Science.gov

Sample records for coastal ecosystems management

  1. Geoscience research databases for coastal Alabama ecosystem management

    USGS Publications Warehouse

    Hummell, Richard L.

    1995-01-01

    Effective management of complex coastal ecosystems necessitates access to scientific knowledge that can be acquired through a multidisciplinary approach involving Federal and State scientists that take advantage of agency expertise and resources for the benefit of all participants working toward a set of common research and management goals. Cooperative geostatic investigations have led toward building databases of fundamental scientific knowledge that can be utilized to manage coastal Alabama's natural and future development. These databases have been used to assess the occurrence and economic potential of hard mineral resources in the Alabama EFZ, and to support oil spill contingency planning and environmental analysis for coastal Alabama.

  2. Ecosystem services as a common language for coastal ecosystem-based management.

    PubMed

    Granek, Elise F; Polasky, Stephen; Kappel, Carrie V; Reed, Denise J; Stoms, David M; Koch, Evamaria W; Kennedy, Chris J; Cramer, Lori A; Hacker, Sally D; Barbier, Edward B; Aswani, Shankar; Ruckelshaus, Mary; Perillo, Gerardo M E; Silliman, Brian R; Muthiga, Nyawira; Bael, David; Wolanski, Eric

    2010-02-01

    Ecosystem-based management is logistically and politically challenging because ecosystems are inherently complex and management decisions affect a multitude of groups. Coastal ecosystems, which lie at the interface between marine and terrestrial ecosystems and provide an array of ecosystem services to different groups, aptly illustrate these challenges. Successful ecosystem-based management of coastal ecosystems requires incorporating scientific information and the knowledge and views of interested parties into the decision-making process. Estimating the provision of ecosystem services under alternative management schemes offers a systematic way to incorporate biogeophysical and socioeconomic information and the views of individuals and groups in the policy and management process. Employing ecosystem services as a common language to improve the process of ecosystem-based management presents both benefits and difficulties. Benefits include a transparent method for assessing trade-offs associated with management alternatives, a common set of facts and common currency on which to base negotiations, and improved communication among groups with competing interests or differing worldviews. Yet challenges to this approach remain, including predicting how human interventions will affect ecosystems, how such changes will affect the provision of ecosystem services, and how changes in service provision will affect the welfare of different groups in society. In a case study from Puget Sound, Washington, we illustrate the potential of applying ecosystem services as a common language for ecosystem-based management.

  3. An ecological and economic assessment methodology for coastal ecosystem management.

    PubMed

    Nobre, Ana M

    2009-07-01

    An adaptation of the Drivers-Pressure-State-Impact-Response methodology is presented in this work. The differential DPSIR (DeltaDPSIR) was developed to evaluate impacts on the coastal environment and as a tool for integrated ecosystem management. The aim of the DeltaDPSIR is to provide scientifically-based information required by managers and decision-makers to evaluate previously adopted policies, as well as future response scenarios. The innovation of the present approach is to provide an explicit link between ecological and economic information related to the use and management of a coastal ecosystem within a specific timeframe. The application of DeltaDPSIR is illustrated through an analysis of developments in a Southwest European coastal lagoon between 1985 and 1995. The value of economic activities dependent on the lagoon suffered a significant reduction (ca. -60%) over that period, mainly due to a decrease in bivalve production. During that decade the pressures from the catchment area were managed (ca. 176 million Euros), mainly through the building of waste water treatment plants. Notwithstanding this, the ecosystem state worsened with respect to abnormal clam mortalities due to a parasite infection and to benthic eutrophication symptoms in specific problematic areas. The negative economic impacts during the decade were estimated between -565 and -315 million Euros, of which 9-49% represent the cost of environmental externalities. Evaluation of these past events indicates that future management actions should focus on reducing the limitation on local clam seeds, which should result in positive impacts to both the local socio-economy and biodiversity.

  4. An integrated approach to manage coastal ecosystems and prevent marine pollution effects

    NASA Astrophysics Data System (ADS)

    Marcelli, Marco; Bonamano, Simone; Carli, Filippo Maria; Giovacchini, Monica; Madonia, Alice; Mancini, Emanuele; Molino, Chiara; Piermattei, Viviana; Manfredi Frattarelli, Francesco

    2016-04-01

    This work focuses an integrated approach based on Sea-Use-Map (SUM), backed by a permanent monitoring system (C-CEMS-Civitavecchia Coastal Environmental Monitoring System). This tool supports the management of the marine coastal area, contributing substantially to ecosystem benefits evaluation and to minimize pollution impacts. Within the Blue Growth strategy, the protection of marine ecosystems is considered a priority for the sustainable growth of marine and maritime sectors. To face this issue, the European MSP and MSFD directives (2014/89/EU; 2008/56/EC) strongly promote the adoption of an ecosystem-based approach, paying particular attention to the support of monitoring networks that use L-TER (long-term ecological research) observations and integrate multi-disciplinary data sets. Although not largely used in Europe yet, the Environmental Sensitivity Index (ESI), developed in 1979 by NOAA (and promoted by IMO in 2010), can be considered an excellent example of ecosystem-based approach to reduce the environmental consequences of an oil spill event in a coastal area. SUM is an ecosystem oriented cartographic tool specifically designed to support the sustainable management of the coastal areas, such as the selection of the best sites for the introduction of new uses or the identification of the coastal areas subjected to potential impacts. It also enables a rapid evaluation of the benefits produced by marine areas as well as of their anthropogenic disturbance. SUM integrates C-CEMS dataset, geomorphological and ecological features and knowledge on the coastal and maritime space uses. The SUM appliance allowed to obtain relevant operational results in the Civitavecchia coastal area (Latium, Italy), characterized by high variability of marine and coastal environments, historical heritage and affected by the presence of a big harbour, relevant industrial infrastructures, and touristic features. In particular, the valuation of marine ecosystem services based on

  5. Assessment of coastal management options by means of multilayered ecosystem models

    NASA Astrophysics Data System (ADS)

    Nobre, Ana M.; Ferreira, João G.; Nunes, João P.; Yan, Xiaojun; Bricker, Suzanne; Corner, Richard; Groom, Steve; Gu, Haifeng; Hawkins, Anthony J. S.; Hutson, Rory; Lan, Dongzhao; Silva, João D. Lencart e.; Pascoe, Philip; Telfer, Trevor; Zhang, Xuelei; Zhu, Mingyuan

    2010-03-01

    This paper presents a multilayered ecosystem modelling approach that combines the simulation of the biogeochemistry of a coastal ecosystem with the simulation of the main forcing functions, such as catchment loading and aquaculture activities. This approach was developed as a tool for sustainable management of coastal ecosystems. A key feature is to simulate management scenarios that account for changes in multiple uses and enable assessment of cumulative impacts of coastal activities. The model was applied to a coastal zone in China with large aquaculture production and multiple catchment uses, and where management efforts to improve water quality are under way. Development scenarios designed in conjunction with local managers and aquaculture producers include the reduction of fish cages and treatment of wastewater. Despite the reduction in nutrient loading simulated in three different scenarios, inorganic nutrient concentrations in the bay were predicted to exceed the thresholds for poor quality defined by Chinese seawater quality legislation. For all scenarios there is still a Moderate High to High nutrient loading from the catchment, so further reductions might be enacted, together with additional decreases in fish cage culture. The model predicts that overall, shellfish production decreases by 10%-28% using any of these development scenarios, principally because shellfish growth is being sustained by the substances to be reduced for improvement of water quality. The model outcomes indicate that this may be counteracted by zoning of shellfish aquaculture at the ecosystem level in order to optimize trade-offs between productivity and environmental effects. The present case study exemplifies the value of multilayered ecosystem modelling as a tool for Integrated Coastal Zone Management and for the adoption of ecosystem approaches for marine resource management. This modelling approach can be applied worldwide, and may be particularly useful for the application of

  6. Global climate change impacts on coastal ecosystems in the Gulf of Mexico: considerations for integrated coastal management

    USGS Publications Warehouse

    Day, John W.; Yáñez-Arancibia, Alejandro; Cowan, James H.; Day, Richard H.; Twilley, Robert R.; Rybczyk, John R.

    2013-01-01

    Global climate change is important in considerations of integrated coastal management in the Gulf of Mexico. This is true for a number of reasons. Climate in the Gulf spans the range from tropical to the lower part of the temperate zone. Thus, as climate warms, the tropical temperate interface, which is currently mostly offshore in the Gulf of Mexico, will increasingly move over the coastal zone of the northern and eastern parts of the Gulf. Currently, this interface is located in South Florida and around the US-Mexico border in the Texas-Tamaulipas region. Maintaining healthy coastal ecosystems is important because they will be more resistant to climate change.

  7. Impact of river basin management on coastal water quality and ecosystem services: A southern Baltic estuary

    NASA Astrophysics Data System (ADS)

    Schernewski, Gerald; Hürdler, Jens; Neumann, Thomas; Stybel, Nardine; Venohr, Markus

    2010-05-01

    Eutrophication management is still a major challenge in the Baltic Sea region. Estuaries or coastal waters linked to large rivers cannot be managed independently. Nutrient loads into these coastal ecosystems depend on processes, utilisation, structure and management in the river basin. In practise this means that we need a large scale approach and integrated models and tools to analyse, assess and evaluate the effects of nutrient loads on coastal water quality as well as the efficiency of river basin management measures on surface waters and especially lagoons and estuaries. The Odra river basin, the Szczecin Lagoon and its coastal waters cover an area of about 150,000 km² and are an eutrophication hot-spot in the Baltic region. To be able to carry out large scale, spatially integrative analyses, we linked the river basin nutrient flux model MONERIS to the coastal 3D-hydrodynamic and ecosystem model ERGOM. Objectives were a) to analyse the eutrophication history in the river basin and the resulting functional changes in the coastal waters between early 1960's and today and b) to analyse the effects of an optimal nitrogen and phosphorus management scenario in the Oder/Odra river basin on coastal water quality. The models show that an optimal river basin management with reduced nutrient loads (e.g. N-load reduction of 35 %) would have positive effects on coastal water quality and algae biomass. The availability of nutrients, N/P ratios and processes like denitrification and nitrogen-fixation would show spatial and temporal changes. It would have positive consequences for ecosystems functions, like the nutrient retention capacity, as well. However, this optimal scenario is by far not sufficient to ensure a good coastal water quality according to the European Water Framework Directive. A "good" water quality in the river will not be sufficient to ensure a "good" water quality in the coastal waters. Further, nitrogen load reductions bear the risk of increased

  8. Coastal ecosystem-based management with nonlinear ecological functions and values.

    PubMed

    Barbier, Edward B; Koch, Evamaria W; Silliman, Brian R; Hacker, Sally D; Wolanski, Eric; Primavera, Jurgenne; Granek, Elise F; Polasky, Stephen; Aswani, Shankar; Cramer, Lori A; Stoms, David M; Kennedy, Chris J; Bael, David; Kappel, Carrie V; Perillo, Gerardo M E; Reed, Denise J

    2008-01-18

    A common assumption is that ecosystem services respond linearly to changes in habitat size. This assumption leads frequently to an "all or none" choice of either preserving coastal habitats or converting them to human use. However, our survey of wave attenuation data from field studies of mangroves, salt marshes, seagrass beds, nearshore coral reefs, and sand dunes reveals that these relationships are rarely linear. By incorporating nonlinear wave attenuation in estimating coastal protection values of mangroves in Thailand, we show that the optimal land use option may instead be the integration of development and conservation consistent with ecosystem-based management goals. This result suggests that reconciling competing demands on coastal habitats should not always result in stark preservation-versus-conversion choices.

  9. Restoration of marine coastal ecosystem health as a new goal for integrated catchment management in Tolo Harbor, Hong Kong, China.

    PubMed

    Xu, Fu-Liu; Hao, Jun-Yi; Tao, Shu; Dawson, Richard W; Lam, K C; Chen, Yongqin David

    2006-04-01

    This article demonstrates why it is necessary to have the restoration of marine coastal ecosystem health as a new goal for integrated catchment management in the coastal area of Tolo Harbor. The present goal of integrated catchment management (ICM) in the Tolo Harbor is based on water quality objectives. The performance of the ICM plan, the Tolo Harbor Action Plan (THAP), was evaluated using marine coastal ecosystem health indicators including both stress and response indicators. Since the implementation of THAP in 1988, some significant reductions in pollution loading have been observed: reduction of 83% of biological oxygen demand load and 82% of total nitrogen between 1988 and 1999. There has also been an improvement in the health of Tolo Harbor's marine coastal ecosystem as evidenced by trends in physical, chemical, and biological indicators, although reverse fluctuations in some periods exist. However, such improvement can only be considered as the first sign of complete ecosystem health restoration, because ecosystem health covers not only physical, chemical, and biological aspects of an ecosystem, but also ecosystem service functions. The findings support the need to take the restoration and protection of marine coastal ecosystem health as a new goal rather than using water quality objectives. Steps necessary to further improve Tolo Harbor's marine coastal ecosystem health are also discussed.

  10. Oceans and Human Health: Linking Ocean, Organism, and Human Health for Sustainable Management of Coastal Ecosystems

    NASA Astrophysics Data System (ADS)

    Sandifer, P. A.; Trtanj, J.; Collier, T. K.

    2012-12-01

    Scientists and policy-makers are increasingly recognizing that sustainable coastal communities depend on healthy and resilient economies, ecosystems, and people, and that the condition or "health" of the coastal ocean and humans are intimately and inextricably connected. A wealth of ecosystem services provided by ocean and coastal environments are crucial for human survival and well being. Nonetheless, the health of coastal communities, their economies, connected ecosystems and ecosystem services, and people are under increasing threats from health risks associated with environmental degradation, climate change, and unwise land use practices, all of which contribute to growing burdens of naturally-occurring and introduced pathogens, noxious algae, and chemical contaminants. The occurrence, frequency, intensity, geographic range, and number and kinds of ocean health threats are increasing, with concomitant health and economic effects and eroding public confidence in the safety and wholesomeness of coastal environments and resources. Concerns in the research and public health communities, many summarized in the seminal 1999 NRC Report, From Monsoons to Microbes and the 2004 final report of the US Commission on Ocean Policy, resulted in establishment of a new "meta-discipline" known as Oceans and Human Health (OHH). OHH brings together practitioners in oceanography, marine biology, ecology, biomedical science, medicine, economics and other social sciences, epidemiology, environmental management, and public health to focus on water- and food-borne causes of human and animal illnesses associated with ocean and coastal systems and on health benefits of seafood and other marine products. It integrates information across multiple disciplines to increase knowledge of ocean health risks and benefits and communicate such information to enhance public safety. Recognizing the need for a comprehensive approach to ocean health threats and benefits, Congress passed the Oceans and

  11. Concepts and theoretical specifications of a Coastal Vulnerability Dynamic Simulator (COVUDS): A multi-agent system for simulating coastal vulnerability towards management of coastal ecosystem services

    NASA Astrophysics Data System (ADS)

    Orencio, P. M.; Endo, A.; Taniguchi, M.

    2014-12-01

    Disaster-causing natural hazards such as floods, erosions, earthquakes or slope failures were particularly observed to be concentrated in certain geographical regions. In the Asia-pacific region, coastal ecosystems were suffering because of perennial threats driven by chronic fluctuations in climate variability (e.g., typhoons, ENSO), or by dynamically occurring events (e.g., earthquakes, tsunamis). Among the many people that were found prone to such a risky condition were the ones inhabiting near the coastal areas. Characteristically, aside from being located at the forefront of these events, the coastal communities have impacted the resource by the kind of behavioral patterns they exhibited, such as overdependence and overexploitation to achieve their wellbeing. In this paper, we introduce the development of an approach to an assessment of the coupled human- environment using a multi- agent simulation (MAS) model known as Coastal Vulnerability Dynamic Simulator (COVUDS). The COVUDS comprised a human- environmental platform consisting multi- agents with corresponding spatial- based dynamic and static variables. These variables were used to present multiple hypothetical future situations that contribute to the purpose of supporting a more rational management of the coastal ecosystem and their environmental equities. Initially, we present the theoretical and conceptual components that would lead to the development of the COVUDS. These consisted of the human population engaged in behavioral patterns affecting the conditions of coastal ecosystem services; the system of the biophysical environment and changes in patches brought by global environment and local behavioral variations; the policy factors that were important for choosing area- specific interventions; and the decision- making mechanism that integrates the first three components. To guide a future scenario-based application that will be undertaken in a coastal area in the Philippines, the components of the

  12. Managing wastewater effluent to enhance aquatic receiving ecosystem productivity: a coastal lagoon in Western Australia.

    PubMed

    Machado, Daniel A; Imberger, Jörg

    2012-05-30

    Large amounts of waste are generated in urban centers that if properly managed could promote ecological services. In order to promote nutrient cycling and productivity without endangering aquatic ecosystems, management of wastewater treatment and effluent discharges to receiving waters must be assessed on a case-by-case basis. We applied this premise to examine a municipal wastewater treated effluent discharge in a shallow oligotrophic coastal lagoon in Western Australia. Three-dimensional hydrodynamic-ecological modeling (ELCOM-CAEDYM) was used to assess the reaction of ecosystem for effluent quality. Two scenarios were evaluated for the summer 2000-2001 period, the actual or "current" (conventional secondary treatment) and an "alternative" (involving substitution of biological nutrient removal by advanced treatment). The residence time of the simulated numerical domain averaged 8.4 ± 1.3 days. For the current scenario the model successfully estimated phytoplankton biomass, as chlorophyll-a concentration (Chl-a), that is within field-measured ranges and previously recorded levels. The model was able to reproduce nitrogen as the main limiting nutrient for primary production in the coastal ecosystem. Simulated surface Chl-a means were 0.26 (range 0.19-0.38) μg Chl-a/L for the current scenario and 0.37 (range 0.19-0.67) μg Chl-a/L for the alternative one. Comparison of the alternative scenario with field-measured Chl-a levels suggests moderate primary production increase (16-42%), within local historical variability. These results, suggest that such a scenario could be used, as part of a comprehensive wastewater management optimization strategy, to foster receiving ecosystem's productivity and related ecological services maintaining its oligotrophic state.

  13. Louisiana coastal ecosystem

    USGS Publications Warehouse

    ,

    2000-01-01

    Louisiana's coast and its degradation and restoration are major environmental issues being studied at the National Wetlands Research Center. Coastal ecosystems are vulnerable because of the tremendous amount of human activity that takes place along the coast. Information on ecological processes is essential to guide the development along the coast as well as to protect and restore wildlife habitat.Louisiana has about 40% of coastal wetlands in the lower 48 states; they support fish, waterfowl, and fur-bearing animals as well as unique cultures like that of the Acadians. The fish and wildlife resources of Louisiana's coast produce over $1 billion each year in revenues.But Louisiana has the highest coastal loss rate because of natural and human causes. Over the past three decades, Louisiana has lost as much as 35-40 mi2 (90-104 km2) of coastal wetlands a year.The National Wetlands Research Center is qualified to assess and monitor this ecosystem because of its proximity to the study area, a staff chosen for their expertise in the system, and a number of established partnerships with others who study the areas. The Center is often the lead group in partnerships with universities, other federal agencies, and private entities who study this ecosystem.Most of the Center's research and technology development performed for coastal wetlands are done at the Lafayette headquarters; some work is performed at the National Wetlands Research Center's project office in Baton Rouge, LA.

  14. Integrating Climate Science, Ecosystem Modeling, and Resource Management to Develop a Coastal Master Plan for Louisiana

    NASA Astrophysics Data System (ADS)

    Groves, D.; Sharon, C.; Knopman, D.

    2012-12-01

    The Coastal Protection and Restoration Authority of Louisiana (CPRA) asked the RAND Corporation to develop a new Planning Tool to support Louisiana's 2012 Coastal Master Plan. The Planning Tool integrates climate science, ecosystem modeling, and resource management planning to comparing different risk reduction and coastal restoration projects and for developing groups of projects, or alternatives, for consideration for the Master Plan. The Planning Tool presents its results in an interactive visualization environment to support deliberation by CPRA decisionmakers and stakeholders. The Planning Tool uses new standardized estimates of project costs, planning and construction duration, and other project attributes along with science-based model estimates of project effects on risk reduction, land building, and ecosystem services. The Planning Tool considers how outcomes would differ under different future scenarios reflecting climate change, demographics, and other uncertainties. The Planning Tool uses a constrained optimization algorithm to develop a range of alternatives that meet CPRA's desired outcomes with respect to future flood risk reduction, coast-wide land area, and other decision criteria. Beginning in 2011, CPRA used the Planning Tool to compare hundreds of possible hurricane flood risk reduction and coastal restoration projects under several scenarios of long-term future conditions. CPRA next used the Planning Tool to develop and analyze hundreds of different alternatives that together would best meet Louisiana's goals of reducing hurricane flood risk and achieving a sustainable landscape. The Planning Tool then enabled CPRA to specify planning parameters such as total available funding, funding splits between risk reduction and restoration projects, and minimum levels of projected achievement of goals for ecosystem service and risk reduction decision criteria. Using this information, the Planning Tool then identified how those alternatives could be

  15. Is economic valuation of ecosystem services useful to decision-makers? Lessons learned from Australian coastal and marine management.

    PubMed

    Marre, Jean-Baptiste; Thébaud, Olivier; Pascoe, Sean; Jennings, Sarah; Boncoeur, Jean; Coglan, Louisa

    2016-08-01

    Economic valuation of ecosystem services is widely advocated as being useful to support ecosystem management decision-making. However, the extent to which it is actually used or considered useful in decision-making is poorly documented. This literature blindspot is explored with an application to coastal and marine ecosystems management in Australia. Based on a nation-wide survey of eighty-eight decision-makers representing a diversity of management organizations, the perceived usefulness and level of use of economic valuation of ecosystem services, in support of coastal and marine management, are examined. A large majority of decision-makers are found to be familiar with economic valuation and consider it useful - even necessary - in decision-making, although this varies across groups of decision-makers. However, most decision-makers never or rarely use economic valuation. The perceived level of importance and trust in estimated dollar values differ across ecosystem services, and are especially high for values that relate to commercial activities. A number of factors are also found to influence respondent's use of economic valuation. Such findings concur with conclusions from other studies on the usefulness and use of ESV in environmental management decision-making. They also demonstrate the strength of the survey-based approach developed in this application to examine this issue in a variety of contexts.

  16. Effects of altered offshore food webs on coastal ecosystems emphasize the need for cross-ecosystem management.

    PubMed

    Eriksson, Britas Klemens; Sieben, Katrin; Eklöf, Johan; Ljunggren, Lars; Olsson, Jens; Casini, Michele; Bergström, Ulf

    2011-11-01

    By mainly targeting larger predatory fish, commercial fisheries have indirectly promoted rapid increases in densities of their prey; smaller predatory fish like sprat, stickleback and gobies. This process, known as mesopredator release, has effectively transformed many marine offshore basins into mesopredator-dominated ecosystems. In this article, we discuss recent indications of trophic cascades on the Atlantic and Baltic coasts of Sweden, where increased abundances of mesopredatory fish are linked to increased nearshore production and biomass of ephemeral algae. Based on synthesis of monitoring data, we suggest that offshore exploitation of larger predatory fish has contributed to the increase in mesopredator fish also along the coasts, with indirect negative effects on important benthic habitats and coastal water quality. The results emphasize the need to rebuild offshore and coastal populations of larger predatory fish to levels where they regain their control over lower trophic levels and important links between offshore and coastal systems are restored.

  17. RESTORING COASTAL ECOSYSTEMS: ABRUPT CLIMATE CHANGE

    EPA Science Inventory

    Consensus exists that U.S. coastal ecosystems are severely degraded due to a variety of human-factors requiring large financial expenditures to restore and manage. Yet, even as controversy surrounds human factors in ecosystem degradation in the Gulf of Mexico, Chesapeake Bay, an...

  18. Managing Data, Provenance and Chaos through Standardization and Automation at the Georgia Coastal Ecosystems LTER Site

    NASA Astrophysics Data System (ADS)

    Sheldon, W.

    2013-12-01

    Managing data for a large, multidisciplinary research program such as a Long Term Ecological Research (LTER) site is a significant challenge, but also presents unique opportunities for data stewardship. LTER research is conducted within multiple organizational frameworks (i.e. a specific LTER site as well as the broader LTER network), and addresses both specific goals defined in an NSF proposal as well as broader goals of the network; therefore, every LTER data can be linked to rich contextual information to guide interpretation and comparison. The challenge is how to link the data to this wealth of contextual metadata. At the Georgia Coastal Ecosystems LTER we developed an integrated information management system (GCE-IMS) to manage, archive and distribute data, metadata and other research products as well as manage project logistics, administration and governance (figure 1). This system allows us to store all project information in one place, and provide dynamic links through web applications and services to ensure content is always up to date on the web as well as in data set metadata. The database model supports tracking changes over time in personnel roles, projects and governance decisions, allowing these databases to serve as canonical sources of project history. Storing project information in a central database has also allowed us to standardize both the formatting and content of critical project information, including personnel names, roles, keywords, place names, attribute names, units, and instrumentation, providing consistency and improving data and metadata comparability. Lookup services for these standard terms also simplify data entry in web and database interfaces. We have also coupled the GCE-IMS to our MATLAB- and Python-based data processing tools (i.e. through database connections) to automate metadata generation and packaging of tabular and GIS data products for distribution. Data processing history is automatically tracked throughout the data

  19. Information Needs Assessment for Coastal and Marine Management and Policy: Ecosystem Services Under Changing Climatic, Land Use, and Demographic Conditions

    NASA Astrophysics Data System (ADS)

    Goldsmith, Kaitlin A.; Granek, Elise F.; Lubitow, Amy

    2015-12-01

    Changing climatic, demographic, and land use conditions are projected to alter the provisioning of ecosystem services in estuarine, coastal, and nearshore marine ecosystems, necessitating mitigation and adaptation policies and management. The current paradigm of research efforts occurring in parallel to, rather than in collaboration with, decision makers will be insufficient for the rapid responses required to adapt to and mitigate for projected changing conditions. Here, we suggest a different paradigm: one where research begins by engaging decision makers in the identification of priority data needs (biophysical, economic, and social). This paper uses synthesized interview data to provide insight into the varied demands for scientific research as described by decision makers working on coastal issues in Oregon, USA. The findings highlight the need to recognize (1) the differing framing of ecosystem services by decision makers versus scientists; and (2) the differing data priorities relevant to inland versus coastal decision makers. The findings further serve to highlight the need for decision makers, scientists, and funders to engage in increased communication. This research is an important first step in advancing efforts toward evidence-based decision making in Oregon and provides a template for further research across the US.

  20. Information Needs Assessment for Coastal and Marine Management and Policy: Ecosystem Services Under Changing Climatic, Land Use, and Demographic Conditions.

    PubMed

    Goldsmith, Kaitlin A; Granek, Elise F; Lubitow, Amy

    2015-12-01

    Changing climatic, demographic, and land use conditions are projected to alter the provisioning of ecosystem services in estuarine, coastal, and nearshore marine ecosystems, necessitating mitigation and adaptation policies and management. The current paradigm of research efforts occurring in parallel to, rather than in collaboration with, decision makers will be insufficient for the rapid responses required to adapt to and mitigate for projected changing conditions. Here, we suggest a different paradigm: one where research begins by engaging decision makers in the identification of priority data needs (biophysical, economic, and social). This paper uses synthesized interview data to provide insight into the varied demands for scientific research as described by decision makers working on coastal issues in Oregon, USA. The findings highlight the need to recognize (1) the differing framing of ecosystem services by decision makers versus scientists; and (2) the differing data priorities relevant to inland versus coastal decision makers. The findings further serve to highlight the need for decision makers, scientists, and funders to engage in increased communication. This research is an important first step in advancing efforts toward evidence-based decision making in Oregon and provides a template for further research across the US.

  1. Regime shifts and resilience in China's coastal ecosystems.

    PubMed

    Zhang, Ke

    2016-02-01

    Regime shift often results in large, abrupt, and persistent changes in the provision of ecosystem services and can therefore have significant impacts on human wellbeing. Understanding regime shifts has profound implications for ecosystem recovery and management. China's coastal ecosystems have experienced substantial deterioration within the past decades, at a scale and speed the world has never seen before. Yet, information about this coastal ecosystem change from a dynamics perspective is quite limited. In this review, I synthesize existing information on coastal ecosystem regime shifts in China and discuss their interactions and cascading effects. The accumulation of regime shifts in China's coastal ecosystems suggests that the desired system resilience has been profoundly eroded, increasing the potential of abrupt shifts to undesirable states at a larger scale, especially given multiple escalating pressures. Policy and management strategies need to incorporate resilience approaches in order to cope with future challenges and avoid major losses in China's coastal ecosystem services.

  2. Coastal Navigation Portfolio Management

    DTIC Science & Technology

    2015-02-19

    CIRP.aspx Coastal Inlets Research Program Coastal Navigation Portfolio Management The Coastal Navigatoin Portfolio Management work unit...across the vast coastal navigation portfolio of projects. The USACE maintains a vast infrastructure portfolio of deep-draft coastal entrance...the Corps needs to be able to direct resources at the navigation projects that are most critical to overall marine transportation system performance

  3. Coastal wetlands: an integrated ecosystem approach

    USGS Publications Warehouse

    Perillo, G. M. E.; Wolanski, E.; Cahoon, D.R.; Brinson, M.M.

    2009-01-01

    Coastal wetlands are under a great deal of pressure from the dual forces of rising sea level and the intervention of human populations both along the estuary and in the river catchment. Direct impacts include the destruction or degradation of wetlands from land reclamation and infrastructures. Indirect impacts derive from the discharge of pollutants, changes in river flows and sediment supplies, land clearing, and dam operations. As sea level rises, coastal wetlands in most areas of the world migrate landward to occupy former uplands. The competition of these lands from human development is intensifying, making the landward migration impossible in many cases. This book provides an understanding of the functioning of coastal ecosystems and the ecological services that they provide, and suggestions for their management. In this book a CD is included containing color figures of wetlands and estuaries in different parts of the world.

  4. Ecosystem-based management and refining governance of wind energy in the Massachusetts coastal zone: A case study approach

    NASA Astrophysics Data System (ADS)

    Kumin, Enid C.

    While there are as yet no wind energy facilities in New England coastal waters, a number of wind turbine projects are now operating on land adjacent to the coast. In the Gulf of Maine region (from Maine to Massachusetts), at least two such projects, one in Falmouth, Massachusetts, and another on the island of Vinalhaven, Maine, began operation with public backing only to face subsequent opposition from some who were initially project supporters. I investigate the reasons for this dynamic using content analysis of documents related to wind energy facility development in three case study communities. For comparison and contrast with the Vinalhaven and Falmouth case studies, I examine materials from Hull, Massachusetts, where wind turbine construction and operation has received steady public support and acceptance. My research addresses the central question: What does case study analysis of the siting and initial operation of three wind energy projects in the Gulf of Maine region reveal that can inform future governance of wind energy in Massachusetts state coastal waters? I consider the question with specific attention to governance of wind energy in Massachusetts, then explore ways in which the research results may be broadly transferable in the U.S. coastal context. I determine that the change in local response noted in Vinalhaven and Falmouth may have arisen from a failure of consistent inclusion of stakeholders throughout the entire scoping-to-siting process, especially around the reporting of environmental impact studies. I find that, consistent with the principles of ecosystem-based and adaptive management, design of governance systems may require on-going cycles of review and adjustment before the implementation of such systems as intended is achieved in practice. I conclude that evolving collaborative processes must underlie science and policy in our approach to complex environmental and wind energy projects; indeed, collaborative process is fundamental to

  5. POLLUTION AND ECOSYSTEM HEALTH - ASSESSING ECOLOGICAL CONDITION OF COASTAL ECOSYSTEMS

    EPA Science Inventory

    Summers, Kevin. 2004. Pollution and Ecosystem Health - Assessing Ecological Condition of Coastal Ecosystems. Presented at the White Water to Blue Water (WW2BW) Miami Conference, 21-26 March 2004, Miami, FL. 1 p. (ERL,GB R973).

    Throughout the coastal regions and Large Mari...

  6. DIAGNOSING CAUSES OF IMPAIRMENT IN COASTAL ECOSYSTEMS

    EPA Science Inventory

    Engle, Virginia D. and Stephen J. Jordan. In press. Diagnosing Causes of Impairment in Coastal Ecosystems (Abstract). To be presented at the SETAC Fourth World Congress, 14-18 November 2004, Portland, OR. 1 p. (ERL,GB R1008).

    Estuarine and coastal ecosystems are challenge...

  7. Reconstruction of metal pollution and recent sedimentation processes in Havana Bay (Cuba): a tool for coastal ecosystem management.

    PubMed

    Díaz-Asencio, M; Alvarado, J A Corcho; Alonso-Hernández, C; Quejido-Cabezas, A; Ruiz-Fernández, A C; Sanchez-Sanchez, M; Gómez-Mancebo, M B; Froidevaux, P; Sanchez-Cabeza, J A

    2011-11-30

    Since 1998 the highly polluted Havana Bay ecosystem has been the subject of a mitigation program. In order to determine whether pollution-reduction strategies were effective, we have evaluated the historical trends of pollution recorded in sediments of the Bay. A sediment core was dated radiometrically using natural and artificial fallout radionuclides. An irregularity in the (210)Pb record was caused by an episode of accelerated sedimentation. This episode was dated to occur in 1982, a year coincident with the heaviest rains reported in Havana over the XX century. Peaks of mass accumulation rates (MAR) were associated with hurricanes and intensive rains. In the past 60 years, these maxima are related to strong El Niño periods, which are known to increase rainfall in the north Caribbean region. We observed a steady increase of pollution (mainly Pb, Zn, Sn, and Hg) since the beginning of the century to the mid 90 s, with enrichment factors as high as 6. MAR and pollution decreased rapidly after the mid 90 s, although some trace metal levels remain high. This reduction was due to the integrated coastal zone management program introduced in the late 90 s, which dismissed catchment erosion and pollution.

  8. E-estuary: A Decision Support System for Coastal Water and Ecosystem Management in the US (CZ09)

    EPA Science Inventory

    Ready access to geographic information is needed to support management decisions for estuaries at local, state, regional, and national scales. The U.S. Environmental Protection Agency (US EPA) is developing e-Estuary, a decision-support system for coastal management. E-Estuary ...

  9. Distribution, structure and function of Nordic eelgrass (Zostera marina) ecosystems: implications for coastal management and conservation

    PubMed Central

    Boström, Christoffer; Baden, Susanne; Bockelmann, Anna-Christina; Dromph, Karsten; Fredriksen, Stein; Gustafsson, Camilla; Krause-Jensen, Dorte; Möller, Tiia; Nielsen, Søren Laurentius; Olesen, Birgit; Olsen, Jeanine; Pihl, Leif; Rinde, Eli

    2014-01-01

    This paper focuses on the marine foundation eelgrass species, Zostera marina, along a gradient from the northern Baltic Sea to the north-east Atlantic. This vast region supports a minimum of 1480 km2 eelgrass (maximum >2100 km2), which corresponds to more than four times the previously quantified area of eelgrass in Western Europe.Eelgrass meadows in the low salinity Baltic Sea support the highest diversity (4–6 spp.) of angiosperms overall, but eelgrass productivity is low (<2 g dw m-2 d-1) and meadows are isolated and genetically impoverished. Higher salinity areas support monospecific meadows, with higher productivity (3–10 g dw m-2 d-1) and greater genetic connectivity. The salinity gradient further imposes functional differences in biodiversity and food webs, in particular a decline in number, but increase in biomass of mesograzers in the Baltic.Significant declines in eelgrass depth limits and areal cover are documented, particularly in regions experiencing high human pressure. The failure of eelgrass to re-establish itself in affected areas, despite nutrient reductions and improved water quality, signals complex recovery trajectories and calls for much greater conservation effort to protect existing meadows.The knowledge base for Nordic eelgrass meadows is broad and sufficient to establish monitoring objectives across nine national borders. Nevertheless, ensuring awareness of their vulnerability remains challenging. Given the areal extent of Nordic eelgrass systems and the ecosystem services they provide, it is crucial to further develop incentives for protecting them. © 2014 The Authors. Aquatic Conservation: Marine and Freshwater Ecosystems published by John Wiley & Sons, Ltd. PMID:26167100

  10. Distribution, structure and function of Nordic eelgrass (Zostera marina) ecosystems: implications for coastal management and conservation.

    PubMed

    Boström, Christoffer; Baden, Susanne; Bockelmann, Anna-Christina; Dromph, Karsten; Fredriksen, Stein; Gustafsson, Camilla; Krause-Jensen, Dorte; Möller, Tiia; Nielsen, Søren Laurentius; Olesen, Birgit; Olsen, Jeanine; Pihl, Leif; Rinde, Eli

    2014-06-01

    This paper focuses on the marine foundation eelgrass species, Zostera marina, along a gradient from the northern Baltic Sea to the north-east Atlantic. This vast region supports a minimum of 1480 km(2) eelgrass (maximum >2100 km(2)), which corresponds to more than four times the previously quantified area of eelgrass in Western Europe.Eelgrass meadows in the low salinity Baltic Sea support the highest diversity (4-6 spp.) of angiosperms overall, but eelgrass productivity is low (<2 g dw m(-2) d(-1)) and meadows are isolated and genetically impoverished. Higher salinity areas support monospecific meadows, with higher productivity (3-10 g dw m(-2) d(-1)) and greater genetic connectivity. The salinity gradient further imposes functional differences in biodiversity and food webs, in particular a decline in number, but increase in biomass of mesograzers in the Baltic.Significant declines in eelgrass depth limits and areal cover are documented, particularly in regions experiencing high human pressure. The failure of eelgrass to re-establish itself in affected areas, despite nutrient reductions and improved water quality, signals complex recovery trajectories and calls for much greater conservation effort to protect existing meadows.The knowledge base for Nordic eelgrass meadows is broad and sufficient to establish monitoring objectives across nine national borders. Nevertheless, ensuring awareness of their vulnerability remains challenging. Given the areal extent of Nordic eelgrass systems and the ecosystem services they provide, it is crucial to further develop incentives for protecting them. © 2014 The Authors. Aquatic Conservation: Marine and Freshwater Ecosystems published by John Wiley & Sons, Ltd.

  11. A conceptual framework for Lake Michigan coastal/nearshore ecosystems, with application to Lake Michigan Lakewide Management Plan (LaMP) objectives

    USGS Publications Warehouse

    Seelbach, Paul W.; Fogarty, Lisa R.; Bunnell, David Bo; Haack, Sheridan K.; Rogers, Mark W.

    2013-01-01

    The Lakewide Management Plans (LaMPs) within the Great Lakes region are examples of broad-scale, collaborative resource-management efforts that require a sound ecosystems approach. Yet, the LaMP process is lacking a holistic framework that allows these individual actions to be planned and understood within the broader context of the Great Lakes ecosystem. In this paper we (1) introduce a conceptual framework that unifies ideas and language among Great Lakes managers and scientists, whose focus areas range from tributary watersheds to open-lake waters, and (2) illustrate how the framework can be used to outline the geomorphic, hydrologic biological, and societal processes that underlie several goals of the Lake Michigan LaMP, thus providing a holistic and fairly comprehensive roadmap for tackling these challenges. For each selected goal, we developed a matrix that identifies the key ecosystem processes within the cell for each lake zone and each discipline; we then provide one example where a process is poorly understood and a second where a process is understood, but its impact or importance is unclear. Implicit in these objectives was our intention to highlight the importance of the Great Lakes coastal/nearshore zone. Although the coastal/nearshore zone is the important linkage zone between the watershed and open-lake zones—and is the zone where most LaMP issues are focused--scientists and managers have a relatively poor understanding of how the coastal/nearshore zone functions. We envision follow-up steps including (1) collaborative development of a more detailed and more complete conceptual model of how (and where) identified processes are thought to function, and (2) a subsequent gap analysis of science and monitoring priorities.

  12. Are aliens threatening European aquatic coastal ecosystems?

    NASA Astrophysics Data System (ADS)

    Reise, Karsten; Olenin, Sergej; Thieltges, David W.

    2006-05-01

    Inshore waters of European coasts have accumulated a high share of non-indigenous species, where a changeable palaeoenvironment has caused low diversity in indigenous biota. Also strongly transformed modern coastal ecosystems seem to assimilate whatever species have been introduced and tolerate the physical regime. Adding non-native species does not have any directional predetermined effects on recipient coastal ecosystems. The status of being a non-native rather refers to a position in evolutionary history than qualify as an ecological category with distinct and consistent properties. Effects of invaders vary between habitats and with the phase of invasion and also with shifting ambient conditions. Although aliens accelerate change in European coastal biota, we found no evidence that they generally impair biodiversity and ecosystem functioning. More often, invaders expand ecosystem functioning by adding new ecological traits, intensifying existing ones and increasing functional redundancy.

  13. Modeling catchment nutrients and sediment loads to inform regional management of water quality in coastal-marine ecosystems: a comparison of two approaches.

    PubMed

    Álvarez-Romero, Jorge G; Wilkinson, Scott N; Pressey, Robert L; Ban, Natalie C; Kool, Johnathan; Brodie, Jon

    2014-12-15

    Human-induced changes in flows of water, nutrients, and sediments have impacts on marine ecosystems. Quantifying these changes to systematically allocate management actions is a priority for many areas worldwide. Modeling nutrient and sediment loads and contributions from subcatchments can inform prioritization of management interventions to mitigate the impacts of land-based pollution on marine ecosystems. Among the catchment models appropriate for large-scale applications, N-SPECT and SedNet have been used to prioritize areas for management of water quality in coastal-marine ecosystems. However, an assessment of their relative performance, parameterization, and utility for regional-scale planning is needed. We examined how these considerations can influence the choice between the two models and the areas identified as priorities for management actions. We assessed their application in selected catchments of the Gulf of California, where managing land-based threats to marine ecosystems is a priority. We found important differences in performance between models. SedNet consistently estimated spatial variations in runoff with higher accuracy than N-SPECT and modeled suspended sediment (TSS) loads mostly within the range of variation in observed loads. N-SPECT overestimated TSS loads by orders of magnitude when using the spatially-distributed sediment delivery ratio (SDR), but outperformed SedNet when using a calibrated SDR. Differences in subcatchments' contribution to pollutant loads were principally due to explicit representation of sediment sinks and particulate nutrients by SedNet. Improving the floodplain extent model, and constraining erosion estimates by local data including gully erosion in SedNet, would improve results of this model and help identify effective management responses. Differences between models in the patterns of modeled pollutant supply were modest, but significantly influenced the prioritization of subcatchments for management.

  14. Patch scales in coastal ecosystems

    NASA Astrophysics Data System (ADS)

    Broitman, Bernardo R.

    Quantifying the spatial and temporal scales over which ecological processes are coupled to environmental variability is a major challenge for ecologists. Here, I assimilate patterns of oceanographic variability with ecological field studies in an attempt to quantify spatial and temporal scales of coupling. Using coastal time series of chlorophyll-a concentration from remote sensing, the first chapter examines the alongshore extent of coastal regions subject to similar temporal patterns of oceanographic variability in Western North America (WNA) and North-Central Chile (Chile). I found striking interhemispherical differences in the length of coastal sections under similar oceanographic regimes, with the Chile region showing longshore coherency over much smaller spatial scales (˜60 km) than on the coast of WNA (˜140 km). Through a spatial analysis of coastal orientation I suggest that the characteristic length scales may be traced to the geomorphologic character of the ocean margins. The second chapter examines spatial patterns of primary production through long-term means of coastal chlorophyll-a concentration and kelp (Macrocystis pyrifera) cover and explores their relationship with coastal geomorphology and sea surface temperature (SST). Spatial analyses showed a striking match in length scales around 180--250 km. Strong anticorrelations at small spatial lags and positive correlations at longer distances suggest little overlap between patches of kelp and coastal chlorophyll-a. In agreement with findings from the previous chapter, I found that coastal patches could be traced back to spatial patterns of coastal geomorphology. Through SST time series and long-term datasets of larval recruitment in Santa Cruz Island, California, the third chapter examines temporal patterns of oceanographic variability as determinants of ecological patterns. SST time series from sites experiencing low larval recruitment rates were dominated by strong temporal variability. These sites

  15. Coastal zone management

    NASA Technical Reports Server (NTRS)

    Tilton, E. L., III

    1975-01-01

    A panel of federal and state representatives concerned with coastal zone affairs discussed their problems in this area. In addition, several demonstrations of the application of remote sensing technology to coastal zone management were described. These demonstrations were performed by several agencies in a variety of geographical areas.

  16. Human Impacts to Coastal Ecosystems in Puerto Rico (HICE-PR): A Long-Term Remote Sensing, Hydrologic, Ecologic, and Socio-Economic Assessment with Management Implications

    NASA Astrophysics Data System (ADS)

    Torres-Perez, J. L.; Barreto-Orta, M.; Ortiz, J.; Santiago, L.; Setegn, S. G.; Guild, L. S.; Ramos-Scharron, C. E.; Armstrong, R.; Detres, Y.

    2014-12-01

    For several decades Puerto Rico's coastal and marine ecosystems (CMEs) have suffered the effects of anthropogenic stresses associated to population growth and varying land use. Coral reefs, for instance, have been impacted by sedimentation, increased eutrophication, and coastal water contamination. Here we present an overview of a new NASA project to study human impacts in two priority watersheds (Manatí and Guánica). The project uses an interdisciplinary approach that includes historic and recent remote sensing analysis and hydrological, ecological and socio-economic modeling to provide a multi-decadal assessment of change in coral reefs, seagrass beds, mangroves and sandy beaches. The project's main goal is to evaluate the impacts of land use/land cover changes on the quality and extent of CMEs in priority watersheds in the north and south coasts of Puerto Rico. Methods include assessments of coral reefs benthic communities cover, monitoring of short- and long-term beach geomorphological changes associated with riverine and sediment input, calculation of the economical value of selected CMEs, establish permanent monitoring transects in never before studied coral reef areas, provide recommendations to enhance current coastal policy management practices, and disseminate the results to local stakeholders. This project will include imagery from the Operational Land Imager of Landsat 8 to assess coastal ecosystems extent. Habitat and species distribution maps will be created by incorporating field and remotely-sensed data into an Ecological Niche Factor Analysis. The social component will allow us to study the valuation of specific CMEs attributes from the stakeholder's point of view. Our results and the generality of the methodology will provide for its application to other similar tropical locations.

  17. Study on the cumulative impact of reclamation activities on ecosystem health in coastal waters.

    PubMed

    Shen, Chengcheng; Shi, Honghua; Zheng, Wei; Li, Fen; Peng, Shitao; Ding, Dewen

    2016-02-15

    The purpose of this study is to develop feasible tools to investigate the cumulative impact of reclamations on coastal ecosystem health, so that the strategies of ecosystem-based management can be applied in the coastal zone. An indicator system and model were proposed to assess the cumulative impact synthetically. Two coastal water bodies, namely Laizhou Bay (LZB) and Tianjin coastal waters (TCW), in the Bohai Sea of China were studied and compared, each in a different phase of reclamations. Case studies showed that the indicator scores of coastal ecosystem health in LZB and TCW were 0.75 and 0.68 out of 1.0, respectively. It can be concluded that coastal reclamations have a historically cumulative effect on benthic environment, whose degree is larger than that on aquatic environment. The ecosystem-based management of coastal reclamations should emphasize the spatially and industrially intensive layout.

  18. SEVEN PILLARS OF ECOSYSTEM MANAGEMENT

    EPA Science Inventory

    Ecosystem management is widely proposed in the popular and professional literature as the modern and preferred way of managing natural resources and ecosystems. Advocates glowingly describe ecosystem management as an approach that will protect the environment, maintain healthy ec...

  19. A HYPOTHESIS-DRIVEN FRAMEWORK FOR ASSESSING CLIMATE INDUCED CHANGES IN COASTAL FINAL ECOSYSTEM GOODS AND SERVICES

    EPA Science Inventory

    Understanding how climate change will alter the availability of coastal final ecosystem goods and services (FEGS; such as food provisioning from fisheries, property protection, and recreation) has significant implications for coastal planning and the development of adaptive manag...

  20. Historical overfishing and the recent collapse of coastal ecosystems.

    PubMed

    Jackson, J B; Kirby, M X; Berger, W H; Bjorndal, K A; Botsford, L W; Bourque, B J; Bradbury, R H; Cooke, R; Erlandson, J; Estes, J A; Hughes, T P; Kidwell, S; Lange, C B; Lenihan, H S; Pandolfi, J M; Peterson, C H; Steneck, R S; Tegner, M J; Warner, R R

    2001-07-27

    Ecological extinction caused by overfishing precedes all other pervasive human disturbance to coastal ecosystems, including pollution, degradation of water quality, and anthropogenic climate change. Historical abundances of large consumer species were fantastically large in comparison with recent observations. Paleoecological, archaeological, and historical data show that time lags of decades to centuries occurred between the onset of overfishing and consequent changes in ecological communities, because unfished species of similar trophic level assumed the ecological roles of overfished species until they too were overfished or died of epidemic diseases related to overcrowding. Retrospective data not only help to clarify underlying causes and rates of ecological change, but they also demonstrate achievable goals for restoration and management of coastal ecosystems that could not even be contemplated based on the limited perspective of recent observations alone.

  1. USGS: Science to understand and forecast change in coastal ecosystems

    USGS Publications Warehouse

    Myers, M.

    2007-01-01

    The multidisciplinary approach of the US Geological Survey (USGS), a principal science agency of the US Department of the Interior (DOI), to address the complex and cumulative impacts of human activities and natural events on the US coastal ecosystems has been considered remarkable for understanding and forecasting the changes. The USGS helps explain geologic, hydrologic, and biologic systems and their connectivity across landscapes and seascapes along the coastline. The USGS coastal science programs effectively address science and information to other scientists, managers, policy makers, and the public. The USGS provides scientific expertise, capabilities, and services to collaborative federal, regional, and state-led efforts, which are in line with the goals of Ocean Action Plan (OAP) and Ocean Research Priorities Plan (ORPP). The organization is a leader in understanding terrestrial and marine environmental hazards such as earthquakes, tsunamis, floods, and landslides and assessing and forecasting coastal impacts using various specialized visualization techniques.

  2. Sustainability Of Coastal Fringe Ecosystems Against Anthropogenic Chemical Stressors

    EPA Science Inventory

    Plant-dominated coastal ecosystems provide least 21 ecological services including shoreline protection, contaminant removal and nursery and breeding habitat for biota. The value of these ecological services is as great as $28000/h. These ecosystems which include intertidal wetl...

  3. Informing policy to protect coastal coral reefs: insight from a global review of reducing agricultural pollution to coastal ecosystems.

    PubMed

    Kroon, Frederieke J; Schaffelke, Britta; Bartley, Rebecca

    2014-08-15

    The continuing degradation of coral reefs has serious consequences for the provision of ecosystem goods and services to local and regional communities. While climate change is considered the most serious risk to coral reefs, agricultural pollution threatens approximately 25% of the total global reef area with further increases in sediment and nutrient fluxes projected over the next 50 years. Here, we aim to inform coral reef management using insights learned from management examples that were successful in reducing agricultural pollution to coastal ecosystems. We identify multiple examples reporting reduced fluxes of sediment and nutrients at end-of-river, and associated declines in nutrient concentrations and algal biomass in receiving coastal waters. Based on the insights obtained, we recommend that future protection of coral reef ecosystems demands policy focused on desired ecosystem outcomes, targeted regulatory approaches, up-scaling of watershed management, and long-term maintenance of scientifically robust monitoring programs linked with adaptive management.

  4. Global patterns of phytoplankton dynamics in coastal ecosystems

    USGS Publications Warehouse

    Paerl, H.; Yin, Kedong; Cloern, J.

    2011-01-01

    Scientific Committee on Ocean Research Working Group 137 Meeting; Hangzhou, China, 17-21 October 2010; Phytoplankton biomass and community structure have undergone dramatic changes in coastal ecosystems over the past several decades in response to climate variability and human disturbance. These changes have short- and long-term impacts on global carbon and nutrient cycling, food web structure and productivity, and coastal ecosystem services. There is a need to identify the underlying processes and measure the rates at which they alter coastal ecosystems on a global scale. Hence, the Scientific Committee on Ocean Research (SCOR) formed Working Group 137 (WG 137), "Global Patterns of Phytoplankton Dynamics in Coastal Ecosystems: A Comparative Analysis of Time Series Observations" (http://wg137.net/). This group evolved from a 2007 AGU-sponsored Chapman Conference entitled "Long Time-Series Observations in Coastal Ecosystems: Comparative Analyses of Phytoplankton Dynamics on Regional to Global Scales.".

  5. Ecosystem goods and services from Swedish coastal habitats: identification, valuation, and implications of ecosystem shifts.

    PubMed

    Rönnbäck, Patrik; Kautsky, Nils; Pihl, Leif; Troell, Max; Söderqvist, Tore; Wennhage, Håkan

    2007-11-01

    Coastal areas are exposed to a variety of threats due to high population densities and rapid economic development. How will this affect human welfare and our dependence on nature's capacity to provide ecosystem goods and services? This paper is original in evaluating this concern for major habitats (macroalgae, seagrasses, blue mussel beds, and unvegetated soft bottoms) in a temperate coastal setting. More than 40 categories of goods and services are classified into provisional, regulating, and cultural services. A wide variety of Swedish examples is described for each category, including accounts of economic values and the relative importance of different habitats. For example, distinguishing characteristics would be the exceptional importance of blue mussels for mitigation of eutrophication, sandy soft bottoms for recreational uses, and seagrasses and macroalgae for fisheries production and control of wave and current energy. Net changes in the provision of goods and services are evaluated for three cases of observed coastal ecosystem shifts: i) seagrass beds into unvegetated substrate; ii) unvegetated shallow soft bottoms into filamentous algal mat dominance; and iii) macroalgae into mussel beds on hard substrate. The results are discussed in a management context including accounts of biodiversity, interconnectedness of ecosystems, and potential of economic valuation.

  6. The Economic Value of Coastal Ecosystems in California

    EPA Science Inventory

    The status of marine ecosystems affects the well being of human societies. These ecosystems include but are not limited to estuaries, lagoons, reefs, and systems further offshore such as deep ocean vents. The coastal regions that connect terrestrial and marine ecosystems are of p...

  7. Decreasing nitrate-N loads to coastal ecosystems with innovative drainage management strategies in agricultural landscapes: An experimental approach

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Controlled drainage in agricultural ditches contributes to a drainage management strategy with potential environmental and production benefits. Innovative drainage strategies including spatially orientated low-grade weirs show promise to significantly improve nutrient (e.g. nitrate-N) reductions by...

  8. Marine reserves help coastal ecosystems cope with extreme weather.

    PubMed

    Olds, Andrew D; Pitt, Kylie A; Maxwell, Paul S; Babcock, Russell C; Rissik, David; Connolly, Rod M

    2014-10-01

    Natural ecosystems have experienced widespread degradation due to human activities. Consequently, enhancing resilience has become a primary objective for conservation. Nature reserves are a favored management tool, but we need clearer empirical tests of whether they can impart resilience. Catastrophic flooding in early 2011 impacted coastal ecosystems across eastern Australia. We demonstrate that marine reserves enhanced the capacity of coral reefs to withstand flood impacts. Reserve reefs resisted the impact of perturbation, whilst fished reefs did not. Changes on fished reefs were correlated with the magnitude of flood impact, whereas variation on reserve reefs was related to ecological variables. Herbivory and coral recruitment are critical ecological processes that underpin reef resilience, and were greater in reserves and further enhanced on reserve reefs near mangroves. The capacity of reserves to mitigate external disturbances and promote ecological resilience will be critical to resisting an increased frequency of climate-related disturbance.

  9. Economic development and coastal ecosystem change in China

    NASA Astrophysics Data System (ADS)

    He, Qiang; Bertness, Mark D.; Bruno, John F.; Li, Bo; Chen, Guoqian; Coverdale, Tyler C.; Altieri, Andrew H.; Bai, Junhong; Sun, Tao; Pennings, Steven C.; Liu, Jianguo; Ehrlich, Paul R.; Cui, Baoshan

    2014-08-01

    Despite their value, coastal ecosystems are globally threatened by anthropogenic impacts, yet how these impacts are driven by economic development is not well understood. We compiled a multifaceted dataset to quantify coastal trends and examine the role of economic growth in China's coastal degradation since the 1950s. Although China's coastal population growth did not change following the 1978 economic reforms, its coastal economy increased by orders of magnitude. All 15 coastal human impacts examined increased over time, especially after the reforms. Econometric analysis revealed positive relationships between most impacts and GDP across temporal and spatial scales, often lacking dropping thresholds. These relationships generally held when influences of population growth were addressed by analyzing per capita impacts, and when population density was included as explanatory variables. Historical trends in physical and biotic indicators showed that China's coastal ecosystems changed little or slowly between the 1950s and 1978, but have degraded at accelerated rates since 1978. Thus economic growth has been the cause of accelerating human damage to China's coastal ecosystems. China's GDP per capita remains very low. Without strict conservation efforts, continuing economic growth will further degrade China's coastal ecosystems.

  10. Economic development and coastal ecosystem change in China.

    PubMed

    He, Qiang; Bertness, Mark D; Bruno, John F; Li, Bo; Chen, Guoqian; Coverdale, Tyler C; Altieri, Andrew H; Bai, Junhong; Sun, Tao; Pennings, Steven C; Liu, Jianguo; Ehrlich, Paul R; Cui, Baoshan

    2014-08-08

    Despite their value, coastal ecosystems are globally threatened by anthropogenic impacts, yet how these impacts are driven by economic development is not well understood. We compiled a multifaceted dataset to quantify coastal trends and examine the role of economic growth in China's coastal degradation since the 1950s. Although China's coastal population growth did not change following the 1978 economic reforms, its coastal economy increased by orders of magnitude. All 15 coastal human impacts examined increased over time, especially after the reforms. Econometric analysis revealed positive relationships between most impacts and GDP across temporal and spatial scales, often lacking dropping thresholds. These relationships generally held when influences of population growth were addressed by analyzing per capita impacts, and when population density was included as explanatory variables. Historical trends in physical and biotic indicators showed that China's coastal ecosystems changed little or slowly between the 1950s and 1978, but have degraded at accelerated rates since 1978. Thus economic growth has been the cause of accelerating human damage to China's coastal ecosystems. China's GDP per capita remains very low. Without strict conservation efforts, continuing economic growth will further degrade China's coastal ecosystems.

  11. Economic development and coastal ecosystem change in China

    PubMed Central

    He, Qiang; Bertness, Mark D.; Bruno, John F.; Li, Bo; Chen, Guoqian; Coverdale, Tyler C.; Altieri, Andrew H.; Bai, Junhong; Sun, Tao; Pennings, Steven C.; Liu, Jianguo; Ehrlich, Paul R.; Cui, Baoshan

    2014-01-01

    Despite their value, coastal ecosystems are globally threatened by anthropogenic impacts, yet how these impacts are driven by economic development is not well understood. We compiled a multifaceted dataset to quantify coastal trends and examine the role of economic growth in China's coastal degradation since the 1950s. Although China's coastal population growth did not change following the 1978 economic reforms, its coastal economy increased by orders of magnitude. All 15 coastal human impacts examined increased over time, especially after the reforms. Econometric analysis revealed positive relationships between most impacts and GDP across temporal and spatial scales, often lacking dropping thresholds. These relationships generally held when influences of population growth were addressed by analyzing per capita impacts, and when population density was included as explanatory variables. Historical trends in physical and biotic indicators showed that China's coastal ecosystems changed little or slowly between the 1950s and 1978, but have degraded at accelerated rates since 1978. Thus economic growth has been the cause of accelerating human damage to China's coastal ecosystems. China's GDP per capita remains very low. Without strict conservation efforts, continuing economic growth will further degrade China's coastal ecosystems. PMID:25104138

  12. Embedding ecosystem services in coastal planning leads to better outcomes for people and nature

    PubMed Central

    Arkema, Katie K.; Verutes, Gregory M.; Wood, Spencer A.; Clarke-Samuels, Chantalle; Rosado, Samir; Canto, Maritza; Rosenthal, Amy; Ruckelshaus, Mary; Guannel, Gregory; Toft, Jodie; Faries, Joe; Silver, Jessica M.; Griffin, Robert; Guerry, Anne D.

    2015-01-01

    Recent calls for ocean planning envision informed management of social and ecological systems to sustain delivery of ecosystem services to people. However, until now, no coastal and marine planning process has applied an ecosystem-services framework to understand how human activities affect the flow of benefits, to create scenarios, and to design a management plan. We developed models that quantify services provided by corals, mangroves, and seagrasses. We used these models within an extensive engagement process to design a national spatial plan for Belize’s coastal zone. Through iteration of modeling and stakeholder engagement, we developed a preferred plan, currently under formal consideration by the Belizean government. Our results suggest that the preferred plan will lead to greater returns from coastal protection and tourism than outcomes from scenarios oriented toward achieving either conservation or development goals. The plan will also reduce impacts to coastal habitat and increase revenues from lobster fishing relative to current management. By accounting for spatial variation in the impacts of coastal and ocean activities on benefits that ecosystems provide to people, our models allowed stakeholders and policymakers to refine zones of human use. The final version of the preferred plan improved expected coastal protection by >25% and more than doubled the revenue from fishing, compared with earlier versions based on stakeholder preferences alone. Including outcomes in terms of ecosystem-service supply and value allowed for explicit consideration of multiple benefits from oceans and coasts that typically are evaluated separately in management decisions. PMID:26082545

  13. The roles of large top predators in coastal ecosystems: new insights from long term ecological research

    USGS Publications Warehouse

    Rosenblatt, Adam E.; Heithaus, Michael R.; Mather, Martha E.; Matich, Philip; Nifong, James C.; Ripple, William J.; Silliman, Brian R.

    2013-01-01

    During recent human history, human activities such as overhunting and habitat destruction have severely impacted many large top predator populations around the world. Studies from a variety of ecosystems show that loss or diminishment of top predator populations can have serious consequences for population and community dynamics and ecosystem stability. However, there are relatively few studies of the roles of large top predators in coastal ecosystems, so that we do not yet completely understand what could happen to coastal areas if large top predators are extirpated or significantly reduced in number. This lack of knowledge is surprising given that coastal areas around the globe are highly valued and densely populated by humans, and thus coastal large top predator populations frequently come into conflict with coastal human populations. This paper reviews what is known about the ecological roles of large top predators in coastal systems and presents a synthesis of recent work from three coastal eastern US Long Term Ecological Research (LTER) sites where long-term studies reveal what appear to be common themes relating to the roles of large top predators in coastal systems. We discuss three specific themes: (1) large top predators acting as mobile links between disparate habitats, (2) large top predators potentially affecting nutrient and biogeochemical dynamics through localized behaviors, and (3) individual specialization of large top predator behaviors. We also discuss how research within the LTER network has led to enhanced understanding of the ecological roles of coastal large top predators. Highlighting this work is intended to encourage further investigation of the roles of large top predators across diverse coastal aquatic habitats and to better inform researchers and ecosystem managers about the importance of large top predators for coastal ecosystem health and stability.

  14. Interactions of aquaculture, marine coastal ecosystems, and near-shore waters: A bibliography. Bibliographies and literature of agriculture (Final)

    SciTech Connect

    Hanfman, D.T.; Coleman, D.E.; Tibbitt, S.J.

    1991-01-01

    The bibliography contains selected literature citations on the interactions of aquaculture and marine coastal ecosystems. The focus is on aquaculture effluents and their impact on marine coastal ecosystems and waterways as well as the impact of pollutants on aquaculture development. Factors affecting these issues include domestic and industrial wastes, thermal discharges, acid rain, heavy metals, oil spills, and microbial contamination of marine waters and aquatic species. Coastal zone management, environmenal impact of aquaculture, and water quality issues are also included in the bibliography.

  15. Responses of biological and chemical components in North East Atlantic coastal water to experimental nitrogen and phosphorus addition--a full scale ecosystem study and its relevance for management.

    PubMed

    Olsen, Yngvar; Reinertsen, Helge; Sommer, Ulrich; Vadstein, Olav

    2014-03-01

    The objective of this study was to quantify chemical and biological responses to an experimentally increased nutrient input to an open coastal planktonic ecosystem and to contribute to a scientific concept and credible indicators for managing nutrient supply to coastal waters. Data were derived in a 5 year fertilisation experiment of a tidal driven coastal lagoon at the outer coast off Central Norway (63°36' N, 9°33' E), with a surface area of 275.000 m(2), volume of 5.5 mill m(3), mean depth of 22 m and a water exchange rate of 0.19 day(-1). The lagoon was fertilised in the summer season 1998 and 1999, while summer seasons 1996-97 and 2000 and inflowing water were used as unfertilised references. Most measured chemical and biological variables showed linear responses with an increasing loading rate of inorganic N and P (LN and LP, respectively). PON, POP and POC (< 200 μm) responded significantly (P<0.05) as did chlorophyll a and phytoplankton C. DIN and DIP remained, however, constant and independent of LN and LP, respectively (P>0.05) as did heterotrophic biomass (P>0.05). We evaluate the response variables assuming a stepwise incorporation process of nutrients in the planktonic ecosystem and how that will interact with biological response times and water dilution rates. We suggest that PON is a credible indicator of both chemical and ecological states of the planktonic ecosystem and that natural background and upper critical concentrations are 46 and 88 mg PON m(-3), respectively. The study was supported by data from mesocosms. We discuss the scientific relevance of our suggestions, how results can be extrapolated to a broader geographical scale, and we propose a science-based concept for the management of nutrient emission to open coastal waters.

  16. Recreational impacts on the fauna of Australian coastal marine ecosystems.

    PubMed

    Hardiman, Nigel; Burgin, Shelley

    2010-11-01

    This paper reviews recent research into the ecological impacts of recreation and tourism on coastal marine fauna in Australia. Despite the high and growing importance of water-based recreation to the Australian economy, and the known fragility of many Australian ecosystems, there has been relatively limited research into the effects of marine tourism and recreation, infrastructure and activities, on aquatic resources. In this paper we have reviewed the ecological impacts on fauna that are caused by outdoor recreation (including tourism) in Australian coastal marine ecosystems. We predict that the single most potentially severe impact of recreation may be the introduction and/or dispersal of non-indigenous species of marine organisms by recreational vessels. Such introductions, together with other impacts due to human activities have the potential to increasingly degrade recreation destinations. In response, governments have introduced a wide range of legislative tools (e.g., impact assessment, protected area reservation) to manage the recreational industry. It would appear, however, that these instruments are not always appropriately applied.

  17. Ecosystem modeling of coastal acidification and hypoxia and structural uncertainties in the representation of sediment-water exchanges

    EPA Science Inventory

    Numerical ecosystem models of coastal acidification (CA) and hypoxia have been developed to synthesize current scientific understanding and provide predictions for nutrient management and policy. However, there is not a scientific consensus about the structure of these models an...

  18. Adaptive Management of Ecosystems

    EPA Science Inventory

    Adaptive management is an approach to natural resource management that emphasizes learning through management. As such, management may be treated as experiment, with replication, or management may be conducted in an iterative manner. Although the concept has resonated with many...

  19. 76 FR 39857 - Alaska Coastal Management Program Withdrawal From the National Coastal Management Program Under...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-07

    ... National Oceanic Atmospheric Administration Alaska Coastal Management Program Withdrawal From the National... Coastal Resource Management (OCRM), National Ocean Service (NOS), National Oceanic Atmospheric... withdrawal from participation in the CZMA's National Coastal Management Program. The CZMA Federal...

