cenozoic mudstones where its magnitude is related to recent burial while late geopressure dominates in deeper and older successions that lie beneath the Chalk. In the sub-Chalk settings, both the total overpressure and the prevalence of late geopressure are higher in the deeper Central Graben area (up to 8000 psi overpressure, 80% from late geopressure mechanisms) than in the basin margins (approximately 2000 psi overpressure, 15% due to late mechanisms). Contrary to some schools of thought that prefer the Chalk as the main reservoir seal, it is demonstrated that the top unit of a pressure cell can be situated anywhere between the Chalk and Heather Formation. This new approach to geopressure study offers better understanding of the cause of overpressure, shape of pressure transition zones and the location of the top of reservoir pressure cells which will help open a new window of opportunities for HPHT prospects.

  20. EFFECT OF NITRATE ADDITION ON BIORESTORATION OF FUEL-CONTAMINATED AQUIFER: FIELD DEMONSTRATION

    EPA Science Inventory

    A spill of JP-4 jet fuel at the U.S. Coast Guard Air Station in Traverse City, Michigan, contaminated a water-table aquifer. An infiltration gallery (30 ft × 30 ft) was installed above a section of the aquifer containing 700 gal JP-4. Purge wells recirculated three million gallon...

  1. EFFECT OF NITRATE ADDITION ON BIORESTORATION OF FUEL-CONTAMINATED AQUIFER: FIELD DEMONSTRATION

    EPA Science Inventory

    A spill of JP-4 jet fuel at the U.S. Coast Guard Air Station in Traverse City, Michigan, contaminated a water-table aquifer. An infiltration gallery (30 ft × 30 ft) was installed above a section of the aquifer containing 700 gal JP-4. Purge wells recirculated three million gallon...

  2. Coast Guard

    SciTech Connect

    Not Available

    1991-09-01

    The 11-million gallon Exxon Valdez oil spill highlighted deficiencies in the nation's ability to contain and recover spilled oil. The Oil Pollution Act of 1990 represents a major effort by Congress to address these deficiencies and to clarify the roles and responsibilities of the private sector and the federal government in preventing, preparing for, and responding to oil spills. This report examines the Coast Guard's efforts to avoid unnecessary and wasteful duplication by coordinating with the private sector and others, including federal and state agencies, its plans to buy oil spill response equipment and the new responsibilities the act places on the private sector and the Coast Guard and if these responsibilities call for a shift in emphasis in Coast Guard oil spill response activities.

  3. Coast Guard

    SciTech Connect

    Not Available

    1990-02-01

    GAO found the situation in the Philadelphia and New York ports similar to that in Prince William Sound-neither industry nor the Coast Guard are prepared to respond to major oil spills. This report discusses how this unpreparedness is due to a lack of specificity in the industry and Coast Guard's plan on how to deal with spills of various sizes and Coast Guard authority to require ship owners and operators to have contingency plans or to require changes in existing plans. On the basic of recent experiences, GAO believes that prevention of oil spills rather than responding to them should be the main priority. Experiences in Price William Sound and in Philadelphia, however, show that much needs to be done to improve prevention measures like monitoring and guiding ship movements and using harbor pilots or vessel escorts.

  4. The variable pressure supercritical Rankine cycle for integrated natural gas and power production from the geopressured geothermal resource

    NASA Astrophysics Data System (ADS)

    Goldsberry, F. L.

    1982-03-01

    A small-scale power plant cycle that utilizes both a variable pressure vaporizer (heater) and a floating pressure (and temperature) air-cooled condenser is described. Further, it defends this choice on the basis of classical thermodynamics and minimum capital cost by supporting these conclusions with actual comparative examples. The application suggested is for the geopressured geothermal resource. The arguments cited in this application apply to any process (petrochemical, nuclear, etc.) involving waste heat recovery.

  5. Subsurface geology and geopressured/geothermal resource evaluation of the Lirette-Chauvin-Lake Boudreaux area, Terrebonne Parish, Louisiana

    SciTech Connect

    Lyons, W.S.

    1982-12-01

    The geology of a 125 square mile area located about 85 miles southeast of Baton Rouge and about 12 miles southeast of Houma, Louisiana, has been studied to evaluate its potential for geopressured/geothermal energy resources. Structure, stratigraphy, and sedimentation were studied in conjunction with pressure and temperature distributions over a broad area to locate and identify reservoirs that may be prospective. Recommendations concerning future site specific studies within the current area are proposed based on these findings.

  6. California Coast

    Atmospheric Science Data Center

    2014-05-15

    ... of the San Joaquin valley. Santa Catalina and San Clemente Islands, warmed by the morning sun, are visible through the marine stratus ... bank is San Nicolas Island, and further up the coast are the Channel Islands. The Los Angeles basin is just south of center; San Diego is at ...

  7. Environmental analysis of geopressured-geothermal prospect areas, De Witt and Colorado counties, Texas. Final report, March 1 - August 31, 1979

    SciTech Connect

    Gustavson, T.C.; Reeder, F.S.; Badger, E.A.

    1980-02-01

    Information collected and analyzed for a preliminary environmental analysis of geopressured geothermal prospect areas in Colorado and DeWitt Counties, Texas is presented. Specific environmental concerns for each geopressured geothermal prospect area are identified and discussed. Approximately 218 km/sup 2/(85 mi/sup 2/) were studied in the vicinity of each prospect area to: (1) conduct an environmental analysis to identify more and less suited areas for geopressured test wells; and (2) provide an environmental data base for future development of geopressured geothermal energy resources. A series of maps and tables are included to illustrate environmental characteristics including: geology, water resources, soils, current land use, vegetation, wildlife, and meteorological characteristics, and additional relevant information on cultural resources, power- and pipelines, and regulatory agencies. A series of transparent overlays at the scale of the original mapping has also been produced for the purposes of identifying and ranking areas of potential conflict between geopressured geothermal development and environmental characteristics. The methodology for ranking suitability of areas within the two prospect areas is discussed in the appendix. (MHR)

  8. Frio sandstone reservoirs in the deep subsurface along the Texas Gulf Coast: their potential for production of geopressured geothermal energy

    SciTech Connect

    Bebout, D.G.; Loucks, R.G.; Gregory, A.R.

    1983-01-01

    Detailed geological, geophysical, and engineering studies conducted on the Frio Formation have delineated a geothermal test well site in the Austin Bayou Prospect which extends over an area of 60 square miles. A total of 800 to 900 feet of sandstone will occur between the depths of 13,500 and 16,500 feet. At leat 30 percent of the sand will have core permeabilities of 20 to 60 millidarcys. Temperature at the top of the sandstone section will be 300/sup 0/F. Water, produced at a rate of 20,000 to 40,000 barrels per day, will probably have to be disposed of by injection into shallower sandstone reservoirs. More than 10 billion barrels of water are in place in these sandstone reservoirs of the Austin Bayou Prospect; there should be approximately 400 billion cubic feet of methane in solution in this water. Only 10 percent of the water and methane (1 billion barrels of water and 40 billion cubic feet of methane) will be produced without reinjection of the waste water into the producing formation. Reservoir simulation studies indicate that 90 percent of the methane can be produced with reinjection. 106 figures.

  9. Geohydrologic units of the Mississippi embayment and Texas coastal uplands aquifer systems, south-central United States

    USGS Publications Warehouse

    Hosman, R.L.; Weiss, J.S.

    1991-01-01

    As part of the U.S. Geological Survey's Regional Aquifer-System Analysis (RASA) program, the Gulf Coast RASA was initiated to investigate all Tertiary and Quaternary aquifers underlying the Coastal Plain in the south-central United States. Geohydrologic units that make up two of the three regional aquifer systems Mississippi embayment and Texas coastal uplands in the area are described in this report. The gulfward boundary of the outcrop of the two aquifer systems is the southernmost outcrop or subcrop of the Vicksburg-Jackson confining unit, and the updip boundary is the contact between Cretaceous and Tertiary deposits, extending northward to the southern tip of Illinois. The uppermost Cretaceous aquifer, the McNairy-Nacatoch aquifer in the northern part of the Mississippi embayment, is also included where it may be hydraulically connected to the younger sediments. Major regional geohydrologic units generally are coincident with previously defined geologic units. Most of the geohydrologic units consist of alternating sand and clay; however, the entire sequence becomes a clay and carbonate facies gulfward. The regional geohydrologic units delineated in this study, from youngest to oldest, are (1) Mississippi River Valley alluvial aquifer, (2) Vicksburg-Jackson confining unit, (3) upper Claiborne aquifer, (4) middle Claiborne confining unit, (5) middle Claiborne aquifer, (6) lower Claiborne confining unit, (7) lower Claiborne-upper Wilcox aquifer, (8) middle Wilcox aquifer, (9) lower Wilcox aquifer, (10) Midway confining unit, and (11) McNairy-Nacatoch aquifer. The Mississippi embayment aquifer system contains all of these units and has a maximum thickness of about 5,000 feet. The Texas coastal uplands aquifer system, which is contiguous with the Mississippi embayment aquifer system and extends westward and southwestward from the Sabinc uplift, contains all of the foregoing geohydrologic units except the Mississippi River Valley alluvial aquifer, the lower Wilcox

  10. Characterizating Multi-layered Coastal Aquifer using Pneumatic Slug Tests

    NASA Astrophysics Data System (ADS)

    Malama, B.; Abere, M.; Mikenna, M.

    2016-12-01

    Results of pneumatic slug tests conducted in a monitoring wells of a shallow aquifer on the California Central Coast are presented. The aquifer is in the Los Osos groundwater basin on the California Central Coast, a semi-closed near-triangular groundwater basin bounded to the north and south by impermeable igneousbed rock and to the west by the Pacific Ocean. The groundwater basin is a multi-layered system comprising a perched, near-surface semi-confined, and a deep confined aquifer. The unincorporated community of Los Osos is wholly dependent on the groundwater basin that is threatened with seawater intrusion and nitratecontamination. The slug tests reported here were performed in the perched and semi-confined aquifers as part of a seawater intrusion characterization study. The semi-confined and confined aquifers show evidence of seawater intrusion with upconing in some deep aquifer municipal wells. The upconing has beeninterpreted by previous studies as evidence of preferential flow through a high permeability channel. The objective of the work was to test this hypothesis by mapping the horizontal and vertical spatial variability of hydraulic parameters across the basin and establish the extent of the high permeability unit.Here only preliminary results of slug tests conducted across the basin for vertically averaged hydraulic parameters are reported. The results provide an indication of the horizontal variability of hydraulic parameters. An additional study will be performed to characterize the vertical variability to investigate the probableexistsence of a high permeability channel.

  11. A methodology to evaluate regional hydraulic controls on flow from hydrocarbon reservoirs into overlying aquifers

    SciTech Connect

    Fryar, A.E.; Kreitler, C.W.; Akhter, M.C.

    1994-09-01

    Because drilling, completion, and abandonment practices for oil and gas wells have improved over the past century, some older abandoned wells may be mechanically deficient or inadequately plugged, thus posing a risk of contamination to underground sources of drinking water. The risk of saltwater contamination of freshwater aquifers through inadequately plugged, abandoned wells increases if the hydraulic potential of the oil- and-gas-bearing brine formations is higher than that in the overlying freshwater aquifers. First, average regional potentiometric surfaces of aquifers and reservoirs are generated from aquifer water-level measurements and the conversion of bottom-hole pressure measurements from oil and gas reservoirs to hydraulic heads. Next, differences in hydraulic heads between aquifers and reservoirs are calculated to delineate regional residual areas of upward (positive) or downward (negative) hydraulic gradients. Third, locations of abandoned wells and class II injection wells are plotted relative to residuals to examine where water flooding, pressure maintenance, and saltwater disposal may cause or exacerbate the potential for upward flow. Three areas were used as case studies for testing the method. Positive residuals in the South Texas basin (informally defined to include the Val Verde basin, Maverick basin, part of the Rio Grande Salt basin, and the Austin Chalk trend) result from natural geopressuring in formations deeper than 6000 ft, which are negligibly affected by class II injection wells. Positive residuals in the greater Permian basin (including the northwestern shelf, Delaware basin, part of the Palo Duro basin, Central Basin platform, Midland basin, southern shelf, and Fort Worth basin) may reflect injection for enhanced recovery in the west and natural hydrologic processes in the eastern shelf region. Residual surfaces for the San Juan basin indicate several areas with a natural potential for upward migration of brine.

  12. Coast Guard

    SciTech Connect

    Not Available

    1991-06-01

    This paper reports that about 16,000 oil spills involving the release of more than 46 million gallons of oil took place in U.S. navigable waters in 1988; spills at water-front facilities, where vessels load and unload oil, accounted for about half of the oil spilled. While the Coast Guard acknowledges its responsibility for regulating and inspecting waterfront facilities, it efforts in this area have fallen short because it has not been inspecting portions of intrafacility pipes that transport oil between docks and storage tanks. Water pollution and noncompliance with federal oil pollution prevention regulations continue to be high at waterfront facilities. Yet the Coast Guard cannot determine how effective its inspection program has been in reducing the risk of oil spills because information on program results, such as the types, severity, and frequency of deficiencies found by inspectors, is not compiled an linked with information on the causes of oil spills found by investigators. Until the Coast Guard collects this type of information, it will not be in a position to establish measurable goals.

  13. Managing environmental problems in Cuban karstic aquifers

    NASA Astrophysics Data System (ADS)

    León, Leslie Molerio; Parise, Mario

    2009-07-01

    The Cuban archipelago hosts some of the most typical karst features in the Caribbean, and has very important and high-quality resources of karst water. Carbonate rocks cover about 70% of the country area, with a great variety of karst features, and outstanding exokarstic landforms such as the cone karst; in addition, many caves are regarded as cultural and historical sites. Protection of the karst hydric resources is therefore essential. In karst, the intrinsic vulnerability of the environment makes it highly susceptible to pollution, which may result in dramatic consequences for both the quality of karst water and the amount of water available. Many anthropogenic activities produce negative changes in the karst aquifers, in some cases with unrecoverable effects. In Cuba, five main sources of pollution to karst aquifers have been identified: sea water intrusion, agricultural practices, waste disposal, industrial activity, and mining and oil production. Due to the narrow and elongated configuration of the main island, wide portions of the territory are mostly affected by seawater intrusion problems, exacerbated by the concentration of both population and human activities in the largest towns located along, or very close to, the coasts. Seawater intrusion, however, is not the only source of pollution for Cuban karst aquifers. The other aforementioned sources are important, and may locally prevail (e.g. pollution resulting from sugar cane factories). Considerations on the management of karst aquifers and a brief description of the water quality monitoring system of Cuban inland waters are also provided.

  14. Aquifer-nomenclature guidelines

    USGS Publications Warehouse

    Laney, R.L.; Davidson, C.B.

    1986-01-01

    Guidelines and recommendations for naming aquifers are presented to assist authors of geohydrological reports in the United States Geological Survey, Water Resources Division. The hierarchy of terms that is used for water- yielding rocks from largest to smallest is aquifer system, aquifer, and zone. If aquifers are named, the names should be derived from lithologic terms, rock-stratigraphic units, or geographic names. The following items are not recommended as sources of aquifer names: time-stratigraphic names, relative position, alphanumeric designations, depositional environment, depth of occurrence, acronyms, and hydrologic conditions. Confining units should not be named unless doing so clearly promotes understanding of a particular aquifer system. Sources of names for confining units are similar to those for aquifer names, i.e. lithologic terms, rock-stratigraphic units or geographic names. Examples of comparison charts and tables that are used to define the geohydrologic framework are included. Aquifers are defined in 11 hypothetical examples that characterize geohydrologic settings throughout the country. (Author 's abstract)

  15. Evaluation of NEPA-based environmental commitments at four geopressure design wells

    SciTech Connect

    Reed, A.W.; Hunsaker, D.B. Jr.; Roop, R.D.; Webb, J.W.

    1983-09-01

    The implementation of environmental mitigation and monitoring commitments made for four geopressure design well projects was evaluated. The evaluation was based on site visits conducted in August 1982 and April 1983 and on a review of monitoring and project activity reports provided by DOE contractors. The projects evaluated include: Pleasant Bayou No. 1 in Brazoria County, Texas; Dow Parcperdue in Vermilion Parish, Louisiana; and Gladys McCall and Sweet Lake No. 1 well sites in Cameron Parish, Louisiana. The contractors responsible for drilling and testing activities at the well sites have adequately implemented most of the mitigation measures described in each project's site-specific Environmental Assessment (EA). Exceptions include the lack of impermeable liners for drilling mud pits at the Dow Parcperdue, Gladys McCall, and Pleasant Bayou sites and the lack of a ring levee at the Pleasant Bayou site. Air and water quality and noise monitoring activities were not performed as strictly as outlined in the EAs. A review of the monitoring data collected to date indicates that no significant environmental degradation has occurred. This report recommends additional or future monitoring needs, especially with regard to soil contamination, subsidence, and microseismicity, and provides guidance for decommissioning.

  16. Methods for collection and analysis of geopressured geothermal and oil field waters

    USGS Publications Warehouse

    Lico, Michael S.; Kharaka, Yousif K.; Carothers, William W.; Wright, Victoria A.

    1982-01-01

    Present methods are described for the collection, preservation, and chemical analysis of waters produced from geopressured geothermal and petroleum wells. Detailed procedures for collection include precautions and equipment necessary to ensure that the sample is representative of the water produced. Procedures for sample preservation include filtration, acidification, dilution for silica, methyl isobutyl ketone (MIBK) extraction of aluminum, addition of potassium permanganate to preserve mercury, and precipitation of carbonate species as strontium carbonate for stable carbon isotopes and total dissolved carbonate analysis. Characteristics determined at the well site are sulfide, pH, ammonia, and conductivity. Laboratory procedures are given for the analysis of lithium, sodium, potassium, rubidium, cesium, magnesium, calcium, strontium, barium, iron, manganese, zinc, lead, aluminum, .and mercury by atomic absorption and flame emission spectroscopy. Chloride is determined by silver nitrate titration and fluoride by ion-specific electrode. Bromide and iodide concentrations are determined by the hypochlorite oxidation method. Sulfate is analyzed by titration using barium chloride with thorin indicator after pretreatment with alumina. Boron and silica are determined colorimetrically by the carmine and molybdate-blue methods, respectively. Aliphatic acid anions (C2 through C5) are determined by gas chromatography after separation and concentration in a chloroform-butanol mixture.

  17. Evaluation of NEPA-based environmental commitments at four geopressured geothermal design wells

    SciTech Connect

    Reed, A.W.; Hunsaker, D.B. Jr.; Roop, R.D.; Webb, J.W.

    1983-01-01

    This study verifies the implementation and effectiveness of environmental mitigation and monitoring commitments made by the US Department of Energy in National Environmental Policy Act documents (Environmental Assessments (EAs)) prepared for four geopressure design well projects, one in Texas and three in Louisiana. The evaluation was based on visits to the project sites conducted by Oak Ridge National Laboratory staff in August 1982 and April 1983, and on a review of monitoring and project activity reports provided by DOE subcontractors. Subcontractors responsible for drilling and testing activities at the well sites adequately implemented most of the mitigation measures described in each project's EA. Exceptions included the lack of impermeable liners for drilling mud pits at three sites and the lack of a ring levee at one site. Water quality, noise, and air monitoring were not performed as strictly as outlined in the EAs. A review of the data collected to date indicates that no significant environmental degradation has occurred. Additional or future monitoring needs, especially with regard to subsidence, microseismicity, and groundwater and soil sampling were recommended.

  18. Geology of the Gladys McCall geopressured-geothermal prospect, Cameron Parish, Louisiana

    SciTech Connect

    John, C.J.

    1988-12-01

    The Gladys McCall prospect lies at the western edge of the Rockefeller Wildlife Refuge about 88 km (55 mi) southeast of Lake Charles in Cameron Parish, Louisiana. The test well is 4825 m (15,831 ft) deep and was drilled in 1981 under the U.S. Department of Energy geopressured-geothermal research program. The well was shut in at the end of October 1987 after it had produced over 27 million barrels of brine and 676 MMscf gas, without any significant pressure decline. The stratigraphic section seen in this test well consists of alternating sandstones and shales with about 350 m (1150 ft) of net sand between 4393 m (14,412 ft) and 4974 m (16,320 ft). The producing reservoir is bounded on the north and south by faults. The east-west dimension is poorly defined due to lack of deep well control. Eleven prospective production zones have been identified. The pressure maintenance and the continuous high brine yield from the reservoir may be due to laterally overlapping and connected sandstones, communication between overlying and/or underlying reservoirs, growth faults acting as passageways for brine, shale dewatering, or possible communication of zones behind the casing.

  19. Methods for collection and analysis of geopressured geothermal and oil field waters

    SciTech Connect

    Lico, M.S.; Kharaka, Y.K.; Carothers, W.W.; Wright, V.A.

    1982-01-01

    Present methods are described for the collection, preservation, and chemical analysis of waters produced from geopressured geothermal and petroleum wells. Detailed procedures for collection include precautions and equipment necessary to ensure that the sample is representative of the water produced. Procedures for sample preservation include filtration, acidification, dilution for silica, methyl isobutyl ketone (MIBK) extraction of aluminum, addition of potassium permanganate to preserve mercury, and precipitation of carbonate species as strontium carbonate for stable carbon isotopes and total dissolved carbonate analysis. Characteristics determined at the well site are sulfide, pH, ammonia, and conductivity. Laboratory procedures are given for the analysis of lithium, sodium, potassium, rubidium, cesium, magnesium, calcium, strontium, barium, iron, manganese, zinc, lead, aluminum, and mercury by atomic absorption and flame emission spectroscopy. Chloride is determined by silver nitrate titration and fluoride by ion-specific electrode. Bromide and iodide concentrations are determined by the hypochlorite oxidation method. Sulfate is analyzed by titration using barium chloride with thorin indicator after pretreatment with alumina. Boron and silica are determined colorimetrically by the carmine and molybdate-blue methods, respectively. Aliphatic acid anions (C/sub 2/ through C/sub 5/) are determined by gas chromatography after separation and concentration in a chloroform-butanol mixture.

  20. MISSISSIPPI EMBAYMENT AQUIFER SYSTEM IN MISSISSIPPI: GEOHYDROLOGIC DATA COMPILATION FOR FLOW MODEL SIMULATION.

    USGS Publications Warehouse

    Arthur, J.K.; Taylor, R.E.

    1986-01-01

    As part of the Gulf Coast Regional Aquifer System Analysis (GC RASA) study, data from 184 geophysical well logs were used to define the geohydrologic framework of the Mississippi embayment aquifer system in Mississippi for flow model simulation. Five major aquifers of Eocene and Paleocene age were defined within this aquifer system in Mississippi. A computer data storage system was established to assimilate the information obtained from the geophysical logs. Computer programs were developed to manipulate the data to construct geologic sections and structure maps. Data from the storage system will be input to a five-layer, three-dimensional, finite-difference digital computer model that is used to simulate the flow dynamics in the five major aquifers of the Mississippi embayment aquifer system.

  1. Biscayne aquifer, southeast Florida

    USGS Publications Warehouse

    Klein, Howard; Hull, John E.

    1978-01-01

    Peak daily pumpage from the highly permeable, unconfined Biscayne aquifer for public water-supply systems in southeast Florida in 1975 was about 500 million gallons. Another 165 million gallons was withdrawn daily for irrigation. Recharge to the aquifer is primarily by local rainfall. Discharge is by evapotranspiration, canal drainage, coastal seepage, and pumping. Pollutants can enter the aquifer by direct infiltration from land surface or controlled canals, septic-tank and other drainfields, drainage wells, and solid-waste dumps. Most of the pollutants are concentrated in the upper 20 to 30 feet of the aquifer; public supply wells generally range in depth from about 75 to 150 feet. Dilution, dispersion, and adsorption tend to reduce the concentrations. Seasonal heavy rainfall and canal discharge accelerate ground-water circulation, thereby tending to dilute and flush upper zones of the aquifer. The ultimate fate of pollutants in the aquifer is the ocean, although some may be adsorbed by the aquifer materials en route to the ocean, and some are diverted to pumping wells. (Woodard-USGS)

  2. G. M. Koelemay well No. 1, Jefferson County, Texas. Volume I. Completion and testing: testing geopressured geothermal reservoirs in existing wells. Final report

    SciTech Connect

    Not Available

    1980-01-01

    The acquisition, completion, and testing of a geopressured-geothermal well are described. The following are covered: geology; petrophysics; re-entry and completion operations - test well; drilling and completion operations - disposal well; test objectives; surface testing facilities; pre-test operations; test sequence; test results and analysis; and return of wells and location to operator. (MHR)

  3. Hydrogeology of the surficial and intermediate aquifers of central Sarasota County, Florida

    USGS Publications Warehouse

    Duerr, A.D.; Wolansky, R.M.

    1986-01-01

    The geohydrologic units underlying a 300 sq mi area in central Sarasota County, Florida, consist of the surficial aquifer, intermediate aquifers (Tamiami-upper Hawthorn and lower Hawthorn-upper Tampa aquifers) and confining units, the Floridan aquifer system, and the sub-Floridan confining unit. The saturated thickness of the surficial aquifer ranges from about 40 to 75 ft and the water table is generally within 5 ft of land surface. The Tamiami-upper Hawthorn is the uppermost intermediate aquifer. The top of the aquifer ranges from about 50 ft to about 75 below sea level and has an average thickness of about 100 ft. The lower Hawthorne-upper Tampa aquifer is the lowermost intermediate aquifer. The top of the aquifer ranges from about 190 to about 220 ft below sea level and its thickness ranges from about 200 to 250 ft. The quality of water in the surficial and the two intermediate aquifers is acceptable for potable use except near the coast. Water from the Floridan aquifer system is used primarily for agricultural purposes because it is too mineralized for most other uses; therefore, the surficial and intermediate aquifers are developed for water supply. The artesian pressure of the various aquifers generally increases with depth. A more detailed geohydrologic description is presented for the Ringling-MacArthur Reserve, a 51 sq mi area in the central part of the county that may be used by Sarasota County as a future water supply. Average annual rainfall is 56 inches and evapotranspiration is about 42 in at the Reserve. The area has a high water table, many sloughs and swamps, and undeveloped land, making it an attractive site as a potential source of water. (Author 's abstract)

  4. Generalized potentiometric surfaces of the upper and lower Jasper and equivalent aquifers in Louisiana, 1984

    USGS Publications Warehouse

    Martin, Angel; Whiteman, C.D.; Becnel, Miles J.

    1988-01-01

    Maps of the Jasper and equivalent aquifers are the final maps in a series showing water levels in aquifers of Miocene age and younger in central and southern Louisiana, that were prepared as part of the Gulf Coast Regional Aquifer-System Analysis study. These maps show generalized contours of the altitude of water levels in wells completed in the Jasper aquifer in central and southwestern Louisiana and in aquifers in stratigraphically equivalent deposits of southeastern Louisiana for 1984. Separate maps were prepared for the upper and lower units of the Jasper and equivalent aquifers to provide a better representation of water levels. Although these maps provide a regional picture of water levels in the Jasper aquifer, they do not show the local differences in water levels between individual sand beds that occur near pumping centers. Generally, water levels shown at pumping centers are for the most heavily pumped sand beds at those centers. Most water level measurements used in compiling these maps were made in 1984. Where measurements from 1984 were unavailable, earlier and later measurements were used in areas where evidence indicated little change had occurred and in areas where definite regional trends of water level change could be established. In the areas where trends were established, water levels were adjusted to 1984 values by applying corrections based on the trends. Other maps in the series show water levels in aquifers of Pleistocene age, the Evangeline and equivalent aquifers, and the Catahoula aquifer. (Lantz-PTT)

  5. Hydrochemical and geoelectrical investigation of the coastal shallow aquifers in El-Omayed area, Egypt.

    PubMed

    Atwia, M G; Masoud, A A

    2013-08-01

    Monitoring and assessment of the coastal aquifers are becoming a worldwide concern for the need of additional and sustainable water resources to satisfy demographic growth and economic development. A hydrochemical and geoelectrical investigation was conducted in the El-Omayed area in the northwestern coast of Egypt. The aim of the study was to delineate different water-bearing formations, provide a general evaluation of groundwater quality, and identify the recharge sources in aquifers. Thirty-seven water samples were collected and chemically analyzed from the sand dune accumulations and oolitic limestone aquifers. Fifteen profiles of vertical electrical soundings (VESs) were obtained in the oolitic limestone aquifer to examine the variations of subsurface geology and associated groundwater chemistry. The groundwater reserves in the El-Omayed area are mainly contained in sand dune accumulations and oolitic limestone aquifers. The aquifer of sand dune accumulations contains freshwater of low salinity (average total dissolved solids (TDS) = 974 mg/l). Groundwater of oolitic limestone aquifer is slightly brackish (average TDS = 1,486 mg/l). Groundwater of these aquifers can be used for irrigation under special management for salinity control, and regular leaching as indicated by electrical conductivity and sodium adsorption ratio. Results of VES interpretation classified the subsurface sequence of oolitic limestone aquifer into four geoelectric zones, with increasing depth, calcareous loam, gypsum, oolitic limestone, and sandy limestone. Oolitic limestone constitutes the main aquifer and has a thickness of 12-32 m.

  6. Identifying aquifer type in fractured rock aquifers using harmonic analysis.

    PubMed

    Rahi, Khayyun A; Halihan, Todd

    2013-01-01

    Determining aquifer type, unconfined, semi-confined, or confined, by drilling or performing pumping tests has inherent problems (i.e., cost and complex field issues) while sometimes yielding inconclusive results. An improved method to cost-effectively determine aquifer type would be beneficial for hydraulic mapping of complex aquifer systems like fractured rock aquifers. Earth tides are known to influence water levels in wells penetrating confined aquifers or unconfined thick, low-porosity aquifers. Water-level fluctuations in wells tapping confined and unconfined aquifers are also influenced by changes in barometric pressure. Harmonic analyses of water-level fluctuations of a thick (~1000 m) carbonate aquifer located in south-central Oklahoma (Arbuckle-Simpson aquifer) were utilized in nine wells to identify aquifer type by evaluating the influence of earth tides and barometric-pressure variations using signal identification. On the basis of the results, portions of the aquifer responded hydraulically as each type of aquifer even though there was no significant variation in lithostratigraphy. The aquifer type was depth dependent with confined conditions becoming more prevalent with depth. The results demonstrate that harmonic analysis is an accurate and low-cost method to determine aquifer type.

  7. Technical support for geopressured-geothermal well activities in Louisiana; Final report, 1 January 1992--31 December 1993

    SciTech Connect

    John, C.J.

    1994-01-01

    The US Department of Energy has operated continuous-recording, microearthquake monitoring networks at geopressured-geothermal test well sites since 1980. These microseismic networks were designed to detect microearthquakes indicative of fault activation and/or subsidence that can potentially result from the deep subsurface withdrawal and underground disposal of large volumes of brine during well testing. Seismic networks were established before the beginning of testing to obtain background levels of seismicity. Monitoring continued during testing and for some time after cessation of flow testing to assess any delayed microseismicity caused by the time dependence of stress migration within the earth. No flow testing has been done at the Hulin well since January 1990, and the Pleasant Bayou well has been shut down since September 1992. Microseismic monitoring continued at the Hulin and Pleasant Bayou sites until 31 December 1992, at which time both operations were shut down and field sites dismantled. During 1992, the networks recorded seismic signals from earthquakes, sonic booms, geophysical blasting, thunderstorms, etc. However, as in previous years, no local microseismic activity attributable to geopressured-geothermal well testing was recorded.

  8. Hydrogeology, water quality, and microbial assessment of a coastal alluvial aquifer in western Saudi Arabia: potential use of coastal wadi aquifers for desalination water supplies

    NASA Astrophysics Data System (ADS)

    Missimer, Thomas M.; Hoppe-Jones, Christiane; Jadoon, Khan Z.; Li, Dong; Al-Mashharawi, Samir K.

    2014-12-01

    Wadi alluvial aquifers located along coastal areas of the Middle East have been assumed to be suitable sources of feed water for seawater reverse osmosis facilities based on high productivity, connectedness to the sea for recharge, and the occurrence of seawater with chemistry similar to that in the adjacent Red Sea. An investigation of the intersection of Wadi Wasimi with the Red Sea in western Saudi Arabia has revealed that the associated predominantly unconfined alluvial aquifer divides into two sand-and-gravel aquifers at the coast, each with high productivity (transmissivity = 42,000 m2/day). This aquifer system becomes confined near the coast and contains hypersaline water. The hydrogeology of Wadi Wasimi shows that two of the assumptions are incorrect in that the aquifer is not well connected to the sea because of confinement by very low hydraulic conductivity terrigenous and marine muds and the aquifer contains hypersaline water as a result of a hydraulic connection to a coastal sabkha. A supplemental study shows that the aquifer system contains a diverse microbial community composed of predominantly of Proteobacteria with accompanying high percentages of Gammaproteobacteria, Alphaproteobacteria and Deltaproteobacteria.

  9. Regional maps of subsurface geopressure gradients of the onshore and offshore Gulf of Mexico basin

    USGS Publications Warehouse

    Burke, Lauri A.; Kinney, Scott A.; Dubiel, Russell F.; Pitman, Janet K.

    2013-01-01

    The U.S. Geological Survey created a comprehensive geopressure-gradient model of the regional pressure system spanning the onshore and offshore Gulf of Mexico basin, USA. This model was used to generate ten maps that included (1) five contour maps characterizing the depth to the surface defined by the first occurrence of isopressure gradients ranging from 0.60 psi/ft to 1.00 psi/ft, in 0.10-psi/ft increments; and (2) five supporting maps illustrating the spatial density of the data used to construct the contour maps. These contour maps of isopressure-gradients at various increments enable the identification and quantification of the occurrence, magnitude, location, and depth of the subsurface pressure system, which allows for the broad characterization of regions exhibiting overpressured, underpressured, and normally pressured strata. Identification of overpressured regions is critical for exploration and evaluation of potential undiscovered hydrocarbon accumulations based on petroleum-generation pressure signatures and pressure-retention properties of reservoir seals. Characterization of normally pressured regions is essential for field development decisions such as determining the dominant production drive mechanisms, evaluating well placement and drainage patterns, and deciding on well stimulation methods such as hydraulic fracturing. Identification of underpressured regions is essential for evaluating the feasibility of geological sequestration and long-term containment of fluids such as supercritical carbon dioxide for alternative disposal methods of greenhouse gases. This study is the first, quantitative investigation of the regional pressure systems of one of the most important petroleum provinces in the United States. Although this methodology was developed for pressure studies in the Gulf of Mexico basin, it is applicable to any basin worldwide.

