Science.gov

Sample records for coastal plant population

  1. Twelve years of repeated wild hog activity promotes population maintenance of an invasive clonal plant in a coastal dune ecosystem.

    PubMed

    Oldfield, Callie A; Evans, Jonathan P

    2016-04-01

    Invasive animals can facilitate the success of invasive plant populations through disturbance. We examined the relationship between the repeated foraging disturbance of an invasive animal and the population maintenance of an invasive plant in a coastal dune ecosystem. We hypothesized that feral wild hog (Sus scrofa) populations repeatedly utilized tubers of the clonal perennial, yellow nutsedge (Cyperus esculentus) as a food source and evaluated whether hog activity promoted the long-term maintenance of yellow nutsedge populations on St. Catherine's Island, Georgia, United States. Using generalized linear mixed models, we tested the effect of wild hog disturbance on permanent sites for yellow nutsedge culm density, tuber density, and percent cover of native plant species over a 12-year period. We found that disturbance plots had a higher number of culms and tubers and a lower percentage of native live plant cover than undisturbed control plots. Wild hogs redisturbed the disturbed plots approximately every 5 years. Our research provides demographic evidence that repeated foraging disturbances by an invasive animal promote the long-term population maintenance of an invasive clonal plant. Opportunistic facultative interactions such as we demonstrate in this study are likely to become more commonplace as greater numbers of introduced species are integrated into ecological communities around the world.

  2. Twelve years of repeated wild hog activity promotes population maintenance of an invasive clonal plant in a coastal dune ecosystem.

    PubMed

    Oldfield, Callie A; Evans, Jonathan P

    2016-04-01

    Invasive animals can facilitate the success of invasive plant populations through disturbance. We examined the relationship between the repeated foraging disturbance of an invasive animal and the population maintenance of an invasive plant in a coastal dune ecosystem. We hypothesized that feral wild hog (Sus scrofa) populations repeatedly utilized tubers of the clonal perennial, yellow nutsedge (Cyperus esculentus) as a food source and evaluated whether hog activity promoted the long-term maintenance of yellow nutsedge populations on St. Catherine's Island, Georgia, United States. Using generalized linear mixed models, we tested the effect of wild hog disturbance on permanent sites for yellow nutsedge culm density, tuber density, and percent cover of native plant species over a 12-year period. We found that disturbance plots had a higher number of culms and tubers and a lower percentage of native live plant cover than undisturbed control plots. Wild hogs redisturbed the disturbed plots approximately every 5 years. Our research provides demographic evidence that repeated foraging disturbances by an invasive animal promote the long-term population maintenance of an invasive clonal plant. Opportunistic facultative interactions such as we demonstrate in this study are likely to become more commonplace as greater numbers of introduced species are integrated into ecological communities around the world. PMID:27110354

  3. Invasion, disturbance, and competition: modeling the fate of coastal plant populations.

    PubMed

    Pathikonda, Sharmila; Ackleh, Azmy S; Hasenstein, Karl H; Mopper, Susan

    2009-02-01

    Wetland habitats are besieged by biotic and abiotic disturbances such as invasive species, hurricanes, habitat fragmentation, and salinization. Predicting how these factors will alter local population dynamics and community structure is a monumental challenge. By examining ecologically similar congeners, such as Iris hexagona and I. pseudacorus (which reproduce clonally and sexually and tolerate a wide range of environmental conditions), one can identify life-history traits that are most influential to population growth and viability. We combined empirical data and stage-structured matrix models to investigate the demographic responses of native (I. hexagona) and invasive (I. pseudacorus) plant populations to hurricanes and salinity stress in freshwater and brackish wetlands. In our models I. hexagona and I. pseudacorus responded differently to salinity stress, and species coexistence was rare. In 82% of computer simulations of freshwater marsh, invasive iris populations excluded the native species within 50 years, whereas native populations excluded the invasive species in 99% of the simulations in brackish marsh. The occurrence of hurricanes allowed the species to coexist, and species persistence was determined by the length of time it took the ecosystem to recover. Rapid recovery (2 years) favored the invasive species, whereas gradual recovery (30 years) favored the native species. Little is known about the effects of hurricanes on competitive interactions between native and invasive plant species in marsh ecosystems. Our models contribute new insight into the relationship between environmental disturbance and invasion and demonstrate how influential abiotic factors such as climate change will be in determining interspecific interactions.

  4. Native plants for effective coastal wetland restoration

    USGS Publications Warehouse

    Howard, Rebecca J.

    2003-01-01

    Plant communities, along with soils and appropriate water regimes, are essential components of healthy wetland systems. In Louisiana, the loss of wetland habitat continues to be an issue of major concern. Wetland loss is caused by several interacting factors, both natural and human-induced (e.g., erosion and saltwater intrusion from the construction of canals and levees). Recent estimates of annual coastal land loss rates of about 62 km2 (24 mi2 ) over the past decade emphasize the magnitude of this problem. In an attempt to slow the rate of loss and perhaps halt the overall trend, resource managers in Louisiana apply various techniques to restore damaged or degraded habitats to functioning wetland systems.Researchers at the U.S. Geological Survey’s National Wetlands Research Center (NWRC) have cooperated with the Louisiana Department of Natural Resources in studies that address effective restoration strategies for coastal wetlands. The studies have identified differences in growth that naturally exist in native Louisiana wetland plant species and genetic varieties (i.e., clones) within species. Clones of a species have a distinctive genetic identity, and some clones may also have distinctive growth responses under various environmental conditions (i.e., preferences). Indeed, large areas of coastal marsh are typically populated by several clones of a plant species, each growing in a microenvironment suited to its preferences.These studies will provide information that will assist resource managers in selecting plant species and clones of species with known growth characteristics that can be matched to environmental conditions at potential restoration sites. Before the studies began, a collection of several clones from four plant species native to coastal Louisiana was established. The species collected included saltgrass (Distichlis spicata), common reed (Phragmites australis), giant bulrush (Schoenoplectus californicus), and saltmarsh bulrush (Schoenoplectus

  5. Nuclear power plants in China's coastal zone: risk and safety

    NASA Astrophysics Data System (ADS)

    Lu, Qingshui; Gao, Zhiqiang; Ning, Jicai; Bi, Xiaoli; Gao, Wei

    2014-10-01

    Nuclear power plants are used as an option to meet the demands for electricity due to the low emission of CO2 and other contaminants. The accident at the Fukushima nuclear power plant in 2011 has forced the Chinese government to adjust its original plans for nuclear power. The construction of inland nuclear power plants was stopped, and construction is currently only permitted in coastal zones. However, one obstacle of those plants is that the elevation of those plants is notably low, ranging from 2 to 9 meters and a number of the nuclear power plants are located in or near geological fault zones. In addition, the population density is very high in the coastal zones of China. To reduce those risks of nuclear power plants, central government should close the nuclear power plants within the fault zones, evaluate the combined effects of storm surges, inland floods and tidal waves on nuclear power plants and build closed dams around nuclear power plants to prevent damage from storm surges and tidal waves. The areas without fault zones and with low elevation should be considered to be possible sites for future nuclear power plants if the elevation can be increased using soil or civil materials.

  6. Extended Shared Socioeconomic Pathways for Coastal Impact Assessment: Spatial Coastal Population Scenarios

    NASA Astrophysics Data System (ADS)

    Merkens, Jan-Ludolf; Reimann, Lena; Hinkel, Jochen; Vafeidis, Athanasios T.

    2016-04-01

    This work extends the Shared Socioeconomic Pathways (SSPs) by developing spatial projections of global coastal population distribution for the five basic SSPs. Based on a series of coastal migration drivers, which were identified from existing literature, we develop coastal narratives for the five basic SSPs (SSP1-5). These narratives account for differences in coastal versus inland population development in urban and rural areas. To spatially distribute population we use the International Institute for Applied Systems Analysis (IIASA) national population and urbanisation projections and employ country-specific growth rates which differ for coastal and inland as well as for urban and rural regions. These rates are derived from spatial analysis of historical population data. We then adjust these rates for each SSP based on the coastal narratives. The resulting global population grids depict the projected distribution of coastal population for each SSP, until the end of the 21st century, at a spatial resolution of 30 arc seconds. These grids exhibit a three- to four-fold increase in coastal population compared to the basic SSPs. Across all SSPs, except for SSP3, coastal population peaks by the middle of the 21st century and declines afterwards. In SSP3 the coastal population grows continuously until 2100. Compared to the base year 2000 the coastal population increases considerably in all SSPs. The extended SSPs are intended to be utilised in Impact, Adaptation and Vulnerability (IAV) assessments as they allow for improved analysis of exposure to sea-level rise and coastal flooding under different physical and socioeconomic scenarios.

  7. Plant Sensitivity to Burial and Coastal Foredune Morphology

    NASA Astrophysics Data System (ADS)

    Goldstein, E. B.; Moore, L. J.; deVries, E.; Jass, T. L.; Duran Vinent, O.

    2015-12-01

    Coastal dunes arise from a feedback between plant growth and aeolian sediment transport. Dune plants are uniquely adapted to the harsh coastal environment, and are able to tolerate high temperature, drought, salt spray, and burial by sand. Accurate modeling of coastal dunes relies on understanding how coastal plants respond to these stresses, and how the dune building feedback is modified as a result. We use two years of data from an experimental planting on Hog Island, VA, USA to parameterize a logistic growth model that explicitly includes the effects of plant burial on three species of common dune plants on the US East Coast: Spartina patens, Ammophila breviligulata, and Uniola paniculata. We couple this new plant growth model to the Coastal Dune Model of Durán and Moore (2013). Using this enhanced model we explore the consequences of plant sensitivity to burial on coastal dune growth. These results will add to the growing literature on coupled vegetation and sand transport models, specifically the modeling of coastal dunes.

  8. Prep plant population rebounds

    SciTech Connect

    Fiscor, S.

    2005-10-01

    Demand and higher prices allows more operators to build and upgrade plants. The 2005 US Prep Plant Census found that the number of coal preparation plants has grown from 212 to 265 in five years - a 53 plant gain or a 20% increase over that reported by Coal Age in 2000. The number of bituminous coal washing facilities grew by 43 to 250. The article discusses the survey and the companies involved and presents a table giving key details of plants arranged by state. 6 tabs.

  9. The Plant Population Explosion

    ERIC Educational Resources Information Center

    Swaminathan, M. S.

    1973-01-01

    Results achieved by researchers in the field of genetic plant engineering are described. However, it is believed that if their efforts were more decentralized, more farmers, especially in developing countries, could benefit and substantial advances made in production. (BL)

  10. Tracking the source of mercury in coastal populations of California Cougars (puma concolor)

    NASA Astrophysics Data System (ADS)

    Weiss-Penzias, P. S.; Wilmers, C.; Yovovich, V.; Houghtaling, P.; Torregrosa, A.

    2015-12-01

    As part of a project on the cycling of mercury (Hg) from the ocean to fog and deposition to land in coastal California, the whiskers of pumas from coastal and inland populations in California were analyzed for total Hg (HgT). Previous studies have shown that fog water in coastal California contains enhanced concentrations of monomethyl Hg (MMHg) compared to rain water. The likely source of fog MMHg is from evasion and demethylation of dimethyl Hg (DMHg) from coastal ocean upwelling. The California coast receives seasonal inputs of fog drip, and we hypothesized that if fog water deposition of MMHg was making an impact, the observable effects might be seen in high trophic level predators of the terrestrial ecosystem. Puma whiskers from 88 individuals from the Santa Cruz Mountains, a sub-range of the California Coast Range, were obtained and compared with puma whiskers from 12 individuals from the foothills of the Sierra Nevada Mountains. Mean total Hg in puma whiskers from the coastal population is 1.0 ± 1.5 ug Hg / g whisker (ppm), whereas mean HgT from the inland puma population is 0.13 ± 0.09 ppm. The difference between these means is significant to the 95% confidence level. For the coastal puma population, the whiskers from 10 individuals had HgT concentrations > 2.0 ppm and 3 individuals had HgT > 4 ppm, which exceeds the U.S. EPA reference dose for humans (1 ppm) approaches a level of concern found for other large mammals such as polar bears (5 ppm). The study is ongoing and HgT concentrations will be determined in the fur and flesh of deer from the same locations as the puma whiskers, since deer comprise ~95% of the puma diet. Samples of plants that are likely fed upon by deer that span the coastal-inland transect will also be analyzed for HgT. Estimates of fog frequency spatial patterns, derived from weather satellite observations and topographic modeling, will be compared with the HgT content of plant and animal tissue in coastal California to quantify

  11. Coastal Sand Dune Plant Ecology: Field Phenomena and Interpretation

    ERIC Educational Resources Information Center

    McDonald, K.

    1973-01-01

    Discusses the advantages and disadvantages of selecting coastal sand dunes as the location for field ecology studies. Presents a descriptive zonal model for seaboard sand dune plant communities, suggestions concerning possible observations and activities relevant to interpreting phenomena associated with these forms of vegetation, and additional…

  12. Population vulnerability to storm surge flooding in coastal Virginia, USA.

    PubMed

    Liu, Hua; Behr, Joshua G; Diaz, Rafael

    2016-07-01

    This study aims to assess the vulnerability of populations to storm surge flooding in 12 coastal localities of Virginia, USA. Population vulnerability is assessed by way of 3 physical factors (elevation, slope, and storm surge category), 3 built-up components (road availability, access to hospitals, and access to shelters), and 3 household conditions (storm preparedness, financial constraints to recovering from severe weather events, and health fragility). Fuzzy analysis is used to generate maps illustrating variation in several types of population vulnerability across the region. When considering physical factors and household conditions, the most vulnerable neighborhoods to sea level rise and storm surge flooding are largely found in urban areas. However, when considering access to critical infrastructure, we find rural residents to be more vulnerable than nonrural residents. These detailed assessments can inform both local and state governments in catastrophic planning. In addition, the methodology may be generalized to assess vulnerability in other coastal corridors and communities. The originality is highlighted by evaluating socioeconomic conditions at refined scale, incorporating a broader range of human perceptions and predispositions, and employing a geoinformatics approach combining physical, built-up, and socioeconomic conditions for population vulnerability assessment. Integr Environ Assess Manag 2016;12:500-509. © 2015 SETAC.

  13. Coastal plants : chemical sensitivities and risk assessments

    EPA Science Inventory

    The ability of plant-dominated ecosystems to improve water quality and provide habitat for biodiversity are important ecological services. These services are impacted by natural and anthropogenic stressors which includes contaminant toxicity. Scientific information describing the...

  14. Reproducibility of Vibrionaceae population structure in coastal bacterioplankton

    PubMed Central

    Szabo, Gitta; Preheim, Sarah P; Kauffman, Kathryn M; David, Lawrence A; Shapiro, Jesse; Alm, Eric J; Polz, Martin F

    2013-01-01

    How reproducibly microbial populations assemble in the wild remains poorly understood. Here, we assess evidence for ecological specialization and predictability of fine-scale population structure and habitat association in coastal ocean Vibrionaceae across years. We compare Vibrionaceae lifestyles in the bacterioplankton (combinations of free-living, particle, or zooplankton associations) measured using the same sampling scheme in 2006 and 2009 to assess whether the same groups show the same environmental association year after year. This reveals complex dynamics with populations falling primarily into two categories: (i) nearly equally represented in each of the two samplings and (ii) highly skewed, often to an extent that they appear exclusive to one or the other sampling times. Importantly, populations recovered at the same abundance in both samplings occupied highly similar habitats suggesting predictable and robust environmental association while skewed abundances of some populations may be triggered by shifts in ecological conditions. The latter is supported by difference in the composition of large eukaryotic plankton between years, with samples in 2006 being dominated by copepods, and those in 2009 by diatoms. Overall, the comparison supports highly predictable population-habitat linkage but highlights the fact that complex, and often unmeasured, environmental dynamics in habitat occurrence may have strong effects on population dynamics. PMID:23178668

  15. Gridded population projections for the coastal zone under the Shared Socioeconomic Pathways

    NASA Astrophysics Data System (ADS)

    Merkens, Jan-Ludolf; Reimann, Lena; Hinkel, Jochen; Vafeidis, Athanasios T.

    2016-10-01

    Existing quantifications of the Shared Socioeconomic Pathways (SSP) used for climate impact assessment do not account for subnational population dynamics such as coastward-migration that can be critical for coastal impact assessment. This paper extends the SSPs by developing spatial projections of global coastal population distribution for the five basic SSPs. Based on a series of coastal migration drivers we develop coastal narratives for each SSP. These narratives account for differences in coastal and inland population developments in urban and rural areas. To spatially distribute population, we use the International Institute for Applied Systems Analysis (IIASA) national population and urbanisation projections and employ country-specific growth rates, which differ for coastal and inland as well as for urban and rural regions, to project coastal population for each SSP. These rates are derived from spatial analysis of historical population data and adjusted for each SSP based on the coastal narratives. Our results show that, compared to the year 2000 (638 million), the population living in the Low Elevated Coastal Zone (LECZ) increases by 58% to 71% until 2050 and exceeds one billion in all SSPs. By the end of the 21st century, global coastal population declines to 830-907 million in all SSPs except for SSP3, where coastal population growth continues and reaches 1.184 billion. Overall, the population living in the LECZ is higher by 85 to 239 million compared to the original IIASA projections. Asia expects the highest absolute growth (238-303 million), Africa the highest relative growth (153% to 218%). Our results highlight regions where high coastal population growth is expected and will therefore face an increased exposure to coastal flooding.

  16. Future coastal population growth and exposure to sea-level rise and coastal flooding--a global assessment.

    PubMed

    Neumann, Barbara; Vafeidis, Athanasios T; Zimmermann, Juliane; Nicholls, Robert J

    2015-01-01

    Coastal zones are exposed to a range of coastal hazards including sea-level rise with its related effects. At the same time, they are more densely populated than the hinterland and exhibit higher rates of population growth and urbanisation. As this trend is expected to continue into the future, we investigate how coastal populations will be affected by such impacts at global and regional scales by the years 2030 and 2060. Starting from baseline population estimates for the year 2000, we assess future population change in the low-elevation coastal zone and trends in exposure to 100-year coastal floods based on four different sea-level and socio-economic scenarios. Our method accounts for differential growth of coastal areas against the land-locked hinterland and for trends of urbanisation and expansive urban growth, as currently observed, but does not explicitly consider possible displacement or out-migration due to factors such as sea-level rise. We combine spatially explicit estimates of the baseline population with demographic data in order to derive scenario-driven projections of coastal population development. Our scenarios show that the number of people living in the low-elevation coastal zone, as well as the number of people exposed to flooding from 1-in-100 year storm surge events, is highest in Asia. China, India, Bangladesh, Indonesia and Viet Nam are estimated to have the highest total coastal population exposure in the baseline year and this ranking is expected to remain largely unchanged in the future. However, Africa is expected to experience the highest rates of population growth and urbanisation in the coastal zone, particularly in Egypt and sub-Saharan countries in Western and Eastern Africa. The results highlight countries and regions with a high degree of exposure to coastal flooding and help identifying regions where policies and adaptive planning for building resilient coastal communities are not only desirable but essential. Furthermore, we

  17. Future Coastal Population Growth and Exposure to Sea-Level Rise and Coastal Flooding - A Global Assessment

    PubMed Central

    Neumann, Barbara; Vafeidis, Athanasios T.; Zimmermann, Juliane; Nicholls, Robert J.

    2015-01-01

    Coastal zones are exposed to a range of coastal hazards including sea-level rise with its related effects. At the same time, they are more densely populated than the hinterland and exhibit higher rates of population growth and urbanisation. As this trend is expected to continue into the future, we investigate how coastal populations will be affected by such impacts at global and regional scales by the years 2030 and 2060. Starting from baseline population estimates for the year 2000, we assess future population change in the low-elevation coastal zone and trends in exposure to 100-year coastal floods based on four different sea-level and socio-economic scenarios. Our method accounts for differential growth of coastal areas against the land-locked hinterland and for trends of urbanisation and expansive urban growth, as currently observed, but does not explicitly consider possible displacement or out-migration due to factors such as sea-level rise. We combine spatially explicit estimates of the baseline population with demographic data in order to derive scenario-driven projections of coastal population development. Our scenarios show that the number of people living in the low-elevation coastal zone, as well as the number of people exposed to flooding from 1-in-100 year storm surge events, is highest in Asia. China, India, Bangladesh, Indonesia and Viet Nam are estimated to have the highest total coastal population exposure in the baseline year and this ranking is expected to remain largely unchanged in the future. However, Africa is expected to experience the highest rates of population growth and urbanisation in the coastal zone, particularly in Egypt and sub-Saharan countries in Western and Eastern Africa. The results highlight countries and regions with a high degree of exposure to coastal flooding and help identifying regions where policies and adaptive planning for building resilient coastal communities are not only desirable but essential. Furthermore, we

  18. Future coastal population growth and exposure to sea-level rise and coastal flooding--a global assessment.

    PubMed

    Neumann, Barbara; Vafeidis, Athanasios T; Zimmermann, Juliane; Nicholls, Robert J

    2015-01-01

    Coastal zones are exposed to a range of coastal hazards including sea-level rise with its related effects. At the same time, they are more densely populated than the hinterland and exhibit higher rates of population growth and urbanisation. As this trend is expected to continue into the future, we investigate how coastal populations will be affected by such impacts at global and regional scales by the years 2030 and 2060. Starting from baseline population estimates for the year 2000, we assess future population change in the low-elevation coastal zone and trends in exposure to 100-year coastal floods based on four different sea-level and socio-economic scenarios. Our method accounts for differential growth of coastal areas against the land-locked hinterland and for trends of urbanisation and expansive urban growth, as currently observed, but does not explicitly consider possible displacement or out-migration due to factors such as sea-level rise. We combine spatially explicit estimates of the baseline population with demographic data in order to derive scenario-driven projections of coastal population development. Our scenarios show that the number of people living in the low-elevation coastal zone, as well as the number of people exposed to flooding from 1-in-100 year storm surge events, is highest in Asia. China, India, Bangladesh, Indonesia and Viet Nam are estimated to have the highest total coastal population exposure in the baseline year and this ranking is expected to remain largely unchanged in the future. However, Africa is expected to experience the highest rates of population growth and urbanisation in the coastal zone, particularly in Egypt and sub-Saharan countries in Western and Eastern Africa. The results highlight countries and regions with a high degree of exposure to coastal flooding and help identifying regions where policies and adaptive planning for building resilient coastal communities are not only desirable but essential. Furthermore, we

  19. Patterns of woody plant invasion in an Argentinean coastal grassland

    NASA Astrophysics Data System (ADS)

    Alberio, Constanza; Comparatore, Viviana

    2014-01-01

    Coastal dune grasslands are fragile ecosystems that have historically been subjected to various types of uses and human activities. In Buenos Aires Province (Argentina), these areas are frequently afforested for urban and touristic development. The introduction and subsequent spread of exotic tree species is one of the main threats to conservation of natural grasslands as invasive trees strongly transform their structure and composition. The aim of this study was to identify patterns of woody plant invasion comparing plant communities and environmental variables between invaded and non-invaded areas surrounding the coastal village of Mar Azul, Argentina. Coastal grasslands in this area are being invaded by Populus alba (white poplar) and Acacia longifolia (coast wattle). The height of the saplings and the richness of the accompanying vegetation were evaluated in relation to the distance from the edge of the mature tree patches. Also, the cover, richness and diversity of all species in the invaded and non-invaded areas were measured, as well as soil pH, temperature and particle size. Negative correlations were found between the height of the saplings and distance to mature tree patches in all areas. The richness of the accompanying vegetation was negatively and positively correlated with the distance from the poplar and acacia area, respectively. The most abundant native species was Cortaderia selloana. Less cover, richness and diversity of native plant species and greater soil particle size were found in invaded areas, where the proportion of bare soil was higher. Also, a higher proportion of leaf litter in the invaded areas was registered. The results emphasize the invasive capacity of P. alba and A. longifolia advancing on the native communities and reducing their richness. Knowledge of the impact of invasive woody plants in coastal grasslands is important to design active management strategies for conservation purposes.

  20. ACCURACY ASSESSMENTS OF AIRBORNE HYSPERSPECTRAL DATA FOR MAPPING OPPORTUNISTIC PLANT SPECIES IN FRESHWATER COASTAL WETLANDS

    EPA Science Inventory

    Airbome hyperspectral data were used to detect dense patches of Phragmites australis, a native opportunist plant species, at the Pointe Mouillee coastal wetland complex (Wayne and Monroe Counties, Michigan). This study provides initial results from one of thirteen coastal wetland...

  1. Between-Population Outbreeding Affects Plant Defence

    PubMed Central

    Leimu, Roosa; Fischer, Markus

    2010-01-01

    Between-population crosses may replenish genetic variation of populations, but may also result in outbreeding depression. Apart from direct effects on plant fitness, these outbreeding effects can also alter plant-herbivore interactions by influencing plant tolerance and resistance to herbivory. We investigated effects of experimental within- and between-population outbreeding on herbivore resistance, tolerance and plant fitness using plants from 13 to 19 Lychnis flos-cuculi populations. We found no evidence for outbreeding depression in resistance reflected by the amount of leaf area consumed. However, herbivore performance was greater when fed on plants from between-population compared to within-population crosses. This can reflect outbreeding depression in resistance and/or outbreeding effects on plant quality for the herbivores. The effects of type of cross on the relationship between herbivore damage and plant fitness varied among populations. This demonstrates how between-population outbreeding effects on tolerance range from outbreeding depression to outbreeding benefits among plant populations. Finally, herbivore damage strengthened the observed outbreeding effects on plant fitness in several populations. These results raise novel considerations on the impact of outbreeding on the joint evolution of resistance and tolerance, and on the evolution of multiple defence strategies. PMID:20838662

  2. Population similarity analysis of indicator bacteria for source prediction of faecal pollution in a coastal lake.

    PubMed

    Ahmed, W; Hargreaves, M; Goonetilleke, A; Katouli, M

    2008-08-01

    Biochemical fingerprinting (BF) databases of 524 enterococci and 571 Escherichia coli isolates and an antibiotic resistance analysis (ARA) database comprising of 380 E. coli isolates from four suspected sources (i.e. dogs, chickens, waterfowls, and human sewage) were developed to predict the sources of faecal pollution in a recreational coastal lake. Twenty water samples representing four sampling episodes were collected from five sites and the enterococci and E. coli population from each site were compared with those of the databases. The degree of similarity between bacterial populations was measured as population similarity (Sp) coefficient. Using the BF-database, bacterial populations of waterfowls showed the highest similarity with the water samples followed by a sewage treatment plant (STP). Higher population similarities were found between samples from STP and water samples especially at two sites (T2 and T3) which were located near the sewerage pipes collecting wastewater from the study area. When using the ARA-database, the highest similarity was found between E. coli populations from STP and water samples at sites T2 and T4. Both faecal indicators and as well as methods predicted human faecal pollution, possibly through leakage from submerged sewerage pipes. The results indicated that the Sp-analysis of faecal indicator bacterial populations from suspected sources and water samples can be used as a simple tool to predict the source(s) of faecal pollution in surface waters.

  3. Early Successional Microhabitats Allow the Persistence of Endangered Plants in Coastal Sand Dunes

    PubMed Central

    2015-01-01

    Many species are adapted to disturbance and occur within dynamic, mosaic landscapes that contain early and late successional microhabitats. Human modification of disturbance regimes alters the availability of microhabitats and may affect the viability of species in these ecosystems. Because restoring historical disturbance regimes is typically expensive and requires action at large spatial scales, such restoration projects must be justified by linking the persistence of species with successional microhabitats. Coastal sand dune ecosystems worldwide are characterized by their endemic biodiversity and frequent disturbance. Dune-stabilizing invasive plants alter successional dynamics and may threaten species in these ecosystems. We examined the distribution and population dynamics of two federally endangered plant species, the annual Layia carnosa and the perennial Lupinus tidestromii, within a dune ecosystem in northern California, USA. We parameterized a matrix population model for L. tidestromii and examined the magnitude by which the successional stage of the habitat (early or late) influenced population dynamics. Both species had higher frequencies and L. tidestromii had higher frequency of seedlings in early successional habitats. Lupinus tidestromii plants in early successional microhabitats had higher projected rates of population growth than those associated with stabilized, late successional habitats, due primarily to higher rates of recruitment in early successional microhabitats. These results support the idea that restoration of disturbance is critical in historically dynamic landscapes. Our results suggest that large-scale restorations are necessary to allow persistence of the endemic plant species that characterize these ecosystems. PMID:25835390

  4. Early successional microhabitats allow the persistence of endangered plants in coastal sand dunes.

    PubMed

    Pardini, Eleanor A; Vickstrom, Kyle E; Knight, Tiffany M

    2015-01-01

    Many species are adapted to disturbance and occur within dynamic, mosaic landscapes that contain early and late successional microhabitats. Human modification of disturbance regimes alters the availability of microhabitats and may affect the viability of species in these ecosystems. Because restoring historical disturbance regimes is typically expensive and requires action at large spatial scales, such restoration projects must be justified by linking the persistence of species with successional microhabitats. Coastal sand dune ecosystems worldwide are characterized by their endemic biodiversity and frequent disturbance. Dune-stabilizing invasive plants alter successional dynamics and may threaten species in these ecosystems. We examined the distribution and population dynamics of two federally endangered plant species, the annual Layia carnosa and the perennial Lupinus tidestromii, within a dune ecosystem in northern California, USA. We parameterized a matrix population model for L. tidestromii and examined the magnitude by which the successional stage of the habitat (early or late) influenced population dynamics. Both species had higher frequencies and L. tidestromii had higher frequency of seedlings in early successional habitats. Lupinus tidestromii plants in early successional microhabitats had higher projected rates of population growth than those associated with stabilized, late successional habitats, due primarily to higher rates of recruitment in early successional microhabitats. These results support the idea that restoration of disturbance is critical in historically dynamic landscapes. Our results suggest that large-scale restorations are necessary to allow persistence of the endemic plant species that characterize these ecosystems. PMID:25835390

  5. REMOTE DETENTION OF INVASIVE AND OPPORTUNISTIC PLANT SPECIES IN GREAT LAKES COASTAL WETLANDS

    EPA Science Inventory

    Invasive and opportunistic plant species have been associated with wetland disturbance. Increases in the abundance of plant species such as common reed (Phragmites australis) in coastal Great Lakes wetlands are hypothesized to occur with shifts toward drier hydrologic regimes, fr...

  6. REMOTE DETECTION OF INVASSIVE AND OPPORTUNISTIC PLANT SPECIES IN GREAT LAKES COASTAL WETLANDS

    EPA Science Inventory

    Invasive and opportunistic plant species have been associated with wetland disturbance. Increases in the abundance of plant species such as common reed (Phragmites australis) in coastal Great Lakes wetlands are hypothesized to occur with shifts toward drier hydrologic regimes, fr...

  7. Matrix population models from 20 studies of perennial plant populations

    USGS Publications Warehouse

    Ellis, Martha M.; Williams, Jennifer L.; Lesica, Peter; Bell, Timothy J.; Bierzychudek, Paulette; Bowles, Marlin; Crone, Elizabeth E.; Doak, Daniel F.; Ehrlen, Johan; Ellis-Adam, Albertine; McEachern, Kathryn; Ganesan, Rengaian; Latham, Penelope; Luijten, Sheila; Kaye, Thomas N.; Knight, Tiffany M.; Menges, Eric S.; Morris, William F.; den Nijs, Hans; Oostermeijer, Gerard; Quintana-Ascencio, Pedro F.; Shelly, J. Stephen; Stanley, Amanda; Thorpe, Andrea; Tamara, Ticktin; Valverde, Teresa; Weekley, Carl W.

    2012-01-01

    Demographic transition matrices are one of the most commonly applied population models for both basic and applied ecological research. The relatively simple framework of these models and simple, easily interpretable summary statistics they produce have prompted the wide use of these models across an exceptionally broad range of taxa. Here, we provide annual transition matrices and observed stage structures/population sizes for 20 perennial plant species which have been the focal species for long-term demographic monitoring. These data were assembled as part of the "Testing Matrix Models" working group through the National Center for Ecological Analysis and Synthesis (NCEAS). In sum, these data represent 82 populations with >460 total population-years of data. It is our hope that making these data available will help promote and improve our ability to monitor and understand plant population dynamics.

  8. Matrix population models from 20 studies of perennial plant populations

    USGS Publications Warehouse

    Ellis, Martha M.; Williams, Jennifer L.; Lesica, Peter; Bell, Timothy J.; Bierzychudek, Paulette; Bowles, Marlin; Crone, Elizabeth E.; Doak, Daniel F.; Ehrlen, Johan; Ellis-Adam, Albertine; McEachern, Kathryn; Ganesan, Rengaian; Latham, Penelope; Luijten, Sheila; Kaye, Thomas N.; Knight, Tiffany M.; Menges, Eric S.; Morris, William F.; den Nijs, Hans; Oostermeijer, Gerard; Quintana-Ascencio, Pedro F.; Shelly, J. Stephen; Stanley, Amanda; Thorpe, Andrea; Tamara, Ticktin; Valverde, Teresa; Weekley, Carl W.

    2012-01-01

    Demographic transition matrices are one of the most commonly applied population models for both basic and applied ecological research. The relatively simple framework of these models and simple, easily interpretable summary statistics they produce have prompted the wide use of these models across an exceptionally broad range of taxa. Here, we provide annual transition matrices and observed stage structures/population sizes for 20 perennial plant species which have been the focal species for long-term demographic monitoring. These data were assembled as part of the 'Testing Matrix Models' working group through the National Center for Ecological Analysis and Synthesis (NCEAS). In sum, these data represent 82 populations with >460 total population-years of data. It is our hope that making these data available will help promote and improve our ability to monitor and understand plant population dynamics.

  9. Population Processes and Plant Virus Evolution

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The number of studies detailing levels of sequence diversity within plant virus populations are growing at a rapid pace. At the same time, recent work has provided empirical estimates of parameters important in the life cycle of plant viruses, which in turn can help in understanding observed pattern...

  10. Genetic isolation between coastal and fishery-impacted, offshore bottlenose dolphin (Tursiops spp.) populations.

    PubMed

    Allen, Simon J; Bryant, Kate A; Kraus, Robert H S; Loneragan, Neil R; Kopps, Anna M; Brown, Alexander M; Gerber, Livia; Krützen, Michael

    2016-06-01

    The identification of species and population boundaries is important in both evolutionary and conservation biology. In recent years, new population genetic and computational methods for estimating population parameters and testing hypotheses in a quantitative manner have emerged. Using a Bayesian framework and a quantitative model-testing approach, we evaluated the species status and genetic connectedness of bottlenose dolphin (Tursiops spp.) populations off remote northwestern Australia, with a focus on pelagic 'offshore' dolphins subject to incidental capture in a trawl fishery. We analysed 71 dolphin samples from three sites beyond the 50 m depth contour (the inshore boundary of the fishery) and up to 170 km offshore, including incidentally caught and free-ranging individuals associating with trawl vessels, and 273 dolphins sampled at 12 coastal sites inshore of the 50 m depth contour and within 10 km of the coast. Results from 19 nuclear microsatellite markers showed significant population structure between dolphins from within the fishery and coastal sites, but also among dolphins from coastal sites, identifying three coastal populations. Moreover, we found no current or historic gene flow into the offshore population in the region of the fishery, indicating a complete lack of recruitment from coastal sites. Mitochondrial DNA corroborated our findings of genetic isolation between dolphins from the offshore population and coastal sites. Most offshore individuals formed a monophyletic clade with common bottlenose dolphins (T. truncatus), while all 273 individuals sampled coastally formed a well-supported clade of Indo-Pacific bottlenose dolphins (T. aduncus). By including a quantitative modelling approach, our study explicitly took evolutionary processes into account for informing the conservation and management of protected species. As such, it may serve as a template for other, similarly inaccessible study populations.

  11. Genetic isolation between coastal and fishery-impacted, offshore bottlenose dolphin (Tursiops spp.) populations.

    PubMed

    Allen, Simon J; Bryant, Kate A; Kraus, Robert H S; Loneragan, Neil R; Kopps, Anna M; Brown, Alexander M; Gerber, Livia; Krützen, Michael

    2016-06-01

    The identification of species and population boundaries is important in both evolutionary and conservation biology. In recent years, new population genetic and computational methods for estimating population parameters and testing hypotheses in a quantitative manner have emerged. Using a Bayesian framework and a quantitative model-testing approach, we evaluated the species status and genetic connectedness of bottlenose dolphin (Tursiops spp.) populations off remote northwestern Australia, with a focus on pelagic 'offshore' dolphins subject to incidental capture in a trawl fishery. We analysed 71 dolphin samples from three sites beyond the 50 m depth contour (the inshore boundary of the fishery) and up to 170 km offshore, including incidentally caught and free-ranging individuals associating with trawl vessels, and 273 dolphins sampled at 12 coastal sites inshore of the 50 m depth contour and within 10 km of the coast. Results from 19 nuclear microsatellite markers showed significant population structure between dolphins from within the fishery and coastal sites, but also among dolphins from coastal sites, identifying three coastal populations. Moreover, we found no current or historic gene flow into the offshore population in the region of the fishery, indicating a complete lack of recruitment from coastal sites. Mitochondrial DNA corroborated our findings of genetic isolation between dolphins from the offshore population and coastal sites. Most offshore individuals formed a monophyletic clade with common bottlenose dolphins (T. truncatus), while all 273 individuals sampled coastally formed a well-supported clade of Indo-Pacific bottlenose dolphins (T. aduncus). By including a quantitative modelling approach, our study explicitly took evolutionary processes into account for informing the conservation and management of protected species. As such, it may serve as a template for other, similarly inaccessible study populations. PMID:27015516

  12. Darwin's naturalization hypothesis: scale matters in coastal plant communities.

    PubMed

    Carboni, Marta; Münkemüller, Tamara; Gallien, Laure; Lavergne, Sébastien; Acosta, Alicia; Thuiller, Wilfried

    2013-04-01

    Darwin proposed two seemingly contradictory hypotheses for a better understanding of biological invasions. Strong relatedness of invaders to native communities as an indication of niche overlap could promote naturalization because of appropriate niche adaptation, but could also hamper naturalization because of negative interactions with native species ('Darwin's naturalization hypothesis'). Although these hypotheses provide clear and opposing predictions for expected patterns of species relatedness in invaded communities, so far no study has been able to clearly disentangle the underlying mechanisms. We hypothesize that conflicting past results are mainly due to the neglected role of spatial resolution of the community sampling. In this study, we corroborate both of Darwin's expectations by using phylogenetic relatedness as a measure of niche overlap and by testing the effects of sampling resolution in highly invaded coastal plant communities. At spatial resolutions fine enough to detect signatures of biotic interactions, we find that most invaders are less related to their nearest relative in invaded plant communities than expected by chance (phylogenetic overdispersion). Yet at coarser spatial resolutions, native assemblages become more invasible for closely-related species as a consequence of habitat filtering (phylogenetic clustering). Recognition of the importance of the spatial resolution at which communities are studied allows apparently contrasting theoretical and empirical results to be reconciled. Our study opens new perspectives on how to better detect, differentiate and understand the impact of negative biotic interactions and habitat filtering on the ability of invaders to establish in native communities.

  13. Transcriptional variation associated with cactus host plant adaptation in Drosophila mettleri populations.

    PubMed

    Hoang, Kim; Matzkin, Luciano M; Bono, Jeremy M

    2015-10-01

    Although the importance of host plant chemistry in plant-insect interactions is widely accepted, the genetic basis of adaptation to host plants is not well understood. Here, we investigate transcriptional changes associated with a host plant shift in Drosophila mettleri. While D. mettleri is distributed mainly throughout the Sonoran Desert where it specializes on columnar cacti (Carnegiea gigantea and Pachycereus pringleii), a population on Santa Catalina Island has shifted to chemically divergent coastal prickly pear cactus (Opuntia littoralis). We compared gene expression of larvae from the Sonoran Desert and Santa Catalina Island when reared on saguaro (C. gigantea), coastal prickly pear and laboratory food. Consistent with expectations based on the complexity and toxicity of cactus relative to laboratory food, within-population comparisons between larvae reared on these food sources revealed transcriptional differences in detoxification and other metabolic pathways. The majority of transcriptional differences between populations on the cactus hosts were independent of the rearing environment and included a disproportionate number of genes involved in processes relevant to host plant adaptation (e.g. detoxification, central metabolism and chemosensory pathways). Comparisons of transcriptional reaction norms between the two populations revealed extensive shared plasticity that likely allowed colonization of coastal prickly pear on Santa Catalina Island. We also found that while plasticity may have facilitated subsequent adaptive divergence in gene expression between populations, the majority of genes that differed in expression on the novel host were not transcriptionally plastic in the presumed ancestral state. PMID:26384860

  14. Transcriptional variation associated with cactus host plant adaptation in Drosophila mettleri populations.

    PubMed

    Hoang, Kim; Matzkin, Luciano M; Bono, Jeremy M

    2015-10-01

    Although the importance of host plant chemistry in plant-insect interactions is widely accepted, the genetic basis of adaptation to host plants is not well understood. Here, we investigate transcriptional changes associated with a host plant shift in Drosophila mettleri. While D. mettleri is distributed mainly throughout the Sonoran Desert where it specializes on columnar cacti (Carnegiea gigantea and Pachycereus pringleii), a population on Santa Catalina Island has shifted to chemically divergent coastal prickly pear cactus (Opuntia littoralis). We compared gene expression of larvae from the Sonoran Desert and Santa Catalina Island when reared on saguaro (C. gigantea), coastal prickly pear and laboratory food. Consistent with expectations based on the complexity and toxicity of cactus relative to laboratory food, within-population comparisons between larvae reared on these food sources revealed transcriptional differences in detoxification and other metabolic pathways. The majority of transcriptional differences between populations on the cactus hosts were independent of the rearing environment and included a disproportionate number of genes involved in processes relevant to host plant adaptation (e.g. detoxification, central metabolism and chemosensory pathways). Comparisons of transcriptional reaction norms between the two populations revealed extensive shared plasticity that likely allowed colonization of coastal prickly pear on Santa Catalina Island. We also found that while plasticity may have facilitated subsequent adaptive divergence in gene expression between populations, the majority of genes that differed in expression on the novel host were not transcriptionally plastic in the presumed ancestral state.

  15. Estimating the long-term historic evolution of exposure to flooding of coastal populations

    NASA Astrophysics Data System (ADS)

    Stevens, A. J.; Clarke, D.; Nicholls, R. J.; Wadey, M. P.

    2015-02-01

    Coastal managers face the task of assessing and managing flood risk. This requires knowledge of the area of land, the number of people, properties and other infrastructure potentially affected by floods. Such analyses are usually static; i.e. they only consider a snapshot of the current situation. This misses the opportunity to learn about the role of key drivers of historical changes in flood risk, such as development and population rise in the coastal flood plain and sea-level rise. In this paper, we develop and apply a method to analyse the temporal evolution of residential population exposure to coastal flooding. It uses readily available data in a GIS environment. We examine how population and sea level change modify exposure over two centuries in two neighbouring coastal sites: Portsea and Hayling Islands on the UK south coast. The analysis shows that flood exposure changes as a result of increases in population, changes in coastal population density and sea level rise. The results indicate that to date, population change is the dominant driver of the increase in exposure to flooding in the study sites, but climate change may outweigh this in the future. A full analysis of flood risk is not possible as data on historic defences and wider vulnerability are not available. Hence, the historic evolution of flood exposure is as close as we can get to a historic evolution of flood risk. The method is applicable anywhere that suitable floodplain geometry, sea level and population datasets are available and could be widely applied, and will help inform coastal managers of the time evolution in coastal flood drivers.

  16. Estimating the long-term historic evolution of exposure to flooding of coastal populations

    NASA Astrophysics Data System (ADS)

    Stevens, A. J.; Clarke, D.; Nicholls, R. J.; Wadey, M. P.

    2015-06-01

    Coastal managers face the task of assessing and managing flood risk. This requires knowledge of the area of land, the number of people, properties and other infrastructure potentially affected by floods. Such analyses are usually static; i.e. they only consider a snapshot of the current situation. This misses the opportunity to learn about the role of key drivers of historical changes in flood risk, such as development and population rise in the coastal flood plain, as well as sea-level rise. In this paper, we develop and apply a method to analyse the temporal evolution of residential population exposure to coastal flooding. It uses readily available data in a GIS environment. We examine how population and sea-level change have modified exposure over two centuries in two neighbouring coastal sites: Portsea and Hayling Islands on the UK south coast. The analysis shows that flood exposure changes as a result of increases in population, changes in coastal population density and sea level rise. The results indicate that to date, population change is the dominant driver of the increase in exposure to flooding in the study sites, but climate change may outweigh this in the future. A full analysis of changing flood risk is not possible as data on historic defences and wider vulnerability are not available. Hence, the historic evolution of flood exposure is as close as we can get to a historic evolution of flood risk. The method is applicable anywhere that suitable floodplain geometry, sea level and population data sets are available and could be widely applied, and will help inform coastal managers of the time evolution in coastal flood drivers.

  17. Uncertainties in measuring populations potentially impacted by sea level rise and coastal flooding.

    PubMed

    Mondal, Pinki; Tatem, Andrew J

    2012-01-01

    A better understanding of the impact of global climate change requires information on the locations and characteristics of populations affected. For instance, with global sea level predicted to rise and coastal flooding set to become more frequent and intense, high-resolution spatial population datasets are increasingly being used to estimate the size of vulnerable coastal populations. Many previous studies have undertaken this by quantifying the size of populations residing in low elevation coastal zones using one of two global spatial population datasets available - LandScan and the Global Rural Urban Mapping Project (GRUMP). This has been undertaken without consideration of the effects of this choice, which are a function of the quality of input datasets and differences in methods used to construct each spatial population dataset. Here we calculate estimated low elevation coastal zone resident population sizes from LandScan and GRUMP using previously adopted approaches, and quantify the absolute and relative differences achieved through switching datasets. Our findings suggest that the choice of one particular dataset over another can translate to a difference of more than 7.5 million vulnerable people for countries with extensive coastal populations, such as Indonesia and Japan. Our findings also show variations in estimates of proportions of national populations at risk range from <0.1% to 45% differences when switching between datasets, with large differences predominantly for countries where coarse and outdated input data were used in the construction of the spatial population datasets. The results highlight the need for the construction of spatial population datasets built on accurate, contemporary and detailed census data for use in climate change impact studies and the importance of acknowledging uncertainties inherent in existing spatial population datasets when estimating the demographic impacts of climate change. PMID:23110208

  18. Uncertainties in measuring populations potentially impacted by sea level rise and coastal flooding.

    PubMed

    Mondal, Pinki; Tatem, Andrew J

    2012-01-01

    A better understanding of the impact of global climate change requires information on the locations and characteristics of populations affected. For instance, with global sea level predicted to rise and coastal flooding set to become more frequent and intense, high-resolution spatial population datasets are increasingly being used to estimate the size of vulnerable coastal populations. Many previous studies have undertaken this by quantifying the size of populations residing in low elevation coastal zones using one of two global spatial population datasets available - LandScan and the Global Rural Urban Mapping Project (GRUMP). This has been undertaken without consideration of the effects of this choice, which are a function of the quality of input datasets and differences in methods used to construct each spatial population dataset. Here we calculate estimated low elevation coastal zone resident population sizes from LandScan and GRUMP using previously adopted approaches, and quantify the absolute and relative differences achieved through switching datasets. Our findings suggest that the choice of one particular dataset over another can translate to a difference of more than 7.5 million vulnerable people for countries with extensive coastal populations, such as Indonesia and Japan. Our findings also show variations in estimates of proportions of national populations at risk range from <0.1% to 45% differences when switching between datasets, with large differences predominantly for countries where coarse and outdated input data were used in the construction of the spatial population datasets. The results highlight the need for the construction of spatial population datasets built on accurate, contemporary and detailed census data for use in climate change impact studies and the importance of acknowledging uncertainties inherent in existing spatial population datasets when estimating the demographic impacts of climate change.

  19. Coastal Freshwater Wetland Plant Community Response to Seasonal Drought and Flooding in Northwestern Costa Rica

    EPA Science Inventory

    In tropical wet-dry climates, seasonal hydrologic cycles drive wetland plant community change and produce distinct seasonal plant assemblages. In this study, we examined the plant community response to seasonal flooding and drought in a large coastal freshwater wetland in northwe...

  20. Influence of geographic setting on thermal discharge from coastal power plants.

    PubMed

    Jia, Hou-Lei; Zheng, Shu; Xie, Jian; Ying, Xiao-Ming; Zhang, Cui-Ping

    2016-10-15

    Characteristics of thermal discharge from three coastal power plants were studied in China. The three plants, Zhuhai Power Plant, Chaozhou Power Plant and Huilai Power Plant, are located in estuary, bay and open sea, respectively. The water temperatures and ocean currents surrounding the outlet of the three power plants were monitored. The results show that the temperature rise became smaller as the spread of thermal discharge moved toward the open sea, which confirms the results of previous studies. The results also indicated that the influence range of thermal discharge from a coastal power plant is determined by geographic setting. The temperature rise range of the Chaozhou Plant, which is located in a bay, was the largest, followed by that of the Zhuhai Plant located in an estuary, and the temperature rise range of the Huilai Plant located in an open sea was the smallest. PMID:27496684

  1. Influence of geographic setting on thermal discharge from coastal power plants.

    PubMed

    Jia, Hou-Lei; Zheng, Shu; Xie, Jian; Ying, Xiao-Ming; Zhang, Cui-Ping

    2016-10-15

    Characteristics of thermal discharge from three coastal power plants were studied in China. The three plants, Zhuhai Power Plant, Chaozhou Power Plant and Huilai Power Plant, are located in estuary, bay and open sea, respectively. The water temperatures and ocean currents surrounding the outlet of the three power plants were monitored. The results show that the temperature rise became smaller as the spread of thermal discharge moved toward the open sea, which confirms the results of previous studies. The results also indicated that the influence range of thermal discharge from a coastal power plant is determined by geographic setting. The temperature rise range of the Chaozhou Plant, which is located in a bay, was the largest, followed by that of the Zhuhai Plant located in an estuary, and the temperature rise range of the Huilai Plant located in an open sea was the smallest.

  2. Host plant adaptation in Drosophila mettleri populations.

    PubMed

    Castrezana, Sergio; Bono, Jeremy M

    2012-01-01

    The process of local adaptation creates diversity among allopatric populations, and may eventually lead to speciation. Plant-feeding insect populations that specialize on different host species provide an excellent opportunity to evaluate the causes of ecological specialization and the subsequent consequences for diversity. In this study, we used geographically separated Drosophila mettleri populations that specialize on different host cacti to examine oviposition preference for and larval performance on an array of natural and non-natural hosts (eight total). We found evidence of local adaptation in performance on saguaro cactus (Carnegiea gigantea) for populations that are typically associated with this host, and to chemically divergent prickly pear species (Opuntia spp.) in a genetically isolated population on Santa Catalina Island. Moreover, each population exhibited reduced performance on the alternative host. This finding is consistent with trade-offs associated with adaptation to these chemically divergent hosts, although we also discuss alternative explanations for this pattern. For oviposition preference, Santa Catalina Island flies were more likely to oviposit on some prickly pear species, but all populations readily laid eggs on saguaro. Experiments with non-natural hosts suggest that factors such as ecological opportunity may play a more important role than host plant chemistry in explaining the lack of natural associations with some hosts. PMID:22493678

  3. Host Plant Adaptation in Drosophila mettleri Populations

    PubMed Central

    Castrezana, Sergio; Bono, Jeremy M.

    2012-01-01

    The process of local adaptation creates diversity among allopatric populations, and may eventually lead to speciation. Plant-feeding insect populations that specialize on different host species provide an excellent opportunity to evaluate the causes of ecological specialization and the subsequent consequences for diversity. In this study, we used geographically separated Drosophila mettleri populations that specialize on different host cacti to examine oviposition preference for and larval performance on an array of natural and non-natural hosts (eight total). We found evidence of local adaptation in performance on saguaro cactus (Carnegiea gigantea) for populations that are typically associated with this host, and to chemically divergent prickly pear species (Opuntia spp.) in a genetically isolated population on Santa Catalina Island. Moreover, each population exhibited reduced performance on the alternative host. This finding is consistent with trade-offs associated with adaptation to these chemically divergent hosts, although we also discuss alternative explanations for this pattern. For oviposition preference, Santa Catalina Island flies were more likely to oviposit on some prickly pear species, but all populations readily laid eggs on saguaro. Experiments with non-natural hosts suggest that factors such as ecological opportunity may play a more important role than host plant chemistry in explaining the lack of natural associations with some hosts. PMID:22493678

  4. Coastal laws strike a balance

    SciTech Connect

    Dennison, M.S.

    1993-04-01

    Although the coastal zone comprises less than 10% of the nation`s land mass, more than 75% of the population lives within 50 miles of coastal areas. Commercial enterprises, including manufacturing facilities, industrial plants, resort hotels and marinas, are built in coastal areas along with the usual beachfront homes condominiums. These enterprises can adversely impact coastal environment through pollution-generation activities. Government regulators have sought to curtail activities that give rise to pollution.

  5. Cyclic dynamics in simulated plant populations.

    PubMed Central

    Bauer, Silke; Berger, Uta; Hildenbrandt, Hanno; Grimm, Volker

    2002-01-01

    Despite the general interest in nonlinear dynamics in animal populations, plant populations are supposed to show a stable equilibrium that is attributed to fundamental differences compared with animals. Some studies find more complex dynamics, but empirical studies usually are too short and most modelling studies ignore important spatial aspects of local competition and establishment. Therefore, we used a spatially explicit individual-based model of a hypothetical, non-clonal perennial to explore which mechanisms might generate complex dynamics, i.e. cycles. The model is based on the field-of-neighbourhood approach that describes local competition and establishment in a phenomenological manner. We found cyclic population dynamics for a wide spectrum of model variants, provided that mortality is determined by local competition and recruitment is virtually completely suppressed within the zone of influence of established plants. This destabilizing effect of local processes within plant populations might have wide-ranging implications for the understanding of plant community dynamics and coexistence. PMID:12495487

  6. On the importance of coastal areas in the survival of Neanderthal populations during the Late Pleistocene

    NASA Astrophysics Data System (ADS)

    Finlayson, Clive

    2008-11-01

    This paper examines the distribution of Neanderthal populations across Europe and the Middle East. Key geographical variables are used to identify major population strongholds. Four are identified: southern Iberia, Atlantic Europe, Black Sea-Aegean and coastal Italy. Neanderthal site density in each stronghold was found to correspond closely with the predicted suitability of each area. A strong correlation was found between area suitability and last Neanderthal dates and the process of population fragmentation and extinction was found to affect continental areas first and coastal ones last. Oceanic influence, inter-area connectivity and proximity to coasts were found to be key variables in the Neanderthal extinction process. The functional ecological significance of coastal areas to Neanderthals is discussed.

  7. Constraints on coastal dune invasion for a notorious plant invader.

    PubMed

    Griffith, Alden B; Ahmed, Tania; Hildner, Abigail L G; Kuckreja, Shivani; Long, Shuangxou

    2015-11-10

    Although most biological invasions are not successful, relatively few studies have examined otherwise notorious invaders in systems where they are not highly problematic. The annual grass Bromus tectorum is a dominant invader in western North America, but is usually confined to human-dominated and disturbed systems (e.g. roadsides and parking lots) in the East where it remains virtually unstudied. This study aims to address fundamental ecological questions regarding B. tectorum in a Cape Cod dune ecosystem. (i) What is the range of variation in population dynamics and the potential for population growth? (ii) Which factors influence its local abundance and distribution? We observed substantial variation in population dynamics over 3 years, with the number of adult B. tectorum individuals increasing substantially between the first 2 years (λ = 9.24) and then decreasing (λ = 0.43). Population growth in terms of total seeds was similarly variable, but to a lesser extent (λ = 2.32 followed by λ = 0.32). Experimental soil disturbance led to a more than 10-fold increase in mean seedling emergence, and high sensitivity to differences in emergence carried this effect through the life cycle. In contrast, barriers to seed dispersal had no effect on population dynamics, suggesting limited dispersal in this system. Across the landscape, the presence of B. tectorum was associated with areas of higher plant diversity as opposed to those with a strong dominant (e.g. the foredune, dominated by Ammophila breviligulata, or low heathlands, characterized by Hudsonia tomentosa and Arctostaphylos uva-ursi). Overall, we find that B. tectorum is capable of both substantial population growth and decline in a dune ecosystem, but is likely limited without disturbance and dispersal agents. Thus, management actions that restrict dune access (e.g. for nesting habitat) likely have the co-benefit of limiting the invasive potential of B. tectorum.

  8. Constraints on coastal dune invasion for a notorious plant invader

    PubMed Central

    Griffith, Alden B.; Ahmed, Tania; Hildner, Abigail L. G.; Kuckreja, Shivani; Long, Shuangxou

    2015-01-01

    Although most biological invasions are not successful, relatively few studies have examined otherwise notorious invaders in systems where they are not highly problematic. The annual grass Bromus tectorum is a dominant invader in western North America, but is usually confined to human-dominated and disturbed systems (e.g. roadsides and parking lots) in the East where it remains virtually unstudied. This study aims to address fundamental ecological questions regarding B. tectorum in a Cape Cod dune ecosystem. (i) What is the range of variation in population dynamics and the potential for population growth? (ii) Which factors influence its local abundance and distribution? We observed substantial variation in population dynamics over 3 years, with the number of adult B. tectorum individuals increasing substantially between the first 2 years (λ = 9.24) and then decreasing (λ = 0.43). Population growth in terms of total seeds was similarly variable, but to a lesser extent (λ = 2.32 followed by λ = 0.32). Experimental soil disturbance led to a more than 10-fold increase in mean seedling emergence, and high sensitivity to differences in emergence carried this effect through the life cycle. In contrast, barriers to seed dispersal had no effect on population dynamics, suggesting limited dispersal in this system. Across the landscape, the presence of B. tectorum was associated with areas of higher plant diversity as opposed to those with a strong dominant (e.g. the foredune, dominated by Ammophila breviligulata, or low heathlands, characterized by Hudsonia tomentosa and Arctostaphylos uva-ursi). Overall, we find that B. tectorum is capable of both substantial population growth and decline in a dune ecosystem, but is likely limited without disturbance and dispersal agents. Thus, management actions that restrict dune access (e.g. for nesting habitat) likely have the co-benefit of limiting the invasive potential of B. tectorum. PMID:26558705

  9. Isolated history of the coastal plant Lathyrus japonicus (Leguminosae) in Lake Biwa, an ancient freshwater lake

    PubMed Central

    Ohtsuki, Tatsuo; Kaneko, Yuko; Setoguchi, Hiroaki

    2011-01-01

    Background and aims Lake Biwa is one of the world's few ancient lakes. Formed ∼4 million years ago, the lake harbours many coastal species that commonly inhabit seashores. The beach pea Lathyrus japonicus is a typical coastal species of this freshwater lake, but its inland populations are faced with the threat of extinction. Here, we investigated the phylogeographical and population structures of both inland and coastal populations of L. japonicus. We also elucidated the historical isolation of the Lake Biwa population. Methodology In total, 520 individuals from 50 L. japonicus populations were sampled throughout the species distribution in Japan. Chloroplast haplotyping using intergenic spacers psbA–trnH and atpI–atpH was performed to investigate the phylogeographical structure as well as the genetic diversity of L. japonicus. Six nuclear microsatellite markers were also used to analyse the population structure. Principal results Population structure analyses of chloroplast DNA (cpDNA) and nuclear DNA (nDNA) identified inland and coastal groups. Based on the genetic differentiation, inland populations exhibited a single cpDNA haplotype and significantly lower values of HS, AR and FIS than coastal populations. In addition to the presence of a bottleneck, the lack of gene flow among inland populations was supported by estimates of recent migration rates between subpopulations. Conclusions Our data revealed that inland populations have been isolated in Lake Biwa as ‘landlocked’ populations since the predecessor lake was isolated from sea. This was also seen in a previous study of Calystegia soldanella. However, the high genetic differentiation, accompanied by a lack of gene flow among the Lake Biwa populations (according to the BAYESASS+ analysis), contradicts the results with C. soldanella. We conclude that because of the presence of a bottleneck and low genetic diversity of the inland populations, self-sustaining population persistence may be difficult in

  10. Model estimation of energy flow in Oregon coastal seabird populations

    USGS Publications Warehouse

    Wiens, J.A.; Scott, J.M.

    1976-01-01

    A computer simulation model was used to explore the patterns and magnitudes of population density changes and population energy demands in Oregon populations of Sooty Shear-waters, Leach?s Storm-Petrels, Brandt?s Cormorants, and Common Murres. The species differ in seasonal distribution and abundance, with shearwaters attaining high densities during their migratory movements through Oregon waters, and murres exhibiting the greatest seasonal stability in population numbers. On a unit area basis, annual energy flow is greatest through murre and cormorant populations. However, because shearwaters occupy a larger area during their transit, they dominate the total energy flow through the four-species seabird ?community.?.....Consumption of various prey types is estimated by coupling model output of energy demands with information on dietary habits. This analysis suggests that murres annually consume nearly twice as many herring as any other prey and consume approximately equal quantities of anchovy, smelt, cod, and rockfish. Cormorants consume a relatively small quantity of bottom-dwelling fish, while stormpetrels take roughly equal quantities of euphausiids and hydrozoans. Anchovies account for 43% of the 62,506 metric tons of prey the four species are estimated to consume annually; 86% of this anchovy consumption is by shearwaters. The consumption of pelagic fishes by these four populations within the neritic zone may represent as much as 22% of the annual production of these fish.

  11. Plant Pathogen Population Dynamics in Potato Fields

    PubMed Central

    Morgan, G. D.; Stevenson, W. R.; MacGuidwin, A. E.; Kelling, K. A.; Binning, L. K.; Zhu, J.

    2002-01-01

    Modern technologies incorporating Geographic Information Systems (GIS), Global Positioning Systems (GPS), remote sensing, and geostatistics provide unique opportunities to advance ecological understanding of pests across a landscape. Increased knowledge of the population dynamics of plant pathogens will promote management strategies, such as site-specific management, and cultural practices minimizing the introduction and impact of plant pathogens. The population dynamics of Alternaria solani, Verticillium dahliae, and Pratylenchus penetrans were investigated in commercial potato fields. A 0.5-ha diamond grid-sampling scheme was georeferenced, and all disease ratings and nematode samples were taken at these grid points. Percent disease severity was rated weekly, and P. penetrans densities were quantified 4 weeks after potato emergence. Spatial statistics and interpolation methods were used to identify the spatial distribution and population dynamics of each pathogen. Interpolated maps and aerial imagery identified A. solani intra-season progression across the fields as the potato crop matured. Late-season nitrogen application reduced A. solani severity. The spatial distributions of V. dahliae and P. penetrans were spatially correlated. PMID:19265932

  12. Urban habitat fragmentation and genetic population structure of bobcats in coastal southern California

    USGS Publications Warehouse

    Ruell, E.W.; Riley, S.P.D.; Douglas, M.R.; Antolin, M.F.; Pollinger, J.R.; Tracey, J.A.; Lyren, L.M.; Boydston, E.E.; Fisher, R.N.; Crooks, K.R.

    2012-01-01

    Although habitat fragmentation is recognized as a primary threat to biodiversity, the effects of urban development on genetic population structure vary among species and landscapes and are not yet well understood. Here we use non-invasive genetic sampling to compare the effects of fragmentation by major roads and urban development on levels of dispersal, genetic diversity, and relatedness between paired bobcat populations in replicate landscapes in coastal southern California. We hypothesized that bobcat populations in sites surrounded by urbanization would experience reduced functional connectivity relative to less isolated nearby populations. Our results show that bobcat genetic population structure is affected by roads and development but not always as predicted by the degree that these landscape features surround fragments. Instead, we suggest that urban development may affect functional connectivity between bobcat populations more by limiting the number and genetic diversity of source populations of migrants than by creating impermeable barriers to dispersal.

  13. A meta-analysis of plant facilitation in coastal dune systems: responses, regions, and research gaps

    PubMed Central

    Lortie, Christopher J.; Zaitchik, Benjamin; Prado, Paulo Inácio

    2015-01-01

    Empirical studies in salt marshes, arid, and alpine systems support the hypothesis that facilitation between plants is an important ecological process in severe or ‘stressful’ environments. Coastal dunes are both abiotically stressful and frequently disturbed systems. Facilitation has been documented, but the evidence to date has not been synthesized. We did a systematic review with meta-analysis to highlight general research gaps in the study of plant interactions in coastal dunes and examine if regional and local factors influence the magnitude of facilitation in these systems. The 32 studies included in the systematic review were done in coastal dunes located in 13 countries around the world but the majority was in the temperate zone (63%). Most of the studies adopt only an observational approach to make inferences about facilitative interactions, whereas only 28% of the studies used both observational and experimental approaches. Among the factors we tested, only geographic region mediates the occurrence of facilitation more broadly in coastal dune systems. The presence of a neighbor positively influenced growth and survival in the tropics, whereas in temperate and subartic regions the effect was neutral for both response variables. We found no evidence that climatic and local factors, such as life-form and life stage of interacting plants, affect the magnitude of facilitation in coastal dunes. Overall, conclusions about plant facilitation in coastal dunes depend on the response variable measured and, more broadly, on the geographic region examined. However, the high variability and the limited number of studies, especially in tropical region, indicate we need to be cautious in the generalization of the conclusions. Anyway, coastal dunes provide an important means to explore topical issues in facilitation research including context dependency, local versus regional drivers of community structure, and the importance of gradients in shaping the outcome of net

  14. Are Coastal Protected Areas Always Effective in Achieving Population Recovery for Nesting Sea Turtles?

    PubMed Central

    Nel, Ronel; Punt, André E.; Hughes, George R.

    2013-01-01

    Sea turtles are highly migratory and usually dispersed, but aggregate off beaches during the nesting season, rendering them vulnerable to coastal threats. Consequently, coastal Marine Protection Areas (MPAs) have been used to facilitate the recovery of turtle populations, but the effectiveness of these programs is uncertain as most have been operating for less than a single turtle generation (or<20 yr). South Africa, however, hosts one of the longest running conservation programs, protecting nesting loggerhead (Caretta caretta) and leatherback (Dermochelys coriacea) turtles since 1963 in a series of coastal MPAs. This provides a unique opportunity to evaluate the long-term effect of spatial protection on the abundance of two highly migratory turtle species with different life history characteristics. Population responses were assessed by modeling the number of nests over time in an index area (13 km) and an expanded monitoring area (53 km) with varying survey effort. Loggerhead abundance increased dramatically from∼250 to>1700 nests pa (index area) especially over the last decade, while leatherback abundance increased initially∼10 to 70 nests pa (index area), but then stabilized. Although leatherbacks have higher reproductive output per female and comparable remigration periods and hatching success to loggerheads, the leatherback population failed to expand. Our results suggest that coastal MPAs can work but do not guarantee the recovery of sea turtle populations as pressures change over time. Causes considered for the lack of population growth include factors in the MPA (expansion into unmonitored areas or incubation environment) of outside of the MPA (including carrying capacity and fishing mortality). Conservation areas for migratory species thus require careful design to account for species-specific needs, and need to be monitored to keep track of changing pressures. PMID:23671683

  15. Are coastal protected areas always effective in achieving population recovery for nesting sea turtles?

    PubMed

    Nel, Ronel; Punt, André E; Hughes, George R

    2013-01-01

    Sea turtles are highly migratory and usually dispersed, but aggregate off beaches during the nesting season, rendering them vulnerable to coastal threats. Consequently, coastal Marine Protection Areas (MPAs) have been used to facilitate the recovery of turtle populations, but the effectiveness of these programs is uncertain as most have been operating for less than a single turtle generation (or<20 yr). South Africa, however, hosts one of the longest running conservation programs, protecting nesting loggerhead (Caretta caretta) and leatherback (Dermochelys coriacea) turtles since 1963 in a series of coastal MPAs. This provides a unique opportunity to evaluate the long-term effect of spatial protection on the abundance of two highly migratory turtle species with different life history characteristics. Population responses were assessed by modeling the number of nests over time in an index area (13 km) and an expanded monitoring area (53 km) with varying survey effort. Loggerhead abundance increased dramatically from∼250 to>1700 nests pa (index area) especially over the last decade, while leatherback abundance increased initially∼10 to 70 nests pa (index area), but then stabilized. Although leatherbacks have higher reproductive output per female and comparable remigration periods and hatching success to loggerheads, the leatherback population failed to expand. Our results suggest that coastal MPAs can work but do not guarantee the recovery of sea turtle populations as pressures change over time. Causes considered for the lack of population growth include factors in the MPA (expansion into unmonitored areas or incubation environment) of outside of the MPA (including carrying capacity and fishing mortality). Conservation areas for migratory species thus require careful design to account for species-specific needs, and need to be monitored to keep track of changing pressures.

  16. Are coastal protected areas always effective in achieving population recovery for nesting sea turtles?

    PubMed

    Nel, Ronel; Punt, André E; Hughes, George R

    2013-01-01

    Sea turtles are highly migratory and usually dispersed, but aggregate off beaches during the nesting season, rendering them vulnerable to coastal threats. Consequently, coastal Marine Protection Areas (MPAs) have been used to facilitate the recovery of turtle populations, but the effectiveness of these programs is uncertain as most have been operating for less than a single turtle generation (or<20 yr). South Africa, however, hosts one of the longest running conservation programs, protecting nesting loggerhead (Caretta caretta) and leatherback (Dermochelys coriacea) turtles since 1963 in a series of coastal MPAs. This provides a unique opportunity to evaluate the long-term effect of spatial protection on the abundance of two highly migratory turtle species with different life history characteristics. Population responses were assessed by modeling the number of nests over time in an index area (13 km) and an expanded monitoring area (53 km) with varying survey effort. Loggerhead abundance increased dramatically from∼250 to>1700 nests pa (index area) especially over the last decade, while leatherback abundance increased initially∼10 to 70 nests pa (index area), but then stabilized. Although leatherbacks have higher reproductive output per female and comparable remigration periods and hatching success to loggerheads, the leatherback population failed to expand. Our results suggest that coastal MPAs can work but do not guarantee the recovery of sea turtle populations as pressures change over time. Causes considered for the lack of population growth include factors in the MPA (expansion into unmonitored areas or incubation environment) of outside of the MPA (including carrying capacity and fishing mortality). Conservation areas for migratory species thus require careful design to account for species-specific needs, and need to be monitored to keep track of changing pressures. PMID:23671683

  17. Global Change and Response of Coastal Dune Plants to the Combined Effects of Increased Sand Accretion (Burial) and Nutrient Availability

    PubMed Central

    Frosini, Silvia; Lardicci, Claudio; Balestri, Elena

    2012-01-01

    Coastal dune plants are subjected to natural multiple stresses and vulnerable to global change. Some changes associated with global change could interact in their effects on vegetation. As vegetation plays a fundamental role in building and stabilizing dune systems, effective coastal habitat management requires a better understanding of the combined effects of such changes on plant populations. A manipulative experiment was conducted along a Mediterranean dune system to examine the individual and combined effects of increased sediment accretion (burial) and nitrogen enrichment associated with predicted global change on the performance of young clones of Sporobolus virginicus, a widespread dune stabilizing species. Increased burial severity resulted in the production of taller but thinner shoots, while nutrient enrichment stimulated rhizome production. Nutrient enrichment increased total plant biomass up to moderate burial levels (50% of plant height), but it had not effect at the highest burial level (100% of plant height). The effects of such factors on total biomass, shoot biomass and branching were influenced by spatial variation in natural factors at the scale of hundreds of metres. These results indicate that the effects of burial and nutrient enrichment on plant performance were not independent. Their combined effects may not be predicted by knowing the individual effects, at least under the study conditions. Under global change scenarios, increased nutrient input could alleviate nutrient stress in S. virginicus, enhancing clonal expansion and productivity, but this benefit could be offset by increased sand accretion levels equal or exceeding 100% of plant height. Depletion of stored reserves for emerging from sand could increase plant vulnerability to other stresses in the long-term. The results emphasize the need to incorporate statistical designs for detecting non-independent effects of multiple changes and adequate spatial replication in future works to

  18. Population structure and residency patterns of the blacktip reef shark Carcharhinus melanopterus in turbid coastal environments.