  20. Issues in Coastal Zone Management.

    ERIC Educational Resources Information Center

    Davis, Derrin

    1992-01-01

    Addresses the following issues relevant to coastal zone management: overcrowding, resource exploitation, pollution, agriculture, fisheries, industrial, and other uses. Describes conflicts and trade-offs in management typified by fragmented agency decision making. Discusses implications of the greenhouse effect, sustainable development, and the…

  1. GEO-CAPE Coastal Ocean Ecosystem Dynamics White Paper ...

    EPA Pesticide Factsheets

    The Clean Water Act protects all navigable waters in the United States (CWA, 1988). The objective of the CWA is to "restore and maintain the chemical, physical, and biological integrity of the Nation's waters." This Federal mandate authorizes states, tribes, and U.S. territories, with guidance and oversight from the U.S. Environmental Protection Agency (EPA), to develop and implement water quality standards to protect the human and aquatic life uses of the Nation’s waterways. Water quality standards include designated uses, defined as the services that a water body supports such as drinking water, aquatic life, harvestable species, and recreation. These standards under the CWA Section 304(a) are applicable within state waters, defined as less than 3 nautical miles from shore. Therefore, a majority of research by the EPA addresses near-shore coastal waters within 3 nautical miles, estuaries and lakes where applicable water quality regulation could be implemented. Policy makers and environmental managers in EPA’s program and regional offices need tools enabling them to assess the sustainability of watershed ecosystems, and the services they provide, under current and future land use practices. The typical 1km resolution and current Case 1 algorithms of SeaWiFS, MODIS, and VIIRS provide limited assessments of near-shore coastal waters, estuaries and lakes. It has proven difficult to adequately resolve and derive products in smaller estuaries or waters in proxim

  2. MANAGING COASTAL DATA

    EPA Science Inventory

    To answer broad-scale questions on environmental conditions, the Environmental Monitoring and Assessment Program (EMAP) and its partners have collected estuarine and coastal data from hundreds of stations along the coasts of the continental United States. Types of data include w...

  3. Pansharpening in coastal ecosystems using Worldview-2 imagery

    NASA Astrophysics Data System (ADS)

    Ibarrola-Ulzurrun, Edurne; Marcello-Ruiz, Javier; Gonzalo-Martin, Consuelo

    2016-10-01

    Both climate change and anthropogenic pressure impacts are producing a declining in ecosystem natural resources. In this work, a vulnerable coastal ecosystem, Maspalomas Natural Reserve (Canary Islands, Spain), is analyzed. The development of advanced image processing techniques, applied to new satellites with very high resolution sensors (VHR), are essential to obtain accurate and systematic information about such natural areas. Thus, remote sensing offers a practical and cost-effective means for a good environmental management although some improvements are needed by the application of pansharpening techniques. A preliminary assessment was performed selecting classical and new algorithms that could achieve good performance with WorldView-2 imagery. Moreover, different quality indices were used in order to asses which pansharpening technique gives a better fused image. A total of 7 pansharpening algorithms were analyzed using 6 spectral and spatial quality indices. The quality assessment was implemented for the whole set of multispectral bands and for those bands covered by the wavelength range of the panchromatic image and outside of it. After an extensive evaluation, the most suitable algorithm was the Weighted Wavelet `à trous' through Fractal Dimension Maps technique which provided the best compromise between the spectral and spatial quality for the image. Finally, Quality Map Analysis was performed in order to study the fusion in each band at local level. As conclusion, novel analysis has been conducted covering the evaluation of fusion methods in shallow water areas. Hence, the excellent results provided by this study have been applied to the generation of challenging thematic maps of coastal and dunes protected areas.

  4. Ecosystem classification for EU habitat distribution assessment in sandy coastal environments: an application in central Italy.

    PubMed

    Carranza, Maria Laura; Acosta, Alicia T R; Stanisci, Angela; Pirone, Gianfranco; Ciaschetti, Giampiero

    2008-05-01

    Many recent developments in coastal science have gone against the demands of European Union legislation. Coastal dune systems which cover small areas of the earth can host a high level of biodiversity. However, human pressure on coastal zones around the world has increased dramatically in the last 50 years. In addition to direct habitat loss, the rapid extinction of many species that are unique to these systems can be attributed to landscape deterioration through the lack of appropriate management. In this paper, we propose to use of an ecosystem classification technique that integrates potential natural vegetation distribution as a reference framework for coastal dune EU Habitats (92/43) distribution analysis and assessment. As an example, the present study analyses the EU Habitats distribution within a hierarchical ecosystem classification of the coastal dune systems of central Italy. In total, 24 land elements belonging to 8 land units, 5 land facets, 2 land systems and 2 land regions were identified for the coastal dunes of central Italy, based on diagnostic land attributes. In central Italy, coastal dune environments including all the beach area, mobile dunes and all the fixed-dune land elements contain or could potentially hold at least one EU habitat of interest. Almost all dune slack transitions present the potentiality for the spontaneous development of EU woodlands of interest. The precise information concerning these ecosystems distribution and ecological relationships that this method produces, makes it very effective in Natura 2000 European network assessment. This hierarchical ecosystem classification method facilitates the identification of areas to be surveyed and eventually bound, under the implementation of EU Habitat directive (92/43) including areas with highly disturbed coastal dune ecosystems.

  5. Causes and consequences of ecosystem service regionalization in a coastal suburban watershed

    USGS Publications Warehouse

    Wollheim, Wilfred M.; Mark B. Green,; Pellerin, Brian A.; Morse, Nathaniel B.; Hopkinson, Charles S.

    2015-01-01

    The demand for ecosystem services and the ability of natural ecosystems to provide those services evolve over time as population, land use, and management practices change. Regionalization of ecosystem service activity, or the expansion of the area providing ecosystem services to a population, is a common response in densely populated coastal regions, with important consequences for watershed water and nitrogen (N) fluxes to the coastal zone. We link biophysical and historical information to explore the causes and consequences of change in ecosystem service activity—focusing on water provisioning and N regulation—from 1850 to 2010 in a coastal suburban watershed, the Ipswich River watershed in northeastern Massachusetts, USA. Net interbasin water transfers started in the late 1800s due to regionalization of water supply for use by larger populations living outside the Ipswich watershed boundaries, reaching a peak in the mid-1980s. Over much of the twentieth century, about 20 % of river runoff was diverted from reaching the estuary, with greater proportions during drought years. Ongoing regionalization of water supply has contributed to recent declines in diversions, influenced by socioecological feedbacks resulting from the river drying and fish kills. Similarly, the N budget has been greatly perturbed since the suburban era began in the 1950s due to food and lawn fertilizer imports and human waste release. However, natural ecosystems are able to remove most of this anthropogenic N, mitigating impacts on the coastal zone. We propose a conceptual model whereby the amount and type of ecosystem services provided by coastal watersheds in urban regions expand and contract over time as regional population expands and ecosystem services are regionalized. We hypothesize that suburban watersheds can be hotspots of ecosystem service sources because they retain sufficient ecosystem function to still produce services that meet increasing demand from the local population

  6. Ecosystem Services Transcend Boundaries: Estuaries Provide Resource Subsidies and Influence Functional Diversity in Coastal Benthic Communities

    PubMed Central

    Savage, Candida; Thrush, Simon F.; Lohrer, Andrew M.; Hewitt, Judi E.

    2012-01-01

    integrative ecosystem-based management that maintains the connectivity of estuarine and coastal ecosystems. PMID:22880089

  7. Estimating global "blue carbon" emissions from conversion and degradation of vegetated coastal ecosystems.

    PubMed

    Pendleton, Linwood; Donato, Daniel C; Murray, Brian C; Crooks, Stephen; Jenkins, W Aaron; Sifleet, Samantha; Craft, Christopher; Fourqurean, James W; Kauffman, J Boone; Marbà, Núria; Megonigal, Patrick; Pidgeon, Emily; Herr, Dorothee; Gordon, David; Baldera, Alexis

    2012-01-01

    Recent attention has focused on the high rates of annual carbon sequestration in vegetated coastal ecosystems--marshes, mangroves, and seagrasses--that may be lost with habitat destruction ('conversion'). Relatively unappreciated, however, is that conversion of these coastal ecosystems also impacts very large pools of previously-sequestered carbon. Residing mostly in sediments, this 'blue carbon' can be released to the atmosphere when these ecosystems are converted or degraded. Here we provide the first global estimates of this impact and evaluate its economic implications. Combining the best available data on global area, land-use conversion rates, and near-surface carbon stocks in each of the three ecosystems, using an uncertainty-propagation approach, we estimate that 0.15-1.02 Pg (billion tons) of carbon dioxide are being released annually, several times higher than previous estimates that account only for lost sequestration. These emissions are equivalent to 3-19% of those from deforestation globally, and result in economic damages of $US 6-42 billion annually. The largest sources of uncertainty in these estimates stems from limited certitude in global area and rates of land-use conversion, but research is also needed on the fates of ecosystem carbon upon conversion. Currently, carbon emissions from the conversion of vegetated coastal ecosystems are not included in emissions accounting or carbon market protocols, but this analysis suggests they may be disproportionally important to both. Although the relevant science supporting these initial estimates will need to be refined in coming years, it is clear that policies encouraging the sustainable management of coastal ecosystems could significantly reduce carbon emissions from the land-use sector, in addition to sustaining the well-recognized ecosystem services of coastal habitats.

  8. Macroclimatic change expected to transform coastal wetland ecosystems this century

    USGS Publications Warehouse

    Gabler, Christopher A.; Osland, Michael J.; Grace, James B.; Stagg, Camille L.; Day, Richard H.; Hartley, Stephen B.; Enwright, Nicholas M.; From, Andrew; McCoy, Meagan L.; McLeod, Jennie L.

    2017-01-01

    Coastal wetlands, existing at the interface between land and sea, are highly vulnerable to climate change. Macroclimate (for example, temperature and precipitation regimes) greatly influences coastal wetland ecosystem structure and function. However, research on climate change impacts in coastal wetlands has concentrated primarily on sea-level rise and largely ignored macroclimatic drivers, despite their power to transform plant community structure and modify ecosystem goods and services. Here, we model wetland plant community structure based on macroclimate using field data collected across broad temperature and precipitation gradients along the northern Gulf of Mexico coast. Our analyses quantify strongly nonlinear temperature thresholds regulating the potential for marsh-to-mangrove conversion. We also identify precipitation thresholds for dominance by various functional groups, including succulent plants and unvegetated mudflats. Macroclimate-driven shifts in foundation plant species abundance will have large effects on certain ecosystem goods and services. Based on current and projected climatic conditions, we project that transformative ecological changes are probable throughout the region this century, even under conservative climate scenarios. Coastal wetland ecosystems are functionally similar worldwide, so changes in this region are indicative of potential future changes in climatically similar regions globally.

  9. Coastal Ecosystems. Project CAPE Teaching Module [with Student Materials].

    ERIC Educational Resources Information Center

    Cowal, Michael; And Others

    Intended for grades K-2, this science unit on coastal ecosystems aids teachers in helping students to: (1) identify marine organisms; (2) learn their basic characteristics; and (3) understand the web of interdependence among organisms of the same habitat. The teacher's guide is divided into four sections. The first section gives background…

  10. DEVELOPING INDICATORS OF NITROGEN SOURCE IN COASTAL ECOSYSTEMS

    EPA Science Inventory

    Several studies have linked stable isotope ratios of biota to nitrogen source. In particular, ribbed mussels show promise as sensitive indicators of the origins of nitrogen inputs to coastal ecosystems. Here we expand on previous work which demonstrated that mussel isotope ratios...

  11. Coastal biodiversity and ecosystem services flows at the landscape scale: The CBESS progamme.

    NASA Astrophysics Data System (ADS)

    Paterson, David; Bothwell, John; Bradbury, Richard; Burrows, Michael; Burton, Niall; Emmerson, Mark; Garbutt, Angus; Skov, Martin; Solan, Martin; Spencer, Tom; Underwood, Graham

    2015-04-01

    The health of the European coastline is inextricably linked to the economy and culture of coastal nations but they are sensitive to climate change. As global temperatures increase, sea levels will rise and the forces experienced where land meets sea will become more destructive. Salt marshes, mudflats, beaches will be affected. These landscapes support a wide range of economically valuable animal and plant species, but also act as sites of carbon storage, nutrient recycling, and pollutant capture and amelioration. Their preservation is of utmost importance. Our programme: "A hierarchical approach to the examination of the relationship between biodiversity and ecosystem service flows across coastal margins" (CBESS) is designed to understand the landscape-scale links between the functions that these systems provide (ecosystem service flows) and the organisms that provide these services (biodiversity stocks) and moves beyond most previous studies, conducted at smaller scales. Our consortium of experts ranges from microbial ecologists, through environmental economists, to mathematical modellers, and organisations (RSPB, BTO, CEFAS, EA) with vested interest in the sustainable use of coastal wetlands. CBESS spans the landscape scale, investigating how biodiversity stocks provide ecosystem services (cf. National Ecosystem Assessment: Supporting services; Provisioning services; Regulating services; and Cultural services). CBESS combined a detailed study of two regional landscapes with a broad-scale UK-wide study to allow both specific and general conclusions to be drawn. The regional study compares two areas of great UK national importance: Morecambe Bay on the west coast and the Essex coastline on the east. We carried out biological and physical surveys at more than 600 stations combined with in situ measures of ecosystem funtction to clarify how biodiversity can provide these important ecosystem functions across scales. This information will be shared with those

  12. Estimating Global “Blue Carbon” Emissions from Conversion and Degradation of Vegetated Coastal Ecosystems

    PubMed Central

    Murray, Brian C.; Crooks, Stephen; Jenkins, W. Aaron; Sifleet, Samantha; Craft, Christopher; Fourqurean, James W.; Kauffman, J. Boone; Marbà, Núria; Megonigal, Patrick; Pidgeon, Emily; Herr, Dorothee; Gordon, David; Baldera, Alexis

    2012-01-01

    Recent attention has focused on the high rates of annual carbon sequestration in vegetated coastal ecosystems—marshes, mangroves, and seagrasses—that may be lost with habitat destruction (‘conversion’). Relatively unappreciated, however, is that conversion of these coastal ecosystems also impacts very large pools of previously-sequestered carbon. Residing mostly in sediments, this ‘blue carbon’ can be released to the atmosphere when these ecosystems are converted or degraded. Here we provide the first global estimates of this impact and evaluate its economic implications. Combining the best available data on global area, land-use conversion rates, and near-surface carbon stocks in each of the three ecosystems, using an uncertainty-propagation approach, we estimate that 0.15–1.02 Pg (billion tons) of carbon dioxide are being released annually, several times higher than previous estimates that account only for lost sequestration. These emissions are equivalent to 3–19% of those from deforestation globally, and result in economic damages of $US 6–42 billion annually. The largest sources of uncertainty in these estimates stems from limited certitude in global area and rates of land-use conversion, but research is also needed on the fates of ecosystem carbon upon conversion. Currently, carbon emissions from the conversion of vegetated coastal ecosystems are not included in emissions accounting or carbon market protocols, but this analysis suggests they may be disproportionally important to both. Although the relevant science supporting these initial estimates will need to be refined in coming years, it is clear that policies encouraging the sustainable management of coastal ecosystems could significantly reduce carbon emissions from the land-use sector, in addition to sustaining the well-recognized ecosystem services of coastal habitats. PMID:22962585

  13. Hydrogeomorphic factors and ecosystem responses in coastal wetlands of the Great Lakes

    USGS Publications Warehouse

    Keough, Janet R.; Thompson, Todd A.; Guntenspergen, Glenn R.; Wilcox, Douglas A.

    1999-01-01

    Gauging the impact of manipulative activities, such as rehabilitation or management, on wetlands requires having a notion of the unmanipulated condition as a reference. And understanding of the reference condition requires knowledge of dominant factors influencing ecosystem processes and biological communities. In this paper, we focus on natural physical factors (conditions and processes) that drive coastal wetland ecosystems of the Laurentian Great Lakes. Great Lakes coastal wetlands develop under conditions of large-lake hydrology and disturbance imposed at a hiearchy of spatial and temporal scales and contain biotic communities adapted to unstable and unpredictable conditions. Coastal wetlands are configured along a continuum of hydrogeomorphic types: open coastal wetlands, drowned river mouth and flooded delta wetlands, and protected wetlands, each developing distinct ecosystem propertics and biotic communities. Hydrogeomorphic factors associated with the lake and watershed operate at a hierarchy of scales: a) local and short-term (seiches and ice action), b) watershed / lakewide / annual (seasonal water-level change), and c) larger or year-to-year and longer (regional and/or greater than one-year). Other physical factors include the unique water quality features of each lake. The aim of this paper is to provide scientists and managers with a framework for considering regional and site-specific geomorphometry and a hierarchy of physical processes in planning management and conservation projects.

  14. Climatic Impacts and resilience of coastal ecosystems and fisheries

    NASA Astrophysics Data System (ADS)

    Micheli, F.

    2012-12-01

    Marine and coastal ecosystems and human communities around the world are impacted by local anthropogenic pressures and by climate change, resulting in decreased ocean productivity, altered food web dynamics, habitat degradation, economic losses, and health and safety risks as a consequence of the changing and more variable climate. Climatic impacts occur both through altered physical conditions and variability, e.g., seawater temperature and sea level, and through a suite of chemical changes, including ocean acidification and hypoxia. In particular, time series analyses have highlighted declines in dissolved oxygen (DO) concentration in the ocean over the last several decades. In addition to these global trends of decreasing DO, hypoxic conditions have been documented at several coastal locations within productive upwelling-driven ecosystems, including the California Current region, resulting in high mortality of ecologically and commercially important nearshore marine species and significant economic losses. The capacity of local ecosystems and associated human communities to adapt to these pressures depends on their resilience, that is the ability of ecosystems to absorb disturbance while retaining function and continuing to provide ecosystem services, and the ability of people to adapt to change in their environment by altering their behaviors and interactions. I will present global assessments of the cumulative impacts of climatic and local anthropogenic pressures on marine ecosystems, and results of interdisciplinary research investigating the current impacts of climate change on coastal marine ecosystems and human communities of the Pacific coast of Baja California, Mexico, and the influences of local and global feedbacks on the resilience and adaptive capacity of these systems.

  15. Economic Tools for Managing Nitrogen in Coastal Watersheds

    EPA Science Inventory

    Watershed managers are interested in using economics to communicate the value of estuarine resources to the wider community, determine the most cost-effective means to reduce nitrogen pollution, and evaluate the benefits of taking action to improve coastal ecosystems. We spoke to...

  16. Army Ecosystem Management Policy Study

    DTIC Science & Technology

    1997-03-01

    principles to manage biological and physical systems in a manner that safeguards the long-term ecological sustainability, natural diversity, and...focus on ecosystem management (e.g., biodiversity conservation; restoration of native ecological systems). In all fairness, such a judgment would be...decisions. Regardless of which view one adheres to, a region can be defined along multiple dimensions—biological, physical , socio -cultural and economic. The

  17. Megacities and large urban agglomerations in the coastal zone: interactions between atmosphere, land, and marine ecosystems.

    PubMed

    von Glasow, Roland; Jickells, Tim D; Baklanov, Alexander; Carmichael, Gregory R; Church, Tom M; Gallardo, Laura; Hughes, Claire; Kanakidou, Maria; Liss, Peter S; Mee, Laurence; Raine, Robin; Ramachandran, Purvaja; Ramesh, R; Sundseth, Kyrre; Tsunogai, Urumu; Uematsu, Mitsuo; Zhu, Tong

    2013-02-01

    Megacities are not only important drivers for socio-economic development but also sources of environmental challenges. Many megacities and large urban agglomerations are located in the coastal zone where land, atmosphere, and ocean meet, posing multiple environmental challenges which we consider here. The atmospheric flow around megacities is complicated by urban heat island effects and topographic flows and sea breezes and influences air pollution and human health. The outflow of polluted air over the ocean perturbs biogeochemical processes. Contaminant inputs can damage downstream coastal zone ecosystem function and resources including fisheries, induce harmful algal blooms and feedback to the atmosphere via marine emissions. The scale of influence of megacities in the coastal zone is hundreds to thousands of kilometers in the atmosphere and tens to hundreds of kilometers in the ocean. We list research needs to further our understanding of coastal megacities with the ultimate aim to improve their environmental management.

  18. Embedding ecosystem services in coastal planning leads to better outcomes for people and nature.

    PubMed

    Arkema, Katie K; Verutes, Gregory M; Wood, Spencer A; Clarke-Samuels, Chantalle; Rosado, Samir; Canto, Maritza; Rosenthal, Amy; Ruckelshaus, Mary; Guannel, Gregory; Toft, Jodie; Faries, Joe; Silver, Jessica M; Griffin, Robert; Guerry, Anne D

    2015-06-16

    Recent calls for ocean planning envision informed management of social and ecological systems to sustain delivery of ecosystem services to people. However, until now, no coastal and marine planning process has applied an ecosystem-services framework to understand how human activities affect the flow of benefits, to create scenarios, and to design a management plan. We developed models that quantify services provided by corals, mangroves, and seagrasses. We used these models within an extensive engagement process to design a national spatial plan for Belize's coastal zone. Through iteration of modeling and stakeholder engagement, we developed a preferred plan, currently under formal consideration by the Belizean government. Our results suggest that the preferred plan will lead to greater returns from coastal protection and tourism than outcomes from scenarios oriented toward achieving either conservation or development goals. The plan will also reduce impacts to coastal habitat and increase revenues from lobster fishing relative to current management. By accounting for spatial variation in the impacts of coastal and ocean activities on benefits that ecosystems provide to people, our models allowed stakeholders and policymakers to refine zones of human use. The final version of the preferred plan improved expected coastal protection by >25% and more than doubled the revenue from fishing, compared with earlier versions based on stakeholder preferences alone. Including outcomes in terms of ecosystem-service supply and value allowed for explicit consideration of multiple benefits from oceans and coasts that typically are evaluated separately in management decisions.

  19. Influence of Environmental Factors on Vibrio spp. in Coastal Ecosystems.

    PubMed

    Johnson, Crystal N

    2015-06-01

    Various studies have examined the relationships between vibrios and the environmental conditions surrounding them. However, very few reviews have compiled these studies into cohesive points. This may be due to the fact that these studies examine different environmental parameters, use different sampling, detection, and enumeration methodologies, and occur in diverse geographic locations. The current article is one approach to compile these studies into a cohesive work that assesses the importance of environmental determinants on the abundance of vibrios in coastal ecosystems.

  20. Biodiversity and Industry Ecosystem Management

    PubMed

    COLEMAN

    1996-11-01

    / The term biodiversity describes the array of interacting, genetically distinct populations and species in a region, the communities they comprise, and the variety of ecosystems of which they are functioning parts. Ecosystem health, a closely related concept, is described in terms of a process identifying biological indicators, end points, and values. The decline of populations or species, an accelerating trend worldwide, can lead to simplification of ecosystem processes, thus threatening the stability and sustainability of ecosystem services directly relevant to human welfare in the chain of economic and ecological relationships. The challenge of addressing issues of such enormous scope and complexity has highlighted the limitations of ecology-as-science. Additionally, biosphere-scale conflicts seem to lie beyond the scope of conventional economics, leading to differences of opinion about the commodity value of biodiversity and of the services that intact ecosystems provide. In the face of these uncertainties, many scientists and economists have adopted principles that clearly assign burdens of proof to those who would promote the loss of biodiversity and that also establish "near-trump" (preeminent) status for ecological integrity. Electric utility facilities and operations impact biodiversity whenever construction, operation, or maintenance of generation, delivery, and support facilities alters landscapes and habitats and thereby impacts species. Although industry is accustomed to dealing with broad environmental concerns (such as global warming or acid rain), the biodiversity issue invokes hemisphere-wide, regional, local, and site-specific concerns all at the same time. Industry can proactively address these issues of scope and scale in two main ways: first, by aligning strategically with the broad research agenda put forth by informed scientists and institutions; and second, by supporting focused management processes whose results will contribute

  1. RADICALLY CONTESTED ASSERTIONS IN ECOSYSTEM MANAGEMENT

    EPA Science Inventory

    Ecosystem management is a magnet for controversy, in part because some of its formulations rest on questionable assertions that are radically contested. These assertions are important to understanding much of the conflict surrounding ecosystem management and, therrefore, deserve...

  2. Integrating Enhanced Satellite Data Maps Into Coastal Management

    NASA Astrophysics Data System (ADS)

    Stegmann, Petra M.; Foley, David G.; King, Chad; Schwing, Franklin B.; Price, Holly; Bograd, Steven J.; Palacios, Daniel M.

    2006-04-01

    Coastal areas continue to be popular destinations for tourists as well as for a large population who now reside year-round near coasts and whose size is predicted to grow steadily. Along with rapid growth in recreational and commercial marine activities, this increase in coastal development also brings issues related to urban runoff, water quality, beach access, and marine ecosystem health. All of these factors contribute to an increase in pressure on the living marine biota found in coastal waters. Coastal managers are therefore faced with the dual task of conserving and protecting marine resources as well as allowing for multiple uses within nearshore waters. A beneficial tool that has yet to be routinely integrated in discussions between regional planners and various stakeholders is a data map depicting representative oceanic conditions of coastal and adjacent waters. Classifying the state of the pelagic realm provides much needed information when deliberating such issues as the creation of marine reserves.

  3. Balancing the Need to Develop Coastal Areas with the Desire for an Ecologically Functioning Coastal Environment: Is Net Ecosystem Improvement Possible?

    SciTech Connect

    Thom, Ronald M.; Williams, Greg D.; Diefenderfer, Heida L.

    2005-03-01

    The global human population is growing exponentially, a majority lives and works near the coast, and coastal commerce and development are critical to the economies of many nations. Hence, coastal areas will continue to be a major focus of development and economic activity. People want and need the economics provided by coastal development but they also want and need the fisheries and social commodities supported by estuarine and coastal ecosystems. Because of these facts, we view the challenge of balancing coastal development with enhancing nearshore marine and estuarine ecosystems (i.e., net ecosystem improvement) as the top priority for coastal researchers in this century. Our restoration research in Pacific Northwest estuaries and participation in the design and mitigation of nearshore structures has largely dealt with these competing goals. To this end, we have applied conceptual models, comprehensive assessment methods, and principles of restoration ecology, conservation biology and adaptive management to incorporate science into decisions about use of estuarine systems. Case studies of Bainbridge Island and the Columbia River demonstrate the use of objective, defensible methods to prioritize estuarine areas for preservation, conservation and restoration. Case studies of Clinton, WA and Port Townsend, WA demonstrate the incorporation of an ecological perspective and technological solutions into design projects that affect the nearshore. Adaptive management has allowed coastal development and restoration uncertainties to be better evaluated, with the information used to improve management decisions. Although unproven on a large scale, we think that these kinds of methods can contribute to the net improvement of already degraded ecosystems. The challenges include applied science to understand the issues, education, incentives, empirical data (not rehashing of reviews), cumulative impact analysis, and an effective adaptive management program. Because the option

  4. The emerging role of lidar remote sensing in coastal research and resource management

    USGS Publications Warehouse

    Brock, John C.; Purkis, Samuel J.

    2009-01-01

    Knowledge of coastal elevation is an essential requirement for resource management and scientific research. Recognizing the vast potential of lidar remote sensing in coastal studies, this Special Issue includes a collection of articles intended to represent the state-of-the-art for lidar investigations of nearshore submerged and emergent ecosystems, coastal morphodynamics, and hazards due to sea-level rise and severe storms. Some current applications for lidar remote sensing described in this Special Issue include bluegreen wavelength lidar used for submarine coastal benthic environments such as coral reef ecosystems, airborne lidar used for shoreline mapping and coastal change detection, and temporal waveform-resolving lidar used for vegetation mapping.

  5. [Management of large marine ecosystem based on ecosystem approach].

    PubMed

    Chu, Jian-song

    2011-09-01

    Large marine ecosystem (LME) is a large area of ocean characterized by distinct oceanology and ecology. Its natural characteristics require management based on ecosystem approach. A series of international treaties and regulations definitely or indirectly support that it should adopt ecosystem approach to manage LME to achieve the sustainable utilization of marine resources. In practices, some countries such as Canada, Australia, and U.S.A. have adopted ecosystem-based approach to manage their oceans, and some international organizations such as global environment fund committee have carried out a number of LME programs based on ecosystem approach. Aiming at the sustainable development of their fisheries, the regional organizations such as Caribbean Community have established regional fisheries mechanism. However, the adoption of ecosystem approach to manage LME is not only a scientific and legal issue, but also a political matter largely depending on the political will and the mutual cooperation degree of related countries.

  6. A spatial analysis of cultural ecosystem service valuation by regional stakeholders in Florida: a coastal application of the social values for ecosystem services (SolVES) tool

    USGS Publications Warehouse

    Coffin, Alisa W.; Swett, Robert A.; Cole, Zachary D.

    2012-01-01

    Livelihoods and lifestyles of people throughout the world depend on essential goods and services provided by marine and coastal ecosystems. However, as societal demand increases and available ocean and coastal space diminish, better methods are needed to spatially and temporally allocate ocean and coastal activities such as shipping, energy production, tourism, and fishing. While economic valuation is an important mechanism for doing so, cultural ecosystem services often do not lend themselves to this method. Researchers from the U.S. Geological Survey are working collaboratively with the Florida Sea Grant College Program to map nonmonetary values of cultural ecosystem services for a pilot area (Sarasota Bay) in the Gulf of Mexico. The research seeks to close knowledge gaps about the attitudes and perceptions, or nonmonetary values, held by coastal residents toward cultural ecosystem services, and to adapt related, terrestrial-based research methods to a coastal setting. A critical goal is to integrate research results with coastal and marine spatial planning applications, thus making them relevant to coastal planners and managers in their daily efforts to sustainably manage coastal resources. Using information about the attitudes and preferences of people toward places and uses in the landscape, collected from value and preference surveys, the USGS SolVES 2.0 tool will provide quantitative models to relate social values, or perceived nonmonetary values, assigned to locations by survey respondents with the underlying environmental characteristics of those same locations. Project results will increase scientific and geographic knowledge of how Sarasota Bay residents value their area’s cultural ecosystem services.

  7. Diversity of coastal phytoplankton assemblages - Cross ecosystem comparison

    NASA Astrophysics Data System (ADS)

    Olli, Kalle; Paerl, Hans W.; Klais, Riina

    2015-09-01

    Phytoplankton plays a massively important role in the oceanic carbon cycling and biogeochemistry. Despite its far-reaching importance, regional cross-ecosystem comparisons remain incomplete because the data sets are often scattered and fragmented. Here we compiled and harmonized decadal scale phytoplankton monitoring data sets from seven geographic regions of the world ocean, covering ca 45 thousand quantitative samples from European, North- and South American coastal waters. Nonmetric multidimensional scaling revealed clear regional clustering of sampling locations, both when using compositional relatedness or phylogenetic turnover of communities. Compositional and phylogenetic relatedness of phytoplankton communities had a strong correlation with salinity and temperature gradients (R2 = 0.6-0.8). The regional taxon richness (S) varied by almost an order of magnitude, and scaled with the ecosystem size (A) according to a power law: S = 62 × A0.35. The compositional turnover of species (beta-diversity) was also positively related to ecosystem size, but also to mean regional salinity.

  8. Lignin methoxyl hydrogen isotope ratios in a coastal ecosystem

    NASA Astrophysics Data System (ADS)

    Feakins, Sarah J.; Ellsworth, Patricia V.; Sternberg, Leonel da Silveira Lobo

    2013-11-01

    Stable hydrogen isotope ratios of plant lignin methoxyl groups have recently been shown to record the hydrogen isotopic composition of meteoric water. Here we extend this technique towards tracing water source variations across a saltwater to freshwater gradient in a coastal, subtropical forest ecosystem. We measure the hydrogen isotopic composition of xylem water (δDxw) and methoxyl hydrogen (δDmethoxyl) to calculate fractionations for coastal mangrove, buttonwood and hammock tree species in Sugarloaf Key, as well as buttonwoods from Miami, both in Florida, USA. Prior studies of the isotopic composition of cellulose and plant leaf waxes in coastal ecosystems have yielded only a weak correlation to source waters, attributed to leaf water effects. Here we find δDmethoxyl values range from -230‰ to -130‰, across a 40‰ range in δDxw with a regression equation of δDmethoxyl ‰ = 1.8 * δDxw - 178‰ (R2 = 0.48, p < 0.0001, n = 74). This is comparable within error to the earlier published relationship for terrestrial trees which was defined across a much larger 125‰ isotopic range in precipitation. Analytical precision for measurements of δD values of pure CH3I by gas chromatography-pyrolysis-isotope ratio mass spectrometry (GC-P-IRMS) is σ = 6‰ (n = 31), which is considerably better than for CH3I liberated through cleavage with HI from lignin with σ = 18‰ (n = 26). Our results establish that δDmethoxyl can record water sources and salinity incursion in coastal ecosystems, where variations sufficiently exceed method uncertainties (i.e., applications with δD excursions >50‰). For the first time, we also report yields of propyl iodide, which may indicate lignin synthesis of propoxyl groups under salt-stress.

  9. Contributions of Participatory Modeling to Development and Support of Coastal and Marine Management Plans

    EPA Science Inventory

    The role of participatory modeling- at various scales- to assist in developing shared visions, understanding the decision landscape, identifying and selecting management options, and monitoring outcomes will be explored in the context of coastal and marine planning, ecosystem ser...

  10. Emerging methods for the study of coastal ecosystem landscape structure and change

    USGS Publications Warehouse

    Brock, John C.; Danielson, Jeffrey J.; Purkis, Sam

    2013-01-01

    Coastal landscapes are heterogeneous, dynamic, and evolve over a range of time scales due to intertwined climatic, geologic, hydrologic, biologic, and meteorological processes, and are also heavily impacted by human development, commercial activities, and resource extraction. A diversity of complex coastal systems around the globe, spanning glaciated shorelines to tropical atolls, wetlands, and barrier islands are responding to multiple human and natural drivers. Interdisciplinary research based on remote-sensing observations linked to process studies and models is required to understand coastal ecosystem landscape structure and change. Moreover, new techniques for coastal mapping and monitoring are increasingly serving the needs of policy-makers and resource managers across local, regional, and national scales. Emerging remote-sensing methods associated with a diversity of instruments and platforms are a key enabling element of integrated coastal ecosystem studies. These investigations require both targeted and synoptic mapping, and involve the monitoring of formative processes such as hydrodynamics, sediment transport, erosion, accretion, flooding, habitat modification, land-cover change, and biogeochemical fluxes.

  11. Long-Distance Interactions Regulate the Structure and Resilience of Coastal Ecosystems

    NASA Astrophysics Data System (ADS)

    van de Koppel, Johan; van der Heide, Tjisse; Altieri, Andrew H.; Eriksson, Britas Klemens; Bouma, Tjeerd J.; Olff, Han; Silliman, Brian R.

    2015-01-01

    Mounting evidence indicates that spatial interactions are important in structuring coastal ecosystems. Until recently, however, most of this work has been focused on seemingly exceptional systems that are characterized by regular, self-organized patterns. In this review, we document that interactions that operate at long distances, beyond the direct neighborhood of individual organisms, are more common and have much more far-reaching implications for coastal ecosystems than was previously realized. We review studies from a variety of ecosystem types—including cobble beaches, mussel beds, coral reefs, seagrass meadows, and mangrove forests—that reveal a startling interplay of positive and negative interactions between habitats across distances of up to a kilometer. In addition to classical feeding relations, alterations of physical conditions constitute an important part of these long-distance interactions. This entanglement of habitats has crucial implications for how humans manage coastal ecosystems, and evaluations of anthropogenic impact should explicitly address long-distance and system-wide effects before we deem these human activities to be causing little harm.

  12. Long-distance interactions regulate the structure and resilience of coastal ecosystems.

    PubMed

    van de Koppel, Johan; van der Heide, Tjisse; Altieri, Andrew H; Eriksson, Britas Klemens; Bouma, Tjeerd J; Olff, Han; Silliman, Brian R

    2015-01-01

    Mounting evidence indicates that spatial interactions are important in structuring coastal ecosystems. Until recently, however, most of this work has been focused on seemingly exceptional systems that are characterized by regular, self-organized patterns. In this review, we document that interactions that operate at long distances, beyond the direct neighborhood of individual organisms, are more common and have much more far-reaching implications for coastal ecosystems than was previously realized. We review studies from a variety of ecosystem types-including cobble beaches, mussel beds, coral reefs, seagrass meadows, and mangrove forests-that reveal a startling interplay of positive and negative interactions between habitats across distances of up to a kilometer. In addition to classical feeding relations, alterations of physical conditions constitute an important part of these long-distance interactions. This entanglement of habitats has crucial implications for how humans manage coastal ecosystems, and evaluations of anthropogenic impact should explicitly address long-distance and system-wide effects before we deem these human activities to be causing little harm.

  13. [Ecosystem approach: a new concept for ecosystem management].

    PubMed

    Wang, Silong; Zhao, Shidong

    2004-12-01

    Ecosystem approach (EA) was firstly proposed by ecologists in developed countries and then supported by a number of international institutions and NGOs, among which, CBD, IUCN and WWF played important roles. Ecosystem approach is an integrated strategy for the management of land, soil and bio-resources. The application of EA will help to reach a balance between conservation, sustainable use, and fair and equitable sharing of the benefits arising out of the utilization of biological resources. Ecosystem approach is a methodology of ecosystem management, focusing on the biological organisms and recognising that human beings, with their cultural diversity, are an integral component of many ecosystems. The decision V/6 adopted by the Conference of the Parties to the CBD at its fifth meeting in 2000 concretized the EA in the form of twelve principles and five operational guidelines. Our government has recently made a lot of efforts in ecosystem management at large scale with many important measures and obtained significant achievements, but the potential role of local governments, institutions and individuals has not been fully played. In the attempts of managing a specific ecosystem, there are many successful cases done by our ecologists, for example, the ecological management of Chinese fir plantation forest in central subtropical China. However, the whole ecosystem at national or regional level is confronted with a lot of serious problems, mainly because there is a lack of complete understanding of the significance of ecosystem management and a lack of guidelines or principles from an integrated scientific theory. The introduction and implementation of ecosystem approach will play an important role in improving the ecosystem management in China.

  14. The impact of climate change on coastal ecosystems: chapter 6

    USGS Publications Warehouse

    Burkett, Virginia; Woodroffe, Colin D.; Nicholls, Robert J.; Forbes, Donald L.

    2014-01-01

    In this chapter we stress two important features of coasts and coastal ecosystems. First, these are dynamic systems which continually undergo adjustments, especially through erosion and re-deposition, in response to a range of processes. Many coastal ecosystems adjust naturally at a range of time scales and their potential for response is examined partly by reconstructing how such systems have coped with natural changes of climate and sea level in the geological past. Second, coasts have changed profoundly through the 20th Century due to the impacts of human development (such as urbanisation, port and industrial expansion, shore protection, and the draining and conversion of coastal wetlands), with these development-related drivers closely linked to a growing global population and economy. It remains a challenge to isolate the impacts of climate change and sea-level rise from either the natural trajectory of shoreline change, or the accelerated pathway resulting from other human-related stressors. There exists a danger of overstating the importance of climate change, or overlooking significant interactions of climate change with other drivers.

  15. Biodiversity and industry ecosystem management

    NASA Astrophysics Data System (ADS)

    Coleman, William G.

    1996-11-01

    The term biodiversity describes the array of interacting, genetically distinct populations and species in a region, the communities they comprise, and the variety of ecosystems of which they are functioning parts. Ecosystem health, a closely related concept, is described in terms of a process identifying biological indicators, end points, and values. The decline of populations or species, an accelerating trend worldwide, can lead to simplification of ecosystem processes, thus threatening the stability and sustainability of ecosystem services directly relevant to human welfare in the chain of economic and ecological relationships. The challenge of addressing issues of such enormous scope and complexity has highlighted the limitations of ecology-as-science. Additionally, biosphere-scale conflicts seem to lie beyond the scope of conventional economics, leading to differences of opinion about the commodity value of biodiversity and of the services that intact ecosystems provide. In the face of these uncertainties, many scientists and economists have adopted principles that clearly assign burdens of proof to those who would promote the loss of biodiversity and that also establish “near-trump” (preeminent) status for ecological integrity. Electric utility facilities and operations impact biodiversity whenever construction, operation, or maintenance of generation, delivery, and support facilities alters landscapes and habitats and thereby impacts species. Although industry is accustomed to dealing with broad environmental concerns (such as global warming or acid rain), the biodiversity issue invokes hemisphere-wide, regional, local, and site-specific concerns all at the same time. Industry can proactively address these issues of scope and scale in two main ways: first, by aligning strategically with the broad research agenda put forth by informed scientists and institutions; and second, by supporting focused management processes whose results will contribute

  16. Accelerating loss of seagrasses across the globe threatens coastal ecosystems

    PubMed Central

    Waycott, Michelle; Duarte, Carlos M.; Carruthers, Tim J. B.; Orth, Robert J.; Dennison, William C.; Olyarnik, Suzanne; Calladine, Ainsley; Fourqurean, James W.; Heck, Kenneth L.; Hughes, A. Randall; Kendrick, Gary A.; Kenworthy, W. Judson; Short, Frederick T.; Williams, Susan L.

    2009-01-01

    Coastal ecosystems and the services they provide are adversely affected by a wide variety of human activities. In particular, seagrass meadows are negatively affected by impacts accruing from the billion or more people who live within 50 km of them. Seagrass meadows provide important ecosystem services, including an estimated $1.9 trillion per year in the form of nutrient cycling; an order of magnitude enhancement of coral reef fish productivity; a habitat for thousands of fish, bird, and invertebrate species; and a major food source for endangered dugong, manatee, and green turtle. Although individual impacts from coastal development, degraded water quality, and climate change have been documented, there has been no quantitative global assessment of seagrass loss until now. Our comprehensive global assessment of 215 studies found that seagrasses have been disappearing at a rate of 110 km2 yr−1 since 1980 and that 29% of the known areal extent has disappeared since seagrass areas were initially recorded in 1879. Furthermore, rates of decline have accelerated from a median of 0.9% yr−1 before 1940 to 7% yr−1 since 1990. Seagrass loss rates are comparable to those reported for mangroves, coral reefs, and tropical rainforests and place seagrass meadows among the most threatened ecosystems on earth. PMID:19587236

  17. Monitoring Ground-Water Quality in Coastal Ecosystems

    USGS Publications Warehouse

    Colman, John A.; Masterson, John P.

    2007-01-01

    INTRODUCTION The Cape Cod National Seashore (CACO) extends along more than 70 km of Atlantic Ocean open-beach coastline and includes three large saltwater bays - Wellfleet Harbor, Nauset Marsh, and Pleasant Bay (fig. 1). CACO encompasses about 18,000 ha of uplands, lakes, wetlands, and tidal lands (Godfrey and others, 1999) including most habitats typical of the sandy coast in National seashores and parks extending southward from Massachusetts to Florida. In 1995, CACO was selected by the National Park Service (NPS) as a prototype park typifying the Atlantic and Gulf Coast biogeographic region for long-term coastal ecosystem monitoring. The U.S. Geological Survey (USGS) is currently (2007) assisting the NPS in the development of protocols for a Long-Term Coastal Ecosystem Monitoring Program at the CACO in Massachusetts. The overall purpose of the monitoring program is to characterize both natural and human-induced change in the biological resources of the CACO, over a time scale of decades, in the context of a changing global ecosystem.

  18. Estimating Pesticide Retention Efficacy for Edge of Field Buffers Using the Riparian Ecosystem Management Model (REMM) in Southern Atlantic Coastal Plain Landscapes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Southern Atlantic Coastal Plain croplands are vulnerable to runoff; thus agricultural pesticide use may adversely impact surface water quality. Our research group has collected data over the past 5 years indicating that this is not the case in Little River Experimental Watershed (LREW) located in co...

  19. Marine ecosystem modeling beyond the box: using GIS to study carbon fluxes in a coastal ecosystem.

    PubMed

    Wijnbladh, Erik; Jönsson, Bror Fredrik; Kumblad, Linda

    2006-12-01

    Studies of carbon fluxes in marine ecosystems are often done by using box model approaches with basin size boxes, or highly resolved 3D models, and an emphasis on the pelagic component of the ecosystem. Those approaches work well in the ocean proper, but can give rise to considerable problems when applied to coastal systems, because of the scale of certain ecological niches and the fact that benthic organisms are the dominant functional group of the ecosystem. In addition, 3D models require an extensive modeling effort. In this project, an intermediate approach based on a high resolution (20x20 m) GIS data-grid has been developed for the coastal ecosystem in the Laxemar area (Baltic Sea, Sweden) based on a number of different site investigations. The model has been developed in the context of a safety assessment project for a proposed nuclear waste repository, in which the fate of hypothetically released radionuclides from the planned repository is estimated. The assessment project requires not only a good understanding of the ecosystem dynamics at the site, but also quantification of stocks and flows of matter in the system. The data-grid was then used to set up a carbon budget describing the spatial distribution of biomass, primary production, net ecosystem production and thus where carbon sinks and sources are located in the area. From these results, it was clear that there was a large variation in ecosystem characteristics within the basins and, on a larger scale, that the inner areas are net producing and the outer areas net respiring, even in shallow phytobenthic communities. Benthic processes had a similar or larger influence on carbon fluxes as advective processes in inner areas, whereas the opposite appears to be true in the outer basins. As many radionuclides are expected to follow the pathways of organic matter in the environment, these findings enhance our abilities to realistically describe and predict their fate in the ecosystem.

  20. Overview of the federal interagency ecosystem management initiative

    SciTech Connect

    Huke, S.

    1995-12-01

    In early 1994, the White House established a Federal Interagency Ecosystem Management Task Force and Working Group to implement the ecosystem management recommendation in the Vice President`s National Performance Review. The Task Force identified seven ecosystems where mature interagency ecosystem-based activities are mature and ongoing and may provide valuable lessons for broader application. Case studies of each of the seven ecosystems were prepared by interagency teams conducting interviews with representatives of federal, state, and local governments and private interests. The seven ecosystems are: the Southern Appalachian Highlands, Anacostia River Watershed, Prince William Sound, Pacific Northwest Forests, Coastal Louisiana, South Florida, and Great Lakes ecosystems. A final synthesis report, scheduled for completion in the Spring of 1995, will provide an overview of constraints, opportunities, and recommendations in five issue areas: legal, budgetary, science, institutional, policy, and public involvement. A second phase of this initiative will entail the development of ecosystem management strategies for three {open_quotes}new initiatives{close_quotes} laboratories.

  1. ECOSYSTEM MANAGEMENT: DESPERATELY SEEKING A PARADIGM

    EPA Science Inventory

    Two competing views of ecosystem management have emerged. One is that ecosystem management is another stage in the continual evolution of the basic management paradigm - one that natural resource managers have followed in North America for a century. The other view is that ecosys...

  2. 76 FR 57022 - Coastal Zone Management Program: Illinois

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-15

    ... National Oceanic And Atmospheric Administration Coastal Zone Management Program: Illinois AGENCY: Office of Ocean and Coastal Resource Management (OCRM), National Oceanic and Atmospheric Administration (NOAA... Impact Statement (DEIS) prepared by NOAA's Office of Ocean and Coastal Resource Management. The...

  3. 77 FR 8219 - Coastal Zone Management Program: Illinois

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-14

    ... National Oceanic and Atmospheric Administration Coastal Zone Management Program: Illinois AGENCY: Office of Ocean and Coastal Resource Management (OCRM), National Oceanic and Atmospheric Administration (NOAA), U... Federal Approval of the Illinois Coastal Management Program (ICMP). SUMMARY: NOAA's OCRM announces...

  4. Biodiversity and industry ecosystem management

    SciTech Connect

    Coleman, W.G.

    1996-11-01

    Biodiversity describes the array of interacting, genetically distinct populations and species in a region, the communities they are functioning parts. Ecosystem health is a process identifying biological indicators, end points, and values. The decline of populations or species, an accelerating trend worldwide, can lead to simplification of ecosystem processes, thus threatening the stability an sustainability of ecosystem services directly relevant to human welfare in the chain of economic and ecological relationships. The challenge of addressing issues of such enormous scope and complexity has highlighted the limitations of ecology-as-science. Additionally, biosphere-scale conflicts seem to lie beyond the scope of conventional economics, leading to differences of opinion about the commodity value of biodiversity and of the services that intact ecosystems provide. In the fact of these uncertainties, many scientists and economists have adopted principles that clearly assign burdens of proof to those who would promote the loss of biodiversity and that also establish {open_quotes}near-trump{close_quotes} (preeminent) status for ecological integrity. Electric utility facilities and operations impact biodiversity whenever construction, operation, or maintenance of generation, delivery, and support facilities alters landscapes and habitats and thereby impacts species. Although industry is accustomed to dealing with broad environmental concerns (such as global warming or acid rain), the biodiversity issue invokes hemisphere-side, regional, local, and site-specific concerns all at the same time. Industry can proactively address these issues of scope and scale in two main ways: first, by aligning strategically with the broad research agenda put forth by informed scientists and institutions; and second, by supporting focused management processes whose results will contribute incrementally to the broader agenda of rebuilding or maintaining biodiversity. 40 refs., 8 figs.

  5. Marine ecosystem regime shifts: challenges and opportunities for ecosystem-based management

    PubMed Central

    Levin, Phillip S.; Möllmann, Christian

    2015-01-01

    Regime shifts have been observed in marine ecosystems around the globe. These phenomena can result in dramatic changes in the provision of ecosystem services to coastal communities. Accounting for regime shifts in management clearly requires integrative, ecosystem-based management (EBM) approaches. EBM has emerged as an accepted paradigm for ocean management worldwide, yet, despite the rapid and intense development of EBM theory, implementation has languished, and many implemented or proposed EBM schemes largely ignore the special characteristics of regime shifts. Here, we first explore key aspects of regime shifts that are of critical importance to EBM, and then suggest how regime shifts can be better incorporated into EBM using the concept of integrated ecosystem assessment (IEA). An IEA uses approaches that determine the likelihood that ecological or socio-economic properties of systems will move beyond or return to acceptable bounds as defined by resource managers and policy makers. We suggest an approach for implementing IEAs for cases of regime shifts where the objectives are either avoiding an undesired state or returning to a desired condition. We discuss the suitability and short-comings of methods summarizing the status of ecosystem components, screening and prioritizing potential risks, and evaluating alternative management strategies. IEAs are evolving as an EBM approach that can address regime shifts; however, advances in statistical, analytical and simulation modelling are needed before IEAs can robustly inform tactical management in systems characterized by regime shifts.

  6. Impact of petroleum pollution on aquatic coastal ecosystems in Brazil

    SciTech Connect

    Silva, E.M. da; Peso-Aguiar, M.C.; Navarro, M.F.T.; Chastinet, C.B.A.

    1997-01-01

    Although oil activities generate numerous forms of environmental impact on biological communities, studies of these impacts on Brazilian coastal ecosystems are rate. Results of tests for the content of oil in sediments and organisms indicate a substantially high rate of degradation. Results for uptake of polycyclic aromatic hydrocarbons in bivalves suggested the recent occurrence of oil spills and that these organisms differed in their capabilities to bioconcentrate oil. The mangrove community has suffered constant inputs of oil and has responded with increased numbers of aerial roots, generation of malformed leaves and fruits by plants, and a decrease in litter production. Studies of the impact of oil on rocky shore communities and the toxicity of oil and its by-products to marine organisms have confirmed the results reported in the literature. Presently most of the available studies deal with the macroscopic effects of oil on organisms and have indicated that the nature of oil, climate characteristics, the physical environment, and the structure of the community influence the symptoms of oil contamination in organisms of coastal waters. Long-term studies should be carried out to assess changes in community structure, sublethal effects in populations, and the resilience of contaminated ecosystems.

  7. Assessment of Coastal Ecosystem Services for Conservation Strategies in South Korea

    PubMed Central

    Chung, Min Gon; Kang, Hojeong; Choi, Sung-Uk

    2015-01-01

    Despite the fact that scientific and political consideration for ecosystem services has dramatically increased over the past decade, few studies have focused on marine and coastal ecosystem services for conservation strategies. We used an ecosystem services approach to assess spatial distributions of habitat risks and four ecosystem services (coastal protection, carbon storage, recreation, and aesthetic quality), and explored the tradeoffs among them in coastal areas of South Korea. Additionally, we analyzed how the social and ecological characteristics in coastal areas interact with conservation and development policies by using this approach. We found strong negative associations between the habitat risks and ecosystem services (aquaculture, carbon storage, recreation, and aesthetic quality) across the coastal counties. Our results showed that the intensity of the habitat risks and the provision of ecosystem services were significantly different between reclamation-dominated and conservation-dominated counties, except for coastal vulnerability. A generalized linear model suggested that reclamation projects were dependent on economic efficiency, whereas demographic pressures and habitat conditions influenced the designation of protected areas at a county level. The ecosystem services approach provided guidelines to achieve both sustainable development and environment conservation. By using the approach, we can select the priority areas for developments while we can minimize the degradation of biodiversity and ecosystem services. As cultural ecosystem services are evenly distributed throughout coastal areas of South Korea, decision makers may employ them to improve the conditions of coastal wetlands outside of protected areas. PMID:26221950

  8. Assessment of Coastal Ecosystem Services for Conservation Strategies in South Korea.

    PubMed

    Chung, Min Gon; Kang, Hojeong; Choi, Sung-Uk

    2015-01-01

    Despite the fact that scientific and political consideration for ecosystem services has dramatically increased over the past decade, few studies have focused on marine and coastal ecosystem services for conservation strategies. We used an ecosystem services approach to assess spatial distributions of habitat risks and four ecosystem services (coastal protection, carbon storage, recreation, and aesthetic quality), and explored the tradeoffs among them in coastal areas of South Korea. Additionally, we analyzed how the social and ecological characteristics in coastal areas interact with conservation and development policies by using this approach. We found strong negative associations between the habitat risks and ecosystem services (aquaculture, carbon storage, recreation, and aesthetic quality) across the coastal counties. Our results showed that the intensity of the habitat risks and the provision of ecosystem services were significantly different between reclamation-dominated and conservation-dominated counties, except for coastal vulnerability. A generalized linear model suggested that reclamation projects were dependent on economic efficiency, whereas demographic pressures and habitat conditions influenced the designation of protected areas at a county level. The ecosystem services approach provided guidelines to achieve both sustainable development and environment conservation. By using the approach, we can select the priority areas for developments while we can minimize the degradation of biodiversity and ecosystem services. As cultural ecosystem services are evenly distributed throughout coastal areas of South Korea, decision makers may employ them to improve the conditions of coastal wetlands outside of protected areas.

  9. Coastal Ecosystem Integrated Compartment Model (ICM): Modeling Framework

    NASA Astrophysics Data System (ADS)

    Meselhe, E. A.; White, E. D.; Reed, D.

    2015-12-01

    The Integrated Compartment Model (ICM) was developed as part of the 2017 Coastal Master Plan modeling effort. It is a comprehensive and numerical hydrodynamic model coupled to various geophysical process models. Simplifying assumptions related to some of the flow dynamics are applied to increase the computational efficiency of the model. The model can be used to provide insights about coastal ecosystems and evaluate restoration strategies. It builds on existing tools where possible and incorporates newly developed tools where necessary. It can perform decadal simulations (~ 50 years) across the entire Louisiana coast. It includes several improvements over the approach used to support the 2012 Master Plan, such as: additional processes in the hydrology, vegetation, wetland and barrier island morphology subroutines, increased spatial resolution, and integration of previously disparate models into a single modeling framework. The ICM includes habitat suitability indices (HSIs) to predict broad spatial patterns of habitat change, and it provides an additional integration to a dynamic fish and shellfish community model which quantitatively predicts potential changes in important fishery resources. It can be used to estimate the individual and cumulative effects of restoration and protection projects on the landscape, including a general estimate of water levels associated with flooding. The ICM is also used to examine possible impacts of climate change and future environmental scenarios (e.g. precipitation, Eustatic sea level rise, subsidence, tropical storms, etc.) on the landscape and on the effectiveness of restoration projects. The ICM code is publically accessible, and coastal restoration and protection groups interested in planning-level modeling are encouraged to explore its utility as a computationally efficient tool to examine ecosystem response to future physical or ecological changes, including the implementation of restoration and protection strategies.

  10. Preliminary analysis of the Jimo coastal ecosystem with the ecopath model

    NASA Astrophysics Data System (ADS)

    Su, Meng

    2016-12-01

    The Jimo coast encompasses an area of 2157 km2, and the ecosystem is valuable both socially and economically with regional fisheries substantially contributing to the value. A mass-balanced trophic model consisting of 15 functional ecological groups was developed for the coastal ecosystem using the Ecopath model in Ecopath with Ecosim (EwE) software (version 6.4.3). The results of the model simulations indicated that the trophic levels of the functional groups varied between 1.0 and 3.76, and the total production of the system was estimated to be 5112.733 t km-2 yr-1 with a total energy transfer efficiency of 17.6%. The proportion of the total flow originating from detritus was estimated to be 48%, whereas that from primary producers was 52%, indicating that the grazing food chain dominated the energy flow. The ratio of total primary productivity to total respiration in the system was 3.78, and the connectivity index was 0.4. The fin cycling index and the mean path length of the energy flow were 4.92% and 2.57%, respectively, which indicated that the ecosystem exhibits relatively low maturity and stability. The mixed trophic impact (MTI) procedure suggested that the ecological groups at lower trophic levels dominated the feeding dynamics in the Jimo coastal ecosystem. Overfishing is thought to be the primary reason for the degeneration of the Jimo coastal ecosystem, resulting in a decline in the abundance of pelagic and demersal fish species and a subsequent shift to the predominance of lower-trophic-level functional groups. Finally, we offered some recommendations for improving current fishery management practices.

  11. Fusion of High Resolution Multispectral Imagery in Vulnerable Coastal and Land Ecosystems

    PubMed Central

    Ibarrola-Ulzurrun, Edurne; Gonzalo-Martin, Consuelo; Marcello-Ruiz, Javier; Garcia-Pedrero, Angel; Rodriguez-Esparragon, Dionisio

    2017-01-01

    Ecosystems provide a wide variety of useful resources that enhance human welfare, but these resources are declining due to climate change and anthropogenic pressure. In this work, three vulnerable ecosystems, including shrublands, coastal areas with dunes systems and areas of shallow water, are studied. As far as these resources’ reduction is concerned, remote sensing and image processing techniques could contribute to the management of these natural resources in a practical and cost-effective way, although some improvements are needed for obtaining a higher quality of the information available. An important quality improvement is the fusion at the pixel level. Hence, the objective of this work is to assess which pansharpening technique provides the best fused image for the different types of ecosystems. After a preliminary evaluation of twelve classic and novel fusion algorithms, a total of four pansharpening algorithms was analyzed using six quality indices. The quality assessment was implemented not only for the whole set of multispectral bands, but also for the subset of spectral bands covered by the wavelength range of the panchromatic image and outside of it. A better quality result is observed in the fused image using only the bands covered by the panchromatic band range. It is important to highlight the use of these techniques not only in land and urban areas, but a novel analysis in areas of shallow water ecosystems. Although the algorithms do not show a high difference in land and coastal areas, coastal ecosystems require simpler algorithms, such as fast intensity hue saturation, whereas more heterogeneous ecosystems need advanced algorithms, as weighted wavelet ‘à trous’ through fractal dimension maps for shrublands and mixed ecosystems. Moreover, quality map analysis was carried out in order to study the fusion result in each band at the local level. Finally, to demonstrate the performance of these pansharpening techniques, advanced Object

  12. Fusion of High Resolution Multispectral Imagery in Vulnerable Coastal and Land Ecosystems.

    PubMed

    Ibarrola-Ulzurrun, Edurne; Gonzalo-Martin, Consuelo; Marcello-Ruiz, Javier; Garcia-Pedrero, Angel; Rodriguez-Esparragon, Dionisio

    2017-01-25

    Ecosystems provide a wide variety of useful resources that enhance human welfare, but these resources are declining due to climate change and anthropogenic pressure. In this work, three vulnerable ecosystems, including shrublands, coastal areas with dunes systems and areas of shallow water, are studied. As far as these resources' reduction is concerned, remote sensing and image processing techniques could contribute to the management of these natural resources in a practical and cost-effective way, although some improvements are needed for obtaining a higher quality of the information available. An important quality improvement is the fusion at the pixel level. Hence, the objective of this work is to assess which pansharpening technique provides the best fused image for the different types of ecosystems. After a preliminary evaluation of twelve classic and novel fusion algorithms, a total of four pansharpening algorithms was analyzed using six quality indices. The quality assessment was implemented not only for the whole set of multispectral bands, but also for the subset of spectral bands covered by the wavelength range of the panchromatic image and outside of it. A better quality result is observed in the fused image using only the bands covered by the panchromatic band range. It is important to highlight the use of these techniques not only in land and urban areas, but a novel analysis in areas of shallow water ecosystems. Although the algorithms do not show a high difference in land and coastal areas, coastal ecosystems require simpler algorithms, such as fast intensity hue saturation, whereas more heterogeneous ecosystems need advanced algorithms, as weighted wavelet 'à trous' through fractal dimension maps for shrublands and mixed ecosystems. Moreover, quality map analysis was carried out in order to study the fusion result in each band at the local level. Finally, to demonstrate the performance of these pansharpening techniques, advanced Object-Based (OBIA

  13. Managing riverine landscapes as meta-ecosystems

    NASA Astrophysics Data System (ADS)

    Tockner, K.

    2014-12-01

    Aquatic and terrestrial ecosystems are tightly linked through energy, material, information, and organism flows. At the landscape scale, these reciprocal flows are controlled by the composition, configuration, boundary conditions and linkage of individual ecosystem types, thereby forming so-called meta-ecosystems. The relative importance of individual ecosystem types depends on the intrinsic properties (so-called "ecosystem traits"), the setting within the landscape, and the characteristics of interfaces that control cross-system fluxes. For example, the juxtaposition of particular ecosystem types (i.e. their composition and configuration) may alter the magnitude of landscape processes as well as the directions of flow among ecosystem types. Therefore, the meta-ecosystem concept provides a framework to quantify ecosystem diversity, a neglected component of biodiversity, and to test its effects on genetic and species diversity as well as the functional performance in coupled ecosystems. Given their topographic position at the lowest point in the landscape, aquatic ecosystems are particularly susceptible to influences exerted by their surrounding terrestrial environment, both the immediately adjacent riparian zones and the entire catchment that they drain. Questions that need to be tackled may include: What are the consequences of exchange pulses between aquatic and terrestrial ecosystems on the functional performance of individual ecosystems? What are the mechanisms and processes underlying structural and functional biodiversity at aquatic-terrestrial interfaces? In this respect, the meta-ecosystem concept might be very helpful in landscape management and in ecosystem design and engineering.

  14. Management to conserve forest ecosystems

    USGS Publications Warehouse

    Robbins, C.S.; McComb, William C.

    1984-01-01

    Historically, management of forests for wildlife has emphasized creation of openings and provision for a maximum of edge habitats. Wildlife managers have believed, quite logically, that increased sunlight enhances productivity among plants and insects, resulting in greater use by game animals and other wildlife. Recent studies comparing breeding bird populations of extensive forests with those of isolated woodlots have shown that the smaller woodlots, especially those under 35 ha (about 85 acres), lack many species that are typical of the larger tracts. The missing species can be predicted, and basically are the neotropical migrants. These long-distance migrants share several characteristics that make them especially vulnerable to reproductive failure in situations where predation and cowbird parasitism are high: they are primarily single-brooded, open nesters that lay small clutches on or near the ground. Edge habitats and forest openings attract cowbirds and predators. The edge species of birds, which are mostly permanent residents or short-distance migrants, are well adapted to survive and reproduce in small isolated woodlands without the benefit of special habitat management. The obligate forest interior species, on the other hand, are decreasing in those parts of North America where extensive forests are being replaced by isolated woodlands. If we are to preserve ecosystems intact for the benefit of future generations, and maintain a viable gene pool for the scarcer species, we must think in terms of retaining large, unbroken tracts of forest and of limiting disturbance in the more remote portions of these tracts.

  15. Western rock lobsters ( Panulirus cygnus) in Western Australian deep coastal ecosystems (35-60 m) are more carnivorous than those in shallow coastal ecosystems

    NASA Astrophysics Data System (ADS)

    Waddington, Kris I.; Bellchambers, Lynda M.; Vanderklift, Mathew A.; Walker, Diana I.

    2008-08-01

    The western rock lobster ( Panurilus cygnus George.) is a conspicuous consumer in the coastal ecosystems of temperate Western Australia. We used stable isotope analysis and gut content analysis to determine the diet and trophic position of western rock lobsters from mid-shelf coastal ecosystems (35-60 m depth) at three locations. Lobsters were primarily carnivorous, and no consistent differences in diet were detected with varying lobster size, sex or among locations. The main components of the diet were bait (from the fishery) and small crustaceans - crabs and amphipods/isopods. Foliose red algae, bivalves/gastropods and sponges were minor contributors to diet. The diet of lobsters in deep coastal ecosystems differed from the results of previous studies of diets of lobsters from shallow coastal ecosystems. In particular, coralline algae and molluscs - important prey in studies of lobsters from shallow coastal ecosystems - were minor components of the diet. These differences are likely to reflect differences in food availability between these systems and potentially, differences in choice of prey by lobsters that inhabit deeper water. Given the high contribution of bait to lobster diet, bait is likely to be subsidizing lobster production in deep coastal ecosystems during the fishing season.

  16. Seasonal sea surface temperature anomaly prediction for coastal ecosystems

    NASA Astrophysics Data System (ADS)

    Stock, Charles A.; Pegion, Kathy; Vecchi, Gabriel A.; Alexander, Michael A.; Tommasi, Desiree; Bond, Nicholas A.; Fratantoni, Paula S.; Gudgel, Richard G.; Kristiansen, Trond; O'Brien, Todd D.; Xue, Yan; Yang, Xiasong

    2015-09-01

    Sea surface temperature (SST) anomalies are often both leading indicators and important drivers of marine resource fluctuations. Assessment of the skill of SST anomaly forecasts within coastal ecosystems accounting for the majority of global fish yields, however, has been minimal. This reflects coarse global forecast system resolution and past emphasis on the predictability of ocean basin-scale SST variations. This paper assesses monthly to inter-annual SST anomaly predictions in coastal "Large Marine Ecosystems" (LMEs). We begin with an analysis of 7 well-observed LMEs adjacent to the United States and then examine how mechanisms responsible for prediction skill in these systems are reflected in predictions for LMEs globally. Historical SST anomaly estimates from the 1/4° daily Optimal Interpolation Sea Surface Temperature reanalysis (OISST.v2) were first found to be highly consistent with in-situ measurements for 6 of the 7 U.S. LMEs. Thirty years of retrospective forecasts from climate forecast systems developed at NOAA's Geophysical Fluid Dynamics Laboratory (CM2.5-FLOR) and the National Center for Environmental Prediction (CFSv2) were then assessed against OISST.v2. Forecast skill varied widely by LME, initialization month, and lead but there were many cases of high skill that also exceeded that of a persistence forecast, some at leads greater than 6 months. Mechanisms underlying skill above persistence included accurate simulation of (a) seasonal transitions between less predictable locally generated and more predictable basin-scale SST variability; (b) seasonal transitions between different basin-scale influences; (c) propagation of SST anomalies across seasons through sea ice; and (d) re-emergence of previous anomalies upon the breakdown of summer stratification. Globally, significant skill above persistence across many tropical systems arises via mechanisms (a) and (b). Combinations of all four mechanisms contribute to less prevalent but nonetheless

  17. Climate warming and estuarine and marine coastal ecosystems

    SciTech Connect

    Kennedy, V.S.

    1994-12-31

    Estuaries are physically controlled, resilient coastal ecosystems harboring environmentally tolerant species in diluted seawater. Marine coastal systems are less stressed physically and contain some environmentally less tolerant species. Both systems are biologically productive and economically significant. Because of their complex structure and function, it is difficult to predict accurately the effects of climate change, but some broad generalizations can be made. If climate warming occurs, it will raise sea-level, heat shallow waters, and modify precipitation, wind, and water circulation patterns. Rapid sea-level rise could cause the loss of salt marshes, mangrove swamps, and coral reefs, thus diminishing the ecological roles of these highly productive systems. Warmer waters could eliminate heat-sensitive species from part of their geographical range while allowing heat-tolerant species to expand their range, depending on their ability to disperse. Most thermally influenced losses of species will probably only be local, but changed distributions may lead to changed community function. It is more difficult to predict the effects of modified precipitation, wind, and water circulation patterns, but changes could affect organisms dependent on such patterns for food production (e.g., in upwelling regions) or for retention in estuaries. Aquacultural and fishery-related enterprises would be affected negatively in some regions and positively in others. 73 refs.

  18. Linking ecosystem processes to sustainable wetland management

    USGS Publications Warehouse

    Euliss, Ned H.; Smith, Loren M.; Wilcox, Douglas A.; Browne, Bryant A.