  10. A geopressured-geothermal, solar conversion system to produce potable water

    NASA Astrophysics Data System (ADS)

    Nitschke, George Samuel

    A design is presented for recovering Geopressured-Geothermal (GPGT) reservoir brines for conversion into solar ponds to renewably power coastal seawater desalination. The hot, gas-cut, high-pressure GPGT brine is flowed through a well-bore to surface systems which concentrate the brine in multi-effect evaporators and recover the gas. The gas and distilled water are used for thermal enhanced oil recovery, and the concentrated brine is used to construct solar ponds. The thermal energy from the solar ponds is used to produce electricity, which is then used to renewably power coastal desalination plants for large-scale potable water production from the sea. The design is proposed for deployment in California and Texas, where the two largest U.S. GPGT basins exist. Projections show that the design fully deployed in California could provide 5 MAF/y (million acre-ft per year) while yielding a 45% Rate of Return (combined oil and water revenues); the California municipal water load is 10 MAF/y. The dissertation contains a feasibility study of the design approach, supported by engineering analyses and simulation models, included in the appendices. A range of systems configurations and GPGT flow conditions are modeled to illustrate how the approach lends itself to modular implementation, i.e., incrementally installing a single system, tens of systems, up to 1000 systems, which corresponds to full deployment in California for the scenario analyzed. The dissertation includes a method for launching and piloting the approach, starting from a single system installation.

  11. Utility geothermal plans, Texas and Louisiana

    NASA Astrophysics Data System (ADS)

    Ridgway, J. R., Jr.

    1982-12-01

    The best opportunity for geothermal energy recovery seems to be the geopressured aquifer system which extends under the Louisiana and Texas Gulf Coast. To learn more of these formations and their contents which have been responsible for most of the blowouts in petroleum wells while drilling to 12,000 feet and greater depths, design wells are used. Design wells are wells which are designed and drilled specifically for the purpose of testing the geopressured aquifers. The status of four design wells, are reported.

  12. Estimating harvested rainwater at greenhouses in south Portugal aquifer Campina de Faro for potential infiltration in Managed Aquifer Recharge.

    NASA Astrophysics Data System (ADS)

    Costa, Luís; Monteiro, José Paulo; Leitão, Teresa; Lobo-Ferreira, João Paulo; Oliveira, Manuel; Martins de Carvalho, José; Martins de Carvalho, Tiago; Agostinho, Rui

    2015-04-01

    The Campina de Faro (CF) aquifer system, located on the south coast of Portugal, is an important source of groundwater, mostly used for agriculture purposes. In some areas, this multi-layered aquifer is contaminated with high concentration of nitrates, possibly arising from excessive usage of fertilizers, reaching to values as high as 300 mg/L. In order to tackle this problem, Managed Aquifer Recharge (MAR) techniques are being applied at demonstration scale to improve groundwater quality through aquifer recharge, in both infiltration basins at the river bed of ephemeral river Rio Seco and existing traditional large diameter wells located in this aquifer. In order to assess the infiltration capacity of the existing infrastructures, in particular infiltration basins and large diameter wells at CF aquifer, infiltration tests were performed, indicating a high infiltration capacity of the existing infrastructures. Concerning the sources of water for recharge, harvested rainwater at greenhouses was identified in CF aquifer area as one of the main potential sources for aquifer recharge, once there is a large surface area occupied by these infrastructures at the demo site. This potential source of water could, in some cases, be redirected to the large diameter wells or to the infiltration basins at the riverbed of Rio Seco. Estimates of rainwater harvested at greenhouses were calculated based on a 32 year average rainfall model and on the location of the greenhouses and their surface areas, the latter based on aerial photograph. Potential estimated annual rainwater intercepted by greenhouses at CF aquifer accounts an average of 1.63 hm3/year. Nonetheless it is unlikely that the totality of this amount can be harvested, collected and redirected to aquifer recharge infrastructures, for several reasons, such as the lack of appropriate greenhouse infrastructures, conduits or a close location between greenhouses and large diameter wells and infiltration basins. Anyway, this

  13. 40 CFR 147.2908 - Aquifer exemptions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 23 2014-07-01 2014-07-01 false Aquifer exemptions. 147.2908 Section...-Class II Wells § 147.2908 Aquifer exemptions. (a) After notice and opportunity for a public hearing, the Administrator may designate any aquifer or part of an aquifer as an exempted aquifer. (b) An aquifer or...

  14. 40 CFR 147.2908 - Aquifer exemptions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 24 2013-07-01 2013-07-01 false Aquifer exemptions. 147.2908 Section...-Class II Wells § 147.2908 Aquifer exemptions. (a) After notice and opportunity for a public hearing, the Administrator may designate any aquifer or part of an aquifer as an exempted aquifer. (b) An aquifer or...

  15. 40 CFR 147.2908 - Aquifer exemptions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 24 2012-07-01 2012-07-01 false Aquifer exemptions. 147.2908 Section...-Class II Wells § 147.2908 Aquifer exemptions. (a) After notice and opportunity for a public hearing, the Administrator may designate any aquifer or part of an aquifer as an exempted aquifer. (b) An aquifer or...

  16. Modelling the salinization of a coastal lagoon-aquifer system

    NASA Astrophysics Data System (ADS)

    Colombani, N.; Mastrocicco, M.

    2017-08-01

    In this study, a coastal area constituted by alternations of saline-brackish lagoons and freshwater bodies was studied and modelled to understand the hydrological processes occurring between the lagoons, the groundwater system of the Po River Delta (Italy) and the Adriatic Sea. The contribution of both evaporation and anthropogenic factors on groundwater salinization was assessed by means of soil, groundwater and surface water monitoring. Highresolution multi-level samplers were used to capture salinity gradients within the aquifer and surface water bodies. Data were employed to calibrate a density-dependent numerical transport model implemented with SEAWAT code along a transect perpendicular to the coast line. The results show that the lagoon is hydraulically well connected with the aquifer, which provides the major source of salinity because of the upcoming of paleo-seawater from the aquitard laying at the base of the unconfined aquifer. On the contrary, the seawater (diluted by the freshwater river outflow) creates only a limited saltwater wedge. The increase in groundwater salinity could be of serious concern, especially for the pinewood located in the dune near the coast, sensitive to salinity increases. This case study represents an interesting paradigm for other similar environmental setting, where the assumption of classical aquifer salinization from a saltwater wedge intruding from the sea is often not representative of the actual aquifer’s salinization mechanisms.

  17. Geology of the surficial aquifer system, Broward County, Florida; lithologic logs

    USGS Publications Warehouse

    Causaras, C.R.

    1985-01-01

    The geologic framework of the surficial aquifer system, of which the Biscayne aquifer is the major component in Broward County, Florida, is presented in eight geologic cross sections. The cross sections are based on detailed lithologic logs of 27 test wells that were drilled, in the summer of 1981, through the sediments overlying the relatively impermeable units of the Hawthorn Formation, of Miocene age. The cross sections show the aquifer system as a wedge-shaped sequence of Cenozoic sediments. The aquifer thickness gradually decreases from more than 400 feet along the coast to about 160 feet in the west and southwest parts of Broward County. The sediments that comprise the aquifer system range in age from Pliocene to Pleistocene and are assigned to the following stratigraphic units from bottom to top: Tamiami Formation, Caloosahatchee Marl, Fort Thompson Formation, Key Largo Limestone, Anastasia Formation, Miami Oolite, and Pamlico Sand. (USGS)

  18. Aquifer stability investigations

    SciTech Connect

    Allen, R.D.; Doherty, T.J.

    1981-09-01

    The study of compressed air energy storage (CAES) in porous rock reservoirs is carried out within the Reservoir Stability Studies Program at Pacific Northwest Laboratory. The goal of the study is to establish criteria for long-term stability of aquifer CAES reservoirs. These criteria are intended to be guidelines and check lists that utilities and architect-engineering firms may use to evaluate reservoir stability at candidate CAES sites. These criteria will be quantitative where possible, qualitative where necessary, and will provide a focal point for CAES relevant geotechnical knowledge, whether developed within this study or available from petroleum, mining or other geotechnical practices using rock materials. The Reservoir Stability Studies Program had four major activities: a state-of-the-art survey to establish preliminary stability criteria and identify areas requiring research and development; numerical modeling; laboratory testing to provide data for use in numerical models and to investigate fundamental rock mechanics, thermal, fluid, and geochemical response of aquifer materials; and field studies to verify the feasibility of air injection and recovery under CAES conditions in an aquifer, to validate and refine the stability criteria, and to evaluate the accuracy and adequacy of the numerical and experimental methodologies developed in previous work. Three phases of study, including preliminary criteria formulation, numerical model development, and experimental assessment of CAES reservoir materials have been completed. Present activity consists of construction and operation of the aquifer field test, and associated numerical and experimental work in support of that activity. Work is presently planned to be complete by 1983 at the end of the field test. At that time the final stability criteria for aquifers will be issued. Attached here also are preliminary criteria for aquifers.

  19. Testing geopressured geothermal reservoirs in existing wells. Wells of Opportunity Program final contract report, 1980-1981

    SciTech Connect

    Not Available

    1982-01-01

    The geopressured-geothermal candidates for the Wells of Opportunity program were located by the screening of published information on oil industry activity and through direct contact with the oil and gas operators. This process resulted in the recommendation to the DOE of 33 candidate wells for the program. Seven of the 33 recommended wells were accepted for testing. Of these seven wells, six were actually tested. The first well, the No. 1 Kennedy, was acquired but not tested. The seventh well, the No. 1 Godchaux, was abandoned due to mechanical problems during re-entry. The well search activities, which culminated in the acceptance by the DOE of 7 recommended wells, were substantial. A total of 90,270 well reports were reviewed, leading to 1990 wells selected for thorough geological analysis. All of the reservoirs tested in this program have been restricted by one or more faults or permeability barriers. A comprehensive discussion of test results is presented.

  20. Hydrocarbons associated with brines from geopressured wells. Fourth quarterly technical progress report, 1 October 1990--30 December 1990

    SciTech Connect

    Not Available

    1991-01-15

    The purpose of this research is to determine the concentration of the cryocondensates in fluids of the various USDOE Geopressured wells as a function of production volume, to correlate the production of these compounds with reservoir and well production characteristics, to precisely measure solubilities of cryocondensates components in water and sodium chloride solutions (brines) as a function of ionic strength and temperature and the component`s distribution coefficients between these solutions and oil, to develop models of the reservoir which are consistent with the data obtained, to monitor the wells for the production of aliphatic oils and relate any such production with the data obtained, and to develop a harsh environment pH probe for use in well brines. Results are summarized.

  1. Inquiry and Aquifers.

    ERIC Educational Resources Information Center

    Leuenberger, Ted; Shepardson, Daniel; Harbor, Jon; Bell, Cheryl; Meyer, Jason; Klagges, Hope; Burgess, Willie

    2001-01-01

    Presents inquiry-oriented activities that acquaint students with groundwater sources, movement of water through aquifers, and contamination of groundwater by pollution. In one activity, students use well log data from web-based resources to explore groundwater systems. Provides sample well log data for those not having access to local information.…

  2. Inquiry and Aquifers.

    ERIC Educational Resources Information Center

    Leuenberger, Ted; Shepardson, Daniel; Harbor, Jon; Bell, Cheryl; Meyer, Jason; Klagges, Hope; Burgess, Willie

    2001-01-01

    Presents inquiry-oriented activities that acquaint students with groundwater sources, movement of water through aquifers, and contamination of groundwater by pollution. In one activity, students use well log data from web-based resources to explore groundwater systems. Provides sample well log data for those not having access to local information.…

  3. Boise Geothermal Aquifer Study

    SciTech Connect

    Not Available

    1990-01-01

    This report is the final product of a detailed review and quantitative evaluation of existing data for the Boise Front Geothermal Aquifer. Upon review of the many publications, and raw data for the Boise geothermal aquifer, it became clear that adequate data only exists for analysis of current and proposed development within a limited area. This region extends approximately 1.5 miles southeast of the State Capitol to 0.5 mile northwest. Though there are geothermal wells located along the Boise Front outside of this area, the lack of production and water level data preclude any detailed discussions and analysis of their relationship to the central resource. As a result, discussion will concentrate on major users such as the Capitol Mall (CM) Boise Geothermal LTD. (BGL), Veterans Administration (VA) and Boise Warm Springs Water District (BWSWD). The objectives of this study are: Define the inter-relationship of the existing wells and/or portions of the geothermal aquifer; evaluate the effects of current and proposed development on the geothermal aquifer; estimate longevity of the geothermal resource; and make recommendations for an on-going monitoring program. 44 refs., 40 figs., 9 tabs.

  4. Operations research and systems analysis of geopressured-geothermal energy in Louisiana. Final report for the period June 1, 1978-August 31, 1979

    SciTech Connect

    Johnson, A.E. Jr.

    1980-11-01

    The primary purpose was to provide a projection of the probable future contribution of the geopressured-geothermal energy resource in Louisiana to the overall energy requirements of the nation. A number of associated objectives were emphasized: namely, development of the tools and methodology for performing economic analyses, application of these tools to specific prospects about which adequate resource assessments have been made, identification of the impediments to resource development, and socio-economic analysis of the impact of development of the resource on these specific prospects. An overview of the geopressured-geothermal resource activities in Louisiana is provided first, followed by a detailed discussion and review of the achievements of this project. Finally the major conclusions and findings of this project with respect to commercial viability, impediments, and social and economic impact are presented, and recommendations are made for future systems analysis work.

  5. Factors controlling porosity and permeability in geopressured Frio sandstone reservoirs, general crude oil/Department of Energy Pleasant Bayou test wells, Brazoria County, Texas

    SciTech Connect

    Loucks, R.G.; Richman, D.L.; Milliken, K.L.

    1980-06-01

    Reservoir characteristics of Frio sandstones in the GCO/DOE Pleasant Bayou No. 1 and No. 2 wells are influenced by depositional environment, sandstone composition, and diagenetic history. The sandstones and shales were deposited in deltaic and continental slope environments. Fluvial channel and distributary-mouth bar sandstones are most favorable for development and preservation of the porosity needed for a geothermal reservoir. Sandstones in the geopressured zone are lithic arkoses and feldspathic litharenites. Depositional matric (detrital material less than 20 micrometers in size) occluded most or all of the potential primary porosity between grains in many of the fine-grained sandstones at the time of deposition. Even if cements are present, dissolution of grains and development of secondary porosity do take place. Permeable geopressured sandstone reservoirs are characterized by porosity that is dominantly secondary. 12 references.

  6. Subsurface and seismic investigation of the geopressured-geothermal potential of south Louisiana. Part I: the Abbeville area, September 1, 1978-October 31, 1980

    SciTech Connect

    Paine, W.R.; Kinsland, G.L.; Duhon, M.P.; Dungan, J.R.

    1980-01-01

    The structure investigated is a basin roughly bounded by the Abbeville Dome on the West, the Erath Dome on the Southeast and the Grosse Isle Dome on the Northeast and whose center is located at approximately Section 31 T14S R4E. The geopressured sands investigated are below approximately 12,800 feet (3901 M) in the center of the basin and consist of two groups of rather thin, discontinuous, marly sands. These two groups, rather arbitrarily defined, are termed the upper and lower geopressured sands and the following map types and analyses have been derived from subsurface data of each: structure, temperature, pressure, salinity and net sand maps; and porosity, permeability and methane content analyses. The Reservoir analysis was accomplished by the use of wire line surveys (electric logs) and computer analyses based on standard relationships found in Schlumberger manuals. Seismic analysis proved to be an invaluable tool in establishing the structure of the area.

  7. Properties and chemical constituents in ground water from the lower Wilcox Aquifer, Mississippi Embayment Aquifer System, south-central United States

    USGS Publications Warehouse

    Pettijohn, Robert A.; Busby, John F.; Beckman, Jeffery D.

    1993-01-01

    The Gulf Coast Regional Aquifer-System Analysis is a study of regional aquifers composed of sediments of mostly Cenozoic age that underlie about 230,000 sq mi of the Gulf Coastal Plain. These regional aquifers are part of three aquifer systems: (1) the Mississippi Embayment Aquifer System, (2) the Texas Coastal Uplands Aquifer System, and (3) the Coastal Lowlands Aquifer System. The water chemistry of the Lower Wilcox Aquifer, which is part of the Mississippi Embayment Aquifer System is presented by a series of maps. These maps show the areal distribution of (1) the concentration of dissolved solids and temperature, (2) the primary water types and pH, (3) the concentration of major ions and silica, and (4) the milliequivalent ratios of selected ions. Dissolved constituents, pH, temperature, and ratios are based on the median values of all samples in each 100-sq-mi area. The concentration of dissolved solids in water from the Lower Wilcox Aquifer ranges from 18 mg/L near the outcrop in western Tennessee to 122,000 mg/L in a down-dip area in southern Mississippi. The primary water type is calcium bicarbonate in the outcrop area and sodium bicarbonate in all other areas of the aquifer within the limits of available data. The concentrations of major ions generally increase from the outcrop area to the down-dip limit of the data in the southern part of the aquifer area east of the Mississippi River. The milliequivalent ratio maps of selected ions in water from the Lower Wilcox Aquifer indicate some trends. The milliequivalent ratio of magnesium plus calcium to bicarbonate ranges from less than 0.1 to 40.4 and generally decreases from outcrop to down-dip limit of the data in the southern part of the aquifer area east of the Mississippi River. The milliequivalent ratio of bicarbonate to chloride ranges from 0.01 in southern Mississippi to 52.3 in northwestern Mississippi. This ratio increases from the outcrop toward the Mississippi River and from north to south in the

  8. Water table in the surficial aquifer and potentiometric surface of the Floridan Aquifer in selected well fields, west-central Florida, May 1976

    USGS Publications Warehouse

    Hutchinson, C.B.; Mills, L.R.

    1977-01-01

    The water table in the surficial aquifer (sand) and the potentiometric surface of the Floridan aquifer (limestone) in a 1,200-square-mile area in west-central Florida are mapped semiannually by the U.S. Geological Survey. Maps are prepared each May and September to coincide with seasonal low and high ground-water levels. The mapped area contains nine producing well fields which supplied 92.8 million gallons on May 12, 1976 to municipalities along the Gulf Coast. This pumpage came from the Floridan aquifer, the major aquifer in the State of Florida. The effect of well-field withdrawals is shown on the maps as cones of depression in both the potentiometric and water-table surfaces. The May 1976 maps indicate that water levels have declined below sea level in some areas. The decline results from reduced recharge during the dry spring combined with an increase in pumpage for lawn irrigation.

  9. Water table in the surficial aquifer and potentiometric surface of the Floridan Aquifer in selected well fields, west-central Florida, September 1976

    USGS Publications Warehouse

    Ryder, Paul D.; Mills, L.R.

    1977-01-01

    The water table in the surficial aquifer and the potentiometric surface of the Florida aquifer in a 1200 square-mile area in west-central Florida are mapped semiannually by the U. S. Geological Survey. Maps are prepared on the basis of water levels measured in wells each May to coincide with seasonal low levels, and in September, when levels are high. The mapped area contains nine producing well fields which supplied 67.2 million gallons on September 8, 1976, to municipalities along the Gulf Coast. The water is from the Floridan aquifer, the major aquifer in Florida. The effect of localized withdrawal of ground water is shown on the maps as cones of depression in both the potentiometric and water-table surfaces. The September 1976 maps show the seasonal rise in water levels from the low levels of the previous May.

  10. Hydrogeology and preliminary assessment of regional flow in the upper Cretaceous and adjacent aquifers in the northern Mississippi embayment

    USGS Publications Warehouse

    Brahana, J.V.; Mesko, T.O.

    1988-01-01

    On a regional scale, the groundwater system of the northern Mississippi embayment is composed of a series of nonindurated clastic sediments that overlie a thick sequence of Paleozoic carbonate, sandstones, and shales. The units that comprise the geohydrologic framework of this study are the alluvium-lower Wilcox Aquifer the Midway confining unit, the Upper Cretaceous aquifer, the Cretaceous-Paleozoic confining unit, and the Ozark-St. Francois aquifer. The Upper Cretaceous aquifer of Late Cretaceous age is the primary focus of this investigation; the study is part of the Gulf Coast Regional Aquifer-System Analysis. A four layer finite-difference groundwater flow model enabled testing of alternative boundary concepts and provide a refined definition of the hydrologic budget of the deep aquifers. The alluvium-lower Wilcox aquifer, the Upper Cretaceous aquifer, and the Ozark-St. Francois aquifer form layers 2 through 4, respectively. Layer 1 is an inactive layer of constant heads representing shallow water levels, which are a major control on recharge to and discharge from the regional system. A matrix of leakance values simulates each confining unit, allowing vertical interchange of water between different aquifers. The model was calibrated to 1980 conditions by using the assumption that 1980 was near steady-state conditions; it was calibrated to simulate observed heads were found to be most sensitive to pumping, and least sensitive to the leakance. By using all available water quality and water level data, alternative boundary conditions were tested by comparing model simulated heads to observed heads. The results of the early modeling effort also contribute to a better understanding of the regional hydrologic budget, indicating that: upward leakage from the Ozark-St. Francois aquifer to the Upper Cretaceous aquifer is about 43 cu ft/sec; upward recharge of about 68 cu ft/sec occurs to the lower Wilcox-alluvium aquifer from the Upper Cretaceous aquifer; and the

  11. Year of the Coast.

    ERIC Educational Resources Information Center

    Jacobik, Gray; Lux, Gretchen

    1980-01-01

    President Carter has designated 1980 as the "Year of the Coast" through the efforts of a coalition known as the Coast Alliance. The Coast Alliance will alert people to changes along the coastline, and the need for public participation in the decisions which govern the use and abuse of the coastline. (DS)

  12. Managed Aquifer Recharge Using Treated Wastewater: An Option to Manage a Coastal Aquifer In Oman For Better Domestic Water Supply

    NASA Astrophysics Data System (ADS)

    Al-Maktoumi, Ali; Zekri, Slim; ElRawy, Mustafa

    2016-04-01

    Arid countries, such as the Sultanate of Oman, are facing challenges of water shortages threatening economic development and social stability. Most of those countries are vulnerable to the potential adverse impacts of climate change, the most significant of which are increased average temperatures, less and more erratic precipitation, sea level rise, and desertification. The combined effect of existing adverse conditions and likely impacts of future climate change will make water management even more difficult than what it is today. Tremendous efforts have been devoted to augment the water resources. Managed Aquifer Recharge (MAR) is practiced widely to store water during periods of surpluses and withdraw during deficits from an aquifer. In Muscat, there will be a surplus of >100,000 m3/day of TWW during winter months in the coming few years. The aquifer along the northern coast of Oman (Al-Khawd Aquifer) is conducive for MAR. Data show that TWW volumes will increase from 7.6 Mm3 in 2003 to 70.9 Mm3 in 2035 in Muscat city only. This study assesses, using MODFLOW 2005 numerical code, the impact of MAR using TWW on better management of the Al-Khawd unconfined coastal aquifer for better urban water supply. Specifically, aiming to maximize withdrawals from the domestic wells with minimize adverse effect of seawater intrusion. The model operates under a number of constrains that minimize the loss to the sea and the injected TWW must not migrates upstream (due to developed mound) and reach the wellfields used for domestic supply. The hypothetical injection wells are located downstream the domestic wellfield zone. The results of different managerial scenarios show that MAR produces a hydraulic barrier that decelerates the seawater intrusion which allows higher abstraction of pristine water from the upstream part of the aquifer. MAR along with redistribution/relocation of public wells allows abstraction of 2 times the current abstraction rate (around 6 Mm3/year to 12 Mm3

  13. Aquifers In Nirgal Vallis

    NASA Astrophysics Data System (ADS)

    Reiss, D.; Jaumann, R.

    The topographic information provided by the Mars Orbiter Laser Altimeter has been used in combination with the Mars Observer Camera imagery to estimate the topo- graphic position of sapping pits and gully heads on the rim of Nirgal Vallis. Hence Nirgal Vallis is understood to be formed by groundwater sapping (1, 2, 3, 4) an aquifer is proposed as water supply. Gullies in the northern rim of Nirgal Vallis as discovered in Mars Observer Camera (MOC) images (5, 6) proof the existence of such an aquifer. Further evidence for sapping in Nirgal Vallis is demonstrated by short hanging tribu- taries with amphitheater-like heads. The basis of these sapping pits defines the con- tact of aquifer to aquiclude during the valley formation. The gully heads are much deeper under the local surface and the correlation of their topographic position with the valley depth indicate the subsidence of the groundwater level following the ver- tical erosion of the valley. This implies the existence of different groundwater tables over time confined by impermeable layers, whereas the gully head level is the most recent groundwater table which still may be erosional active under the conditions of increasing water pressure and ice barrier failure (5). The occurrence of more than one tilted sapping level at different topographic positions which are time-correlated with the erosional notching of the valley, either indicates different aquifers with litholog- ical aquicludes or a climate controlled subsidence of the permafrost layer acting as confining layer. References: (1) Baker et al., 1992, In: Mars, Univ. of Arizona Press. (2) Carr, 1995, JGR 100, 7479. (3) Malin and Carr, 1999, Icarus, 397, 589. (4) Jaumann and Reiss, 2002, LPSC. (5) Malin and Edgett, 2000, Science, 288, 2330. (6) Malin and Edgett, 2001, JGR 106, 23429.

  14. STIMULATION OF THE REDUCTIVE DECHLORINATION OF TETRACHLOROETHENE IN ANAEROBIC AQUIFER MICROCOSMS BY THE ADDITION OF TOLUENE

    EPA Science Inventory

    In this study, the biologically mediated interactions of toluene and PCE under anaerobic conditions were investigated by using microcosms constructed with aquifer solids from an area that was exposed to both alkylbenzenes and chlorinated ethenes at the U.S. Coast Guard Air Statio...

  15. STIMULATION OF THE REDUCTIVE DECHLORINATION OF TETRACHLOROETHENE IN ANAEROBIC AQUIFER MICROCOSMS BY THE ADDITION OF TOLUENE

    EPA Science Inventory

    In this study, the biologically mediated interactions of toluene and PCE under anaerobic conditions were investigated by using microcosms constructed with aquifer solids from an area that was exposed to both alkylbenzenes and chlorinated ethenes at the U.S. Coast Guard Air Statio...

  16. Analysis of an unconfined aquifer subject to asynchronous dual-tide propagation

    USGS Publications Warehouse

    Rotzoll, K.; El-Kadi, A. I.; Gingerich, S.B.

    2008-01-01

    Most published solutions for aquifer responses to ocean tides focus on the one-sided attenuation of the signal as it propagates inland. However, island aquifers experience periodic forcing from the entire coast, which can lead to integrated effects of different tidal signals, especially on narrow high-permeability islands. In general, studies disregard a potential time lag as the tidal wave sweeps around the island. We present a one-dimensional analytical solution to the ground water flow equation subject to asynchronous and asymmetric oscillating head conditions on opposite boundaries and test it on data from an unconfined volcanic aquifer in Maui. The solution considers sediment-damping effects at the coastline. The response of Maui Aquifers indicate that water table elevations near the center of the aquifer are influenced by a combination of tides from opposite coasts. A better match between the observed ground water head and the theoretical response can be obtained with the proposed dual-tide solution than with single-sided solutions. Hydraulic diffusivity was estimated to be 2.3 ?? 107 m 2/d. This translates into a hydraulic conductivity of 500 m/d, assuming a specific yield of 0.04 and an aquifer thickness of 1.8 km. A numerical experiment confirmed the hydraulic diffusivity value and showed that the y-intercepts of the modal attenuation and phase differences estimated by regression can approximate damping factors caused by low-permeability units at the boundary.

  17. Analysis of an unconfined aquifer subject to asynchronous dual-tide propagation.

    PubMed

    Rotzoll, Kolja; El-Kadi, Aly I; Gingerich, Stephen B

    2008-01-01

    Most published solutions for aquifer responses to ocean tides focus on the one-sided attenuation of the signal as it propagates inland. However, island aquifers experience periodic forcing from the entire coast, which can lead to integrated effects of different tidal signals, especially on narrow high-permeability islands. In general, studies disregard a potential time lag as the tidal wave sweeps around the island. We present a one-dimensional analytical solution to the ground water flow equation subject to asynchronous and asymmetric oscillating head conditions on opposite boundaries and test it on data from an unconfined volcanic aquifer in Maui. The solution considers sediment-damping effects at the coastline. The response of Maui Aquifers indicate that water table elevations near the center of the aquifer are influenced by a combination of tides from opposite coasts. A better match between the observed ground water head and the theoretical response can be obtained with the proposed dual-tide solution than with single-sided solutions. Hydraulic diffusivity was estimated to be 2.3 x 10(7) m(2)/d. This translates into a hydraulic conductivity of 500 m/d, assuming a specific yield of 0.04 and an aquifer thickness of 1.8 km. A numerical experiment confirmed the hydraulic diffusivity value and showed that the y-intercepts of the modal attenuation and phase differences estimated by regression can approximate damping factors caused by low-permeability units at the boundary.

  18. Integrating borehole logs and aquifer tests in aquifer characterization

    USGS Publications Warehouse

    Paillet, Frederick L.; Reese, R.S.

    2000-01-01

    Integration of lithologic logs, geophysical logs, and hydraulic tests is critical in characterizing heterogeneous aquifers. Typically only a limited number of aquifer tests can be performed, and these need to be designed to provide hydraulic properties for the principle aquifers in the system. This study describes the integration of logs and aquifer tests in the development of a hydrostratigraphic model for the surficial aquifer system in and around Big Cypress National Preserve in eastern Collier County, Florida. Borehole flowmeter tests provide qualitative permeability profiles in most of 26 boreholes drilled in the Study area. Flow logs indicate the depth of transmissive units, which are correlated across the study area. Comparison to published studies in adjacent areas indicates that the main limestone aquifer of the 000000Tamiami Formation in the study area corresponds with the gray limestone aquifer in western Dade County and the water table and lower Tamiami Aquifer in western Collier County. Four strategically located, multiwell aquifer tests are used to quantify the qualitative permeability profiles provided by the flowmeter log analysis. The hydrostratigraphic model based on these results defines the main aquifer in the central part of the study area as unconfined to semiconfined with a transmissivity as high as 30,000 m2/day. The aquifer decreases in transmissivity to less than 10,000 m2/day in some parts of western Collier County, and becomes confined to the east and northeast of the study area, where transmissivity decreases to below 5000 m2/day.Integration of lithologic logs, geophysical logs, and hydraulic tests is critical in characterizing heterogeneous aquifers. Typically only a limited number of aquifer tests can be performed, and these need to be designed to provide hydraulic properties for the principle aquifers in the system. This study describes the integration of logs and aquifer tests in the development of a hydrostratigraphic model for the

  19. FINAL TECHNICAL REPORT, U.S. Department of Energy: Award No. DE-EE0002855 "Demonstrating the Commercial Feasibility of Geopressured-Geothermal Power Development at Sweet Lake Field - Cameron Parish, Louisiana"

    SciTech Connect

    Gayle, Phillip A., Jr.

    2012-01-13

    The goal of the project was to demonstrate the commercial feasibility of geopressured-geothermal power development by exploiting the extraordinarily high pressured hot brines know to exist at depth near the Sweet Lake oil and gas field in Cameron Parish, Louisiana. The existence of a geopressured-geothermal system at Sweet Lake was confirmed in the 1970's and 1980's as part of DOE's Geopressured-Geothermal Program. That program showed that the energy prices at the time could not support commercial production of the resource. Increased electricity prices and technological advancements over the last two decades, combined with the current national support for developing clean, renewable energy and the job creation it would entail, provided the justification necessary to reevaluate the commercial feasibility of power generation from this vast resource.

  20. Characteristics of Southern California coastal aquifer systems

    USGS Publications Warehouse

    Edwards, B.D.; Hanson, R.T.; Reichard, E.G.; Johnson, T.A.

    2009-01-01

    , litany of names for the various formations, lithofacies, and aquifer systems identified within these basins. Despite these nomenclatural problems, available data show that most basins contain similar sequences of deposits and share similar geologic histories dominated by glacio-eustatic sea-level fluctuations, and overprinted by syndepositional and postdepositional tectonic deformation. Impermeable, indurated mid-Tertiary units typically form the base of each siliciclastic groundwater basin. These units are overlain by stacked sequences of Pliocene to Holocene interbedded marine, paralic, fluvial, and alluvial sediment (weakly indurated, folded, and fractured) that commonly contain the historically named "80-foot sand," "200-foot sand," and "400-foot gravel" in the upper part of the section. An unconformity, cut during the latest Pleistocene lowstand (??18O stage 2; ca. 18 ka), forms a major sequence boundary that separates these units from the overlying Holocene fluvial sands and gravels. Unconfined aquifers occur in amalgamated coarse facies near the bounding mountains (forebay area). These units are inferred to become lithologically more complex toward the center of the basins and coast line, where interbedded permeable and low-permeability alluvial, fluvial, paralic, and marine facies contain confined aquifers (pressure area). Coastal bounding faults limit intrabasin and/or interbasin flow in parts of many basins. ?? 2009 Geological Society of America.

  1. High Temperature Aquifer Storage

    NASA Astrophysics Data System (ADS)

    Ueckert, Martina; Niessner, Reinhard; Baumann, Thomas

    2016-04-01

    Combined heat and power generation (CHP) is highly efficient because excess heat is used for heating and/or process energy. However, the demand of heat energy varies considerably throughout the year while the demand for electrical energy is rather constant. It seems economically and ecologically highly beneficial for municipalities and large power consumers such as manufacturing plants to store excess heat in groundwater aquifers and to recuperate this energy at times of higher demand. Within the project High Temperature Aquifer Storage, scientists investigate storage and recuperation of excess heat energy into the bavarian Malm aquifer. Apart from high transmissivity and favorable pressure gradients, the hydrochemical conditions are crucial for long-term operation. An enormous technical challenge is the disruption of the carbonate equilibrium - modeling results indicated a carbonate precipitation of 10 - 50 kg/d in the heat exchangers. The test included five injection pulses of hot water (60 °C up to 110 °C) and four tracer pulses, each consisting of a reactive and a conservative fluorescent dye, into a depth of about 300 m b.s.l. resp. 470 m b.s.l. Injection and production rates were 15 L/s. To achieve the desired water temperatures, about 4 TJ of heat energy were necessary. Electrical conductivity, pH and temperature were recorded at a bypass where also samples were taken. A laboratory container at the drilling site was equipped for analysing the concentration of the dyes and the major cations at sampling intervals of down to 15 minutes. Additional water samples were taken and analysed in the laboratory. The disassembled heat exchanger prooved that precipitation was successfully prevented by adding CO2 to the water before heating. Nevertheless, hydrochemical data proved both, dissolution and precipitation processes in the aquifer. This was also suggested by the hydrochemical modelling with PhreeqC and is traced back to mixture dissolution and changing

  2. Aquifer Response to Record Low Barometric Pressures in the Southeastern United States

    USGS Publications Warehouse

    Landmeyer, J.E.