    PubMed

    Chin, A; Tobin, A J; Heupel, M R; Simpfendorfer, C A

    2013-04-01

    This study examined the characteristics of a blacktip reef shark Carcharhinus melanopterus population in turbid coastal habitats through a multi-year fishery-independent sampling and tag-recapture programme. Results revealed a highly structured population comprised almost entirely of juveniles and adult females with individuals between 850 and 1050 mm total length effectively absent. Mature males were also rarely encountered with adult sex ratio highly biased towards females (female:male = 7:1). Mating scars were observed on adult females between December and April, and parturition was observed from December to March. Regression analysis showed that catch rates were significantly higher during the summer wet season between November and May. Recapture data suggested a highly resident population with a recapture rate of 21% and a mean recapture distance of 0·8 km. In addition, 33% of recaptured animals were captured multiple times, indicating long-term residency. Most recaptures were, however, of adults with few juveniles recaptured. Widespread sampling at the study site and in adjacent areas suggested that the population was highly localized to a specific bay. The bimodal and sex-segregated population structure observed here differs from previous reports for this species, and in combination with reproductive observations, suggests population structuring to facilitate reproductive and recruitment success. These data also highlight the potential ecosystem functions performed by coastal habitats in sustaining C. melanopterus populations. PMID:23557299

  19. Comparative allele distribution at 16 STR loci between the Andean and coastal population from Peru.

    PubMed

    Talledo, Michael; Gavilan, Martín; Choque, Cecilia; Aiquipa, Lina; Arévalo, Jorge; Montoya, Ysabel

    2010-07-01

    In the present study, we analysed the allelic distribution of 16 autosomal short tandem repeats (STRs) performed on unrelated individuals from seven different Peruvian cities, three highland Andean cities and four coastal ones. The loci investigated were F13A01, FESFPS, vWA, CSF1PO, TPOX, TH01, D16S539, D7S820, D13S317, D5S818, D19S253, F13B, D21S11, LPL and D8S1179 y D3S1358. The allele frequency, statistical parameters, Hardy-Weinberg equilibrium and population pair comparison across all loci were determinate. The combined matching probability for the 16 loci was 5.41136 x 10(-15) and the combined probability of exclusion (PE) was 0.999998307. The results showed new local databases for the evaluation of Andean and coastal Peruvian populations in human identity testing.

  20. Changes in plant species composition of coastal dune habitats over a 20-year period.

    PubMed

    Del Vecchio, Silvia; Prisco, Irene; Acosta, Alicia T R; Stanisci, Angela

    2015-01-01

    Coastal sandy ecosystems are increasingly being threatened by human pressure, causing loss of biodiversity, habitat degradation and landscape modifications. However, there are still very few detailed studies focussing on compositional changes in coastal dune plant communities over time. In this work, we investigated how coastal dune European Union (EU) habitats (from pioneer annual beach communities to Mediterranean scrubs on the landward fixed dunes) have changed during the last 20 years. Using phytosociological relevés conducted in 1989-90 and in 2010-12, we investigated changes in floristic composition over time. We then compared plant cover and the proportion of ruderal, alien and habitat diagnostic species ('focal species') in the two periods. Finally, we used Ellenberg indicator values to define the 'preferences' of the plant species for temperature and moisture. We found that only fore dune habitats showed significant differences in species cover between the two time periods, with higher plant cover in the more recent relevés and a significant increase in thermophilic species. Although previous studies have demonstrated consistent habitat loss in this area, we observed that all coastal dune plant communities remain well represented, after a 20-year period. However, fore dunes have been experiencing significant compositional changes. Although we cannot confirm whether the observed changes are strictly related to climatic changes, to human pressure or to both, we hypothesize that a moderate increment in average yearly temperature may have promoted the increase in plant cover and the spread of thermophilic species. Thus, even though human activities are major driving forces of change in coastal dune vegetation, at the community scale climatic factors may also play important roles. Our study draws on re-visitation studies which appear to constitute a powerful tool for the assessment of the conservation status of EU habitats. PMID:25750408

  1. Changes in plant species composition of coastal dune habitats over a 20-year period

    PubMed Central

    Del Vecchio, Silvia; Prisco, Irene; Acosta, Alicia T. R.; Stanisci, Angela

    2015-01-01

    Coastal sandy ecosystems are increasingly being threatened by human pressure, causing loss of biodiversity, habitat degradation and landscape modifications. However, there are still very few detailed studies focussing on compositional changes in coastal dune plant communities over time. In this work, we investigated how coastal dune European Union (EU) habitats (from pioneer annual beach communities to Mediterranean scrubs on the landward fixed dunes) have changed during the last 20 years. Using phytosociological relevés conducted in 1989–90 and in 2010–12, we investigated changes in floristic composition over time. We then compared plant cover and the proportion of ruderal, alien and habitat diagnostic species (‘focal species’) in the two periods. Finally, we used Ellenberg indicator values to define the ‘preferences’ of the plant species for temperature and moisture. We found that only fore dune habitats showed significant differences in species cover between the two time periods, with higher plant cover in the more recent relevés and a significant increase in thermophilic species. Although previous studies have demonstrated consistent habitat loss in this area, we observed that all coastal dune plant communities remain well represented, after a 20-year period. However, fore dunes have been experiencing significant compositional changes. Although we cannot confirm whether the observed changes are strictly related to climatic changes, to human pressure or to both, we hypothesize that a moderate increment in average yearly temperature may have promoted the increase in plant cover and the spread of thermophilic species. Thus, even though human activities are major driving forces of change in coastal dune vegetation, at the community scale climatic factors may also play important roles. Our study draws on re-visitation studies which appear to constitute a powerful tool for the assessment of the conservation status of EU habitats. PMID:25750408

  2. LANDSCAPE-SCALE ECOLOGICAL FACTORS AND THEIR ROLE IN PLANT OPPORTUNISM OF GREAT LAKES COASTAL WETLANDS

    EPA Science Inventory

    Coastal wetlands of the Laurentian Great Lakes (USA and Canada) are among the most biologically diverse ecosystems of the world. However, since the 1970s the presence of opportunistic plant species such as common reed (Phragmites australis [Cav.] Steudel) have increased in Great ...

  3. Genetic differentiation, structure, and a transition zone among populations of the pitcher plant moth Exyra semicrocea: implications for conservation.

    PubMed

    Stephens, Jessica D; Santos, Scott R; Folkerts, Debbie R

    2011-01-01

    Pitcher plant bogs, or carnivorous plant wetlands, have experienced extensive habitat loss and fragmentation throughout the southeastern United States Coastal Plain, resulting in an estimated reduction to <3% of their former range. This situation has lead to increased management attention of these habitats and their carnivorous plant species. However, conservation priorities focus primarily on the plants since little information currently exists on other community members, such as their endemic arthropod biota. Here, we investigated the population structure of one of these, the obligate pitcher plant moth Exyra semicrocea (Lepidoptera: Noctuidae), using mitochondrial cytochrome c oxidase subunit I (COI) gene sequences. Examination of 221 individuals from 11 populations across eight southeastern US states identified 51 unique haplotypes. These haplotypes belonged to one of two divergent (∼1.9-3.0%) lineages separated by the Mississippi alluvial plain. Populations of the West Gulf Coastal Plain exhibited significant genetic structure, contrasting with similarly distanced populations east of the Mississippi alluvial plain. In the eastern portion of the Coastal Plain, an apparent transition zone exists between two regionally distinct population groups, with a well-established genetic discontinuity for other organisms coinciding with this zone. The structure of E. semicrocea appears to have been influenced by patchy pitcher plant bog habitats in the West Gulf Coastal Plain as well as impacts of Pleistocene interglacials on the Apalachicola-Chattahoochee-Flint River Basin. These findings, along with potential extirpation of E. semicrocea at four visited, but isolated, sites highlight the need to consider other endemic or associated community members when managing and restoring pitcher plant bog habitats. PMID:21829473

  4. Genetic Differentiation, Structure, and a Transition Zone among Populations of the Pitcher Plant Moth Exyra semicrocea: Implications for Conservation

    PubMed Central

    Stephens, Jessica D.; Santos, Scott R.; Folkerts, Debbie R.

    2011-01-01

    Pitcher plant bogs, or carnivorous plant wetlands, have experienced extensive habitat loss and fragmentation throughout the southeastern United States Coastal Plain, resulting in an estimated reduction to <3% of their former range. This situation has lead to increased management attention of these habitats and their carnivorous plant species. However, conservation priorities focus primarily on the plants since little information currently exists on other community members, such as their endemic arthropod biota. Here, we investigated the population structure of one of these, the obligate pitcher plant moth Exyra semicrocea (Lepidoptera: Noctuidae), using mitochondrial cytochrome c oxidase subunit I (COI) gene sequences. Examination of 221 individuals from 11 populations across eight southeastern US states identified 51 unique haplotypes. These haplotypes belonged to one of two divergent (∼1.9–3.0%) lineages separated by the Mississippi alluvial plain. Populations of the West Gulf Coastal Plain exhibited significant genetic structure, contrasting with similarly distanced populations east of the Mississippi alluvial plain. In the eastern portion of the Coastal Plain, an apparent transition zone exists between two regionally distinct population groups, with a well-established genetic discontinuity for other organisms coinciding with this zone. The structure of E. semicrocea appears to have been influenced by patchy pitcher plant bog habitats in the West Gulf Coastal Plain as well as impacts of Pleistocene interglacials on the Apalachicola-Chattahoochee-Flint River Basin. These findings, along with potential extirpation of E. semicrocea at four visited, but isolated, sites highlight the need to consider other endemic or associated community members when managing and restoring pitcher plant bog habitats. PMID:21829473

  5. Genetic differentiation, structure, and a transition zone among populations of the pitcher plant moth Exyra semicrocea: implications for conservation.

    PubMed

    Stephens, Jessica D; Santos, Scott R; Folkerts, Debbie R

    2011-01-01

    Pitcher plant bogs, or carnivorous plant wetlands, have experienced extensive habitat loss and fragmentation throughout the southeastern United States Coastal Plain, resulting in an estimated reduction to <3% of their former range. This situation has lead to increased management attention of these habitats and their carnivorous plant species. However, conservation priorities focus primarily on the plants since little information currently exists on other community members, such as their endemic arthropod biota. Here, we investigated the population structure of one of these, the obligate pitcher plant moth Exyra semicrocea (Lepidoptera: Noctuidae), using mitochondrial cytochrome c oxidase subunit I (COI) gene sequences. Examination of 221 individuals from 11 populations across eight southeastern US states identified 51 unique haplotypes. These haplotypes belonged to one of two divergent (∼1.9-3.0%) lineages separated by the Mississippi alluvial plain. Populations of the West Gulf Coastal Plain exhibited significant genetic structure, contrasting with similarly distanced populations east of the Mississippi alluvial plain. In the eastern portion of the Coastal Plain, an apparent transition zone exists between two regionally distinct population groups, with a well-established genetic discontinuity for other organisms coinciding with this zone. The structure of E. semicrocea appears to have been influenced by patchy pitcher plant bog habitats in the West Gulf Coastal Plain as well as impacts of Pleistocene interglacials on the Apalachicola-Chattahoochee-Flint River Basin. These findings, along with potential extirpation of E. semicrocea at four visited, but isolated, sites highlight the need to consider other endemic or associated community members when managing and restoring pitcher plant bog habitats.

  6. Vicariance and marine migration in continental island populations of a frog endemic to the Atlantic Coastal forest

    PubMed Central

    Duryea, M C; Zamudio, K R; Brasileiro, C A

    2015-01-01

    The theory of island biogeography is most often studied in the context of oceanic islands where all island inhabitants are descendants from founding events involving migration from mainland source populations. Far fewer studies have considered predictions of island biogeography in the case of continental islands, where island formation typically splits continuous populations and thus vicariance also contributes to the diversity of island populations. We examined one such case on continental islands in southeastern Brazil, to determine how classic island biogeography predictions and past vicariance explain the population genetic diversity of Thoropa taophora, a frog endemic to the Atlantic Coastal Forest. We used nuclear microsatellite markers to examine the genetic diversity of coastal and island populations of this species. We found that island isolation has a role in shaping the genetic diversity of continental island species, with island populations being significantly less diverse than coastal populations. However, area of the island and distance from coast had no significant effect on genetic diversity. We also found no significant differences between migration among coastal populations and migration to and from islands. We discuss how vicariance and the effects of continued migration between coastal and island populations interact to shape evolutionary patterns on continental islands. PMID:25920672

  7. Vicariance and marine migration in continental island populations of a frog endemic to the Atlantic Coastal forest.

    PubMed

    Duryea, M C; Zamudio, K R; Brasileiro, C A

    2015-09-01

    The theory of island biogeography is most often studied in the context of oceanic islands where all island inhabitants are descendants from founding events involving migration from mainland source populations. Far fewer studies have considered predictions of island biogeography in the case of continental islands, where island formation typically splits continuous populations and thus vicariance also contributes to the diversity of island populations. We examined one such case on continental islands in southeastern Brazil, to determine how classic island biogeography predictions and past vicariance explain the population genetic diversity of Thoropa taophora, a frog endemic to the Atlantic Coastal Forest. We used nuclear microsatellite markers to examine the genetic diversity of coastal and island populations of this species. We found that island isolation has a role in shaping the genetic diversity of continental island species, with island populations being significantly less diverse than coastal populations. However, area of the island and distance from coast had no significant effect on genetic diversity. We also found no significant differences between migration among coastal populations and migration to and from islands. We discuss how vicariance and the effects of continued migration between coastal and island populations interact to shape evolutionary patterns on continental islands.

  8. Low cardiac and aerobic scope in a coastal population of sockeye salmon Oncorhynchus nerka with a short upriver migration.

    PubMed

    Eliason, E J; Wilson, S M; Farrell, A P; Cooke, S J; Hinch, S G

    2013-06-01

    This study showed that a coastal population (Harrison) of Fraser River sockeye salmon Oncorhynchus nerka had a lower aerobic and cardiac scope compared with interior populations with more challenging upriver spawning migrations, providing additional support to the idea that Fraser River O. nerka populations have adapted physiologically to their local migratory environment. PMID:23731155

  9. Population-scale movement of coastal cutthroat trout in a naturally isolated stream network

    USGS Publications Warehouse

    Gresswell, R.E.; Hendricks, S.R.

    2007-01-01

    To identify population-scale patterns of movement, coastal cutthroat trout Oncorhynchus clarkii clarkii tagged and marked (35 radio-tagged, 749 passive integrated transponder [PIT]-tagged, and 3,025 fin-clipped) were monitored from June 1999 to August 2000. The study watershed, located in western Oregon, was above a natural barrier to upstream movement. Emigration out of the watershed was estimated with a rotating fish trap. Approximately 70% of recaptured coastal cutthroat trout with PIT tags and 86% of those with radio tags moved predominantly at the channel-unit scale (2-95 m); fewer tagged fish moved at the reach scale (66-734 m) and segment scale (229-3,479 m). In general, movement was greatest in April as spawning peaked and lowest in October, when discharge was at its lowest. Only 63 (<1% of tagged and marked fish) coastal cutthroat trout were captured in the fish trap. Trap efficiency was about 33%, and the expanded estimate of emigrants between February and June was 173 fish. These results suggest that unit-scale movement is common throughout the year and that reach- and segment-scale movements are important during the winter and spring. Although movement in headwater streams is most common at the channel-unit scale, restoration of individual channel units of stream may not benefit the population at the watershed scale unless these activities are undertaken in the context of the greater whole. Individual coastal cutthroat trout move great distances, even within the small watersheds in the Oregon Coast Range, and although these movements may be infrequent, they may contribute substantially to recolonization after stochastic extirpation events (e.g., landslides and debris flows). Management strategies that focus on maintaining and restoring connectivity in a watershed represent an important step toward protecting the evolutionary capacity of stream salmonids. ??

  10. Created versus natural coastal islands: Atlantic waterbird populations, habitat choices, and management implications

    USGS Publications Warehouse

    Erwin, R.M.; Allen, D.H.; Jenkins, D.

    2003-01-01

    Nesting colonial waterbirds along the Atlantic Coast of the United States face a number of landscape-level threats including human disturbance, mammalian predator expansion, and habitat alteration. There have been changes from 1977 to the mid-1990s in use of nesting habitats and populations of a number of seabird species of concern in the region, including black skimmers Rynchops niger Linnaeaus, common terns Sterna hirundo Linnaeaus, gull-billed terns Sterna nilotica Linnaeaus, least terns Sterna antillarum Lesson, royal terns Sterna maxima Boddaert, and sandwich terns Sterna sandvicensis Cabot. These species form colonies primarily on the following habitat types: large, sandy barrier or shoal islands, natural estuarine or bay islands (mostly marsh), man-made islands of dredged deposition materials (from navigation channels), and the mainland. Significant changes in the use of the dredged material islands have occurred for these species in New Jersey and North Carolina, but not in Virginia. Population declines and changes in bird habitat use appear to be at least partially associated with the conditions and management of the existing dredged material islands, coastal policy changes associated with creating new dredged material islands, and competing demands for sand for beach augmentation by coastal communities. As these and other coastal habitats become less suitable for colonial waterbirds, other manmade sites, such as bridges and buildings have become increasingly more important. In regions with intense recreational demands, coastal wildlife managers need to take a more aggressive role in managing natural and man-made habitats areas and as stakeholders in the decision-making process involving dredged materials and beach sand allocation.

  11. Gene Flow and the Measurement of Dispersal in Plant Populations.

    ERIC Educational Resources Information Center

    Nicholls, Marc S.

    1986-01-01

    Reviews methods of estimating pollen and seed dispersals and discusses the extent and frequency of gene exchange within and between populations. Offers suggestions for designing exercises suitable for estimating dispersal distances in natural plant populations. (ML)

  12. Evaluation and Numerical Simulation of Tsunami for Coastal Nuclear Power Plants of India

    SciTech Connect

    Sharma, Pavan K.; Singh, R.K.; Ghosh, A.K.; Kushwaha, H.S.

    2006-07-01

    Recent tsunami generated on December 26, 2004 due to Sumatra earthquake of magnitude 9.3 resulted in inundation at the various coastal sites of India. The site selection and design of Indian nuclear power plants demand the evaluation of run up and the structural barriers for the coastal plants: Besides it is also desirable to evaluate the early warning system for tsunami-genic earthquakes. The tsunamis originate from submarine faults, underwater volcanic activities, sub-aerial landslides impinging on the sea and submarine landslides. In case of a submarine earthquake-induced tsunami the wave is generated in the fluid domain due to displacement of the seabed. There are three phases of tsunami: generation, propagation, and run-up. Reactor Safety Division (RSD) of Bhabha Atomic Research Centre (BARC), Trombay has initiated computational simulation for all the three phases of tsunami source generation, its propagation and finally run up evaluation for the protection of public life, property and various industrial infrastructures located on the coastal regions of India. These studies could be effectively utilized for design and implementation of early warning system for coastal region of the country apart from catering to the needs of Indian nuclear installations. This paper presents some results of tsunami waves based on different analytical/numerical approaches with shallow water wave theory. (authors)

  13. Dynamics of coastal cod populations: intra- and intercohort density dependence and stochastic processes

    PubMed Central

    Stenseth, N. C.; rnstad, O. N. Bj; Falck, W.; Fromentin, J.-M.; ter, J. Gj s; Gray, J. S.

    1999-01-01

    Skagerrak populations of Atlantic cod (Gadus morhua L.) have been surveyed at several fixed stations since 1919. These coastal populations consist of local stocks with a low age of maturity and a short life span. We investigated 60 time-series of 0-group juveniles (i.e. young of the year) sampled annually from 1945 to 1994. An age-structured model was developed which incorporates asymmetrical interactions between the juvenile cohorts (0-group and 1-group; i.e. one-year-old juveniles) and stochastic reproduction. The model was expressed in delay coordinates in order to estimate model parameters directly from the time-series and thereby test the model predictions. The autocovariance structure of the time-series was consistent with the delay coordinates model superimposed upon a long-term trend. The model illustrates how both regulatory (density-dependent) and disruptive (stochastic) forces are crucial in shaping the dynamics of the coastal cod populations. The age-structured life cycle acts to resonance the stochasticity inherent in the recruitment process.

  14. Gene flow between insular, coastal and interior populations of brown bears in Alaska.

    PubMed

    Paetkau, D; Shields, G F; Strobeck, C

    1998-10-01

    The brown bears of coastal Alaska have been recently regarded as comprising from one to three distinct genetic groups. We sampled brown bears from each of the regions for which hypotheses of genetic uniqueness have been made, including the bears of the Kodiak Archipelago and the bears of Admiralty, Baranof and Chichagof (ABC) Islands in southeast Alaska. These samples were analysed with a suite of nuclear microsatellite markers. The 'big brown bears' of coastal Alaska were found to be part of the continuous continental distribution of brown bears, and not genetically isolated from the physically smaller 'grizzly bears' of the interior. By contrast, Kodiak brown bears appear to have experienced little or no genetic exchange with continental populations in recent generations. The bears of the ABC Islands, which have previously been shown to undergo little or no female-mediated gene flow with mainland populations, were found not to be genetically isolated from mainland bears. The data from the four insular populations indicate that female and male dispersal can be reduced or eliminated by water barriers of 2-4 km and 7 km in width, respectively.

  15. Sex determination by discriminant function analysis of palatal rugae from a population of coastal Andhra

    PubMed Central

    Bharath, Sreenivasa T; Kumar, Govind Raj; Dhanapal, Raghu; Saraswathi, TR

    2011-01-01

    Objective: The aim of the study was to investigate differences in the palatal rugae patterns in males and females of a cross-sectional hospital-based coastal Andhra population and application of discriminant function analysis in sex identification. Materials and Methods: One hundred pre-orthodontic plaster casts, equally distributed between males and females belonging to an age range of 15-30 years, were examined for different rugae patterns. Thomas classification was adopted for analysis. Association between rugae patterns and sexual dimorphism were tested using Unpaired t test, Chi square test and discriminant function analysis developed using SAS package. Results: Difference in unification pattern among males and females was found to be statistically significant. The total number of the rugae was not statistically significant between the sexes. Association between rugae length and shape with sex determination was computed using discriminant analysis which enabled sex differentiation in this population with an accuracy of 78%. Conclusion: Palatal rugae revealed a specific pattern in unification among males and females of the coastal Andhra population. Discriminant function analysis enabled sex determination of individuals. However, these interpretations were precluded by the small sample size and further research work on larger samples and use of different classification systems is required to validate its use in forensic science. PMID:22408321

  16. Genetic population structure of US atlantic coastal striped bass (Morone saxatilis).

    PubMed

    Gauthier, David T; Audemard, Corinne A; Carlsson, Jeanette E L; Darden, Tanya L; Denson, Michael R; Reece, Kimberly S; Carlsson, Jens

    2013-01-01

    Genetic population structure of anadromous striped bass along the US Atlantic coast was analyzed using 14 neutral nuclear DNA microsatellites. Young-of-the-year and adult striped bass (n = 1114) were sampled from Hudson River, Delaware River, Chesapeake Bay, North Carolina, and South Carolina. Analyses indicated clear population structure with significant genetic differentiation between all regions. Global multilocus F ST was estimated at 0.028 (P < 0.001). Population structure followed an isolation-by-distance model and temporal sampling indicated a stable population structure more than 2 years at all locations. Significant structure was absent within Hudson River, whereas weak but significant genetic differences were observed between northern and southern samples in Chesapeake Bay. The largest and smallest effective striped bass population sizes were found in Chesapeake Bay and South Carolina, respectively. Coalescence analysis indicated that the highest historical gene flow has been between Chesapeake Bay and Hudson River populations, and that exchange has not been unidirectional. Bayesian analysis of contemporary migration indicated that Chesapeake Bay serves as a major source of migrants for Atlantic coastal regions from Albemarle Sound northward. In addition to examining population genetic structure, the data acquired during this project were capable of serving as a baseline for assigning fish with unknown origin to source region. PMID:23682125

  17. Genetic population structure of US atlantic coastal striped bass (Morone saxatilis).

    PubMed

    Gauthier, David T; Audemard, Corinne A; Carlsson, Jeanette E L; Darden, Tanya L; Denson, Michael R; Reece, Kimberly S; Carlsson, Jens

    2013-01-01

    Genetic population structure of anadromous striped bass along the US Atlantic coast was analyzed using 14 neutral nuclear DNA microsatellites. Young-of-the-year and adult striped bass (n = 1114) were sampled from Hudson River, Delaware River, Chesapeake Bay, North Carolina, and South Carolina. Analyses indicated clear population structure with significant genetic differentiation between all regions. Global multilocus F ST was estimated at 0.028 (P < 0.001). Population structure followed an isolation-by-distance model and temporal sampling indicated a stable population structure more than 2 years at all locations. Significant structure was absent within Hudson River, whereas weak but significant genetic differences were observed between northern and southern samples in Chesapeake Bay. The largest and smallest effective striped bass population sizes were found in Chesapeake Bay and South Carolina, respectively. Coalescence analysis indicated that the highest historical gene flow has been between Chesapeake Bay and Hudson River populations, and that exchange has not been unidirectional. Bayesian analysis of contemporary migration indicated that Chesapeake Bay serves as a major source of migrants for Atlantic coastal regions from Albemarle Sound northward. In addition to examining population genetic structure, the data acquired during this project were capable of serving as a baseline for assigning fish with unknown origin to source region.

  18. Investigation of the radiological impact on the coastal environment surrounding a fertilizer plant.

    PubMed

    El Samad, O; Aoun, M; Nsouli, B; Khalaf, G; Hamze, M

    2014-07-01

    This investigation was carried out in order to assess the marine environmental radioactive pollution and the radiological impact caused by a large production plant of phosphate fertilizer, located in the Lebanese coastal zone. Natural radionuclides ((238)U, (235)U, (232)Th, (226)Ra, (210)Po, (210)Pb, (40)K) and anthropogenic (137)Cs were measured by alpha and gamma spectrometry in seawater, sediment, biota and coastal soil samples collected from the area impacted by this industry. The limited environmental monitoring program within 2 km of the plant indicates localized contamination with radionuclides of the uranium decay chain mainly due to the transport, the storage of raw materials and the free release of phosphogypsum waste.

  19. Investigation of the radiological impact on the coastal environment surrounding a fertilizer plant.

    PubMed

    El Samad, O; Aoun, M; Nsouli, B; Khalaf, G; Hamze, M

    2014-07-01

    This investigation was carried out in order to assess the marine environmental radioactive pollution and the radiological impact caused by a large production plant of phosphate fertilizer, located in the Lebanese coastal zone. Natural radionuclides ((238)U, (235)U, (232)Th, (226)Ra, (210)Po, (210)Pb, (40)K) and anthropogenic (137)Cs were measured by alpha and gamma spectrometry in seawater, sediment, biota and coastal soil samples collected from the area impacted by this industry. The limited environmental monitoring program within 2 km of the plant indicates localized contamination with radionuclides of the uranium decay chain mainly due to the transport, the storage of raw materials and the free release of phosphogypsum waste. PMID:23768871

  20. Pyrolytic and Kinetic Analysis of Two Coastal Plant Species: Artemisia annua and Chenopodium glaucum

    PubMed Central

    Wang, Xiaoning; Sun, Jinsheng; Zhang, Yichen; Qin, Song

    2013-01-01

    The large amount of coastal plant species available makes them ideal candidates for energy production. In this study, thermogravimetric analysis was used to evaluate the fuel properties of two coastal plant species, and the distributed activation energy model (DAEM) was employed in kinetic analysis. The major mass loss due to devolatilization started at 154 and 162°C at the heating rate of 10°C min−1 for Artemisia annua and Chenopodium glaucum, respectively. The results showed that the average activation energies of Artemisia annua and Chenopodium glaucum were 169.69 and 170.48 kJ mol−1, respectively. Furthermore, the activation energy changed while the conversion rate increased, and the frequency factor k0 decreased greatly while the activation energy decreased. The results also indicated that the devolatilization of the two coastal plant species underwent a set of first-order reactions and could be expressed by the DAEM. Additionally, a simplified mathematical model was proposed to facilitate the prediction of devolatilization curves. PMID:24350245

  1. Pyrolytic and kinetic analysis of two coastal plant species: Artemisia annua and Chenopodium glaucum.

    PubMed

    Li, Lili; Wang, Xiaoning; Sun, Jinsheng; Zhang, Yichen; Qin, Song

    2013-01-01

    The large amount of coastal plant species available makes them ideal candidates for energy production. In this study, thermogravimetric analysis was used to evaluate the fuel properties of two coastal plant species, and the distributed activation energy model (DAEM) was employed in kinetic analysis. The major mass loss due to devolatilization started at 154 and 162°C at the heating rate of 10°C min(-1) for Artemisia annua and Chenopodium glaucum, respectively. The results showed that the average activation energies of Artemisia annua and Chenopodium glaucum were 169.69 and 170.48 kJ mol(-1), respectively. Furthermore, the activation energy changed while the conversion rate increased, and the frequency factor k 0 decreased greatly while the activation energy decreased. The results also indicated that the devolatilization of the two coastal plant species underwent a set of first-order reactions and could be expressed by the DAEM. Additionally, a simplified mathematical model was proposed to facilitate the prediction of devolatilization curves. PMID:24350245

  2. Predictive occurrence models for coastal wetland plant communities: delineating hydrologic response surfaces with multinomial logistic regression

    USGS Publications Warehouse

    Snedden, Gregg A.; Steyer, Gregory D.

    2013-01-01

    Understanding plant community zonation along estuarine stress gradients is critical for effective conservation and restoration of coastal wetland ecosystems. We related the presence of plant community types to estuarine hydrology at 173 sites across coastal Louisiana. Percent relative cover by species was assessed at each site near the end of the growing season in 2008, and hourly water level and salinity were recorded at each site Oct 2007–Sep 2008. Nine plant community types were delineated with k-means clustering, and indicator species were identified for each of the community types with indicator species analysis. An inverse relation between salinity and species diversity was observed. Canonical correspondence analysis (CCA) effectively segregated the sites across ordination space by community type, and indicated that salinity and tidal amplitude were both important drivers of vegetation composition. Multinomial logistic regression (MLR) and Akaike's Information Criterion (AIC) were used to predict the probability of occurrence of the nine vegetation communities as a function of salinity and tidal amplitude, and probability surfaces obtained from the MLR model corroborated the CCA results. The weighted kappa statistic, calculated from the confusion matrix of predicted versus actual community types, was 0.7 and indicated good agreement between observed community types and model predictions. Our results suggest that models based on a few key hydrologic variables can be valuable tools for predicting vegetation community development when restoring and managing coastal wetlands.

  3. Positive responses of coastal dune plants to soil conditioning by the invasive Lupinus nootkatensis

    NASA Astrophysics Data System (ADS)

    Hanslin, Hans Martin; Kollmann, Johannes

    2016-11-01

    Invasive nitrogen-fixing plants drive vegetation dynamics and may cause irreversible changes in nutrient-limited ecosystems through increased soil resources. We studied how soil conditioning by the invasive alien Lupinus nootkatensis affected the seedling growth of co-occurring native plant species in coastal dunes, and whether responses to lupin-conditioned soil could be explained by fertilisation effects interacting with specific ecological strategies of the native dune species. Seedling performance of dune species was compared in a greenhouse experiment using field-collected soil from within or outside coastal lupin stands. In associated experiments, we quantified the response to nutrient supply of each species and tested how addition of specific nutrients affected growth of the native grass Festuca arundinacea in control and lupin-conditioned soil. We found that lupin-conditioned soil increased seedling biomass in 30 out of 32 native species; the conditioned soil also had a positive effect on seedling biomass of the invasive lupin itself. Increased phosphorus mobilisation by lupins was the major factor driving these positive seedling responses, based both on growth responses to addition of specific elements and analyses of plant available soil nutrients. There were large differences in growth responses to lupin-conditioned soil among species, but they were unrelated to selected autecological indicators or plant strategies. We conclude that Lupinus nootkatensis removes the phosphorus limitation for growth of native plants in coastal dunes, and that it increases cycling of other nutrients, promoting the growth of its own seedlings and a wide range of dune species. Finally, our study indicates that there are no negative soil legacies that prevent re-establishment of native plant species after removal of lupins.

  4. Coupling Bacterioplankton Populations and Environment to Community Function in Coastal Temperate Waters

    PubMed Central

    Traving, Sachia J.; Bentzon-Tilia, Mikkel; Knudsen-Leerbeck, Helle; Mantikci, Mustafa; Hansen, Jørgen L. S.; Stedmon, Colin A.; Sørensen, Helle; Markager, Stiig; Riemann, Lasse

    2016-01-01

    Bacterioplankton play a key role in marine waters facilitating processes important for carbon cycling. However, the influence of specific bacterial populations and environmental conditions on bacterioplankton community performance remains unclear. The aim of the present study was to identify drivers of bacterioplankton community functions, taking into account the variability in community composition and environmental conditions over seasons, in two contrasting coastal systems. A Least Absolute Shrinkage and Selection Operator (LASSO) analysis of the biological and chemical data obtained from surface waters over a full year indicated that specific bacterial populations were linked to measured functions. Namely, Synechococcus (Cyanobacteria) was strongly correlated with protease activity. Both function and community composition showed seasonal variation. However, the pattern of substrate utilization capacity could not be directly linked to the community dynamics. The overall importance of dissolved organic matter (DOM) parameters in the LASSO models indicate that bacterioplankton respond to the present substrate landscape, with a particular importance of nitrogenous DOM. The identification of common drivers of bacterioplankton community functions in two different systems indicates that the drivers may be of broader relevance in coastal temperate waters. PMID:27729909

  5. Palatal changes of reverse smokers in a rural coastal Andhra population with review of literature

    PubMed Central

    Bharath, T Sreenivasa; Kumar, N Govind Raj; Nagaraja, A; Saraswathi, TR; Babu, G Suresh; Raju, P Ramanjaneya

    2015-01-01

    Aim: To investigate and record the palatal changes in individuals habituated to reverse chutta smoking in rural coastal Andhra population. Materials and Methods: Sixty individuals out of whom 47 females and 13 males habituated to reverse smoking with no other tobacco and alcohol habits and no other systemic disturbances were selected. The palatal changes were recorded by six examiners. Database were searched for the following terms “reverse smokers,” “nicotina palatini” and “palatal lesions.” Results: The mean and percentage prevalence of the each lesion recorded and agreed by six examiners among 60 subjects showed presence of 87.77% hyperpigmented areas, 64.44% depigmented areas, 51.66% excrescences, 32.22% potentially malignant lesions and 9.72% frank ulcerations. Conclusion: Reverse smoking is an endemic tobacco habit still practiced in the coastal rural Andhra Pradesh. It is a well-established and socially acceptable habit among adult females. The changes recorded clinically shows characteristic features that are unique among this population group. PMID:26604494

  6. Ecological niche modeling of coastal dune plants and future potential distribution in response to climate change and sea level rise.

    PubMed

    Mendoza-González, Gabriela; Martínez, M Luisa; Rojas-Soto, Octavio R; Vázquez, Gabriela; Gallego-Fernández, Juan B

    2013-08-01

    Climate change (CC) and sea level rise (SLR) are phenomena that could have severe impacts on the distribution of coastal dune vegetation. To explore this we modeled the climatic niches of six coastal dunes plant species that grow along the shoreline of the Gulf of Mexico and the Yucatan Peninsula, and projected climatic niches to future potential distributions based on two CC scenarios and SLR projections. Our analyses suggest that distribution of coastal plants will be severely limited, and more so in the case of local endemics (Chamaecrista chamaecristoides, Palafoxia lindenii, Cakile edentula). The possibilities of inland migration to the potential 'new shoreline' will be limited by human infrastructure and ecosystem alteration that will lead to a 'coastal squeeze' of the coastal habitats. Finally, we identified areas as future potential refuges for the six species in central Gulf of Mexico, and northern Yucatán Peninsula especially under CC and SLR scenarios. PMID:23625760

  7. Ecological niche modeling of coastal dune plants and future potential distribution in response to climate change and sea level rise.

    PubMed

    Mendoza-González, Gabriela; Martínez, M Luisa; Rojas-Soto, Octavio R; Vázquez, Gabriela; Gallego-Fernández, Juan B

    2013-08-01

    Climate change (CC) and sea level rise (SLR) are phenomena that could have severe impacts on the distribution of coastal dune vegetation. To explore this we modeled the climatic niches of six coastal dunes plant species that grow along the shoreline of the Gulf of Mexico and the Yucatan Peninsula, and projected climatic niches to future potential distributions based on two CC scenarios and SLR projections. Our analyses suggest that distribution of coastal plants will be severely limited, and more so in the case of local endemics (Chamaecrista chamaecristoides, Palafoxia lindenii, Cakile edentula). The possibilities of inland migration to the potential 'new shoreline' will be limited by human infrastructure and ecosystem alteration that will lead to a 'coastal squeeze' of the coastal habitats. Finally, we identified areas as future potential refuges for the six species in central Gulf of Mexico, and northern Yucatán Peninsula especially under CC and SLR scenarios.

  8. Projecting the success of plant restoration with population viability analysis

    USGS Publications Warehouse

    Bell, T.J.; Bowles, M.L.; McEachern, A.K.; Brigham, C.A.; Schwartz, M.W.

    2003-01-01

    Conserving viable populations of plant species requires that they have high probabilities of long-term persistence within natural habitats, such as a chance of extinction in 100 years of less than 5% (Menges 1991, 1998; Brown 1994; Pavlik 1994; Chap. 1, this Vol.). For endangered and threatened species that have been severely reduces in range and whose habitats have been fragmented, important species conservation strategies may include augmenting existing populations or restoring new viable populations (Bowles and Whelan 1994; Chap. 2, this Vol.). Restoration objectives may include increasing population numbers to reduce extinction probability, deterministic manipulations to develop a staged cohort structure, or more complex restoration of a desired genetic structure to allow outcrossing or increase effective population size (DeMauro 1993, 1994; Bowles et al. 1993, 1998; Pavlik 1994; Knapp and Dyer 1998; Chap. 2, this Vol.). These efforts may require translocation of propagules from existing (in situ) populations, or from ex situ botanic gardens or seed storage facilities (Falk et al. 1996; Guerrant and Pavlik 1998; Chap. 2, this Vol.). Population viability analysis (PVA) can provide a critical foundation for plant restoration, as it models demographic projections used to evaluate the probability of population persistence and links plant life history with restoration strategies. It is unknown how well artificially created populations will meet demographic modeling requirements (e.g., due to artificial cohort transitions) and few, if any, PVAs have been applied to restorations. To guide application of PVA to restored populations and to illustrate potential difficulties, we examine effects of planting different life stages, model initial population sizes needed to achieve population viability, and compare demographic characteristics between natural and restored populations. We develop and compare plant population restoration viability analysis (PRVA) case studies of

  9. Do postfire mulching treatments affect plant community recovery in California coastal sage scrub lands?

    PubMed

    McCullough, Sarah A; Endress, Bryan A

    2012-01-01

    In recent years, the use of postfire mulch treatments to stabilize slopes and reduce soil erosion in shrubland ecosystems has increased; however, the potential effects on plant recovery have not been examined. To evaluate the effects of mulching treatments on postfire plant recovery in southern California coastal sage scrub, we conducted a field experiment with three experimental treatments, consisting of two hydromulch products and an erosion control blanket, plus a control treatment. The area burned in 2007, and treatments were applied to six plot blocks before the 2008 growing season. Treatment effects on plant community recovery were analyzed with a mixed effects ANOVA analysis using a univariate repeated measures approach. Absolute plant cover increased from 13 to 90% by the end of the second growing season, and the mean relative cover of exotic species was 32%. The two hydromulch treatments had no effect on any plant community recovery response variable measured. For the erosion control blanket treatment, the amount of bare ground cover at the end of the second growing season was significantly lower (P = 0.01), and greater shrub height was observed (P < 0.01). We conclude that postfire mulch treatments did not provide either a major benefit or negative impact to coastal sage scrub recovery on the study area.

  10. Lower Miocene plant assemblage with coastal-marsh herbaceous monocots from the Vienna Basin (Slovakia)

    NASA Astrophysics Data System (ADS)

    Kvaček, Zlatko; Teodoridis, Vasilis; Kováčová, Marianna; Schlögl, Ján; Sitár, Viliam

    2014-06-01

    A new plant assemblage of Cerová-Lieskové from Lower Miocene (Karpatian) deposits in the Vienna Basin (western Slovakia) is preserved in a relatively deep, upper-slope marine environment. Depositional conditions with high sedimentation rates allowed exceptional preservation of plant remains. The plant assemblage consists of (1) conifers represented by foliage of Pinus hepios and Tetraclinis salicornioides, a seed cone of Pinus cf. ornata, and by pollen of the Cupressaceae, Pinaceae, Pinus sp. and Cathaya sp., and (2) angiosperms represented by Cinnamomum polymorphum, Platanus neptuni, Potamogeton sp. and lauroid foliage, by pollen of Liquidambar sp., Engelhardia sp. and Craigia sp., and in particular by infructescences (so far interpreted as belonging to cereal ears). We validate genus and species assignments of the infructescences: they belong to Palaeotriticum Sitár, including P. mockii Sitár and P. carpaticum Sitár, and probably represent herbaceous monocots that inhabited coastal marshes, similar to the living grass Spartina. Similar infructescences occur in the Lower and Middle Miocene deposits of the Carpathian Foredeep (Slup in Moravia), Tunjice Hills (Žale in Slovenia), and probably also in the Swiss Molasse (Lausanne). This plant assemblage demonstrates that the paleovegetation was represented by evergreen woodland with pines and grasses in undergrowth, similar to vegetation inhabiting coastal brackish marshes today. It also indicates subtropical climatic conditions in the Vienna Basin (central Paratethys), similar to those implied by other coeval plant assemblages from Central Europe

  11. Introgression in peripheral populations and colonization shape the genetic structure of the coastal shrub Armeria pungens

    PubMed Central

    Piñeiro, R; Widmer, A; Aguilar, J Fuertes; Feliner, G Nieto

    2011-01-01

    The coastal shrub Armeria pungens has a disjunct Atlantic-Mediterranean distribution. The historic range expansion underlying this distribution was investigated using the nuclear internal transcribed spacer region, three plastid regions (namely trnL-F, trnS-fM and matK) and morphometric data. A highly diverse ancestral lineage was identified in southwest Portugal. More recently, two areas have been colonized: (1) Corsica and Sardinia, where disjunct Mediterranean populations have been established as a result of the long-distance dispersal of Portuguese genotypes, and (2) the southern part of the Atlantic range, Gulf of Cadiz, where a distinct lineage showing no genetic differentiation among populations occurs. Genetic consequences of colonization seem to have been more severe in the Gulf of Cadiz than in Corsica-Sardinia. Although significant genetic divergence is associated with low plastid diversity in the Gulf of Cadiz, in Corsica-Sardinia, the loss of plastid haplotypes was not accompanied by divergence from disjunct Portuguese source populations. In addition, in its northernmost and southernmost populations, A. pungens exhibited evidence for ancient or ongoing introgression from sympatric congeners. Introgression might have created novel genotypes able to expand beyond the latitudinal margins of the species or, alternatively, these genotypes may be the result of surfing of alleles from other species in demographic equilibrium into peripheral populations of A. pungens. Our results highlight the evolutionary significance of genetic drift following the colonization of new areas and the key role of introgression in range expansion. PMID:20424642

  12. Biogeographic consequences of nutrient enrichment for plant-herbivore interactions in coastal wetlands.

    PubMed

    He, Qiang; Silliman, Brian R

    2015-05-01

    A major challenge in ecology is to understand broadscale trends in the impact of environmental change. We provide the first integrative analysis of the effects of eutrophication on plants, herbivores, and their interactions in coastal wetlands across latitudes. We show that fertilisation strongly increases herbivory in salt marshes, but not in mangroves, and that this effect increases with increasing latitude in salt marshes. We further show that stronger nutrient effects on plant nitrogen concentration at higher latitudes is the mechanism likely underlying this pattern. This biogeographic variation in nutrient effects on plant-herbivore interactions has consequences for vegetation, with those at higher latitudes being more vulnerable to consumer pressure fuelled by eutrophication. Our work provides a novel, mechanistic understanding of how eutrophication affects plant-herbivore systems predictably across broad latitudinal gradients, and highlights the power of incorporating biogeography into understanding large-scale variability in the impacts of environmental change.

  13. Plant genotypic diversity increases population size of a herbivorous insect

    PubMed Central

    Utsumi, Shunsuke; Ando, Yoshino; Craig, Timothy P.; Ohgushi, Takayuki

    2011-01-01

    It is critical to incorporate the process of population dynamics into community genetics studies to identify the mechanisms of the linkage between host plant genetics and associated communities. We studied the effects of plant genotypic diversity of tall goldenrod Solidago altissima on the population dynamics of the aphid Uroleucon nigrotuberculatum. We found genotypic variation in plant resistance to the aphid in our experiments. To determine the impact of plant genotypic diversity on aphid population dynamics, we compared aphid densities under conditions of three treatments: single-genotype plots, mixed-genotype plots and mixed-genotype-with-cages plots. In the latter treatment plants were individually caged to prevent natural enemy attack and aphid movement among plants. The synergistic effects of genotypes on population size were demonstrated by the greater aphid population size in the mixed-genotype treatment than expected from additive effects alone. Two non-exclusive hypotheses are proposed to explain this pattern. First, there is a source–sink relationship among plant genotypes: aphids move from plant genotypes where their reproduction is high to genotypes where their reproduction is low. Second, natural enemy mortality is reduced in mixed plots in a matrix of diverse plant genotypes. PMID:21378084

  14. Purple Pitcher Plant (Sarracenia rosea) Dieback and Partial Community Disassembly following Experimental Storm Surge in a Coastal Pitcher Plant Bog

    PubMed Central

    Abbott, Matthew J.; Battaglia, Loretta L.

    2015-01-01

    Sea-level rise and frequent intense hurricanes associated with climate change will result in recurrent flooding of inland systems such as Gulf Coastal pitcher plant bogs by storm surges. These surges can transport salt water and sediment to freshwater bogs, greatly affecting their biological integrity. Purple pitcher plants (Sarracenia rosea) are Gulf Coast pitcher plant bog inhabitants that could be at a disadvantage under this scenario because their pitcher morphology may leave them prone to collection of saline water and sediment after a surge. We investigated the effects of storm surge water salinity and sediment type on S. rosea vitality, plant community structure, and bog soil-water conductivity. Plots (containing ≥1 ramet of S. rosea) were experimentally flooded with fresh or saline water crossed with one of three sediment types (local, foreign, or no sediment). There were no treatment effects on soil-water conductivity; nevertheless, direct exposure to saline water resulted in significantly lower S. rosea cover until the following season when a prescribed fire and regional drought contributed to the decline of all the S. rosea to near zero percent cover. There were also significant differences in plant community structure between treatments over time, reflecting how numerous species increased in abundance and a few species decreased in abundance. However, in contrast to S. rosea, most of the other species in the community appeared resilient to the effects of storm surge. Thus, although the community may be somewhat affected by storm surge, those few species that are particularly sensitive to the storm surge disturbance will likely drop out of the community and be replaced by more resilient species. Depending on the longevity of these biological legacies, Gulf Coastal pitcher plant bogs may be incapable of fully recovering if they become exposed to storm surge more frequently due to climate change. PMID:25874369

  15. Purple pitcher plant (Sarracenia rosea) Dieback and partial community disassembly following experimental storm surge in a coastal pitcher plant bog.

    PubMed

    Abbott, Matthew J; Battaglia, Loretta L

    2015-01-01

    Sea-level rise and frequent intense hurricanes associated with climate change will result in recurrent flooding of inland systems such as Gulf Coastal pitcher plant bogs by storm surges. These surges can transport salt water and sediment to freshwater bogs, greatly affecting their biological integrity. Purple pitcher plants (Sarracenia rosea) are Gulf Coast pitcher plant bog inhabitants that could be at a disadvantage under this scenario because their pitcher morphology may leave them prone to collection of saline water and sediment after a surge. We investigated the effects of storm surge water salinity and sediment type on S. rosea vitality, plant community structure, and bog soil-water conductivity. Plots (containing ≥1 ramet of S. rosea) were experimentally flooded with fresh or saline water crossed with one of three sediment types (local, foreign, or no sediment). There were no treatment effects on soil-water conductivity; nevertheless, direct exposure to saline water resulted in significantly lower S. rosea cover until the following season when a prescribed fire and regional drought contributed to the decline of all the S. rosea to near zero percent cover. There were also significant differences in plant community structure between treatments over time, reflecting how numerous species increased in abundance and a few species decreased in abundance. However, in contrast to S. rosea, most of the other species in the community appeared resilient to the effects of storm surge. Thus, although the community may be somewhat affected by storm surge, those few species that are particularly sensitive to the storm surge disturbance will likely drop out of the community and be replaced by more resilient species. Depending on the longevity of these biological legacies, Gulf Coastal pitcher plant bogs may be incapable of fully recovering if they become exposed to storm surge more frequently due to climate change. PMID:25874369

  16. Purple pitcher plant (Sarracenia rosea) Dieback and partial community disassembly following experimental storm surge in a coastal pitcher plant bog.

    PubMed

    Abbott, Matthew J; Battaglia, Loretta L

    2015-01-01

    Sea-level rise and frequent intense hurricanes associated with climate change will result in recurrent flooding of inland systems such as Gulf Coastal pitcher plant bogs by storm surges. These surges can transport salt water and sediment to freshwater bogs, greatly affecting their biological integrity. Purple pitcher plants (Sarracenia rosea) are Gulf Coast pitcher plant bog inhabitants that could be at a disadvantage under this scenario because their pitcher morphology may leave them prone to collection of saline water and sediment after a surge. We investigated the effects of storm surge water salinity and sediment type on S. rosea vitality, plant community structure, and bog soil-water conductivity. Plots (containing ≥1 ramet of S. rosea) were experimentally flooded with fresh or saline water crossed with one of three sediment types (local, foreign, or no sediment). There were no treatment effects on soil-water conductivity; nevertheless, direct exposure to saline water resulted in significantly lower S. rosea cover until the following season when a prescribed fire and regional drought contributed to the decline of all the S. rosea to near zero percent cover. There were also significant differences in plant community structure between treatments over time, reflecting how numerous species increased in abundance and a few species decreased in abundance. However, in contrast to S. rosea, most of the other species in the community appeared resilient to the effects of storm surge. Thus, although the community may be somewhat affected by storm surge, those few species that are particularly sensitive to the storm surge disturbance will likely drop out of the community and be replaced by more resilient species. Depending on the longevity of these biological legacies, Gulf Coastal pitcher plant bogs may be incapable of fully recovering if they become exposed to storm surge more frequently due to climate change.

  17. Highly diverse recombining populations of Vibrio cholerae and Vibrio parahaemolyticus in French Mediterranean coastal lagoons.

    PubMed

    Esteves, Kévin; Mosser, Thomas; Aujoulat, Fabien; Hervio-Heath, Dominique; Monfort, Patrick; Jumas-Bilak, Estelle

    2015-01-01

    Vibrio parahaemolyticus and Vibrio cholerae are ubiquitous to estuarine and marine environments. These two species found in Mediterranean coastal systems can induce infections in humans. Environmental isolates of V. cholerae (n = 109) and V. parahaemolyticus (n = 89) sampled at different dates, stations and water salinities were investigated for virulence genes and by a multilocus sequence-based analysis (MLSA). V. cholerae isolates were all ctxA negative and only one isolate of V. parahaemolyticus displayed trh2 gene. Most Sequence Types (ST) corresponded to unique ST isolated at one date or one station. Frequent recombination events were detected among different pathogenic species, V. parahaemolyticus, V. cholerae, Vibrio mimicus, and Vibrio metoecus. Recombination had a major impact on the diversification of lineages. The genetic diversity assessed by the number of ST/strain was higher in low salinity condition for V. parahaemolyticus and V. cholerae whereas the frequency of recombination events in V. cholerae was lower in low salinity condition. Mediterranean coastal lagoon systems housed V. cholerae and V. parahaemolyticus with genetic diversities equivalent to the worldwide diversity described so far. The presence of STs found in human infections as well as the frequency of recombination events in environmental vibrios populations could predict a potential epidemiological risk. PMID:26236294

  18. Highly diverse recombining populations of Vibrio cholerae and Vibrio parahaemolyticus in French Mediterranean coastal lagoons

    PubMed Central

    Esteves, Kévin; Mosser, Thomas; Aujoulat, Fabien; Hervio-Heath, Dominique; Monfort, Patrick; Jumas-Bilak, Estelle

    2015-01-01

    Vibrio parahaemolyticus and Vibrio cholerae are ubiquitous to estuarine and marine environments. These two species found in Mediterranean coastal systems can induce infections in humans. Environmental isolates of V. cholerae (n = 109) and V. parahaemolyticus (n = 89) sampled at different dates, stations and water salinities were investigated for virulence genes and by a multilocus sequence-based analysis (MLSA). V. cholerae isolates were all ctxA negative and only one isolate of V. parahaemolyticus displayed trh2 gene. Most Sequence Types (ST) corresponded to unique ST isolated at one date or one station. Frequent recombination events were detected among different pathogenic species, V. parahaemolyticus, V. cholerae, Vibrio mimicus, and Vibrio metoecus. Recombination had a major impact on the diversification of lineages. The genetic diversity assessed by the number of ST/strain was higher in low salinity condition for V. parahaemolyticus and V. cholerae whereas the frequency of recombination events in V. cholerae was lower in low salinity condition. Mediterranean coastal lagoon systems housed V. cholerae and V. parahaemolyticus with genetic diversities equivalent to the worldwide diversity described so far. The presence of STs found in human infections as well as the frequency of recombination events in environmental vibrios populations could predict a potential epidemiological risk. PMID:26236294

  19. Highly diverse recombining populations of Vibrio cholerae and Vibrio parahaemolyticus in French Mediterranean coastal lagoons.

    PubMed

    Esteves, Kévin; Mosser, Thomas; Aujoulat, Fabien; Hervio-Heath, Dominique; Monfort, Patrick; Jumas-Bilak, Estelle

    2015-01-01

    Vibrio parahaemolyticus and Vibrio cholerae are ubiquitous to estuarine and marine environments. These two species found in Mediterranean coastal systems can induce infections in humans. Environmental isolates of V. cholerae (n = 109) and V. parahaemolyticus (n = 89) sampled at different dates, stations and water salinities were investigated for virulence genes and by a multilocus sequence-based analysis (MLSA). V. cholerae isolates were all ctxA negative and only one isolate of V. parahaemolyticus displayed trh2 gene. Most Sequence Types (ST) corresponded to unique ST isolated at one date or one station. Frequent recombination events were detected among different pathogenic species, V. parahaemolyticus, V. cholerae, Vibrio mimicus, and Vibrio metoecus. Recombination had a major impact on the diversification of lineages. The genetic diversity assessed by the number of ST/strain was higher in low salinity condition for V. parahaemolyticus and V. cholerae whereas the frequency of recombination events in V. cholerae was lower in low salinity condition. Mediterranean coastal lagoon systems housed V. cholerae and V. parahaemolyticus with genetic diversities equivalent to the worldwide diversity described so far. The presence of STs found in human infections as well as the frequency of recombination events in environmental vibrios populations could predict a potential epidemiological risk.

  20. Models of plant populations and communities

    SciTech Connect

    Huston, M.

    1990-01-01

    This document is the overview of the plant section in the book, {und Individual-Based Models and Approaches in Ecology}. A brief description of each of the chapters is provided, as well as a comparison of the models presented in each chapter. Four of the six chapters deal with single species interactions, one dealt with a two species system (plants and pollinators) and one deals with multispecies interactions. Both i-state distribution models and i-state configuration models are discussed. (MHB)

  1. Cancer mortality in the indigenous population of coastal Chukotka, 1961–1990

    PubMed Central

    Dudarev, Alexey A.; Chupakhin, Valery S.; Odland, Jon Øyvind

    2013-01-01

    Objectives The general aim was to assess the pattern and trend in cancer mortality among the indigenous people of coastal Chukotka during the period 1961–1990. Methods All cases of cancer deaths of indigenous residents of the Chukotsky district in the north-easternmost coast of Chukotka Autonomous Okrug were copied from personal death certificates. There were a total of 219 cancer deaths during the study period. The average annual number of cases, percent, crude, and age-standardized cancer mortality rates (ASMR) per 100,000 among men and women for all sites combined and selected sites were calculated. Data were aggregated into six 5-year periods to assess temporal trends. Direct age-standardization was performed with the Segi-Doll world standard population used by the International Agency for Research on Cancer. Results The indigenous Chukchi and Eskimo people living in Chukotsky district were at higher risk of death from cancer during the 30-year period between 1961 and 1990, with ASMR among men twice that of Russia, and among women 3.5 times higher. The excess can be attributed to the extremely high mortality from oesophageal cancer and lung cancer. Conclusions The indigenous people of coastal Chukotka were at very high risk of death from cancer relative to the Russian population nationally. The mortality data from this study correspond to the pattern of incidence reported among other indigenous people of the Russian Arctic. Little information is available since 1990, and the feasibility of ethnic-specific health data is now severely limited. PMID:23519821

  2. Ecological effects of roads on the plant diversity of coastal wetland in the Yellow River Delta.

    PubMed

    Li, Yunzhao; Yu, Junbao; Ning, Kai; Du, Siyao; Han, Guangxuan; Qu, Fanzhu; Wang, Guangmei; Fu, Yuqin; Zhan, Chao

    2014-01-01

    The 26 sample sites in 7 study plots adjacent to asphalt road and earth road in coastal wetland in the Yellow River Delta were selected to quantify plant diversity using quadrat sampling method in plant bloom phase of July and August 2012. The indice of β T and Jaccard's coefficient were applied to evaluate the species diversity. The results showed that the plant diversities and alien plants were high in the range of 0-20 m to the road verge. There were more exotics and halophytes in plots of asphalt roadside than that of earth roadside. However, proportion of halophytes in habitats of asphalt roadsides was lower than that of earth roadside. By comparing β-diversity, there were more common species in the asphalt roadsides than that in the earth roadsides. The similarity of plant communities in studied plots of asphalt roadsides and earth roadsides increased with increasing the distance to road verge. The effect range of roads for plant diversity in study region was about 20 m to road verge. Our results indicate that the construction and maintenance of roads in wetland could increase the plant species diversities of communities and risk of alien species invasion.

  3. Ecological Effects of Roads on the Plant Diversity of Coastal Wetland in the Yellow River Delta

    PubMed Central

    Li, Yunzhao; Du, Siyao; Han, Guangxuan; Qu, Fanzhu; Wang, Guangmei; Fu, Yuqin; Zhan, Chao

    2014-01-01

    The 26 sample sites in 7 study plots adjacent to asphalt road and earth road in coastal wetland in the Yellow River Delta were selected to quantify plant diversity using quadrat sampling method in plant bloom phase of July and August 2012. The indice of βT and Jaccard's coefficient were applied to evaluate the species diversity. The results showed that the plant diversities and alien plants were high in the range of 0–20 m to the road verge. There were more exotics and halophytes in plots of asphalt roadside than that of earth roadside. However, proportion of halophytes in habitats of asphalt roadsides was lower than that of earth roadside. By comparing β-diversity, there were more common species in the asphalt roadsides than that in the earth roadsides. The similarity of plant communities in studied plots of asphalt roadsides and earth roadsides increased with increasing the distance to road verge. The effect range of roads for plant diversity in study region was about 20 m to road verge. Our results indicate that the construction and maintenance of roads in wetland could increase the plant species diversities of communities and risk of alien species invasion. PMID:25147872

  4. Factors associated with plant species richness in a coastal tall-grass prairie

    USGS Publications Warehouse

    Grace, J.B.; Allain, L.; Allen, C.

    2000-01-01

    In this study we examine the factors associated with variations in species richness within a remnant tall-grass prairie in order to gain insight into the relative importance of controlling variables. The study area was a small, isolated prairie surrounded by wetlands and located within the coastal prairie region, which occurs along the northwestern Gulf of Mexico coastal plain. Samples were taken along three transects that spanned the prairie. Parameters measured included micro-elevation, soil characteristics, indications of recent disturbance, above-ground biomass (including litter), light penetration through the plant canopy, and species richness. Species richness was found to correlate with micro-elevation, certain soil parameters, and light penetration through the canopy, but not with above-ground biomass. Structural equation analysis was used to assess the direct and indirect effects of micro-elevation, soil properties, disturbance, and indicators of plant abundance on species richness. The results of this analysis showed that observed variations in species richness were primarily associated with variations in environmental effects (from soil and microtopography) and were largely unrelated to variations in measures of plant abundance (biomass and light penetration). These findings suggest that observed variations in species richness in this system primarily resulted from environmental effects on the species pool. These results fit with a growing body of information that suggests that environmental effects on species richness are of widespread importance.

  5. Effects of flooding, salinity and herbivory on coastal plant communities, Louisiana, United States

    USGS Publications Warehouse

    Gough, L.; Grace, J.B.

    1998-01-01

    Flooding and salinity stress are predicted to increase in coastal Louisiana as relative sea level rise (RSLR) continues in the Gulf of Mexico region. Although wetland plant species are adapted to these stressors, questions persist as to how marshes may respond to changed abiotic variables caused by RSLR, and how herbivory by native and non-native mammals may affect this response. The effects of altered flooding and salinity on coastal marsh communities were examined in two field experiments that simultaneously manipulated herbivore pressure. Marsh sods subjected to increased or decreased flooding (by lowering or raising sods, respectively), and increased or decreased salinity (by reciprocally transplanting sods between a brackish and fresh marsh), were monitored inside and outside mammalian herbivore exclosures for three growing seasons. Increased flooding stress reduced species numbers and biomass; alleviating flooding stress did not significantly alter species numbers while community biomass increased. Increased salinity reduced species numbers and biomass, more so if herbivores were present. Decreasing salinity had an unexpected effect: herbivores selectively consumed plants transplanted from the higher-salinity site. In plots protected from herbivory, decreased salinity had little effect on species numbers or biomass, but community composition changed. Overall, herbivore pressure further reduced species richness and biomass under conditions of increased flooding and increased salinity, supporting other findings that coastal marsh species can tolerate increasingly stressful conditions unless another factor, e.g., herbivory, is also present. Also, species dropped out of more stressful treatments much faster than they were added when stresses were alleviated, likely due to restrictions on dispersal. The rate at which plant communities will shift as a result of changed abiotic variables will determine if marshes remain viable when subjected to RSLR.

  6. Genetic structure among coastal tailed frog populations at Mount St. Helens is moderated by post-disturbance management.

    PubMed

    Spear, Stephen F; Crisafulli, Charles M; Storfer, Andrew

    2012-04-01

    Catastrophic disturbances often provide "natural laboratories" that allow for greater understanding of ecological processes and response of natural populations. The 1980 eruption of the Mount St. Helens volcano in Washington, USA, provided a unique opportunity to test biotic effects of a large-scale stochastic disturbance, as well as the influence of post-disturbance management. Despite severe alteration of nearly 600 km2 of habitat, coastal tailed frogs (Ascaphus truei) were found within a portion of the blast area five years after eruption. We investigated the genetic source of recolonization within the blast area and tested whether post-eruption salvage logging and subsequent tree planting influenced tailed frog movement patterns. Our results support widespread recolonization across the blast area from multiple sources, as all sites are grouped into one genetic cluster. Landscape genetic models suggest that gene flow through the unmanaged portion of the blast area is influenced only by distance between sites and the frost-free period (r2 = 0.74). In contrast, gene flow pathways within the blast area where salvage logging and replanting occurred post-eruption are strongly limited (r2 = 0.83) by the physiologically important variables of heat load and precipitation. These data suggest that the lack of understory and coarse wood (downed and standing dead tree boles) refugia in salvaged areas may leave frogs more susceptible to desiccation and mortality than those frogs moving through the naturally regenerated area. Simulated populations based on the landscape genetic models show an increase in the inbreeding coefficient in the managed area relative to the unmanaged blast area. In sum, we show surprising resilience of an amphibian species to a catastrophic disturbance, and we suggest that, at least for this species, naturally regenerating habitat may better maintain long-term genetic diversity of populations than actively managed habitat.

  7. Genetic structure among coastal tailed frog populations at Mount St. Helens is moderated by post-disturbance management.

    PubMed

    Spear, Stephen F; Crisafulli, Charles M; Storfer, Andrew

    2012-04-01

    Catastrophic disturbances often provide "natural laboratories" that allow for greater understanding of ecological processes and response of natural populations. The 1980 eruption of the Mount St. Helens volcano in Washington, USA, provided a unique opportunity to test biotic effects of a large-scale stochastic disturbance, as well as the influence of post-disturbance management. Despite severe alteration of nearly 600 km2 of habitat, coastal tailed frogs (Ascaphus truei) were found within a portion of the blast area five years after eruption. We investigated the genetic source of recolonization within the blast area and tested whether post-eruption salvage logging and subsequent tree planting influenced tailed frog movement patterns. Our results support widespread recolonization across the blast area from multiple sources, as all sites are grouped into one genetic cluster. Landscape genetic models suggest that gene flow through the unmanaged portion of the blast area is influenced only by distance between sites and the frost-free period (r2 = 0.74). In contrast, gene flow pathways within the blast area where salvage logging and replanting occurred post-eruption are strongly limited (r2 = 0.83) by the physiologically important variables of heat load and precipitation. These data suggest that the lack of understory and coarse wood (downed and standing dead tree boles) refugia in salvaged areas may leave frogs more susceptible to desiccation and mortality than those frogs moving through the naturally regenerated area. Simulated populations based on the landscape genetic models show an increase in the inbreeding coefficient in the managed area relative to the unmanaged blast area. In sum, we show surprising resilience of an amphibian species to a catastrophic disturbance, and we suggest that, at least for this species, naturally regenerating habitat may better maintain long-term genetic diversity of populations than actively managed habitat. PMID:22645816

  8. Plants for Coastal Dunes of the Gulf and South Atlantic Coasts and Puerto Rico. Agriculture Information Bulletin 460.

    ERIC Educational Resources Information Center

    Craig, Robert M.

    Plants that have been identified as stabilizers and beautifiers of coastal dunes are described in this publication from the Soil Conservation Service (SCS). After years of tests and field trials, the SCS has singled out 43 plants as having good potential for dune revegetation based on their characteristics for erosion control, frequency of…

  9. Herbivory: effects on plant abundance, distribution and population growth

    PubMed Central

    Maron, John L; Crone, Elizabeth

    2006-01-01

    Plants are attacked by many different consumers. A critical question is how often, and under what conditions, common reductions in growth, fecundity or even survival that occur due to herbivory translate to meaningful impacts on abundance, distribution or dynamics of plant populations. Here, we review population-level studies of the effects of consumers on plant dynamics and evaluate: (i) whether particular consumers have predictably more or less influence on plant abundance, (ii) whether particular plant life-history types are predictably more vulnerable to herbivory at the population level, (iii) whether the strength of plant–consumer interactions shifts predictably across environmental gradients and (iv) the role of consumers in influencing plant distributional limits. Existing studies demonstrate numerous examples of consumers limiting local plant abundance and distribution. We found larger effects of consumers on grassland than woodland forbs, stronger effects of herbivory in areas with high versus low disturbance, but no systematic or unambiguous differences in the impact of consumers based on plant life-history or herbivore feeding mode. However, our ability to evaluate these and other patterns is limited by the small (but growing) number of studies in this area. As an impetus for further study, we review strengths and challenges of population-level studies, such as interpreting net impacts of consumers in the presence of density dependence and seed bank dynamics. PMID:17002942

  10. Population structure of a parasitic plant and its perennial host.

    PubMed

    Mutikainen, P; Koskela, T

    2002-10-01

    Characterization of host and parasite population genetic structure and estimation of gene flow among populations are essential for the understanding of parasite local adaptation and coevolutionary interactions between hosts and parasites. We examined two aspects of population structure in a parasitic plant, the greater dodder (Cuscuta europaea) and its host plant, the stinging nettle (Urtica dioica), using allozyme data from 12 host and eight parasite populations. First, we examined whether hosts exposed to parasitism in the past contain higher levels of genetic variation. Second, we examined whether host and parasite populations differ in terms of population structure and if their population structures are correlated. There was no evidence that host populations differed in terms of gene diversity or heterozygosity according to their history of parasitism. Host populations were genetically more differentiated (F(ST) = 0.032) than parasite populations (F(ST) = 0.009). Based on these F(ST) values, gene flow was high for both host and parasite. Such high levels of gene flow could counteract selection for local adaptation of the parasite. We found no significant correlation between geographic and genetic distance (estimated as pairwise F(ST)), either for the host or for the parasite. Furthermore, host and parasite genetic distance matrices were uncorrelated, suggesting that sites with genetically similar host populations are unlikely to have genetically similar parasite populations. PMID:12242649

  11. Genetic analysis of threatened Australian grayling Prototroctes maraena suggests recruitment to coastal rivers from an unstructured marine larval source population.

    PubMed

    Schmidt, D J; Crook, D A; O'Connor, J P; Hughes, J M

    2011-01-01

    Population genetic variation of Australian grayling Prototroctes maraena was examined to determine whether the dispersal strategy of this amphidromous species favours retention of larvae and juveniles in close proximity to their natal river, or mixing of populations via marine dispersal. Variation in microsatellite and mitochondrial DNA markers was unstructured and differentiation was indistinguishable from zero across four coastal rivers spanning approximately one-quarter of the continental range of the species. This result indicates that the marine larval and juvenile phase probably facilitates extensive gene flow among coastal rivers and agrees with a previous analysis of otolith chemistry that suggested larvae probably move into the sea rather than remain in estuaries. It appears likely that the dispersal strategy of P. maraena would enable recolonization of rivers that experience localized extinction provided that connectivity between freshwater habitats and the sea is sufficient to permit migration and that enough source populations remain intact to support viability of the wider population.

  12. Coastal dispersal of radionuclides released from the Fukushima Nuclear Power Plant

    NASA Astrophysics Data System (ADS)

    Uchiyama, Y.; Ishii, T.; Tsumune, D.; Miyazawa, Y.

    2012-12-01

    The 2011 earthquake off the Pacific coast of Tohoku, Japan, and the subsequent tsunami caused a severe nuclear accident at the Fukushima Daiichi Nuclear Power Plant (FNPP), leading to radionuclides leaking into the coastal ocean. In the present study, a retrospective, double-nested high-resolution numerical experiment is conducted to evaluate oceanic/coastal dispersion of the released cesium-137 (137Cs). The model successfully reproduces the overall ocean state as well as the monitored cesium-137 concentrations. Alongshore distribution of the concentrations is found to be highly inhomogeneous with diluted patterns distributed widely in the south of FNPP, while medium concentration appears in the north. The probability density function of the concentration in the coastal area demonstrates that hotspots may exist along the Sanriku coast, a rias coastline located north of FNPP. Whereas the previous works reported that the FNPP-derived cesium-137 would be transported offshore rather promptly, the present model indicates that cesium-137 substantially sticks to the shore based on a flux budget analysis near the source location. Time-integrated cumulative cesium-137 fluxes at the northern and southern (alongshore) boundaries of the control volume indicate apparent outgoing alongshore transport. In contrast, a net cross-shore flux at the eastern boundary (50 - 100 km offshore) almost vanishes or even becomes negative, viz., a net incoming flux. Therefore the leaked cesium-137 remains in the coastal area with mostly being transported alongshore back and forth. However, we found a meridional asymmetry of the cesium-137 fluxes with more southward transport, mainly attributed to the southward eddy transport.

  13. Effect of an Invasive Plant and Moonlight on Rodent Foraging Behavior in a Coastal Dune Ecosystem

    PubMed Central

    Johnson, Matthew D.; De León, Yesenia L.

    2015-01-01

    Understanding how invasive plants may alter predator avoidance behaviors is important for granivorous rodents because their foraging can trigger ripple effects in trophic webs. Previous research has shown that European beach grass Ammophila arenaria, an invasive species in coastal California, affects the predation of other seeds by the rodents Microtus californicus, Peromyscus maniculatus, and Reithrodontomys megalotis. This may be due to lower perceived predation risk by rodents foraging in close proximity to the cover provided by Ammophila, but this mechanism has not yet been tested. We examined the perceived predation risk of rodents by measuring the ‘giving up density’ of food left behind in experimental patches of food in areas with and without abundant cover from Ammophila and under varying amount of moonlight. We found strong evidence that giving up density was lower in the thick uniform vegetation on Ammophila-dominated habitat than it was in the more sparsely and diversely vegetated restored habitat. There was also evidence that moonlight affected giving up density and that it mediated the effects of habitat, although with our design we were unable to distinguish the effects of lunar illumination and moon phase. Our findings illustrate that foraging rodents, well known to be risk-averse during moonlit nights, are also affected by the presence of an invasive plant. This result has implications for granivory and perhaps plant demography in invaded and restored coastal habitats. Future research in this system should work to unravel the complex trophic links formed by a non-native invasive plant (i.e., Ammophila) providing cover favored by native rodents, which likely forage on and potentially limit the recruitment of native and non-native plants, some of which have ecosystem consequences of their own. PMID:25679785

  14. Effect of an invasive plant and moonlight on rodent foraging behavior in a coastal dune ecosystem.

    PubMed

    Johnson, Matthew D; De León, Yesenia L

    2015-01-01

    Understanding how invasive plants may alter predator avoidance behaviors is important for granivorous rodents because their foraging can trigger ripple effects in trophic webs. Previous research has shown that European beach grass Ammophila arenaria, an invasive species in coastal California, affects the predation of other seeds by the rodents Microtus californicus, Peromyscus maniculatus, and Reithrodontomys megalotis. This may be due to lower perceived predation risk by rodents foraging in close proximity to the cover provided by Ammophila, but this mechanism has not yet been tested. We examined the perceived predation risk of rodents by measuring the 'giving up density' of food left behind in experimental patches of food in areas with and without abundant cover from Ammophila and under varying amount of moonlight. We found strong evidence that giving up density was lower in the thick uniform vegetation on Ammophila-dominated habitat than it was in the more sparsely and diversely vegetated restored habitat. There was also evidence that moonlight affected giving up density and that it mediated the effects of habitat, although with our design we were unable to distinguish the effects of lunar illumination and moon phase. Our findings illustrate that foraging rodents, well known to be risk-averse during moonlit nights, are also affected by the presence of an invasive plant. This result has implications for granivory and perhaps plant demography in invaded and restored coastal habitats. Future research in this system should work to unravel the complex trophic links formed by a non-native invasive plant (i.e., Ammophila) providing cover favored by native rodents, which likely forage on and potentially limit the recruitment of native and non-native plants, some of which have ecosystem consequences of their own.