    2009-01-01

    As a result of concern over problems associated with the future of managed wetlands in North America, nearly two dozen wetland scientists and managers met in February 2006 at Bosque del Apache National Wildlife Refuge in New Mexico and discussed a sustainable approach to wetland management. This approach links science with management by focusing on underlying wetland processes. From that meeting, several papers were developed and published in Wetlands to address these concerns (Euliss et al. 2008, Smith et al. 2008, Wilcox 2008). This article summarizes our first paper, Euliss et al. (2008), and a future Newsletter article will summarize Smith et al. (2008). Realization of the role that complex interactions play in maintaining ecosystems, coupled with increasing demands of humans for ecosystem services, has prompted much interest in ecosystem management. Not surprisingly, sustainability of ecosystems has become an explicitly stated goal of many natural resource agencies and, in some cases, has been legislatively mandated to ensure provision of resources for future generations. However, examples of sustainable ecosystem management are uncommon because management goals often focus on specific deliverables rather than processes that sustain ecosystems. This paper has three sections: (1) perspectives in which we provide a bit of history, (2), ecological consequences of a static view, and (3) suggestions to aid wetland managers link management goals with critical ecosystem processes responsible for provision of wetland services.

  19. Phytoplankton primary production in the world's estuarine-coastal ecosystems

    NASA Astrophysics Data System (ADS)

    Cloern, J. E.; Foster, S. Q.; Kleckner, A. E.

    2014-05-01

    Estuaries are biogeochemical hot spots because they receive large inputs of nutrients and organic carbon from land and oceans to support high rates of metabolism and primary production. We synthesize published rates of annual phytoplankton primary production (APPP) in marine ecosystems influenced by connectivity to land - estuaries, bays, lagoons, fjords and inland seas. Review of the scientific literature produced a compilation of 1148 values of APPP derived from monthly incubation assays to measure carbon assimilation or oxygen production. The median value of median APPP measurements in 131 ecosystems is 185 and the mean is 252 g C m-2 yr-1, but the range is large: from -105 (net pelagic production in the Scheldt Estuary) to 1890 g C m-2 yr-1 (net phytoplankton production in Tamagawa Estuary). APPP varies up to 10-fold within ecosystems and 5-fold from year to year (but we only found eight APPP series longer than a decade so our knowledge of decadal-scale variability is limited). We use studies of individual places to build a conceptual model that integrates the mechanisms generating this large variability: nutrient supply, light limitation by turbidity, grazing by consumers, and physical processes (river inflow, ocean exchange, and inputs of heat, light and wind energy). We consider method as another source of variability because the compilation includes values derived from widely differing protocols. A simulation model shows that different methods reported in the literature can yield up to 3-fold variability depending on incubation protocols and methods for integrating measured rates over time and depth. Although attempts have been made to upscale measures of estuarine-coastal APPP, the empirical record is inadequate for yielding reliable global estimates. The record is deficient in three ways. First, it is highly biased by the large number of measurements made in northern Europe (particularly the Baltic region) and North America. Of the 1148 reported values of

  20. Phytoplankton primary production in the world's estuarine-coastal ecosystems

    USGS Publications Warehouse

    Cloern, James E.; Foster, S.Q.; Kleckner, A.E.

    2014-01-01

    Estuaries are biogeochemical hot spots because they receive large inputs of nutrients and organic carbon from land and oceans to support high rates of metabolism and primary production. We synthesize published rates of annual phytoplankton primary production (APPP) in marine ecosystems influenced by connectivity to land – estuaries, bays, lagoons, fjords and inland seas. Review of the scientific literature produced a compilation of 1148 values of APPP derived from monthly incubation assays to measure carbon assimilation or oxygen production. The median value of median APPP measurements in 131 ecosystems is 185 and the mean is 252 g C m−2 yr−1, but the range is large: from −105 (net pelagic production in the Scheldt Estuary) to 1890 g C m−2 yr−1 (net phytoplankton production in Tamagawa Estuary). APPP varies up to 10-fold within ecosystems and 5-fold from year to year (but we only found eight APPP series longer than a decade so our knowledge of decadal-scale variability is limited). We use studies of individual places to build a conceptual model that integrates the mechanisms generating this large variability: nutrient supply, light limitation by turbidity, grazing by consumers, and physical processes (river inflow, ocean exchange, and inputs of heat, light and wind energy). We consider method as another source of variability because the compilation includes values derived from widely differing protocols. A simulation model shows that different methods reported in the literature can yield up to 3-fold variability depending on incubation protocols and methods for integrating measured rates over time and depth. Although attempts have been made to upscale measures of estuarine-coastal APPP, the empirical record is inadequate for yielding reliable global estimates. The record is deficient in three ways. First, it is highly biased by the large number of measurements made in northern Europe (particularly the Baltic region) and North America. Of the 1148

  1. The emerging role of lidar remote sensing in coastal research and resource management

    USGS Publications Warehouse

    Brock, J.C.; Purkis, S.J.

    2009-01-01

    Knowledge of coastal elevation is an essential requirement for resource management and scientific research. Recognizing the vast potential of lidar remote sensing in coastal studies, this Special Issue includes a collection of articles intended to represent the state-of-the-art for lidar investigations of nearshore submerged and emergent ecosystems, coastal morphodynamics, and hazards due to sea-level rise and severe storms. Some current applications for lidar remote sensing described in this Special Issue include bluegreen wavelength lidar used for submarine coastal benthic environments such as coral reef ecosystems, airborne lidar used for shoreline mapping and coastal change detection, and temporal waveform-resolving lidar used for vegetation mapping. ?? 2009 Coastal Education and Research Foundation.

  2. Great Lakes rivermouth ecosystems: scientific synthesis and management implications

    USGS Publications Warehouse

    Larson, James H.; Trebitz, Anett S.; Steinman, Alan D.; Wiley, Michael J.; Carlson Mazur, Martha; Pebbles, Victoria; Braun, Heather A.; Seelbach, Paul W.

    2013-01-01

    At the interface of the Great Lakes and their tributary rivers lies the rivermouths, a class of aquatic ecosystem where lake and lotic processes mix and distinct features emerge. Many rivermouths are the focal point of both human interaction with the Great Lakes and human impacts to the lakes; many cities, ports, and beaches are located in rivermouth ecosystems, and these human pressures often degrade key ecological functions that rivermouths provide. Despite their ecological uniqueness and apparent economic importance, there has been relatively little research on these ecosystems as a class relative to studies on upstream rivers or the open-lake waters. Here we present a synthesis of current knowledge about ecosystem structure and function in Great Lakes rivermouths based on studies in both Laurentian rivermouths, coastal wetlands, and marine estuarine systems. A conceptual model is presented that establishes a common semantic framework for discussing the characteristic spatial features of rivermouths. This model then is used to conceptually link ecosystem structure and function to ecological services provided by rivermouths. This synthesis helps identify the critical gaps in understanding rivermouth ecology. Specifically, additional information is needed on how rivermouths collectively influence the Great Lakes ecosystem, how human alterations influence rivermouth functions, and how ecosystem services provided by rivermouths can be managed to benefit the surrounding socioeconomic networks.

  3. Toward a conceptual approach for assessing risks from chemical mixtures and other stressors to coastal ecosystem services.

    PubMed

    Syberg, Kristian; Backhaus, Thomas; Banta, Gary; Bruce, Peter; Gustavsson, Mikael; Munns, Wayne R; Rämö, Robert; Selck, Henriette; Gunnarsson, Jonas S

    2017-03-01

    Growth of human populations and increased human activity, particularly in coastal areas, increase pressure on coastal ecosystems and the ecosystem services (ES) they provide. As a means toward being able to assess the impact of multiple stressors on ES, in the present study we propose an 8-step conceptual approach for assessing effects of chemical mixtures and other stressors on ES in coastal areas: step A, identify the relevant problems and policy aims; step B, identify temporal and spatial boundaries; step C, identify relevant ES; step D, identify relevant stressors (e.g., chemicals); step E, translate impacts into ES units; step F, assess cumulative risk in ES units; step G, rank stressors based on their contribution to adverse effects on ES; and step H, implement regulation and management as appropriate and necessary. Two illustrative case studies (Swedish coastal waters and a coastal lagoon in Costa Rica) are provided; one focuses on chemicals that affect human food supply and the other addresses pesticide runoff and trade-offs among ES. The 2 cases are used to highlight challenges of such risk assessments, including use of standardized versus ES-relevant test species, data completeness, and trade-offs among ES. Lessons learned from the 2 case studies are discussed in relation to environmental risk assessment and management of chemical mixtures. Integr Environ Assess Manag 2017;13:376-386. © 2016 SETAC.

  4. Effects of near-future ocean acidification, fishing, and marine protection on a temperate coastal ecosystem.

    PubMed

    Cornwall, Christopher E; Eddy, Tyler D

    2015-02-01

    Understanding ecosystem responses to global and local anthropogenic impacts is paramount to predicting future ecosystem states. We used an ecosystem modeling approach to investigate the independent and cumulative effects of fishing, marine protection, and ocean acidification on a coastal ecosystem. To quantify the effects of ocean acidification at the ecosystem level, we used information from the peer-reviewed literature on the effects of ocean acidification. Using an Ecopath with Ecosim ecosystem model for the Wellington south coast, including the Taputeranga Marine Reserve (MR), New Zealand, we predicted ecosystem responses under 4 scenarios: ocean acidification + fishing; ocean acidification + MR (no fishing); no ocean acidification + fishing; no ocean acidification + MR for the year 2050. Fishing had a larger effect on trophic group biomasses and trophic structure than ocean acidification, whereas the effects of ocean acidification were only large in the absence of fishing. Mortality by fishing had large, negative effects on trophic group biomasses. These effects were similar regardless of the presence of ocean acidification. Ocean acidification was predicted to indirectly benefit certain species in the MR scenario. This was because lobster (Jasus edwardsii) only recovered to 58% of the MR biomass in the ocean acidification + MR scenario, a situation that benefited the trophic groups lobsters prey on. Most trophic groups responded antagonistically to the interactive effects of ocean acidification and marine protection (46%; reduced response); however, many groups responded synergistically (33%; amplified response). Conservation and fisheries management strategies need to account for the reduced recovery potential of some exploited species under ocean acidification, nonadditive interactions of multiple factors, and indirect responses of species to ocean acidification caused by declines in calcareous predators.

  5. Coastal Zone Management program in Kerala, India

    SciTech Connect

    Mallik, T.K. )

    1987-01-01

    The physiographic setting of Kerala State, India, is unique. A narrow strip of the state contains a chain of lagoons and estuaries with a very high population density. The strip is subjected to severe coastal erosion during the monsoon season. A number of other problems are also associated with the coastal zone of Kerala, such as irregular dredging of black sands from the beaches, coastal flooding, hazards due to developmental activities, etc. A Coastal Zone Management Program was developed and administered by the Centre for Earth Science Studies, Trivandrum, to provide efficient coastal management and solve some of these problems. Various programs included under the Coastal Zone Management are the following: (1) Sedimentological, bathymetric, and geochemical studies of lagoons and estuaries; (2) monitoring of planimetric changes of beaches by profiling beaches during different seasons all along the coast; (3) studies of the nature, distribution, and provenance of black sand deposits from beaches; (4) studies of the peculiar occurrence of patchy, calm, turbid areas of water in the offshore containing high suspended sediment concentrate known as mud banks; (5) wave studies involving continuous monitoring of wave data all along the coast in order to understand wave climate and erosion; (6) sediment movement studies using fluorescent tracer to aid in the development of ports and harbors; (7) studies on various aspects of offshore. The outlines of the various programs discussed in this article will help other states and countries to develop a coastal zone management program according to the needs of the state or country and the nature of the problem occurring in the coastal zone.

  6. Coastal zone management programme in Kerala, India

    NASA Astrophysics Data System (ADS)

    Mallik, Tapas K.

    1987-06-01

    The physiographic setting of Kerala State, India, is unique. A narrow strip of the state contains a chain of lagoons and estuaries with a very high population density. The strip is subjected to severe coastal erosion during the monsoon season. A number of other problems are also associated with the coastal zone of Kerala, such as irregular dredging of black sands from the beaches, coastal flooding, hazards due to developmental activities, etc. A Coastal Zone Management Programme was developed and administered by the Centre for Earth Science Studies, Trivandrum, to provide efficient coastal management and solve some of these problems. Various programmes included under the Coastal Zone Management are the following: (1) Sedimentological, bathymetric, and geochemical studies of lagoons and estuaries; (2) monitoring of planimetric changes of beaches by profiling beaches during different seasons all along the coast; (3) studies of the nature, distribution, and provenance of black sand deposits from beaches; (4) studies of the peculiar occurrence of patchy, calm, turbid areas of water in the offshore containing high suspended sediment concentrate known as mud banks; (5) wave studies involving continuous monitoring of wave data all along the coast in order to understand wave climate and erosion; (6) sediment movement studies using fluorescent tracer to aid in the development of ports and harbors; (7) studies on various aspects of offshore. The outlines of the various programmes discussed in this article will help other states and countries to develop a coastal zone management programme according to the needs of the state or country and the nature of the problem occurring in the coastal zone.

  7. Interacting coastal based ecosystem services: recreation and water quality in Puget Sound, WA

    USGS Publications Warehouse

    Kreitler, Jason; Papenfus, Michael; Byrd, Kristin; Labiosa, William

    2013-01-01

    Coastal recreation and water quality are major contributors to human well-being in coastal regions. They can also interact, creating opportunities for ecosystem based management, ecological restoration, and water quality improvement that can positively affect people and the environment. Yet the effect of environmental quality on human behavior is often poorly quantified, but commonly assumed in coastal ecosystem service studies. To clarify this effect we investigate a water quality dataset for evidence that environmental condition partially explains variation in recreational visitation, our indicator of human behavior. In Puget Sound, WA, we investigate variation in visitation in both visitation rate and fixed effects (FE) models. The visitation rate model relates the differences in annual recreational visitation among parks to environmental conditions, park characteristics, travel cost, and recreational demand. In our FE model we control for all time-invariant unobserved variables and compare monthly variation at the park level to determine how water quality affects visitation during the summer season. The results of our first model illustrate how visitation relates to various amenities and costs. In the FE analysis, monthly visitation was negatively related to water quality while controlling for monthly visitation trends. This indicates people are responding to changes in water quality, and an improvement would yield an increase in the value of recreation. Together, these results could help in prioritizing water quality improvements, could assist the creation of new parks or the modification of existing recreational infrastructure, and provide quantitative estimates for the expected benefits from potential changes in recreational visitation and water quality improvements. Our results also provide an example of how recreational visitation can be quantified and used in ecosystem service assessments.

  8. Interacting coastal based ecosystem services: recreation and water quality in Puget Sound, WA.

    PubMed

    Kreitler, Jason; Papenfus, Michael; Byrd, Kristin; Labiosa, William

    2013-01-01

    Coastal recreation and water quality are major contributors to human well-being in coastal regions. They can also interact, creating opportunities for ecosystem based management, ecological restoration, and water quality improvement that can positively affect people and the environment. Yet the effect of environmental quality on human behavior is often poorly quantified, but commonly assumed in coastal ecosystem service studies. To clarify this effect we investigate a water quality dataset for evidence that environmental condition partially explains variation in recreational visitation, our indicator of human behavior. In Puget Sound, WA, we investigate variation in visitation in both visitation rate and fixed effects (FE) models. The visitation rate model relates the differences in annual recreational visitation among parks to environmental conditions, park characteristics, travel cost, and recreational demand. In our FE model we control for all time-invariant unobserved variables and compare monthly variation at the park level to determine how water quality affects visitation during the summer season. The results of our first model illustrate how visitation relates to various amenities and costs. In the FE analysis, monthly visitation was negatively related to water quality while controlling for monthly visitation trends. This indicates people are responding to changes in water quality, and an improvement would yield an increase in the value of recreation. Together, these results could help in prioritizing water quality improvements, could assist the creation of new parks or the modification of existing recreational infrastructure, and provide quantitative estimates for the expected benefits from potential changes in recreational visitation and water quality improvements. Our results also provide an example of how recreational visitation can be quantified and used in ecosystem service assessments.

  9. Biological mechanisms supporting adaptation to ocean acidification in coastal ecosystems

    NASA Astrophysics Data System (ADS)

    Hendriks, Iris E.; Duarte, Carlos M.; Olsen, Ylva S.; Steckbauer, Alexandra; Ramajo, Laura; Moore, Tommy S.; Trotter, Julie A.; McCulloch, Malcolm

    2015-01-01

    The direct influence of anthropogenic CO2 might play a limited role in pH regulation in coastal ecosystems as pH regulation in these areas can be complex. They experience large variability across a broad range of spatial and temporal scales, with complex external and internal drivers. Organisms influence pH at a patch scale, where community metabolic effects and hydrodynamic processes interact to produce broad ranges in pH, (∼0.3-0.5 pH units) over daily cycles and spatial scales (mm to m) particularly in shallow vegetated habitats and coral reefs where both respiration and photosynthetic activity are intense. Biological interactions at the ecosystem scale, linked to patchiness in habitat landscapes and seasonal changes in metabolic processes and temperature lead to changes of about 0.3-0.5 pH units throughout a year. Furthermore, on the scale of individual organisms, small-scale processes including changes at the Diffusive Boundary Layer (DBL), interactions with symbionts, and changes to the specific calcification environment, induce additional changes in excess of 0.5 pH units. In these highly variable pH environments calcifying organisms have developed the capacity to alter the pH of their calcifying environment, or specifically within critical tissues where calcification occurs, thus achieving a homeostasis. This capacity to control the conditions for calcification at the organism scale may therefore buffer the full impacts of ocean acidification on an organism scale, although this might be at a cost to the individual. Furthermore, in some areas, calcifiers may potentially benefit from changes to ambient seawater pH, where photosynthetic organisms drawdown CO2.

  10. Adaptive management for soil ecosystem services

    USGS Publications Warehouse

    Birge, Hannah E.; Bevans, Rebecca A.; Allen, Craig R.; Angeler, David G.; Baer, Sara G.; Wall, Diana H.

    2016-01-01

    Ecosystem services provided by soil include regulation of the atmosphere and climate, primary (including agricultural) production, waste processing, decomposition, nutrient conservation, water purification, erosion control, medical resources, pest control, and disease mitigation. The simultaneous production of these multiple services arises from complex interactions among diverse aboveground and belowground communities across multiple scales. When a system is mismanaged, non-linear and persistent losses in ecosystem services can arise. Adaptive management is an approach to management designed to reduce uncertainty as management proceeds. By developing alternative hypotheses, testing these hypotheses and adjusting management in response to outcomes, managers can probe dynamic mechanistic relationships among aboveground and belowground soil system components. In doing so, soil ecosystem services can be preserved and critical ecological thresholds avoided. Here, we present an adaptive management framework designed to reduce uncertainty surrounding the soil system, even when soil ecosystem services production is not the explicit management objective, so that managers can reach their management goals without undermining soil multifunctionality or contributing to an irreversible loss of soil ecosystem services.

  11. Coastal Zone Ecosystem Services: from science to values and decision making; a case study.

    PubMed

    Luisetti, T; Turner, R K; Jickells, T; Andrews, J; Elliott, M; Schaafsma, M; Beaumont, N; Malcolm, S; Burdon, D; Adams, C; Watts, W

    2014-09-15

    This research is concerned with the following environmental research questions: socio-ecological system complexity, especially when valuing ecosystem services; ecosystems stock and services flow sustainability and valuation; the incorporation of scale issues when valuing ecosystem services; and the integration of knowledge from diverse disciplines for governance and decision making. In this case study, we focused on ecosystem services that can be jointly supplied but independently valued in economic terms: healthy climate (via carbon sequestration and storage), food (via fisheries production in nursery grounds), and nature recreation (nature watching and enjoyment). We also explored the issue of ecosystem stock and services flow, and we provide recommendations on how to value stock and flows of ecosystem services via accounting and economic values respectively. We considered broadly comparable estuarine systems located on the English North Sea coast: the Blackwater estuary and the Humber estuary. In the past, these two estuaries have undergone major land-claim. Managed realignment is a policy through which previously claimed intertidal habitats are recreated allowing the enhancement of the ecosystem services provided by saltmarshes. In this context, we investigated ecosystem service values, through biophysical estimates and welfare value estimates. Using an optimistic (extended conservation of coastal ecosystems) and a pessimistic (loss of coastal ecosystems because of, for example, European policy reversal) scenario, we find that context dependency, and hence value transfer possibilities, vary among ecosystem services and benefits. As a result, careful consideration in the use and application of value transfer, both in biophysical estimates and welfare value estimates, is advocated to supply reliable information for policy making.

  12. Ecosystem services in sustainable groundwater management.

    PubMed

    Tuinstra, Jaap; van Wensem, Joke

    2014-07-01

    The ecosystem services concept seems to get foothold in environmental policy and management in Europe and, for instance, The Netherlands. With respect to groundwater management there is a challenge to incorporate this concept in such a way that it contributes to the sustainability of decisions. Groundwater is of vital importance to societies, which is reflected in the presented overview of groundwater related ecosystem services. Classifications of these services vary depending on the purpose of the listing (valuation, protection, mapping et cetera). Though the scientific basis is developing, the knowledge-availability still can be a critical factor in decision making based upon ecosystem services. The examples in this article illustrate that awareness of the value of groundwater can result in balanced decisions with respect to the use of ecosystem services. The ecosystem services concept contributes to this awareness and enhances the visibility of the groundwater functions in the decision making process. The success of the ecosystem services concept and its contribution to sustainable groundwater management will, however, largely depend on other aspects than the concept itself. Local and actual circumstances, policy ambitions and knowledge availability will play an important role. Solutions can be considered more sustainable when more of the key elements for sustainable groundwater management, as defined in this article, are fully used and the presented guidelines for long term use of ecosystem services are respected.

  13. Land-margin ecosystem hydrologic data for the coastal Everglades, Florida, water years 1996-2012

    USGS Publications Warehouse

    Anderson, Gordon H.; Smith, Thomas J.; Balentine, Karen M.

    2014-01-01

    Mangrove forests and salt marshes dominate the landscape of the coastal Everglades (Odum and McIvor, 1990). However, the ecological effects from potential sea-level rise and increased water flows from planned freshwater Everglades restoration on these coastal systems are poorly understood. The National Park Service (NPS) proposed the South Florida Global Climate Change Project (SOFL-GCC) in 1990 to evaluate climate change and the effect from rising sea levels on the coastal Everglades, particularly at the marsh/mangrove interface or ecotone (Soukup and others, 1990). A primary objective of SOFL-GCC project was to monitor and synthesize the hydrodynamics of the coastal Everglades from the upstream freshwater marsh to the downstream estuary mangrove. Two related hypotheses were set forward (Nuttle and Cosby, 1993): 1. There exists hydrologic conditions (tide, local rainfall, and upstream water deliveries), which characterize the location of the marsh/mangrove ecotone along the marine and terrestrial hydrologic gradient; and 2. The marsh/mangrove ecotone is sensitive to fluctuations in sea level and freshwater inflow from inland areas. Hydrologic monitoring of the SOFL-GCC network began in 1995 after startup delays from Hurricane Andrew (August 1992) and organizational transfers from the NPS to the National Biological Survey (October 1993) and the merger with the U.S. Geological Survey (USGS) Biological Research Division in 1996 (Smith, 2004). As the SOFL-GCC project progressed, concern by environmental scientists and land managers over how the diversion of water from Everglades National Park would affect the restoration of the greater Everglades ecosystem. Everglades restoration scenarios were based on hydrodynamic models, none of which included the coastal zone (Fennema and others, 1994). Modeling efforts were expanded to include the Everglades coastal zone (Schaffranek and others, 2001) with SOFL-GCC hydrologic data assisting the ecological modeling needs. In 2002

  14. Prioritising Mangrove Ecosystem Services Results in Spatially Variable Management Priorities

    PubMed Central

    Atkinson, Scott C.; Jupiter, Stacy D.; Adams, Vanessa M.; Ingram, J. Carter; Narayan, Siddharth; Klein, Carissa J.; Possingham, Hugh P.

    2016-01-01

    Incorporating the values of the services that ecosystems provide into decision making is becoming increasingly common in nature conservation and resource management policies, both locally and globally. Yet with limited funds for conservation of threatened species and ecosystems there is a desire to identify priority areas where investment efficiently conserves multiple ecosystem services. We mapped four mangrove ecosystems services (coastal protection, fisheries, biodiversity, and carbon storage) across Fiji. Using a cost-effectiveness analysis, we prioritised mangrove areas for each service, where the effectiveness was a function of the benefits provided to the local communities, and the costs were associated with restricting specific uses of mangroves. We demonstrate that, although priority mangrove areas (top 20%) for each service can be managed at relatively low opportunity costs (ranging from 4.5 to 11.3% of overall opportunity costs), prioritising for a single service yields relatively low co-benefits due to limited geographical overlap with priority areas for other services. None-the-less, prioritisation of mangrove areas provides greater overlap of benefits than if sites were selected randomly for most ecosystem services. We discuss deficiencies in the mapping of ecosystems services in data poor regions and how this may impact upon the equity of managing mangroves for particular services across the urban-rural divide in developing countries. Finally we discuss how our maps may aid decision-makers to direct funding for mangrove management from various sources to localities that best meet funding objectives, as well as how this knowledge can aid in creating a national mangrove zoning scheme. PMID:27008421

  15. Prioritising Mangrove Ecosystem Services Results in Spatially Variable Management Priorities.

    PubMed

    Atkinson, Scott C; Jupiter, Stacy D; Adams, Vanessa M; Ingram, J Carter; Narayan, Siddharth; Klein, Carissa J; Possingham, Hugh P

    2016-01-01

    Incorporating the values of the services that ecosystems provide into decision making is becoming increasingly common in nature conservation and resource management policies, both locally and globally. Yet with limited funds for conservation of threatened species and ecosystems there is a desire to identify priority areas where investment efficiently conserves multiple ecosystem services. We mapped four mangrove ecosystems services (coastal protection, fisheries, biodiversity, and carbon storage) across Fiji. Using a cost-effectiveness analysis, we prioritised mangrove areas for each service, where the effectiveness was a function of the benefits provided to the local communities, and the costs were associated with restricting specific uses of mangroves. We demonstrate that, although priority mangrove areas (top 20%) for each service can be managed at relatively low opportunity costs (ranging from 4.5 to 11.3% of overall opportunity costs), prioritising for a single service yields relatively low co-benefits due to limited geographical overlap with priority areas for other services. None-the-less, prioritisation of mangrove areas provides greater overlap of benefits than if sites were selected randomly for most ecosystem services. We discuss deficiencies in the mapping of ecosystems services in data poor regions and how this may impact upon the equity of managing mangroves for particular services across the urban-rural divide in developing countries. Finally we discuss how our maps may aid decision-makers to direct funding for mangrove management from various sources to localities that best meet funding objectives, as well as how this knowledge can aid in creating a national mangrove zoning scheme.

  16. Guidelines, processes and tools for coastal ecosystem restoration, with examples from the United States

    SciTech Connect

    Thom, Ronald M.; Diefenderfer, Heida L.; Adkins, Jeffery E.; Judd, Chaeli; Anderson, Michael G.; Buenau, Kate E.; Borde, Amy B.; Johnson, Gary E.

    2011-02-01

    This paper presents a systematic approach to coastal restoration projects in five phases: planning, implementation, performance assessment, adaptive management, and dissemination of results. Twenty features of the iterative planning process are synthesized. The planning process starts with a vision, a description of the ecosystem and landscape, and goals. A conceptual model and planning objectives are developed, a site is selected using prioritization techniques, and numerical models contribute to preliminary designs as needed. Performance criteria and reference sites are selected and the monitoring program is designed. The monitoring program is emphasized as a tool to assess project performance and identify problems affecting progression toward project goals, in an adaptive management framework. Key approaches to aspects of the monitoring program are reviewed and detailed with project examples. Within the planning process, cost analysis involves budgeting, scheduling, and financing. Finally, documentation is peer reviewed prior to making construction plans and final costing.

  17. Coastal High-resolution Observations and Remote Sensing of Ecosystems (C-HORSE)

    NASA Technical Reports Server (NTRS)

    Guild, Liane

    2016-01-01

    Coastal benthic marine ecosystems, such as coral reefs, seagrass beds, and kelp forests are highly productive as well as ecologically and commercially important resources. These systems are vulnerable to degraded water quality due to coastal development, terrestrial run-off, and harmful algal blooms. Measurements of these features are important for understanding linkages with land-based sources of pollution and impacts to coastal ecosystems. Challenges for accurate remote sensing of coastal benthic (shallow water) ecosystems and water quality are complicated by atmospheric scattering/absorption (approximately 80+% of the signal), sun glint from the sea surface, and water column scattering (e.g., turbidity). Further, sensor challenges related to signal to noise (SNR) over optically dark targets as well as insufficient radiometric calibration thwart the value of coastal remotely-sensed data. Atmospheric correction of satellite and airborne remotely-sensed radiance data is crucial for deriving accurate water-leaving radiance in coastal waters. C-HORSE seeks to optimize coastal remote sensing measurements by using a novel airborne instrument suite that will bridge calibration, validation, and research capabilities of bio-optical measurements from the sea to the high altitude remote sensing platform. The primary goal of C-HORSE is to facilitate enhanced optical observations of coastal ecosystems using state of the art portable microradiometers with 19 targeted spectral channels and flight planning to optimize measurements further supporting current and future remote sensing missions.

  18. A Review of Selected Ecosystem Services Supplied by Coastal Wetlands of the Laurentian Great Lakes

    EPA Science Inventory

    Significant ecosystem services derive from the coastal wetlands of the Laurentian Great Lakes even though they have undergone substantial declines since European settlement. Basin-wide, two-thirds of the original coastal wetlands have been lost, and the remaining 126,000 ha of US...

  19. Estimating the Provision of Ecosystem Services by Gulf of Mexico Coastal Wetlands.

    EPA Science Inventory

    Gulf of Mexico (GOM) coastal wetlands contribute to human well-being by providing many ecosystem services (e.g., commercial and recreational fishery support, protection of coastal communities from storm surge, water quality improvement, and carbon sequestration). The GOM region c...

  20. Panel Discussion: U.S. EPA Using Modeling and Ecosystem Services to Enhance Coastal Decision Making

    EPA Science Inventory

    This panel will discuss the research being conducted, and the models being used in three current coastal EPA studies being conducted on ecosystem services in Tampa Bay, the Chesapeake Bay and the Coastal Carolinas. These studies are intended to provide a broader and more compreh...

  1. Geostationary Coastal Ecosystem Dynamics Imager (GEO CEDI) for the GEO Coastal and Air Pollution Events (GEO CAPE) Mission. Concept Presentation

    NASA Technical Reports Server (NTRS)

    Janz, Scott; Smith, James C.; Mannino, Antonio

    2010-01-01

    This slide presentation reviews the concepts of the Geostationary Coastal Ecosystem Dynamics Imager (GEO CEDI) which will be used on the GEO Coastal and Air Pollution Events (GEO CAPE) Mission. The primary science requirements require scans of the U.S. Coastal waters 3 times per day during the daylight hours. Included in the overview are presentations about the systems, the optics, the detectors, the mechanical systems, the electromechanical systems, the electrical design, the flight software, the thermal systems, and the contamination prevention requirements.

  2. Variation in freshwater input to the Eastern US coastal ecosystem

    NASA Astrophysics Data System (ADS)

    Feng, D.; Yoon, Y.; Beighley, E., II; Hughes, R.; Kimbro, D.

    2014-12-01

    Phragmites is one of the most invasive plants in North American wetlands. Although its spread in coastal marshes has been linked by independent studies to urbanization, eutrophication, and salinity change, there is good evidence that these factors may interactively determine invasion success and in turn, the ecosystem services provided by marshes. We hypothesize that the invasion of Phragmites is linked to changes in freshwater inputs due to climate and/or land use change. El Nino/Southern Oscillation (ENSO), originating in the sea surface temperature anomalies (warm or cold) in the eastern tropical Pacific Ocean, is a notable and prominent signal in inter-annual climatic variation. Recent studies shows that the probability of strong El Nino events may increase in the future. In this study, we will investigate the teleconnections between freshwater inputs to the coastal zone along the eastern U.S. and ENSO indices, and attempt to explore the predictability of temporal and spatial variation of freshwater inputs based on ENSO conditions. To quantify changes in freshwater input in this region, hydrologic modeling, remote sensing and field measurements are combined. The Hillslope River Routing (HRR) model is used to simulate hourly streamflow from all watersheds from southern Florida to northern Maine draining into the Atlantic Ocean. The modeling effort utilizes satellite precipitation (Tropical Rainfall Measuring Mission Product 3B42v7: 2001-current with a 3-hr temporal resolution and 0.25 degree spatial resolution), land surface temperature and vegetation measures (Moderate Resolution Imaging Spectroradiometer, MODIS, products: 2001-current with a monthly temporal resolution and 0.05 degree spatial resolution). To account for land cover change, annual MODIS land cover data and time varying population statics are merged to estimate annual land cover characteristics for each sub-catchment within the study region. Static datasets for soils and ground elevations are

  3. Urbanization, Climate Change, and Changes to Ecosystem Services in Coastal Areas

    NASA Astrophysics Data System (ADS)

    Sutton, P. C.; Costanza, R.; Roman, J.; Kubiszewski, I.

    2011-12-01

    We examine the history and status of ecosystem services in low-lying coastal areas (LLCA's), how they might change in the future in particular because of urbanization and wider environmental and social changes, and what the implications of these changes might be for the migration of humans. We synthesized information from a number of sources on the status and value of ecosystem services in LLCA's, including information about key ecosystems that are likely to be particularly vulnerable to environmental change. We created maps of ecosystem and human population changes in LLCA's and then estimated changes in ecosystem services. We developed four scenarios for future ecosystem and ecosystem services conditions in 2060, based on the four SRES (Special Report on Emissions Scenarios) scenarios with additional reference to the Millennium Ecosystem Assessment and the Great Transition Initiative scenarios. The two axes of the SRES scenarios are global vs. regional and material economy vs. environment foci. This allowed an assessment of the plausible range of future uncertainty about ecosystem services in LLCA's and the potential for changes in ecosystem services to drive human migration. Major findings include: 1) Coastal ecosystems are among the most productive on the planet. They provide more than 70% of total global ecosystem services; 2) At the same time, these systems are the most threatened by climate change, human settlement and potential coastward migration; 3) In the mid 1990's, approximately 25 million people were forced to leave their homelands due to the inability to secure a livelihood as ecosystem services declined; 4) In the coming decades, one estimate puts the number at 240-525 million people who may feel impelled to migrate due to loss of ecosystem services; 5) Risk factors for coastal populations include overexploitation of resources, including fisheries; destruction of mangroves, wetlands, and other natural infrastructure; increased storm activity and

  4. 75 FR 44938 - Atlantic Coastal Fisheries Cooperative Management Act Provisions; Atlantic Coastal Shark Fishery

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-30

    ... 0648-XX28 Atlantic Coastal Fisheries Cooperative Management Act Provisions; Atlantic Coastal Shark... cancellation of the Federal moratorium on fishing for Atlantic coastal sharks in the State waters of New Jersey... Sharks (Coastal Shark Plan). DATES: Effective July 30, 2010. ADDRESSES: Emily Menashes, Acting...

  5. Managing Soil Biodiversity and Ecosystem Services

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Management practices impact soil organisms by altering their environment and therefore favoring some species over others. Management only rarely results in the elimination of an entire functional group that then impacts an ecosystem service, as in the example of repeated tillage eliminating earthwo...

  6. Will Global Change Effect Primary Productivity in Coastal Ecosystems?

    NASA Technical Reports Server (NTRS)

    Rothschild, Lynn J.; Peterson, David L. (Technical Monitor)

    1997-01-01

    Algae are the base of coastal food webs because they provide the source of organic carbon for the remaining members of the community. Thus, the rate that they produce organic carbon to a large extent controls the productivity of the entire ecosystem. Factors that control algal productivity range from the physical (e.g., temperature, light), chemical (e.g., nutrient levels) to the biological (e.g., grazing). Currently, levels of atmospheric carbon dioxide surficial fluxes of ultraviolet radiation are rising. Both of these environmental variables can have a profound effect on algal productivity. Atmospheric carbon dioxide may increase surficial levels of dissolved inorganic carbon. Our laboratory and field studies of algal mats and phytoplankton cultures under ambient and elevated levels of pCO2 show that elevated levels of inorganic carbon can cause an increase in photosynthetic rates. In some cases, this increase will cause an increase in phytoplankton numbers. There may be an increase in the excretion of fixed carbon, which in turn may enhance bacterial productivity. Alternatively, in analogy with studies on the effect of elevated pCO2 on plants, the phytoplankton could change their carbon to nitrogen ratios, which will effect the feeding of the planktonic grazers. The seasonal depletion of stratospheric ozone has resulted in elevated fluxes of UVB radiation superimposed on the normal seasonal variation. Present surface UV fluxes have a significant impact on phytoplankton physiology, including the inhibition of the light and dark reactions of photosynthesis, inhibition of nitrogenase activity, inhibition of heterocyst formation, reduction in motility, increased synthesis of the UV-screening pigment scytonemin, and mutation. After reviewing these issues, recent work in our lab on measuring the effect of UV radiation on phytoplankton in the San Francisco Bay Estuary will be presented.

  7. Impact of groundwater use as heat energy on coastal ecosystem and fisheries

    NASA Astrophysics Data System (ADS)

    Taniguchi, Makoto

    2016-04-01

    Demands for groundwater as a heat energy source to melt snow is increasing in many coastal snowy areas in Japan because of the lack of laborers for snow removal and the abundance of groundwater resources. The temperature of groundwater is relatively higher in winter than that of the air and river water, therefore it is a useful heat source to melt snow. However, groundwater is also beneficial for the coastal ecosystem and fishery production because of the nutrient discharge by submarine groundwater discharge (SGD), which is one of the water and dissolved material pathways from land to the ocean. Therefore, groundwater is involved in the tradeoff and management conflict existing between energy and food (fisheries). In this study, the impact of groundwater, used as a heat energy source for the melting of snow accumulated on roads, on the coastal ecosystem and fisheries has been analyzed in the snowy areas of Obama City, Fukui Prefecture, Japan. Positive correlation has been found between primary production rates in Obama Bay and radon concentrations which show the magnitude of the submarine groundwater discharge. Therefore, the increase in groundwater pumping on land reduces fishery production in the ocean. Results of 3D numerical simulations of the basin scale groundwater model show a reduction of SGD by 5 percent due to an increase in groundwater pumping by 1.5 times. This reduction of SGD caused a 3.7 ton decrease in fishery production under the aforementioned assumptions. The groundwater-energy-fishery nexus was found in Obama Bay, Japan and the tradeoff between water and food was evaluated.

  8. Salinization of Freshwater-Dependent Coastal Ecosystems: Understanding Landscapes in Transition Along the Leading Edge of Climate Change

    NASA Astrophysics Data System (ADS)

    Emanuel, R. E.; Bernhardt, E. S.; Ardón, M.; Wright, J. P.; BenDor, T.; Bhattachan, A.

    2015-12-01

    Climate change is transforming the outer edge of the Southern US coastal plain. Lower-lying parts of this region, characterized by extensive freshwater-dependent ecosystems, will be largely inundated by gradual sea level rise by the end of this century. In the interim, however, ocean waters are already penetrating and influencing freshwater-dependent coastal landscapes due to a combination of human and natural factors. This landward movement of salinity from the coast onto the coastal plain or "saltwater intrusion" is a critical water resource issue representing the leading edge of climate change for many coastal areas. The salinization of surface waters and adjacent lands has implications for crop and timber yields in managed ecosystems, ecosystem carbon sequestration in unmanaged ecosystems, and degradation of coastal water quality due to extraction of soil nutrients by seasalts. With this in mind, we seek to understand more broadly how vulnerability of coastal landscapes to saltwater intrusion shapes and is shaped by both natural and anthropogenic processes. We present a novel framework that couples intensive, in situ monitoring of hydrological and ecological conditions with a geospatial saltwater intrusion vulnerability index (SIVI). We discuss application of this framework to the Albemarle-Pamlico region of coastal North Carolina, where we are learning how climate, natural landscape structure, and human activities interact to mediate or exacerbate the vulnerability of freshwater-dependent lands to saltwater intrusion. We discuss the involvement of stakeholders and local knowledge in the research process as well. This work advances understanding of vulnerability to climate change in coastal regions by moving beyond simple inundation models to gain a more sophisticated understanding of the human and natural processes influencing salinization of surface waters and adjacent lands. As the Albemarle-Pamlico and similar regions worldwide transform in response to and

  9. Icefield-to-ocean linkages across the northern Pacific coastal temperate rainforest ecosystem

    USGS Publications Warehouse

    O'Neel, Shad; Hood, Eran; Bidlack, Allison L.; Fleming, Sean W.; Arimitsu, Mayumi L.; Arendt, Anthony; Burgess, Evan W.; Sergeant, Christopher J.; Beaudreau, Anne E.; Timm, Kristin; Hayward, Gregory D.; Reynolds, Joel H.; Pyare, Sanjay

    2015-01-01

    Rates of glacier mass loss in the northern Pacific coastal temperate rainforest (PCTR) are among the highest on Earth, and changes in glacier volume and extent will affect the flow regime and chemistry of coastal rivers, as well as the nearshore marine ecosystem of the Gulf of Alaska. Here we synthesize physical, chemical and biological linkages that characterize the northern PCTR ecosystem, with particular emphasis on the potential impacts of glacier change in the coastal mountain ranges on the surface–water hydrology, biogeochemistry, coastal oceanography and aquatic ecology. We also evaluate the relative importance and interplay between interannual variability and long-term trends in key physical drivers and ecological responses. To advance our knowledge of the northern PCTR, we advocate for cross-disciplinary research bridging the icefield-to-ocean ecosystem that can be paired with long-term scientific records and designed to inform decisionmakers.

  10. Identifying Thresholds for Ecosystem-Based Management

    PubMed Central

    Samhouri, Jameal F.; Levin, Phillip S.; Ainsworth, Cameron H.

    2010-01-01

    Background One of the greatest obstacles to moving ecosystem-based management (EBM) from concept to practice is the lack of a systematic approach to defining ecosystem-level decision criteria, or reference points that trigger management action. Methodology/Principal Findings To assist resource managers and policymakers in developing EBM decision criteria, we introduce a quantitative, transferable method for identifying utility thresholds. A utility threshold is the level of human-induced pressure (e.g., pollution) at which small changes produce substantial improvements toward the EBM goal of protecting an ecosystem's structural (e.g., diversity) and functional (e.g., resilience) attributes. The analytical approach is based on the detection of nonlinearities in relationships between ecosystem attributes and pressures. We illustrate the method with a hypothetical case study of (1) fishing and (2) nearshore habitat pressure using an empirically-validated marine ecosystem model for British Columbia, Canada, and derive numerical threshold values in terms of the density of two empirically-tractable indicator groups, sablefish and jellyfish. We also describe how to incorporate uncertainty into the estimation of utility thresholds and highlight their value in the context of understanding EBM trade-offs. Conclusions/Significance For any policy scenario, an understanding of utility thresholds provides insight into the amount and type of management intervention required to make significant progress toward improved ecosystem structure and function. The approach outlined in this paper can be applied in the context of single or multiple human-induced pressures, to any marine, freshwater, or terrestrial ecosystem, and should facilitate more effective management. PMID:20126647

  11. Portfolio Decision Analysis Framework for Value-Focused Ecosystem Management.

    PubMed

    Convertino, Matteo; Valverde, L James

    2013-01-01

    Management of natural resources in coastal ecosystems is a complex process that is made more challenging by the need for stakeholders to confront the prospect of sea level rise and a host of other environmental stressors. This situation is especially true for coastal military installations, where resource managers need to balance conflicting objectives of environmental conservation against military mission. The development of restoration plans will necessitate incorporating stakeholder preferences, and will, moreover, require compliance with applicable federal/state laws and regulations. To promote the efficient allocation of scarce resources in space and time, we develop a portfolio decision analytic (PDA) framework that integrates models yielding policy-dependent predictions for changes in land cover and species metapopulations in response to restoration plans, under different climate change scenarios. In a manner that is somewhat analogous to financial portfolios, infrastructure and natural resources are classified as human and natural assets requiring management. The predictions serve as inputs to a Multi Criteria Decision Analysis model (MCDA) that is used to measure the benefits of restoration plans, as well as to construct Pareto frontiers that represent optimal portfolio allocations of restoration actions and resources. Optimal plans allow managers to maintain or increase asset values by contrasting the overall degradation of the habitat and possible increased risk of species decline against the benefits of mission success. The optimal combination of restoration actions that emerge from the PDA framework allows decision-makers to achieve higher environmental benefits, with equal or lower costs, than those achievable by adopting the myopic prescriptions of the MCDA model. The analytic framework presented here is generalizable for the selection of optimal management plans in any ecosystem where human use of the environment conflicts with the needs of

  12. Portfolio Decision Analysis Framework for Value-Focused Ecosystem Management

    PubMed Central

    Convertino, Matteo; Valverde, L. James

    2013-01-01

    Management of natural resources in coastal ecosystems is a complex process that is made more challenging by the need for stakeholders to confront the prospect of sea level rise and a host of other environmental stressors. This situation is especially true for coastal military installations, where resource managers need to balance conflicting objectives of environmental conservation against military mission. The development of restoration plans will necessitate incorporating stakeholder preferences, and will, moreover, require compliance with applicable federal/state laws and regulations. To promote the efficient allocation of scarce resources in space and time, we develop a portfolio decision analytic (PDA) framework that integrates models yielding policy-dependent predictions for changes in land cover and species metapopulations in response to restoration plans, under different climate change scenarios. In a manner that is somewhat analogous to financial portfolios, infrastructure and natural resources are classified as human and natural assets requiring management. The predictions serve as inputs to a Multi Criteria Decision Analysis model (MCDA) that is used to measure the benefits of restoration plans, as well as to construct Pareto frontiers that represent optimal portfolio allocations of restoration actions and resources. Optimal plans allow managers to maintain or increase asset values by contrasting the overall degradation of the habitat and possible increased risk of species decline against the benefits of mission success. The optimal combination of restoration actions that emerge from the PDA framework allows decision-makers to achieve higher environmental benefits, with equal or lower costs, than those achievable by adopting the myopic prescriptions of the MCDA model. The analytic framework presented here is generalizable for the selection of optimal management plans in any ecosystem where human use of the environment conflicts with the needs of

  13. Adaptive governance, ecosystem management, and natural capital.

    PubMed

    Schultz, Lisen; Folke, Carl; Österblom, Henrik; Olsson, Per

    2015-06-16

    To gain insights into the effects of adaptive governance on natural capital, we compare three well-studied initiatives; a landscape in Southern Sweden, the Great Barrier Reef in Australia, and fisheries in the Southern Ocean. We assess changes in natural capital and ecosystem services related to these social-ecological governance approaches to ecosystem management and investigate their capacity to respond to change and new challenges. The adaptive governance initiatives are compared with other efforts aimed at conservation and sustainable use of natural capital: Natura 2000 in Europe, lobster fisheries in the Gulf of Maine, North America, and fisheries in Europe. In contrast to these efforts, we found that the adaptive governance cases developed capacity to perform ecosystem management, manage multiple ecosystem services, and monitor, communicate, and respond to ecosystem-wide changes at landscape and seascape levels with visible effects on natural capital. They enabled actors to collaborate across diverse interests, sectors, and institutional arrangements and detect opportunities and problems as they developed while nurturing adaptive capacity to deal with them. They all spanned local to international levels of decision making, thus representing multilevel governance systems for managing natural capital. As with any governance system, internal changes and external drivers of global impacts and demands will continue to challenge the long-term success of such initiatives.

  14. Adaptive governance, ecosystem management, and natural capital

    PubMed Central

    Schultz, Lisen; Folke, Carl; Österblom, Henrik; Olsson, Per

    2015-01-01

    To gain insights into the effects of adaptive governance on natural capital, we compare three well-studied initiatives; a landscape in Southern Sweden, the Great Barrier Reef in Australia, and fisheries in the Southern Ocean. We assess changes in natural capital and ecosystem services related to these social–ecological governance approaches to ecosystem management and investigate their capacity to respond to change and new challenges. The adaptive governance initiatives are compared with other efforts aimed at conservation and sustainable use of natural capital: Natura 2000 in Europe, lobster fisheries in the Gulf of Maine, North America, and fisheries in Europe. In contrast to these efforts, we found that the adaptive governance cases developed capacity to perform ecosystem management, manage multiple ecosystem services, and monitor, communicate, and respond to ecosystem-wide changes at landscape and seascape levels with visible effects on natural capital. They enabled actors to collaborate across diverse interests, sectors, and institutional arrangements and detect opportunities and problems as they developed while nurturing adaptive capacity to deal with them. They all spanned local to international levels of decision making, thus representing multilevel governance systems for managing natural capital. As with any governance system, internal changes and external drivers of global impacts and demands will continue to challenge the long-term success of such initiatives. PMID:26082542

  15. Effluents of shrimp farms and its influence on the coastal ecosystems of Bahía de Kino, Mexico.

    PubMed

    Barraza-Guardado, Ramón H; Arreola-Lizárraga, José A; López-Torres, Marco A; Casillas-Hernández, Ramón; Miranda-Baeza, Anselmo; Magallón-Barrajas, Francisco; Ibarra-Gámez, Cuauhtemoc

    2013-01-01

    The impact on coastal ecosystems of suspended solids, organic matter, and bacteria in shrimp farm effluents is presented. Sites around Bahía de Kino were selected for comparative evaluation. Effluent entering Bahia Kino (1) enters Laguna La Cruz (2). A control site (3) was outside the influence of effluents. Water quality samples were collected every two weeks during the shrimp culture period. Our data show that the material load in shrimp farm effluents changes biogeochemical processes and aquatic health of the coastal ecosystem. Specifically, the suspended solids, particulate organic matter, chlorophyll a, viable heterotrophic bacteria, and Vibrio-like bacteria in the bay and lagoon were two- to three-fold higher than the control site. This can be mitigated by improvements in the management of aquaculture systems.

  16. 75 FR 9158 - Atlantic Coastal Fisheries Cooperative Management Act Provisions; Coastal Sharks Fishery

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-01

    ... National Oceanic and Atmospheric Administration RIN 0648-XU54 Atlantic Coastal Fisheries Cooperative Management Act Provisions; Coastal Sharks Fishery AGENCY: National Marine Fisheries Service (NMFS), National.... SUMMARY: NMFS announces that on February 4, 2010, the Atlantic States Marine Fisheries...

  17. Bubble Stripping as a Tool To Reduce High Dissolved CO2 in Coastal Marine Ecosystems.

    PubMed

    Koweek, David A; Mucciarone, David A; Dunbar, Robert B

    2016-04-05

    High dissolved CO2 concentrations in coastal ecosystems are a common occurrence due to a combination of large ecosystem metabolism, shallow water, and long residence times. Many important coastal species may have adapted to this natural variability over time, but eutrophication and ocean acidification may be perturbing the water chemistry beyond the bounds of tolerance for these organisms. We are currently limited in our ability to deal with the geochemical changes unfolding in our coastal ocean. This study helps to address this deficit of solutions by introducing bubble stripping as a novel geochemical engineering approach to reducing high CO2 in coastal marine ecosystems. We use a process-based model to find that air/sea gas exchange rates within a bubbled system are 1-2 orders of magnitude higher than within a nonbubbled system. By coupling bubbling-enhanced ventilation to a coastal ecosystem metabolism model, we demonstrate that strategically timed bubble plumes can mitigate exposure to high CO2 under present-day conditions and that exposure mitigation is enhanced in the more acidic conditions predicted by the end of the century. We argue that shallow water CO2 bubble stripping should be considered among the growing list of engineering approaches intended to increase coastal resilience in a changing ocean.

  18. A novel approach to model exposure of coastal-marine ecosystems to riverine flood plumes based on remote sensing techniques.

    PubMed

    Álvarez-Romero, Jorge G; Devlin, Michelle; Teixeira da Silva, Eduardo; Petus, Caroline; Ban, Natalie C; Pressey, Robert L; Kool, Johnathan; Roberts, Jason J; Cerdeira-Estrada, Sergio; Wenger, Amelia S; Brodie, Jon

    2013-04-15

    Increased loads of land-based pollutants are a major threat to coastal-marine ecosystems. Identifying the affected marine areas and the scale of influence on ecosystems is critical to assess the impacts of degraded water quality and to inform planning for catchment management and marine conservation. Studies using remotely-sensed data have contributed to our understanding of the occurrence and influence of river plumes, and to our ability to assess exposure of marine ecosystems to land-based pollutants. However, refinement of plume modeling techniques is required to improve risk assessments. We developed a novel, complementary, approach to model exposure of coastal-marine ecosystems to land-based pollutants. We used supervised classification of MODIS-Aqua true-color satellite imagery to map the extent of plumes and to qualitatively assess the dispersal of pollutants in plumes. We used the Great Barrier Reef (GBR), the world's largest coral reef system, to test our approach. We combined frequency of plume occurrence with spatially distributed loads (based on a cost-distance function) to create maps of exposure to suspended sediment and dissolved inorganic nitrogen. We then compared annual exposure maps (2007-2011) to assess inter-annual variability in the exposure of coral reefs and seagrass beds to these pollutants. We found this method useful to map plumes and qualitatively assess exposure to land-based pollutants. We observed inter-annual variation in exposure of ecosystems to pollutants in the GBR, stressing the need to incorporate a temporal component into plume exposure/risk models. Our study contributes to our understanding of plume spatial-temporal dynamics of the GBR and offers a method that can also be applied to monitor exposure of coastal-marine ecosystems to plumes and explore their ecological influences.

  19. Effective Best Management Practices for Nitrogen Removal in Aquatic Ecosystems

    EPA Science Inventory

    Elevated nitrate levels in streams and groundwater are detrimental to human and ecosystem health. The Ground Water and Ecosystems Restoration Division (GWERD) of the USEPA investigates best management practices (BMP’s) that enhance nitrogen removal in aquatic ecosystems througho...

  20. Top 10 principles for designing healthy coastal ecosystems like the Salish Sea

    USGS Publications Warehouse

    Gaydos, Joseph K.; Dierauf, Leslie; Kirby, Grant; Brosnan, Deborah; Gilardi, Kirsten; Davis, Gary E.

    2008-01-01

    Like other coastal zones around the world, the inland sea ecosystem of Washington (USA) and British Columbia (Canada), an area known as the Salish Sea, is changing under pressure from a growing human population, conversion of native forest and shoreline habitat to urban development, toxic contamination of sediments and species, and overharvest of resources. While billions of dollars have been spent trying to restore other coastal ecosystems around the world, there still is no successful model for restoring estuarine or marine ecosystems like the Salish Sea. Despite the lack of a guiding model, major ecological principles do exist that should be applied as people work to design the Salish Sea and other large marine ecosystems for the future. We suggest that the following 10 ecological principles serve as a foundation for educating the public and for designing a healthy Salish Sea and other coastal ecosystems for future generations: (1) Think ecosystem: political boundaries are arbitrary; (2) Account for ecosystem connectivity; (3) Understand the food web; (4) Avoid fragmentation; (5) Respect ecosystem integrity; (6) Support nature's resilience; (7) Value nature: it's money in your pocket; (8) Watch wildlife health; (9) Plan for extremes; and (10) Share the knowledge.

  1. Top 10 principles for designing healthy coastal ecosystems like the Salish Sea.

    PubMed

    Gaydos, Joseph K; Dierauf, Leslie; Kirby, Grant; Brosnan, Deborah; Gilardi, Kirsten; Davis, Gary E

    2008-12-01

    Like other coastal zones around the world, the inland sea ecosystem of Washington (USA) and British Columbia (Canada), an area known as the Salish Sea, is changing under pressure from a growing human population, conversion of native forest and shoreline habitat to urban development, toxic contamination of sediments and species, and overharvest of resources. While billions of dollars have been spent trying to restore other coastal ecosystems around the world, there still is no successful model for restoring estuarine or marine ecosystems like the Salish Sea. Despite the lack of a guiding model, major ecological principles do exist that should be applied as people work to design the Salish Sea and other large marine ecosystems for the future. We suggest that the following 10 ecological principles serve as a foundation for educating the public and for designing a healthy Salish Sea and other coastal ecosystems for future generations: (1) Think ecosystem: political boundaries are arbitrary; (2) Account for ecosystem connectivity; (3) Understand the food web; (4) Avoid fragmentation; (5) Respect ecosystem integrity; (6) Support nature's resilience; (7) Value nature: it's money in your pocket; (8) Watch wildlife health; (9) Plan for extremes; and (10) Share the knowledge.

  2. Contrasting ecosystem CO2 fluxes of inland and coastal wetlands: a meta-analysis of eddy covariance data.

    PubMed

    Lu, Weizhi; Xiao, Jingfeng; Liu, Fang; Zhang, Yue; Liu, Chang'an; Lin, Guanghui

    2017-03-01

    Wetlands play an important role in regulating the atmospheric carbon dioxide (CO2 ) concentrations and thus affecting the climate. However, there is still lack of quantitative evaluation of such a role across different wetland types, especially at the global scale. Here, we conducted a meta-analysis to compare ecosystem CO2 fluxes among various types of wetlands using a global database compiled from the literature. This database consists of 143 site-years of eddy covariance data from 22 inland wetland and 21 coastal wetland sites across the globe. Coastal wetlands had higher annual gross primary productivity (GPP), ecosystem respiration (Re ), and net ecosystem productivity (NEP) than inland wetlands. On a per unit area basis, coastal wetlands provided large CO2 sinks, while inland wetlands provided small CO2 sinks or were nearly CO2 neutral. The annual CO2 sink strength was 93.15 and 208.37 g C m(-2) for inland and coastal wetlands, respectively. Annual CO2 fluxes were mainly regulated by mean annual temperature (MAT) and mean annual precipitation (MAP). For coastal and inland wetlands combined, MAT and MAP explained 71%, 54%, and 57% of the variations in GPP, Re , and NEP, respectively. The CO2 fluxes of wetlands were also related to leaf area index (LAI). The CO2 fluxes also varied with water table depth (WTD), although the effects of WTD were not statistically significant. NEP was jointly determined by GPP and Re for both inland and coastal wetlands. However, the NEP/Re and NEP/GPP ratios exhibited little variability for inland wetlands and decreased for coastal wetlands with increasing latitude. The contrasting of CO2 fluxes between inland and coastal wetlands globally can improve our understanding of the roles of wetlands in the global C cycle. Our results also have implications for informing wetland management and climate change policymaking, for example, the efforts being made by international organizations and enterprises to restore coastal wetlands for

  3. Evaluating Ecosystem Services Provided by the Albemarle-Pamlico (NC) Estuary System in Response to Watershed Nitrogen Management

    EPA Science Inventory

    The Albemarle-Pamlico Watershed and Estuary Study (APWES) is part of the USEPA Ecosystem Services Research Program. The mission of the APWES is to develop ecosystem services science to inform watershed and coastal management decisions in the Albemarle-Pamlico watershed and estuar...

  4. Modeling for Policy Change: A Feedback Perspective on Improving the Effectiveness of Coastal and Marine Management

    ERIC Educational Resources Information Center

    Robadue, Donald D., Jr.

    2012-01-01

    Those advocating for effective management of the use of coastal areas and ecosystems have long aspired for an approach to governance that includes information systems with the capability to predict the end results of various courses of action, monitor the impacts of decisions and compare results with those predicted by computer models in order to…

  5. Managing Perennial Monocultures for Ecosystem Services

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Miscanthus (Miscanthus x giganteus) and switchgrass (Panicum virgatum L.) are perennial grasses that can provide both renewable energy and ecosystem services, but the extent to which they do depends strongly on crop management. Nutrient use efficiency and wildlife habitat provision are influenced pr...

  6. Impacts of climate-driven changes on coastal lagoon ecosystem and related good and services

    NASA Astrophysics Data System (ADS)

    Solidoro, Cosimo; Libralato, Simone; Melaku Canu, Donata; Cossarini, Gianpiero; Giorgi, FIlippo

    2014-05-01

    Effects of IPCC climate change scenarios on a temperate coastal lagoon ecosystem, the lagoon of Venice (Italy), along with goods and services provided by this ecosystem are assessed though a downscaling experiment linking regional atmospheric model to local hydrodynamical, biogeochemical, ecosystem and target species population dynamic models. Simulations of spatio-temporal dynamics of biogeochemical properties provide evidence of significant impacts of climate change. Under both the A2 and B2 scenarios we observe a modification of the seasonal precipitation pattern which affects the timing of nutrient inputs to the lagoon and causes a reduction in plankton productivity. Simulations indicate that this changes propagate -along the food web through a multi-path cascade and that overall ecosystem good and services resulting from climatic scenarios significantly differ depending on the dynamics of the extremes (yearly maximum) values. Changes in the nutrient load maximum discharge (scenario A2) favors primary producers that have higher maximum values (peaks) that propagate up in the food web to groups directly related to the grazing food chain. Conversely, small modifications of the timing of the nutrient peaks (as in B2 scenario) implies less exploitation of nutrients by primary producers due to temperature limitations and the enhancement of the groups in the food web that are more related to detritus-based food chain. This implies significant differences on on fisheries landings in future scenarios, even assuming same fishing effort.. Ecological indicators highlighted also divergent changes in food web biodiversity and complexity in the two future scenarios. Simulations also shows that economic activity directly related to target species, such as clam aquaculture activity will suffer , and point to the need for management policies to mitigate the adverse effects of climate change.

  7. Ecosystem Management: Synthesis and Findings

    DTIC Science & Technology

    2009-04-29

    influences water quality through its influence on hydrology and sediment movement. Hydrologic pattern, particularly the rapid increase of stream flow volume...ERDC SR-09-2 v Fragmentation and off-post development around the boundary of Fort Benning (e.g., northern boundary) may lead to isolation of the...baseline information, the program developed a means or approach for allowing rapid monitoring-based management response to sudden changes in near-future

  8. Seasonal Trends in Airborne Fungal Spores in Coastal California Ecosystems

    NASA Astrophysics Data System (ADS)

    Morfin, J.; Crandall, S. G.; Gilbert, G. S.

    2014-12-01

    Airborne fungal spores cause disease in plants and animals and may trigger respiratory illnesses in humans. In terrestrial systems, fungal sporulation, germination, and persistence are strongly regulated by local meteorological conditions. However, few studies investigate how microclimate affects the spatio-temporal dynamics of airborne spores. We measured fungal aerospora abundance and microclimate at varying spatial and time scales in coastal California in three habitat-types: coast redwood forest, mixed-evergreen forest, and maritime chaparral. We asked: 1) is there a difference in total airborne spore concentration between habitats, 2) when do we see peak spore counts, and 3) do spore densities correlate with microclimate conditions? Fungal spores were caught from the air with a volumetric vacuum air spore trap during the wet season (January - March) in 2013 and 2014, as well as monthly in 2014. Initial results suggest that mixed-evergreen forests exhibit the highest amounts of spore abundance in both years compared to the other habitats. This may be due to either a higher diversity of host plants in mixed-evergreen forests or a rich leaf litter layer that may harbor a greater abundance of saprotrophic fungi. Based on pilot data, we predict that temperature and to a lesser degree, relative humidity, will be important microclimate predictors for high spore densities. These data are important for understanding when and under what weather conditions we can expect to see high levels of fungal spores in the air; this can be useful information for managers who are interested in treating diseased plants with fungicides.

  9. Update on Washington initiatives on ecosystem management

    SciTech Connect

    Kostka, D.

    1995-12-01

    A biological {open_quotes}revolution{close_quotes} is in progress. Due to initiatives of the Clinton-Gore administration, biologists across the nation are trying to define and use a new concept called ecosystem management. {open_quotes}Ecosystem management{close_quotes} was born in the frustration of trying to deal with the spotted owl controversy in the Northwest. Biologists could not agree on what should be done. And the biologists and economists rarely got together to try to solve problems. Some astute individuals realized that to achieve a sustainable development, ecosystems would have to be managed on a much larger scale than merely small plots of lands. And people from many different backgrounds and disciplines would need to come together to find solutions. This paper will present the views of a Washington insider who has been a player (although too frequently a minor league player!) in administration initiatives to infuse ecosystem management principles and practices in our national conscience. Today, federal agency staff talk to those in other offices within their own agency. Federal agency staff also work on joint projects across federal agencies. In addition, state government, nonprofits, universities, interested individuals, and tribal governments are becoming involved. This is the biological {open_quotes}revolution{close_quotes} that is in progress. The emphasis is shifting from looking at the life history and problems of single species to a much broader approach of examining many species, including humans. The author will present a report on results of the ecosystem management initiative in the last year and point out some of the hurdles still ahead.

  10. Responses of coastal ecosystems to environmental variability in emerging countries from the Americas

    NASA Astrophysics Data System (ADS)

    Muniz, Pablo; Calliari, Danilo; Giménez, Luis; Defeo, Omar

    2015-12-01

    Coastal ecosystems supply critical ecological services and benefits to human society (Barbier et al., 2011). Nearly 38% of the global monetary value of annual ecosystem services arises from estuaries, seagrass and algal beds, coral reefs and shelf ecosystems (Costanza et al., 1997). However, these ecosystems are being increasingly affected by multiple drivers acting simultaneously at several spatial and temporal scales (Lotze et al., 2006; Hoegh-Guldberg and Bruno, 2010). Climate change (temperature increase, sea level rise, ocean acidification), human activities (e.g. land use/cover change, pollution, overexploitation, translocation of species), and extreme natural events (storms, floods, droughts) are the most important drivers degrading the resilience of coastal systems. Such factors operate on individual level processes, leading organisms away from their niches (Steinberg, 2013) or modifying rates and phenology (Giménez, 2011; Mackas et al., 2012, Deutsch et al., 2015). All of these influence ecosystem level processes, causing changes in species composition, diversity losses and deterioration of ecosystem functions (Worm et al., 2006; Defeo et al., 2009; Doney et al., 2011; Dornelas et al., 2014). The rate of change in habitats, species distributions and whole ecosystems has accelerated over the past decades as shown, for example, in the increase in the frequency of events of coastal hypoxia (Diaz and Rosenberg, 2008,Vaquer-Sunyer and Duarte, 2008), extensive translocation of species by global shipping (Seebens et al., 2013), and in ecosystem regime shifts (Möllmann et al., 2015 and references therein). Some coastal areas have been transformed into novel ecosystems with physical and biological characteristics outside their natural range of variability (Cloern et al., 2015) while others are likely to become sink areas, limiting the migration of marine species away from warming habitats (Burrows et al., 2014).

  11. Management Strategy Evaluation Applied to Coral Reef Ecosystems in Support of Ecosystem-Based Management

    PubMed Central

    Weijerman, Mariska; Fulton, Elizabeth A.; Brainard, Russell E.

    2016-01-01

    Ecosystem modelling is increasingly used to explore ecosystem-level effects of changing environmental conditions and management actions. For coral reefs there has been increasing interest in recent decades in the use of ecosystem models for evaluating the effects of fishing and the efficacy of marine protected areas. However, ecosystem models that integrate physical forcings, biogeochemical and ecological dynamics, and human induced perturbations are still underdeveloped. We applied an ecosystem model (Atlantis) to the coral reef ecosystem of Guam using a suite of management scenarios prioritized in consultation with local resource managers to review the effects of each scenario on performance measures related to the ecosystem, the reef-fish fishery (e.g., fish landings) and coral habitat. Comparing tradeoffs across the selected scenarios showed that each scenario performed best for at least one of the selected performance indicators. The integrated ‘full regulation’ scenario outperformed other scenarios with four out of the six performance metrics at the cost of reef-fish landings. This model application quantifies the socio-ecological costs and benefits of alternative management scenarios. When the effects of climate change were taken into account, several scenarios performed equally well, but none prevented a collapse in coral biomass over the next few decades assuming a business-as-usual greenhouse gas emissions scenario. PMID:27023183

  12. Management Strategy Evaluation Applied to Coral Reef Ecosystems in Support of Ecosystem-Based Management.

    PubMed

    Weijerman, Mariska; Fulton, Elizabeth A; Brainard, Russell E

    2016-01-01

    Ecosystem modelling is increasingly used to explore ecosystem-level effects of changing environmental conditions and management actions. For coral reefs there has been increasing interest in recent decades in the use of ecosystem models for evaluating the effects of fishing and the efficacy of marine protected areas. However, ecosystem models that integrate physical forcings, biogeochemical and ecological dynamics, and human induced perturbations are still underdeveloped. We applied an ecosystem model (Atlantis) to the coral reef ecosystem of Guam using a suite of management scenarios prioritized in consultation with local resource managers to review the effects of each scenario on performance measures related to the ecosystem, the reef-fish fishery (e.g., fish landings) and coral habitat. Comparing tradeoffs across the selected scenarios showed that each scenario performed best for at least one of the selected performance indicators. The integrated 'full regulation' scenario outperformed other scenarios with four out of the six performance metrics at the cost of reef-fish landings. This model application quantifies the socio-ecological costs and benefits of alternative management scenarios. When the effects of climate change were taken into account, several scenarios performed equally well, but none prevented a collapse in coral biomass over the next few decades assuming a business-as-usual greenhouse gas emissions scenario.