    1996-01-01

    A late-winter cyclone classified as one of the most intense of the 20th century moved across the Southeastern states of Georgia and South Carolina and onto the Northeast during March 12-14, 1993. Record low barometric pressures were recorded in Augusta, Georgia (28.93 inches of mercury) and Columbia, South Carolina (28.63 inches of mercury) on March 13,1993, and pressures returned to normal values (near 3D inches of mercury) within one day following these record lows. This relatively unusual event provided an opportunity to examine the attendant water-level response in continuously monitored ground-water wells in regional Atlantic Coastal Plain, Piedmont, and Blue Ridge aquifers in the Southeast. Water levels in all wells examined responded inversely to the short duration, extreme drop in barometric pressure. Barometric efficiencies (??ground-water level/??barometric-pressure level) calculated were dependent on depth to screened- or open-interval midpoint (highest correlation coefficient, r2 = 0.89) and, to a lesser extent, total thickness of confining material above the aquifer tapped (highest r2 = 0.65). Wells in crystalline-rock aquifers had a correlation with depth to open-interval midpoint (r2 = 0.89) similar to the sedimentary aquifers examined. The magnitude of barometric efficiency was also strongly related to a well's increased distance from aquifer outcrop areas in the Cretaceous aquifers in South Carolina (r2 = 0.95) and the upper Brunswick aquifer in Georgia (r2 = 0.90), because these aquifers are more deeply buried toward the coast. This relation between barometric efficiency, well depth, and extent of confinement suggests that barometric efficiency determinations can provide useful information to hydrologists concerned with examining an aquifer's degree of confinement and corresponding isolation from land surface, particularly when the aquifer is used as a source for public supply.

  3. High Temperature Aquifer Storage

    NASA Astrophysics Data System (ADS)

    Ueckert, Martina; Niessner, Reinhard; Baumann, Thomas

    2015-04-01

    Combined heat and power generation (CHP) is highly efficient because excess heat is used for heating and/or process energy. However, the demand of heat energy varies considerably throughout the year while the demand for electrical energy is rather constant. It seems economically and ecologically highly beneficial for municipalities and large power consumers such as manufacturing plants to store excess heat in groundwater aquifers and to recuperate this energy at times of higher demand. Apart from the hydrogeological conditions, high transmissivity and favorable pressure gradients, the hydrochemical conditions are crucial for long-term operation. Within the project High Temperature Aquifer Storage, scientists investigate storage and recuperation of excess heat energy into the bavarian Malm aquifer. After one year of planning, construction, and the successful drilling of a research well to 495 m b.s.l. the first large scale heat storage test in the Malm aquifer was finished just before Christmas 2014. An enormous technical challenge was the disruption of the carbonate equilibrium - modeling results indicated a carbonate precipitation of 10-50 kg/d in the heat exchangers. The test included five injection pulses of hot water (60 °C up to 110 °C) and four tracer pulses, each consisting of a reactive and a conservative fluorescent dye. Injection and production rates were 15 L/s. About 4 TJ of heat energy were necessary to achieve the desired water temperatures. Electrical conductivity, pH and temperature were recorded at a bypass where also samples were taken. A laboratory container at the drilling site was equipped for the analysis of the concentration of the tracers and the cation concentrations at sampling intervals of down to 15 minutes. Additional water samples were taken and analyzed for major ions and trace elements in the laboratory. The disassembled heat exchanger proved that precipitation was successfully prevented by adding CO2 to the water before heating

  4. Hydrogeology and water-supply potential of the water-table aquifer on Dauphin Island, Alabama

    USGS Publications Warehouse

    Kidd, R.E.

    1988-01-01

    The water table aquifer on Dauphin Island, Alabama, consists of a thin veneer of Holocene sand and an underlying Pleistocene unit locally known as the Gulfport Formation. The aquifer is from 28 to 35 ft thick with a thick marine clay at its base. Water in the aquifer generally is low in chloride content except near the coast. Excessively high iron concentrations in groundwater were found locally. A two-dimensional finite-difference groundwater flow model of the water table aquifer on Dauphin Island was used in the steady-state mode to evaluate the flow system under steady-state conditions. Model input data were obtained primarily from 40 test wells, 2 aquifer tests, continuous recording of groundwater levels, and rainfall. The model was calibrated to the low water-table conditions of July 1985 and high water table conditions of April 1985. The model was also used to simulate pumpage from the aquifer under transient conditions with no rainfall. Patterns of computed head changes compared favorably to the natural recession of water levels for the periods of April to May 1985 and May to June 1985. Simulation of groundwater withdrawals in the transient model showed the feasibility of producing 0.6 million gallons/day from eight wells that tap the water table aquifer without inducing lateral seawater encroachment. (USGS)

  5. Groundwater response to tidal fluctuations in wedge-shaped confined aquifers

    NASA Astrophysics Data System (ADS)

    Cuello, Julián E.; Guarracino, Luis; Monachesi, Leonardo B.

    2017-08-01

    Most of the analytical solutions to describe tide-induced head fluctuations assume that the coastal aquifer has a constant thickness. These solutions have been applied in many practical problems ignoring possible changes in aquifer thickness, which may lead to wrong estimates of the hydraulic parameters. In this study, a new analytical solution to describe tide-induced head fluctuations in a wedge-shaped coastal aquifer is presented. The proposed model assumes that the aquifer thickness decreases with the distance from the coastline. A closed-form analytical solution is obtained by solving a boundary-value problem with both a separation of variables method and a change of variables method. The analytical solution indicates that wedging significantly enhances the amplitude of the induced heads in the aquifer. However, the effect on time lag is almost negligible, particularly near the coast. The slope factor, which quantifies the degree of heterogeneity of the aquifer, is obtained and analyzed for a number of hypothetical scenarios. The slope factor provides a simple criterion to detect a possible wedging of the coastal aquifer.

  6. Feasibility study: Application of the geopressured-geothermal resource to pyrolytic conversion or decomposition/detoxification processes

    SciTech Connect

    Propp, W.A.; Grey, A.E.; Negus-de Wys, J.; Plum, M.M.; Haefner, D.R.

    1991-09-01

    This study presents a preliminary evaluation of the technical and economic feasibility of selected conceptual processes for pyrolytic conversion of organic feedstocks or the decomposition/detoxification of hazardous wastes by coupling the process to the geopressured-geothermal resource. The report presents a detailed discussion of the resource and of each process selected for evaluation including the technical evaluation of each. A separate section presents the economic methodology used and the evaluation of the technically viable process. A final section presents conclusions and recommendations. Three separate processes were selected for evaluation. These are pyrolytic conversion of biomass to petroleum like fluids, wet air oxidation (WAO) at subcritical conditions for destruction of hazardous waste, and supercritical water oxidation (SCWO) also for the destruction of hazardous waste. The scientific feasibility of all three processes has been previously established by various bench-scale and pilot-scale studies. For a variety of reasons detailed in the report the SCWO process is the only one deemed to be technically feasible, although the effects of the high solids content of the geothermal brine need further study. This technology shows tremendous promise for contributing to solving the nation's energy and hazardous waste problems. However, the current economic analysis suggests that it is uneconomical at this time. 50 refs., 5 figs., 7 tabs.

  7. Industry participation in DOE-sponsored geopressured geothermal research development. Final report, May 1, 1979-April 30, 1982

    SciTech Connect

    Coffer, H.F.

    1982-07-01

    Nine DOE/Industry Forum meetings where the progress of DOE's resource development program was outlined and discussed were planned, organized, conducted, and reported. These nine forum meetings included three meetings of the Drilling and Testing group, two Site Selection meetings, one meeting each of the Legal and Environmental groups and two Overview meetings where the entire DOE program was discussed. Summaries of each of these meetings are included and the progress of DOE's geopressured geothermal resource evaluation program from its early beginnings to demonstration of the tremendous size and widespread availability of this supplementary energy resource are shown. Attendees at the meetings represented a broad cross section of state and federal agencies and potential users and developers of this large energy source. Attendance at meetings averages 50 to 80 with the most interest shown at meetings where reservoir testing results were discussed. In addition to the forums 16 newsletters were prepared and distributed to all participants. These were instituted to keep industry apprised of the latest developments in this DOE resource evaluation program. Three additional studies were carried out for DOE under this contract: a reservoir continuity study, a survey of gas stripping operations, and the development of a lease agreement for design well prospects.

  8. Water-Level Changes in Aquifers of the Atlantic Coastal Plain, Predevelopment to 2000

    USGS Publications Warehouse

    dePaul, Vincent T.; Rice, Donald E.; Zapecza, Otto S.

    2008-01-01

    The Atlantic Coastal Plain aquifer system, which underlies a large part of the east coast of the United States, is an important source of water for more than 20 million people. As the population of the region increases, further demand is being placed on those ground-water resources. To define areas of past and current declines in ground-water levels, as well as to document changes in those levels, historical water-level data from more than 4,000 wells completed in 13 regional aquifers in the Atlantic Coastal Plain were examined. From predevelopment to 1980, substantial water-level declines occurred in many areas of the Atlantic Coastal Plain. Regional variability in water-level change in the confined aquifers of the Atlantic Coastal Plain resulted from regional differences in aquifer properties and patterns of ground-water withdrawals. Within the Northern Atlantic Coastal Plain, declines of more than 100 ft were observed in New Jersey, Delaware, Maryland, Virginia, and North Carolina. Regional declines in water levels were most widespread in the deeper aquifers that were most effectively confined?the Upper, Middle, and Lower Potomac aquifers. Within these aquifers, water levels had declined up to 200 ft in southern Virginia and to more than 100 ft in New Jersey, Delaware, Maryland, and North Carolina. Substantial water-level declines were also evident in the regional Lower Chesapeake aquifer in southeastern New Jersey; in the Castle Hayne-Piney Point aquifer in Delaware, Maryland, southern Virginia and east-central North Carolina; in the Peedee-Severn aquifer in east-central New Jersey and southeastern North Carolina; and in the Black Creek-Matawan aquifer in east-central New Jersey and east-central North Carolina. Conversely, declines were least severe in the regional Upper Chesapeake aquifer during this period. In the Southeastern Coastal Plain, declines of more than 100 ft in the Chattahoochee River aquifer occurred in eastern South Carolina and in southwestern

  9. 40 CFR 147.1952 - Aquifer exemptions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 24 2012-07-01 2012-07-01 false Aquifer exemptions. 147.1952 Section....1952 Aquifer exemptions. (a) This section identifies any aquifers or their portions exempted in... future exempt other aquifers or portions, according to applicable procedures, without codifying...

  10. 40 CFR 147.3003 - Aquifer exemptions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 23 2011-07-01 2011-07-01 false Aquifer exemptions. 147.3003 Section..., Ute Mountain Ute, and All Other New Mexico Tribes § 147.3003 Aquifer exemptions. (a) Aquifer... described in appendix A are hereby exempted. The exempted aquifers are defined by a one-quarter mile...

  11. 40 CFR 147.3003 - Aquifer exemptions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 24 2012-07-01 2012-07-01 false Aquifer exemptions. 147.3003 Section..., Ute Mountain Ute, and All Other New Mexico Tribes § 147.3003 Aquifer exemptions. (a) Aquifer... described in appendix A are hereby exempted. The exempted aquifers are defined by a one-quarter mile...

  12. 40 CFR 147.2554 - Aquifer exemptions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 23 2014-07-01 2014-07-01 false Aquifer exemptions. 147.2554 Section... Aquifer exemptions. In accordance with §§ 144.7(b) and 146.4 of this chapter, those portions of aquifers... injection activity. This exemption applies only to the aquifers tabulated below, and includes those...

  13. 40 CFR 147.1652 - Aquifer exemptions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 24 2013-07-01 2013-07-01 false Aquifer exemptions. 147.1652 Section... Aquifer exemptions. (a) This section identifies any aquifer or their portions exempted in accordance with... other aquifers or portions, according to applicable procedures, without codifying such exemptions...

  14. 40 CFR 147.302 - Aquifer exemptions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 24 2012-07-01 2012-07-01 false Aquifer exemptions. 147.302 Section... Aquifer exemptions. (a) This section identifies any aquifers of their portions exempted in accordance with... other aquifers or portions according to applicable procedures without codifying such exemptions in...

  15. 40 CFR 147.102 - Aquifer exemptions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 24 2013-07-01 2013-07-01 false Aquifer exemptions. 147.102 Section... Aquifer exemptions. (a) This section identifies any aquifers or their portions exempted in accordance with... other aquifers or portions, according to applicable procedures, without codifying such exemptions...

  16. 40 CFR 147.1952 - Aquifer exemptions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 24 2013-07-01 2013-07-01 false Aquifer exemptions. 147.1952 Section....1952 Aquifer exemptions. (a) This section identifies any aquifers or their portions exempted in... future exempt other aquifers or portions, according to applicable procedures, without codifying...

  17. 40 CFR 147.3003 - Aquifer exemptions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 24 2013-07-01 2013-07-01 false Aquifer exemptions. 147.3003 Section..., Ute Mountain Ute, and All Other New Mexico Tribes § 147.3003 Aquifer exemptions. (a) Aquifer... described in appendix A are hereby exempted. The exempted aquifers are defined by a one-quarter mile...

  18. 40 CFR 147.1952 - Aquifer exemptions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 23 2014-07-01 2014-07-01 false Aquifer exemptions. 147.1952 Section....1952 Aquifer exemptions. (a) This section identifies any aquifers or their portions exempted in... future exempt other aquifers or portions, according to applicable procedures, without codifying...

  19. 40 CFR 147.2554 - Aquifer exemptions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 24 2012-07-01 2012-07-01 false Aquifer exemptions. 147.2554 Section... Aquifer exemptions. In accordance with §§ 144.7(b) and 146.4 of this chapter, those portions of aquifers... injection activity. This exemption applies only to the aquifers tabulated below, and includes those...

  20. 40 CFR 147.3003 - Aquifer exemptions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 23 2014-07-01 2014-07-01 false Aquifer exemptions. 147.3003 Section..., Ute Mountain Ute, and All Other New Mexico Tribes § 147.3003 Aquifer exemptions. (a) Aquifer... described in appendix A are hereby exempted. The exempted aquifers are defined by a one-quarter mile...

  1. 40 CFR 147.1652 - Aquifer exemptions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 23 2014-07-01 2014-07-01 false Aquifer exemptions. 147.1652 Section... Aquifer exemptions. (a) This section identifies any aquifer or their portions exempted in accordance with... other aquifers or portions, according to applicable procedures, without codifying such exemptions...

  2. 40 CFR 147.1652 - Aquifer exemptions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 23 2011-07-01 2011-07-01 false Aquifer exemptions. 147.1652 Section... Aquifer exemptions. (a) This section identifies any aquifer or their portions exempted in accordance with... other aquifers or portions, according to applicable procedures, without codifying such exemptions...

  3. 40 CFR 147.1652 - Aquifer exemptions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 24 2012-07-01 2012-07-01 false Aquifer exemptions. 147.1652 Section... Aquifer exemptions. (a) This section identifies any aquifer or their portions exempted in accordance with... other aquifers or portions, according to applicable procedures, without codifying such exemptions...

  4. 40 CFR 147.102 - Aquifer exemptions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 24 2012-07-01 2012-07-01 false Aquifer exemptions. 147.102 Section... Aquifer exemptions. (a) This section identifies any aquifers or their portions exempted in accordance with... other aquifers or portions, according to applicable procedures, without codifying such exemptions...

  5. 40 CFR 147.2554 - Aquifer exemptions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 23 2011-07-01 2011-07-01 false Aquifer exemptions. 147.2554 Section... Aquifer exemptions. In accordance with §§ 144.7(b) and 146.4 of this chapter, those portions of aquifers... injection activity. This exemption applies only to the aquifers tabulated below, and includes those...

  6. 40 CFR 147.102 - Aquifer exemptions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 23 2014-07-01 2014-07-01 false Aquifer exemptions. 147.102 Section... Aquifer exemptions. (a) This section identifies any aquifers or their portions exempted in accordance with... other aquifers or portions, according to applicable procedures, without codifying such exemptions...

  7. 40 CFR 147.2554 - Aquifer exemptions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 24 2013-07-01 2013-07-01 false Aquifer exemptions. 147.2554 Section... Aquifer exemptions. In accordance with §§ 144.7(b) and 146.4 of this chapter, those portions of aquifers... injection activity. This exemption applies only to the aquifers tabulated below, and includes those...

  8. 40 CFR 147.3003 - Aquifer exemptions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Aquifer exemptions. 147.3003 Section..., Ute Mountain Ute, and All Other New Mexico Tribes § 147.3003 Aquifer exemptions. (a) Aquifer... described in appendix A are hereby exempted. The exempted aquifers are defined by a one-quarter mile radius...

  9. U.S. DOE Geopressured/Geothermal Program: Final report on well plug and abandonment operations and well site restoration, Louisiana and Texas wells

    SciTech Connect

    1994-08-30

    Some of the critical operations conducted during the plugging and abandonment of the three producing wells of the U.S. DOE GEOPRESSURED/GEOTHERL PROGRAM were witnessed by D-O-R Engineering personnel. All operations witnessed by D-O-R personnel were in compliance with the respective state regulations and were conducted as per D-O-R's recommendations to the Department of Energy and their prime contractor, EG&G Idaho. It is our belief that competent cement plugs were left in all three wells. The following describes the work actually witnessed by D-O-R personnel.

  10. Microseismic monitoring of Chocolate Bayou, Texas. The Pleasant Bayou No. 2 geopressured/geothermal energy test-well program. 1982 annual progress report

    SciTech Connect

    Mauk, F.J.; Davis, R.A.

    1982-01-01

    To investigate the seismic risks associated with geopressured fluid production from the Pleasant Bayou No. 2 design well a seismic monitoring program was conducted in the vicinity of the Brazoria County design wells since 1979. The monitoring program was designed first to establish the nature of the local ambient seismicity prior to production, and second to provide continued surveillance of the area during the well tests to determine if production altered ambient seismic conditions significantly. The operation, data analyses, results and conclusions of the Brazoria seismic network during the operational period from 1 January through 31 December 1982 are described.

  11. The groundwater age in the Middle-Upper Devonian aquifer system, Lithuania

    NASA Astrophysics Data System (ADS)

    Mokrik, R.; Mažeika, J.; Baublytė, A.; Martma, T.

    2009-06-01

    3H, δ13C and hydrochemical data were used to estimate the corrected groundwater age derived from conventional 14C age of dissolved inorganic carbon (DIC). The Middle-Upper Devonian aquifer system from the Baltic upland recharge area in eastern Lithuania towards the discharge area on the Baltic Sea coast in the west was considered. The concentration of total dissolved solids (TDS) in groundwater changes from 300 to 24,000 mg/L and increases downgradient towards the coast. The other major constituents have the same trend as the TDS. The hydrochemical facies of groundwater vary from an alkali-earth carbonates facies at the eastern upland area to an alkali-earth carbonate-sulfate and chloride facies at transit and discharge areas. Meteoric water percolating through the Quaternary and Devonian aquifers regulate the initial 14C activities of groundwater involving two main members of DIC: soil CO2 with modern 14C activity uptake and dissolution of 14C-free aquifer carbonates. Other sources of DIC are less common. 14C activity of DIC in the groundwater ranged from 60 to 108 pMC at the shallow depths. With an increase of the aquifers depth the dolomitization of aqueous solution and leakage of the “old” groundwater from lower aquifers take place, traced by lower activities (7-30 pMC).

  12. Contrasting definitions for the term `karst aquifer'

    NASA Astrophysics Data System (ADS)

    Worthington, Stephen R. H.; Jeannin, Pierre-Yves; Alexander, E. Calvin; Davies, Gareth J.; Schindel, Geary M.

    2017-08-01

    It is generally considered that karst aquifers have distinctly different properties from other bedrock aquifers. A search of the literature found five definitions that have been proposed to differentiate karst aquifers from non-karstic aquifers. The five definitions are based upon the presence of solution channel networks, hydraulic conductivities >10-6 m/s, karst landscapes, channels with turbulent flow, and caves. The percentage of unconfined carbonate aquifers that would classify as `karst' ranges from <1 to >50%.

  13. Gulf Coast geopressured-geothermal reservoir simulation: final task report (year 4). Final report, 1 August 1979-31 July 1980

    SciTech Connect

    MacDonald, R.C.; Sepehrnoori, K.; Ohkuma, H.

    1982-10-01

    The results of the short-term production tests run on the Pleasant Bayou No. 2 well are summarized. These tests were analyzed using conventional pressure test analysis methods. The effects of reservoir heterogeneties onm production behavior and, in particular, permeability distribution and faulting of reservoir sand were studied to determine the sensitivity of recovery to these parameters. A study on the effect of gas buildup around a producing well is reported. (MHR)

  14. Groundwater residence time and aquifer recharge in multilayered, semi-confined and faulted aquifer systems using environmental tracers

    NASA Astrophysics Data System (ADS)

    Batlle-Aguilar, Jordi; Banks, Eddie W.; Batelaan, Okke; Kipfer, Rolf; Brennwald, Matthias S.; Cook, Peter G.

    2017-03-01

    The potential of environmental tracers (δ18O, δ2H, δ13C, 14C, 4He, 20Ne, 40Ar, N2) to assist our understanding of recharge processes, groundwater flow velocities and residence times in semi-confined, multilayered and faulted aquifer systems was tested in a coastal system with Quaternary sediments overlying Tertiary aquifers and fractured bedrock. Carbon-14 groundwater ages were found to increase with depth and distance (<1000 y near the recharge area to >30,000 y near the coast), confirming that the system is semi-confined and the palaeometeoric origin of groundwater as suggested by water stable isotopes. The presence of old groundwater near the top of deep semi-confined aquifers suggests that recharge mainly occurs in the ranges east of the basin. This is also supported by Cl concentrations, which are higher in the overlying Quaternary aquifers. Groundwater flow velocities between 0.3 and 1.8 m y-1 were estimated using 14C ages, resulting in basin recharge estimates between 0.3 × 107 and 2 × 107 m3 y-1. Radiocarbon and 4He-estimated flow velocities were generally in good agreement, although 4He accumulation rates ranging between 8 × 10-12 and 1 × 10-10 cm3 STP g-1 y-1 and 1.7-7.1 × 10-7 cm3 STP g-1 km-1 confirmed slower flow velocities in some areas. These areas could not be captured using 14C. Faults were found to play a paramount role on mixing old fluids rich in salts and 4He, although it was not possible to demonstrate the role of faults in changing flow velocities, this requiring a higher density of sampling points. Our study shows that environmental tracers have potential to study flow processes in semi-confined, faulted, multilayered aquifer systems, provided a high density of sampling points is available.

  15. Aquifer thermal energy storage program

    NASA Technical Reports Server (NTRS)

    Fox, K.

    1980-01-01

    The purpose of the Aquifer Thermal Energy Storage Demonstration Program is to stimulate the interest of industry by demonstrating the feasibility of using a geological formation for seasonal thermal energy storage, thereby, reducing crude oil consumption, minimizing thermal pollution, and significantly reducing utility capital investments required to account for peak power requirements. This purpose will be served if several diverse projects can be operated which will demonstrate the technical, economic, environmental, and institutional feasibility of aquifer thermal energy storage systems.

  16. Oceans and Coasts

    EPA Pesticide Factsheets

    An overview of EPA’s oceans, coasts, estuaries and beaches programs and the regulatory (permits/rules) and non-regulatory approaches for managing their associated environmental issues, such as water pollution and climate change.

  17. In Brief: Assessing carbonate aquifers

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2009-07-01

    An assessment of water quality in 12 carbonate aquifers, mostly in the eastern and central United States, found that while water quality in the aquifers was highly variable, most of the samples met drinking water standards. The study, “Factors affecting water quality in selected carbonate aquifers in the United States, 1993-2005,” was released by the U.S. Geological Survey (USGS) on 26 June. According to the study, carbonate aquifers provide about 20% of the groundwater used as drinking water in the United States. The study, which included sample results for 151 chemical constituents or physical properties in 1042 wells and springs across 20 states, found that contaminants “were most often detected at concentrations less than human-health benchmarks except for nitrate.” The study also indicated that “the occurrence of anthropogenic contaminants was related to contaminant sources but also was affected by degree of aquifer confinement, ground-water age, and redox status. Areas with higher amounts of agricultural or urban land in unconfined aquifers were the most likely to have elevated concentrations of anthropogenic contaminants.”

  18. Groundwater residence time and aquifer recharge in mutilayered, semi-confined and faulted aquifer systems using environmental tracers

    NASA Astrophysics Data System (ADS)

    Batlle-Aguilar, J.; Banks, E.; Batelaan, O.; Kipfer, R.; Brennwald, M. S.; Cook, P. G.

    2016-12-01

    Population growth and ongoing climate change threatens the future of water supply in many regions. Therefore water resources need to be managed in a way such that water demands for industrial, agricultural, recreation and household uses are met in a sustainable approach. To do so, appropriate knowledge of groundwater residence time and aquifer recharge is paramount. But populations are largely concentrated on sedimentary basins where aquifers are often multi-layered, semi-confined and faulted, challenging the study of groundwater flow processes. The motivation of this work is to study the potential of environmental tracers (δ18O, δ2H, δ13C, 14C, 4He, 20Ne, 40Ar, N2) to assist our understanding of recharge processes and residence times in semi-confined, multilayered and faulted aquifer systems. For that purpose, the coastal aquifer system in the Adelaide Plains basin, South Australia, was studied. Carbon-14 groundwater ages were found to increase with depth and distance (<1000 years near the recharge area to >30,000 years near the coast), confirming the system is semi-confined and the palaeometeoric origin of groundwater, as suggested by water stable isotopes. The presence of old groundwater near the top of deep semi-confined aquifers suggested that recharge mainly occurs in the mountain ranges east of the basin, a finding which was supported by higher Cl concentrations in the overlying Quaternary aquifers. Mean groundwater flow velocity of 0.8 m y-1 was estimated using 14C ages, and confirmed with 4He estimations. However 4He accumulation rates ranging between 8×10-12 and 1×10-10 cm3 STP g-1 y-1 and 1.7-7.1×10-7 cm3 STP g-1 km-1 confirmed slower flow velocities in some areas, velocities that could not be captured using 14C. Faults were found to play a paramount role in mixing old fluids rich in salts and 4He, but it was not possible to demonstrate the role of faults in changing flow velocities, which requires a higher density of sampling points. Our study

  19. Characterising aquifer treatment for pathogens in managed aquifer recharge.

    PubMed

    Page, D; Dillon, P; Toze, S; Sidhu, J P S

    2010-01-01

    In this study the value of subsurface treatment of urban stormwater during Aquifer Storage Transfer Recovery (ASTR) is characterised using quantitative microbial risk assessment (QMRA) methodology. The ASTR project utilizes a multi-barrier treatment train to treat urban stormwater but to date the role of the aquifer has not been quantified. In this study it was estimated that the aquifer barrier provided 1.4, 2.6, >6.0 log(10) removals for rotavirus, Cryptosporidium and Campylobacter respectively based on pathogen diffusion chamber results. The aquifer treatment barrier was found to vary in importance vis-à-vis the pre-treatment via a constructed wetland and potential post-treatment options of UV-disinfection and chlorination for the reference pathogens. The risk assessment demonstrated that the human health risk associated with potable reuse of stormwater can be mitigated (disability adjusted life years, DALYs <1 × 10(-6)) if the aquifer is integrated with suitable post treatment options into a treatment train to attenuate pathogens and protect human health.

  20. Exact versus Dupuit interface flow in anisotropic coastal aquifers

    NASA Astrophysics Data System (ADS)

    Bakker, Mark

    2014-10-01

    The Dupuit solution for interface flow toward the coast in a confined aquifer is compared to a new exact solution, which is obtained with the Hodograph method and conformal mapping. The position of the toe of the interface is a function of two dimensionless parameters: the ratio of the hydraulic gradient upstream of the interface where flow is one-dimensional over the dimensionless density difference, and the ratio of the horizontal hydraulic conductivity over the vertical hydraulic conductivity. The Dupuit interface, which neglects resistance to vertical flow, is a very accurate approximation of the exact interface for isotropic aquifers. The difference in the position of the toe between the exact and Dupuit solutions increases when the vertical anisotropy increases. For highly anistropic aquifers, it is proposed to add an effective resistance layer along the bottom of the sea in Dupuit models. The resistance of the layer is chosen such that the head in the Dupuit model is equal to the head in the exact solution upstream of the interface where flow is one-dimensional.

  1. Sea water in coastal aquifers

    USGS Publications Warehouse

    Cooper, Hilton Hammond

    1964-01-01

    Investigations in the coastal part of the Biscayne aquifer, a highly productive aquifer of limestone and sand in the Miami area, Florida, show that the salt-water front is dynamically stable as much as 8 miles seaward of the position computed according to the Ghyben-Herzberg principle. This discrepancy results, at least in part, from the fact that the salt water in the Biscayne aquifer is not static, as explanations of the dynamic balance commonly assume. Cross sections showing lines of equal fresh-water potential indicate that during periods of heavy recharge, the fresh-water head is high enough to cause the fresh water, the salt water, and the zone of diffusion between them to move seaward. When the fresh-water head is low, salt water in the lower part of the aquifer intrudes inland, but some of the diluted sea water in the zone of diffusion continues to flow seaward. Thus, salt water circulates inland from the floor of the sea through the lower part of the aquifer becoming progressively diluted with fresh water to a line along which there is no horizontal component of flow, after which it moves upward and returns to the sea. This cyclic flow is demonstrated by a flow net which is constructed by the use of horizontal gradients determined from the low-head equipotential diagram. The flow net shows that about seven-eights of the total discharge at the shoreline originates as fresh water in inland parts of the aquifer. The remaining one-eighth represents a return of sea water entering the aquifer through the floor of the sea.

  2. Integrated Hydrogeochemical and Geophysical Interpretation of Groundwater Salinization in an Uplifted Pleistocene Carbonate Aquifer of Barbados

    NASA Astrophysics Data System (ADS)

    Mayers, B.; Farrell, D.; Coffey, R.; Thompson, G.

    2007-05-01

    Understanding the processes that influence spatial and temporal distributions of aquifer salinity are essential to the development of a groundwater salinity management plan. In this paper, we integrate geophysical, hydrogeochemical and submarine seepage measurements to develop a conceptual hydrogeological model of groundwater salinization of a Pleistocene carbonate aquifer that has experienced Quaternary glacio-eustatic sea- level changes and tectonic uplift. The Pleistocene carbonate rock mantles moderately folded and faulted Tertiary marine sedimentary rocks of early Eocene to middle Miocene age. The main issues to be addressed are (1) an understanding of the hydrogeological regime of the karst aquifer, (2) the origin and extent of aquifer salinization, and (3) groundwater provenance. Non-invasive Time Domain and Resistivity soundings were used to map the subsurface electrical resistivity structure to infer the distribution of aquifer salinity and geologic structure. An analysis of the major and minor ions was used to evaluate groundwater chemistry patterns and the main mineralization processes. Submarine seepage measurements were taken from random locations in the near- shore region including a region of spring discharge. The results suggest (1) a heterogeneous distribution of fresh and saline groundwater that deviates from the idealized freshwater/saltwater transition zone on the decimeter scale, (2) a transition from Ca- HCO3 to Na-Cl type waters towards the coast indicating mixing with saline groundwater, (3) an Mg/Ca ratio that suggest aquitard-influenced saline groundwater (4) seepage of recirculated saline groundwater at locations where seepage springs are absent, and (5) an aquifer that has not been adequately flushed. In order to support these concepts, further work will utilize stable and environmental isotopes to age-date both fresh and saline groundwater and to evaluate the effects of water-rock and aquifer- aquitard interactions on the spatial and

  3. Geology and hydrogeology of the Caribbean islands aquifer system of the Commonwealth of Puerto Rico and the U.S. Virgin Islands

    USGS Publications Warehouse

    Renken, Robert A.; Ward, W. C.; Gill, I.P.; Gómez-Gómez, Fernando; Rodríguez-Martínez, Jesús; ,

    2002-01-01

    Poorly lithified to unconsolidated carbonate and clastic sedimentary rocks of Tertiary (Oligocene to Pliocene) and Quaternary (Pleistocene to Holocene) age compose the South Coast aquifer and the North Coast limestone aquifer system of Puerto Rico; poorly lithified to unlithified carbonate rocks of late Tertiary (early Miocene to Pliocene) age make up the Kingshill aquifer of St. Croix, U.S. Virgin Islands. The South Coast aquifer, North Coast limestone aquifer system, and Kingshill aquifer are the most areally extensive and function as the major sources of ground water in the U.S. Caribbean Islands Regional Aquifer-System Analysis (CI-RASA) study area. In Puerto Rico's South Coast ground-water province, more than 1,000 meters of clastic and carbonate rocks of Oligocene to Pliocene age infill the South Coast Tertiary Basin. The pattern of lithofacies within this basin appears to have been controlled by changes in base level that were, at times, dominated by tectonic movement (uplift and subsidence), but were also influenced by eustasy. Deposition of the 70-kilometer long and 3- to 8-kilometer wide fan-delta plain that covers much of the South Coast ground-water province occurred largely in response to glacially-induced changes in sea level and climate during the Quaternary period. Tectonic movement played a much less important role during the Quaternary. The North Coast ground-water province of Puerto Rico is underlain by homoclinal coastal plain wedge of carbonate and siliciclastic rocks that infill the North Coast Tertiary Basin and thicken to more than 1,700 meters. A thin basal siliciclastic sequence of late Oligocene age is overlain by a thick section of mostly carbonate rocks of Oligocene to middle Miocene age. Globigerinid limestone of late Miocene to Pliocene age crops out and lies in the shallow subsurface areas of northwestern Puerto Rico. Oligocene to middle Miocene age rocks tentatively can be divided into five depositional sequences and associated

  4. Saltwater intrusion in the shallow aquifer in Martin and Palm Beach counties, Florida

    USGS Publications Warehouse

    Scott, W.B.; Land, L.F.; Rodis, H.G.

    1977-01-01

    Urban growth has been rapid in recent years in Palm Beach and Martin Counties, Fla. The withdrawal of large quantities of fresh ground water in the vicinity of the coast has reduced or locally reversed the natural seaward hydraulic gradient and, in places, allowed saltwater to advance landward in the aquifer, displacing freshwater. Maps show the position of the saltwater front in eight urban areas adjacent to the coast. The saltwater front, as shown on the profiles, is based on a chloride concentration of 250 mg/liter which is recommended as a limit for water that is considered potable. The chloride concentration of native freshwater almost always is less than 50 mg/liter in the coastal aquifer. (Woodard-USGS)

  5. Investigating groundwater properties in high annual recharge rate aquifers using 14c and 226ra : example of the fontainebleau sands aquifer (paris basin, france)

    NASA Astrophysics Data System (ADS)

    Chabault, C.; Barbecot, F.; Ghaleb, B.; Dever, L.

    2003-04-01

    sandy aquifer (Mediterranean coast, Southern France), International Symposium on Isotope Techniques in Water Resources Development and Management, Vienna, Austria, 1999, IAEA-SM-361/33, Eds IAEA-CSP-2/C (ISSN 1562-4153), 87-95

  6. South Oregon Coast Reinforcement.

    SciTech Connect

    United States. Bonneville Power Administration.

    1998-05-01

    The Bonneville Power Administration is proposing to build a transmission line to reinforce electrical service to the southern coast of Oregon. This FYI outlines the proposal, tells how one can learn more, and how one can share ideas and opinions. The project will reinforce Oregon`s south coast area and provide the necessary transmission for Nucor Corporation to build a new steel mill in the Coos Bay/North Bend area. The proposed plant, which would use mostly recycled scrap metal, would produce rolled steel products. The plant would require a large amount of electrical power to run the furnace used in its steel-making process. In addition to the potential steel mill, electrical loads in the south Oregon coast area are expected to continue to grow.