  15. Population divergence in plant species reflects latitudinal biodiversity gradients.

    PubMed

    Eo, Soo Hyung; Wares, John P; Carroll, John P

    2008-08-23

    The trend for increasing biodiversity from the poles to the tropics is one of the best-known patterns in nature. This latitudinal biodiversity gradient has primarily been documented so far with extant species as the measure of biodiversity. Here, we evaluate the global pattern in biodiversity across latitudes based on the magnitude of genetic population divergence within plant species, using a robust spatial design to compare published allozyme datasets. Like the pattern of plant species richness across latitudes, we expected the divergence among populations of current plant species would have a similar pattern and direction. We found that lower latitudinal populations showed greater genetic differentiation within species after controlling for geographical distance. Our analyses are consistent with previous population-level studies in animals, suggesting a high possibility of tropical peaks in speciation rates associated with observed levels of species richness.

  16. Nutrient fluxes and the recent collapse of coastal California salmon populations

    USGS Publications Warehouse

    Moore, Jonathan W.; Hayes, Sean A.; Duffy, Walter; Gallagher, Sean; Michel, Cyril J.; Wright, David

    2011-01-01

    Migratory salmon move nutrients both in and out of fresh waters during the different parts of their life cycle. We used a mass-balance approach to quantify recent changes in phosphorus (P) fluxes in six coastal California, USA, watersheds that have recently experienced dramatic decreases in salmon populations. As adults, semelparous Chinook (Oncorhynchus tshawytscha) and coho (Oncorhynchus kisutch) salmon imported 8.3 and 10.4 times more P from the ocean, respectively, than they exported as smolts, while iteroparous steelhead (i.e., sea-run rainbow trout, Oncorhynchus mykiss) imported only 1.6 times more than they exported as kelts and smolts. Semelparous species whose life histories led them to import more nutrients were also the species whose populations decreased the most dramatically in California in recent years. In addition, the relationship between import and export was nonlinear, with export being proportionally more important at lower levels of import. This pattern was driven by two density-dependent processes — smolts were larger and disproportionately more abundant at lower spawner abundances. In fact, in four of our six streams we found evidence that salmon can drive net export of P at low abundance, evidence for the reversal of the "conveyor belt" of nutrients.

  17. Effects of an invasive plant on population dynamics in toads.

    PubMed

    Greenberg, Daniel A; Green, David M

    2013-10-01

    When populations decline in response to unfavorable environmental change, the dynamics of their population growth shift. In populations that normally exhibit high levels of variation in recruitment and abundance, as do many amphibians, declines may be difficult to identify from natural fluctuations in abundance. However, the onset of declines may be evident from changes in population growth rate in sufficiently long time series of population data. With data from 23 years of study of a population of Fowler's toad (Anaxyrus [ = Bufo] fowleri) at Long Point, Ontario (1989-2011), we sought to identify such a shift in dynamics. We tested for trends in abundance to detect a change point in population dynamics and then tested among competing population models to identify associated intrinsic and extrinsic factors. The most informative models of population growth included terms for toad abundance and the extent of an invasive marsh plant, the common reed (Phragmites australis), throughout the toads' marshland breeding areas. Our results showed density-dependent growth in the toad population from 1989 through 2002. After 2002, however, we found progressive population decline in the toads associated with the spread of common reeds and consequent loss of toad breeding habitat. This resulted in reduced recruitment and population growth despite the lack of significant loss of adult habitat. Our results underscore the value of using long-term time series to identify shifts in population dynamics coincident with the advent of population decline.

  18. Human population, grasshopper and plant species richness in European countries

    NASA Astrophysics Data System (ADS)

    Steck, Claude E.; Pautasso, Marco

    2008-11-01

    Surprisingly, several studies over large scales have reported a positive spatial correlation of people and biodiversity. This pattern has important implications for conservation and has been documented for well studied taxa such as plants, amphibians, reptiles, birds and mammals. However, it is unknown whether the pattern applies also to invertebrates other than butterflies and more work is needed to establish whether the species-people relationship is explained by both variables correlating with other environmental factors. We studied whether grasshopper species richness (Orthoptera, suborder Caelifera) is related to human population size in European countries. As expected, the number of Caelifera species increases significantly with increasing human population size. But this is not the case when controlling for country area, latitude and number of plant species. Variations in Caelifera species richness are primarily associated with variations in plant species richness. Caelifera species richness also increases with decreasing mean annual precipitation, Gross Domestic Product per capita (used as an indicator for economic development) and net fertility rate of the human population. Our analysis confirms the hypothesis that the broad-scale human population-biodiversity correlations can be explained by concurrent variations in factors other than human population size such as plant species richness, environmental productivity, or habitat heterogeneity. Nonetheless, more populated countries in Europe still have more Caelifera species than less populated countries and this poses a particular challenge for conservation.

  19. Model calculating annual mean atmospheric dispersion factor for coastal site of nuclear power plant.

    PubMed

    Hu, E B; Chen, J Y; Yao, R T; Zhang, M S; Gao, Z R; Wang, S X; Jia, P R; Liao, Q L

    2001-07-01

    This paper describes an atmospheric dispersion field experiment performed on the coastal site of nuclear power plant in the east part of China during 1995 to 1996. The three-dimension joint frequency are obtained by hourly observation of wind and temperature on a 100 m high tower; the frequency of the "event day of land and sea breezes" are given by observation of surface wind and land and sea breezes; the diffusion parameters are got from measurements of turbulent and wind tunnel simulation test. A new model calculating the annual mean atmospheric dispersion factor for coastal site of nuclear power plant is developed and established. This model considers not only the effect from mixing release and mixed layer but also the effect from the internal boundary layer and variation of diffusion parameters due to the distance from coast. The comparison between results obtained by the new model and current model shows that the ratio of annual mean atmospheric dispersion factor gained by the new model and the current one is about 2.0.

  20. Transplanting native dominant plants to facilitate community development in restored coastal plain wetlands.

    SciTech Connect

    De Steven, Diane; Sharitz, Rebecca R.

    2007-12-01

    Abstract: Drained depressional wetlands are typically restored by plugging ditches or breaking drainage tiles to allow recovery of natural ponding regimes, while relying on passive recolonization from seed banks and dispersal to establish emergent vegetation. However, in restored depressions of the southeastern United States Coastal Plain, certain characteristic rhizomatous graminoid species may not recolonize because they are dispersal-limited and uncommon or absent in the seed banks of disturbed sites. We tested whether selectively planting such wetland dominants could facilitate restoration by accelerating vegetative cover development and suppressing non-wetland species. In an operational-scale project in a South Carolina forested landscape, drained depressional wetlands were restored in early 2001 by completely removing woody vegetation and plugging surface ditches. After forest removal, tillers of two rhizomatous wetland grasses (Panicum hemitomon, Leersia hexandra) were transplanted into singlespecies blocks in 12 restored depressions that otherwise were revegetating passively. Presence and cover of all plant species appearing in planted plots and unplanted control plots were recorded annually. We analyzed vegetation composition after two and four years, during a severe drought (2002) and after hydrologic recovery (2004). Most grass plantings established successfully, attaining 15%–85% cover in two years. Planted plots had fewer total species and fewer wetland species compared to control plots, but differences were small. Planted plots achieved greater total vegetative cover during the drought and greater combined cover of wetland species in both years. By 2004, planted grasses appeared to reduce cover of non-wetland species in some cases, but wetter hydrologic conditions contributed more strongly to suppression of non-wetland species. Because these two grasses typically form a dominant cover matrix in herbaceous depressions, our results indicated that

  1. The east-west-north colonization history of the Mediterranean and Europe by the coastal plant Carex extensa (Cyperaceae).

    PubMed

    Escudero, M; Vargas, P; Arens, P; Ouborg, N J; Luceño, M

    2010-01-01

    Coastal plants are ideal models for studying the colonization routes of species because of the simple linear distributions of these species. Carex extensa occurs mainly in salt marshes along the Mediterranean and European coasts. Variation in cpDNA sequences, amplified fragment length polymorphisms (AFLPs) and simple sequence repeats (SSRs) of 24 populations were analysed to reconstruct its colonization history. Phylogenetic relationships indicate that C. extensa together with the South American Carex vixdentata and the southern African Carex ecklonii form a monophyletic group of halophilic species. Analyses of divergence times suggest that early lineage diversification may have occurred between the late Miocene and the late Pliocene (Messinian crisis). Phylogenetic and network analyses of cpDNA variation revealed the monophyly of the species and an ancestral haplotype contained in populations of the eastern Mediterranean. The AFLP and SSR analyses support a pattern of variation compatible with these two lineages. These analyses also show higher levels of genetic diversity and differentiation in the eastern population group, which underwent an east-to-west Mediterranean colonization. Quaternary climatic oscillations appear to have been responsible for the split between these two lineages. Secondary contacts may have taken place in areas near the Ligurian Sea in agreement with the gene flow detected in Corsican populations. The AFLP and SSR data accord with the 'tabula rasa' hypothesis in which a recent and rapid colonization of northern Europe took place from the western Mediterranean after the Last Glacial Maximum. The unbalanced west-east vs. west-north colonization may be as a result of 'high density blocking' effect.

  2. Investigation of Metal Uptake and Translocation in Wetland Plants from Urban Coastal Areas

    NASA Astrophysics Data System (ADS)

    Feng, H.; Zhang, W.; Qian, Y.; Liu, W.; Yu, L.; Jones, K. W.; Liu, C.; Tappero, R.

    2013-12-01

    This research mainly focused on the use of synchrotron micro XRF technique to study the mechanisms of metal uptake by plants in conjunction with other measurements to provide insight metal concentrations and distributions in the rhizosphere root system. Many urban-industrial areas exhibit environmental degradation. One of the most common issues is sediment metal contamination resulting from past industrial land uses. The wetland ecosystem in urban coastal areas, such as New Jersey, USA, and Shanghai, China, is a unique laboratory for investigating sediment remediation and wetland ecological rehabilitations. Understanding the natural processes that control the mobility of metals in wetland plants is important to understand the metal biochemical cycle. Wetland plants can uptake metals from rhizosphere soils through their root system and store these metals within the plant biomass. The accumulation of metals in wetland plants provides a potential approach for brownfield remediation and wetland restoration. In the rhizosphere, the role of Fe plaque, which forms on the surface of wetland plant roots, has been an issue of debate in controlling metal biogeochemical cycle. It was reported that due to the large specific surface area of iron-oxides for metal sequestration, Fe plaque can provide a reactive substrate to scavenge metals. Several early studies suggest that the Fe plaque serves as a barrier preventing heavy metals from entering plant roots. However, others suggest that Fe plaque is not the main barrier. Therefore, investigation of the natural processes that control the mobility of metals from sediment to wetland plants is a critical step in understanding metal translocation and geochemical cycling in wetlands. In this study we found that metal concentrations and distributions in the root cross section from the epidermis to the vascular cylinder were apparently different. Two clusters of metal distributions were seen with Fe and Pb mainly distributed in the

  3. AN ECOLOGICAL ASSESSMENT OF INVASIVE AND AGRESSIVE PLANT SPECIES IN COASTAL WETLANDS OF THE LAURENTIAN GREAT LAKES: A COMBINED FIELD BASED AND REMOTE SENSING APPROACH

    EPA Science Inventory

    The aquatic plant communities within coastal wetlands of the Laurentian Great Lakes are among the most biologically diverse and productive systems of the world. Coastal wetlands have been especially impacted by landscape conversion and have undergone a marked decline in plant com...

  4. The relative importance of disturbance and exotic-plant abundance in California coastal sage scrub

    USGS Publications Warehouse

    Fleming, G.M.; Diffendorfer, J.E.; Zedler, P.H.

    2009-01-01

    Many ecosystems of conservation concern require some level of disturbance to sustain their species composition and ecological function. However, inappropriate disturbance regimes could favor invasion or expansion of exotic species. In southern California coastal sage scrub (CSS) fire is a natural disturbance, but because of human influence, frequencies may now be unnaturally high. Other anthropogenic disturbances such as grazing also occur in reserve areas. Managers charged with imposing or tolerating fire or other disturbance within their reserves are concerned that habitat quality may be degraded by an increasing abundance of exotic plants. We used vegetation monitoring data from Camp Pendleton, California, USA, to assess the correlation between past disturbances (frequent fire, agriculture, or grazing and mechanical disturbances) and current exotic species abundance in CSS. We found that disturbance history was only modestly related to exotic abundance overall, but fire frequency showed the strongest association. We also examined whether cover and richness of various native plant life forms (woody species, perennial herbs, and annual herbs) were more strongly influenced by disturbance history or by exotic-plant abundance. Native plant responses varied among life forms, but woody species and annual herbs were generally more strongly and negatively associated with exotic abundance than with disturbance. Effective CSS conservation will require developing means to curb the negative impacts of exotic plants, which may abound with or without severe or recent disturbance. Additionally, more focus should be given to understory herbs showing sensitivity to invasion. Though understudied, native herbs comprise the greatest portion of plant diversity in CSS and are critical to preservation of the community as a whole. ?? 2009 by the Ecological Society of America.

  5. Human Stressors Are Driving Coastal Benthic Long-Lived Sessile Fan Mussel Pinna nobilis Population Structure More than Environmental Stressors

    PubMed Central

    Deudero, Salud; Vázquez-Luis, Maite; Álvarez, Elvira

    2015-01-01

    Coastal degradation and habitat disruption are severely compromising sessile marine species. The fan shell Pinna nobilis is an endemic, vulnerable species and the largest bivalve in the Mediterranean basin. In spite of species legal protection, fan shell populations are declining. Models analyzed the contributions of environmental (mean depth, wave height, maximum wave height, period of waves with high energy and mean direction of wave source) versus human-derived stressors (anchoring, protection status, sewage effluents, fishing activity and diving) as explanatory variables depicting Pinna nobilis populations at a mesoscale level. Human stressors were explaining most of the variability in density spatial distribution of fan shell, significantly disturbing benthic communities. Habitat protection affected P. nobilis structure and physical aggression by anchoring reveals a high impact on densities. Environmental variables instead played a secondary role, indicating that global change processes are not so relevant in coastal benthic communities as human-derived impacts. PMID:26218134

  6. Estimating shorebird populations during spring stopover in rice fields of the Louisiana and Texas Gulf Coastal Plain

    USGS Publications Warehouse

    Norling, Wayne; Jeske, Clinton W.; Thigpen, Tyler F.; Chadwick, Paul C.

    2012-01-01

    Migrating shorebird populations using approximately 2% of Louisiana and Texas Gulf Coastal rice fields were surveyed during spring migration (March–May of 1997 and 1998) using biweekly stratified random surveys conducted at 50 roadside survey points and approximately 30,000 shorebirds were observed. Shorebird counts were extrapolated and almost 1.4 million birds in 1997 and over 1.6 million birds of 31 species in 1998 were estimated to use rice field habitat for stopover sites in Louisiana and Texas. Greater than 50% of the estimated North American populations were estimated to use rice field habitats for five species, including a species of concern, Buff-breasted Sandpiper (Tryngites subruficollis) at 187%. Because of predictability of suitable rice field habitat acreage, timing of field preparation and water availability, coastal rice prairies are identified as critical spring migration stopover sites.

  7. Effects of a coastal power plant thermal discharge on phytoplankton community structure in Zhanjiang Bay, China.

    PubMed

    Li, Xue-Ying; Li, Bin; Sun, Xing-Li

    2014-04-15

    The effects of a thermal discharge from a coastal power plant on phytoplankton were determined in Zhanjiang Bay. Monthly cruises were undertaken at four tide times during April-October 2011. There were significant differences for dominant species among seven sampling months and four sampling tides. Species diversity (H') and Evenness showed a distinct increasing gradient from the heated water source to the control zone and fluctuated during four tides with no visible patterns. Species richness, cell count and Chl a at mixed and control zones were significantly higher than heated zones, and showed tidal changes with no obvious patterns. The threshold temperature of phytoplankton species can be regarded as that of phytoplankton community at ebb slack. The average threshold temperature over phytoplankton species, cell count and Chl a, and the threshold temperature of cell count can be regarded as that of phytoplankton community at flood slack during spring and neap respectively.

  8. Effects of a coastal power plant thermal discharge on phytoplankton community structure in Zhanjiang Bay, China.

    PubMed

    Li, Xue-Ying; Li, Bin; Sun, Xing-Li

    2014-04-15

    The effects of a thermal discharge from a coastal power plant on phytoplankton were determined in Zhanjiang Bay. Monthly cruises were undertaken at four tide times during April-October 2011. There were significant differences for dominant species among seven sampling months and four sampling tides. Species diversity (H') and Evenness showed a distinct increasing gradient from the heated water source to the control zone and fluctuated during four tides with no visible patterns. Species richness, cell count and Chl a at mixed and control zones were significantly higher than heated zones, and showed tidal changes with no obvious patterns. The threshold temperature of phytoplankton species can be regarded as that of phytoplankton community at ebb slack. The average threshold temperature over phytoplankton species, cell count and Chl a, and the threshold temperature of cell count can be regarded as that of phytoplankton community at flood slack during spring and neap respectively. PMID:24635985

  9. Prediction of plant vulnerability to salinity increase in a coastal ecosystem by stable isotopic composition (δ18O) of plant stem water: a model study

    USGS Publications Warehouse

    Zhai, Lu; Jiang, Jiang; DeAngelis, Don; Sternberg, Leonel d.S.L

    2016-01-01

    Sea level rise and the subsequent intrusion of saline seawater can result in an increase in soil salinity, and potentially cause coastal salinity-intolerant vegetation (for example, hardwood hammocks or pines) to be replaced by salinity-tolerant vegetation (for example, mangroves or salt marshes). Although the vegetation shifts can be easily monitored by satellite imagery, it is hard to predict a particular area or even a particular tree that is vulnerable to such a shift. To find an appropriate indicator for the potential vegetation shift, we incorporated stable isotope 18O abundance as a tracer in various hydrologic components (for example, vadose zone, water table) in a previously published model describing ecosystem shifts between hammock and mangrove communities in southern Florida. Our simulations showed that (1) there was a linear relationship between salinity and the δ18O value in the water table, whereas this relationship was curvilinear in the vadose zone; (2) hammock trees with higher probability of being replaced by mangroves had higher δ18O values of plant stem water, and this difference could be detected 2 years before the trees reached a tipping point, beyond which future replacement became certain; and (3) individuals that were eventually replaced by mangroves from the hammock tree population with a 50% replacement probability had higher stem water δ18O values 3 years before their replacement became certain compared to those from the same population which were not replaced. Overall, these simulation results suggest that it is promising to track the yearly δ18O values of plant stem water in hammock forests to predict impending salinity stress and mortality.

  10. Landscape-scale evaluation of genetic structure among barrier-isolated populations of coastal cutthroat trout, Oncorhynchus clarkii clarkii

    USGS Publications Warehouse

    Guy, T.J.; Gresswell, R.E.; Banks, M.A.

    2008-01-01

    Relationships among landscape structure, stochastic disturbance, and genetic diversity were assessed by examining interactions between watershed-scale environmental factors and genetic diversity of coastal cutthroat trout (Oncorhynchus clarkii clarkii) in 27 barrier-isolated watersheds from western Oregon, USA. Headwater populations of coastal cutthroat trout were genetically differentiated (mean FST = 0.33) using data from seven microsatellite loci (2232 individuals), but intrapopulation microsatellite genetic diversity (mean number of alleles per locus = 5, mean He = 0.60) was only moderate. Genetic diversity of coastal cutthroat trout was greater (P = 0.02) in the Coast Range ecoregion (mean alleles = 47) than in the Cascades ecoregion (mean alleles = 30), and differences coincided with indices of regional within-watershed complexity and connectivity. Furthermore, regional patterns of diversity evident from isolation-by-distance plots suggested that retention of within-population genetic diversity in the Coast Range ecoregion is higher than that in the Cascades, where genetic drift is the dominant factor influencing genetic patterns. Thus, it appears that physical landscape features have influenced genetic patterns in these populations isolated from short-term immigration. ?? 2008 NRC.

  11. Signaling among neighboring plants and the development of size inequalities in plant populations

    SciTech Connect

    Ballare, C.L. |; Scopel, A.L. |; Jordan, E.T.; Vierstra, R.D.

    1994-10-11

    Transgenic tobacco plants that express an oat phytochrome gene (phyA) under control of the cauliflower mosaic virus (CaMV) 35S promoter and display altered photophysiology were used to test the role of light as a vehicle of information in dominance relationships between neighboring plants. Compared with the isogenic wild type, phyA-overexpressing plants showed dramatically reduced morphological responsivity to changes in the red/far red ratio of the incident light and to the proximity of neighboring plants in spacing experiments. In transgenic canopies an increase in stand density caused the small plants of the population to be rapidly suppressed by their neighbors. In wild-type canopies, plants responded to increased density with large morphological changes, and there appeared to be an inverse relationship between the magnitude of this morphological response and the ranking of the individual plant in the population size hierarchy. In these wild-type populations, size inequality increased only moderately with density within the time frame of the experiments. The results suggest that, in crowded stands, the ability of individual plants to acquire information about their light environment via phytochrome plays a central role in driving architectural changes that, at the population level, delay the development of size differences between neighbors.

  12. Widespread seed limitation affects plant density but not population trajectory in the invasive plant Centaurea solstitialis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In some plant populations, the availability of seeds strongly regulates recruitment. However, a scarcity of germination microsites, granivory or density dependent mortality can reduce the number of plants that germinate or survive to flowering. The relative strength of these controls is unknown for ...

  13. Effect of pre-planting irrigation, maize planting pattern and nitrogen on weed seed bank population.

    PubMed

    Hemmati, E; Vazan, S; Oveisi, M

    2011-01-01

    Pre-planting irrigation and planting patterns are important factors in weed management that effect on seed bank. Additionally, the nitrogen is the most important factor in plant growth that affects weed-crop competition and ultimately, seed rain into the soil. A field experiment was conducted to study the effect of nitrogen application rates, pre-planting irrigation and maize planting patterns on weed seed bank population. Experimental factors were nitrogen rates at 4 levels (200, 300, 400 and 500 kg per hectare) as main plot; and pre-planting irrigation at 2 levels (irrigation before planting plus weeding emerged seedlings and, irrigation after sowing), and maize planting patterns (one-row and two-row planting of maize with same density per square of row length) that were assigned in a factorial arrangement to the sub plots. Soil samples were taken at the beginning of the season (before planting of maize) and at the end of the season (after harvest) at depth of 0-5 cm in the fixed quadrates (60 cm x 60 cm). The weed seeds were extracted from the soil samples and were identified using standard methods. The majority of weed seed bank populations included 6 weed species: Portulaca oleracea, Chenopodium album, Amaranthus retroflexus, Sorghum halepense, Daturea stramonium, Xanthium strumarium. Results showed that population of weed seed bank increased significantly with increasing nitrogen rate. The increasing rate was different between one-row and two-row planting patterns. The parameters indicated that seed bank population was much higher in a one row planting pattern of maize. With two-row planting, seed bank was decreased by 34, 26, 20 and 5% at 200, 300, 400 and 500 kg N/ha, respectively. Pre-planting irrigation was also found an effective implement to reduce the weed seed bank. When pre-planting irrigation was applied, seed bank was decreased by 57, 43, 34 and 9% at 200, 300, 400 and 500 kg N/ha. Increasing nitrogen because of weed's better growth and higher seed

  14. Effect of pre-planting irrigation, maize planting pattern and nitrogen on weed seed bank population.

    PubMed

    Hemmati, E; Vazan, S; Oveisi, M

    2011-01-01

    Pre-planting irrigation and planting patterns are important factors in weed management that effect on seed bank. Additionally, the nitrogen is the most important factor in plant growth that affects weed-crop competition and ultimately, seed rain into the soil. A field experiment was conducted to study the effect of nitrogen application rates, pre-planting irrigation and maize planting patterns on weed seed bank population. Experimental factors were nitrogen rates at 4 levels (200, 300, 400 and 500 kg per hectare) as main plot; and pre-planting irrigation at 2 levels (irrigation before planting plus weeding emerged seedlings and, irrigation after sowing), and maize planting patterns (one-row and two-row planting of maize with same density per square of row length) that were assigned in a factorial arrangement to the sub plots. Soil samples were taken at the beginning of the season (before planting of maize) and at the end of the season (after harvest) at depth of 0-5 cm in the fixed quadrates (60 cm x 60 cm). The weed seeds were extracted from the soil samples and were identified using standard methods. The majority of weed seed bank populations included 6 weed species: Portulaca oleracea, Chenopodium album, Amaranthus retroflexus, Sorghum halepense, Daturea stramonium, Xanthium strumarium. Results showed that population of weed seed bank increased significantly with increasing nitrogen rate. The increasing rate was different between one-row and two-row planting patterns. The parameters indicated that seed bank population was much higher in a one row planting pattern of maize. With two-row planting, seed bank was decreased by 34, 26, 20 and 5% at 200, 300, 400 and 500 kg N/ha, respectively. Pre-planting irrigation was also found an effective implement to reduce the weed seed bank. When pre-planting irrigation was applied, seed bank was decreased by 57, 43, 34 and 9% at 200, 300, 400 and 500 kg N/ha. Increasing nitrogen because of weed's better growth and higher seed

  15. EXOTIC AND INVASIVE AQUATIC PLANTS IN GREAT LAKES COASTAL WETLANDS: DISTRIBUTION AND RELATION TO WATERSHED LAND USE AND PLANT RICHNESS AND COVER

    EPA Science Inventory

    This manuscript provides previously unavailable information to researchers and managers concerning exotic plants in the Great Lakes...This work arises out of our broader efforts to describe biota - habitat relationships in coastal wetlands, and as such falls under Aquatic Stresso...

  16. Epistasis in natural populations of a predominantly selfing plant

    PubMed Central

    Volis, S; Shulgina, I; Zaretsky, M; Koren, O

    2011-01-01

    Populations of predominantly selfing plant species often show spatial genetic structure but little is known whether epistatic gene interactions are spatially structured. To detect a possible epistatic effect and a spatial scale at which it operates, we created artificial crosses between plants spanning a range of fixed distances from 1 to 400 m in three populations of wild barley. The self-pollinated and crossed progeny (F1) and two generations of segregated progeny (F2 and F3) were tested in experimentally simulated population environments for relative performance (RP). The measured fitness traits included number of seeds, total seed weight and seed germination. For any of these traits, there was no association between RP of F1, F2 and F3 plants and either pairwise kinship coefficients or crossing distance. In contrast, in all three populations, we found lower seed viability of outcrossed as compared with self-pollinated genotypes in the first generation of segregation. However, in the F3 generation this outbreeding effect disappeared in the two populations and greatly decreased in the third population. For seed production, heterosis in F1 and outbreeding depression in F2 were observed only in the population with unusually high number of heterozygotes. Our findings support the view that in selfing species a spatial mosaic of various locally abundant genotypes represents not randomly fixed combinations of alleles but the co-adapted gene complexes that were sieved by selection, while heterozygotes are characteristic for the transient phase of this process, when segregation and purging of maladaptive genotypes have not yet occurred. PMID:20551977

  17. The use of plant community attributes to detect habitat quality in coastal environments

    PubMed Central

    Del Vecchio, Silvia; Slaviero, Antonio; Fantinato, Edy; Buffa, Gabriella

    2016-01-01

    The monitoring of biodiversity has mainly focused on the species level. However, researchers and land managers are making increasing use of complementary assessment tools that address higher levels of biological organization, i.e. communities, habitats and ecosystems. Recently, a variety of frameworks have been proposed for assessing the conservation status of communities or ecosystems. Among the various criteria proposed, all the protocols suggest considering (i) spatial aspects (range and area), and (ii) qualitative aspects of specific structures and functions. However, changes to ecological function are difficult to quantify and many protocols end up by using qualitative criteria. The aim of this work was to test the efficacy of some plant community attributes for the detection of vegetation quality in sand dune plant communities. We chose plant community attributes that either help to distinguish a habitat from others (diagnostic components) or play a significant role in habitat function and persistence over time. We used a diachronic approach by contrasting up-to-date vegetation data with data from previous studies carried out within the same areas. Changes in species composition were detected through detrended correspondence analyses (detrended correspondence analyses), Multi-Response Permutation Procedures and Indicator Species Analysis, while structural changes were analyzed by comparing species richness, total species cover, ecological groups of species and growth forms through null models. Ecological groups such as native focal species and aliens, and growth forms proved their efficacy in discriminating between habitat types and in describing their changes over time. The approach used in this study may provide an instrument for the assessment of plant community quality that can be applied to other coastal ecosystems. PMID:27255516

  18. The use of plant community attributes to detect habitat quality in coastal environments.

    PubMed

    Del Vecchio, Silvia; Slaviero, Antonio; Fantinato, Edy; Buffa, Gabriella

    2016-01-01

    The monitoring of biodiversity has mainly focused on the species level. However, researchers and land managers are making increasing use of complementary assessment tools that address higher levels of biological organization, i.e. communities, habitats and ecosystems. Recently, a variety of frameworks have been proposed for assessing the conservation status of communities or ecosystems. Among the various criteria proposed, all the protocols suggest considering (i) spatial aspects (range and area), and (ii) qualitative aspects of specific structures and functions. However, changes to ecological function are difficult to quantify and many protocols end up by using qualitative criteria. The aim of this work was to test the efficacy of some plant community attributes for the detection of vegetation quality in sand dune plant communities. We chose plant community attributes that either help to distinguish a habitat from others (diagnostic components) or play a significant role in habitat function and persistence over time. We used a diachronic approach by contrasting up-to-date vegetation data with data from previous studies carried out within the same areas. Changes in species composition were detected through detrended correspondence analyses (detrended correspondence analyses), Multi-Response Permutation Procedures and Indicator Species Analysis, while structural changes were analyzed by comparing species richness, total species cover, ecological groups of species and growth forms through null models. Ecological groups such as native focal species and aliens, and growth forms proved their efficacy in discriminating between habitat types and in describing their changes over time. The approach used in this study may provide an instrument for the assessment of plant community quality that can be applied to other coastal ecosystems. PMID:27255516

  19. Leaf n-alkanes as characters differentiating coastal and continental Juniperus deltoides populations from the Balkan Peninsula.

    PubMed

    Rajčević, Nemanja; Janaćković, Pedja; Dodoš, Tanja; Tešević, Vele; Bojović, Srdjan; Marin, Petar D

    2014-07-01

    The composition of the cuticular n-alkanes isolated from the leaves of nine populations of Juniperus deltoides R.P.Adams from continental and coastal areas of the Balkan Peninsula was characterized by GC-FID and GC/MS analyses. In the leaf waxes, 14 n-alkane homologues with chain-lengths ranging from C22 to C35 were identified. n-Tritriacontane (C33 ) was dominant in the waxes of all populations, but variations between the populations in the contents of all n-alkanes were observed. Several statistical methods (ANOVA, principal component, discriminant, and cluster analyses) were used to investigate the diversity and variability of the cuticular-leaf-n-alkane patterns of the nine J. deltoides populations. This is the first report on the n-alkane composition for this species. The multivariate statistical analyses evidenced a high correlation of the leaf-n-alkane pattern with the geographical distribution of the investigated samples, differentiating the coastal from the continental populations of this taxon.

  20. Bulinus globosus (Planorbidae; Gastropoda) populations in the Lake Victoria basin and coastal Kenya show extreme nuclear genetic differentiation.

    PubMed

    Nyakaana, Silvester; Stothard, J Russell; Nalugwa, Allen; Webster, Bonnie L; Lange, Charles N; Jørgensen, Aslak; Rollinson, David; Kristensen, Thomas K

    2013-11-01

    Bulinus globosus, a key intermediate host for Schistosoma haematobium that causes urinary schistosomiasis, is a hermaphroditic freshwater Planorbid snail species that inhabits patchy and transient water bodies prone to large seasonal variations in water availability. Although capable of self-fertilizing, this species has been reported to be preferentially out crossing. In this study, we characterized the population genetic structure of 19 B. globosus populations sampled across the Lake Victoria basin and coastal Kenya using four polymorphic microsatellite loci. Population genetic structure was characterized and quantified using FST statistics and Bayesian clustering algorithms. The four loci used in this study contained sufficient statistical power to detect low levels of population genetic differentiation and were highly polymorphic with the number of alleles per locus across populations ranging from 16 to 22. Average observed and expected heterozygosities across loci in each population ranged from 0.13 to 0.69 and from 0.39 to 0.79, respectively. Twenty-five of the seventy-six possible population-locus comparisons significantly deviated from Hardy-Weinberg equilibrium proportions after Bonferroni corrections, mostly due to the deficiency of heterozygotes. Significant genetic differentiation was observed between populations and Bayesian inferences identified 15 genetic clusters. The excess homozygosity, significant inbreeding and population genetic differentiation observed in B. globosus populations are likely to be due to the habitat patchiness, mating system and the proneness to cyclic extinction and recolonization in transient habitats. PMID:23266524

  1. Ecological genetics of sex ratios in plant populations.

    PubMed

    Barrett, Spencer C H; Yakimowski, Sarah B; Field, David L; Pickup, Melinda

    2010-08-27

    In many angiosperm species, populations are reproductively subdivided into distinct sexual morphs including females, males and hermaphrodites. Sexual polymorphism is maintained by frequency-dependent selection, leading to predictable sex ratios at equilibrium. Charles Darwin devoted much of his book 'The Different Forms of Flowers on Plants of the Same Species' (1877) to investigating plant sexual polymorphisms and laid the foundation for many problems addressed today by integrating theory with empirical studies of the demography and genetics of populations. Here, we summarize our recent work on the ecological and genetic mechanisms influencing variation in sex ratios and their implications for evolutionary transitions among sexual systems. We present the results of a survey of sex ratios from 126 species from 47 angiosperm families and then address two general problems using examples from diverse angiosperm taxa: (i) the mechanisms governing biased sex ratios in dioecious species; (ii) the origins and maintenance of populations composed of females, males and hermaphrodites. Several themes are emphasized, including the importance of non-equilibrium conditions, the role of life history and demography in affecting sex ratios, the value of theory for modelling the dynamics of sex ratio variation, and the utility of genetic markers for investigating evolutionary processes in sexually polymorphic plant populations.

  2. Rapid evolution accelerates plant population spread in fragmented experimental landscapes.

    PubMed

    Williams, Jennifer L; Kendall, Bruce E; Levine, Jonathan M

    2016-07-29

    Predicting the speed of biological invasions and native species migrations requires an understanding of the ecological and evolutionary dynamics of spreading populations. Theory predicts that evolution can accelerate species' spread velocity, but how landscape patchiness--an important control over traits under selection--influences this process is unknown. We manipulated the response to selection in populations of a model plant species spreading through replicated experimental landscapes of varying patchiness. After six generations of change, evolving populations spread 11% farther than nonevolving populations in continuously favorable landscapes and 200% farther in the most fragmented landscapes. The greater effect of evolution on spread in patchier landscapes was consistent with the evolution of dispersal and competitive ability. Accounting for evolutionary change may be critical when predicting the velocity of range expansions. PMID:27471303

  3. Rapid evolution accelerates plant population spread in fragmented experimental landscapes.

    PubMed

    Williams, Jennifer L; Kendall, Bruce E; Levine, Jonathan M

    2016-07-29

    Predicting the speed of biological invasions and native species migrations requires an understanding of the ecological and evolutionary dynamics of spreading populations. Theory predicts that evolution can accelerate species' spread velocity, but how landscape patchiness--an important control over traits under selection--influences this process is unknown. We manipulated the response to selection in populations of a model plant species spreading through replicated experimental landscapes of varying patchiness. After six generations of change, evolving populations spread 11% farther than nonevolving populations in continuously favorable landscapes and 200% farther in the most fragmented landscapes. The greater effect of evolution on spread in patchier landscapes was consistent with the evolution of dispersal and competitive ability. Accounting for evolutionary change may be critical when predicting the velocity of range expansions.

  4. Neighbourhood association of Cortaderia selloana invasion, soil properties and plant community structure in Mediterranean coastal grasslands

    NASA Astrophysics Data System (ADS)

    Domènech, Roser; Vilà, Montserrat; Gesti, Josep; Serrasolses, Isabel

    2006-03-01

    Invasion by alien species is threatening the conservation of native plant communities and the integrity of ecosystems. To gain a better understanding of such impacts, many studies have examined the traits that make alien species successful invaders as well as the factors involved in community invasibility. However, it is necessary to link invader effects on community structure and on ecosystem processes in order to unravel the mechanisms of impact. Cortaderia selloana is a perennial grass native to South America that is invading abandoned agricultural lands close to coastal human settlements in Catalonia (NE Spain). In invaded pastures, we examined the association between C. selloana invasion, soil properties and vegetation structure changes in pastures, comparing the neighbourhood area of influence of C. selloana with areas far from C. selloana. Areas under the influence of C. selloana had lower total soil nitrogen values and higher C/N values than in areas far from C. selloana. Furthermore, the areas affected by C. selloana had lower species, family and life form richness and diversity, and less plant cover. In addition, C. selloana also increased the vertical vegetation structure and changed species composition (only 44% similarity between invaded and non-invaded areas). Our results point out that C. selloana has an effect on its neighbourhood leading to an increase in small-scale variability within invaded fields.

  5. Effects of diesel and kerosene on germination and growth of coastal wetland plant species.

    PubMed

    Kim, Kee Dae

    2014-11-01

    This study aims to investigate effects of diesel and kerosene on seed germination and seedling growth among coastal wetland plants to select species that can be used for the restoration and revegetation of oil-polluted habitats. Tests on 51 species were performed in Petri dishes containing 0 %, 6 %, 12 %, and 18 % diesel, 20 %, 40 %, and 60 % kerosene; each treatment combination was replicated five times with 20 seeds in each Petri dish. All dishes were held in a growth chamber with 20°C day of 12 h/15°C night of 12 h in 80 % humidity for 20 days for calculating the germination percentage, seedling weight, and seedling vitality. The germination percentage of Rumex stenophyllus decreased significantly in diesel and kerosene treatments. The weights of seedlings treated with diesel and kerosene either increased or decreased in comparison with controls depending on the species. Vitality percentage values were high for seedlings of Chenopodium ficifolium. Thus, herbaceous plant responses to oil treatments are species-specific. PMID:25138038

  6. Effects of diesel and kerosene on germination and growth of coastal wetland plant species.

    PubMed

    Kim, Kee Dae

    2014-11-01

    This study aims to investigate effects of diesel and kerosene on seed germination and seedling growth among coastal wetland plants to select species that can be used for the restoration and revegetation of oil-polluted habitats. Tests on 51 species were performed in Petri dishes containing 0 %, 6 %, 12 %, and 18 % diesel, 20 %, 40 %, and 60 % kerosene; each treatment combination was replicated five times with 20 seeds in each Petri dish. All dishes were held in a growth chamber with 20°C day of 12 h/15°C night of 12 h in 80 % humidity for 20 days for calculating the germination percentage, seedling weight, and seedling vitality. The germination percentage of Rumex stenophyllus decreased significantly in diesel and kerosene treatments. The weights of seedlings treated with diesel and kerosene either increased or decreased in comparison with controls depending on the species. Vitality percentage values were high for seedlings of Chenopodium ficifolium. Thus, herbaceous plant responses to oil treatments are species-specific.

  7. Mapping an invasive plant, Phragmites australis, in coastal wetlands using the EO-1 Hyperion hyperspectral sensor

    USGS Publications Warehouse

    Pengra, B.W.; Johnston, C.A.; Loveland, T.R.

    2007-01-01

    Mapping tools are needed to document the location and extent of Phragmites australis, a tall grass that invades coastal marshes throughout North America, displacing native plant species and degrading wetland habitat. Mapping Phragmites is particularly challenging in the freshwater Great Lakes coastal wetlands due to dynamic lake levels and vegetation diversity. We tested the applicability of Hyperion hyperspectral satellite imagery for mapping Phragmites in wetlands of the west coast of Green Bay in Wisconsin, U.S.A. A reference spectrum created using Hyperion data from several pure Phragmites stands within the image was used with a Spectral Correlation Mapper (SCM) algorithm to create a raster map with values ranging from 0 to 1, where 0 represented the greatest similarity between the reference spectrum and the image spectrum and 1 the least similarity. The final two-class thematic classification predicted monodominant Phragmites covering 3.4% of the study area. Most of this was concentrated in long linear features parallel to the Green Bay shoreline, particularly in areas that had been under water only six years earlier when lake levels were 66??cm higher. An error matrix using spring 2005 field validation points (n = 129) showed good overall accuracy-81.4%. The small size and linear arrangement of Phragmites stands was less than optimal relative to the sensor resolution, and Hyperion's 30??m resolution captured few if any pure pixels. Contemporary Phragmites maps prepared with Hyperion imagery would provide wetland managers with a tool that they currently lack, which could aid attempts to stem the spread of this invasive species. ?? 2006 Elsevier Inc. All rights reserved.

  8. Population Genomics for Understanding Adaptation in Wild Plant Species.

    PubMed

    Weigel, Detlef; Nordborg, Magnus

    2015-01-01

    Darwin's theory of evolution by natural selection is the foundation of modern biology. However, it has proven remarkably difficult to demonstrate at the genetic, genomic, and population level exactly how wild species adapt to their natural environments. We discuss how one can use large sets of multiple genome sequences from wild populations to understand adaptation, with an emphasis on the small herbaceous plant Arabidopsis thaliana. We present motivation for such studies; summarize progress in describing whole-genome, species-wide sequence variation; and then discuss what insights have emerged from these resources, either based on sequence information alone or in combination with phenotypic data. We conclude with thoughts on opportunities with other plant species and the impact of expected progress in sequencing technology and genome engineering for studying adaptation in nature. PMID:26436459

  9. [Prevention and control of invaded plant Phytolacca americana in sandy coastal shelter forests].

    PubMed

    Fu, Jun-Peng; Li, Chuan-Rong; Xu, Jing-Wei; Cheng, Wan-Li; Song, Rui-Feng; Liu, Yun

    2012-04-01

    The invasion of Phytolacca americana has produced serious damage to the coastal shelter forests in China. In order to search for the effective measures for controlling the growth of P. americana, several plots in the Robinia pseudoacacia forest invaded by P. Americana to the relatively same extent were installed, and the measures of physical control (mowing and root cutting) and chemical control (spraying herbicides) were adopted to control the invasion of P. Americana, taking the site with good growth of Amorpha fruticosa in the forest and without any control measures as the comparison. The results showed that mowing could rapidly decrease the growth of P. americana in the same year, but the growth recovered in the next year. 1/3 root cutting only reduced the aboveground growth of P. americana in the same year, and the growth was recovered in the third year; while 2/3 root cutting and whole cutting could effectively cleanup the P. americana plants all the time. Spraying quizalofop-p-ethyl and paraquat only killed the aboveground part of P. americana in the same year, but this part of P. americana recovered to the normal level in the next year; while spraying 45 g x L(-1) of glyphosate could completely kill the whole P. americana plants till the third year. The growth of P. americana at the site with good growth of A. fruticosa and without any control measures maintained at a low level all the time, suggesting that planting A. fruticosa in R. pseudoacacia forest would be an effective approach to prevent and control the P. americana invasion.

  10. Effects of host-plant population size and plant sex on a specialist leaf-miner

    NASA Astrophysics Data System (ADS)

    Bañuelos, María-José; Kollmann, Johannes

    2011-03-01

    Animal population density has been related to resource patch size through various hypotheses such as those derived from island biogeography and resource concentration theory. This theoretical framework can be also applied to plant-herbivore interactions, and it can be modified by the sex of the host-plant, and density-dependent relationships. Leaf-miners are specialised herbivores that leave distinct traces on infested leaves in the form of egg scars, mines, signs of predation and emergence holes. This allows the life cycle of the insect to be reconstructed and the success at the different stages to be estimated. The main stages of the leaf-miner Phytomyza ilicis were recorded in eleven populations of the evergreen host Ilex aquifolium in Denmark. Survival rates were calculated and related to population size, sex of the host plant, and egg and mine densities. Host population size was negatively related to leaf-miner prevalence, with larger egg and mine densities in small populations. Percentage of eggs hatching and developing into mines, and percentage of adult flies emerging from mines also differed among host populations, but were not related to population size or host cover. Feeding punctures left by adults were marginally more frequent on male plants, whereas egg scars and mines were more common on females. Overall survival rate from egg stage to adult emergence was higher on female plants. Egg density was negatively correlated with hatching, while mine density was positively correlated with emergence of the larvae. The inverse effects of host population size were not in line with predictions based on island biogeography and resource concentration theory. We discuss how a thorough knowledge of the immigration behaviour of this fly might help to understand the patterns found.

  11. Naturalization of plant populations: the role of cultivation and population size and density.

    PubMed

    Minton, Mark S; Mack, Richard N

    2010-10-01

    Field experimentation is required to assess the effects of environmental stochasticity on small immigrant plant populations-a widely understood but largely unexplored aspect of predicting any species' likelihood of naturalization and potential invasion. Cultivation can mitigate this stochasticity, although the outcome for a population under cultivation nevertheless varies enormously from extinction to persistence. Using factorial experiments, we investigated the effects of population size, density, and cultivation (irrigation) on the fate of founder populations for four alien species with different life history characteristics (Echinochloa frumentacea, Fagopyrum esculentum, Helianthus annuus, and Trifolium incarnatum) in eastern Washington, USA. The fate of founder populations was highly variable within and among the 3 years of experimentation and illustrates the often precarious environment encountered by plant immigrants. Larger founder populations produced more seeds (P < 0.001); the role of founder population size, however, differed among years. Irrigation resulted in higher percent survival (P < 0.001) and correspondingly larger net reproductive rate (R(0); P < 0.001). But the minimum level of irrigation for establishment, R(0) > 1, differed among years and species. Sowing density did not affect the likelihood of establishment for any species. Our results underscore the importance of environmental stochasticity in determining the fate of founder populations and the potential of cultivation and large population size in countering the long odds against naturalization. Any implementation of often proposed post-immigration field trials to assess the risk of an alien species becoming naturalized, a requisite step toward invasion, will need to assess different sizes of founder populations and the extent and character of cultivation (intentional or unintentional) that the immigrants might receive.

  12. Bloom development and transport of toxic Alexandrium fundyense populations within a coastal plume in the Gulf of Maine

    NASA Astrophysics Data System (ADS)

    Keafer, Bruce A.; Churchill, James H.; McGillicuddy, Dennis J.; Anderson, Donald M.

    2005-09-01

    Toxic Alexandrium fundyense blooms in the western Gulf of Maine (GOM) are a common occurrence, causing paralytic shellfish poisoning (PSP) each spring. In contrast, high A. fundyense abundances and PSP toxicity commonly occur later in the summer in the eastern GOM and the Bay of Fundy. The objective of this study was to determine if the bloom dynamics of the two areas are linked early in the bloom season when initial outbreaks of toxicity are reported. A. fundyense cell abundance and hydrographic data were acquired during three cruises in May and June, 2001 spanning areas of the western and eastern GOM. Surface drifters also were released into the nearshore coastal flow of the eastern GOM. These data provide a coherent view of the springtime evolution of toxic A. fundyense blooms in the GOM and the influence of both small- and large-scale circulation. Early in the bloom season (May), the bulk of the A. fundyense population was consistently observed in an alongshore band of cells in the eastern GOM associated with relatively low-salinity water (<32) that likely originated from inputs further upstream in the coastal flow, predominantly the St. John River in the Bay of Fundy. At that time, the western GOM was virtually devoid of cells. In June, the population was bifurcated, with one branch extending alongshore into the western GOM and the other into the offshore waters of the interior GOM. This pattern was consistent with circulation models of the coastal GOM that unambiguously revealed a bifurcated flow with the branch nearest the coast directed alongshore to the western GOM. The most significant finding of this study is that A. fundyense populations along the eastern Maine coast were delivered along an "inside track" relative to the core of the eastern segment of the Maine Coastal Current. The transport pathway carried cells across the mouth of Penobscot Bay and into the western GOM coincident with outbreaks of nearshore PSP toxicity. The transport is influenced by

  13. Future riverine nitrogen export to US coastal regions: Prospects for improving water quality considering population growth

    EPA Science Inventory

    Excess nitrogen (N) in the environment degrades ecosystems and adversely affects human health. Here we examine predictions of contemporary (2000) and future (2030) coastal N loading in the continental US by the Nutrient Export from WaterSheds (NEWS) model. Future output is from s...

  14. Future riverine nitrogen export to US coastal regions: Prospects for improving water quality amid population growth.

    EPA Science Inventory

    Excess nitrogen (N) in the environment degrades ecosystems and adversely affects human health. Here we examine predictions of contemporary (2000) and future (2030) coastal N loading in the continental US by the Nutrient Export from WaterSheds (NEWS) model. Future scenarios were b...

  15. Nuclear power plants and natural populations of Mexican Drosophila.

    PubMed

    Levine, L; Olvera, O; Rockwell, R F; de la Rosa, M E; Guzmán, J

    1989-01-01

    With the worldwide proliferation of nuclear power plants has come the need to study the biological effects of the operation of the reactors on surrounding populations. We have begun a long-term study of the sibling species Drosophila melanogaster and D. simulans in the area of Laguna Verde in the state of Veracruz in Mexico. Laguna Verde, on the Gulf of Mexico about 75 km north of the city of Veracruz, is the location of the country's first nuclear power plant. This plant has not yet gone "on-line." The species have been collected from two sites, one of which is south of the reactor and is in the path of the prevailing north to south wind flow. The other collecting site is west of the plant. The species are being studied for the following: species frequency, desiccation resistance, vagility, proportion of larvae pupating, pupation height, and egg to adult survival after irradiation. To date we have noted both spatial and seasonal differences in a number of these characteristics. The information being gathered will serve as base-line data for monitoring the future operation of the nuclear power plant.

  16. Nuclear power plants and natural populations of Mexican Drosophila.

    PubMed

    Levine, L; Olvera, O; Rockwell, R F; de la Rosa, M E; Guzmán, J

    1989-01-01

    With the worldwide proliferation of nuclear power plants has come the need to study the biological effects of the operation of the reactors on surrounding populations. We have begun a long-term study of the sibling species Drosophila melanogaster and D. simulans in the area of Laguna Verde in the state of Veracruz in Mexico. Laguna Verde, on the Gulf of Mexico about 75 km north of the city of Veracruz, is the location of the country's first nuclear power plant. This plant has not yet gone "on-line." The species have been collected from two sites, one of which is south of the reactor and is in the path of the prevailing north to south wind flow. The other collecting site is west of the plant. The species are being studied for the following: species frequency, desiccation resistance, vagility, proportion of larvae pupating, pupation height, and egg to adult survival after irradiation. To date we have noted both spatial and seasonal differences in a number of these characteristics. The information being gathered will serve as base-line data for monitoring the future operation of the nuclear power plant. PMID:2591737

  17. Seasonal occurrence and population structure of the broadnose sevengill shark Notorynchus cepedianus in coastal habitats of south-east Tasmania.

    PubMed

    Barnett, A; Stevens, J D; Frusher, S D; Semmens, J M

    2010-11-01

    Research longline sampling was conducted seasonally from December 2006 to February 2009 to investigate the occurrence and population structure of the broadnose sevengill shark Notorynchus cepedianus in coastal areas of south-east Tasmania. Notorynchus cepedianus showed a consistent temporal trend in seasonal occurrence in Norfolk Bay characterized by high abundances in summer to near absence in winter. This pattern was less pronounced in the Derwent Estuary, where fish were still caught during winter. The absence of smaller total length (L(T) ) classes (<80 cm) from the catches suggests that N. cepedianus are not using these coastal habitats as nursery areas. Of the 457 individuals tagged, 68 (15%) were recaptured. Time at liberty ranged from 6 days to almost 4 years and all but one of the recaptures were caught in its original tagging location, suggesting site fidelity. The large number of N. cepedianus in these coastal systems over summer indicates that these areas are important habitats for this species and that N. cepedianus may have a significant influence on community dynamics through both direct and indirect predator-prey interactions. PMID:21078027

  18. Secondary contact and changes in coastal habitat availability influence the nonequilibrium population structure of a salmonid (Oncorhynchus keta)

    PubMed Central

    Petrou, E L; Hauser, L; Waples, R S; Seeb, J E; Templin, W D; Gomez-Uchida, D; Seeb, L W

    2013-01-01

    Numerous empirical studies have reported lack of migration–drift equilibrium in wild populations. Determining the causes of nonequilibrium population structure is challenging because different evolutionary processes acting at a variety of spatiotemporal scales can produce similar patterns. Studies of contemporary populations in northern latitudes suggest that nonequilibrium population structure is probably caused by recent colonization of the region after the last Pleistocene ice age ended ∼13 000 years ago. The chum salmon's (Oncorhynchus keta) range was fragmented by dramatic environmental changes during the Pleistocene. We investigated the population structure of chum salmon on the North Alaska Peninsula (NAP) and, using both empirical data and simulations, evaluated the effects of colonization timing and founder population heterogeneity on patterns of genetic differentiation. We screened 161 single nucleotide polymorphisms and found evidence of nonequilibrium population structure when the slope of the isolation-by-distance relationship was examined at incremental spatial scales. In addition, simulations suggested that this pattern closely matched models of recent colonization of the NAP by secondary contact. Our results agree with geological and archaeological data indicating that the NAP was a dynamic landscape that may have been more recently colonized than during the last deglaciation because of dramatic changes in coastal hydrology over the last several thousand years. PMID:24118255

  19. Planting geometry and plant population affect dryland maize grain yield and harvest index

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Water for dryland grain production in the Texas panhandle is limited. Agronomic practices such as reduction in plant population or change in sowing time may help increase maize (Zea mays L.) yield potential. Tiller formation under dryland conditions leads to more vegetative growth and reduced yield....

  20. Population Structure of an Invasive Parthenogenetic Gastropod in Coastal Lakes and Estuaries of Northern KwaZulu-Natal, South Africa

    PubMed Central

    Miranda, Nelson A. F.; Perissinotto, Renzo; Appleton, Christopher C.

    2011-01-01

    Background Estuaries and coastal lakes receive little attention despite being heavily invaded by non-indigenous invasive species (NIS). In these situations, studies of population dynamics in invaded habitats can provide valuable insights into how NIS interact with new environments. Tarebia granifera is a prosobranch gastropod from south-east Asia which has invaded other sub-tropical parts of the world. This study addresses whether a small number of key environmental factors influences gastropod communities, and specifically how the population density and size structure of T. granifera were influenced by environmental change in estuaries and coastal lakes in southern Africa. Methodology/Principal Findings T. granifera's density, number of brooded juveniles and size structure were measured at the St. Lucia Estuary, Mgobozeleni Estuary, Lake Sibaya and Lake Nhlange. Size structure was classified according to shell height (SH). All dissected individuals were found to be female and free from trematode infection. Salinity, water depth, temperature, and pH were the main factors correlated with population density of gastropod communities. T. granifera often reached densities well over 1000 ind. m−2, displacing indigenous gastropods and becoming a dominant component of the benthic community. T. granifera successfully invaded estuaries despite frequent exposure to high salinity and desiccation, which could together eliminate >97% of the population. The persistence of T. granifera was ensured due to its high fecundity and the environmental tolerance of large adults (20–30 mm SH) which carried an average of 158±12.8 SD brooded juveniles. Repeat introductions were not essential for the success of this parthenogenetic NIS. Conclusion/Significance There is a need for a broader study on the reproductive biology of T. granifera (including the previously overlooked “brood pouch ecology”), which affects population dynamics and may be relevant to other parthenogenetic NIS

  1. Carbon and nitrogen stable isotopes in coastal benthic populations under multiple organic enrichment sources.

    PubMed

    Sampaio, Leandro; Rodrigues, Ana Maria; Quintino, Victor

    2010-10-01

    In a dispersive coastal area under multiple organic enrichment sources, stable isotopes were used to trace organic sources of carbon and nitrogen in sediments and benthic macrofauna. The Bivalve Abra alba and the Polychaetes Nephtys sp. and Pectinaria (Lagis) koreni were reliable indicators of the input of terrestrial-derived organic matter into this coastal area, either originated in outfall sewage discharges or estuarine outflow. An isotopic depletion was observed up to 250 m from the outfall branches, much stronger in the biota than in the sediments. An enrichment of 2 ‰ in the sediments, and 2-6 ‰ in the species was noticed in sites located farther than 1500 m from the outfall. Depositivores and carnivores/omnivores gave the best picture of the extension of the sewage dispersion and incorporation into the food web.

  2. Population and community ecology of the rare plant amsinckia grandiflora

    SciTech Connect

    Carlsen, T.M.

    1996-11-01

    Research was conducted between the fall of 1992 and the spring on the population and community ecology of the rare annual plant, Amsinckia glandiflora (Gray) Kleeb. ex Greene (Boraginaceae). The research goal was to investigate the causes of the species rarity, data useful to restorative efforts. The work focused on the examination of competitive suppression by exotic annual grasses; comparisons with common, weedy congener; and the role of litter cover and seed germination and seedling establishment. Annual exotic grasses reduced A. grandiflora reproductive output to a greater extent than did the native perennial bunch grass.

  3. Coastal, valley, and oasis interaction: impact on the evolution of ancient populations in the South Central Andes.

    PubMed

    Varela, Héctor H; Cocilovo, Jose A; Fuchs, María L; O'Brien, Tyler G

    2014-12-01

    The existing biocultural links are analyzed among ancient inhabitants of the Cochabamba valleys (Bolivia) from the Formative and Tiwanaku periods, coastal and inland Azapa region (Chile) from the Late Archaic to the Late periods, and the Atacama Desert oases (Chile) from the Formative period to the time of European contact. Craniometric information obtained from a sample of 565 individuals from different sites of the studied regions was evaluated using methods derived from quantitative genetics and multivariate statistical analysis techniques. It is shown that during the Formative and Tiwanaku periods inhabitants of the Cochabamba valleys maintained contact with the population of northern Chile. This contact was more fluid with the people from the interior valley of Azapa than it was with the settlers of San Pedro Atacama (SPA). An important biological affinity in the Late Period between the inhabitants of the Azapa valley and the late SPA groups is also examined. The Late-Inca Catarpe SPA sample shows a broad genetic variability shared with the majority of the groups studied. The results reaffirm the differences between the coastal and interior Azapa valley groups and strengthen the hypothesis of two pathways to populating the south central Andean area. The divergence observed among subpopulations can be explained by the spatiotemporal dispersion between them, genetic drift dispersion compensated by the action of gene flow, and cultural norms that regulate within group mating. PMID:25234247

  4. Seasonal timing of first rain storms affects rare plant population dynamics

    USGS Publications Warehouse

    Levine, J.M.; McEachern, A.K.; Cowan, C.

    2011-01-01

    A major challenge in forecasting the ecological consequences of climate change is understanding the relative importance of changes to mean conditions vs. changes to discrete climatic events, such as storms, frosts, or droughts. Here we show that the first major storm of the growing season strongly influences the population dynamics of three rare and endangered annual plant species in a coastal California (USA) ecosystem. In a field experiment we used moisture barriers and water addition to manipulate the timing and temperature associated with first major rains of the season. The three focal species showed two- to fivefold variation in per capita population growth rates between the different storm treatments, comparable to variation found in a prior experiment imposing eightfold differences in season-long precipitation. Variation in germination was a major demographic driver of how two of three species responded to the first rains. For one of these species, the timing of the storm was the most critical determinant of its germination, while the other showed enhanced germination with colder storm temperatures. The role of temperature was further supported by laboratory trials showing enhanced germination in cooler treatments. Our work suggests that, because of species-specific cues for demographic transitions such as germination, changes to discrete climate events may be as, if not more, important than changes to season-long variables.

  5. Adaptation to sea level rise: does local adaptation influence the demography of coastal fish populations?

    PubMed

    Purcell, K M; Klerks, P L; Leberg, P L

    2010-10-01

    This study compared the growth of two western mosquitofish Gambusia affinis populations that were previously demonstrated to have genetic adaptations that increased survival under lethal salinity exposures. The objective was to evaluate how genetic adaptations to lethal salinity stress affect population demography when exposed to sublethal salinity stress. Results indicate that chronic salinity exposure had a generally negative impact on population size, but fish originating from one of the two populations established with fish from a brackish site exhibited an increase in population size. Saltwater intrusion seems to result in reduced population size for most populations. Some populations inhabiting more saline sites, however, may develop localized adaptations, mitigating the consequences of increased salinity on population productivity. PMID:21039500

  6. Genetic Population Structure of Tectura paleacea: Implications for the Mechanisms Regulating Population Structure in Patchy Coastal Habitats

    PubMed Central

    Begovic, Emina; Lindberg, David R.

    2011-01-01

    The seagrass limpet Tectura paleacea (Gastropoda; Patellogastropoda) belongs to a seagrass obligate lineage that has shifted from the Caribbean in the late Miocene, across the Isthmus of Panama prior to the closing of the Panamanian seaway, and then northward to its modern Baja California – Oregon distribution. To address whether larval entrainment by seagrass beds contributes to population structuring, populations were sampled at six California/Oregon localities approximately 2 degrees latitude apart during two post-settlement periods in July 2002 and June 2003. Partial cytochrome oxidase b (Cytb) sequences were obtained from 20 individuals (10 per year) from each population in order to determine the levels of population subdivision/connectivity. From the 120 individuals sequenced, there were eighty-one unique haplotypes, with the greatest haplotype diversity occurring in southern populations. The only significant genetic break detected was consistent with a peri-Point Conception (PPC) biogeographic boundary while populations north and south of Point Conception were each panmictic. The data further indicate that populations found south of the PPC biogeographic boundary originated from northern populations. This pattern of population structure suggests that seagrass patches are not entraining the larvae of T. paleacea by altering flow regimes within their environment; a process hypothesized to produce extensive genetic subdivision on fine geographic scales. In contrast to the haplotype data, morphological patterns vary significantly over very fine geographic scales that are inconsistent with the observed patterns of genetic population structure, indicating that morphological variation in T. paleacea might be attributed to differential ecophenotypic expression in response to local habitat variability throughout its distribution. These results suggest that highly localized conservation efforts may not be as effective as large-scale conservation efforts in near

  7. Soil microbes and plant invasions—how soil-borne pathogens regulate plant populations and affect plant invasions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Exotic plant invaders are a major global threat to biodiversity and ecosystem function. Here I present multiple lines of evidence suggesting that soil microbial communities affect the population growth rates of Prunus serotina in its native range and affect its invasiveness abroad. Research often ...

  8. Bulk elastic moduli and solute potentials in leaves of freshwater, coastal and marine hydrophytes. Are marine plants more rigid?

    PubMed

    Touchette, Brant W; Marcus, Sarah E; Adams, Emily C

    2014-03-28

    Bulk modulus of elasticity (ɛ), depicting the flexibility of plant tissues, is recognized as an important component in maintaining internal water balance. Elevated ɛ and comparatively low osmotic potential (Ψπ) may work in concert to effectively maintain vital cellular water content. This concept, termed the 'cell water conservation hypothesis', may foster tolerance for lower soil-water potentials in plants while minimizing cell dehydration and shrinkage. Therefore, the accumulation of solutes in marine plants, causing decreases in Ψπ, play an important role in plant-water relations and likely works with higher ɛ to achieve favourable cell volumes. While it is generally held that plants residing in marine systems have higher leaf tissue ɛ, to our knowledge no study has specifically addressed this notion in aquatic and wetland plants residing in marine and freshwater systems. Therefore, we compared ɛ and Ψπ in leaf tissues of 38 freshwater, coastal and marine plant species using data collected in our laboratory, with additional values from the literature. Overall, 8 of the 10 highest ɛ values were observed in marine plants, and 20 of the lowest 25 ɛ values were recorded in freshwater plants. As expected, marine plants often had lower Ψπ, wherein the majority of marine plants were below -1.0 MPa and the majority of freshwater plants were above -1.0 MPa. While there were no differences among habitat type and symplastic water content (θsym), we did observe higher θsym in shrubs when compared with graminoids, and believe that the comparatively low θsym observed in aquatic grasses may be attributed to their tendency to develop aerenchyma that hold apoplastic water. These results, with few exceptions, support the premise that leaf tissues of plants acclimated to marine environments tend to have higher ɛ and lower Ψπ, and agree with the general tenets of the cell water conservation hypothesis.

  9. Population structure of a vector-borne plant parasite.

    PubMed

    Yule, Kelsey M; Koop, Jennifer A H; Alexandre, Nicolas M; Johnston, Lauren R; Whiteman, Noah K

    2016-07-01

    Parasites are among the most diverse groups of life on Earth, yet complex natural histories often preclude studies of their speciation processes. The biology of parasitic plants facilitates in situ collection of data on both genetic structure and the mechanisms responsible for that structure. Here, we studied the role of mating, dispersal and establishment in host race formation of a parasitic plant. We investigated the population genetics of a vector-borne desert mistletoe (Phoradendron californicum) across two legume host tree species (Senegalia greggii and Prosopis velutina) in the Sonoran desert using microsatellites. Consistent with host race formation, we found strong host-associated genetic structure in sympatry, little genetic variation due to geographic site and weak isolation by distance. We hypothesize that genetic differentiation results from differences in the timing of mistletoe flowering by host species, as we found initial flowering date of individual mistletoes correlated with genetic ancestry. Hybrids with intermediate ancestry were detected genetically. Individuals likely resulting from recent, successful establishment events following dispersal between the host species were detected at frequencies similar to hybrids between host races. Therefore, barriers to gene flow between the host races may have been stronger at mating than at dispersal. We also found higher inbreeding and within-host individual relatedness values for mistletoes on the more rare and isolated host species (S. greggii). Our study spanned spatial scales to address how interactions with both vectors and hosts influence parasitic plant structure with implications for parasite virulence evolution and speciation.

  10. Effects of Posidonia oceanica beach-cast on germination, growth and nutrient uptake of coastal dune plants.

    PubMed

    Del Vecchio, Silvia; Marbà, Núria; Acosta, Alicia; Vignolo, Clara; Traveset, Anna

    2013-01-01

    Seagrass meadows play an important role in marine ecosystems. A part of seagrass production is also exported to adjacent coastal terrestrial systems, possibly influencing their functioning. In this work we experimentally analyzed the effect of Posidonia oceanica beach-cast on plant germination, growth, and nutrient uptake of two plant species (Cakile maritima and Elymus farctus) that grow on upper beaches and fore dunes along the Mediterranean coasts. We compared plants growing in simple sand (control) with those growing in a substrate enriched with P. oceanica wrack (treatment) in laboratory. P. oceanica wrack doubled the N substrate pool and kept the substrate humid. Plants growing in the treated substrate grew faster, were twice as large as those growing in the control substrate, while tissues were enriched in N and P (Cakile by the 1.3 fold in N and 2.5 fold in P; Elymus by 1.5 fold in N and 2 fold in P). Our results suggest a positive effect of seagrass litter for the enhancing of dune species, highlighting its role for the conservation of coastal dune ecosystems.

  11. Bulk elastic moduli and solute potentials in leaves of freshwater, coastal and marine hydrophytes. Are marine plants more rigid?

    PubMed Central

    Touchette, Brant W.; Marcus, Sarah E.; Adams, Emily C.

    2014-01-01

    Bulk modulus of elasticity (ɛ), depicting the flexibility of plant tissues, is recognized as an important component in maintaining internal water balance. Elevated ɛ and comparatively low osmotic potential (Ψπ) may work in concert to effectively maintain vital cellular water content. This concept, termed the ‘cell water conservation hypothesis’, may foster tolerance for lower soil-water potentials in plants while minimizing cell dehydration and shrinkage. Therefore, the accumulation of solutes in marine plants, causing decreases in Ψπ, play an important role in plant–water relations and likely works with higher ɛ to achieve favourable cell volumes. While it is generally held that plants residing in marine systems have higher leaf tissue ɛ, to our knowledge no study has specifically addressed this notion in aquatic and wetland plants residing in marine and freshwater systems. Therefore, we compared ɛ and Ψπ in leaf tissues of 38 freshwater, coastal and marine plant species using data collected in our laboratory, with additional values from the literature. Overall, 8 of the 10 highest ɛ values were observed in marine plants, and 20 of the lowest 25 ɛ values were recorded in freshwater plants. As expected, marine plants often had lower Ψπ, wherein the majority of marine plants were below −1.0 MPa and the majority of freshwater plants were above −1.0 MPa. While there were no differences among habitat type and symplastic water content (θsym), we did observe higher θsym in shrubs when compared with graminoids, and believe that the comparatively low θsym observed in aquatic grasses may be attributed to their tendency to develop aerenchyma that hold apoplastic water. These results, with few exceptions, support the premise that leaf tissues of plants acclimated to marine environments tend to have higher ɛ and lower Ψπ, and agree with the general tenets of the cell water conservation hypothesis. PMID:24876296

  12. High Biomass Specific Methyl Halide Production Rates of Selected Coastal Marsh Plants and its Relationship to Halide Content

    NASA Astrophysics Data System (ADS)

    Manley, S. L.; Wang, N.; Cicerone, R. J.

    2002-12-01

    Salt tolerant coastal marsh plants (halophytes) have previously been shown to be globally significant producers of methyl chloride (MeCl) and methyl bromide (MeBr). While halophytes are known for their high salt content, there are few reports of their halide content. Our studies have attempted to quantify biomass specific methyl halide (MeX) production from these plants and relate it to tissue halide levels. MeCl, MeBr and MeI production rates and tissue chloride, bromide and iodide concentrations from selected coastal marsh plants were measured for nearly a year. Certain halophyte species (i.e. Batis and Frankenia) have very high summer biomass specific production rates for MeX (e.g. Frankenia: 1 ug MeCl /gfwt/hr; 80 ng MeBr/gfwt/hr; 8 ng MeI/gfwt/hr). These rates of MeCl and MeBr production are much higher than those from other coastal marsh plants or seaweeds. Plant halide levels remain high throughout the year, while MeX production peaks at a high level in mid summer falling to low winter rates. This implies a linkage to plant growth. Higher levels of chloride and bromide were seen in the fleshy marsh plants such as Batis (saltwort, approximately 20 percent dry wt chloride, 0.4 percent dry wt bromide) and Salicornia (pickleweed) than in the others such as Frankenia (alkali heath) approx 7 percent dry wt chloride, 0.1 percent dry wt bromide) or Spartina (cordgrass). No such trend was seen for iodide, which ranged from 4 - 10 ppm. Calculations show the daily halide losses from MeX production are far less than the variability in tissue halide content. MeX production removes a small fraction of the total tissue halide from these plants suggesting that MeX production is not a mechanism used by these species to control internal halide levels. Saltwort cell-free extracts incubated with bromide or iodide in the presence of S-adenosyl-L-methionine (SAM) produced the corresponding MeX. MeBr production was inhibited by caffeic acid the substrate of lignin-specific O

  13. PRIAMO project: a feasibility study on Sicilian sites for sea power plants in coastal waters

    NASA Astrophysics Data System (ADS)

    Ribotti, A.; Borghini, M.; Cucco, A.; De Domenico, E.; Dibenedetto, V.; Fazioli, L.; Genovese, L.; Iaria, G.; Olita, A.; Raffa, F.; Schroeder, K.; Sorgente, R.; Spanò, N.

    2012-04-01

    The increasing demand for renewable energy sources has recently favoured the exploitation of wind energy and photovoltaic, with strong repercussions on the landscape due to the visual impact of wind turbines and of the photovoltaic panels. A policy protecting the landscape suggests to focus on innovative solutions that enable the use of renewable energy and a low visual impact. This can be done with extensive offshore diving equipment installed in the sea, formed by turbines that use ocean currents to produce electric energy. The accommodation at sea, as well as offering greater availability of sites, has the advantage of giving a better and relatively constant resource with maximum efficiency and productivity. The international scenario suggests the need to identify sites potentially suitable and safe for energy use, placed at a distance from the coast at depths with bathymetric characteristics that make the power plant installation safe and technologically and economically feasible. In this context, the project PRIAMO (Planning, Research and Innovation in a Oriented Marine Environment), funded by the European Commission through the Sicilian Regional Operational Programme (POR), aims to verify the potential suitability of two Sicilian coastal sites, i.e. the Strait of Messina and a stretch of coast near Capo Granitola (Strait of Sicily). The work is realised with a view to the exploitation of marine currents that will be studied through the use of existing or new numerical models from the open sea to the coastal scale, then evaluating its cost-effectiveness in collaboration with Atlantis Resources Corp. Pte. Ltd (UK), European manufacturer of underwater turbines. An environmental study is done through monitoring and remediation techniques to assess the potential size of the foundation structure: sedimentological and morpho-bathymetric characteristics of the bottom, depth, steepness of the seabed, benthic biocoenoses, and load-bearing capacity of the area affected

  14. Responses of dune plant communities to continental uplift from a major earthquake: sudden releases from coastal squeeze.