  13. Capturing ecosystem services, stakeholders' preferences and trade-offs in coastal aquaculture decisions: a Bayesian belief network application.

    PubMed

    Schmitt, Laetitia Helene Marie; Brugere, Cecile

    2013-01-01

    Aquaculture activities are embedded in complex social-ecological systems. However, aquaculture development decisions have tended to be driven by revenue generation, failing to account for interactions with the environment and the full value of the benefits derived from services provided by local ecosystems. Trade-offs resulting from changes in ecosystem services provision and associated impacts on livelihoods are also often overlooked. This paper proposes an innovative application of Bayesian belief networks - influence diagrams - as a decision support system for mediating trade-offs arising from the development of shrimp aquaculture in Thailand. Senior experts were consulted (n = 12) and primary farm data on the economics of shrimp farming (n = 20) were collected alongside secondary information on ecosystem services, in order to construct and populate the network. Trade-offs were quantitatively assessed through the generation of a probabilistic impact matrix. This matrix captures nonlinearity and uncertainty and describes the relative performance and impacts of shrimp farming management scenarios on local livelihoods. It also incorporates export revenues and provision and value of ecosystem services such as coastal protection and biodiversity. This research shows that Bayesian belief modeling can support complex decision-making on pathways for sustainable coastal aquaculture development and thus contributes to the debate on the role of aquaculture in social-ecological resilience and economic development.

  14. Capturing Ecosystem Services, Stakeholders' Preferences and Trade-Offs in Coastal Aquaculture Decisions: A Bayesian Belief Network Application

    PubMed Central

    Schmitt, Laetitia Helene Marie; Brugere, Cecile

    2013-01-01

    Aquaculture activities are embedded in complex social-ecological systems. However, aquaculture development decisions have tended to be driven by revenue generation, failing to account for interactions with the environment and the full value of the benefits derived from services provided by local ecosystems. Trade-offs resulting from changes in ecosystem services provision and associated impacts on livelihoods are also often overlooked. This paper proposes an innovative application of Bayesian belief networks - influence diagrams - as a decision support system for mediating trade-offs arising from the development of shrimp aquaculture in Thailand. Senior experts were consulted (n = 12) and primary farm data on the economics of shrimp farming (n = 20) were collected alongside secondary information on ecosystem services, in order to construct and populate the network. Trade-offs were quantitatively assessed through the generation of a probabilistic impact matrix. This matrix captures nonlinearity and uncertainty and describes the relative performance and impacts of shrimp farming management scenarios on local livelihoods. It also incorporates export revenues and provision and value of ecosystem services such as coastal protection and biodiversity. This research shows that Bayesian belief modeling can support complex decision-making on pathways for sustainable coastal aquaculture development and thus contributes to the debate on the role of aquaculture in social-ecological resilience and economic development. PMID:24155876

  15. Ecosystem-based coastal defence in the face of global change.

    PubMed

    Temmerman, Stijn; Meire, Patrick; Bouma, Tjeerd J; Herman, Peter M J; Ysebaert, Tom; De Vriend, Huib J

    2013-12-05

    The risk of flood disasters is increasing for many coastal societies owing to global and regional changes in climate conditions, sea-level rise, land subsidence and sediment supply. At the same time, in many locations, conventional coastal engineering solutions such as sea walls are increasingly challenged by these changes and their maintenance may become unsustainable. We argue that flood protection by ecosystem creation and restoration can provide a more sustainable, cost-effective and ecologically sound alternative to conventional coastal engineering and that, in suitable locations, it should be implemented globally and on a large scale.

  16. Water quality assessment in the Mexican Caribbean: Impacts on the coastal ecosystem

    NASA Astrophysics Data System (ADS)

    Hernández-Terrones, Laura M.; Null, Kimberly A.; Ortega-Camacho, Daniela; Paytan, Adina

    2015-07-01

    Coastal zones are dominated by economically important ecosystems, and excessive urban, industrial, agricultural, and tourism activities can lead to rapid degradation of those habitats and resources. Groundwater in the Eastern Yucatan Peninsula coastal aquifer discharges directly into the coastal ocean affecting the coral reefs, which are part of the Mesoamerican Coral Reef System. The composition and impacts of groundwater were studied at different coastal environments around Akumal (SE Yucatan Peninsula). Radium isotopes and salinity were used to quantify fresh groundwater and recirculated seawater contributions to the coastal zone. Excess Ra distribution suggests spatially variable discharge rates of submarine groundwater. High NO3- levels and high coliform bacteria densities indicate that groundwater is polluted at some sites. Dissolved phosphorous content is elevated in the winter and during the high tourism season, likely released from untreated sewage discharge and from aquifer sediments under reducing conditions.

  17. Coastal Ecosystems of Latin America and the Caribbean. Objectives, Priorities and Activities of Unesco's COMAR Project for the Latin American and Caribbean Region, Caracas, Venezuela, 15-19 November 1982. Unesco Reports in Marine Science 24.

    ERIC Educational Resources Information Center

    United Nations Educational, Scientific, and Cultural Organization, Paris (France).

    To further the knowledge of the resources of coastal ecosystems and the general lines along which they function, Unesco implemented a "Major Interregional Project on Research and Training Leading to the Integrated Management of Coastal Systems" (COMAR). In addition, a proposed regional cooperative program called the "Regional…

  18. Past and Future Ecosystem Change in the Coastal Zone

    NASA Astrophysics Data System (ADS)

    Gell, P.

    2017-02-01

    The coastal zone is in a constant state of flux. Long term records of change attest to high amplitude sea level changes. Relative stability though the Late Holocene has allowed for the evolution of barrier dune systems, estuaries and coastal lakes with associated plant and faunal associations. This evolution has been interspersed with changes in the balance between climate driven changes in outflow from catchments. These interactions have been considerably disturbed through the impacts of industrialised people who have diverted and consumed water and invested in infrastructure that has impacted on river flows and the tidal prism in estuaries. This has impacted their provisioning services to humans. It has also impacted their regulating services in that development along the coastline has impacted on the resilience of the littoral zone to absorb natural climate extremes. Looking from the past we can see the pathway to the future and more easily recognise the steps needed to avoid further coastal degradation. This will increasingly need to accommodate the impacts of future climate trends, increased climate extremes and rising seas. Coastal societies would do well to identify their long term pathway to adaptation to the challenges that lie ahead and plan to invest accordingly.

  19. Groundwater-ocean interaction and its effects on coastal ecological processes - are there groundwater-dependant ecosystems in the coastal zone?

    NASA Astrophysics Data System (ADS)

    Stieglitz, T. C.

    2013-05-01

    Hydrological land-ocean connectivity is an important driver of coastal ecosystems. Rivers are obvious and visible pathways for terrestrial runoff. The critical role of surface water discharge from rivers to coastal ecosystems has been well documented. Hidden from view, 'downstream' effects of coastal (supra-tidal, intertidal and submarine) groundwater discharge are far less well understood. Whilst hydrological and geochemical processes associated with coastal groundwater discharge have received an increasing amount of scientific attention over the past decade or so, the effects of groundwater flow on productivity, composition, diversity and functioning of coastal ecosystems along the world's shorelines have received little attention to date. Coastal groundwater discharge includes both terrestrial (fresh) groundwater fluxes and the recirculation of seawater through sediments, analogous to hyporheic flow in rivers. I will present an overview over relevant coastal hydrological processes, and will illustrate their ecological effects on examples from diverse tropical coastal ecosystems, e.g. (1) perennial fresh groundwater discharge from coastal sand dune systems permitting growth of freshwater-dependent vegetation in the intertidal zone of the Great Barrier Reef (Australia), (2) recirculation of seawater through mangrove forest floors directly affecting tree health and providing a pathway for carbon export from these ecosystems, (3) the local hydrology of groundwater-fed coastal inlets on Mexico's Yucatan peninsula affecting the movement behaviour of and habitat use by the queen conch Strombus gigas, an economically important species in the Caribbean region. These examples for hydrological-ecological coupling in the coastal zone invite the question if we should not consider these coastal ecosystems to be groundwater-dependent, in analogy to groundwater-dependency in freshwater aquatic systems.

  20. Decision-making for ecosystem-based management: evaluating options for a krill fishery with an ecosystem dynamics model.

    PubMed

    Watters, G M; Hill, S L; Hinke, J T; Matthews, J; Reid, K

    2013-06-01

    Decision-makers charged with implementing ecosystem-based management (EBM) rely on scientists to predict the consequences of decisions relating to multiple, potentially conflicting, objectives. Such predictions are inherently uncertain, and this can be a barrier to decision-making. The Convention on the Conservation of Antarctic Marine Living Resources requires managers of Southern Ocean fisheries to sustain the productivity of target stocks, the health and resilience of the ecosystem, and the performance of the fisheries themselves. The managers of the Antarctic krill fishery in the Scotia Sea and southern Drake Passage have requested advice on candidate management measures consisting of a regional catch limit and options for subdividing this among smaller areas. We developed a spatially resolved model that simulates krill-predator-fishery interactions and reproduces a plausible representation of past dynamics. We worked with experts and stakeholders to identify (1) key uncertainties affecting our ability to predict ecosystem state; (2) illustrative reference points that represent the management objectives; and (3) a clear and simple way of conveying our results to decision-makers. We developed four scenarios that bracket the key uncertainties and evaluated candidate management measures in each of these scenarios using multiple stochastic simulations. The model emphasizes uncertainty and simulates multiple ecosystem components relating to diverse objectives. We summarize the potentially complex results as estimates of the risk that each illustrative objective will not be achieved (i.e., of the state being outside the range specified by the reference point). This approach allows direct comparisons between objectives. It also demonstrates that a candid appraisal of uncertainty, in the form of risk estimates, can be an aid, rather than a barrier, to understanding and using ecosystem model predictions. Management measures that reduce coastal fishing, relative to

  1. Integrated Ecosystem Assessment: Lake Ontario Water Management

    PubMed Central

    Bain, Mark B.; Singkran, Nuanchan; Mills, Katherine E.

    2008-01-01

    Background Ecosystem management requires organizing, synthesizing, and projecting information at a large scale while simultaneously addressing public interests, dynamic ecological properties, and a continuum of physicochemical conditions. We compared the impacts of seven water level management plans for Lake Ontario on a set of environmental attributes of public relevance. Methodology and Findings Our assessment method was developed with a set of established impact assessment tools (checklists, classifications, matrices, simulations, representative taxa, and performance relations) and the concept of archetypal geomorphic shoreline classes. We considered each environmental attribute and shoreline class in its typical and essential form and predicted how water level change would interact with defining properties. The analysis indicated that about half the shoreline of Lake Ontario is potentially sensitive to water level change with a small portion being highly sensitive. The current water management plan may be best for maintaining the environmental resources. In contrast, a natural water regime plan designed for greatest environmental benefits most often had adverse impacts, impacted most shoreline classes, and the largest portion of the lake coast. Plans that balanced multiple objectives and avoided hydrologic extremes were found to be similar relative to the environment, low on adverse impacts, and had many minor impacts across many shoreline classes. Significance The Lake Ontario ecosystem assessment provided information that can inform decisions about water management and the environment. No approach and set of methods will perfectly and unarguably accomplish integrated ecosystem assessment. For managing water levels in Lake Ontario, we found that there are no uniformly good and bad options for environmental conservation. The scientific challenge was selecting a set of tools and practices to present broad, relevant, unbiased, and accessible information to guide

  2. ECOLOGICAL RESPONSES TO POLLUTION ABATEMENT: A FRAMEWORK FOR MEASUREMENT AND ASSESSMENT FOR COASTAL ECOSYSTEMS

    EPA Science Inventory

    Ecological Responses to Pollution Abatement: A Framework for Measurement and Assessment for Coastal Ecosystems (Abstract). To be presented at the 16th Biennial Conference of the Estuarine Research Foundation, ERF 2001: An Estuarine Odyssey, 4-8 November 2001, St. Pete Beach, FL. ...

  3. Using landscape limnology to classify freshwater ecosystems for multi-ecosystem management and conservation

    USGS Publications Warehouse

    Soranno, Patricia A.; Cheruvelil, Kendra Spence; Webster, Katherine E.; Bremigan, Mary T.; Wagner, Tyler; Stow, Craig A.

    2010-01-01

    Governmental entities are responsible for managing and conserving large numbers of lake, river, and wetland ecosystems that can be addressed only rarely on a case-by-case basis. We present a system for predictive classification modeling, grounded in the theoretical foundation of landscape limnology, that creates a tractable number of ecosystem classes to which management actions may be tailored. We demonstrate our system by applying two types of predictive classification modeling approaches to develop nutrient criteria for eutrophication management in 1998 north temperate lakes. Our predictive classification system promotes the effective management of multiple ecosystems across broad geographic scales by explicitly connecting management and conservation goals to the classification modeling approach, considering multiple spatial scales as drivers of ecosystem dynamics, and acknowledging the hierarchical structure of freshwater ecosystems. Such a system is critical for adaptive management of complex mosaics of freshwater ecosystems and for balancing competing needs for ecosystem services in a changing world.

  4. Who's Minding the Shore? A Citizens' Guide to Coastal Management.

    ERIC Educational Resources Information Center

    Beers, Roger; And Others

    This citizen's guide is designed to illustrate the ways that citizens can participate in their state's development of a coastal management program. The Provisions of the Coastal Zone Management Act are discussed and the requirements of an effective management program are considered. Some background information outlining the ecological factors…

  5. Insect pest management in forest ecosystems

    NASA Astrophysics Data System (ADS)

    Dahlsten, Donald L.; Rowney, David L.

    1983-01-01

    Understanding the role of insects in forest ecosystems is vital to the development of environmentally and economically sound pest management strategies in forestry Most of the research on forest insects has been confined to phytophagous species associated with economically important tree species The roles of most other insects in forest environments have generally been ignored, including the natural enemies and associates of phytophagous species identified as being important In the past few years several investigations have begun to reevaluate the role of phytophagous species responsible for perturbation in forest ecosystems, and it appears that these species may be playing an important role in the primary productivity of those ecosystems Also, there is an increasing awareness that forest pest managers have been treating the symptoms and not the causes of the problems in the forest Many insect problems are associated with poor sites or sites where trees are growing poorly because of crowding As a result, there is considerable emphasis on the hazard rating of stands of trees for their susceptibility to various phytophagous insects The next step is to manipulate forest stands to make them less susceptible to forest pest complexes A thinning study in California is used as an example and shows that tree mortality in ponderosa pine ( Pinus ponderosa) attributable to the western pine beetle ( Dendroctonus brevicomis) can be reduced by commercial thinning to reduce stocking

  6. Probability Models for the Distribution of Copepods in Different Coastal Ecosystems Along the Straits of Malacca

    NASA Astrophysics Data System (ADS)

    Matias-Peralta, Hazel Monica; Ghodsi, Alireza; Shitan, Mahendran; Yusoff, Fatimah Md.

    Copepods are the most abundant microcrustaceans in the marine waters and are the major food resource for many commercial fish species. In addition, changes in the distribution and population composition of copepods may also serve as an indicator of global climate changes. Therefore, it is important to model the copepod distribution in different ecosystems. Copepod samples were collected from three different ecosystems (seagrass area, cage aquaculture area and coastal waters off shrimp aquaculture farm) along the coastal waters of the Malacca Straits over a one year period. In this study the major statistical analysis consisted of fitting different probability models. This paper highlights the fitting of probability distributions and discusses the adequateness of the fitted models. The usefulness of these fitted models would enable one to make probability statements about the distribution of copepods in three different ecosystems.

  7. Human activities and climate variability drive fast-paced change across the world's estuarine-coastal ecosystems.

    PubMed

    Cloern, James E; Abreu, Paulo C; Carstensen, Jacob; Chauvaud, Laurent; Elmgren, Ragnar; Grall, Jacques; Greening, Holly; Johansson, John Olov Roger; Kahru, Mati; Sherwood, Edward T; Xu, Jie; Yin, Kedong

    2016-02-01

    Time series of environmental measurements are essential for detecting, measuring and understanding changes in the Earth system and its biological communities. Observational series have accumulated over the past 2-5 decades from measurements across the world's estuaries, bays, lagoons, inland seas and shelf waters influenced by runoff. We synthesize information contained in these time series to develop a global view of changes occurring in marine systems influenced by connectivity to land. Our review is organized around four themes: (i) human activities as drivers of change; (ii) variability of the climate system as a driver of change; (iii) successes, disappointments and challenges of managing change at the sea-land interface; and (iv) discoveries made from observations over time. Multidecadal time series reveal that many of the world's estuarine-coastal ecosystems are in a continuing state of change, and the pace of change is faster than we could have imagined a decade ago. Some have been transformed into novel ecosystems with habitats, biogeochemistry and biological communities outside the natural range of variability. Change takes many forms including linear and nonlinear trends, abrupt state changes and oscillations. The challenge of managing change is daunting in the coastal zone where diverse human pressures are concentrated and intersect with different responses to climate variability over land and over ocean basins. The pace of change in estuarine-coastal ecosystems will likely accelerate as the human population and economies continue to grow and as global climate change accelerates. Wise stewardship of the resources upon which we depend is critically dependent upon a continuing flow of information from observations to measure, understand and anticipate future changes along the world's coastlines.

  8. Human activities and climate variability drive fast-paced change across the world's estuarine-coastal ecosystems

    USGS Publications Warehouse

    Cloern, James E.; Abreu, Paulo C.; Carstensen, Jacob; Chauvaud, Laurent; Elmgren, Ragnar; Grall, Jacques; Greening, Holly; Johansson, John O.R.; Kahru, Mati; Sherwood, Edward T.; Xu, Jie; Yin, Kedong

    2016-01-01

    Time series of environmental measurements are essential for detecting, measuring and understanding changes in the Earth system and its biological communities. Observational series have accumulated over the past 2–5 decades from measurements across the world's estuaries, bays, lagoons, inland seas and shelf waters influenced by runoff. We synthesize information contained in these time series to develop a global view of changes occurring in marine systems influenced by connectivity to land. Our review is organized around four themes: (i) human activities as drivers of change; (ii) variability of the climate system as a driver of change; (iii) successes, disappointments and challenges of managing change at the sea-land interface; and (iv) discoveries made from observations over time. Multidecadal time series reveal that many of the world's estuarine–coastal ecosystems are in a continuing state of change, and the pace of change is faster than we could have imagined a decade ago. Some have been transformed into novel ecosystems with habitats, biogeochemistry and biological communities outside the natural range of variability. Change takes many forms including linear and nonlinear trends, abrupt state changes and oscillations. The challenge of managing change is daunting in the coastal zone where diverse human pressures are concentrated and intersect with different responses to climate variability over land and over ocean basins. The pace of change in estuarine–coastal ecosystems will likely accelerate as the human population and economies continue to grow and as global climate change accelerates. Wise stewardship of the resources upon which we depend is critically dependent upon a continuing flow of information from observations to measure, understand and anticipate future changes along the world's coastlines.

  9. Location, Location, Location: Management Uses of Marine Benthic Biogeographical Information in Coastal Waters of the Northeastern USA

    EPA Science Inventory

    Ecosystem-based management practices, along with coastal and marine spatial planning, have been adopted as foundational principles for ocean management in the United States. The success of these practices depends in large measure on a solid foundation of biogeographical informati...

  10. Government conservation policies on Mexican coastal areas: is "top-down" management working?

    PubMed

    Nava, Héctor; Ramírez-Herrera, M Teresa

    2011-12-01

    Marine and terrestrial ecosystems are declining globally due to environmental degradation and poorly planned resource use. Traditionally, local government agencies have been responsible of the management of natural reserves to preserve biodiversity. Nonetheless, much of these approaches have failed, suggesting the development of more integrative strategies. In order to discuss the importance of a holistic approach in conservation initiatives, coastal and underwater landscape value and biological/environmental indicators of coral reef degradation were assessed using the study case of Zihuatanejo, Guerrero coastal area. This area shelters representative coral reef structures of the Eastern Pacific coast and its terrestrial biodiversity and archaeology enhance the high value of its coastal area. This study explored the landscape value of both terrestrial and marine ecosystems using the geomorphosite approach in two sites on the Zihuatanejo coastal area: Caleta de Chon and Manzanillo Beach. Sedimentation rate, water transparency, chlorophyll and total suspended solids were recorded underwater in each site for environmental characterization. 50 photo-quadrants on five transects were surveyed between 3-4m depth to record coverage (%) of living corals, dead corals, algae, sand and rocks. The conservation status of coral reefs was assessed by the coral mortality index (MI). Landscape values showed that both terrestrial and marine ecosystems had important scientific and aesthetic values, being Manzanillo Beach the site with the highest potential for conservation initiatives (TtV = 14.2). However, coral reefs face elevated sedimentation rates (up to 1.16 kg/m2d) and low water transparency (less of 5m) generated by coastal land use changes that have increased soil erosion in the adjacent coastal area. High coverage of dead corals (23.6%) and algae (up to 29%) confirm the low values in conservation status of coral reefs (MI = 0.5), reflecting a poorly-planned management

  11. Ecosystem services provided by a complex coastal region: challenges of classification and mapping

    NASA Astrophysics Data System (ADS)

    Sousa, Lisa P.; Sousa, Ana I.; Alves, Fátima L.; Lillebø, Ana I.

    2016-03-01

    A variety of ecosystem services classification systems and mapping approaches are available in the scientific and technical literature, which needs to be selected and adapted when applied to complex territories (e.g. in the interface between water and land, estuary and sea). This paper provides a framework for addressing ecosystem services in complex coastal regions. The roadmap comprises the definition of the exact geographic boundaries of the study area; the use of CICES (Common International Classification of Ecosystem Services) for ecosystem services identification and classification; and the definition of qualitative indicators that will serve as basis to map the ecosystem services. Due to its complexity, the Ria de Aveiro coastal region was selected as case study, presenting an opportunity to explore the application of such approaches at a regional scale. The main challenges of implementing the proposed roadmap, together with its advantages are discussed in this research. The results highlight the importance of considering both the connectivity of natural systems and the complexity of the governance framework; the flexibility and robustness, but also the challenges when applying CICES at regional scale; and the challenges regarding ecosystem services mapping.

  12. Ecosystem services provided by a complex coastal region: challenges of classification and mapping

    PubMed Central

    Sousa, Lisa P.; Sousa, Ana I.; Alves, Fátima L.; Lillebø, Ana I.

    2016-01-01

    A variety of ecosystem services classification systems and mapping approaches are available in the scientific and technical literature, which needs to be selected and adapted when applied to complex territories (e.g. in the interface between water and land, estuary and sea). This paper provides a framework for addressing ecosystem services in complex coastal regions. The roadmap comprises the definition of the exact geographic boundaries of the study area; the use of CICES (Common International Classification of Ecosystem Services) for ecosystem services identification and classification; and the definition of qualitative indicators that will serve as basis to map the ecosystem services. Due to its complexity, the Ria de Aveiro coastal region was selected as case study, presenting an opportunity to explore the application of such approaches at a regional scale. The main challenges of implementing the proposed roadmap, together with its advantages are discussed in this research. The results highlight the importance of considering both the connectivity of natural systems and the complexity of the governance framework; the flexibility and robustness, but also the challenges when applying CICES at regional scale; and the challenges regarding ecosystem services mapping. PMID:26964892

  13. Ecosystem services provided by a complex coastal region: challenges of classification and mapping.

    PubMed

    Sousa, Lisa P; Sousa, Ana I; Alves, Fátima L; Lillebø, Ana I

    2016-03-11

    A variety of ecosystem services classification systems and mapping approaches are available in the scientific and technical literature, which needs to be selected and adapted when applied to complex territories (e.g. in the interface between water and land, estuary and sea). This paper provides a framework for addressing ecosystem services in complex coastal regions. The roadmap comprises the definition of the exact geographic boundaries of the study area; the use of CICES (Common International Classification of Ecosystem Services) for ecosystem services identification and classification; and the definition of qualitative indicators that will serve as basis to map the ecosystem services. Due to its complexity, the Ria de Aveiro coastal region was selected as case study, presenting an opportunity to explore the application of such approaches at a regional scale. The main challenges of implementing the proposed roadmap, together with its advantages are discussed in this research. The results highlight the importance of considering both the connectivity of natural systems and the complexity of the governance framework; the flexibility and robustness, but also the challenges when applying CICES at regional scale; and the challenges regarding ecosystem services mapping.

  14. Knowledge Management in Preserving Ecosystems: The Case of Seoul

    ERIC Educational Resources Information Center

    Lee, Jeongseok

    2009-01-01

    This study explores the utility of employing knowledge management as a framework for understanding how public managers perform ecosystem management. It applies the grounded theory method to build a model. The model is generated by applying the concept of knowledge process to an investigation of how the urban ecosystem is publicly managed by civil…

  15. U.S. Geological Survey (USGS), Western Region: Coastal ecosystem responses to influences from land and sea, Coastal and Ocean Science

    USGS Publications Warehouse

    Bodkin, James L.

    2010-01-01

    Sea otters and the nearshore ecosystems they inhabit-from highly urbanized California to relatively pristine Alaska-are the focus of a new multidisciplinary study by scientists with the U.S. Geological Survey (USGS) and a suite of international, academic and government collaborators. The Coastal Ecosystem Responses to Influences from Land and Sea project will investigate the many interacting variables that influence the health of coastal ecosystems along the Northeast Pacific shore. These ecosystems face unprecedented challenges, with threats arising from the adjacent oceans and lands. From the ocean, challenges include acidification, sea level rise, and warming. From the land, challenges include elevated biological, geological and chemical pollutants associated with burgeoning human populations along coastlines. The implications of these challenges for biological systems are only beginning to be explored. Comparing sea otter population status indicators from around the northeastern Pacific Rim, will begin the process of defining factors of coastal ecosystem health in this broad region.

  16. Impacts on the deep-sea ecosystem by a severe coastal storm.

    PubMed

    Sanchez-Vidal, Anna; Canals, Miquel; Calafat, Antoni M; Lastras, Galderic; Pedrosa-Pàmies, Rut; Menéndez, Melisa; Medina, Raúl; Company, Joan B; Hereu, Bernat; Romero, Javier; Alcoverro, Teresa

    2012-01-01

    Major coastal storms, associated with strong winds, high waves and intensified currents, and occasionally with heavy rains and flash floods, are mostly known because of the serious damage they can cause along the shoreline and the threats they pose to navigation. However, there is a profound lack of knowledge on the deep-sea impacts of severe coastal storms. Concurrent measurements of key parameters along the coast and in the deep-sea are extremely rare. Here we present a unique data set showing how one of the most extreme coastal storms of the last decades lashing the Western Mediterranean Sea rapidly impacted the deep-sea ecosystem. The storm peaked the 26(th) of December 2008 leading to the remobilization of a shallow-water reservoir of marine organic carbon associated with fine particles and resulting in its redistribution across the deep basin. The storm also initiated the movement of large amounts of coarse shelf sediment, which abraded and buried benthic communities. Our findings demonstrate, first, that severe coastal storms are highly efficient in transporting organic carbon from shallow water to deep water, thus contributing to its sequestration and, second, that natural, intermittent atmospheric drivers sensitive to global climate change have the potential to tremendously impact the largest and least known ecosystem on Earth, the deep-sea ecosystem.

  17. Impacts on the Deep-Sea Ecosystem by a Severe Coastal Storm

    PubMed Central

    Sanchez-Vidal, Anna; Canals, Miquel; Calafat, Antoni M.; Lastras, Galderic; Pedrosa-Pàmies, Rut; Menéndez, Melisa; Medina, Raúl; Company, Joan B.; Hereu, Bernat; Romero, Javier; Alcoverro, Teresa

    2012-01-01

    Major coastal storms, associated with strong winds, high waves and intensified currents, and occasionally with heavy rains and flash floods, are mostly known because of the serious damage they can cause along the shoreline and the threats they pose to navigation. However, there is a profound lack of knowledge on the deep-sea impacts of severe coastal storms. Concurrent measurements of key parameters along the coast and in the deep-sea are extremely rare. Here we present a unique data set showing how one of the most extreme coastal storms of the last decades lashing the Western Mediterranean Sea rapidly impacted the deep-sea ecosystem. The storm peaked the 26th of December 2008 leading to the remobilization of a shallow-water reservoir of marine organic carbon associated with fine particles and resulting in its redistribution across the deep basin. The storm also initiated the movement of large amounts of coarse shelf sediment, which abraded and buried benthic communities. Our findings demonstrate, first, that severe coastal storms are highly efficient in transporting organic carbon from shallow water to deep water, thus contributing to its sequestration and, second, that natural, intermittent atmospheric drivers sensitive to global climate change have the potential to tremendously impact the largest and least known ecosystem on Earth, the deep-sea ecosystem. PMID:22295084

  18. Balancing Tradeoffs in Ecosystem Functions and Services in Grassland Management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Managed grasslands are increasingly expected to provide ecosystem services beyond the traditional provision of food, feed, and fiber. Grassland systems can provide ecosystem services such as soil conservation, water quality protection, wildlife conservation, pleasing landscapes, soil carbon storage,...

  19. Developing a NIDIS Drought Early Warning Information System for Coastal Ecosystems in the Carolinas

    NASA Astrophysics Data System (ADS)

    Darby, L. S.; Dow, K.; Lackstrom, K.; Brennan, A.; Tufford, D. L.; Conrads, P.; Pulwarty, R. S.; Webb, R. S.; Verdin, J. P.; Mcnutt, C. A.; Deheza, V.

    2013-12-01

    The National Integrated Drought Information System (NIDIS) is in the process of developing drought early warning systems in areas of the U.S. where the coordination of drought information is critically needed. These regional drought early warning systems will become the backbone of a national drought early warning information system. Plans for the first drought early warning system started in the fall of 2008 in the Upper Colorado River Basin (UCRB), with an initial focus on the water supply in the head waters region of the Colorado River and the impacts of changes in the water supply on the UCRB. Since the establishment of the UCRB drought early warning system, other regional programs have begun in the Apalachicola-Chattahoochee-Flint River Basin, four regions in the state of California, the Southern Plains, and the Four Corners region. (At this time these are considered pilot drought early warning programs, not full-fledged drought early warning systems such as the UCRB.) Activities in each of these regions are tailored to the needs of stakeholders, and all incorporate hydrometeorological predictions. However, in all of these areas NIDIS has not focused on the specific needs of coastal ecosystems during times of drought. Over the past year, NIDIS has started a pilot drought early warning system that addresses drought in the coastal ecosystems of North and South Carolina. This pilot is being developed in partnership with the Carolinas Integrated Sciences and Assessments (CISA), a NOAA Regional Sciences and Assessments program housed at the University of South Carolina. Currently the focus of the Carolinas pilot includes the promotion of enhanced drought impact reporting to better understand the impacts of low flows on coastal ecosystems and the development of a USGS real-time salinity network for a few coastal gage stations in the Carolinas. The roles of the enhanced drought impact assessments in coastal ecosystems and the knowledge gained from a real

  20. Multiple stressors, nonlinear effects and the implications of climate change impacts on marine coastal ecosystems.

    PubMed

    Hewitt, Judi E; Ellis, Joanne I; Thrush, Simon F

    2016-08-01

    Global climate change will undoubtedly be a pressure on coastal marine ecosystems, affecting not only species distributions and physiology but also ecosystem functioning. In the coastal zone, the environmental variables that may drive ecological responses to climate change include temperature, wave energy, upwelling events and freshwater inputs, and all act and interact at a variety of spatial and temporal scales. To date, we have a poor understanding of how climate-related environmental changes may affect coastal marine ecosystems or which environmental variables are likely to produce priority effects. Here we use time series data (17 years) of coastal benthic macrofauna to investigate responses to a range of climate-influenced variables including sea-surface temperature, southern oscillation indices (SOI, Z4), wind-wave exposure, freshwater inputs and rainfall. We investigate responses from the abundances of individual species to abundances of functional traits and test whether species that are near the edge of their tolerance to another stressor (in this case sedimentation) may exhibit stronger responses. The responses we observed were all nonlinear and some exhibited thresholds. While temperature was most frequently an important predictor, wave exposure and ENSO-related variables were also frequently important and most ecological variables responded to interactions between environmental variables. There were also indications that species sensitive to another stressor responded more strongly to weaker climate-related environmental change at the stressed site than the unstressed site. The observed interactions between climate variables, effects on key species or functional traits, and synergistic effects of additional anthropogenic stressors have important implications for understanding and predicting the ecological consequences of climate change to coastal ecosystems.

  1. Risk assessment of nitrate and oxytetracycline addition on coastal ecosystem functions.

    PubMed

    Feng-Jiao, Liu; Shun-Xing, Li; Feng-Ying, Zheng; Xu-Guang, Huang; Yue-Gang, Zuo; Teng-Xiu, Tu; Xue-Qing, Wu

    2014-01-01

    Diatoms dominate phytoplankton communities in the well-mixed coastal and upwelling regions. Coastal diatoms are often exposed to both aquaculture pollution and eutrophication. But how these exposures influence on coastal ecosystem functions are unknown. To examine these influences, a coastal centric diatom, Conticribra weissflogii was maintained at different concentrations of nitrate (N) and/or oxytetracycline (OTC). Algal density, cell growth cycle, protein, chlorophyll a, superoxide dismutase (SOD) activity, and malonaldehyde (MDA) were determined for the assessment of algal biomass, lifetime, nutritional value, photosynthesis and respiration, antioxidant capacity, and lipid peroxidation, respectively. When N addition was combined with OTC pollution, the cell growth cycles were shortened by 56-73%; algal density, SOD activities, the concentrations of chlorophyll a, protein, and MDA varied between 73 and 121%, 19 and 397%, 52 and 693%, 19 and 875%, and 66 and 2733% of the values observed in N addition experiments, respectively. According to P-value analysis, the influence of OTC on algal density and SOD activity was not significant, but the effect on cell growth cycle, protein, chlorophyll a, and MDA were significant (P<0.05). The influence of N addition with simultaneous OTC pollution on the above six end points was significant. Algal biomass, lifetime, nutrition, antioxidant capacity, lipid peroxidation, photosynthesis, and respiration were all affected by the addition of OTC and N. Coastal ecosystem functions were severely affected by N and OTC additions, and the influence was increased in the order: Ncoastal ecosystem functions.

  2. The New Seafloor Observatory (OBSEA) for Remote and Long-Term Coastal Ecosystem Monitoring

    PubMed Central

    Aguzzi, Jacopo; Mànuel, Antoni; Condal, Fernando; Guillén, Jorge; Nogueras, Marc; del Rio, Joaquin; Costa, Corrado; Menesatti, Paolo; Puig, Pere; Sardà, Francesc; Toma, Daniel; Palanques, Albert

    2011-01-01

    A suitable sampling technology to identify species and to estimate population dynamics based on individual counts at different temporal levels in relation to habitat variations is increasingly important for fishery management and biodiversity studies. In the past two decades, as interest in exploring the oceans for valuable resources and in protecting these resources from overexploitation have grown, the number of cabled (permanent) submarine multiparametric platforms with video stations has increased. Prior to the development of seafloor observatories, the majority of autonomous stations were battery powered and stored data locally. The recently installed low-cost, multiparametric, expandable, cabled coastal Seafloor Observatory (OBSEA), located 4 km off of Vilanova i la Gertrú, Barcelona, at a depth of 20 m, is directly connected to a ground station by a telecommunication cable; thus, it is not affected by the limitations associated with previous observation technologies. OBSEA is part of the European Multidisciplinary Seafloor Observatory (EMSO) infrastructure, and its activities are included among the Network of Excellence of the European Seas Observatory NETwork (ESONET). OBSEA enables remote, long-term, and continuous surveys of the local ecosystem by acquiring synchronous multiparametric habitat data and bio-data with the following sensors: Conductivity-Temperature-Depth (CTD) sensors for salinity, temperature, and pressure; Acoustic Doppler Current Profilers (ADCP) for current speed and direction, including a turbidity meter and a fluorometer (for the determination of chlorophyll concentration); a hydrophone; a seismometer; and finally, a video camera for automated image analysis in relation to species classification and tracking. Images can be monitored in real time, and all data can be stored for future studies. In this article, the various components of OBSEA are described, including its hardware (the sensors and the network of marine and land nodes

  3. The new Seafloor Observatory (OBSEA) for remote and long-term coastal ecosystem monitoring.

    PubMed

    Aguzzi, Jacopo; Mànuel, Antoni; Condal, Fernando; Guillén, Jorge; Nogueras, Marc; del Rio, Joaquin; Costa, Corrado; Menesatti, Paolo; Puig, Pere; Sardà, Francesc; Toma, Daniel; Palanques, Albert

    2011-01-01

    A suitable sampling technology to identify species and to estimate population dynamics based on individual counts at different temporal levels in relation to habitat variations is increasingly important for fishery management and biodiversity studies. In the past two decades, as interest in exploring the oceans for valuable resources and in protecting these resources from overexploitation have grown, the number of cabled (permanent) submarine multiparametric platforms with video stations has increased. Prior to the development of seafloor observatories, the majority of autonomous stations were battery powered and stored data locally. The recently installed low-cost, multiparametric, expandable, cabled coastal Seafloor Observatory (OBSEA), located 4 km off of Vilanova i la Gertrú, Barcelona, at a depth of 20 m, is directly connected to a ground station by a telecommunication cable; thus, it is not affected by the limitations associated with previous observation technologies. OBSEA is part of the European Multidisciplinary Seafloor Observatory (EMSO) infrastructure, and its activities are included among the Network of Excellence of the European Seas Observatory NETwork (ESONET). OBSEA enables remote, long-term, and continuous surveys of the local ecosystem by acquiring synchronous multiparametric habitat data and bio-data with the following sensors: Conductivity-Temperature-Depth (CTD) sensors for salinity, temperature, and pressure; Acoustic Doppler Current Profilers (ADCP) for current speed and direction, including a turbidity meter and a fluorometer (for the determination of chlorophyll concentration); a hydrophone; a seismometer; and finally, a video camera for automated image analysis in relation to species classification and tracking. Images can be monitored in real time, and all data can be stored for future studies. In this article, the various components of OBSEA are described, including its hardware (the sensors and the network of marine and land nodes

  4. SICS: the Southern Inland and Coastal System interdisciplinary project of the USGS South Florida Ecosystem Program

    USGS Publications Warehouse

    ,

    2011-01-01

    State and Federal agencies are working jointly on structural modifications and improved water-delivery strategies to reestablish more natural surface-water flows through the Everglades wetlands and into Florida Bay. Changes in the magnitude, duration, timing, and distribution of inflows from the headwaters of the Taylor Slough and canal C-111 drainage basins have shifted the seasonal distribution and extent of wetland inundation, and also contributed to the development of hypersaline conditions in nearshore embayments of Florida Bay. Such changes are altering biological and vegetative communities in the wetlands and creating stresses on aquatic habitat. Affected biotic resources include federally listed species such as the Cape Sable seaside sparrow, American crocodile, wood stork, and roseate spoonbill. The U.S. Geological Survey (USGS) is synthesizing scientific findings from hydrologic process studies, collecting data to characterize the ecosystem properties and functions, and integrating the results of these efforts into a research tool and management model for this Southern Inland and Coastal System(SICS). Scientists from all four disciplinary divisions of the USGS, Biological Resources, Geology, National Mapping, and Water Resources are contributing to this interdisciplinary project.

  5. Spatial Simulation of Land Use based on Terrestrial Ecosystem Carbon Storage in Coastal Jiangsu, China

    PubMed Central

    Chuai, Xiaowei; Huang, Xianjin; Wang, Wanjing; Wu, Changyan; Zhao, Rongqin

    2014-01-01

    This paper optimises projected land-use structure in 2020 with the goal of increasing terrestrial ecosystem carbon storage and simulates its spatial distribution using the CLUE-S model. We found the following: The total carbon densities of different land use types were woodland > water area > cultivated land > built-up land > grassland > shallows. Under the optimised land-use structure projected for 2020, coastal Jiangsu showed the potential to increase carbon storage, and our method was effective even when only considering vegetation carbon storage. The total area will increase by reclamation and the original shallows will be exploited, which will greatly increase carbon storage. For built-up land, rural land consolidation caused the second-largest carbon storage increase, which might contribute the most as the rural population will continue to decrease in the future, while the decrease of cultivated land will contribute the most to carbon loss. The area near the coastline has the greatest possibility for land-use change and is where land management should be especially strengthened. PMID:25011476

  6. Ecosystem services in risk assessment and management. ...

    EPA Pesticide Factsheets

    The ecosystem services (ES) concept holds much promise for environmental decision making. Even so, the concept has yet to gain full traction in the decisions and policies of environmental agencies in the United States, Europe, and elsewhere. Here we examine the opportunities for and implications of including ES in risk assessments and the risk management decisions that they inform. We assert that use of ES will: 1) lead to more comprehensive environmental protection; 2) help to articulate the benefits of environmental decisions, policies, and actions; 3) better inform the derivation of environmental quality standards; 4) enable integration of human health and ecological risk assessment; and 5) facilitate horizontal integration of policies, regulations, and programs. We provide the technical basis and supporting rationale for each assertion, relying on examples taken from experiences in the United States and European Union. Specific recommendations are offered for use of ES in risk assessment and risk management, and issues and challenges to advancing use of ES are described along with some of the science needed to improve the value of the ES concept to environmental protection. This paper is one of 4 papers generated from the 2014 Pellston Workshop “Ecosystem Services, Environmental Stressors and Decision Making,” organized jointly by the Society of Environmental Toxicology and Chemistry and the Ecological Society of America. The main workshop objective was

  7. Contrasting Patterns of Carbon Flux and Storage in Pine Forest Ecosystems of the Atlantic Coastal Plain: Implications for Ecosystem Restoration and Climate Change Mitigation.

    NASA Astrophysics Data System (ADS)

    Mitchell, S. R.; Christensen, N.; Cohen, S.; Cunningham, P.

    2015-12-01

    Forest ecosystems in the Southeastern US have high rates of productivity but are underutilized as a medium for the mitigation of atmospheric CO2. In the lower Atlantic coastal plain, three pine species (longleaf [Pinus palustris], loblolly [P. taeda] and pond [P. serotina]) are the dominant overstory trees in a variety of wetland and upland ecosystems. These forest types can exist in close proximity throughout coastal plain landscapes, but exhibit contrasting patterns of productivity, pyrogenic C emissions, and mortality, thereby creating contrasting patterns of C assimilation and long-term C storage. Here, we combine field-based estimates of forest C storage and pyrogenic C emissions with LiDAR-based estimates of forest canopy heights in three contrasting forest ecosystems to 1) model their respective patterns of forest growth, mortality, and decomposition, 2) estimate the contribution of pyrogenic C fluxes to the ecosystem C budget, 3) estimate their potential upper bounds of forest C storage, and 4) model the impacts of current forest management practices and disturbance regimes on long-term forest C storage. Our results suggest that even though longleaf pine forests store comparatively little C in soil or belowground biomass, these forests nevertheless have the highest capacity for long-term C storage, in part due to their longevity. By contrast, while pond pine ecosystems have the highest capacity for long-term belowground C storage, they also have the lowest capacity for long-term aboveground C storage, one that is rarely achieved due to infrequent, high-severity disturbance regimes. Loblolly pine forests, while capable of higher growth rates than either longleaf or pond pine when in early stages of succesion, lack the long-term C storage capabilities of longleaf pine due to earlier senescence. Pyrogenic C emissions in these ecosystems are dominated by the combustion of ground and duff materials and occur over timescales ranging from rapid combustion in fire

  8. Production and food web efficiency decrease as fishing activity increases in a coastal ecosystem

    NASA Astrophysics Data System (ADS)

    Anh, Pham Viet; Everaert, Gert; Goethals, Peter; Vinh, Chu Tien; De Laender, Frederik

    2015-11-01

    Fishing effort in the Vietnamese coastal ecosystem has rapidly increased from the 1990s to the 2000s, with unknown consequences for local ecosystem structure and functioning. Using ecosystem models that integrate fisheries and food webs we found profound differences in the production of six functional groups, the food web efficiency, and eight functional food web indices between the 1990s (low fishing intensity) and the 2000s (high fishing intensity). The functional attributes (e.g. consumption) of high trophic levels (e.g. predators) were lower in the 2000s than in the 1990s while primary production did not vary, causing food web efficiency to decrease up to 40% with time for these groups. The opposite was found for lower trophic levels (e.g. zooplankton): the functional attributes and food web efficiency increased with time (22 and 10% for the functional attributes and food web efficiency, respectively). Total system throughput, a functional food web index, was about 10% higher in the 1990s than in the 2000s, indicating a reduction of the system size and activity with time. The network analyses further indicated that the Vietnamese coastal ecosystem in the 1990s was more developed (higher ascendancy and capacity), more stable (higher overhead) and more mature (higher ratio of ascendancy and capacity) than in the 2000s. In the 1990s the recovery time of the ecosystem was shorter than in 2000s, as indicated by a higher Finn's cycling index in the 1990s (7.8 and 6.5% in 1990s and 2000s, respectively). Overall, our results demonstrate that the Vietnamese coastal ecosystem has experienced profound changes between the 1990s and 2000s, and emphasise the need for a closer inspection of the ecological impact of fishing.

  9. Benefits of coastal recreation in Europe: identifying trade-offs and priority regions for sustainable management.

    PubMed

    Ghermandi, Andrea

    2015-04-01

    This paper examines the welfare dimension of the recreational services of coastal ecosystems through the application of a meta-analytical value transfer framework, which integrates Geographic Information Systems (GIS) for the characterization of climate, biodiversity, accessibility, and anthropogenic pressure in each of 368 regions of the European coastal zone. The relative contribution of international, domestic, and local recreationists to aggregated regional values is examined. The implications of the analysis for prioritization of conservation areas and identification of good management practices are highlighted through the comparative assessment of estimated recreation values, current environmental pressures, and existing network of protected sites.

  10. [Hydrolytic activity of microorganisms of the Dead Sea coastal ecosystems].

    PubMed

    Varbanets', L D; Matseliukh, O V; Avdiiuk, K V; Hudzenko, O V; Nidialkova, N A; Romanovs'ka, V O; Tashirev, O B

    2014-01-01

    All strains tested are characterized by proteolytic (caseinolytic) activity, while elastase one was revealed only in two Gracilibacillus strains 6T2 and 7Tl. The activity was high enough (23.1 and 34.7 E/Ml, respectively). These values are at the level of bacterial producers which are described in literature: Bacillus mesentericus 316 M (6 E/Ml), Bacillus thuringiensis IMB B-7324 (50-55 E/Ml). The ability of two strains tested to synthesize enzyme, active against elastine, is important, so far as microbial enzyme may be perspective for using in medicine: elastases are able to dissociation of elastin fibres of connective tissues. These two strains display also fibrinolytic activity, however it was insignificant. Six of eight strains studied manifested alpha-amylase activity (0.01 - 1.173 E/Ml). It was shown that no strains, isolated from the Dead Sea costal ecosystems are able to manifest alpha-L-rhamnosidase activity.

  11. Comparing marine and terrestrial ecosystems: Implications for the design of coastal marine reserves

    USGS Publications Warehouse

    Carr, M.H.; Neigel, J.E.; Estes, J.A.; Andelman, S.; Warner, R.R.; Largier, J. L.

    2003-01-01

    Concepts and theory for the design and application of terrestrial reserves is based on our understanding of environmental, ecological, and evolutionary processes responsible for biological diversity and sustainability of terrestrial ecosystems and how humans have influenced these processes. How well this terrestrial-based theory can be applied toward the design and application of reserves in the coastal marine environment depends, in part, on the degree of similarity between these systems. Several marked differences in ecological and evolutionary processes exist between marine and terrestrial ecosystems as ramifications of fundamental differences in their physical environments (i.e., the relative prevalence of air and water) and contemporary patterns of human impacts. Most notably, the great extent and rate of dispersal of nutrients, materials, holoplanktonic organisms, and reproductive propagules of benthic organisms expand scales of connectivity among near-shore communities and ecosystems. Consequently, the "openness" of marine populations, communities, and ecosystems probably has marked influences on their spatial, genetic, and trophic structures and dynamics in ways experienced by only some terrestrial species. Such differences appear to be particularly significant for the kinds of organisms most exploited and targeted for protection in coastal marine ecosystems (fishes and macroinvertebrates). These and other differences imply some unique design criteria and application of reserves in the marine environment. In explaining the implications of these differences for marine reserve design and application, we identify many of the environmental and ecological processes and design criteria necessary for consideration in the development of the analytical approaches developed elsewhere in this Special Issue.

  12. Aquatic polymers can drive pathogen transmission in coastal ecosystems.

    PubMed

    Shapiro, Karen; Krusor, Colin; Mazzillo, Fernanda F M; Conrad, Patricia A; Largier, John L; Mazet, Jonna A K; Silver, Mary W

    2014-11-22

    Gelatinous polymers including extracellular polymeric substances (EPSs) are fundamental to biophysical processes in aquatic habitats, including mediating aggregation processes and functioning as the matrix of biofilms. Yet insight into the impact of these sticky molecules on the environmental transmission of pathogens in the ocean is limited. We used the zoonotic parasite Toxoplasma gondii as a model to evaluate polymer-mediated mechanisms that promote transmission of terrestrially derived pathogens to marine fauna and humans. We show that transparent exopolymer particles, a particulate form of EPS, enhance T. gondii association with marine aggregates, material consumed by organisms otherwise unable to access micrometre-sized particles. Adhesion to EPS biofilms on macroalgae also captures T. gondii from the water, enabling uptake of pathogens by invertebrates that feed on kelp surfaces. We demonstrate the acquisition, concentration and retention of T. gondii by kelp-grazing snails, which can transmit T. gondii to threatened California sea otters. Results highlight novel mechanisms whereby aquatic polymers facilitate incorporation of pathogens into food webs via association with particle aggregates and biofilms. Identifying the critical role of invisible polymers in transmission of pathogens in the ocean represents a fundamental advance in understanding and mitigating the health impacts of coastal habitat pollution with contaminated runoff.

  13. Aquatic polymers can drive pathogen transmission in coastal ecosystems

    PubMed Central

    Shapiro, Karen; Krusor, Colin; Mazzillo, Fernanda F. M.; Conrad, Patricia A.; Largier, John L.; Mazet, Jonna A. K.; Silver, Mary W.

    2014-01-01

    Gelatinous polymers including extracellular polymeric substances (EPSs) are fundamental to biophysical processes in aquatic habitats, including mediating aggregation processes and functioning as the matrix of biofilms. Yet insight into the impact of these sticky molecules on the environmental transmission of pathogens in the ocean is limited. We used the zoonotic parasite Toxoplasma gondii as a model to evaluate polymer-mediated mechanisms that promote transmission of terrestrially derived pathogens to marine fauna and humans. We show that transparent exopolymer particles, a particulate form of EPS, enhance T. gondii association with marine aggregates, material consumed by organisms otherwise unable to access micrometre-sized particles. Adhesion to EPS biofilms on macroalgae also captures T. gondii from the water, enabling uptake of pathogens by invertebrates that feed on kelp surfaces. We demonstrate the acquisition, concentration and retention of T. gondii by kelp-grazing snails, which can transmit T. gondii to threatened California sea otters. Results highlight novel mechanisms whereby aquatic polymers facilitate incorporation of pathogens into food webs via association with particle aggregates and biofilms. Identifying the critical role of invisible polymers in transmission of pathogens in the ocean represents a fundamental advance in understanding and mitigating the health impacts of coastal habitat pollution with contaminated runoff. PMID:25297861

  14. A NEW TYPE OF "LAKE EFFECT"? - SEICHE-DRIVEN NUTRIENT INPUT TO A COASTAL GREAT LAKE ECOSYSTEM

    EPA Science Inventory

    Like tidal influx at the ocean-estuarine discontinuity, the action of seiches upon coastal ecosystems of large lakes is understudied and the complexity warrants an array of biological, chemical, and physical approaches.

  15. NASA COAST and OCEANIA Airborne Missions Support Ecosystem and Water Quality Research in the Coastal Zone

    NASA Astrophysics Data System (ADS)

    Guild, L. S.; Kudela, R. M.; Hooker, S. B.; Morrow, J. H.; Russell, P. B.; Palacios, S. L.; Livingston, J. M.; Negrey, K.; Torres-Perez, J. L.; Broughton, J.

    2014-12-01

    NASA has a continuing requirement to collect high-quality in situ data for the vicarious calibration of current and next generation ocean color satellite sensors and to validate the algorithms that use the remotely sensed observations. Recent NASA airborne missions over Monterey Bay, CA, have demonstrated novel above- and in-water measurement capabilities supporting a combined airborne sensor approach (imaging spectrometer, microradiometers, and a sun photometer). The results characterize coastal atmospheric and aquatic properties through an end-to-end assessment of image acquisition, atmospheric correction, algorithm application, plus sea-truth observations from state-of-the-art instrument systems. The primary goal is to demonstrate the following in support of calibration and validation exercises for satellite coastal ocean color products: 1) the utility of a multi-sensor airborne instrument suite to assess the bio-optical properties of coastal California, including water quality; and 2) the importance of contemporaneous atmospheric measurements to improve atmospheric correction in the coastal zone. The imaging spectrometer (Headwall) is optimized in the blue spectral domain to emphasize remote sensing of marine and freshwater ecosystems. The novel airborne instrument, Coastal Airborne In-situ Radiometers (C-AIR) provides measurements of apparent optical properties with high dynamic range and fidelity for deriving exact water leaving radiances at the land-ocean boundary, including radiometrically shallow aquatic ecosystems. Simultaneous measurements supporting empirical atmospheric correction of image data are accomplished using the Ames Airborne Tracking Sunphotometer (AATS-14). Flight operations are presented for the instrument payloads using the CIRPAS Twin Otter flown over Monterey Bay during the seasonal fall algal bloom in 2011 (COAST) and 2013 (OCEANIA) to support bio-optical measurements of phytoplankton for coastal zone research.

  16. TNT Degradation by Natural Microbial Assemblages at Frontal Boundaries Between Water Masses in Coastal Ecosystems (ER-2124 Interim Report)

    DTIC Science & Technology

    2014-06-26

    correlation between metabolism of TNT and aromatic organic carbon may be the best predictor of TNT removal by natural bacteria in surface water and sediment...Between Water Masses in Coastal Ecosystems (ER-2124 Interim Report) June 26, 2014 Approved for public release; distribution is unlimited. Michael T...Assemblages at Frontal Boundaries Between Water Masses in Coastal Ecosystems (ER-2124 Interim Report) Michael T. Montgomery, Thomas J. Boyd, Richard B

  17. Radionuclide transfer to invertebrates and small mammals in a coastal sand dune ecosystem.

    PubMed

    Wood, M D; Leah, R T; Jones, S R; Copplestone, D

    2009-06-15

    International intercomparisons of models to assess the impact of ionising radiation on wildlife have identified radionuclide transfer assumptions as a significant source of uncertainty in the modelling process. There is a need to improve the underpinning data sets on radionuclide transfer to reduce this uncertainty, especially for poorly-studied ecosystems such as coastal sand dunes. This paper presents the results of the first published study of radionuclide transfer to invertebrates and small mammals in a coastal sand dune ecosystem. Activity concentrations of (137)Cs, (238)Pu, (239+240)Pu and (241)Am are reported for detritivorous, herbivorous, carnivorous and omnivorous biota. Differences in activity concentrations measured in the sand dune biota are related to the trophic level of the organisms and the influence of sea-to-land transfer is apparent in the food chain transfer observed at the site. There are notable differences in the concentration ratios (CRs) calculated for the sand dune biota compared to other terrestrial ecosystems, especially for the small mammals which have CRs that are two orders of magnitude lower than the generic terrestrial ecosystem CRs published by the recent EC EURATOM ERICA project. The lower CRs at the sand dunes may be due to the influence of other cations from the marine environment (e.g. K and Na) on the net radionuclide transfer observed, but further research is required to test this hypothesis.

  18. Kinematics and planktonic ecosystem dynamics of a coastal cyclonic eddy in the Southern California Bight

    NASA Astrophysics Data System (ADS)

    Chenillat, F.; Franks, P. J. S.; Riviere, P.; Capet, X.; Blanke, B.

    2014-12-01

    The highly productive Californian eastern boundary upwelling system exhibits high mesoscale eddy activity. Eddies that are formed at the coast move offshore, entraining and redistributing nearshore nutrients and planktonic organisms. High planktonic biomass can be found in these eddies months after detaching from the coast. The mechanisms driving these patterns, and their ecological impacts are still poorly understood. To characterize and understand the influence of mesoscale eddies on planktonic ecosystems in the California Current System (CCS) we use a numerical approach coupling the Regional Ocean Modeling system (ROMS), at 5 km horizontal resolution, with a multiple size class planktonic ecosystem model (NEMURO). Combining Eulerian and Lagrangian analyses, we were able to follow one specific cyclonic eddy formed in the Southern California Bight as it detached from the coast and migrated offshore. Lagrangian particle tracking allowed us to identify the eddy core where high concentrations of coastal nutrients are found. The Eulerian calculations allowed us to quantify ecosystem properties and dynamics along the particle tracks. We highlight the role of this eddy in altering local planktonic ecosystem dynamics, and contrast those dynamics with the coastal upwelling source waters, and the waters encircling the eddy.

  19. Underwater Optics in Sub-Antarctic and Antarctic Coastal Ecosystems.

    PubMed

    Huovinen, Pirjo; Ramírez, Jaime; Gómez, Iván

    2016-01-01

    Understanding underwater optics in natural waters is essential in evaluating aquatic primary production and risk of UV exposure in aquatic habitats. Changing environmental conditions related with global climate change, which imply potential contrasting changes in underwater light climate further emphasize the need to gain insights into patterns related with underwater optics for more accurate future predictions. The present study evaluated penetration of solar radiation in six sub-Antarctic estuaries and fjords in Chilean North Patagonian region (39-44°S) and in an Antarctic bay (62°S). Based on vertical diffuse attenuation coefficients (Kd), derived from measurements with a submersible multichannel radiometer, average summer UV penetration depth (z1%) in these water bodies ranged 2-11 m for UV-B (313 nm), 4-27 m for UV-A (395 nm), and 7-30 m for PAR (euphotic zone). UV attenuation was strongest in the shallow Quempillén estuary, while Fildes Bay (Antarctica) exhibited the highest transparency. Optically non-homogeneous water layers and seasonal variation in transparency (lower in winter) characterized Comau Fjord and Puyuhuapi Channel. In general, multivariate analysis based on Kd values of UV and PAR wavelengths discriminated strongly Quempillén estuary and Puyuhuapi Channel from other study sites. Spatial (horizontal) variation within the estuary of Valdivia river reflected stronger attenuation in zones receiving river impact, while within Fildes Bay a lower spatial variation in water transparency could in general be related to closeness of glaciers, likely due to increased turbidity through ice-driven processes. Higher transparency and deeper UV-B penetration in proportion to UV-A/visible wavelengths observed in Fildes Bay suggests a higher risk for Antarctic ecosystems reflected by e.g. altered UV-B damage vs. photorepair under UV-A/PAR. Considering that damage repair processes often slow down under cool temperatures, adverse UV impact could be further

  20. Underwater Optics in Sub-Antarctic and Antarctic Coastal Ecosystems

    PubMed Central

    Huovinen, Pirjo; Ramírez, Jaime; Gómez, Iván

    2016-01-01

    Understanding underwater optics in natural waters is essential in evaluating aquatic primary production and risk of UV exposure in aquatic habitats. Changing environmental conditions related with global climate change, which imply potential contrasting changes in underwater light climate further emphasize the need to gain insights into patterns related with underwater optics for more accurate future predictions. The present study evaluated penetration of solar radiation in six sub-Antarctic estuaries and fjords in Chilean North Patagonian region (39–44°S) and in an Antarctic bay (62°S). Based on vertical diffuse attenuation coefficients (Kd), derived from measurements with a submersible multichannel radiometer, average summer UV penetration depth (z1%) in these water bodies ranged 2–11 m for UV-B (313 nm), 4–27 m for UV-A (395 nm), and 7–30 m for PAR (euphotic zone). UV attenuation was strongest in the shallow Quempillén estuary, while Fildes Bay (Antarctica) exhibited the highest transparency. Optically non-homogeneous water layers and seasonal variation in transparency (lower in winter) characterized Comau Fjord and Puyuhuapi Channel. In general, multivariate analysis based on Kd values of UV and PAR wavelengths discriminated strongly Quempillén estuary and Puyuhuapi Channel from other study sites. Spatial (horizontal) variation within the estuary of Valdivia river reflected stronger attenuation in zones receiving river impact, while within Fildes Bay a lower spatial variation in water transparency could in general be related to closeness of glaciers, likely due to increased turbidity through ice-driven processes. Higher transparency and deeper UV-B penetration in proportion to UV-A/visible wavelengths observed in Fildes Bay suggests a higher risk for Antarctic ecosystems reflected by e.g. altered UV-B damage vs. photorepair under UV-A/PAR. Considering that damage repair processes often slow down under cool temperatures, adverse UV impact could be

  1. Ecological Effects of Sea Level Rise: Advancing coastal management through integrated research and engagement

    NASA Astrophysics Data System (ADS)

    Kidwell, D. M.

    2012-12-01

    Rising sea level represents a significant threat to coastal communities and ecosystems through land loss, altered habitats, and increased vulnerability to coastal storms and inundation. This threat is exemplified in the northern Gulf of Mexico where low topography, expansive marshes, and a prevalence of tropical storms have already resulted in extensive coastal impacts. The development of robust predictive capabilities that incorporate complex biological processes with physical dynamics are critical for informed planning and restoration efforts for coastal ecosystems. Looking to build upon existing predictive modeling capabilities and allow for use of multiple model (i.e., ensemble) approaches, NOAA initiated the Ecological Effects of Sea Level Rise program in 2010 to advance physical/biological integrative modeling capabilities in the region with a goal to provide user friendly predictive tools for coastal ecosystem management. Focused on the northern Gulf of Mexico, this multi-disciplinary project led by the University of Central Florida will use in situ field studies to parameterize physical and biological models. These field studies will also result in a predictive capability for overland sediment delivery and transport that will further enhance marsh, oyster, and submerged aquatic vegetation models. Results from this integrated modeling effort are envisioned to inform management strategies for reducing risk, restoration and breakwater guidelines, and resource sustainability for project planning, among other uses. In addition to the science components, this project incorporates significant engagement of the management community through a management applications principle investigator and an advisory management committee. Routine engagement between the science team and the management committee, including annual workshops, are focused on ensuring the development of applicable, relevant, and useable products and tools at the conclusion of this project. Particular

  2. Ecosystem Services in Risk Assessment and Management

    EPA Science Inventory

    The ecosystem services concept provides a comprehensive framework for considering ecosystems in decision making, for valuing the services they provide, and for ensuring that society can maintain a healthy and resilient natural environment now and for future generations. A global ...

  3. Historical overfishing and the recent collapse of coastal ecosystems

    USGS Publications Warehouse

    Jackson, J.B.C.; Kirby, M.X.; Berger, W.H.; Bjorndal, K.A.; Botsford, L.W.; Bourque, B.J.; Bradbury, R.; Cooke, R.; Erlandson, J.; Estes, J.A.; Hughes, T.P.; Kidwell, S.; Lange, C.B.; Lenihan, H.S.; Pandolfi, J.M.; Peterson, C.H.; Steneck, R.S.; Tegner, M.J.; Warner, R.

    2001-01-01

    A method for calculating parameters necessary to maintain stable populations is described and the management implications of the method are discussed. This method depends upon knowledge of the population mortality rate schedule, the age at which the species reaches maturity, and recruitment rates or age ratios in the population. Four approaches are presented which yield information about the status of the population: (1) necessary production for a stable population, (2) allowable mortality for a stable population, (3) annual rate of change in population size, and (4) age ratios in the population which yield a stable condition. General formulas for these relationships, and formulas for several special cases, are presented. Tables are also presented showing production required to maintain a stable population with the simpler (more common) mortality and fecundity schedules.

  4. Ecology of a key ecosystem engineer on hard coastal infrastructure and natural rocky shores.

    PubMed

    Martins, Gustavo M; Neto, Ana I; Cacabelos, Eva

    2016-02-01

    The numbers of hard coastal artificial structures is increasing worldwide and there is now cumulative evidence that they support assemblages that are less diverse than natural shores. Here we investigated patterns of distribution and demography of the native barnacle Chthamalus stellatus on hard coastal structures and on natural rocky shores. Barnacles were 35% less abundant on hard structures regardless of substratum type (concrete or basalt). On a subset of sites we found that temporal population stability, growth and mortality were similar on natural rocky shores and hard structures. In contrast, barnacles were significantly larger and recruited more onto natural rocky shores. These results emphasise the important role of recruitment in determining the abundance of a key space occupier on hard coastal structures. Experimental work building on these results may generate insights that can be used as guidelines for the management of urbanised coastal areas.

  5. A modeling approach to assess coastal management effects on benthic habitat quality: A case study on coastal defense and navigability

    NASA Astrophysics Data System (ADS)

    Cozzoli, Francesco; Smolders, Sven; Eelkema, Menno; Ysebaert, Tom; Escaravage, Vincent; Temmerman, Stijn; Meire, Patrick; Herman, Peter M. J.; Bouma, Tjeerd J.

    2017-01-01

    The natural coastal hydrodynamics and morphology worldwide is altered by human interventions such as embankments, shipping and dredging, which may have consequences for ecosystem functionality. To ensure long-term ecological sustainability, requires capability to predict long-term large-scale ecological effects of altered hydromorphology. As empirical data sets at relevant scales are missing, there is need for integrating ecological modeling with physical modeling. This paper presents a case study showing the long-term, large-scale macrozoobenthic community response to two contrasting human alterations of the hydromorphological habitat: deepening of estuarine channels to enhance navigability (Westerschelde) vs. realization of a storm surge barrier to enhance coastal safety (Oosterschelde). A multidisciplinary integration of empirical data and modeling of estuarine morphology, hydrodynamics and benthic ecology was used to reconstruct the hydrological evolution and resulting long-term (50 years) large-scale ecological trends for both estuaries over the last. Our model indicated that hydrodynamic alterations following the deepening of the Westerschelde had negative implications for benthic life, while the realization of the Oosterschelde storm surge barriers had mixed and habitat-dependent responses, that also include unexpected improvement of environmental quality. Our analysis illustrates long-term trends in the natural community caused by opposing management strategies. The divergent human pressures on the Oosterschelde and Westerschelde are examples of what could happen in a near future for many global coastal ecosystems. The comparative analysis of the two basins is a valuable source of information to understand (and communicate) the future ecological consequences of human coastal development.