  7. Suggested Operating Procedures for Aquifer Pumping Tests

    EPA Pesticide Factsheets

    This document is intended as a primer, describing the process for the design and performance of an “aquifer test” (how to obtain reliable data from a pumping test) to obtain accurate estimates of aquifer parameters.

  8. ANALYTICAL ELEMENT MODELING OF COASTAL AQUIFERS

    EPA Science Inventory

    Four topics were studied concerning the modeling of groundwater flow in coastal aquifers with analytic elements: (1) practical experience was obtained by constructing a groundwater model of the shallow aquifers below the Delmarva Peninsula USA using the commercial program MVAEM; ...

  9. ANALYTICAL ELEMENT MODELING OF COASTAL AQUIFERS

    EPA Science Inventory

    Four topics were studied concerning the modeling of groundwater flow in coastal aquifers with analytic elements: (1) practical experience was obtained by constructing a groundwater model of the shallow aquifers below the Delmarva Peninsula USA using the commercial program MVAEM; ...

  10. Seawater intrusion and potential yield of aquifers in the Soquel-Aptos area, Santa Cruz County, California

    USGS Publications Warehouse

    Muir, K.S.

    1980-01-01

    Seawater has intruded the Purisima Formation in the interval 0-100 feet below sea level in the Soquel-Aptos area. It occurs in the central part of the area and extends inland about half a mile. The potential yields of the two principal aquifers in the Soquel-Aptos area are 4,400 acre-feet per year from the Purisima Formation and 1,500 acre-feet per year from the Aromas Sand. Pumping from the Purisima Formation, averaging about 5,400 acre-feet per year since 1970, has caused water levels along the coast to decline below sea level and has allowed seawater to enter the aquifer. Seawater intrusion and ground-water storage could be monitored in all depth zones by expanding the observation-well network to include a number of shallow wells, one deep well inland from the coast, and three deep wells along the coast. (USGS)

  11. Coasts under pressure.

    PubMed

    Hinrichsen, D

    1994-01-01

    In most areas of the world, too many people live or play along the coast. Municipal and industrial wastes pollute coastal waters. Rivers spew erosion sediment and pollutants into these waters. Economic development is often the only management strategy for coastal zones, and economic development has little concern for resource degradation and watershed management. 53 countries have coastal management plans, but few have adequately implemented them. Almost 66% of the world's population lives within 150 km of the coast; by 2025, 75% will live as close to the coast. In the US, the coastal population has grown faster than that of the entire US, so that the population density is now almost 400 persons/sq m compared to 275 persons/sq m in 1960. Urbanization continues in the US coastal zones, where 7 of the 10 US largest cities exist. 94% of China's population lives in the eastern 3rd of the country. The population density along China's coast is more than 600/sq km. In Shanghai, it is more than 2000/sq km. Many people are moving from poorer provinces in the central and western regions to the economic free zones and special economic zones along the coast. At any moment, 30-60 million Chinese are moving. Most everyone in southeastern Asia, the Caribbean, and Latin America live in coastal areas. By 2025, the coastal zone between Rio de Janeiro and Sao Paulo will be all urbanized This is also occurring on Chile's coast between Valparaiso and Concepcion. The Mediterranean has the most overcrowded coastline in the developed world. Unchecked development could lead to continuous urban sprawl between Spain and Greece. Development pressures have caused a sizable decline in or a collapse of coastal fisheries. In Asia, all waters within 15 km of the coastline have been overfished. Coral reefs and mangrove forests are being destroyed with inadequate resources targeted for their protection.

  12. Coast Guard SOF

    DTIC Science & Technology

    2006-02-01

    Treasury. The Coast Guard’s military character was born in the period when it served as the nation’s only navy, between the end of the War of...sheep. If you have a capacity for violence and no empathy for your fellow citizens, then you have defined an aggressive sociopath —a wolf. But what...have been born had the Coast Guard remained in the Treasury Department alongside US Customs dur- ing the early years of the drug war. Properly resourced

  13. Investigation of groundwater behavior in response to oceanic tide and hydrodynamic assessment of coastal aquifers.

    PubMed

    Fadili, Ahmed; Malaurent, Philippe; Najib, Saliha; Mehdi, Khalid; Riss, Joëlle; Makan, Abdelhadi; Boutayeb, Khadija

    2016-05-01

    This study was based, firstly, on observations and analysis of water table level variations in the Plio-Quaternary and Hauterivian aquifers, Oualidia (Morocco), and secondly, on comparing this behavior to oceanic tidal variations. Recordings were made in the well located at 1318 m from the coast, where the two aquifers are in direct contact. This investigation was subdivided into two periods of 4 months each. Results showed a tidal influence on water table level within the well during semi-diurnal and monthly periods. Water table fluctuation periods were equal to 12 h 25 min identical to oceanic tide propagation period, while time lag between water levels was equal to 3 h 24 min. Moreover, results allowed aquifer diffusivity calculation through a confined aquifer model, which was equal to 6.20 m(2) s(-1) calculated from average value of water amplitude and to 40.6 m(2) s(-1) calculated from average value of time lag. In addition, tidal wave amplitude attenuation occurred exponentially with distance from ocean, which disappeared completely after 2000 m from coast.

  14. The Citronelle aquifers in Mississippi

    USGS Publications Warehouse

    Boswell, E.H.

    1979-01-01

    The Citronelle aquifers consist of sand and gravel of Pliocene age that forms a discontinuous outcrop area of about 6,000 square miles in southern Mississippi. The beds dip to the south at an average rate of about 6 feet per mile. The unconfined aquifers are used mostly for domestic and farm use but also supply water to several municipalities and industries. The average saturated thickness of the aquifers is about 45 feet. This physically limits drawdown space and, although specific capacities are high, yields generally do not exceed a few hundred gallons per minute. Water levels have not declined significantly because withdrawals are small. Water quality is generally good although in some places there are objectionally high concentrations iron and in some the water is acidic.

  15. Confined aquifers as viral reservoirs.

    PubMed

    Smith, Renee J; Jeffries, Thomas C; Roudnew, Ben; Seymour, Justin R; Fitch, Alison J; Simons, Keryn L; Speck, Peter G; Newton, Kelly; Brown, Melissa H; Mitchell, James G

    2013-10-01

    Knowledge about viral diversity and abundance in deep groundwater reserves is limited. We found that the viral community inhabiting a deep confined aquifer in South Australia was more similar to reclaimed water communities than to the viral communities in the overlying unconfined aquifer community. This similarity was driven by high relative occurrence of the single-stranded DNA viral groups Circoviridae, Geminiviridae and Microviridae, which include many known plant and animal pathogens. These groups were present in a 1500-year-old water situated 80 m below the surface, which suggests the potential for long-term survival and spread of potentially pathogenic viruses in deep, confined groundwater. Obtaining a broader understanding of potentially pathogenic viral communities within aquifers is particularly important given the ability of viruses to spread within groundwater ecosystems.

  16. Temporal evolution of depth-stratified groundwater salinity in municipal wells in the major aquifers in Texas, USA.

    PubMed

    Chaudhuri, Sriroop; Ale, Srinivasulu

    2014-02-15

    We assessed spatial distribution of total dissolved solids (TDS) in shallow (<50 m), intermediate (50-150 m), and deep (>150 m) municipal (domestic and public supply) wells in nine major aquifers in Texas for the 1960s-1970s and 1990s-2000s periods using geochemical data obtained from the Texas Water Development Board. For both time periods, the highest median groundwater TDS concentrations in shallow wells were found in the Ogallala and Pecos Valley aquifers and that in the deep wells were found in the Trinity aquifer. In the Ogallala, Pecos Valley, Seymour and Gulf Coast aquifers, >60% of observations from shallow wells exceeded the secondary maximum contaminant level (SMCL) for TDS (500 mg L(-1)) in both time periods. In the Trinity aquifer, 72% of deep water quality observations exceeded the SMCL in the 1990s-2000s as compared to 64% observations in the 1960s-1970s. In the Ogallala, Edwards-Trinity (plateau), and Edwards (Balcones Fault Zone) aquifers, extent of salinization decreased significantly (p<0.05) with well depth, indicating surficial salinity sources. Geochemical ratios revealed strong adverse effects of chloride (Cl(-)) and sulfate (SO4(2-)) on groundwater salinization throughout the state. Persistent salinity hotspots were identified in west (southern Ogallala, north-west Edwards-Trinity (plateau) and Pecos Valley aquifers), north central (Trinity-downdip aquifer) and south (southern Gulf Coast aquifer) Texas. In west Texas, mixed cation SO4-Cl facies led to groundwater salinization, as compared to Na-Cl facies in the southern Gulf Coast, and Ca-Na-HCO3 and Na-HCO3 facies transitioning to Na-Cl facies in the Trinity-downdip regions. Groundwater mixing ensuing from cross-formational flow, seepage from saline plumes and playas, evaporative enrichment, and irrigation return flow had led to progressive groundwater salinization in west Texas, as compared to ion-exchange processes in the north-central Texas, and seawater intrusion coupled with salt

  17. 40 CFR 147.1352 - Aquifer exemptions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 24 2012-07-01 2012-07-01 false Aquifer exemptions. 147.1352 Section 147.1352 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS... Aquifer exemptions. Those portions of aquifers within one-quarter mile of existing Class II wells...

  18. 40 CFR 147.1352 - Aquifer exemptions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 23 2011-07-01 2011-07-01 false Aquifer exemptions. 147.1352 Section 147.1352 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS... Aquifer exemptions. Those portions of aquifers within one-quarter mile of existing Class II wells...

  19. 40 CFR 147.1352 - Aquifer exemptions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 23 2014-07-01 2014-07-01 false Aquifer exemptions. 147.1352 Section 147.1352 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS... Aquifer exemptions. Those portions of aquifers within one-quarter mile of existing Class II wells...

  20. 40 CFR 147.1352 - Aquifer exemptions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 24 2013-07-01 2013-07-01 false Aquifer exemptions. 147.1352 Section 147.1352 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS... Aquifer exemptions. Those portions of aquifers within one-quarter mile of existing Class II wells...

  1. 40 CFR 147.1352 - Aquifer exemptions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Aquifer exemptions. 147.1352 Section 147.1352 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS... Aquifer exemptions. Those portions of aquifers within one-quarter mile of existing Class II wells are...

  2. Geologic and environmental aspects of surface cementation, north coast, Yucatan, Mexico

    SciTech Connect

    Perry, E.; Swift, J.; Reeve, A.; Sanborn, R.; Marin, L. ); Gamboa, J.; Villasuso, M. )

    1989-09-01

    The northernmost part of the fresh-water aquifer of Yucatan, Mexico, is confined near the coast by a thin, flat, nearly impermeable calcareous layer. The authors think it probable that this confining layer is now developing by a process of sedimentation and precipitation of pore-filling cement on and near the surface of older limestone at the landward margin of the swamp that extends virtually continuously along the north Yucatan coast. It is their interpretation that this CaCO{sub 3}-cemented layer, which is 0.5 to 1.4 m thick, developed in the zone of discharge of the fresh-water aquifer. The presence of {sup 14}C (6.0% {plus minus} 0.4% modern carbon in a sample of aquitard) supports the hypothesis that cementation is an ongoing process. Further support comes from the remarkable regularity between modern mean sea level and the elevation of the landward boundary between the confining zone and normal karst along 250 km of coast. Confinement of the aquifer produces an elevation of the piezometric surface to about 0.5 m above mean sea level and a concurrent depression of the fresh-water/salt-water interface to an estimated depth of about 18 m below mean sea level at the coast. Breaching of the confining layer, implicit in some development schemes for the region, could dramatically decrease the thickness of the fresh-water lens, a valuable water resource. The mixing zone beneath the confined part of the aquifer is a chemically active volume that may be vigorously pumped by tides (as evidenced by increased salinity of ground water near the coast), thus making this zone a likely place for rock-water interaction including, perhaps, dolomite formation.

  3. Northwest Coast Indian Art.

    ERIC Educational Resources Information Center

    Manning, Thomas; Knecht, Elizabeth

    The visual art forms of the Northwest Coast Indian Tribes of Alaska (Haida, Tlingit, and Tsimshian) share common distinctive design elements (formline, ovoid, U-form, and curvilinear shapes) which are referred to as the "Northern Style." Designs represent events or characters taken from the oral tradition of song and legend.…

  4. Coast Guard Firefighting Module

    NASA Technical Reports Server (NTRS)

    1977-01-01

    NASA and the U.S. Coast Guard are jointly developing a lightweight, helicopter-transportable, completely self-contained firefighting module for combating shipboard and dockside fires. The project draws upon NASA technology in high-capacity rocket engine pumps, lightweight materials and compact packaging.

  5. Northwest Coast Indian Art.

    ERIC Educational Resources Information Center

    Manning, Thomas; Knecht, Elizabeth

    The visual art forms of the Northwest Coast Indian Tribes of Alaska (Haida, Tlingit, and Tsimshian) share common distinctive design elements (formline, ovoid, U-form, and curvilinear shapes) which are referred to as the "Northern Style." Designs represent events or characters taken from the oral tradition of song and legend.…

  6. Gulf Coast Wetlands

    Atmospheric Science Data Center

    2014-05-15

    article title:  Wetlands of the Gulf Coast     ... web of estuarine channels and extensive coastal wetlands that provide important habitat for fisheries. The city of New Orleans ... or below sea level. The city is protected by levees, but the wetlands which also function as a buffer from storm surges have been ...

  7. Earth - Eastern Australia Coast

    NASA Image and Video Library

    2001-02-28

    This false color image of the Eastern Coast of Australia was obtained by NASA’s Galileo spacecraft at about 3:00 p.m. PST, Dec. 8, 1990, at a range of more than 35,000 miles. http://photojournal.jpl.nasa.gov/catalog/PIA00121

  8. Hydrogeologic atlas of aquifers in Indiana

    USGS Publications Warehouse

    Fenelon, Joseph M.; Bobay, K.E.; Greeman, T.K.; Hoover, M.E.; Cohen, D.A.; Fowler, K.K.; Woodfield, M.C.; and Durbin, J. M.

    1994-01-01

    Aquifers in 12 water-management basins of Indiana are identified in a series of 104 hydrogeologic sections and 12 maps that show the thickness and configuration of aquifers. The vertical distribution of water-bearing units and a generalized potentiometric profile are shown along 3,500 miles of section lines that were constructed from drillers' logs of more than 4,200 wells. The horizontal scale of the sections is 1:125,000. Maps of aquifers showing the areal distribution of each aquifer type were drawn at a scale of 1:500,000. Unconsolidated aquifers are the most widely used aquifers in Indiana and include surficial, buried, and discontinuous layers of sand and gravel. Most of the surficial sand and gravel is in large outwash plains in northern Indiana and along the major rivers. Buried sand and gravel aquifers are interbedded with till deposits in much of the northern two-thirds of Indiana. Discontinuous sand and gravel deposits are present as isolated lenses, primarily in glaciated areas. The bedrock aquifers generally have lower yields than most of the sand and gravel aquifers; however, bedrock aquifers are areally widespread and are an important source of water. Bedrock aquifer types consist of carbonates; sandstones; complexly interbedded sandstones, siltstones, shales, limestones, and coals; and an upper weathered zone in low permeability rock. Carbonate aquifers underlie about one-half of Indiana and are the most productive of the bedrock aquifers. The other principal bedrock aquifer type, sandstone, underlies large areas in the southwestern one-fifth of Indiana. No aquifer is known to be present in the southeastern corner of Indiana.

  9. Technical support for geopressured-geothermal well activities in Louisiana: Annual report for the period 1 November 1984 to 31 December 1986

    SciTech Connect

    Groat, C.G.

    1987-09-01

    This report describes environmental monitoring activities carried out by Louisiana State University (LSU) under US Department of Energy Contract FC07-85NV10425 for the period 1 November 1984 through 31 December 1986. Other aspects of the LSU technical support program completed under prior contracts were covered in final form in reports preceding this one. During the contract period, the Louisiana Geological Survey, aided by subcontractors, monitored microseismic activity, land-surface subsidence, and surface and ground-water quality at three designed geopressured-geothermal test well sites in Louisiana and Texas. Don Stevenson supervised microseismic monitoring activities, and Drukell Trahan coordinated water quality and land-surface subsidence studies. This is a progress report in the sense that it discusses program components, provides raw data, and presents preliminary interpretations. The environmental monitoring program continues and will be the subject of subsequent annual reports.

  10. Environmental baseline monitoring in the area of general crude oil - Department of Energy Pleasant Bayou Number 2: a geopressured geothermal test well, 1979. Annual report, Volume I

    SciTech Connect

    Gustavson, T.C.; Howard, R.C.; McGookey, D.

    1980-01-01

    A program to monitor baseline air and water quality, subsidence, microseismic activity, and noise in the vicinity of Brazoria County geopressured geothermal test wells, Pleasant Bayou No. 1 and No. 2, has been underway since March 1978. The initial report on environmental baseline monitoring at the test well contained descriptions of baseline air and water quality, a noise survey, an inventory of microseismic activity, and a discussion of the installation of a liquid tilt meter (Gustavson, 1979). The following report continues the description of baseline air and water quality of the test well site, includes an inventory of microseismic activity during 1979 with interpretations of the origin of the events, and discusses the installation and monitoring of a liquid tilt meter at the test well site. In addition, a brief description of flooding at the test site is presented.

  11. Microseismic monitoring of Chocolate Bayou Texas: the Pleasant Bayou No. 2 geopressured/geothermal energy test-well program. 1981 annual progress report

    SciTech Connect

    Mauk, F.J.

    1982-01-01

    To investigate normal ambient seismicity as well as potentially enhanced seismic activity induced by brine production, a seismic monitoring program has been conducted in the vicinity of the Chocolate Bayou geopressured test well (the Pleasant Bayou No. 2) since September 1978. The Pleasant Bayou No. 2 well has been completed and perforated at depths of 14,467-14,707 feet (4464.4-4482.7m). The brines produced from the Pleasant Bayou No. 2 well are reinjected at a depth of 6226-6538 feet (1897.7-1992.8m) in the Pleasant Bayou No. 1 well. The seismic monitoring network and results obtained from January through November 1981 are described.

  12. Chloride concentrations in the coastal margin of the Floridan Aquifer, southwest Florida

    USGS Publications Warehouse

    Causseaux, K.W.; Fretwell, J.D.

    1983-01-01

    The Floridan aquifer is the principal source of freshwater supply in southwest Florida. The freshwater part of the aquifer is underlain by saltwater in lower formations and is bounded on the west by saltwater in the coastal parts of the aquifer. A zone of mixing lies between the saltwater and freshwater. The saltwater and freshwater boundaries are defined by chloride concentrations of 19,000 milligrams per liter on the coastward side and 250 milligrams per liter on the landward side. Lateral intrusion of saltwater can occur along the coast in areas where the hydraulic gradient declines and upconing can occur in inland areas of heavy ground-water withdrawals. Safeguards against saltwater intrusion in these areas are necessary because flushing of the aquifer is a very slow process. A network of chloride monitor wells is proposed for the zone of mixing in the upper producing zone of the floridan aquifer. Seventy wells were selected at 54 sites to monitor chloride concentrations along the 250-milligram-per-liter line of equal chloride concentration. One-fourth of the wells are located in areas of increasing chloride concentrations or heavy ground-water withdrawals and the remaining wells are intended to improve delineation of the interface and to monitor long-term changes in chloride concentrations. (USGS)

  13. A description of aquifer units in western Oregon for the U.S. Environmental Protection Agency's Underground Injection Control Program

    USGS Publications Warehouse

    McFarland, W.D.

    1983-01-01

    Hydrogeologic information for western Oregon was compiled to aid the U.S. Environmental Protection Agency in evaluating proposals for underground injection of waste fluid. Geologic formations were grouped into seven aquifer units according to hydraulic and geologic similarities. The bedrock aquifer units in the Klamath Mountains, Coast Range, and Western Cascade Range all have low permeabilities and yield only small quantities of water to wells for domestic and stock uses. The Columbia River Basalt Group aquifer unit, which crops out along the Columbia River and the northern Willamette Valley, also has overall low permeability; however, the basalt supplies water for public, domestic, and stock, and some irrigation uses in western Oregon. The most important aquifer unit, and generally most permeable is the Tertiary-Quaternary sedimentary deposits that occur in lowlands throughout the area and provide water for irrigation, industry, public supplies and domestic and stock uses. All aquifer units generally contain water with low concentrations of dissolved solids at shallow depths. In the Tertiary marine rocks of the Coast Range, analyses from a limited number of deep wells indicated that water with more than 10,000 milligrams per liter dissolved solids is widespread at depths greater than about 2 ,000 feet. (USGS)

  14. Hydrogeologic framework of the North Carolina Coastal Plain aquifer system

    USGS Publications Warehouse

    Winner, M.D.; Coble, R.W.

    1989-01-01

    The hydrogeologic framework of the North Carolina Coastal Plain aquifer system consists of ten aquifers separated by nine confining units. From top to bottom the aquifers are: the surficial aquifer, Yorktown aquifer, Pungo River aquifer, Castle Hayne aquifer, Beaufort aquifer, Peedee aquifer, Black Creek aquifer, upper Cape Fear aquifer, lower Cape Fear aquifer, and the Lower Cretaceous aquifer. The uppermost aquifer (the surficial aquifer in most places) is a water-table aquifer and the bottom of the system is underlain by crystalline bedrock. The sedimentary deposits forming the aquifers are of Holocene to Cretaceous age and are composed mostly of sand with lesser amounts of gravel and limestone. Confining units between aquifers are composed primarily of clay and silt. The thickness of the aquifers ranges from zero along the Fall Line to more than 10,000 feet at Cape Hatteras. Prominent structural features are the increasing easterly homoclinal dip of the sediments and the Cape Fear arch, the axis of which trends in a southeast direction. The stratigraphic continuity is determined from correlations of 161 geophysical logs along with data from drillers' and geologists' logs. Aquifers were defined by means of these logs plus water-level and water-quality data and evidence of the continuity of pumping effects. Eighteen hydrogeologic sections depict the correlation of these aquifers throughout the Coastal Plain.

  15. Maine coast winds

    SciTech Connect

    Avery, Richard

    2000-01-28

    The Maine Coast Winds Project was proposed for four possible turbine locations. Significant progress has been made at the prime location, with a lease-power purchase contract for ten years for the installation of turbine equipment having been obtained. Most of the site planning and permitting have been completed. It is expect that the turbine will be installed in early May. The other three locations are less suitable for the project, and new locations are being considered.

  16. Northeast Coast, Hokkaido, Japan

    NASA Image and Video Library

    1992-04-02

    The northeast coast of Hokkaido and Kunashir Island, Japan (44.0N, 143.0E) are seen bordered by drifting sea ice. The sea ice has formed a complex pattern of eddies in response to surface water currents and winds. Photos of this kind aid researchers in describing local ocean current patterns and the effects of wind speed and direction on the drift of surface material, such as ice floes or oil. Kunashir is the southernmost of the Kuril Islands.

  17. The effects of the 2004 tsunami on a coastal aquifer in Sri Lanka.

    PubMed

    Vithanage, Meththika; Engesgaard, Peter; Villholth, Karen G; Jensen, Karsten H

    2012-01-01

    On December 26, 2004, the earthquake off the southern coast of Sumatra in the Indian Ocean generated far-reaching tsunami waves, resulting in severe disruption of the coastal aquifers in many countries of the region. The objective of this study was to examine the impact of the tsunami on groundwater in coastal areas. Field investigations on the east coast of Sri Lanka were carried out along a transect located perpendicular to the coastline on a 2.4 km wide sand stretch bounded by the sea and a lagoon. Measurements of groundwater table elevation and electrical conductivity (EC) of the groundwater were carried out monthly from October 2005 to August 2007. The aquifer system and tsunami saltwater intrusion were modeled using the variable-density flow and solute transport code HST3D to understand the tsunami plume behavior and estimate the aquifer recovery time. EC values reduced as a result of the monsoonal rainfall following the tsunami with a decline in reduction rate during the dry season. The upper part of the saturated zone (down to 2.5 m) returned to freshwater conditions (EC < 1000 µS/cm) 1 to 1.5 years after the tsunami, according to field observations. On the basis of model simulations, it may take more than 15 years for the entire aquifer (down to 28 m) to recover completely, although the top 6 m of the aquifer may become fresh in about 5 years. © 2011, The Author(s). Ground Water © 2011, National Ground Water Association.

  18. 40 CFR 149.3 - Critical Aquifer Protection Areas.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 23 2014-07-01 2014-07-01 false Critical Aquifer Protection Areas. 149... (CONTINUED) SOLE SOURCE AQUIFERS Criteria for Identifying Critical Aquifer Protection Areas § 149.3 Critical Aquifer Protection Areas. A Critical Aquifer Protection Area is either: (a) All or part of an area...

  19. 40 CFR 149.3 - Critical Aquifer Protection Areas.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 24 2013-07-01 2013-07-01 false Critical Aquifer Protection Areas. 149... (CONTINUED) SOLE SOURCE AQUIFERS Criteria for Identifying Critical Aquifer Protection Areas § 149.3 Critical Aquifer Protection Areas. A Critical Aquifer Protection Area is either: (a) All or part of an area...

  20. 40 CFR 149.3 - Critical Aquifer Protection Areas.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 24 2012-07-01 2012-07-01 false Critical Aquifer Protection Areas. 149... (CONTINUED) SOLE SOURCE AQUIFERS Criteria for Identifying Critical Aquifer Protection Areas § 149.3 Critical Aquifer Protection Areas. A Critical Aquifer Protection Area is either: (a) All or part of an area...

  1. Evidence of regional subsidence and associated interior wetland loss induced by hydrocarbon production, Gulf Coast region, USA

    NASA Astrophysics Data System (ADS)

    Morton, Robert A.; Bernier, Julie C.; Barras, John A.

    2006-05-01

    Analysis of remote images, elevation surveys, stratigraphic cross-sections, and hydrocarbon production data demonstrates that extensive areas of wetland loss in the northern Gulf Coast region of the United States were associated with large-volume fluid production from mature petroleum fields. Interior wetland losses at many sites in coastal Louisiana and Texas are attributed largely to accelerated land subsidence and fault reactivation induced by decreased reservoir pressures as a result of rapid or prolonged extraction of gas, oil, and associated brines. Evidence that moderately-deep hydrocarbon production has induced land-surface subsidence and reactivated faults that intersect the surface include: (1) close temporal and spatial correlation of fluid production with surficial changes including rapid subsidence of wetland sediments near producing fields, (2) measurable offsets of shallow strata across the zones of wetland loss, (3) large reductions in subsurface pressures where subsidence rates are high, (4) coincidence of orientation and direction of displacement between surface fault traces and faults that bound the reservoirs, and (5) accelerated subsidence rates near producing fields compared to subsidence rates in surrounding areas or compared to geological rates of subsidence. Based on historical trends, subsidence rates in the Gulf Coast region near producing fields most likely will decrease in the future because most petroleum fields are nearly depleted. Alternatively, continued extraction of conventional energy resources as well as potential production of alternative energy resources (geopressured-geothermal fluids) in the Gulf Coast region could increase subsidence and land losses and also contribute to inundation of areas of higher elevation.

  2. Evidence of regional subsidence and associated interior wetland loss induced by hydrocarbon production, Gulf Coast region, USA

    USGS Publications Warehouse

    Morton, R.A.; Bernier, J.C.; Barras, J.A.

    2006-01-01

    Analysis of remote images, elevation surveys, stratigraphic cross-sections, and hydrocarbon production data demonstrates that extensive areas of wetland loss in the northern Gulf Coast region of the United States were associated with large-volume fluid production from mature petroleum fields. Interior wetland losses at many sites in coastal Louisiana and Texas are attributed largely to accelerated land subsidence and fault reactivation induced by decreased reservoir pressures as a result of rapid or prolonged extraction of gas, oil, and associated brines. Evidence that moderately-deep hydrocarbon production has induced land-surface subsidence and reactivated faults that intersect the surface include: (1) close temporal and spatial correlation of fluid production with surficial changes including rapid subsidence of wetland sediments near producing fields, (2) measurable offsets of shallow strata across the zones of wetland loss, (3) large reductions in subsurface pressures where subsidence rates are high, (4) coincidence of orientation and direction of displacement between surface fault traces and faults that bound the reservoirs, and (5) accelerated subsidence rates near producing fields compared to subsidence rates in surrounding areas or compared to geological rates of subsidence. Based on historical trends, subsidence rates in the Gulf Coast region near producing fields most likely will decrease in the future because most petroleum fields are nearly depleted. Alternatively, continued extraction of conventional energy resources as well as potential production of alternative energy resources (geopressured-geothermal fluids) in the Gulf Coast region could increase subsidence and land losses and also contribute to inundation of areas of higher elevation. ?? Springer-Verlag 2006.

  3. Application and evaluation of electromagnetic methods for imaging saltwater intrusion in coastal aquifers: Seaside Groundwater Basin, California

    USGS Publications Warehouse

    Nenna, Vanessa; Herckenrather, Daan; Knight, Rosemary; Odlum, Nick; McPhee, Darcy

    2013-01-01

    Developing effective resource management strategies to limit or prevent saltwater intrusion as a result of increasing demands on coastal groundwater resources requires reliable information about the geologic structure and hydrologic state of an aquifer system. A common strategy for acquiring such information is to drill sentinel wells near the coast to monitor changes in water salinity with time. However, installation and operation of sentinel wells is costly and provides limited spatial coverage. We studied the use of noninvasive electromagnetic (EM) geophysical methods as an alternative to installation of monitoring wells for characterizing coastal aquifers. We tested the feasibility of using EM methods at a field site in northern California to identify the potential for and/or presence of hydraulic communication between an unconfined saline aquifer and a confined freshwater aquifer. One-dimensional soundings were acquired using the time-domain electromagnetic (TDEM) and audiomagnetotelluric (AMT) methods. We compared inverted resistivity models of TDEM and AMT data obtained from several inversion algorithms. We found that multiple interpretations of inverted models can be supported by the same data set, but that there were consistencies between all data sets and inversion algorithms. Results from all collected data sets suggested that EM methods are capable of reliably identifying a saltwater-saturated zone in the unconfined aquifer. Geophysical data indicated that the impermeable clay between aquifers may be more continuous than is supported by current models.

  4. Hydrogeology of a zone of secondary permeability in the surficial aquifer of eastern Palm Beach County, Florida

    USGS Publications Warehouse

    Swayze, L.J.; Miller, W.L.

    1984-01-01

    The surficial aquifer is the primary source of freshwater for the heavily developed coastal area in eastern Palm Beach County, Florida. Well fields are generally located in a discontinuous zone of higher secondary permeability, the northernmost extension of the Biscayne aquifer in the surficial aquifer, that extends from the Juno Beach area south to Broward County and varies in width from about 4 to 15 miles. The zone was formed by varying dissolution of aquifer limestone materials during Pleistocene age changes in sea level, and ranges in depth from about sea level to 220 feet below sea level. Because of proximity to the Atlantic Ocean and saltwater estuaries, the aquifer is susceptible to saltwater intrusion. Ground water to the west of the zone of higher secondary permeability is of poor quality. The ground water is calcium bicarbonate dominant. Dissolved solids, calcium carbonate hardness, and chloride are greatest along the saltwater intruded coastline and in the western part of the study area where diluted residual seawater exists. Total organic carbon increases inland due to infiltration of rainwater through thicker layers of organic soils. Ground-water levels in the surficial aquifer in eastern Palm Beach County are strongly influenced by controlled levels in canals. In March 1981, after 12 months of below average rainfall, ground-water levels ranged from about 2 feet above sea level along the coast to nearly 21 feet above sea level 15 miles inland in the northwest section of the study area. (USGS)

  5. Aquifer Salinization by Storm Overwash

    NASA Astrophysics Data System (ADS)

    Anderson, W. P.; Evans, D. G.

    2001-12-01

    Overwash processes not only affect the morphology of barrier islands, they also introduce saltwater to surficial coastal aquifers by infiltration (saltwater intrusion from the top). Hatteras Island, North Carolina, USA is particularly susceptible to saltwater overwash because of its geography and the frequency with which tropical and extra-tropical storms strike the area. Hurricane Emily inundated the island in 1993 with saline water from Pamlico Sound. The floodwaters from overwash reached as far as 1000 meters into the interior of the island and recharged the shallow Buxton Woods Aquifer, raising salinity levels from approximately 40 mg/L prior to flooding to nearly 280 mg/L within several weeks of flooding. By 1997, chloride levels still had not returned to pre-storm levels. We use one-dimensional analytical solutions of the advection-dispersion equation to simulate chloride transport within the aquifer utilizing a pulse source with linear superposition. We calibrate this model using chloride breakthrough curves observed from water wells on the island. Initial simulations show that a pulse duration of five days provides the best fit to the data. Simulation of chloride breakthrough at two locations demonstrates that higher gradients advect chloride further into the aquifer, causing higher chloride concentrations and increasing the duration of contamination. The Cape Hatteras region historically is susceptible to several hurricanes in a single season. In order to analyze the effect of multiple overwash events on water quality, we use predictive simulations to show the effect of two overwash events separated by different time lags. Simulations indicate that higher gradients and short time lags between overwash events result in chloride MCL violations that persist for more than four months.

  6. Arsenic, microbes and contaminated aquifers

    USGS Publications Warehouse

    Oremland, Ronald S.; Stolz, John F.

    2005-01-01

    The health of tens of millions of people world-wide is at risk from drinking arsenic-contaminated well water. In most cases this arsenic occurs naturally within the sub-surface aquifers, rather than being derived from identifiable point sources of pollution. The mobilization of arsenic into the aqueous phase is the first crucial step in a process that eventually leads to human arsenicosis. Increasing evidence suggests that this is a microbiological phenomenon.

  7. Aquifer storage capacity and maximum annual yield from long-term aquifer fluxes

    NASA Astrophysics Data System (ADS)

    Loáiciga, Hugo A.

    2008-03-01

    Long-term time series data of aquifer recharge, groundwater extraction, and discharge are used to estimate aquifer storage capacity and maximum annual yield. Aquifer storage capacity is defined as the maximum volume of water that can be stored in an aquifer. It is estimated using a transient water-balance approach. The maximum annual yield is defined as the maximum combined groundwater extraction plus discharge that can be sustained in an aquifer judged by the historical record of recharge. It is determined according to a graphical mass-curve method. These two quantities are useful in aquifer characterization and groundwater management, the apportionment of groundwater rights and aquifer storage and recovery operations being two frequent applications. Time series data from the Edwards Aquifer, Texas, USA, illustrate the application of the methods presented.

  8. Ground-water hydraulics, regional flow, and ground-water development of the Floridan aquifer system in Florida and in parts of Georgia, South Carolina, and Alabama

    USGS Publications Warehouse

    Bush, Peter W.; Johnston, Richard H.