    PubMed

    Rodil, Iván F; Jaramillo, Eduardo; Hubbard, David M; Dugan, Jenifer E; Melnick, Daniel; Velasquez, Carlos

    2015-01-01

    Vegetated dunes are recognized as important natural barriers that shelter inland ecosystems and coastlines suffering daily erosive impacts of the sea and extreme events, such as tsunamis. However, societal responses to erosion and shoreline retreat often result in man-made coastal defence structures that cover part of the intertidal and upper shore zones causing coastal squeeze and habitat loss, especially for upper shore biota, such as dune plants. Coseismic uplift of up to 2.0 m on the Peninsula de Arauco (South central Chile, ca. 37.5º S) caused by the 2010 Maule earthquake drastically modified the coastal landscape, including major increases in the width of uplifted beaches and the immediate conversion of mid to low sandy intertidal habitat to supralittoral sandy habitat above the reach of average tides and waves. To investigate the early stage responses in species richness, cover and across-shore distribution of the hitherto absent dune plants, we surveyed two formerly intertidal armoured sites and a nearby intertidal unarmoured site on a sandy beach located on the uplifted coast of Llico (Peninsula de Arauco) over two years. Almost 2 years after the 2010 earthquake, dune plants began to recruit, then rapidly grew and produced dune hummocks in the new upper beach habitats created by uplift at the three sites. Initial vegetation responses were very similar among sites. However, over the course of the study, the emerging vegetated dunes of the armoured sites suffered a slowdown in the development of the spatial distribution process, and remained impoverished in species richness and cover compared to the unarmoured site. Our results suggest that when released from the effects of coastal squeeze, vegetated dunes can recover without restoration actions. However, subsequent human activities and management of newly created beach and dune habitats can significantly alter the trajectory of vegetated dune development. Management that integrates the effects of natural

  15. Responses of Dune Plant Communities to Continental Uplift from a Major Earthquake: Sudden Releases from Coastal Squeeze

    PubMed Central

    Rodil, Iván F.; Jaramillo, Eduardo; Hubbard, David M.; Dugan, Jenifer E.; Melnick, Daniel; Velasquez, Carlos

    2015-01-01

    Vegetated dunes are recognized as important natural barriers that shelter inland ecosystems and coastlines suffering daily erosive impacts of the sea and extreme events, such as tsunamis. However, societal responses to erosion and shoreline retreat often result in man-made coastal defence structures that cover part of the intertidal and upper shore zones causing coastal squeeze and habitat loss, especially for upper shore biota, such as dune plants. Coseismic uplift of up to 2.0 m on the Peninsula de Arauco (South central Chile, ca. 37.5º S) caused by the 2010 Maule earthquake drastically modified the coastal landscape, including major increases in the width of uplifted beaches and the immediate conversion of mid to low sandy intertidal habitat to supralittoral sandy habitat above the reach of average tides and waves. To investigate the early stage responses in species richness, cover and across-shore distribution of the hitherto absent dune plants, we surveyed two formerly intertidal armoured sites and a nearby intertidal unarmoured site on a sandy beach located on the uplifted coast of Llico (Peninsula de Arauco) over two years. Almost 2 years after the 2010 earthquake, dune plants began to recruit, then rapidly grew and produced dune hummocks in the new upper beach habitats created by uplift at the three sites. Initial vegetation responses were very similar among sites. However, over the course of the study, the emerging vegetated dunes of the armoured sites suffered a slowdown in the development of the spatial distribution process, and remained impoverished in species richness and cover compared to the unarmoured site. Our results suggest that when released from the effects of coastal squeeze, vegetated dunes can recover without restoration actions. However, subsequent human activities and management of newly created beach and dune habitats can significantly alter the trajectory of vegetated dune development. Management that integrates the effects of natural

  16. Diet and mobility in a late Neolithic population of coastal Oman inferred from radiocarbon dating and stable isotope analysis.

    PubMed

    Zazzo, Antoine; Munoz, Olivia; Saliège, Jean-François

    2014-03-01

    In Oman, the presence of highly productive marine environments, coupled with relatively limited land resources, have led to intense exploitation of coastal resources, but the question of the seasonality of occupation of coastal sites remains open. Our aim is to evaluate the contribution of marine resources to the diet of the Neolithic population of Ra's al-Hamra 5 (RH-5) to shed new light on its mobility, using stable isotopes and radiocarbon ((14)C) dating as dietary tracers. Charcoal, shell, human bone and enamel apatite from eight contemporary graves were sampled. Graves are thought to provide the best chance to obtain marine and terrestrial remains that were contemporary with the human remains in order to calculate the marine reservoir effect (MRE) for this period. Inter-individual variation in human bone apatite δ(13)C value is small, suggesting a homogenous diet. Bone apatite (14)C ages are very close to the shell ages while enamel is significantly younger and plots near the charcoal ages. Older enamel ages were obtained when a stronger acetic treatment was used, demonstrating that the young ages are due to diagenetic alteration rather than a diachronic change in diet and that only bone apatite retained in vivo dietary signals. Bone ages indicate a heavy reliance on marine resources and it is therefore unlikely that the individuals analyzed here were leaving the coast seasonally, although mobility along the coast cannot be excluded. PMID:24264052

  17. Hypernatremia in Dice Snakes (Natrix tessellata) from a Coastal Population: Implications for Osmoregulation in Marine Snake Prototypes

    PubMed Central

    Brischoux, François; Kornilev, Yurii V.

    2014-01-01

    The widespread relationship between salt excreting structures (e.g., salt glands) and marine life strongly suggests that the ability to regulate salt balance has been crucial during the transition to marine life in tetrapods. Elevated natremia (plasma sodium) recorded in several marine snakes species suggests that the development of a tolerance toward hypernatremia, in addition to salt gland development, has been a critical feature in the evolution of marine snakes. However, data from intermediate stage (species lacking salt glands but occasionally using salty environments) are lacking to draw a comprehensive picture of the evolution of an euryhaline physiology in these organisms. In this study, we assessed natremia of free-ranging Dice snakes (Natrix tessellata, a predominantly fresh water natricine lacking salt glands) from a coastal population in Bulgaria. Our results show that coastal N. tessellata can display hypernatremia (up to 195.5 mmol.l−1) without any apparent effect on several physiological and behavioural traits (e.g., hematocrit, body condition, foraging). More generally, a review of natremia in species situated along a continuum of habitat use between fresh- and seawater shows that snake species display a concomitant tolerance toward hypernatremia, even in species lacking salt glands. Collectively, these data suggest that a physiological tolerance toward hypernatremia has been critical during the evolution of an euryhaline physiology, and may well have preceded the evolution of salt glands. PMID:24658047

  18. Diet and mobility in a late Neolithic population of coastal Oman inferred from radiocarbon dating and stable isotope analysis.

    PubMed

    Zazzo, Antoine; Munoz, Olivia; Saliège, Jean-François

    2014-03-01

    In Oman, the presence of highly productive marine environments, coupled with relatively limited land resources, have led to intense exploitation of coastal resources, but the question of the seasonality of occupation of coastal sites remains open. Our aim is to evaluate the contribution of marine resources to the diet of the Neolithic population of Ra's al-Hamra 5 (RH-5) to shed new light on its mobility, using stable isotopes and radiocarbon ((14)C) dating as dietary tracers. Charcoal, shell, human bone and enamel apatite from eight contemporary graves were sampled. Graves are thought to provide the best chance to obtain marine and terrestrial remains that were contemporary with the human remains in order to calculate the marine reservoir effect (MRE) for this period. Inter-individual variation in human bone apatite δ(13)C value is small, suggesting a homogenous diet. Bone apatite (14)C ages are very close to the shell ages while enamel is significantly younger and plots near the charcoal ages. Older enamel ages were obtained when a stronger acetic treatment was used, demonstrating that the young ages are due to diagenetic alteration rather than a diachronic change in diet and that only bone apatite retained in vivo dietary signals. Bone ages indicate a heavy reliance on marine resources and it is therefore unlikely that the individuals analyzed here were leaving the coast seasonally, although mobility along the coast cannot be excluded.

  19. Hypernatremia in Dice snakes (Natrix tessellata) from a coastal population: implications for osmoregulation in marine snake prototypes.

    PubMed

    Brischoux, François; Kornilev, Yurii V

    2014-01-01

    The widespread relationship between salt excreting structures (e.g., salt glands) and marine life strongly suggests that the ability to regulate salt balance has been crucial during the transition to marine life in tetrapods. Elevated natremia (plasma sodium) recorded in several marine snakes species suggests that the development of a tolerance toward hypernatremia, in addition to salt gland development, has been a critical feature in the evolution of marine snakes. However, data from intermediate stage (species lacking salt glands but occasionally using salty environments) are lacking to draw a comprehensive picture of the evolution of an euryhaline physiology in these organisms. In this study, we assessed natremia of free-ranging Dice snakes (Natrix tessellata, a predominantly fresh water natricine lacking salt glands) from a coastal population in Bulgaria. Our results show that coastal N. tessellata can display hypernatremia (up to 195.5 mmol x l(-1)) without any apparent effect on several physiological and behavioural traits (e.g., hematocrit, body condition, foraging). More generally, a review of natremia in species situated along a continuum of habitat use between fresh- and seawater shows that snake species display a concomitant tolerance toward hypernatremia, even in species lacking salt glands. Collectively, these data suggest that a physiological tolerance toward hypernatremia has been critical during the evolution of an euryhaline physiology, and may well have preceded the evolution of salt glands.

  20. Trichomonas vaginalis Infection and Associated Risk Factors in a Socially-Marginalized Female Population in Coastal Peru

    PubMed Central

    Leon, Segundo R.; Konda, Kelika A.; Bernstein, Kyle T.; Pajuelo, Jose B.; Rosasco, Ana M.; Caceres, Carlos F.; Coates, Thomas J.; Klausner, Jeffrey D.

    2009-01-01

    Objective. The epidemiology of Trichomonas vaginalis infection among sexually active socially-marginalized women in three urban, coastal Peruvian cities was examined in order to quantify the prevalence of trichomonas infection and identify associated risk factors. Methods. We conducted a cross-sectional, venue-based study of women from socially-marginalized populations in three coastal Peruvian cities. Results. Among the 319 women enrolled, the overall prevalence of trichomonal infection was 9.1% (95% CI, 5.9%–12.3%). The mean age was 26.3 years, and 35.5% reported having had unprotected intercourse with nonprimary partners and 19.8% reported two or more sex partners in the last three months. Trichomonal infection was associated with increased number of sex partners (PR 2.5, 95% CI 1.4–4.6) and unprotected sex with nonprimary partner in the last three months (PR 2.3, 95% CI 1.1–4.9). Conclusions. A moderately high prevalence of trichomonal infection was found among women in our study. Trichomonal infection was associated with unprotected sex and multiple sex partners. Efforts to control the continued spread of trichomonal infection are warranted. PMID:19584943

  1. Hypernatremia in Dice snakes (Natrix tessellata) from a coastal population: implications for osmoregulation in marine snake prototypes.

    PubMed

    Brischoux, François; Kornilev, Yurii V

    2014-01-01

    The widespread relationship between salt excreting structures (e.g., salt glands) and marine life strongly suggests that the ability to regulate salt balance has been crucial during the transition to marine life in tetrapods. Elevated natremia (plasma sodium) recorded in several marine snakes species suggests that the development of a tolerance toward hypernatremia, in addition to salt gland development, has been a critical feature in the evolution of marine snakes. However, data from intermediate stage (species lacking salt glands but occasionally using salty environments) are lacking to draw a comprehensive picture of the evolution of an euryhaline physiology in these organisms. In this study, we assessed natremia of free-ranging Dice snakes (Natrix tessellata, a predominantly fresh water natricine lacking salt glands) from a coastal population in Bulgaria. Our results show that coastal N. tessellata can display hypernatremia (up to 195.5 mmol x l(-1)) without any apparent effect on several physiological and behavioural traits (e.g., hematocrit, body condition, foraging). More generally, a review of natremia in species situated along a continuum of habitat use between fresh- and seawater shows that snake species display a concomitant tolerance toward hypernatremia, even in species lacking salt glands. Collectively, these data suggest that a physiological tolerance toward hypernatremia has been critical during the evolution of an euryhaline physiology, and may well have preceded the evolution of salt glands. PMID:24658047

  2. Morphometric comparisons of plant-mimetic juvenile fish associated with plant debris observed in the coastal subtropical waters around Kuchierabu-jima Island, southern Japan

    PubMed Central

    2016-01-01

    The general morphological shape of plant-resembling fish and plant parts were compared using a geometric morphometrics approach. Three plant-mimetic fish species, Lobotes surinamensis (Lobotidae), Platax orbicularis (Ephippidae) and Canthidermis maculata (Balistidae), were compared during their early developmental stages with accompanying plant debris (i.e., leaves of several taxa) in the coastal subtropical waters around Kuchierabu-jima Island, closely facing the Kuroshio Current. The degree of similarity shared between the plant parts and co-occurring fish species was quantified, however fish remained morphologically distinct from their plant models. Such similarities were corroborated by analysis of covariance and linear discriminant analysis, in which relative body areas of fish were strongly related to plant models. Our results strengthen the paradigm that morphological clues can lead to ecological evidence to allow predictions of behavioural and habitat choice by mimetic fish, according to the degree of similarity shared with their respective models. The resemblance to plant parts detected in the three fish species may provide fitness advantages via convergent evolutionary effects. PMID:27547571

  3. Morphometric comparisons of plant-mimetic juvenile fish associated with plant debris observed in the coastal subtropical waters around Kuchierabu-jima Island, southern Japan.

    PubMed

    de Queiroz, Alexya Cunha; Sakai, Yoichi; Vallinoto, Marcelo; Barros, Breno

    2016-01-01

    The general morphological shape of plant-resembling fish and plant parts were compared using a geometric morphometrics approach. Three plant-mimetic fish species, Lobotes surinamensis (Lobotidae), Platax orbicularis (Ephippidae) and Canthidermis maculata (Balistidae), were compared during their early developmental stages with accompanying plant debris (i.e., leaves of several taxa) in the coastal subtropical waters around Kuchierabu-jima Island, closely facing the Kuroshio Current. The degree of similarity shared between the plant parts and co-occurring fish species was quantified, however fish remained morphologically distinct from their plant models. Such similarities were corroborated by analysis of covariance and linear discriminant analysis, in which relative body areas of fish were strongly related to plant models. Our results strengthen the paradigm that morphological clues can lead to ecological evidence to allow predictions of behavioural and habitat choice by mimetic fish, according to the degree of similarity shared with their respective models. The resemblance to plant parts detected in the three fish species may provide fitness advantages via convergent evolutionary effects. PMID:27547571

  4. Molecular insights into seed dispersal mutualisms driving plant population recruitment

    NASA Astrophysics Data System (ADS)

    García, Cristina; Grivet, Delphine

    2011-11-01

    Most plant species require mutualistic interactions with animals to fulfil their demographic cycle. In this regard frugivory (i.e., the intake of fruits by animals) enhances natural regeneration by mobilizing a large amount of seeds from source trees to deposition sites across the landscape. By doing so, frugivores move propagules, and the genotypes they harbour creating the spatial, ecological, and genetic environment under which subsequent recruitment proceeds. Recruitment patterns can be envisioned as the result of two density- and distance-dependent processes: seed dispersal and seed/seedling survival (the Janzen-Connell model). Population genetic studies add another layer of complexity for understanding the fate of dispersed propagules: the genetic relatedness among neighbouring seeds within a seed clump, a major outcome of frugivore activity, modifies their chances of germinating and surviving. Yet, we virtually ignore how the spatial distribution of maternal progenies and recruitment patterns relate with each other in frugivore-generated seed rains. Here we focus on the critical role of frugivore-mediated seed dispersal in shaping the spatial distribution of maternal progenies in the seed rain. We first examine which genetic mechanisms underlying recruitment are influenced by the spatial distribution of maternal progenies. Next, we examine those studies depicting the spatial distribution of maternal progenies in a frugivore-generated seed rain. In doing so, we briefly review the most suitable analytical approaches applied to track the contribution of fruiting trees to the seed rain based on molecular data. Then we look more specifically at the role of distinct frugivore guilds in determining maternal genetic correlations and their expected consequences for recruitment patterns. Finally we posit some general conclusions and suggest future research directions that would provide a more comprehensive understanding of the ecological and evolutionary consequences

  5. Impacts of sea level rise and climate change on coastal plant species in the central California coast.

    PubMed

    Garner, Kendra L; Chang, Michelle Y; Fulda, Matthew T; Berlin, Jonathan A; Freed, Rachel E; Soo-Hoo, Melissa M; Revell, Dave L; Ikegami, Makihiko; Flint, Lorraine E; Flint, Alan L; Kendall, Bruce E

    2015-01-01

    Local increases in sea level caused by global climate change pose a significant threat to the persistence of many coastal plant species through exacerbating inundation, flooding, and erosion. In addition to sea level rise (SLR), climate changes in the form of air temperature and precipitation regimes will also alter habitats of coastal plant species. Although numerous studies have analyzed the effect of climate change on future habitats through species distribution models (SDMs), none have incorporated the threat of exposure to SLR. We developed a model that quantified the effect of both SLR and climate change on habitat for 88 rare coastal plant species in San Luis Obispo, Santa Barbara, and Ventura Counties, California, USA (an area of 23,948 km(2)). Our SLR model projects that by the year 2100, 60 of the 88 species will be threatened by SLR. We found that the probability of being threatened by SLR strongly correlates with a species' area, elevation, and distance from the coast, and that 10 species could lose their entire current habitat in the study region. We modeled the habitat suitability of these 10 species under future climate using a species distribution model (SDM). Our SDM projects that 4 of the 10 species will lose all suitable current habitats in the region as a result of climate change. While SLR accounts for up to 9.2 km(2) loss in habitat, climate change accounts for habitat suitability changes ranging from a loss of 1,439 km(2) for one species to a gain of 9,795 km(2) for another species. For three species, SLR is projected to reduce future suitable area by as much as 28% of total area. This suggests that while SLR poses a higher risk, climate changes in precipitation and air temperature represents a lesser known but potentially larger risk and a small cumulative effect from both. PMID:26020011

  6. Impacts of sea level rise and climate change on coastal plant species in the central California coast.

    PubMed

    Garner, Kendra L; Chang, Michelle Y; Fulda, Matthew T; Berlin, Jonathan A; Freed, Rachel E; Soo-Hoo, Melissa M; Revell, Dave L; Ikegami, Makihiko; Flint, Lorraine E; Flint, Alan L; Kendall, Bruce E

    2015-01-01

    Local increases in sea level caused by global climate change pose a significant threat to the persistence of many coastal plant species through exacerbating inundation, flooding, and erosion. In addition to sea level rise (SLR), climate changes in the form of air temperature and precipitation regimes will also alter habitats of coastal plant species. Although numerous studies have analyzed the effect of climate change on future habitats through species distribution models (SDMs), none have incorporated the threat of exposure to SLR. We developed a model that quantified the effect of both SLR and climate change on habitat for 88 rare coastal plant species in San Luis Obispo, Santa Barbara, and Ventura Counties, California, USA (an area of 23,948 km(2)). Our SLR model projects that by the year 2100, 60 of the 88 species will be threatened by SLR. We found that the probability of being threatened by SLR strongly correlates with a species' area, elevation, and distance from the coast, and that 10 species could lose their entire current habitat in the study region. We modeled the habitat suitability of these 10 species under future climate using a species distribution model (SDM). Our SDM projects that 4 of the 10 species will lose all suitable current habitats in the region as a result of climate change. While SLR accounts for up to 9.2 km(2) loss in habitat, climate change accounts for habitat suitability changes ranging from a loss of 1,439 km(2) for one species to a gain of 9,795 km(2) for another species. For three species, SLR is projected to reduce future suitable area by as much as 28% of total area. This suggests that while SLR poses a higher risk, climate changes in precipitation and air temperature represents a lesser known but potentially larger risk and a small cumulative effect from both.

  7. Impacts of sea level rise and climate change on coastal plant species in the central California coast

    PubMed Central

    Chang, Michelle Y.; Fulda, Matthew T.; Berlin, Jonathan A.; Freed, Rachel E.; Soo-Hoo, Melissa M.; Revell, Dave L.; Ikegami, Makihiko; Flint, Lorraine E.; Flint, Alan L.; Kendall, Bruce E.

    2015-01-01

    Local increases in sea level caused by global climate change pose a significant threat to the persistence of many coastal plant species through exacerbating inundation, flooding, and erosion. In addition to sea level rise (SLR), climate changes in the form of air temperature and precipitation regimes will also alter habitats of coastal plant species. Although numerous studies have analyzed the effect of climate change on future habitats through species distribution models (SDMs), none have incorporated the threat of exposure to SLR. We developed a model that quantified the effect of both SLR and climate change on habitat for 88 rare coastal plant species in San Luis Obispo, Santa Barbara, and Ventura Counties, California, USA (an area of 23,948 km2). Our SLR model projects that by the year 2100, 60 of the 88 species will be threatened by SLR. We found that the probability of being threatened by SLR strongly correlates with a species’ area, elevation, and distance from the coast, and that 10 species could lose their entire current habitat in the study region. We modeled the habitat suitability of these 10 species under future climate using a species distribution model (SDM). Our SDM projects that 4 of the 10 species will lose all suitable current habitats in the region as a result of climate change. While SLR accounts for up to 9.2 km2 loss in habitat, climate change accounts for habitat suitability changes ranging from a loss of 1,439 km2 for one species to a gain of 9,795 km2 for another species. For three species, SLR is projected to reduce future suitable area by as much as 28% of total area. This suggests that while SLR poses a higher risk, climate changes in precipitation and air temperature represents a lesser known but potentially larger risk and a small cumulative effect from both. PMID:26020011

  8. The role of the expansion of native-invasive plant species in coastal dunes: The case of Retama monosperma in SW Spain

    NASA Astrophysics Data System (ADS)

    Muñoz-Vallés, Sara; Gallego-Fernández, Juan Bautista; Cambrollé, Jesús

    2014-01-01

    Invasion by allochthonous plant species are identified, at present, among the main conservation hazards to coastal dunes. Nevertheless, the role of the expansion, with invasive character, of native species in these ecosystems has received little attention in ecological studies. In recent decades, Retama monosperma, a late colonizing legume shrub found in coastal sandy areas, endemic to the SW of the Iberian Peninsula and NW Morocco, has displayed invasive behavior in coastal dunes in different parts of the world, including its natural area of distribution. Its rapid expansion and increase in coverage has significantly contributed to the dune stabilization process, sometimes involving notable changes in the environment, plant community and shaping local distribution of some associated fauna, thus modifying the functioning of the whole ecosystem. In this review we examine the role of the expansion of R. monosperma in SW Spain coastal dunes, causes and implications, in the context of the ecological theory of invasions, and comparing it with other case studies.

  9. Spreading speeds for stage structured plant populations in fragmented landscapes.

    PubMed

    Gilbert, Mark A; White, Steven M; Bullock, James M; Gaffney, Eamonn A

    2014-05-21

    Landscape fragmentation has huge ecological and economic implications and affects the spatial dynamics of many plant species. Determining the speed of population spread in fragmented/heterogeneous landscapes is therefore of utmost importance to ecologists. Stage-structured integrodifference equations (IDEs) are deterministic models which accurately reflect the life cycles and dispersal patterns for numerous species. Existing approximations to wave-speeds consider only particular kernels, or landscapes in which the scale of variation is much smaller than the dispersal scale. We propose an analytical approximation to the wave-speeds of IDE solutions with periodic landscapes of alternating good and bad patches, where the dispersal scale is greater than the extent of each good patch and where the ratio of the demographic rates in the good and bad patches is given by a small parameter, denoted as ε. We formulate this approximation for the Gaussian and Laplace dispersal kernels and for stage structured and non-stage structured populations, and compare the results against numerical simulations. We find that the approximation is accurate for the landscapes considered, and that the type of dispersal kernel affects the relationship between landscape structure, as classified by landscape period and good patch size, and the spreading speed. This indicates that accurately fitting a kernel to data is important in determining the relationship between landscape structure and spreading speed.

  10. Phylogenetics and population genetics of Plotosus canius (Siluriformes: Plotosidae) from Malaysian coastal waters.

    PubMed

    Khalili Samani, Nima; Esa, Yuzine; Amin, S M Nurul; Fatin Mohd Ikhsan, Natrah

    2016-01-01

    Plotosus canius (Hamilton, 1822) is a significant marine species in Malaysia from nutritional and commercial perspectives. Despite numerous fundamental research on biological characteristics of P. canius, there are various concerns on the level of population differentiation, genomic structure, and the level of genetic variability among their populations due to deficiency of genetic-based studies. Deficiency on basic contexts such as stock identification, phylogenetic relationship and population genetic structure would negatively impact their sustainable conservation. Hence, this study was conducted to characterize the genetic structure of P. canius for the first time through the application of mitochondrial Cytochrome Oxidase I (COI) gene, cross amplification of Tandanus tandanus microsatellites, and a total of 117 collected specimens across five selected populations of Malaysia. The experimental results of the mitochondrial analysis revealed that the haplotype diversity and nucleotide diversity varied from 0.395-0.771 and 0.033-0.65 respectively. Moreover, the statistical analysis of microsatellites addressed a considerable heterozygote insufficiency in all populations, with average observed heterozygosity (Ho ) value of 0.2168, which was lower than the standard heterozygosity in marine populations (Ho = 0.79). This alongside the high Fis values estimation, high pairwise differentiation among populations and low within population variations are supposed to be associated with small sample size, and inbreeding system. Besides, the significant finding of this study was the sharing of common haplotype KR086940, which reflects a historical genetic connectivity between Peninsular Malaysia and Borneo populations due to the geological history of Southeast Asia during Pleistocene era. Demographic analyses showed that all populations were in an equilibrium state with no significant evidence of population expansion. To put it briefly, the current study has managed to provide

  11. Phylogenetics and population genetics of Plotosus canius (Siluriformes: Plotosidae) from Malaysian coastal waters

    PubMed Central

    Esa, Yuzine; Amin, S.M. Nurul

    2016-01-01

    Plotosus canius (Hamilton, 1822) is a significant marine species in Malaysia from nutritional and commercial perspectives. Despite numerous fundamental research on biological characteristics of P. canius, there are various concerns on the level of population differentiation, genomic structure, and the level of genetic variability among their populations due to deficiency of genetic-based studies. Deficiency on basic contexts such as stock identification, phylogenetic relationship and population genetic structure would negatively impact their sustainable conservation. Hence, this study was conducted to characterize the genetic structure of P. canius for the first time through the application of mitochondrial Cytochrome Oxidase I (COI) gene, cross amplification of Tandanus tandanus microsatellites, and a total of 117 collected specimens across five selected populations of Malaysia. The experimental results of the mitochondrial analysis revealed that the haplotype diversity and nucleotide diversity varied from 0.395–0.771 and 0.033–0.65 respectively. Moreover, the statistical analysis of microsatellites addressed a considerable heterozygote insufficiency in all populations, with average observed heterozygosity (Ho) value of 0.2168, which was lower than the standard heterozygosity in marine populations (Ho = 0.79). This alongside the high Fis values estimation, high pairwise differentiation among populations and low within population variations are supposed to be associated with small sample size, and inbreeding system. Besides, the significant finding of this study was the sharing of common haplotype KR086940, which reflects a historical genetic connectivity between Peninsular Malaysia and Borneo populations due to the geological history of Southeast Asia during Pleistocene era. Demographic analyses showed that all populations were in an equilibrium state with no significant evidence of population expansion. To put it briefly, the current study has managed to

  12. 40 CFR 230.75 - Actions affecting plant and animal populations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... populations. 230.75 Section 230.75 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) OCEAN... Actions To Minimize Adverse Effects § 230.75 Actions affecting plant and animal populations. Minimization of adverse effects on populations of plants and animals can be achieved by: (a) Avoiding changes...

  13. 40 CFR 230.75 - Actions affecting plant and animal populations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... populations. 230.75 Section 230.75 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) OCEAN... Actions To Minimize Adverse Effects § 230.75 Actions affecting plant and animal populations. Minimization of adverse effects on populations of plants and animals can be achieved by: (a) Avoiding changes...

  14. 40 CFR 230.75 - Actions affecting plant and animal populations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... populations. 230.75 Section 230.75 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) OCEAN... Actions To Minimize Adverse Effects § 230.75 Actions affecting plant and animal populations. Minimization of adverse effects on populations of plants and animals can be achieved by: (a) Avoiding changes...

  15. 40 CFR 230.75 - Actions affecting plant and animal populations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... populations. 230.75 Section 230.75 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) OCEAN... Actions To Minimize Adverse Effects § 230.75 Actions affecting plant and animal populations. Minimization of adverse effects on populations of plants and animals can be achieved by: (a) Avoiding changes...

  16. 40 CFR 230.75 - Actions affecting plant and animal populations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... populations. 230.75 Section 230.75 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) OCEAN... Actions To Minimize Adverse Effects § 230.75 Actions affecting plant and animal populations. Minimization of adverse effects on populations of plants and animals can be achieved by: (a) Avoiding changes...

  17. Reproductive responses to spatial and temporal prey availability in a coastal Arctic fox population.

    PubMed

    Eide, Nina E; Stien, Audun; Prestrud, Pål; Yoccoz, Nigel G; Fuglei, Eva

    2012-05-01

    1. Input of external subsidies in the Arctic may have substantial effects on predator populations that otherwise would have been limited by low local primary productivity. 2. We explore life-history traits, age-specific fecundity, litter sizes and survival, and the population dynamics of an Arctic fox (Vulpes lagopus) population to explore the influence of the spatial distribution and temporal availability of its main prey; including both resident and migrating (external) prey resources. 3. This study reveals that highly predictable cross-boundary subsidies from the marine food web, acting through seasonal access to seabirds, sustain larger local Arctic fox populations. Arctic fox dens located close to the coast in Svalbard were found to have higher occupancy rates, as expected from both high availability and high temporal and spatial predictability of prey resources (temporally stable external subsidies). Whereas the occupancy rate of inland dens varied between years in relation to the abundance of reindeer carcasses (temporally varying resident prey). 4. With regard to demography, juvenile Arctic foxes in Svalbard have lower survival rates and a high age of first reproduction compared with other populations. We suggest this may be caused by a lack of unoccupied dens and a saturated population. PMID:22211323

  18. The presence of Bt-transgenic oilseed rape in wild mustard populations affects plant growth.

    PubMed

    Liu, Yongbo; Stewart, C Neal; Li, Junsheng; Huang, Hai; Zhang, Xitao

    2015-12-01

    The adventitious presence of transgenic plants in wild plant populations is of ecological and regulatory concern, but the consequences of adventitious presence are not well understood. Here, we introduced Bacillus thuringiensis Cry1Ac (Bt)-transgenic oilseed rape (Bt OSR, Brassica napus) with various frequencies into wild mustard (Brassica juncea) populations. We sought to better understand the adventitious presence of this transgenic insecticidal crop in a wild-relative plant population. We assessed the factors of competition, resource availability and diamondback moth (Plutella xylostella) infestation on plant population dynamics. As expected, Bt OSR performed better than wild mustard in mixed populations under herbivore attack in habitats with enough resources, whereas wild mustard had higher fitness when Bt OSR was rarer in habitats with limited resources. Results suggest that the presence of insect-resistant transgenic plants could decrease the growth of wild mustard and Bt OSR plants and their populations, especially under high herbivore pressure.

  19. The presence of Bt-transgenic oilseed rape in wild mustard populations affects plant growth.

    PubMed

    Liu, Yongbo; Stewart, C Neal; Li, Junsheng; Huang, Hai; Zhang, Xitao

    2015-12-01

    The adventitious presence of transgenic plants in wild plant populations is of ecological and regulatory concern, but the consequences of adventitious presence are not well understood. Here, we introduced Bacillus thuringiensis Cry1Ac (Bt)-transgenic oilseed rape (Bt OSR, Brassica napus) with various frequencies into wild mustard (Brassica juncea) populations. We sought to better understand the adventitious presence of this transgenic insecticidal crop in a wild-relative plant population. We assessed the factors of competition, resource availability and diamondback moth (Plutella xylostella) infestation on plant population dynamics. As expected, Bt OSR performed better than wild mustard in mixed populations under herbivore attack in habitats with enough resources, whereas wild mustard had higher fitness when Bt OSR was rarer in habitats with limited resources. Results suggest that the presence of insect-resistant transgenic plants could decrease the growth of wild mustard and Bt OSR plants and their populations, especially under high herbivore pressure. PMID:26338267

  20. Effect of crop development on biogenic emissions from plant populations grown in closed plant growth chambers

    NASA Technical Reports Server (NTRS)

    Batten, J. H.; Stutte, G. W.; Wheeler, R. M.

    1995-01-01

    The Biomass Production Chamber at John F. Kennedy Space Center is a closed plant growth chamber facility that can be used to monitor the level of biogenic emissions from large populations of plants throughout their entire growth cycle. The head space atmosphere of a 26-day-old lettuce (Lactuca sativa cv. Waldmann's Green) stand was repeatedly sampled and emissions identified and quantified using GC-mass spectrometry. Concentrations of dimethyl sulphide, carbon disulphide, alpha-pinene, furan and 2-methylfuran were not significantly different throughout the day; whereas, isoprene showed significant differences in concentration between samples collected in light and dark periods. Volatile organic compounds from the atmosphere of wheat (Triticum aestivum cv. Yecora Rojo) were analysed and quantified from planting to maturity. Volatile plant-derived compounds included 1-butanol, 2-ethyl-1-hexanol, nonanal, benzaldehyde, tetramethylurea, tetramethylthiourea, 2-methylfuran and 3-methylfuran. Concentrations of volatiles were determined during seedling establishment, vegetative growth, anthesis, grain fill and senescence and found to vary depending on the developmental stage. Atmospheric concentrations of benzaldehyde and nonanal were highest during anthesis, 2-methylfuran and 3-methylfuran concentrations were greatest during grain fill, and the concentration of the tetramethylurea peaked during senescence.

  1. Effects of tidal amplitude on intertidal resource availability and dispersal pressure in prehistoric human coastal populations: the Mediterranean Atlantic transition

    NASA Astrophysics Data System (ADS)

    Fa, Darren Andrew

    2008-11-01

    In this paper I argue that there is a growing body of evidence supporting an increasingly central position of coastal environments in human evolution and dispersals, rather than as merely peripheral habitats. Eustatic fluctuations during glacial cycles have meant that most prehistoric coastlines are now underwater, and lack of evidence to date of a close relationship between people and the coast can be most plausibly ascribed to the limited studies so far on submerged sites. Coastal environments provide high diversity in food resources, consisting of multiple ecotones in close proximity, which reduces the need to forage widely. One of the richest and most easily exploited coastal resources by human populations living on the coast are molluscs from marine rocky intertidal communities, which recent evidence has highlighted as important as far back as the Middle Palaeolithic. However, the density of these resources is limited by a number of factors, and this varies geographically. One of the main large-scale factors limiting rocky intertidal mollusc densities is tidal amplitude, beyond which smaller-scale local factors such as exposure to wave action and shore aspect, further affect species distributions. The area around the Strait of Gibraltar is used as a case study of an area, which is affected by large variations in tidal amplitudes thus allowing for quantitative comparisons between taxonomically and climatically similar regions. Shorelines along the Mediterranean coast, with reduced tidal amplitudes, exhibit compressed zonations and harbour fewer macro-mollusc individuals, with the reverse being the case along the Atlantic coast, which has significantly larger tides. Data from Middle and Upper Palaeolithic sites along the Strait are used to establish harvested species and present-day data are used to model the potential distributions and associated variables such as calorific returns of key food species. An optimal foraging model is used to explore the effects of

  2. Persistent organic pollutants (POPs) in populations of the clam Chione californiensis in coastal lagoons of the Gulf of California.

    PubMed

    Vargas-González, Héctor H; Méndez-Rodríguez, Lía C; García-Hernández, Jaqueline; Mendoza-Salgado, Renato A; Zenteno-Savín, Tania; Arreola-Lizárraga, José A

    2016-07-01

    This study examines the potential public health risk due to the massive use of organochlorine pesticides (OCs) in agriculture in the Gulf of California. Specimens of the clam Chione californiensis were collected from three coastal lagoons (Yavaros, Altata and Reforma). Sites were classified as polluted/nonpolluted based on the presence/absence of OCs as an indicator of the persistence of these pollutants; in polluted sites, the time elapsed since pesticide application (past or recent) was estimated. Screening values (SV) for protecting human health as per the U.S. Environmental Protection Agency (EPA) were used for risk assessment. OCs detected were ranked according to frequency of occurrence as follows: γ-chlordane (75%) > endrin (54%) > aldrin (48%) > heptachlor, and dichlorodiphenyl-trichloroethane (DDE) (37%) > β-heptachlor epoxide (30%) > lindane (α-BHC, δ-BHC) and endosulphan I (≤ 6%). Specifically, OCs detected at the highest concentration were heptachlor in Yavaros (0.0168 µgg(-1)) and Altata (0.0046 µgg(-1)), and aldrin in Reforma (0.0019 µgg(-1)). β-Heptachlor epoxide in Altata and Reforma was the only OC with a concentration exceeding the EPA Screening Value. From our results and based on the monthly consumption limit set forth by EPA, the maximum safe consumption of clams to avoid a carcinogenic risk derived from β-heptachlor epoxide in the fishing villages of Yavaros and Altata is 4 servings per month (1 serving = 0.227 kg) by a 70-kg person. These findings suggest that concentrations of OCs and their isomers in C. californiensis populations reflect environmental persistence as well as recent inputs of OCs into coastal lagoons in the Gulf of California. PMID:27050678

  3. Persistent organic pollutants (POPs) in populations of the clam Chione californiensis in coastal lagoons of the Gulf of California.

    PubMed

    Vargas-González, Héctor H; Méndez-Rodríguez, Lía C; García-Hernández, Jaqueline; Mendoza-Salgado, Renato A; Zenteno-Savín, Tania; Arreola-Lizárraga, José A

    2016-07-01

    This study examines the potential public health risk due to the massive use of organochlorine pesticides (OCs) in agriculture in the Gulf of California. Specimens of the clam Chione californiensis were collected from three coastal lagoons (Yavaros, Altata and Reforma). Sites were classified as polluted/nonpolluted based on the presence/absence of OCs as an indicator of the persistence of these pollutants; in polluted sites, the time elapsed since pesticide application (past or recent) was estimated. Screening values (SV) for protecting human health as per the U.S. Environmental Protection Agency (EPA) were used for risk assessment. OCs detected were ranked according to frequency of occurrence as follows: γ-chlordane (75%) > endrin (54%) > aldrin (48%) > heptachlor, and dichlorodiphenyl-trichloroethane (DDE) (37%) > β-heptachlor epoxide (30%) > lindane (α-BHC, δ-BHC) and endosulphan I (≤ 6%). Specifically, OCs detected at the highest concentration were heptachlor in Yavaros (0.0168 µgg(-1)) and Altata (0.0046 µgg(-1)), and aldrin in Reforma (0.0019 µgg(-1)). β-Heptachlor epoxide in Altata and Reforma was the only OC with a concentration exceeding the EPA Screening Value. From our results and based on the monthly consumption limit set forth by EPA, the maximum safe consumption of clams to avoid a carcinogenic risk derived from β-heptachlor epoxide in the fishing villages of Yavaros and Altata is 4 servings per month (1 serving = 0.227 kg) by a 70-kg person. These findings suggest that concentrations of OCs and their isomers in C. californiensis populations reflect environmental persistence as well as recent inputs of OCs into coastal lagoons in the Gulf of California.

  4. Population structure of tropical abalone (Haliotis asinina) in coastal waters of Thailand determined using microsatellite markers.

    PubMed

    Tang, S; Tassanakajon, A; Klinbunga, S; Jarayabhand, P; Menasveta, P

    2004-01-01

    Three partial genomic libraries were constructed from genomic DNA of the tropical abalone (Haliotis asinina) that was digested with AluI, vortexed/sonicated, and digested with mixed enzyme (AluI, HincII, and RsaI). The libraries yielded 0.02%, 0.42%, and 1.46% positive microsatellite-containing clones, respectively. Eleven clones each of perfect, imperfect, and compound microsatellites were isolated. Ten primer pairs (CUHas1-CUHas10) were analyzed to evaluate their polymorphic level. The numbers of alleles per locus, observed heterozygosity (H0), and expected heterozygosity (He) ranged from 3 to 26 alleles, and varied between 0.27 and 0.85 and between 0.24 and 0.93, respectively. Three microsatellite loci (CUHas2, CUHas3, and CUHas8) were further used for examination of genetic diversity and differentiation of natural H. asinina in coastal waters of Thailand. Genetic variabilities in terms of the effective number of alleles (n(e)), H0, and He were higher in 2 samples from the Gulf of Thailand (n(e)=9.37, 7.66; H0=0.62, 0.78; and He=0.87, 0.86) than those of one sample (n(e)=6.04; H0=0.58; and He=0.62) derived from the Andaman Sea. Assessment of genetic heterogeneity, including allele frequency comparison and pairwise F(ST) analysis, indicated interpopulational differentiation, between natural H. asinina from the Gulf of Thailand and that from the Andaman Sea (P<0.0001).

  5. Within and between population variation in plant traits predicts ecosystem functions associated with a dominant plant species

    PubMed Central

    Breza, Lauren C; Souza, Lara; Sanders, Nathan J; Classen, Aimée T

    2012-01-01

    Linking intraspecific variation in plant traits to ecosystem carbon uptake may allow us to better predict how shift in populations shape ecosystem function. We investigated whether plant populations of a dominant old-field plant species (Solidago altissima) differed in carbon dynamics and if variation in plant traits among genotypes and between populations predicted carbon dynamics. We established a common garden experiment with 35 genotypes from three populations of S. altissima from either Tennessee (southern populations) or Connecticut (northern populations) to ask whether: (1) southern and northern Solidago populations will differ in aboveground productivity, leaf area, flowering time and duration, and whole ecosystem carbon uptake, (2) intraspecific trait variation (growth and reproduction) will be related to intraspecific variation in gross ecosystem CO2 exchange (GEE) and net ecosystem CO2 exchange (NEE) within and between northern and southern populations. GEE and NEE were 4.8× and 2× greater in southern relative to northern populations. Moreover, southern populations produced 13× more aboveground biomass and 1.4× more inflorescence mass than did northern populations. Flowering dynamics (first- and last-day flowering and flowering duration) varied significantly among genotypes in both the southern and northern populations, but plant performance and ecosystem function did not. Both productivity and inflorescence mass predicted NEE and GEE between S. altissima southern and northern populations. Taken together, our data demonstrate that variation between S. altissima populations in performance and flowering traits are strong predictors of ecosystem function in a dominant old-field species and suggest that populations of the same species might differ substantially in their response to environmental perturbations. PMID:22833791

  6. Conspecific plant-soil feedback scales with population size in Lobelia siphilitica (Lobeliaceae).

    PubMed

    Hovatter, Stephanie; Blackwood, Christopher B; Case, Andrea L

    2013-12-01

    Plant-soil interactions directly affect plant success in terms of establishment, survival, growth and reproduction. Negative plant-soil feedback on such traits may therefore reduce the density and abundance of plants of a given species at a given site. Furthermore, if conspecific feedback varies among population sites, it could help explain geographic variation in plant population size. We tested for among-site variation in conspecific plant-soil feedback in a greenhouse experiment using seeds and soils from 8 natural populations of Lobelia siphilitica hosting 30-330 plants. The first cohort of seeds was grown on soil collected from each native site, while the second cohort was grown on the soil conditioned by the first. Our goal was to distinguish site-specific effects mediated by biotic and/or abiotic soil properties from those inherent in seed sources. Cohort 1 plants grown from seeds produced in small populations performed better in terms of germination, growth, and survival compared to plants produced in large populations. Plant performance decreased substantially between cohorts, indicating strong negative feedback. Most importantly, the strength of negative feedback scaled linearly (i.e., was less negative) with increasing size of the native plant population, particularly for germination and survival, and was better explained by soil- rather than seed-source effects. Even with a small number of sites, our results suggest that the potential for negative plant-soil feedback varies among populations of L. siphilitica, and that small populations were more susceptible to negative feedback. Conspecific plant-soil feedback may contribute to plant population size variation within a species' native range.

  7. Indirect genetic effects underlie oxygen-limited thermal tolerance within a coastal population of chinook salmon.

    PubMed

    Muñoz, Nicolas J; Anttila, Katja; Chen, Zhongqi; Heath, John W; Farrell, Anthony P; Neff, Bryan D

    2014-08-22

    With global temperatures projected to surpass the limits of thermal tolerance for many species, evaluating the heritable variation underlying thermal tolerance is critical for understanding the potential for adaptation to climate change. We examined the evolutionary potential of thermal tolerance within a population of chinook salmon (Oncorhynchus tshawytscha) by conducting a full-factorial breeding design and measuring the thermal performance of cardiac function and the critical thermal maximum (CTmax) of offspring from each family. Additive genetic variation in offspring phenotype was mostly negligible, although these direct genetic effects explained 53% of the variation in resting heart rate (fH). Conversely, maternal effects had a significant influence on resting fH, scope for fH, cardiac arrhythmia temperature and CTmax. These maternal effects were associated with egg size, as indicated by strong relationships between the mean egg diameter of mothers and offspring thermal tolerance. Because egg size can be highly heritable in chinook salmon, our finding indicates that the maternal effects of egg size constitute an indirect genetic effect contributing to thermal tolerance. Such indirect genetic effects could accelerate evolutionary responses to the selection imposed by rising temperatures and could contribute to the population-specific thermal tolerance that has recently been uncovered among Pacific salmon populations. PMID:25009055

  8. The roles of spatial pattern and size variation in shaping height inequality of plant population.

    PubMed

    Chen, Shu-Yan; Chen, Zi-long; Guo, Peng; Ding, Chen-Chen; Wang, Yu-xin; Wang, Xiang-tai; Zhang, Jia-Lin; Jia, Peng; Wang, Gang; Xiao, Sa

    2014-02-01

    Game-theoretic models predict that there is an ESS height for the plant population to which all individual plants should converge. To attain this conclusion, the neighborhood factors were assumed to be equal for all the individual plants, and the spatial pattern and size variation of population were left without consideration, which is clearly not right for the scenario of plant competition. We constructed a spatially-explicit, individual-based model to explore the impacts of spatial structure and size variation on individual plant's height and population's height hierarchies under the light competition. The monomorphic equilibrium of height that all the individual plants will converge to only exists for a population growing in a strictly uniform spatial pattern with no size variation. When the spatial pattern of the population is non-uniform or there's size variation among individual plants, the critical heights that individual plants will finally reach are different from each other, and the height inequality at the end of population growth will increase when the population's spatial pattern's degree of deviation from uniform and population's size variation increase. Our results argue strongly for the importance of spatial pattern and neighborhood effects in generating the diversity of population's height growth pattern.

  9. Population growth away from the coastal zone: thirty years of land use change and nutrient export in the Altamaha River, GA.

    PubMed

    Weston, Nathaniel B; Hollibaugh, James T; Joye, Samantha B

    2009-05-01

    We used more than thirty years of water quality monitoring data collected by the United States Geological Survey at several stations in the Altamaha River and its tributaries to examine the relationship between population density, agricultural land use, and nutrient export from the watershed. Population densities in the Altamaha River watershed increased during the study period, most notably in the upper watershed near metropolitan Atlanta, while agricultural land use declined throughout the watershed. NO(x), TN and P in rivers were related to human population densities, while OC and NH(4)(+) concentrations in rivers were apparently related to agricultural land use. A general pattern of increasing NO(x) and TN and decreasing NH(4)(+), P and OC over time throughout the watershed reflected changing population and land use. The overall average load from the Altamaha River to the coastal zone during the study period was 1.1, 5.6, 16.9, 0.9 and 262 kmol km(-2) yr(-1), delivering 40, 197, 596, 30, and 9213.10(6) mol yr(-1) of NH(4)(+), NO(x), TN, P and OC, respectively, to the coastal zone. The nutrient export patterns suggest that N and P loading to rivers in the Altamaha River watershed was greatest in the upper watershed where high population densities were found, and in-stream processing, dilution, and only moderate inputs during transit through the lower watershed resulted in relatively low export from the watershed to coastal waters.

  10. Residue Impacts on Runoff and Soil Erosion for Different Corn Plant Populations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The year to year carry-over effects of biomass additions under different plant populations on runoff and erosion is unclear. The objective of this study was to quantify the impact of different plant populations on residue cover to elucidate the effects of residue cover on runoff and erosion. The res...

  11. Genetic structure of colline and montane populations of an endangered plant species

    PubMed Central

    Maurice, Tiphaine; Matthies, Diethart; Muller, Serge; Colling, Guy

    2016-01-01

    Due to land-use intensification, lowland and colline populations of many plants of nutrient-poor grasslands have been strongly fragmented in the last decades, with potentially negative consequences for their genetic diversity and persistence. Populations in mountains might represent a genetic reservoir for grassland plants, because they have been less affected by land-use changes. We studied the genetic structure and diversity of colline and montane Vosges populations of the threatened perennial plant Arnica montana in western central Europe using AFLP markers. Our results indicate that in contrast to our expectation even strongly fragmented colline populations of A. montana have conserved a considerable amount of genetic diversity. However, mean seed mass increased with the proportion of polymorphic loci, suggesting inbreeding effects in low diversity populations. At a similar small geographical scale, there was a clear IBD pattern for the montane Vosges but not for the colline populations. However, there was a strong IBD-pattern for the colline populations at a large geographical scale suggesting that this pattern is a legacy of historical gene flow, as most of the colline populations are today strongly isolated from each other. Genetic differentiation between colline and montane Vosges populations was strong. Moreover, results of a genome scan study indicated differences in loci under selection, suggesting that plants from montane Vosges populations might be maladapted to conditions at colline sites. Our results suggest caution in using material from montane populations of rare plants for the reinforcement of small genetically depauperate lowland populations. PMID:27519913

  12. Wet and dry atmospheric depositions of inorganic nitrogen during plant growing season in the coastal zone of Yellow River Delta.

    PubMed

    Yu, Junbao; Ning, Kai; Li, Yunzhao; Du, Siyao; Han, Guangxuan; Xing, Qinghui; Wu, Huifeng; Wang, Guangmei; Gao, Yongjun

    2014-01-01

    The ecological problems caused by dry and wet deposition of atmospheric nitrogen have been widespread concern in the world. In this study, wet and dry atmospheric depositions were monitored in plant growing season in the coastal zone of the Yellow River Delta (YRD) using automatic sampling equipment. The results showed that SO4 (2-) and Na(+) were the predominant anion and cation, respectively, in both wet and dry atmospheric depositions. The total atmospheric nitrogen deposition was ~2264.24 mg m(-2), in which dry atmospheric nitrogen deposition was about 32.02%. The highest values of dry and wet atmospheric nitrogen deposition appeared in May and August, respectively. In the studied area, NO3 (-)-N was the main nitrogen form in dry deposition, while the predominant nitrogen in wet atmospheric deposition was NH4 (+)-N with ~56.51% of total wet atmospheric nitrogen deposition. The average monthly attribution rate of atmospheric deposition of NO3 (-)-N and NH4 (+)-N was ~31.38% and ~20.50% for the contents of NO3 (-)-N and NH4 (+)-N in 0-10 cm soil layer, respectively, suggested that the atmospheric nitrogen was one of main sources for soil nitrogen in coastal zone of the YRD.

  13. Wet and Dry Atmospheric Depositions of Inorganic Nitrogen during Plant Growing Season in the Coastal Zone of Yellow River Delta

    PubMed Central

    Li, Yunzhao; Du, Siyao; Han, Guangxuan; Xing, Qinghui; Wu, Huifeng; Wang, Guangmei

    2014-01-01

    The ecological problems caused by dry and wet deposition of atmospheric nitrogen have been widespread concern in the world. In this study, wet and dry atmospheric depositions were monitored in plant growing season in the coastal zone of the Yellow River Delta (YRD) using automatic sampling equipment. The results showed that SO42− and Na+ were the predominant anion and cation, respectively, in both wet and dry atmospheric depositions. The total atmospheric nitrogen deposition was ~2264.24 mg m−2, in which dry atmospheric nitrogen deposition was about 32.02%. The highest values of dry and wet atmospheric nitrogen deposition appeared in May and August, respectively. In the studied area, NO3−–N was the main nitrogen form in dry deposition, while the predominant nitrogen in wet atmospheric deposition was NH4+–N with ~56.51% of total wet atmospheric nitrogen deposition. The average monthly attribution rate of atmospheric deposition of NO3−–N and NH4+–N was ~31.38% and ~20.50% for the contents of NO3−–N and NH4+–N in 0–10 cm soil layer, respectively, suggested that the atmospheric nitrogen was one of main sources for soil nitrogen in coastal zone of the YRD. PMID:24977238

  14. Fine-scale spatial variation in plant species richness and its relationship to environmental conditions in coastal marshlands

    USGS Publications Warehouse

    Mancera, J.E.; Meche, G.C.; Cardona-Olarte, P.P.; Castaneda-Moya, E.; Chiasson, R.L.; Geddes, N.A.; Schile, L.M.; Wang, H.G.; Guntenspergen, G.R.; Grace, J.B.

    2005-01-01

    Previous studies have shown that variations in environmental conditions play a major role in explaining variations in plant species richness at community and landscape scales. In this study, we considered the degree to which fine-scale spatial variations in richness could be related to fine-scale variations in abiotic and biotic factors. To examine spatial variation in richness, grids of 1 m(2) plots were laid out at five sites within a coastal riverine wetland landscape. At each site, a 5 x 7 array of plots was established adjacent to the river's edge with plots one meter apart. In addition to the estimation of species richness, environmental measurements included sediment salinity, plot microelevation, percent of plot recently disturbed, and estimated community biomass. Our analysis strategy was to combine the use of structural equation modeling (path modeling) with an assessment of spatial association. Mantel's tests revealed significant spatial autocorrelation in species richness at four of the five sites sampled, indicating that richness in a plot correlated with the richness of nearby plots. We subsequently considered the degree to which spatial autocorrelations in richness could be explained by spatial autocorrelations in environmental conditions. Once data were corrected for environmental correlations, spatial autocorrelation in residual species richness could not be detected at any site. Based on these results, we conclude that in this coastal wetland, there appears to be a fine-scale mapping of diversity to microgradients in environmental conditions.

  15. Comparative animal and plant toxicities of 10 treated effluents discharged to near-coastal areas of the Gulf of Mexico

    SciTech Connect

    Lewis, M.A.; Weber, D.E.; Stanley, R.S.

    1998-09-01

    The chemical quality and acute and chronic toxicities of 10 effluents discharged to near-coastal areas in Northwest Florida were determined using standard and nonstandard toxicity tests. The primary objectives of the study were to evaluate and compare the toxicities of different types of effluents and to assess the ability of a variety of toxicity tests to differentiate effluent-specific effects. Focus was placed on animal-plant sensitivity comparisons because phytotoxicity is rarely determined for effluents discharged to coastal estuaries. The standard toxicity test organisms included two algae, two invertebrates, and two fish. In addition, effluent toxicity was evaluated using three rapid bioassays and an early-seedling-growth toxicity test. Most concentrations of potentially toxic inorganic and organic contaminants in the effluents were low, a finding that contrasted with the sometimes elevated biochemical oxygen demand and nutrient concentrations. With the exception of their effects on algae, the toxicities of most effluents were considered moderate. Chronic effects on Ceriodaphnia dubia and Mysidopsis bahia were observed consistently for five effluents; the lowest first-effect levels were typically 35 or 71% effluent. Inhibitory effects on fish and macrophyte seedling growth were infrequent, as were those determined using the three rapid bioassays. Nine of the ten effluents were either phytotoxic or phytostimulatory to algae; first effects were noted in some cases at effluent concentrations less than 6%.

  16. A crab swarm at an ecological hotspot: patchiness and population density from AUV observations at a coastal, tropical seamount.

    PubMed

    Pineda, Jesús; Cho, Walter; Starczak, Victoria; Govindarajan, Annette F; Guzman, Héctor M; Girdhar, Yogesh; Holleman, Rusty C; Churchill, James; Singh, Hanumant; Ralston, David K

    2016-01-01

    A research cruise to Hannibal Bank, a seamount and an ecological hotspot in the coastal eastern tropical Pacific Ocean off Panama, explored the zonation, biodiversity, and the ecological processes that contribute to the seamount's elevated biomass. Here we describe the spatial structure of a benthic anomuran red crab population, using submarine video and autonomous underwater vehicle (AUV) photographs. High density aggregations and a swarm of red crabs were associated with a dense turbid layer 4-10 m above the bottom. The high density aggregations were constrained to 355-385 m water depth over the Northwest flank of the seamount, although the crabs also occurred at lower densities in shallower waters (∼280 m) and in another location of the seamount. The crab aggregations occurred in hypoxic water, with oxygen levels of 0.04 ml/l. Barcoding of Hannibal red crabs, and pelagic red crabs sampled in a mass stranding event in 2015 at a beach in San Diego, California, USA, revealed that the Panamanian and the Californian crabs are likely the same species, Pleuroncodes planipes, and these findings represent an extension of the southern endrange of this species. Measurements along a 1.6 km transect revealed three high density aggregations, with the highest density up to 78 crabs/m(2), and that the crabs were patchily distributed. Crab density peaked in the middle of the patch, a density structure similar to that of swarming insects. PMID:27114859

  17. A crab swarm at an ecological hotspot: patchiness and population density from AUV observations at a coastal, tropical seamount

    PubMed Central

    Cho, Walter; Starczak, Victoria; Govindarajan, Annette F.; Guzman, Héctor M.; Girdhar, Yogesh; Holleman, Rusty C.; Churchill, James; Singh, Hanumant; Ralston, David K.

    2016-01-01

    A research cruise to Hannibal Bank, a seamount and an ecological hotspot in the coastal eastern tropical Pacific Ocean off Panama, explored the zonation, biodiversity, and the ecological processes that contribute to the seamount’s elevated biomass. Here we describe the spatial structure of a benthic anomuran red crab population, using submarine video and autonomous underwater vehicle (AUV) photographs. High density aggregations and a swarm of red crabs were associated with a dense turbid layer 4–10 m above the bottom. The high density aggregations were constrained to 355–385 m water depth over the Northwest flank of the seamount, although the crabs also occurred at lower densities in shallower waters (∼280 m) and in another location of the seamount. The crab aggregations occurred in hypoxic water, with oxygen levels of 0.04 ml/l. Barcoding of Hannibal red crabs, and pelagic red crabs sampled in a mass stranding event in 2015 at a beach in San Diego, California, USA, revealed that the Panamanian and the Californian crabs are likely the same species, Pleuroncodes planipes, and these findings represent an extension of the southern endrange of this species. Measurements along a 1.6 km transect revealed three high density aggregations, with the highest density up to 78 crabs/m2, and that the crabs were patchily distributed. Crab density peaked in the middle of the patch, a density structure similar to that of swarming insects. PMID:27114859

  18. A crab swarm at an ecological hotspot: patchiness and population density from AUV observations at a coastal, tropical seamount.

    PubMed

    Pineda, Jesús; Cho, Walter; Starczak, Victoria; Govindarajan, Annette F; Guzman, Héctor M; Girdhar, Yogesh; Holleman, Rusty C; Churchill, James; Singh, Hanumant; Ralston, David K

    2016-01-01

    A research cruise to Hannibal Bank, a seamount and an ecological hotspot in the coastal eastern tropical Pacific Ocean off Panama, explored the zonation, biodiversity, and the ecological processes that contribute to the seamount's elevated biomass. Here we describe the spatial structure of a benthic anomuran red crab population, using submarine video and autonomous underwater vehicle (AUV) photographs. High density aggregations and a swarm of red crabs were associated with a dense turbid layer 4-10 m above the bottom. The high density aggregations were constrained to 355-385 m water depth over the Northwest flank of the seamount, although the crabs also occurred at lower densities in shallower waters (∼280 m) and in another location of the seamount. The crab aggregations occurred in hypoxic water, with oxygen levels of 0.04 ml/l. Barcoding of Hannibal red crabs, and pelagic red crabs sampled in a mass stranding event in 2015 at a beach in San Diego, California, USA, revealed that the Panamanian and the Californian crabs are likely the same species, Pleuroncodes planipes, and these findings represent an extension of the southern endrange of this species. Measurements along a 1.6 km transect revealed three high density aggregations, with the highest density up to 78 crabs/m(2), and that the crabs were patchily distributed. Crab density peaked in the middle of the patch, a density structure similar to that of swarming insects.

  19. [Pollution characteristics of heavy metals in sludge from wastewater treatment plants and sludge disposal in Chinese coastal areas].

    PubMed

    Zhang, Can; Chen, Hong; Yu, Yi-Xuan; Wang, Li-Jun; Han, Jian-Bo; Tao, Ping

    2013-04-01

    Thirteen sludge samples from Guangzhou, Shanghai and Dalian were collected and analysed for heavy metals to investigate the distribution and variation trend of heavy metals in sludge from wastewater treatment plants in Chinese coastal areas. The results showed that contents of heavy metals in sludge varied significantly, and the average contents exhibited an order of Cr > Zn > Cu > Pb > As > Hg > Cd. Additionally, contents of Cr, Cu and As exceeded their corresponding standard levels. Compared with contents of heavy metals in 2006 and 2001, content of Zn in sludge increased while contents of Cr, Cu and As decreased. Results also indicated that the industrial sludge was more seriously polluted than domestic sludge in terms of Zn, Cu and As. Only 23% sludge samples exceeded the standards for fertilization of sludge, suggesting that most of the sludge could be disposed by land application. These results also provide further information about the establishment of ocean disposal assessment for sludge.

  20. Local and global influences on population declines of coastal waders: Purple Sandpiper Calidris maritima numbers in the Moray Firth, Scotland

    NASA Astrophysics Data System (ADS)

    Summers, Ron W.; Foster, Simon; Swann, Bob; Etheridge, Brian

    2012-05-01

    Declines in numbers by several wader species in Britain have been linked to climate change, but the mechanism for the declines has rarely been explored. Britain lies at the northern end of the East Atlantic Flyway, and supports 1.3 million out of the Flyway's 8.5 million coastal waders (Charadrii) in winter and the Purple Sandpiper is one of the species whose numbers have declined. Here, we examine the dynamics of the decline as observed in the Moray Firth, northeast Scotland, investigating whether the decline was due to poorer apparent survival (return rate) or poorer recruitment of young birds. The maximum number in the Moray Firth declined from 860 in 1987/88 to 236 in 2006/07, with some increase during winters 2007/08 and 2008/09. At the three main high-tide roosts (Balintore, Lossiemouth and Buckie) the maximum combined number declined from 574 to 90. Changes in survival and recruitment (percentage of first-year birds) were examined at these roosts from captured samples, which were ringed and recaptured. There were no significant changes between winters in survival rates, nor were there differences between the survival rates of age groups (first-year and adult) or bill size groups, which represented birds of different sex and breeding origin. Annual survival estimates for the three roosts ranged from 72 to 77%. The percentage of first-year birds varied among roosts and years; the lowest values were during the late 1980s/early 1990s and early 2000s. A free-running population model incorporating varying percentages of first-year birds and constant mortality for each roost provided a plausible explanation for the decline. Although modelled numbers followed the observed pattern, a discrepancy in one year was carried forward in subsequent years, so that the fit with the observed numbers was parallel rather than similar. However, it seems that the decline in numbers was largely due to poorer recruitment. We discuss whether breeding success had declined, whether the

  1. Long-term impacts of nitrogen deposition on coastal plant communities.

    PubMed

    Pakeman, Robin J; Alexander, Jim; Brooker, Rob; Cummins, Roger; Fielding, Debbie; Gore, Sarah; Hewison, Richard; Mitchell, Ruth; Moore, Emily; Orford, Katy; Pemberton, Clare; Trinder, Clare; Lewis, Rob

    2016-05-01

    Nitrogen deposition has been shown to have significant impacts on a range of vegetation types resulting in eutrophication and species compositional change. Data from a re-survey of 89 coastal sites in Scotland, UK, c. 34 years after the initial survey were examined to assess the degree of change in species composition that could be accounted for by nitrogen deposition. There was an overall increase in the Ellenberg Indicator Value for nitrogen (EIV-N) of 0.15 between the surveys, with a clear shift to species characteristic of more eutrophic situations. This was most evident for Acid grassland, Fixed dune, Heath, Slack and Tall grass mire communities and despite falls in EIV-N for Improved grass, Strand and Wet grassland. The increase in EIV-N was highly correlated to the cumulative deposition between the surveys, and for sites in south-east Scotland, eutrophication impacts appear severe. Unlike other studies, there appears to have been no decline in species richness associated with nitrogen deposition, though losses of species were observed on sites with the very highest levels of SOx deposition. It appears that dune vegetation (specifically Fixed dune) shows evidence of eutrophication above 4.1 kg N ha(-1) yr(-1), or 5.92 kg N ha(-1) yr(-1) if the lower 95% confidence interval is used. Coastal vegetation appears highly sensitive to nitrogen deposition, and it is suggested that major changes could have occurred prior to the first survey in 1976.

  2. How sea level rise affects sedimentation, plant growth, and carbon accumulation on coastal salt marshes

    NASA Astrophysics Data System (ADS)

    Mudd, S. M.; Howell, S. M.; Morris, J. T.

    2009-12-01

    The rate of accretion on coastal salt marshes depends on feedbacks between flow, macrophyte growth, and sedimentation. Under favourable conditions, marsh accretion rates will keep pace with the local rate of sea level rise. Marsh accretion is driven by both organic and inorganic sedimentation; mineral rich marshes will need less organic sedimentation to keep pace with sea level rise. Here we use a numerical model of marsh accretion, calibrated by sediment cores, to explore the relationship between sea level rise and carbon sequestration on salt marshes in the face of differing supplies of inorganic sediment. The model predicts that changes in carbon storage resulting from changing sediment supply or sea-level rise are strongly dependant on the background sediment supply: if inorganic sediment supply is reduced in an already sediment poor marsh the storage of organic carbon will increase to a far greater extent than in a sediment-rich marsh, provided that the rate of sea-level rise does not exceed a threshold. These results imply that altering sediment supply to estuaries (e.g., by damming upstream rivers or altering littoral sediment transport) could lead to significant changes in the carbon budgets of coastal salt marshes.

  3. VARYING STABLE NITROGEN ISOTOPIC RATIOS OF DIFFERENT COASTAL MARSH PLANTS AND THEIR RELATIONSHIPS WITH WASTEWATER NITROGEN AND LAND USE IN NEW ENGLAND, USA

    EPA Science Inventory

    Stable nitrogen isotopic ratios of coastal biota have been used as indicators of sources of anthropogenic nitrogen. In this study the relationships of the stable nitrogen isotopic ratios of salt marsh plants, Iva frutescens (L.), Phragmites australis (Cav.) Trin ex Steud, Spar...

  4. Trauma in the preceramic coastal populations of northern Chile: violence or occupational hazards?

    PubMed

    Standen, V G; Arriaza, B T

    2000-06-01

    One hundred and forty-four Chinchorro skeletons, stored at the Museo Arqueol¿ogico San Miguel de Azapa in Arica, Chile, were examined to test the following alternative hypotheses concerning skeletal trauma: either observed trauma was a consequence of interpersonal violence, or was the result of work-related accidents. Trauma found in subadults was rare, with 1.8% (1/55) contrasted with 30% (27/89) in the adult population. The location of most adult trauma was the skull with 24.6% (17/69), followed by the upper extremities with 8. 7% (7/80), the trunk with 2.9% (2/68), and the lower extremities with the least trauma at 1.1% (1/89). Skull trauma corresponded to well-healed, semicircular fractures, with males being three times more affected than females at 34.2% (13/38) and 12.9% (4/31), respectively. Most fractures were nonlethal, appearing to have been caused by impacts from stones, suggesting interpersonal violence rather than accidents. This study indicates that the egalitarian, maritime, hunter-gatherer Chinchorro culture (circa 4000 years B.P.) may not have lived as peacefully as once thought.

  5. Benefit of Shading by Nurse Plant Does Not Change along a Stress Gradient in a Coastal Dune

    PubMed Central

    Castanho, Camila de Toledo; Prado, Paulo Inácio

    2014-01-01

    The proximity of adult neighbors often increases the performance of woody seedlings under harsh environmental conditions but this nurse plant effect becomes less intense when abiotic stress is alleviated, as predicted by the stress gradient hypothesis (SGH). Although some studies have tested how the net nurse effect is changed by stress, few studies have tested how the mechanism that drives the facilitative effect of nurse responds to changes in stress. We conducted field experiments in a subtropical coastal dune to test if shading drives the known nurse effect of adults of the tree Guapira opposita on seedling performance of another tree species, Ternstroemia brasiliensis. We transplanted T. brasiliensis seedlings to three neighbor environments: under a G. opposita crown, under artificial shade and without neighbor as a control. Furthermore, assuming that proximity to the seashore correlates with stress intensity, we tested if the potential shade-driven facilitation became less intense as stress decreased. Regardless of the proximity to the seashore, after a year, the survival of T. brasiliensis seedlings was twice as high when the seedlings were under G. opposita or under artificial shade compared to the control, indicating that the nurse effect is driven by shade and that this facilitation mechanism is constant along the stress gradient. However, G. opposita and artificial shade had a negative effect on seedlings growth. Overall, our results showed that the facilitation mechanism behind the nurse effect did not wane as the stress was reduced. Furthermore, in spite of the potential costs in terms of biomass production, our study highlights the potential of nurse plants and artificial shade as techniques to improve the survival of transplanted seedlings used in the restoration of degraded shrubland coastal dunes. PMID:25127399

  6. Seed Selection by the Harvester Ant Pogonomyrmex rugosus (Hymenoptera: Formicidae) in Coastal Sage Scrub: Interactions With Invasive Plant Species.

    PubMed

    Briggs, C M; Redak, R A

    2016-08-01

    Harvester ants can be the dominant seed predators on plants by collecting and eating seeds and are known to influence plant communities. Harvester ants are abundant in coastal sage scrub (CSS), and CSS is frequently invaded by several exotic plant species. This study used observations of foraging and cafeteria-style experiments to test for seed species selection by the harvester ant Pogonomyrmex rugosus Emery (Hymenoptera: Formicidae) in CSS. Analysis of foraging behavior showed that P. rugosus carried seeds of exotic Erodium cicutarium (L.) and exotic Brassica tournefortii (Gouan) on 85 and 15% of return trips to the nest (respectively), and only a very few ants carried the native seeds found within the study areas. When compared with the availability of seeds in the field, P. rugosus selected exotic E. cicutarium and avoided both native Encelia farinosa (Torrey & A. Gray) and exotic B. tournefortii. Foraging by P. rugosus had no major effect on the seed bank in the field. Cafeteria-style experiments confirmed that P. rugosus selected E. cicutarium over other available seeds. Native Eriogonum fasciculatum (Bentham) seeds were even less selected than E. farinosa and B. tournefortii.

  7. Seed Selection by the Harvester Ant Pogonomyrmex rugosus (Hymenoptera: Formicidae) in Coastal Sage Scrub: Interactions With Invasive Plant Species.

    PubMed

    Briggs, C M; Redak, R A

    2016-08-01

    Harvester ants can be the dominant seed predators on plants by collecting and eating seeds and are known to influence plant communities. Harvester ants are abundant in coastal sage scrub (CSS), and CSS is frequently invaded by several exotic plant species. This study used observations of foraging and cafeteria-style experiments to test for seed species selection by the harvester ant Pogonomyrmex rugosus Emery (Hymenoptera: Formicidae) in CSS. Analysis of foraging behavior showed that P. rugosus carried seeds of exotic Erodium cicutarium (L.) and exotic Brassica tournefortii (Gouan) on 85 and 15% of return trips to the nest (respectively), and only a very few ants carried the native seeds found within the study areas. When compared with the availability of seeds in the field, P. rugosus selected exotic E. cicutarium and avoided both native Encelia farinosa (Torrey & A. Gray) and exotic B. tournefortii. Foraging by P. rugosus had no major effect on the seed bank in the field. Cafeteria-style experiments confirmed that P. rugosus selected E. cicutarium over other available seeds. Native Eriogonum fasciculatum (Bentham) seeds were even less selected than E. farinosa and B. tournefortii. PMID:27257121

  8. Strong linkage between plant and soil fungal communities along a successional coastal dune system.

    PubMed

    Roy-Bolduc, Alice; Laliberté, Etienne; Boudreau, Stéphane; Hijri, Mohamed

    2016-10-01

    Complex interactions between plants and soil microorganisms drive key ecosystem and community properties such as productivity and diversity. In nutrient-poor systems such as sand dunes, plant traits and fungal symbioses related to nutrient acquisition can strongly influence vegetation dynamics. We investigated plant and fungal communities in a relic foredune plain located on an archipelago in Québec, Canada. We detected distinct communities across the edaphic and successional gradient. Our results showed a clear increase in plant species richness, as well as in the diversity of nutrient-acquisition strategies. We also found a strong correlation between aboveground vegetation and soil fungal communities, and both responded similarly to soil physicochemical properties. Soil pH influenced the composition of plant and fungal communities, and could act as an important environmental filter along this relic foredune plain. The increasing functional diversity in plant nutrient-acquisition strategies across the gradient might favor resource partitioning and facilitation among co-occurring plant species. The coordinated changes in soil microbial and plant communities highlight the importance of aboveground-belowground linkages and positive biotic interactions during ecological succession in nutrient-poor environments.