  6. Turf wars: experimental tests for alternative stable states in a two-phase coastal ecosystem.

    PubMed

    Brownstein, Gretchen; Lee, William G; Pritchard, Daniel W; Wilson, J Bastow

    2014-02-01

    Alternative stable states have long been thought to exist in natural communities, but direct evidence for their presence and for the environmental switches that cause them has been scarce. Using a combination of greenhouse and field experiments, we investigated the environmental drivers associated with two distinctive herbaceous communities in coastal ecosystems in New Zealand. In a mosaic unrelated to micro-topography, a community dominated largely by native turf species (notably Leptinella dioica, Samolus repens, and Selliera radicans) alternates with vegetation comprising exotic (i.e., nonnative) pasture species (notably Agrostis stolonifera, Holcus lanatus, Lolium perenne, and Trifolium repens). The species of these two communities differ in functional characters related to leaf longevity and growth rate, and occupy soils of differing nitrogen levels. Both spatial and environmental factors influenced the species composition locally. Reciprocal transplants of soil, with and without associated vegetation, showed that a native turf community developed when sward or soil from either community was bounded by turf, and a pasture community developed when sward or soil from either community was surrounded by pasture. In artificial mixed communities in the greenhouse, turf was able to invade the pasture community where the vegetation was clipped to simulate grazing, and also where Trifolium was removed and/or salt spray was applied. The pasture community invaded the turf where Trifolium was present or nitrogen was added. These results were supported by trends in experimentally manipulated field plots, where the amount of turf cover increased when nitrogen was kept low and when salt spray was applied, whereas pasture cover increased in the absence of salt spray. Thus, persistence of the native turf community is dependent on grazing, both directly and via its effect on keeping nitrogen levels low by excluding the exotic, nitrogen-fixing Trifolium, and by exposing the

  7. Climate change impacts on U.S. coastal and marine ecosystems

    USGS Publications Warehouse

    Scavia, Donald; Field, John C.; Boesch, Donald F.; Buddemeier, Robert W.; Burkett, Virginia; Cayan, Daniel R.; Fogarty, Michael; Harwell, Mark A.; Howarth, Robert W.; Mason, Curt; Reed, Denise J.; Royer, Thomas C.; Sallenger, Asbury H.; Titus, James G.

    2002-01-01

    Increases in concentrations of greenhouse gases projected for the 21st century are expected to lead to increased mean global air and ocean temperatures. The National Assessment of Potential Consequences of Climate Variability and Change (NAST 2001) was based on a series of regional and sector assessments. This paper is a summary of the coastal and marine resources sector review of potential impacts on shorelines, estuaries, coastal wetlands, coral reefs, and ocean margin ecosystems. The assessment considered the impacts of several key drivers of climate change: sea level change; alterations in precipitation patterns and subsequent delivery of freshwater, nutrients, and sediment; increased ocean temperature; alterations in circulation patterns; changes in frequency and intensity of coastal storms; and increased levels of atmospheric CO2. Increasing rates of sea-level rise and intensity and frequency of coastal storms and hurricanes over the next decades will increase threats to shorelines, wetlands, and coastal development. Estuarine productivity will change in response to alteration in the timing and amount of freshwater, nutrients, and sediment delivery. Higher water temperatures and changes in freshwater delivery will alter estuarine stratification, residence time, and eutrophication. Increased ocean temperatures are expected to increase coral bleaching and higher CO2 levels may reduce coral calcification, making it more difficult for corals to recover from other disturbances, and inhibiting poleward shifts. Ocean warming is expected to cause poleward shifts in the ranges of many other organisms, including commercial species, and these shifts may have secondary effects on their predators and prey. Although these potential impacts of climate change and variability will vary from system to system, it is important to recognize that they will be superimposed upon, and in many cases intensify, other ecosystem stresses (pollution, harvesting, habitat destruction

  8. Cloud shading and fog drip influence the metabolism of a coastal pine ecosystem.

    PubMed

    Carbone, Mariah S; Park Williams, A; Ambrose, Anthony R; Boot, Claudia M; Bradley, Eliza S; Dawson, Todd E; Schaeffer, Sean M; Schimel, Joshua P; Still, Christopher J

    2013-02-01

    Assessing the ecological importance of clouds has substantial implications for our basic understanding of ecosystems and for predicting how they will respond to a changing climate. This study was conducted in a coastal Bishop pine forest ecosystem that experiences regular cycles of stratus cloud cover and inundation in summer. Our objective was to understand how these clouds impact ecosystem metabolism by contrasting two sites along a gradient of summer stratus cover. The site that was under cloud cover ~15% more of the summer daytime hours had lower air temperatures and evaporation rates, higher soil moisture content, and received more frequent fog drip inputs than the site with less cloud cover. These cloud-driven differences in environmental conditions translated into large differences in plant and microbial activity. Pine trees at the site with greater cloud cover exhibited less water stress in summer, larger basal area growth, and greater rates of sap velocity. The difference in basal area growth between the two sites was largely due to summer growth. Microbial metabolism was highly responsive to fog drip, illustrated by an observed ~3-fold increase in microbial biomass C with increasing summer fog drip. In addition, the site with more cloud cover had greater total soil respiration and a larger fractional contribution from heterotrophic sources. We conclude that clouds are important to the ecological functioning of these coastal forests, providing summer shading and cooling that relieve pine and microbial drought stress as well as regular moisture inputs that elevate plant and microbial metabolism. These findings are important for understanding how these and other seasonally dry coastal ecosystems will respond to predicted changes in stratus cover, rainfall, and temperature.

  9. A meta-analysis of soil salinization effects on nitrogen pools, cycles and fluxes in coastal ecosystems.

    PubMed

    Zhou, Minghua; Butterbach-Bahl, Klaus; Vereecken, Harry; Brüggemann, Nicolas

    2017-03-01

    Salinity intrusion caused by land subsidence resulting from increasing groundwater abstraction, decreasing river sediment loads and increasing sea level because of climate change has caused widespread soil salinization in coastal ecosystems. Soil salinization may greatly alter nitrogen (N) cycling in coastal ecosystems. However, a comprehensive understanding of the effects of soil salinization on ecosystem N pools, cycling processes and fluxes is not available for coastal ecosystems. Therefore, we compiled data from 551 observations from 21 peer-reviewed papers and conducted a meta-analysis of experimental soil salinization effects on 19 variables related to N pools, cycling processes and fluxes in coastal ecosystems. Our results showed that the effects of soil salinization varied across different ecosystem types and salinity levels. Soil salinization increased plant N content (18%), soil NH4(+) (12%) and soil total N (210%), although it decreased soil NO3(-) (2%) and soil microbial biomass N (74%). Increasing soil salinity stimulated soil N2 O fluxes as well as hydrological NH4(+) and NO2(-) fluxes more than threefold, although it decreased the hydrological dissolved organic nitrogen (DON) flux (59%). Soil salinization also increased the net N mineralization by 70%, although salinization effects were not observed on the net nitrification, denitrification and dissimilatory nitrate reduction to ammonium in this meta-analysis. Overall, this meta-analysis improves our understanding of the responses of ecosystem N cycling to soil salinization, identifies knowledge gaps and highlights the urgent need for studies on the effects of soil salinization on coastal agro-ecosystem and microbial N immobilization. Additional increases in knowledge are critical for designing sustainable adaptation measures to the predicted intrusion of salinity intrusion so that the productivity of coastal agro-ecosystems can be maintained or improved and the N losses and pollution of the natural

  10. What can ecology contribute to ecosystem-based management?

    PubMed

    Thrush, Simon F; Dayton, Paul K

    2010-01-01

    Modern fishing changes the ocean environment in many ways, including disturbing the sea floor, altering the food webs, and shifting many important ecosystem functions. Natural history, oceanographic, habitat, behavior, and ecological information must be integrated to implement meaningful ecosystem-based management. We discuss the urgent need to expand the concept of essential fish habitat to include important food-web relationships. The need for a broader perspective in terms of ecosystem function and the effects of interactive stressors is emphasized to maintain the vitality and resilience of valued ecosystems. Maintenance of multiple ecosystem functions is a key factor in the adaptive capacity of ecosystems to change. We argue that an ecological understanding of resilience embraces uncertainty and encourages multiple approaches to the management of humans such that ecosystem functions are maintained.

  11. Organization of marine phenology data in support of planning and conservation in ocean and coastal ecosystems

    USGS Publications Warehouse

    Thomas, Kathryn A.; Fornwall, Mark D.; Weltzin, Jake F.; Griffis, R.B.

    2014-01-01

    Among the many effects of climate change is its influence on the phenology of biota. In marine and coastal ecosystems, phenological shifts have been documented for multiple life forms; however, biological data related to marine species' phenology remain difficult to access and is under-used. We conducted an assessment of potential sources of biological data for marine species and their availability for use in phenological analyses and assessments. Our evaluations showed that data potentially related to understanding marine species' phenology are available through online resources of governmental, academic, and non-governmental organizations, but appropriate datasets are often difficult to discover and access, presenting opportunities for scientific infrastructure improvement. The developing Federal Marine Data Architecture when fully implemented will improve data flow and standardization for marine data within major federal repositories and provide an archival repository for collaborating academic and public data contributors. Another opportunity, largely untapped, is the engagement of citizen scientists in standardized collection of marine phenology data and contribution of these data to established data flows. Use of metadata with marine phenology related keywords could improve discovery and access to appropriate datasets. When data originators choose to self-publish, publication of research datasets with a digital object identifier, linked to metadata, will also improve subsequent discovery and access. Phenological changes in the marine environment will affect human economics, food systems, and recreation. No one source of data will be sufficient to understand these changes. The collective attention of marine data collectors is needed—whether with an agency, an educational institution, or a citizen scientist group—toward adopting the data management processes and standards needed to ensure availability of sufficient and useable marine data to understand

  12. Community Composition of Photosynthetic Picoeukaryotes in a Subtropical Coastal Ecosystem, with Particular Emphasis on Micromonas.

    PubMed

    Lin, Yun-Chi; Chung, Chih-Ching; Chen, Liang-Yin; Gong, Gwo-Ching; Huang, Chin-Yi; Chiang, Kuo-Ping

    2016-09-16

    Photosynthetic picoeukaryotes (PPEs) are important constituents in picoplankton communities in many marine ecosystems. However, little is known about their community composition in the subtropical coastal waters of the Northwestern Pacific Ocean. In order to study their taxonomic composition, this study constructed 18S rRNA gene libraries using flow cytometric sorting during the warm season. The results show that, after diatoms, prasinophyte clones are numerically dominant. Within prasinophytes, Micromonas produced the most common sequences, and included clades II, III, IV, and VI. We are establishing the new Micromonas clade VI based on our phylogenetic analysis. Sequences of this clade have previously been retrieved from the South China Sea and Red Sea, indicating a worldwide distribution, but this is the first study to detect clade VI in the coastal waters of Taiwan. The TSA-FISH results indicated that Micromonas clade VI peaked in the summer (~4 × 10(2)  cells/ml), accounting for one-fifth of Micromonas abundance on average. Overall, Micromonas contributed half of Mamiellophyceae abundance, while Mamiellophyceae contributed 40% of PPE abundance. This study demonstrates the importance of Micromonas within the Mamiellophyceae in a subtropical coastal ecosystem.

  13. Assessing and managing freshwater ecosystems vulnerable to global change

    USGS Publications Warehouse

    Angeler, David G.; Allen, Craig R.; Birge, Hannah E.; Drakare, Stina; McKie, Brendan G.; Johnson, Richard K.

    2014-01-01

    Freshwater ecosystems are important for global biodiversity and provide essential ecosystem services. There is consensus in the scientific literature that freshwater ecosystems are vulnerable to the impacts of environmental change, which may trigger irreversible regime shifts upon which biodiversity and ecosystem services may be lost. There are profound uncertainties regarding the management and assessment of the vulnerability of freshwater ecosystems to environmental change. Quantitative approaches are needed to reduce this uncertainty. We describe available statistical and modeling approaches along with case studies that demonstrate how resilience theory can be applied to aid decision-making in natural resources management. We highlight especially how long-term monitoring efforts combined with ecological theory can provide a novel nexus between ecological impact assessment and management, and the quantification of systemic vulnerability and thus the resilience of ecosystems to environmental change.

  14. Adaptive management for ecosystem services.

    PubMed

    Birgé, Hannah E; Allen, Craig R; Garmestani, Ahjond S; Pope, Kevin L

    2016-12-01

    Management of natural resources for the production of ecosystem services, which are vital for human well-being, is necessary even when there is uncertainty regarding system response to management action. This uncertainty is the result of incomplete controllability, complex internal feedbacks, and non-linearity that often interferes with desired management outcomes, and insufficient understanding of nature and people. Adaptive management was developed to reduce such uncertainty. We present a framework for the application of adaptive management for ecosystem services that explicitly accounts for cross-scale tradeoffs in the production of ecosystem services. Our framework focuses on identifying key spatiotemporal scales (plot, patch, ecosystem, landscape, and region) that encompass dominant structures and processes in the system, and includes within- and cross-scale dynamics, ecosystem service tradeoffs, and management controllability within and across scales. Resilience theory recognizes that a limited set of ecological processes in a given system regulate ecosystem services, yet our understanding of these processes is poorly understood. If management actions erode or remove these processes, the system may shift into an alternative state unlikely to support the production of desired services. Adaptive management provides a process to assess the underlying within and cross-scale tradeoffs associated with production of ecosystem services while proceeding with management designed to meet the demands of a growing human population.

  15. Adaptive management for ecosystem services (j/a) | Science ...

    EPA Pesticide Factsheets

    Management of natural resources for the production of ecosystem services, which are vital for human well-being, is necessary even when there is uncertainty regarding system response to management action. This uncertainty is the result of incomplete controllability, complex internal feedbacks, and non-linearity that often interferes with desired management outcomes, and insufficient understanding of nature and people. Adaptive management was developed to reduce such uncertainty. We present a framework for the application of adaptive management for ecosystem services that explicitly accounts for cross-scale tradeoffs in the production of ecosystem services. Our framework focuses on identifying key spatiotemporal scales (plot, patch, ecosystem, landscape, and region) that encompass dominant structures and processes in the system, and includes within- and cross-scale dynamics, ecosystem service tradeoffs, and management controllability within and across scales. Resilience theory recognizes that a limited set of ecological processes in a given system regulate ecosystem services, yet our understanding of these processes is poorly understood. If management actions erode or remove these processes, the system may shift into an alternative state unlikely to support the production of desired services. Adaptive management provides a process to assess the underlying within and cross-scale tradeoffs associated with production of ecosystem services while proceeding with manage

  16. Prioritising coastal zone management issues through fuzzy cognitive mapping approach.

    PubMed

    Meliadou, Aleka; Santoro, Francesca; Nader, Manal R; Dagher, Manale Abou; Al Indary, Shadi; Salloum, Bachir Abi

    2012-04-30

    Effective public participation is an essential component of Integrated Coastal Zone Management implementation. To promote such participation, a shared understanding of stakeholders' objectives has to be built to ultimately result in common coastal management strategies. The application of quantitative and semi-quantitative methods involving tools such as Fuzzy Cognitive Mapping is presently proposed for reaching such understanding. In this paper we apply the Fuzzy Cognitive Mapping tool to elucidate the objectives and priorities of North Lebanon's coastal productive sectors, and to formalize their coastal zone perceptions and knowledge. Then, we investigate the potential of Fuzzy Cognitive Mapping as tool for support coastal zone management. Five round table discussions were organized; one for the municipalities of the area and one for each of the main coastal productive sectors (tourism, industry, fisheries, agriculture), where the participants drew cognitive maps depicting their views. The analysis of the cognitive maps showed a large number of factors perceived as affecting the current situation of the North Lebanon coastal zone that were classified into five major categories: governance, infrastructure, environment, intersectoral interactions and sectoral initiatives. Furthermore, common problems, expectations and management objectives for all sectors were exposed. Within this context, Fuzzy Cognitive Mapping proved to be an essential tool for revealing stakeholder knowledge and perception and understanding complex relationships.

  17. Coastal Wetland Ecosystem Responses to Climate Change: the Role of Macroclimatic Drivers along the Northern Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Osland, M. J.; Enwright, N.; Day, R. H.; Gabler, C. A.; Stagg, C. L.; From, A. S.

    2014-12-01

    Across the globe, macroclimatic drivers greatly influence coastal wetland ecosystem structure and function. However, changing macroclimatic conditions are rarely incorporated into coastal wetland vulnerability assessments. Here, we quantify the influence of macroclimatic drivers upon coastal wetland ecosystems along the Northern Gulf of Mexico (NGOM) coast. From a global perspective, the NGOM coast provides several excellent opportunities to examine the effects of climate change upon coastal wetlands. The abundant coastal wetland ecosystems in the region span two major climatic gradients: (1) a winter temperature gradient that crosses temperate to tropical climatic zones; and (2) a precipitation gradient that crosses humid to semi-arid zones. We present analyses where we used geospatial data (historical climate, hydrology, and coastal wetland coverage) and field data (soil, elevation, and plant community composition and structure) to quantify climate-mediated ecological transitions. We identified winter climate and precipitation-based thresholds that separate mangrove forests from salt marshes and vegetated wetlands from unvegetated wetlands, respectively. We used simple distribution and abundance models to evaluate the potential ecological effects of alternative future climate change scenarios. Our results illustrate and quantify the importance of macroclimatic drivers and indicate that climate change could result in landscape-scale changes in coastal wetland ecosystem structure and function. These macroclimate-mediated ecological changes could affect the supply of some ecosystem goods and services as well as the resilience of these ecosystems to stressors, including accelerated sea level rise. Collectively, our findings highlight the importance of incorporating macroclimatic drivers within future-focused coastal wetland vulnerability assessments.

  18. Nitrogen excess in North American ecosystems: Predisposing factors, ecosystem responses, and management strategies

    USGS Publications Warehouse

    Fenn, M.E.; Poth, M.A.; Aber, J.D.; Baron, J.S.; Bormann, B.T.; Johnson, D.W.; Lemly, A.D.; McNulty, S.G.; Ryan, D.F.; Stottlemyer, R.

    1998-01-01

    Most forests in North America remain nitrogen limited, although recent studies have identified forested areas that exhibit symptoms of N excess, analogous to overfertilization of arable land. Nitrogen excess in watersheds is detrimental because of disruptions in plant/soil nutrient relations, increased soil acidification and aluminum mobility, increased emissions of nitrogenous greenhouse gases from soil, reduced methane consumption in soil, decreased water quality, toxic effects on freshwater biota, and eutrophication of coastal marine waters. Elevated nitrate (NO3/-) loss to groundwater or surface waters is the primary symptom of N excess. Additional symptoms include increasing N concentrations and higher N:nutrient ratios in foliage (i.e., N:Mg, N:P), foliar accumulation of amino acids or NO3/-, and low soil C:N ratios. Recent nitrogen-fertilization studies in New England and Europe provide preliminary evidence that some forests receiving chronic N inputs may decline in productivity and experience greater mortality. Long-term fertilization at Mount Ascutney, Vermont, suggests that declining and slow N-cycling coniferous stands may be replaced by fast-growing and fast N-cycling deciduous forests. Symptoms of N saturation are particularly severe in high-elevation, nonaggrading spruce-fir ecosystems in the Appalachian Mountains and in eastern hardwood watersheds at the Fernow Experimental Forest near Parsons, West Virginia. In the Los Angeles Air Basin, mixed conifer forests and chaparral watersheds with high smog exposure are N saturated and exhibit the highest streamwater NO3/- concentrations for wildlands in North America. High-elevation alpine watersheds in the Colorado Front Range and a deciduous forest in Ontario, Canada, are N saturated, although N deposition is moderate (~8 kg??ha-1??yr-1). In contrast, the Harvard Forest hardwood stand in Massachusetts has absorbed >900 kg N/ha during 8 yr of N amendment studies without significant NO3/- leaching

  19. Environmental problem solving in coastal ecosystems: A paradigm shift to sustainability

    NASA Astrophysics Data System (ADS)

    Dennison, William C.

    2008-04-01

    The human ecological footprint now extends to the entire globe, and human impacts are the dominant feature of many ecosystems, resulting in our current era being coined the 'anthropocene'. This is particularly apparent in coastal ecosystems as human populations are increasing rapidly in coastal cities and the ecosystem services in these areas are rapidly being compromised. Science has historically progressed as a series of paradigm shifts and this paper reviews this history of paradigm shifts and makes the case that the next major paradigm shift will be directed at sustainability, resulting in a shift in scientific focus on solving rather than just studying our current environmental problems. Traditionally, science has been extremely effective at data acquisition and then successively less effective at translating this into information, knowledge and finally environmental problem solving. The currently required paradigm shift is to focus on environmental problem solving, filling gaps in knowledge, information and data only as required to solve a particular problem. A key element in turning this process around is better science communication between scientists, key stakeholders and the community. This will require more 'science communicators' who can use credibility, tenacity, creativity and virtue to effect solutions.

  20. Interactive effects of global and regional change on a coastal ecosystem

    NASA Astrophysics Data System (ADS)

    Reise, Karsten; van Beusekom, Justus E. E.

    2008-03-01

    Shallow waters and lowland meet at the same level in the Wadden Sea, but are separated by walls of coastal defense. What are the prospects of this coastal ecosystem in a warmer world? We focus on tidal waters and inshore sedimentary bottoms, expect nutrient supply from land to decline and species introductions, temperature and sea level to rise. The effects are interrelated and will have an increasing likelihood of abrupt and irreversible developments. The biotic interactions are hardly predictable but we anticipate the following changes to be more likely than others: blooms of phytoplankton will be weak mainly because of increasing pelagic and benthic grazing pressure, both facilitated by warming. Possibly birds feeding on mollusks will encounter decreasing resource availability while fish-eaters benefit. Extensive reefs of Pacific oysters could facilitate aquatic macrophytes. Sea level rise and concomitant hydrodynamics above tidal flats favor well-anchored suspension feeders as well as burrowing fauna adapted to dynamic permeable sand. With high shares of immigrants from overseas and the south, species richness will increase; yet the ecosystem stability may become lower. We suggest that for the next decades invasions of introduced species followed by warming and declining nutrient supply will be the most pressing factor on the changes in the Wadden Sea ecosystem, and the effects of sea level rise to be the key issue on the scale of the whole century and beyond.

  1. Current Status and Future Prospects for the Assessment of Marine and Coastal Ecosystem Services: A Systematic Review

    PubMed Central

    Liquete, Camino; Piroddi, Chiara; Drakou, Evangelia G.; Gurney, Leigh; Katsanevakis, Stelios; Charef, Aymen; Egoh, Benis

    2013-01-01

    Background Research on ecosystem services has grown exponentially during the last decade. Most of the studies have focused on assessing and mapping terrestrial ecosystem services highlighting a knowledge gap on marine and coastal ecosystem services (MCES) and an urgent need to assess them. Methodology/Principal Findings We reviewed and summarized existing scientific literature related to MCES with the aim of extracting and classifying indicators used to assess and map them. We found 145 papers that specifically assessed marine and coastal ecosystem services from which we extracted 476 indicators. Food provision, in particular fisheries, was the most extensively analyzed MCES while water purification and coastal protection were the most frequently studied regulating and maintenance services. Also recreation and tourism under the cultural services was relatively well assessed. We highlight knowledge gaps regarding the availability of indicators that measure the capacity, flow or benefit derived from each ecosystem service. The majority of the case studies was found in mangroves and coastal wetlands and was mainly concentrated in Europe and North America. Our systematic review highlighted the need of an improved ecosystem service classification for marine and coastal systems, which is herein proposed with definitions and links to previous classifications. Conclusions/Significance This review summarizes the state of available information related to ecosystem services associated with marine and coastal ecosystems. The cataloging of MCES indicators and the integrated classification of MCES provided in this paper establish a background that can facilitate the planning and integration of future assessments. The final goal is to establish a consistent structure and populate it with information able to support the implementation of biodiversity conservation policies. PMID:23844080

  2. [Risk assessment of coastal ecosystem in Beibu Gulf, Guangxi of South China].

    PubMed

    Chen, Zuo-Zhi; Cai, Wen-Gui; Xu, Shan-Nan; Huang, Zi-Rong; Qiu, Yong-Song

    2011-11-01

    Based on the marine ecological investigation in the coastal area of Beibu Gulf, Guangxi in September 2009, a GIS-based evaluation was conducted on the present status of ecological environment quality, including seawater quality, nutrient level, biomass, primary productivity, biodiversity, and ecological buffer capacity, in the area in autumn, and the integrated ecological risk index (ERI) was adopted to assess the risk of the coastal ecosystem in the Gulf. In September 2009, the study area had a better ecological environment quality. Most of the risk indicators were at medium or lower level, and the total area was overall at low ecological risk level. The ERI showed that there was an obvious spatial heterogeneity in the distribution of the ecological risk. The nearer to the harbors, the higher the risk was.

  3. Consumer diversity across kingdoms supports multiple functions in a coastal ecosystem.

    PubMed

    Hensel, Marc J S; Silliman, Brian R

    2013-12-17

    The global biodiversity crisis impairs the valuable benefits ecosystems provide humans. These nature-generated benefits are defined by a multitude of different ecosystem functions that operate simultaneously. Although several studies have simulated species loss in communities and tracked the response of single functions such as productivity or nutrient cycling, these studies have involved relatively similar taxa, and seldom are strikingly different functions examined. With the exception of highly managed ecosystems such as agricultural fields, rarely are we interested in only one function being performed well. Instead, we rely on ecosystems to deliver several different functions at the same time. Here, we experimentally investigated the extinction impacts of dominant consumers in a salt marsh. These consumers are remarkably phylogenetically diverse, spanning two kingdoms (i.e., Animalia and Fungi). Our field studies reveal that a diverse consumer assemblage significantly enhances simultaneous functioning of disparate ecosystem processes (i.e., productivity, decomposition, and infiltration). Extreme functional and phylogenetic differences among consumers underlie this relationship. Each marsh consumer affected at least one different ecosystem function, and each individual function was affected by no more than two consumers. The implications of these findings are profound: If we want ecosystems to perform many different functions well, it is not just number of species that matter. Rather, the presence of species representing markedly different ecologies and biology is also essential to maximizing multiple functions. Moreover, this work emphasizes the need to incorporate both microcomponents and macrocomponents of food webs to accurately predict biodiversity declines on integrated-ecosystem functioning.

  4. Vitamin B1 and B12 Uptake and Cycling by Plankton Communities in Coastal Ecosystems

    PubMed Central

    Koch, Florian; Hattenrath-Lehmann, Theresa K.; Goleski, Jennifer A.; Sañudo-Wilhelmy, Sergio; Fisher, Nicholas S.; Gobler, Christopher J.

    2012-01-01

    While vitamin B12 has recently been shown to co-limit the growth of coastal phytoplankton assemblages, the cycling of B-vitamins in coastal ecosystems is poorly understood as planktonic uptake rates of vitamins B1 and B12 have never been quantified in tandem in any aquatic ecosystem. The goal of this study was to establish the relationships between plankton community composition, carbon fixation, and B-vitamin assimilation in two contrasting estuarine systems. We show that, although B-vitamin concentrations were low (pM), vitamin concentrations and uptake rates were higher within a more eutrophic estuary and that vitamin B12 uptake rates were significantly correlated with rates of primary production. Eutrophic sites hosted larger bacterial and picoplankton abundances with larger carbon normalized vitamin uptake rates. Although the >2 μm phytoplankton biomass was often dominated by groups with a high incidence of vitamin auxotrophy (dinoflagellates and diatoms), picoplankton (<2 μm) were always responsible for the majority of B12-vitamin uptake. Multiple lines of evidence suggest that heterotrophic bacteria were the primary users of vitamins among the picoplankton during this study. Nutrient/vitamin amendment experiments demonstrated that, in the Summer and Fall, vitamin B12 occasionally limited or co-limited the accumulation of phytoplankton biomass together with nitrogen. Combined with prior studies, these findings suggest that picoplankton are the primary producers and users of B-vitamins in some coastal ecosystems and that rapid uptake of B-vitamins by heterotrophic bacteria may sometimes deprive larger phytoplankton of these micronutrients and thus influence phytoplankton species succession. PMID:23091470

  5. Vitamin b(1) and b(12) uptake and cycling by plankton communities in coastal ecosystems.

    PubMed

    Koch, Florian; Hattenrath-Lehmann, Theresa K; Goleski, Jennifer A; Sañudo-Wilhelmy, Sergio; Fisher, Nicholas S; Gobler, Christopher J

    2012-01-01

    While vitamin B(12) has recently been shown to co-limit the growth of coastal phytoplankton assemblages, the cycling of B-vitamins in coastal ecosystems is poorly understood as planktonic uptake rates of vitamins B(1) and B(12) have never been quantified in tandem in any aquatic ecosystem. The goal of this study was to establish the relationships between plankton community composition, carbon fixation, and B-vitamin assimilation in two contrasting estuarine systems. We show that, although B-vitamin concentrations were low (pM), vitamin concentrations and uptake rates were higher within a more eutrophic estuary and that vitamin B(12) uptake rates were significantly correlated with rates of primary production. Eutrophic sites hosted larger bacterial and picoplankton abundances with larger carbon normalized vitamin uptake rates. Although the >2 μm phytoplankton biomass was often dominated by groups with a high incidence of vitamin auxotrophy (dinoflagellates and diatoms), picoplankton (<2 μm) were always responsible for the majority of B(12)-vitamin uptake. Multiple lines of evidence suggest that heterotrophic bacteria were the primary users of vitamins among the picoplankton during this study. Nutrient/vitamin amendment experiments demonstrated that, in the Summer and Fall, vitamin B(12) occasionally limited or co-limited the accumulation of phytoplankton biomass together with nitrogen. Combined with prior studies, these findings suggest that picoplankton are the primary producers and users of B-vitamins in some coastal ecosystems and that rapid uptake of B-vitamins by heterotrophic bacteria may sometimes deprive larger phytoplankton of these micronutrients and thus influence phytoplankton species succession.

  6. Impacts of marsh management on coastal-marsh bird habitats

    USGS Publications Warehouse

    Mitchell, L.R.; Gabrey, S.; Marra, P.P.; Erwin, R.M.; ,

    2006-01-01

    The effects of habitat-management practices in coastal marshes have been poorly evaluated. We summarize the extant literature concerning whether these manipulations achieve their goals and the effects of these manipulations on target (i.e., waterfowl and waterfowl food plants) and non-target organisms (particularly coastal-marsh endemics). Although we focus on the effects of marsh management on birds, we also summarize the scant literature concerning the impacts of marsh manipulations on wildlife such as small mammals and invertebrates. We address three common forms of anthropogenic marsh disturbance: prescribed fire, structural marsh management, and open-marsh water management. We also address marsh perturbations by native and introduced vertebrates.

  7. Understanding coastal processes to assist with coastal erosion management in Darwin Harbour, Northern Territory, Australia

    NASA Astrophysics Data System (ADS)

    Tonyes, S. G.; Wasson, R. J.; Munksgaard, N. C.; Evans, K. G.; Brinkman, R.; Williams, D. K.

    2017-02-01

    Sand transport pathways in Darwin Harbour, Northern Territory, Australia, are being investigated to assist with coastal management. Coastal erosion, which threatens public and private infrastructure, is one of the major problems along the harbour beaches. A study of sediment transport is essential to identify the challenges encountered by the stakeholders in coastal management. Darwin Harbour, located in the tropical, cyclone prone area of Australia, was, until recently, considered a near pristine estuary. A semi-diurnal macro-tidal embayment, the tidal variation in the harbour reaches up to 8 m with a mean tidal range of 3.7 m. The beach morphology consists of sandy pocket beaches between coastal cliffs, sandbars, rocky shore platforms, tidal flats and mangrove fringes. A two-dimensional depth averaged finite-element hydrodynamic model (RMA-2), coupled with a sediment transport model (RMA-11) from Resource Modelling Associates, has been used to infer the sources and the depositional areas of sand in the harbour. Grain size distributions and geochemical analysis are also used to characterize the sand and its source(s). Initial results show that the beach sand is mostly of offshore origin with small sand input from the rivers. Potential supplementary sand sources are the eroded materials from the shore platforms and the rocky cliffs. Due to the rapid development in Darwin Harbour, this study is fundamental in understanding coastal processes to support decision making in coastal management, particularly in a macro-tidal, tropical estuary.

  8. Ecosystem health of the Great Barrier Reef: Time for effective management action based on evidence

    NASA Astrophysics Data System (ADS)

    Brodie, Jon; Pearson, Richard G.

    2016-12-01

    The Great Barrier Reef (GBR) is a World Heritage site off the north-eastern coast of Australia. The GBR is worth A 15-20 billion/year to the Australian economy and provides approximately 64,000 full time jobs. Many of the species and ecosystems of the GBR are in poor condition and continue to decline. The principal causes of the decline are catchment pollutant runoff associated with agricultural and urban land uses, climate change impacts and the effects of fishing. Many important ecosystems of the GBR region are not included inside the boundaries of the World Heritage Area. The current management regime for catchment pollutant runoff and climate change is clearly inadequate to prevent further decline. We propose a refocus of management on a "Greater GBR" (containing not only the major ecosystems and species of the GBR, but also its catchment) and on a set of management actions to halt the decline of the GBR. Proposed actions include: (1) Strengthen management in the areas of the Greater GBR where ecosystems are in good condition, with Torres Strait, northern Cape York and Hervey Bay being the systems with highest current integrity; (2) Investigate methods of cross-boundary management to achieve simultaneous cost-effective terrestrial, freshwater and marine ecosystem protection in the Greater GBR; (3) Develop a detailed, comprehensive, costed water quality management plan for the Greater GBR; (4) Use the Great Barrier Reef Marine Park Act and the Environment Protection and Biodiversity Conservation Act to regulate catchment activities that lead to damage to the Greater GBR, in conjunction with the relevant Queensland legislation; (5) Fund catchment and coastal management to the required level to solve pollution issues for the Greater GBR by 2025, before climate change impacts on Greater GBR ecosystems become overwhelming; (6) Continue enforcement of the zoning plan; (7) Australia to show commitment to protecting the Greater GBR through greenhouse gas emissions

  9. How models can support ecosystem-based management of coral reefs

    NASA Astrophysics Data System (ADS)

    Weijerman, Mariska; Fulton, Elizabeth A.; Janssen, Annette B. G.; Kuiper, Jan J.; Leemans, Rik; Robson, Barbara J.; van de Leemput, Ingrid A.; Mooij, Wolf M.

    2015-11-01

    Despite the importance of coral reef ecosystems to the social and economic welfare of coastal communities, the condition of these marine ecosystems have generally degraded over the past decades. With an increased knowledge of coral reef ecosystem processes and a rise in computer power, dynamic models are useful tools in assessing the synergistic effects of local and global stressors on ecosystem functions. We review representative approaches for dynamically modeling coral reef ecosystems and categorize them as minimal, intermediate and complex models. The categorization was based on the leading principle for model development and their level of realism and process detail. This review aims to improve the knowledge of concurrent approaches in coral reef ecosystem modeling and highlights the importance of choosing an appropriate approach based on the type of question(s) to be answered. We contend that minimal and intermediate models are generally valuable tools to assess the response of key states to main stressors and, hence, contribute to understanding ecological surprises. As has been shown in freshwater resources management, insight into these conceptual relations profoundly influences how natural resource managers perceive their systems and how they manage ecosystem recovery. We argue that adaptive resource management requires integrated thinking and decision support, which demands a diversity of modeling approaches. Integration can be achieved through complimentary use of models or through integrated models that systemically combine all relevant aspects in one model. Such whole-of-system models can be useful tools for quantitatively evaluating scenarios. These models allow an assessment of the interactive effects of multiple stressors on various, potentially conflicting, management objectives. All models simplify reality and, as such, have their weaknesses. While minimal models lack multidimensionality, system models are likely difficult to interpret as they

  10. Managing bay and estuarine ecosystems for multiple services

    USGS Publications Warehouse

    Needles, Lisa A.; Lester, Sarah E.; Ambrose, Richard; Andren, Anders; Beyeler, Marc; Connor, Michael S.; Eckman, James E.; Costa-Pierce, Barry A.; Gaines, Steven D.; Lafferty, Kevin D.; Lenihan, Junter S.; Parrish, Julia; Peterson, Mark S.; Scaroni, Amy E.; Weis, Judith S.; Wendt, Dean E.

    2013-01-01

    Managers are moving from a model of managing individual sectors, human activities, or ecosystem services to an ecosystem-based management (EBM) approach which attempts to balance the range of services provided by ecosystems. Applying EBM is often difficult due to inherent tradeoffs in managing for different services. This challenge particularly holds for estuarine systems, which have been heavily altered in most regions and are often subject to intense management interventions. Estuarine managers can often choose among a range of management tactics to enhance a particular service; although some management actions will result in strong tradeoffs, others may enhance multiple services simultaneously. Management of estuarine ecosystems could be improved by distinguishing between optimal management actions for enhancing multiple services and those that have severe tradeoffs. This requires a framework that evaluates tradeoff scenarios and identifies management actions likely to benefit multiple services. We created a management action-services matrix as a first step towards assessing tradeoffs and providing managers with a decision support tool. We found that management actions that restored or enhanced natural vegetation (e.g., salt marsh and mangroves) and some shellfish (particularly oysters and oyster reef habitat) benefited multiple services. In contrast, management actions such as desalination, salt pond creation, sand mining, and large container shipping had large net negative effects on several of the other services considered in the matrix. Our framework provides resource managers a simple way to inform EBM decisions and can also be used as a first step in more sophisticated approaches that model service delivery.

  11. Bringing ecosystem services into integrated water resources management.

    PubMed

    Liu, Shuang; Crossman, Neville D; Nolan, Martin; Ghirmay, Hiyoba

    2013-11-15

    In this paper we propose an ecosystem service framework to support integrated water resource management and apply it to the Murray-Darling Basin in Australia. Water resources in the Murray-Darling Basin have been over-allocated for irrigation use with the consequent degradation of freshwater ecosystems. In line with integrated water resource management principles, Australian Government reforms are reducing the amount of water diverted for irrigation to improve ecosystem health. However, limited understanding of the broader benefits and trade-offs associated with reducing irrigation diversions has hampered the planning process supporting this reform. Ecosystem services offer an integrative framework to identify the broader benefits associated with integrated water resource management in the Murray-Darling Basin, thereby providing support for the Government to reform decision-making. We conducted a multi-criteria decision analysis for ranking regional potentials to provide ecosystem services at river basin scale. We surveyed the wider public about their understanding of, and priorities for, managing ecosystem services and then integrated the results with spatially explicit indicators of ecosystem service provision. The preliminary results of this work identified the sub-catchments with the greatest potential synergies and trade-offs of ecosystem service provision under the integrated water resources management reform process. With future development, our framework could be used as a decision support tool by those grappling with the challenge of the sustainable allocation of water between irrigation and the environment.

  12. Valuing biodiversity and ecosystem services: a useful way to manage and conserve marine resources?

    PubMed Central

    Broszeit, Stefanie; Pilling, Graham M.; Grant, Susie M.; Austen, Melanie C.

    2016-01-01

    Valuation of biodiversity and ecosystem services (ES) is widely recognized as a useful, though often controversial, approach to conservation and management. However, its use in the marine environment, hence evidence of its efficacy, lags behind that in terrestrial ecosystems. This largely reflects key challenges to marine conservation and management such as the practical difficulties in studying the ocean, complex governance issues and the historically-rooted separation of biodiversity conservation and resource management. Given these challenges together with the accelerating loss of marine biodiversity (and threats to the ES that this biodiversity supports), we ask whether valuation efforts for marine ecosystems are appropriate and effective. We compare three contrasting systems: the tropical Pacific, Southern Ocean and UK coastal seas. In doing so, we reveal a diversity in valuation approaches with different rates of progress and success. We also find a tendency to focus on specific ES (often the harvested species) rather than biodiversity. In light of our findings, we present a new conceptual view of valuation that should ideally be considered in decision-making. Accounting for the critical relationships between biodiversity and ES, together with an understanding of ecosystem structure and functioning, will enable the wider implications of marine conservation and management decisions to be evaluated. We recommend embedding valuation within existing management structures, rather than treating it as an alternative or additional mechanism. However, we caution that its uptake and efficacy will be compromised without the ability to develop and share best practice across regions. PMID:27928037

  13. Valuing biodiversity and ecosystem services: a useful way to manage and conserve marine resources?

    PubMed

    Cavanagh, Rachel D; Broszeit, Stefanie; Pilling, Graham M; Grant, Susie M; Murphy, Eugene J; Austen, Melanie C

    2016-12-14

    Valuation of biodiversity and ecosystem services (ES) is widely recognized as a useful, though often controversial, approach to conservation and management. However, its use in the marine environment, hence evidence of its efficacy, lags behind that in terrestrial ecosystems. This largely reflects key challenges to marine conservation and management such as the practical difficulties in studying the ocean, complex governance issues and the historically-rooted separation of biodiversity conservation and resource management. Given these challenges together with the accelerating loss of marine biodiversity (and threats to the ES that this biodiversity supports), we ask whether valuation efforts for marine ecosystems are appropriate and effective. We compare three contrasting systems: the tropical Pacific, Southern Ocean and UK coastal seas. In doing so, we reveal a diversity in valuation approaches with different rates of progress and success. We also find a tendency to focus on specific ES (often the harvested species) rather than biodiversity. In light of our findings, we present a new conceptual view of valuation that should ideally be considered in decision-making. Accounting for the critical relationships between biodiversity and ES, together with an understanding of ecosystem structure and functioning, will enable the wider implications of marine conservation and management decisions to be evaluated. We recommend embedding valuation within existing management structures, rather than treating it as an alternative or additional mechanism. However, we caution that its uptake and efficacy will be compromised without the ability to develop and share best practice across regions.

  14. [Resistance of microorganisms of coastal ecosystems of the Dead Sea to extremal factors].

    PubMed

    Romanovskaia, V A; Avdeeva, L V; Gladka, G V; Pritula, I R; Kharkhota, M A; Tashirev, A B

    2013-01-01

    Such extreme factors as UV radiation, high temperature and salinity, and also the small amount of accessible water have an influence on microorganisms of coastal ecosystems of the Dead Sea. Resistance to these factors of the microorganisms isolated from ecosystems of this region (vertical steep gorge around the Dead Sea, clay-salt plain and black highly mineralized muds) is studied. Aerobic, chemoorganotrophic, thermotolerant, moderately halophilic bacteria which, according to their morphological and physiological properties, are similar to species Gracilibacillus halotolerans, Salimicrobium album and genus Caryophanon have been isolated from these ecosystems. All strains grew at 0-10% of NaCl in the medium (one strain--at 15% of NaCl), in the range of 30-50 degrees C. Resistance to UV radiation has been revealed in all the investigated bacteria Lethal doses of UV (LD90 and LD99.99) for spore-forming strains of genus Gracilibacillus were 100-170 and 1100-1500 J/m2, respectively; for strain Salimicrobium 6t1 (does not form spores)--70 and 400 J/m2; for the strain lt4 (genus Caryophanon), forming filamentous (or trychomes)--150 and 1400 J/m2. Some strains of genus Gracilibacillus had strong antagonistic effect on conditionally pathogenic test cultures Staphylococcus aureus 209p and Candida albicans UCM Y-690. It is conceivable that resistance of microorganisms of coastal ecosystems of the Dead Sea to extreme factors was generated under the influence of abiotic (physical and chemical) factors typical of this region.

  15. Managing the whole landscape: Historical, hybrid, and novel ecosystems

    USGS Publications Warehouse

    Hobbs, Richard J.; Higgs, Eric S.; Hall, Carol M.; Bridgewater, Peter; Chapin, F. Stuart; Ewel, John J.; Hallett, Lauren M.; Ellis, Erle C.; Harris, James; Hulvey, Kristen B.; Jackson, Stephen T.; Kennedy, Patricia L.; Kueffer, Christoph; Lach, Lori; Lantz, Trevor C.; Lugo, Ariel E.; Mascaro, Joseph; Murphy, Stephen D.; Nelson, Cara; Perring, Michael P.; Richardson, David M.; Seastedt, Timothy; Standish, Rachel J.; Starzomski, Brian M.; Suding, Katharine N.; Tognetti, Pedro M.; Yakob, Laith; Yung, Laurie

    2014-01-01

    The reality confronting ecosystem managers today is one of heterogeneous, rapidly transforming landscapes, particularly in the areas more affected by urban and agricultural development. A landscape management framework that incorporates all systems, across the spectrum of degrees of alteration, provides a fuller set of options for how and when to intervene, uses limited resources more effectively, and increases the chances of achieving management goals. That many ecosystems have departed so substantially from their historical trajectory that they defy conventional restoration is not in dispute. Acknowledging novel ecosystems need not constitute a threat to existing policy and management approaches. Rather, the development of an integrated approach to management interventions can provide options that are in tune with the current reality of rapid ecosystem change.

  16. Sustainable Management of Coastal Environments Through Coupled Terrestrial-Coastal Ocean Models

    NASA Astrophysics Data System (ADS)

    Lohrenz, S. E.; Cai, W.; Tian, H.; He, R.; Xue, Z.; Fennel, K.; Hopkinson, C.; Howden, S. D.

    2012-12-01

    Changing climate and land use practices have the potential to dramatically alter coupled hydrologic-biogeochemical processes and associated movement of water, carbon and nutrients through various terrestrial reservoirs into rivers, estuaries, and coastal ocean waters. Consequences of climate- and land use-related changes will be particularly evident in large river basins and their associated coastal outflow regions. The large spatial extent of such systems necessitates a combination of satellite observations and model-based approaches coupled with targeted ground-based site studies to adequately characterize relationships among climate forcing (e.g., wind, precipitation, temperature, solar radiation, humidity, extreme weather), land use practice/land cover change, and transport of materials through watersheds and, ultimately, to coastal regions. Here, we describe a NASA Interdisciplinary Science project that employs an integrated suite of models in conjunction with remotely sensed as well as targeted in situ observations with the objectives of describing processes controlling fluxes on land and their coupling to riverine, estuarine and ocean ecosystems. The objectives of this effort are to 1) assemble and evaluate long term datasets for the assessment of impacts of climate variability, extreme weather events, and land use practices on transport of water, carbon and nitrogen within terrestrial systems and the delivery of materials to waterways and rivers; 2) using the Mississippi River as a testbed, develop and evaluate an integrated suite of models to describe linkages between terrestrial and riverine systems, transport of carbon and nutrients in the Mississippi river and its tributaries, and associated cycling of carbon and nutrients in coastal ocean waters; and 3) evaluate uncertainty in model products and parameters and identify areas where improved model performance is needed through model refinement and data assimilation. The effort employs the Dynamic Land

  17. Environmental conditions and pesticide pollution of two coastal ecosystems in the Gulf of California, Mexico.

    PubMed

    Reyes, G G; Villagrana L, C; Alvarez, G L

    1999-11-01

    In December 1997 and April and September 1998, water temperature, salinity, dissolved oxygen, nutrients, chlorophyll, and pesticide residues were determined in two coastal ecosystems of Sinaloa, NW Mexico: Ensenada del Pabellón and Bahía de Santa María. These two are considered to be among the greatest shrimp producers in the region. Temperature, salinity, and dissolved oxygen were similar to those of other ecosystems of this region: high temperatures and salinity in spring and summer (dry season) and lower in winter and the rainy season. Levels of nitrites and phosphates and chlorophyll concentration were relatively higher than those of other ecosystems nearby, probably due to fertilizers used in the agricultural lands surrounding the water bodies studied. The pesticides more frequently detected were BHCalpha, aldrin, endosulfan and parathion. In some cases, pesticides forbidden by Mexican regulations were detected. These results indicate that the ecosystems studied are in a warning condition, because severe biochemical and physiological alterations have been reported in crustaceans exposed to pesticides. Therefore these pesticides could be one cause of the slow growth, diverse pathologies, and mortality in shrimp that have been reported in recent years.

  18. Facing uncertainty in ecosystem services-based resource management.

    PubMed

    Grêt-Regamey, Adrienne; Brunner, Sibyl H; Altwegg, Jürg; Bebi, Peter

    2013-09-01

    The concept of ecosystem services is increasingly used as a support for natural resource management decisions. While the science for assessing ecosystem services is improving, appropriate methods to address uncertainties in a quantitative manner are missing. Ignoring parameter uncertainties, modeling uncertainties and uncertainties related to human-environment interactions can modify decisions and lead to overlooking important management possibilities. In this contribution, we present a new approach for mapping the uncertainties in the assessment of multiple ecosystem services. The spatially explicit risk approach links Bayesian networks to a Geographic Information System for forecasting the value of a bundle of ecosystem services and quantifies the uncertainties related to the outcomes in a spatially explicit manner. We demonstrate that mapping uncertainties in ecosystem services assessments provides key information for decision-makers seeking critical areas in the delivery of ecosystem services in a case study in the Swiss Alps. The results suggest that not only the total value of the bundle of ecosystem services is highly dependent on uncertainties, but the spatial pattern of the ecosystem services values changes substantially when considering uncertainties. This is particularly important for the long-term management of mountain forest ecosystems, which have long rotation stands and are highly sensitive to pressing climate and socio-economic changes.

  19. Assessing the impact of edaphic factors on coastal ecosystem functions in a tropical island using electromagnetic-induction

    NASA Astrophysics Data System (ADS)

    Lynch, N. E.; Wuddivira, M.; Oatham, M.

    2013-12-01

    The small islands in the low-lying states of the Caribbean Basin are among the most vulnerable to sea level rise caused by climate change. Bequia, a tropical Grenadine island, is particularly susceptible due to its small land mass, limited natural resources and an economy that is touristic and marine based. Consultation with stakeholders on sustainable livelihoods revealed that degradation of the coastal ecosystem is occurring with progressing time. Consequently, the island is losing its beneficial ecosystem services and its natural attractiveness leading to declining revenue base, increasing food security risk and job losses. We propose that with sea level rise, soil salinity increases further inland leading to degradation of coastal zones and ecosystem functions. Using geophysical techniques and standard sampling procedures we observationally investigated the spatial and temporal impacts of soil salinization due to sea level changes on the ecosystem functions of five coastal areas in the seven square mile island of Bequia. We analyzed soil, tidal, rainfall data and historical aerial imagery to assess the impact of soil salinity on the ecosystem of Bequia. Our results show extreme seasonal salinity variability with increased salinity inland during the dry season months of January to May. This was significantly influenced by the fluctuation of seasonal water content and temperature. A complete time-based analysis ensures the development of adaptation strategies to coastal change for sustainable provisioning of ecosystem services for Bequia and other Caribbean Islands with minimum ecological and economic losses.

  20. Coastal zone and Continental Shelf conflict resolution: improving ocean use and resource dispute management

    SciTech Connect

    Nyhart, J.D.; Harding, E.T.

    1985-11-01

    Contents include: An overview of coastal zone and continental shelf conflicts; Experience in coastal zone management conflict; Future coastal zone conflicts; Outer continental shelf conflicts; Georges Bank and Gulf of Maine; and Future considerations.

  1. Managing oil and gas activities in coastal environments: refuge manual

    SciTech Connect

    Longley, W.L.; Jackson, R.; Snyder, B.

    1981-09-01

    A study was undertaken to determine the impacts of all aspects of oil and gas development upon coastal ecological systems and to assess the safeguards used in protecting refuge lands. Wildlife refuges along the coasts of Texas and Louisiana were selected for intensive study. These refuges were characterized by (1) a diversity of ecosystems, (2) oil exploration, extraction, and transport, and (3) oil and gas development periods of varying durations.

  2. Ecology, Ecosystem Management and Biology Teaching. Biology and Human Welfare.

    ERIC Educational Resources Information Center

    Spellerberg, Ian F.; Pritchard, Alan J.

    This six-chapter document (part of a series on biology and human welfare) focuses on ecology, ecosystem management, and biology teaching. Chapter 1 discusses the basic elements of ecology (considering organisms and their environment, populations, and communities and ecosystems). Chapter 2 describes several aspects of human ecology and resources…

  3. 75 FR 8649 - Evaluation of State Coastal Management Programs and National Estuarine Research Reserves

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-25

    ... Resource Management (OCRM) announces a rescheduled site visit and time for a public meeting previously... National Oceanic and Atmospheric Administration Evaluation of State Coastal Management Programs and... of Ocean and Coastal Resource Management, National Ocean Service, Commerce. ACTION: Notice of...

  4. Managing coastal area resources by stated choice experiments

    NASA Astrophysics Data System (ADS)

    Liu, Xin; Wirtz, Kai W.

    2010-02-01

    In many coastal regions, oil spills can be considered as one of the most important and certainly the most noticeable forms of marine pollution. Efficient contingency management responding to oil spills on waters, which aims at minimizing pollution effects on coastal resources, turns out to be critically important. Such a decision making highly depends on the importance attributed to different coastal economic and ecological resources. Economic uses can, in principal, be addressed by standard measures such as value added. However, there is a missing of market in the real world for natural goods. Coastal resources such as waters and beach cannot be directly measured in money terms, which increases the risk of being neglected in a decision making process. This paper evaluates these natural goods of coastal environment in a hypothetical market by employing stated choice experiments. Oil spill management practice in German North Sea is used as an example. Results from a pilot survey show that during a combat process, beach and eider ducks are of key concerns for households. An environmental friendly combat option has to be a minor cost for households. Moreover, households with less children, higher monthly income and a membership of environmental organization are more likely to state that they are willing to pay for combat option to prevent coastal resources from an oil pollution. Despite that choice experiments require knowledge of designing questionnaire and statistical skills to deal with discrete choices and conducting a survey is time consumed, the results have important implications for oil spill contingency management. Overall, such a stated preference method can offer useful information for decision makers to consider coastal resources into a decision making process and can further contribute to finding a cost-effective oil preventive measure, also has a wide application potential in the field of Integrated Coastal Zone Management (ICZM).

  5. A Model for Experiential Learning: Coastal Ecosystems of Micronesia in a Changing Climate

    NASA Astrophysics Data System (ADS)

    Maloney, A. E.; Ladd, N.; Sachs, J. P.

    2013-12-01

    An intensive undergraduate course taught in Pohnpei (Federated States of Micronesia) June 22nd - July 19, 2013 through the University of Washington Study Abroad Program allowed students to intimately explore estuary, mangrove, seagrass, and coral habitat from a systems perspective. The curriculum was developed in 2010 and 2011 during a similar course taught in nearby Kosrae (Federated States of Micronesia). The course was based on field surveys of several sites from each habitat with assistance from local non-profit groups and Pohnpei government partners. Field surveys were supplemented by lectures from these local agencies or the course instructors. Classroom activities explored the connectivity of coastal ecosystems and how each habitat may be impacted by climate change. The instructors' tropical paleoclimate research objectives further supplemented the curriculum. Additionally, cultural activities facilitated an understanding of social interactions with coastal ecosystems. Students wrote field reports for each habitat and communicated the data to local agencies in an oral presentation. The class activities allowed students to engage in data analysis, interpretation, and communication while being immersed in the unique culture and environment of Micronesia.

  6. The future of coastal upwelling ecosystems: the impact of potential wind changes on ocean acidification and coastal hypoxia

    NASA Astrophysics Data System (ADS)

    Lachkar, Z.; Gruber, N.

    2012-04-01

    The upwelling of deep, low pH, and low oxygen water to the surface makes eastern boundary upwelling systems (EBUS) naturally prone to global change induced perturbations such as ocean acidification and ocean deoxygentation related to decreased ocean ventilation. The severity of these chemical perturbations may further be exacerbated in EBUS by the potential increase in upwelling favorable winds induced by global warming. Here, we explore the impact of upwelling-favorable wind changes on modern and future ocean acidification and coastal hypoxia through a comparative study of the California Current System (California CS) and the Canary Current System (Canary CS). To this end, we undertook a series of idealized wind perturbation studies for present-day and year 2050 conditions with eddy-resolving setups of the Regional Oceanic Modeling System - ROMS- to which a nitrogen-based Nutrient-Phytoplankton-Detritus-Zooplankton (NPDZ) biogeochemical model was coupled. Our results show that the increase of upwelling favorable winds leads to a substantial shoaling of the hypoxic boundary in the California CS, while the same wind perturbation results in a reduction of the hypoxic water volume in the Canary CS. This is because coastal hypoxia is driven by local remineralization of organic matter on the shelf in the Canary CS, while it is essentially driven by large-scale advection of low oxygen water in the California CS. The intensification of upwelling tends to acerbate ocean acidification in the surface ocean, but mediates it below it, leading to complex change pattern reflecting the intricate interplay between biologically and physically -driven changes in calcium carbonate saturation state. Additionally, our results reveal differential biogeochemical responses to upwelling intensification in the water column and on the continental shelf with, therefore, contrasting implications for the benthic and the pelagic communities of these ecosystems.

  7. Comparison between Atlantic and Pacific Tropical Marine Coastal Ecosystems: Community Structure, Ecological Processes, and Productivity. Results and Scientific Papers of a Unesco/COMAR Workshop (Suva, Fiji, March 24-29, 1986). Unesco Reports in Marine Science 46.

    ERIC Educational Resources Information Center

    Birkeland, Charles, Ed.

    This report presents the Unesco workshop conclusions concerning important differences among tropical seas in terms of ecological processes in coastal marine ecosystems, and the corresponding implications for resource management guidelines. The conclusions result from the presentation and discussion of eight review papers which are included in this…

  8. Major Ecosystems in China: Dynamics and Challenges for Sustainable Management

    NASA Astrophysics Data System (ADS)

    Lü, Yihe; Fu, Bojie; Wei, Wei; Yu, Xiubo; Sun, Ranhao

    2011-07-01

    Ecosystems, though impacted by global environmental change, can also contribute to the adaptation and mitigation of such large scale changes. Therefore, sustainable ecosystem management is crucial in reaching a sustainable future for the biosphere. Based on the published literature and publicly accessible data, this paper discussed the status and trends of forest, grassland, and wetland ecosystems in China that play important roles in the ecological integrity and human welfare of the nation. Ecological degradation has been observed in these ecosystems at various levels and geographic locations. Biophysical (e.g., climate change) and socioeconomic factors (e.g., intensive human use) are the main reasons for ecosystem degradation with the latter factors serving as the dominant driving forces. The three broad categories of ecosystems in China have partially recovered from degradation thanks to large scale ecological restoration projects implemented in the last few decades. China, as the largest and most populated developing nation, still faces huge challenges regarding ecosystem management in a changing and globalizing world. To further improve ecosystem management in China, four recommendations were proposed, including: (1) advance ecosystem management towards an application-oriented, multidisciplinary science; (2) establish a well-functioning national ecological monitoring and data sharing mechanism; (3) develop impact and effectiveness assessment approaches for policies, plans, and ecological restoration projects; and (4) promote legal and institutional innovations to balance the intrinsic needs of ecological and socioeconomic systems. Any change in China's ecosystem management approach towards a more sustainable one will benefit the whole world. Therefore, international collaborations on ecological and environmental issues need to be expanded.

  9. Incorporating green-area user groups in urban ecosystem management.

    PubMed

    Colding, Johan; Lundberg, Jakob; Folke, Carl

    2006-08-01

    We analyze the role of urban green areas managed by local user groups in their potential for supporting biodiversity and ecosystem services in growing city-regions, with focus on allotment areas, domestic gardens, and golf courses. Using Stockholm, Sweden, as an example cityregion, we compile GIS data of its spatial characteristics and relate these data to GIS data for protected areas and "green wedges" prioritized in biodiversity conservation. Results reveal that the three land uses cover 18% of the studied land area of metropolitan Stockholm, which corresponds to more than twice the land set aside as protected areas. We review the literature to identify ecosystem functions and services provided by the three green areas and discuss their potential in urban ecosystem management. We conclude that the incorporation of locally managed lands, and their stewards and institutions, into comanagement designs holds potential for improving conditions for urban biodiversity, reducing transaction costs in ecosystem management, and realizing local Agenda 21.

  10. Follicular apoptosis in the mussel (Mytella strigata) as potential indicator of environmental stress in coastal ecosystems.

    PubMed

    Garcia-Gasca, Alejandra; Leal-Tarin, Beatriz; Rios-Sicairos, Julian; Hernandez-Cornejo, Rubi; Aguilar-Zarate, Gabriela; Betancourt-Lozano, Miguel

    2010-01-01

    Follicular apoptosis in the tropical mussel Mytella strigata was assessed in three coastal lagoons located in the southern Gulf of California, Mexico. Mussels were collected from three coastal lagoons associated with different scenarios of anthropogenic stress during one year. The gonad of each mussel was dissected, weighed, and sampled for histology and apoptosis analysis by TUNEL labeling. Two apoptotic indices were used: the apoptotic index of cells (AIC) based on the number of follicular cells in apoptosis in one thousand cells counted per gonad, and the apoptotic index of follicles (AIF) based on the number of follicular cells per follicle per gonad. Both indices showed high association with each other for all developmental stages, although AIF seemed to better discriminate among sites. Higher AIF and AIC were observed at the Urias Estuary (1.6 and 1.5 respectively) ranked as highly polluted, followed by Ensenada del Pabellon (0.82 and 0.95 respectively), ranked as moderately polluted, and the Teacapan Estuary (0.57 and 0.76 respectively) ranked as slightly polluted. Our data indicate that the apoptotic index in tropical mussels could be a useful indicator of environmental stress in coastal ecosystems; however, the ecological relevance of follicular apoptosis in polluted environments needs further investigation.

  11. Invasive grasses, climate change, and exposure to storm-wave overtopping in coastal dune ecosystems.

    PubMed

    Seabloom, Eric W; Ruggiero, Peter; Hacker, Sally D; Mull, Jeremy; Zarnetske, Phoebe

    2013-03-01

    The world's coastal habitats are critical to human well-being, but are also highly sensitive to human habitat alterations and climate change. In particular, global climate is increasing sea levels and potentially altering storm intensities, which may result in increased risk of flooding in coastal areas. In the Pacific Northwest (USA), coastal dunes that protect the coast from flooding are largely the product of a grass introduced from Europe over a century ago (Ammophila arenaria). An introduced congener (A. breviligulata) is displacing A. arenaria and reducing dune height. Here we quantify the relative exposure to storm-wave induced dune overtopping posed by the A. breviligulata invasion in the face of projected multi-decadal changes in sea level and storm intensity. In our models, altered storm intensity was the largest driver of overtopping extent, however the invasion by A. breviligulata tripled the number of areas vulnerable to overtopping and posed a fourfold larger exposure than sea-level rise over multi-decadal time scales. Our work demonstrates the importance of a transdisciplinary approach that draws on insights from ecology, geomorphology, and civil engineering to assess the vulnerability of ecosystem services in light of global change.

  12. Use of structured decision making to identify monitoring variables and management priorities for salt marsh ecosystems

    USGS Publications Warehouse

    Neckles, Hilary A.; Lyons, James E.; Guntenspergen, Glenn R.; Shriver, W. Gregory; Adamowicz, Susan C.

    2015-01-01

    Most salt marshes in the USA have been degraded by human activities, and coastal managers are faced with complex choices among possible actions to restore or enhance ecosystem integrity. We applied structured decision making (SDM) to guide selection of monitoring variables and management priorities for salt marshes within the National Wildlife Refuge System in the northeastern USA. In general, SDM is a systematic process for decomposing a decision into its essential elements. We first engaged stakeholders in clarifying regional salt marsh decision problems, defining objectives and attributes to evaluate whether objectives are achieved, and developing a pool of alternative management actions for achieving objectives. Through this process, we identified salt marsh attributes that were applicable to monitoring National Wildlife Refuges on a regional scale and that targeted management needs. We then analyzed management decisions within three salt marsh units at Prime Hook National Wildlife Refuge, coastal Delaware, as a case example of prioritizing management alternatives. Values for salt marsh attributes were estimated from 2 years of baseline monitoring data and expert opinion. We used linear value modeling to aggregate multiple attributes into a single performance score for each alternative, constrained optimization to identify alternatives that maximized total management benefits subject to refuge-wide cost constraints, and used graphical analysis to identify the optimal set of alternatives for the refuge. SDM offers an efficient, transparent approach for integrating monitoring into management practice and improving the quality of management decisions.

  13. European environmental management: moving to an ecosystem approach.

    PubMed

    Apitz, Sabine E; Elliott, Michael; Fountain, Michelle; Galloway, Tamara S

    2006-01-01

    The European Union has adopted several environmental directives, strategies, recommendations, and agreements that require a shift from local- or regional-based regulations to more ecosystem-based, holistic environmental management. Over the next decade, environmental management in Europe is likely to focus more on biological and ecological conditions rather than physical and chemical conditions, with ecosystem health at the center of regulation and management decision making. Successful implementation of this new ecosystem management and strategic assessment process in Europe will require the integration of regulatory and technical information and extensive collaboration from among European Union member countries, between agencies, and across disciplines to an unprecedented degree. It will also require extensive efforts to adapt current systems of environmental assessment and management to the basin and ecosystem level, across media and habitats, and considering a much broader set of impacts on ecosystem status than is currently addressed in most risk assessments. This will require the understanding, integration, and communication of economic, ecological, hydrological, and other processes across many spatial and temporal scales. This article discusses these challenges and describes some of the research initiatives that will help achieve integrated ecosystem management in Europe.

  14. FORUM: Defining Goals and Criteria for Ecosystem-Based Management

    PubMed

    Slocombe

    1998-07-01

    / Identifying goals or targets for landscape and ecosystem management is now a widely recognized need that has received little systematic attention. At a micro-level most planners and managers of both ecosystems and economies continue to pursue traditional goals and targets that miss many desirable characteristics of ecosystem-based management goals. Desirable characteristics of ecosystem and landscape management goals and targets include: addressing complexity, transdisciplinarity, and the dynamic nature of natural systems; reflecting the wide range of interests and goals that exist; recognizing goals and values and limits; involving people and being explainable and implementable in a consistent way to different people and groups; and evolving adaptively as conditions and knowledge change. Substantive and procedural goals can be distinguished; the latter supporting the former. Substantive goals can be grouped according to their relationship to system structure, organization, and process/dynamics, and their disciplinary or subsystemic breadth. These discussions are illustrated by a review of the goals of biodiversity, sustainability, ecological health, and integrity. An example of a hierarchical framework of procedural goals and objectives that supports achievement of substantive goals is also provided. The conclusion is that a parallel, linked system of substantive and procedural goals at different levels of complexity and disciplinarity is needed to facilitate ecosystem-based management.KEY WORDS: Ecosystem management; Goals and objectives; Assessment criteria

  15. Remote Sensing and Ecosystem Modeling for Protected Area Management

    NASA Astrophysics Data System (ADS)

    Melton, F.; Michaelis, A.; Votava, P.; Milesi, C.; Hashimoto, H.; Hiatt, S.; Nemani, R.

    2007-12-01

    Managers of U.S. national parks and international protected areas are under increasing pressure to monitor changes in park ecosystems resulting from climate and land use change within and adjacent to park boundaries. Despite great interest in these areas and the fact that some U.S. parks receive as many as 3.5 million visitors per year, U.S. and international protected areas are often sparsely instrumented, making it difficult for resource managers to quickly identify trends and changes in landscape conditions. Remote sensing and ecosystem modeling offer protected area managers important tools for monitoring of ecosystem conditions and scientifically based decision-making. These tools, however, can generate large data volumes and can require labor-intensive data processing making them difficult for protected area managers to use. To overcome these obstacles, the Terrestrial Observation and Prediction System (TOPS) is currently being applied to automate the production, analysis, and delivery of a suite of data products from NASA satellites and ecosystem models to assist managers of U.S. national parks. TOPS uses ecosystem models to combine satellite data with ground-based observations to produce nowcasts and forecasts of ecosystem conditions. We are utilizing TOPS to deliver data products via a browser-based interface to NPS resource managers in near real- time for use in landscape monitoring and operational decision-making. Current products include measures of vegetation condition, ecosystem productivity, soil moisture, snow cover, climate, and fire occurrence. The use of TOPS component models and technologies streamlines the data processing chain and automates the process of ingesting and synthesizing heterogeneous data inputs. In addition, we describe the use of TOPS to automate the identification of trends and anomalies in ecosystem conditions, enabling protected area managers to track park-wide conditions daily, identify significant changes, focus monitoring

  16. Decision-making in Coastal Management and a Collaborative Governance Framework

    EPA Science Inventory

    Over half of the US population lives in coastal watersheds, creating a regional pressure for coastal ecosystems to provide a broad spectrum of services while continuing to support healthy communities and economies. The National Ocean Policy, issued in 2010, and Coastal and Marin...

  17. Using Probiotics and Prebiotics to Manage the Gastrointestinal Tract Ecosystem

    NASA Astrophysics Data System (ADS)

    Buddington, Randal

    Natural and man-made ecosystems are routinely managed to increase productivity and provide desired characteristics. The management approaches most commonly used include the addition of desired organisms, provision of fertilizers or feeds to encourage desired species, alteration of the physical or chemical features of the environment, and the selective removal of undesirable species. The selection of specific management strategies and their success are dependent on a thorough understanding of existing ecosystem characteristics and the short and long-term responses to the management strategy.

  18. Towards sustainable management of louisiana's coastal wetland forests: Problems, constraints, and a new beginning

    USGS Publications Warehouse

    Chambers, J.L.; Conner, W.H.; Keim, R.F.; Faulkner, S.P.; Day, J.W.; Gardiner, E.S.; Hughes, M.S.; King, S.L.; McLeod, K.W.; Miller, C.A.; Nyman, J.A.; Shaffer, G.P.