    1988-01-01

    A considerable area remains of the Floridan aquifer system where large ground-water supplies may be developed. This area is largely inland from the coasts and characterized by high transmissivity and minimal development prior to the early 1980's. The major constraint on future development probably is degradation of water quality rather than water-quantity limitations.

  9. Capture zones for simple aquifers

    USGS Publications Warehouse

    McElwee, Carl D.

    1991-01-01

    Capture zones showing the area influenced by a well within a certain time are useful for both aquifer protection and cleanup. If hydrodynamic dispersion is neglected, a deterministic curve defines the capture zone. Analytical expressions for the capture zones can be derived for simple aquifers. However, the capture zone equations are transcendental and cannot be explicitly solved for the coordinates of the capture zone boundary. Fortunately, an iterative scheme allows the solution to proceed quickly and efficiently even on a modest personal computer. Three forms of the analytical solution must be used in an iterative scheme to cover the entire region of interest, after the extreme values of the x coordinate are determined by an iterative solution. The resulting solution is a discrete one, and usually 100-1000 intervals along the x-axis are necessary for a smooth definition of the capture zone. The presented program is written in FORTRAN and has been used in a variety of computing environments. No graphics capability is included with the program; it is assumed the user has access to a commercial package. The superposition of capture zones for multiple wells is expected to be satisfactory if the spacing is not too close. Because this program deals with simple aquifers, the results rarely will be the final word in a real application.

  10. The Sparta aquifer system in Mississippi

    USGS Publications Warehouse

    Newcome, Roy

    1976-01-01

    A large amount of information is available on the aquifers of Mississippi.  Reports resulting from various areal studies have described the ground-water resources of the areas concerned, but no reports dealing specifically with the entire Mississippi occurrence of individual aquifer systems have previously been prepared.  A series of "aquifer atlases" was deemed the most effective way to describe the character, the potential, and the extent of development of the aquifers and thereby provide water managers with data needed for efficient utilization of available resources.  This report on the Sparta aquifer system is the third in the series.  Information on the aquifers was obtained in the cooperative programs of the U.S. Geological Survey with the Mississippi Board of Water Commissioners and other State and Federal agencies.

  11. Aquifer thermal-energy-storage modeling

    NASA Astrophysics Data System (ADS)

    Schaetzle, W. J.; Lecroy, J. E.

    1982-09-01

    A model aquifer was constructed to simulate the operation of a full size aquifer. Instrumentation to evaluate the water flow and thermal energy storage was installed in the system. Numerous runs injecting warm water into a preconditioned uniform aquifer were made. Energy recoveries were evaluated and agree with comparisons of other limited available data. The model aquifer is simulated in a swimming pool, 18 ft by 4 ft, which was filled with sand. Temperature probes were installed in the system. A 2 ft thick aquifer is confined by two layers of polyethylene. Both the aquifer and overburden are sand. Four well configurations are available. The system description and original tests, including energy recovery, are described.

  12. An evaluation of aquifer intercommunication between the unconfined and Rattlesnake Ridge aquifers on the Hanford Site

    SciTech Connect

    Jensen, E.J.

    1987-10-01

    During 1986, Pacific Northwest Laboratory conducted a study of a portion of the Rattlesnake Ridge aquifer (confined aquifer) that lies beneath the B Pond - Gable Mountain Pond area of the Hanford Site. The purpose was to determine the extent of intercommunication between the unconfined aquifer and the uppermost regionally extensive confined aquifer, referred to as the Rattlesnake Ridge aquifer. Hydraulic head data and chemical data were collected from the ground water in the study area during December 1986. The hydraulic head data were used to determine the effects caused by water discharged to the ground from B Pond on both the water table of the unconfined aquifer and the potentiometric surface of the confined aquifer. The chemical data were collected to determine the extent of chemical constituents migrating from the unconfined aquifer to the confined aquifer. Analysis of chemical constituents in the Rattlesnake Ridge aquifer demonstrated that communication between the unconfined and confined aquifers had occurred. However, the levels of contaminants found in the Rattlesnake Ridge aquifer during this study were below the DOE Derived Concentration Guides.

  13. Tidal pumping of water between Bahamian blue holes, aquifers, and the ocean

    NASA Astrophysics Data System (ADS)

    Martin, Jonathan B.; Gulley, Jason; Spellman, Patricia

    2012-01-01

    zones with elevated permeability. Exchange is reflected in systematic changes in specific conductivity and pH between high and low tide and the pH changes reflect reaction with the surrounding aquifer material. Since exchange occurs twice daily, cumulative alteration of aquifer porosity could be large. Tidal exchange should decrease away from the coast on large carbonate platforms so that tidally driven alteration will be enhanced at the rims over interior of carbonate platforms.

  14. Industry Forum Navy Gold Coast

    DTIC Science & Technology

    2014-08-13

    NAVFAC Southwest Lora E. Morrow Deputy for Small Business NAVFAC Southwest NAVFAC Southwest Industry Forum Navy Gold Coast August...REPORT DATE 13 AUG 2014 2. REPORT TYPE 3. DATES COVERED 00-00-2014 to 00-00-2014 4. TITLE AND SUBTITLE Industry Forum Navy Gold Coast 5a...S) 12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution unlimited 13. SUPPLEMENTARY NOTES NDIA 27th Navy Gold Coast

  15. Coasts in Crisis

    SciTech Connect

    Hinrichsen, D.

    1996-11-01

    Coastal areas are staggering under an onslaught of human activity. We are presently in the process of destroying 70 percent of the world`s 600,000 square kilometers of coral reefs, an ecosystem containing some 200,000 different species and rivaling tropical rain forests in biodiversity. A combination of pollution, habitat destruction, and gross overfishing has led to the collapse of major fisheries and paved the way for malnutrition and disease in regions where people fish for subsistence. Globally, little is being done to manage the crisis of our coasts. Management strategies, if they exist at all, often deal with economic development along a wafer-thin strip of coastal land. Resource degradation is ignored, and watershed management is mostly rhetoric. Although some 55 countries have drawn up coastal management plans, only a handful have been properly implemented. Coasts must be managed in an integrated manner that takes into account the full range of human activities. Initiating this process is costly, time-consuming, and difficult. Yet we have more than three decades of accumulated experience to draw on.

  16. Summary of the Oahu, Hawaii, Regional Aquifer-System Analysis

    USGS Publications Warehouse

    Nichols, William D.; Shade, Patricia J.; Hunt, Charles D.

    1996-01-01

    island. A regional aquifer system composed of the Waianae aquifer in the Waianae Volcanics and the Koolau aquifer in the Koolau Basalt is subdivided into well-defined areas by geohydrologic barriers. The aquifers are separated by the Waianae confining unit formed by weathering along the Waianae-Koolau unconformity. In some coastal areas, a caprock of sedimentary deposits overlies and confines the aquifers. The island of Oahu has been divided into seven major ground-water areas delineated by deep-seated structural geohydrologic barriers; these areas are further subdivided by shallower internal barriers to ground-water flow. The Koolau rift zone along the eastern (windward) side of the island and the Waianae rift zone to the west (Waianae area) constitute two of the major ground-water areas. North-central Oahu is divided into three smaller ground-water areas, Mokuleia, Waialua, and Kawailoa. The Schofield ground-water area encompasses much of the Schofield Plateau of central Oahu. Southern Oahu is divided into six areas, Ewa, Pearl Harbor, Moanalua, Kalihi, Beretania, and Kaimuki. Southeastern Oahu is divided into the Waialae and Wailupe-Hawaii Kai areas. Along the northeast coast of windward Oahu is the Kahuku ground-water area. The aquifers of Oahu contain shallow freshwater and deeper saltwater flow systems. There are five fresh ground-water flow systems: meteoric freshwater flow diverges from ground-water divides that lie somewhere within the Waianae and Koolau rift zones, forming an interior flow system in central Oahu (which is divided into the northern and southern Oahu flow systems) and exterior flow systems in western (Waianae area) Oahu, eastern (windward) Oahu, and southeastern Oahu. Development of the ground-water resources on Oahu began when the first well was drilled near Honouliuli in the summer of 1879. By 1890, 86 wells had been drilled on the island. From about 1891 to about 1910, development increased rapidly with the drilling of a

  17. Hydrogeology and the Distribution and Origin of Salinity in the Floridan Aquifer System, Southeastern Florida

    USGS Publications Warehouse

    Reese, Ronald S.

    1994-01-01

    The Floridan aquifer system in southeastern Florida consists of the Upper Floridan aquifer, the middle confining unit, and the Lower Floridan aquifer. An upper zone of brackish water and a lower zone of water with a salinity similar to that of seawater are present in the Floridan aquifer system. The brackish-water zone is defined as that in which water has a dissolved-solids concentration of less than 10,000 milligrams per liter (chloride concentration less than about 5,240 milligrams per liter), and water in the the saline-water zone has a dissolved solids concentration of about 35,000 milligrams per liter (about 18,900 milligrams per liter chloride concentration). The brackish-water and saline-water zones are separated by a transitional zone, typically 100 feet thick, in which salinity increases abruptly with depth. The base of the brackish-water zone lies within the Upper Floridan aquifer along the coast but extends into the middle confining unit inland. The brackish- water zone is as much as 1,200 feet thick inland, whereas the Upper Floridart aquifer is typically 500 to 600 feet thick. Changes in lithology or permeability do not usually control the position of the boundary between the brackish-water and saline-water zones. Calculations of the depth of a brackish-water and saline-water interface using the Ghyben-Herzberg relation show good agreement between calculated and actual positions of the interface, indicating equilibrium between the zones. Several areas of high salinity with chloride concentrations greater than 3,000 milligrams per liter are present in the upper interval of the brackish-water zone near the coast, and in one of these areas in northeastern Broward County, salinity decreases with depth from the upper to lower interval. The high salinities could be a result of seawater preferentially encroaching into zones of higher permeability in the Upper Flofidan aquifer during Pleistocene high stands of sea level and incomplete flushing of the seawater

  18. Geochemistry of the Floridan aquifer system in Florida and in parts of Georgia, South Carolina, and Alabama

    USGS Publications Warehouse

    Sprinkle, Craig L.

    1989-01-01

    The chemical quality of the ground water in the Floridan aquifer system is determined primarily by mineral-water interaction. However, some changes in water quality have been imposed by development, particularly near coastal pumping centers. A total of 601 chemical analyses, all from different wells, most completed in the upper part of the aquifer system, were used to describe the variations in water chemistry and to study the processes responsible for observed changes. The Floridan aquifer system is a vertically continuous sequence of Tertiary carbonate rocks that are of generally high permeability and are hydraulically connected in varying degrees. The rocks are principally limestone and dolomite, but they grade into limy sands and clays near the aquifer system's updip limits. Major minerals in the aquifer system are calcite, dolomite, and, locally, gypsum or quartz; minor minerals include apatite, glauconite, and clay minerals such as kaolinite and montmorillonite. Trace amounts of metallic oxides or sulfides are present in some areas. The aquifer system consists of the Upper and Lower Floridan aquifers, separated in most places by a less permeable confining unit that has highly variable hydraulic properties. Only the Upper Floridan aquifer is present throughout the study area. Freshwater enters the aquifer system in outcrop areas located primarily in central Georgia and north-central Florida. Discharge occurs chiefly to streams and springs and, to a lesser extent, directly into the sea. Most of the flow into and out of the system takes place where it is unconfined or where the upper confining unit is thin. Secondary permeability developed by dissolution of aquifer material is most prominent in these areas of dynamic flow. Dissolved-solids concentrations in water from the Upper Floridan aquifer generally range from less than 25 milligrams per liter near outcrops to more than 25,000 milligrams per liter along the coasts. The dominant cations in the ground water

  19. Application of Multivariate Statistical Techniques for Characterization of Groundwater Quality in the Coastal Aquifer of Nador, Tipaza (Algeria)

    NASA Astrophysics Data System (ADS)

    Bouderbala, Abdelkader; Remini, Boualem; Saaed Hamoudi, Abdelamir; Pulido-Bosch, Antonio

    2016-06-01

    The study focuses on the characterization of the groundwater salinity on the Nador coastal aquifer (Algeria). The groundwater quality has undergone serious deterioration due to overexploitation. Groundwater samplings were carried out in high and low waters in 2013, in order to study the evolution of groundwater hydrochemistry from the recharge to the coastal area. Different kinds of statistical analysis were made in order to identify the main hydrogeochemical processes occurring in the aquifer and to discriminate between different groups of groundwater. These statistical methods provide a better understanding of the aquifer hydrochem-istry, and put in evidence a hydrochemical classification of wells, showing that the area with higher salinity is located close to the coast, in the first two kilometers, where the salinity gradually increases as one approaches the seaside and suggests the groundwater salinization by sea-water intrusion.

  20. Integrated geophysical investigation to assess seawater intrusion into the coastal aquifer in the southwest of Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Kahal, A. Y.; Alfaifi, H. J.; Ibrahim, E. K. E.; Abdel Rahman, K.; Alhumidan, S. M.

    2016-12-01

    The shallow groundwater aquifer in the coastal zone of western Saudi Arabia has been witnessed quality deterioration due to uncontrolled and unwise domestic and agricultural activities. The aquifer quality deterioration resulted from the seawater intrusion that threatens the groundwater quality in the area. To assess this problem, integrated geophysical tools; electrical resistivity tomography (ERT), seismic refraction tomography (SRT) and vertical electrical sounding (VES) techniques are used. In this study, three ERT and two SRT profiles along with 6 VES stations are measured along a distance of about 20 Km, perpendicular to the Red Sea coast. The resistivity and seismic data are processed and presented along sections to display the changes in the electrical resistivities and seismic velocities along the measured profiles. These sections are interpreted in light of the available geological and hydrological information. The interpretation of the geophysical data indicates the presence of three subsurface layers that capped with a thin, dry and unconsolidated sandy layer. This topmost layer is underlain by a freshwater saturated layer that shows thinning and wedging towards the sea coast. This layer overlies a relatively low resistivity and high velocity layer that is interpreted as moderately compacted sandy layer saturated with saline water. It is observed that the level of the saltwater rise and the freshwater saturated layer thins out towards the sea; indicating seawater intrusion that extents into the shallow coastal aquifer in the investigated area. It is expected that the porous and permeable character of the coastal sediments facilitates the hydraulic contact between the coastal shallow aquifer and sea water. In addition, the unwise domestic use and aggressive pumping of the groundwater aquifer leads to an increase in the salinization of the coastal aquifer.

  1. Selected aquifer-test information for the coastal plain aquifers of South Carolina

    USGS Publications Warehouse

    Aucott, W.R.; Newcome, Roy

    1986-01-01

    Aquifer and well hydraulic characteristics were determined from more than 100 multiple-well and single-well aquifer tests in the Coastal Plain of South Carolina and tabulated by county. Multiple-well aquifer tests were analyzed by the This method for nonleaky aquifers and the Hantush-Jacob method for leaky aquifers. Single-well tests were analyzed by straight line solution techniques for drawdown and recovery tests. Specific-capacity data are presented for many areas where aquifer-test information is sparse. The characteristics determined are based largely on well performance tests conducted by well drillers and consulting engineers. Although use of this information has many limitations, it has value in establishing transmissivity and storage coefficient values for the Coastal Plain aquifers. (Peters-PTT)

  2. Salinization processes in a coastal aquifer system (Siracusa, Italy)

    NASA Astrophysics Data System (ADS)

    Rapti Caputo, D.; Vaccaro, C.

    2003-04-01

    The Syracuse area (Southeastern Sicily, Italy) is famous since ancient times for its natural springs, like Aretusa and Ciane, as well as for the hydraulic management handicraft know from 480 B.C. Unfortunately, the recent hyper-exploitation of the underground water resources and the concomitant decrease of the precipitations caused a general lowering of the piezometric level of the aquifers therefore enhancing the intrusion of marine salty waters. In the present work, numerous hydrochemical parameters have been investigated, among which the pH, the total dissolved solid, the electric conductivity, the temperature and the concentration of Ca, Mg, Na, K, HCO3, Cl and SO4. The data have been collected from five well fields located at different distances from the coast. Analyses have been performed in order to understand the relationships between the intense exploitation and the geochemical characteristics of the underground water resources. Our results obtained by applying classical geochemical methodologies integrated with techniques of multivariate statistics emphasise, firstly, the predominance of the Ca-HCO3 hydrochemical facies. Secondly, we could determine the evolution of mixing phenomena between salty and fresh waters approaching the coast line (San Nicola field). This behaviour is mainly associated to the pumping increase. Obviously, this intrusive process characterised by chlorides concentrations larger than 2000 mg/l affects all the coastal natural environment and generates severe problems to the entire aqueduct network.

  3. Hydrogeology and the distribution of salinity in the Floridan aquifer system, Palm Beach County, Florida

    USGS Publications Warehouse

    Reese, R.S.; Memberg, S.J.

    2000-01-01

    -solids concentration (about 18,900 mg/L of chloride concentration) at its base. The base of the brackish-water zone and the top of the saline-water zone were approximately determined mostly by means of resistivity geophysical logs. The base of the brackish-water zone in the study area ranges from about 1,600 feet below sea level near the coast to almost 2,200 feet below sea level in extreme southwestern Palm Beach County. In an area that is peripheral to Lake Okeechobee, the boundary unexpectedly rises to perhaps as shallow as 1,800 feet below sea level. In an upper interval of the brackish-water zone within the Upper Floridan aquifer, chloride concentration of water ranges from 490 to 8,000 mg/L. Chloride concentration correlates with the altitude of the basal contact of the Hawthorn Group, with concentration increasing as the altitude of this contact decreases. Several areas of anomalous salinity where chloride concentration in this upper interval is greater than 3,000 mg/L occur near the coast. In most of these areas, salinity was found to decrease with depth from the upper interval to a lower interval within the brackish-water zone: a reversal of the normal salinity trend within the zone. These areas are also characterized by an anomalously low altitude of the base of the brackish-water zone, and a much greater thickness of the transition zone than normal. These anomalies could be the result of seawater preferentially invading zones of higher permeability in the Upper Floridan aquifer during Pleistocene high stands of sea level and incomplete flushing of this high salinity water by the present-day flow system.

  4. SIMULATION OF SURFACTANT-ENHANCED AQUIFER REMEDIATION

    EPA Science Inventory

    Surfactant-enhanced aquifer remediation (SEAR) is currently under active investigation as one of the most promising alternatives to conventional pump-and-treat remediation for aquifers contaminated by dense nonaqueous phase organic liquids. An existing three-dimensional finite-di...

  5. Geohydrology of the Cerro Prieto geothermal aquifer

    SciTech Connect

    Sanchez R, J.; de la Pena L, A.

    1981-01-01

    The most recent information on the Cerro Prieto geothermal aquifer is summarized, with special emphasis on the initial production zone where the wells completed in the Alpha aquifer are located. These wells produce steam for power plant units 1 and 2. Brief comments also are made on the Beta aquifer, which underlies the Alpha aquifer in the Cerro Prieto I area and which extends to the east to what is known as the Cerro Prieto II and Cerro Prieto III areas. The location of the area studied is shown. The Alpha and Beta aquifers differ in their mineralogy and cementing mineral composition, temperatures, and piezometric levels. The difference in piezometric levels indicates that there is no local communication between the two aquifers. This situation has been verified by a well interference test, using well E-1 as a producer in the Beta aquifer and well M-46 as the observation well in the Alpha aquifer. No interference between them was observed. Information on the geology, geohydrology, and geochemistry of Cerro Prieto is presented.

  6. Overview of the Ogallala Aquifer Program

    USDA-ARS?s Scientific Manuscript database

    Irrigation increased markedly on the Southern High Plains during the second half of the 20th century, drawing water primarily from the Ogallala Aquifer. During this time, irrigation sustained regional farm incomes and rural economies. Withdrawals from the aquifer, however, have exceeded recharge, re...

  7. Induced infiltration in aquifers with ambient flow

    NASA Astrophysics Data System (ADS)

    Wilson, John L.

    1993-10-01

    Well water quality depends on the relative amounts of water drawn from the pumped aquifer and nearby surface water bodies, such as streams, lakes, and wetlands. Although a surface water body may normally gain water from the aquifer, pumping can reverse gradients, causing it to lose water near the well. Surface water then enters the well by induced infiltration. Two-dimensional vertically integrated models of induced infiltration are developed for various combinations of aquifer geometry and sources of recharge. The models, which have applications in wellhead protection, aquifer pollution characterization, and aquifer remediation, are presented graphically. They show that the propensity for and rate of induced infiltration are enhanced by higher pumping rates, proximity of the well to the stream, and the presence of nearby barrier boundaries. The propensity and rate are reduced by the presence of other surface water bodies. Ambient groundwater discharge rate to the surface water body also plays a role, but not its source, whether it is from local vertical recharge, lateral inflow, or both. The results are also largely indifferent to whether the aquifer transmissivity is assumed to be a constant, or a function of water table elevation. Finally, if the well is close enough to the surface water body, say, less than 5% of the aquifer width, then the aquifer acts as if it were semi-infinite.

  8. SIMULATION OF SURFACTANT-ENHANCED AQUIFER REMEDIATION

    EPA Science Inventory

    Surfactant-enhanced aquifer remediation (SEAR) is currently under active investigation as one of the most promising alternatives to conventional pump-and-treat remediation for aquifers contaminated by dense nonaqueous phase organic liquids. An existing three-dimensional finite-di...

  9. The Sparta Aquifer: A Sustainable Water Resource?

    USGS Publications Warehouse

    McKee, Paul W.; Hays, Phillip D.

    2002-01-01

    Introduction The Sparta aquifer is an aquifer of regional importance within the Mississippi embayment aquifer system. It consists of varying amounts of unconsolidated sand, inter-stratified with silt and clay lenses within the Sparta Sand of the Claiborne Group. It extends from south Texas, north into Louisiana, Arkansas, and Tennessee, and eastward into Mississippi and Alabama (fig. 1). On both the west and east sides of the Mississippi embayment, the Sparta aquifer is exposed at the surface (outcrops) and is locally unconfined; it becomes confined as it dips toward the axis of the embayment, (generally corresponding with the Mississippi River) and southward toward the Gulf of Mexico where it is deeply buried in the subsurface (Hosman, 1968). Generalized ground-water flow in the Sparta aquifer is from the outcrop areas to the axis (center) of the embayment (fig. 2). In Arkansas, the Sparta aquifer outcrops parallel to the Fall Line at the western extreme of the Mississippi embayment (the Fall Line is a line dividing the mountainous highlands of Arkansas from the lowland area); and the formation dips from its outcrop area to the southeast. The Sparta aquifer supplies water for municipalities, industries such as paper production, and to a lesser degree, irrigation of agricultural crops (fig. 3). This report highlights hydrologic conditions of the aquifer in Arkansas County as an example of how water use is affecting water levels.

  10. 40 CFR 147.2908 - Aquifer exemptions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Aquifer exemptions. 147.2908 Section 147.2908 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS...-Class II Wells § 147.2908 Aquifer exemptions. (a) After notice and opportunity for a public hearing,...

  11. 40 CFR 147.2908 - Aquifer exemptions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 23 2011-07-01 2011-07-01 false Aquifer exemptions. 147.2908 Section 147.2908 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS...-Class II Wells § 147.2908 Aquifer exemptions. (a) After notice and opportunity for a public hearing,...

  12. Observing the Texas Coast

    NASA Astrophysics Data System (ADS)

    Knap, A. H.; Chapman, P.; DiMarco, S. F.; Walpert, J.; Guinasso, N. L., Jr.; Whilden, K.

    2016-02-01

    The Gulf of Mexico (GOM), sometimes referred to as the western Mediterranean, is a dynamic and interesting body for study with diverse uses and needs from a wide range of communities. Environmental issues are similar to many other semi-closed basins and the main ones, nutrient and chemical discharge, land run-off and physical currents, as well as oil spills and the many natural seeps creates many issues such as eutrophication, an annual hypoxic zone, Harmful Algal blooms, ocean acidification and oil blowouts to name a few. The Texas Automated Buoy System is constituted of 8 real time coastal buoys operated by the Geochemical and Environmental Research Group. Through a JIP, 2 additional buoys were added at the Flower Garden Banks. to support decision-making should there be a spill. In addition a numerical circulation modeling group at Texas A&M University Oceanography Department was also funded to connect the data from the buoys to a predictive model also funded by TGLO. This observing system has proved its worth over the years as spills have occurred which have been tracked for rapid and effective coastal protection. Recently, other instrumentation has been developed to more holistically study the Gulf of Mexico and particularly the Texas Coast. Eight 5-Hz coastal radars spaced approximated 80 km along the coast are being installed from South Padre Island to the Sabine. Autonomous Surface Vehicles (Autonaut and Liquid Robotics Wave Gliders) will complement the buoy network and coastal radars by establishing a series of transects that will transit through out the observational footprint. The first data emerging from this integration will be presented.

  13. Geochemistry of the Arbuckle-Simpson Aquifer

    USGS Publications Warehouse

    Christenson, Scott; Hunt, Andrew G.; Parkhurst, David L.; Osborn, Noel I.

    2009-01-01

    The Arbuckle-Simpson aquifer in south-central Oklahoma provides water for public supply, farms, mining, wildlife conservation, recreation, and the scenic beauty of springs, streams, and waterfalls. A new understanding of the aquifer flow system was developed as part of the Arbuckle-Simpson Hydrology Study, done in 2003 through 2008 as a collaborative research project between the State of Oklahoma and the Federal government. The U.S. Geological Survey collected 36 water samples from 32 wells and springs in the Arbuckle-Simpson aquifer in 2004 through 2006 for geochemical analyses of major ions, trace elements, isotopes of oxygen and hydrogen, dissolved gases, and dating tracers. The geochemical analyses were used to characterize the water quality in the aquifer, to describe the origin and movement of ground water from recharge areas to discharge at wells and springs, and to determine the age of water in the aquifer.

  14. Groundwater environmental tracer data collected from the Chicot, Evangeline, and Jasper aquifers in Montgomery County and adjacent counties, Texas, 2008

    USGS Publications Warehouse

    Oden, Timothy D.

    2011-01-01

    The Gulf Coast aquifer system is the primary water supply for Montgomery County in southeastern Texas, including part of the Houston metropolitan area and the cities of Magnolia, Conroe, and The Woodlands Township, Texas. The U.S. Geological Survey, in cooperation with the Lone Star Groundwater Conservation District, collected environmental tracer data in the Gulf Coast aquifer system, primarily in Montgomery County. Forty existing groundwater wells screened in the Gulf Coast aquifer system were selected for sampling in Montgomery County (38 wells), Waller County (1 well), and Walker County (1 well). Groundwater-quality samples, physicochemical properties, and water-level data were collected once from each of the 40 wells during March-September 2008. Groundwater-quality samples were analyzed for dissolved gases and the environmental tracers sulfur hexafluoride, chlorofluorocarbons, tritium, helium-4, and helium-3/tritium. Water samples were collected and processed onsite using methods designed to minimize changes to the water-sample chemistry or contamination from the atmosphere. Replicate samples for quality assurance and quality control were collected with each environmental sample. Well-construction information and environmental tracer data for March-September 2008 are presented.

  15. Salinity mapping of coastal groundwater aquifers using hydrogeochemical and geophysical methods: a case study from north Kelantan, Malaysia

    NASA Astrophysics Data System (ADS)

    Samsudin, A. R.; Haryono, A.; Hamzah, U.; Rafek, A. G.

    2008-10-01

    Integrated hydrogeochemical and geophysical methods were used to study the salinity of groundwater aquifers along the coastal area of north Kelantan. For the hydrogeochemical investigation, analysis of major ion contents of the groundwater was conducted, and other chemical parameters such as pH and total dissolved solids were also determined. For the geophysical study, both geoelectrical resistivity soundings and reflection seismic surveys were conducted to determine the characteristics of the subsurface and groundwater contained within the aquifers. The pH values range from 6.2 to 6.8, indicating that the groundwater in the study area is slightly acidic. Low content of chloride suggests that the groundwater in the first aquifer is fresh, with an average concentration of about 15.8 mg/l and high geoelectrical resistivity (>45 ohm m). On the other hand, the groundwater in the second aquifer is brackish, with chloride concentration ranging from 500 mg/l to 3,600 mg/l and very low geoelectrical resistivity (<45 ohm m) as well as high concentration of total dissolved solids (>1,000 mg/l). The groundwater in the third aquifer is fresh, with chloride concentrations generally ranging from 2 mg/l to 210 mg/l and geoelectrical resistivity of greater than 45 ohm m. Fresh and saltwater interface in the first aquifer is generally located directly in the area of the coast, but, for the second aquifer, both hydrogeochemical and geoelectrical resistivity results indicate that the fresh water and saltwater interface is located as far as 6 km from the beach. The considerable chloride ion content initially suggests that the salinity of the groundwater in the second aquifer is probably caused by the intrusion of seawater. However, continuous monitoring of the chloride content of the second aquifer indicated no significant changes with time, from which it can be inferred that the salinity of the groundwater is not affected by seasonal seawater intrusion. Schoeller diagrams illustrate

  16. Aquifer Vulnerability maps and climate change

    NASA Astrophysics Data System (ADS)

    Ducci, Daniela; Sellerino, Mariangela

    2017-04-01

    The aquifer vulnerability maps to contamination are used worldwide by environmental agencies and water-resource managers with the aim of preserving the water resources and of evaluating the most suitable areas where to locate new settlements. In the parametric methods, more used to assess the groundwater contamination vulnerability, e.g. the DRASTIC and the AVI methods, an important role is played by the protective capacity of cover layers to the introduction and transport of contaminants into the aquifer. Therefore, these methods point out the importance of the "Depth to water" parameter, which represents, where the aquifer is unconfined, the depth of the piezometric level and, where the aquifer is confined, the top of the aquifer. This parameter is rarely variable in confined aquifers and in deep unconfined aquifers, as karst aquifers, where the piezometric oscillations are low, compared with the depth of the water table. On the contrary, in shallow aquifers of flat areas, where in addition a large number of human activities are practiced and the contamination risk is high, the piezometric level varies suddenly with the rainfall, and it is very sensitive to drought periods and climatic changes. This affects noticeably the "Depth to water" parameter and consequently the vulnerability maps (e.g. 3 m of piezometric lowering can produce a change in the DRASTIC index from 10 to 7…). To validate this hypothesis, the DRASTC and AVI methods have been applied on a shallow aquifer located in a flat area in Campania (Italy,) considering data corresponding to an average rainfall period and to a drought period.

  17. Hydrochemical evidences: Vulnerability of atoll aquifers in Western Indian Ocean to climate change

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, Pallavi Banerjee; Singh, V. S.

    2013-07-01

    The study evaluates movement of the saltwater interface and ionic composition in the atoll aquifer system in response to natural recharge in Western Indian Ocean (WIO). Sea level rise owing to climate change is expected to have substantial impacts on the world's population living on or near the coast over the next century (Vorosmarty et al., 2000; Milly et al., 2005). Change in sea level is predominantly linked to inundation and saltwater intrusion in coastal aquifers (Döll, 2009). However the change in precipitation pattern as a possible clause for seawater intrusion is poorly established and is due for substantial studies. The Intergovernmental Panel on Climate Change (IPCC) report (2007) that projects the global sea level rise of 18 to 59 cm from 1990 to the 2090s, along with an unspecified amount that could come from changes in the large ice sheets covering Greenland and Antarctica, depicts a relatively much lower regional sea level rise in the WIO. In addition, the report signifies a reduction in annual precipitation rate in this region in agreement with past historical data. This characterizes the WIO region as a potential critical zone under the influence of climate change (i.e. less sea level rise, high reduction in rainfall pattern) unlike most of its neighboring regions. The WIO region is a home to hundreds of coral islands and is inhabited largely. Despite its purported importance, tracing of the aquifer geometry under the influence of climate change has not been reported much. Application of hydro-chemical analysis to delineate the climate change impacts has even been rare. Androth island of Lakshadweep archipelago has been chosen as the study area. The study establishes that hydro-chemical evidences have a high degree of correlation between groundwater aquifer geometry and rate of precipitation. It depicts that decreasing trend in precipitation in the WIO region would result in seawater intrusion and significant shrinkage of aquifer geometry. The

  18. A Hydrogeologic Model of the Finegayan Basin of the Northern Guam Lens Aquifer

    NASA Astrophysics Data System (ADS)

    Shalilian, I.; Jenson, J. W.; Lander, M.; Randall, R.

    2016-12-01

    Guam is a 540-km2 island, located at the southern end of the Mariana Archipelago in the tropical western Pacific Ocean. The island's northern half is an uplifted limestone plateau resting on volcanic basement, part of which also stands above sea level. The plateau hosts the Northern Guam Lens Aquifer (NGLA), the source of 90% of the island's drinking water for its 200,000 residents. The aquifer consists of a Miocene-Pliocene foraminiferal limestone core that grades upward and outward into a Plio-Pleistocene reef-lagoonal sequence. The NGLA is thus a carbonate island karst aquifer, and locally exhibits each of the environments described by the Carbonate Island Karst Model (CIKM). The CIKM is a general conceptual model created to integrate and describe the components that control cave and karst development and the hydrogeologic properties of eogenetic carbonate islands, which differ in important ways from telogenetic continental karst. This study examined one of the aquifer's six basins to develop a specific conceptual hydrogeologic model of the basin. Located in the northwest portion of the aquifer and comprising 7% of its surface area, the Finegayan Basin is the source of about 15% of aquifer production. It is structurally the most complex basin in the aquifer, and is likely to undergo intense economic development in the near future. A major fault dominates the drainage system of the basin, intercepting the coast at the site of a cave, from which emerges the aquifer's largest coastal spring. The conceptual model produced by this study characterizes basin hydrogeology in terms of the CIKM, based on field mapping and GIS analyses of sinkholes, faults, fractures, coastal discharge features, and their field relationships. A small cenote along the axis of the fault was instrumented to estimate hydraulic conductivity along the fault from tidal phase lag. The discharging cave was mapped to gain insight into the karst evolution of the conduit system. Preliminary field

  19. High-resolution, three-dimensional, seismic survey over the geopressured-geothermal reservoir at Parcperdue, Louisiana. Final report, January 1, 1981-July 31, 1985

    SciTech Connect

    Kinsland, G.L.

    1985-07-01

    A high resolution three-dimensional seismic survey was performed over the reservoir of the geopressured-geothermal production experiment at Parcperdue, Louisiana and high quality results have been obtained. The reservoir is now mapped with more control and assurance than was possible with the previously existing data. Three differences between the map of this project and those available before are significant in the interpretation of the depletion experiment: (1) the western bounding fault is further west leading to a larger reservoir volume; (2) a down to the north (relief) fault through the reservoir has been found; and (3) there are structural highs in which small petroleum accumulations may exist within the reservoir. An original goal of testing the before and after seismic experiment idea as a production monitor has not been realized. However, the quality of the data at the stages of processing presently available is high enough that, had the well not failed, it would have been prudent to have proceeded with the project toward the second experiment. 3 refs., 16 figs., 3 tabs.