  9. Plants of the Olympic Coastal Forests: ancient knowledge of materials and medicines and future heritage.

    PubMed

    Forlines, D R; Tavenner, T; Malan, J C; Karchesy, J J

    1992-01-01

    The indigenous people of the west coast of Washington State's Olympic Peninsula have used a wide variety of forest plants for centuries to make materials and medicines. The late David Forlines shared at least eight generations of the knowledge of uses of these plants for materials and medicines with us in hopes that this information might be used 'to help science catch up with the old people.' Dyes, paints and adhesives were some of the materials made. The medicines were often administered as teas, but in some cases, fresh plant material was required. Some parallels were found to European and Chinese uses of similar species. Plants from the family Rosaceae had the greatest number of medicinal uses, but several other plant families known to contain polyphenols were also encountered. The role of polyphenols in the use of these plants is difficult to estimate because in many cases the plants have not been studied chemically. A preliminary screening indicated that many of the plants were rich in procyanidins and associated compounds. PMID:1417699

  10. Strong linkage between plant and soil fungal communities along a successional coastal dune system.

    PubMed

    Roy-Bolduc, Alice; Laliberté, Etienne; Boudreau, Stéphane; Hijri, Mohamed

    2016-10-01

    Complex interactions between plants and soil microorganisms drive key ecosystem and community properties such as productivity and diversity. In nutrient-poor systems such as sand dunes, plant traits and fungal symbioses related to nutrient acquisition can strongly influence vegetation dynamics. We investigated plant and fungal communities in a relic foredune plain located on an archipelago in Québec, Canada. We detected distinct communities across the edaphic and successional gradient. Our results showed a clear increase in plant species richness, as well as in the diversity of nutrient-acquisition strategies. We also found a strong correlation between aboveground vegetation and soil fungal communities, and both responded similarly to soil physicochemical properties. Soil pH influenced the composition of plant and fungal communities, and could act as an important environmental filter along this relic foredune plain. The increasing functional diversity in plant nutrient-acquisition strategies across the gradient might favor resource partitioning and facilitation among co-occurring plant species. The coordinated changes in soil microbial and plant communities highlight the importance of aboveground-belowground linkages and positive biotic interactions during ecological succession in nutrient-poor environments. PMID:27411980

  11. Reduced fecundity in small populations of the rare plant Gentianopsis ciliate (Gentianaceae)

    USGS Publications Warehouse

    Kery, M.; Matthies, D.

    2004-01-01

    Habitat destruction is the main cause for the biodiversity crisis. Surviving populations are often fragmented, i.e., small and isolated from each other. Reproduction of plants in small populations is often reduced, and this has been attributed to inbreeding depression, reduced attractiveness for pollinators, and reduced habitat quality in small populations. Here we present data on the effects of fragmentation on the rare, self-compatible perennial herb Gentianopsis ciliata (Gentianaceae), a species with very small and presumably well-dispersed seeds. We studied the relationship between population size, plant size, and the number of flowers produced in 63 populations from 1996-1998. In one of the years, leaf and flower size and the number of seeds produced per fruit was studied in a subset of 25 populations. Plant size, flower size, and the number of seeds per fruit and per plant increased with population size, whereas leaf length and the number of flowers per plant did not. The effects of population size on reproduction and on flower size remained significant if the effects were adjusted for differences in plant size, indicating that they could not be explained by differences in habitat quality. The strongly reduced reproduction in small populations may be due to pollination limitation, while the reduced flower size could indicate genetic effects.

  12. Reduced fecundity in small populations of the rare plant Gentianopsis ciliate (Gentianaceae)

    USGS Publications Warehouse

    Robbins, C.S.

    1983-01-01

    Habitat destruction is the main cause for the biodiversity crisis. Surviving populations are often fragmented, i.e., small and isolated from each other. Reproduction of plants in small populations is often reduced, and this has been attributed to inbreeding depression, reduced attractiveness for pollinators, and reduced habitat quality in small populations. Here we present data on the effects of fragmentation on the rare, self-compatible perennial herb Gentianopsis ciliata (Gentianaceae), a species with very small and presumably well-dispersed seeds. We studied the relationship between population size, plant size, and the number of flowers produced in 63 populations from 1996-1998. In one of the years, leaf and flower size and the number of seeds produced per fruit was studied in a subset of 25 populations. Plant size, flower size, and the number of seeds per fruit and per plant increased with population size, whereas leaf length and the number of flowers per plant did not. The effects of population size on reproduction and on flower size remained significant if the effects were adjusted for differences in plant size, indicating that they could not be explained by differences in habitat quality. The strongly reduced reproduction in small populations may be due to pollination limitation, while the reduced flower size could indicate genetic effects.

  13. Host Plant Determines the Population Size of an Obligate Symbiont (Buchnera aphidicola) in Aphids.

    PubMed

    Zhang, Yuan-Chen; Cao, Wen-Jie; Zhong, Le-Rong; Godfray, H Charles J; Liu, Xiang-Dong

    2016-04-01

    Buchnera aphidicolais an obligate endosymbiont that provides aphids with several essential nutrients. Though much is known about aphid-Buchnera interactions, the effect of the host plant on Buchnera population size remains unclear. Here we used quantitative PCR (qPCR) techniques to explore the effects of the host plant on Buchnera densities in the cotton-melon aphid, Aphis gossypii Buchneratiters were significantly higher in populations that had been reared on cucumber for over 10 years than in populations maintained on cotton for a similar length of time. Aphids collected in the wild from hibiscus and zucchini harbored more Buchnera symbionts than those collected from cucumber and cotton. The effect of aphid genotype on the population size of Buchnera depended on the host plant upon which they fed. When aphids from populations maintained on cucumber or cotton were transferred to novel host plants, host survival and Buchnera population size fluctuated markedly for the first two generations before becoming relatively stable in the third and later generations. Host plant extracts from cucumber, pumpkin, zucchini, and cowpea added to artificial diets led to a significant increase in Buchnera titers in the aphids from the population reared on cotton, while plant extracts from cotton and zucchini led to a decrease in Buchnera titers in the aphids reared on cucumber. Gossypol, a secondary metabolite from cotton, suppressed Buchnera populations in populations from both cotton and cucumber, while cucurbitacin from cucurbit plants led to higher densities. Together, the results suggest that host plants influence Buchnera population processes and that this may provide phenotypic plasticity in host plant use for clonal aphids. PMID:26850304

  14. Host Plant Determines the Population Size of an Obligate Symbiont (Buchnera aphidicola) in Aphids

    PubMed Central

    Zhang, Yuan-Chen; Cao, Wen-Jie; Zhong, Le-Rong; Godfray, H. Charles J.

    2016-01-01

    Buchnera aphidicola is an obligate endosymbiont that provides aphids with several essential nutrients. Though much is known about aphid-Buchnera interactions, the effect of the host plant on Buchnera population size remains unclear. Here we used quantitative PCR (qPCR) techniques to explore the effects of the host plant on Buchnera densities in the cotton-melon aphid, Aphis gossypii. Buchnera titers were significantly higher in populations that had been reared on cucumber for over 10 years than in populations maintained on cotton for a similar length of time. Aphids collected in the wild from hibiscus and zucchini harbored more Buchnera symbionts than those collected from cucumber and cotton. The effect of aphid genotype on the population size of Buchnera depended on the host plant upon which they fed. When aphids from populations maintained on cucumber or cotton were transferred to novel host plants, host survival and Buchnera population size fluctuated markedly for the first two generations before becoming relatively stable in the third and later generations. Host plant extracts from cucumber, pumpkin, zucchini, and cowpea added to artificial diets led to a significant increase in Buchnera titers in the aphids from the population reared on cotton, while plant extracts from cotton and zucchini led to a decrease in Buchnera titers in the aphids reared on cucumber. Gossypol, a secondary metabolite from cotton, suppressed Buchnera populations in populations from both cotton and cucumber, while cucurbitacin from cucurbit plants led to higher densities. Together, the results suggest that host plants influence Buchnera population processes and that this may provide phenotypic plasticity in host plant use for clonal aphids. PMID:26850304

  15. Host Plant Determines the Population Size of an Obligate Symbiont (Buchnera aphidicola) in Aphids.

    PubMed

    Zhang, Yuan-Chen; Cao, Wen-Jie; Zhong, Le-Rong; Godfray, H Charles J; Liu, Xiang-Dong

    2016-04-01

    Buchnera aphidicolais an obligate endosymbiont that provides aphids with several essential nutrients. Though much is known about aphid-Buchnera interactions, the effect of the host plant on Buchnera population size remains unclear. Here we used quantitative PCR (qPCR) techniques to explore the effects of the host plant on Buchnera densities in the cotton-melon aphid, Aphis gossypii Buchneratiters were significantly higher in populations that had been reared on cucumber for over 10 years than in populations maintained on cotton for a similar length of time. Aphids collected in the wild from hibiscus and zucchini harbored more Buchnera symbionts than those collected from cucumber and cotton. The effect of aphid genotype on the population size of Buchnera depended on the host plant upon which they fed. When aphids from populations maintained on cucumber or cotton were transferred to novel host plants, host survival and Buchnera population size fluctuated markedly for the first two generations before becoming relatively stable in the third and later generations. Host plant extracts from cucumber, pumpkin, zucchini, and cowpea added to artificial diets led to a significant increase in Buchnera titers in the aphids from the population reared on cotton, while plant extracts from cotton and zucchini led to a decrease in Buchnera titers in the aphids reared on cucumber. Gossypol, a secondary metabolite from cotton, suppressed Buchnera populations in populations from both cotton and cucumber, while cucurbitacin from cucurbit plants led to higher densities. Together, the results suggest that host plants influence Buchnera population processes and that this may provide phenotypic plasticity in host plant use for clonal aphids.

  16. Use of the robust design to estimate seasonal abundance and demographic parameters of a coastal bottlenose dolphin (Tursiops aduncus) population.

    PubMed

    Smith, Holly C; Pollock, Ken; Waples, Kelly; Bradley, Stuart; Bejder, Lars

    2013-01-01

    As delphinid populations become increasingly exposed to human activities we rely on our capacity to produce accurate abundance estimates upon which to base management decisions. This study applied mark-recapture methods following the Robust Design to estimate abundance, demographic parameters, and temporary emigration rates of an Indo-Pacific bottlenose dolphin (Tursiops aduncus) population off Bunbury, Western Australia. Boat-based photo-identification surveys were conducted year-round over three consecutive years along pre-determined transect lines to create a consistent sampling effort throughout the study period and area. The best fitting capture-recapture model showed a population with a seasonal Markovian temporary emigration with time varying survival and capture probabilities. Abundance estimates were seasonally dependent with consistently lower numbers obtained during winter and higher during summer and autumn across the three-year study period. Specifically, abundance estimates for all adults and juveniles (combined) varied from a low of 63 (95% CI 59 to 73) in winter of 2007 to a high of 139 (95% CI 134 to148) in autumn of 2009. Temporary emigration rates (γ') for animals absent in the previous period ranged from 0.34 to 0.97 (mean  =  0.54; ±SE 0.11) with a peak during spring. Temporary emigration rates for animals present during the previous period (γ'') were lower, ranging from 0.00 to 0.29, with a mean of 0.16 (± SE 0.04). This model yielded a mean apparent survival estimate for juveniles and adults (combined) of 0.95 (± SE 0.02) and a capture probability from 0.07 to 0.51 with a mean of 0.30 (± SE 0.04). This study demonstrates the importance of incorporating temporary emigration to accurately estimate abundance of coastal delphinids. Temporary emigration rates were high in this study, despite the large area surveyed, indicating the challenges of sampling highly mobile animals which range over large spatial areas. PMID:24130781

  17. A comparison of spatial and spectral image resolution for mapping invasive plants in coastal california.

    PubMed

    Underwood, Emma C; Ustin, Susan L; Ramirez, Carlos M

    2007-01-01

    We explored the potential of detecting three target invasive species: iceplant (Carpobrotus edulis), jubata grass (Cortaderia jubata), and blue gum (Eucalyptus globulus) at Vandenberg Air Force Base, California. We compared the accuracy of mapping six communities (intact coastal scrub, iceplant invaded coastal scrub, iceplant invaded chaparral, jubata grass invaded chaparral, blue gum invaded chaparral, and intact chaparral) using four images with different combinations of spatial and spectral resolution: hyperspectral AVIRIS imagery (174 wavebands, 4 m spatial resolution), spatially degraded AVIRIS (174 bands, 30 m), spectrally degraded AVIRIS (6 bands, 4 m), and both spatially and spectrally degraded AVIRIS (6 bands, 30 m, i.e., simulated Landsat ETM data). Overall success rates for classifying the six classes was 75% (kappa 0.7) using full resolution AVIRIS, 58% (kappa 0.5) for the spatially degraded AVIRIS, 42% (kappa 0.3) for the spectrally degraded AVIRIS, and 37% (kappa 0.3) for the spatially and spectrally degraded AVIRIS. A true Landsat ETM image was also classified to illustrate that the results from the simulated ETM data were representative, which provided an accuracy of 50% (kappa 0.4). Mapping accuracies using different resolution images are evaluated in the context of community heterogeneity (species richness, diversity, and percent species cover). Findings illustrate that higher mapping accuracies are achieved with images possessing high spectral resolution, thus capturing information across the visible and reflected infrared solar spectrum. Understanding the tradeoffs in spectral and spatial resolution can assist land managers in deciding the most appropriate imagery with respect to target invasives and community characteristics.

  18. Genetic differentiation among Maconellicoccus hirsutus (Hemiptera: Pseudococcidae) populations living on different host plants.

    PubMed

    Rosas-García, Ninfa M; Sarmiento-Benavides, Sandra L; Villegas-Mendoza, Jesús M; Hernández-Delgado, Sanjuana; Mayek-Pérez, Netzahualcoyotl

    2010-06-01

    The pink hibiscus mealybug Maconellicoccus hirsutus (Green) is a dangerous pest that damages a wide variety of agricultural, horticultural, and forestry crops. Amplified fragment length polymorphism (AFLP) fingerprints were used to characterize the genetic variation of 11 M. hirsutus populations infesting three plant species in Nayarit, Mexico. Analysis was carried out using four primers combinations, producing 590 polymorphic bands. Cluster analysis, as well as bootstrap dendrogram and nonmetric multidimensional scaling analysis, grouped M. hirsutus populations according to their host plant. The estimated F(ST) values indicated a high differentiation in M. hirsutus populations among the three host plant species. These results were also supported by a Bayesian analysis, which indicated a population clustering robustness according to their host plant. Genetic variation among populations is not caused by geographic distances, as shown by a Mantel test.

  19. Ability of matrix models to explain the past and predict the future of plant populations.

    PubMed

    Crone, Elizabeth E; Ellis, Martha M; Morris, William F; Stanley, Amanda; Bell, Timothy; Bierzychudek, Paulette; Ehrlén, Johan; Kaye, Thomas N; Knight, Tiffany M; Lesica, Peter; Oostermeijer, Gerard; Quintana-Ascencio, Pedro F; Ticktin, Tamara; Valverde, Teresa; Williams, Jennifer L; Doak, Daniel F; Ganesan, Rengaian; McEachern, Kathyrn; Thorpe, Andrea S; Menges, Eric S

    2013-10-01

    Uncertainty associated with ecological forecasts has long been recognized, but forecast accuracy is rarely quantified. We evaluated how well data on 82 populations of 20 species of plants spanning 3 continents explained and predicted plant population dynamics. We parameterized stage-based matrix models with demographic data from individually marked plants and determined how well these models forecast population sizes observed at least 5 years into the future. Simple demographic models forecasted population dynamics poorly; only 40% of observed population sizes fell within our forecasts' 95% confidence limits. However, these models explained population dynamics during the years in which data were collected; observed changes in population size during the data-collection period were strongly positively correlated with population growth rate. Thus, these models are at least a sound way to quantify population status. Poor forecasts were not associated with the number of individual plants or years of data. We tested whether vital rates were density dependent and found both positive and negative density dependence. However, density dependence was not associated with forecast error. Forecast error was significantly associated with environmental differences between the data collection and forecast periods. To forecast population fates, more detailed models, such as those that project how environments are likely to change and how these changes will affect population dynamics, may be needed. Such detailed models are not always feasible. Thus, it may be wiser to make risk-averse decisions than to expect precise forecasts from models. PMID:23565966

  20. Ability of matrix models to explain the past and predict the future of plant populations.

    USGS Publications Warehouse

    McEachern, Kathryn; Crone, Elizabeth E.; Ellis, Martha M.; Morris, William F.; Stanley, Amanda; Bell, Timothy; Bierzychudek, Paulette; Ehrlen, Johan; Kaye, Thomas N.; Knight, Tiffany M.; Lesica, Peter; Oostermeijer, Gerard; Quintana-Ascencio, Pedro F.; Ticktin, Tamara; Valverde, Teresa; Williams, Jennifer I.; Doak, Daniel F.; Ganesan, Rengaian; Thorpe, Andrea S.; Menges, Eric S.

    2013-01-01

    Uncertainty associated with ecological forecasts has long been recognized, but forecast accuracy is rarely quantified. We evaluated how well data on 82 populations of 20 species of plants spanning 3 continents explained and predicted plant population dynamics. We parameterized stage-based matrix models with demographic data from individually marked plants and determined how well these models forecast population sizes observed at least 5 years into the future. Simple demographic models forecasted population dynamics poorly; only 40% of observed population sizes fell within our forecasts' 95% confidence limits. However, these models explained population dynamics during the years in which data were collected; observed changes in population size during the data-collection period were strongly positively correlated with population growth rate. Thus, these models are at least a sound way to quantify population status. Poor forecasts were not associated with the number of individual plants or years of data. We tested whether vital rates were density dependent and found both positive and negative density dependence. However, density dependence was not associated with forecast error. Forecast error was significantly associated with environmental differences between the data collection and forecast periods. To forecast population fates, more detailed models, such as those that project how environments are likely to change and how these changes will affect population dynamics, may be needed. Such detailed models are not always feasible. Thus, it may be wiser to make risk-averse decisions than to expect precise forecasts from models.

  1. Ability of matrix models to explain the past and predict the future of plant populations.

    PubMed

    Crone, Elizabeth E; Ellis, Martha M; Morris, William F; Stanley, Amanda; Bell, Timothy; Bierzychudek, Paulette; Ehrlén, Johan; Kaye, Thomas N; Knight, Tiffany M; Lesica, Peter; Oostermeijer, Gerard; Quintana-Ascencio, Pedro F; Ticktin, Tamara; Valverde, Teresa; Williams, Jennifer L; Doak, Daniel F; Ganesan, Rengaian; McEachern, Kathyrn; Thorpe, Andrea S; Menges, Eric S

    2013-10-01

    Uncertainty associated with ecological forecasts has long been recognized, but forecast accuracy is rarely quantified. We evaluated how well data on 82 populations of 20 species of plants spanning 3 continents explained and predicted plant population dynamics. We parameterized stage-based matrix models with demographic data from individually marked plants and determined how well these models forecast population sizes observed at least 5 years into the future. Simple demographic models forecasted population dynamics poorly; only 40% of observed population sizes fell within our forecasts' 95% confidence limits. However, these models explained population dynamics during the years in which data were collected; observed changes in population size during the data-collection period were strongly positively correlated with population growth rate. Thus, these models are at least a sound way to quantify population status. Poor forecasts were not associated with the number of individual plants or years of data. We tested whether vital rates were density dependent and found both positive and negative density dependence. However, density dependence was not associated with forecast error. Forecast error was significantly associated with environmental differences between the data collection and forecast periods. To forecast population fates, more detailed models, such as those that project how environments are likely to change and how these changes will affect population dynamics, may be needed. Such detailed models are not always feasible. Thus, it may be wiser to make risk-averse decisions than to expect precise forecasts from models.

  2. The demographic consequences of mutualism: ants increase host-plant fruit production but not population growth.

    PubMed

    Ford, Kevin R; Ness, Joshua H; Bronstein, Judith L; Morris, William F

    2015-10-01

    The impact of mutualists on a partner's demography depends on how they affect the partner's multiple vital rates and how those vital rates, in turn, affect population growth. However, mutualism studies rarely measure effects on multiple vital rates or integrate them to assess the ultimate impact on population growth. We used vital rate data, population models and simulations of long-term population dynamics to quantify the demographic impact of a guild of ant species on the plant Ferocactus wislizeni. The ants feed at the plant's extrafloral nectaries and attack herbivores attempting to consume reproductive organs. Ant-guarded plants produced significantly more fruit, but ants had no significant effect on individual growth or survival. After integrating ant effects across these vital rates, we found that projected population growth was not significantly different between unguarded and ant-guarded plants because population growth was only weakly influenced by differences in fruit production (though strongly influenced by differences in individual growth and survival). However, simulations showed that ants could positively affect long-term plant population dynamics through services provided during rare but important events (herbivore outbreaks that reduce survival or years of high seedling recruitment associated with abundant precipitation). Thus, in this seemingly clear example of mutualism, the interaction may actually yield no clear benefit to plant population growth, or if it does, may only do so through the actions of the ants during rare events. These insights demonstrate the value of taking a demographic approach to studying the consequences of mutualism.

  3. [Effect of plant density on population yield and economic output value in maize-soybean intercropping].

    PubMed

    Zhu, Yuan-gang; Gao, Feng-ju; Cao, Peng-peng; Wang, Le-zheng

    2015-06-01

    The effects of plant density on population yield and economic output value in maize and soybean intercropping were studied with the design of the double saturated D-optimal regression. A mathematical model was developed, in which the densities of maize and soybean were independent variables, and population grain yield, dry matter accumulation and economic output value were dependent variables, respectively. The result showed that the plant density significantly affected the population grain yield, dry matter accumulation and economic output value, and the effects of density of maize on population indices were greater than those of density of soybean. Under the low level conditions of density, the population grain yield, dry matter accumulation and economic output value increased with the density of maize and soybean. The maximum population grain yield was 8101.31 kg · hm(-2) the optimized combination of 72023 plant maize · hm(-2) and 99924 plant soybean · hm(-2), while the maximum population dry matter accumulation was 15282.45 kg · hm(-2) with the optimized combination of 75000 plant maize · hm(-2) and 93372 plant soybean · hm(-2), and the maximum population economic output value was 23494.50 Yuan · hm(-2) with the optimized combination of 73758 plant maize · hm(-2) and 87597 plant soybean · hm(-2). The optimum combination of densities of maize and soybean calculated by computer were 58554-71547 plant · hm(-2) for maize and 82217-100303 plant · hm(-2) for soybean in order to obtain grain yield greater than 7500 kg · hm(-2), dry matter accumulation greater than 14250 kg · hm(-2) and economic output value greater 22500 yuan · hm(-2) under the condition of this experiment.

  4. The effects of landscape position on plant species density: Evidence of past environmental effects in a coastal wetland

    USGS Publications Warehouse

    Grace, J.B.; Guntenspergen, G.R.

    1999-01-01

    Here we propose that an important cause of variation in species density may be prior environmental conditions that continue to influence current patterns. In this paper we investigated the degree to which species density varies with location within the landscape, independent of contemporaneous environmental conditions. The area studied was a coastal marsh landscape subject to periodic storm events. To evaluate the impact of historical effects, it was assumed that the landscape position of a plot relative to the river's mouth ('distance from sea') and to the edge of a stream channel ('distance from shore') would correlate with the impact of prior storm events, an assumption supported by previous studies. To evaluate the importance of spatial location on species density, data were collected from five sites located at increasing distances from the river's mouth along the Middle Pearl River in Louisiana. At each site, plots were established systematically along transects perpendicular to the shoreline. For each of the 175 Plots, we measured elevation, soil salinity, percent of plot recently disturbed, percent of sunlight captured by the plant canopy (as a measure of plant abundance), and plant species density. Structural equation analysis ascertained the degree to which landscape position variables explained variation in species density that could not be explained by current environmental indicators. Without considering landscape variables, 54% of the variation in species density could be explained by the effects of salinity, flooding, and plant abundance. When landscape variables were included, distance from shore was unimportant but distance from sea explained an additional 12% of the variance in species density (R2 of final model = 66%). Based on these results it appears that at least some of the otherwise unexplained variation in species density can be attributed to landscape position, and presumably previous storm events. We suggest that future studies may gain

  5. Plant and Root Growth Responses to Heterogeneous Supplies of Soil Water in Two Coastal Shrubs of California.

    NASA Astrophysics Data System (ADS)

    Cole, S.; Mahall, B. E.

    2007-05-01

    Much effort has been focused on identifying plant and root growth responses to heterogeneous supplies of soil nutrients. However, in many circumstances, soil water may limit plant growth and it too can have a patchy distribution. In our research we asked: 1) What is the ecological significance of soil moisture heterogeneity to plant growth in a California coastal dune habitat? 2) How does growth of whole plants and roots respond to soil moisture heterogeneity? and 3) Can roots of these species sense and grow towards moisture-rich areas (hydrotropism) in a natural medium? To address these questions: we conducted comparative field studies of water relations and growth of Artemisia californica and Eriogonum parvifolium; we performed a growth rate study of roots and plants in experimental pots with either patchy or homogeneous distributions of soil water; and we analyzed individual root growth in sand-filled observation chambers in response to moisture-rich patches and resultant soil water gradients. In the field, correlations between daily photosynthetic rates, active leaf display and predawn xylem pressure potentials (ΨPD) indicated that access to water limited growth in A. californica and E. parvifolium. These species, common in habit and habitat, differed in their ability to access water with E. parvifolium having overall higher ΨPD than A. californica (repeated measures ANOVA, P < 0.01). Our growth rate study revealed that patchy supplies of water did not reduce the relative growth rate or average size of E. parvifolium (two-tailed t-tests, P > 0.25). It appears that modified partitioning of growth both at the whole plant and root system level permitted E. parvifolium to maintain growth in patchy soil water conditions. We found that E. parvifolium increased allocation to roots and proliferated in moisture-rich patches in the patchy soil water treatment. Root length density and the proportion of root mass present in the patch was 20- to >100-fold greater in and

  6. The effects of invertebrate herbivores on plant population growth: a meta-regression analysis.

    PubMed

    Katz, Daniel S W

    2016-09-01

    Over the last two decades, an increasing number of studies have quantified the effects of herbivory on plant populations using stage-structured population models and integral projection models, allowing for the calculation of plant population growth rates (λ) with and without herbivory. In this paper, I assembled 29 studies and conducted a meta-regression to determine the importance of invertebrate herbivores to population growth rates (λ) while accounting for missing data. I found that invertebrate herbivory often induced important reductions in plant population growth rates (with herbivory, λ was 1.08 ± 0.36; without herbivory, λ was 1.28 ± 0.58). This relationship tended to be weaker for seed predation than for other types of herbivory, except when seed predation rates were very high. Even so, the amount by which studies reduced herbivory was a poor predictor of differences in population growth rates-which strongly cautions against using measured herbivory rates as a proxy for the impact of herbivores. Herbivory reduced plant population growth rates significantly more when potential growth rates were high, which helps to explain why there was less variation in actual population growth rates than in potential population growth rates. The synthesis of these studies also shows the need for future studies to report variance in estimates of λ and to quantify how λ varies as a function of plant density.

  7. The effects of invertebrate herbivores on plant population growth: a meta-regression analysis.

    PubMed

    Katz, Daniel S W

    2016-09-01

    Over the last two decades, an increasing number of studies have quantified the effects of herbivory on plant populations using stage-structured population models and integral projection models, allowing for the calculation of plant population growth rates (λ) with and without herbivory. In this paper, I assembled 29 studies and conducted a meta-regression to determine the importance of invertebrate herbivores to population growth rates (λ) while accounting for missing data. I found that invertebrate herbivory often induced important reductions in plant population growth rates (with herbivory, λ was 1.08 ± 0.36; without herbivory, λ was 1.28 ± 0.58). This relationship tended to be weaker for seed predation than for other types of herbivory, except when seed predation rates were very high. Even so, the amount by which studies reduced herbivory was a poor predictor of differences in population growth rates-which strongly cautions against using measured herbivory rates as a proxy for the impact of herbivores. Herbivory reduced plant population growth rates significantly more when potential growth rates were high, which helps to explain why there was less variation in actual population growth rates than in potential population growth rates. The synthesis of these studies also shows the need for future studies to report variance in estimates of λ and to quantify how λ varies as a function of plant density. PMID:27017603

  8. Anthropometrics of mental foramen in dry dentate and edentulous mandibles in Coastal Andhra population of Andhra Pradesh State

    PubMed Central

    Moogala, Srinivas; Sanivarapu, Sahitya; Boyapati, Ramanarayana; Devulapalli, Narasimha Swamy; Chakrapani, Swarna; Kolaparthy, Laxmikanth

    2014-01-01

    Aim: The aim of this study is to determine the morphological features and morphometrics of mental foramen with reference to surrounding anatomical landmarks in Coastal Andhra population of Andhra Pradesh State. Materials and Methods: Two-hundred and nineteen dry dentate and edentulous mandibles are examined in this study. Out of these 127 were dentate and 92 were edentulous. Various morphological and morphometrical parameters were measured by using digital Vernier caliper, metallic wire and metallic scale on both the right and left sides. Results: In the present study, the distance between most anterior margin of mental foramen and posterior border of ramus of the mandible is [MF-PR], MF-PR is 69.61 ± 6.03 mm on the right side and is 69.17 ± 6. 0 mm on left side in dentate mandible. In edentulous type, MF-PR is 68.39 ±6.4 mm on right side and 68.81 ± 6.55 mm on left side. In the present study, the distance between symphysis menti and most anterior margin of mental foramen [MF-SM] in dentate mandible is 28.24 ± 5.09 mm on right side and is 27.45 ± 3.7 mm on left side. In edentulous mandible (MF-SM) is 28.51 ± 4.5 mm on right side and on left side is 27.99 ± 4.50 mm. Conclusion: Acquiring the knowledge and importance of anatomy of mental foramen is helpful in avoiding neurovascular complications, during regional anesthesia, peri apical surgeries, nerve repositioning and dental implant placement. PMID:25210267

  9. Population and osmoregulatory responses of a euryhaline fish to extreme salinity fluctuations in coastal lagoons of the Coorong, Australia

    NASA Astrophysics Data System (ADS)

    Wedderburn, Scotte D.; Bailey, Colin P.; Delean, Steven; Paton, David C.

    2016-01-01

    River flows and salinity are key factors structuring fish assemblages in estuaries. The osmoregulatory ability of a fish determines its capacity to tolerate rising salt levels when dispersal is unfeasible. Estuarine fishes can tolerate minor fluctuations in salinity, but a relatively small number of species in a few families can inhabit extreme hypersaline waters. The Murray-Darling Basin drains an extensive area of south-eastern Australia and river flows end at the mouth of the River Murray. The system is characterized by erratic rainfall and highly variable flows which have been reduced by intensive river regulation and water extraction. The Coorong is a coastal lagoon system extending some 110 km south-eastwards from the mouth. It is an inverted estuary with a salinity gradient that typically ranges from estuarine to triple that of sea water. Hypersalinity in the southern region suits a select suite of biota, including the smallmouth hardyhead Atherinosoma microstoma - a small-bodied, euryhaline fish with an annual life cycle. The population response of A. microstoma in the Coorong was examined during a period of considerable hydrological variation and extreme salinity fluctuations (2001-2014), and the findings were related to its osmoregulatory ability. Most notably, the species was extirpated from over 50% of its range during four continuous years without river flows when salinities exceeded 120 (2007-2010). These salinities exceeded the osmoregulatory ability of A. microstoma. Substantial river flows that reached the Coorong in late 2010 and continued into 2011 led salinities to fall below 100 throughout the Coorong by January 2012. Subsequently, A. microstoma recovered to its former range by January 2012. The findings show that the consequences of prolonged periods of insufficient river flows to temperate inverted estuaries will include substantial declines in the range of highly euryhaline fishes, which also may have wider ecological consequences.

  10. Application of plant growth regulators, a simple technique for improving the establishment success of plant cuttings in coastal dune restoration

    NASA Astrophysics Data System (ADS)

    Balestri, Elena; Vallerini, Flavia; Castelli, Alberto; Lardicci, Claudio

    2012-03-01

    Exogenous application of plant growth regulators (PGRs) may be an effective technique for increasing the rooting ability and the growth of vegetative fragments (cuttings) of plants used in dune restoration programs. Various concentrations (0, 50 and 100 mg l-1) of two auxins, alpha-naphtaleneacetic acid (NAA) and indole-3-butyric acid (IBA), and two cytokinins, 6-furfurylaminopurine (Kinetin) and 6-benzylaminopurine (BAP), were applied separately to cuttings of two widely used species for restoration, Ammophila arenaria and Sporobuls virginicus. Root development and production of new buds in cuttings were examined under laboratory conditions one month after application. Cuttings were also examined one year after transplanting into a sandy substratum under natural conditions, to test for possible long term effects of PGRs on plant establishment success and growth. The response of the two study species to PGRs differed substantially. In A. arenaria the auxin NAA at 100 mg l-1 reduced the time for root initiation and increased the rooting capacity of cuttings, while the cytokinin Kinetin at 50 mg l-1 facilitated root growth. No auxin had effect on rooting or growth of S. virginicus cuttings, but treatment with 100 mg l-1 Kinetin resulted in higher rooting success than the control. One year after planting, the cuttings of A. arenaria treated with 100 mg l-1 NAA showed a higher establishment success (90% vs. 55%) and produced more culms and longer roots than the control; those treated with cytokinins did not differ in the establishment success from the control, but had longer roots, more culms and rhizomes. On the other hand, the cuttings of S. virginicus treated with 100 mg l-1 Kinetin showed a higher establishment success (75% vs. 35%) and had more culms than the control. Therefore, in restoration activities that involved A. arenaria, a pre-treatment of cuttings with NAA would be beneficial, as it allows the production of a higher number of well-developed plants with

  11. Genetic Diversity and Demographic History of Wild and Cultivated/Naturalised Plant Populations: Evidence from Dalmatian Sage (Salvia officinalis L., Lamiaceae).

    PubMed

    Rešetnik, Ivana; Baričevič, Dea; Batîr Rusu, Diana; Carović-Stanko, Klaudija; Chatzopoulou, Paschalina; Dajić-Stevanović, Zora; Gonceariuc, Maria; Grdiša, Martina; Greguraš, Danijela; Ibraliu, Alban; Jug-Dujaković, Marija; Krasniqi, Elez; Liber, Zlatko; Murtić, Senad; Pećanac, Dragana; Radosavljević, Ivan; Stefkov, Gjoshe; Stešević, Danijela; Šoštarić, Ivan; Šatović, Zlatko

    2016-01-01

    Dalmatian sage (Salvia officinalis L., Lamiaceae) is a well-known aromatic and medicinal Mediterranean plant that is native in coastal regions of the western Balkan and southern Apennine Peninsulas and is commonly cultivated worldwide. It is widely used in the food, pharmaceutical and cosmetic industries. Knowledge of its genetic diversity and spatiotemporal patterns is important for plant breeding programmes and conservation. We used eight microsatellite markers to investigate evolutionary history of indigenous populations as well as genetic diversity and structure within and among indigenous and cultivated/naturalised populations distributed across the Balkan Peninsula. The results showed a clear separation between the indigenous and cultivated/naturalised groups, with the cultivated material originating from one restricted geographical area. Most of the genetic diversity in both groups was attributable to differences among individuals within populations, although spatial genetic analysis of indigenous populations indicated the existence of isolation by distance. Geographical structuring of indigenous populations was found using clustering analysis, with three sub-clusters of indigenous populations. The highest level of gene diversity and the greatest number of private alleles were found in the central part of the eastern Adriatic coast, while decreases in gene diversity and number of private alleles were evident towards the northwestern Adriatic coast and southern and eastern regions of the Balkan Peninsula. The results of Ecological Niche Modelling during Last Glacial Maximum and Approximate Bayesian Computation suggested two plausible evolutionary trajectories: 1) the species survived in the glacial refugium in southern Adriatic coastal region with subsequent colonization events towards northern, eastern and southern Balkan Peninsula; 2) species survived in several refugia exhibiting concurrent divergence into three genetic groups. The insight into genetic

  12. Genetic Diversity and Demographic History of Wild and Cultivated/Naturalised Plant Populations: Evidence from Dalmatian Sage (Salvia officinalis L., Lamiaceae)

    PubMed Central

    Rešetnik, Ivana; Baričevič, Dea; Batîr Rusu, Diana; Carović-Stanko, Klaudija; Chatzopoulou, Paschalina; Dajić-Stevanović, Zora; Gonceariuc, Maria; Grdiša, Martina; Greguraš, Danijela; Ibraliu, Alban; Jug-Dujaković, Marija; Krasniqi, Elez; Liber, Zlatko; Murtić, Senad; Pećanac, Dragana; Radosavljević, Ivan; Stefkov, Gjoshe; Stešević, Danijela; Šoštarić, Ivan; Šatović, Zlatko

    2016-01-01

    Dalmatian sage (Salvia officinalis L., Lamiaceae) is a well-known aromatic and medicinal Mediterranean plant that is native in coastal regions of the western Balkan and southern Apennine Peninsulas and is commonly cultivated worldwide. It is widely used in the food, pharmaceutical and cosmetic industries. Knowledge of its genetic diversity and spatiotemporal patterns is important for plant breeding programmes and conservation. We used eight microsatellite markers to investigate evolutionary history of indigenous populations as well as genetic diversity and structure within and among indigenous and cultivated/naturalised populations distributed across the Balkan Peninsula. The results showed a clear separation between the indigenous and cultivated/naturalised groups, with the cultivated material originating from one restricted geographical area. Most of the genetic diversity in both groups was attributable to differences among individuals within populations, although spatial genetic analysis of indigenous populations indicated the existence of isolation by distance. Geographical structuring of indigenous populations was found using clustering analysis, with three sub-clusters of indigenous populations. The highest level of gene diversity and the greatest number of private alleles were found in the central part of the eastern Adriatic coast, while decreases in gene diversity and number of private alleles were evident towards the northwestern Adriatic coast and southern and eastern regions of the Balkan Peninsula. The results of Ecological Niche Modelling during Last Glacial Maximum and Approximate Bayesian Computation suggested two plausible evolutionary trajectories: 1) the species survived in the glacial refugium in southern Adriatic coastal region with subsequent colonization events towards northern, eastern and southern Balkan Peninsula; 2) species survived in several refugia exhibiting concurrent divergence into three genetic groups. The insight into genetic

  13. Genetic Diversity and Demographic History of Wild and Cultivated/Naturalised Plant Populations: Evidence from Dalmatian Sage (Salvia officinalis L., Lamiaceae).

    PubMed

    Rešetnik, Ivana; Baričevič, Dea; Batîr Rusu, Diana; Carović-Stanko, Klaudija; Chatzopoulou, Paschalina; Dajić-Stevanović, Zora; Gonceariuc, Maria; Grdiša, Martina; Greguraš, Danijela; Ibraliu, Alban; Jug-Dujaković, Marija; Krasniqi, Elez; Liber, Zlatko; Murtić, Senad; Pećanac, Dragana; Radosavljević, Ivan; Stefkov, Gjoshe; Stešević, Danijela; Šoštarić, Ivan; Šatović, Zlatko

    2016-01-01

    Dalmatian sage (Salvia officinalis L., Lamiaceae) is a well-known aromatic and medicinal Mediterranean plant that is native in coastal regions of the western Balkan and southern Apennine Peninsulas and is commonly cultivated worldwide. It is widely used in the food, pharmaceutical and cosmetic industries. Knowledge of its genetic diversity and spatiotemporal patterns is important for plant breeding programmes and conservation. We used eight microsatellite markers to investigate evolutionary history of indigenous populations as well as genetic diversity and structure within and among indigenous and cultivated/naturalised populations distributed across the Balkan Peninsula. The results showed a clear separation between the indigenous and cultivated/naturalised groups, with the cultivated material originating from one restricted geographical area. Most of the genetic diversity in both groups was attributable to differences among individuals within populations, although spatial genetic analysis of indigenous populations indicated the existence of isolation by distance. Geographical structuring of indigenous populations was found using clustering analysis, with three sub-clusters of indigenous populations. The highest level of gene diversity and the greatest number of private alleles were found in the central part of the eastern Adriatic coast, while decreases in gene diversity and number of private alleles were evident towards the northwestern Adriatic coast and southern and eastern regions of the Balkan Peninsula. The results of Ecological Niche Modelling during Last Glacial Maximum and Approximate Bayesian Computation suggested two plausible evolutionary trajectories: 1) the species survived in the glacial refugium in southern Adriatic coastal region with subsequent colonization events towards northern, eastern and southern Balkan Peninsula; 2) species survived in several refugia exhibiting concurrent divergence into three genetic groups. The insight into genetic

  14. Synthesis of silver nanoparticles by coastal plant Prosopis chilensis (L.) and their efficacy in controlling vibriosis in shrimp Penaeus monodon

    NASA Astrophysics Data System (ADS)

    Kandasamy, Kathiresan; Alikunhi, Nabeel M.; Manickaswami, Gayathridevi; Nabikhan, Asmathunisha; Ayyavu, Gopalakrishnan

    2013-02-01

    The present work investigated the effect of leaf extract from coastal plant Prosopis chilensis on synthesis of silver nanoparticles using AgNO3 as a substrate and to find their antibacterial potential on pathogenic Vibrio species in the shrimp, Penaeus monodon. The leaf extract could be able to produce silver nanoparticles, as evident by gradual change in colour of the reaction mixture consisted of the extract and 1 mM AgNO3 to dark brown. The silver nanoparticles exhibited 2 θ values corresponding to the presence of silver nanocrystal, as evident by X-ray diffraction spectrum. The peaks corresponding to flavanones and terpenoids were found to be stabilizing agents of the nanoparticles, as revealed by Fourier transform infrared spectroscopy. The size of silver nanoparticles ranged from 5 to 25 nm with an average of 11.3 ± 2.1 nm and was mostly of spherical in shape, as confirmed by transmission electron microscopy. The silver nanoparticles were found to inhibit Vibrio pathogens viz., Vibrio cholerae, V. harveyi, and V. parahaemolyticus and this antibacterial effect was better than that of leaf extract, as proved by disc diffusion assay. The nanoparticles were then tested in the shrimp Penaeus monodon challenged with the four species of Vibrio pathogens for 30 days. The shrimps fed with silver nanoparticles exhibited higher survival, associated with immunomodulation in terms of higher haemocyte counts, phenoloxidase and antibacterial activities of haemolymph of P. monodon which is on par with that of control. Thus, the present study proved the possibility of using silver nanoparticles produced by coastal Prosopis chilensis as antibacterial agent in controlling vibriosis.

  15. Population based mortality surveillance in carbon products manufacturing plants.

    PubMed Central

    Teta, M J; Ott, M G; Schnatter, A R

    1987-01-01

    The utility of a population based, corporate wide mortality surveillance system was evaluated after a 10 year observation period of one of the company's divisions. The subject population, 2219 white male, long term employees from Union Carbide Corporation's carbon based electrode and specialty products operations, was followed up for mortality from 1974 to 1983. External comparisons with the United States male population were supplemented with internal comparisons among subgroups of the study population, defined by broad job categories and time related variables, adjusting for important correlates of the healthy worker effect. Significant deficits of deaths were observed for all causes and the major non-cancer causes of death. The numbers of deaths due to malignant neoplasms and respiratory cancer were less than, but not statistically different from, expected. There was a non-significant excess of deaths from lymphopoietic cancer, occurring predominantly among salaried employees. When specific locations were examined, operations with potential exposure to coal tar products exhibited a mortality pattern similar to that of the total cohort. The risk for lung cancer was significantly raised (five observed, 1.4 expected) in one small, but older, location which did not involve coal tar products during the period of employment of these individuals, but which historically used asbestos materials for several unique applications. Although these findings are limited by small numbers and a short observation period, the population based surveillance strategy has provided valuable information regarding the mortality experience of the population, directions for future research, and the allocation of epidemiological resources. PMID:3593661

  16. The Abundance of Pink-Pigmented Facultative Methylotrophs in the Root Zone of Plant Species in Invaded Coastal Sage Scrub Habitat

    PubMed Central

    Irvine, Irina C.; Brigham, Christy A.; Suding, Katharine N.; Martiny, Jennifer B. H.

    2012-01-01

    Pink-pigmented facultative methylotrophic bacteria (PPFMs) are associated with the roots, leaves and seeds of most terrestrial plants and utilize volatile C1 compounds such as methanol generated by growing plants during cell division. PPFMs have been well studied in agricultural systems due to their importance in crop seed germination, yield, pathogen resistance and drought stress tolerance. In contrast, little is known about the PPFM abundance and diversity in natural ecosystems, let alone their interactions with non-crop species. Here we surveyed PPFM abundance in the root zone soil of 5 native and 5 invasive plant species along ten invasion gradients in Southern California coastal sage scrub habitat. PPFMs were present in every soil sample and ranged in abundance from 102 to 105 CFU/g dry soil. This abundance varied significantly among plant species. PPFM abundance was 50% higher in the root zones of annual or biennial species (many invasives) than perennial species (all natives). Further, PPFM abundance appears to be influenced by the plant community beyond the root zone; pure stands of either native or invasive species had 50% more PPFMs than mixed species stands. In sum, PPFM abundance in the root zone of coastal sage scrub plants is influenced by both the immediate and surrounding plant communities. The results also suggest that PPFMs are a good target for future work on plant-microorganism feedbacks in natural ecosystems. PMID:22383990

  17. Multiple mechanisms sustain a plant-animal facilitation on a coastal ecotone

    PubMed Central

    He, Qiang; Cui, Baoshan

    2015-01-01

    Theory suggests that species distributions are expanded by positive species interactions, but the importance of facilitation in expanding species distributions at physiological range limits has not been widely recognized. We investigated the effects of the nurse shrub Tamarix chinensis on the crab Helice tientsinensis on the terrestrial borders of salt marshes, a typical coastal ecotone, where Tamarix and Helice were on their lower and upper elevational distribution edges, respectively. Crab burrows were abundant under Tamarix, but were absent in open areas between Tamarix. Removing Tamarix decreased associated crab burrows with time, while simulating Tamarix in open areas by shading, excluding predators, and adding Tamarix branches as crab food, increased crab burrows. Measurements of soil and microclimate factors showed that removing Tamarix increased abiotic stress, while simulating Tamarix by shading decreased abiotic stress. Survival of tethered crabs was high only when protected from desiccation and predation. Thus, by alleviating abiotic and biotic stresses, as well as by food provision, Tamarix expanded the upper intertidal distribution of Helice. Our study provides clear evidence for the importance of facilitation in expanding species distributions at their range limits, and suggests that facilitation is a crucial biological force maintaining the ecotones between ecosystems. PMID:25721758

  18. Linking fog water use by plants in the coastal Namib Desert to carbon and nitrogen cycles along aridity gradients

    NASA Astrophysics Data System (ADS)

    Macko, S. A.; Soderberg, K.; Henschel, J.; Billmark, K.; Swap, R. J.

    2009-12-01

    A steep rainfall gradient exists across the Namib Desert in southern Africa, which is unique in that frequent coastal fog occurs in areas that receive the least rainfall. Overall, the Namib is hyper-arid in terms of rainfall (25-100mm mean annual rainfall, MAR), but areas within about 60km of the coast see up to 100 days of fog each year. This scenario has influenced the distribution of plant species and the behavior of Namib fauna. In this study, carbon and nitrogen isotopes are used to investigate the biogeochemistry of vegetation the Namib aridity gradient, and fog uptake by individual plants is estimated by comparing water isotopes (δ2H and δ18O) of fog, groundwater, rain, soil water and plant water. Using the natural aridity gradient as a basis for this investigation allows for observation of patterns that can potentially be related to controlling biogeochemical processes. Studies of carbon and nitrogen isotopes in vegetation along precipitation gradients have revealed similar patterns in the Kalahari of southern Africa and in West Australia. The Kalahari trend observed along a precipitation gradient of 200-1000mm MAR shows enriched δ13C values in drier areas, and this trend is only apparent in C3 vegetation. The West Australia gradient (<150 to >1000mm MAR) follows the same general pattern, but the values are quite variable below about 250mm MAR. The corresponding nitrogen isotope data in the Kalahari shows an enrichment in 15N with less rainfall, again only apparent in C3 vegetation. Although there are significant differences between the Namib and Kalahari setting - notably soils and climatology - the Namib aridity gradient could potentially extend the Kalahari data set to areas that receive less than 100mm MAR. The fog and the unique survival strategies of Namib plants may explain differences between the Namib and Kalahari patterns. For example, the C3/CAM species W. mirabilis has highly variable δ13C values (-17.5 to -24‰), with a slight enrichment

  19. A LABORATORY BIOASSAY FOR MONITORING RESISTANCE IN TARNISHED PLANT BUG POPULATIONS TO NEONICOTINOID INSECTICIDES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A laboratory bioassay was developed for testing tarnished plant bug populations for resistance development to the neonicotinoid insecticides imidacloprid and thiamethoxam. The bioassay allows for the determination of LC50 values by feeding known doses of the insecticides to adult tarnished plant bu...

  20. Population dynamics of filamentous bacteria in Danish wastewater treatment plants with nutrient removal.

    PubMed

    Mielczarek, Artur Tomasz; Kragelund, Caroline; Eriksen, Poul Svante; Nielsen, Per Halkjær

    2012-08-01

    Bulking and foaming are two frequently occurring operational problems in activated sludge wastewater treatment plants, and these problems are mainly associated with excessive growth of filamentous bacteria. In this study, a comprehensive investigation of the identity and population dynamics of filamentous bacteria in 28 Danish municipal treatment plants with nutrient removal has been carried out over three years. Fluorescence in situ hybridization was applied to quantify more than twenty probe-defined populations of filamentous bacteria that in total constituted a large fraction of the entire microbial community, on average 24%. Despite the majority being present within the flocs, they occasionally caused settling problems in most of the plants. A low diversity of probe-defined filamentous bacteria was found in the plants with Microthrix and various species belonging to phylum Chloroflexi (e.g., type 0803 and type 0092) as the most abundant. Few other filamentous probe-defined species were found revealing a large similarity between the filamentous populations in the plants investigated. The composition of filamentous populations was stable in each plant with only minor changes in relative abundances observed during the three-year study period. The relative composition of the different species was unique to each plant giving a characteristic "fingerprint". Comprehensive statistical analyses of the presence and abundance of the filamentous organisms did not reveal many correlations with a particular plant design or process parameter.

  1. Abundance pattern of wedge clam Donax cuneatus (L.) in different spatial scale in the vicinity of a coastal nuclear power plant.

    PubMed

    Hussain, K Jahir; Mohanty, A K; Satpathy, K K; Prasad, M V R

    2010-04-01

    Impact of thermal discharge from a coastal power station (Madras Atomic Power Station, southeast coast of India) on the spatial variability of Donax cuneatus abundance was assessed to determine the impact boundary. Totally, 20 sites were selected both on south and north side in increasing spatial scale from mixing zone, 12 locations were selected toward south side at a distance from 0 (near mixing point) to 2,000 m and eight location were selected toward north from the effluent mixing zone. Mean water temperature along the coast ranged from 29.1 +/-0.15 degrees C to 31.2 +/- 0.15 degrees C. Total organic carbon content in the sediment ranged from 0.27% to 0.70%. D. cuneatus population on the swash zone was ranged between 1.3 +/- 1.5 and 88.3 +/- 9.6 m(-2). Meager population of wedge clam was observed up to 100 m (S100) south from mixing point and abundance gradually increased in different spatial scale. Comparatively high abundance was observed from S400 and reached maximum at S1000 (64.0 +/- 3.6 m(-2)). Similar pattern was observed on north side too but less abundance was observed only up to 80 m (N80). Maximum abundance was observed at control location C3-N500 (88.3 +/- 9.6 m(-2)). Forty meters on either side of discharge point was highly impacted, 80 to 100 m toward plume flow (south) was moderately impacted, and 80 m north of mixing point also witnessed moderate impact. After 100 m (N100), north was not affected by effluents, whereas between 100 and 400 m, south was influenced slightly. Multivariate clustering pattern on the environmental variables of all sampling locations and population trend of D. cuneatus at those stations showed similarity. Present investigation unambiguously showed that the abundance pattern of D. cuneatus on the sandy beach of east coast of Kalpakkam is not governed by single major factor but due to the result of multiple interacting factors. The population size of the wedge clam with reference to the effect of power plant effluents and

  2. Microbial Population and Community Dynamics on Plant Roots and Their Feedbacks on Plant Communities

    PubMed Central

    Bever, James D.; Platt, Thomas G.; Morton, Elise R.

    2012-01-01

    The composition of the soil microbial community can be altered dramatically due to association with individual plant species, and these effects on the microbial community can have important feedbacks on plant ecology. Negative plant-soil feedback plays primary roles in maintaining plant community diversity, whereas positive plant-soil feedback may cause community conversion. Host-specific differentiation of the microbial community results from the trade-offs associated with overcoming plant defense and the specific benefits associated with plant rewards. Accumulation of host-specific pathogens likely generates negative feedback on the plant, while changes in the density of microbial mutualists likely generate positive feedback. However, the competitive dynamics among microbes depends on the multidimensional costs of virulence and mutualism, the fine-scale spatial structure within plant roots, and active plant allocation and localized defense. Because of this, incorporating a full view of microbial dynamics is essential to explaining the dynamics of plant-soil feedbacks and therefore plant community ecology. PMID:22726216

  3. Population dynamics of bacteria involved in enhanced biological phosphorus removal in Danish wastewater treatment plants.

    PubMed

    Mielczarek, Artur Tomasz; Nguyen, Hien Thi Thu; Nielsen, Jeppe Lund; Nielsen, Per Halkjær

    2013-03-15

    The enhanced biological phosphorus removal (EBPR) process is increasingly popular as a sustainable method for removal of phosphorus (P) from wastewater. This study consisted of a comprehensive three-year investigation of the identity and population dynamics of polyphosphate-accumulating organisms (PAOs) and glycogen-accumulating organisms (GAOs) in 28 Danish municipal wastewater treatment plants with nutrient removal. Fluorescence in situ hybridization was applied to quantify ten probe-defined populations of PAO and GAO that in total constituted a large fraction (30% on average) of the entire microbial community targeted by the EUBmix probes. Two PAO genera, Accumulibacter and Tetrasphaera, were very abundant in all EBPR plants (average of 3.7% and 27% of all bacteria, respectively), and their abundance was relatively stable in the Danish full-scale plants without clear temporal variations. GAOs were occasionally present in some plants (Competibacter in 11 plants, Defluviicoccus in 6 plants) and were consistent in only a few plants. This shows that these were not core species in the EBPR communities. The total GAO abundance was always lower than that of Accumulibacter. In plants without EBPR design, the abundance of PAO and GAO was significantly lower. Competibacter correlated in general with high fraction of industrial wastewater. In specific plants Accumulibacter correlated with high C/P ratio of the wastewater and Tetrasphaera with high organic loading. Interestingly, the relative microbial composition of the PAO/GAO species was unique to each plant over time, which gives a characteristic plant-specific "fingerprint". PMID:23317522

  4. Population dynamics of bacteria involved in enhanced biological phosphorus removal in Danish wastewater treatment plants.

    PubMed

    Mielczarek, Artur Tomasz; Nguyen, Hien Thi Thu; Nielsen, Jeppe Lund; Nielsen, Per Halkjær

    2013-03-15

    The enhanced biological phosphorus removal (EBPR) process is increasingly popular as a sustainable method for removal of phosphorus (P) from wastewater. This study consisted of a comprehensive three-year investigation of the identity and population dynamics of polyphosphate-accumulating organisms (PAOs) and glycogen-accumulating organisms (GAOs) in 28 Danish municipal wastewater treatment plants with nutrient removal. Fluorescence in situ hybridization was applied to quantify ten probe-defined populations of PAO and GAO that in total constituted a large fraction (30% on average) of the entire microbial community targeted by the EUBmix probes. Two PAO genera, Accumulibacter and Tetrasphaera, were very abundant in all EBPR plants (average of 3.7% and 27% of all bacteria, respectively), and their abundance was relatively stable in the Danish full-scale plants without clear temporal variations. GAOs were occasionally present in some plants (Competibacter in 11 plants, Defluviicoccus in 6 plants) and were consistent in only a few plants. This shows that these were not core species in the EBPR communities. The total GAO abundance was always lower than that of Accumulibacter. In plants without EBPR design, the abundance of PAO and GAO was significantly lower. Competibacter correlated in general with high fraction of industrial wastewater. In specific plants Accumulibacter correlated with high C/P ratio of the wastewater and Tetrasphaera with high organic loading. Interestingly, the relative microbial composition of the PAO/GAO species was unique to each plant over time, which gives a characteristic plant-specific "fingerprint".

  5. Resistance to Acephate in Tarnished Plant Bug (Heteroptera: Miridae) Populations in the Mississippi River Delta

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A monitoring program to detect resistance in tarnished plant bug, Lygus lineolaris (Palisot de Beauvois), populations in the delta of AR, LA, and MS, was conducted by testing populations collected from weeds with a glass-vial bioassay at 20 different delta locations from the fall of 2001 through the...

  6. Seismic Hazard to the Diablo Canyon Nuclear Power Plant, Coastal Central California; a Realistic Assessment Needed

    NASA Astrophysics Data System (ADS)

    Hamilton, D. H.

    2014-12-01

    SourceURL:file://localhost/Users/joycehamilton/Desktop/Hamilton%20AGU%20abstractREV8-2-14.doc A recent issue of EOS featured the article "Active Faults and Nuclear Power Plants" (Chapman et.al., 2014). Although this article mainly reports on evaluations of fault hazard issues at Japan's Tsuruga NPP, it also includes a section on how the owner of the Diablo Canyon Nuclear Power Plant (DCNPP) in California, Pacific Gas and Electric Company (PG&E), is successfully responding to the evolving needs of seismic hazard assessment for that project. However, a review of the history of such assessment for the DCNPP project reveals a less benign situation, of which there is no hint in the EOS article. This history shows a long term pattern of collaborative efforts by PG&E and its operations and safety regulator, the US NRC, to maintain the operation of DCNPP using stratagems of non-recognition or non-acknowledgment of hazardous conditions, or of minimizing the postulated effects of such conditions by combinations of discovering new means of estimating ever lower levels of potential vibratory ground motions, and feeding the results into logic trees for a PRA which calculates the hazard down to levels acceptable to the NRC for the plant's continued operation. Such a result, however, can be made only if the geologic and seismologic reality of a very high level of seismic hazard to the facility is side stepped, down played, or dismissed. The actual pattern of late Quaternary—including contemporary—tectonism beneath and surrounding the DCNPP site, as shown on a realistic portrayal of geologic structures and active seismicity, is clearly at odds with such a conclusion, and with the statement in the EOS article that PG&E's Long Term Seismic Program "…has provided increased confidence that earthquakes occurring in central California are not likely to produce surprising or conflicting data."

  7. Introduction beyond a species range: a relationship between population origin, adaptive potential and plant performance

    PubMed Central

    Volis, S; Ormanbekova, D; Yermekbayev, K; Song, M; Shulgina, I

    2014-01-01

    The adaptive potential of a population defines its importance for species survival in changing environmental conditions such as global climate change. Very few empirical studies have examined adaptive potential across species' ranges, namely, of edge vs core populations, and we are unaware of a study that has tested adaptive potential (namely, variation in adaptive traits) and measured performance of such populations in conditions not currently experienced by the species but expected in the future. Here we report the results of a Triticum dicoccoides population study that employed transplant experiments and analysis of quantitative trait variation. Two populations at the opposite edges of the species range (1) were locally adapted; (2) had lower adaptive potential (inferred from the extent of genetic quantitative trait variation) than the two core populations; and (3) were outperformed by the plants from the core population in the novel environment. The fact that plants from the species arid edge performed worse than plants from the more mesic core in extreme drought conditions beyond the present climatic envelope of the species implies that usage of peripheral populations for conservation purposes must be based on intensive sampling of among-population variation. PMID:24690758

  8. Estimation of Population Bottlenecks during Systemic Movement of Tobacco Mosaic Virus in Tobacco Plants

    PubMed Central

    Sacristán, Soledad; Malpica, José M.; Fraile, Aurora; García-Arenal, Fernando

    2003-01-01

    More often than not, analyses of virus evolution have considered that virus populations are so large that evolution can be explained by purely deterministic models. However, virus populations could have much smaller effective numbers than the huge reported census numbers, and random genetic drift could be important in virus evolution. A reason for this would be population bottlenecks during the virus life cycle. Here we report a quantitative estimate of population bottlenecks during the systemic colonization of tobacco leaves by Tobacco mosaic virus (TMV). Our analysis is based on the experimental estimation of the frequency of different genotypes of TMV in the inoculated leaf, and in systemically infected leaves, of tobacco plants coinoculated with two TMV genotypes. A simple model, based on the probability that a leaf in coinoculated plants is infected by just one genotype and on the frequency of each genotype in the source, was used to estimate the effective number of founders for the populations in each leaf. Results from the analysis of three leaves per plant in plants inoculated with different combinations of three TMV genotypes yielded highly consistent estimates. Founder numbers for each leaf were small, in the order of units. This would result in effective population numbers much smaller than the census numbers and indicates that random effects due to genetic drift should be considered for understanding virus evolution within an infected plant. PMID:12941900

  9. Managing breaches of containment and eradication of invasive plant populations

    PubMed Central

    Fletcher, Cameron S; Westcott, David A; Murphy, Helen T; Grice, Anthony C; Clarkson, John R

    2015-01-01

    Containment can be a viable strategy for managing invasive plants, but it is not always cheaper than eradication. In many cases, converting a failed eradication programme to a containment programme is not economically justified. Despite this, many contemporary invasive plant management strategies invoke containment as a fallback for failed eradication, often without detailing how containment would be implemented. We demonstrate a generalized analysis of the costs of eradication and containment, applicable to any plant invasion for which infestation size, dispersal distance, seed bank lifetime and the economic discount rate are specified. We estimate the costs of adapting eradication and containment in response to six types of breach and calculate under what conditions containment may provide a valid fallback to a breached eradication programme. We provide simple, general formulae and plots that can be applied to any invasion and show that containment will be cheaper than eradication only when the size of the occupied zone exceeds a multiple of the dispersal distance determined by seed bank longevity and the discount rate. Containment becomes proportionally cheaper than eradication for invaders with smaller dispersal distances, longer lived seed banks, or for larger discount rates. Both containment and eradication programmes are at risk of breach. Containment is less exposed to risk from reproduction in the ‘occupied zone’ and three types of breach that lead to a larger ‘occupied zone’, but more exposed to one type of breach that leads to a larger ‘buffer zone’. For a well-specified eradication programme, only the three types of breach leading to reproduction in or just outside the buffer zone can justify falling back to containment, and only if the expected costs of eradication and containment were comparable before the breach. Synthesis and applications. Weed management plans must apply a consistent definition of containment and provide sufficient

  10. [Monitoring the thermal plume from coastal nuclear power plant using satellite remote sensing data: modeling, and validation].

    PubMed

    Zhu, Li; Zhao, Li-Min; Wang, Qiao; Zhang, Ai-Ling; Wu, Chuan-Qing; Li, Jia-Guo; Shi, Ji-Xiang

    2014-11-01

    Thermal plume from coastal nuclear power plant is a small-scale human activity, mornitoring of which requires high-frequency and high-spatial remote sensing data. The infrared scanner (IRS), on board of HJ-1B, has an infrared channel IRS4 with 300 m and 4-days as its spatial and temporal resolution. Remote sensing data aquired using IRS4 is an available source for mornitoring thermal plume. Retrieval pattern for coastal sea surface temperature (SST) was built to monitor the thermal plume from nuclear power plant. The research area is located near Guangdong Daya Bay Nuclear Power Station (GNPS), where synchronized validations were also implemented. The National Centers for Environmental Prediction (NCEP) data was interpolated spatially and temporally. The interpolated data as well as surface weather conditions were subsequently employed into radiative transfer model for the atmospheric correction of IRS4 thermal image. A look-up-table (LUT) was built for the inversion between IRS4 channel radiance and radiometric temperature, and a fitted function was also built from the LUT data for the same purpose. The SST was finally retrieved based on those preprocessing procedures mentioned above. The bulk temperature (BT) of 84 samples distributed near GNPS was shipboard collected synchronically using salinity-temperature-deepness (CTD) instruments. The discrete sample data was surface interpolated and compared with the satellite retrieved SST. Results show that the average BT over the study area is 0.47 degrees C higher than the retrieved skin temperature (ST). For areas far away from outfall, the ST is higher than BT, with differences less than 1.0 degrees C. The main driving force for temperature variations in these regions is solar radiation. For areas near outfall, on the contrary, the retrieved ST is lower than BT, and greater differences between the two (meaning > 1.0 degrees C) happen when it gets closer to the outfall. Unlike the former case, the convective heat

  11. Population status of the American alligator on the Savannah River Plant, South Carolina

    SciTech Connect

    Murphy, T.M.

    1981-04-01

    Estimates are presented of alligator numbers, size distribution, sex ratios, reproductive effort, and population trends for all major components of the entire Savannah River Plant (SRP) alligator population. Savannah River Plant operations have impacted the alligator population in many different ways. The formation of man-made reservoirs has dramatically increased the amount of aquatic habitat available to alligators and has therefore increased the carrying capacity of the SRP site for this species. The thermal alteration of aquatic habitats on the SRP has also impacted the resident alligator population. Temperature elevations of aquatic habitat to greater than 38/sup 0/C result in the loss of this habitat to alligators. Moderate thermal increases on the other hand are responded to by alligator movement. The current information available on the alligators of the SRP suggests the following future trends: low density populations distant from thermally altered areas will continue at a low density with the exception of localized increases.

  12. Relationships between pigment composition variation and reflectance for plant species from a coastal savannah in California

    NASA Technical Reports Server (NTRS)

    Ustin, Susan L.; Sanderson, Eric W.; Grossman, Yaffa; Hart, Quinn J.

    1993-01-01

    Advances in imaging spectroscopy have indicated that remotely sensed reflectance measurements of the plant canopy may be used to identify and qualify some classes of canopy biochemicals; however, the manner in which differences in biochemical compositions translate into differences is not well understood. Most frequently, multiple linear regression routines have been used to correlate narrow band reflectance values with measured biochemical concentrations. Although some success has been achieved with such methods for given data sets, the bands selected by multiple regression are not consistent between data sets, nor is it always clear what physical or biological basis underlies the correlation. To examine the relationship between biochemical concentration and leaf reflectance signal we chose to focus on the visible spectrum where the primary biochemical absorbances are due to photosynthetic pigments. Pigments provide a range of absorbance features, occur over a range of concentrations in natural samples, and are ecophysiologically important. Concentrations of chlorophyll, for example, have been strongly correlated to foliar nitrogen levels within a species and to photosynthetic capacity across many species. In addition pigments effectively absorb most of the photosynthetically active radiation between 400-700 nm, a spectral region for which silicon detectors have good signal/noise characteristics. Our strategy has been to sample a variety of naturally occurring species to measure leaf reflectance and pigment compositions. We hope to extend our understanding of pigment reflectance effects to interpret small overlapping absorbances of other biochemicals in the infrared region. For this reason, selected samples were also tested to determine total nitrogen, crude protein, cellulose, and lignin levels. Leaf reflectance spectra measured with AVIRIS bandwidths and wavelengths were compared between species and within species and for differences between seasons, for changes

  13. Causes and consequences of complex population dynamics in an annual plant, Cardamine pensylvanica

    SciTech Connect

    Crone, E.E.

    1995-11-08

    The relative importance of density-dependent and density-independent factors in determining the population dynamics of plants has been widely debated with little resolution. In this thesis, the author explores the effects of density-dependent population regulation on population dynamics in Cardamine pensylvanica, an annual plant. In the first chapter, she shows that experimental populations of C. pensylvanica cycled from high to low density in controlled constant-environment conditions. These cycles could not be explained by external environmental changes or simple models of direct density dependence (N{sub t+1} = f[N{sub t}]), but they could be explained by delayed density dependence (N{sub t+1} = f[N{sub t}, N{sub t+1}]). In the second chapter, she shows that the difference in the stability properties of population growth models with and without delayed density dependence is due to the presence of Hopf as well as slip bifurcations from stable to chaotic population dynamics. She also measures delayed density dependence due to effects of parental density on offspring quality in C. pensylvanica and shows that this is large enough to be the cause of the population dynamics observed in C. pensylvanica. In the third chapter, the author extends her analyses of density-dependent population growth models to include interactions between competing species. In the final chapter, she compares the effects of fixed spatial environmental variation and variation in population size on the evolutionary response of C. pensylvanica populations.

  14. Demographic stochasticity in small remnant populations of the declining distylous plant Primula veris

    USGS Publications Warehouse

    Kery, M.; Matthies, D.; Schmid, B.

    2003-01-01

    We studied ecological consequences of distyly for the declining perennial plant Primula veris in the Swiss Jura. Distyly favours cross-fertilization and avoids inbreeding, but may lead to pollen limitation and reduced reproduction if morph frequencies deviate from 50 %. Disassortative mating is promoted by the reciprocal position of stigmas and anthers in the two morphs (pin and thrum) and by intramorph incompatibility and should result in equal frequencies of morphs at equilibrium. However, deviations could arise because of demographic stochasticity, the lower intra-morph incompatibility of the pin morph, and niche differentiation between morphs. Demographic stochasticity should result in symmetric deviations from an even morph frequency among populations and in increased deviations with decreasing population size. If crosses between pins occurred, these would only generate pins, and this could result in a pin-bias of morph frequencies in general and in small populations in particular. If the morphs have different niches, morph frequencies should be related to environmental factors, morphs might be spatially segregated, and morphological differences between morphs would be expected. We tested these hypotheses in the declining distylous P. veris. We studied morph frequencies in relation to environmental conditions and population size, spatial segregation in field populations, morphological differences between morphs, and growth responses to nutrient addition. Morph frequencies in 76 populations with 1 - 80000 flowering plants fluctuated symmetrically about 50 %. Deviations from 50 % were much larger in small populations, and sixof the smallest populations had lost one morph altogether. In contrast, morph frequencies were neither related to population size nor to 17 measures of environmental conditions. We found no spatial segregation or morphological differences in the field or in the common garden. The results suggest that demographic stochasticity caused

  15. Ontogenetic shifts in plant interactions vary with environmental severity and affect population structure.

    PubMed

    le Roux, Peter C; Shaw, Justine D; Chown, Steven L

    2013-10-01

    Environmental conditions and plant size may both alter the outcome of inter-specific plant-plant interactions, with seedlings generally facilitated more strongly than larger individuals in stressful habitats. However, the combined impact of plant size and environmental severity on interactions is poorly understood. Here, we tested explicitly for the first time the hypothesis that ontogenetic shifts in interactions are delayed under increasingly severe conditions by examining the interaction between a grass, Agrostis magellanica, and a cushion plant, Azorella selago, along two severity gradients. The impact of A. selago on A. magellanica abundance, but not reproductive effort, was related to A. magellanica size, with a trend for delayed shifts towards more negative interactions under greater environmental severity. Intermediate-sized individuals were most strongly facilitated, leading to differences in the size-class distribution of A. magellanica on the soil and on A. selago. The A. magellanica size-class distribution was more strongly affected by A. selago than by environmental severity, demonstrating that the plant-plant interaction impacts A. magellanica population structure more strongly than habitat conditions. As ontogenetic shifts in plant-plant interactions cannot be assumed to be constant across severity gradients and may impact species population structure, studies examining the outcome of interactions need to consider the potential for size- or age-related variation in competition and facilitation.

  16. Ammonia-oxidizing bacteria and archaea in wastewater treatment plant sludge and nearby coastal sediment in an industrial area in China.

    PubMed

    Zhang, Yan; Chen, Lujun; Sun, Renhua; Dai, Tianjiao; Tian, Jinping; Wen, Donghui

    2015-05-01

    Under the increasing pressure of human activities, Hangzhou Bay has become one of the most seriously polluted waters along China's coast. Considering the excessive inorganic nitrogen detected in the bay, in this study, the impact of an effluent from a coastal industrial park on ammonia-oxidizing microorganisms (AOMs) of the receiving area was interpreted for the first time by molecular technologies. Revealed by real-time PCR, the ratio of archaeal amoA/bacterial amoA ranged from 5.68 × 10(-6) to 4.79 × 10(-5) in the activated sludge from two wastewater treatment plants (WWTPs) and 0.54-3.44 in the sediments from the effluent receiving coastal area. Analyzed by clone and pyrosequencing libraries, genus Nitrosomonas was the predominant ammonia-oxidizing bacteria (AOB), but no ammonia-oxidizing archaea (AOA) was abundant enough for sequencing in the activated sludge from the WWTPs; genus Nitrosomonas and Nitrosopumilus were the dominant AOB and AOA, respectively, in the coastal sediments. The different abundance of AOA but similar structure of AOB between the WWTPs and nearby coastal area probably indicated an anthropogenic impact on the microbial ecology in Hangzhou Bay.