    2006-01-01

    Over 345,000 ha of forested swamps occur throughout the Mississippi River Deltaic Plain. Natural and anthropogenic changes in hydrology and geomorphology at local and landscape levels have reduced the productivity in many of these coastal wetland forests areas and have caused the complete loss of forest cover in some places. A summary and interpretation of the available science, suggestions for policy change, and a multidisciplinary (multi-responsibility) approach were needed to address these issues [in the context of private land]. In response, the Louisiana Governor's office formed a Coastal Wetland Forest Conservation and Use Science Working Group (SWG) and an associated Advisory Panel to provide the Governor with information and suggestions of strategies for environmental and economic utilization, conservation, and protection of Louisiana's coastal wetland forest ecosystem in the long-term. The process of engaging scientists, resource managers, and other stakeholders in this effort is described, and the recommendations of the SWG are presented relative to forestry practices and the potential for sustainable management of coastal wetland forests.

  19. Towards sustainable management of Louisiana’s coastal wetland forests: problems, constraints, and a new beginning

    SciTech Connect

    Chambers, J. L.; Keim, R. F.; Faulkner, S. P.; Day Jr., J. W.; Gardiner, E. S.; Hughes, M. S.; King, S. L.; McLeod, K. W.; Miller, C. A.; Nyman, J. A.; Shaffer, G. P.

    2006-01-01

    Over 345,000 ha of forested swamps occur throughout the Mississippi River Deltaic Plain. Natural and anthropogenic changes in hydrology and geomorphology at local and landscape levels have reduced the productivity in many of these coastal wetland forests areas and have caused the complete loss of forest cover in some places. A summary and interpretation of the available science, suggestions for policy change, and a multidisciplinary (multi-responsibility) approach were needed to address these issues [in the context of private land]. In response, the Louisiana Governor's office formed a Coastal Wetland Forest Conservation and Use Science Working Group (SWG) and an associated Advisory Panel to provide the Governor with information and suggestions of strategies for environmental and economic utilization, conservation, and protection of Louisiana's coastal wetland forest ecosystem in the long-term. The process of engaging scientists, resource managers, and other stakeholders in this effort is described, and the recommendations of the SWG are presented relative to forestry practices and the potential for sustainable management of coastal wetland forests.

  20. Ecosystem services and the protection, restoration, and management of ecosystems exposed to chemical stressors.

    PubMed

    Maltby, Lorraine

    2013-04-01

    Ecosystem services-the benefits people obtain from ecosystem structures and processes-are essential for human survival and well-being. Chemicals are also an essential component of modern life; however, they may cause adverse ecological effects and reduce ecosystem service provision. Environmental policy makers are increasingly adopting the ecosystem services concept, but applying this approach to the protection, restoration, and management of ecosystems requires the development of new understanding, tools, and frameworks. There is an urgent need to understand and predict the effect of single and multiple stressors on ecosystem service delivery across different spatial scales (local to global), to develop indicators that can be used to quantify and map services and identify synergies and trade-offs between them, to establish protection goals and restoration targets defined in terms of the types and levels of service delivery required, and to develop approaches for the assessment and management of chemical risk to ecosystem services that consider the whole life cycle of products and processes. These are major research challenges for the environmental science community in general and for ecotoxicologists and risk assessors in particular.

  1. An ecological basis for managing giant sequoia ecosystems.

    PubMed

    Piirto, Douglas D; Rogers, Robert R

    2002-07-01

    A strategy for management of giant sequoia groves is formulated using a conceptual framework for ecosystem management recently developed by Region Five of the USDA Forest Service. The framework includes physical, biological, and social dimensions. Environmental indicators and reference variability for key ecosystem elements are discussed in this paper. The selected ecosystem elements include: 1) attitudes, beliefs, and values; 2) economics and subsistence; 3) stream channel morphology; 4) sediment; 5) water; 6) fire; 7) organic debris; and 8) vegetation mosaic. Recommendations are made for the attributes of environmental indicators that characterize these elements. These elements and associated indicators will define and control management activities for the protection, preservation, and restoration of national forest giant sequoia ecosystems.

  2. The Coastal Ocean Prediction Systems program: Understanding and managing our coastal ocean. Volume 1: Strategic summary

    SciTech Connect

    Not Available

    1990-05-15

    The proposed COPS (Coastal Ocean Prediction Systems) program is concerned with combining numerical models with observations (through data assimilation) to improve our predictive knowledge of the coastal ocean. It is oriented toward applied research and development and depends upon the continued pursuit of basic research in programs like COOP (Coastal Ocean Processes); i.e., to a significant degree it is involved with ``technology transfer`` from basic knowledge to operational and management applications. This predictive knowledge is intended to address a variety of societal problems: (1) ship routing, (2) trajectories for search and rescue operations, (3) oil spill trajectory simulations, (4) pollution assessments, (5) fisheries management guidance, (6) simulation of the coastal ocean`s response to climate variability, (7) calculation of sediment transport, (8) calculation of forces on structures, and so forth. The initial concern is with physical models and observations in order to provide a capability for the estimation of physical forces and transports in the coastal ocean. For all these applications, there are common needs for physical field estimates: waves, tides, currents, temperature, and salinity, including mixed layers, thermoclines, fronts, jets, etc. However, the intent is to work with biologists, chemists, and geologists in developing integrated multidisciplinary prediction systems as it becomes feasible to do so. From another perspective, by combining observations with models through data assimilation, a modern approach to monitoring is provided through whole-field estimation.

  3. ″The Anthropocene″, Ecosystem Management, and Environmental Virtue.

    PubMed

    Sandler, Ronald

    2016-01-01

    *Portions of this article are drawn from: Sandler, R. Environmental Ethics: Theory in Practice, Oxford University Press, New York, in press. In this article I consider contrasting views on the implications of rapid, macroscale anthropogenic change for environmental ethics, particularly ecosystem management, species conservation, and environmental virtue. I begin by reviewing the Anthropocene debate, which has become a primary point of discourse on whether we ought to embrace a more interventionist stance regarding ecosystem management and species conservation. I then discuss the challenges posed by rapid ecological change to predominant ecosystem management and species conservation practices. I argue that these challenges not withstanding, we ought not go all in on interventionist management, even as novel conservation and management techniques can be justified in particular cases. It is possible to adopt a more forward looking normative stance, without licensing robust interventionism. Finally, I discuss the implications of this for some environmental virtues.

  4. Adaptive management of ecosystem services across different land use regimes.

    PubMed

    Ruhl, J B

    2016-12-01

    Using adaptive management to manage desired flows of ecosystem services may seem on the surface to be a good fit, but many social, economic, environmental, legal, and political factors influence how good a fit. One strongly influential factor is the land use regime within which the profile of ecosystem services is being managed. Shaped largely by legal mandates, market forces, and social and cultural practices, different land use regimes present different opportunities for and constraints on goals for ecosystem services and pose different decision making environments. Even where all other conditions appear amenable to using adaptive management, therefore, it is essential to consider the constraining (or liberating) effects of different land use regimes when deciding whether to adopt adaptive management to achieve those goals and, if so, how to implement it.

  5. Tools and methods for evaluating and refining alternative futures for coastal ecosystem management—the Puget Sound Ecosystem Portfolio Model

    USGS Publications Warehouse

    Byrd, Kristin B.; Kreitler, Jason R.; Labiosa, William B.

    2011-01-01

    The U.S. Geological Survey Puget Sound Ecosystem Portfolio Model (PSEPM) is a decision-support tool that uses scenarios to evaluate where, when, and to what extent future population growth, urban growth, and shoreline development may threaten the Puget Sound nearshore environment. This tool was designed to be used iteratively in a workshop setting in which experts, stakeholders, and decisionmakers discuss consequences to the Puget Sound nearshore within an alternative-futures framework. The PSEPM presents three possible futures of the nearshore by analyzing three growth scenarios developed out to 2060: Status Quo—continuation of current trends; Managed Growth—adoption of an aggressive set of land-use management policies; and Unconstrained Growth—relaxation of land-use restrictions. The PSEPM focuses on nearshore environments associated with barrier and bluff-backed beaches—the most dominant shoreforms in Puget Sound—which represent 50 percent of Puget Sound shorelines by length. This report provides detailed methodologies for development of three submodels within the PSEPM—the Shellfish Pollution Model, the Beach Armoring Index, and the Recreation Visits Model. Results from the PSEPM identify where and when future changes to nearshore ecosystems and ecosystem services will likely occur within the three growth scenarios. Model outputs include maps that highlight shoreline sections where nearshore resources may be at greater risk from upland land-use changes. The background discussed in this report serves to document and supplement model results displayed on the PSEPM Web site located at http://geography.wr.usgs.gov/pugetSound/.

  6. Ecosystem services in risk assessment and management.

    EPA Science Inventory

    The ecosystem services (ES) concept holds much promise for environmental decision making. Even so, the concept has yet to gain full traction in the decisions and policies of environmental agencies in the United States, Europe, and elsewhere. Here we examine the opportunities for ...

  7. Ecosystem management for sage-grouse

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Great Basin area of the western United States faces a host of challenges and threats to the health of the ecosystem including invasion of exotic annual grasses, altered fire cycles and juniper encroachment. There is substantial and growing concern over a number of sagebrush obligate wildlife spe...

  8. Management and fertility control ecosystem carbon allocation to biomass production

    NASA Astrophysics Data System (ADS)

    Campioli, Matteo; Vicca, Sara; Janssens, Ivan

    2015-04-01

    Carbon (C) allocation within the ecosystem is one of the least understood processes in plant- and geo-sciences. The proportion of the C assimilated through photosynthesis (gross primary production, GPP) that is used for biomass production (BP) is a key variable of the C allocation process and it has been termed as biomass production efficiency (BPE). We investigated the potential drivers of BPE using a global dataset of BP, GPP, BPE and ancillary ecosystem characteristics (vegetation properties, climatic and environmental variables, anthropogenic impacts) for 131 sites comprising six major ecosystem types: forests, grasslands, croplands, tundra, boreal peatlands and marshes. We obtained two major findings. First, site fertility is the key driver of BPE across forests, with nutrient-rich forests allocating 58% of their photosynthates to BP, whereas this fraction is only 42% for nutrient-poor forests. Second, by disentangling the effect of management from the effect of fertility and by integrating all ecosystem types, we observed that BPE is globally not driven by the 'natural' site fertility, but by the positive effect brought by management on the nutrient availability. This resulted in managed ecosystems having substantially larger BPE than natural ecosystems. These findings will crucially improve our elucidation of the human impact on ecosystem functioning and our predictions of the global C cycle.

  9. SCOR Working Group 137: "Global Patterns of Phytoplankton Dynamics in Coastal Ecosystems": An introduction to the special issue of Estuarine, Coastal and Shelf Science

    NASA Astrophysics Data System (ADS)

    Paerl, Hans W.; Yin, Kedong; O'Brien, Todd D.

    2015-09-01

    Phytoplankton form the base of most aquatic food webs and play a central role in assimilation and processing of carbon and nutrients, including nitrogen, phosphorus, silicon, iron and a wide range of trace elements (Reynolds, 2006). In the marine environment, estuarine and coastal ecosystems (jointly termed coastal here) are among the most productive, resourceful and dynamic habitats on Earth (Malone et al., 1999; Day et al., 2012). These ecosystems constitute only ∼10% of the global oceans' surface, but account for over 30% of its primary production (Day et al., 2012). They process vast amounts of nutrients, sediments, carbonaceous, and xenobiotic compounds generated in coastal watersheds, in which approximately 70% of the world's human population resides (Nixon, 1995; Vitousek et al., 1997; NOAA, 2013). Estuarine and coastal ecosystems are also strongly influenced by localized nutrient enrichment from coastal upwelling, with major impacts on the structure and function of phytoplankton communities and the food webs they support (Legendre and Rassoulzadegan, 2012; Paerl and Justić, 2012). In addition, introductions and invasions of exotic plant and animal species have led to significant "top down" mediated changes in phytoplankton community structure and function (Carlton, 1999; Thompson, 2005). Lastly, the coastal zone is the "front line" of climatically-induced environmental change, including warming, altered rainfall patterns, intensities and magnitudes (Trenberth, 2005; IPCC, 2012), which jointly impact phytoplankton community structure and function (Cloern and Jassby, 2012; Hall et al., 2013). The combined effects of these pressures translate into a myriad of changes in phytoplankton production and community structure along geomorphological and geographic gradients (Fig. 1), with cascading quantitative and qualitative impacts on biogeochemical cycling, food web structure and function, water quality and overall resourcefulness and sustainability of these

  10. A systematic review of socio-economic assessments in support of coastal zone management (1992-2011).

    PubMed

    Le Gentil, Eric; Mongruel, Rémi

    2015-02-01

    Cooperation between the social and natural sciences has become essential in order to encompass all the dimensions of coastal zone management. Socio-economic approaches are increasingly recommended to complement integrated assessment in support of these initiatives. A systematic review of the academic literature was carried out in order to analyze the main types of socio-economic assessments used to inform the coastal zone management process as well as their effectiveness. A corpus of 1682 articles published between 1992 and 2011 was identified by means of the representative coverage approach, from which 170 were selected by applying inclusion/exclusion criteria and then classified using a content analysis methodology. The percentage of articles that mention the use of socio-economic assessment in support of coastal zone management initiatives is increasing but remains relatively low. The review examines the links between the issues addressed by integrated assessments and the chosen analytical frameworks as well as the various economic assessment methods which are used in the successive steps of the coastal zone management process. The results show that i) analytical frameworks such as 'risk and vulnerability', 'DPSIR', 'valuation', 'ecosystem services' and 'preferences' are likely to lead to effective integration of social sciences in coastal zone management research while 'integration', 'sustainability' and 'participation' remain difficult to operationalize, ii) risk assessments are insufficiently implemented in developing countries, and iii) indicator systems in support of multi-criteria analyses could be used during more stages of the coastal zone management process. Finally, it is suggested that improved collaboration between science and management would require that scientists currently involved in coastal zone management processes further educate themselves in integrated assessment approaches and participatory methodologies.

  11. Information preferences for the evaluation of coastal development impacts on ecosystem services: A multi-criteria assessment in the Australian context.

    PubMed

    Marre, Jean-Baptiste; Pascoe, Sean; Thébaud, Olivier; Jennings, Sarah; Boncoeur, Jean; Coglan, Louisa

    2016-05-15

    Ecosystem based management requires the integration of various types of assessment indicators. Understanding stakeholders' information preferences is important, in selecting those indicators that best support management and policy. Both the preferences of decision-makers and the general public may matter, in democratic participatory management institutions. This paper presents a multi-criteria analysis aimed at quantifying the relative importance to these groups of economic, ecological and socio-economic indicators usually considered when managing ecosystem services in a coastal development context. The Analytic Hierarchy Process (AHP) is applied within two nationwide surveys in Australia, and preferences of both the general public and decision-makers for these indicators are elicited and compared. Results show that, on average across both groups, the priority in assessing a generic coastal development project is for the ecological assessment of its impacts on marine biodiversity. Ecological assessment indicators are globally preferred to both economic and socio-economic indicators regardless of the nature of the impacts studied. These results are observed for a significantly larger proportion of decision-maker than general public respondents, questioning the extent to which the general public's preferences are well reflected in decision-making processes.

  12. Comparative dynamics of pelagic and benthic micro-algae in a coastal ecosystem

    NASA Astrophysics Data System (ADS)

    Chatterjee, Arnab; Klein, Cécile; Naegelen, Aurore; Claquin, Pascal; Masson, Annick; Legoff, Manon; Amice, Erwan; L'Helguen, Stéphane; Chauvaud, Laurent; Leynaert, Aude

    2013-11-01

    Together with phytoplankton, microphytobenthos (MPB) play an important role in the overall food web structure of coastal ecosystems by regulating nutrient fluxes, oxygen concentration and sediment stability in the ecosystem. Although there are many studies on phytoplankton, MPB dynamics in the subtidal zone are largely unknown. In this study, we carried out a whole-year survey to investigate the seasonal dynamics of phytoplankton and MPB biomass simultaneously in relation to the environmental physico-chemical parameters. We show that phytoplankton and MPB do not follow the same dynamics with MPB being the first to increase in the season. It constitutes a large energy input to the ecosystem from the beginning of spring (with 60% of the total biomass until April). The system then moves from a system dominated by benthic biomass in early spring to a system where the pelagic biomass dominates. Among resources that MPB and phytoplankton have to share, light seems to trigger the MPB bloom as soon as maximum bottom PAR is reached, i.e. one month earlier than the phytoplankton bloom in the water column. With regard to nutrients, the lack of phosphorus can be put forward to explain the decline of MPB biomass at the beginning of April, whereas the phytoplankton decline in the first week of May coincides to silicic acid deficiency. Dissolved inorganic nitrogen then becomes potentially limiting in the water column until the end of October. Competition with macroalgae at the bottom and grazing were also considered as being possible factors for the disparate course of phytoplankton and MPB dynamics. Further investigations are needed to give a more detailed picture on the interactions and feedback loops between MPB and phytoplankton. However, although benthic-pelagic relationships are complex, this study indicates the need to integrate such fundamental coupling to a thorough understanding of ecosystem dynamics and functions.

  13. Marine spatial planning (MSP): a first step to ecosystem-based management (EBM) in the Wider Caribbean.

    PubMed

    Ogden, John C

    2010-10-01

    The rapid decline of coastal ecosystems of the Wider Caribbean is entering its fifth decade. Some of the best science documenting this decline and its causes has been done by the laboratories of the Association of Marine Laboratories of the Caribbean (AMLC). Alarmed at the trends, Caribbean conservation pioneers established marine protected areas (MPAs) which spread throughout the region. Unfortunately, many have little or no protection and are now known to be too small to be effective in sustaining coastal ecosystems. Marine spatial planning (MSP) holds much promise to encompass the large geographic scales of the ecological processes and human impacts that influence coastal ecosystems and adjacent lands. The AMLC, through the scientific expertise and the national political connections of its member institutions, is well-positioned to help implement a pilot project. MSP a first step in ecosystem-based management and has had considerable success elsewhere. It holds our best chance of sustaining human use and conserving the coral reefs and associated ecosystems.

  14. Toward understanding, managing, and protecting microbial ecosystems.

    PubMed

    Bodelier, Paul L E

    2011-01-01

    Microbial communities are at the very basis of life on earth, catalyzing biogeochemical reactions driving global nutrient cycles. However, unlike for plants and animals, microbial diversity is not on the biodiversity-conservation agenda. The latter, however, would imply that microbial diversity is not under any threat by anthropogenic disturbance or climate change. This maybe a misconception caused by the rudimentary knowledge we have concerning microbial diversity and its role in ecosystem functioning. This perspective paper identifies major areas with knowledge gaps within the field of environmental microbiology that preclude a comprehension of microbial ecosystems on the level we have for plants and animals. Opportunities and challenges are pointed out to open the microbial black box and to go from descriptive to predictive microbial ecology.

  15. Toward Understanding, Managing, and Protecting Microbial Ecosystems

    PubMed Central

    Bodelier, Paul L. E.

    2011-01-01

    Microbial communities are at the very basis of life on earth, catalyzing biogeochemical reactions driving global nutrient cycles. However, unlike for plants and animals, microbial diversity is not on the biodiversity–conservation agenda. The latter, however, would imply that microbial diversity is not under any threat by anthropogenic disturbance or climate change. This maybe a misconception caused by the rudimentary knowledge we have concerning microbial diversity and its role in ecosystem functioning. This perspective paper identifies major areas with knowledge gaps within the field of environmental microbiology that preclude a comprehension of microbial ecosystems on the level we have for plants and animals. Opportunities and challenges are pointed out to open the microbial black box and to go from descriptive to predictive microbial ecology. PMID:21747797

  16. Feeding ecology and trophic comparisons of six shark species in a coastal ecosystem off southern Brazil.

    PubMed

    Bornatowski, H; Braga, R R; Abilhoa, V; Corrêa, M F M

    2014-08-01

    The diets of six shark species, Sphyrna lewini, Sphyrna zygaena, Carcharhinus obscurus, Carcharhinus limbatus, Rhizoprionodon lalandii and Galeocerdo cuvier, were investigated in a subtropical coastal ecosystem of southern Brazil. Stomach content data were obtained to assess foraging niche segregation and ontogenetic shifts in the diets of these sharks. Five of the shark species off the Paraná coast were ichthyophagous, with the exception of S. zygaena, which was teutophagous. With the exception of G. cuvier, which had a generalist diet, the other five species displayed specialization in their feeding. Ontogenetic shifts were observed in C. obscurus and S. lewini with large individuals consuming elasmobranchs. Owing to the diet overlap between C. obscurus and S. lewini, C. obscurus and C. limbatus and R. lalandii and C. limbatus, future studies on the spatial and temporal distributions of these species are needed to understand the extent of competitive interactions.

  17. *d13C composition of primary producers and role of detritus in a freshwater coastal ecosystem

    USGS Publications Warehouse

    Keough, J.R.; Hagley, C.A.; Sierszen, M.

    1998-01-01

    Stable-isotope ratio signatures of primary producers in a coastal wetland and in adjacent offshore waters of western Lake Superior indicated that phytoplankton are the primary source of carbon for the grazing food web of this ecosystem. This study outlines the possible roles of other autotrophs in this regard. Isotopic signatures of macrophytes reflected their life-form-associated constraints on diffusion of inorganic carbon. Data indicated that differences between wetland and lake phytoplankton may be explained by the isotopic signatures of their dissolved inorganic carbon (DIC) sources. Results of an in situ experiment showed that respiration associated with macrophyte decomposition is capable of enriching surrounding water with significant amounts of *d13C-depleted DIC and lowering the net *d13C ratio of DIC in water in low-turbulence situations. The *d13C ratio for wetland phytoplankton may be depleted relative to pelagic algae because the fixed carbon is derived from decomposing detritus.

  18. Evolving demand for ecosystem services and their impact in a coastal New England watershed

    NASA Astrophysics Data System (ADS)

    Wollheim, W. M.; Green, M. B.; Pellerin, B. A.; Duncan, J. M.; Gettel, G. M.; Hopkinson, C.; Polsky, C.; Pontius, R.

    2009-12-01

    Human demands for ecosystem services (e.g. provision of food and water; regulation of waste) change over space and time as society, economy, and environment evolve. The distribution of population relative to watershed boundaries determines supply and demand of ecosystem services, which in turn affects watershed water and nutrient budgets. A watershed perspective is helpful to assess whether such services are sustainable with respect to freshwater and coastal ecosystems. We determined how demand for three ecosystem services (ES): food production, clean water supply, and removal of excess nutrients has changed over the last two hundred years (1800-present) in the watersheds draining to Plum Island Sound (drainage area = ~600 km2), located in Essex County MA., part of the Boston Metropolitan Area. The watersheds have gone through three distinct phases of ES demand over this period: 1) provision of food and fiber during the agricultural period (1600-1800’s), 2) increasing provision of water during the period of forest regrowth and agricultural abandonment (1880 - 1950), and 3) regulation of nitrogen pollution and provision of water during the suburban period (1950-present). As a result of changing ES, net interbasin nitrogen transfers out of the basin peaked in the mid 1800’s, water exports peaked 1960-1980 (averaging 27% of annual runoff), and net nitrogen transfers into the basin peaked in the 1960’s and stabilized thereafter (averaging 2.5x atmospheric deposition rates). ES provided by the Plum Island basins disproportionately benefited people living outside the basin prior to 1950 (e.g. internal water use was < 10% of total water extracted for domestic consumption), but were increasingly used by people living within the basin in the late 20th century (e.g. internal water use about 25-30% of total withdrawal). However, demands for ES from the Plum Island watersheds have not been accelerating in the recent suburban period despite continued population growth

  19. Information Semantic Tools for Coastal Data Management

    NASA Astrophysics Data System (ADS)

    Durbha, S. S.; King, R. L.; Younan, N. H.; Rajender, S. K.; Bheemireddy, S.

    2007-12-01

    In a coastal disaster event, it is necessary to obtain information about water level (depth), winds, currents, waves, temperature-salinity stratification in real time and predictions of water level (12-24 hrs), storm surge (48-72 hours) in advance. It has been estimated that better preparation, response, and mitigation will reduce average costs of storm-related disasters by 10%. The dissemination of information that is time critical calls for systems that will facilitate quick assessment of the scenario from multiple perspectives. Sensor data are obtained from a multitude of distributed sensor networks. Our current work funded by Northern Gulf Institute (NGI) on Sensor Web tools for coastal buoys based on OGC sensor web enablement framework enables the use of real or near real time data derived from coastal sensor networks and dynamic selection and aggregation of multiple sensor systems, meteorological and oceanographic simulations and other decision support systems in a web services- based environment. In addition, we pursue the semantic web approaches to understand the context of the data, resolve the meaning, interpretation or usage of the same or related data and develop knowledge-based tools for access to the information sources. Observations from satellites provide a variety of measurements that are not otherwise available or affordable. However, the use of such valuable information in a rapid assessment scenario is hindered by the fact that it is cumbersome to explore huge image databases through manual or semi automated methods. The Rapid Image information mining (RIIM) tool that we developed for this purpose is demonstrated with imagery data from Landsat ETM+ of post Katrina hurricane.

  20. Applying the Ecosystem Services Concept to Public Land Management

    EPA Science Inventory

    We examine the challenges opportunities involved in applying ecosystem services to public lands management, with an emphasis on the work of the USDA Forest Service. We review the history of economics approaches to landscape management, outline a conceptual framework defining the ...

  1. Adaptive management for ecosystem services (j/a)

    EPA Science Inventory

    Management of natural resources for the production of ecosystem services, which are vital for human well-being, is necessary even when there is uncertainty regarding system response to management action. This uncertainty is the result of incomplete controllability, complex intern...

  2. Degradation State and Sequestration Potential of Carbon in Coastal Wetlands of Texas: Mangrove Vs. Saltmarsh Ecosystems

    NASA Astrophysics Data System (ADS)

    Sterne, A. M. E.; Kaiser, K.; Louchouarn, P.; Norwood, M. J.

    2015-12-01

    The estimated magnitude of the organic carbon (OC) stocks contained in the first meter of US coastal wetland soils represents ~10% of the entire OC stock in US soils (4 vs. 52 Pg, respectively). Because this stock extends to several meters below the surface for many coastal wetlands, it becomes paramount to understand the fate of OC under ecosystem shifts, varying natural environmental constraints, and changing land use. In this project we analyze the major classes of biochemicals including total hydrolysable neutral carbohydrates, enantiomeric amino acids, phenols, and cutins/suberins at two study sites located on the Texas coastline to investigate chemical composition and its controls on organic carbon preservation in mangrove (Avicennia germinans) and saltmarsh grass (Spartina alterniflora) dominated wetlands. Results show neutral carbohydrates and lignin contribute 30-70% and 10-40% of total OC, respectively, in plant litter and surface sediments at both sites. Sharp declines of carbohydrate yields with depth occur parallel to increasing Ac/AlS,V ratios indicating substantial decomposition of both the polysaccharide and lignin components of litter detritus. Contrasts in the compositions and relative abundances of all previously mentioned compound classes are further discussed to examine the role of litter biochemistry in OC preservation. For example, the selective preservation of cellulose over hemicellulose in sediments indicates macromolecular structure plays a key role in preservation between plant types. It is concluded that the chemical composition of litter material controls the composition and magnitude of OC stored in sediments. Ultimately, as these ecosystems transition from one dominant plant type to another, as is currently observed along the Texas coastline, there is the potential for OC sequestration efficiency to shift due to the changing composition of OC input to sediments.

  3. Managing oil and gas activities in coastal environments. Volume II: comprehensive report. Report for 1977-81

    SciTech Connect

    Longley, W.L.; Jackson, R.; Snyder, B.

    1982-03-01

    This report documents the management of oil and gas development on national wildlife refuges on the Louisiana and Texas coasts. It explains the nature of ownership, leasing rights, and legal considerations related to oil and gas extraction on refuges. The report describes five federal refuges selected for analysis and the different marsh and estuarine ecosystems found on the refuges and in the coastal zone. It explains oil and gas extraction and transport methods used in coastal systems, and examines how each habitat is affected by these activities.

  4. Effects of land use changes on the ecosystem service values of coastal wetlands.

    PubMed

    Camacho-Valdez, Vera; Ruiz-Luna, Arturo; Ghermandi, Andrea; Berlanga-Robles, César A; Nunes, Paulo A L D

    2014-10-01

    Changes in the coastal landscape of Southern Sinaloa (Mexico), between 2000 and 2010, were analyzed to relate spatial variations in wetlands extent with the provision and economic value of the ecosystem services (ES). Remote sensing techniques applied to Landsat TM imagery were used to evaluate land use/land cover changes while the value transfer method was used to assess the value of ES by land cover category. Five wetland types and other four land covers were found as representative of the coastal landscape. Findings reveal a 14 % decrease in the saltmarsh/forested mangrove area and a 12 % increase in the area of shrimp pond aquaculture (artificial wetland) during the study period. ES valuation shows that the total value flow increased by 9 % from $215 to $233 million (2007 USD) during the 10-year period. This increase is explained as result of the high value worldwide assigned to saltmarsh. We recognize limitations in the transfer-based approach in quantifying and mapping ES values in the region, but this method provides with value estimates spatially defined, and also provides some guidance in the preliminary screening of policies and projected development in the context of data-scarce regions.

  5. Effects of Land Use Changes on the Ecosystem Service Values of Coastal Wetlands

    NASA Astrophysics Data System (ADS)

    Camacho-Valdez, Vera; Ruiz-Luna, Arturo; Ghermandi, Andrea; Berlanga-Robles, César A.; Nunes, Paulo A. L. D.

    2014-10-01

    Changes in the coastal landscape of Southern Sinaloa (Mexico), between 2000 and 2010, were analyzed to relate spatial variations in wetlands extent with the provision and economic value of the ecosystem services (ES). Remote sensing techniques applied to Landsat TM imagery were used to evaluate land use/land cover changes while the value transfer method was used to assess the value of ES by land cover category. Five wetland types and other four land covers were found as representative of the coastal landscape. Findings reveal a 14 % decrease in the saltmarsh/forested mangrove area and a 12 % increase in the area of shrimp pond aquaculture (artificial wetland) during the study period. ES valuation shows that the total value flow increased by 9 % from 215 to 233 million (2007 USD) during the 10-year period. This increase is explained as result of the high value worldwide assigned to saltmarsh. We recognize limitations in the transfer-based approach in quantifying and mapping ES values in the region, but this method provides with value estimates spatially defined, and also provides some guidance in the preliminary screening of policies and projected development in the context of data-scarce regions.

  6. 76 FR 80342 - Coastal Zone Management Program: Illinois

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-23

    ... Availability of Final Environmental Impact Statement. SUMMARY: NOAA's Office of Ocean and Coastal Resource Management (OCRM) announces availability of the Final Environmental Impact Statement (FEIS) on the Illinois.... 1451-1466, and the implementing regulations at 15 CFR Part 923. The draft ICMP and Draft...

  7. River doctors: Learning from medicine to improve ecosystem management.

    PubMed

    Elosegi, Arturo; Gessner, Mark O; Young, Roger G

    2017-04-03

    Effective ecosystem management requires a robust methodology to analyse, remedy and avoid ecosystem damage. Here we propose that the overall conceptual framework and approaches developed over millennia in medical science and practice to diagnose, cure and prevent disease can provide an excellent template. Key principles to adopt include combining well-established assessment methods with new analytical techniques and restricting both diagnosis and treatment to qualified personnel at various levels of specialization, in addition to striving for a better mechanistic understanding of ecosystem structure and functioning, as well as identifying the proximate and ultimate causes of ecosystem impairment. In addition to applying these principles, ecosystem management would much benefit from systematically embracing how medical doctors approach and interview patients, diagnose health condition, select treatments, take follow-up measures, and prevent illness. Here we translate the overall conceptual framework from medicine into environmental terms and illustrate with examples from rivers how the systematic adoption of the individual steps proven and tested in medical practice can improve ecosystem management.

  8. 76 FR 10338 - Evaluation of State Coastal Management Programs and National Estuarine Research Reserves

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-24

    ... national coastal management objectives identified in CZMA Section 303(2)(A)-(K), and adhering to the... National Oceanic and Atmospheric Administration Evaluation of State Coastal Management Programs and... of Ocean and Coastal Resource Management, National Ocean Service, Commerce. ACTION: Notice of...

  9. 15 CFR 930.153 - Coordination between States in developing coastal management policies.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... high priority to: (a) Coordinating State coastal management planning, policies, and programs with... developing coastal management policies. 930.153 Section 930.153 Commerce and Foreign Trade Regulations..., DEPARTMENT OF COMMERCE OCEAN AND COASTAL RESOURCE MANAGEMENT FEDERAL CONSISTENCY WITH APPROVED...

  10. Coastal zone - Terra (and aqua) incognita - Integrated Coastal Zone Management in the Black Sea

    NASA Astrophysics Data System (ADS)

    Kosyan, R. D.; Velikova, V. N.

    2016-02-01

    In the Black Sea coastal states (Bulgaria, Georgia, Romania, Russian Federation, Turkey, and Ukraine), Integrated Coastal Zone Management (ICZM) has no properly established legal and institutional framework. The term "coastal zone" is undefined in national (reportedly with the exception of Bulgaria) and regional legislative documents. The interface between science and policy within ICZM remains poorly developed. Policies for streamlining efforts have been ill-managed and decisions taken in functional zoning and the balanced use and protection of coastal zones have often been shown to be incorrect. The observed proliferation of consultative committees and councils has not been much helpful, public participation has been widely neglected. Illegal practices are in place, and coastal developments continue being largely unsustainable. These problems are often explained by the low awareness of ICZM benefits, and hence, a shortage of political good will, but also by the lack of appropriate Black Sea scientific research, which would ensure a fundamental knowledge-base. There are hundreds of organizations involved in collection of data and information of relevance for ICZM, although there is a distinct lack of coordination. Consequently, there is a substantial overlap of activities, whilst important scientific and policy questions remain unanswered. We review the status of ICZM or mismanagement (ICZmisM) in the Black Sea region, building links between environmental problems and policy measures in response, and providing appropriate examples. Recommendations are put forward with regard to major gaps in ICZM at levels of its theoretical development and practical implementation within the region. The review is intended to remind of major disastrous consequences of present complacency and laissez-faire in the management of the Black Sea. This paper calls for urgent implementation of ICZM in the Black Sea at national and regional levels.

  11. Ecosystem Resilience and Threshold Response in the Galápagos Coastal Zone

    PubMed Central

    Seddon, Alistair W. R.; Froyd, Cynthia A.; Leng, Melanie J.; Milne, Glenn A.; Willis, Katherine J.

    2011-01-01

    Background The Intergovernmental Panel on Climate Change (IPCC) provides a conservative estimate on rates of sea-level rise of 3.8 mm yr−1 at the end of the 21st century, which may have a detrimental effect on ecologically important mangrove ecosystems. Understanding factors influencing the long-term resilience of these communities is critical but poorly understood. We investigate ecological resilience in a coastal mangrove community from the Galápagos Islands over the last 2700 years using three research questions: What are the ‘fast and slow’ processes operating in the coastal zone? Is there evidence for a threshold response? How can the past inform us about the resilience of the modern system? Methodology/Principal Findings Palaeoecological methods (AMS radiocarbon dating, stable carbon isotopes (δ13C)) were used to reconstruct sedimentation rates and ecological change over the past 2,700 years at Diablas lagoon, Isabela, Galápagos. Bulk geochemical analysis was also used to determine local environmental changes, and salinity was reconstructed using a diatom transfer function. Changes in relative sea level (RSL) were estimated using a glacio-isostatic adjustment model. Non-linear behaviour was observed in the Diablas mangrove ecosystem as it responded to increased salinities following exposure to tidal inundations. A negative feedback was observed which enabled the mangrove canopy to accrete vertically, but disturbances may have opened up the canopy and contributed to an erosion of resilience over time. A combination of drier climatic conditions and a slight fall in RSL then resulted in a threshold response, from a mangrove community to a microbial mat. Conclusions/Significance Palaeoecological records can provide important information on the nature of non-linear behaviour by identifying thresholds within ecological systems, and in outlining responses to ‘fast’ and ‘slow’ environmental change between alternative stable states. This study

  12. Ecosystem legacy of the introduced N2-fixing tree Robinia pseudoacacia in a coastal forest.

    PubMed

    Von Holle, Betsy; Neill, Christopher; Largay, Erin F; Budreski, Katherine A; Ozimec, Barbara; Clark, Sara A; Lee, Krista

    2013-07-01

    Habitat invasibility has been found to increase dramatically following the alteration of ecosystem properties by a nonnative species. Robinia pseudoacacia, black locust, is a nitrogen-fixing, clonal tree species that aggressively invades open habitats and expands outside of plantations worldwide. Robinia pseudoacacia stands in Cape Cod National Seashore were particularly susceptible to a hurricane in 1991 that caused widespread blowdown and a dramatic reduction in Robinia in some stands. We used this change to investigate the lasting ecological effects of this nonnative species on this upland coastal ecosystem. We established replicate clusters of 20 × 20 m field plots within 50 m of each other that contained native pitch pine (Pinus rigida) and oak (Quercus velutina, Q. alba) forest, living Robinia stands, and stands in which Robinia was eliminated or reduced to less than 5% cover by the hurricane. Net nitrification and extractable soil nitrate concentration differed significantly between stand types, in the order Robinia > former Robinia > pine-oak. Nonnative species cover differed significantly between each stand type, in the order Robinia > former Robinia > pine-oak. Invasion of Robinia pseudoacacia increased soil net nitrification and nitrogen availability and precipitated a change in forest species composition that favored nonnative species. The presence of elevated soil nitrogen and nonnative species persisted at least 14 years after the removal of the original invading tree species, suggesting that the invasion of a tree species left a legacy of altered soil biogeochemistry, a higher number of nonnative species, and greater nonnative species cover.

  13. Managing extreme natural disasters in coastal areas.

    PubMed

    Kesavan, P C; Swaminathan, M S

    2006-08-15

    Extreme natural hazards, particularly the hydro-meteorological disasters, are emerging as a cause of major concern in the coastal regions of India and a few other developing countries. These have become more frequent in the recent past, and are taking a heavy toll of life and livelihoods. Low level of technology development in the rural areas together with social, economic and gender inequities enhance the vulnerability of the largely illiterate, unskilled, and resource-poor fishing, farming and landless labour communities. Their resilience to bounce back to pre-disaster level of normality is highly limited. For the planet Earth at crossroads, the imminent threat, however, is from a vicious spiral among environmental degradation, poverty and climate change-related natural disasters interacting in a mutually reinforcing manner. These, in turn, retard sustainable development, and also wipe out any small gains made thereof. To counter this unacceptable trend, the M.S. Swaminathan Research Foundation has developed a biovillage paradigm and rural knowledge centres for ecotechnological and knowledge empowerment of the coastal communities at risk. Frontier science and technologies blended with traditional knowledge and ecological prudence result in ecotechnologies with pro-nature, pro-poor and pro-women orientation. The rural communities are given training and helped to develop capacity to adopt ecotechnologies for market-driven eco-enterprises. The modern information and communication-based rural knowledge centres largely operated by trained semi-literate young women provide time- and locale-specific information on weather, crop and animal husbandry, market trends and prices for local communities, healthcare, transport, education, etc. to the local communities. The ecotechnologies and time- and locale-specific information content development are need-based and chosen in a 'bottom-up' manner. The use of recombinant DNA technology for genetic shielding of agricultural

  14. Managing extreme natural disasters in coastal areas

    NASA Astrophysics Data System (ADS)

    Kesavan, P. C.; Swaminathan, M. S.

    2006-08-01

    Extreme natural hazards, particularly the hydro-meteorological disasters, are emerging as a cause of major concern in the coastal regions of India and a few other developing countries. These have become more frequent in the recent past, and are taking a heavy toll of life and livelihoods. Low level of technology development in the rural areas together with social, economic and gender inequities enhance the vulnerability of the largely illiterate, unskilled, and resource-poor fishing, farming and landless labour communities. Their resilience to bounce back to pre-disaster level of normality is highly limited. For the planet Earth at crossroads, the imminent threat, however, is from a vicious spiral among environmental degradation, poverty and climate change-related natural disasters interacting in a mutually reinforcing manner. These, in turn, retard sustainable development, and also wipe out any small gains made thereof. To counter this unacceptable trend, the M.S. Swaminathan Research Foundation has developed a biovillage paradigm and rural knowledge centres for ecotechnological and knowledge empowerment of the coastal communities at risk. Frontier science and technologies blended with traditional knowledge and ecological prudence result in ecotechnologies with pro-nature, pro-poor and pro-women orientation. The rural communities are given training and helped to develop capacity to adopt ecotechnologies for market-driven eco-enterprises. The modern information and communication-based rural knowledge centres largely operated by trained semi-literate young women provide time- and locale-specific information on weather, crop and animal husbandry, market trends and prices for local communities, healthcare, transport, education, etc. to the local communities. The ecotechnologies and time- and locale-specific information content development are need-based and chosen in a ‘bottom-up’ manner. The use of recombinant DNA technology for genetic shielding of agricultural

  15. Review: phytoplankton primary production in the world's estuarine-coastal ecosystems

    NASA Astrophysics Data System (ADS)

    Cloern, J. E.; Foster, S. Q.; Kleckner, A. E.

    2013-11-01

    Estuaries are biogeochemical hot spots because they receive large inputs of nutrients and organic carbon from land and oceans to support high rates of metabolism and primary production. We synthesize published rates of annual phytoplankton primary production (APPP) in marine ecosystems influenced by connectivity to land - estuaries, bays, lagoons, fjords and inland seas. Review of the scientific literature produced a compilation of 1148 values of APPP derived from monthly incubation assays to measure carbon assimilation or oxygen production. The median value of median APPP measurements in 131 ecosystems is 185 and the mean is 252 g C m-2 yr-1, but the range is large: from -105 (net pelagic production in the Scheldt Estuary) to 1890 g C m-2 yr-1 (net phytoplankton production in Tamagawa Estuary). APPP varies up to 10-fold within ecosystems and 5-fold from year-to-year (but we only found 8 APPP series longer than a decade so our knowledge of decadal-scale variability is limited). We use studies of individual places to build a conceptual model that integrates the mechanisms generating this large variability: nutrient supply, light limitation by turbidity, grazing by consumers, and physical processes (river inflow, ocean exchange, and inputs of heat, light and wind energy). We consider method as another source of variability because the compilation includes values derived from widely differing protocols. A simulation model shows that different methods can yield up to 3-fold variability depending on incubation protocols and methods for integrating measured rates over time and depth. Although attempts have been made to upscale measures of estuarine-coastal APPP, the empirical record is inadequate for yielding reliable global estimates. The record is deficient in three ways. First, it is highly biased by the large number of measurements made in northern Europe (particularly the Baltic region) and North America. Of the 1148 reported values of APPP, 958 come from sites

  16. Sea Level Rise Enhanced Halocarbon Production in Low-lying Coastal Ecosystem in the Southeastern US

    NASA Astrophysics Data System (ADS)

    Chow, A. T.; Conner, W.; Williams, T.; Song, B.

    2010-12-01

    Saltwater tides bring high concentrations of chloride and bromide inland where it mixes with terrestrial humic substances from surrounding forested watersheds and ferric/ferrous ions from shallow groundwater. With all the essential precursors (i.e., chloride, bromide, and humic substances) and catalysts (ferric/ferrous ions with sunlight), low-lying coastal ecosystems could be a hotspot for halocarbon formation. Fluctuating water levels and salinity due to the tidal cycle alter both redox reactions and water chemistry, influencing the formation and fate of halocarbons. A controlled study was conducted to confirm the abiotic formation of trihalomethanes (THMs) by the photo-Fenton reaction and the effects of the precursors on their formation. Four THM species, including chloroform (CHCl3), bromodichloromethane (CHBrCl2), dibromochloromethane (CHBr2Cl), and bromoform (CHBr3), were examined. Sets of aqueous solutions were prepared using filtered Waccamaw River samples and synthesized NaCl / NaBr, and Fe2(SO4)3 and H2O2 solutions. Solutions were enclosed in quartz tubes and exposed for 7 days to natural sunlight. Although total THM formation increased with DOC concentration, the reactivity of C in forming THM was relatively consistent across DOC concentrations, with an average of 2.6 nmol-THM mmol-C-1. The reactivity in forming THMs through the photo-Fenton reaction was significantly lower than that in chlorinated water. Reactivity generally ranged from 3-20 mmol-THM mol-C-1. The differences in reactivity suggested that greater yield of THMs could be produced under the right reaction condition. In particular, the study showed that bromide increases the reactivity of DOC in forming THMs and enhances the formation of brominated THMs. The bromine substitution factor in the NaCl treatment ranged from 19 to 24% but increased to 43 and 46% when NaBr was added. Results suggest that increased salinity and bromide concentration in saltwater-impacted coastal ecosystems could

  17. Sustainable exploitation and management of autogenic ecosystem engineers: application to oysters in Chesapeake Bay.

    PubMed

    Wilberg, Michael J; Wiedenmann, John R; Robinson, Jason M

    2013-06-01

    Autogenic ecosystem engineers are critically important parts of many marine and estuarine systems because of their substantial effect on ecosystem services. Oysters are of particular importance because of their capacity to modify coastal and estuarine habitats and the highly degraded status of their habitats worldwide. However, models to predict dynamics of ecosystem engineers have not previously included the effects of exploitation. We developed a linked population and habitat model for autogenic ecosystem engineers undergoing exploitation. We parameterized the model to represent eastern oyster (Crassostrea virginica) in upper Chesapeake Bay by selecting sets of parameter values that matched observed rates of change in abundance and habitat. We used the model to evaluate the effects of a range of management and restoration options including sustainability of historical fishing pressure, effectiveness of a newly enacted sanctuary program, and relative performance of two restoration approaches. In general, autogenic ecosystem engineers are expected to be substantially less resilient to fishing than an equivalent species that does not rely on itself for habitat. Historical fishing mortality rates in upper Chesapeake Bay for oysters were above the levels that would lead to extirpation. Reductions in fishing or closure of the fishery were projected to lead to long-term increases in abundance and habitat. For fisheries to become sustainable outside of sanctuaries, a substantial larval subsidy would be required from oysters within sanctuaries. Restoration efforts using high-relief reefs were predicted to allow recovery within a shorter period of time than low-relief reefs. Models such as ours, that allow for feedbacks between population and habitat dynamics, can be effective tools for guiding management and restoration of autogenic ecosystem engineers.

  18. Open sea hydrographic forcing of nutrient and phytoplankton dynamics in a Mediterranean coastal ecosystem

    NASA Astrophysics Data System (ADS)

    Arin, Laura; Guillén, Jorge; Segura-Noguera, Mariona; Estrada, Marta

    2013-11-01

    of identifying the different sources of nutrients in understanding the dynamics of phytoplankton and for devising management strategies of the coastal environment.

  19. Fine-Scale Cartography of Human Impacts along French Mediterranean Coasts: A Relevant Map for the Management of Marine Ecosystems.

    PubMed

    Holon, Florian; Mouquet, Nicolas; Boissery, Pierre; Bouchoucha, Marc; Delaruelle, Gwenaelle; Tribot, Anne-Sophie; Deter, Julie

    2015-01-01

    Ecosystem services provided by oceans and seas support most human needs but are threatened by human activities. Despite existing maps illustrating human impacts on marine ecosystems, information remains either large-scale but rough and insufficient for stakeholders (1 km² grid, lack of data along the coast) or fine-scale but fragmentary and heterogeneous in methodology. The objectives of this study are to map and quantify the main pressures exerted on near-coast marine ecosystems, at a large spatial scale though in fine and relevant resolution for managers (one pixel = 20 x 20 m). It focuses on the French Mediterranean coast (1,700 km of coastline including Corsica) at a depth of 0 to 80 m. After completing and homogenizing data presently available under GIS on the bathymetry and anthropogenic pressures but also on the seabed nature and ecosystem vulnerability, we provide a fine modeling of the extent and impacts of 10 anthropogenic pressures on marine habitats. The considered pressures are man-made coastline, boat anchoring, aquaculture, urban effluents, industrial effluents, urbanization, agriculture, coastline erosion, coastal population and fishing. A 1:10 000 continuous habitat map is provided considering 11 habitat classes. The marine bottom is mostly covered by three habitats: infralittoral soft bottom, Posidonia oceanica meadows and circalittoral soft bottom. Around two thirds of the bottoms are found within medium and medium high cumulative impact categories. Seagrass meadows are the most impacted habitats. The most important pressures (in area and intensity) are urbanization, coastal population, coastal erosion and man-made coastline. We also identified areas in need of a special management interest. This work should contribute to prioritize environmental needs, as well as enhance the development of indicators for the assessment of the ecological status of coastal systems. It could also help better apply and coordinate management measures at a relevant

  20. Fine-Scale Cartography of Human Impacts along French Mediterranean Coasts: A Relevant Map for the Management of Marine Ecosystems

    PubMed Central

    Holon, Florian; Mouquet, Nicolas; Boissery, Pierre; Bouchoucha, Marc; Delaruelle, Gwenaelle; Tribot, Anne-Sophie; Deter, Julie

    2015-01-01

    Ecosystem services provided by oceans and seas support most human needs but are threatened by human activities. Despite existing maps illustrating human impacts on marine ecosystems, information remains either large-scale but rough and insufficient for stakeholders (1 km² grid, lack of data along the coast) or fine-scale but fragmentary and heterogeneous in methodology. The objectives of this study are to map and quantify the main pressures exerted on near-coast marine ecosystems, at a large spatial scale though in fine and relevant resolution for managers (one pixel = 20 x 20 m). It focuses on the French Mediterranean coast (1,700 km of coastline including Corsica) at a depth of 0 to 80 m. After completing and homogenizing data presently available under GIS on the bathymetry and anthropogenic pressures but also on the seabed nature and ecosystem vulnerability, we provide a fine modeling of the extent and impacts of 10 anthropogenic pressures on marine habitats. The considered pressures are man-made coastline, boat anchoring, aquaculture, urban effluents, industrial effluents, urbanization, agriculture, coastline erosion, coastal population and fishing. A 1:10 000 continuous habitat map is provided considering 11 habitat classes. The marine bottom is mostly covered by three habitats: infralittoral soft bottom, Posidonia oceanica meadows and circalittoral soft bottom. Around two thirds of the bottoms are found within medium and medium high cumulative impact categories. Seagrass meadows are the most impacted habitats. The most important pressures (in area and intensity) are urbanization, coastal population, coastal erosion and man-made coastline. We also identified areas in need of a special management interest. This work should contribute to prioritize environmental needs, as well as enhance the development of indicators for the assessment of the ecological status of coastal systems. It could also help better apply and coordinate management measures at a relevant

  1. The Role of Pre-Existing Disturbances in the Effect of Marine Reserves on Coastal Ecosystems: A Modelling Approach

    PubMed Central

    Savina, Marie; Condie, Scott A.; Fulton, Elizabeth A.

    2013-01-01

    We have used an end-to-end ecosystem model to explore responses over 30 years to coastal no-take reserves covering up to 6% of the fifty thousand square kilometres of continental shelf and slope off the coast of New South Wales (Australia). The model is based on the Atlantis framework, which includes a deterministic, spatially resolved three-dimensional biophysical model that tracks nutrient flows through key biological groups, as well as extraction by a range of fisheries. The model results support previous empirical studies in finding clear benefits of reserves to top predators such as sharks and rays throughout the region, while also showing how many of their major prey groups (including commercial species) experienced significant declines. It was found that the net impact of marine reserves was dependent on the pre-existing levels of disturbance (i.e. fishing pressure), and to a lesser extent on the size of the marine reserves. The high fishing scenario resulted in a strongly perturbed system, where the introduction of marine reserves had clear and mostly direct effects on biomass and functional biodiversity. However, under the lower fishing pressure scenario, the introduction of marine reserves caused both direct positive effects, mainly on shark groups, and indirect negative effects through trophic cascades. Our study illustrates the need to carefully align the design and implementation of marine reserves with policy and management objectives. Trade-offs may exist not only between fisheries and conservation objectives, but also among conservation objectives. PMID:23593432

  2. Management and the conservation of freshwater ecosystems

    USGS Publications Warehouse

    Wipfli, Mark S.; Richardson, John S.

    2015-01-01

    Riparian and freshwater ecosystems are typically tightly coupled, especially in their natural states, and the linkages that couple them frequently exert strong influence on their associated invertebrate and fish fauna (e.g. Gregory et al., 1991; Naiman et al., 2010). Riparian habitats, and the condition of these habitats, further plays a key role in the ecology of these fresh waters, influencing critical processes such as water, nutrient and sediment delivery and dynamics; prey resources for fish and other consumers, and other organic materials exchanged between aquatic and terrestrial habitats (Nakano et al., 1999; Naiman et al., 2010); light and water temperature dynamics that in turn affect food web processes and fish metabolism and growth; aquatic physical habitat (wood); and terrestrial consumers that prey upon fishes (Bisson & Bilby, 1998; Naiman et al., 2010; Wipfli & Baxter, 2010). These processes in turn directly or indirectly influence fishes in freshwater systems (Wang et al., 2001; Pusey & Arthington, 2003; Allan, 2004; Richardson et al., 2010a).

  3. Volume 5: A framework for sustainable-ecosystem management. eastside forest ecosystem health assessment. Forest Service general technical report

    SciTech Connect

    Bormann, B.T.; Brookes, M.H.; Ford, E.D.; Kiester, A.R.; Oliver, C.D.

    1994-02-01

    The principles for sustainable-ecosystem management are derived by integrating fundamental societal, and scientific premises, ecosystem science is applied in the design of a system of management focused on building overlap between what people collectively want and what is ecologically possible. The authors conclude that management must incorporate more science and social processes in the system--to better inform decisions and to learn by 'managing as an experiment.' A management model is proposed that laces together societal values and ecological capacity.

  4. Forest ecosystem management: An ecological, economic, and social assessment. Report of the forest ecosystem management assessment team

    SciTech Connect

    Not Available

    1993-07-01

    The objectives based on the President's mandate and principles are to identify management alternatives that attain the greatest economic and social contribution from the forests of the region and meet the requirements of the applicable laws and regulations, including the Endangered Species Act, the National Forest Management Act, the Federal Land Policy Management Act, and the National Environmental Policy Act. The Ecosystem Management Assessment working group should explore adaptive management and silvicultural techniques and base its work on the best technical and scientific information currently available.

  5. Characterization of arbuscular mycorrhizal fungal communities with respect to zonal vegetation in a coastal dune ecosystem.

    PubMed

    Kawahara, Ai; Ezawa, Tatsuhiro

    2013-10-01

    Coastal dune vegetation distributes zonally along the environmental gradients of, e.g., soil disturbance. In the preset study, arbuscular mycorrhizal fungal communities in a coastal dune ecosystem were characterized with respect to tolerance to soil disturbance. Two grass species, Elymus mollis and Miscanthus sinensis, are distributed zonally in the seaward and landward slopes, respectively, in the primary dunes in Ishikari, Japan. The seaward slope is severely disturbed by wind, while the landward slope is stabilized by the thick root system of M. sinensis. The roots and rhizosphere soils of the two grasses were collected from the slopes. The soils were sieved to destruct the fungal hyphal networks, and soil trap culture was conducted to assess tolerance of the communities to disturbance, with parallel analysis of the field communities using a molecular ecological tool. In the landward communities, large shifts in the composition and increases in diversity were observed in the trap culture compared with the field, but in the seaward communities, the impact of trap culture was minimal. The landward field community was significantly nested within the landward trap culture community, implying that most members in the field community did not disappear in the trap culture. No nestedness was observed in the seaward communities. These observations suggest that disturbance-tolerant fungi have been preferentially selected in the seaward slope due to severe disturbance in the habitat. Whereas a limited number of fungi, which are not necessarily disturbance-sensitive, dominate in the stable landward slope, but high-potential diversity has been maintained in the habitat.

  6. Effect of an invasive plant and moonlight on rodent foraging behavior in a coastal dune ecosystem.

    PubMed

    Johnson, Matthew D; De León, Yesenia L

    2015-01-01

    Understanding how invasive plants may alter predator avoidance behaviors is important for granivorous rodents because their foraging can trigger ripple effects in trophic webs. Previous research has shown that European beach grass Ammophila arenaria, an invasive species in coastal California, affects the predation of other seeds by the rodents Microtus californicus, Peromyscus maniculatus, and Reithrodontomys megalotis. This may be due to lower perceived predation risk by rodents foraging in close proximity to the cover provided by Ammophila, but this mechanism has not yet been tested. We examined the perceived predation risk of rodents by measuring the 'giving up density' of food left behind in experimental patches of food in areas with and without abundant cover from Ammophila and under varying amount of moonlight. We found strong evidence that giving up density was lower in the thick uniform vegetation on Ammophila-dominated habitat than it was in the more sparsely and diversely vegetated restored habitat. There was also evidence that moonlight affected giving up density and that it mediated the effects of habitat, although with our design we were unable to distinguish the effects of lunar illumination and moon phase. Our findings illustrate that foraging rodents, well known to be risk-averse during moonlit nights, are also affected by the presence of an invasive plant. This result has implications for granivory and perhaps plant demography in invaded and restored coastal habitats. Future research in this system should work to unravel the complex trophic links formed by a non-native invasive plant (i.e., Ammophila) providing cover favored by native rodents, which likely forage on and potentially limit the recruitment of native and non-native plants, some of which have ecosystem consequences of their own.

  7. Climate Variability in Coastal Ecosystems - Use of MODIS Land Surface and Sea Surface Temperature Observations

    NASA Astrophysics Data System (ADS)

    Chintalapati, S.; Lakshmi, V.

    2007-12-01

    The intertidal zone, with its complex blend of marine and terrestrial environments, is one of the intensively studied ecosystems, in understanding the effects of climate change on species abundance and distribution. As climatic conditions change, the geographic limits of the intertidal species will likely move towards more tolerable coastal conditions. Traditionally, understanding climate change effects through species physiologic response have involved use of in situ measurements and thermal engineering models. But these approaches are constrained by their data intensive requirements and may not be suitable for predicting change patterns relevant to large scale species distributions. Satellite remote sensing provides an alternate approach, given the regular global coverage at moderate spatial resolutions. The present study uses six years of land surface temperature (LST) and sea surface temperature (SST) data from MODIS/Terra instrument along various coastlines around the globe - East and West Coast US, Southern Africa, Northern Japan and New Zealand. Apart from the dominant annual cycle in LST and SST, the other seasonal cycles vary from dominant semi-annual cycles in lower latitudes to 1.5 and 2 year cycles at higher latitudes. The monthly anomalies show strong spatial structure at lower latitudes when compared to higher latitudes, with the exception of US east coast, where the spatial structure extended almost along the whole coastline, indicating strong regulation from the Gulf Stream. The patterns along different coast lines are consistent with the atmospheric and ocean circulation patterns existing at those regions. These results suggest that the climatology at the coastal regions can be adequately represented using satellite-based temperature data, thus enabling further research in understanding the effects of climate change on species abundance and distribution at larger scales.

  8. Managing Complex Problems in Rangeland Ecosystems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Management of rangelands, and natural resources in general, has become increasingly complex. There is an atmosphere of increasing expectations for conservation efforts associated with a variety of issues from water quality to endangered species. We argue that many current issues are complex by their...

  9. NASA COAST and OCEANIA Airborne Missions in Support of Ecosystem and Water Quality Research in the Coastal Zone

    NASA Technical Reports Server (NTRS)

    Guild, Liane S.; Hooker, Stanford B.; Kudela, Raphael; Morrow, John; Russell, Philip; Myers, Jeffrey; Dunagan, Stephen; Palacios, Sherry; Livingston, John; Negrey, Kendra; Torres-Perez, Juan

    2015-01-01

    Worldwide, coastal marine ecosystems are exposed to land-based sources of pollution and sedimentation from anthropogenic activities including agriculture and coastal development. Ocean color products from satellite sensors provide information on chlorophyll (phytoplankton pigment), sediments, and colored dissolved organic material. Further, ship-based in-water measurements and emerging airborne measurements provide in situ data for the vicarious calibration of current and next generation satellite ocean color sensors and to validate the algorithms that use the remotely sensed observations. Recent NASA airborne missions over Monterey Bay, CA, have demonstrated novel above- and in-water measurement capabilities supporting a combined airborne sensor approach (imaging spectrometer, microradiometers, and a sun photometer). The results characterize coastal atmospheric and aquatic properties through an end-to-end assessment of image acquisition, atmospheric correction, algorithm application, plus sea-truth observations from state-of-the-art instrument systems. The primary goal of the airborne missions was to demonstrate the following in support of calibration and validation exercises for satellite coastal ocean color products: 1) the utility of a multi-sensor airborne instrument suite to assess the bio-optical properties of coastal California, including water quality; and 2) the importance of contemporaneous atmospheric measurements to improve atmospheric correction in the coastal zone. Utilizing an imaging spectrometer optimized in the blue to green spectral domain enables higher signal for detection of the relatively dark radiance measurements from marine and freshwater ecosystem features. The novel airborne instrument, Coastal Airborne In-situ Radiometers (C-AIR) provides measurements of apparent optical properties with high dynamic range and fidelity for deriving exact water leaving radiances at the land-ocean boundary, including radiometrically shallow aquatic

  10. Great Lakes rivermouth ecosystems: scientific synthesis and management implications

    EPA Science Inventory

    Rivermouth ecosystems contribute to both the ecological dynamics and the human social networks that surround and depend on the Laurentian Great Lakes. However, understanding and management of these systems would be enhanced by viewing them with a new, holistic focus. Here, focu...

  11. Sound management may sequester methane in grazed rangeland ecosystems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Considering their contribution to global warming, the sources and sinks of methane (CH4) should be accounted when undertaking a greenhouse gas inventory for grazed rangeland ecosystems. The aim of this study was to evaluate the mitigation potential of current ecological management programs implement...

  12. Sustainable wetland management and support of ecosystem services

    USGS Publications Warehouse

    Smith, Loren M.; Euliss, Ned H.; Wilcox, Douglas A.; Brinson, Mark M.

    2009-01-01

    This article is a follow-up on a previous piece in the National Wetlands Newsletter in which we outlined problems associated with a static, local approach to wetland management versus an alternative that proposes a temporal and geomorphic approach (Euliss et al. 2009). We extend that concept by drawing on companion papers recently published in the journal Wetlands (Euliss et al. 2008, Smith et al. 2008). Here we highlight reasons for the failure of many managed wetlands to provide a suite of ecosystem services (e.g., carbon storage, diodiversity, ground-water recharge, contaminant filtering, floodwater storage). Our principal theme is that wetland management is best approached by giving consideration to the hydrogeomorphic processes that maintain productive ecosystems and by removing physical and social impediments to those processes. Traditional management actions are often oriented toward maintaining static conditions in wetlands without considering the temporal cycles that wetlands need to undergo or achieve productivity for specific groups of wildlife, such as waterfowl. Possibly more often, a manager's ability to influence hydrogeomorphic processes is restricted by activities in surrounding watersheds. These could be dams, for example, which do not allow management of flood-pulse processes essential to productivity of riparian systems. In most cases, sediments and nutrients associated with land use in contributing watersheds complicate management of wetlands for a suite of services, including wildlife. Economic or policy forces far-removed from a wetland often interact to prevent occurrence of basic ecosystem processes. Our message is consistent with recommendation of supply-side sustainability of Allen et al. (2002) in which ecosystems are managed "for the system that produces outputs rather than the outputs themselves."

  13. Modelling marine community responses to climate-driven species redistribution to guide monitoring and adaptive ecosystem-based management.

    PubMed

    Marzloff, Martin Pierre; Melbourne-Thomas, Jessica; Hamon, Katell G; Hoshino, Eriko; Jennings, Sarah; van Putten, Ingrid E; Pecl, Gretta T

    2016-07-01

    As a consequence of global climate-driven changes, marine ecosystems are experiencing polewards redistributions of species - or range shifts - across taxa and throughout latitudes worldwide. Research on these range shifts largely focuses on understanding and predicting changes in the distribution of individual species. The ecological effects of marine range shifts on ecosystem structure and functioning, as well as human coastal communities, can be large, yet remain difficult to anticipate and manage. Here, we use qualitative modelling of system feedback to understand the cumulative impacts of multiple species shifts in south-eastern Australia, a global hotspot for ocean warming. We identify range-shifting species that can induce trophic cascades and affect ecosystem dynamics and productivity, and evaluate the potential effectiveness of alternative management interventions to mitigate these impacts. Our results suggest that the negative ecological impacts of multiple simultaneous range shifts generally add up. Thus, implementing whole-of-ecosystem management strategies and regular monitoring of range-shifting species of ecological concern are necessary to effectively intervene against undesirable consequences of marine range shifts at the regional scale. Our study illustrates how modelling system feedback with only limited qualitative information about ecosystem structure and range-shifting species can predict ecological consequences of multiple co-occurring range shifts, guide ecosystem-based adaptation to climate change and help prioritise future research and monitoring.

  14. Effects of coastal managed retreat on mercury biogeochemistry.

    PubMed

    Sizmur, Tom; Godfrey, Adam; O'Driscoll, Nelson J

    2016-02-01

    We investigated the impact of managed retreat on mercury (Hg) biogeochemistry at a site subject to diffuse contamination with Hg. We collected sediment cores from an area of land behind a dyke one year before and one year after it was intentionally breached. These sediments were compared to those of an adjacent mudflat and a salt marsh. The concentration of total mercury (THg) in the sediment doubled after the dyke was breached due to the deposition of fresh sediment that had a smaller particle size, and higher pH. The concentration of methylmercury (MeHg) was 27% lower in the sediments after the dyke was breached. We conclude that coastal flooding during managed retreat of coastal flood defences at this site has not increased the risk of Hg methylation or bioavailability during the first year. As the sediment becomes vegetated, increased activity of Hg-methylating bacteria may accelerate Hg-methylation rate.

  15. Iron limitation impact on eddy-induced ecosystem variability in the coastal Gulf of Alaska

    NASA Astrophysics Data System (ADS)

    Fiechter, Jerome; Moore, Andrew M.

    2012-04-01

    A data assimilative, coupled physical-biological model for the northwestern coastal Gulf of Alaska (CGOA) is used to characterize lower trophic level ecosystem response to eddy variability at the shelfbreak over a 5-year period (1998-2002). The ocean circulation component is an implementation of the Regional Ocean Modeling System (ROMS), the lower trophic level ecosystem component is a six-compartment Nutrient-Phytoplankton-Zooplankton-Detritus (NPZD) model with iron limitation, and the data assimilation component is the adjoint-based, four-dimensional variational (4D-Var) system available in ROMS. Assimilated observations consist of weekly satellite sea surface height and temperature, as well as bimonthly in situ temperature and salinity measurements. Overall, the model results are in agreement with earlier observational studies, and confirm that eddy-induced cross-shelf transport of biological properties can potentially enhance phytoplankton concentrations in the basin by: (1) alleviating iron limitation on phytoplankton growth by transporting iron-rich shelf waters offshore, and (2) transporting elevated shelf phytoplankton concentrations offshore. Simulated nutrient anomalies during eddy events indicate a substantial increase in dissolved iron concentrations in near-surface waters, thereby suggesting that eddy-induced offshore transport of iron-rich shelf waters is the dominant mechanism regulating locally-generated offshore production in the CGOA high nutrient-low chlorophyll (HNLC) region during eddy events. In fact, for the period 1998-2002, the model results predict that approximately two thirds of the eddy-induced production in the Yakutat/Sitka "eddy corridor" is associated with locally-generated production resulting from alleviated iron limitation conditions on phytoplankton growth. The remaining third can be attributed to eddy-induced offshore export of chlorophyll concentrations of shelf origin.