  20. Hydrogeological investigation of shallow aquifers in an arid data-scarce coastal region (El Daba'a, northwestern Egypt)

    NASA Astrophysics Data System (ADS)

    Yousif, Mohamed; van Geldern, Robert; Bubenzer, Olaf

    2016-02-01

    Hydrogeological investigations in arid regions are particularly important to support sustainable development. The study area, El Daba'a in northwestern Egypt, faces scarce water resources as a result of reported climate change that particularly affects the southern Mediterranean coast and increases stress on the local groundwater reserves. This change in climate affects the area in terms of drought, over-pumping and unregulated exploration of groundwater for irrigation purposes. The hydrogeological investigation is based on a multidisciplinary data-layer analysis that includes geomorphology, geology, slope, drainage lines, soil type, structural lineaments, subsurface data, stable isotopes, and chemical analyses. The study area contains Pleistocene and middle Miocene marine limestone aquifers. Based on lithology and microfacies analysis, the middle Miocene aquifer is subdivided into two water-bearing zones. The area is affected by sets of faults and anticline folds, and these structures are associated with fractures and joints that increase permeability and facilitate the recharge of groundwater. Stable isotope data indicate that groundwater of both the Pleistocene and middle Miocene aquifers is recharged by modern precipitation. The high salinity values observed in some groundwater wells that tap both aquifers could be attributed to leaching and dissolution processes of marine salts from the aquifers' marine limestone matrix. In addition, human activities can also contribute to an increase in groundwater salinity. A future water exploration strategy, based on the results from the multidisciplinary data-layer analysis, is proposed for the area. The derived scientific approach is transferable to other arid coastal areas with comparable conditions.

  1. Protistan communities in aquifers: A review

    USGS Publications Warehouse

    Novarino, G.; Warren, A.; Butler, H.; Lambourne, G.; Boxshall, A.; Bateman, J.; Kinner, N.E.; Harvey, R.W.; Mosse, R.A.; Teltsch, B.

    1997-01-01

    Eukaryotic microorganisms (protists) are a very important component of microbial communities inhabiting groundwater aquifers This is not unexpected when one considers that many protists feed heterotrophically, by means of either phagotrophy (bacterivory) or osmotrophy. Protistan numbers are usually low (<102 per g dw of aquifer material) in pristine, uncontaminated aquifers but may increase by several orders of magnitude in aquifers subject to organic pout on Stoa flagellates (typically 2-3(5) ??m in size in situ) are by far the dominant protists in aquifers although amoebae and occasionally ciliates may also be present much lower numbers. A though a wealth of new taxonomic information is waiting to be brought to light, interest in the identity of aquifer protists is not exclusively academic If verified, the following hypotheses may prove to be important towards our understanding of the functioning of microbial communities in aquifers: (1) Differences in swimming behavior between species of flagellates lead to feeding heterogeneity and niche differentiation, implying that bacterivorous flagellates graze on different subsets of the bacterial community, and therefore play different roles in controlling bacterial densities. (2) Bacterivorous flagellates grazing on bacteria capable of degrading Organic compounds have an indirect effect on the overall rates of biodegradation.

  2. The Winona-Tallahatta Aquifer in Mississippi

    USGS Publications Warehouse

    Spiers, C.A.

    1977-01-01

    This aquifer atlas describing the Winona-Tallahatta aquifer is the seventh in a series prepared in cooperation with the Mississippi Board of Water Commissioners. The atlas summarizes the large amount of unpublished data available in the files of the U.S. Geological Survey and it describes the extent, character, and present utilization of the aquifer and its potential for additional development. The Winona-Tallahatta aquifer, which contains freshwater having less than 1,000 mg/liter of dissolved solids in about 25 percent of the State occurs in northwestern and central Mississippi. The water-bearing zones extend into Tennessee and become part of the Memphis aquifer. In Arkansas and Louisiana the aquifer is in the Cane River Formation. The Tallahatta Formation which is the basal unit of the Claiborne Group includes, in ascending order, the Meridian Sand, Basic City Shale, and Neshoba Sand Members. The Winona-Tallahatta aquifer is the source of water for only a few large water users, but is the source of water for hundreds of small-yield domestic and stock wells less than 200 feet deep. Total water use in the State in 1977 from the Winona-Tallahatta is estimated to be about 3 mdg. (Woodard-USGS)

  3. Andrew spares Florida Coast

    NASA Astrophysics Data System (ADS)

    Bush, Susan

    When geologists heard of the intensity of Hurricane Andrew, which struck the Florida coast on August 25 and then moved on to southern Louisiana, they were expecting the same kinds of coastal damage that Hurricane Hugo brought to the Caribbean and Carolina shores in 1989. Both storms were category 4 hurricanes, having winds of 131-155 mph and surges of 13-18 feet. However, the coastal damage never materialized, leaving geologists to analyze the factors that lessened the impact of the storm. “For minimum coastal damage, you couldn't have designed a better storm,” said Orrin Pilkey, director of the Program for the Study of Developed Shorelines (PSDS) in Durham, N.C. This was due in part to the nature of the storm itself and where it hit land, and in part to the regional geology, said Rob Thieler of PSDS. Despite the huge amounts of damage to buildings, there was virtually no evidence of coastal process destruction, he said.

  4. Does salt water intrusion constitute a mercury contamination risk for coastal fresh water aquifers?

    PubMed

    Protano, G; Riccobono, F; Sabatini, G

    2000-12-01

    Four different sampling surveys were carried out in 1998 to evaluate the possible causes of severe mercury contamination involving many wells spread over a vast territory along the coast of southern Tuscany (Italy). Several samples of groundwater and coastal sea water were collected to determine the Hg, Cl, Ar, He and N contents. Anthropogenic or deep-seated sources of the Hg involved in the contamination event can be excluded. The observed coupling of Hg pollution with progressive salt water intrusion along the coastal aquifer indicates a close causal relation between these two phenomena.

  5. Altitude of water table, surficial aquifer, Palm Beach County, Florida, April 24-26, 1984

    USGS Publications Warehouse

    Miller, Wesley L.

    1985-01-01

    Water levels in Palm Beach County, Florida, were measured in April 1984 to determine the altitude of the water table in the surficial aquifer. A total of 104 wells and 50 surface-water measurement sites were used to contour the altitude of the water table at 2 and 4-foot intervals. The water-level measurements made in April represent low-water levels near the end of south Florida 's dry season. Contours of the water table at this time ranged from 22 feet above sea level in the north-central part of the county to 2 feet near the coast. (USGS)

  6. Understanding Kendal aquifer system: a baseline analysis for sustainable water management proposal

    NASA Astrophysics Data System (ADS)

    Lukman, A.; Aryanto, M. D.; Pramudito, A.; Andhika, A.; Irawan, D. E.

    2017-07-01

    North coast of Java has been grown as the center of economic activities and major connectivity hub for Sumatra and Bali. Sustainable water management must support such role. One of the basis is to understand the baseline of groundwater occurrences and potential. However the complex alluvium aquiver system has not been well-understood. A geoelectric measurements were performed to determine which rock layer has a good potential as groundwater aquifers in the northern coast of Kaliwungu Regency, Kendal District, Central Java province. Total of 10 vertical electrical sounding (VES) points has been performed, using a Schlumberger configuration with the current electrode spacing (AB/2) varies between 200 - 300 m and the potential difference electrode spacing (MN/2) varies between 0.5 to 20 m with depths target ranging between 150 - 200 m. Geoelectrical data processing is done using Ip2win software which generates resistivity value, thickness and depth of subsurface rock layers. Based on the correlation between resistivity value with regional geology, hydrogeology and local well data, we identify three aquifer layers. The first layer is silty clay with resistivity values vary between 0 - 10 ohm.m, then the second layer is tuffaceous claystone with resistivity value between 10 - 60 ohm.m. Both layers serve as impermeable layer. The third layer is sandy tuff with resistivity value between 60 - 100 ohm.m which serves as a confined aquifer layer located at 70 - 100 m below surface. Its thickness is vary between 70 to 110 m. The aquifer layer is a mixing of volcanic and alluvium sediment, which is a member of Damar Formation. The stratification of the aquifer system may change in short distance and depth. This natural setting prevent us to make a long continuous correlation between layers. Aquifer discharge is estimated between 5 - 71 L/s with the potential deep well locations lies in the west and southeast part of the study area. These hydrogeological settings should be used

  7. Hydrology of the Claiborne aquifer and interconnection with the Upper Floridan aquifer in southwest Georgia

    USGS Publications Warehouse

    Gordon, Debbie W.; Gonthier, Gerard

    2017-04-24

    The U.S. Geological Survey conducted a study, in cooperation with the Georgia Environmental Protection Division, to define the hydrologic properties of the Claiborne aquifer and evaluate its connection with the Upper Floridan aquifer in southwest Georgia. The effort involved collecting and compiling hydrologic data from the aquifer in subarea 4 of southwestern Georgia. Data collected for this study include borehole geophysical logs in 7 wells, and two 72-hour aquifer tests to determine aquifer properties.The top of the Claiborne aquifer extends from an altitude of about 200 feet above the North American Vertical Datum of 1988 (NAVD 88) in Terrell County to 402 feet below NAVD 88 in Decatur County, Georgia. The base of the aquifer extends from an altitude of about 60 feet above NAVD 88 in eastern Sumter County to about 750 feet below NAVD 88 in Decatur County. Aquifer thickness ranges from about 70 feet in eastern Early County to 400 feet in Decatur County.The transmissivity of the Claiborne aquifer, determined from two 72-hour aquifer tests, was estimated to be 1,500 and 700 feet squared per day in Mitchell and Early Counties, respectively. The storage coefficient was estimated to be 0.0006 and 0.0004 for the same sites, respectively. Aquifer test data from Mitchell County indicate a small amount of leakage occurred during the test. Groundwater-flow models suggest that the source of the leakage was the underlying Clayton aquifer, which produced about 2.5 feet of drawdown in response to pumping in the Claiborne aquifer. The vertical hydraulic conductivity of the confining unit between the Claiborne and Clayton aquifers was simulated to be about 0.02 foot per day.Results from the 72-hour aquifer tests run for this study indicated no interconnection between the Claiborne and overlying Upper Floridan aquifers at the two test sites. Additional data are needed to monitor the effects that increased withdrawals from the Claiborne aquifer may have on future water resources.

  8. Analysis of aquifer mineralization by paleodrainage channels

    USGS Publications Warehouse

    Rubin, H.; Buddemeier, R.W.

    2003-01-01

    Mineralization of groundwater resources is a problem in south-central Kansas, due to the penetration of saline water from Permian bedrock formations into the overlying alluvial aquifer. One of the mechanisms involved in the mineralization involves small bedrock features of high permeability located in places occupied by streams and rivers in past geological eras. These geological features are termed 'paleodrainage channels'. The permeability of the overlying aquifer can be significantly smaller than that of the channel fill material. The comparatively fast migration of saline water through these channels of high permeability is associated with the transfer of minerals into the overlying freshwater aquifer. This study applies a set of boundary layer approaches to quantify the process of mineral transfer from the channels into the aquifer. The methods used in the present study provide quick estimation and evaluation of the dilution of the channel flow, as well as mineral concentration profile changes in the mineralized zone created in the overlying aquifer. More generally, the method can also be useful for the analysis and evaluation of various types of groundwater contamination in heterogeneous aquifers. The application of the method is exemplified by a complete set of calculations characterizing the possible mineralization process at a specific channel in south central Kansas. Sensitivity analyses are performed and provide information about the importance of the various parameters that affect the mineralization process. Some possible scenarios for the aquifer mineralization phenomena are described and evaluated. It is shown that the channel mineralization may create either several stream tubes of the aquifer with high mineral concentration, or many stream tubes mineralized to a lesser extent. Characteristics of these two patterns of aquifer mineralization are quantified and discussed. ?? 2003 Published by Elsevier Science B.V.

  9. Aquifer properties determined from two analytical solutions

    SciTech Connect

    Chen, X.; Ayers, J.F.

    1998-09-01

    Many ground water flow and contaminant transport studies involve unconfined aquifers. Determination of reliable hydraulic properties of unconfined aquifers is therefore important. In the analysis of pumping test data, the quality of the determined aquifer parameters can be greatly improved by using a proper model of the aquifer system. Moench (1995) provided an analytical solution for flow to a well partially penetrating an unconfined aquifer. His solution, in contrast to the Neuman solution (1974), accounts for the noninstantaneous decline of the water table (delayed yield). Consequently, the calculated drawdown in these two solutions is different under certain circumstances, and this difference may therefore affect the computation of aquifer properties from pumping test data. This paper uses an inverse computational method to calculate four aquifer parameters as well as a delayed yield parameter, {alpha}{sub 1}, from pumping test data using both the Neuman (1974) and Moench (1995) solutions. Time-drawdown data sets from a pumping test in an unconfined alluvial aquifer near Grand Island, Nebraska, were analyzed. In single-well analyses, horizontal hydraulic conductivity values derived from the Moench solution are lower, but vertical hydraulic conductivity values are higher than those calculated from the Neuman solution. However, the hydraulic conductivity values in composite-well analyses from both solutions become very close. Furthermore, the Neuman solution produces similar hydraulic conductivity values in the single-well and composite-well analyses, but the Moench solution does not. While variable {alpha}{sub 1} seems to play a role in affecting the computation of aquifer parameters in the single-well analysis, a much smaller effect was observed in the composite-well analysis.

  10. Insights into aquifer vulnerability and potential recharge zones from the borehole response to barometric pressure changes

    NASA Astrophysics Data System (ADS)

    El Araby, Mahmoud; Odling, Noelle; Clark, Roger; West, Jared

    2010-05-01

    between the aquifer and the confining layer. In this case the static constant barometric efficiency is not applicable and the response is represented by a barometric response function which reflects the timing and frequency of the barometric pressure loading. In this study, the barometric response function is estimated using de-convolution techniques both in the time domain (least squares regression de-convolution) and in the frequency domain (discrete Fourier transform de-convolution). In order to estimate the barometric response function, borehole water level fluctuations due to factors other than barometric pressure should be removed (de-trended) as otherwise they will mask the response relation of interest. It is shown from the collected borehole data records that the main four factors other than barometric pressure contribute to borehole water level fluctuations. These are the rainfall recharge, Earth tides, sea tides and pumping activities close to the borehole location. Due to the highly variable nature of the UK weather, rainfall recharge shows a wide variation throughout the winter and summer seasons. This gives a complicated recharge signal over a wide range of frequencies which must be de-trended from the borehole water level data in order to estimate the barometric response function. Methods for removing this recharge signal are developed and discussed. Earth tides are calculated theoretically at each borehole location taking into account oceanic loading effects. Ocean tide effects on water levels fluctuations are clear for the boreholes located close to the coast. A Matlab code has been designed to calculate and de-trend the periodic fluctuations in borehole water levels due to Earth and ocean tides using the least squares regression technique based on a sum of sine and cosine fitting model functions. The program results have been confirmed using spectral analysis techniques.

  11. Effects of aquifer travel time on nitrogen transport to a coastal embayment

    USGS Publications Warehouse

    Colman, John A.; Masterson, John P.; Pabich, Wendy J.; Walter, Donald A.

    2004-01-01

    Effects of aquifer travel time on nitrogen reaction and loading to Popponesset Bay, a eutrophic coastal embayment on western Cape Cod, Massachusetts, are evaluated through hydrologic analysis of flow and transport. Approximately 10% of the total nitrogen load to the embayment is intercepted by fresh water ponds and delivered to the coast by connecting streams. For the nitrogen load not intercepted by ponds, we compare two steady-state methods of analyzing nitrogen loss in the aquifer, one using a constant-loss factor and the other time-dependent loss rates. The constant-loss method, which assumes that all similar land uses have the same per unit area loading rate to surface water regardless of location within the watershed, predicts that 42% of the nonpond watershed nitrogen load originated within the zero to 2 yr time-of-travel zone, which is 40% of the contributing area. The time-of-travel loss method calculates loss rates based on aquifer travel times and denitrification reaction kinetics, evaluated separately for carbon-unlimited and carbon-limited cases. Time-of-travel loss calculations for percent of nonpond load that originated within the area of < 2 yr aquifer residence time are 64% when carbon is not limiting, but only 49% when carbon limitation is included, not greatly different from the constant-loss method. A feature of the kinetics used is that carbon (and the denitrified nitrogen) is lost rather quickly in the aquifer travel path, after which carbon limitation stops denitrification altogether. Carbon limitation causes the time-of-travel loss model to approximate the constant-loss model such that in most of the watershed, a nearly constant fraction of the nitrogen input is lost in both models.

  12. Evaluation of simulated cross-formational travel times using water age measurements in layered aquifer systems

    NASA Astrophysics Data System (ADS)

    Papafotiou, Alexandros; Ewing, John; Deeds, Neil; Kreitler, Charlie

    2013-04-01

    The recent hydrologic droughts in the southwestern USA have brought forward the necessity for sustainable management of groundwater that was recharged several thousands of years ago, also known as fossil water, as this resource is not directly rechargeable even through heavy rain events. Groundwater age studies can enable water authorities to map the origins of groundwater, quantify water ages in aquifers and plan sustainable water resource policies on local and regional scales. In this study, numerical groundwater availability models (GAMs) are combined with water age measurements to perform a water age analysis of the Wilcox, Carrizo, Queen City, Sparta, Jackson and Yegua aquifers that span central Texas dipping toward the coast of the Gulf of Mexico. The 3D GAMs have initially been calibrated using well data. The water age analysis is carried out using 2D simulations to characterize down dip flow, cross-formational flow in the aquifers and the impact on associated water ages in representative transects extracted from the 3D models, including a discussion on bridging the gap between the 3D hydrogeological system and its simplified 2D representations. A systematic quantification of water age sensitivity to formation hydraulic conductivities and recharge at the aquifer outcrops is performed, whereby travel times in the simulated aquifers are compared to water age measurements obtained from C-14 and Tritium age dating techniques. The analysis therefore delivers the spectrum of water age isolines under consideration of model parameter uncertainty, evaluating the predictive ability of cross-formational water age studies when using 2D transect models.

  13. Hydrochemistry of the surficial and intermediate aquifer systems in Florida

    USGS Publications Warehouse

    Berndt, M.P.; Katz, B.G.

    1992-01-01

    Hydrochemistry of the surficial and intermediate aquifer systems in Florida reflects the lithology and mineralogy of units within each aquifer and sources of water to each aquifer. The surficial aquifer system consists of sand, sandstone, clay, limestone, and shell units that are recharged primarily by precipitation. Calcium bicarbonate was the major-ion water type for 53 percent of the surficial aquifer determinations; a mixed water type (no dominant ions) accounted for 37 percent of the determinations. The median dissolved-solids concentration for the surficial aquifer system was 341 milligrams per liter. The intermediate aquifer system consists of limestone, dolomite, sand, and sandstone, and sources of water include downward leakage from the surficial aquifer system and, in some areas, upward leakage from the Upper Floridan aquifer. In northeastern and panhandle areas of Florida, water from the intermediate aquifer system had major-ion and dissolved-solids concentrations similar to water from the surficial aquifer system. In southwestern Florida, the water type in 67 percent of analyses was mixed, and the median dissolved-solids concentration was 642 milligrams per liter. In a northern area of southwestern Florida, hydrochemistry in the limestone aquifer of the intermediate aquifer system is similar to downward leakage from the surficial aquifer system. In a southern area, downward leakage from the surficial aquifer system has calcium and bicarbonate concentrations five times higher than in the northern area, and upward leakage from the Upper Floridan aquifer contains sodium chloride type water from mixing with seawater. In southern southwest Florida, both the limestone aquifer and the overlying sandstone aquifer within the intermediate aquifer system had higher calcium, sodium, chloride, and bicarbonate concentrations than the limestone aquifer in northern southwest Florida.

  14. Greenland Coast in Holiday Colors

    NASA Image and Video Library

    2003-12-23

    Vibrant reds, emerald greens, brilliant whites, and pastel blues adorn this view of the area surrounding the Jakobshavn Glacier on the western coast of Greenland captured by NASA Terra spacecraft on June 18, 2003.

  15. View - Caribbean Coast - Venezuela

    NASA Image and Video Library

    1973-08-15

    S73-35079 (July-September 1973) --- A near vertical view of the Caribbean coast of Venezuela is seen in this Skylab 3 Earth Resources Experiment Package S190-B (five-inch Earth terrain camera) photograph taken from the Skylab space station in Earth orbit. The large body of water is the Golfo de Venezuela; and the major land mass is the Peninsula de Paraguana. The view is looking northward from the mouth of the Golfete de Coro and Punta Cardon to Punta Macolla. The peninsula is connected to the Venezuelan mainland by the narrow strip of land in the most easterly corner of the picture. The dry, arid climate on the peninsula is indicated by sparse vegetation and the abundance of sand dunes. The highest point is about 2,700 feet above the sea and is the conspicuous black spot. Old raised shoreline features appear as streaks parallel to the Golfete de Coro. Sand dunes and stream erosion have modified these features. Water of the Golfete de Coro is red from the high sediment content. The streaks in the water off the peninsula is apparently an effect of wind which is blowing sand and water offshore. The EREP investigator Dr. Jose Antonio Galavis, of the Ministerio de Mines e Hidrocarburos, will use this information to map geology and coastal sedimentation in the Peninsula de Paraguana. Federal agencies participating with NASA on the EREP projects are the Departments of Agriculture, Commerce, Interior, the Environmental Protection Agency and the Corps of Engineers. All EREP photography is available to the public through the Department of Interior?s Earth Resources Observations Systems Data Center, Sioux Falls, South Dakota, 57198. (Alternate number SL3-83-237) Photo credit: NASA

  16. Upper Texas Gulf Coast, USA

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The Upper Texas Gulf Coast (29.0N, 95.5W) is clearly represented in this view from space. The area covered stretches almost 300 miles from Aransas Pass, on the Texas coast in the south to Cameron, Louisiana in the north. The sharp detail of both the natural and cultural features throughout the scene is especially evident in the Houston area where highways, major streets, airport runways and even some neighborhood lanes can be easily seen.

  17. Thunderstorm, Texas Gulf Coast, USA

    NASA Image and Video Library

    1990-04-29

    This thunderstorm along the Texas Gulf Coast (29.0N, 95.0W), USA is seen as the trailing edge of a large cloud mass formed along the leading edge of a spring frontal system stretching northwest to southeast across the Texas Gulf Coast. This system brought extensive severe weather and flooding to parts of Texas and surrounding states. Muddy water discharging from coastal streams can be seen in the shallow Gulf of Mexico as far south as Lavaca Bay.

  18. Digital data sets that describe aquifer characteristics of the Enid isolated terrace aquifer in northwestern Oklahoma

    USGS Publications Warehouse

    Becker, C.J.; Runkle, D.L.; Rea, Alan

    1997-01-01

    ARC/INFO export and nonproprietary format files The data sets in this report include digitized aquifer boundaries and maps of hydraulic conductivity, recharge, and ground-water level elevation contours for the Enid isolated terrace aquifer in northwestern Oklahoma. The Enid isolated terrace aquifer covers approximately 82 square miles and supplies water for irrigation, domestic, municipal, and industrial use for the City of Enid and western Garfield County. The Quaternary-age Enid isolated terrace aquifer is composed of terrace deposits that consist of discontinuous layers of clay, sandy clay, sand, and gravel. The aquifer is unconfined and is bounded by the underlying Permian-age Hennessey Group on the east and the Cedar Hills Sandstone Formation of the Permian-age El Reno Group on the west. The Cedar Hills Sandstone Formation fills a channel beneath the thickest section of the Enid isolated terrace aquifer in the midwestern part of the aquifer. All of the data sets were digitized and created from information and maps in a ground-water modeling thesis and report of the Enid isolated terrace aquifer. The maps digitized were published at a scale of 1:62,500. Ground-water flow models are numerical representations that simplify and aggregate natural systems. Models are not unique; different combinations of aquifer characteristics may produce similar results. Therefore, values of hydraulic conductivity and recharge used in the model and presented in this data set are not precise, but are within a reasonable range when compared to independently collected data.

  19. Solute changes during aquifer storage recovery testing in a limestone/clastic aquifer

    USGS Publications Warehouse

    Mirecki, J.E.; Campbell, B.G.; Conlon, K.J.; Petkewich, M.D.

    1998-01-01

    Aquifer storage recovery (ASR) was tested in the Santee Limestone/Black Mingo Aquifer near Charleston, South Carolina, to assess the feasibility for subsurface storage of treated drinking water. Water quality data obtained during two representative ASR tests were interpreted to show three things: (1) recovery efficiency of ASR in this geological setting; (2) possible changes in physical characteristics of the aquifer during ASR testing; and (3) water quality changes and potability of recovered water during short (one- and six-day) storage durations in the predominantly carbonate aquifer. Recovery efficiency for both ASR tests reported here was 54%. Successive ASR tests increased aquifer permeability of the Santee Limestone/Black Mingo Aquifer. It is likely that aquifer permeability increased during short storage periods due to dissolution of carbonate minerals and amorphous silica in aquifer material by treated drinking water. Dissolution resulted in an estimated 0.3% increase in pore volume of the permeable zones. Ground water composition generally evolved from a sodium-calcium bicarbonate water to a sodium chloride water during storage and recovery. After short duration, stored water can exceed the U.S. Environmental Protection Agency maximum contaminant level (MCL) for chloride (250 mg/L). However, sulfate, fluoride, and trihalomethane concentrations remained below MCLs during storage and recovery.Aquifer storage recovery (ASR) was tested in the Santee Limestone/Black Mingo Aquifer near Charleston, South Carolina, to assess the feasibility for subsurface storage of treated drinking water. Water quality data obtained during two representative ASR tests were interpreted to show three things: (1) recovery efficiency of ASR in this geological setting; (2) possible changes in physical characteristics of the aquifer during ASR testing; and (3) water quality changes and potability of recovered water during short (one- and six-day) storage durations in the predominantly

  20. Comparison of aquifer characteristics derived from local and regional aquifer tests.

    USGS Publications Warehouse

    Randolph, R.B.; Krause, R.E.; Maslia, M.L.

    1985-01-01

    A comparison of the aquifer parameter values obtained through the analysis of a local and a regional aquifer test involving the same area in southeast Georgia is made in order to evaluate the validity of extrapolating local aquifer-test results for use in large-scale flow simulations. Time-drawdown and time-recovery data were analyzed by using both graphical and least-squares fitting of the data to the Theis curve. Additionally, directional transmissivity, transmissivity tensor, and angle of anisotropy were computed for both tests. -from Authors Georgia drawdown transmissivity regional aquifer tests

  1. Seismicity of California's north coast

    USGS Publications Warehouse

    Bakun, W.H.

    2000-01-01

    At least three moment magnitude (M) 7 earthquakes occurred along California's north coast in the second half of the nineteenth century. The M 7.3 earthquake on 23 November 1873 occurred near the California-Oregon coast and likely was located on the Cascadia subduction zone or within the North American plate. The M 7.0 + earthquake on 9 May 1878 was located about 75 km offshore near the Mendocino fault. The surface-wave magnitude (M(s)) 7.0 earthquake on 16 April 1899 was located about 150 km offshore within the Gorda plate. There were at least three M 7 north-coast earthquakes in the 35 years before 1906, two M 7 earthquakes in the 20 years after 1906, no M 7 earthquakes from 1923 until 1980, and four M 7 earthquakes since 1980. The relative seismic quiescence after 1906 for M 7 earthquakes along California's north coast mimics the post-1906 seismic quiescence in the San Francisco Bay area for M 6 earthquakes. The post-1906 relative quiescence did not extend to lower magnitudes in either area. The 18 April 1906 earthquake apparently influenced the rate of occurrence of M 7 north-coast earthquakes as it apparently influenced the rate of M 6 earthquakes in the San Francisco Bay area. The relative seismic quiescence along the California north-coast region after 1906 should be taken into account when evaluating seismic hazards in northwest California.

  2. Effects on the shallow artesian aquifer of withdrawing water from the deep artesian aquifer near Sugarville, Millard County, Utah

    USGS Publications Warehouse

    Mower, R.W.

    1963-01-01

    Ground water occurs in a shallow (unconfined) aquifer and in at least two artesian (confined) aquifers in the unconsolidated alluvial material composing the valley fill near Sugarville, Utah. No wells are known to withdraw water from the unconfined aquifer, and this report is limited to a discussion of the effects of pumping a well tapping one artesian aquifer on the piezometric surfaces of the water in both artesian aquifers.

  3. Simulation of surfactant-enhanced aquifer remediation

    SciTech Connect

    Brown, C.L.; Pope, G.A.; Sepehrnoori, K.; Abriola, L.M.

    1994-11-01

    This paper demonstrates that surfactant-enhanced aquifer remediation (SEAR) can be modeled in two and three dimensions using a finite-difference simulator and incorporating realistic heterogenieties in aquifer properties and complex surfactant chemistry based upon a multicomponent, multiphase compositional description of the experimental chemistry. The presented simulations provide significant new insights into the SEAR process. The effectiveness of SEAR is sensitive to many variables including the initial infiltration rate of DNAPL, the natural hydraulic gradient, well locations, well pumping and injection rates, aquifer heterogenieties, and properties such as cappillary pressure, relative permeability, and surfactant chemistry. In this paper a comprehensive model for SEAR is presented and applied to explore the potential performance of this technology on an aquifer scale. This study illustrates the value of modeling in SEAR design, how this modeling can be accomplished, what information is necessary, and what kinds of results modeling can be expected to produce.

  4. Steam Injection For Soil And Aquifer Remediation

    EPA Pesticide Factsheets

    The purpose of this Issue Paper is to provide to those involved in assessing remediation technologies for specific sites basic technical information on the use of steam injection for the remediation of soils and aquifers that are contaminated by...

  5. Vulnerability of unconfined aquifers to virus contamination.

    PubMed

    Schijven, J F; Hassanizadeh, S Majid; de Roda Husman, Ana Maria

    2010-02-01

    An empirical formula was developed for determining the vulnerability of unconfined sandy aquifers to virus contamination, expressed as a dimensionless setback distance r(s)(*). The formula can be used to calculate the setback distance required for the protection of drinking water production wells against virus contamination. This empirical formula takes into account the intrinsic properties of the virus and the unconfined sandy aquifer. Virus removal is described by a rate coefficient that accounts for virus inactivation and attachment to sand grains. The formula also includes pumping rate, saturated thickness of the aquifer, depth of the screen of the pumping well, and anisotropy of the aquifer. This means that it accounts also for dilution effects as well as horizontal and vertical virus transport. Because the empirical model includes virus source concentration it can be used as an integral part of a quantitative viral risk assessment.

  6. The allocation of aquifer resources in Scotland

    NASA Astrophysics Data System (ADS)

    Robins, N. S.

    1987-02-01

    The traditional role of aquifers for groundwater supply may not be appropriate in some areas of Scotland where high rainfall, low evapotranspiration, and abundant upland catchments and storage areas yield more than adequate surface water supplies. Some groundwater will always be required to satisfy specific needs but much aquifer potential will remain untapped. It is suggested that some of this potential could usefully be allocated to the disposal of wastes including oiled beach material, or the storage of heat or fluids, any of which could contaminate the aquifer. Care will be required to ensure that surface waters and other amenities are not put at risk. Resolution of conflicts between water supply and waste disposal usage of an aquifer requires guidelines; suggestions are made for their formulation and the need for legislative and planning controls is outlined.

  7. Estimated Withdrawals from Stream-Valley Aquifers and Refined Estimated Withdrawals from Selected Aquifers in the United States, 2000

    USGS Publications Warehouse

    Sargent, B. Pierre; Maupin, Molly A.; Hinkle, Stephen R.

    2008-01-01

    The U.S. Geological Survey National Water Use Information Program compiles estimates of fresh ground-water withdrawals in the United States on a 5-year interval. In the year-2000 compilation, withdrawals were reported from principal aquifers and aquifer systems including two general aquifers - Alluvial and Other aquifers. Withdrawals from a widespread aquifer group - stream-valley aquifers - were not specifically identified in the year-2000 compilation, but they are important sources of ground water. Stream-valley aquifers are alluvial aquifers located in the valley of major streams and rivers. Stream-valley aquifers are long but narrow aquifers that are in direct hydraulic connection with associated streams and limited in extent compared to most principal aquifers. Based in large part on information published in U.S. Geological Survey reports, preliminary analysis of withdrawal data and hydrogeologic and surface-water information indicated areas in the United States where possible stream-valley aquifers were located. Further assessment focused on 24 states and the Commonwealth of Puerto Rico. Withdrawals reported from Alluvial aquifers in 16 states and withdrawals reported from Other aquifers in 6 states and the Commonwealth of Puerto Rico were investigated. Two additional States - Arkansas and New Jersey - were investigated because withdrawals reported from other principal aquifers in these two States may be from stream-valley aquifers. Withdrawals from stream-valley aquifers were identified in 20 States and were about 1,560 Mgal/d (million gallons per day), a rate comparable to withdrawals from the 10 most productive principal aquifers in the United States. Of the 1,560 Mgal/d of withdrawals attributed to stream-valley aquifers, 1,240 Mgal/d were disaggregated from Alluvial aquifers, 150 Mgal/d from glacial sand and gravel aquifers, 116 Mgal/d from Other aquifers, 28.1 Mgal/d from Pennsylvanian aquifers, and 24.9 Mgal/d from the Mississippi River Valley alluvial

  8. 27 CFR 9.30 - North Coast.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false North Coast. 9.30 Section... Coast. (a) Name. The name of the viticultural area described in this section is “North Coast.” (b) Approved maps. The appropriate maps for determining the boundaries of the North Coast viticultural area are...

  9. 27 CFR 9.30 - North Coast.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false North Coast. 9.30 Section... Coast. (a) Name. The name of the viticultural area described in this section is “North Coast.” (b) Approved maps. The appropriate maps for determining the boundaries of the North Coast viticultural area are...

  10. 27 CFR 9.104 - South Coast.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false South Coast. 9.104 Section... Coast. (a) Name. The name of the viticultural area described in this section is “South Coast.” (b) Approved maps. The appropriate maps for determining the boundaries of South Coast viticultural area are...

  11. 27 CFR 9.104 - South Coast.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false South Coast. 9.104 Section... Coast. (a) Name. The name of the viticultural area described in this section is “South Coast.” (b) Approved maps. The appropriate maps for determining the boundaries of South Coast viticultural area are...

  12. 27 CFR 9.30 - North Coast.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false North Coast. 9.30 Section... Coast. (a) Name. The name of the viticultural area described in this section is “North Coast.” (b) Approved maps. The appropriate maps for determining the boundaries of the North Coast viticultural area are...

  13. 27 CFR 9.104 - South Coast.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false South Coast. 9.104 Section... Coast. (a) Name. The name of the viticultural area described in this section is “South Coast.” (b) Approved maps. The appropriate maps for determining the boundaries of South Coast viticultural area are...

  14. 27 CFR 9.30 - North Coast.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false North Coast. 9.30 Section... Coast. (a) Name. The name of the viticultural area described in this section is “North Coast.” (b) Approved maps. The appropriate maps for determining the boundaries of the North Coast viticultural area are...