  17. Genetic diversity of high-elevation populations of an endangered medicinal plant

    PubMed Central

    Nag, Akshay; Ahuja, Paramvir Singh; Sharma, Ram Kumar

    2015-01-01

    Intraspecific genetic variation in natural populations governs their potential to overcome challenging ecological and environmental conditions. In addition, knowledge of this variation is critical for the conservation and management of endangered plant taxa. Found in the Himalayas, Podophyllum hexandrum is an endangered high-elevation plant species that has great medicinal importance. Here we report on the genetic diversity analysis of 24 P. hexandrum populations (209 individuals), representing the whole of the Indian Himalayas. In the present study, seven amplified fragment length polymorphism (AFLP) primer pairs generated 1677 fragments, of which 866 were found to be polymorphic. Neighbour joining clustering, principal coordinate analysis and STRUCTURE analysis clustered 209 individuals from 24 populations of the Indian Himalayan mountains into two major groups with a significant amount of gene flow (Nm = 2.13) and moderate genetic differentiation Fst(0.196), G′st(0.20). This suggests that, regardless of geographical location, all of the populations from the Indian Himalayas are intermixed and are composed broadly of two types of genetic populations. High variance partitioned within populations (80 %) suggests that most of the diversity is restricted to the within-population level. These results suggest two possibilities about the ancient population structure of P. hexandrum: either all of the populations in the geographical region of the Indian Himalayas are remnants of a once-widespread ancient population, or they originated from two types of genetic populations, which coexisted a long time ago, but subsequently separated as a result of long-distance dispersal and natural selection. High variance partitioned within the populations indicates that these populations have evolved in response to their respective environments over time, but low levels of heterozygosity suggest the presence of historical population bottlenecks. PMID:25416728

  18. Genotypic and phenotypic diversity in populations of plant-probiotic Pseudomonas spp. colonizing roots

    NASA Astrophysics Data System (ADS)

    Picard, Christine; Bosco, Marco

    2008-01-01

    Several soil microorganisms colonizing roots are known to naturally promote the health of plants by controlling a range of plant pathogens, including bacteria, fungi, and nematodes. The use of theses antagonistic microorganisms, recently named plant-probiotics, to control plant-pathogenic fungi is receiving increasing attention, as they may represent a sustainable alternative to chemical pesticides. Many years of research on plant-probiotic microorganisms (PPM) have indicated that fluorescent pseudomonads producing antimicrobial compounds are largely involved in the suppression of the most widespread soilborne pathogens. Phenotype and genotype analysis of plant-probiotic fluorescent pseudomonads (PFP) have shown considerable genetic variation among these types of strains. Such variability plays an important role in the rhizosphere competence and the biocontrol ability of PFP strains. Understanding the mechanisms by which genotypic and phenotypic diversity occurs in natural populations of PFP could be exploited to choose those agricultural practices which best exploit the indigenous PFP populations, or to isolate new plant-probiotic strains for using them as inoculants. A number of different methods have been used to study diversity within PFP populations. Because different resolutions of the existing microbial diversity can be revealed depending on the approach used, this review first describes the most important methods used for the assessment of fluorescent Pseudomonas diversity. Then, we focus on recent data relating how differences in genotypic and phenotypic diversity within PFP communities can be attributed to geographic location, climate, soil type, soil management regime, and interactions with other soil microorganisms and host plants. It becomes evident that plant-related parameters exert the strongest influence on the genotypic and phenotypic variations in PFP populations.

  19. Status and limiting factors of three rare plant species in the coastal lowlands and mid-elevation woodlands of Hawai`i Volcanoes National Park

    USGS Publications Warehouse

    Pratt, Linda W.; VanDeMark, Joshua R.; Euaparadorn, Melody

    2011-01-01

    Two endangered plant species (Portulaca sclerocarpa, `ihi mākole, and Sesbania tomentosa, `ōhai) and a species of concern (Bobea timonioides, `ahakea) native to the coastal lowlands and dry mid-elevation woodlands of Hawai`i Volcanoes National Park were studied for more than two years to determine their stand structure, short-term mortality rates, patterns of reproductive phenology, success of fruit production, seed germination rates in the greenhouse, presence of soil seed bank, and survival of both natural and planted seedlings. The role of rodents as fruit and seed predators was evaluated using exclosures and seed offerings in open and closed stations or cages. Rodents were excluded from randomly selected plants of P. sclerocarpa and from branches of S. tomentosa, and flower and fruit production were compared to that of adjacent unprotected plants. Tagged S. tomentosa fruit were also monitored monthly to detect rodent predation.

  20. Factors Affecting Population Trends of Plant-Parasitic Nematodes on Rangeland Grasses

    PubMed Central

    Griffin, G. D.; Asay, K. H.; Horton, W. H.

    1996-01-01

    The effects of environmental conditions on population trends of plant-parasitic nematodes were studied in experimental plots of five wheatgrasses in the western Utah desert. In a 3-year (1984-86) field study, soil water and temperature affected the population trends of the ectoparasites, Tylenchorhynchus acutoides and Xiphinema americanum, and the migratory endoparasite, Pratylenchus neglectus, on Fairway crested wheatgrass, Agropyron cristatum; 'Hycrest' crested wheatgrass, A. cristatum X A. desertorura; 'Rosana' western wheatgrass, Pascopyrum smithii; 'Oahe' intermediate wheatgrass, Thinopyrum intermedium; and RS-1 hybrid (Elytrigia repens X Pseudoroegneria spicata). The largest soil populations of these nematode species were collected in 1984 under good plant-growth conditions. A reduction in nematode populations occurred in 1985 and 1986, possibly because of low soil-water conditions. There was a positive relationship between high soil water and maximum population densities of T. acutoides in the spring and fall of 1984, and between low soil water and minimum population densities of the nematode in 1985 and 1986. Pratylenchus neglectus populations were affected by soil water, although to a lesser degree than the ectoparasitic nematodes. Population densities of the three nematode species were significantly lower in the drier years of 1985 and 1986 than in 1984. Nematode populations were greater at the lower soil depths in the fall than in the spring or summer. PMID:19277352

  1. Extinction rate estimates for plant populations in revisitation studies: Importance of detectability

    USGS Publications Warehouse

    Kery, M.

    2004-01-01

    Many researchers have obtained extinction-rate estimates for plant populations by comparing historical and current records of occurrence. A population that is no longer found is assumed to have gone extinct. Extinction can then be related to characteristics of these populations, such as habitat type, size, or species, to test ideas about what factors may affect extinction. Such studies neglect the fact that a population may be overlooked, however, which may bias estimates of extinction rates upward. In addition, if populations are unequally detectable across groups to be compared, such as habitat type or population size, comparisons become distorted to an unknown degree. To illustrate the problem, I simulated two data sets, assuming a constant extinction rate, in which populations occurred in different habitats or habitats of different size and these factors affected their detectability The conventional analysis implicitly assumed that detectability equalled 1 and used logistic regression to estimate extinction rates. It wrongly identified habitat and population size as factors affecting extinction risk. In contrast, with capture-recapture methods, unbiased estimates of extinction rates were recovered. I argue that capture-recapture methods should be considered more often in estimations of demographic parameters in plant populations and communities.

  2. Host-plant dependent population genetics of the invading weevil Hypera postica.

    PubMed

    Iwase, S-I; Nakahira, K; Tuda, M; Kagoshima, K; Takagi, M

    2015-02-01

    Population genetics of invading pests can be informative for understanding their ecology. In this study, we investigated population genetics of the invasive alfalfa weevil Hypera postica in Fukuoka Prefecture, Japan. We analyzed mitochondrial tRNALeu-COII, nuclear EF-1α gene fragments, and Wolbachia infection in relation to three leguminous host plants: Vicia angustifolia, Vicia villosa, and a new host Astragalus sinicus cultivated as a honey source and green manure crop. A parsimony network generated from mitochondrial gene sequences uncovered two major haplotypic groups, Western and Egyptian. In contrast to reported Wolbachia infection of the Western strain in the United States, none of our analyzed individuals were infected. The absence of Wolbachia may contribute to the stable coexistence of mitochondrial strains through inter-strain reproductive compatibility. Hypera postica genetic variants for the mitochondrial and nuclear genes were associated neither with host plant species nor with two geographic regions (Hisayama and Kama) within Fukuoka. Mitochondrial haplogroups were incongruent with nuclear genetic variants. Genetic diversity at the nuclear locus was the highest for the populations feeding on V. angustifolia. The nuclear data for A. sinicus-feeding populations indicated past sudden population growth and extended Bayesian skyline plot analysis based on the mitochondrial and nuclear data showed that the growth of A. sinicus-feeding population took place within the past 1000 years. These results suggest a shorter history of A. sinicus as a host plant compared with V. angustifolia and a recent rapid growth of H. postica population using the new host A. sinicus.

  3. Marinobacterium rhizophilum sp. nov., isolated from the rhizosphere of the coastal tidal-flat plant Suaeda japonica.

    PubMed

    Kim, Yoon-Gon; Jin, Yeon-A; Hwang, Chung Yeon; Cho, Byung Cheol

    2008-01-01

    A Gram-negative, strictly aerobic, marine bacterium, designated strain CL-YJ9(T), was isolated from sediment closely associated with the roots of a plant (Suaeda japonica) inhabiting a coastal tidal flat. Cells of the novel strain were straight and rod-shaped and were motile by means of monopolar flagella. A phylogenetic analysis based on 16S rRNA gene sequences revealed that strain CL-YJ9(T) belongs to the genus Marinobacterium and was most closely related to Marinobacterium halophilum mano11(T) (94.1% sequence similarity) and to other members of the genus Marinobacterium (92.5-93.7% sequence similarity). The strain grew with 1-5% NaCl (optimum, 3%) and at 5-30 degrees C (optimum, approx. 25 degrees C) and pH 6.0-9.0 (optimum, pH 7.0). The predominant cellular fatty acids were summed feature 3 (C(16:1)omega7c and/or iso-C(15:0) 2-OH, 40.3%), C(18:1)omega7c (26.6%), C(16:0) (16.6%) and C(10:0) 3-OH (7.1%). The major isoprenoid quinone was Q-8. The G+C content of the genomic DNA was 61 mol%. On the basis of the data from this polyphasic study, strain CL-YJ9(T) belongs to the genus Marinobacterium but is distinguishable from the recognized species. Strain CL-YJ9(T) therefore represents a novel species, for which the name Marinobacterium rhizophilum sp. nov. is proposed. The type strain is CL-YJ9(T) (=KCCM 42386(T) =DSM 18822(T)).

  4. Impact of plant development on the rhizobacterial population of Arachis hypogaea: a multifactorial analysis.

    PubMed

    Haldar, Shyamalina; Sengupta, Sanghamitra

    2015-07-01

    Present study investigates the impact of plant development on the structure and composition of root-associated bacterial community of groundnut (Arachis hypogaea) plant, an economically important oilseed legume. Relative abundance of total and active bacteria were studied in bulk soil and rhizosphere samples collected from different growth stages of groundnut plant by sequencing PCR-amplified 16S rRNA gene fragments from soil genomic DNA and reverse-transcribed soil community RNA. Plant growth promoting potential of cultivable rhizobacteria was evaluated using assays for inorganic phosphate solubilization and production of indole acetic acid, siderophores, biofilm, 1-amino-cyclopropane-1-carboxylate deaminase, laccase, and anti-fungal chemicals. Our study demonstrates that groundnut plant rhizosphere harbors a core microbiome populated by Proteobacteria, Actinobacteria, Firmicutes, Bacteroidetes, and Acidobacteria. A distinct bacterial assemblage at nodulation stage due to predominance of Flavobacteria and Actinobacteria in DNA and RNA derived libraries respectively was also observed. Majority of cultivable isolates exhibiting plant growth promoting activities belonged to Proteobacteria and Firmicutes. Of them, Pseudomonas indica and Bacillus megaterium were detected in the rhizosphere samples from all the developmental stages of groundnut plant. This polyphasic study establishes the impact of plant development on rhizobacterial population of groundnut and underscores the applicability of soil isolates as a reliable component in sustainable agriculture.

  5. Host-plant-associated genetic differentiation in Northern French populations of the European corn borer.

    PubMed

    Martel, C; Réjasse, A; Rousset, F; Bethenod, M-T; Bourguet, D

    2003-02-01

    The phytophagous insects that damage crops are often polyphagous, feeding on several types of crop and on weeds. The refuges constituted by noncrop host plants may be useful in managing the evolution in pest species of resistance to the Bacillus thuringiensis toxins produced by transgenic crops. However, the benefits of these refuges may be limited because host-plant diversity may drive genetic divergence and possibly even host-plant-mediated sympatric speciation. The European corn borer, Ostrinia nubilalis Hübner (Lepidoptera: Crambidae), is the main pest of maize in Europe and North America, where it was introduced early in the 20th century. It has a wide host range but feeds principally on mugwort (Artemisia vulgaris L.) and maize (Zea mays L.). O. nubilalis is found on mugwort only in the northern part of France, whereas it is found on maize throughout France. The extent of genetic variation at allozyme markers was investigated in populations collected from the two host plants over the entire geographical distribution of the European corn borer on mugwort in France. Allelic differentiation between pairs of populations and hierarchical analyses of pools of samples from each host plant indicate that the group of populations feeding on maize differed from the group of populations feeding on mugwort. Our results suggest (1) host-plant-related divergent selection at the genomic region surrounding the Mpi locus and (2) limited gene flow between the populations feeding on mugwort and those infesting maize fields. These data indicate that adults emerging from mugwort would not be useful for managing the evolution of resistance to the B. thuringiensis toxins in European corn borer populations.

  6. Host-plant-associated genetic differentiation in Northern French populations of the European corn borer.

    PubMed

    Martel, C; Réjasse, A; Rousset, F; Bethenod, M-T; Bourguet, D

    2003-02-01

    The phytophagous insects that damage crops are often polyphagous, feeding on several types of crop and on weeds. The refuges constituted by noncrop host plants may be useful in managing the evolution in pest species of resistance to the Bacillus thuringiensis toxins produced by transgenic crops. However, the benefits of these refuges may be limited because host-plant diversity may drive genetic divergence and possibly even host-plant-mediated sympatric speciation. The European corn borer, Ostrinia nubilalis Hübner (Lepidoptera: Crambidae), is the main pest of maize in Europe and North America, where it was introduced early in the 20th century. It has a wide host range but feeds principally on mugwort (Artemisia vulgaris L.) and maize (Zea mays L.). O. nubilalis is found on mugwort only in the northern part of France, whereas it is found on maize throughout France. The extent of genetic variation at allozyme markers was investigated in populations collected from the two host plants over the entire geographical distribution of the European corn borer on mugwort in France. Allelic differentiation between pairs of populations and hierarchical analyses of pools of samples from each host plant indicate that the group of populations feeding on maize differed from the group of populations feeding on mugwort. Our results suggest (1) host-plant-related divergent selection at the genomic region surrounding the Mpi locus and (2) limited gene flow between the populations feeding on mugwort and those infesting maize fields. These data indicate that adults emerging from mugwort would not be useful for managing the evolution of resistance to the B. thuringiensis toxins in European corn borer populations. PMID:12634820

  7. Photosynthetic Characterization of Plant Functional Types from Coastal Tundra to Improve Representation of the Arctic in Earth System Models

    NASA Astrophysics Data System (ADS)

    Rogers, A.; Xu, C.; McDowell, N. G.; Sloan, V. L.; Norby, R. J.

    2012-12-01

    The primary goal of Earth System Models (ESMs) is to improve understanding and projection of future global change. In order to do this they must accurately represent the carbon fluxes associated with the terrestrial carbon cycle. Photosynthetic CO2 uptake is well described by the Farquhar, von Caemmerer and Berry model of photosynthesis, and most ESMs use a derivation of this model. One of the key parameters required by the Farquhar, von Caemmerer and Berry model is an estimate of the maximum rate of carboxylation by the enzyme Rubisco (Vc,max). In ESMs the parameter Vc,max is usually fixed for a given plant functional type (PFT) and often estimated from the empirical relationship between leaf N content and Vc,max. However, uncertainty in the estimation of Vc,max has been shown to account for significant variation in model estimation of gross primary production, particularly in the Arctic. As part of a new multidisciplinary project to improve the representation of the Arctic in ESMs (Next Generation Ecosystem Experiments - Arctic) we have begun to characterize photosynthetic parameters and N acquisition in the key Arctic PFTs. We measured the response of photosynthesis (A) to internal CO2 concentration (ci) in situ in two sedges (Carex aquatilis, Eriophorum angustifolium), a grass (Dupontia fisheri) and a forb (Petasites frigidus) growing on the Barrow Environmental Observatory, Barrow, AK. The values of Vc,max (normalized to 25oC) currently used to represent Arctic PFTs in ESMs are approximately half of the values we measured in these species in July, 2012, on the coastal tundra in Barrow. We hypothesize that these plants have a greater fraction of leaf N invested in Rubisco (FLNR) than is assumed by the models. The parameter Vc,max is used directly as a driver for respiration in some ESMs, and in other ESMs Vc,max is linked to leaf N content and N acquisition through FLNR. Therefore, these results have implications for ESMs beyond photosynthesis, and suggest that

  8. Effects of long-term chronic exposure to radionuclides in plant populations.

    PubMed

    Geras'kin, S; Evseeva, T; Oudalova, A

    2013-07-01

    The results of field studies carried out on different plant species (winter rye and wheat, spring barley, oats, Scots pine, wild vetch, crested hairgrass) in various radioecological situations (nuclear weapon testing, the Chernobyl accident, uranium and radium processing) to investigate the effects of long-term chronic exposure to radionuclides are discussed. Plant populations growing in areas with relatively low levels of pollution are characterized by an increased level of both cytogenetic disturbances and genetic diversity. Although ionizing radiation causes primary damage at the molecular level, there are emergent effects at the level of populations, non-predictable from the knowledge of elementary mechanisms of cellular effects formation. Accumulation of cellular alterations may afterward influence biological parameters important for populations such as health and reproduction. Presented data provide evidence that in plant populations inhabiting heavily contaminated territories cytogenetic damage could be accompanied by a decrease in reproductive capacity. However, in less contaminated sites, because of the scarcity of data available, a steady relationship between cytogenetic effects and reproductive capacity was not revealed. Under radioactive contamination of the plant's environment, a population's resistance to exposure may increase. However, there are radioecological situations where an enhanced radioresistance has not evolved or has not persisted. PMID:22483340

  9. Managing Natural and Reintroduced Rare Plant Populations within a Large Government Reservation

    SciTech Connect

    Carlsen, T M; Paterson, L E; Alfaro, T M

    2009-07-15

    California is home to many large government reservations that have been in existence for decades. Many of these reservations were formed to support various Department of Defense and Department of Energy national defense activities. Often, only a very small percentage of the reservation is actively used for programmatic activities, resulting in large areas of intact habitat. In some cases, this has benefited rare plant populations, as surrounding lands have been developed for residential or industrial use. However, land management activities such as the suppression or active use of fire and other disturbance (such as fire trail grading) can also work to either the detriment or benefit of rare plant populations at these sites. A management regime that is beneficial to the rare plant populations of interest and is at best consistent with existing site programmatic activities, and at a minimum does not impact such activities, has the best potential for a positive outcome. As a result, some species may be 'difficult' while others may be 'easy' to manage in this context, depending on how closely the species biological requirements match the programmatic activities on the reservation. To illustrate, we compare and contrast two rare annual plant species found at Lawrence Livermore National Laboratory's Site 300. Although several populations of Amsinckia grandiflora have been restored on the site, and all populations are intensively managed, this species continues to decline. In contrast, Blepharizonia plumosa appears to take advantage of the annual controlled burns conducted on the site, and is thriving.

  10. [Effects of host plants on the life table parameters of experimental populations of Aphis gossypii].

    PubMed

    Li, Yan-Yan; Zhou, Xiao-Rong; Pang, Bao-Ping; Chang, Jing

    2013-05-01

    A comparative study was conducted on the life table parameters of Aphis gossypii reared on five host plant species at (25 +/- 1) degrees C in laboratory. There existed significant differences in the durations of various developmental stages, adult longevity, mean offspring number per day, net reproductive rate, intrinsic rate of increase, finite rate of increase, mean generation time, and population doubling time for the A. gossypii populations reared on the host plants. For the aphids on Lagenaria siceraria var. turbinate, they needed the longest time (5.84 days) to complete one generation, but for those on the other four plants, no significant differences were observed, with the time needed ranged from 5.24 to 5.45 days. The adult longevity was the longest (20.04 days) on Cucumis sativus, but had no significant differences on the other four host plants, being from 14.76 to 16.03 days. The populations' survival curves on all test host plants were of Deevey I, i. e., the death mainly occurred during late period. The survival rate on C. sativus was higher than those on the other four host plants. Based on the intrinsic rates of increase of A. gossypii, its host suitability was in the order of Cucumis melo var. saccharinus > Lagenaria siceraria var. turbinate > Cucurbita moschata var. melonaeformis > Cucumis sativus > Cucurbita pepo var. medullosa.

  11. Influence of the Wax Lake Delta sediment diversion on aboveground plant productivity and carbon storage in deltaic island and mainland coastal marshes

    NASA Astrophysics Data System (ADS)

    DeLaune, R. D.; Sasser, C. E.; Evers-Hebert, E.; White, J. R.; Roberts, H. H.

    2016-08-01

    Coastal Louisiana is experiencing a significant loss of coastal wetland area due to increasing sea level rise, subsidence, sediment starvation and marsh collapse. The construction of large scale Mississippi River sediment diversions is currently being planned in an effort to help combat coastal wetlands losses at a rate of >50 km-2 y-1. The Wax Lake Delta (WLD) is currently being used as a model for evaluating potential land gain from large scale diversions of Mississippi River water and sediment. In this study, we determine the impact of the WLD diversion on plant production at newly formed islands within the delta and adjacent, mainland freshwater marshes. Plant aboveground productivity, sediment nutrient status and short term accretion were measured at three locations on a transect at each of three fresh water marsh sites along Hog Bayou and at six newly formed emerging island sites in the delta. Spring flooding has resulted in a greater increase in plant production and consequently, greater carbon sequestration potential in adjacent mainland marshes compared to the newly formed island sites, which contain less total carbon (C), nitrogen (N), and phosphorus (P) in the sediment. While sediment diversions are predicted to create land, as seen in island formation in the WLD, the greatest benefit of river sediment diversions from a carbon credit perspective might be to the adjacent freshwater mainland marshes for several reasons. Both greater plant production and sediment C accumulation are two important factors for marsh stability, while perhaps even more critical, is the prevention of the loss of stored sediment C in the marsh profile. This stored C would be lost without the introduction of freshwater, nutrients and sediment through river sediment diversion efforts.

  12. Regional differences in diabetes prevalence and awareness between coastal and interior provinces in China: a population-based cross-sectional study

    PubMed Central

    2013-01-01

    Background Most studies on diabetes prevalence and awareness in China are regional or about a single province, and differences between coastal and interior provinces have not been discussed even in the nation-based studies. The aim of this study was to determine regional differences in diabetes prevalence and awareness between coastal and interior provinces, and to identify the factors associated with diabetes prevalence and awareness. Methods Provinces Fujian and Shaanxi were chosen to represent the coastal and interior provinces, respectively. The data of two provinces were from the China National Diabetes and Metabolic Disorders Study 2007–08. A total of 5926 people (Fujian 2672 and Shaanxi 3254) aged above 20 years were included as participants in the study. Age-standardized prevalence and awareness were compared between provinces. Logistic regression analysis was performed not only to examine risk factors of diabetes prevalence and awareness, but also to examine the association between regional difference and diabetes prevalence and awareness. Results The age-standardized prevalence of diabetes in Fujian was higher than that in Shaanxi among total (11.5% vs. 8.0%), male (13.6% vs. 8.9%) and female (10.8% vs. 7.4%) populations. Diabetes awareness for total and male population in Fujian was higher than that in Shaanxi (42.3% vs. 34.9% and 46.8% vs. 35.2%, respectively). Age, sex, central obesity, family history of diabetes, and metabolic risk factors were all significantly associated with diabetes prevalence in both provinces. However, cigarette smoking was significantly associated with prevalence in Fujian and physical activity was significantly associated with the prevalence in Shaanxi. Family history of diabetes was the only independent risk factor of diabetes awareness in both provinces. After being adjusted for all listed risk factors, the regional difference of diabetes prevalence was still significant, but that of diabetes awareness lost significance

  13. Herbivory Differentially Affects Plant Fitness in Three Populations of the Perennial Herb Lythrum salicaria along a Latitudinal Gradient.

    PubMed

    Lehndal, Lina; Ågren, Jon

    2015-01-01

    Herbivory can negatively and selectively affect plant fitness by reducing growth, survival and reproductive output, thereby influencing plant population dynamics and evolution. Latitudinal variation in intensity of herbivory is common, but the extent to which it translates into corresponding variation in effects on plant performance is still poorly known. We tested the hypothesis that variation in the fitness-consequences of herbivory mirror differences in intensity of herbivory among three natural populations of the perennial herb Lythrum salicaria along a latitudinal gradient from southern to northernmost Sweden. We documented intensity of herbivory and examined its effect on survival, growth and reproductive output over two years by experimentally removing herbivores with insecticide. The intensity of herbivory and the effects of herbivory on plant fitness were strongest in the southern population, intermediate in the central population and weakest in the northern population. The mean proportion of the leaf area removed ranged from 11% in the southern to 3% in the northern population. Herbivore removal increased plant height 1.5-fold in the southern and 1.2-fold in the central population, the proportion plants flowering 4-fold in the southern and 2-fold in the central population, and seed production per flower 1.6-fold in the southern and 1.2-fold in the central population, but did not affect plant fitness in the northern population. Herbivore removal thus affected the relative fecundity of plants in the three populations: In the control, seed output per plant was 8.6 times higher in the northern population compared to the southern population, whereas after herbivore removal it was 2.5 times higher in the southern population. The results demonstrate that native herbivores may strongly affect the demographic structure of L. salicaria populations and thereby shape geographic patterns of seed production. They further suggest that the strength of herbivore

  14. Herbivory Differentially Affects Plant Fitness in Three Populations of the Perennial Herb Lythrum salicaria along a Latitudinal Gradient

    PubMed Central

    Lehndal, Lina; Ågren, Jon

    2015-01-01

    Herbivory can negatively and selectively affect plant fitness by reducing growth, survival and reproductive output, thereby influencing plant population dynamics and evolution. Latitudinal variation in intensity of herbivory is common, but the extent to which it translates into corresponding variation in effects on plant performance is still poorly known. We tested the hypothesis that variation in the fitness-consequences of herbivory mirror differences in intensity of herbivory among three natural populations of the perennial herb Lythrum salicaria along a latitudinal gradient from southern to northernmost Sweden. We documented intensity of herbivory and examined its effect on survival, growth and reproductive output over two years by experimentally removing herbivores with insecticide. The intensity of herbivory and the effects of herbivory on plant fitness were strongest in the southern population, intermediate in the central population and weakest in the northern population. The mean proportion of the leaf area removed ranged from 11% in the southern to 3% in the northern population. Herbivore removal increased plant height 1.5-fold in the southern and 1.2-fold in the central population, the proportion plants flowering 4-fold in the southern and 2-fold in the central population, and seed production per flower 1.6-fold in the southern and 1.2-fold in the central population, but did not affect plant fitness in the northern population. Herbivore removal thus affected the relative fecundity of plants in the three populations: In the control, seed output per plant was 8.6 times higher in the northern population compared to the southern population, whereas after herbivore removal it was 2.5 times higher in the southern population. The results demonstrate that native herbivores may strongly affect the demographic structure of L. salicaria populations and thereby shape geographic patterns of seed production. They further suggest that the strength of herbivore

  15. Effects of precipitation change and neighboring plants on population dynamics of Bromus tectorum.

    PubMed

    Prevéy, Janet S; Seastedt, Timothy R

    2015-11-01

    Shifting precipitation patterns resulting from global climate change will influence the success of invasive plant species. In the Front Range of Colorado, Bromus tectorum (cheatgrass) and other non-native winter annuals have invaded grassland communities and are becoming more abundant. As the global climate warms, more precipitation may fall as rain rather than snow in winter, and an increase in winter rain could benefit early-growing winter annuals, such as B. tectorum, to the detriment of native species. In this study we measured the effects of simulated changes in seasonal precipitation and presence of other plant species on population growth of B. tectorum in a grassland ecosystem near Boulder, Colorado, USA. We also performed elasticity analyses to identify life transitions that were most sensitive to precipitation differences. In both study years, population growth rates were highest for B. tectorum growing in treatments receiving supplemental winter precipitation and lowest for those receiving the summer drought treatment. Survival of seedlings to flowering and seed production contributed most to population growth in all treatments. Biomass of neighboring native plants was positively correlated with reduced population growth rates of B. tectorum. However, exotic plant biomass had no effect on population growth rates. This study demonstrates how interacting effects of climate change and presence of native plants can influence the population growth of an invasive species. Overall, our results suggest that B. tectorum will become more invasive in grasslands if the seasonality of precipitation shifts towards wetter winters and allows B. tectorum to grow when competition from native species is low. PMID:26227366

  16. Effects of precipitation change and neighboring plants on population dynamics of Bromus tectorum.

    PubMed

    Prevéy, Janet S; Seastedt, Timothy R

    2015-11-01

    Shifting precipitation patterns resulting from global climate change will influence the success of invasive plant species. In the Front Range of Colorado, Bromus tectorum (cheatgrass) and other non-native winter annuals have invaded grassland communities and are becoming more abundant. As the global climate warms, more precipitation may fall as rain rather than snow in winter, and an increase in winter rain could benefit early-growing winter annuals, such as B. tectorum, to the detriment of native species. In this study we measured the effects of simulated changes in seasonal precipitation and presence of other plant species on population growth of B. tectorum in a grassland ecosystem near Boulder, Colorado, USA. We also performed elasticity analyses to identify life transitions that were most sensitive to precipitation differences. In both study years, population growth rates were highest for B. tectorum growing in treatments receiving supplemental winter precipitation and lowest for those receiving the summer drought treatment. Survival of seedlings to flowering and seed production contributed most to population growth in all treatments. Biomass of neighboring native plants was positively correlated with reduced population growth rates of B. tectorum. However, exotic plant biomass had no effect on population growth rates. This study demonstrates how interacting effects of climate change and presence of native plants can influence the population growth of an invasive species. Overall, our results suggest that B. tectorum will become more invasive in grasslands if the seasonality of precipitation shifts towards wetter winters and allows B. tectorum to grow when competition from native species is low.

  17. The Effects of Rainfall on the Population Dynamics of an Endangered Aquatic Plant, Schoenoplectus gemmifer (Cyperaceae)

    PubMed Central

    Kitamura, Koshi; Kakishima, Satoshi; Uehara, Takashi; Morita, Satoru; Tainaka, Kei-ichi; Yoshimura, Jin

    2016-01-01

    The conservation of aquatic plants in river ecosystems should consider the wash-out (away) problem resulting from severe rainfall. The aquatic plant Schoenoplectus gemmifer is an endangered species endemic to Japan. Our previous study reported that the population size of S. gemmifer in Hamamatsu city, Japan, had decreased by one-tenth because many individuals had been washed out by a series of heavy rains in 2004. However, there is insufficient information on the ecological nature of this endangered aquatic plant for adequate conservation. In this paper, we report the population dynamics of one population in Hamamatsu city from 2004 to 2012 in relation to rainfall. We surveyed the number and growing location of all living individuals in the population 300 times during the study period. To examine the temporal changes of individual plants, we also counted the number of culms for 38 individuals in four observations among 300 records. Decreases and increases in the population size of this plant were associated with washing out and the settlement of gemmae (vegetative propagation), respectively. The major cause of the reduction in the population size was an increase in the number of washed-out individuals and not the decreased settlement of gemmae. The wash-out rates for small and large individuals were not significantly different. Small individuals having a stream form with linear leaves resisted flooding, and large individuals were often partially torn off by flooding events. Modification of river basins to reduce the flow velocity may be effective for the conservation of S. gemmifer. PMID:27327439

  18. The Effects of Rainfall on the Population Dynamics of an Endangered Aquatic Plant, Schoenoplectus gemmifer (Cyperaceae).

    PubMed

    Kitamura, Koshi; Kakishima, Satoshi; Uehara, Takashi; Morita, Satoru; Tainaka, Kei-Ichi; Yoshimura, Jin

    2016-01-01

    The conservation of aquatic plants in river ecosystems should consider the wash-out (away) problem resulting from severe rainfall. The aquatic plant Schoenoplectus gemmifer is an endangered species endemic to Japan. Our previous study reported that the population size of S. gemmifer in Hamamatsu city, Japan, had decreased by one-tenth because many individuals had been washed out by a series of heavy rains in 2004. However, there is insufficient information on the ecological nature of this endangered aquatic plant for adequate conservation. In this paper, we report the population dynamics of one population in Hamamatsu city from 2004 to 2012 in relation to rainfall. We surveyed the number and growing location of all living individuals in the population 300 times during the study period. To examine the temporal changes of individual plants, we also counted the number of culms for 38 individuals in four observations among 300 records. Decreases and increases in the population size of this plant were associated with washing out and the settlement of gemmae (vegetative propagation), respectively. The major cause of the reduction in the population size was an increase in the number of washed-out individuals and not the decreased settlement of gemmae. The wash-out rates for small and large individuals were not significantly different. Small individuals having a stream form with linear leaves resisted flooding, and large individuals were often partially torn off by flooding events. Modification of river basins to reduce the flow velocity may be effective for the conservation of S. gemmifer. PMID:27327439

  19. Uncoupling the effects of seed predation and seed dispersal by granivorous ants on plant population dynamics.

    PubMed

    Arnan, Xavier; Molowny-Horas, Roberto; Rodrigo, Anselm; Retana, Javier

    2012-01-01

    Secondary seed dispersal is an important plant-animal interaction, which is central to understanding plant population and community dynamics. Very little information is still available on the effects of dispersal on plant demography and, particularly, for ant-seed dispersal interactions. As many other interactions, seed dispersal by animals involves costs (seed predation) and benefits (seed dispersal), the balance of which determines the outcome of the interaction. Separate quantification of each of them is essential in order to understand the effects of this interaction. To address this issue, we have successfully separated and analyzed the costs and benefits of seed dispersal by seed-harvesting ants on the plant population dynamics of three shrub species with different traits. To that aim a stochastic, spatially-explicit individually-based simulation model has been implemented based on actual data sets. The results from our simulation model agree with theoretical models of plant response dependent on seed dispersal, for one plant species, and ant-mediated seed predation, for another one. In these cases, model predictions were close to the observed values at field. Nonetheless, these ecological processes did not affect in anyway a third species, for which the model predictions were far from the observed values. This indicates that the balance between costs and benefits associated to secondary seed dispersal is clearly related to specific traits. This study is one of the first works that analyze tradeoffs of secondary seed dispersal on plant population dynamics, by disentangling the effects of related costs and benefits. We suggest analyzing the effects of interactions on population dynamics as opposed to merely analyzing the partners and their interaction strength.

  20. Uncoupling the Effects of Seed Predation and Seed Dispersal by Granivorous Ants on Plant Population Dynamics

    PubMed Central

    Arnan, Xavier; Molowny-Horas, Roberto; Rodrigo, Anselm; Retana, Javier

    2012-01-01

    Secondary seed dispersal is an important plant-animal interaction, which is central to understanding plant population and community dynamics. Very little information is still available on the effects of dispersal on plant demography and, particularly, for ant-seed dispersal interactions. As many other interactions, seed dispersal by animals involves costs (seed predation) and benefits (seed dispersal), the balance of which determines the outcome of the interaction. Separate quantification of each of them is essential in order to understand the effects of this interaction. To address this issue, we have successfully separated and analyzed the costs and benefits of seed dispersal by seed-harvesting ants on the plant population dynamics of three shrub species with different traits. To that aim a stochastic, spatially-explicit individually-based simulation model has been implemented based on actual data sets. The results from our simulation model agree with theoretical models of plant response dependent on seed dispersal, for one plant species, and ant-mediated seed predation, for another one. In these cases, model predictions were close to the observed values at field. Nonetheless, these ecological processes did not affect in anyway a third species, for which the model predictions were far from the observed values. This indicates that the balance between costs and benefits associated to secondary seed dispersal is clearly related to specific traits. This study is one of the first works that analyze tradeoffs of secondary seed dispersal on plant population dynamics, by disentangling the effects of related costs and benefits. We suggest analyzing the effects of interactions on population dynamics as opposed to merely analyzing the partners and their interaction strength. PMID:22880125

  1. Agronomics and economics of plant population density on processing sweet corn

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A detailed analysis of the effect of plant population density on processing sweet corn is lacking in the peer-reviewed literature. Therefore, field experiments were conducted utilizing six hybrids commonly grown in the North Central Region (NCR), a primary production region of processing sweet corn ...

  2. A Bioassay for Determining Resistance Levels in Tarnished Plant Bug Populations to Neonicotinoid Insecticides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A laboratory bioassay was developed and used to test field populations of the tarnished plant bug, Lygus lineolaris (Palisot de Beauvois), for resistance development to the neonicitinoid insecticides imidacloprid (Trimax®) and thiamethoxam (Centric®). The bioassay determined LC50 values by feeding...

  3. Influence of maize and pigweed on tarnished plant bug (Hemiptera: Miridae) populations infesting cotton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The influence of maize, lea mays L., and pigweed, Amaranthus spp., on populations of tarnished plant bug, Lygus lineolaris (Palisot de Beauvois), adults infesting cotton, Gossypium hirsucum L., in the Mississippi Delta was studied using stable isotope analyses. Cotton fields adjacent to maize and th...

  4. Metabolite profiling reveals temperature effects on the VOCs and flavonoids of different plant populations.

    PubMed

    Goh, H-H; Khairudin, K; Sukiran, N A; Normah, M N; Baharum, S N

    2016-01-01

    Temperature is one of the key factors in limiting the distribution of plants and controlling major metabolic processes. A series of simulated reciprocal transplant experiments were performed to investigate the effect of temperature on plant chemical composition. Polygonum minus of different lowland and highland origin were grown under a controlled environment with different temperature regimes to study the effects on secondary metabolites. We applied gas chromatography-mass spectrometry and liquid chromatography time-of-flight mass spectrometry to identify the chemical compounds. A total of 37 volatile organic compounds and 85 flavonoids were detected, with the largest response observed in the compositional changes of aldehydes and terpenes in highland plants under higher temperature treatment. Significantly less anthocyanidin compounds and larger amounts of flavonols were detected under higher temperature treatment. We also studied natural variation in the different plant populations growing under the same environment and identified compounds unique to each population through metabolite fingerprinting. This study shows that the origin of different plant populations influences the effects of temperature on chemical composition. PMID:26417881

  5. Ploidy frequencies in plants with ploidy heterogeneity: fitting a general gametic model to empirical population data

    PubMed Central

    Suda, Jan; Herben, Tomáš

    2013-01-01

    Genome duplication (polyploidy) is a recurrent evolutionary process in plants, often conferring instant reproductive isolation and thus potentially leading to speciation. Outcome of the process is often seen in the field as different cytotypes co-occur in many plant populations. Failure of meiotic reduction during gametogenesis is widely acknowledged to be the main mode of polyploid formation. To get insight into its role in the dynamics of polyploidy generation under natural conditions, and coexistence of several ploidy levels, we developed a general gametic model for diploid–polyploid systems. This model predicts equilibrium ploidy frequencies as functions of several parameters, namely the unreduced gamete proportions and fertilities of higher ploidy plants. We used data on field ploidy frequencies for 39 presumably autopolyploid plant species/populations to infer numerical values of the model parameters (either analytically or using an optimization procedure). With the exception of a few species, the model fit was very high. The estimated proportions of unreduced gametes (median of 0.0089) matched published estimates well. Our results imply that conditions for cytotype coexistence in natural populations are likely to be less restrictive than previously assumed. In addition, rather simple models show sufficiently rich behaviour to explain the prevalence of polyploids among flowering plants. PMID:23193129

  6. Scale dependence of sex ratio in wild plant populations: implications for social selection.

    PubMed

    Sanderson, Brian J; Augat, Malcolm E; Taylor, Douglas R; Brodie, Edmund D

    2016-03-01

    Social context refers to the composition of an individual's social interactants, including potential mates. In spatially structured populations, social context can vary among individuals within populations, generating the opportunity for social selection to drive differences in fitness functions among individuals at a fine spatial scale. In sexually polymorphic plants, the local sex ratio varies at a fine scale and thus has the potential to generate this opportunity. We measured the spatial distribution of two wild populations of the gynodioecious plant Silene vulgaris and show that there is fine-scale heterogeneity in the local distribution of the sexes within these populations. We demonstrate that the largest variance in sex ratio is among nearest neighbors. This variance is greatly reduced as the spatial scale of social interactions increases. These patterns suggest the sex of neighbors has the potential to generate fine-scale differences in selection differentials among individuals. One of the most important determinants of social interactions in plants is the behavior of pollinators. These results suggest that the potential for selection arising from sex ratio will be greatest when pollen is shared among nearest neighbors. Future studies incorporating the movement of pollinators may reveal whether and how this fine-scale variance in sex ratio affects the fitness of individuals in these populations. PMID:26865952

  7. Trade-offs between the metabolic rate and population density of plants.

    PubMed

    Deng, Jian-Ming; Li, Tao; Wang, Gen-Xuan; Liu, Jing; Yu, Ze-Long; Zhao, Chang-Ming; Ji, Ming-Fei; Zhang, Qiang; Liu, Jian-Quan

    2008-03-19

    The energetic equivalence rule, which is based on a combination of metabolic theory and the self-thinning rule, is one of the fundamental laws of nature. However, there is a progressively increasing body of evidence that scaling relationships of metabolic rate vs. body mass and population density vs. body mass are variable and deviate from their respective theoretical values of 3/4 and -3/4 or -2/3. These findings questioned the previous hypotheses of energetic equivalence rule in plants. Here we examined the allometric relationships between photosynthetic mass (M(p)) or leaf mass (M(L)) vs. body mass (beta); population density vs. body mass (delta); and leaf mass vs. population density, for desert shrubs, trees, and herbaceous plants, respectively. As expected, the allometric relationships for both photosynthetic mass (i.e. metabolic rate) and population density varied with the environmental conditions. However, the ratio between the two exponents was -1 (i.e. beta/delta = -1) and followed the trade-off principle when local resources were limited. Our results demonstrate for the first time that the energetic equivalence rule of plants is based on trade-offs between the variable metabolic rate and population density rather than their constant allometric exponents.

  8. Linking a Large-Watershed Hydrogeochemical Model to a Wetland Community-Ecosystem Model to Estimate Plant Invasion Risk in the Coastal Great Lakes Region, USA

    NASA Astrophysics Data System (ADS)

    Currie, W. S.; Bourgeau-Chavez, L. L.; Elgersma, K. J.; French, N. H. F.; Goldberg, D. E.; Hart, S.; Hyndman, D. W.; Kendall, A. D.; Martin, S. L.; Martina, J. P.

    2014-12-01

    In the Laurentian Great Lakes region of the Upper Midwest, USA, agricultural and urban land uses together with high N deposition are contributing to elevated flows of N in rivers and groundwater to coastal wetlands. The functioning of coastal wetlands, which provide a vital link between land and water, are imperative to maintaining the health of the entire Great Lakes Basin. Elevated N inflows are believed to facilitate the spread of large-stature invasive plants (cattails and Phragmites) that reduce biodiversity and have complex effects on other ecosystem services including wetland N retention and C accretion. We enhanced the ILHM (Integrated Landscape Hydrology Model) to simulate the effects of land use on N flows in streams, rivers, and groundwater throughout the Lower Peninsula of Michigan. We used the hydroperiods and N loading rates simulated by ILHM as inputs to the Mondrian model of wetland community-ecosystem processes to estimate invasion risk and other ecosystem services in coastal wetlands around the Michigan coast. Our linked models produced threshold behavior in the success of invasive plants in response to N loading, with the threshold ranging from ca. 8 to 12 g N/m2 y, depending on hydroperiod. Plant invasions increased wetland productivity 3-fold over historically oligotrophic native communities, decreased biodiversity but slightly increased wetland N retention. Regardless of invasion, elevated N loading resulted in significantly enhanced rates of C accretion, providing an important region-wide mechanism of C storage. The linked models predicted a general pattern of greater invasion risk in the southern basins of lakes Michigan and Huron relative to northern areas. The basic mechanisms of invasion have been partially validated in our field mesocosms constructed for this project. The general regional patterns of increased invasion risk have been validated through our field campaigns and remote sensing conducted for this project.

  9. Switchgrass (Panicum virgatum L.) Genotypes Differ between Coastal Sites and Inland Road Corridors in the Northeastern US

    PubMed Central

    Ecker, Geoffrey; Zalapa, Juan; Auer, Carol

    2015-01-01

    Switchgrass (Panicum virgatum L.) is a North American grass that exhibits vast genetic diversity across its geographic range. In the Northeastern US, local switchgrass populations were restricted to a narrow coastal zone before European settlement, but current populations inhabit inland road verges raising questions about their origin and genetics. These questions are important because switchgrass lines with novel traits are being cultivated as a biofuel feedstock, and gene flow could impact the genetic integrity and distribution of local populations. This study was designed to determine if: 1) switchgrass plants collected in the Long Island Sound Coastal Lowland coastal Level IV ecoregion represented local populations, and 2) switchgrass plants collected from road verges in the adjacent inland regions were most closely related to local coastal populations or switchgrass from other geographic regions. The study used 18 microsatellite markers to infer the genetic relationships between 122 collected switchgrass plants and a reference dataset consisting of 28 cultivars representing ecotypes, ploidy levels, and lineages from North America. Results showed that 84% of 88 plants collected in the coastal plants were most closely aligned with the Lowland tetraploid genetic pool. Among this group, 61 coastal plants were similar to, but distinct from, all Lowland tetraploid cultivars in the reference dataset leading to the designation of a genetic sub-population called the Southern New England Lowland Tetraploids. In contrast, 67% of 34 plants collected in road verges in the inland ecoregions were most similar to two Upland octoploid cultivars; only 24% of roadside plants were Lowland tetraploid. These results suggest that cryptic, non-local genotypes exist in road verges and that gene flow from biofuels plantations could contribute to further changes in switchgrass population genetics in the Northeast. PMID:26125564

  10. Switchgrass (Panicum virgatum L.) Genotypes Differ between Coastal Sites and Inland Road Corridors in the Northeastern US.

    PubMed

    Ecker, Geoffrey; Zalapa, Juan; Auer, Carol

    2015-01-01

    Switchgrass (Panicum virgatum L.) is a North American grass that exhibits vast genetic diversity across its geographic range. In the Northeastern US, local switchgrass populations were restricted to a narrow coastal zone before European settlement, but current populations inhabit inland road verges raising questions about their origin and genetics. These questions are important because switchgrass lines with novel traits are being cultivated as a biofuel feedstock, and gene flow could impact the genetic integrity and distribution of local populations. This study was designed to determine if: 1) switchgrass plants collected in the Long Island Sound Coastal Lowland coastal Level IV ecoregion represented local populations, and 2) switchgrass plants collected from road verges in the adjacent inland regions were most closely related to local coastal populations or switchgrass from other geographic regions. The study used 18 microsatellite markers to infer the genetic relationships between 122 collected switchgrass plants and a reference dataset consisting of 28 cultivars representing ecotypes, ploidy levels, and lineages from North America. Results showed that 84% of 88 plants collected in the coastal plants were most closely aligned with the Lowland tetraploid genetic pool. Among this group, 61 coastal plants were similar to, but distinct from, all Lowland tetraploid cultivars in the reference dataset leading to the designation of a genetic sub-population called the Southern New England Lowland Tetraploids. In contrast, 67% of 34 plants collected in road verges in the inland ecoregions were most similar to two Upland octoploid cultivars; only 24% of roadside plants were Lowland tetraploid. These results suggest that cryptic, non-local genotypes exist in road verges and that gene flow from biofuels plantations could contribute to further changes in switchgrass population genetics in the Northeast. PMID:26125564

  11. Large bottleneck size in Cauliflower Mosaic Virus populations during host plant colonization.

    PubMed

    Monsion, Baptiste; Froissart, Rémy; Michalakis, Yannis; Blanc, Stéphane

    2008-10-01

    The effective size of populations (Ne) determines whether selection or genetic drift is the predominant force shaping their genetic structure and evolution. Despite their high mutation rate and rapid evolution, this parameter is poorly documented experimentally in viruses, particularly plant viruses. All available studies, however, have demonstrated the existence of huge within-host demographic fluctuations, drastically reducing Ne upon systemic invasion of different organs and tissues. Notably, extreme bottlenecks have been detected at the stage of systemic leaf colonization in all plant viral species investigated so far, sustaining the general idea that some unknown obstacle(s) imposes a barrier on the development of all plant viruses. This idea has important implications, as it appoints genetic drift as a constant major force in plant virus evolution. By co-inoculating several genetic variants of Cauliflower mosaic virus into a large number of replicate host plants, and by monitoring their relative frequency within the viral population over the course of the host systemic infection, only minute stochastic variations were detected. This allowed the estimation of the CaMV Ne during colonization of successive leaves at several hundreds of viral genomes, a value about 100-fold higher than that reported for any other plant virus investigated so far, and indicated the very limited role played by genetic drift during plant systemic infection by this virus. These results suggest that the barriers that generate bottlenecks in some plant virus species might well not exist, or can be surmounted by other viruses, implying that severe bottlenecks during host colonization do not necessarily apply to all plant-infecting viruses.

  12. Assessment of Genetic Heterogeneity in Structured Plant Populations Using Multivariate Whole-Genome Regression Models

    PubMed Central

    Lehermeier, Christina; Schön, Chris-Carolin; de los Campos, Gustavo

    2015-01-01

    Plant breeding populations exhibit varying levels of structure and admixture; these features are likely to induce heterogeneity of marker effects across subpopulations. Traditionally, structure has been dealt with as a potential confounder, and various methods exist to “correct” for population stratification. However, these methods induce a mean correction that does not account for heterogeneity of marker effects. The animal breeding literature offers a few recent studies that consider modeling genetic heterogeneity in multibreed data, using multivariate models. However, these methods have received little attention in plant breeding where population structure can have different forms. In this article we address the problem of analyzing data from heterogeneous plant breeding populations, using three approaches: (a) a model that ignores population structure [A-genome-based best linear unbiased prediction (A-GBLUP)], (b) a stratified (i.e., within-group) analysis (W-GBLUP), and (c) a multivariate approach that uses multigroup data and accounts for heterogeneity (MG-GBLUP). The performance of the three models was assessed on three different data sets: a diversity panel of rice (Oryza sativa), a maize (Zea mays L.) half-sib panel, and a wheat (Triticum aestivum L.) data set that originated from plant breeding programs. The estimated genomic correlations between subpopulations varied from null to moderate, depending on the genetic distance between subpopulations and traits. Our assessment of prediction accuracy features cases where ignoring population structure leads to a parsimonious more powerful model as well as others where the multivariate and stratified approaches have higher predictive power. In general, the multivariate approach appeared slightly more robust than either the A- or the W-GBLUP. PMID:26122758

  13. Drivers of coastal shoreline change: case study of hon dat coast, Kien Giang, Vietnam.

    PubMed

    Nguyen, Hai-Hoa; McAlpine, Clive; Pullar, David; Leisz, Stephen Joseph; Galina, Gramotnev

    2015-05-01

    Coastal shorelines are naturally dynamic, shifting in response to coastal geomorphological processes. Globally, land use change associated with coastal urban development and growing human population pressures is accelerating coastal shoreline change. In southern Vietnam, coastal erosion currently is posing considerable risks to shoreline land use and coastal inhabitants. The aim of this paper is to quantify historical shoreline changes along the Hon Dat coast between 1995 and 2009, and to document the relationships between coastal mangrove composition, width and density, and rates of shoreline change. The generalized linear mixed-effects models were used to quantify the major biophysical and land-use factors influencing shoreline change rates. Most significant drivers of the rates of change are cutting of mangroves, the dominant mangrove genus, changes in adjacent shoreline land use, changes of shoreline land cover, and width of fringing mangroves. We suggest that a possible and inexpensive strategy for robust mangrove shoreline defense is direct mangrove planting to promote mangrove density with the presence of breakwater structures. In the shorter term, construction of coastal barriers such as fence-structured melaleuca poles in combination with mangrove restoration schemes could help retain coastal sediments and increase the elevation of the accretion zone, thereby helping to stabilize eroding fringe shorelines. It also is recommended that implementation of a system of payments for mangrove ecosystem services and the stronger regulation of mangrove cutting and unsustainable land-use change to strengthen the effectiveness of mangrove conservation programs and coastal land-use management. PMID:25822886

  14. Drivers of Coastal Shoreline Change: Case Study of Hon Dat Coast, Kien Giang, Vietnam

    NASA Astrophysics Data System (ADS)

    Nguyen, Hai-Hoa; McAlpine, Clive; Pullar, David; Leisz, Stephen Joseph; Galina, Gramotnev

    2015-05-01

    Coastal shorelines are naturally dynamic, shifting in response to coastal geomorphological processes. Globally, land use change associated with coastal urban development and growing human population pressures is accelerating coastal shoreline change. In southern Vietnam, coastal erosion currently is posing considerable risks to shoreline land use and coastal inhabitants. The aim of this paper is to quantify historical shoreline changes along the Hon Dat coast between 1995 and 2009, and to document the relationships between coastal mangrove composition, width and density, and rates of shoreline change. The generalized linear mixed-effects models were used to quantify the major biophysical and land-use factors influencing shoreline change rates. Most significant drivers of the rates of change are cutting of mangroves, the dominant mangrove genus, changes in adjacent shoreline land use, changes of shoreline land cover, and width of fringing mangroves. We suggest that a possible and inexpensive strategy for robust mangrove shoreline defense is direct mangrove planting to promote mangrove density with the presence of breakwater structures. In the shorter term, construction of coastal barriers such as fence-structured melaleuca poles in combination with mangrove restoration schemes could help retain coastal sediments and increase the elevation of the accretion zone, thereby helping to stabilize eroding fringe shorelines. It also is recommended that implementation of a system of payments for mangrove ecosystem services and the stronger regulation of mangrove cutting and unsustainable land-use change to strengthen the effectiveness of mangrove conservation programs and coastal land-use management.

  15. Stability of plant defensive traits among populations in two Eucalyptus species under elevated carbon dioxide.

    PubMed

    McKiernan, Adam B; O'Reilly-Wapstra, Julianne M; Price, Cassandra; Davies, Noel W; Potts, Brad M; Hovenden, Mark J

    2012-02-01

    Plant secondary metabolites (PSMs) mediate a wide range of ecological interactions. Investigating the effect of environment on PSM production is important for our understanding of how plants will adapt to large scale environmental change, and the extended effects on communities and ecosystems. We explored the production of PSMs under elevated atmospheric carbon dioxide ([CO(2)]) in the species rich, ecologically and commercially important genus Eucalyptus. Seedlings from multiple Eucalyptus globulus and E. pauciflora populations were grown in common glasshouse gardens under elevated or ambient [CO(2)]. Variation in primary and secondary chemistry was determined as a function of genotype and treatment. There were clear population differences in PSM expression in each species. Elevated [CO(2)] did not affect concentrations of individual PSMs, total phenolics, condensed tannins or the total oil yield, and there was no population by [CO(2)] treatment interaction for any traits. Multivariate analysis revealed similar results with significant variation in concentrations of E. pauciflora oil components between populations. A [CO(2)] treatment effect was detected within populations but no interactions were found between elevated [CO(2)] and population. These eucalypt seedlings appear to be largely unresponsive to elevated [CO(2)], indicating stronger genetic than environmental (elevated [CO(2)]) control of expression of PSMs.

  16. Genetic variation among wild and cultivated populations of the Chinese medicinal plant Coptis chinensis (Ranunculaceae).

    PubMed

    Shi, W; Yang, C-F; Chen, J-M; Guo, Y-H

    2008-07-01

    To examine if the cultivation process has reduced the genetic variation of modern cultivars of the traditional Chinese medicinal plant, Coptis chinensis, the levels and distribution of genetic variation was investigated using ISSR markers. A total of 214 C. chinensis individuals from seven wild and three cultivated populations were included in the study. Seven ISSR primers were used and a total of 91 DNA fragments were scored. The levels of genetic diversity in cultivated populations were similar as those in wild populations (mean PPL = 65.2% versus PPL = 52.4%, mean H = 0.159 versus H = 0.153 and mean I = 0.255 versus I = 0.237), suggesting that cultivation did not seriously influence genetic variation of present-day cultivated populations. Neighbour-joining cluster analysis showed that wild populations and cultivated populations were not separated into two groups. The coefficient of genetic differentiation between a cultivar and its wild progenitor was 0.066 (G(st)), which was in good accordance with the result by amova analysis (10.9% of total genetic variation resided on the two groups), indicating that cultivated populations were not genetically differentiated from wild progenitors. For the seven wild populations, a significant genetic differentiation among populations was found using amova analysis (45.9% of total genetic variation resided among populations). A number of causes, including genetic drift and inbreeding in the small and isolated wild populations, the relative limited gene flow between wild populations (N(m) = 0.590), and high gene flow between cultivars and their wild progenitors (N(m) = 7.116), might have led to the observed genetic profiles of C. chinensis.

  17. Isolating Fungal Pathogens from a Dynamic Disease Outbreak in a Native Plant Population to Establish Plant-Pathogen Bioassays for the Ecological Model Plant Nicotiana attenuata

    PubMed Central

    Schuck, Stefan; Baldwin, Ian T.

    2014-01-01

    The wild tobacco species Nicotiana attenuata has been intensively used as a model plant to study its interaction with insect herbivores and pollinators in nature, however very little is known about its native pathogen community. We describe a fungal disease outbreak in a native N. attenuata population comprising 873 plants growing in an area of about 1500 m2. The population was divided into 14 subpopulations and disease symptom development in the subpopulations was monitored for 16 days, revealing a waxing and waning of visible disease symptoms with some diseased plants recovering fully. Native fungal N. attenuata pathogens were isolated from diseased plants, characterized genetically, chemotaxonomically and morphologically, revealing several isolates of the ascomycete genera Fusarium and Alternaria, that differed in the type and strength of the disease symptoms they caused in bioassays on either detached leaves or intact soil-grown plants. These isolates and the bioassays will empower the study of N. attenuata-pathogen interactions in a realistic ecological context. PMID:25036191

  18. Host effect on the genetic diversification of beet necrotic yellow vein virus single-plant populations.

    PubMed

    Acosta-Leal, Rodolfo; Bryan, Becky K; Rush, Charles M

    2010-11-01

    Theoretical models predict that, under restrictive host conditions, virus populations will exhibit greater genetic variability. This virus response has been experimentally demonstrated in a few cases but its relation with a virus's capability to overcome plant resistance is unknown. To explore the genetic host effects on Beet necrotic yellow vein virus (BNYVV) populations that might be related to resistance durability, a wild-type virus isolate was vector inoculated into partially resistant Rz1, Rz2, and susceptible sugar beet cultivars during a serial planting experiment. Cloning and sequencing a region of the viral RNA-3, involving the pathogenic determinant p25, revealed that virus diversity significantly increased in direct proportion to the strength of host resistance. Thus, whereas virus titers were highest, intermediate, and lowest in susceptible, Rz1, and Rz2 plants, respectively; the average number of nucleotide differences among single-plant populations was 0.8 (±0.1) in susceptible, 1.4 (±0.1) in Rz1, and 2.4 (±0.2) in Rz2 genotypes. A similar relationship between host restriction to BNYVV root accumulation and virus genetic variability was detected in fields of sugar beet where these specific Rz1- and Rz2-mediated resistances have been defeated.

  19. Host effect on the genetic diversification of beet necrotic yellow vein virus single-plant populations.

    PubMed

    Acosta-Leal, Rodolfo; Bryan, Becky K; Rush, Charles M

    2010-11-01

    Theoretical models predict that, under restrictive host conditions, virus populations will exhibit greater genetic variability. This virus response has been experimentally demonstrated in a few cases but its relation with a virus's capability to overcome plant resistance is unknown. To explore the genetic host effects on Beet necrotic yellow vein virus (BNYVV) populations that might be related to resistance durability, a wild-type virus isolate was vector inoculated into partially resistant Rz1, Rz2, and susceptible sugar beet cultivars during a serial planting experiment. Cloning and sequencing a region of the viral RNA-3, involving the pathogenic determinant p25, revealed that virus diversity significantly increased in direct proportion to the strength of host resistance. Thus, whereas virus titers were highest, intermediate, and lowest in susceptible, Rz1, and Rz2 plants, respectively; the average number of nucleotide differences among single-plant populations was 0.8 (±0.1) in susceptible, 1.4 (±0.1) in Rz1, and 2.4 (±0.2) in Rz2 genotypes. A similar relationship between host restriction to BNYVV root accumulation and virus genetic variability was detected in fields of sugar beet where these specific Rz1- and Rz2-mediated resistances have been defeated. PMID:20649415

  20. Beyond the Canon: Within-Plant and Population-Level Heterogeneity in Jasmonate Signaling Engaged by Plant-Insect Interactions

    PubMed Central

    Li, Dapeng; Baldwin, Ian T.; Gaquerel, Emmanuel

    2016-01-01

    Plants have evolved sophisticated communication and defense systems with which they interact with insects. Jasmonates are synthesized from the oxylipin pathway and act as pivotal cellular orchestrators of many of the metabolic and physiological processes that mediate these interactions. Many of these jasmonate-dependent responses are tissue-specific and translate from modulations of the canonical jasmonate signaling pathway. Here we provide a short overview of within-plant heterogeneities in jasmonate signaling and dependent responses in the context of plant-insect interactions as illuminated by examples from recent work with the ecological model, Nicotiana attenuata. We then discuss means of manipulating jasmonate signaling by creating tissue-specific jasmonate sinks, and the micrografting of different transgenic plants. The metabolic phenotyping of these manipulations provides an integrative understanding of the functional significance of deviations from the canonical model of this hormonal pathway. Additionally, natural variation in jasmonate biosynthesis and signaling both among and within species can explain polymorphisms in resistance to insects in nature. In this respect, insect-guided explorations of population-level variations in jasmonate metabolism have revealed more complexity than previously realized and we discuss how different “omic” techniques can be used to exploit the natural variation that occurs in this important signaling pathway. PMID:27135234

  1. Native and exotic plant species exhibit similar population dynamics during succession.

    PubMed

    Meiners, Scott J

    2007-05-01

    A growing body of literature has led to the debate in invasion biology whether exotic species perform within communities differently than native taxa due to inherent advantages. To address this issue, the population dynamics of native and exotic plant species were assessed from a 48-year record of permanent plot data from the Hutcheson Memorial Forest Center (New Jersey, USA) to determine rate of increase, lag time, maximum frequency, and the year of peak frequency. Overall, native and exotic species exhibited very similar population dynamics. Rates of increase and length of lag times were similar between native and exotic taxa but were strongly influenced by plant life form. Short-lived species were characterized by rapid population growth rates and short lag times. Growth rates decreased and lag times increased with species longevity. Overall, correlations between population metrics were the same in native and exotic taxa, suggesting similar trade-offs in life history patterns. The one difference observed was that, in native species, peak frequency was negatively associated with the year of peak frequency (i.e., early-successional species tended to become more abundant), while there was no relationship in exotic species. These analyses show that exotic species behave in essentially the same way as native taxa within dynamic communities. This suggests that abundant native and exotic plant species are exploiting the same range of ecological strategies resulting in similar roles within communities.

  2. Fluorescent labelling reveals spatial separation of potyvirus populations in mixed infected Nicotiana benthamiana plants.

    PubMed

    Dietrich, Christof; Maiss, Edgar

    2003-10-01

    The distribution of potyviruses in mixed infected Nicotiana benthamiana plants was investigated by using green and red fluorescent proteins (GFP, DsRed). Full-length cDNA clones of Plum pox virus (PPV-NAT-AgfpS; PPV-NAT-red), Tobacco vein mottling virus (TVMV-gfp; TVMV-red) and Clover yellow vein virus (ClYVV-GFP) expressing fluorescent proteins, referred to here as labelled viruses, were used to characterize the distribution of different potyviral populations (e.g. TVMV-gfp/PPV-NAT-red), as well as populations of identical, but differently labelled potyviruses (e.g. PPV-NAT-AgfpS/PPV-NAT-red) or in mixed infections of potyviruses with labelled Potato virus X (PVX). Plants infected by any of the PVX/potyvirus combinations exhibited synergistic symptoms and large numbers of cells were doubly infected. In contrast, co-infections of differently labelled potyvirus populations appeared non-synergistic and remained predominantly separate in the infected plants, independent of whether different viruses or identical but differently labelled viruses were co-infecting. Contact of differently labelled virus populations that exhibited spatial separation was restricted to a small number of cells at the border of different fluorescent cell clusters.

  3. Analysis of ontogenetic spectra of populations of plants and lichens via ordinal regression

    NASA Astrophysics Data System (ADS)

    Sofronov, G. Yu.; Glotov, N. V.; Ivanov, S. M.

    2015-03-01

    Ontogenetic spectra of plants and lichens tend to vary across the populations. This means that if several subsamples within a sample (or a population) were collected, then the subsamples would not be homogeneous. Consequently, the statistical analysis of the aggregated data would not be correct, which could potentially lead to false biological conclusions. In order to take into account the heterogeneity of the subsamples, we propose to use ordinal regression, which is a type of generalized linear regression. In this paper, we study the populations of cowberry Vaccinium vitis-idaea L. and epiphytic lichens Hypogymnia physodes (L.) Nyl. and Pseudevernia furfuracea (L.) Zopf. We obtain estimates for the proportions of between-sample variability in the total variability of the ontogenetic spectra of the populations.

  4. Population genetic structure of Penaeus monodon, in relation to monsoon current patterns in Southwest, East and Andaman coastal waters of India.

    PubMed

    Mandal, Anup; Rao, Divya; Karuppaiah, Deepa; Gopalakrishnan, Achamveetil; Pozhoth, Jayagopal; Samraj, Yohannan Chellamma Thampi; Doyle, Roger W

    2012-01-10

    The black tiger shrimp (Penaeus monodon), a commercially important penaeid species, is widely distributed across the Indo-Pacific region. Genetic diversity in P. monodon collected from eight geographical regions in Southwest, East and Andaman coastal waters of India (N=418) was investigated using 10 polymorphic microsatellite loci. Average observed heterozygosity at sampled loci were high, ranging from 0.643 (Coromandel Coast) to 0.753 (South Andaman). Pairwise F(ST) (ranged from 0.005 to 0.078) and R(ST) (ranged from 0.005 to 0.171) estimates revealed surprisingly strong and statistically significant genetic structure among tiger shrimp populations. A synthetic map generated by multidimensional scaling shows an apparent cline in allele frequencies paralleling the roughly circular flow of surface currents in the Bay of Bengal. Significant heterozygote deficiencies were noted in most population samples at most loci. Andaman Island sites showed the highest diversity. Recognition of high genetic diversity and distinct population structuring of P. monodon in Indian seas has important implications for future domestication of this species in India, for two reasons: identification of the best wild founding stocks for aquaculture and, subsequently, the potential impacts of release of domesticates to the wild, either accidentally or deliberately (i.e. for stock enhancement).

  5. Population genetic structure of Penaeus monodon, in relation to monsoon current patterns in Southwest, East and Andaman coastal waters of India.

    PubMed

    Mandal, Anup; Rao, Divya; Karuppaiah, Deepa; Gopalakrishnan, Achamveetil; Pozhoth, Jayagopal; Samraj, Yohannan Chellamma Thampi; Doyle, Roger W

    2012-01-10

    The black tiger shrimp (Penaeus monodon), a commercially important penaeid species, is widely distributed across the Indo-Pacific region. Genetic diversity in P. monodon collected from eight geographical regions in Southwest, East and Andaman coastal waters of India (N=418) was investigated using 10 polymorphic microsatellite loci. Average observed heterozygosity at sampled loci were high, ranging from 0.643 (Coromandel Coast) to 0.753 (South Andaman). Pairwise F(ST) (ranged from 0.005 to 0.078) and R(ST) (ranged from 0.005 to 0.171) estimates revealed surprisingly strong and statistically significant genetic structure among tiger shrimp populations. A synthetic map generated by multidimensional scaling shows an apparent cline in allele frequencies paralleling the roughly circular flow of surface currents in the Bay of Bengal. Significant heterozygote deficiencies were noted in most population samples at most loci. Andaman Island sites showed the highest diversity. Recognition of high genetic diversity and distinct population structuring of P. monodon in Indian seas has important implications for future domestication of this species in India, for two reasons: identification of the best wild founding stocks for aquaculture and, subsequently, the potential impacts of release of domesticates to the wild, either accidentally or deliberately (i.e. for stock enhancement). PMID:22020227

  6. 76 FR 66255 - Endangered and Threatened Wildlife and Plants; 90-Day Finding on a Petition to Delist the Coastal...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-26

    ... our 12-month finding. Petition History We received a petition, dated April 9, 2010, from the Pacific... Federal Register publications since its inclusion as a category two candidate species in 1982 (47 FR 58454... coastal California gnatcatcher (56 FR 12146), and concluded that substantial information was presented...

  7. HYPERSPECTRAL REMOTE SENSING, GPS, AND GIS APPLICATIONS IN OPPORTUNISTIC PLANT SPECIES MONITORING OF GREAT LAKES COASTAL WETLANDS

    EPA Science Inventory

    Coastal wetlands of the Laurentian Great Lakes (LGL) are among the most fragmented and disturbed ecosystems of the world, with a long history of human-induced disturbance. LGL wetlands have undergone losses in the biological diversity that coincides with an increase in the presen...

  8. Food preference and performance of the larvae of a specialist herbivore: variation among and within host-plant populations

    NASA Astrophysics Data System (ADS)

    Leimu, Roosa; Riipi, Marianna; Stærk, Dan

    2005-11-01

    Specialist herbivores are suggested to be unaffected by or attracted to the defense compounds of their host-plants, and can even prefer higher levels of certain chemicals. Abrostola asclepiadis is a specialist herbivore whose larvae feed on the leaves of Vincetoxicum hirundinaria, which contains toxic alkaloids and is unpalatable to most generalist herbivores. The food choice, leaf consumption and growth of A. asclepiadis larvae were studied to determine whether there is variation among and within host-plant populations in their suitability for this specialist herbivore. There was significant variation in food preference and leaf consumption among host-plant populations, but no differences were found in larval growth and feeding on different host-plant populations. A. asclepiadis larvae preferred host-plant populations with higher alkaloid concentrations, but did not consume more leaf material from plants originating from such populations in a no-choice experiment. There was also some variation in food preference of larvae among host-plant individuals belonging to the same population, suggesting that there was variability in leaf chemistry also within populations. Such variation in larval preference among host-plant genotypes and populations may create potential for coevolutionary dynamics in a spatial mosaic.

  9. The Composition of Fluorescent Pseudomonad Populations Associated with Roots Is Influenced by Plant and Soil Type

    PubMed Central

    Latour, X.; Corberand, T.; Laguerre, G.; Allard, F.; Lemanceau, P.

    1996-01-01

    Populations of fluorescent pseudomonads isolated from an uncultivated soil and from the roots of two plant species were previously shown to differ (P. Lemanceau, T. Corberand, L. Gardan, X. Latour, G. Laguerre, J.-M. Boeufgras, and C. Alabouvette, Appl. Environ. Microbiol. 61:1004-1012, 1995). The diversities of fluorescent pseudomonads, from two uncultivated soils and from the roots of two plant species cultivated in these two soils, were compared. The phenotypic diversity of the bacterial isolates was characterized on the basis of biochemical and physiological tests and on the basis of their ability to utilize 147 different organic compounds. The genotypic diversity of the isolates was characterized on the basis of the types of 16S genes coding for rRNA (rDNA), their repetitive extragenic palindromic patterns by PCR, and plasmid profiles. Taxonomic identification of the isolates was achieved with both biochemical and physiological tests and by comparing their 16S rDNA types to those of reference and type strains of fluorescent Pseudomonas spp. Numerical analysis of phenotypic characteristics allowed the clustering of isolates that showed high levels of similarity. This analysis indicated that both soil type and host plant had an effect on the diversity of fluorescent pseudomonads. However, of the two factors studied, the soil was clearly the dominating one. Indeed, the populations associated with the roots of each plant species varied from one soil to the other. This variation could possibly be ascribed to the differences recorded between the phenotypically diverse populations of fluorescent pseudomonads from the two uncultivated soils. The plant selection was, at least partly, plant specific. It was not related to bacterial species and biovars or to the presence of plasmid DNA. The phenotypic clustering of isolates was well correlated with genotypic characterization by repetitive extragenic palindrome-PCR fingerprinting. PMID:16535355

  10. Salinity Is an Agent of Divergent Selection Driving Local Adaptation of Arabidopsis to Coastal Habitats.

    PubMed

    Busoms, Silvia; Teres, Joana; Huang, Xin-Yuan; Bomblies, Kirsten; Danku, John; Douglas, Alex; Weigel, Detlef; Poschenrieder, Charlotte; Salt, David E

    2015-07-01

    Understanding the molecular mechanism of adaptive evolution in plants provides insights into the selective forces driving adaptation and the genetic basis of adaptive traits with agricultural value. The genomic resources available for Arabidopsis (Arabidopsis thaliana) make it well suited to the rapid molecular dissection of adaptive processes. Although numerous potentially adaptive loci have been identified in Arabidopsis, the consequences of divergent selection and migration (both important aspects of the process of local adaptation) for Arabidopsis are not well understood. Here, we use a multiyear field-based reciprocal transplant experiment to detect local populations of Arabidopsis composed of multiple small stands of plants (demes) that are locally adapted to the coast and adjacent inland habitats in northeastern Spain. We identify fitness tradeoffs between plants from these different habitats when grown together in inland and coastal common gardens and also, under controlled conditions in soil excavated from coastal and inland sites. Plants from the coastal habitat also outperform those from inland when grown under high salinity, indicating local adaptation to soil salinity. Sodium can be toxic to plants, and we find its concentration to be elevated in soil and plants sampled at the coast. We conclude that the local adaptation that we observe between adjacent coastal and inland populations is caused by ongoing divergent selection driven by the differential salinity between coastal and inland soils.