  16. Dynamic exchanges between DOM and POM pools in coastal and inland aquatic ecosystems: A review.

    PubMed

    He, Wei; Chen, Meilian; Schlautman, Mark A; Hur, Jin

    2016-05-01

    Dynamic exchanges between dissolved organic matter (DOM) and particulate organic matter (POM) plays a critical role in organic carbon cycling in coastal and inland aquatic ecosystems, interactions with aquatic organisms, mobility and bioavailability of pollutants, among many other ecological and geochemical phenomena. Although DOM-POM exchange processes have been widely studied from different aspects, little to no effort has been made to date to provide a comprehensive, mechanistic, and micro-spatial schema for understanding various exchange processes occurring in different aquatic ecosystems in a unified way. The phenomena occurring between DOM and POM were explained here with the homogeneous and heterogeneous mechanisms. In the homogeneous mechanism, the participating components are only organic matter (OM) constituents themselves with aggregation and dissolution involved, whereas OM is associated with other components such as minerals and particulate colloids in the heterogeneous counterpart. Besides the generally concerned processes of aggregation/dissolution and adsorption/desorption, other ecological factors such as sunlight and organisms can also participate in DOM-POM exchanges through altering the chemical nature of OM. Despite the limitation of current analytical technologies, many unknown and/or unquantified processes need to be identified to unravel the complicated exchanges of OM between its dissolved and particulate states. Based on the review of several previous mathematical models, we proposed a unified conceptual model to describe all major dynamic exchange mechanisms on the basis of exergy theory. More knowledge of dynamic DOM-POM exchanges is warranted to overcome the potential problems arising from a simple division of OM into dissolved versus particulate states and to further develop more sophisticated mathematic models.

  17. Body-size spectra of biofilm-dwelling protozoa and their seasonal shift in coastal ecosystems.

    PubMed

    Zhao, Lu; Xu, Guangjian; Wang, Zheng; Xu, Henglong

    2016-10-01

    Community-based assessment of protozoa is usually performed at a taxon-dependent resolution. As an inherent 'taxon-free' trait, however, body-size spectrum has proved to be a highly informative indicator to summarize the functional structure of a community in both community research and monitoring programs in aquatic ecosystems. To demonstrate the relationships between the taxon-free resolution of protozoan communities and water conditions, the body-size spectra of biofilm-dwelling protozoa and their seasonal shift and environmental drivers were explored based on an annual dataset collected monthly from coastal waters of the Yellow Sea, northern China. Body sizes were calculated in equivalent spherical diameter (ESD). Among a total of 8 body-size ranks, S2 (19-27μm), S3 (28-36μm), S4 (37-50μm) and S5 (53-71μm) were the top four levels in frequency of occurrence, while rank S1 (13-17μm), S2 and S4 were the dominant levels in abundance. These dominants showed a clear seasonal succession: S2/S4 (spring)→S2/S4 (summer)→S4 (autumn)→S2 (winter) in frequency of occurrence; S1 (spring)→S4 (summer)→S2 (autumn)→S1 (winter) in abundance. Bootstrapped average analysis showed a clear seasonal shift in body-size spectra of the protozoa during a 1-year cycle, and the best-matching analysis demonstrated that the temporal variations in frequency of occurrence and abundance were significantly correlated with water temperature, pH, dissolved oxygen (DO), alone or in combination with chemical oxygen demand (COD) and nutrients. Thus, the body-size spectra of biofilm-dwelling protozoa were seasonally shaped and might be used as a time and cost efficient bioindicator of water quality in marine ecosystems.

  18. Byers Peninsula: A reference site for coastal, terrestrial and limnetic ecosystem studies in maritime Antarctica

    NASA Astrophysics Data System (ADS)

    Quesada, A.; Camacho, A.; Rochera, C.; Velázquez, D.

    2009-11-01

    This article describes the development of an international and multidisciplinary project funded by the Spanish Polar Programme on Byers Peninsula (Livingston Island, South Shetlands). The project adopted Byers Peninsula as an international reference site for coastal and terrestrial (including inland waters) research within the framework of the International Polar Year initiative. Over 30 scientists from 12 countries and 26 institutions participated in the field work, and many others participated in the processing of the samples. The main themes investigated were: Holocene changes in climate, using both lacustrine sediment cores and palaeo-nests of penguins; limnology of the lakes, ponds, rivers and wetlands; microbiology of microbial mats, ecology of microbial food webs and viral effects on aquatic ecosystems; ornithology, with investigations on a Gentoo penguin rookery ( Pygoscelis papua) as well as the flying ornithofauna; biocomplexity and life cycles of species from different taxonomic groups; analysis of a complete watershed unit from a landscape perspective; and human impacts, specifically the effect of trampling on soil characteristics and biota. Byers Peninsula offers many features as an international reference site given it is one of the largest ice-free areas in the Antarctic Peninsula region, it has a variety of different landscape units, and it hosts diverse aquatic ecosystems. Moreover, the Byers Peninsula is a hotspot for Antarctic biodiversity, and because of its high level of environmental protection, it has been very little affected by human activities. Finally, the proximity to the Spanish polar installations on Livingston Island and the experience derived from previous expeditions to the site make it logistically feasible as a site for ongoing monitoring and research.

  19. Managing for Interactions between Local and Global Stressors of Ecosystems

    PubMed Central

    Brown, Christopher J.; Saunders, Megan I.; Possingham, Hugh P.; Richardson, Anthony J.

    2013-01-01

    Global stressors, including climate change, are a major threat to ecosystems, but they cannot be halted by local actions. Ecosystem management is thus attempting to compensate for the impacts of global stressors by reducing local stressors, such as overfishing. This approach assumes that stressors interact additively or synergistically, whereby the combined effect of two stressors is at least the sum of their isolated effects. It is not clear, however, how management should proceed for antagonistic interactions among stressors, where multiple stressors do not have an additive or greater impact. Research to date has focussed on identifying synergisms among stressors, but antagonisms may be just as common. We examined the effectiveness of management when faced with different types of interactions in two systems – seagrass and fish communities – where the global stressor was climate change but the local stressors were different. When there were synergisms, mitigating local stressors delivered greater gains, whereas when there were antagonisms, management of local stressors was ineffective or even degraded ecosystems. These results suggest that reducing a local stressor can compensate for climate change impacts if there is a synergistic interaction. Conversely, if there is an antagonistic interaction, management of local stressors will have the greatest benefits in areas of refuge from climate change. A balanced research agenda, investigating both antagonistic and synergistic interaction types, is needed to inform management priorities. PMID:23776542

  20. Sea-level rise modeling handbook: Resource guide for coastal land managers, engineers, and scientists

    USGS Publications Warehouse

    Doyle, Thomas W.; Chivoiu, Bogdan; Enwright, Nicholas M.

    2015-08-24

    Global sea level is rising and may accelerate with continued fossil fuel consumption from industrial and population growth. In 2012, the U.S. Geological Survey conducted more than 30 training and feedback sessions with Federal, State, and nongovernmental organization (NGO) coastal managers and planners across the northern Gulf of Mexico coast to evaluate user needs, potential benefits, current scientific understanding, and utilization of resource aids and modeling tools focused on sea-level rise. In response to the findings from the sessions, this sea-level rise modeling handbook has been designed as a guide to the science and simulation models for understanding the dynamics and impacts of sea-level rise on coastal ecosystems. The review herein of decision-support tools and predictive models was compiled from the training sessions, from online research, and from publications. The purpose of this guide is to describe and categorize the suite of data, methods, and models and their design, structure, and application for hindcasting and forecasting the potential impacts of sea-level rise in coastal ecosystems. The data and models cover a broad spectrum of disciplines involving different designs and scales of spatial and temporal complexity for predicting environmental change and ecosystem response. These data and models have not heretofore been synthesized, nor have appraisals been made of their utility or limitations. Some models are demonstration tools for non-experts, whereas others require more expert capacity to apply for any given park, refuge, or regional application. A simplified tabular context has been developed to list and contrast a host of decision-support tools and models from the ecological, geological, and hydrological perspectives. Criteria were established to distinguish the source, scale, and quality of information input and geographic datasets; physical and biological constraints and relations; datum characteristics of water and land components

  1. Genetic variation within a dominant shrub species determines plant species colonization in a coastal dune ecosystem.

    PubMed

    Crutsinger, Gregory M; Strauss, Sharon Y; Rudgers, Jennifer A

    2010-04-01

    The diversity and structure of plant communities is often determined by the presence and identity of competitively dominant species. Recent studies suggest that intraspecific variation within dominants may also have important community-level consequences. In a coastal dunes ecosystem of northern California, we use a decade-old common garden experiment to test the effects of a genetically based architectural dimorphism within a dominant native shrub, Baccharis pilularis, on plant colonization success and understory plant diversity. We found that erect Baccharis morphs had higher richness and cover of colonizing plant species (both native and exotic species) compared to prostrate morphs, as well as higher biomass of a dominant exotic dune grass (Ammophila arenaria). Trait differences between architectural morphs influenced the abiotic understory environment (light availability, soil surface temperature, and litter depth) and were associated with species colonization success. Taken together, our results demonstrate that incorporating within-species variation, particularly within dominant species, into community ecological research can increase the ability to predict patterns of species diversity and assembly within communities.

  2. Temperature dependence of coastal wetland ecosystem respiration confounded by tidal activities: a temporal perspective

    NASA Astrophysics Data System (ADS)

    Xie, X.

    2013-12-01

    The variation of temperature is widely used to describe fluctuation of ecosystem respiration (ER), but the hydrological conditions could also have influence on ER. Many researcher have proved that the aperiodic seasonal variation of hydrological conditions would affect the temperature sensitivity (Q10), drought effect in wetland, specifically. However, in costal wetland, how the periodic hydrological condition (i.e. tide) change the ER temperature relation in different time scales remains unknown. In this study, data from two coastal wetland sites were used. By comparing the variations of temperature and tidal influence in three time scales (monthly, seasonal and half-yearly), we found that: (1) the relative importance of temperature and tide varied in monthly scale, and temperature had constant and greater influence in larger time scales; (2) temperature had greater influence in higher elevation site while the same for tide in lower; (3) regression model in half-yearly and seasonal scales would result in systematic over- and underestimation on ER, and monthly model with tidal effect perform best. There results demonstrate that in costal wetland the using of annual fixed Q10 for data gap-filling should be avoided, and tidal effect and elevation should be consider in estimating the magnitude of carbon sink/source.

  3. Biomagnification and debromination of polybrominated diphenyl ethers in a coastal ecosystem in Tokyo Bay.

    PubMed

    Mizukawa, Kaoruko; Yamada, Toshiko; Matsuo, Hiroaki; Takeuchi, Ichiro; Tsuchiya, Kotaro; Takada, Hideshige

    2013-04-01

    By field sampling and laboratory experiments we compared the mechanisms by which polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs) are biomagnified. We measured PBDEs and PCBs, together with stable carbon and nitrogen isotopes as an index of trophic level, in low-trophic-level organisms collected from a coastal area in Tokyo Bay. PBDEs were biomagnified to a lesser degree than PCBs. The more hydrophobic congeners of each were biomagnified more. However, the depletion of BDE congeners BDE99 and BDE153 from fish was suggested. To study congener-specific biotransformation of halogenated compounds, we conducted an in vitro experiment using hepatic microsomes of two species of fish and five BDE congeners (BDE47, 99, 100, 153, and 154) and five CB congeners with the same substitution positions as the PBDEs. BDE99 and 153 were partially debrominated, but BDE47 and 154 were not debrominated. This congener-specific debromination is consistent with the field results. Both in vitro and field results suggested selective debromination at the meta position. The CB congeners were not transformed in vitro. This result is also consistent with the field results, that PCBs were more biomagnified than PBDEs. We conclude that metabolizability is an important factor in the biomagnification of chemicals, but other factors must be responsible for the lower biomagnification of PBDEs in natural ecosystems.

  4. Effects of benthos, temperature, and dose on the fate of hexabromocyclododecane in experimental coastal ecosystems.

    PubMed

    Bradshaw, Clare; Strid, Anna; von Stedingk, Hans; Gustafsson, Kerstin

    2015-06-01

    The authors studied the fate of the brominated flame retardant hexabromocyclododecane (HBCDD) added in a particulate suspension to experimental ecosystems assembled from brackish (Baltic Sea) coastal bays. Two experiments examined how benthic macrofauna (over 21 d) and increased temperature (14 d) affected HBCDD concentrations and fractionation of α, β, and γ diastereomers in the water, sediment, and biota. A third experiment run over 3 seasons (231 d), studied the effect of HBCDD dose on the same endpoints. In all treatments of the 3 experiments, HBCDD partitioned mainly to the sediment, and this proportion increased with time. Presence of macrofauna tended to increase the HBCDD concentration in the sediment and decreased its concentration in the water. Increased temperature (+ 5°C) decreased the amount of HBCDD in sediment and water but not in the filter- and deposit-feeding infaunal bivalves (Macoma balthica). The partitioning between water, sediment, and biota was not concentration dependent. In all treatments, sediment became enriched in γ-HBCDD, M. balthica in α-HBCDD, and water in α- and β-HBCDD. Bioaccumulation of HBCDD in M. balthica was high in all experiments (log biota-sediment accumulation factor [BSAF] > 1.25), the α diastereomer contributing the most (log BSAF 2.1-5.2). There is a risk of trophic transfer of HBCDD from benthic to pelagic food webs, as well as secondary poisoning of marine consumers.

  5. Modeled Sea Level Rise Impacts on Coastal Ecosystems at Six Major Estuaries on Florida's Gulf Coast: Implications for Adaptation Planning.

    PubMed

    Geselbracht, Laura L; Freeman, Kathleen; Birch, Anne P; Brenner, Jorge; Gordon, Doria R

    2015-01-01

    The Sea Level Affecting Marshes Model (SLAMM) was applied at six major estuaries along Florida's Gulf Coast (Pensacola Bay, St. Andrews/Choctawhatchee Bays, Apalachicola Bay, Southern Big Bend, Tampa Bay and Charlotte Harbor) to provide quantitative and spatial information on how coastal ecosystems may change with sea level rise (SLR) and to identify how this information can be used to inform adaption planning. High resolution LiDAR-derived elevation data was utilized under three SLR scenarios: 0.7 m, 1 m and 2 m through the year 2100 and uncertainty analyses were conducted on selected input parameters at three sites. Results indicate that the extent, spatial orientation and relative composition of coastal ecosystems at the study areas may substantially change with SLR. Under the 1 m SLR scenario, total predicted impacts for all study areas indicate that coastal forest (-69,308 ha; -18%), undeveloped dry land (-28,444 ha; -2%) and tidal flat (-25,556 ha; -47%) will likely face the greatest loss in cover by the year 2100. The largest potential gains in cover were predicted for saltmarsh (+32,922 ha; +88%), transitional saltmarsh (+23,645 ha; na) and mangrove forest (+12,583 ha; +40%). The Charlotte Harbor and Tampa Bay study areas were predicted to experience the greatest net loss in coastal wetlands The uncertainty analyses revealed low to moderate changes in results when some numerical SLAMM input parameters were varied highlighting the value of collecting long-term sedimentation, accretion and erosion data to improve SLAMM precision. The changes predicted by SLAMM will affect exposure of adjacent human communities to coastal hazards and ecosystem functions potentially resulting in impacts to property values, infrastructure investment and insurance rates. The results and process presented here can be used as a guide for communities vulnerable to SLR to identify and prioritize adaptation strategies that slow and/or accommodate the changes underway.

  6. Managing coastal environments under climate change: Pathways to adaptation.

    PubMed

    Sánchez-Arcilla, Agustín; García-León, Manuel; Gracia, Vicente; Devoy, Robert; Stanica, Adrian; Gault, Jeremy

    2016-12-01

    This paper deals with the question of how to manage vulnerable coastal systems so as to make them sustainable under present and future climates. This is interpreted in terms of the coastal functionality, mainly natural services and support for socio-economic activities. From here we discuss how to adapt for long term trends and for short terms episodic events using the DPSIR framework. The analysis is presented for coastal archetypes from Spain, Ireland and Romania, sweeping a range of meteo-oceanographic and socio-economic pressures, resulting in a wide range of fluxes among them those related to sediment. The analysis emphasizes the variables that provide a higher level of robustness. That means mean sea level for physical factors and population density for human factors. For each of the studied cases high and low sustainability practices, based on stakeholders preferences, are considered and discussed. This allows proposing alternatives and carrying out an integrated assessment in the last section of the paper. This assessment permits building a sequence of interventions called adaptation pathway that enhances the natural resilience of the studied coastal systems and therefore increases their sustainability under present and future conditions.

  7. Modelling environmental controls on ecosystem photosynthesis and the carbon isotope composition of ecosystem-respired CO2 in a coastal Douglas-fir forest.

    PubMed

    Cai, Tiebo; Flanagan, Lawrence B; Jassal, Rachhpal S; Black, T Andrew

    2008-04-01

    We developed and applied an ecosystem-scale model that calculated leaf CO2 assimilation, stomatal conductance, chloroplast CO2 concentration and the carbon isotope composition of carbohydrate formed during photosynthesis separately for sunlit and shaded leaves within multiple canopy layers. The ecosystem photosynthesis model was validated by comparison to leaf-level gas exchange measurements and estimates of ecosystem-scale photosynthesis from eddy covariance measurements made in a coastal Douglas-fir forest on Vancouver Island. A good agreement was also observed between modelled and measured delta13C values of ecosystem-respired CO2 (deltaR). The modelled deltaR values showed strong responses to variation in photosynthetic photon flux density (PPFD), air temperature, vapour pressure deficit (VPD) and available soil moisture in a manner consistent with leaf-level studies of photosynthetic 13C discrimination. Sensitivity tests were conducted to evaluate the effect of (1) changes in the lag between the time of CO2 fixation and the conversion of organic matter back to CO2; (2) shifts in the proportion of autotrophic and heterotrophic respiration; (3) isotope fractionation during respiration; and (4) environmentally induced changes in mesophyll conductance, on modelled delta(R) values. Our results indicated that deltaR is a good proxy for canopy-level C(c)/C(a) and 13C discrimination during photosynthetic gas exchange, and therefore has several applications in ecosystem physiology.

  8. Biological indicators of changes in water quality and habitats of the coastal and estuarine areas of the Greater Everglades Ecosystem; Chapter 11

    USGS Publications Warehouse

    Wachnicka, Anna; Wingard, Georgiana L.; Entry, James A.; Gottlieb, Andrew D.; Jayachandran, Krish; Ogram, Andrew

    2015-01-01

    This chapter summarizes the application of various biological indicators to studying the anthropogenic and natural changes in water quality and habitats that have occurred in the coastal and estuarine areas of the Greater Everglades ecosystem.

  9. Plastic particles in coastal pelagic ecosystems of the Northeast Pacific ocean.

    PubMed

    Doyle, Miriam J; Watson, William; Bowlin, Noelle M; Sheavly, Seba B

    2011-02-01

    , 1-2.5 mm, >2.5-5 mm, >5-10 mm, and >10 mm. Product fragments accounted for the majority of the particles, and most were less than 2.5 mm in size. The ubiquity of such particles in the survey areas and predominance of sizes <2.5 mm implies persistence in these pelagic ecosystems as a result of continuous breakdown from larger plastic debris fragments, and widespread distribution by ocean currents. Detailed investigations of the trophic ecology of individual zooplankton species, and their encounter rates with various size ranges of plastic particles in the marine pelagic environment, are required in order to understand the potential for ingestion of such debris particles by these organisms. Ongoing plankton sampling programs by marine research institutes in large marine ecosystems are good potential sources of data for continued assessment of the abundance, distribution and potential impact of small plastic debris in productive coastal pelagic zones.

  10. The Impacts Of The Indian Ocean Tsunami On Coastal Ecosystems And Resultant Effects On The Human Communities Of Sri Lanka

    NASA Astrophysics Data System (ADS)

    Ingram, J.; Rumbaitis-del Rio, C.; Franco, G.; Khazai, B.

    2005-12-01

    The devastating tsunami that hit Sri Lanka on December 26, 2004 has demonstrated vividly the inter-connections between social and ecological resilience. Before the tsunami, the coastal zone of Sri Lanka was inhabited by predominantly poor populations, most of whom were directly dependent upon coastal natural resources, such as fisheries and coconut trees, for supporting their livelihoods. Many of these people have now lost their livelihoods through the destruction of their boats and nets for fishing, the contamination of drinking sources, homes, family members and assets. This presentation focuses on observations of the tsunami impacts on both social and ecological communities made along the affected coastline of Sri Lanka in April-May 2005. This assessment recorded patterns of ecological resistance and damage resulting from the tsunami in relation to damage on the human environment, with an exploration of the physical factors that may have contributed to vulnerability or resistance. This work also involved a preliminary assessment of the resilience and recovery of different natural resource based livelihood strategies following the disaster and an exploration of livelihood possibilities in proposed resettlement sites. From observations made in this and other recent studies, it is apparent that intact ecosystems played a vital role in protection from the impact of the tsunami and are vital for supporting people as they seek to rebuild their livelihoods. However, certain structural and biological characteristics appear to offer certain tree species, such as coconut (Cocos nucifera), an advantage in surviving such events and have been important for providing food and drink to people in the days after the tsunami. Areas where significant environmental damage had occurred prior to the tsunami or where there were few natural defenses present to protect human communities, devastation of homes and lives was extremely high. Although, there is evidence that many previously

  11. Aquifer Heterogeneity and the Management of Coastal Groundwater Resources

    NASA Astrophysics Data System (ADS)

    Maliva, R. G.; Guo, W.; Missimer, T. M.; Clayton, E. A.

    2008-05-01

    A major challenge in the development and protection of groundwater resources in coastal areas is managing the interaction of fresh and saline waters. Production wellfields are vulnerable to saline-water intrusion. The performance of aquifer storage and recovery (ASR) and aquifer recharge systems in coastal settings is dependent upon the degree of migration and mixing of injected freshwater and ambient saline water in many places. Optimization of the development of freshwater resources thus requires the ability to accurately simulate the migration of saline waters in response to aquifer pumpage and the movement and mixing of injected freshwater. Aquifer heterogeneity can profoundly impact groundwater flow rates and patterns in coastal aquifers, particularly in karstic aquifers. The rate of migration of native saline water and injected freshwater in transmissive flow zones may be orders of magnitude greater than that estimated assuming a homogeneous distribution of hydraulic conductivity. High degrees of aquifer heterogeneity can result in rapid saline-water intrusion and can compromise the performance of ASR systems. Aquifer heterogeneity must therefore be quantified and incorporated in groundwater flow and solute transport models. Flowmeter logging allows for quantification of meter-scale variations in hydraulic conductivity. Advanced borehole geophysics, such as nuclear magnetic resonance logging, provide a means for in-situ measurement of finer (cm) scale variations in aquifer hydraulic conductivity, which can be incorporated directly into 3-D data management and visualization software and, in turn, solute-transport models. These new technologies can greatly improve our understanding of aquifer systems and help in aquifer management in the coastal areas.

  12. Management of Environmental Risks in Coastal Areas

    NASA Astrophysics Data System (ADS)

    Caprioli, M.; Trizzino, R.; Pagliarulo, R.; Scarano, M.; Mazzone, F.; Scognamiglio, A.

    2015-08-01

    The present work deals with the assessment and management of environmental risk conditions in a typical costal area of Southern Italy. This area, located in the Salento peninsula, is subject to recurrent widespread instability phenomena due to the presence of steep rocky cliffs. Along the coast there are numerous beach resorts that are very crowded in the summer season. The environmental hazard deriving from the possible rock falls is unacceptably high for the people safety. Moreover, the land-based mapping of the dangerous natural structures is very difficult and time and resources expending. In this context, we carried out an UAV survey along about 1 km of coast, near the towns of San Foca, Torre dell'Orso and Sant' Andrea ( Lecce, Southern Italy). The UAV platform was equipped with a photogrammetric measurement system that allowed us to obtain a mobile mapping of the fractured fronts of dangerous rocky cliffs. UAV-images data have been processed using dedicated software (Agisoft Photoscan). The total error obtained was of centimeter-order that is a very satisfactory result. The environmental information has been arranged in an ArcGIS platform in order to assess the risk levels. The possibility to repeat the survey at time intervals more or less close together depending on the measured levels of risk and to compare the output allows following the trend of the dangerous phenomena. In conclusion, for inaccessible locations of dangerous rocky bodies the UAV survey coupled with a GIS methodology proved to be a key engineering tool for the management of environmental risks.

  13. Resolving variability of phytoplankton species composition and blooms in coastal ecosystems

    NASA Astrophysics Data System (ADS)

    Klais, Riina; Cloern, James E.; Harrison, Paul J.

    2015-09-01

    The contributions to this special volume focus on phytoplankton dynamics in coastal ecosystems, where perturbations from terrestrial, atmospheric, oceanic sources and human activities converge to cause changes in phytoplankton communities. Analyses of phytoplankton time series across the range of coastal sites, either as meta-analyses or single site based studies, complete our general understanding of the ecology of coastal phytoplankton dynamics. The role of short-term variability of the phytoplankton community appears to be more important for the annual primary production than previously thought, especially during the high biomass spring bloom period (Gallegos and Neale, 2015). Diel vertical migration of motile species is commonplace even in shallow and presumably well-mixed estuaries (Hall et al., 2015). Comparing phytoplankton patterns in various sites reveals contrasting long-term trends in the last two decades, reflecting the recent history of economic growth in related coastal areas. In Chesapeake Bay Estuary (US east coast) and Thau Lagoon (southern France), oligotrophication has been achieved by different nutrient reduction measures (Gowen et al., 2015; Harding et al., 2015), while in the Patos Lagoon Estuary (Brazil) and SE coast of Arabian Sea, the last two decades showed signs of eutrophication, following the more recent period of economic growth in the area (Haraguchi et al., 2015; Godhe et al., 2015). The global meta-analyses in this volume exposed the great challenges involved when working with this type of data, due to the diversity of idiosyncrasies characteristic to most phytoplankton time series, for example, the taxonomic practices, cell volume calculations (Harrison et al., 2015), volume to carbon conversions (Carstensen et al., 2015; Olli et al., 2015). But also the diversity of the patterns themselves makes analyses challenging (Carstensen et al., 2015; Thompson et al., 2015). To begin to move towards more similar practices in plankton

  14. Vertebrate herbivory in managed coastal wetlands: A manipulative experiment

    USGS Publications Warehouse

    Johnson, L.A.; Foote, A.L.

    1997-01-01

    Structural marsh management and nutria herbivory are both believed to strongly influence plant production in the brackish, deltaic marshes of coastal Louisiana, USA. Previous studies have tested the effects of structural management on aboveground biomass after implementing management, but very few studies have collected data before and after management. Thus, to test the effects of structural marsh management on Spartina patens (Ait.) Muhl. and Scirpus americanus Pers., the aboveground biomass of both species was estimated before and after the construction of shallow, leveed impoundments. The water level in each impoundment was managed with a single flap-gated culvert fitted with a variable crest weir. Additionally, the influence of nutria grazing on aboveground biomass was measured by nondestructively sampling fenced (ungrazed) and unfenced (grazed) plots in both managed and unmanaged areas. While there was no significant difference in S. patens production between managed and unmanaged areas, marsh management negatively affected Sc. americanus production the two species also differed in their responses to grazing. Grazing dramatically reduced the sedge, Sc. americanus, while the grass, S. patens, remained at similar biomass levels in grazed and ungrazed plant stands. These findings support the belief that herbivory has a strong influence on plant production, but do not support the claim that management increases plant production in the deltaic marshes of Louisiana.

  15. Application of the Benthic Ecosystem Quality Index 2 to benthos in Dutch transitional and coastal waters

    NASA Astrophysics Data System (ADS)

    van Loon, W. M. G. M.; Boon, A. R.; Gittenberger, A.; Walvoort, D. J. J.; Lavaleye, M.; Duineveld, G. C. A.; Verschoor, A. J.

    2015-09-01

    The Benthic Ecosystem Quality Index 2 (BEQI2) is the Dutch multi-metric index (MMI) for assessing the status and trend of benthic invertebrates in transitional and coastal waters for the Water Framework Directive (WFD). It contains the same indicators, i.e. species richness, Shannon index and AMBI, as in the multivariate m-AMBI. The latter MMI has been adopted by several European countries in the context of WFD implementation. In contrast to m-AMBI, the BEQI2 calculation procedure has been strongly simplified and consists of two steps, i.e. the separate indicator values are normalized using their long-term reference values resulting in three Ecological Quality Ratios (EQRs), which are subsequently averaged to give one BEQI2 value. Using this method only small numbers of samples need to be analysed by Dutch benthos laboratories annually, without the necessity to co-analyse a larger historical dataset. BEQI2 EQR values appeared to correlate quantitatively very well with m-AMBI EQR values. In addition, a data pooling procedure has been added to the BEQI2 tool which enables the pooling of small core samples (0.01-0.025 m2) into larger standardized data pools of 0.1 m2 in order to meet the data requirements of the AMBI indicator and to obtain comparable reference values. Furthermore, the BEQI2 tool automatically and efficiently converts species synonym names into standardized species names. The BEQI2 tool has been applied to all Dutch benthos data monitored by Rijkswaterstaat in the period of 1991-2010 in the transitional and coastal waters and salt lakes and these results are reported here for the first time. Reference values for species richness and Shannon index (99 percentile values) and AMBI reference values (1 percentile values) were estimated for all water body-ecotopes and are discussed. BEQI2 results for all these water bodies are discussed in view of natural and human pressures. The pressure sensitivity of the BEQI2 for sewage and dredging/dumping, via the

  16. Supporting Coastal Management Decisions in the Face of Sea-Level Rise: Case Study for the Chesapeake Bay Region

    NASA Astrophysics Data System (ADS)

    Staudt, A. C.; Glick, P.; Clough, J. S.; Nunley, B.

    2008-12-01

    Sea-level rise needs to be a major consideration in regional coastal management and ecological restoration plans. The National Wildlife Federation has initiated a multi-pronged strategy for assisting decision makers at government agencies that manage near-shore ecosystems in several vulnerable coastal regions. Results from our work in the Chesapeake Bay region will be presented. This strategy involves: (1) Detailed modeling of how coastal habitats will migrate in response to a range of sea-level rise scenarios. For this work, we used the Sea Level Affecting Marshes Model (SLAMM), which simulates the dominant processes involved in wetland conversions and shoreline modifications during long-term sea-level rise and takes into consideration localized changes in land elevation due to geological and ecological factors. These model results provide specific information about the locations that are likely to experience shifts in coastal marshes, swamps, beaches, and other habitats due to sea-level rise at a scale that is relevant to regional decision making. (2) Extensive literature review and analysis of habitat, fish, and wildlife impacts potentially resulting from expected sea-level rise and other local climate changes. Synthesizing the available research is an important service for natural resource agencies that are only beginning to consider climate impacts on ecosystems and natural resources. (3) Analysis of government programs and policies relevant to coastal management and identification of opportunities to revise these policies in light of projected climate changes. An important aspect of this analysis is meeting with key decision makers at relevant state fish and wildlife agencies to better understand the factors that affect their abilities to effect policy changes. (4) Proactive campaign to share our results with diverse audiences. We have developed different research products, ranging from a technical report of the modeling results to short report briefs, to

  17. A simulation-optimization model for effective water resources management in the coastal zone

    NASA Astrophysics Data System (ADS)

    Spanoudaki, Katerina; Kampanis, Nikolaos

    2015-04-01

    Coastal areas are the most densely-populated areas in the world. Consequently water demand is high, posing great pressure on fresh water resources. Climatic change and its direct impacts on meteorological variables (e.g. precipitation) and indirect impact on sea level rise, as well as anthropogenic pressures (e.g. groundwater abstraction), are strong drivers causing groundwater salinisation and subsequently affecting coastal wetlands salinity with adverse effects on the corresponding ecosystems. Coastal zones are a difficult hydrologic environment to represent with a mathematical model due to the large number of contributing hydrologic processes and variable-density flow conditions. Simulation of sea level rise and tidal effects on aquifer salinisation and accurate prediction of interactions between coastal waters, groundwater and neighbouring wetlands requires the use of integrated surface water-groundwater mathematical models. In the past few decades several computer codes have been developed to simulate coupled surface and groundwater flow. However, most integrated surface water-groundwater models are based on the assumption of constant fluid density and therefore their applicability to coastal regions is questionable. Thus, most of the existing codes are not well-suited to represent surface water-groundwater interactions in coastal areas. To this end, the 3D integrated surface water-groundwater model IRENE (Spanoudaki et al., 2009; Spanoudaki, 2010) has been modified in order to simulate surface water-groundwater flow and salinity interactions in the coastal zone. IRENE, in its original form, couples the 3D shallow water equations to the equations describing 3D saturated groundwater flow of constant density. A semi-implicit finite difference scheme is used to solve the surface water flow equations, while a fully implicit finite difference scheme is used for the groundwater equations. Pollution interactions are simulated by coupling the advection

  18. Light-stress avoidance mechanisms in a Sphagnum-dominated wet coastal Arctic tundra ecosystem in Alaska.

    PubMed

    Zona, D; Oechel, Walter C; Richards, James H; Hastings, Steven; Kopetz, Irene; Ikawa, Hiroki; Oberbauer, Steven

    2011-03-01

    The Arctic experiences a high-radiation environment in the summer with 24-hour daylight for more than two months. Damage to plants and ecosystem metabolism can be muted by overcast conditions common in much of the Arctic. However, with climate change, extreme dry years and clearer skies could lead to the risk of increased photoxidation and photoinhibition in Arctic primary producers. Mosses, which often exceed the NPP of vascular plants in Arctic areas, are often understudied. As a result, the effect of specific environmental factors, including light, on these growth forms is poorly understood. Here, we investigated net ecosystem exchange (NEE) at the ecosystem scale, net Sphagnum CO2 exchange (NSE), and photoinhibition to better understand the impact of light on carbon exchange from a moss-dominated coastal tundra ecosystem during the summer season 2006. Sphagnum photosynthesis showed photoinhibition early in the season coupled with low ecosystem NEE. However, later in the season, Sphagnum maintained a significant CO2 uptake, probably for the development of subsurface moss layers protected from strong radiation. We suggest that the compact canopy structure of Sphagnum reduces light penetration to the subsurface layers of the moss mat and thereby protects the active photosynthetic tissues from damage. This stress avoidance mechanism allowed Sphagnum to constitute a significant percentage (up to 60%) of the ecosystem net daytime CO2 uptake at the end of the growing season despite the high levels of radiation experienced.

  19. Coastal zone management with stochastic multi-criteria analysis.

    PubMed

    Félix, A; Baquerizo, A; Santiago, J M; Losada, M A

    2012-12-15

    The methodology for coastal management proposed in this study takes into account the physical processes of the coastal system and the stochastic nature of forcing agents. Simulation techniques are used to assess the uncertainty in the performance of a set of predefined management strategies based on different criteria representing the main concerns of interest groups. This statistical information as well as the distribution function that characterizes the uncertainty regarding the preferences of the decision makers is fed into a stochastic multi-criteria acceptability analysis that provides the probability of alternatives obtaining certain ranks and also calculates the preferences of a typical decision maker who supports an alternative. This methodology was applied as a management solution for Playa Granada in the Guadalfeo River Delta (Granada, Spain), where the construction of a dam in the river basin is causing severe erosion. The analysis of shoreline evolution took into account the coupled action of atmosphere, ocean, and land agents and their intrinsic stochastic character. This study considered five different management strategies. The criteria selected for the analysis were the economic benefits for three interest groups: (i) indirect beneficiaries of tourist activities; (ii) beach homeowners; and (iii) the administration. The strategies were ranked according to their effectiveness, and the relative importance given to each criterion was obtained.

  20. 77 FR 63293 - Proposed Information Collection; Comment Request; Coastal Ocean Program Grants Proposal...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-16

    ... Atmospheric Administration's Coastal Ocean Program (COP) provides direct financial assistance through grants and cooperative agreements for research supporting the management of coastal ecosystems. The statutory... National Oceanic and Atmospheric Administration Proposed Information Collection; Comment Request;...

  1. An ecosystem approach to population management of ungulates.

    PubMed

    Weisberg, Peter J; Hobbs, N Thompson; Ellis, James E; Coughenour, Michael B

    2002-06-01

    Harvest objectives for wild ungulates have traditionally been based on population models that do not consider ecosystem effects of ungulate herbivory, nor interactions between native and domestic ungulate species. There is a need for ecosystem models to allow wildlife managers to evaluate potential ecosystem effects of management scenarios. The utility of the SAVANNA simulation model for estimating elk population objectives within an ecosystem context was demonstrated for North Park, Colorado, USA. Effects of different elk population levels were evaluated for range condition, elk and cattle forage, elk and cattle condition, forage and condition of mule deer and moose, plant production, and plant community composition. Analyses were based on 30-year simulation runs using variable, historical weather. Another set of analyses utilized stochastic weather patterns. For management scenarios using the historical climate pattern, increasing elk populations caused biomass reductions of palatable plant species, particularly on areas of high winter density, where mean leaf biomass of palatable shrubs declined from 26.97 g/m2 at 0 elk to 20.82 g/m2 at 4000 elk (3.73 elk/km2), a 23% decline. At population levels of 5000 elk (4.68 elk/km2) or greater, elk body condition declined sharply following a severe winter. The availability of palatable browse on critical winter range was likely the limiting factor. However, when random climate patterns were simulated for the same scenarios, the threshold level for density-dependent effects varied with climate, ranging from 2000 to 10,000 elk. We suggest that elk population levels from 4000 to 5000 animals represent a conservative population objective for the North Park elk herd. Also, increasing elk population levels appears to intensify intraspecific competition among elk, far more than interspecific competition with cattle. Resolution of elk-cattle conflicts is likely to be facilitated by managing elk distribution, rather than overall

  2. Experimental restoration of a salt marsh with some comments on ecological restoration of coastal vegetated ecosystems in Korea

    NASA Astrophysics Data System (ADS)

    Koo, Bon Joo; Je, Jong Geel; Woo, Han Jun

    2011-03-01

    Since the 1980s, the coastal wetlands in Korea have been rapidly degraded and destroyed mainly due to reclamation and landfills for coastal development. In order to recover damaged coastal environments and to develop wetland restoration technologies, a 4-year study on ecological the restoration of coastal vegetated ecosystems was started in 1998. As one of a series of studies, a small-scale experiment on salt marsh restoration was carried out from April 2000 to August 2001. The experiment was designed to find effective means of ecological restoration through a comparison of the changes in environmental components and species structure between two different experimental plots created using sediment fences, one with and one without small canals. Temporal variation in surface elevation, sedimentary facies, and benthic species were measured seasonally in each plot and in the adjacent natural reference sites. Monthly exposure occurred from 330 cm to mean sea level, which represents the critical tidal level (CTL) at which salt marsh plants colonize. Vegetation, especially Suaeda japonica, colonized the site the following spring and recovered to a similar extent in the natural marshes 16 months later. The sedimentary results indicated that the sediment fences had effects on particle size and sediment accumulation, especially in the plot with small canals. This experiment also showed that tidal height, especially that exceeding the CTL, is an important factor in the recovery of the benthic fauna of salt marshes. From these results, we suggested that designs for the restoration of salt marsh ecosystems must consider the inclusion of a tidal height exceeding CTL, as this may allow reconstruction of the previous natural ecosystem without artificial transplanting.

  3. Oceanographic implications of the Cabo Catoche (Northeast Yucatan) upwelling and its effects on the coastal ecosystem

    NASA Astrophysics Data System (ADS)

    Reyes-Mendoza, O.; Marino-Tapia, I.; Herrera Silveira, J.; Cárdenas-Palómo, N.; Ruiz, G.

    2013-05-01

    The coasts of the world where upwelling events occur are intrinsically related to the human population, mainly because of their large fisheries, socioeconomic repercussion and implications concerning the health of the ecosystem. In the northeast of the Yucatan Peninsula occurs an upwelling event known as the Yucatan upwelling (YU) associated with the current of the same name. The mechanisms that generate the YU are still under discussion. In terms of seasonality it is agreed that this is annual, occurring between April and September. During spring and summer, the northeast coast of the Peninsula between CaboCatoche and Isla Contoy becomes a productive and diverse pelagic ecosystem, unique to the region. It is classified as a priority marine zone host to close to 59 species protected by the national laws. It is also recognized as an important priority marine site because of its fishery. Also, the largest global aggregation of whale sharks, the world's biggest fish, is found at this site. There is a strong connection between the physical and the biological components of the system, however the coastal extent, seasonality, and magnitude of these processes need to be determined. Therefore an in-situ study was designed in the coastal region of CaboCatoche, where a 50 km transect was positioned along shelf and another across shelf 20 km, where water was collected to determine nutrient concentrations and CTD profiles were casted during the summer of 2007, 2008 and 2011. Two acoustic profilers were installed 12 km from the coast, which recorded currents and temperature by 2 years. Another profiler located 17 km from the coast to recorded data by 8 years. Atmospheric pressure and temperature were measured, as a wind fields from NOAA. Maps were created for the vertical distribution of temperature (18-31°C), salinity (35-38 psu), density (22-27 kg/m3) and chlorophyll (0.05-12.7 mg/m3). Frequency periods were estimated for temperature, currents, wind and atmospheric pressure

  4. Obstacles to bottom-up implementation of marine ecosystem management.

    PubMed

    Evans, Kirsten E; Klinger, Terrie

    2008-10-01

    Ecosystem management (EM) offers a means to address multiple threats to marine resources. Despite recognition of the importance of stakeholder involvement, most efforts to implement EM in marine systems are the product of top-down regulatory control. We describe a rare, stakeholder-driven attempt to implement EM from the bottom up in San Juan County, Washington (U.S.A.). A citizens advisory group led a 2-year, highly participatory effort to develop an ecosystem-based management plan, guided by a preexisting conservation-planning framework. A key innovation was to incorporate social dimensions by designating both sociocultural and biodiversity targets in the planning process. Multiple obstacles hindered implementation of EM in this setting. Despite using a surrogate scheme, the information-related transaction costs of planning were substantial: information deficits prevented assessment of some biodiversity targets and insufficient resources combined with information deficits prevented scientific assessment of the sociocultural targets. Substantial uncertainty, practical constraints to stakeholder involvement, and the existence of multiple, potentially conflicting, objectives increased negotiation-related costs. Although information deficits and uncertainty, coupled with underinvestment in the transaction costs of planning, could reduce the long-term effectiveness of the plan itself, the social capital and momentum developed through the planning process could yield unforeseeable future gains in protection of marine resources. The obstacles we identified here will require early and sustained attention in efforts to implement ecosystem management in other grassroots settings.

  5. Carbon sources supporting a diverse fish community in a tropical coastal ecosystem (Gazi Bay, Kenya)

    NASA Astrophysics Data System (ADS)

    Nyunja, J.; Ntiba, M.; Onyari, J.; Mavuti, K.; Soetaert, K.; Bouillon, S.

    2009-07-01

    Interlinked mangrove-seagrass ecosystems are characteristic features of many tropical coastal areas, where they act as feeding and nursery grounds for a variety of fishes and invertebrates. The autotrophic carbon sources supporting fisheries in Gazi bay (Kenya) were studied in three sites, two located in the tidal creeks flowing through extensive mangrove forests, another site located in the subtidal seagrass meadows, approximately 2.5 km away from the forest. Carbon and nitrogen stable isotope composition of 42 fish species, 2 crustacean species and a range of potential primary food sources (e.g., mangroves, seagrasses and epiphytes, macroalgae) were analysed. There was considerable overlap in the δ 13C signatures between fish (-16.1 ± 2.1‰), seagrasses (-15.1 ± 3.0‰), seagrass epiphytes (-13.6 ± 3.3‰), and macroalgae (-20.4 ± 3.1‰). Nevertheless, the signatures for most primary producers were sufficiently distinct to indicate that the dominant carbon sources for fish were mainly derived from the seagrass and their associated epiphytic community, and possibly macroalgae. Mangrove-derived organic matter contributes only marginally to the overall fish food web. Carbon supporting these fish communities was derived directly through grazing by herbivorous and some omnivorous fishes, or indirectly through the benthic food web. Fishes from the mangrove creeks had distinctly lower δ 13C signatures (-16.8 ± 2.0‰) compared to those collected in the adjacent seagrass beds (-14.7 ± 1.7‰). This indicated that these habitats were used as distinct sheltering and feeding zones for the fishes collected, with minimal degree of exchange within the fish communities despite their regular movement pattern.

  6. Parasites of the grouper fish Epinephelus coioides (Serranidae) as potential environmental indicators in Indonesian coastal ecosystems.

    PubMed

    Kleinertz, S; Palm, H W

    2015-01-01

    A total of 195 Epinephelus coioides (Hamilton, 1822) were studied for fish parasites from Javanese (Segara Anakan lagoon) and Balinese waters. Up to 25 different parasite species belonging to the following taxa: one Ciliata, one Microsporea, five Digenea, one Monogenea, four Cestoda, four Nematoda, one Acanthocephala, one Hirudinea and seven Crustacea were identified with four new host and locality records. The dominant parasites included the monogenean Pseudorhabdosynochus lantauensis (53.3-97.1%), the nematode Spirophilometra endangae (23.3-42.9%), the digenean Didymodiclinus sp. (2.9-40.0%), the nematodes Philometra sp. (22.6-34.3%) and Raphidascaris sp. (2.9-28.6%), and the isopod Alcirona sp. (6.7-31.4%). Regional differences for E. coioides were found in terms of endoparasite diversity, total diversity according to Shannon-Wiener, Simpson index and Evenness. A comparison with published data from Sumatera revealed highest endoparasite diversity (Shannon-Wiener: 1.86/1.67-2.04) and lowest ectoparasite/endoparasite ratio (0.73/0.57-0.88) off the Balinese coast, followed by Lampung Bay, Sumatera (1.84; 0.67), off the coast of Segara Anakan lagoon (1.71; 0.71), and in the lagoon (0.30/0.19-0.66; 0.85/0.67-1.00). The presented data demonstrate the natural range of these parameters and parasite prevalences according to habitat and region, allowing adjustment of the scale that has been used in the visual integration of the parasite parameters into a star graph. The parasite fauna of E. coioides in Segara Anakan lagoon 'improved' from 2004 until 2008/09, possibly related to earlier oil spill events in 2002 and 2004. The use of grouper fish parasites as an early warning system for environmental change in Indonesian coastal ecosystems is discussed.

  7. [Distribution and physicochemical properties of aquatic colloids in the Yangtze estuarine and coastal ecosystem].

    PubMed

    Gu, Li-Jun; Yang, Yi; Liu, Min; Nie, Ming-Hua; Li, Tao; Hou, Li-Jun

    2013-11-01

    Cross-flow ultrafiltration (CFUF) technique was applied for isolating colloids from waters in the Yangtze estuarine and coastal ecosystem. The stability and physicochemical properties of colloids were analyzed quantitatively. Colloidal size and Zeta-potential at XP and WSK station decreased with the increasing pH, and reached the point of zero charge at pH < 2 and pH 3.8, respectively. The colloidal organic carbon (COC) concentration in the collected samples was 7.7-35.7 micromol x L(-1), occupying 7.1% -41.7% of the total dissolved organic carbon (DOC). Three-dimensional excitation/emission matrix fluorescence spectroscopy (3DEEM) was used to analyze the samples and the results showed tryptophan-like fluorescence peaks, UV fulvic-like fluorescence peaks and humic-like fluorescence peaks. Concentrations of colloidal Na, Mg, K, Ca, Co, Cr, Cu, Fe, Li, Mn and Ni accounted for 0.33%, 5.7%, 0.975%, 1%, 7.2%, 7%, 11.9%, 15.7%, 5.5%, 10.5% and 11.3% of the dissolved phase in average, and the binding capacity of Co, Cr, Cu, Fe, Li, Mn, Ni with COC was generally higher than that of Na, Mg, K, Ca. There were significant correlations between colloidal size and salinity, between DOC and salinity, and between UOC and salinity, but no linear relationship between COC and salinity was found. The total concentration of trace metals (Co, Cr, Cu, Fe, Li, Mn, Ni) and COC showed a linear relationship.

  8. Sustainable carbon uptake - important ecosystem service within sustainable forest management

    NASA Astrophysics Data System (ADS)

    Zorana Ostrogović Sever, Maša; Anić, Mislav; Paladinić, Elvis; Alberti, Giorgio; Marjanović, Hrvoje

    2016-04-01

    Even-aged forest management with natural regeneration under continuous cover (i.e. close to nature management) is considered to be sustainable regarding the yield, biodiversity and stability of forest ecosystems. Recently, in the context of climate change, there is a raising question of sustainable forest management regarding carbon uptake. Aim of this research was to explore whether current close to nature forest management approach in Croatia can be considered sustainable in terms of carbon uptake throughout the life-time of Pedunculate oak forest. In state-owned managed forest a chronosequence experiment was set up and carbon stocks in main ecosystem pools (live biomass, dead wood, litter and mineral soil layer), main carbon fluxes (net primary production, soil respiration (SR), decomposition) and net ecosystem productivity were estimated in eight stands of different age (5, 13, 38, 53, 68, 108, 138 and 168 years) based on field measurements and published data. Air and soil temperature and soil moisture were recorded on 7 automatic mini-meteorological stations and weekly SR measurements were used to parameterize SR model. Carbon balance was estimated at weekly scale for the growing season 2011 (there was no harvesting), as well as throughout the normal rotation period of 140 years (harvesting was included). Carbon stocks in different ecosystem pools change during a stand development. Carbon stocks in forest floor increase with stand age, while carbon stocks in dead wood are highest in young and older stands, and lowest in middle-aged, mature stands. Carbon stocks in mineral soil layer were found to be stable across chronosequence with no statistically significant age-dependent trend. Pedunculate Oak stand, assuming successful regeneration, becomes carbon sink very early in a development phase, between the age of 5 and 13 years, and remains carbon sink even after the age of 160 years. Greatest carbon sink was reached in the stand aged 53 years. Obtained results

  9. Development of a coastal information system for the management of Jeddah coastal waters in Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Mayerle, R.; Al-Subhi, A.; Fernández Jaramillo, J.; Salama, A.; Bruss, G.; Zubier, K.; Runte, K.; Turki, A.; Hesse, K.; Jastania, H.; Ladwig, N.; Mudarris, M.

    2016-04-01

    This paper presents results of the development and application of a web-based information system, Jeddah CIS, for assisting decision makers in the management of Jeddah coastal waters, in Saudi Arabia. The system will support coastal planning, management of navigation and tackle pollution due to accidents. The system was developed primarily to nowcast in quasi-real time and to deliver short-term forecasts of water levels, current velocities and waves with high spatial and temporal resolution for the area near Jeddah. Therefor it will hasten response when adverse weather conditions prevail. The Jeddah-CIS integrates sensors transmitting in real time, meteorological, oceanographic and water quality parameters and operational models for flow and waves. It also provides interactive tools using advanced visualization techniques to facilitate dissemination of information. The system relies on open source software and has been designed to facilitate the integration of additional components for enhanced information processing, data evaluation and generation of higher water level, current velocity and wave for the general public. Jeddah-CIS has been operational since 2013. Extensions of the system to speed operations and improving the accuracy of the predictions to the public are currently underway.

  10. Models for Forest Ecosystem Management: A European Perspective

    PubMed Central

    Pretzsch, H.; Grote, R.; Reineking, B.; Rötzer, Th.; Seifert, St.

    2008-01-01

    Background Forest management in Europe is committed to sustainability. In the face of climate change and accompanying risks, however, planning in order to achieve this aim becomes increasingly challenging, underlining the need for new and innovative methods. Models potentially integrate a wide range of system knowledge and present scenarios of variables important for any management decision. In the past, however, model development has mainly focused on specific purposes whereas today we are increasingly aware of the need for the whole range of information that can be provided by models. It is therefore assumed helpful to review the various approaches that are available for specific tasks and to discuss how they can be used for future management strategies. Scope Here we develop a concept for the role of models in forest ecosystem management based on historical analyses. Five paradigms of forest management are identified: (1) multiple uses, (2) dominant use, (3) environmentally sensitive multiple uses, (4) full ecosystem approach and (5) eco-regional perspective. An overview of model approaches is given that is dedicated to this purpose and to developments of different kinds of approaches. It is discussed how these models can contribute to goal setting, decision support and development of guidelines for forestry operations. Furthermore, it is shown how scenario analysis, including stand and landscape visualization, can be used to depict alternatives, make long-term consequences of different options transparent, and ease participation of different stakeholder groups and education. Conclusions In our opinion, the current challenge of forest ecosystem management in Europe is to integrate system knowledge from different temporal and spatial scales and from various disciplines. For this purpose, using a set of models with different focus that can be selected from a kind of toolbox according to particular needs is more promising than developing one overarching model

  11. Effects of olive oil wastes on river basins and an oligotrophic coastal marine ecosystem: a case study in Greece.

    PubMed

    Pavlidou, A; Anastasopoulou, E; Dassenakis, M; Hatzianestis, I; Paraskevopoulou, V; Simboura, N; Rousselaki, E; Drakopoulou, P

    2014-11-01

    This work aims to contribute to the knowledge of the impacts of olive oil waste discharge to freshwater and oligotrophic marine environments, since the ecological impact of olive oil wastes in riverine and coastal marine ecosystems, which are the final repositories of the pollutants, is a great environmental problem on a global scale, mostly concerning all the Mediterranean countries with olive oil production. Messinia, in southwestern Greece, is one of the greatest olive oil production areas in Europe. During the last decade around 1.4×10(6)tons of olive oil mill wastewater has been disposed in the rivers of Messinia and finally entered the marine ecosystem of Messiniakos gulf. The pollution from olive oil mill wastewater in the main rivers of Messinia and the oligotrophic coastal zone of Messiniakos gulf and its effects on marine organisms were evaluated, before, during and after the olive oil production period. Elevated amounts of phenols (36.2-178 mg L(-1)) and high concentrations of ammonium (7.29-18.9 mmol L(-1)) and inorganic phosphorus (0.5-7.48 mmol L(-1)) were measured in small streams where the liquid disposals from several olive oil industries were gathered before their discharge in the major rivers of Messinia. The large number of olive oil units has downgraded the riverine and marine ecosystems during the productive period and a period more than five months is needed for the recovery of the ecosystem. Statistical analysis showed that the enrichment of freshwater and the coastal zone of Messiniakos gulf in ammonia, nitrite, phenols, total organic carbon, copper, manganese and nickel was directly correlated with the wastes from olive oil. Toxicity tests using 24h LC50 Palaemonidae shrimp confirm that olive mill wastewater possesses very high toxicity in the aquatic environment.

  12. Managing oil and gas activities in coastal environments. Volume I: comprehensive report. Report for 1977-81

    SciTech Connect

    Longley, W.L.; Jackson, R.; Snyder, B.

    1982-03-01

    This report documents the management of oil and gas development on national wildlife refuges on the Louisiana and Texas coasts. It explains the nature of ownership, leasing rights, and legal considerations related to oil and gas extraction on refuges. The report describes five federal refuges selected for analysis and the different marsh and estuarine ecosystems found on the refuges and in the coastal zone. It explains oil and gas extraction and transport methods used in coastal systems, and examines how each habitat is affected by these activities. Existing regulations and guidelines are analyzed and new ones proposed. The report is a planning tool for refuge personnel to aid them in assessing impacts, issuing permits, and generally managing oil and gas activities.

  13. Surface Wave Dynamics in the Coastal Zone

    DTIC Science & Technology

    2014-09-30

    heights, rip currents etc), coastal management, and help mitigate pollution hazards for humans (recreation) and coastal ecosystems . TRANSITIONS...1 Surface Wave Dynamics in the Coastal Zone Gerbrant Ph. van Vledder Department of Civil engineering and Geosciences, Delft University of...will be applicable in the coastal zone from deep water up to and including the surf zone. Our efforts will focus on analyzing high quality datasets to

  14. The Role Of Coastal Management In Regulating Estuarine Fluxes

    NASA Astrophysics Data System (ADS)

    Jickells, T. D.

    2014-12-01

    Human activity is known to be increasing the fluxes of many nutrients and trace elements in many river systems. However, the impact of riverine inputs depends not only on the riverine nutrient flux, but also on its retention in estuaries and near shore coastal systems. The retention of nutrients and trace elements in coastal systems depends at least in part on particle water interactions. These interactions in turn depend on the physical configuration of the system which regulates processes such as resuspension and water-sediment interactions. Human activity is massively altering the shape of many estuaries by activities such as reclamation and flood defence. These changes have obvious and well documented ecological impacts. I will show using examples from UK systems how these changes in estuarine "geography" also greatly alter the effectiveness of estuaries as filters for nutrients and trace elements, with the potential to have a major impact on the fluxes of fluvial material to the continental shelf on regional scales. Rising sea levels are beginning to enforce a change of management strategy in coastal systems and this in turn may have major impacts on estuarine nutrient retention.

  15. 30 CFR 550.226 - What Coastal Zone Management Act (CZMA) information must accompany the EP?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 2 2013-07-01 2013-07-01 false What Coastal Zone Management Act (CZMA) information must accompany the EP? 550.226 Section 550.226 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT... and Information Contents of Exploration Plans (ep) § 550.226 What Coastal Zone Management Act...

  16. 30 CFR 250.226 - What Coastal Zone Management Act (CZMA) information must accompany the EP?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false What Coastal Zone Management Act (CZMA) information must accompany the EP? 250.226 Section 250.226 Mineral Resources MINERALS MANAGEMENT SERVICE... and Information Contents of Exploration Plans (ep) § 250.226 What Coastal Zone Management Act...

  17. 30 CFR 550.226 - What Coastal Zone Management Act (CZMA) information must accompany the EP?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 2 2014-07-01 2014-07-01 false What Coastal Zone Management Act (CZMA) information must accompany the EP? 550.226 Section 550.226 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT... and Information Contents of Exploration Plans (ep) § 550.226 What Coastal Zone Management Act...

  18. 30 CFR 550.226 - What Coastal Zone Management Act (CZMA) information must accompany the EP?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 2 2012-07-01 2012-07-01 false What Coastal Zone Management Act (CZMA) information must accompany the EP? 550.226 Section 550.226 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT... and Information Contents of Exploration Plans (ep) § 550.226 What Coastal Zone Management Act...

  19. 75 FR 43145 - Evaluation of State Coastal Management Programs and National Estuarine Research Reserves

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-23

    ... has met the national objectives, adhered to its Reserve final management plan approved by the... national objectives, adhered to its Coastal Management Program document approved by the Secretary of... coastal management objectives identified in CZMA Section 303(2)(A)-(K), and adhering to the...

  20. Simulating mesoscale coastal evolution for decadal coastal management: A new framework integrating multiple, complementary modelling approaches

    NASA Astrophysics Data System (ADS)

    van Maanen, Barend; Nicholls, Robert J.; French, Jon R.; Barkwith, Andrew; Bonaldo, Davide; Burningham, Helene; Brad Murray, A.; Payo, Andres; Sutherland, James; Thornhill, Gillian; Townend, Ian H.; van der Wegen, Mick; Walkden, Mike J. A.

    2016-03-01

    Coastal and shoreline management increasingly needs to consider morphological change occurring at decadal to centennial timescales, especially that related to climate change and sea-level rise. This requires the development of morphological models operating at a mesoscale, defined by time and length scales of the order 101 to 102 years and 101 to 102 km. So-called 'reduced complexity' models that represent critical processes at scales not much smaller than the primary scale of interest, and are regulated by capturing the critical feedbacks that govern landform behaviour, are proving effective as a means of exploring emergent coastal behaviour at a landscape scale. Such models tend to be computationally efficient and are thus easily applied within a probabilistic framework. At the same time, reductionist models, built upon a more detailed description of hydrodynamic and sediment transport processes, are capable of application at increasingly broad spatial and temporal scales. More qualitative modelling approaches are also emerging that can guide the development and deployment of quantitative models, and these can be supplemented by varied data-driven modelling approaches that can achieve new explanatory insights from observational datasets. Such disparate approaches have hitherto been pursued largely in isolation by mutually exclusive modelling communities. Brought together, they have the potential to facilitate a step change in our ability to simulate the evolution of coastal morphology at scales that are most relevant to managing erosion and flood risk. Here, we advocate and outline a new integrated modelling framework that deploys coupled mesoscale reduced complexity models, reductionist coastal area models, data-driven approaches, and qualitative conceptual models. Integration of these heterogeneous approaches gives rise to model compositions that can potentially resolve decadal- to centennial-scale behaviour of diverse coupled open coast, estuary and inner

  1. Endangered species management and ecosystem restoration: Finding the common ground

    USGS Publications Warehouse

    Casazza, Michael L.; Overton, Cory T.; Bui, Thuy-Vy D.; Hull, Joshua M.; Albertson, Joy D.; Bloom, Valary K.; Bobzien, Steven; McBroom, Jennifer; Latta, Marilyn; Olofson, Peggy; Rohmer, Tobias M.; Schwarzbach, Steven E.; Strong, Donald R.; Grijalva, Erik; Wood, Julian K.; Skalos, Shannon; Takekawa, John Y.

    2016-01-01

    Management actions to protect endangered species and conserve ecosystem function may not always be in precise alignment. Efforts to recover the California Ridgway’s Rail (Rallus obsoletus obsoletus; hereafter, California rail), a federally and state-listed species, and restoration of tidal marsh ecosystems in the San Francisco Bay estuary provide a prime example of habitat restoration that has conflicted with species conservation. On the brink of extinction from habitat loss and degradation, and non-native predators in the 1990s, California rail populations responded positively to introduction of a non-native plant, Atlantic cordgrass (Spartina alterniflora). California rail populations were in substantial decline when the non-native Spartina was initially introduced as part of efforts to recover tidal marshes. Subsequent hybridization with the native Pacific cordgrass (Spartina foliosa) boosted California rail populations by providing greater cover and increased habitat area. The hybrid cordgrass (S. alterniflora × S. foliosa) readily invaded tidal mudflats and channels, and both crowded out native tidal marsh plants and increased sediment accretion in the marsh plain. This resulted in modification of tidal marsh geomorphology, hydrology, productivity, and species composition. Our results show that denser California rail populations occur in invasive Spartina than in native Spartina in San Francisco Bay. Herbicide treatment between 2005 and 2012 removed invasive Spartina from open intertidal mud and preserved foraging habitat for shorebirds. However, removal of invasive Spartina caused substantial decreases in California rail populations. Unknown facets of California rail ecology, undesirable interim stages of tidal marsh restoration, and competing management objectives among stakeholders resulted in management planning for endangered species or ecosystem restoration that favored one goal over the other. We have examined this perceived conflict and propose

  2. An integrated approach is needed for ecosystem based fisheries management: insights from ecosystem-level management strategy evaluation.

    PubMed

    Fulton, Elizabeth A; Smith, Anthony D M; Smith, David C; Johnson, Penelope

    2014-01-01

    An ecosystem approach is widely seen as a desirable goal for fisheries management but there is little consensus on what strategies or measures are needed to achieve it. Management strategy evaluation (MSE) is a tool that has been widely used to develop and test single species fisheries management strategies and is now being extended to support ecosystem based fisheries management (EBFM). We describe the application of MSE to investigate alternative strategies for achieving EBFM goals for a complex multispecies fishery in southeastern Australia. The study was undertaken as part of a stakeholder driven process to review and improve the ecological, economic and social performance of the fishery. An integrated management strategy, involving combinations of measures including quotas, gear controls and spatial management, performed best against a wide range of objectives and this strategy was subsequently adopted in the fishery, leading to marked improvements in performance. Although particular to one fishery, the conclusion that an integrated package of measures outperforms single focus measures we argue is likely to apply widely in fisheries that aim to achieve EBFM goals.

  3. An Integrated Approach Is Needed for Ecosystem Based Fisheries Management: Insights from Ecosystem-Level Management Strategy Evaluation

    PubMed Central

    Fulton, Elizabeth A.; Smith, Anthony D. M.; Smith, David C.; Johnson, Penelope

    2014-01-01

    An ecosystem approach is widely seen as a desirable goal for fisheries management but there is little consensus on what strategies or measures are needed to achieve it. Management strategy evaluation (MSE) is a tool that has been widely used to develop and test single species fisheries management strategies and is now being extended to support ecosystem based fisheries management (EBFM). We describe the application of MSE to investigate alternative strategies for achieving EBFM goals for a complex multispecies fishery in southeastern Australia. The study was undertaken as part of a stakeholder driven process to review and improve the ecological, economic and social performance of the fishery. An integrated management strategy, involving combinations of measures including quotas, gear controls and spatial management, performed best against a wide range of objectives and this strategy was subsequently adopted in the fishery, leading to marked improvements in performance. Although particular to one fishery, the conclusion that an integrated package of measures outperforms single focus measures we argue is likely to apply widely in fisheries that aim to achieve EBFM goals. PMID:24454722

  4. A complex-systems approach to predicting effects of sea level rise and nitrogen loading on nitrogen cycling in coastal wetland ecosystems

    USGS Publications Warehouse

    Larsen, Laurel G.; Serena Moseman,; Alyson Santoro,; Kristine Hopfensperger,; Amy Burgin,

    2010-01-01

    To effectively manage coastal ecosystems, we need an improvedunderstanding of how tidal marsh ecosystem services will respond to sea-level rise and increased nitrogen (N) loading to coastal areas. Here we review existing literature to better understand how these interacting perturbations s will likely impact N removal by tidal marshes. We propose that the keyy factors controlling long-term changes in N removal are plant-community changes, soil accretion rates, surface-subsurface flow paths, marsh geomorphology microbial communities, and substrates for microbial reactions. Feedbacks affecting relative elevations and sediment accretion ratess will serve as dominant controls on future N removal throughout the marsh. Given marsh persistence, we hypothesize that the processes dominating N removal will vary laterally across the marsh and longitudinallyalong the estuarine gradient. In salt marsh interiors, where nitrate reduction rates are often limited by delivery of nitrate to bacterial communities, reductions in groundwater discharge due to sea level rise may trigger a net reduction in N removal. In freshwater marshes, we expect a decreasee in N removal efficiency due to increased sulfide concentrations. Sulfide encroachment will increase the relative importance of dissimilatory nitrate reduction to ammonium and lead to greater bacterial nitrogen immobilization, ultimately resulting in an ecosystem that retains more N and is less effective at permanent N removal from the watershed. In contrast, we predict that sealevel–driven expansion of the tidal creek network and the degree of surface-subsurface exchange flux through tidal creek banks will result in greater N-removal efficiency from these locations.

  5. Can we manage ecosystems in a sustainable way?

    NASA Astrophysics Data System (ADS)

    Rice, Jake

    Fisheries have often become unsustainable, despite efforts of policy, management, and science. FAO has reviewed this undesirable pattern and identified six major factors contributing to unsustainability: inappropriate incentives, high demand for limited resources, poverty and lack of alternatives, complexity and lack of knowledge, lack of effective governance, and interactions of fisheries sector with other sectors and the environment. It also identified eight classes of actions that provide pathways to addressing the factors causing unsustainability of fisheries: allocation of rights; transparent, participatory management; support for science, enforcement and planning; equitable distribution of benefits; integrated policy development; application of precaution; building capacity and public understanding; and market incentives and economic instruments. The review highlighted that "sustainability" is a multi-dimensional concept (economic, social, ecological, and institutional), and measures implemented to address problems on one dimension of sustainability will move the fishery in a negative direction in at least one other dimension. In this paper I apply the FAO framework to the whole ecosystem. For each factor of unsustainability, I consider whether redefining the sustainability problem to the greater ecosystem makes the factor more or less serious as a threat to sustainability. For each pathway to improvement I consider whether the redefinition of the problem makes the pathway more or less effective as a management response to the threat. Few of the factors of unsustainability becomes easier to address at the ecosystem scale, and several of them become much more difficult. Of the combinations of pathways of responses and factors of unsustainability, more than two thirds of them become more difficult to apply, and/or have even greater negative impacts on other dimensions of sustainability. Importantly, the most promising pathways for addressing unsustainability of

  6. Are coastal lagoons physically or biologically controlled ecosystems? Revisiting r vs. K strategies in coastal lagoons and estuaries

    NASA Astrophysics Data System (ADS)

    Pérez-Ruzafa, Angel; Marcos, Concepción; Pérez-Ruzafa, Isabel María; Pérez-Marcos, María

    2013-11-01

    Environmental stress influences biological assemblages, with species responding to stress by adopting particular life-history strategies (e.g., r vs. K). Coastal lagoons and estuaries are considered naturally stressed and physically controlled systems with frequent environmental disturbances and fluctuations. At the same time, their transitional nature (between terrestrial, freshwater and marine) makes them especially vulnerable to human impacts and land and freshwater inputs. As a result, it is hypothesised that residents of coastal lagoons would display characteristics of r-selected species. The r-strategy involves increased reproductive effort through early reproduction, small and numerous offspring with a large dispersive capability, short lifespan and small adult body size. Together, these traits provide a selective advantage in such unpredictable or short-lived environments. Alternatively, immigrants to coastal lagoons should mostly be K-strategists, with a competitive advantage over the r-strategists, at least on a temporary time scale. These hypotheses were explored using a dataset from 73 Atlanto-Mediterranean sites: 27 estuaries, 42 coastal lagoons and 4 from the sea, obtained from published sources. A detailed analysis of the distributions of the different resident fish species according to lagoon characteristics indicated that in lagoons with a higher marine influence the families Gobiidae, Blenniidae and Syngnathidae were common, while lagoons with freshwater influence are characterized by Cyprinidae and other freshwater species. In analyzing the biological strategies of lagoon species we found that fish assemblages inhabiting marine influenced lagoons were characterized by solitary, necto-benthonic sedentary species. These species are often hermaphroditic, with benthic broods and many exhibit brooding behaviour. This suggests that marine influenced lagoons are dominated by K-strategist species, while r-strategy species will be more common in

  7. Spatial variability of heavy metals in estuarine, mangrove and coastal ecosystems along Parangipettai, Southeast coast of India.