  15. 27 CFR 9.104 - South Coast.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false South Coast. 9.104 Section... Coast. (a) Name. The name of the viticultural area described in this section is “South Coast.” (b) Approved maps. The appropriate maps for determining the boundaries of South Coast viticultural area are...

  16. 27 CFR 9.104 - South Coast.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false South Coast. 9.104 Section... Coast. (a) Name. The name of the viticultural area described in this section is “South Coast.” (b) Approved maps. The appropriate maps for determining the boundaries of South Coast viticultural area are...

  17. 27 CFR 9.30 - North Coast.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false North Coast. 9.30 Section... Coast. (a) Name. The name of the viticultural area described in this section is “North Coast.” (b) Approved maps. The appropriate maps for determining the boundaries of the North Coast viticultural area are...

  18. OXIDATION-REDUCTION CAPACITIES OF AQUIFER SOLIDS

    EPA Science Inventory

    Measurements of the oxidation (i.e., of aqueous Cr2+) and reduction (i.e., of aqueous Cr2O72- and H202) capacities of aquifer solids and groundwater have been made on samples from a sand-and-gravel aquifer. The gro...

  19. Honduras: Caribbean Coast.

    PubMed

    Harborne, A R; Afzal, D C; Andrews, M J

    2001-12-01

    The coast of Honduras, Central America, represents the southern end of the Mesoamerican Barrier Reef System, although its marine resources are less extensive and studied than nearby Belize and Mexico. However, the coastal zone contains mainland reef formations, mangroves, wetlands, seagrass beds and extensive fringing reefs around its offshore islands, and has a key role in the economy of the country. Like most tropical areas, this complex of benthic habitats experiences limited annual variation in climatic and oceanographic conditions but seasonal and occasional conditions, particularly coral bleaching and hurricanes, are important influences. The effects of stochastic factors on the country's coral reefs were clearly demonstrated during 1998 when Honduras experienced a major hurricane and bleaching event. Any natural or anthropogenic impacts on reef health will inevitably affect other countries in Latin America, and vice versa, since the marine resources are linked via currents and the functioning of the system transcends political boundaries. Much further work on, for example, movement of larvae and transfer of pollutants is required to delineate the full extent of these links. Anthropogenic impacts, largely driven by the increasing population and proportion of people living in coastal areas, are numerous and include key factors such as agricultural run-off, over-fishing, urban and industrial pollution (particularly sewage) and infrastructure development. Many of these threats act synergistically and, for example, poor watershed management via shifting cultivation, increases sedimentation and pesticide run-off onto coral reefs, which increases stress to corals already affected by decreasing water quality and coral bleaching. Threats from agriculture and fishing are particularly significant because of the size of both industries. The desire to generate urgently required revenue within Honduras has also led to increased tourism which provides an overarching stress

  20. Aquifers of the Denver Basin, Colorado

    USGS Publications Warehouse

    Topper, R.

    2004-01-01

    Development of the Denver Basin for water supply has been ongoing since the late 1800s. The Denver Basin aquifer system consists of the water-yielding strata of Tertiary and Cretaceous sedimentary rocks within four overlying formations. The four statutory aquifers contained in these formations are named the Dawson, Denver, Arapahoe, and Laramie-Fox Hills. For water rights administrative purposes, the outcrop/subcrop of the Laramie-Fox Hills aquifer defines the margins of the Basin. Initial estimates of the total recoverable groundwater reserves in storage, under this 6700-mi2 area, were 295 million acre-ft. Recent geologic evidence indicates that the aquifers are very heterogeneous and their composition varies significantly with distance from the source area of the sediments. As a result, available recoverable reserves may be one-third less than previously estimated. There is no legal protection for pressure levels in the aquifer, and water managers are becoming increasingly concerned about the rapid water level declines (30 ft/yr). Approximately 33,700 wells of record have been completed in the sedimentary rock aquifers of the Denver Basin for municipal, industrial, agricultural, and domestic uses.

  1. Aquifer test results, Green Swamp area, Florida

    USGS Publications Warehouse

    Tibbals, C.H.; Grubb, Hayes F.

    1982-01-01

    An aquifer test conducted in the Green Swamp area December 15-16 , 1975 was designed to stress the uppermost part of the Floridan aquifer so that the leakage characteristics of the overlying confining bed could be determined. A well tapping the upper part of the Floridan aquifer was pumped at a rate of about 1,040 gallons per minute for 35 hours; drawdown was measured in the Floridan aquifer and in two horizons in the confining bed. Analysis of the data indicates that the transmissivity of the uppper 160 feet of the Floridan is 13,000 square feet per day, the storage coefficient is about 0.0002.5, and the overlying confining bed leakance coefficient is about 0.02 to 0.025 per day. The vertical hydraulic diffusivity of the confining bed ranged from 610 square feet per day to 16,000 square feet per day. Results of the test indicate that, in the area of the test site, a Floridan aquifer well field would induce additional recharge to the Floridan. As a result of that increased recharge , water levels in the surficial aquifer would tend to stand lower, runoff from the area would tend to be less, and, perhaps, evapotranspiration would be less than normal.(USGS)

  2. Estimating aquifer thickness using multiple pumping tests

    NASA Astrophysics Data System (ADS)

    Maréchal, Jean-Christophe; Vouillamoz, Jean-Michel; Mohan Kumar, M. S.; Dewandel, Benoit

    2010-12-01

    A method to estimate aquifer thickness and hydraulic conductivity has been developed, consisting of multiple pumping tests. The method requires short-duration pumping cycles on an unconfined aquifer with significant seasonal water-table fluctuations. The interpretation of several pumping tests at a site in India under various initial conditions provides information on the change in hydrodynamic parameters in relation to the initial water-table level. The transmissivity linearly decreases compared with the initial water level, suggesting a homogeneous distribution of hydraulic conductivity with depth. The hydraulic conductivity is estimated from the slope of this linear relationship. The extrapolation of the relationship between transmissivity and water level provides an estimate of the aquifer thickness that is in good agreement with geophysical investigations. The hydraulically active part of the aquifer is located in both the shallow weathered and the underlying densely fractured zones of the crystalline basement. However, no significant relationship is found between the aquifer storage coefficient and initial water level. This new method contributes to filling the methodological gap between single pumping tests and hydraulic tomography, in providing information on the variation of the global transmissivity according to depth. It can be applied to any unconfined aquifer experiencing large seasonal water-table fluctuations and short pumping cycles.

  3. Sea-level rise impacts on seawater intrusion in coastal aquifers: Review and integration

    NASA Astrophysics Data System (ADS)

    Ketabchi, Hamed; Mahmoodzadeh, Davood; Ataie-Ashtiani, Behzad; Simmons, Craig T.

    2016-04-01

    Sea-level rise (SLR) influences groundwater hydraulics and in particular seawater intrusion (SWI) in many coastal aquifers. The quantification of the combined and relative impacts of influential factors on SWI has not previously been considered in coastal aquifers. In the present study, a systematic review of the available literature on this topic is first provided. Then, the potential remaining challenges are scrutinized. Open questions on the effects of more realistic complexities such as gradual SLR, parameter uncertainties, and the associated influences in decision-making models are issues requiring further investigation. We assess and quantify the seawater toe location under the impacts of SLR in combination with recharge rate variations, land-surface inundation (LSI) due to SLR, aquifer bed slope variation, and changing landward boundary conditions (LWBCs). This is the first study to include all of these factors in a single analysis framework. Both analytical and numerical models are used for these sensitivity assessments. It is demonstrated that (1) LSI caused by SLR has a significant incremental impact on the seawater toe location, especially in the flatter coasts and the flux-controlled (FC) LWBCs, however this impact is less than the reported orders of magnitude differences which were estimated using only analytical solutions; (2) LWBCs significantly influence the SLR impacts under almost all conditions considered in this study; (3) The main controlling factors of seawater toe location are the magnitudes of fresh groundwater discharge to sea and recharge rate. Regional freshwater flux entering from the landward boundary and the groundwater hydraulic gradient are the major contributors of fresh groundwater discharge to sea for both FC and head-controlled (HC) systems, respectively; (4) A larger response of the aquifer and larger seawater toe location changes are demonstrable for a larger ratio of the aquifer thickness to the aquifer length particularly in

  4. A General Solution for Groundwater Flow in Estuarine Leaky Aquifer System with Considering Aquifer Anisotropy

    NASA Astrophysics Data System (ADS)

    Chen, Po-Chia; Chuang, Mo-Hsiung; Tan, Yih-Chi

    2014-05-01

    In recent years the urban and industrial developments near the coastal area are rapid and therefore the associated population grows dramatically. More and more water demand for human activities, agriculture irrigation, and aquaculture relies on heavy pumping in coastal area. The decline of groundwater table may result in the problems of seawater intrusion and/or land subsidence. Since the 1950s, numerous studies focused on the effect of tidal fluctuation on the groundwater flow in the coastal area. Many studies concentrated on the developments of one-dimensional (1D) and two-dimensional (2D) analytical solutions describing the tide-induced head fluctuations. For example, Jacob (1950) derived an analytical solution of 1D groundwater flow in a confined aquifer with a boundary condition subject to sinusoidal oscillation. Jiao and Tang (1999) derived a 1D analytical solution of a leaky confined aquifer by considered a constant groundwater head in the overlying unconfined aquifer. Jeng et al. (2002) studied the tidal propagation in a coupled unconfined and confined costal aquifer system. Sun (1997) presented a 2D solution for groundwater response to tidal loading in an estuary. Tang and Jiao (2001) derived a 2D analytical solution in a leaky confined aquifer system near open tidal water. This study aims at developing a general analytical solution describing the head fluctuations in a 2D estuarine aquifer system consisted of an unconfined aquifer, a confined aquifer, and an aquitard between them. Both the confined and unconfined aquifers are considered to be anisotropic. The predicted head fluctuations from this solution will compare with the simulation results from the MODFLOW program. In addition, the solutions mentioned above will be shown to be special cases of the present solution. Some hypothetical cases regarding the head fluctuation in costal aquifers will be made to investigate the dynamic effects of water table fluctuation, hydrogeological conditions, and

  5. Aquifer Heterogeneity and Solute-Transport Modeling in the Floridan Aquifer System

    NASA Astrophysics Data System (ADS)

    Guo, W.; Maliva, R. G.; Missimer, T. M.

    2008-05-01

    The Floridan Aquifer System (FAS) is one of the most prolific aquifers in the world and is widely used for public and irrigation water supply. The FAS is also increasingly being used as a storage zone for aquifer storage and recovery (ASR) systems, including a 333-well system that is planned as part of the Comprehensive Everglades Restoration Plan (CERP). The FAS is highly heterogeneous with respect to hydraulic conductivity, with meter- scale inter-bed variation exceeding seven orders of magnitude in some cases, even in South Florida where mega-karst is not well developed. Aquifer heterogeneity can have a major impact on ASR system performance because of its affects on the movement and mixing of stored water. Aquifer heterogeneity poses challenges for accurate modeling of the FAS, including solute transport modeling of ASR systems and variable density flow modeling of the freshwater/saltwater interface along coastal areas. Dispersivity is an important parameter in solute transport modeling, which is associated with aquifer heterogeneity. Commonly the values of dispersivity used in solute-transport modeling are derived from literature review and adjusted during model calibration process. Artificially large dispersivity values are often used in solute-transport models of ASR systems as a "fudge factor" to simulate the apparent greater mixing caused by inter-bed heterogeneity. This approach is problematic because the use of artificial hydraulic parameters for calibration opens the results of predictive simulations to question. The use of large dispersivity values to simulate aquifer heterogeneity also does not incorporate other impacts of aquifer heterogeneity, such as differential flow rates and migration distances between beds. The technical challenge is to incorporate aquifer heterogeneity into groundwater models at a scale that is sufficient to adequately simulate its effect on ASR system performance and coastal groundwater flow, while maintaining acceptable

  6. Digital data sets that describe aquifer characteristics of the Elk City Aquifer in western Oklahoma

    USGS Publications Warehouse

    Becker, C.J.; Runkle, D.L.; Rea, Alan

    1997-01-01

    ARC/INFO export and nonproprietary format files This diskette contains digitized aquifer boundaries and maps of hydraulic conductivity, recharge, and ground-water level elevation contours for the Elk City aquifer in western Oklahoma. The aquifer covers an area of approximately 193,000 acres and supplies ground water for irrigation, domestic, and industrial purposes in Beckham, Custer, Roger Mills, and Washita Counties along the divide between the Washita and Red River basins. The Elk City aquifer consists of the Elk City Sandstone and overlying terrace deposits, made up of clay, silt, sand and gravel, and dune sands in the eastern part and sand and gravel of the Ogallala Formation (or High Plains aquifer) in the western part of the aquifer. The Elk City aquifer is unconfined and composed of very friable sandstone, lightly cemented with clay, calcite, gypsum, or iron oxide. Most of the grains are fine-sized quartz but the grain size ranges from clay to cobble in the aquifer. The Doxey Shale underlies the Elk City aquifer and acts as a confining unit, restricting the downward movement of ground water. All of the data sets were digitized and created from information and maps in a ground-water modeling thesis and report of the Elk City aquifer. The maps digitized were published at a scale of 1:63,360. Ground-water flow models are numerical representations that simplify and aggregate natural systems. Models are not unique; different combinations of aquifer characteristics may produce similar results. Therefore, values of hydraulic conductivity and recharge used in the model and presented in this data set are not precise, but are within a reasonable range when compared to independently collected data.

  7. Hydrology of the southern parts of Okaloosa and Walton Counties, northwest Florida, with special emphasis on the upper limestone of the Floridan Aquifer

    USGS Publications Warehouse

    Barr, D.E.; Hayes, L.R.; Kwader, Thomas

    1985-01-01

    Increasing population in southern Okaloosa and Walton Counties have resulted in regional declines in the potentiometric surface of the upper limestone of the Floridan aquifer. Water levels have declined as much as 160 feet since 1940, and during peak seasonal demand as much as 190 feet. The Pensacola clay confining bed inhibits interchange of water between the Floridan aquifer and the surficial sand-and-gravel aquifer. The latter aquifer is of secondary importance as a public supply source. The Bucatunna clay confining bed separates the Floridan into upper and lower limestone units; the Floridan is underlain by the relatively impermeable Lisbon/Tallahatta confining unit. The Floridan aquifer dips south to the Gulf of Mexico, and is recharged by rainfall in northern Okaloosa and Walton Counties and in Alabama. The regional gradient of the potentiometric surface of the upper limestone, and presumably that of the lower limstone also, is south. Pumpage was variable in 1978; from 10.9 to 19.0 million gallons per day in January and June, respectively. Saline water in the upper limestone of the Floridan aquifer is less than 10 milligrams per liter inland but may be more than 150 milligrams per liter along the coast. Lower limestone water may exceed 250 milligrams per liter chloride. (USGS)

  8. 75 FR 51684 - Magnuson-Stevens Act Provisions; Fisheries Off West Coast States; Pacific Coast Groundfish...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-23

    ...; Fisheries Off West Coast States; Pacific Coast Groundfish Fishery; Inseason Adjustments to Fishery... coasts of Washington, Oregon, and California. These actions, which are authorized by the Pacific Coast... for the Pacific Coast groundfish fishery (73 FR 80516). The final rule to implement the 2009-2010...

  9. Geopressured-Geothermal Drilling and Testing Plan, Volume II, Testing Plan; Dow Chemical Co. - Dept. of Energy Dow-DOE Sweezy No. 1 Well, Vermilion Parish, Louisiana

    SciTech Connect

    1982-02-01

    The Dow/D.O.E. L. R. Sweezy No. 1 geopressured geothermal production well was completed in August of 1981. The well was perforated and gravel packed in approximately 50 feet of sand from 13,344 feet to 13,395 feet. Permeabilities of 6 to 914 millidarcies were measured with porosity of 25 to 36%. Static surface pressure after well clean-up was 5000 psi. At 1000 B/D flow rate the drawdown was 50 psi. The water produced in clean-up contained 100,000 ppm TDS. This report details the plan for testing this well with the goal of obtaining sufficient data to define the total production curve of the small, 939 acre, reservoir. A production time of six to nine months is anticipated. The salt water disposal well is expected to be completed and surface equipment installed such that production testing will begin by April 1, 1982. The program should be finished and reports written by February 28, 1983. The brine will be produced from the No.1 well, passed through a separator where the gas is removed, then reinjected into the No.2 (SWD) well under separator pressure. Flow rates of up to 25,000 B/D are expected. The tests are divided into a two-week short-term test and six to nine-month long-term tests with periodic downhole measurement of drawdown and buildup rates. Data obtained in the testing will be relayed by phoneline computer hookup to Otis Engineering in Dallas, Texas, where the reservoir calculations and modeling will be done. At the point where sufficient data has been obtained to reach the objectives of the program, production will be ended, the wells plugged and abandoned, and a final report will be issued.

  10. Effect of 2004 tsunami on groundwater in a coastal aquifer of Sri Lanka: Tank experiments, field observations and numerical modelling (Invited)

    NASA Astrophysics Data System (ADS)

    Vithanage, M. S.; Engesgaard, P. K.; Jensen, K. H.; Obeysekera, J.; Villholth, K. G.; Illangasekare, T. H.

    2009-12-01

    December 2004 tsunami provided a motivation to study the impact of the tsunami on shallow groundwater systems in the east coast of Sri Lanka. This particular natural hazard devastated the coastal aquifer systems of many countries in the region. Field investigations were carried out in a transect, located at the eastern coast Sri Lanka, perpendicular to the coastline on a 2.4 km wide sand stretch bounded by the sea and a lagoon and was partly destructed by the wave. Measurements of groundwater table and electrical conductivity of the groundwater were carried out from October, 2005 to September, 2006. Also, few physical experiments were undertaken in an intermediate scale tank (5 m long, 1.2 m tall and 0.05 m width) with three different subsurface configurations. Physical experimental setup, the field aquifer system and saltwater contamination was modeled using HST3D, a variable density flow and solute transport code, based on observations made in the field with the aim to understand the tsunami plume behavior and estimate the aquifer cleansing time. Physical experiments demonstrated that the tsunami saltwater plume entered into the aquifer is highly unstable and the flush-out times depend on the hydrostratigraphy of the media. Also fresh water recharge pushes the saltwater deeper into the aquifer slowing the total aquifer flush-out time. Electrical conductivity values in the field showed a reduction with the monsoonal rainfall following the tsunami while the rate of reduction was low during the dry season. With the freshwater recharge by the monsoon rainfall, the upper part of the aquifer (top 4.5 m) had returned to fresh groundwater conditions (EC<1000 μS/cm) around mid 2007. Although the top 6 m of the aquifer becomes fresh (<1000 μS/cm) in 5 years, it may take up to more than 15 years for the whole aquifer to fully clean. Also, the EC and some chemical parameters in the field showed that the post-tsunami well cleaning and pumping has likely led to retention of

  11. Detection of coastal and submarine discharge on the Florida Gulf Coast with an airborne thermal-infrared mapping system

    USGS Publications Warehouse

    Raabe, Ellen; Stonehouse, David; Ebersol, Kristin; Holland, Kathryn; Robbins, Lisa

    2011-01-01

    Along the Gulf Coast of Florida north of Tampa Bay lies a region characterized by an open marsh coast, low topographic gradient, water-bearing limestone, and scattered springs. The Floridan aquifer system is at or near land surface in this region, discharging water at a consistent 70-72°F. The thermal contrast between ambient water and aquifer discharge during winter months can be distinguished using airborne thermal-infrared imagery. An airborne thermal-infrared mapping system was used to collect imagery along 126 miles of the Gulf Coast from Jefferson to Levy County, FL, in March 2009. The imagery depicts a large number of discharge locations and associated warm-water plumes in ponds, creeks, rivers, and nearshore waters. A thermal contrast of 6°F or more was set as a conservative threshold for identifying sites, statistically significant at the 99% confidence interval. Almost 900 such coastal and submarine-discharge locations were detected, averaging seven to nine per mile along this section of coast. This represents approximately one hundred times the number of previously known discharge sites in the same area. Several known coastal springs in Taylor and Levy Counties were positively identified with the imagery and were used to estimate regional discharge equivalent to one 1st-order spring, discharging 100 cubic feet per second or more, for every two miles of coastline. The number of identified discharge sites is a conservative estimate and may represent two-thirds of existing features due to low groundwater levels at time of overflight. The role of aquifer discharge in coastal and estuarine health is indisputable; however, mapping and quantifying discharge in a complex karst environment can be an elusive goal. The results of this effort illustrate the effectiveness of the instrument and underscore the influence of coastal springs along this stretch of the Florida coast.

  12. Aquifer Storage Recovery (ASR) of chlorinated municipal drinking water in a confined aquifer

    USGS Publications Warehouse

    Izbicki, John A.; Petersen, Christen E.; Glotzbach, Kenneth J.; Metzger, Loren F.; Christensen, Allen H.; Smith, Gregory A.; O'Leary, David R.; Fram, Miranda S.; Joseph, Trevor; Shannon, Heather

    2010-01-01

    About 1.02 x 106 m3 of chlorinated municipal drinking water was injected into a confined aquifer, 94-137 m below Roseville, California, between December 2005 and April 2006. The water was stored in the aquifer for 438 days, and 2.64 x 106 m3 of water were extracted between July 2007 and February 2008. On the basis of Cl data, 35% of the injected water was recovered and 65% of the injected water and associated disinfection by-products (DBPs) remained in the aquifer at the end of extraction. About 46.3 kg of total trihalomethanes (TTHM) entered the aquifer with the injected water and 37.6 kg of TTHM were extracted. As much as 44 kg of TTHMs remained in the aquifer at the end of extraction because of incomplete recovery of injected water and formation of THMs within the aquifer by reactions with freechlorine in the injected water. Well-bore velocity log data collected from the Aquifer Storage Recovery (ASR) well show as much as 60% of the injected water entered the aquifer through a 9 m thick, high-permeability layer within the confined aquifer near the top of the screened interval. Model simulations of ground-water flow near the ASR well indicate that (1) aquifer heterogeneity allowed injected water to move rapidly through the aquifer to nearby monitoring wells, (2) aquifer heterogeneity caused injected water to move further than expected assuming uniform aquifer properties, and (3) physical clogging of high-permeability layers is the probable cause for the observed change in the distribution of borehole flow. Aquifer heterogeneity also enhanced mixing of native anoxic ground water with oxic injected water, promoting removal of THMs primarily through sorption. A 3 to 4-fold reduction in TTHM concentrations was observed in the furthest monitoring well 427 m downgradient from the ASR well, and similar magnitude reductions were observed in depth-dependent water samples collected from the upper part of the screened interval in the ASR well near the end of the extraction

  13. Groundwater studies: principal aquifer surveys

    USGS Publications Warehouse

    Burow, Karen R.; Belitz, Kenneth

    2014-01-01

    In 1991, the U.S. Congress established the National Water-Quality Assessment (NAWQA) program within the U.S. Geological Survey (USGS) to develop nationally consistent long-term datasets and provide information about the quality of the Nation’s streams and groundwater. The USGS uses objective and reliable data, water-quality models, and systematic scientific studies to assess current water-quality conditions, to identify changes in water quality over time, and to determine how natural factors and human activities affect the quality of streams and groundwater. NAWQA is the only non-regulatory Federal program to perform these types of studies; participation is voluntary. In the third decade (Cycle 3) of the NAWQA program (2013–2023), the USGS will evaluate the quality and availability of groundwater for drinking supply, improve our understanding of where and why water quality is degraded, and assess how groundwater quality could respond to changes in climate and land use. These goals will be addressed through the implementation of a new monitoring component in Cycle 3: Principal Aquifer Surveys.

  14. Distributional Scaling in Heterogeneous Aquifers

    NASA Astrophysics Data System (ADS)

    Polsinelli, J. F.

    2015-12-01

    An investigation is undertaken into the fractal scaling properties of the piezometric head in a heterogeneous unconfined aquifer. The governing equations for the unconfined flow are derived from conservation of mass and the Darcy law. The Dupuit approximation will be used to model the dynamics. The spatially varying nature of the tendency to conduct flow (e.g. the hydraulic conductivity) is represented as a stochastic process. Experimental studies in the literature have indicated that the conductivity belongs to a class of non-stationary stochastic fields, called H-ss fields. The uncertainty in the soil parameters is imparted onto the flow variables; in groundwater investigations the potentiometric head will be a random function. The structure of the head field will be analyzed with an emphasis on the scaling properties. The scaling scheme for the modeling equations and the simulation procedure for the saturated hydraulic conductivity process will be explained, then the method will be validated through numerical experimentation using the USGS Modflow-2005 software. The results of the numerical simulations demonstrate that the head will exhibit multi-fractal scaling if the hydraulic conductivity exhibits multi-fractal scaling and the differential equations for the groundwater equation satisfy a particular set of scale invariance conditions.

  15. A dynamic perennial firn aquifer

    NASA Astrophysics Data System (ADS)

    Kohler, J.; Christianson, K.; van Pelt, W. J. J.

    2015-12-01

    Ice-penetrating radar and GPS observations are used to reveal a perennial firn aquifer (PFA) on a high icefield in Svalbard. This PFA appears to be fully analogous to those found in Greenland. A bright, widespread radar reflector separates relatively dry and water-saturated firn. This surface, the phreatic firn water table, is deeper beneath local surface elevation maxima, shallower in surface lows, and steeper where the surface is steep. The PFA is recharged by downward percolation of near-surface meltwater, and drained by flow subparallel to ice flow and the glacier surface. The water table of the PFA rises with increasing meltwater supply during summer, especially during warm years, and drops during winter. The reflector cross-cuts snow stratigraphy; we use the apparent deflection of accumulation layers due to the higher dielectric permittivity below the water table to infer that the firn pore space becomes progressively more saturated as depth increases. Radar data collected over several years indicate that the PFA responds rapidly (sub-annually) to the surface melt forcing. We use a coupled surface energy-balance and firn model, forced with from regional climate model data for the years 1961-2012, to estimate the amount of retained surface melt available to recharge the PFA. Results suggest that the water amount flowing into and out of the PFA is substantial, such that the PFA is capable of providing significant input to the englacial hydrology system.

  16. Groundwater Quality and Quantity in a Coastal Aquifer Under High Human Pressure: Understand the Aquifer Functioning and the Social Perception of Water Use for a Better Water Management. Example of Recife (PE, Brazil)

    NASA Astrophysics Data System (ADS)

    Petelet-Giraud, E.; Cary, L.; Bertrand, G.; Alves, L. M.; Cary, P.; Giglio-Jacquemot, A.; Aquilina, L.; Hirata, R.; Montenegro, S.; Aurouet, A.; Franzen, M.; Chatton, E.

    2015-12-01

    The Recife Metropolitan Region is a typical "hot spot" illustrating the problems of southern countries on water issues inducing high pressures on water resources both on quantity and quality in the context of global social and environmental changes. This study is based on an interdisciplinary approach, coupling "hard" geosciences together with "soft" social sciences with the aim to study the human impact on coastal aquifers in a context of overexploitation to improve the existing water management tools. By revisiting the geological and hydrogeological conceptual models, field campaigns of groundwater and surface water sampling and analysis, and of interviews of different actors on the theme of water supply and management in Recife Metropolitan Region, the main results can be summarized as follows: (1) The recharge of the deep strategic confined aquifers is very limited resulting in water level decrease (up to -90m in 25y) due to overexploitation. (2) Groundwater residence time in these deep aquifers is over 10,000 years. (3) The natural upward flux of these confined aquifers is observed inland, but is reversed in the heavily populated areas along the coast leading to mixing with modern groundwater coming from the shallow aquifers. (4) Groundwater salinization is inherited from the Pleistocene marine transgression, only partly diluted by the recharge through the mangroves during the subsequent regression phase. Today, leakage from surficial aquifers induces local salinization. (5) Local climatic scenarios predict a reduction of rainfall volume of 20% together with an increase of sea level (18-59cm by 2100). (5) The Public authorities tend to deny the difficulties that people, especially those in precarious situation, are confronted with regarding water, especially in times of drought. The COQUEIRAL research project is financially supported by ANR (ANR-11-CEPL-012); FACEPE (APQ-0077-3.07/11); FAPESP (2011/50553-0

  17. Preliminary delineation and description of the regional aquifers of Tennessee : the Highland Rim aquifer system

    USGS Publications Warehouse

    Brahana, J.V.; Bradley, M.W.

    1986-01-01

    The Highland Rim aquifer system in Tennessee is primarily composed of Mississippian carbonates and occurs west of the Valley and Ridge Province. It crops out in the Highland Rim and the Sequatchie Valley. It has been removed by erosion from the Central Basin. Groundwater in the Highland Rim aquifer system occurs primarily in secondary openings including solution openings, joints, and faults. The Chattanooga Shale is the lower confining layer for the Highland Rim aquifer system. Under the Cumberland plateau, this aquifer system is separated from the overlying Pennsylvanian formations by the Pennington Shale. The Highland Rim aquifer system is an important source of drinking water. It supplies most of the rural, domestic, and many public supplies of drinking water in the Highland Rim. Where there is a dynamic flow system, dissolved solids concentrations are less than 500 mg/L. However, isolated cells may exist where the groundwater has dissolved solids concentrations of more than 1 ,000 mg/L. (USGS)

  18. Review of Aquifer Storage and Recovery Performance in the Upper Floridan Aquifer in Southern Florida

    USGS Publications Warehouse

    Reese, Ronald S.

    2006-01-01

    Introduction: Interest and activity in aquifer storage and recovery (ASR) in southern Florida has increased greatly during the past 10 to 15 years. ASR wells have been drilled to the carbonate Floridan aquifer system at 30 sites in southern Florida, mostly by local municipalities or counties located in coastal areas. The primary storage zone at these sites is contained within the brackish to saline Upper Floridan aquifer of the Floridan aquifer system. The strategy for use of ASR in southern Florida is to store excess freshwater available during the wet season in an aquifer and recover it during the dry season when needed for supplemental water supply. Each ASR cycle is defined by three periods: recharge, storage, and recovery. This fact sheet summarizes some of the findings of a second phase retrospective assessment of existing ASR facilities and sites.

  19. Transport of enterococci and F+ coliphage through the saturated zone of the beach aquifer.

    PubMed

    de Sieyes, Nicholas R; Russell, Todd L; Brown, Kendra I; Mohanty, Sanjay K; Boehm, Alexandria B

    2016-02-01

    Coastal groundwater has been implicated as a source of microbial pollution to recreational beaches. However, there is little work investigating the transport of fecal microbes through beach aquifers where waters of variable salinity are present. In this study, the potential for fecal indicator organisms enterococci (ENT) and F+ coliphage to be transported through marine beach aquifers was investigated. Native sediment and groundwaters were collected from the fresh and saline sections of the subterranean estuary at three beaches along the California coast where coastal communities utilize septic systems for wastewater treatment. Groundwaters were seeded with sewage and removal of F+ coliphage and ENT by the sediments during saturated flow was tested in laboratory column experiments. Removal varied significantly between beach and organism. F+ coliphage was removed to a greater extent than ENT, and removal was greater in saline sediments and groundwater than fresh. At one of the three beaches, a field experiment was conducted to investigate the attenuation of F+ coliphage and ENT down gradient of a septic leach field. ENT were detected up to 24 m from the leach field. The column study and field observations together suggest ENT can be mobile within native aquifer sediments and groundwater under certain conditions.

  20. 77 FR 20337 - Fisheries Off West Coast States; Pacific Coast Groundfish Fishery; Advance Notice of Proposed...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-04

    ... West Coast States; Pacific Coast Groundfish Fishery; Advance Notice of Proposed Rulemaking Regarding... quota (IFQ) fishery and the at-sea mothership fishery of the Pacific Coast Groundfish Trawl...

  1. Stochastic analysis of virus transport in aquifers

    USGS Publications Warehouse

    Campbell, Rehmann L.L.; Welty, C.; Harvey, R.W.

    1999-01-01

    A large-scale model of virus transport in aquifers is derived using spectral perturbation analysis. The effects of spatial variability in aquifer hydraulic conductivity and virus transport (attachment, detachment, and inactivation) parameters on large-scale virus transport are evaluated. A stochastic mean model of virus transport is developed by linking a simple system of local-scale free-virus transport and attached-virus conservation equations from the current literature with a random-field representation of aquifer and virus transport properties. The resultant mean equations for free and attached viruses are found to differ considerably from the local-scale equations on which they are based and include effects such as a free-virus effective velocity that is a function of aquifer heterogeneity as well as virus transport parameters. Stochastic mean free-virus breakthrough curves are compared with local model output in order to observe the effects of spatial variability on mean one-dimensional virus transport in three-dimensionally heterogeneous porous media. Significant findings from this theoretical analysis include the following: (1) Stochastic model breakthrough occurs earlier than local model breakthrough, and this effect is most pronounced for the least conductive aquifers studied. (2) A high degree of aquifer heterogeneity can lead to virus breakthrough actually preceding that of a conservative tracer. (3) As the mean hydraulic conductivity is increased, the mean model shows less sensitivity to the variance of the natural-logarithm hydraulic conductivity and mean virus diameter. (4) Incorporation of a heterogeneous colloid filtration term results in higher predicted concentrations than a simple first-order adsorption term for a given mean attachment rate. (5) Incorporation of aquifer heterogeneity leads to a greater range of virus diameters for which significant breakthrough occurs. (6) The mean model is more sensitive to the inactivation rate of viruses

  2. Basement Aquifers : How Useful Are Gravity Data ?

    NASA Astrophysics Data System (ADS)

    Genthon, P.; Mouhouyouddine, A. H.; Hinderer, J.; Hector, B.; Yameogo, S.

    2014-12-01

    Gravity data with a few microgal precision were proved to be able to constrain the specific yield of various kinds of aquifer in West Africa from annual fluctuations of both the gravimetric and piezometric signals (Pfeffer et al., Geophys. J. Int., 2011; Hector et al., Geophys. J. Int., 2013). However some recent papers reported a disappointing potential of gravity measurements during a pumping experiment in a sandy aquifer (Blainey et al., WRR, 2007; Herckenrath et al., WRR, 2012) and their poor ability in constraining the transmissity and specific yield of the aquifer, which are the parameters to which pumping tests give access. Fresh basement rocks present generally a null porosity and the structure of basement aquifers is given by the weathering profile. In tropical climate, this profile consists of a few tens meter thick saprolite layer, with noticeable porosity but low permeability overlying the weathering front. This weathering front includes in many instances a fractured medium and presents a high permeability with variable porosity. It is hardly sampled in coring experiments. We present some numerical simulation results on the ability of gravity to constrain the transmissivity of this medium. Due to poroelasticity of clay minerals in the saprolite, soil subsidence is expected to occur during pumping with a significant gravity effect. Gravity measurements have therefore to be completed with leveling data at a millimetric precision. We present first the results of numerical modeling of the gravity and subsidence for a theoretical horizontally stratified basement aquifer, and show that gravity and leveling are able to provide independently the poroelasticity coefficient and a single transmissivity coefficient for the bottom of the aquifer, if the properties of the upper saprolites are known. We will discuss then the general case, where the aquifer presents a vertical fracture where the weathering profile thickens.