  11. Plant population differentiation and climate change: responses of grassland species along an elevational gradient.

    PubMed

    Frei, Esther R; Ghazoul, Jaboury; Matter, Philippe; Heggli, Martin; Pluess, Andrea R

    2014-02-01

    Mountain ecosystems are particularly susceptible to climate change. Characterizing intraspecific variation of alpine plants along elevational gradients is crucial for estimating their vulnerability to predicted changes. Environmental conditions vary with elevation, which might influence plastic responses and affect selection pressures that lead to local adaptation. Thus, local adaptation and phenotypic plasticity among low and high elevation plant populations in response to climate, soil and other factors associated with elevational gradients might underlie different responses of these populations to climate warming. Using a transplant experiment along an elevational gradient, we investigated reproductive phenology, growth and reproduction of the nutrient-poor grassland species Ranunculus bulbosus, Trifolium montanum and Briza media. Seeds were collected from low and high elevation source populations across the Swiss Alps and grown in nine common gardens at three different elevations with two different soil depths. Despite genetic differentiation in some traits, the results revealed no indication of local adaptation to the elevation of population origin. Reproductive phenology was advanced at lower elevation in low and high elevation populations of all three species. Growth and reproduction of T. montanum and B. media were hardly affected by garden elevation and soil depth. In R. bulbosus, however, growth decreased and reproductive investment increased at higher elevation. Furthermore, soil depth influenced growth and reproduction of low elevation R. bulbosus populations. We found no evidence for local adaptation to elevation of origin and hardly any differences in the responses of low and high elevation populations. However, the consistent advanced reproductive phenology observed in all three species shows that they have the potential to plastically respond to environmental variation. We conclude that populations might not be forced to migrate to higher elevations

  12. Modeling power-plant impacts on multipopulation systems: application of loop analysis to the Hudson River white perch population

    SciTech Connect

    Barnthouse, L.W.

    1981-12-01

    The white perch population of the Hudson River suffers unusually high mortality due to impingement and entrainment at power plants. The long-term consequences of this mortality for the Hudson River ecosystem depend in part on interactions between the white perch population and its prey, competitors, and predators, many of which are themselves subject to mortality at power plants. Size multipopulation models were analyzed, using a technique known as loop analysis, to determine how patterns of interaction affect population responses to stress and to identify the parameters that have the greatest influence on those responses. These theoretical results, together with information on life history and vulnerability to power plants for Hudson River fish and macroinvertebrate populations, were used to assess the likely effects of power plant mortality on the white perch population and its prey, competitors, and predators. The results suggest that effects of interactions with other populations are insufficient to offset the effects of entrainment and impingement on the Hudson River white perch population. The results also suggest that if mortality imposed by power plants does cause a substantial decline in the white perch population, then piscivore populations in the Hudson River should not be noticeably affected, a complementary increase in the abundance of competitors that are relatively invulnerable to power plants should occur, and a shift in the distribution of biomass within the white perch population toward the older age classes should occur.

  13. Population History and Pathways of Spread of the Plant Pathogen Phytophthora plurivora

    PubMed Central

    Schoebel, Corine N.; Stewart, Jane; Gruenwald, Niklaus J.; Rigling, Daniel; Prospero, Simone

    2014-01-01

    Human activity has been shown to considerably affect the spread of dangerous pests and pathogens worldwide. Therefore, strict regulations of international trade exist for particularly harmful pathogenic organisms. Phytophthora plurivora, which is not subject to regulations, is a plant pathogen frequently found on a broad range of host species, both in natural and artificial environments. It is supposed to be native to Europe while resident populations are also present in the US. We characterized a hierarchical sample of isolates from Europe and the US and conducted coalescent-, migration, and population genetic analysis of sequence and microsatellite data, to determine the pathways of spread and the demographic history of this pathogen. We found P. plurivora populations to be moderately diverse but not geographically structured. High levels of gene flow were observed within Europe and unidirectional from Europe to the US. Coalescent analyses revealed a signal of a recent expansion of the global P. plurivora population. Our study shows that P. plurivora has most likely been spread around the world by nursery trade of diseased plant material. In particular, P. plurivora was introduced into the US from Europe. International trade has allowed the pathogen to colonize new environments and/or hosts, resulting in population growth. PMID:24427303

  14. Effect of Three Plant Species on Population Densities of Xiphinema americanum and X. rivesi.

    PubMed

    Georgi, L L

    1988-07-01

    A taxonomic revision of the Xiphinema americanum species complex has necessitated a reexamination of the host range of species in the complex before recommendations can be made with confidence on the likelihood that specific crops will be damaged. Toward this end, populations of X. americanum and X. rivesi collected from apple orchards in eastern and western New York state were evaluated after 3 months in pots planted with cucumber, apple, or dandelion seedlings. Eastern and western New York populations of both nematode species declined on cucumber but increased to similar final densities on apple and dandelion.

  15. The relation between air pollution data and planetary boundary layer quantities in a complex coastal industrial site nearby populated areas.

    NASA Astrophysics Data System (ADS)

    Mammarella, M. C.; Grandoni, G.; Fernando, J.; Cacciani, M.; di Sabatino, S.; Favaron, M.; Fedele, P.

    2010-09-01

    The connection among boundary layer phenomena, atmospheric pollutant dynamics and human health is an established fact, taking many different forms depending on local characteristics, including slope and position of relief and/or coastline, surface roughness, emission patterns. The problem is especially interesting in complex and coastal terrain, where concurrence of slope and sea induced local circulation interact reciprocally, yielding a complex pattern whose interpretation may go beyond pure modeling, and devise specific measurements among which the planetary boundary layer (PBL) height. An occasion for studying this important theme has been offered by Regione Molise and Valle del Biferno Consortium (COSIB), for the specific case of the industrial complex of Valle del Biferno, 3 km inland of Termoli, in Central Italy, on the Adriatic coast. The local government, sensitive to air quality and public health in the industrial area, together with COSIB has co-financed a research project aimed at gaining knowledge about local meteorology, PBL phenomena and atmospheric pollutant dispersion in the area. Expected results include new air quality monitoring and control methodologies in Valle del Biferno for a sustainable development in an environmentally respectful manner, at a site already characterized by a high environmental and landscape value. The research project, developed by ENEA, has began in 2007 and will conclude in December 2010. Project activities involve research group from Europe, the United States of America, and the Russian Federation. Scientific and practical results will be published and presented in occasion of the final workshop to be held on project conclusion. The scientific interest of Valle del Biferno case stems from the specific local characteristics at site. Given the valley orientation respect to mean synoptic circulation, local effects as sea and slope breezes are dominant, and a complex wind regime develops affecting local transport and

  16. Effect of Drought on Herbivore-Induced Plant Gene Expression: Population Comparison for Range Limit Inferences

    PubMed Central

    Gill, Gunbharpur Singh; Haugen, Riston; Matzner, Steven L.; Barakat, Abdelali; Siemens, David H.

    2016-01-01

    Low elevation “trailing edge” range margin populations typically face increases in both abiotic and biotic stressors that may contribute to range limit development. We hypothesize that selection may act on ABA and JA signaling pathways for more stable expression needed for range expansion, but that antagonistic crosstalk prevents their simultaneous co-option. To test this hypothesis, we compared high and low elevation populations of Boechera stricta that have diverged with respect to constitutive levels of glucosinolate defenses and root:shoot ratios; neither population has high levels of both traits. If constraints imposed by antagonistic signaling underlie this divergence, one would predict that high constitutive levels of traits would coincide with lower plasticity. To test this prediction, we compared the genetically diverged populations in a double challenge drought-herbivory growth chamber experiment. Although a glucosinolate defense response to the generalist insect herbivore Spodoptera exigua was attenuated under drought conditions, the plastic defense response did not differ significantly between populations. Similarly, although several potential drought tolerance traits were measured, only stomatal aperture behavior, as measured by carbon isotope ratios, was less plastic as predicted in the high elevation population. However, RNAseq results on a small subset of plants indicated differential expression of relevant genes between populations as predicted. We suggest that the ambiguity in our results stems from a weaker link between the pathways and the functional traits compared to transcripts. PMID:27135233

  17. Effect of Drought on Herbivore-Induced Plant Gene Expression: Population Comparison for Range Limit Inferences.

    PubMed

    Gill, Gunbharpur Singh; Haugen, Riston; Matzner, Steven L; Barakat, Abdelali; Siemens, David H

    2016-01-01

    Low elevation "trailing edge" range margin populations typically face increases in both abiotic and biotic stressors that may contribute to range limit development. We hypothesize that selection may act on ABA and JA signaling pathways for more stable expression needed for range expansion, but that antagonistic crosstalk prevents their simultaneous co-option. To test this hypothesis, we compared high and low elevation populations of Boechera stricta that have diverged with respect to constitutive levels of glucosinolate defenses and root:shoot ratios; neither population has high levels of both traits. If constraints imposed by antagonistic signaling underlie this divergence, one would predict that high constitutive levels of traits would coincide with lower plasticity. To test this prediction, we compared the genetically diverged populations in a double challenge drought-herbivory growth chamber experiment. Although a glucosinolate defense response to the generalist insect herbivore Spodoptera exigua was attenuated under drought conditions, the plastic defense response did not differ significantly between populations. Similarly, although several potential drought tolerance traits were measured, only stomatal aperture behavior, as measured by carbon isotope ratios, was less plastic as predicted in the high elevation population. However, RNAseq results on a small subset of plants indicated differential expression of relevant genes between populations as predicted. We suggest that the ambiguity in our results stems from a weaker link between the pathways and the functional traits compared to transcripts.

  18. A below-ground herbivore shapes root defensive chemistry in natural plant populations.

    PubMed

    Huber, Meret; Bont, Zoe; Fricke, Julia; Brillatz, Théo; Aziz, Zohra; Gershenzon, Jonathan; Erb, Matthias

    2016-03-30

    Plants display extensive intraspecific variation in secondary metabolites. However, the selective forces shaping this diversity remain often unknown, especially below ground. Using Taraxacum officinale and its major native insect root herbivore Melolontha melolontha, we tested whether below-ground herbivores drive intraspecific variation in root secondary metabolites. We found that high M. melolontha infestation levels over recent decades are associated with high concentrations of major root latex secondary metabolites across 21 central European T. officinale field populations. By cultivating offspring of these populations, we show that both heritable variation and phenotypic plasticity contribute to the observed differences. Furthermore, we demonstrate that the production of the sesquiterpene lactone taraxinic acid β-D-glucopyranosyl ester (TA-G) is costly in the absence, but beneficial in the presence of M. melolontha, resulting in divergent selection of TA-G. Our results highlight the role of soil-dwelling insects for the evolution of plant defences in nature. PMID:27009228

  19. Dynamics of bacterial populations during bench-scale bioremediation of oily seawater and desert soil bioaugmented with coastal microbial mats.

    PubMed

    Ali, Nidaa; Dashti, Narjes; Salamah, Samar; Sorkhoh, Naser; Al-Awadhi, Husain; Radwan, Samir

    2016-03-01

    This study describes a bench-scale attempt to bioremediate Kuwaiti, oily water and soil samples through bioaugmentation with coastal microbial mats rich in hydrocarbonoclastic bacterioflora. Seawater and desert soil samples were artificially polluted with 1% weathered oil, and bioaugmented with microbial mat suspensions. Oil removal and microbial community dynamics were monitored. In batch cultures, oil removal was more effective in soil than in seawater. Hydrocarbonoclastic bacteria associated with mat samples colonized soil more readily than seawater. The predominant oil degrading bacterium in seawater batches was the autochthonous seawater species Marinobacter hydrocarbonoclasticus. The main oil degraders in the inoculated soil samples, on the other hand, were a mixture of the autochthonous mat and desert soil bacteria; Xanthobacter tagetidis, Pseudomonas geniculata, Olivibacter ginsengisoli and others. More bacterial diversity prevailed in seawater during continuous than batch bioremediation. Out of seven hydrocarbonoclastic bacterial species isolated from those cultures, only one, Mycobacterium chlorophenolicum, was of mat origin. This result too confirms that most of the autochthonous mat bacteria failed to colonize seawater. Also culture-independent analysis of seawater from continuous cultures revealed high-bacterial diversity. Many of the bacteria belonged to the Alphaproteobacteria, Flavobacteria and Gammaproteobacteria, and were hydrocarbonoclastic. Optimal biostimulation practices for continuous culture bioremediation of seawater via mat bioaugmentation were adding the highest possible oil concentration as one lot in the beginning of bioremediation, addition of vitamins, and slowing down the seawater flow rate. PMID:26751253

  20. A comparison of Aedes vigilax larval population densities and associated vegetation categories in a coastal wetland, Northern Territory, Australia.

    PubMed

    Jacups, S P; Kurucz, N; Whelan, P I; Carter, J M

    2009-12-01

    Darwin's northern suburbs border an extensive coastal reed and upper mangrove wetland recognized as an important larval habitat for Aedes vigilax (Skuse), the northern salt marsh mosquito, an established vector for Ross River and Barmah Forest viruses and an appreciable pest species. We sought to identify the most important vegetation categories associated with Ae. vigilax breeding to maximize the efficiency of mosquito control efforts. Using a generalized linear model with negative binominal distribution and log link, this study compares larval densities, determined by focused dipping, between 13 discernable vegetation categories. The incidence rate ratios (RR) generated can be used to compare the magnitude of larval densities for each vegetation category, compared with the reference category. Aedes vigilax larval densities were almost ten times greater in artificial drainage areas (RR=9.82), followed by tide-affected reticulate (Sporobolus/Xerochloa) areas (RR=8.15), then Schoenoplectus/mangroves (RR=2.29), compared with the reference vegetation category "lower mangroves." Furthermore, larval densities were highest in May, due to tidal inundation, for drainage areas and tide-affected reticulates (RR=12.2, 11.7, respectively) compared with March, the reference month. Thus, to maximize the efficiency of aerial salt marsh mosquito control operations in this wetland, larval control is best accomplished by concentrating on drains, Schoenoplectus/mangroves, and tide-affected reticulate areas, commencing early after the wet season. These results should apply to other areas of salt marsh mosquito breeding across northern Australia.

  1. Seasonal Variation in Population Density and Heterotrophic Activity of Attached and Free-Living Bacteria in Coastal Waters

    PubMed Central

    Iriberri, Juan; Unanue, Marian; Barcina, Isabel; Egea, Luis

    1987-01-01

    The abundance and heterotrophic activity of attached and free-living bacteria were examined seasonally in coastal water. Heterotrophic activity was determined by the uptake of [14C]glucose. The density of attached bacteria was always minor, not showing a seasonal variation, whereas the free-living bacteria were more numerous and showed a marked seasonal variation, their density being higher under warmer conditions. The contribution of the attached bacteria to the total assimilation of [14C]glucose (from 10 to 38%) was lower than that of the free-living bacteria, neither of them showing a seasonal variation. On a cellular basis, attached bacteria were more active, since they assimilated more [14C]glucose and showed, under warmer conditions, a higher cellular volume (0.102 versus 0.047 μm3). We consider that the factors responsible for these observations were the amount and quality of the particulate material, the different availability of organic matter for the two types of bacteria, and in a fundamental way, the variation in water temperature. PMID:16347451

  2. Raindrop Momentum Triggers Growth of Leaf-Associated Populations of Pseudomonas syringae on Field-Grown Snap Bean Plants.

    PubMed

    Hirano, S S; Baker, L S; Upper, C D

    1996-07-01

    Observational and microclimate modification experiments were conducted under field conditions to determine the role of the physical environment in effecting large increases in phyllosphere population sizes of Pseudomonas syringae pv. syringae, the causal agent of bacterial brown spot disease of snap bean (Phaseolus vulgaris L.). Comparisons of daily changes in population sizes of P. syringae on three plantings of snap bean cultivar Cascade and one of cultivar Eagle with weather conditions indicated a strong association of rainfalls with periods of 1 to 3 days in duration during which increases in bacterial population sizes were greater than 10-fold and up to 1,000-fold. The effects of rain on populations of P. syringae were explored further by modifying the microclimate of bean plants in the field with polyethylene shelters to shield plants from rain and fine-mesh inert screens to modify the momentum of raindrops. After each of three separate intense rains, the greater-than-10-fold increases in population sizes of P. syringae observed on plants exposed to the rains did not occur on plants in the shelters or under the screens. The screens decreased the velocity and, thus, the momentum of raindrops but not the volume or quality of rainwater that fell on plants under the screens. Thus, the absence of increases in population sizes of P. syringae on plants under the screens suggests that raindrop momentum plays a role in the growth-triggering effect of intense rains on populations of P. syringae on bean plants under field conditions.

  3. Evolution in plant populations as a driver of ecological changes in arthropod communities.

    PubMed

    Johnson, Marc T J; Vellend, Mark; Stinchcombe, John R

    2009-06-12

    Heritable variation in traits can have wide-ranging impacts on species interactions, but the effects that ongoing evolution has on the temporal ecological dynamics of communities are not well understood. Here, we identify three conditions that, if experimentally satisfied, support the hypothesis that evolution by natural selection can drive ecological changes in communities. These conditions are: (i) a focal population exhibits genetic variation in a trait(s), (ii) there is measurable directional selection on the trait(s), and (iii) the trait(s) under selection affects variation in a community variable(s). When these conditions are met, we expect evolution by natural selection to cause ecological changes in the community. We tested these conditions in a field experiment examining the interactions between a native plant (Oenothera biennis) and its associated arthropod community (more than 90 spp.). Oenothera biennis exhibited genetic variation in several plant traits and there was directional selection on plant biomass, life-history strategy (annual versus biennial reproduction) and herbivore resistance. Genetically based variation in biomass and life-history strategy consistently affected the abundance of common arthropod species, total arthropod abundance and arthropod species richness. Using two modelling approaches, we show that evolution by natural selection in large O. biennis populations is predicted to cause changes in the abundance of individual arthropod species, increases in the total abundance of arthropods and a decline in the number of arthropod species. In small O. biennis populations, genetic drift is predicted to swamp out the effects of selection, making the evolution of plant populations unpredictable. In short, evolution by natural selection can play an important role in affecting the dynamics of communities, but these effects depend on several ecological factors. The framework presented here is general and can be applied to other systems to

  4. Control of Xiphinema index populations by fallow plants under greenhouse and field conditions.

    PubMed

    Villate, Laure; Morin, Elisa; Demangeat, Gérard; Van Helden, Maarten; Esmenjaud, Daniel

    2012-06-01

    The dagger nematode Xiphinema index has a high economic impact in vineyards by direct pathogenicity and above all by transmitting the Grapevine fanleaf virus (GFLV). Agrochemicals have been largely employed to restrict the spread of GFLV by reducing X. index populations but are now banned. As an alternative to nematicides, the use of fallow plants between two successive vine crops was assessed. We selected plant species adapted to vineyard soils and exhibiting negative impact on nematodes and we evaluated their antagonistic effect on X. index in greenhouse using artificially infested soil, and in naturally infested vineyard conditions. The screening was conducted with plants belonging to the families Asteraceae (sunflower, marigold, zinnia, and nyjer), Poaceae (sorghum and rye), Fabaceae (white lupin, white melilot, hairy vetch, and alfalfa), Brassicaceae (rapeseed and camelina), and Boraginaceae (phacelia). In the greenhouse controlled assay, white lupin, nyjer, and marigold significantly reduced X. index populations compared with that of bare soil. The vineyard assay, designed to take into account the aggregative pattern of X. index distribution, revealed that marigold and hairy vetch are good candidates as cover crops to reduce X. index populations in vineyard. Moreover, this original experimental design could be applied to manage other soilborne pathogens.

  5. Modeling spatial competition for light in plant populations with the porous medium equation.

    PubMed

    Beyer, Robert; Etard, Octave; Cournède, Paul-Henry; Laurent-Gengoux, Pascal

    2015-02-01

    We consider a plant's local leaf area index as a spatially continuous variable, subject to particular reaction-diffusion dynamics of allocation, senescence and spatial propagation. The latter notably incorporates the plant's tendency to form new leaves in bright rather than shaded locations. Applying a generalized Beer-Lambert law allows to link existing foliage to production dynamics. The approach allows for inter-individual variability and competition for light while maintaining robustness-a key weakness of comparable existing models. The analysis of the single plant case leads to a significant simplification of the system's key equation when transforming it into the well studied porous medium equation. Confronting the theoretical model to experimental data of sugar beet populations, differing in configuration density, demonstrates its accuracy. PMID:24623311

  6. Modeling spatial competition for light in plant populations with the porous medium equation.

    PubMed

    Beyer, Robert; Etard, Octave; Cournède, Paul-Henry; Laurent-Gengoux, Pascal

    2015-02-01

    We consider a plant's local leaf area index as a spatially continuous variable, subject to particular reaction-diffusion dynamics of allocation, senescence and spatial propagation. The latter notably incorporates the plant's tendency to form new leaves in bright rather than shaded locations. Applying a generalized Beer-Lambert law allows to link existing foliage to production dynamics. The approach allows for inter-individual variability and competition for light while maintaining robustness-a key weakness of comparable existing models. The analysis of the single plant case leads to a significant simplification of the system's key equation when transforming it into the well studied porous medium equation. Confronting the theoretical model to experimental data of sugar beet populations, differing in configuration density, demonstrates its accuracy.

  7. Coastal Prairie

    USGS Publications Warehouse

    ,

    2000-01-01

    The coastal prairie, located along the coastal plain of southwestern Louisiana and southcentral Texas, is the southernmost tip of the tallgrass prairie ecosystem so prevalent in the Midwest. The coastal prairie ecosystem once covered as much as 3.8 million ha (9 million acres); today, more than 99% of this land has been lost to agriculture, range improvement, and urbanization. The remainder is highly fragmented and severely threatened by invasions of exotic species and urban sprawl. In Louisiana, the former 1 million ha of coastal prairie have now been reduced to about 100 ha. In Texas, only about 100,000 ha of coastal prairie remain intact.

  8. Evaluation of population density and distribution criteria in nuclear power plant siting

    SciTech Connect

    Young, M.

    1994-06-01

    The NRC has proposed revisions to 10 CFR 100 which include the codification of nuclear reactor site population density limits to 500 people per square mile, at the siting stage, averaged over any radial distance out to 30 miles, and 1,000 people per square mile within the 40-year lifetime of a nuclear plant. This study examined whether there are less restrictive alternative population density and/or distribution criteria which would provide equivalent or better protection to human health in the unlikely event of a nuclear accident. This study did not attempt to directly address the issue of actual population density limits because there are no US risk standards established for the evaluation of population density limits. Calculations were performed using source terms for both a current generation light water reactor (LWR) and an advanced light water reactor (ALWR) design. The results of this study suggest that measures which address the distribution of the population density, including emergency response conditions, could result in lower average individual risks to the public than the proposed guidelines that require controlling average population density. Studies also indicate that an exclusion zone size, determined by emergency response conditions and reactor design (power level and safety features), would better serve to protect public health than a rigid standard applied to all sites.

  9. Life history mediates mate limitation and population viability in self-incompatible plant species

    PubMed Central

    Thrall, Peter H; Encinas-Viso, Francisco; Hoebee, Susan E; Young, Andrew G

    2014-01-01

    Genetically controlled self-incompatibility systems represent links between genetic diversity and plant demography with the potential to directly impact on population dynamics. We use an individual-based spatial simulation to investigate the demographic and genetic consequences of different self-incompatibility systems for plants that vary in reproductive capacity and lifespan. The results support the idea that, in the absence of inbreeding effects, populations of self-incompatible species will often be smaller and less viable than self-compatible species, particularly for shorter-lived organisms or where potential fecundity is low. At high ovule production and low mortality, self-incompatible and self-compatible species are demographically similar, thus self-incompatibility does not automatically lead to reduced mate availability or population viability. Overall, sporophytic codominant self-incompatibility was more limiting than gametophytic or sporophytic dominant systems, which generally behaved in a similar fashion. Under a narrow range of conditions, the sporophytic dominant system maintained marginally greater mate availability owing to the production of S locus homozygotes. While self-incompatibility reduces population size and persistence for a broad range of conditions, the actual number of S alleles, beyond that required for reproduction, is important for only a subset of life histories. For these situations, results suggest that addition of new S alleles may result in significant demographic rescue. PMID:24683451

  10. Using soil seed banks to assess temporal patterns of genetic variation in invasive plant populations

    PubMed Central

    Fennell, Mark; Gallagher, Tommy; Vintro, Luis Leon; Osborne, Bruce

    2014-01-01

    Most research on the genetics of invasive plant species has focused on analyzing spatial differences among existing populations. Using a long-established Gunnera tinctoria population from Ireland, we evaluated the potential of using plants derived from seeds associated with different soil layers to track genetic variation through time. This species and site were chosen because (1) G. tinctoria produces a large and persistent seed bank; (2) it has been present in this locality, Sraheens, for ∼90 years; (3) the soil is largely undisturbed; and (4) the soil's age can be reliably determined radiometrically at different depths. Amplified fragment length polymorphic markers (AFLPs) were used to assess differences in the genetic structure of 75 individuals sampled from both the standing population and from four soil layers, which spanned 18 cm (estimated at ∼90 years based on 210Pb and 137Cs dating). While there are difficulties in interpreting such data, including accounting for the effects of selection, seed loss, and seed migration, a clear pattern of lower total allele counts, percentage polymorphic loci, and genetic diversity was observed in deeper soils. The greatest percentage increase in the measured genetic variables occurred prior to the shift from the lag to the exponential range expansion phases and may be of adaptive significance. These findings highlight that seed banks in areas with long-established invasive populations can contain valuable genetic information relating to invasion processes and as such, should not be overlooked. PMID:24967082

  11. [Characteristics of Natural Selection in Populations of Nodule Bacteria (Rhizobium leguminosarum) Interacting With Different Host Plants].

    PubMed

    Andronov, E E; Igolkina, A A; Kimeklis, A K; Vorobyov, N I; Provorov, N A

    2015-10-01

    Using high throughput sequencing of the nodA gene, we studied the population dynamics of Rhizobium leguminosarum (bv. viciae, bv. trifolii) in rhizospheric and nodular subpopulations associated with the leguminous plants representing different cross-inoculation groups (Vicia sativa, Lathyrus pratensis of the vetch/vetchling/pea group and Trifolium hybridum of the clover group). The "rhizosphere-nodules" transitions result in either an increase or decrease in the frequencies of 10 of the 23 operational taxonomic units (OTUs) (which were identified with 95% similarity) depending on the symbiotic specificity and phylogenetic positions of OTUs. Statistical and bioinformatical analysis of the population structures suggest that the type of natural selection responsible for these changes may be diversifying at the whole-population level and frequency-dependent at the OTU-specific level, ensuring the divergent evolution of rhizobia interacting with different host species. PMID:27169225

  12. Resolution of Genetic Map Expansion Caused by Excess Heterozygosity in Plant Recombinant Inbred Populations

    PubMed Central

    Truong, Sandra K.; McCormick, Ryan F.; Morishige, Daryl T.; Mullet, John E.

    2014-01-01

    Recombinant inbred populations of many plant species exhibit more heterozygosity than expected under the Mendelian model of segregation. This segregation distortion causes the overestimation of recombination frequencies and consequent genetic map expansion. Here we build upon existing genetic models of differential zygotic viability to model a heterozygote fitness term and calculate expected genotypic proportions in recombinant inbred populations propagated by selfing. We implement this model using the existing open-source genetic map construction code base for R/qtl to estimate recombination fractions. Finally, we show that accounting for excess heterozygosity in a sorghum recombinant inbred mapping population shrinks the genetic map by 213 cM (a 13% decrease corresponding to 4.26 fewer recombinations per meiosis). More accurate estimates of linkage benefit linkage-based analyses used in the identification and utilization of causal genetic variation. PMID:25128435

  13. Resolution of genetic map expansion caused by excess heterozygosity in plant recombinant inbred populations.

    PubMed

    Truong, Sandra K; McCormick, Ryan F; Morishige, Daryl T; Mullet, John E

    2014-10-01

    Recombinant inbred populations of many plant species exhibit more heterozygosity than expected under the Mendelian model of segregation. This segregation distortion causes the overestimation of recombination frequencies and consequent genetic map expansion. Here we build upon existing genetic models of differential zygotic viability to model a heterozygote fitness term and calculate expected genotypic proportions in recombinant inbred populations propagated by selfing. We implement this model using the existing open-source genetic map construction code base for R/qtl to estimate recombination fractions. Finally, we show that accounting for excess heterozygosity in a sorghum recombinant inbred mapping population shrinks the genetic map by 213 cM (a 13% decrease corresponding to 4.26 fewer recombinations per meiosis). More accurate estimates of linkage benefit linkage-based analyses used in the identification and utilization of causal genetic variation. PMID:25128435

  14. Salt marsh dieback in coastal Louisiana: survey of plant and soil conditions in Barataria and Terrebonne basins, June 2000-September 2001

    USGS Publications Warehouse

    McKee, Karen L.; Mendelssohn, Irving A.; Materne, Michael D.

    2006-01-01

    Sudden and extensive dieback of the perennial marsh grass, Spartina alterniflora Loisel (smooth cordgrass), which dominates regularly flooded salt marshes along the Gulf of Mexico and Atlantic coastlines, occurred in the coastal zone of Louisiana. The objectives of this study were to assess soil and plant conditions in dieback areas of the Barataria-Terrebonne estuarine system as well as vegetative recovery during and after this dieback event. Multiple dieback sites were examined along 100 km of shoreline from the Atchafalaya River to the Mississippi River during the period from June 2000 through September 2001. The species primarily affected was S. alterniflora; sympatric species such as Avicennia germinans (L.) Stearn (black mangrove) and Juncus roemerianus Scheele (needlegrass rush) showed no visible signs of stress. The pattern of marsh dieback was distinctive with greatest mortality in the marsh interior, suggesting a correlation with local patterns of soil chemistry and/or hydrology. Little or no expansion of dieback occurred subsequent to the initial event, and areas with 50 percent or less mortality in the fall of 2000 had completely recovered by April 2001. Recovery was slower in interior marshes with 90 percent or greater mortality initially. However, regenerating plants in dieback areas showing some recovery were robust, and reproductive output was high, indicating that the causative agent was no longer present and that post-dieback soil conditions were actually promoting plant growth. Stands of other species within or near some dieback sites remained largely unchanged or expanded (A. germinans) into the dead salt marsh. The cause of the dieback is currently unknown. Biotic agents and excessive soil waterlogging/high sulfide were ruled out as primary causes of this acute event, although they could have contributed to overall plant stress and/or interacted with the primary agent to cause plant mortality. Our observations over the 15 month study

  15. Land crabs as key drivers in tropical coastal forest recruitment

    USGS Publications Warehouse

    Lindquist, E.S.; Krauss, K.W.; Green, P.T.; O'Dowd, D. J.; Sherman, P.M.; Smith, T. J.

    2009-01-01

    Plant populations are regulated by a diverse assortment of abiotic and biotic factors that influence seed dispersal and viability, and seedling establishment and growth at the microsite. Rarely does one animal guild exert as significant an influence on different plant assemblages as land crabs. We review three tropical coastal ecosystems-mangroves, island maritime forests, and mainland coastal terrestrial forests-where land crabs directly influence forest composition by limiting tree establishment and recruitment. Land crabs differentially prey on seeds, propagules and seedlings along nutrient, chemical and physical environmental gradients. In all of these ecosystems, but especially mangroves, abiotic gradients are well studied, strong and influence plant species distributions. However, we suggest that crab predation has primacy over many of these environmental factors by acting as the first limiting factor of tropical tree recruitment to drive the potential structural and compositional organisation of coastal forests. We show that the influence of crabs varies relative to tidal gradient, shoreline distance, canopy position, time, season, tree species and fruiting periodicity. Crabs also facilitate forest growth and development through such activities as excavation of burrows, creation of soil mounds, aeration of soils, removal of leaf litter into burrows and creation of carbon-rich soil microhabitats. For all three systems, land crabs influence the distribution, density and size-class structure of tree populations. Indeed, crabs are among the major drivers of tree recruitment in tropical coastal forest ecosystems, and their conservation should be included in management plans of these forests. ?? 2009 Cambridge Philosophical Society.

  16. Land crabs as key drivers in tropical coastal forest recruitment.

    PubMed

    Lindquist, Erin Stewart; Krauss, Ken W; Green, Peter T; O'Dowd, Dennis J; Sherman, Peter M; Smith, Thomas J

    2009-05-01

    Plant populations are regulated by a diverse assortment of abiotic and biotic factors that influence seed dispersal and viability, and seedling establishment and growth at the microsite. Rarely does one animal guild exert as significant an influence on different plant assemblages as land crabs. We review three tropical coastal ecosystems-mangroves, island maritime forests, and mainland coastal terrestrial forests-where land crabs directly influence forest composition by limiting tree establishment and recruitment. Land crabs differentially prey on seeds, propagules and seedlings along nutrient, chemical and physical environmental gradients. In all of these ecosystems, but especially mangroves, abiotic gradients are well studied, strong and influence plant species distributions. However, we suggest that crab predation has primacy over many of these environmental factors by acting as the first limiting factor of tropical tree recruitment to drive the potential structural and compositional organisation of coastal forests. We show that the influence of crabs varies relative to tidal gradient, shoreline distance, canopy position, time, season, tree species and fruiting periodicity. Crabs also facilitate forest growth and development through such activities as excavation of burrows, creation of soil mounds, aeration of soils, removal of leaf litter into burrows and creation of carbon-rich soil microhabitats. For all three systems, land crabs influence the distribution, density and size-class structure of tree populations. Indeed, crabs are among the major drivers of tree recruitment in tropical coastal forest ecosystems, and their conservation should be included in management plans of these forests.

  17. Genetic diversity and fitness in small populations of partially asexual, self-incompatible plants.

    PubMed

    Navascués, M; Stoeckel, S; Mariette, S

    2010-05-01

    How self-incompatibility systems are maintained in plant populations is still a debated issue. Theoretical models predict that self-incompatibility systems break down according to the intensity of inbreeding depression and number of S-alleles. Other studies have explored the function of asexual reproduction in the maintenance of self-incompatibility. However, the population genetics of partially asexual, self-incompatible populations are poorly understood and previous studies have failed to consider all possible effects of asexual reproduction or could only speculate on those effects. In this study, we investigated how partial asexuality may affect genetic diversity at the S-locus and fitness in small self-incompatible populations. A genetic model including an S-locus and a viability locus was developed to perform forward simulations of the evolution of populations of various sizes. Drift combined with partial asexuality produced a decrease in the number of alleles at the S-locus. In addition, an excess of heterozygotes was present in the population, causing an increase in mutation load. This heterozygote excess was enhanced by the self-incompatibility system in small populations. In addition, in highly asexual populations, individuals produced asexually had some fitness advantages over individuals produced sexually, because sexual reproduction produces homozygotes of the deleterious allele, contrary to asexual reproduction. Our results suggest that future research on the function of asexuality for the maintenance of self-incompatibility will need to (1) account for whole-genome fitness (mutation load generated by asexuality, self-incompatibility and drift) and (2) acknowledge that the maintenance of self-incompatibility may not be independent of the maintenance of sex itself.

  18. Plastid genomics in horticultural species: importance and applications for plant population genetics, evolution, and biotechnology

    PubMed Central

    Rogalski, Marcelo; do Nascimento Vieira, Leila; Fraga, Hugo P.; Guerra, Miguel P.

    2015-01-01

    During the evolution of the eukaryotic cell, plastids, and mitochondria arose from an endosymbiotic process, which determined the presence of three genetic compartments into the incipient plant cell. After that, these three genetic materials from host and symbiont suffered several rearrangements, bringing on a complex interaction between nuclear and organellar gene products. Nowadays, plastids harbor a small genome with ∼130 genes in a 100–220 kb sequence in higher plants. Plastid genes are mostly highly conserved between plant species, being useful for phylogenetic analysis in higher taxa. However, intergenic spacers have a relatively higher mutation rate and are important markers to phylogeographical and plant population genetics analyses. The predominant uniparental inheritance of plastids is like a highly desirable feature for phylogeny studies. Moreover, the gene content and genome rearrangements are efficient tools to capture and understand evolutionary events between different plant species. Currently, genetic engineering of the plastid genome (plastome) offers a number of attractive advantages as high-level of foreign protein expression, marker gene excision, gene expression in operon and transgene containment because of maternal inheritance of plastid genome in most crops. Therefore, plastid genome can be used for adding new characteristics related to synthesis of metabolic compounds, biopharmaceutical, and tolerance to biotic and abiotic stresses. Here, we describe the importance and applications of plastid genome as tools for genetic and evolutionary studies, and plastid transformation focusing on increasing the performance of horticultural species in the field. PMID:26284102

  19. Plastid genomics in horticultural species: importance and applications for plant population genetics, evolution, and biotechnology.

    PubMed

    Rogalski, Marcelo; do Nascimento Vieira, Leila; Fraga, Hugo P; Guerra, Miguel P

    2015-01-01

    During the evolution of the eukaryotic cell, plastids, and mitochondria arose from an endosymbiotic process, which determined the presence of three genetic compartments into the incipient plant cell. After that, these three genetic materials from host and symbiont suffered several rearrangements, bringing on a complex interaction between nuclear and organellar gene products. Nowadays, plastids harbor a small genome with ∼130 genes in a 100-220 kb sequence in higher plants. Plastid genes are mostly highly conserved between plant species, being useful for phylogenetic analysis in higher taxa. However, intergenic spacers have a relatively higher mutation rate and are important markers to phylogeographical and plant population genetics analyses. The predominant uniparental inheritance of plastids is like a highly desirable feature for phylogeny studies. Moreover, the gene content and genome rearrangements are efficient tools to capture and understand evolutionary events between different plant species. Currently, genetic engineering of the plastid genome (plastome) offers a number of attractive advantages as high-level of foreign protein expression, marker gene excision, gene expression in operon and transgene containment because of maternal inheritance of plastid genome in most crops. Therefore, plastid genome can be used for adding new characteristics related to synthesis of metabolic compounds, biopharmaceutical, and tolerance to biotic and abiotic stresses. Here, we describe the importance and applications of plastid genome as tools for genetic and evolutionary studies, and plastid transformation focusing on increasing the performance of horticultural species in the field.

  20. Adaptive Transgenerational Plasticity in Plants: Case Studies, Mechanisms, and Implications for Natural Populations

    PubMed Central

    Herman, Jacob J.; Sultan, Sonia E.

    2011-01-01

    Plants respond to environmental conditions not only by plastic changes to their own development and physiology, but also by altering the phenotypes expressed by their offspring. This transgenerational plasticity was initially considered to entail only negative effects of stressful parental environments, such as production of smaller seeds by resource- or temperature-stressed parent plants, and was therefore viewed as environmental noise. Recent evolutionary ecology studies have shown that in some cases, these inherited environmental effects can include specific growth adjustments that are functionally adaptive to the parental conditions that induced them, which can range from contrasting states of controlled laboratory environments to the complex habitat variation encountered by natural plant populations. Preliminary findings suggest that adaptive transgenerational effects can be transmitted by means of diverse mechanisms including changes to seed provisioning and biochemistry, and epigenetic modifications such as DNA methylation that can persist across multiple generations. These non-genetically inherited adaptations can influence the ecological breadth and evolutionary dynamics of plant taxa and promote the spread of invasive plants. Interdisciplinary studies that join mechanistic and evolutionary ecology approaches will be an important source of future insights. PMID:22639624

  1. A simulation study of dispersion of air borne radionuclides from a nuclear power plant under a hypothetical accidental scenario at a tropical coastal site

    NASA Astrophysics Data System (ADS)

    Srinivas, C. V.; Venkatesan, R.

    Meteorological condition in coastal regions is diurnally variable and spatially heterogeneous due to complex topography, land-sea interface, etc. A wide range of dispersion conditions is possible on a given day in the coastal regions. In case of inadvertent accidental situations, though unlikely, it would be necessary to examine the potentially severe case among different dynamically occurring local atmospheric conditions for dispersion and its range of impact around a nuclear power plant for safety analysis. In this context, dispersion of air borne radioactive effluents during a hypothetical accidental scenario from a proposed prototype fast breeder reactor (PFBR) at an Indian coastal site, Kalpakkam, is simulated using a 3-D meso-scale atmospheric model MM5 and a random walk particle dispersion model FLEXPART. A simulation carried out for a typical summer day predicted the development of land-sea breeze circulation and thermal internal boundary layer (TIBL) formation, which have been confirmed by meteorological observations. Analysis of dose distribution shows that the maximum dose for releases from a 100 m stack occurs at two places within 4 km distance during sea breeze/TIBL fumigation hours. Maximum dose also occurred during nighttime stable conditions. Results indicate that, on the day of present study, the highest concentrations occurred during periods of TIBL fumigation rather than during stable atmospheric conditions. Further, the area of impact (plume width at the surface) spreads up to a down wind distance of 4 km during fumigation condition. Simulation over a range of 25 km has shown turning of plume at the incidence of sea breeze circulation and two different dispersion patterns across the sea breeze front. These results are significant in comparison to the expected pattern shown by Gaussian plume model used for routine analysis.

  2. Understanding past, contemporary, and future dynamics of plants, populations, and communities using Sonoran Desert winter annuals.

    PubMed

    Huxman, Travis E; Kimball, Sarah; Angert, Amy L; Gremer, Jennifer R; Barron-Gafford, Greg A; Venable, D Lawrence

    2013-07-01

    Global change requires plant ecologists to predict future states of biological diversity to aid the management of natural communities, thus introducing a number of significant challenges. One major challenge is considering how the many interacting features of biological systems, including ecophysiological processes, plant life histories, and species interactions, relate to performance in the face of a changing environment. We have employed a functional trait approach to understand the individual, population, and community dynamics of a model system of Sonoran Desert winter annual plants. We have used a comprehensive approach that connects physiological ecology and comparative biology to population and community dynamics, while emphasizing both ecological and evolutionary processes. This approach has led to a fairly robust understanding of past and contemporary dynamics in response to changes in climate. In this community, there is striking variation in physiological and demographic responses to both precipitation and temperature that is described by a trade-off between water-use efficiency (WUE) and relative growth rate (RGR). This community-wide trade-off predicts both the demographic and life history variation that contribute to species coexistence. Our framework has provided a mechanistic explanation to the recent warming, drying, and climate variability that has driven a surprising shift in these communities: cold-adapted species with more buffered population dynamics have increased in relative abundance. These types of comprehensive approaches that acknowledge the hierarchical nature of biology may be especially useful in aiding prediction. The emerging, novel and nonstationary climate constrains our use of simplistic statistical representations of past plant behavior in predicting the future, without understanding the mechanistic basis of change.

  3. Establishment of a coastal fish in the Azores: recent colonisation or sudden expansion of an ancient relict population?

    PubMed

    Stefanni, S; Castilho, R; Sala-Bozano, M; Robalo, J I; Francisco, S M; Santos, R S; Marques, N; Brito, A; Almada, V C; Mariani, S

    2015-12-01

    The processes and timescales associated with ocean-wide changes in the distribution of marine species have intrigued biologists since Darwin's earliest insights into biogeography. The Azores, a mid-Atlantic volcanic archipelago located >1000 km off the European continental shelf, offers ideal opportunities to investigate phylogeographic colonisation scenarios. The benthopelagic sparid fish known as the common two-banded seabream (Diplodus vulgaris) is now relatively common along the coastline of the Azores archipelago, but was virtually absent before the 1990 s. We employed a multiple genetic marker approach to test whether the successful establishment of the Azorean population derives from a recent colonisation from western continental/island populations or from the demographic explosion of an ancient relict population. Results from nuclear and mtDNA sequences show that all Atlantic and Mediterranean populations belong to the same phylogroup, though microsatellite data indicate significant genetic divergence between the Azorean sample and all other locations, as well as among Macaronesian, western Iberian and Mediterranean regions. The results from Approximate Bayesian Computation indicate that D. vulgaris has likely inhabited the Azores for ∼ 40 (95% confidence interval (CI): 5.5-83.6) to 52 (95% CI: 6.32-89.0) generations, corresponding to roughly 80-150 years, suggesting near-contemporary colonisation, followed by a more recent demographic expansion that could have been facilitated by changing climate conditions. Moreover, the lack of previous records of this species over the past century, together with the absence of lineage separation and the presence of relatively few private alleles, do not exclude the possibility of an even more recent colonisation event. PMID:26174025

  4. Estimating population abundance and mapping distribution of wintering sea ducks in coastal waters of the mid-Atlantic

    USGS Publications Warehouse

    Koneff, M.D.; Royle, J. Andrew; Forsell, D.J.; Wortham, J.S.; Boomer, G.S.; Perry, M.C.

    2005-01-01

    Survey design for wintering scoters (Melanitta sp.) and other sea ducks that occur in offshore waters is challenging because these species have large ranges, are subject to distributional shifts among years and within a season, and can occur in aggregations. Interest in winter sea duck population abundance surveys has grown in recent years. This interest stems from concern over the population status of some sea ducks, limitations of extant breeding waterfowl survey programs in North America and logistical challenges and costs of conducting surveys in northern breeding regions, high winter area philopatry in some species and potential conservation implications, and increasing concern over offshore development and other threats to sea duck wintering habitats. The efficiency and practicality of statistically-rigorous monitoring strategies for mobile, aggregated wintering sea duck populations have not been sufficiently investigated. This study evaluated a 2-phase adaptive stratified strip transect sampling plan to estimate wintering population size of scoters, long-tailed ducks (Clangua hyemalis), and other sea ducks and provide information on distribution. The sampling plan results in an optimal allocation of a fixed sampling effort among offshore strata in the U.S. mid-Atlantic coast region. Phase I transect selection probabilities were based on historic distribution and abundance data, while Phase 2 selection probabilities were based on observations made during Phase 1 flights. Distance sampling methods were used to estimate detection rates. Environmental variables thought to affect detection rates were recorded during the survey and post-stratification and covariate modeling were investigated to reduce the effect of heterogeneity on detection estimation. We assessed cost-precision tradeoffs under a number of fixed-cost sampling scenarios using Monte Carlo simulation. We discuss advantages and limitations of this sampling design for estimating wintering sea duck

  5. Establishment of a coastal fish in the Azores: recent colonisation or sudden expansion of an ancient relict population?

    PubMed Central

    Stefanni, S; Castilho, R; Sala-Bozano, M; Robalo, J I; Francisco, S M; Santos, R S; Marques, N; Brito, A; Almada, V C; Mariani, S

    2015-01-01

    The processes and timescales associated with ocean-wide changes in the distribution of marine species have intrigued biologists since Darwin's earliest insights into biogeography. The Azores, a mid-Atlantic volcanic archipelago located >1000 km off the European continental shelf, offers ideal opportunities to investigate phylogeographic colonisation scenarios. The benthopelagic sparid fish known as the common two-banded seabream (Diplodus vulgaris) is now relatively common along the coastline of the Azores archipelago, but was virtually absent before the 1990s. We employed a multiple genetic marker approach to test whether the successful establishment of the Azorean population derives from a recent colonisation from western continental/island populations or from the demographic explosion of an ancient relict population. Results from nuclear and mtDNA sequences show that all Atlantic and Mediterranean populations belong to the same phylogroup, though microsatellite data indicate significant genetic divergence between the Azorean sample and all other locations, as well as among Macaronesian, western Iberian and Mediterranean regions. The results from Approximate Bayesian Computation indicate that D. vulgaris has likely inhabited the Azores for ∼40 (95% confidence interval (CI): 5.5–83.6) to 52 (95% CI: 6.32–89.0) generations, corresponding to roughly 80–150 years, suggesting near-contemporary colonisation, followed by a more recent demographic expansion that could have been facilitated by changing climate conditions. Moreover, the lack of previous records of this species over the past century, together with the absence of lineage separation and the presence of relatively few private alleles, do not exclude the possibility of an even more recent colonisation event. PMID:26174025

  6. A hyperparasite affects the population dynamics of a wild plant pathogen

    PubMed Central

    Tollenaere, C; Pernechele, B; Mäkinen, H S; Parratt, S R; Németh, M Z; Kovács, G M; Kiss, L; Tack, A J M; Laine, A-L

    2014-01-01

    Assessing the impact of natural enemies of plant and animal pathogens on their host's population dynamics is needed to determine the role of hyperparasites in affecting disease dynamics, and their potential for use in efficient control strategies of pathogens. Here, we focus on the long-term study describing metapopulation dynamics of an obligate pathogen, the powdery mildew (Podosphaera plantaginis) naturally infecting its wild host plant (Plantago lanceolata) in the fragmented landscape of the Åland archipelago (southwest Finland). Regionally, the pathogen persists through a balance of extinctions and colonizations, yet factors affecting extinction rates remain poorly understood. Mycoparasites of the genus Ampelomyces appear as good candidates for testing the role of a hyperparasite, i.e. a parasite of other parasites, in the regulation of their fungal hosts' population dynamics. For this purpose, we first designed a quantitative PCR assay for detection of Ampelomyces spp. in field-collected samples. This newly developed molecular test was then applied to a large-scale sampling within the Åland archipelago, revealing that Ampelomyces is a widespread hyperparasite in this system, with high variability in prevalence among populations. We found that the hyperparasite was more common on leaves where multiple powdery mildew strains coexist, a pattern that may be attributed to differential exposure. Moreover, the prevalence of Ampelomyces at the plant level negatively affected the overwinter survival of its fungal host. We conclude that this hyperparasite may likely impact on its host population dynamics and argue for increased focus on the role of hyperparasites in disease dynamics. PMID:25204419

  7. Pentachlorophenol and hydroxylated polychlorinated biphenyl metabolites in umbilical cord plasma of neonates from coastal populations in Québec.

    PubMed Central

    Sandau, Courtney D; Ayotte, Pierre; Dewailly, Eric; Duffe, Jason; Norstrom, Ross J

    2002-01-01

    Concentrations of polychlorinated biphenyls (PCBs), hydroxylated metabolites of PCBs (HO-PCBs) and octachlorostyrene (4-HO-HpCS), and pentachlorophenol (PCP) were determined in umbilical cord plasma samples from three different regions of Québec. The regions studied included two coastal areas where exposure to PCBs is high because of marine-food-based diets--Nunavik (Inuit people) and the Lower North Shore of the Gulf of St. Lawrence (subsistence fishermen)--and a southern Québec urban center where PCB exposure is at background levels (Québec City). The main chlorinated phenolic compound in all regions was PCP. Concentrations of PCP were not significantly different among regions (geometric mean concentration 1,670 pg/g, range 628-7,680 pg/g wet weight in plasma). The ratio of PCP to polychlorinated biphenyl congener number 153 (CB153) concentration ranged from 0.72 to 42.3. Sum HO-PCB (sigma HO-PCBs) concentrations were different among regions, with geometric mean concentrations of 553 (range 238-1,750), 286 (103-788), and 234 (147-464) pg/g wet weight plasma for the Lower North Shore, Nunavik, and the southern Québec groups, respectively. Lower North Shore samples also had the highest geometric mean concentration of sum PCBs (sum of 49 congeners; sigma PCBs), 2,710 (525-7,720) pg/g wet weight plasma. sigma PCB concentrations for Nunavik samples and southern samples were 1,510 (309-6,230) and 843 (290-1,650) pg/g wet weight plasma. Concentrations (log transformed) of sigma HO-PCBs and sigma PCBs were significantly correlated (r = 0.62, p < 0.001), as were concentrations of all major individual HO-PCB congeners and individual PCB congeners. In Nunavik and Lower North Shore samples, free thyroxine (T4) concentrations (log transformed) were negatively correlated with the sum of quantitated chlorinated phenolic compounds (sum PCP and sigma HO-PCBs; r = -0.47, p = 0.01, n = 20) and were not correlated with any PCB congeners or sigma PCBs. This suggests that PCP and

  8. Linking Native and Invader Traits Explains Native Spider Population Responses to Plant Invasion.

    PubMed

    Smith, Jennifer N; Emlen, Douglas J; Pearson, Dean E

    2016-01-01

    Theoretically, the functional traits of native species should determine how natives respond to invader-driven changes. To explore this idea, we simulated a large-scale plant invasion using dead spotted knapweed (Centaurea stoebe) stems to determine if native spiders' web-building behaviors could explain differences in spider population responses to structural changes arising from C. stoebe invasion. After two years, irregular web-spiders were >30 times more abundant and orb weavers were >23 times more abundant on simulated invasion plots compared to controls. Additionally, irregular web-spiders on simulated invasion plots built webs that were 4.4 times larger and 5.0 times more likely to capture prey, leading to >2-fold increases in recruitment. Orb-weavers showed no differences in web size or prey captures between treatments. Web-spider responses to simulated invasion mimicked patterns following natural invasions, confirming that C. stoebe's architecture is likely the primary attribute driving native spider responses to these invasions. Differences in spider responses were attributable to differences in web construction behaviors relative to historic web substrate constraints. Orb-weavers in this system constructed webs between multiple plants, so they were limited by the overall quantity of native substrates but not by the architecture of individual native plant species. Irregular web-spiders built their webs within individual plants and were greatly constrained by the diminutive architecture of native plant substrates, so they were limited both by quantity and quality of native substrates. Evaluating native species traits in the context of invader-driven change can explain invasion outcomes and help to identify factors limiting native populations. PMID:27082240

  9. Linking Native and Invader Traits Explains Native Spider Population Responses to Plant Invasion

    PubMed Central

    Emlen, Douglas J.; Pearson, Dean E.

    2016-01-01

    Theoretically, the functional traits of native species should determine how natives respond to invader-driven changes. To explore this idea, we simulated a large-scale plant invasion using dead spotted knapweed (Centaurea stoebe) stems to determine if native spiders’ web-building behaviors could explain differences in spider population responses to structural changes arising from C. stoebe invasion. After two years, irregular web-spiders were >30 times more abundant and orb weavers were >23 times more abundant on simulated invasion plots compared to controls. Additionally, irregular web-spiders on simulated invasion plots built webs that were 4.4 times larger and 5.0 times more likely to capture prey, leading to >2-fold increases in recruitment. Orb-weavers showed no differences in web size or prey captures between treatments. Web-spider responses to simulated invasion mimicked patterns following natural invasions, confirming that C. stoebe’s architecture is likely the primary attribute driving native spider responses to these invasions. Differences in spider responses were attributable to differences in web construction behaviors relative to historic web substrate constraints. Orb-weavers in this system constructed webs between multiple plants, so they were limited by the overall quantity of native substrates but not by the architecture of individual native plant species. Irregular web-spiders built their webs within individual plants and were greatly constrained by the diminutive architecture of native plant substrates, so they were limited both by quantity and quality of native substrates. Evaluating native species traits in the context of invader-driven change can explain invasion outcomes and help to identify factors limiting native populations. PMID:27082240

  10. Linking Native and Invader Traits Explains Native Spider Population Responses to Plant Invasion.

    PubMed

    Smith, Jennifer N; Emlen, Douglas J; Pearson, Dean E

    2016-01-01

    Theoretically, the functional traits of native species should determine how natives respond to invader-driven changes. To explore this idea, we simulated a large-scale plant invasion using dead spotted knapweed (Centaurea stoebe) stems to determine if native spiders' web-building behaviors could explain differences in spider population responses to structural changes arising from C. stoebe invasion. After two years, irregular web-spiders were >30 times more abundant and orb weavers were >23 times more abundant on simulated invasion plots compared to controls. Additionally, irregular web-spiders on simulated invasion plots built webs that were 4.4 times larger and 5.0 times more likely to capture prey, leading to >2-fold increases in recruitment. Orb-weavers showed no differences in web size or prey captures between treatments. Web-spider responses to simulated invasion mimicked patterns following natural invasions, confirming that C. stoebe's architecture is likely the primary attribute driving native spider responses to these invasions. Differences in spider responses were attributable to differences in web construction behaviors relative to historic web substrate constraints. Orb-weavers in this system constructed webs between multiple plants, so they were limited by the overall quantity of native substrates but not by the architecture of individual native plant species. Irregular web-spiders built their webs within individual plants and were greatly constrained by the diminutive architecture of native plant substrates, so they were limited both by quantity and quality of native substrates. Evaluating native species traits in the context of invader-driven change can explain invasion outcomes and help to identify factors limiting native populations.

  11. Population Dynamics of Dactylella oviparasitica and Heterodera schachtii: Toward a Decision Model for Sugar Beet Planting

    PubMed Central

    Yang, Jiue-in; Benecke, Scott; Jeske, Daniel R.; Rocha, Fernando S.; Smith Becker, Jennifer; Timper, Patricia; Ole Becker, J.

    2012-01-01

    A series of experiments were performed to examine the population dynamics of the sugarbeet cyst nematode, Heterodera schachtii, and the nematophagus fungus Dactylella oviparasitica. After two nematode generations, the population densities of H. schachtii were measured in relation to various initial infestation densities of both D. oviparasitica and H. schachtii. In general, higher initial population densities of D. oviparasitica were associated with lower final population densities of H. schachtii. Regression models showed that the initial densities of D. oviparasitica were only significant when predicting the final densities of H. schachtii J2 and eggs as well as fungal egg parasitism, while the initial densities of J2 were significant for all final H. schachtii population density measurements. We also showed that the densities of H. schachtii-associated D. oviparasitica fluctuate greatly, with rRNA gene numbers going from zero in most field-soil-collected cysts to an average of 4.24 x 108 in mature females isolated directly from root surfaces. Finally, phylogenetic analysis of rRNA genes suggested that D. oviparasitica belongs to a clade of nematophagous fungi that includes Arkansas Fungus strain L (ARF-L) and that these fungi are widely distributed. We anticipate that these findings will provide foundational data facilitating the development of more effective decision models for sugar beet planting. PMID:23481664

  12. Host mating system and the prevalence of a disease in a plant population

    USGS Publications Warehouse

    Koslow, Jennifer M.; DeAngelis, Donald L.

    2006-01-01

    A modified susceptible–infected–recovered (SIR) host–pathogen model is used to determine the influence of plant mating system on the outcome of a host–pathogen interaction. Unlike previous models describing how interactions between mating system and pathogen infection affect individual fitness, this model considers the potential consequences of varying mating systems on the prevalence of resistance alleles and disease within the population. If a single allele for disease resistance is sufficient to confer complete resistance in an individual and if both homozygote and heterozygote resistant individuals have the same mean birth and death rates, then, for any parameter set, the selfing rate does not affect the proportions of resistant, susceptible or infected individuals at equilibrium. If homozygote and heterozygote individual birth rates differ, however, the mating system can make a difference in these proportions. In that case, depending on other parameters, increased selfing can either increase or decrease the rate of infection in the population. Results from this model also predict higher frequencies of resistance alleles in predominantly selfing compared to predominantly outcrossing populations for most model conditions. In populations that have higher selfing rates, the resistance alleles are concentrated in homozygotes, whereas in more outcrossing populations, there are more resistant heterozygotes.

  13. Enrichment of hexabromocyclododecanes in coastal sediments near aquaculture areas and a wastewater treatment plant in a semi-enclosed bay in South Korea.

    PubMed

    Al-Odaini, Najat Ahmed; Shim, Won Joon; Han, Gi Myung; Jang, Mi; Hong, Sang Hee

    2015-02-01

    The contamination status and potential sources of hexabromocyclododecanes (HBCDs) in the coastal environment were investigated using sediment samples from a semi-enclosed bay in South Korea. HBCDs displayed a very different distribution profile compared to polybrominated diphenyl ethers (PBDEs) and nonylphenol, indicating different emission sources inside the bay. A strong enrichment of HBCDs was found near aquaculture areas that used expanded polystyrene (EPS) buoys, which were confirmed to be the main source of HBCDs following an analysis of buoys collected from a market and the coast. EPS buoys contained large amounts of HBCDs, with lower levels in the outside layer than inside, implying the leaching of HBCDs from the surface throughout their lifetime. This was reflected in the high levels of HBCDs measured in coastal sediments near aquaculture farms. A wastewater treatment plant was found to be an additional source of HBCDs. A dated core sample revealed an increase in HBCD concentrations over time. The isomeric profiles for most of the surface and core sediment samples were dominated by the γ-diastereoisomer.

  14. Forecasting changes in population genetic structure of alpine plants in response to global warming.

    PubMed

    Jay, Flora; Manel, Stéphanie; Alvarez, Nadir; Durand, Eric Y; Thuiller, Wilfried; Holderegger, Rolf; Taberlet, Pierre; François, Olivier

    2012-05-01

    Species range shifts in response to climate and land use change are commonly forecasted with species distribution models based on species occurrence or abundance data. Although appealing, these models ignore the genetic structure of species, and the fact that different populations might respond in different ways because of adaptation to their environment. Here, we introduced ancestry distribution models, that is, statistical models of the spatial distribution of ancestry proportions, for forecasting intra-specific changes based on genetic admixture instead of species occurrence data. Using multi-locus genotypes and extensive geographic coverage of distribution data across the European Alps, we applied this approach to 20 alpine plant species considering a global increase in temperature from 0.25 to 4 °C. We forecasted the magnitudes of displacement of contact zones between plant populations potentially adapted to warmer environments and other populations. While a global trend of movement in a north-east direction was predicted, the magnitude of displacement was species-specific. For a temperature increase of 2 °C, contact zones were predicted to move by 92 km on average (minimum of 5 km, maximum of 212 km) and by 188 km for an increase of 4 °C (minimum of 11 km, maximum of 393 km). Intra-specific turnover-measuring the extent of change in global population genetic structure-was generally found to be moderate for 2 °C of temperature warming. For 4 °C of warming, however, the models indicated substantial intra-specific turnover for ten species. These results illustrate that, in spite of unavoidable simplifications, ancestry distribution models open new perspectives to forecast population genetic changes within species and complement more traditional distribution-based approaches.

  15. Local scale, coastal currents influence recruitment to freshwater populations in the European eel Anguilla anguilla: a case study from the Isle of Man.

    PubMed

    Barry, J; Mcharg, K; Dodd, J A; Adams, C E

    2015-06-01

    This study examines juvenile Anguilla anguilla (<30 cm) abundance in five study catchments on the Isle of Man. Preliminary results suggest that juvenile abundance is negatively correlated with increasing coastal current speed at river mouth entry (P < 0·05). These findings indicate that at least under some circumstances, tidally driven coastal currents may influence recruitment to freshwater habitats; therefore, it is presumed that high coastal current speed at the entry to river mouths may reduce the likelihood of freshwater entry.

  16. Population structure, persistence, and seasonality of autochthonous Escherichia coli in temperate, coastal forest soil from a Great Lakes watershed

    USGS Publications Warehouse

    Byappanahalli, M.N.; Whitman, R.L.; Shively, D.A.; Sadowsky, M.J.; Ishii, S.

    2006-01-01

    The common occurrence of Escherichia coli in temperate soils has previously been reported, however, there are few studies to date to characterize its source, distribution, persistent capability and genetic diversity. In this study, undisturbed, forest soils within six randomly selected 0.5 m2 exclosure plots (covered by netting of 2.3 mm2 mesh size) were monitored from March to October 2003 for E. coli in order to describe its numerical and population characteristics. Culturable E. coli occurred in 88% of the samples collected, with overall mean counts of 16 MPN g-1, ranging from <1 to 1657 (n = 66). Escherichia coli counts did not correlate with substrate moisture content, air, or soil temperatures, suggesting that seasonality were not a strong factor in population density control. Mean E. coli counts in soil samples (n = 60) were significantly higher inside than immediately outside the exclosures; E. coli distribution within the exclosures was patchy. Repetitive extragenic palindromic polymerase chain reaction (Rep-PCR) demonstrated genetic heterogeneity of E. coli within and among exclosure sites, and the soil strains were genetically distinct from animal (E. coli) strains tested (i.e. gulls, terns, deer and most geese). These results suggest that E. coli can occur and persist for extended periods in undisturbed temperate forest soils independent of recent allochthonous input and season, and that the soil E. coli populations formed a cohesive phylogenetic group in comparison to the set of fecal strains with which they were compared. Thus, in assessing E. coli sources within a stream, it is important to differentiate background soil loadings from inputs derived from animal and human fecal contamination. ?? 2005 Society for Applied Microbiology and Blackwell Publishing Ltd.

  17. Low crop plant population densities promote pollen-mediated gene flow in spring wheat (Triticum aestivum L.).

    PubMed

    Willenborg, Christian J; Brûlé-Babel, Anita L; Van Acker, Rene C

    2009-12-01

    Transgenic wheat is currently being field tested with the intent of eventual commercialization. The development of wheat genotypes with novel traits has raised concerns regarding the presence of volunteer wheat populations and the role they may play in facilitating transgene movement. Here, we report the results of a field experiment that investigated the potential of spring wheat plant population density and crop height to minimize gene flow from a herbicide-resistant (HR) volunteer population to a non-HR crop. Pollen-mediated gene flow (PMGF) between the HR volunteer wheat population and four conventional spring wheat genotypes varying in height was assessed over a range of plant population densities. Natural hybridization events between the two cultivars were detected by phenotypically scoring plants in F(1) populations followed by verification with Mendelian segregation ratios in the F(1:2) families. PMGF was strongly associated with crop yield components, but showed no association with flowering synchrony. Maximum observed PMGF was always less than 0.6%, regardless of crop height and density. The frequency of PMGF in spring wheat decreased exponentially with increasing plant population density, but showed no dependence on either crop genotype or height. However, increasing plant densities beyond the recommended planting rate of 300 cropped wheat plants m(-2) provided no obvious benefit to reducing PMGF. Nevertheless, our results demonstrate a critical plant density of 175-200 cropped wheat plants m(-2) below which PMGF frequencies rise exponentially with decreasing plant density. These results will be useful in the development of mechanistic models and best management practices that collectively facilitate the coexistence of transgenic and nontransgenic wheat crops. PMID:19387859

  18. Host plant use drives genetic differentiation in syntopic populations of Maculinea alcon

    PubMed Central

    Fürst, Matthias A.

    2016-01-01

    The rare socially parasitic butterfly Maculinea alcon occurs in two forms, which are characteristic of hygric or xeric habitats and which exploit different host plants and host ants. The status of these two forms has been the subject of considerable controversy. Populations of the two forms are usually spatially distinct, but at Răscruci in Romania both forms occur on the same site (syntopically). We examined the genetic differentiation between the two forms using eight microsatellite markers, and compared with a nearby hygric site, Şardu. Our results showed that while the two forms are strongly differentiated at Răscruci, it is the xeric form there that is most similar to the hygric form at Şardu, and Bayesian clustering algorithms suggest that these two populations have exchanged genes relatively recently. We found strong evidence for population substructuring, caused by high within host ant nest relatedness, indicating very limited dispersal of most ovipositing females, but not association with particular host ant species. Our results are consistent with the results of larger scale phylogeographic studies that suggest that the two forms represent local ecotypes specialising on different host plants, each with a distinct flowering phenology, providing a temporal rather than spatial barrier to gene flow. PMID:27069804

  19. Population variation affects interactions between two California salt marsh plant species more than precipitation.

    PubMed

    Noto, Akana E; Shurin, Jonathan B

    2016-02-01

    Species that occur along broad environmental gradients often vary in phenotypic traits that make them better adapted to local conditions. Variation in species interactions across gradients could therefore be due to either phenotypic differences among populations or environmental conditions that shift the balance between competition and facilitation. To understand how the environment (precipitation) and variation among populations affect species interactions, we conducted a common garden experiment using two common salt marsh plant species, Salicornia pacifica and Jaumea carnosa, from six salt marshes along the California coast encompassing a large precipitation gradient. Plants were grown alone or with an individual of the opposite species from the same site and exposed to one of three precipitation regimes. J. carnosa was negatively affected in the presence of S. pacifica, while S. pacifica was facilitated by J. carnosa. The strength of these interactions varied by site of origin but not by precipitation treatment. These results suggest that phenotypic variation among populations can affect interaction strength more than environment, despite a threefold difference in precipitation. Geographic intraspecific variation may therefore play an important role in determining the strength of interactions in communities.

  20. Population variation affects interactions between two California salt marsh plant species more than precipitation.

    PubMed

    Noto, Akana E; Shurin, Jonathan B

    2016-02-01

    Species that occur along broad environmental gradients often vary in phenotypic traits that make them better adapted to local conditions. Variation in species interactions across gradients could therefore be due to either phenotypic differences among populations or environmental conditions that shift the balance between competition and facilitation. To understand how the environment (precipitation) and variation among populations affect species interactions, we conducted a common garden experiment using two common salt marsh plant species, Salicornia pacifica and Jaumea carnosa, from six salt marshes along the California coast encompassing a large precipitation gradient. Plants were grown alone or with an individual of the opposite species from the same site and exposed to one of three precipitation regimes. J. carnosa was negatively affected in the presence of S. pacifica, while S. pacifica was facilitated by J. carnosa. The strength of these interactions varied by site of origin but not by precipitation treatment. These results suggest that phenotypic variation among populations can affect interaction strength more than environment, despite a threefold difference in precipitation. Geographic intraspecific variation may therefore play an important role in determining the strength of interactions in communities. PMID:26481794

  1. Biodiversity of a Burkholderia cepacia population isolated from the maize rhizosphere at different plant growth stages.

    PubMed

    Di Cello, F; Bevivino, A; Chiarini, L; Fani, R; Paffetti, D; Tabacchioni, S; Dalmastri, C

    1997-11-01

    A Burkholderia cepacia population naturally occurring in the rhizosphere of Zea mays was investigated in order to assess the degree of root association and microbial biodiversity at five stages of plant growth. The bacterial strains isolated on semiselective PCAT medium were mostly assigned to the species B. cepacia by an analysis of the restriction patterns produced by amplified DNA coding for 16S rRNA (16S rDNA) (ARDRA) with the enzyme AluI. Partial 16S rDNA nucleotide sequences of some randomly chosen isolates confirmed the ARDRA results. Throughout the study, B. cepacia was strictly associated with maize roots, ranging from 0.6 to 3.6% of the total cultivable microflora. Biodiversity among 83 B. cepacia isolates was analyzed by the random amplified polymorphic DNA (RAPD) technique with two 10-mer primers. An analysis of RAPD patterns by the analysis of molecular variance method revealed a high level of intraspecific genetic diversity in this B. cepacia population. Moreover, the genetic diversity was related to divergences among maize root samplings, with microbial genetic variability markedly higher in the first stages of plant growth; in other words, the biodiversity of this rhizosphere bacterial population decreased over time. PMID:9361434

  2. Environmental factors and seasonal dynamics of Prorocentrum lima population in coastal waters of the Gulf of Tunis, South Mediterranean.

    PubMed

    Aissaoui, Awatef; Armi, Zina; Akrout, Fourat; Ben Hassine, Oum Kalthoum

    2014-12-01

    In the frame of a phytoplankton study, a series of samples were collected in the Punic harbors of Carthage (Gulf of Tunis, South Mediterranean) from March 2008 to March 2010. Species composition, seasonal variations of pelagic Prorocentrum populations and several physico-chemical parameters were specified, as well as the relation between Prorocentrum species dynamics and water temperature, salinity and nutrient concentrations. The main detected species are included in the benthic/epiphytic group; P. lima (Ehrenberg) Stein 1878 and P. emarginatum Fukuyo 1981. P lima was the dominant species. The highest abundance of P. lima (6.97 x 10(3) Cells L(-1)) was recorded in August 2008 where temperature and salinity values ranged from 23.1 to 30.2 degrees C and 36.1 to 40.3 psu, respectively. The dynamics of the P. lima population had significant positive correlations with both temperature and salinity, and negative correlations with both nitrogen/phosphorus ratio and ammonium concentrations. Proliferations of this species represent a serious hazard for public health in Tunis northern coasts.

  3. Population structure, sex ratio and growth of the seabob shrimp Xiphopenaeus kroyeri (Decapoda, Penaeidae) from coastal waters of southern Brazil

    PubMed Central

    Grabowski, Raphael Cezar; Simões, Sabrina Morilhas; Castilho, Antonio Leão

    2014-01-01

    Abstract This study evaluated the growth and population structure of Xiphopenaeus kroyeri in Babitonga Bay, southern Brazil. Monthly trawls were conducted from July 2010 through June 2011, using a shrimp boat outfitted with double-rig nets, at depths from 5 to 17 m. Differences from the expected 0.5 sex ratio were determined by applying a Binomial test. A von Bertalanffy growth model was used to estimate the individual growth, and longevity was calculated using its inverted formula. A total of 4,007 individuals were measured, including 1,106 juveniles (sexually immature) and 2,901 adults. Females predominated in the larger size classes. Males and females showed asymptotic lengths of 27.7 mm and 31.4 mm, growth constants of 0.0086 and 0.0070 per day, and longevities of 538 and 661 days, respectively. The predominance of females in larger size classes is the general rule in species of Penaeidae. The paradigm of latitudinal-effect does not appear to apply to seabob shrimp on the southern Brazilian coast, perhaps because of the small proportion of larger individuals, the occurrence of cryptic species, or the intense fishing pressure in this region. The longevity values are within the general range for species of Penaeidae. The higher estimates for longevity in populations at lower latitudes may have occurred because of the growth constants observed at these locations, resulting in overestimation of this parameter. PMID:25561841

  4. The influence of extreme winds on coastal oceanography and its implications for coral population connectivity in the southern Arabian Gulf.