    PubMed

    Sundaramanickam, Arumugam; Shanmugam, Nadanasabesan; Cholan, Shanmugam; Kumaresan, Saravanan; Madeswaran, Perumal; Balasubramanian, Thangavel

    2016-11-01

    An elaborate survey on the contamination of heavy metals was carried out in surface sediments of different ecosystems such as Vellar-Coleroon estuarine, Pichavaram mangrove and coastal region of Parangipettai, Southeast coast of India. The study was intended since, the coal based thermal power plant and oil refinery plant are proposed to set up along this coast and aquaculture industries and dredging activities are developing. The parameters such as soil texture, pH, total organic carbon (TOC) and heavy metal (Fe, Mn, Cu, Cd, Zn and Ni) concentrations were analyzed for the surface sediments during pre and postmonsoon seasons. Among the metals analyzed, Fe and Mn were found to have dominant as the levels were recorded as 11,804 μg g(-)(1) and 845.2 μg g(-)(1) respectively. A significant correlation was observed between total organic carbon (TOC) and heavy metals. In the mangrove ecosystem, the levels of heavy metals found to be maximum indicating that the rich organic matter acts as an efficient binding agent for metals. The overall finding of the present study indicated that the sediments from the entire Vellar-Coleroon estuarine and Pichavaram mangrove ecosystems were found moderately polluted with cadmium metal. The result of cluster analysis indicated disparity in accumulation of heavy metals in sediments of different ecosystems due to the variations in organic matter. The heavy metals were transported from land to coastal through flood during monsoon season reflecting the variations in their levels in different ecosystems at postmonsoon season.

  8. Shorebird use of South Carolina managed and natural coastal wetlands

    USGS Publications Warehouse

    Weber, Louise M.; Haig, Susan M.

    1996-01-01

    While many migrating and wintering shorebird (Charadriiformes) species face declines in quality and quantity of natural stopover sites, diked wetlands managed for shorebirds may provide supplemental habitat. We describe an integrative shorebird-waterfowl management strategy used at Tom Yawkey Wildlife Center on South Island, South Carolina, during 3 winter-spring seasons (1991-93). We compared shorebird use and invertebrate density between diked, managed wetlands and adjacent natural coastal mudflat areas. About 3,000 shorebirds overwintered each year at the site. Migration numbers peaked at 15,000-19,000 during late May. In 1991, shorebird density and absolute numbers were higher (P < 0.05) in managed wetlands at high tide than natural mudflats at low tide. In 1993, we counted shorebird density at low tide both in managed wetlands and Mother Norton Shoals, the largest natural area. During February, shorebird frequency was higher in Mother Norton Shoals and lower in managed wetlands than expected values based on area (P < 0.005). In contrast, from March to May, shorebird frequency was higher in managed wetlands and lower in natural mudflats than expected (P < 0.005 for each month). Invertebrate density from March to May was generally greater in managed wetlands than at Mother Norton Shoals, which may explain shorebird preference during that time. Greater invertebrate density did not explain the pattern in February. Mean water depth in managed wetlands for each shorebird species was <5 cm except for American avocet (Recurvirostra americana) which used deeper water (xI? = 8.4 cm, SD = 4.5). Results indicate that an integrative shorebird-waterfowl management strategy provides supplemental shorebird habitat at high tide, and managed wetlands can be preferred to local natural mudflat areas at low tide.

  9. Placing marine protected areas onto the ecosystem-based management seascape

    PubMed Central

    Halpern, Benjamin S.; Lester, Sarah E.; McLeod, Karen L.

    2010-01-01

    The rapid increase in the science and implementation of marine protected areas (MPAs) around the world in the past 15 years is now being followed by similar increases in the science and application of marine ecosystem-based management (EBM). Despite important overlaps and some common goals, these two approaches have remained either separated in the literature and in conservation and management efforts or treated as if they are one and the same. In the cases when connections are acknowledged, there is often little assessment of if or how well MPAs can achieve specific EBM goals. Here we start by critically evaluating commonalities and differences between MPAs and EBM. Next, we use global analyses to show where and how much no-take marine reserves can be expected to contribute to EBM goals, specifically by reducing the cumulative impacts of stressors on ocean ecosystems. These analyses revealed large stretches of coastal oceans where reserves can play a major role in reducing cumulative impacts and thus improving overall ocean condition, at the same time highlighting the limitations of marine reserves as a single tool to achieve comprehensive EBM. Ultimately, better synergies between these two burgeoning approaches provide opportunities to greatly benefit ocean health. PMID:20176945

  10. Placing marine protected areas onto the ecosystem-based management seascape.

    PubMed

    Halpern, Benjamin S; Lester, Sarah E; McLeod, Karen L

    2010-10-26

    The rapid increase in the science and implementation of marine protected areas (MPAs) around the world in the past 15 years is now being followed by similar increases in the science and application of marine ecosystem-based management (EBM). Despite important overlaps and some common goals, these two approaches have remained either separated in the literature and in conservation and management efforts or treated as if they are one and the same. In the cases when connections are acknowledged, there is often little assessment of if or how well MPAs can achieve specific EBM goals. Here we start by critically evaluating commonalities and differences between MPAs and EBM. Next, we use global analyses to show where and how much no-take marine reserves can be expected to contribute to EBM goals, specifically by reducing the cumulative impacts of stressors on ocean ecosystems. These analyses revealed large stretches of coastal oceans where reserves can play a major role in reducing cumulative impacts and thus improving overall ocean condition, at the same time highlighting the limitations of marine reserves as a single tool to achieve comprehensive EBM. Ultimately, better synergies between these two burgeoning approaches provide opportunities to greatly benefit ocean health.

  11. Decadal and seasonal trends of nutrient concentration and export from highly managed coastal catchments.

    PubMed

    Wan, Yongshan; Wan, Lei; Li, Yuncong; Doering, Peter

    2017-03-02

    Understanding anthropogenic and hydro-climatic influences on nutrient concentrations and export from highly managed catchments often necessitates trend detection using long-term monitoring data. This study analyzed the temporal trend (1979-2014) of total nitrogen (TN) and total phosphorus (TP) concentrations and export from four adjacent coastal basins in south Florida where land and water resources are highly managed through an intricate canal network. The method of integrated seasonal-trend decomposition using LOESS (LOcally weighted regrESSion) was employed for trend detection. The results indicated that long-term trends in TN and TP concentrations (increasing/decreasing) varied with basins and nutrient species, reflecting the influence of basin specific land and water management practices. These long-term trends were intervened by short-term highs driven by high rainfall and discharges and lows associated with regional droughts. Seasonal variations in TP were more apparent than for TN. Nutrient export exhibited a chemostatic behavior for TN from all the basins, largely due to the biogenic nature of organic N associated with the ubiquity of organic materials in the managed canal network. Varying degrees of chemodynamic export was present for TP, reflecting complex biogeochemical responses to the legacy of long-term fertilization, low soil P holding capacity, and intensive stormwater management. The anthropogenic and hydro-climatic influences on nutrient concentration and export behavior had great implications in nutrient loading abatement strategies for aquatic ecosystem restoration of the downstream receiving waterbody.

  12. Projected future climate change and Baltic Sea ecosystem management

    NASA Astrophysics Data System (ADS)

    Andersson, Agneta

    2015-04-01

    Climate change is likely to have large effects on the Baltic Sea ecosystem. Simulations indicate 2-4oC warming and 50-80% decreasing ice cover by 2100. Precipitation may increase ~30% in the north, causing increased land runoff of allochthonous organic matter (AOM) and organic pollutants. Salinity will decrease by about 2 units. Coupled physical-biogeochemical models indicate that in the south, bottom-water anoxia may spread, reducing cod recruitment and increasing sediment phosphorus release, promoting cyanobacterial blooms. In the north, heterotrophic bacteria will be favoured by AOM while phytoplankton may become hampered. More trophic levels in the food web will increase energy losses and consequently reduce fish production. Future management of the Baltic Sea must consider effects of climate change on the ecosystem dynamics and functions, as well as effects of anthrophogenic nutrient and pollutant load. Monitoring should have a holistic approach and encompass both autotrophic (phytoplankton) and heterotrophic (e.g. bacterial) processes.

  13. Tropical botanical gardens: at the in situ ecosystem management frontier.

    PubMed

    Chen, Jin; Cannon, Charles H; Hu, Huabin

    2009-11-01

    Tropical botanical gardens (TBGs) should have a leading role in in situ conservation by directly promoting several initiatives, including the reintroduction of important or valuable native species, focused habitat restoration, 'assisted migration' of species that are vulnerable to climate change, and creative local collaboration with governments, NGOs and indigenous peoples. Compared with temperate gardens, TBGs face heightened challenges for ex situ conservation, including greater absolute amounts of biodiversity, need for resource mobilization, risk of introducing invasive species and potential genetic introgression within living collections. Meanwhile, the ecosystems surrounding TBGs have undergone widespread and rapid conversion. Here, we provide several illustrations of the effectiveness of TBGs in achieving their mission of preserving tropical biodiversity at the frontier of in situ ecosystem management.

  14. Modeling of Natural Coastal Hazards in Puerto Rico in Support of Emergency Management and Coastal Planning

    NASA Astrophysics Data System (ADS)

    Mercado, A., Jr.

    2015-12-01

    The island of Puerto Rico is not only located in the so-called Caribbean hurricane alley, but is also located in a tsunami prone region. And both phenomena have affected the island. For the past few years we have undergone the task of upgrading the available coastal flood maps due to storm surges and tsunamis. This has been done taking advantage of new Lidar-derived, high resolution, topography and bathymetry and state-of-the-art models (MOST for tsunamis and ADCIRC/SWAN for storm surges). The tsunami inundation maps have been converted to evacuation maps. In tsunamis we are also working in preparing hazard maps due to tsunami currents inside ports, bays, and marinas. The storm surge maps include two scenarios of sea level rise: 0.5 and 1.0 m above Mean High Water. All maps have been adopted by the Puerto Rico State Emergency Management Agency, and are publicly available through the Internet. It is the purpose of this presentation to summarize how it has been done, the spin-off applications they have generated, and how we plan to improve coastal flooding predictions.

  15. E-Estuary: Developing a Decision-support System for Coastal Management in the Counterminous Untied States (Coastal Geotools 09)

    EPA Science Inventory

    Ready access to geographic information is needed to support management decisions for estuaries at local, state, regional, and national scales. The U.S. Environmental Protection Agency (US EPA) is developing e-Estuary, a decision-support system for coastal management. E-Estuary ...

  16. Interagency Working Group on Ocean Social Science: Incorporating ecosystem services approaches into ocean and coastal decision-making and governance

    EPA Science Inventory

    The application of social science has been recognized as a priority for effective ocean and coastal management, driving much discussion and fostering emerging efforts in several areas. The Interagency Working Group on Ocean Social Science (IWG-OSS) is tasked with assisting the Su...

  17. On the use of drift bottle and seabed drifter data in coastal management

    NASA Technical Reports Server (NTRS)

    Welch, C. S.; Norcross, J. J.

    1973-01-01

    The use of drift bottle and seabed drifter information for use in coastal management is discussed. The drift bottle/seabed drifter portion of VIMS project MACONS (Mid Atlantic Continental Shelf) is described as an example of how a comprehensive survey using drift bottles and seabed drifters provides data useful for coastal management. The data from MACONS are analyzed to answer specific questions of interest to several different coastal managers: a manager siting a deep oil port, one siting a sewage outfall, a manager responsible for setting up emergency beach protection procedures before an accident occurs, and a manager responsible for the environmental quality of a particular small section of coastline.

  18. Comparison of acidic deposition to semi-natural ecosystems in Denmark—Coastal heath, inland heath and oak wood

    NASA Astrophysics Data System (ADS)

    Hansen, Birgitte; Nielsen, Knud Erik

    Acidic deposition to coastal heath, inland heath and oak wood in Denmark was determined from analysis of bulk precipitation and throughfall measurements for up to 3 yrs. The analysis aimed to determine the total annual sulphur and nitrogen deposition to the three different ecosystems. Total nitrogen deposition is especially difficult to assess due to uptake of nitrogen by the canopy, and difficulties in determining the dry deposition of each nitrogen species. An NH x-uptake estimation model is presented which assumes co-deposition of NH x+H + and SO x+NO y and exchange of NH x+H + for the leached Mg 2+, Ca 2+ and K + in the canopy. This approach makes it possible to estimate the dry deposition of reduced nitrogen (NH x). Dry deposited oxidized nitrogen (NO y) still remains unquantified with the throughfall method, and therefore this term is estimated from a generalized micro-meteorological model. Total annual nitrogen deposition was 29.0 kg ha -1 yr -1 for the oak wood, 18.3 kg ha -1 yr -1 for the inland heathland and 13.5 kg ha -1 yr -1 for the coastal heathland. The total annual acidic deposition (the sum of H +, SO x, NO y and NH x) was 3202 mol c ha -1 for the oak wood, 2228 mol c ha -1 for the inland heathland, and 2060 mol c ha -1 for the coastal heathland. However, this acid load has different effects on the ecosystems depending on the actual bio-geochemical reactions. The potential maximum acidification estimated for the oak wood (5512 mol c ha -1 yr -1) was almost twice as high as for the inland heathland (3815 mol c H + ha -1 yr -1) and for the coastal heathland (3383 mol cH + ha -1 yr -1).

  19. Sustainable Ecosystems: Enabled by Supply and Demand Management

    NASA Astrophysics Data System (ADS)

    Patel, Chandrakant D.

    Continued population growth, coupled with increased per capita consumption of resources, poses a challenge to the quality of life of current and future generations. We cannot expect to meet the future needs of society simply by extending existing infrastructures. The necessary transformation can be enabled by a sustainable IT ecosystem made up of billions of service-oriented client devices and thousands of data centers. The IT ecosystem, with data centers at its core and pervasive measurement at the edges, will need to be seamlessly integrated into future communities to enable need-based provisioning of critical resources. Such a transformation requires a systemic approach based on supply and demand of resources. A supply side perspective necessitates using local resources of available energy, alongside design and management that minimizes the energy required to extract, manufacture, mitigate waste, transport, operate and reclaim components. The demand side perspective requires provisioning resources based on the needs of the user by using flexible building blocks, pervasive sensing, communications, knowledge discovery and policy-based control. This paper presents a systemic framework for supply-demand management in IT - in particular, on building sustainable data centers - and suggests how the approach can be extended to manage resources at the scale of urban infrastructures.

  20. Water Resources Management In The Eastern Himalayan Urban Ecosystem

    NASA Astrophysics Data System (ADS)

    Bomjan, S.

    The Himalayan ecosystem is one of the most important and threatened ecosystems on the earth. In this region, the scarcity of water in general, and drinking water in par- ticular is affecting common people and drawing the attention of researchers. Given the present situation and governance, in the near future it is most likely to deteriorate further. With expanding population and urbanization, accelerating human activities, and increasing per capita water consumption, problem of water supply in the moun- tain households will be certainly acute in the coming years. This crisis of decreasing availability of water is not only going to hamper the economic development of the region, but is also likely to threaten the very survival of the already marginalised and deprived people who are also on the brink of poverty and are incapable of coping with such crisis. Sustainable water harvesting and management of water resources offers the best hope for meeting the challenges of the growing water crisis. For this appropriate policy intervention, use of latest technology, application of tools like GIS and information from the satellite imageries, community participation and use of tra- ditional knowledge and traditional water management practices will be essential to overcome the challenge of looming water crisis. Darjiling Himalaya, located in the eastern Himalayas has a fragile environment and it is witnessing serious problems both in quality and quantity of water supply. Weak institutional arrangements, lack of awareness among citizens and a gap in the effective arrangements are huge stumbling blocks. This region is endowed with abundance of water resources and rich ecosystem. Therefore, this calls for an effective and participatory water management system with due attention given to the upgradation and expansion of the existing infrastructure. This paper takes a stock of the existing water resources in the Darjiling Himalaya, especially around the town of Darjiling, discusses

  1. [Multi-scenario simulation and prediction of ecosystem services as affected by urban expansion: A case study in coastal area of Tianjin, North China].

    PubMed

    Huang, Huan-Chun; Yun, Ying-Xia; Miao, Zhan-Tang; Hao, Cui; Li, Hong-yuan

    2013-03-01

    Based on the modified Logistic-CA model, and taking the coastal area of Tianjin as a case, this paper simulated the spatial evolution patterns of ecosystem services as affected by the urban expansion in 2011-2020 under the scenarios of historical extrapolation, endogenous development, and exogenous development. Overall, the total ecosystem services of the study area under the three scenarios were generally the same, and the functional region with the lowest level ecosystem services had the identical spatial pattern. However, the spatial evolution patterns of the ecosystem services of the study area under the three scenarios had a great difference. The functional regions with lower-level ecosystem services grew in a cross-shaped pattern, with the Tanggu downtown as a center, and finally formed a full connectivity area along the Haihe River and coastal zone.

  2. Investigating Ecosystem Pattern and Process Across a Land-Sea Gradient: A New Coastal Margin Observatory in the Pacific Coastal Temperate Rainforest

    NASA Astrophysics Data System (ADS)

    Giesbrecht, I.; Lertzman, K. P.; Oliver, A. A.; Tank, S. E.; Floyd, B. C.; Frazer, G. W.; Hunt, B. P.; Kellogg, C.; Heger, T.; Levy-Booth, D.; Mohn, W. H.; Hallam, S. J.; Keeling, P.; Sanborn, P.; Brunsting, R.; D'Amore, D. V.

    2015-12-01

    Terrestrial organic matter exported from coastal watersheds influences marine ecosystems and carbon budgets across the globe, yet much is unknown about the fundamental processes of land-sea carbon cycling or system response to climate change. On two outer-coast islands near the center of the Pacific Coastal Temperate Rainforest (PCTR), the Hakai Institute has established a coastal margin observatory to examine the flux of terrestrial organic matter from land to sea - the origins, pathways, processes and marine consequences - in the context of long-term environmental change. The outer-coast PCTR is characterized by an ocean-moderated climate, subdued terrain, extensive wetlands and lower forest productivity than the mountainous mainland coast. Here we give an overview of, and initial results from, a new long-term multi-disciplinary investigation of processes that link PCTR watersheds with the carbon balance and food web of northeastern subarctic Pacific coastal waters. Beginning in 2013, we established year-round sampling and a sensor network to quantify - at high temporal resolution - the amount and character of terrestrial exports from seven focal watersheds on Calvert and Hecate Islands, British Columbia. Early results show that freshwater dissolved organic carbon concentrations are high on average, fluctuate temporally and vary spatially across watersheds. A real-time hydrological sensor network shows rapid responses of stream stages and soil water tables to rainfall inputs. Carbon export can vary greatly with stream discharge in these flashy systems. We use paired marine monitoring stations at stream outlets to concurrently track ocean conditions and to trace terrestrial organic matter. Across a larger set of watersheds, we examine the role of catchment topography, hydrology and composition in controlling biogeochemical exports. On land, we use airborne LiDAR data to evaluate landscape controls on vegetation height - a proxy for forest productivity and biomass

  3. Enhanced primary production in summer and winter-spring seasons in a populated NW Mediterranean coastal ecosystem

    NASA Astrophysics Data System (ADS)

    Guallar, Carles; Flos, Jordi

    2017-02-01

    Populated coastal ecosystems in the NW Mediterranean present three main characteristics that distinguish them from the open water ecosystem: a sea-land interaction, with freshwater influence from river mouths; a shallow seabed, which facilitates the interaction between the euphotic water column and the sediments; and high anthropogenic pressure, due to submarine sewage discharges. As a result, relatively high nutrient concentrations are measured in these ecosystems, with ammonia being an important fraction. These characteristics entail a different scenario from the open water ecosystem. Here, we present the distribution of phytoplankton primary production in the Barcelona coastal waters during summer and winter-spring seasons, by means of photosynthesis-irradiance experiments using the 14C technique. In winter-spring, stratification of the water column may begin earlier than in open water due to freshwater inputs. Therefore, with the water-column slightly stratified, chlorophyll-a and primary production become localised in the surface layers, due to the lower daily irradiance during this season. In these conditions, Total Primary Production (TPP) values measured ranged between 0.27 and 14.52 mgC m- 3 h- 1. As spring progresses and the stratification develops, surface waters tend to become nutrient depleted and nutrients are mainly localised in bottom waters between the thermocline and the seafloor. Under these conditions, high chlorophyll layers develop near the bottom. With the exception of their nutrient enrichment, these structures, referred to as coastal deep chlorophyll maxima, are comparable to the oceanic deep chlorophyll maxima in temperate oligotrophic seas. The nutrient enrichment is the result of the sediment resuspension from the seabed and the presence of sewage water discharged from the submarine outfall. These structures are highly productive (ca. 60% of water column primary production), comparable to the winter-spring bloom, and are sustained

  4. Regional Sea Level Scenarios for Coastal Risk Management: Managing the Uncertainty of Future Sea Level Change and Extreme Water Levels for Department of Defense Coastal Sites Worldwide

    DTIC Science & Technology

    2016-04-01

    SERDP NOAA USACE Ocean MANAGING THE UNCERTAINTY OF FUTURE SEA LEVEL CHANGE AND EXTREME WATER LEVELS FOR DEPARTMENT OF DEFENSE COASTAL SITES...Uncertainty of Future Sea Level Change and Extreme Water Levels for Department of Defense Coastal Sites Worldwide. U.S. Department of Defense...Strategic Environmental Research and Development Program. 224 pp. MANAGING THE UNCERTAINTY OF FUTURE SEA LEVEL CHANGE AND EXTREME WATER LEVELS FOR

  5. Fire and flood management of coastal swamp enabled first rice paddy cultivation in east China.

    PubMed

    Zong, Y; Chen, Z; Innes, J B; Chen, C; Wang, Z; Wang, H

    2007-09-27

    The adoption of cereal cultivation was one of the most important cultural processes in history, marking the transition from hunting and gathering by Mesolithic foragers to the food-producing economy of Neolithic farmers. In the Lower Yangtze region of China, a centre of rice domestication, the timing and system of initial rice cultivation remain unclear. Here we report detailed evidence from Kuahuqiao that reveals the precise cultural and environmental context of rice cultivation at this earliest known Neolithic site in eastern China, 7,700 calibrated years before present (cal. yr bp). Pollen, algal, fungal spore and micro-charcoal data from sediments demonstrate that these Neolithic communities selected lowland swamps for their rice cultivation and settlement, using fire to clear alder-dominated wetland scrub and prepare the site for occupation, then to maintain wet grassland vegetation of paddy type. Regular flooding by slightly brackish water was probably controlled by 'bunding' to maintain crop yields. The site's exploitation ceased when it was overwhelmed by marine inundation 7,550 cal. yr bp. Our results establish that rice cultivation began in coastal wetlands of eastern China, an ecosystem vulnerable to coastal change but of high fertility and productivity, attractions maximized for about two centuries by sustained high levels of cultural management of the environment.

  6. LANDSAT's role in state coastal management programs. [New Jersey and Texas

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The framework for state programs found in the Coastal Zone Management Act and examples of state opportunities to use LANDSAT are presented. Present activities suggest that LANDSAT remote sensing can be an efficient, effective tool for land use planning and coastal zone management.

  7. Towards Automated Ecosystem-based Management: A case study of Northern Gulf of Mexico Water

    NASA Astrophysics Data System (ADS)

    Malakar, N. K.; Lary, D. J.; Allee, R.; Gould, R.; Ko, D.

    2012-12-01

    The vast and dynamic nature of large systems limit the feasibility of the frequent in situ sampling needed to establish a robust long-term database. Satellite remote sensing offers an alternative to in situ sampling and is possibly the best solution to address the data collection needs at a regional scale. In this context, we have used an unsupervised machine learning (ML) technique, called a self-organizing map (SOM), to objectively provide a classification of the US Gulf of Mexico water using a suite of ocean data products. The input data that we used in this study were the sea surface temperature, the surface chlorophyll concentration, the sea surface salinity, the euphotic depth and the temperature difference between the sea surface and the sea floor. The SOM method uses the multivariate signature of the data records to classify the data into a specified number of classes. The output of the analysis is essentially a comprehensive two-dimensional map of the Gulf of Mexico. We analyzed the individual SOM classes over a five-year period from 2005 to 2009. We then used the machine learning results to established a correspondence between the SOM classification and the completely independent Coastal and Marine Ecological Classification Standard (CMECS), which accommodates the physical, biological, and chemical information to collectively characterize marine and coastal ecosystems. The CMECS water column component information is then fused with fish count data from the Southeast Area Monitoring and Assessment Program (SEAMAP) to produce an interactive map. The results can be used in providing online decision-support system, and tools for Ecosystem-based management.Figures shows the fish count distribution with respect to the SOM classes. The fish preference can be inferred from the plot. This information can be used to construct an online decision-support system for conservation as well as commercial purposes.

  8. THE DYNAMIC REGIME CONCEPT FOR ECOSYSTEM MANAGEMENT AND RESTORATION

    EPA Science Inventory

    Dynamic regimes of ecosystems are multidimensional basis of attraction, characterized by particular species communities and ecosystems processes. Ecosystem patterns and processes rarely respond linerarly to disturbances, and the nonlinear cynamic regime concept offers a more real...

  9. 75 FR 34092 - Atlantic Coastal Fisheries Cooperative Management Act Provisions; Weakfish Fishery

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-16

    ... National Oceanic and Atmospheric Administration 50 CFR Part 697 RIN 0648-AY41 Atlantic Coastal Fisheries Cooperative Management Act Provisions; Weakfish Fishery AGENCY: National Marine Fisheries Service (NMFS... States Marine Fisheries Commission's (Commission) Interstate Fishery Management Plan (ISFMP) for...

  10. Typology and indicators of ecosystem services for marine spatial planning and management.

    PubMed

    Böhnke-Henrichs, Anne; Baulcomb, Corinne; Koss, Rebecca; Hussain, S Salman; de Groot, Rudolf S

    2013-11-30

    The ecosystem services concept provides both an analytical and communicative tool to identify and quantify the link between human welfare and the environment, and thus to evaluate the ramifications of management interventions. Marine spatial planning (MSP) and Ecosystem-based Management (EBM) are a form of management intervention that has become increasingly popular and important globally. The ecosystem service concept is rarely applied in marine planning and management to date which we argue is due to the lack of a well-structured, systematic classification and assessment of marine ecosystem services. In this paper we not only develop such a typology but also provide guidance to select appropriate indicators for all relevant ecosystem services. We apply this marine-specific ecosystem service typology to MSP and EBM. We thus provide not only a novel theoretical construct but also show how the ecosystem services concept can be used in marine planning and management.

  11. Trip report: pilot studies of factors linking watershed function and coastal ecosystem health in American Samoa

    USGS Publications Warehouse

    Atkinson, Carter T.; Medeiros, Arthur C.

    2010-01-01

    Coral reef resources in the territory of American Samoa face significant problems from overfishing, non-point source pollution, global warming, and continuing population growth and development. The islands are still relatively isolated relative to other parts of the Pacific and have managed to avoid some of the more devastating invasive species that have reached other archipelagoes. As a result, there are opportunities for collaborative and integrative research and monitoring programs to help restore and maintain biodiversity and functioning natural ecosystem in the archipelago. We found that the 'Ridge to Reef' paradigm already exists in American Samoa, with a high degree of interagency cooperation and efficient use of limited resources already taking place in the Territory. USGS may be able to make contributions as a partner organization in the Coral Reef Advisory Group (CRAG) through deployment of sediment monitoring instrumentation to supplement stream monitoring by the American Samoa Environmental Protection Agency, by providing high resolution vegetation and land-use maps of main islands, by providing additional support to the American Samoa Department of Marine and Wildlife Resources and the National Park Service for monitoring of invasive species, by working with members of CRAG to initiate sediment transport studies on Samoan reefs, and by developing new projects on the effects of bacterial contamination and pollutants on coral reef physiology and demography.

  12. Managing troubled data: Coastal data partnerships smooth data integration

    USGS Publications Warehouse

    Hale, S.S.; Hale, Miglarese A.; Bradley, M.P.; Belton, T.J.; Cooper, L.D.; Frame, M.T.; Friel, C.A.; Harwell, L.M.; King, R.E.; Michener, W.K.; Nicolson, D.T.; Peterjohn, B.G.

    2003-01-01

    Understanding the ecology, condition, and changes of coastal areas requires data from many sources. Broad-scale and long-term ecological questions, such as global climate change, biodiversity, and cumulative impacts of human activities, must be addressed with databases that integrate data from several different research and monitoring programs. Various barriers, including widely differing data formats, codes, directories, systems, and metadata used by individual programs, make such integration troublesome. Coastal data partnerships, by helping overcome technical, social, and organizational barriers, can lead to a better understanding of environmental issues, and may enable better management decisions. Characteristics of successful data partnerships include a common need for shared data, strong collaborative leadership, committed partners willing to invest in the partnership, and clear agreements on data standards and data policy. Emerging data and metadata standards that become widely accepted are crucial. New information technology is making it easier to exchange and integrate data. Data partnerships allow us to create broader databases than would be possible for any one organization to create by itself.

  13. Managing troubled data: coastal data partnerships smooth data integration.

    PubMed

    Hale, Stephen S; Miglarese, Anne Hale; Bradley, M Patricia; Belton, Thomas J; Cooper, Larry D; Frame, Michael T; Friel, Christopher A; Harwell, Linda M; King, Robert E; Michener, William K; Nicolson, David T; Peterjohn, Bruce G

    2003-01-01

    Understanding the ecology, condition, and changes of coastal areas requires data from many sources. Broad-scale and long-term ecological questions, such as global climate change, biodiversity, and cumulative impacts of human activities, must be addressed with databases that integrate data from several different research and monitoring programs. Various barriers, including widely differing data formats, codes, directories, systems, and metadata used by individual programs, make such integration troublesome. Coastal data partnerships, by helping overcome technical, social, and organizational barriers, can lead to a better understanding of environmental issues, and may enable better management decisions. Characteristics of successful data partnerships include a common need for shared data, strong collaborative leadership, committed partners willing to invest in the partnership, and clear agreements on data standards and data policy. Emerging data and metadata standards that become widely accepted are crucial. New information technology is making it easier to exchange and integrate data. Data partnerships allow us to create broader databases than would be possible for any one organization to create by itself.

  14. Anthropogenic chemicals as drivers of change for coastal ecosystems: wetlands, mangroves and seagrass habitats.

    EPA Science Inventory

    Coastal wetlands, mangrove and seagrass habitats are rapidly declining worldwide which reduces their many ecological services. This presentation summarizes the results of a literature survey conducted to determine scientific understanding of contaminant uptake and toxicity of non...

  15. Effect of Changes in Seasonal Rain Regime on Coastal Ecosystem Structure and Aquaculture Activities

    NASA Astrophysics Data System (ADS)

    Cosimo, S.; Melaku Canu, D.; Libralato, S.; Cossarini, G.; Giorgi, F.

    2008-12-01

    A downscaling experiment linked climate forcing produced by a Regional Climate Model for Europe to a 3D high resolution coupled transport biogeochemical model for the Lagoon of Venice, which in turn forced: a) a food web model for evaluation of cascading effects on ecosystem structure and b) a population dynamic bioenergetic filter feeders bivalvae model for evaluation of effects on aquaculture activities. The hierarchy of models was used to compare result for a reference situation (RF, 1961-1990) with results for two future IPCC scenarios (2071-2100), representing market oriented and local sustainability policies (scenarios A2 and B2, respectively). Future climate projections suggest that, locally, annual mean rain will not change much but the seasonal patterns will likely do so. Summer and spring will be more dry and winter and autumn more rainy. This will potentially increase winter nutrient concentrations but -because of unfavourable timing - primary and secondary productions will decrease, and nutrient surplus will be exported from the Lagoon of Venice to the Adriatic Sea. The impacts on higher trophic levels could be softened thanks to presence of alternative energy pathways and role of omnivory. However, in our future scenario of the lagoon food web the suitability for higher trophic level organisms seems lower. A more detailed analysis on clam aquaculture indicates that this activity will suffer the decrease of primary productivity, and point to the need of implementation of proper aquaculture management policies. In the light of adaptive management. These policies cannot be a straightfoward extrapolation of present practises, but need to be defined basing on future conditions.

  16. Uncertainty and Sensitivity of Ecosystem Restoration Decisions: A Case Study from Coastal Louisiana

    DTIC Science & Technology

    2014-07-01

    of saltmeadow cordgrass (Spartina patens) in Louisiana coastal marshes. Estuaries 20(3): 579-588. Gosselink, J.G. 1984. The ecology of delta marshes...Engineers. Hyfield, E.C.G. 2004. Freshwater and nutrient inputs to a Mississippi River deltaic estuary with river reintroduction. MS Thesis, Louisiana State...Swenson. 2007. Sediment discharge into a subsiding Louisiana deltaic estuary through a Mississippi River diversion. Estuarine, Coastal, and Shelf Science

  17. Insecticide Resistance and Management Strategies in Urban Ecosystems

    PubMed Central

    Zhu, Fang; Lavine, Laura; O’Neal, Sally; Lavine, Mark; Foss, Carrie; Walsh, Douglas

    2016-01-01

    The increased urbanization of a growing global population makes imperative the development of sustainable integrated pest management (IPM) strategies for urban pest control. This emphasizes pests that are closely associated with the health and wellbeing of humans and domesticated animals. Concurrently there are regulatory requirements enforced to minimize inadvertent exposures to insecticides in the urban environment. Development of insecticide resistance management (IRM) strategies in urban ecosystems involves understanding the status and mechanisms of insecticide resistance and reducing insecticide selection pressure by combining multiple chemical and non-chemical approaches. In this review, we will focus on the commonly used insecticides and molecular and physiological mechanisms underlying insecticide resistance in six major urban insect pests: house fly, German cockroach, mosquitoes, red flour beetle, bed bugs and head louse. We will also discuss several strategies that may prove promising for future urban IPM programs. PMID:26751480

  18. Loss of an ecological baseline through the eradication of oyster reefs from coastal ecosystems and human memory.

    PubMed

    Alleway, Heidi K; Connell, Sean D

    2015-06-01

    Oyster reefs form over extensive areas and the diversity and productivity of sheltered coasts depend on them. Due to the relatively recent population growth of coastal settlements in Australia, we were able to evaluate the collapse and extirpation of native oyster reefs (Ostrea angasi) over the course of a commercial fishery. We used historical records to quantify commercial catch of O. angasi in southern Australia from early colonization, around 1836, to some of the last recorded catches in 1944 and used our estimates of catch and effort to map their past distribution and assess oyster abundance over 180 years. Significant declines in catch and effort occurred from 1886 to 1946 and no native oyster reefs occur today, but historically oyster reefs extended across more than 1,500 km of coastline. That oyster reefs were characteristic of much of the coastline of South Australia from 1836 to 1910 appears not to be known because there is no contemporary consideration of their ecological and economic value. Based on the concept of a shifted baseline, we consider this contemporary state to reflect a collective, intergenerational amnesia. Our model of generational amnesia accounts for differences in intergenerational expectations of food, economic value, and ecosystem services of nearshore areas. An ecological system that once surrounded much of the coast and possibly the past presence of oyster reefs altogether may be forgotten and could not only undermine progress towards their recovery, but also reduce our expectations of these coastal ecosystems.

  19. Integrating river basin management and the coastal zone: the (blue) Danube and the (black) sea.

    PubMed

    Maksimović, C; Makropoulos, C K

    2002-01-01

    In order to effectively manage the wide variety of physical, chemical biological and ecological processes in a sensitive coastal environment such as the Black Sea, current environmental management objectives are no longer sufficient: a new management approach has to address the intimate functional linkage between the river basin and the costal environment. Current water quality legislation requires compliance to emission levels based on the chemical analysis of water samples taken at discharge points, such as treatment plants discharging into rivers. While such measures provide a relative indication of the water quality at the point of discharge, they fail to describe accurately and sufficiently the quality of the water received from the watershed or basin. As water flows through the catchment, rainfall run-off from urban and agricultural areas carries sediments, pesticides, and other chemicals into river systems, which lead to coastal waters. The impact of the Kosovo crisis on the Danube ecosystems provides a poignant example of the effects of such diffused pollution mechanisms and reveals a number of interesting pollution mechanisms. This paper discusses both the effects of diffused pollution on the Black Sea, drawing from state-of-the-art reports on the Danube, and proposes a framework for a decision support system based on distributed hydrological and pollution transport simulation models and GIS. The use of ecological health indicators and fuzzy inference supporting decisions on regional planning within this framework is also advocated. It is also argued that even the recently produced GEF document on Black Sea protection scenarios should benefit significantly if the concept of pollution reduction from both urban, industrial and rural areas should undergo a systematic conceptual update in the view of the recent recommendations of the UNEP IETC (2000) document.

  20. Community-level response of coastal microbial biofilms to ocean acidification in a natural carbon dioxide vent ecosystem.

    PubMed

    Lidbury, Ian; Johnson, Vivienne; Hall-Spencer, Jason M; Munn, Colin B; Cunliffe, Michael

    2012-05-01

    The impacts of ocean acidification on coastal biofilms are poorly understood. Carbon dioxide vent areas provide an opportunity to make predictions about the impacts of ocean acidification. We compared biofilms that colonised glass slides in areas exposed to ambient and elevated levels of pCO(2) along a coastal pH gradient, with biofilms grown at ambient and reduced light levels. Biofilm production was highest under ambient light levels, but under both light regimes biofilm production was enhanced in seawater with high pCO(2). Uronic acids are a component of biofilms and increased significantly with high pCO(2). Bacteria and Eukarya denaturing gradient gel electrophoresis profile analysis showed clear differences in the structures of ambient and reduced light biofilm communities, and biofilms grown at high pCO(2) compared with ambient conditions. This study characterises biofilm response to natural seabed CO(2) seeps and provides a baseline understanding of how coastal ecosystems may respond to increased pCO(2) levels.

  1. [Weight of evidence (WOE) approach and its application in sediment quality assessment of coastal ecosystem: a review].

    PubMed

    Wu, Bin; Song, Jin-Ming; Li, Xue-Gang; Yuan, Hua-Mao; Li, Ning

    2013-01-01

    At present, chemical approaches are the main tools adopted to assess the contaminated sediments along China's coast. However, with the crucial progress of weight of evidence (WOE) approach in both logic and practice, this approach is getting available to be applied in the sediment quality assessment of our coastal ecosystem. By incorporating the levels of evidences such as sediment chemistry, toxicity and benthic community ecology, WOE forms an integrated approach to assess the potential adverse biological effects of environmental stressors mainly toxic substances by reconciling the information from multiple relevant lines of evidences and by weighing the data quality, study design, and other factors, being the sole means currently available to characterize the actual sediment quality and to reach an environmental decision. This paper reviewed the history of sediment quality assessment and the progress of WOE research in coastal sediment, summarized the variety of WOE definitions and interpretive techniques with reliability analysis, and discussed the limitations of WOE in theory and practice. Several improvement suggestions were proposed associated with the prospects of WOE research to advance the coastal sediment quality assessment in China.

  2. Effects of sewage discharge on trophic state and water quality in a coastal ecosystem of the Gulf of California.

    PubMed

    Vargas-González, Héctor Hugo; Arreola-Lizárraga, José Alfredo; Mendoza-Salgado, Renato Arturo; Méndez-Rodríguez, Lía Celina; Lechuga-Deveze, Carlos Hernando; Padilla-Arredondo, Gustavo; Cordoba-Matson, Miguel

    2014-01-01

    This paper provides evidence of the effects of urban wastewater discharges on the trophic state and environmental quality of a coastal water body in a semiarid subtropical region in the Gulf of California. The concentrations of dissolved inorganic nutrients and organic matter from urban wastewater primary treatment were estimated. La Salada Cove was the receiving water body and parameters measured during an annual cycle were temperature, salinity, dissolved oxygen, nitrite, nitrate, ammonia, orthophosphate, and chlorophyll a. The effects of sewage inputs were determined by using Trophic State Index (TRIX) and the Arid Zone Coastal Water Quality Index (AZCI). It was observed that urban wastewater of the city of Guaymas provided 1,237 ton N yr(-1) and 811 ton P yr(-1) and TRIX indicated that the receiving water body showed symptoms of eutrophication from an oligotrophic state to a mesotrophic state; AZCI also indicated that the environmental quality of the water body was poor. The effects of urban wastewater supply with insufficient treatment resulted in symptoms of eutrophication and loss of ecological functions and services of the coastal ecosystem in La Salada Cove.

  3. Effects of Sewage Discharge on Trophic State and Water Quality in a Coastal Ecosystem of the Gulf of California

    PubMed Central

    Vargas-González, Héctor Hugo; Arreola-Lizárraga, José Alfredo; Mendoza-Salgado, Renato Arturo; Méndez-Rodríguez, Lía Celina; Lechuga-Deveze, Carlos Hernando; Padilla-Arredondo, Gustavo; Cordoba-Matson, Miguel

    2014-01-01

    This paper provides evidence of the effects of urban wastewater discharges on the trophic state and environmental quality of a coastal water body in a semiarid subtropical region in the Gulf of California. The concentrations of dissolved inorganic nutrients and organic matter from urban wastewater primary treatment were estimated. La Salada Cove was the receiving water body and parameters measured during an annual cycle were temperature, salinity, dissolved oxygen, nitrite, nitrate, ammonia, orthophosphate, and chlorophyll a. The effects of sewage inputs were determined by using Trophic State Index (TRIX) and the Arid Zone Coastal Water Quality Index (AZCI). It was observed that urban wastewater of the city of Guaymas provided 1,237 ton N yr−1 and 811 ton P yr−1 and TRIX indicated that the receiving water body showed symptoms of eutrophication from an oligotrophic state to a mesotrophic state; AZCI also indicated that the environmental quality of the water body was poor. The effects of urban wastewater supply with insufficient treatment resulted in symptoms of eutrophication and loss of ecological functions and services of the coastal ecosystem in La Salada Cove. PMID:24711731

  4. Assessment of Metal Toxicity in Marine Ecosystems: Comparative Toxicity Potentials for Nine Cationic Metals in Coastal Seawater.

    PubMed

    Dong, Yan; Rosenbaum, Ralph K; Hauschild, Michael Z

    2016-01-05

    This study is a first attempt to develop globally applicable and spatially differentiated marine comparative toxicity potentials (CTPs) or ecotoxicity characterization factors for metals in coastal seawater for use in life cycle assessment. The toxicity potentials are based exclusively on marine ecotoxicity data and take account of metal speciation and bioavailability. CTPs were developed for nine cationic metals (Cd, Cr(III), Co, Cu(II), Fe(III), Mn, Ni, Pb, and Zn) in 64 large marine ecosystems (LMEs) covering all coastal waters in the world. The results showed that the CTP of a specific metal varies 3-4 orders of magnitude across LMEs, largely due to different seawater residence times. Therefore, the highest toxicity potential for metals was found in the LMEs with the longest seawater residence times. Across metals, the highest CTPs were observed for Cd, Pb, and Zn. At the concentration levels occurring in coastal seawaters, Fe acts not as a toxic agent but as an essential nutrient and thus has CTPs of zero.

  5. Combining ecosystem service relationships and DPSIR framework to manage multiple ecosystem services.

    PubMed

    Xue, Hui; Li, Shiyu; Chang, Jie

    2015-03-01

    Ecosystem service (ES) relationship occurs due to two types of mechanisms: (1) interact directly or (2) interact through the impact of a shared factor. Identifying such mechanisms behind ES relationship within a single land-use/land-cover category and combining it with a system thinking framework is especially necessary for effective decision-making to manage multiple ESs generated by this land-use/land-cover. In this study, we use tea plantations in China to investigate mechanisms behind ES relationships. We find that tea production is positively correlated with four regulating services (i.e., carbon sequestration, soil N protection, soil P protection, and water conservation). Several regulating services, such as carbon sequestration and soil N, P, and K protection, have positive correlations with each other. Tea production, carbon sequestration, and soil retention are significantly correlated with local annual mean temperature and precipitation. We then establish driver-pressure-state-impact-response (DPSIR) framework for tea plantations, which has been widely used for environmental management issues. Integrating our findings of ES relationship into DPSIR framework, we can estimate how ES change is responding to two types of responses: response to control drivers and response to maintain or restore state. Scenario analysis showed that the responses to control drivers have a larger impact on ES. We discuss that DPSIR would favor managing multiple ES because it enables a more precise understanding of how ES interacts through the effects of factors from various hierarchies. Finally, we suggest integrating ES direct interaction into DPSIR framework. We think such integration could improve the ability of DPSIR framework to support decision-making in multiple ES management, specifically in at least three aspects: (1) favor to identify all possible response alternatives, (2) enable us to evaluate ES which cannot be assessed if without such combining, and (3) help to

  6. Interaction between Coastal and Oceanic Ecosystems of the Western and Central Pacific Ocean through Predator-Prey Relationship Studies

    PubMed Central

    Allain, Valerie; Fernandez, Emilie; Hoyle, Simon D.; Caillot, Sylvain; Jurado-Molina, Jesus; Andréfouët, Serge; Nicol, Simon J.

    2012-01-01

    The Western and Central Pacific Ocean sustains the highest tuna production in the world. This province is also characterized by many islands and a complex bathymetry that induces specific current circulation patterns with the potential to create a high degree of interaction between coastal and oceanic ecosystems. Based on a large dataset of oceanic predator stomach contents, our study used generalized linear models to explore the coastal-oceanic system interaction by analyzing predator-prey relationship. We show that reef organisms are a frequent prey of oceanic predators. Predator species such as albacore (Thunnus alalunga) and yellowfin tuna (Thunnus albacares) frequently consume reef prey with higher probability of consumption closer to land and in the western part of the Pacific Ocean. For surface-caught-predators consuming reef prey, this prey type represents about one third of the diet of predators smaller than 50 cm. The proportion decreases with increasing fish size. For predators caught at depth and consuming reef prey, the proportion varies with predator species but generally represents less than 10%. The annual consumption of reef prey by the yellowfin tuna population was estimated at 0.8±0.40CV million tonnes or 2.17×1012±0.40CV individuals. This represents 6.1%±0.17CV in weight of their diet. Our analyses identify some of the patterns of coastal-oceanic ecosystem interactions at a large scale and provides an estimate of annual consumption of reef prey by oceanic predators. PMID:22615796

  7. Marine habitat classification for ecosystem-based management: a proposed hierarchical framework.

    PubMed

    Guarinello, Marisa L; Shumchenia, Emily J; King, John W

    2010-04-01

    Creating a habitat classification and mapping system for marine and coastal ecosystems is a daunting challenge due to the complex array of habitats that shift on various spatial and temporal scales. To meet this challenge, several countries have, or are developing, national classification systems and mapping protocols for marine habitats. To be effectively applied by scientists and managers it is essential that classification systems be comprehensive and incorporate pertinent physical, geological, biological, and anthropogenic habitat characteristics. Current systems tend to provide over-simplified conceptual structures that do not capture biological habitat complexity, marginalize anthropogenic features, and remain largely untested at finer scales. We propose a multi-scale hierarchical framework with a particular focus on finer scale habitat classification levels and conceptual schematics to guide habitat studies and management decisions. A case study using published data is included to compare the proposed framework with existing schemes. The example demonstrates how the proposed framework's inclusion of user-defined variables, a combined top-down and bottom-up approach, and multi-scale hierarchical organization can facilitate examination of marine habitats and inform management decisions.

  8. The Coastal Ocean Prediction Systems program: Understanding and managing our coastal ocean

    SciTech Connect

    Eden, H.F.; Mooers, C.N.K.

    1990-06-01

    The goal of COPS is to couple a program of regular observations to numerical models, through techniques of data assimilation, in order to provide a predictive capability for the US coastal ocean including the Great Lakes, estuaries, and the entire Exclusive Economic Zone (EEZ). The objectives of the program include: determining the predictability of the coastal ocean and the processes that govern the predictability; developing efficient prediction systems for the coastal ocean based on the assimilation of real-time observations into numerical models; and coupling the predictive systems for the physical behavior of the coastal ocean to predictive systems for biological, chemical, and geological processes to achieve an interdisciplinary capability. COPS will provide the basis for effective monitoring and prediction of coastal ocean conditions by optimizing the use of increased scientific understanding, improved observations, advanced computer models, and computer graphics to make the best possible estimates of sea level, currents, temperatures, salinities, and other properties of entire coastal regions.

  9. Contrasting perceptions of anthropogenic coastal agricultural landscape meanings and management in Italy and Canada

    NASA Astrophysics Data System (ADS)

    Targetti, Stefano; Sherren, Kate; Raggi, Meri; Viaggi, Davide

    2016-04-01

    The Anthropocene concept entails the idea that humans have become the most influential driving factor on the environment. In this context, it is useful to get insights from coastal areas that are affected by a huge impact of human activities in shaping the territory, are prone to several threats linked with climate change, and featured by interlinked economic, cultural and social systems. We compare evidence from three different methods focusing on the perceptions of coastal agricultural landscapes: i) a survey focusing on residents' perceptions of local rural landscape elements; ii) an expert-elicitation multicriteria exercise (Analytic Network Process) focusing on the relationship between economic actors, ecosystem services and local competitiveness; and iii) a Q-methodology survey to identify public discourses concerning management alternatives. The methods were applied in two coastal case studies characterized by land drainage, shoreline barriers and coastal armoring that represent high cultural heritage; created by humans they rely on active management to persist. Moreover, in both the case studies concerns have been raised about the role of agriculture in the rural development context and the perspectives of local stakeholders towards the management of the reclaimed lands. The first area is located on the southern side of the Po River Delta (Emilia Romagna, Italy). The area was reclaimed during the 19th and 20th centuries for agricultural production and is now characterized by intensive agriculture in the hinterlands, an urbanised coastal area with a developed tourism sector, and the presence of remnant wetlands which are mostly included in the Po Delta Natural Park (covering around 30% of the case study). The second area is located in the dykelands of the Bay of Fundy (Nova Scotia, Canada) whose origins go back to the 17th Century when French settlers built the first dykes to reclaim salt marshes for farmland. While some are still farmed, a range of

  10. Coastal emergency managers' preferences for storm surge forecast communication.

    PubMed

    Morrow, Betty Hearn; Lazo, Jeffrey K

    2014-01-01

    Storm surge, the most deadly hazard associated with tropical and extratropical cyclones, is the basis for most evacuation decisions by authorities. One factor believed to be associated with evacuation noncompliance is a lack of understanding of storm surge. To address this problem, federal agencies responsible for cyclone forecasts are seeking more effective ways of communicating storm surge threat. To inform this process, they are engaging various partners in the forecast and warning process.This project focuses on emergency managers. Fifty-three emergency managers (EMs) from the Gulf and lower Atlantic coasts were surveyed to elicit their experience with, sources of, and preferences for storm surge information. The emergency managers-who are well seasoned in hurricane response and generally rate the surge risk in their coastal areas above average or extremely high-listed storm surge as their major concern with respect to hurricanes. They reported a general lack of public awareness about surge. Overall they support new ways to convey the potential danger to the public, including the issuance of separate storm surge watches and warnings, and the expression of surge heights using feet above ground level. These EMs would like more maps, graphics, and visual materials for use in communicating with the public. An important concern is the timing of surge forecasts-whether they receive them early enough to be useful in their evacuation decisions.

  11. FORUM: Balancing Endangered Species and Ecosystems: A Case Study of Adaptive Management in Grand Canyon.

    PubMed

    Meretsky; Wegner; Stevens

    2000-06-01

    / Adaptive ecosystem management seeks to sustain ecosystems while extracting or using natural resources. The goal of endangered species management under the Endangered Species Act is limited to the protection and recovery of designated species, and the act takes precedence over other policies and regulations guiding ecosystem management. We present an example of conflict between endangered species and ecosystem management during the first planned flood on the Colorado River in Grand Canyon in 1996. We discuss the resolution of the conflict and the circumstances that allowed a solution to be reached. We recommend that adaptive management be implemented extensively and early in ecosystem management so that information and working relationships will be available to address conflicts as they arise. Though adaptive management is not a panacea, it offers the best opportunity for balanced solutions to competing management goals.

  12. Assessment of Eutrophication Quality in Greek Coastal Ecosystem (Eastern Mediterranean Sea)

    NASA Astrophysics Data System (ADS)

    Pavlidou, Alexandra; Rousselaki, Eleni; Assimakopoulou, Georgia; Tsapakis, Manolis; Simboura, Nomiki

    2014-05-01

    The Mediterranean Sea has always been considered as one of the most oligotrophic areas in the world, especially in the Eastern part of the Sea. However, eutrophication problems occur in some coastal areas of the Mediterranean (e.g. eastern coasts of Spain, Gulf of Lions, northern Adriatic Sea, Apulian coasts, Saronikos Gulf, Thessaloniki Bay, northern coasts of Greece, etc.). This work is focused on the assessment of the Eutrophication Quality in different coastal areas of Greece affected by various anthropogenic and natural pressures and was performed under the Water Framework Directive. A network of 28 sampling stations was used during two relevant sampling periods, April - May 2012 and March - April 2013, in the framework of the National Monitoring Project of Greece. The Eutrophication assessment method integrates chemical and biological parameters of the water column. A synthetic Eutrophication Index (E.I.) was produced for the greek coastal areas by Primpas et al. quality classification scheme, combining the concentrations of nutrients (phosphate, nitrate, nitrite, ammonia) and chlorophyll-α biomass into a single formula. The E.I. assesses the eutrophication status using a five scale scheme according to the requirements of WFD: (High) less than 0.04; (Good) 0.04-0.38; (moderate) 0.38-0.85; (poor) 0.85-1.51; (bad) >1.51. Nutrient and chlorophyll-a concentrations revealed significant spatial variation among the various coastal areas of Greece influenced by different point and/or diffuse anthropogenic pressures (related to nutrient enrichment), reflecting the level of human-induced impairment where an increase in nutrient loads leads to increased water quality problems. The assessment of E.I showed that during 2012, 32% of the selected coastal areas were characterized as Good, 54% as Moderate and 14% of the selected greek coastal areas were characterized as Poor. During 2012, none of the study areas corresponded to High or Bad eutrophication status. During 2013

  13. High-resolution chemical and hydrologic records identify environmental factors that control coastal anchialine cave ecosystem function

    NASA Astrophysics Data System (ADS)

    Brankovits, D.; Pohlman, J.; Lapham, L.; Casso, M.; Roth, E.; Lowell, N. S.; Iliffe, T. M.

    2015-12-01

    Anchialine caves host a coastal aquifer ecosystem occupied by cave-adapted crustaceans that reside within distinct fresh, brackish and marine waters. Our initial investigation of this subsurface ecotone in the Yucatan Peninsula (Mexico) provides stable isotope-based evidence that methane and dissolved organic carbon (DOC) are the primary sources of energy and carbon for the food web. However, the frequency of observations is sparse, leaving us 'in the dark' with respect to the temporal dynamics of the ecosystem function. In this study, we obtained undisturbed vertical profiles of methane, DOC and DIC concentration and isotopic composition with the 'Octopipi' water sampler from an anchialine cave located ~8 km from the coastline. To document the temporal variability of methane availability in the cave, we deployed an osmotically-driven pump (OsmoSampler). Data loggers recorded dissolved oxygen (DO), salinity, temperature and current velocities, and a rain gauge recorded precipitation. A high-methane water mass near the ceiling (up to 7795 nM) contained elevated concentration (900 µM), 13C-depleted (-27.8 to -28.2 ‰) DOC, suggesting terrestrial organic matter input from the overlying soils. Low-methane saline water (36 to 84 nM) had lower concentration DOC (15 to 97 µM) with a similar δ13C (-25.9 to -27.2 ‰), suggesting significant terrestrial organic matter consumption or removal with increasing depth, from fresh to saline water, within the water column. Our 6-month water chemistry record reveals high concentrations of methane in the wet season, especially following rainfall events, and relatively lower methane concentrations in the dry season. These observations suggest rain flushes methane generated in overlying anoxic soils into the cave. DO, water level, and groundwater flow patterns were also linked to the precipitation record. These data provide novel insight into the interconnections between external climate forcing and subterranean anchialine

  14. 75 FR 22103 - Atlantic Coastal Fisheries Cooperative Management Act Provisions; Atlantic Coastal Shark Fishery

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-27

    ..., bull, lemon, nurse, scalloped hammerhead, great hammerhead, and smooth hammerhead sharks), pelagic... kilometers) from shore: Commission large coastal sharks (silky, tiger, blacktip, spinner, bull, lemon,...

  15. Development of an integrated methodology for the sustainable environmental and socio-economic management of river ecosystems.

    PubMed

    Koundouri, P; Ker Rault, P; Pergamalis, V; Skianis, V; Souliotis, I

    2016-01-01

    The development of the Water Framework Directive aimed to establish an integrated framework of water management at European level. This framework revolves around inland surface waters, transitional waters, coastal waters and ground waters. In the process of achieving the environment and ecological objectives set from the Directive, the role of economics is put in the core of the water management. An important feature of the Directive is the recovery of total economic cost of water services by all users. The total cost of water services can be disaggregated into environmental, financial and resource costs. Another important aspect of the directive is the identification of major drivers and pressures in each River Basin District. We describe a methodology that is aiming to achieve sustainable and environmental and socioeconomic management of freshwater ecosystem services. The Ecosystem Services Approach is in the core of the suggested methodology for the implementation of a more sustainable and efficient water management. This approach consists of the following three steps: (i) socio-economic characterization of the River Basin area, (ii) assessment of the current recovery of water use cost, and (iii) identification and suggestion of appropriate programs of measures for sustainable water management over space and time. This methodology is consistent with a) the economic principles adopted explicitly by the Water Framework Directive (WFD), b) the three-step WFD implementation approach adopted in the WATECO document, c) the Ecosystem Services Approach to valuing freshwater goods and services to humans. Furthermore, we analyze how the effects of multiple stressors and socio-economic development can be quantified in the context of freshwater resources management. We also attempt to estimate the value of four ecosystem services using the benefit transfer approach for the Anglian River Basin, which showed the significance of such services.

  16. Dominance, biomass and extinction resistance determine the consequences of biodiversity loss for multiple coastal ecosystem processes.

    PubMed

    Davies, Thomas W; Jenkins, Stuart R; Kingham, Rachel; Kenworthy, Joseph; Hawkins, Stephen J; Hiddink, Jan G

    2011-01-01

    Key ecosystem processes such as carbon and nutrient cycling could be deteriorating as a result of biodiversity loss. However, currently we lack the ability to predict the consequences of realistic species loss on ecosystem processes. The aim of this study was to test whether species contributions to community biomass can be used as surrogate measures of their contribution to ecosystem processes. These were gross community productivity in a salt marsh plant assemblage and an intertidal macroalgae assemblage; community clearance of microalgae in sessile suspension feeding invertebrate assemblage; and nutrient uptake in an intertidal macroalgae assemblage. We conducted a series of biodiversity manipulations that represented realistic species extinction sequences in each of the three contrasting assemblages. Species were removed in a subtractive fashion so that biomass was allowed to vary with each species removal, and key ecosystem processes were measured at each stage of community disassembly. The functional contribution of species was directly proportional to their contribution to community biomass in a 1:1 ratio, a relationship that was consistent across three contrasting marine ecosystems and three ecosystem processes. This suggests that the biomass contributed by a species to an assemblage can be used to approximately predict the proportional decline in an ecosystem process when that species is lost. Such predictions represent "worst case scenarios" because, over time, extinction resilient species can offset the loss of biomass associated with the extinction of competitors. We also modelled a "best case scenario" that accounts for compensatory responses by the extant species with the highest per capita contribution to ecosystem processes. These worst and best case scenarios could be used to predict the minimum and maximum species required to sustain threshold values of ecosystem processes in the future.

  17. Dominance, Biomass and Extinction Resistance Determine the Consequences of Biodiversity Loss for Multiple Coastal Ecosystem Processes

    PubMed Central

    Davies, Thomas W.; Jenkins, Stuart R.; Kingham, Rachel; Kenworthy, Joseph; Hawkins, Stephen J.; Hiddink, Jan G.

    2011-01-01

    Key ecosystem processes such as carbon and nutrient cycling could be deteriorating as a result of biodiversity loss. However, currently we lack the ability to predict the consequences of realistic species loss on ecosystem processes. The aim of this study was to test whether species contributions to community biomass can be used as surrogate measures of their contribution to ecosystem processes. These were gross community productivity in a salt marsh plant assemblage and an intertidal macroalgae assemblage; community clearance of microalgae in sessile suspension feeding invertebrate assemblage; and nutrient uptake in an intertidal macroalgae assemblage. We conducted a series of biodiversity manipulations that represented realistic species extinction sequences in each of the three contrasting assemblages. Species were removed in a subtractive fashion so that biomass was allowed to vary with each species removal, and key ecosystem processes were measured at each stage of community disassembly. The functional contribution of species was directly proportional to their contribution to community biomass in a 1∶1 ratio, a relationship that was consistent across three contrasting marine ecosystems and three ecosystem processes. This suggests that the biomass contributed by a species to an assemblage can be used to approximately predict the proportional decline in an ecosystem process when that species is lost. Such predictions represent “worst case scenarios” because, over time, extinction resilient species can offset the loss of biomass associated with the extinction of competitors. We also modelled a “best case scenario” that accounts for compensatory responses by the extant species with the highest per capita contribution to ecosystem processes. These worst and best case scenarios could be used to predict the minimum and maximum species required to sustain threshold values of ecosystem processes in the future. PMID:22163297

  18. Impacts Of Climate Change On Ecosystems Management In Africa: An Assessment Of Disaster Risk Management And Adaptation

    NASA Astrophysics Data System (ADS)

    Ndebele-Murisa, M. R.

    2015-12-01

    This paper is a synthesis of eight studies which demonstrate the interface between disaster risk management (DRM) and adaptation. The studies; conducted from November 2011 to July 2012 included diverse ecosystems from forests, coastlines, rural areas to a lake region and showed that climate change/variability are major factors among other factors such as deforestation and land degradation, unsustainable land use practices, overharvesting of natural products and invasive species encroachment that are causing changes in ecosystems. The most common extreme events reported included shifts in and shorter rainfall seasons, extended droughts, increased temperatures, extreme heat, heavy rainfall, flooding, inundation, strong winds and sea level rises. As a result of these climate phenomena, adverse impacts on ecosystems and communities were reported as biodiversity loss, reduced fish catch, reduced water for forests/agriculture/consumption, increased rough waves, coastal erosion/sediment deposition and lastly land/mud slides in order of commonality. In response to these impacts communities are practicing coping and adaptation strategies but there is a huge gap between proper DRM and adaptation. This is mainly because the adaptation is practiced as an aftermath with very little effort propelled towards proactive DRM or preparedness. In addition, national level policies are archaic and do not address the current environmental changes. This was demonstrated in Togo where wood energy potential is deteriorating at an unprecedented rate but is projected to increase between 6.4% and 101% in the near and far future if the national forest action plans are implemented; preventing an energy crisis in the country. This shows that appropriate legal and policy frameworks and well planned responses to projected extreme events and climate changes are crucial in order to prevent disasters and to achieve sustainable utilisation of resources in the continent.

  19. Historical and contemporary imagery to assess ecosystem change on the Arctic coastal plain of northern Alaska

    USGS Publications Warehouse

    Tape, Ken D.; Pearce, John M.; Walworth, Dennis; Meixell, Brandt W.; Fondell, Tom F.; Gustine, David D.; Flint, Paul L.; Hupp, Jerry W.; Schmutz, Joel A.; Ward, David H.

    2014-01-01

    In this report, we describe and make available a set of 61 georectified aerial images of the Arctic Coastal Plain (taken from 1948 to 2010) that were obtained by the USGS to inform research objectives of the USGS CAE Initiative. Here, we describe the origins, metadata, and public availability of these images that were obtained within four main study areas on the Arctic Coastal Plain: Teshekpuk Lake Special Area, Chipp River, the Colville River Delta, and locations along the Dalton Highway Corridor between the Brooks Range and Deadhorse. We also provide general descriptions of observable changes to the geomorphology of landscapes that are apparent by comparing historical and contemporary images. These landscape changes include altered river corridors, lake drying, coastal erosion, and new vegetation communities. All original and georectified images and metadata are available through the USGS Alaska Science Center Portal (search under ‘Project Name’ using title of this report) or by contacting ascweb@usgs.gov.

  20. Climate Change, Offshore Wind Power, and the Coastal Zone Management Act

    DTIC Science & Technology

    2008-09-01

    have begun to plan and develop coastal and offshore wind energy farms,9 the largest and best-known being Cape Wind Associates’ proposal for a 130...is produced. Offshore wind energy projects can conversely take advantage of the relatively consistent nature of coastal winds, caused by the...coastal zone management programs. The CZMA provides for two types of federal consistency, the second of which is directly relevant to offshore wind energy development

  1. Migratory patterns of pelagic fishes and possible linkages between open ocean and coastal ecosystems off the Pacific coast of North America

    NASA Astrophysics Data System (ADS)

    Beamish, R. J.; McFarlane, G. A.; King, J. R.

    2005-03-01

    We review studies relevant to the migration of pelagic fishes between the coastal and open-ocean ecosystems off the subarctic coast of North America. We review the life history strategies of these migratory fish and to compare to the life history strategies of major coastal migrants. The oceanography in this region is dominated by north and south currents that provide a boundary between the offshore and coastal waters. Commercial fisheries off the west coast of North America are virtually all inshore of this oceanographic separation. Migrations for some species in these major fisheries are also north and south rather than east and west. However, exceptions occur for Pacific salmon, species associated with seamounts, and for transitional pelagic species such as tuna, squid and sharks. Three species of Pacific salmon, sockeye, pink and chum salmon, migrate along the coast in their first marine year and move off shore in the fall and winter in their first marine year. Three other species, coho salmon, chinook salmon, and steelhead trout, also migrate offshore, although they are less abundant and some stocks remain within the coastal regions. Pacific salmon species are a dominant daytime biomass in the surface waters in the offshore areas. It is known that albacore tuna and some sharks migrate between the offshore and coastal areas, but more research is needed to assess the relative importance of these migrations. Although the biomass of species on seamounts is small relative to coastal areas, the similarity in fauna is evidence that there is recruitment from coastal ecosystems.

  2. Nighttime dissolution in a temperate coastal ocean ecosystem increases under acidification.

    PubMed

    Kwiatkowski, Lester; Gaylord, Brian; Hill, Tessa; Hosfelt, Jessica; Kroeker, Kristy J; Nebuchina, Yana; Ninokawa, Aaron; Russell, Ann D; Rivest, Emily B; Sesboüé, Marine; Caldeira, Ken

    2016-03-18

    Anthropogenic emissions of carbon dioxide (CO2) are causing ocean acidification, lowering seawater aragonite (CaCO3) saturation state (Ω arag), with potentially substantial impacts on marine ecosystems over the 21(st) Century. Calcifying organisms have exhibited reduced calcification under lower saturation state conditions in aquaria. However, the in situ sensitivity of calcifying ecosystems to future ocean acidification remains unknown. Here we assess the community level sensitivity of calcification to local CO2-induced acidification caused by natural respiration in an unperturbed, biodiverse, temperate intertidal ecosystem. We find that on hourly timescales nighttime community calcification is strongly influenced by Ω arag, with greater net calcium carbonate dissolution under more acidic conditions. Daytime calcification however, is not detectably affected by Ω arag. If the short-term se