  3. A Black Hills-Madison Aquifer origin for Dakota Aquifer groundwater in northeastern Nebraska.

    PubMed

    Stotler, Randy; Harvey, F Edwin; Gosselin, David C

    2010-01-01

    Previous studies of the Dakota Aquifer in South Dakota attributed elevated groundwater sulfate concentrations to Madison Aquifer recharge in the Black Hills with subsequent chemical evolution prior to upward migration into the Dakota Aquifer. This study examines the plausibility of a Madison Aquifer origin for groundwater in northeastern Nebraska. Dakota Aquifer water samples were collected for major ion chemistry and isotopic analysis ((18)O, (2)H, (3)H, (14)C, (13)C, (34)S, (18)O-SO(4), (87)Sr, (37)Cl). Results show that groundwater beneath the eastern, unconfined portion of the study area is distinctly different from groundwater sampled beneath the western, confined portion. In the east, groundwater is calcium-bicarbonate type, with delta(18)O values (-9.6 per thousand to -12.4 per thousand) similar to local, modern precipitation (-7.4 per thousand to -10 per thousand), and tritium values reflecting modern recharge. In the west, groundwater is calcium-sulfate type, having depleted delta(18)O values (-16 per thousand to -18 per thousand) relative to local, modern precipitation, and (14)C ages 32,000 to more than 47,000 years before present. Sulfate, delta(18)O, delta(2)H, delta(34)S, and delta(18)O-SO(4) concentrations are similar to those found in Madison Aquifer groundwater in South Dakota. Thus, it is proposed that Madison Aquifer source water is also present within the Dakota Aquifer beneath northeastern Nebraska. A simple Darcy equation estimate of groundwater velocities and travel times using reported physical parameters from the Madison and Dakota Aquifers suggests such a migration is plausible. However, discrepancies between (14)C and Darcy age estimates indicate that (14)C ages may not accurately reflect aquifer residence time, due to mixtures of varying aged water.

  4. Position of the saltwater-freshwater interface in the upper part of the Floridan Aquifer, southwest Florida, 1979

    USGS Publications Warehouse

    Causseaux, K.W.; Fretwell, J.D.

    1982-01-01

    The position of the saltwater-freshwater transition zone in the Floridan aquifer along coastal southwest Florida is depicted by the 250 milligram per liter line of equal chloride concentration in the upper producing zone of the aquifer. The line was interpolated from chloride concentration data for wells open to the upper producing zone of the aquifer and plotted on a map having a scale of 1:250,000. The line generally lies inland within 5 miles of the coast in areas extending from latitude 29 degrees in Citrus County southward to southern Hillsborough County. In Manatee and Sarasota Counties, the line generally lies with 2 miles of the coast, except in southern Sarasota County where it extends eastward along the Charlotte-DeSoto County line. Knowledge about the position and movement of the 250 milligram per liter line is significant in the effective management of the ground-water resources of coastal areas. The present position of the line will be used as a basis for detecting future movement of the saltwater-freshwater interface. (USGS)

  5. Groundwater quality of the Gulf Coast aquifer system, Houston, Texas, 2010

    USGS Publications Warehouse

    Oden, Jeannette H.; Brown, Dexter W.; Oden, Timothy D.

    2011-01-01

    Gross alpha-particle activities and beta-particle activities for all 47 samples were analyzed at 72 hours after sample collection and again at 30 days after sample collection, allowing for the measurement of the activity of short-lived isotopes. Gross alpha-particle activities reported in this report were not adjusted for activity contributions by radon or uranium and, therefore, are conservatively high estimates if compared to the U.S. Environmental Protection Agency National Primary Drinking Water Regulation for adjusted gross alpha-particle activity. The gross alpha-particle activities at 30 days in the samples ranged from R0.60 to 25.5 picocuries per liter and at 72 hours ranged from 2.58 to 39.7 picocuries per liter, and the "R" preceding the value of 0.60 picocuries per liter refers to a nondetected result less than the sample-specific critical level. Gross beta-particle activities measured at 30 days ranged from 1.17 to 14.4 picocuries per liter and at 72 hours ranged from 1.97 to 4.4 picocuries per liter. Filtered uranium was detected in quantifiable amounts in all of the 47 wells sampled. The uranium concentrations ranged from 0.03 to 42.7 micrograms per liter. One sample was analyzed for carbon-14, and the amount of modern atmospheric carbon was reported as 0.2 percent. Six source-water samples collected from municipal supply wells were analyzed for radium-226, and all of the concentrations were considered detectable concentrations (greater than their associated sample-specific critical level). Three source-water samples collected were analyzed for radon-222, and all of the concentrations were substantially greater than the associated sample-specific critical level.

  6. Contaminants in the coastal karst aquifer system along the Caribbean coast of the Yucatan Peninsula, Mexico.

    PubMed

    Metcalfe, Chris D; Beddows, Patricia A; Bouchot, Gerardo Gold; Metcalfe, Tracy L; Li, Hongxia; Van Lavieren, Hanneke

    2011-04-01

    Intensive land development as a result of the rapidly growing tourism industry in the "Riviera Maya" region of the Yucatan Peninsula, Mexico may result in contamination of groundwater resources that eventually discharge into Caribbean coastal ecosystems. We deployed two types of passive sampling devices into groundwater flowing through cave systems below two communities to evaluate concentrations of contaminants and to indicate the possible sources. Pharmaceuticals and personal care products accumulated in the samplers could only have originated from domestic sewage. PAHs indicated contamination by runoff from highways and other impermeable surfaces and chlorophenoxy herbicides accumulated in samplers deployed near a golf course indicated that pesticide applications to turf are a source of contamination. Prevention and mitigation measures are needed to ensure that expanding development does not impact the marine environment and human health, thus damaging the tourism-based economy of the region.

  7. Hydrogeology and predevelopment flow in the Texas Gulf Coast aquifer systems

    USGS Publications Warehouse

    Ryder, Paul D.

    1988-01-01

    Total simulated recharge in the outcrop areas is 269 million cubic feet per day, which is offset by an equal amount of discharge in the outcrop areas. The smallest rates of leakage are across the Vicksburg-Jackson confining unit, with downward and upward rates of less than one million cubic feet per day. The greatest rate of leakage is 47 million cubic feet per day upward into the Holocene-upper Pleistocene permeable zone.

  8. Groundwater recharge to the Gulf Coast aquifer system in Montgomery and Adjacent Counties, Texas

    USGS Publications Warehouse

    Oden, Timothy D.; Delin, Geoffrey N.

    2013-01-01

    Simply stated, groundwater recharge is the addition of water to the groundwater system. Most of the water that is potentially available for recharging the groundwater system in Montgomery and adjacent counties in southeast Texas moves relatively rapidly from land surface to surface-water bodies and sustains streamflow, lake levels, and wetlands. Recharge in southeast Texas is generally balanced by evapotranspiration, discharge to surface waters, and the downward movement of water into deeper parts of the groundwater system; however, this balance can be altered locally by groundwater withdrawals, impervious surfaces, land use, precipitation variability, or climate, resulting in increased or decreased rates of recharge. Recharge rates were compared to the 1971–2000 normal annual precipitation measured Cooperative Weather Station 411956, Conroe, Tex.

  9. Dust Along the African Coast

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The Sea-viewing Wide field-of-view Sensor (SeaWiFS) captured this true color scene of dust streaming from the deserts along the southwestern coast of Africa into the Atlantic ocean on June 6, 2000. In late February and early March 2000 much larger dust storms swept dust from the Sahara desert all the way to Mexico and the East Coast of the United States. Provided by the SeaWiFS Project, NASA/Goddard Space Flight Center, and ORBIMAGE.

  10. Numerical Simulation of Groundwater Conditions in a Coastal Aquifer, Southern California, USA

    NASA Astrophysics Data System (ADS)

    Stolp, B. J.; Anders, R.; Danskin, W. R.

    2014-12-01

    Development of local groundwater resources in coastal areas is influenced by freshwater recharge and discharge, topography, geologic structure, and changes in sea level. For the coastal San Diego area, a density-dependent cross-sectional groundwater flow model was constructed to examine the aquifer and flow characteristics. The model domain represents generalized conditions along an east-west transect that is described by data from two multiple-depth monitoring-well sites; the domain extends into the Pacific Ocean to the 120 meter (m) bathymetric contour. Vertically, the model was discretized into four zones that represent geologic formations; each zone was assigned a horizontal permeability based on aquifer testing. Temporally, the model was divided into two stress periods. The first stress period simulates pre-development conditions, with an instantaneous sea-level rise of 120 m starting 6,000 years ago. This is a simplified representation of transient conditions since the last glacial maximum. The second stress period simulates 60 years of groundwater development, which is represented in terms of net fresh water flow through the domain. Near the coast, observed water-quality data indicate (1) brackish-to-hypersaline groundwater at shallow depths, (2) fresh continental recharge at intermediate depths, and (3) seawater intrusion at depths greater than 300 m. In order to simulate these general groundwater conditions, vertical anisotropy of the upper permeability zone was increased, freshwater discharge was constrained to the seafloor (no discharge along the coast), and groundwater development was simulated as exceeding freshwater recharge (additional water is provided by depletion of freshwater reserves). This numerical testing identifies specific factors that influence current conditions and provides an initial assessment of resource management alternatives for the San Diego coastal aquifer.

  11. Aquifer-characteristics data for West Virginia

    USGS Publications Warehouse

    Kozar, Mark D.; Mathes, Melvin V.

    2001-01-01

    Specific-capacity, storage-coefficient, and specific-yield data for wells in West Virginia were compiled to provide a data set from which transmissivity could be estimated. This data can be used for analytical and mathematical groundwater flow modeling. Analysis of available storage-coefficient and (or) specific-yield data indicates the Ohio River alluvial aquifer has a median specific yield of 0.20, which is characteristic of an unconfined aquifer. The Kanawha River alluvial aquifer has a median specific yield of 0.003, which is characteristic of a semi-confined aquifer. The median storage coefficient of fractured-bedrock aquifers is only 0.007, which is characteristic of confined aquifers. The highest median transmissivity of a specific aquifer in West Virginia occurs in Ohio River alluvium (4,800 ft2/d); the second highest occurs in Kanawha River alluvium (1,600 ft2/d). The lowest median transmissivity (23 ft2/d) is for the McKenzie-Rose Hill-Tuscarora aquifer. Rocks of Cambrian age within the Waynesboro-Tomstown-Harpers-Weverton-Loudon aquifer had a low median transmissivity of only 67 ft2/d. Other aquifers with low transmissivities include the Hampshire Formation, Brallier-Harrell Formations, Mahantango Formations, Oriskany Sandstone, and the Conococheague Formation with median transmissivities of 74, 72, 92, 82, and 92 ft2/d, respectively. All other aquifers within the State had intermediate values of transmissivity (130-920 ft2/d). The highest median transmissivities among bedrock aquifers were those for aquifers within the Pennsylvanian age Pocahontas Formation (1,200 ft2/d) and Pottsville Group (1,300 ft2/d), and the Mississippian age Mauch Chunk Group (1,300 ft2/d). These rocks crop out primarily in the southern part of the State and to a lesser extent within the Valley and Ridge Physiographic Province in West Virginia's Eastern Panhandle. The highest mean annual ground-water recharge rates within West Virginia (24.6 in.) occur within a band that extends

  12. Application of a Density-Dependent Numerical Model (MODHMS) to Assess Salinity Intrusion in the Biscayne Aquifer, North Miami-Dade County, Florida

    NASA Astrophysics Data System (ADS)

    Guha, H.; Panday, S.

    2005-05-01

    Miami-Dade County is located at the Southeastern part of the State of Florida adjoining the Atlantic coast. The sole drinking water source is the Biscayne Aquifer, which is an unconfined freshwater aquifer, composed of marine limestone with intermediate sand lenses. The aquifer is highly conductive with hydraulic conductivity values ranging from 1,000 ft/day to over 100,000 ft/day in some areas. Saltwater intrusion from the coast is an immediate threat to the freshwater resources of the County. Therefore, a multilayer density-dependent transient groundwater model was developed to evaluate the saltwater intrusion characteristics of the system. The model was developed using MODHMS, a finite difference, fully coupled groundwater and surface water flow and transport model. The buoyancy term is included in the equation for unconfined flow and the flow and transport equations are coupled using an iterative scheme. The transport equation was solved using an adaptive implicit total variation diminishing (TVD) scheme and anisotropy of dispersivity was included for longitudinal, transverse, vertical transverse, and vertical longitudinal directions. The model eastern boundaries extended approximately 3.5 miles into the Atlantic Ocean while the western boundary extended approximately 27 miles inland from the coast. The northern and southern boundaries extend 6 miles into Broward County and up to the C-100 canal in Miami-Dade County respectively. Close to 2 million active nodes were simulated, with horizontal discretization of 500 feet. A total of nine different statistical analyses were conducted with observed and simulated hydraulic heads. The analysis indicates that the model simulated hydraulic heads matched closely with the observed heads across the model domain. In general, the model reasonably simulated the inland extent of saltwater intrusion within the aquifer, and matched relatively well with limited observed chloride data from monitoring wells along the coast

  13. Groundwater vulnerability mapping of Qatar aquifers

    NASA Astrophysics Data System (ADS)

    Baalousha, Husam Musa

    2016-12-01

    Qatar is one of the most arid countries in the world with limited water resources. With little rainfall and no surface water, groundwater is the only natural source of fresh water in the country. Whilst the country relies mainly on desalination of seawater to secure water supply, groundwater has extensively been used for irrigation over the last three decades, which caused adverse environmental impact. Vulnerability assessment is a widely used tool for groundwater protection and land-use management. Aquifers in Qatar are carbonate with lots of fractures, depressions and cavities. Karst aquifers are generally more vulnerable to contamination than other aquifers as any anthropogenic-sourced contaminant, especially above a highly fractured zone, can infiltrate quickly into the aquifer and spread over a wide area. The vulnerability assessment method presented in this study is based on two approaches: DRASTIC and EPIK, within the framework of Geographical Information System (GIS). Results of this study show that DRASTIC vulnerability method suits Qatar hydrogeological settings more than EPIK. The produced vulnerability map using DRASTIC shows coastal and karst areas have the highest vulnerability class. The southern part of the country is located in the low vulnerability class due to occurrence of shale formation within aquifer media, which averts downward movement of contaminants.

  14. National Sole Source Aquifer GIS Layer

    EPA Pesticide Factsheets

    This data set contains indexes and Esri shape files of boundaries of the designated sole source aquifers and related aquifer boundaries. Data provide a vector polygon GIS layer showing available materials representing extents at the land surface related to 78 designated Sole Source Aquifers (SSA) related to announcements in the Federal Register. GIS coverages for SSAs were obtained from EPA Regions 1, 2, 3, 4, 5, 6, 8, 9, and 10 for a baseline period in September of 2009. Each SSA polygon was checked against the Federal Register (FR) determination for that SSA. These coverages were appended, in order to create a national seamless coverage of SSAs. There are 89 GIS polygons for the Sole Source Aquifers, since in addition to a single SSA designated area polygons, some Regions have delineated GIS layers for streamflow zones, aquifer recharge areas, and other features at the land surface important for the SSA designations. GIS materials are not available at this time for the St. Joseph SSA in Indiana [53 FR 23682 (1988)]. Additional information can be found at: https://edg.epa.gov/data/Public/OW/SSA_FR_notices_DWMA_Sept2009.Zip and https://edg.epa.gov/data/Public/OW/SSA_IDS_revd.xls

  15. Water budget and hydraulic aspects of artificial recharge, south coast of Puerto Rico

    USGS Publications Warehouse

    Heisel, J.E.; Gonzalez, Jose Raul

    1979-01-01

    An analog model was used to evaluate ground-water conditions on the south coast of Puerto Rico. Water levels during a normal period and during an extended drought were simulated. Recharge and discharge values are reported. The model was also used to evaluate the possibilities of using treated waste water to recharge the aquifer. Three methods were considered: infiltration basins, injection, and irrigation. The tests were planned to determine what changes in water levels would result if certain rates of application were used. Because of the limited vertical hydraulic conductivity, irrigation is suggested as the most practical method of waste-water use. (Woodard-USGS)

  16. Bryan Coast, English Coast, Alexander Island, Fallieres Coast, and Bellingshausen Sea, Antarctica

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This image of Antarctica shows the Bryan Coast (lower left), the English Coast (lower central), Alexander Island (middle right), the Fallieres Coast (top right), and the Bellingshausen Sea. The entire continent has been dedicated to peaceful scientific investigation since 1961, with the signing of the Antarctic Treaty.The waters surrounding Antarctica are intensely cold. Salt water freezes at -2C, allowing sea ice to form. The middle left portion of the image shows quite a lot of sea ice in the Bellingshausen Sea. During the Antarctic winter, when data for this image was acquired, Antarctica doubles in size to about 28.5 million square km (or about 11 million square miles), and temperatures in the -60C range are common.This true-color image was compiled from MODIS data gathered March 29, 2002. Credit: Jacques Descloitres, MODIS Land Rapid Response Team, NASA/GSFC

  17. Bryan Coast, English Coast, Alexander Island, Fallieres Coast, and Bellingshausen Sea, Antarctica

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This image of Antarctica shows the Bryan Coast (lower left), the English Coast (lower central), Alexander Island (middle right), the Fallieres Coast (top right), and the Bellingshausen Sea. The entire continent has been dedicated to peaceful scientific investigation since 1961, with the signing of the Antarctic Treaty.The waters surrounding Antarctica are intensely cold. Salt water freezes at -2C, allowing sea ice to form. The middle left portion of the image shows quite a lot of sea ice in the Bellingshausen Sea. During the Antarctic winter, when data for this image was acquired, Antarctica doubles in size to about 28.5 million square km (or about 11 million square miles), and temperatures in the -60C range are common.This true-color image was compiled from MODIS data gathered March 29, 2002. Credit: Jacques Descloitres, MODIS Land Rapid Response Team, NASA/GSFC

  18. Saline aquifer storage of carbon dioxide in the Sleipner project

    SciTech Connect

    Kongsjorden, H.; Kaarstad, O.; Torp, T.A.

    1998-07-01

    The offshore gas field named Sleipner--after the mythological horse with eight legs--is situated right in the middle of the North Sea, near the border line between United Kingdom and Norway. The distance from the nearest town on the Norwegian coast, Stavanger, is 240 km. Together with the even larger Troll gas field further north, Sleipner will produce a larger part of Norway`s gas supply to the European Union. It will function as a hub for a number of pipelines transferring this gas from north to south. The field is licensed to the companies Statoil, Esso Norge, Norsk Hydro, Elf Petroleum Norge and TOTAL Norge; with Statoil as field operator. The field was first discovered in 1974 with the gas containing reservoirs laying around 3,500 m under the sea bed. The natural gas coming from the reservoir contains 9% CO{sub 2}, while customer defined maximum is 2.5%. The extracted CO{sub 2} will be injected into the Utsira aquifer some 1000 meters under the sea through a separate injection well, instead of venting the nearly 1 million tonnes of CO{sub 2} yearly to the atmosphere.

  19. Modeling of groundwater level fluctuations using dendrochronology in alluvial aquifers

    NASA Astrophysics Data System (ADS)

    Gholami, V.; Chau, K. W.; Fadaee, F.; Torkaman, J.; Ghaffari, A.

    2015-10-01

    Groundwater is the most important water resource in semi-arid and arid regions such as Iran. It is necessary to study groundwater level fluctuations to manage disasters (such as droughts) and water resources. Dendrochronology, which uses tree-rings to reconstruct past events such as hydrologic and climatologic events, can be used to evaluate groundwater level fluctuations. In this study, groundwater level fluctuations are simulated using dendrochronology (tree-rings) and an artificial neural network (ANN) for the period from 1912 to 2013. The present study was undertaken using the Quercus Castaneifolia species, which is present in an alluvial aquifer of the Caspian southern coasts, Iran. A multilayer percepetron (MLP) network was adopted for the ANN. Tree-ring diameter and precipitation were the input parameters for the study, and groundwater levels were the outputs. After the training process, the model was validated. The validated network and tree-rings were used to simulate groundwater level fluctuations during the past century. The results showed that an integration of dendrochronology and an ANN renders a high degree of accuracy and efficiency in the simulation of groundwater levels. The simulated groundwater levels by dendrochronology can be used for drought evaluation, drought period prediction and water resources management.

  20. Ambient Flow and Heterogeneity in Multi-Aquifer Wells

    NASA Astrophysics Data System (ADS)

    Hart, D. J.; Gotkowitz, M. B.; Luczaj, J. A.

    2009-12-01

    Multi-aquifers wells, those wells that are open to more than one aquifer, have the potential to allow large quantities of flow between aquifers. Observed rates and direction of intra-borehole flow are often complex, reflecting the heterogeneity of the aquifers and variation of farfield heads. Spinner flow logs collected from several multi-aquifer wells in southern and eastern Wisconsin indicate the importance of flows through these wells in groundwater flow systems. The Paleozoic geology of Wisconsin, composed of more-or-less flat-lying sandstones, dolomites, and shales, gives rise to layered aquifer-aquitard systems where multi-aquifer wells are relatively common. A comparison of the flows in three multi-aquifer wells that cross the Wisconsin’s Paleozoic units showed heterogeniety in aquifers commonly thought to be homogeneous. Variation of the intra-borehole flow in a well gives an indication of heterogeneity and farfield heads in the aquifers. In the first example, the system was relatively simple, consisting of an aquitard (Eau Claire shale) between an upper aquifer (Wonewoc sandstone) and a lower aquifer (Mt Simon sandstone). Heads in the upper aquifer are higher than those in the lower aquifer. In this well, flows gradually increased with depth in the upper aquifer, remained constant in the aquitard, and then gradually decreased with depth in the lower aquifer. The gradual changes indicate relatively homogenous upper and lower aquifers. In the second example, the system also consisted of an aquitard (Tunnel City Group) between an upper aquifer (Sinnipee dolomite and the St. Peter sandstone) and a lower aquifer (Elk Mound Ground). As in the first example, heads in the upper aquifer are greater than those in the lower sandstone aquifer. In contrast to the first example, there were abrupt changes in intra-borehole flow in the upper aquifer, sometimes of more than 180 liters/minute over an interval of less than a meter. Caliper and television logging showed

  1. 40 CFR 147.1152 - Aquifer exemptions. [Reserved

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 23 2011-07-01 2011-07-01 false Aquifer exemptions. 147.1152 Section 147.1152 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS... Aquifer exemptions....

  2. 40 CFR 147.2752 - Aquifer exemptions. [Reserved

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 24 2013-07-01 2013-07-01 false Aquifer exemptions. 147.2752 Section 147.2752 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS....2752 Aquifer exemptions....

  3. 40 CFR 147.2752 - Aquifer exemptions. [Reserved

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 24 2012-07-01 2012-07-01 false Aquifer exemptions. 147.2752 Section 147.2752 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS....2752 Aquifer exemptions....

  4. 40 CFR 147.2752 - Aquifer exemptions. [Reserved

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 23 2014-07-01 2014-07-01 false Aquifer exemptions. 147.2752 Section 147.2752 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS....2752 Aquifer exemptions....

  5. 40 CFR 147.1402 - Aquifer exemptions. [Reserved

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 24 2013-07-01 2013-07-01 false Aquifer exemptions. 147.1402 Section 147.1402 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS... Aquifer exemptions....

  6. 40 CFR 147.452 - Aquifer exemptions. [Reserved

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 23 2014-07-01 2014-07-01 false Aquifer exemptions. 147.452 Section 147.452 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS... § 147.452 Aquifer exemptions....

  7. 40 CFR 147.1152 - Aquifer exemptions. [Reserved

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 23 2014-07-01 2014-07-01 false Aquifer exemptions. 147.1152 Section 147.1152 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS... Aquifer exemptions....

  8. 40 CFR 147.752 - Aquifer exemptions. [Reserved

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 24 2012-07-01 2012-07-01 false Aquifer exemptions. 147.752 Section 147.752 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS... Aquifer exemptions....

  9. 40 CFR 147.1302 - Aquifer exemptions. [Reserved

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 24 2012-07-01 2012-07-01 false Aquifer exemptions. 147.1302 Section 147.1302 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS... Aquifer exemptions....

  10. 40 CFR 147.2352 - Aquifer exemptions. [Reserved

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 24 2013-07-01 2013-07-01 false Aquifer exemptions. 147.2352 Section 147.2352 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS... Aquifer exemptions....

  11. 40 CFR 147.2852 - Aquifer exemptions. [Reserved

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 23 2011-07-01 2011-07-01 false Aquifer exemptions. 147.2852 Section 147.2852 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS... Pacific Islands § 147.2852 Aquifer exemptions....

  12. 40 CFR 147.502 - Aquifer exemptions. [Reserved

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 24 2013-07-01 2013-07-01 false Aquifer exemptions. 147.502 Section 147.502 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS... Aquifer exemptions....

  13. 40 CFR 147.1452 - Aquifer exemptions. [Reserved

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 24 2013-07-01 2013-07-01 false Aquifer exemptions. 147.1452 Section 147.1452 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS... Aquifer exemptions....

  14. 40 CFR 147.1402 - Aquifer exemptions. [Reserved

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 23 2011-07-01 2011-07-01 false Aquifer exemptions. 147.1402 Section 147.1402 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS... Aquifer exemptions....

  15. 40 CFR 147.902 - Aquifer exemptions. [Reserved

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 24 2013-07-01 2013-07-01 false Aquifer exemptions. 147.902 Section 147.902 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS... Aquifer exemptions....

  16. 40 CFR 147.1802 - Aquifer exemptions. [Reserved

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 23 2014-07-01 2014-07-01 false Aquifer exemptions. 147.1802 Section 147.1802 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS... Aquifer exemptions....

  17. 40 CFR 147.2152 - Aquifer exemptions. [Reserved

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 23 2011-07-01 2011-07-01 false Aquifer exemptions. 147.2152 Section 147.2152 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS... Aquifer exemptions....

  18. 40 CFR 147.2152 - Aquifer exemptions. [Reserved

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 23 2014-07-01 2014-07-01 false Aquifer exemptions. 147.2152 Section 147.2152 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS... Aquifer exemptions....

  19. 40 CFR 147.452 - Aquifer exemptions. [Reserved

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 24 2013-07-01 2013-07-01 false Aquifer exemptions. 147.452 Section 147.452 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS... § 147.452 Aquifer exemptions....

  20. 40 CFR 147.252 - Aquifer exemptions. [Reserved

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 24 2012-07-01 2012-07-01 false Aquifer exemptions. 147.252 Section 147.252 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS... Aquifer exemptions....

  1. 40 CFR 147.902 - Aquifer exemptions. [Reserved

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 23 2014-07-01 2014-07-01 false Aquifer exemptions. 147.902 Section 147.902 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS... Aquifer exemptions....

  2. 40 CFR 147.2852 - Aquifer exemptions. [Reserved

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 23 2014-07-01 2014-07-01 false Aquifer exemptions. 147.2852 Section 147.2852 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS... Pacific Islands § 147.2852 Aquifer exemptions....

  3. 40 CFR 147.1152 - Aquifer exemptions. [Reserved

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 24 2012-07-01 2012-07-01 false Aquifer exemptions. 147.1152 Section 147.1152 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS... Aquifer exemptions....

  4. 40 CFR 147.2352 - Aquifer exemptions. [Reserved

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 23 2014-07-01 2014-07-01 false Aquifer exemptions. 147.2352 Section 147.2352 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS... Aquifer exemptions....

  5. 40 CFR 147.2852 - Aquifer exemptions. [Reserved

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 24 2012-07-01 2012-07-01 false Aquifer exemptions. 147.2852 Section 147.2852 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS... Pacific Islands § 147.2852 Aquifer exemptions....

  6. 40 CFR 147.452 - Aquifer exemptions. [Reserved

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 23 2011-07-01 2011-07-01 false Aquifer exemptions. 147.452 Section 147.452 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS... § 147.452 Aquifer exemptions....

  7. 40 CFR 147.2352 - Aquifer exemptions. [Reserved

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 23 2011-07-01 2011-07-01 false Aquifer exemptions. 147.2352 Section 147.2352 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS... Aquifer exemptions....

  8. 40 CFR 147.902 - Aquifer exemptions. [Reserved

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 23 2011-07-01 2011-07-01 false Aquifer exemptions. 147.902 Section 147.902 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS... Aquifer exemptions....

  9. 40 CFR 147.752 - Aquifer exemptions. [Reserved

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 23 2011-07-01 2011-07-01 false Aquifer exemptions. 147.752 Section 147.752 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS... Aquifer exemptions....

  10. 40 CFR 147.1452 - Aquifer exemptions. [Reserved

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 24 2012-07-01 2012-07-01 false Aquifer exemptions. 147.1452 Section 147.1452 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS... Aquifer exemptions....

  11. 40 CFR 147.452 - Aquifer exemptions. [Reserved

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 24 2012-07-01 2012-07-01 false Aquifer exemptions. 147.452 Section 147.452 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS... § 147.452 Aquifer exemptions....

  12. 40 CFR 147.2752 - Aquifer exemptions. [Reserved

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 23 2011-07-01 2011-07-01 false Aquifer exemptions. 147.2752 Section 147.2752 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS....2752 Aquifer exemptions....

  13. 40 CFR 147.2152 - Aquifer exemptions. [Reserved

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 24 2012-07-01 2012-07-01 false Aquifer exemptions. 147.2152 Section 147.2152 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS... Aquifer exemptions....

  14. 40 CFR 147.252 - Aquifer exemptions. [Reserved

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 23 2014-07-01 2014-07-01 false Aquifer exemptions. 147.252 Section 147.252 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS... Aquifer exemptions....

  15. 40 CFR 147.2152 - Aquifer exemptions. [Reserved

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 24 2013-07-01 2013-07-01 false Aquifer exemptions. 147.2152 Section 147.2152 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS... Aquifer exemptions....

  16. 40 CFR 147.1452 - Aquifer exemptions. [Reserved

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 23 2014-07-01 2014-07-01 false Aquifer exemptions. 147.1452 Section 147.1452 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS... Aquifer exemptions....

  17. 40 CFR 147.1152 - Aquifer exemptions. [Reserved

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 24 2013-07-01 2013-07-01 false Aquifer exemptions. 147.1152 Section 147.1152 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS... Aquifer exemptions....

  18. 40 CFR 147.1302 - Aquifer exemptions. [Reserved

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 24 2013-07-01 2013-07-01 false Aquifer exemptions. 147.1302 Section 147.1302 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS... Aquifer exemptions....

  19. 40 CFR 147.2852 - Aquifer exemptions. [Reserved

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 24 2013-07-01 2013-07-01 false Aquifer exemptions. 147.2852 Section 147.2852 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS... Pacific Islands § 147.2852 Aquifer exemptions....

  20. 40 CFR 147.252 - Aquifer exemptions. [Reserved

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 23 2011-07-01 2011-07-01 false Aquifer exemptions. 147.252 Section 147.252 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS... Aquifer exemptions....

  1. 40 CFR 147.1302 - Aquifer exemptions. [Reserved

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 23 2011-07-01 2011-07-01 false Aquifer exemptions. 147.1302 Section 147.1302 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS... Aquifer exemptions....

  2. 40 CFR 147.1452 - Aquifer exemptions. [Reserved

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 23 2011-07-01 2011-07-01 false Aquifer exemptions. 147.1452 Section 147.1452 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS... Aquifer exemptions....

  3. 40 CFR 147.2352 - Aquifer exemptions. [Reserved

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 24 2012-07-01 2012-07-01 false Aquifer exemptions. 147.2352 Section 147.2352 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS... Aquifer exemptions....

  4. 40 CFR 147.1302 - Aquifer exemptions. [Reserved

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 23 2014-07-01 2014-07-01 false Aquifer exemptions. 147.1302 Section 147.1302 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS... Aquifer exemptions....

  5. 40 CFR 147.152 - Aquifer exemptions. [Reserved

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 23 2014-07-01 2014-07-01 false Aquifer exemptions. 147.152 Section 147.152 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS... Aquifer exemptions....

  6. 40 CFR 147.152 - Aquifer exemptions. [Reserved

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 24 2013-07-01 2013-07-01 false Aquifer exemptions. 147.152 Section 147.152 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS... Aquifer exemptions....

  7. 40 CFR 147.1202 - Aquifer exemptions. [Reserved

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 24 2013-07-01 2013-07-01 false Aquifer exemptions. 147.1202 Section 147.1202 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS... Aquifer exemptions....

  8. 40 CFR 147.652 - Aquifer exemptions. [Reserved

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 24 2012-07-01 2012-07-01 false Aquifer exemptions. 147.652 Section 147.652 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS... Aquifer exemptions....

  9. 40 CFR 147.1402 - Aquifer exemptions. [Reserved

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 24 2012-07-01 2012-07-01 false Aquifer exemptions. 147.1402 Section 147.1402 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS... Aquifer exemptions....

  10. 40 CFR 147.1802 - Aquifer exemptions. [Reserved

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 24 2013-07-01 2013-07-01 false Aquifer exemptions. 147.1802 Section 147.1802 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS... Aquifer exemptions....

  11. 40 CFR 147.1402 - Aquifer exemptions. [Reserved

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 23 2014-07-01 2014-07-01 false Aquifer exemptions. 147.1402 Section 147.1402 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS... Aquifer exemptions....

  12. 40 CFR 147.2152 - Aquifer exemptions. [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Aquifer exemptions. 147.2152 Section 147.2152 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS... Aquifer exemptions....

  13. 40 CFR 147.752 - Aquifer exemptions. [Reserved

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 24 2013-07-01 2013-07-01 false Aquifer exemptions. 147.752 Section 147.752 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS... Aquifer exemptions....

  14. 40 CFR 147.1202 - Aquifer exemptions. [Reserved

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 23 2011-07-01 2011-07-01 false Aquifer exemptions. 147.1202 Section 147.1202 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS... Aquifer exemptions....

  15. 40 CFR 147.252 - Aquifer exemptions. [Reserved

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 24 2013-07-01 2013-07-01 false Aquifer exemptions. 147.252 Section 147.252 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS... Aquifer exemptions....

  16. 40 CFR 147.1202 - Aquifer exemptions. [Reserved

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 23 2014-07-01 2014-07-01 false Aquifer exemptions. 147.1202 Section 147.1202 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS... Aquifer exemptions....

  17. 40 CFR 147.902 - Aquifer exemptions. [Reserved

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 24 2012-07-01 2012-07-01 false Aquifer exemptions. 147.902 Section 147.902 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS... Aquifer exemptions....

  18. 40 CFR 147.1802 - Aquifer exemptions. [Reserved

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 24 2012-07-01 2012-07-01 false Aquifer exemptions. 147.1802 Section 147.1802 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS... Aquifer exemptions....

  19. 40 CFR 147.1202 - Aquifer exemptions. [Reserved

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 24 2012-07-01 2012-07-01 false Aquifer exemptions. 147.1202 Section 147.1202 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS... Aquifer exemptions....

  20. 40 CFR 147.752 - Aquifer exemptions. [Reserved

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 23 2014-07-01 2014-07-01 false Aquifer exemptions. 147.752 Section 147.752 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS... Aquifer exemptions....