    PubMed

    Cavalcante, Geórgenes H; Feary, David A; Burt, John A

    2016-04-30

    Using long-term oceanographic surveys and a 3-D hydrodynamic model we show that localized peak winds (known as shamals) cause fluctuation in water current speed and direction, and substantial oscillations in sea-bottom salinity and temperature in the southern Persian/Arabian Gulf. Results also demonstrate that short-term shamal winds have substantial impacts on oceanographic processes along the southern Persian/Arabian Gulf coastline, resulting in formation of large-scale (52 km diameter) eddies extending from the coast of the United Arab Emirates (UAE) to areas near the off-shore islands of Iran. Such eddies likely play an important role in transporting larvae from well-developed reefs of the off-shore islands to the degraded reef systems of the southern Persian/Arabian Gulf, potentially maintaining genetic and ecological connectivity of these geographically distant populations and enabling enhanced recovery of degraded coral communities in the UAE.

  5. Genetic diversity of Ulva prolifera population in Qingdao coastal water during the green algal blooms revealed by microsatellite.

    PubMed

    Li, Yue; Huang, Hong-Jia; Li, Hongye; Liu, Jiesheng; Yang, Weidong

    2016-10-15

    Green tides have occurred in Qingdao coast in China for seven consecutive years from 2007 to 2013. To provide information on the genetic structure of these blooms, 210 free-floating green algae samples isolated from the green tide in Qingdao coast on June 19, 2013 were identified based on the ITS, rbcL and 5S sequence, and genetic diversity was investigated by microsatellite markers. According to ITS, rbcL and 5S sequence, all the 210 samples belonged to Ulva prolifera. Nei's genetic diversity and Shannon index estimated using eight microsatellite markers indicated that the genetic diversity of U. prolifera population within Qingdao's green bloom in 2013 was low. Taking into account previous reports about life history and physiology of U. prolifera, we proposed that the limited origin area of the free-floating biomass and asexual reproduction of U. prolifera might be responsible for the lower diversity of free floating U. prolifera. PMID:27412412

  6. The influence of extreme winds on coastal oceanography and its implications for coral population connectivity in the southern Arabian Gulf.

    PubMed

    Cavalcante, Geórgenes H; Feary, David A; Burt, John A

    2016-04-30

    Using long-term oceanographic surveys and a 3-D hydrodynamic model we show that localized peak winds (known as shamals) cause fluctuation in water current speed and direction, and substantial oscillations in sea-bottom salinity and temperature in the southern Persian/Arabian Gulf. Results also demonstrate that short-term shamal winds have substantial impacts on oceanographic processes along the southern Persian/Arabian Gulf coastline, resulting in formation of large-scale (52 km diameter) eddies extending from the coast of the United Arab Emirates (UAE) to areas near the off-shore islands of Iran. Such eddies likely play an important role in transporting larvae from well-developed reefs of the off-shore islands to the degraded reef systems of the southern Persian/Arabian Gulf, potentially maintaining genetic and ecological connectivity of these geographically distant populations and enabling enhanced recovery of degraded coral communities in the UAE. PMID:26506023

  7. Genetic diversity of Ulva prolifera population in Qingdao coastal water during the green algal blooms revealed by microsatellite.

    PubMed

    Li, Yue; Huang, Hong-Jia; Li, Hongye; Liu, Jiesheng; Yang, Weidong

    2016-10-15

    Green tides have occurred in Qingdao coast in China for seven consecutive years from 2007 to 2013. To provide information on the genetic structure of these blooms, 210 free-floating green algae samples isolated from the green tide in Qingdao coast on June 19, 2013 were identified based on the ITS, rbcL and 5S sequence, and genetic diversity was investigated by microsatellite markers. According to ITS, rbcL and 5S sequence, all the 210 samples belonged to Ulva prolifera. Nei's genetic diversity and Shannon index estimated using eight microsatellite markers indicated that the genetic diversity of U. prolifera population within Qingdao's green bloom in 2013 was low. Taking into account previous reports about life history and physiology of U. prolifera, we proposed that the limited origin area of the free-floating biomass and asexual reproduction of U. prolifera might be responsible for the lower diversity of free floating U. prolifera.

  8. Diversity and population structure of sewage-derived microorganisms in wastewater treatment plant influent.

    PubMed

    McLellan, S L; Huse, S M; Mueller-Spitz, S R; Andreishcheva, E N; Sogin, M L

    2010-02-01

    The release of untreated sewage introduces non-indigenous microbial populations of uncertain composition into surface waters. We used massively parallel 454 pyrosequencing of hypervariable regions in rRNA genes to profile microbial communities from eight untreated sewage influent samples of two wastewater treatment plants (WWTPs) in metropolitan Milwaukee. The sewage profiles included a discernible human faecal signature made up of several taxonomic groups including multiple Bifidobacteriaceae, Coriobacteriaceae, Bacteroidaceae, Lachnospiraceae and Ruminococcaceae genera. The faecal signature made up a small fraction of the taxa present in sewage but the relative abundance of these sequence tags mirrored the population structures of human faecal samples. These genera were much more prevalent in the sewage influent than standard indicators species. High-abundance sequences from taxonomic groups within the Beta- and Gammaproteobacteria dominated the sewage samples but occurred at very low levels in faecal and surface water samples, suggesting that these organisms proliferate within the sewer system. Samples from Jones Island (JI--servicing residential plus a combined sewer system) and South Shore (SS--servicing a residential area) WWTPs had very consistent community profiles, with greater similarity between WWTPs on a given collection day than the same plant collected on different days. Rainfall increased influent flows at SS and JI WWTPs, and this corresponded to greater diversity in the community at both plants. Overall, the sewer system appears to be a defined environment with both infiltration of rainwater and stormwater inputs modulating community composition. Microbial sewage communities represent a combination of inputs from human faecal microbes and enrichment of specific microbes from the environment to form a unique population structure.

  9. Spatial and temporal assessment of the initial pattern of phytoplankton population in a newly built coastal reservoir

    NASA Astrophysics Data System (ADS)

    Ren, Xiangyu; Yang, Kai; Che, Yue; Wang, Mingwei; Zhou, Lili; Chen, Liqiao

    2016-09-01

    For decades, the main threat to the water security of a metropolis, such as the city of Shanghai, has been the rapidly growing demand for water and at the same time, the decrease in water quality, including eutrophication. Therefore Shanghai shifted the preferred freshwater source to the Yangtze Estuary and constructed the Qingcaosha Reservoir, which is subject to less eutrophic water from the Yangtze River. To assess the population of phytoplankton for the first time in the newly built reservoir, this study improved an integrated method to assess the phytoplankton pattern in large-water-area reservoirs and lakes, using partial triadic analysis and Geographic Information Systems. Monthly sampling and monitoring from 10 stations in the reservoir from July 2010 to December 2011 were conducted. The study examined the common pattern of the phytoplankton population structure and determined the differences in the specific composition of the phytoplankton community during the transition period of the reservoir. The results suggest that in all but three sampling stations in the upper parts of Qingcaosha Reservoir, there was a strong common compromise in 2011. The two most important periods occurred from late summer to autumn and from winter to early spring. The former was characterized by the dominance of cyanobacteria, whereas the latter was characterized by the dominance of both chlorophyta and diatoms. Cyanobacteria ( Microcystis spp. as the main genus) were the monopolistic dominant species in the summer after reservoir operation. The statistical analysis also indicated the necessity for regular monitoring to focus on the stations in the lower parts of the reservoir and on several limited species.

  10. Mortality gradients within and among dominant plant populations as barometers of ecosystem change during extreme drought.

    PubMed

    Gitlin, Alicyn R; Sthultz, Christopher M; Bowker, Matthew A; Stumpf, Stacy; Paxton, Kristina L; Kennedy, Karla; Muñoz, Axhel; Bailey, Joseph K; Whitham, Thomas G

    2006-10-01

    Understanding patterns of plant population mortality during extreme weather events is important to conservation planners because the frequency of such events is expected to increase, creating the need to integrate climatic uncertainty into management. Dominant plants provide habitat and ecosystem structure, so changes in their distribution can be expected to have cascading effects on entire communities. Observing areas that respond quickly to climate fluctuations provides foresight into future ecological changes and will help prioritize conservation efforts. We investigated patterns of mortality in six dominant plant species during a drought in the southwestern United States. We quantified population mortality for each species across its regional distribution and tested hypotheses to identify ecological stress gradients for each species. Our results revealed three major patterns: (1) dominant species from diverse habitat types (i.e., riparian, chaparral, and low- to high-elevation forests) exhibited significant mortality, indicating that the effects of drought were widespread; (2) average mortality differed among dominant species (one-seed juniper[Juniperus monosperma (Engelm.) Sarg.] 3.3%; manzanita[Arctostaphylos pungens Kunth], 14.6%; quaking aspen[Populus tremuloides Michx.], 15.4%; ponderosa pine[Pinus ponderosa P. & C. Lawson], 15.9%; Fremont cottonwood[Populus fremontii S. Wats.], 20.7%; and pinyon pine[Pinus edulis Engelm.], 41.4%); (3) all dominant species showed localized patterns of very high mortality (24-100%) consistent with water stress gradients. Land managers should plan for climatic uncertainty by promoting tree recruitment in rare habitat types, alleviating unnatural levels of competition on dominant plants, and conserving sites across water stress gradients. High-stress sites, such as those we examined, have conservation value as barometers of change and because they may harbor genotypes that are adapted to climatic extremes.

  11. Mortality gradients within and among dominant plant populations as barometers of ecosystem change during extreme drought.

    PubMed

    Gitlin, Alicyn R; Sthultz, Christopher M; Bowker, Matthew A; Stumpf, Stacy; Paxton, Kristina L; Kennedy, Karla; Muñoz, Axhel; Bailey, Joseph K; Whitham, Thomas G

    2006-10-01

    Understanding patterns of plant population mortality during extreme weather events is important to conservation planners because the frequency of such events is expected to increase, creating the need to integrate climatic uncertainty into management. Dominant plants provide habitat and ecosystem structure, so changes in their distribution can be expected to have cascading effects on entire communities. Observing areas that respond quickly to climate fluctuations provides foresight into future ecological changes and will help prioritize conservation efforts. We investigated patterns of mortality in six dominant plant species during a drought in the southwestern United States. We quantified population mortality for each species across its regional distribution and tested hypotheses to identify ecological stress gradients for each species. Our results revealed three major patterns: (1) dominant species from diverse habitat types (i.e., riparian, chaparral, and low- to high-elevation forests) exhibited significant mortality, indicating that the effects of drought were widespread; (2) average mortality differed among dominant species (one-seed juniper[Juniperus monosperma (Engelm.) Sarg.] 3.3%; manzanita[Arctostaphylos pungens Kunth], 14.6%; quaking aspen[Populus tremuloides Michx.], 15.4%; ponderosa pine[Pinus ponderosa P. & C. Lawson], 15.9%; Fremont cottonwood[Populus fremontii S. Wats.], 20.7%; and pinyon pine[Pinus edulis Engelm.], 41.4%); (3) all dominant species showed localized patterns of very high mortality (24-100%) consistent with water stress gradients. Land managers should plan for climatic uncertainty by promoting tree recruitment in rare habitat types, alleviating unnatural levels of competition on dominant plants, and conserving sites across water stress gradients. High-stress sites, such as those we examined, have conservation value as barometers of change and because they may harbor genotypes that are adapted to climatic extremes. PMID:17002765

  12. [Fractal relationship between above ground biomass and plant length or sheath height of Carex lasiocarpa population].

    PubMed

    He, Chiquan; Zhao, Kuiyi

    2003-04-01

    By using the principles and methods of fractal geometry theory, the relationship between above ground biomass and plant length or sheath height of Carex lasiocarpa population was studied. The results showed that there was a good static fractal relationship between them, and the resulted fractal dimension was an efficient description of the accumulation of above ground biomass in each organ. The dynamic fractal relationship showed that during the whole growing season, the increase of above ground biomass had a self-similarity, being a fractal growth process, and the pattern of its increase was the fractal dimension D. Based on these results, a fractal growth model of Carex lasiocarpa population was established, which regarded the bigger grass as the result of the amplification of seedling growth.

  13. Adaptation as a potential response to sea-level rise: a genetic basis for salinity tolerance in populations of a coastal marsh fish

    PubMed Central

    Purcell, Kevin M; Hitch, Alan T; Klerks, Paul L; Leberg, Paul L

    2008-01-01

    Abstract Relative sea-level rise is resulting in the intrusion of saline waters into marshes historically dominated by fresh water. Saltwater intrusions can potentially affect resident marsh species, especially when storm-related tidal surges cause rapid changes in salinity. We examined the role of historical salinity exposure on the survival of Gambusia affinis from two locations in coastal Louisiana. At each location, we sampled fish populations from fresh, intermediate and brackish marshes. Individuals were then exposed to a salinity of 25‰ and survival time was measured. We found that fish from brackish and intermediate marshes had an increased tolerance to salinity stress relative to fish from freshwater environments. We then tested the descendents of fish from the fresh and brackish marshes, reared for two generation in fresh water, to determine if there was a genetic basis for differential survival. We found that descendents of individuals from brackish marshes showed elevated survivals relative to the descendents of fish with no historical exposure to salinity. The most reasonable mechanism to account for the differences in survival relative to historical exposure is genetic adaptation, suggesting that natural selection may play a role in the responses of resident marsh fishes to future increases in salinity. PMID:25567498

  14. The integrative effects of population density, photoperiod, temperature, and host plant on the induction of alate aphids in Schizaphis graminum.

    PubMed

    An, Chunju; Fei, Xiaodong; Chen, Wenfeng; Zhao, Zhangwu

    2012-04-01

    The wheat aphid Schizaphis graminum (Rondani) displays wing dimorphism with both winged and wingless adult morphs. The winged morph is an adaptive microevolutionary response to undesirable environmental conditions, including undesirable population density, photoperiod, temperature, and host plant. Here we studied the integrative effects of population density, photoperiod, temperature, and host plant on the induction of alate aphids in S. graminum. The present results show that these four factors all play roles in inducing alate aphids in S. graminum but population density is the most important under almost all circumstances. In importance, population density is followed by photoperiod, host plant, and temperature, in that order. These results indicate that ambient environmental factors are highly important to stimulation of alate aphids in S. graminum, especially when population density reaches 64 individuals per leaf.

  15. Strong Genetic Differentiation of Submerged Plant Populations across Mountain Ranges: Evidence from Potamogeton pectinatus in Iran.

    PubMed

    Abbasi, Shabnam; Afsharzadeh, Saeed; Saeidi, Hojjatollah; Triest, Ludwig

    2016-01-01

    Biogeographic barriers for freshwater biota can be effective at various spatial scales. At the largest spatial scale, freshwater organisms can become genetically isolated by their high mountain ranges, vast deserts, and inability to cross oceans. Isolation by distance of aquatic plants is expected to be stronger across than alongside mountain ridges whereas the heterogeneity of habitats among populations and temporary droughts may influence connectivity and hamper dispersal. Suitable aquatic plant habitats became reduced, even for the widespread submerged Potamogeton pectinatus L. (also named Stuckenia pectinata) giving structure to various aquatic habitats. We compared the level of genetic diversity in a heterogeneous series of aquatic habitats across Iran and tested their differentiation over distances and across mountain ranges (Alborz and Zagros) and desert zones (Kavir), with values obtained from temperate region populations. The diversity of aquatic ecosystems across and along large geographic barriers provided a unique ecological situation within Iran. P. pectinatus were considered from thirty-six sites across Iran at direct flight distances ranging from 20 to 1,200 km. Nine microsatellite loci revealed a very high number of alleles over all sites. A PCoA, NJT clustering and STRUCTURE analysis revealed a separate grouping of individuals of southeastern Iranian sites and was confirmed by their different nuclear ITS and cpDNA haplotypes thereby indicating an evolutionary significant unit (ESU). At the level of populations, a positive correlation between allelic differentiation Dest with geographic distance was found. Individual-based STRUCTURE analysis over 36 sites showed 7 genetic clusters. FST and RST values for ten populations reached 0.343 and 0.521, respectively thereby indicating that allele length differences are more important and contain evolutionary information. Overall, higher levels of diversity and a stronger differentiation was revealed among

  16. Strong Genetic Differentiation of Submerged Plant Populations across Mountain Ranges: Evidence from Potamogeton pectinatus in Iran

    PubMed Central

    Abbasi, Shabnam; Afsharzadeh, Saeed; Saeidi, Hojjatollah; Triest, Ludwig

    2016-01-01

    Biogeographic barriers for freshwater biota can be effective at various spatial scales. At the largest spatial scale, freshwater organisms can become genetically isolated by their high mountain ranges, vast deserts, and inability to cross oceans. Isolation by distance of aquatic plants is expected to be stronger across than alongside mountain ridges whereas the heterogeneity of habitats among populations and temporary droughts may influence connectivity and hamper dispersal. Suitable aquatic plant habitats became reduced, even for the widespread submerged Potamogeton pectinatus L. (also named Stuckenia pectinata) giving structure to various aquatic habitats. We compared the level of genetic diversity in a heterogeneous series of aquatic habitats across Iran and tested their differentiation over distances and across mountain ranges (Alborz and Zagros) and desert zones (Kavir), with values obtained from temperate region populations. The diversity of aquatic ecosystems across and along large geographic barriers provided a unique ecological situation within Iran. P. pectinatus were considered from thirty-six sites across Iran at direct flight distances ranging from 20 to 1,200 km. Nine microsatellite loci revealed a very high number of alleles over all sites. A PCoA, NJT clustering and STRUCTURE analysis revealed a separate grouping of individuals of southeastern Iranian sites and was confirmed by their different nuclear ITS and cpDNA haplotypes thereby indicating an evolutionary significant unit (ESU). At the level of populations, a positive correlation between allelic differentiation Dest with geographic distance was found. Individual-based STRUCTURE analysis over 36 sites showed 7 genetic clusters. FST and RST values for ten populations reached 0.343 and 0.521, respectively thereby indicating that allele length differences are more important and contain evolutionary information. Overall, higher levels of diversity and a stronger differentiation was revealed among

  17. Strong Genetic Differentiation of Submerged Plant Populations across Mountain Ranges: Evidence from Potamogeton pectinatus in Iran.

    PubMed

    Abbasi, Shabnam; Afsharzadeh, Saeed; Saeidi, Hojjatollah; Triest, Ludwig

    2016-01-01

    Biogeographic barriers for freshwater biota can be effective at various spatial scales. At the largest spatial scale, freshwater organisms can become genetically isolated by their high mountain ranges, vast deserts, and inability to cross oceans. Isolation by distance of aquatic plants is expected to be stronger across than alongside mountain ridges whereas the heterogeneity of habitats among populations and temporary droughts may influence connectivity and hamper dispersal. Suitable aquatic plant habitats became reduced, even for the widespread submerged Potamogeton pectinatus L. (also named Stuckenia pectinata) giving structure to various aquatic habitats. We compared the level of genetic diversity in a heterogeneous series of aquatic habitats across Iran and tested their differentiation over distances and across mountain ranges (Alborz and Zagros) and desert zones (Kavir), with values obtained from temperate region populations. The diversity of aquatic ecosystems across and along large geographic barriers provided a unique ecological situation within Iran. P. pectinatus were considered from thirty-six sites across Iran at direct flight distances ranging from 20 to 1,200 km. Nine microsatellite loci revealed a very high number of alleles over all sites. A PCoA, NJT clustering and STRUCTURE analysis revealed a separate grouping of individuals of southeastern Iranian sites and was confirmed by their different nuclear ITS and cpDNA haplotypes thereby indicating an evolutionary significant unit (ESU). At the level of populations, a positive correlation between allelic differentiation Dest with geographic distance was found. Individual-based STRUCTURE analysis over 36 sites showed 7 genetic clusters. FST and RST values for ten populations reached 0.343 and 0.521, respectively thereby indicating that allele length differences are more important and contain evolutionary information. Overall, higher levels of diversity and a stronger differentiation was revealed among

  18. Population dose commitments due to radioactive releases from nuclear power plant sites in 1985

    SciTech Connect

    Baker, D.A.

    1988-08-01

    Population radiation dose commitments have been estimated from reported radionuclide releases from commericial power reactors operating during 1985. Fifty-year dose commitments from a one-year exposure were calculated from both liquid and atmospheric releases for four population groups (infant, child, teen-ager and adult) residing between 2 and 80 km from each of 61 sites. This report tabulates the results of these calculations, showing the dose commitments for both liquid and airborne pathways for each age group and organ. Also included for each of the sites is a histogram showing the fraction of the total population within 2 to 80 km around each site receiving various average dose commitments from the airborne pathways. The total dose commitments (from both liquid and airborne pathways) for each site ranged from a high of 73 person-rem to a low of 0.011 person-rem for the sites with plants operating throughout the year with an arithmetic mean of 3 person-rem. The total population dose for all sites was estimated at 200 person-rem for the 110 million people considered at risk. The site average individual dose commitment from all pathways ranged from a low of 5 /times/ 10/sup /minus/6/ mrem to a high of 0.02 mrem. No attempt was made in this study to determine the maximum dose commitment received by any one individual from the radionuclides released at any of the sites.

  19. Population dose commitments due to radioactive releases from nuclear power plant sites in 1983

    SciTech Connect

    Baker, D.A.; Peloquin, R.A.

    1987-04-01

    Population radiation dose commitments have been estimated from reported radionuclide releases from commercial power reactors operating during 1983. Fifty-year dose commitments from a one-year exposure were calculated from both liquid and atmospheric releases for four population groups (infant, child, teen-ager and adult) residing between 2 and 80 km from each of 52 sites. This report tabulates the results of these calculations, showing the dose commitments for both liquid and airborne pathways for each age group and organ. Also included for each of the sites is a histogram showing the fraction of the total population within 2 to 80 km around each site receiving various average dose commitments from the airborne pathways. The total dose commitments (from both liquid and airborne pathways) for each site ranged from a high of 45 person-rem to a low of 0.002 person-rem for the sites with plants operating throughout the year with an arithmetic mean of 3 person-rem. The total population dose for all sites was estimated at 170 person-rem for the 100 million people considered at risk.

  20. Population dose commitments due to radioactive releases from nuclear power plant sites in 1984

    SciTech Connect

    Baker, D.A.

    1988-01-01

    Population radiation dose commitments have been estimated from reported radionuclide releases from commercial power reactors operating during 1984. Fifty-year dose commitments from a one-year exposure were calculated from both liquid and atmospheric releases for four population groups (infant, child, teen-ager and adult) residing between 2 and 80 km from each of 56 sites. This report tabulates the results of these calculations, showing the dose commitments for both liquid and airborne pathways for each age group and organ. Also included for each of the sites is a histogram showing the fraction of the total population within 2 to 80 km around each site receiving various average dose commitments from the airborne pathways. The total dose commitments (from both liquid and airborne pathways) for each site ranged from a high of 110 person-rem to a low of 0.002 person-rem for the sites with plants operating throughout the year with an arithmetic mean of 5 person-rem. The total population dose for all sites was estimated at 280 person-rem for the 100 million people considered at risk. The site average individual dose commitment from all pathways ranged from a low of 6 x 10/sup -6/ mrem to a high of 0.04 mrem. No attempt was made in this study to determine the maximum dose commitment received by any one individual from the radionuclides released at any of the sites.

  1. A plant toxin mediated mechanism for the lag in snowshoe hare population recovery following cyclic declines

    USGS Publications Warehouse

    DeAngelis, Donald L.; Bryant, John P.; Liu, Rongsong; Gourley, Stephen A.; Krebs, Charles J; Reichardt, Paul B

    2015-01-01

    A necessary condition for a snowshoe hare population to cycle is reduced reproduction after the population declines. But the cause of a cyclic snowshoe hare population's reduced reproduction during the low phase of the cycle, when predator density collapses, is not completely understood. We propose that moderate-severe browsing by snowshoe hares upon preferred winter-foods could increase the toxicity of some of the hare's best winter-foods during the following hare low, with the result being a decline in hare nutrition that could reduce hare reproduction. We used a combination of modeling and experiments to explore this hypothesis. Using the shrub birch Betula glandulosa as the plant of interest, the model predicted that browsing by hares during a hare cycle peak, by increasing the toxicity B. glandulosa twigs during the following hare low, could cause a hare population to cycle. The model's assumptions were verified with assays of dammarane triterpenes in segments of B. glandulosa twigs and captive hare feeding experiments conducted in Alaska during February and March 1986. The model's predictions were tested with estimates of hare density and measurements of B. glandulosa twig growth made at Kluane, Yukon from 1988–2008. The empirical tests supported the model's predictions. Thus, we have concluded that a browsing-caused increase in twig toxicity that occurs during the hare cycle's low phase could reduce hare reproduction during the low phase of the hare cycle.

  2. Drought Tolerance in Wild Plant Populations: The Case of Common Beans (Phaseolus vulgaris L.)

    PubMed Central

    Cortés, Andrés J.; Monserrate, Fredy A.; Ramírez-Villegas, Julián; Madriñán, Santiago; Blair, Matthew W.

    2013-01-01

    Reliable estimations of drought tolerance in wild plant populations have proved to be challenging and more accessible alternatives are desirable. With that in mind, an ecological diversity study was conducted based on the geographical origin of 104 wild common bean accessions to estimate drought tolerance in their natural habitats. Our wild population sample covered a range of mesic to very dry habitats from Mexico to Argentina. Two potential evapotranspiration models that considered the effects of temperature and radiation were coupled with the precipitation regimes of the last fifty years for each collection site based on geographical information system analysis. We found that wild accessions were distributed among different precipitation regimes following a latitudinal gradient and that habitat ecological diversity of the collection sites was associated with natural sub-populations. We also detected a broader geographic distribution of wild beans across ecologies compared to cultivated common beans in a reference collection of 297 cultivars. Habitat drought stress index based on the Thornthwaite potential evapotranspiration model was equivalent to the Hamon estimator. Both ecological drought stress indexes would be useful together with population structure for the genealogical analysis of gene families in common bean, for genome-wide genetic-environmental associations, and for postulating the evolutionary history and diversification processes that have occurred for the species. Finally, we propose that wild common bean should be taken into account to exploit variation for drought tolerance in cultivated common bean which is generally considered susceptible as a crop to drought stress. PMID:23658783

  3. Comparison of Botrytis cinerea populations isolated from two open-field cultivated host plants.

    PubMed

    Asadollahi, Mojtaba; Fekete, Erzsébet; Karaffa, Levente; Flipphi, Michel; Árnyasi, Mariann; Esmaeili, Mahdi; Váczy, Kálmán Zoltán; Sándor, Erzsébet

    2013-07-19

    The necrotrophic fungus Botrytis cinerea is reported to infect more than 220 host plants worldwide. In phylogenetical-taxonomical terms, the pathogen is considered a complex of two cryptic species, group I and group II. We sampled populations of B. cinerea on sympatric strawberry and raspberry cultivars in the North-East of Hungary for three years during flowering and the harvest period. Four hundred and ninety group II B. cinerea isolates were analyzed for the current study. Three different data sets were generated: (i) PCR-RFLP patterns of the ADP-ATP translocase and nitrate reductase genes, (ii) MSB1 minisatellite sequence data, and (iii) the fragment sizes of five microsatellite loci. The structures of the different populations were similar as indicated by Nei's gene diversity and haplotype diversity. The F statistics (Fst, Gst), and the gene flow indicated ongoing differentiation within sympatric populations. The population genetic parameters were influenced by polymorphisms within the three data sets as assessed using Bayesian algorithms. Data Mining analysis pointed towards the five microsatellite loci as the most defining markers to study differentiation in the 490 isolates. The results suggest the occurrence of host-specific, sympatric divergence of generalist phytoparasites in perennial hosts. PMID:23353014

  4. Drought tolerance in wild plant populations: the case of common beans (Phaseolus vulgaris L.).

    PubMed

    Cortés, Andrés J; Monserrate, Fredy A; Ramírez-Villegas, Julián; Madriñán, Santiago; Blair, Matthew W

    2013-01-01

    Reliable estimations of drought tolerance in wild plant populations have proved to be challenging and more accessible alternatives are desirable. With that in mind, an ecological diversity study was conducted based on the geographical origin of 104 wild common bean accessions to estimate drought tolerance in their natural habitats. Our wild population sample covered a range of mesic to very dry habitats from Mexico to Argentina. Two potential evapotranspiration models that considered the effects of temperature and radiation were coupled with the precipitation regimes of the last fifty years for each collection site based on geographical information system analysis. We found that wild accessions were distributed among different precipitation regimes following a latitudinal gradient and that habitat ecological diversity of the collection sites was associated with natural sub-populations. We also detected a broader geographic distribution of wild beans across ecologies compared to cultivated common beans in a reference collection of 297 cultivars. Habitat drought stress index based on the Thornthwaite potential evapotranspiration model was equivalent to the Hamon estimator. Both ecological drought stress indexes would be useful together with population structure for the genealogical analysis of gene families in common bean, for genome-wide genetic-environmental associations, and for postulating the evolutionary history and diversification processes that have occurred for the species. Finally, we propose that wild common bean should be taken into account to exploit variation for drought tolerance in cultivated common bean which is generally considered susceptible as a crop to drought stress.

  5. Population dose commitments due to radioactive releases from nuclear power plant sites in 1982. Volume 4

    SciTech Connect

    Baker, D.A.; Peloquin, R.A.

    1986-06-01

    Population radiation dose commitments have been estimated from reported radionuclide releases from commercial power reactors operating during 1982. Fifty-year dose commitments from a one-year exposure were calculated from both liquid and atmospheric releases for four population groups (infant, child, teen-ager and adult) residing between 2 and 80 km from each of 51 sites. This report tabulates the results of these calculations, showing the dose commitments for both liquid and airborne pathways for each age group and organ. Also included for each site is a histogram showing the fraction of the total population within 2 to 80 km around each site receiving various average dose commitments from the airborne pathways. The total dose commitments from both liquid and airborne pathways ranged from a high of 30 person-rem to a low of 0.007 person-rem for the sites with plants operating throughout the year with an arithmetic mean of 3 person-rem. The total population dose for all sites was estimated at 130 person-rem for the 100 million people considered at risk. The average individual dose commitment from all pathways on a site basis ranged from a low of 6 x 10/sup -7/ mrem to a high of 0.06 mrem. No attempt was made in this study to determine the maximum dose commitment received by any one individual from the radionuclides released at any of the sites.

  6. Population dose commitments due to radioactive releases from nuclear power plant sites in 1986

    SciTech Connect

    Baker, D.A. )

    1989-10-01

    Population radiation dose commitments have been estimated from reported radionuclide releases from commercial power reactors operating during 1986. Fifty-year dose commitments for a one-year exposure from both liquid and atmospheric releases were calculated for four population groups (infant, child, teen-ager and adult) residing between 2 and 80 km from each of 66 reactor sites. This report tabulates the results of these calculations, showing the dose commitments for both water and airborne pathways for each age group and organ. Also included for each of the sites is a histogram showing the fraction of the total population within 2 to 80 km around each site receiving various average dose commitments from the airborne pathways. The total dose commitments (from both liquid and airborne pathways) for each site ranged from a high of 31 person-rem to a low of 0.0007 person-rem for the sites with plants operating throughout the year with an arithmetic mean of 1.7 person-rem. The total population dose for all sites was estimated at 110 person-rem for the 140 million people considered at risk. The site average individual dose commitment from all pathways ranged from a low of 2 {times} 10{sup -6} mrem to a high of 0.02 mrem. No attempt was made in this study to determine the maximum dose commitment received by any one individual from the radionuclides released at any of the sites. 12 refs.

  7. Significance of urinary arsenic speciation in assessment of seafood ingestion as the main source of organic and inorganic arsenic in a population resident near a coastal area.

    PubMed

    Soleo, Leonardo; Lovreglio, Piero; Iavicoli, Sergio; Antelmi, Annarita; Drago, Ignazio; Basso, Antonella; Di Lorenzo, Luigi; Gilberti, Maria Enrica; De Palma, Giuseppe; Apostoli, Pietro

    2008-09-01

    In order to characterize the different sources of exposure to arsenic (As), urinary excretion of total As, the sum of inorganic As+MMA+DMA determined by the hydride generation-atomic absorption spectrophotometry technique, and the species As3, As5, monomethylarsonic acid (MMA), dimethylarsinic acid (DMA) and arsenobetaine were determined in 49 workers at a steel foundry, with presumed occupational exposure to As, and 50 subjects from the general population, all males. No evidence of occupational exposure to As resulted from environmental monitoring performed in the foundry, although the analysis of minerals used as raw materials showed the presence of As, particularly in fossils and fine ores. The urinary concentrations of As3, MMA, DMA, the sum of inorganic As+MMA+DMA and total As were not different in the two groups, while arsenobetaine appeared significantly higher in the controls than in the workers. The different species of urinary As were all significantly correlated. Urinary excretion of As3 was associated with the consumption of mineral water and with residence in an industrial zone, while MMA, DMA, arsenobetaine, the sum of inorganic As+MMA+DMA and total As urinary excretion were associated with the consumption of crustaceans and/or shellfish 3 days or less before urine collection. Multiple regression analysis confirmed these results. In conclusion, in populations with a high consumption of seafood, living in areas characterized by coastal/marine As pollution, only speciation of As can identify a prevalent role of environmental sources, like the consumption of seafood contaminated by As, in determining urinary As excretion, and exclude an occupational origin of the exposure.

  8. In vitro activation of cord blood mononuclear cells and cytokine production in a remote coastal population exposed to organochlorines and methyl mercury.

    PubMed

    Bilrha, Houda; Roy, Raynald; Moreau, Brigitte; Belles-Isles, Marthe; Dewailly, Eric; Ayotte, Pierre

    2003-12-01

    Remote coastal populations that rely on seafood for subsistence often receive unusually high doses of organochlorines and methyl mercury. Immunosuppression resulting from prenatal exposure to organochlorines has been reported in wildlife species and humans. In this study, we assessed lymphocyte activation and associated cytokine secretion in 47 newborns from a remote maritime population living on the Mid and Lower North Shore regions of the St. Lawrence River (Québec, Canada; subsistence fishing group) and 65 newborns from nearby urban settings (reference group). Cord blood samples were collected for organochlorine and mercury analyses and also to isolate cord blood mononuclear cells (CBMCs) for the in vitro assessment of cytokine production and expression of surface markers after mitogenic stimulation (CD4(+)CD45RO(+), CD8(+)CD45RO(+), CD3(+)CD25(+), and CD8(+)HLA-DR(+)). Blood mercury and plasma concentrations of polychlorinated biphenyls (PCBs), 1,1-dichloro-2,2-bis(4-chlorophenyl)ethylene (p,p'-DDE), and hexachlorobenzene (HCB) were significantly higher in the subsistence fishing group than in the reference group (p < 0.001). No difference was observed between the two groups regarding subsets of lymphocytes showing markers of activation. In vitro secretion of cytokines by CBMCs after mitogenic stimulation was lower in the subsistence fishing group than in the reference group (p < 0.05). Moreover, we found an inverse correlation between tumor necrosis factor-alpha (TNF-alpha) secretion and plasma PCB, p,p'-DDE, and HCB concentrations (p < 0.05). Our data support a negative association between TNF-alpha secretion by CBMCs and prenatal organochlorine exposure. If the relationship between organochlorine and TNF-alpha secretion is causal, it would suggest a role for this important proinflammatory cytokine in mediating organochlorine-induced immunotoxicity in infants developmentally exposed to these compounds. PMID:14644672

  9. Salinity Is an Agent of Divergent Selection Driving Local Adaptation of Arabidopsis to Coastal Habitats1[OPEN

    PubMed Central

    Teres, Joana; Bomblies, Kirsten; Douglas, Alex; Salt, David E.

    2015-01-01

    Understanding the molecular mechanism of adaptive evolution in plants provides insights into the selective forces driving adaptation and the genetic basis of adaptive traits with agricultural value. The genomic resources available for Arabidopsis (Arabidopsis thaliana) make it well suited to the rapid molecular dissection of adaptive processes. Although numerous potentially adaptive loci have been identified in Arabidopsis, the consequences of divergent selection and migration (both important aspects of the process of local adaptation) for Arabidopsis are not well understood. Here, we use a multiyear field-based reciprocal transplant experiment to detect local populations of Arabidopsis composed of multiple small stands of plants (demes) that are locally adapted to the coast and adjacent inland habitats in northeastern Spain. We identify fitness tradeoffs between plants from these different habitats when grown together in inland and coastal common gardens and also, under controlled conditions in soil excavated from coastal and inland sites. Plants from the coastal habitat also outperform those from inland when grown under high salinity, indicating local adaptation to soil salinity. Sodium can be toxic to plants, and we find its concentration to be elevated in soil and plants sampled at the coast. We conclude that the local adaptation that we observe between adjacent coastal and inland populations is caused by ongoing divergent selection driven by the differential salinity between coastal and inland soils. PMID:26034264

  10. Hippopotamus (H. amphibius) diet change indicates herbaceous plant encroachment following megaherbivore population collapse.

    PubMed

    Chritz, Kendra L; Blumenthal, Scott A; Cerling, Thure E; Klingel, Hans

    2016-01-01

    Megaherbivores (>1000 kg) are critical for ecosystem health and function, but face population collapse and extinction globally. The future of these megaherbivore-impoverished ecosystems is difficult to predict, though many studies have demonstrated increasing representation of C3 woody plants. These studies rely on direct observational data, however, and tools for assessing decadal-scale changes in African ecology without observation are lacking. We use isotopic records of historical common hippopotamus (Hippopotamus amphibius) canines to quantify herbaceous vegetation change in Queen Elizabeth National Park, Uganda following a period of civil unrest and poaching. This poaching event led to population collapse of two threatened African megaherbivore species: hippopotamus and African elephants (Loxodonta africana). Serial carbon isotope ratios (δ(13)C) in canine enamel from individuals that lived between 1960-2000 indicated substantial increases in C3 herbaceous plants in their diet (<20% C3 in the 1960s to 30-45% C3 in the 80s and 90s), supported by other observational and ecological data. These data indicate megaherbivore loss results in succession of both woody and herbaceous C3 vegetation and further reaching effects, such as decreased grazing capacity and herbivore biodiversity in the area. Given multiple lines of evidence, these individuals appear to accurately capture herbaceous vegetation change in Mweya.

  11. Hippopotamus (H. amphibius) diet change indicates herbaceous plant encroachment following megaherbivore population collapse.

    PubMed

    Chritz, Kendra L; Blumenthal, Scott A; Cerling, Thure E; Klingel, Hans

    2016-01-01

    Megaherbivores (>1000 kg) are critical for ecosystem health and function, but face population collapse and extinction globally. The future of these megaherbivore-impoverished ecosystems is difficult to predict, though many studies have demonstrated increasing representation of C3 woody plants. These studies rely on direct observational data, however, and tools for assessing decadal-scale changes in African ecology without observation are lacking. We use isotopic records of historical common hippopotamus (Hippopotamus amphibius) canines to quantify herbaceous vegetation change in Queen Elizabeth National Park, Uganda following a period of civil unrest and poaching. This poaching event led to population collapse of two threatened African megaherbivore species: hippopotamus and African elephants (Loxodonta africana). Serial carbon isotope ratios (δ(13)C) in canine enamel from individuals that lived between 1960-2000 indicated substantial increases in C3 herbaceous plants in their diet (<20% C3 in the 1960s to 30-45% C3 in the 80s and 90s), supported by other observational and ecological data. These data indicate megaherbivore loss results in succession of both woody and herbaceous C3 vegetation and further reaching effects, such as decreased grazing capacity and herbivore biodiversity in the area. Given multiple lines of evidence, these individuals appear to accurately capture herbaceous vegetation change in Mweya. PMID:27616433

  12. Hippopotamus (H. amphibius) diet change indicates herbaceous plant encroachment following megaherbivore population collapse

    PubMed Central

    Chritz, Kendra L.; Blumenthal, Scott A.; Cerling, Thure E.; Klingel, Hans

    2016-01-01

    Megaherbivores (>1000 kg) are critical for ecosystem health and function, but face population collapse and extinction globally. The future of these megaherbivore-impoverished ecosystems is difficult to predict, though many studies have demonstrated increasing representation of C3 woody plants. These studies rely on direct observational data, however, and tools for assessing decadal-scale changes in African ecology without observation are lacking. We use isotopic records of historical common hippopotamus (Hippopotamus amphibius) canines to quantify herbaceous vegetation change in Queen Elizabeth National Park, Uganda following a period of civil unrest and poaching. This poaching event led to population collapse of two threatened African megaherbivore species: hippopotamus and African elephants (Loxodonta africana). Serial carbon isotope ratios (δ13C) in canine enamel from individuals that lived between 1960–2000 indicated substantial increases in C3 herbaceous plants in their diet (<20% C3 in the 1960s to 30–45% C3 in the 80s and 90s), supported by other observational and ecological data. These data indicate megaherbivore loss results in succession of both woody and herbaceous C3 vegetation and further reaching effects, such as decreased grazing capacity and herbivore biodiversity in the area. Given multiple lines of evidence, these individuals appear to accurately capture herbaceous vegetation change in Mweya. PMID:27616433

  13. Thermal Pollution by Nuclear Power Plants. A Learning Experience for Coastal and Oceanic Awareness Studies, No. 320. [Project COAST].

    ERIC Educational Resources Information Center

    Delaware Univ., Newark. Coll. of Education.

    This publication includes several activities regarding the use of nuclear power plants and possible effects on the environment. The materials are designed for secondary school students and include reference materials and masters for transparencies. (RH)

  14. Variation in tidal wetland plant diversity and composition within and among coastal estuaries: assessing the relative importance of environmental gradients

    EPA Science Inventory

    Question: Does wetland plant composition vary more by estuarine type (differentiated by the degree of riverine versus oceanic influence) or habitat type within estuaries (defined by US National Wetlands Inventory [NWI] marsh classes)? Location: Oregon estuaries: Netarts Bay, ...

  15. Influence of plant population and nitrogen-fertilizer at various levels on growth and growth efficiency of maize.

    PubMed

    Tajul, M I; Alam, M M; Hossain, S M M; Naher, K; Rafii, M Y; Latif, M A

    2013-01-01

    Field experiments were conducted to evaluate plant population and N-fertilizer effects on yield and yield components of maize (Zea mays L.). Three levels of plant populations (53000, 66000, and 800,000 plants ha⁻¹ corresponding to spacings of 75 × 25, 60 × 25, and 50 × 25 cm) and 4 doses of N (100, 140, 180, and 220 kg ha⁻¹) were the treatment variables. Results revealed that plant growth, light interception (LI), yield attributes, and grain yield varied significantly due to the variations in population density and N-rates. Crop growth rate (CGR) was the highest with the population of 80,000 ha⁻¹ receiving 220 kg N ha⁻¹, while relative growth rate (RGR) showed an opposite trend of CGR. Light absorption was maximum when most of densely populated plant received the highest amount of N (220 kg N ha⁻¹). Response of soil-plant-analysis development (SPAD) value as well as N-content to N-rates was found significant. Plant height was the maximum at the lowest plant density with the highest amount of N. Plants that received 180 kg N ha⁻¹ with 80,000 plants ha⁻¹ had larger foliage, greater SPAD value, and higher amount of grains cob⁻¹ that contributed to the maximum yield (5.03 t ha⁻¹) and the maximum harvest index (HI) compared to the plants in other treatments.

  16. Influence of plant population and nitrogen-fertilizer at various levels on growth and growth efficiency of maize.

    PubMed

    Tajul, M I; Alam, M M; Hossain, S M M; Naher, K; Rafii, M Y; Latif, M A

    2013-01-01

    Field experiments were conducted to evaluate plant population and N-fertilizer effects on yield and yield components of maize (Zea mays L.). Three levels of plant populations (53000, 66000, and 800,000 plants ha⁻¹ corresponding to spacings of 75 × 25, 60 × 25, and 50 × 25 cm) and 4 doses of N (100, 140, 180, and 220 kg ha⁻¹) were the treatment variables. Results revealed that plant growth, light interception (LI), yield attributes, and grain yield varied significantly due to the variations in population density and N-rates. Crop growth rate (CGR) was the highest with the population of 80,000 ha⁻¹ receiving 220 kg N ha⁻¹, while relative growth rate (RGR) showed an opposite trend of CGR. Light absorption was maximum when most of densely populated plant received the highest amount of N (220 kg N ha⁻¹). Response of soil-plant-analysis development (SPAD) value as well as N-content to N-rates was found significant. Plant height was the maximum at the lowest plant density with the highest amount of N. Plants that received 180 kg N ha⁻¹ with 80,000 plants ha⁻¹ had larger foliage, greater SPAD value, and higher amount of grains cob⁻¹ that contributed to the maximum yield (5.03 t ha⁻¹) and the maximum harvest index (HI) compared to the plants in other treatments. PMID:24163615

  17. The contribution of germination functional traits to population dynamics of a desert plant community.

    PubMed

    Huang, Zhenying; Liu, Shuangshuang; Bradford, Kent J; Huxman, Travis E; Venable, D Lawrence

    2016-01-01

    Early life-cycle events play critical roles in determining the population and community dynamics of plants. The ecology of seeds and their germination patterns can determine range limits, adaptation to environmental variation, species diversity, and community responses to climate change. Understanding the adaptive consequences and environmental filtering of such functional traits will allow us to explain and predict ecological dynamics. Here we quantify key functional aspects of germination physiology and relate them to an existing functional ecology framework to explain long-term population dynamics for 13 species of desert annuals near Tucson, Arizona, USA. Our goal was to assess the extent to which germination functional biology contributes to long-term population processes in nature. Some of the species differences in base, optimum, and maximum temperatures for germination, thermal times to germination, and base water potentials for germination were strongly related to 20-yr mean germination fractions, 25-yr average germination dates, seed size, and long-term demographic variation. Comparisons of germination fraction, survival, and fecundity vs. yearly changes in population size found significant roles for all three factors, although in varying proportions for different species. Relationships between species' germination physiologies and relative germination fractions varied across years, with fast-germinating species being favored in years with warm temperatures during rainfall events in the germination season. Species with low germination fractions and high demographic variance have low integrated water-use efficiency, higher vegetative growth rates, and smaller, slower-germinating seeds. We have identified and quantified a number of functional traits associated with germination biology that play critical roles in ecological population dynamics. PMID:27008793

  18. The contribution of germination functional traits to population dynamics of a desert plant community.

    PubMed

    Huang, Zhenying; Liu, Shuangshuang; Bradford, Kent J; Huxman, Travis E; Venable, D Lawrence

    2016-01-01

    Early life-cycle events play critical roles in determining the population and community dynamics of plants. The ecology of seeds and their germination patterns can determine range limits, adaptation to environmental variation, species diversity, and community responses to climate change. Understanding the adaptive consequences and environmental filtering of such functional traits will allow us to explain and predict ecological dynamics. Here we quantify key functional aspects of germination physiology and relate them to an existing functional ecology framework to explain long-term population dynamics for 13 species of desert annuals near Tucson, Arizona, USA. Our goal was to assess the extent to which germination functional biology contributes to long-term population processes in nature. Some of the species differences in base, optimum, and maximum temperatures for germination, thermal times to germination, and base water potentials for germination were strongly related to 20-yr mean germination fractions, 25-yr average germination dates, seed size, and long-term demographic variation. Comparisons of germination fraction, survival, and fecundity vs. yearly changes in population size found significant roles for all three factors, although in varying proportions for different species. Relationships between species' germination physiologies and relative germination fractions varied across years, with fast-germinating species being favored in years with warm temperatures during rainfall events in the germination season. Species with low germination fractions and high demographic variance have low integrated water-use efficiency, higher vegetative growth rates, and smaller, slower-germinating seeds. We have identified and quantified a number of functional traits associated with germination biology that play critical roles in ecological population dynamics.

  19. Plant Host Species and Geographic Distance Affect the Structure of Aboveground Fungal Symbiont Communities, and Environmental Filtering Affects Belowground Communities in a Coastal Dune Ecosystem.

    PubMed

    David, Aaron S; Seabloom, Eric W; May, Georgiana

    2016-05-01

    Microbial symbionts inhabit tissues of all plants and animals. Their community composition depends largely on two ecological processes: (1) filtering by abiotic conditions and host species determining the environments that symbionts are able to colonize and (2) dispersal-limitation determining the pool of symbionts available to colonize a given host and community spatial structure. In plants, the above- and belowground tissues represent such distinct habitats for symbionts that we expect different effects of filtering and spatial structuring on their symbiont communities. In this study, we characterized above- and belowground communities of fungal endophytes--fungi living asymptomatically within plants--to understand the contributions of filtering and spatial structure to endophyte community composition. We used a culture-based approach to characterize endophytes growing in leaves and roots of three species of coastal beachgrasses in dunes of the USA Pacific Northwest. For leaves, endophyte isolation frequency and OTU richness depended primarily on plant host species. In comparison, for roots, both isolation frequency and OTU richness increased from the nutrient-poor front of the dune to the higher-nutrient backdune. Endophyte community composition in leaves exhibited a distance-decay relationship across the region. In a laboratory assay, faster growth rates and lower spore production were more often associated with leaf- than root-inhabiting endophytes. Overall, our results reveal a greater importance of biotic filtering by host species and dispersal-limitation over regional geographic distances for aboveground leaf endophyte communities and stronger effects of abiotic environmental filtering and locally patchy distributions for belowground root endophyte communities. PMID:26626912

  20. The spatial distribution of threats to plant species with extremely small populations

    NASA Astrophysics Data System (ADS)

    Wang, Chunjing; Zhang, Jing; Wan, Jizhong; Qu, Hong; Mu, Xianyun; Zhang, Zhixiang

    2016-04-01

    Many biological conservationists take actions to conserve plant species with extremely small populations (PSESP) in China; however, there have been few studies on the spatial distribution of threats to PSESP. Hence, we selected distribution data of PSESP and made a map of the spatial distribution of threats to PSESP in China. First, we used the weight assignment method to evaluate the threat risk to PSESP at both country and county scales. Second, we used a geographic information system to map the spatial distribution of threats to PSESP, and explored the threat factors based on linear regression analysis. Finally, we suggested some effective conservation options. We found that the PSESP with high values of protection, such as the plants with high scientific research values and ornamental plants, were threatened by over-exploitation and utilization, habitat fragmentation, and a small sized wild population in broad-leaved forests and bush fallows. We also identified some risk hotspots for PSESP in China. Regions with low elevation should be given priority for ex- and in-situ conservation. Moreover, climate change should be considered for conservation of PSESP. To avoid intensive over-exploitation or utilization and habitat fragmentation, in-situ conservation should be practiced in regions with high temperatures and low temperature seasonality, particularly in the high risk hotspots for PSESP that we proposed. Ex-situ conservation should be applied in these same regions, and over-exploitation and utilization of natural resources should be prevented. It is our goal to apply the concept of PSESP to the global scale in the future.

  1. Acclimation of Plant Populations to Shade: Photosynthesis, Respiration, and Carbon Use Efficiency

    NASA Technical Reports Server (NTRS)

    Frantz, Jonathan M.; Bugbee, Bruce

    2005-01-01

    Cloudy days cause an abrupt reduction in daily photosynthetic photon flux (PPF), but we have a poor understanding of how plants acclimate to this change. We used a unique lo-chamber, steady-state, gas-exchange system to continuously measure daily photosynthesis and night respiration of populations of a starch accumulator [tomato (Lycopersicone scukntum Mill. cv. Micro-Tina)] and a sucrose accumulator [lettuce (Latuca sativa L ev. Grand Rapids)] over 42 days. AI1 measurements were done at elevated CO2, (1200micr-/mol) avoid any CO2 limitations and included both shoots and roots. We integrated photosynthesis and respiration measurements separately to determine daily net carbon gain and carbon use efficiency (CUE) as the ratio of daily net C gain to total day-time C fixed over the 42-day period. After 16 to 20 days of growth in constant PPF, plants in some chambers were subjected to an abrupt PPF reduction to simulate shade or a series of cloudy days. The immediate effect and the long term acclimation rate w'ere assessed from canopy quantum yield and carbon use efficiency. The effect of shade on carbon use efficiency and acclimation was much slower than predicted by widely used growth models. It took 12 days for tomato populations to recover their original CUE and lettuce CUE never completely acclimated. Tomatoes, the starch accumulator, acclimated to low light more rapidly than lettuce, the sucrose accumulator. Plant growth models should be modified to include the photosynthesis/respiration imbalance and resulting inefficiency of carbon gain associated with changing PIT conditions on cloudy days.

  2. Salinity-related variation in gene expression in wild populations of the black-chinned tilapia from various West African coastal marine, estuarine and freshwater habitats

    NASA Astrophysics Data System (ADS)

    Tine, Mbaye; McKenzie, David J.; Bonhomme, François; Durand, Jean-Dominique

    2011-01-01

    This study measured the relative expression of the genes coding for Na +, K +-ATPase 1α(NAKA), voltage-dependent anion channel (VDAC), cytochrome c oxidase-1 (COX), and NADH dehydrogenase (NDH), in gills of six wild populations of a West African tilapia species, acclimatised to a range of seasonal (rainy or dry) salinities in coastal, estuarine and freshwater sites. Previous laboratory experiments have demonstrated that these genes, involved in active ion transport, oxidative phosphorylation, and intra-cellular ATP transport, are relatively over-expressed in gill tissues of this species acclimated to high salinity. Positive correlations between relative expression and ambient salinity were found for all genes in the wild populations (Spearman rank correlation, p < 0.05), although for some genes these were only significant in either the rainy season or dry season. Most significantly, however, relative expression was positively correlated amongst the four genes, indicating that they are functionally interrelated in adaptation of Sarotherodon melanotheron to salinity variations in its natural environment. In the rainy season, when salinity was unstable and ranged between zero and 37 psu across the sites, overall mean expression of the genes was higher than in the dry season, which may have reflected more variable particularly sudden fluctuations in salinity and poorer overall water quality. In the dry season, when the salinity is more stable but ranged between zero and 100 psu across the sites, NAKA, NDH and VDAC expression revealed U-shaped relationships with lowest relative expression at salinities approaching seawater, between 25 and 45 psu. Although it is not simple to establish direct relationship between gene expression levels and energy requirement for osmoregulation, these results may indicate that costs of adaptation to salinity are lowest in seawater, the natural environment of this species. While S. melanotheron can colonise environments with extremely

  3. Effects of Planting Date and Barley Variety on Russian Wheat Aphid (Hemiptera: Aphididae) Populations in Colorado, Kansas, and Nebraska.

    PubMed

    Sotelo, P A; Hein, G L; Peairs, F B; Smith, C M

    2014-10-01

    The Russian wheat aphid, Diuraphis noxia (Kurdjumov) (Hemiptera: Aphididae), is an important pest in the western Great Plains of the United States, where it causes hundreds of millions of dollars of losses to barley and wheat production through reduced yields. Experiments to evaluate the effect of early planting and resistance in barley (Hordeum vulgare L.) on D. noxia were conducted at Fort Collins, CO; Tribune, KS; and Sidney, NE, in 2007, 2008, and 2009. Treatments included two planting dates and four cultivars, the D. noxia-resistant barley cultivars 'Stoneham' (Otis*4/STARS 9577B) and 'Sidney' (Otis*4/STARS 9301B), the susceptible cultivar 'Otis', and Otis treated with thiamethoxam. In tiller samples collected from May through early July, consistently lower D. noxia populations were found in plots planted ≍30 d earlier than normal at Fort Collins in all three years, and at Tribune in 2007. With one location-year exception, lower D. noxia populations occurred on plants of resistant varieties or the susceptible variety Otis treated with thiamethoxam than on untreated Otis plants. There were no significant differences in D. noxia populations produced on plants of either resistant variety and susceptible Otis plants treated with thiamethoxam. Interactions between resistant varieties and early planting resulted in reduced D. noxia populations at Fort Collins in 2007 and 2009, and at Tribune and Sidney in 2007. Planting D. noxia-resistant barley varieties, planting varieties earlier than normal, and the synergistic effect of resistant variety and early planting can significantly reduce D. noxia infestations on barley in the western High Plains. PMID:26309288

  4. [Population].

    PubMed

    1979-01-01

    Data on the population of Venezuela between 1975 and 1977 are presented in descriptive tables and graphs. Information is included on the employed population according to category, sex, and type of economic activity, and by sex, age, and area on the employment rate and the total, the economically active, and the unemployed population.

  5. Allele identification for transcriptome-based population genomics in the invasive plant Centaurea solstitialis.

    PubMed

    Dlugosch, Katrina M; Lai, Zhao; Bonin, Aurélie; Hierro, José; Rieseberg, Loren H

    2013-02-01

    Transcriptome sequences are becoming more broadly available for multiple individuals of the same species, providing opportunities to derive population genomic information from these datasets. Using the 454 Life Science Genome Sequencer FLX and FLX-Titanium next-generation platforms, we generated 11-430 Mbp of sequence for normalized cDNA for 40 wild genotypes of the invasive plant Centaurea solstitialis, yellow starthistle, from across its worldwide distribution. We examined the impact of sequencing effort on transcriptome recovery and overlap among individuals. To do this, we developed two novel publicly available software pipelines: SnoWhite for read cleaning before assembly, and AllelePipe for clustering of loci and allele identification in assembled datasets with or without a reference genome. AllelePipe is designed specifically for cases in which read depth information is not appropriate or available to assist with disentangling closely related paralogs from allelic variation, as in transcriptome or previously assembled libraries. We find that modest applications of sequencing effort recover most of the novel sequences present in the transcriptome of this species, including single-copy loci and a representative distribution of functional groups. In contrast, the coverage of variable sites, observation of heterozygosity, and overlap among different libraries are all highly dependent on sequencing effort. Nevertheless, the information gained from overlapping regions was informative regarding coarse population structure and variation across our small number of population samples, providing the first genetic evidence in support of hypothesized invasion scenarios.

  6. [Genetic effects in plant populations in the zone of the Chernobyl accident].

    PubMed

    Abramov, V I; Rubanovich, A V; Shevchenko, V A; Shevchenko, V V; Grinikh, L I

    2006-01-01

    During 6 years, starting from 1986, the monitoring of the dynamics of the frequency of embryo lethal and of chlorophyll mutations was carried out in arabidopsis populations in areas with different levels of radioactive contamination by the Muller embryo-test in the 30 km of ChNPP. The dose rate of chronic irradiation in the examined areas varied from 0.014 to 17 nA/Kg. Monitoring of the dynamics of the mutation process in natural arabidopsis populations showed the correlation between the level of the mutation process and the dose rate of chronic irradiation. The genetic effects of different levels of radioactive contamination were estimated by determining the frequency of mutations occurred in this generation and by calculating the dose of irradiation of one was found. That the dependence of the mutation frequency on the dose of irradiation presents a power function with a power index less 1, which suggests a higher efficiency of low radiation doses per unit dose. Possible explanations of this phenomenon are considered in the work. The studies of cytogenetic effects in chronically exposed Crepis tectorum populations in the zones of the Chernobyl accident showed that starting from the second year after the Chernobyl disaster there appeared plants with an altered karyotype and their frequency of chromosome aberrations correlates in root meristem cells.

  7. Allele Identification for Transcriptome-Based Population Genomics in the Invasive Plant Centaurea solstitialis

    PubMed Central

    Dlugosch, Katrina M.; Lai, Zhao; Bonin, Aurélie; Hierro, José; Rieseberg, Loren H.

    2013-01-01

    Transcriptome sequences are becoming more broadly available for multiple individuals of the same species, providing opportunities to derive population genomic information from these datasets. Using the 454 Life Science Genome Sequencer FLX and FLX-Titanium next-generation platforms, we generated 11−430 Mbp of sequence for normalized cDNA for 40 wild genotypes of the invasive plant Centaurea solstitialis, yellow starthistle, from across its worldwide distribution. We examined the impact of sequencing effort on transcriptome recovery and overlap among individuals. To do this, we developed two novel publicly available software pipelines: SnoWhite for read cleaning before assembly, and AllelePipe for clustering of loci and allele identification in assembled datasets with or without a reference genome. AllelePipe is designed specifically for cases in which read depth information is not appropriate or available to assist with disentangling closely related paralogs from allelic variation, as in transcriptome or previously assembled libraries. We find that modest applications of sequencing effort recover most of the novel sequences present in the transcriptome of this species, including single-copy loci and a representative distribution of functional groups. In contrast, the coverage of variable sites, observation of heterozygosity, and overlap among different libraries are all highly dependent on sequencing effort. Nevertheless, the information gained from overlapping regions was informative regarding coarse population structure and variation across our small number of population samples, providing the first genetic evidence in support of hypothesized invasion scenarios. PMID:23390612

  8. Allele identification for transcriptome-based population genomics in the invasive plant Centaurea solstitialis.

    PubMed

    Dlugosch, Katrina M; Lai, Zhao; Bonin, Aurélie; Hierro, José; Rieseberg, Loren H

    2013-02-01

    Transcriptome sequences are becoming more broadly available for multiple individuals of the same species, providing opportunities to derive population genomic information from these datasets. Using the 454 Life Science Genome Sequencer FLX and FLX-Titanium next-generation platforms, we generated 11-430 Mbp of sequence for normalized cDNA for 40 wild genotypes of the invasive plant Centaurea solstitialis, yellow starthistle, from across its worldwide distribution. We examined the impact of sequencing effort on transcriptome recovery and overlap among individuals. To do this, we developed two novel publicly available software pipelines: SnoWhite for read cleaning before assembly, and AllelePipe for clustering of loci and allele identification in assembled datasets with or without a reference genome. AllelePipe is designed specifically for cases in which read depth information is not appropriate or available to assist with disentangling closely related paralogs from allelic variation, as in transcriptome or previously assembled libraries. We find that modest applications of sequencing effort recover most of the novel sequences present in the transcriptome of this species, including single-copy loci and a representative distribution of functional groups. In contrast, the coverage of variable sites, observation of heterozygosity, and overlap among different libraries are all highly dependent on sequencing effort. Nevertheless, the information gained from overlapping regions was informative regarding coarse population structure and variation across our small number of population samples, providing the first genetic evidence in support of hypothesized invasion scenarios. PMID:23390612

  9. Genetic structure of coexisting wild and managed agave populations: implications for the evolution of plants under domestication

    PubMed Central

    Figueredo, Carmen Julia; Casas, Alejandro; González-Rodríguez, Antonio; Nassar, Jafet M.; Colunga-GarcíaMarín, Patricia; Rocha-Ramírez, Víctor

    2015-01-01

    Domestication is a continuous evolutionary process guided by humans. This process leads to divergence in characteristics such as behaviour, morphology or genetics, between wild and managed populations. Agaves have been important resources for Mesoamerican peoples since prehistory. Some species are domesticated and others vary in degree of domestication. Agave inaequidens Koch is used in central Mexico to produce mescal, and a management gradient from gathered wild and silvicultural populations, as well as cultivated plantations, has been documented. Significant morphological differences were reported among wild and managed populations, and a high phenotypic variation in cultivated populations composed of plants from different populations. We evaluated levels of genetic diversity and structure associated with management, hypothesizing that high morphological variation would be accompanied by high genetic diversity in populations with high gene flow and low genetic structure among managed and unmanaged populations. Wild, silvicultural and cultivated populations were studied, collecting tissue of 19–30 plants per population. Through 10 nuclear microsatellite loci, we compared population genetic parameters. We analysed partition of variation associated with management categories to estimate gene flow among populations. Agave inaequidens exhibits high levels of genetic diversity (He = 0.707) and moderate genetic structure (FST = 0.112). No differences were found in levels of genetic diversity among wild (He = 0.704), silviculturally managed (He = 0.733) and cultivated (He = 0.698) populations. Bayesian analysis indicated that five genetic clusters best fit the data, with genetic groups corresponding to habitats where populations grow rather than to management. Migration rates ranged from zero between two populations to markedly high among others (M = 0.73–35.25). Natural mechanisms of gene flow and the dynamic management of agave propagules among populations favour

  10. Genetic structure of coexisting wild and managed agave populations: implications for the evolution of plants under domestication.

    PubMed

    Figueredo, Carmen Julia; Casas, Alejandro; González-Rodríguez, Antonio; Nassar, Jafet M; Colunga-GarcíaMarín, Patricia; Rocha-Ramírez, Víctor

    2015-10-03

    Domestication is a continuous evolutionary process guided by humans. This process leads to divergence in characteristics such as behaviour, morphology or genetics, between wild and managed populations. Agaves have been important resources for Mesoamerican peoples since prehistory. Some species are domesticated and others vary in degree of domestication. Agave inaequidens Koch is used in central Mexico to produce mescal, and a management gradient from gathered wild and silvicultural populations, as well as cultivated plantations, has been documented. Significant morphological differences were reported among wild and managed populations, and a high phenotypic variation in cultivated populations composed of plants from different populations. We evaluated levels of genetic diversity and structure associated with management, hypothesizing that high morphological variation would be accompanied by high genetic diversity in populations with high gene flow and low genetic structure among managed and unmanaged populations. Wild, silvicultural and cultivated populations were studied, collecting tissue of 19-30 plants per population. Through 10 nuclear microsatellite loci, we compared population genetic parameters. We analysed partition of variation associated with management categories to estimate gene flow among populations. Agave inaequidens exhibits high levels of genetic diversity (He = 0.707) and moderate genetic structure (FST = 0.112). No differences were found in levels of genetic diversity among wild (He = 0.704), silviculturally managed (He = 0.733) and cultivated (He = 0.698) populations. Bayesian analysis indicated that five genetic clusters best fit the data, with genetic groups corresponding to habitats where populations grow rather than to management. Migration rates ranged from zero between two populations to markedly high among others (M = 0.73-35.25). Natural mechanisms of gene flow and the dynamic management of agave propagules among populations favour gene

  11. Genetic structure of coexisting wild and managed agave populations: implications for the evolution of plants under domestication.

    PubMed

    Figueredo, Carmen Julia; Casas, Alejandro; González-Rodríguez, Antonio; Nassar, Jafet M; Colunga-GarcíaMarín, Patricia; Rocha-Ramírez, Víctor

    2015-01-01

    Domestication is a continuous evolutionary process guided by humans. This process leads to divergence in characteristics such as behaviour, morphology or genetics, between wild and managed populations. Agaves have been important resources for Mesoamerican peoples since prehistory. Some species are domesticated and others vary in degree of domestication. Agave inaequidens Koch is used in central Mexico to produce mescal, and a management gradient from gathered wild and silvicultural populations, as well as cultivated plantations, has been documented. Significant morphological differences were reported among wild and managed populations, and a high phenotypic variation in cultivated populations composed of plants from different populations. We evaluated levels of genetic diversity and structure associated with management, hypothesizing that high morphological variation would be accompanied by high genetic diversity in populations with high gene flow and low genetic structure among managed and unmanaged populations. Wild, silvicultural and cultivated populations were studied, collecting tissue of 19-30 plants per population. Through 10 nuclear microsatellite loci, we compared population genetic parameters. We analysed partition of variation associated with management categories to estimate gene flow among populations. Agave inaequidens exhibits high levels of genetic diversity (He = 0.707) and moderate genetic structure (FST = 0.112). No differences were found in levels of genetic diversity among wild (He = 0.704), silviculturally managed (He = 0.733) and cultivated (He = 0.698) populations. Bayesian analysis indicated that five genetic clusters best fit the data, with genetic groups corresponding to habitats where populations grow rather than to management. Migration rates ranged from zero between two populations to markedly high among others (M = 0.73-35.25). Natural mechanisms of gene flow and the dynamic management of agave propagules among populations favour gene

  12. Living in isolation - population structure, reproduction, and genetic variation of the endangered plant species Dianthus gratianopolitanus (Cheddar pink).

    PubMed

    Putz, Christina M; Schmid, Christoph; Reisch, Christoph

    2015-09-01

    The endangered plant species Dianthus gratianopolitanus exhibits a highly fragmented distribution range comprising many isolated populations. Based upon this pattern of distribution, we selected a study region in Switzerland with a lower magnitude of isolation (Swiss Jura) and another study region in Germany with a higher degree of isolation (Franconian Jura). In each region, we chose ten populations to analyze population structure, reproduction, and genetic variation in a comparative approach. Therefore, we determined population density, cushion size, and cushion density to analyze population structure, investigated reproductive traits, including number of flowers, capsules, and germination rate, and analyzed amplified fragment length polymorphisms to study genetic variation. Population and cushion density were credibly higher in German than in Swiss populations, whereas reproductive traits and genetic variation within populations were similar in both study regions. However, genetic variation among populations and isolation by distance were stronger in Germany than in Switzerland. Generally, cushion size and density as well as flower and capsule production increased with population size and density, whereas genetic variation decreased with population density. In contrast to our assumptions, we observed denser populations and cushions in the region with the higher magnitude of isolation, whereas reproductive traits and genetic variation within populations were comparable in both regions. This corroborates the assumption that stronger isolation must not necessarily result in the loss of fitness and genetic variation. Furthermore, it supports our conclusion that the protection of strongly isolated populations contributes essentially to the conservation of a species' full evolutionary potential.

  13. Living in isolation – population structure, reproduction, and genetic variation of the endangered plant species Dianthus gratianopolitanus (Cheddar pink)

    PubMed Central

    Putz, Christina M; Schmid, Christoph; Reisch, Christoph

    2015-01-01

    The endangered plant species Dianthus gratianopolitanus exhibits a highly fragmented distribution range comprising many isolated populations. Based upon this pattern of distribution, we selected a study region in Switzerland with a lower magnitude of isolation (Swiss Jura) and another study region in Germany with a higher degree of isolation (Franconian Jura). In each region, we chose ten populations to analyze population structure, reproduction, and genetic variation in a comparative approach. Therefore, we determined population density, cushion size, and cushion density to analyze population structure, investigated reproductive traits, including number of flowers, capsules, and germination rate, and analyzed amplified fragment length polymorphisms to study genetic variation. Population and cushion density were credibly higher in German than in Swiss populations, whereas reproductive traits and genetic variation within populations were similar in both study regions. However, genetic variation among populations and isolation by distance were stronger in Germany than in Switzerland. Generally, cushion size and density as well as flower and capsule production increased with population size and density, whereas genetic variation decreased with population density. In contrast to our assumptions, we observed denser populations and cushions in the region with the higher magnitude of isolation, whereas reproductive traits and genetic variation within populations were comparable in both regions. This corroborates the assumption that stronger isolation must not necessarily result in the loss of fitness and genetic variation. Furthermore, it supports our conclusion that the protection of strongly isolated populations contributes essentially to the conservation of a species' full evolutionary potential. PMID:26380690

  14. Effects of vicariant barriers, habitat stability, population isolation and environmental features on species divergence in the south-western Australian coastal reptile community.

    PubMed

    Edwards, D L; Keogh, J S; Knowles, L L

    2012-08-01

    Identifying explicit hypotheses regarding the factors determining genetic structuring within species can be difficult, especially in species distributed in historically dynamic regions. To contend with these challenges, we use a framework that combines species distribution models, environmental data and multi-locus genetic data to generate and explore phylogeographic hypotheses for reptile species occupying the coastal sand-dune and sand-plain habitats of the south-western Australian biodiversity hotspot, a community which has both a high diversity of endemics and has varied dramatically in spatial extent over time. We use hierarchical amova, summary statistic and distance-based analyses to explicitly test specific phylogeographic hypotheses. Namely, we test if biogeographic vicariance across barriers, habitat stability, population isolation along a linear habitat or fragmentation across different environments can explain genetic divergence within five co-distributed squamate reptile species. Our results show that patterns of genetic variation reflect complex and species-specific interactions related to the spatial distribution of habitats present currently and during repeated glacial minima, as opposed to being associated with historical factors such as habitat stability between glacial and inter-glacial periods or vicariant barriers. We suggest that the large impact of habitat characteristics over time (i.e. relative levels of habitat connectivity, climatic gradients and spatial heterogeneity of soil types) reflects the ecological restrictions of the sand-dune and sand-plain reptile communities and may explain the lack of concordance across taxa. The study demonstrates the general utility of the approach for assemblage-level, as well as single species, phylogeographic study, including its usefulness for exploring biologically informed hypotheses about what factors have influenced patterns of genetic variation.

  15. Population dose commitments due to radioactive releases from nuclear power plant sites in 1988

    SciTech Connect

    Baker, D.A. )

    1992-01-01

    Population radiation dose commitments have been estimated from reported radionuclide releases from commercial power reactors operating during 1988. Fifty-year commitments for a one-year exposure from both liquid and atmospheric releases were calculated for four population groups (infant, child, teen-ager and adult) residing between 2 and 80 km from each of 71 reactor sites. This report tabulates the results of these calculations, showing the dose commitments for both water and airborne pathways for each age group and organ. Also included for each of the sites is a histogram showing the fraction of the total population within 2 to 80 km around each site receiving various average dose commitments from the airborne pathways. The total collective dose commitments (from both liquid and airborne pathways) for each site ranged from a high of 16 person-rem to a low of 0.0011 person-rem for the sites with plants operating throughout the year with an arithmetic mean of 1.1 person-rem. The total population dose for all sites was estimated at 75 person-rem for the 150 million people considered at risk. The site average individual dose commitment from all pathways ranged from a low of 3 {times} 10{sup {minus}7} mrem to a high of 0.02 mrem. No attempt was made in this study to determine the maximum dose commitment received by any one individual from the radionuclides released at any of the sites. However, licensee calculation of doses to the maximally exposed individual at some sites indicated values of up to approximately 100 times average individual doses (on the order of a few millirem per year).

  16. Population dose commitments due to radioactive releases from nuclear power plant sites in 1988. Volume 10

    S